ML20042A882

From kanterella
Jump to navigation Jump to search
Supplemental Reload Licensing Submittal for Hatch Nuclear Power Station Unit 2 Reload 2.
ML20042A882
Person / Time
Site: Hatch Southern Nuclear icon.png
Issue date: 03/11/1982
From: Engel R, Galer R, Hilf C
GENERAL ELECTRIC CO.
To:
Shared Package
ML20042A874 List:
References
TAC-48110, Y1003J01A32, Y1003J1A32, NUDOCS 8203240232
Download: ML20042A882 (24)


Text

7I'-

'-iiu m .i , - r -

is g p i..

' 1r I lH e e e

CLASSI DECEMBER 1981

(

i SUPPLEMENTAL RELOAD l LICENSING SUBMITTAL FOR HATCH NUCLEAR POWER STATION UNIT 2 RELOAD 2

$hb!

pm anocx.saoap40,n:>#8i:S o

GEN ER AL h ELECTRIC

i .

l Y1003J01A32 Revision 0 Class I December 1981

[

SUPPLEMENTAL RELOAD LICENSING SUBMITTAL FOR HATCH NUCLEAR PLANT UNIT 2, RELOAD 2 l

Prepared: U~A ~

C. L. Hilf Verified: dy R. R.' Galer Approved:[ ~2-/[ t-R. E. En g1, Manager Reload Fuel Licensing NUCLEAR POWER SYSTEMS DIVISION

  • GENER AL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125 GENER AL h ELECTRIC i

\

Y1003J01A32 Rev. O IMPORTANT NOTICE REGARDING CONTENTS OF TilIS REPORT PLEASE READ CAREFULLY This report was prepared by General Electric solely for Georgia Power Company (GPC) for GPC's use with the U.S. Nuclear Regulatory Commission (USNRC) for amending GPC's operating license of Hatch 2. The information contained in this report is believed by General Electric to be an accurate and true representation of the facts known, obtained, or provided to General Electric at the time this report was prepared.

The only undertakings of the General Electric Company respecting information in this document are contained in the contract between Georgia Power Company and i General Electric Company for nuclear fuel and related services for flatch 2, dated October 25, 1967, and nothing contained in this document shall be con- l strued as changing said contract. The use of this information except as de-fined by said contract, or for any purpose other than that for which it is intended, is not authorized; and with respect to any such unauthorized use, neither General Electric nor any of the contributors to this document makes any representation or warranty (express or implied) as to the completeness, accuracy, or usefulness of the information contained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from such use of such information.

j

{

l ii

- - - - - - - - - - - /

~

Y1003J01A32 -

Rev. O l

1. PLANT-UNIQUE ITEMS (1.0)*

Safety Relief Valve Capacity: Appendix A

2. RELOAD FUEL BUNDLES (1.0, 2.0, 3.3.1 and 4.0)

Fuel Cycle Type Loaded Number Number Drilled Irradiated 8DRB221(IC) 1 76 76 8DRB221(IC) 1 200 200 P8DRB284LA 2 164 164 New P8DRB283 3 120 120 Total 560 560

3. REFERENCE CORE LOADING PATTERN (3.3.1)

Nominal previous cycle core average exposure at end of cycle: 12047 mwd /t Minimum previous cycle core average exposure at end of cycle from cold shutdown considerations: 12046 mwd /t Assumed reload cycle core average exposure at end of cycle: 14,621 mwd /t Core loading pattern: Figure 1

4. CALCULATED CORE EFFECTIVE MULTIPLICATION AND CONTROL SYSTEM WORTH - NO VOIDS, 20 C (3.3.2.1.1 and 3.3.2.1.2)

Minimum Shutdown Margin, BOC k eff Uncontrolled 1.112 Fully Controlled 0.955 Strongest Control Rod Out 0.986 R, Maximum Increase in Cold Core Reactivity with Exposure Into Cycle, ok 0.000

  • ( ) Refers to area of discussion in " Generic Reload Fuel Application," NEDE- ,

240ll-P-A-2 and NEDO-240ll-A-2, July 1981. '

1 i

1 i

Y1003J01A32 -

Rev. 0

5. STANDBY LIQUID CONTROL SYSTEM SHUTDOWN CAPABILITY (3.3.2.1.3)

Shutdown Margin (Ak) 4 l ppe (20 C, Xenon Free) 660 0.048

6. RELOAD-UNIQUE TRANSIENT ANALYSIS INPUT (3.3.2.1.5 and 5.2)

(Loss of Feedwater Heating Event Only)

EOC-3 Void Fraction (%) 41.4 Average Fuel Temperature (OF) 1315.0 Void Coefficient N/A* (C/% Rg) -8.08/-10.10 Doppler Coefficient N/A (C/ F) -0.228/-0.217 l

-46.31/-37.05 Scram Worth N/A ($)

7. RELOAD-UNIQUE GETAB TRANSIENT ANALYSIS INITIAL CONDITION PARAMETERS (5.2)

Fuel Peaking Factors Bundle Power Bundle Flow Initial Design Local Radial Axial R-Factor (MWt) (1000 lb/hr) MCPR BOC 3 to EOC 3 P8X8R I.20 1.48 1.40 1.051 6.298 113.7 1.28 q 8X8R 1.20 1.50 1.40 1.051 6.408 112.9 1.26

8. SELECTED MARGIN IMPROVEMENT OPTIONS (5.2 2 Transient Recategorization: No Recirculation Pump Trip: Yes l Rod Withdrawal Limitier: No f Thermal Power Monitor: Yes Measured Scram Time: No ,

Number of Exposure Points 1

  • N = Nuclear Input Data.

A = Used in Transient Analysis.

2

i l .

Y1003J01A32 ,

Rev. 0

9. CORE-WIDE TRANSIENT ANALYSIS RESULTS (5.2.1)

Flux Q/A 6CPR Transient (% NBR) (% NBR) P8X8R 8x8R Figure Exposure: BOC 3 to EOC 3 Load Rejection without Bypass 506 122 0.22 0.19 2 Exposure: BOC to EOC Loss of Feedwater 126 121 0.14 0.14 3 Heater Exposure: BOC 3 to EOC 3 Feedwater Controller Failure 295 121 0.18 0.17 4

10. LOCAL ROD WITHDRAWAL ERROR (WITH LIMITING INSTRUMENT FAILURE)

TRANSIENT

SUMMARY

(5.2.1)

Limiting Rod Pattern: Figure 5 Includes 2.2% Power Spiking Penalty: Yes Rod Position MLHGR (kW/ft)

Rod Block (Feet dCPR 8X8R/

Reading Withdrawn) P8x8R/8x8R 7X7 8X8 P8X8R 104 3.0 0.12 0.11 16.91 105 3.5 0.13 0.12 17.48 106 4.0 0.15 0.14 17.82 107 4.0 0.15 0.14 17.82 108 4.5 0.16 0.15 17.85 109 5.0 0.17 0.16 17.85 110 5.0 0.17 0.16 17.85 Setpoint Selected is: 107

11. CYCLE MCPR VALUES (5.2)

Non-Pressurization Events Exposure Range: BOC to EOC P8X8R 8X8R Loss of Feedwater Heater 1.21 1.21 Fuel Loading Error 1.24 Rod Withdrawal Error 1.22 1.21 Pressurization Events Exposure Range: BOC 3 to EOC 3 Option A Option B P8X8R 8X8R P8X8R 8X8R Load Rejection without Bypass 1.35 1.32 1.25 1.23 Feedwater Controller Failure 1.30 1.29 1.27 1.26 3

\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Y1003J01A32 ,

Rev. O J

12. OVERPRESSURIZATION ANALYSIS

SUMMARY

(5.3)

P Pv Plant g

Transient (psig) (psig) Response l

MSIV Closure 1205 1226 Figure 6 (Flux Scram)

13. STABILITY ANALYSIS RESULTS (5.4)

Rod Line Analyzed: Extrapolated Rod Block Line Decay Ratio: Figure 7 Reactor Core Stability Decay Ratio, x2/ x0: 0.83 Channel llydrodynamic Performance Decay Ratio, x2/ *0 Channel Type P8X8R 0.64

14. LOADING ERROR RESULTS (5.5.4)

Variable Water Cap Misoriented Bundle Analysis: Yes Includes 2.2% Power Spiking Penalty: Yes Initial Resulting Resulting*

Event MCPR MCPR LHCR Misoriented 1.22 1.07 17.66

15. CONTROL ROD DROP ANALYSIS RESULTS (5.5.1)

Bounding Analysis Results:

Doppler Reactivity Coef ficient: Figure 8 Accident Reactivity Shape Functions: Figures 9 and 10 Scram Reactivity Functions: Figures 11 and 12 Plant Specific Analysis Results:

Parameter (s) not Bounded, Cold: None Resultant Peak Enthalpy, Cold:

Parameter (s) not Bounded, HSB: None Resultant Peak Enthalpy, HSB:

l

  • To be eliminated after approval of event classification. i 4 1

Y1003J01A32 ,

Rev. 0

16. LOSS-OF-COOLANT ACCIDENT RESULTS, NEW FUEL (5.5.2)

FUEL TYPE: P8DRB283 Exposure MAPLHGR PCT Local Oxidation (mwd /T) (kW/ft) ( F) (Fraction) 200 11.30 2133 0.029 1000 11.40 2134 0.028 5000 11.90 2185 0.033 10000 12.10 2195 0.033 15000 12.10 2199 0.033 20000 11.90 2184 0.032 f 25000 11.30 2112 0.025 30000 11.10 2061 0.021 35000 10.50 1981 0.030 40000 9.80 1878 0.017 5

Y1003J01A32 . Rev. 0

.MMMMM.
sMMMMMMMMMs
MMMMMMMMMMM
sMMMMMMMMMMM.
MMMMMMMMMMMMM
MMMMMMMMMMMMM

':: M M M M M M M M M M M M M

'::MMMMMMMMMMMMM 1

'::MMMMMMMMMMMME ll "MMMMMMMMMMM" I

MMMMMMMMMMM  !
"MMMMMMMMM"  !
"MMMMM" Iill IIIIII i

I 35 7 9111315171921237527293133353739414345474951 FUEL TYPE

^:" "lElll8  ::;" "l'#^

Y-1003J01 A32 Figure 1. Reference Core Loading Pattern l

6

J 1 NEllTPfu CLtp j 1 VEvrt. IT S RISF IPSI)

? .Tif cA #'fi 'e'E HE AT FLUX .is t r i u ..s r r tN i N.t 1 F t r.i 40 ,3 F. C Il U13L

[J 't 'FLC.e f lOL 4 g  !

150- r;  ;

1

f i

8 100. _- ( 200.

w K ,

50.

100. --I W

~

3 -

l O*~ '. 1 . g, [X i . 1.2 2u 2.4 24 2 4 i4. 8

-in

-0. 1.2 2.4 3. 6 4.8 0. 3.6 l TIME (SEC1 TIME ISEC)

=<:

o o

w M o I LEVEL (INCH-REF-SEP-SMIFIT 1 'JOID RE ArTiv!TT

? 00ff1ER I FACitvlTT g

2 VESSEL STEAMFLOl4

/

r I\ w w

., 3 TURBINE < T EHMF L OW l ' 4 I.OM-~Iif 6TIVITT

'00. qq gg gggg; fTLM - *

(ll DIAL 60 JT WITv -

s g

1 A i 100-j M

~ r uv~

^

2r C 0- D /

q' \, , -

6 v

3 3 3 3 0 " '

0. -1. -

L)^

=

M Ny cc

,g g* ,l. .ee 2, *!.

-0. 1.2 2.4 3.6 4.8 -0. 0.4 0.8 1.2 1.6 TIME ISEC1 TIME ISECl

n m

Figure 2. Plant Response to Generator Lc.ad Rejection, without Bypass o

. Y1003J01A32 Rsv. 0 l

=

E wd2 e b-Ede a:

eWh .

J EMC .

us_ g g ts:wssj -

qg(g k -

y=-s ce%d

-ge-b 25- F 95M' *

.I re_ p' -smy p g

n y _

- u w

W C g; gW p

5 i

i

]'-n a e

y W. -

m 2

e 2

k e

y e

e e L * .f. .

. . . .o . . , ,o N N N N " o -

9 0

- 9 o.e tel51N3N3dWOJ A1!AI13d38 e4 w

O 12 =

i

.5 w c, h e n.

! - E o L.ca a

e2 Y_

sau-- ;g magg**me .

. 1 g r m -, g a g;g m -

wg sW=

g, e

e5== n l $"da e c:

~

dd53 C*st n $ i 6"u,3 e _&

u

-~m= go

-~e=.- .

, g g g c c g e M N

i

^

cc X n g ci I s-w ,8 e

u 3

80 W

A W - . - . i 5C # .w d P

^

~

d  !

_ = 1 l _ =

]

n  ;

,t. . .l. .

. . .o . . . .o

8. 8 8 o 8 8 8 o (03100 f IN3383d1 1

1 8

I lI' M o84 dN .

N? o 0 0 2 2 1 2 6 6 1

1 2

/ ,

(

' g 4

[/

[ 2 y d

/ 3 1 ) 2 C 3 1

)

E C E

1 S

(

E S 3 S Y

I RO WWO E

M TI YY

(

E e E L L RF F " 8 I

T Y VTT I I I MI T l r

u UE E ~ TTVVI I

V CI 8

i SV S L V L I A TT TE CC a E F R AA 2 CR AA E E P VV A E RRR r LYS e ETS SEA R ELML 2 l SF P 4 DP AA 4 l

I P R T o E AY VSB OO VDST CO r

~ t l 23 '

1 234 i n o

^

C 0 .~

O r 5

2 5

7 5

2 5 i 0 ' e 2 - ' t 1

a g' g;5 2 8 D3Gf m w 5 2 uE$ d e

e F

o 0 t 2

4 0 2 e s

- n 2 o p

( 2 3 4 \

s e

6 1 \ 6 R

h 1

t n

f '

\ I 1 I 1

l l

P a

(

A 2 4 ' '

3 1 ) 2 .

C ) 2 1 )

4 X 3 E T 3 C S R E U ( S e 47 d l

L E K

(

r F M S E u g

T M

- TI P W A W -

8 E WO TI i F

E XH OB SOLW F LF O 8

UE LU FS EF M L LC RMAF FA TT EE HAE R NF LL CET OR NN N TSE T R UI I

- I

(

S E A T S EE 4 LN 4 UERR L E I W '

E S BD EVOO A- VSRE W _.

NACC ' EE UE LVTF 1 234 .

1 234 O

f O

0 0 0 0 0 0 0 0 5 5 0 5 l 1 1 1 8 g u.f 20 _8N s E$

l

. . j Y1003J01A32 ,

Rsv. 0 NOTES: 1. ROD PATTERN IS 1/4 CORE MIRROR SYMMETRIC.

2. NO. INDICATES NUMBER OF NOTCHES WITHDRAWN OUT OF 48. BLANK IS A WITHDR AWN ROD.
3. ERROR ROD IS (26,31).

2 6 10 14 18 22 26 51 40 47 6 10 10 43 36 40 40 39 10 10 10 35 40 40 40 31 6 10 10 0 27 40 40 40 Y 1003J01 A32 Figure 5. Limiting RWE Rod Pattern 10

1 1Ij ll Il , l'lllll lI.

  • ' . 4 8ow"o >W
  • 0<, o

~

,. s i ' i - -

)

I ,.

S P(wLd EoOO f

Sl(L YfM l I

T T

IFF F T I R ITV V -

EEE VCI!

SVO%L u 4 -

IAT TE ) 4 4EAp

.' - L.

FVYW . 6 -

KFKC ERRA EU 2 ,

i LYF 5 fE -

ETE5 L SEJH SFL OPm IP ErMF 1 VS t23456 6

w3 u m_

8 OOM VD I234 w

8 1

)

C E

S I

~ 1 3

. 2.E 1I M m T a r

- " c S

  1. " x 6 6 u l

1

-0 F d ,

l e r

4 3 u N* 2 s

o

. L. -0
  • ..0 - *
  • l 0 0 0 0 g 0 1 2 C 0 0 0 3 2 1 V

g a * = E yg I S

M T

o t

R I

X M e U S s L

F

==

P

- _ = n o

EW -:

T SW0 p AW Ot s EO FLF W . e HL EFM O X

UE F RMA L AEF R

4 4 LCT HET dEE 6 6 t FL M5 ET E 19F n

NRN OUI I

tLN A 3 a RS LEIW l T E ESBO VSR P

UER NN L '-

EVO EEUE .

NAE LVT F 8 8 .

I2345 t2345 6 4) es (

C E

e r

S v 1 I u

g 2v E N M i

^ ]V I F a d

h . t 2.T

, 3 3 i

s, w

L y

^

~

6 1

MI- @

y 6 1

^ .  ;- - .

0

  • 0-0 0 0 O 0 0' 0 0 5 0 5 0 0 0

_ 1 1 5i

  • Eg$"

2 1 1

[

' i l1  !

Y1003J01A32 Rev. 0 1.25 ULTIMATE STABILITY LINE 1.00 N ATUR AL CIRCULATION 0.75 -

8 x

A 5

9 7

e 6

8 0.50 -

105 PERCENT ROD LINE 0.25 -

0 ' ' ' ' I O 20 40 60 80 100 120 PERCENT POWER Y 1003J01 A32 Figure 7. Reactor Core Decay Ratio 12 L__

Rev. O Y1003J01A32 .

I i

0 -

-5 -

BOUND VALUE 280 cal /g COLD BOUND VALUE 280 cal /g HSB CALCULATED V ALUE - HSB CALCULATED VALUE - COLO 2

W u

~

-15 -

o u

5 t>

0

-20 -

-25 -

I i , ,

-30 1000 1500 2000 2 m FUEL TEMPER ATURE (DC)

Figure 8. Fuel Doppler Coefficient in 1/ A t 13

Y1003J01A32 Rsv. 0 20.0 -

17.5 -

15,0 -

BOUNDING VALUE 280 cal /g 12.5 -

S w

w ACCIDENT FUNCTION N

h 10.0 p

O w

a:

7.5 -

50 -

2.5 -

0 ' '

O 5 10 15 20 ROD POSITION (f t out)

Y 1003JOI A32 Figure 9. Accident Reactivity Shape Function Cold Startup l

14

Y1003J01A32 ,

Rev. O I

20 0 -

17.5 -

15.0 -

BOUNDING VALUE 280 cal /g 12.5 -

h r

tf N

t 3 10.0 -

I-E ACCIDENT FUNCTION 7.5 -

5.0 -

2.5 -

g i 1 1 0 5 10 15 20 1

ROD POSITION (f t out)

Figure 10. Accident Reactivity Shape Function Hot Startup 15 t -- - - - - - - -

~

Y1003J01A32 Rev. 0 40 -

i 35 -

\

30 -

a 25 - SCR AM FUNCTION ,'

2 N

G w

E C

- 20 -

Y> ,

5 c:

15 -

10 -

5 -

t-jj/ j /' . bot >NCING VALUE 280 cal /g t

2.f. C'!

0 , -

t ,

_ e 0 1 2 3 4 5

. dLAPSED it1AE (sec)

Y 1003J01 A32 Figure 11. Scram Reactivity Function Cold Startup x

16-w ..

. V1003J01A32 . Rev. 0

(

80 -

70 -

SCR AM FUNCTION 60 -

50 -

O t

V N

G z

5 40 -

e 2

0 5

a:

30 -

20 -

10 -

BOUNDING VALUE 280 cal /g

' ' ' ' I 0

O 1 2 3 4 5 6 ELAPSED TIME (sec)

Figure 12. Scram Reactivity Function Hot Startup 17/18

\

. Y1003J01A32 ,

R:.v. O APPENDIX A Safety Relief Valve Capacity 91.4%

4 19

Y1003J01A32 Rav. O LIST OF FIGURES

1. Reference Core Loading Pattern
2. Plant Response to Limiting Power and Pressure Increase Event
3. Plant Response to Limiting Coolant Temperature Decrease Event
4. Plant Response to Feedwater Controller Failure
5. Limiting Rod Withdrawal Error Rod Pattern
6. Plant Response to Overpressurization Event
7. Reactor Core Decay Ratio
8. Doppler Reactivity Coefficient Comparison for RDA
9. RDA Reactivity Shape Function at 20 deg. C
10. RDA Reactivity Shape Function at 286 deg. C
11. RDA Scram Reactivity Function at 20 deg. C
12. RDA Scram Reactivity Function at 286 deg. C l

l I

l l

i l

l l

L i

lr 20 (Final)

& 9 a

e 4

e-O GEN ER AL h ELECTRIC j i

1