ML19322A070

From kanterella
Jump to navigation Jump to search
Forwards Suppl Reload Licensing Repts NEDO-24166 Suppl Reload Licensing Submittal,Reload 1 & NEDO-24165, LOCA Analysis for Cycle 2. Will Provide Info Re Startup Physics Testing Program & Tech Specs Changes Later.W/O NEDO-24165
ML19322A070
Person / Time
Site: Brunswick Duke Energy icon.png
Issue date: 12/29/1978
From: Utley E
CAROLINA POWER & LIGHT CO.
To: Ippolito T
Office of Nuclear Reactor Regulation
Shared Package
ML19322A071 List:
References
GD-78-4401, NUDOCS 7901020166
Download: ML19322A070 (3)


Text

    • 4.

. /s i

o Carolina Power & Light Company December 29, 1978 FILE: NG 3514(B) SERIAL: GD-78-4401 Office of Nuclear Reactor Regulation ATTENTION: Mr. T. A. .polito, Chief Operating heactors Branch No. 3 United States Nuclear Regulatory Commission Washington, D. C. 20555 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 1 DOCKET NO. 50-325 LICENSE NO. DpR-71 FUEL CYCLE NO. 2 - RELOAD LICENSING SUBMITTAL

Dear Mr. Ippolito:

This letter is to transmit to the NRC Staff the General Electric (GF) supplemental reload licensing reports for Carolina Power & Light Company's Brunswick Steam Electric Plant (BSEP) Unit No. 1 for its upcoming refueling and Cycle 2 operation.

One attachment to this letter is GE's NEDO-24166 which is the

" Supplemental Reload Licensing Submittal for BSEP Unit 1 Reload 1.." GE's MEDO-24165 is also attached; this is the LOCA analysis for Cycle ^. Forty (40) copies of these attachments are provided for your use and review.

The reload and previous cycle exposures detailed on page 1, Section 3 of NED0-24166 are not intended to bound the exposures which may be achieved during these cycles, but rather are nominal estimates for these cycles.

On December 27, 1978, we received your letter dated December 21

hich requests that additional information concerning our startup physics testing program be included in our reload submittal. However, in order not to delay the reload submittal, we are evaluating your request .or additional information and will provide our response as soon as possible.

The technical specification changes necessary for the refueling and Cycle 2 operation are being prepared and will be transmitted to the staff as a pplement to this reload submit, il by January 15, 1979. The appropriate license amendment fee will be included with the request for technical speci-fication changes.

At the present time, the Unit No. 1 refueling outage is scheduled to begin January 13, 1979, and ascent to power is scheduled to begin March 25, 1979. Because of the numerous security and fire protection modifications which must be made during this outage to comply with commission regulations, we are being forced to schedule overlapping outages for BSEP Unit 1 and BFrP Unit 2. Therefore, it is extremely important that the staff review be con-pleted and the appropriate license amendments be issued in a time period that allows us to return to power in accordance with the above schedule.

g D t\oW - -

b $

411 Fayettevste Street

  • P. O Box 1}51 + Raleigh, N C. 27602 em m ;: h a :ramozm =zm.s' mmmen 3

l 1 d r> 6- ,  :

Mr. 20. A.11ppolito. -2 December.29,.1978 t

4 i

If your staff has any questions concerning the' attached information, lwe will be glad to discuss them either by telephone.or at a meeting with re- l presentatives of your staff.  !

Yours very truly, f 60  !

, E. E.' Utley

. Senior Vice President j- . Power Supply DLB/ke.

Attachments-

! Sworn to and subscribed before.me'this 29th day of December, 1978 i

. A

.Y44GlO l & r Y l . Notary u-Public i'

My Commission Expiras: July 4, 1980 i

9 i

r i

+

5 4

b L-1 l

l

NEDO-24166

11. OPERATINC MCPR LIMIT (5.2)

O EOC2 - 1000 EOC2 - 2000 to BOC2 to to EOC2 mwd /t EOC2 - 1000 mwd /t EOC2 - 2000 mwd /t 1.28 (8x8/8x8R fuel) 1.23 (8x8/8x8R fuel) 1.12 (8x8/8x8R fuel)

12. OVERPRESSURIZATION ANALYSIS SUM 3fARY (5.3)

Power Core Flow si v Transient (%) (%) (psig) (psig) Plant Response MSIV Closure 104.1 100 1219 1250 Figure 7 (Flux Scram)

13. STABILITY ANALYSIS RESULTS (5.4)

Decay Ratio: Figure 8 Reactor Core Stability:

Decay Ratio, x2/*0 0.70 (105% Rod Line - Natural Circulation Power)

Channel Hydrodynamic Performance Decay Ratio, x2/x0 (105% Rod Line - Natural Circulation Power) 8x8/8x8R channel 0.56

14. LOSS-OF-COOLANT ACCIDENT RESULTS (5.5.2)

Reference:

NEDO-24165, "Lcss-of-Coolant Accident Analysis Report for Brunswick Steam Electric Plant Unit 1," November 1978.

1 i

l 1

e .

NEDO-24166 8.

(u.)\ SELECTED MARGIN IMPROVEMENT OPTIONS (5.2.2)

None

9. CORE-WIDE TRANSIENT ANALYSIS RESULTS (5.2.1)

Power Flow $ Q/A sl v ACPR Plant Transient Exposure (%) (%) (%) (%) (psig) (psig) 8x8/8x8R Response Loul Rejection EOC 104.1 100 276.8 112.1 1171 1214 0.21 Figure 3a without Bypass Load Rejection EOC-1000 104.1 100 255.7 109.3 1168 1210 0.16 Figure 3b without Bypass-Load Rejection EOC-2000 104.1 100 146.8 100.0 1159 1201 0.03 Figure 3c without Bvpass Loss of 1000F -

104.1 100 118.9 116.8 1020 1066 0.14 Figure 4 Feedwater Heating Feedwater EOC 104.1 100 184.6 109.8 1146 1188 0.15 Figure Sa

()N

\- Controller Figure Feedwater EOC-1000 104.1 100 158.6 106.5 1144 1185 0.09 Figure 5b Controller Failure Feedwater EOC-2000 104.1 100 111.6 105.0 1139 1180 0.05 Figure Sc Controller Failure

10. LOCAL ROD WITHDRAWAL ERROR (WITH LIMITING INSTRUMENT FAILURE)

TRANSIENT

SUMMARY

(5.2.1)

Rod Rod Block Fe U "" "! E Limiting Reading Withdrawn) 8x8 8x8R 8x8 8x8R Rod Pattern 105 4.0 O!12 0.14 13.9 15.6 Figure 6 106* 4.0 0.12 _0.14 13.9 15.6 Figure 6 107 4.5 0.14 0.16 14.0 15.7 Figure 6 108 5.0 0.16 0.17 14.1 15.8 Figure 6 109 6.5 0.20 0.21 14.3 16.1 Figure 6

- s{-)j 110 7.0 0.21 0.22 14.3 16.2 Figure 6

  • Indicates setpoint selected 3

NEDO-26166 l

1 52 8i8 5 9 8Y8 8i8 8 8 O so 8 8'8 8 8 8 8 BIS B 8 8

@S 8985@5_8 8 B 8iE 8iB 55 ?B

@ ))p@

46

@ @[@@ @ [@I@@@@@@

~

8 8 5 8 5 8 8Y8 8i8 8 8 8 8 8 8 8 8 BYB 8 8 8 8 8 8 8 8 8 88'88 8 8 8 8 8 8 8 5 8+8 8 42 a 8 5 S @ @ 8 8 i B B_ 5 8 8 @ @@

38 @ @p@ @ @ @ @ @I@ @ [0] @4@ 8 8 8 8 8iB B

@@@@@I@@@@@@

38 -8 8 8 8 8 8 8i8 8,8 8 5 8 8 8 8 58 8 Y YY 34-8888888'88'88888888888888888 8 8+8 8 8 8+8

'2 -8i8 8_8 8i8 8_@ 8__8 8i8 8 8 8 8 8 8 8 8 8 8 8__B 8Y8 3'-8'8 8 B B B B 8 8 8 8'8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 888888888 2e - gig Big g g gYg g g 8 g g @ g 8 @ @ g 8 g D gYY

'a - 8i8 8,8 8+8 8 8 8+8 Y 8 8 8 8 8+8 8 8 9 8 24 -8+8 gYB 8 8 8 8 8+8 8J B__8 8 8 g 8 8,8 8Y 8 8+8 8+8 22-8 8 8 8 8 8 8 8 8 8 8 8 B B 8 8 8 8 8'8 8 B B 8 8 8 2o - 8 8 5 8 8 8 B i B 8 B _8 B i B @ _8 8 _8 8 8 4

18 - @ @ @ @ @ @ @ I @ @ @ h @ @

8 B J B_ p@ 889

@4@@@h@@@@@@@

16

@hgh@@@Y@@ @ @ @ @ @g@ @ @8 8@ @8 5 @ @ @g@ @

u l 8'8 8 8 8 8 8+@8 5 555 8 8 8 @ @IB !

'2

!  ; bib 8+8 8iB 8E 58 8+8 8 8 8 8 05 8E QB : .

20 B'8 8 8 8'8 8'8 8 8 8 8 8 8 8 8 8 8 8'8 8 8 i '

=

' 8! 8+8 8+8 5 8 5 0iB 8 8 8 i !

= ,

, 888 8 88+8 8 88+88 8'8 bib8Q8 8 8 8'9 8 8 ,i bib B B 8iB 8 8 a

02 -

llll88p88'8888i88p8 8 j l
!l !IIi!IIIII 01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 3 P. 41 39 41 43 45 47 49 51 i

FUEL TYPE A = INiilAL CORE CENTRAL E =

8 = INITIAL CORE PERIPHER AL F =

C =80R8265L G=

0 = 8DRB283 H

  • Figure 1. Reference Core Loading Pattern O

6

NEDO-24166

15. LOADING ERROR RESULTS* (5.5.4) f O j Limiting Event: Rotated Bundle 8DRB283 MCPR: 1.07**
16. CONTROL ROD DROP ANALYSIS RESULTS (5.5.1)

) Doppler Reactivity Coefficient: Figure 9 Accident Pesarivity Shape Functions: Figures 10 and 11 Scram Reactivity Functions: Figures 12 and 13 Plant specific analysis results

! Parameter not bounded: Accident Reactivity (cold)

Resultant peak enthalpies: 208 cal /gm

. O i

d 1

s t

i l

l l

  • Using new rotated bundle analysis procedures described in Appendix A
    • Includes added penalty of 0.02 imposed by NRC 5

i

NEDO-24166 O 100 45 C- 678 CRO IN PERCENT

~ 1 - NOMINAL SCRAM CURVE IN (-$)

2 - SCRAM CURVE USED IN ANALYSIS -

40 80 -

s.

- 35 70 -

- 30 60 -

2 M$

o C C >

G 50 -

t 2 3 ti4 20e O 40 -

2 15 30 -

20 - -

10 10 - _ y O I I O 1 0 2 3 4 l TIME (see)

Figure 2a. Scram Reactivity and Control Rod Drive Specifications - EOC2 O

7

NEDO-24166 0

100 , 45 C - 678 CRD IN PERCENT 1 - NOMINAL SCRAM CURVE IN (~$)

90 -

2 - SCRAM CURVE USED IN ANALYSIS 40 80 -

35 C

70 -

l 30 60 -

2

- 25 E I- E 2 >

0 50 -

5 t 5 m u 2 0 20 e 40 -

15 30 -

l l

10 20 -

10 - -

5 I

0 O O 1 2 3 4 l T!ME (sec)

Figure 2b. Scram Reactivity and Control Rod Drive Specifications E02 - 1000 5'd/t G

8

. . i NED0-24166 0 100 45 i i

C - 678 CRD IN PERCENT i

l 1 - NOMINAL SCRAM CURVE IN (-$) 1 90 -

2 - SCRAM CURVE USED IN ANALL3 - 40 l 1

90 -  !

l

- 35 70 -

- 30 60 -

I 3 g C -

31 9

r U

G 50 - 2 O u 5

_ 20 e O 40 -

1

- 15 2

30 -

- 10 l 20 -

l

- 5 10 -

i l  !  !

0 0

0 1 2 3 4 TIME (sec)

Figure 2c. Scram Reactivity and Control Rod Drive Specifications EOC - 2000 Mid/t O

9

NEDO-24166

=

g O

~ 1 ' -

m, Z-

.m E _3 m g - ,- bbbb ' ^

I .I T . >s-Ovu=a / e oy h "

r t4 .

,qrW h,6I -

w

= *a *pT / W ,

Eg[3

~s # e. m 2 **

M .k

- & CC y c a

_ 2 s

~

oY -

b

" y h #

n i}

, o

. d u

'H U

.~

M , M d

t

  • 5-y u

(3)$1N3.Od M III b

G

~ c.

a s

- e sE E- as;2 t$ Etzu i g

3 ss..#.- -

2 im:F ' ^ J 6

- 5

" C. f g Y

- W E,,

~ 1

$5]

b,$g-0.

C3d

,a z

s u

Q=ti v ,-m

-~.,r* en

-mes* ~ 5

. g ,

~& E m

M y y @

.- f b

_M m n

g ,p 2

'S L

P.

),

e i

(+q- d g

4 '2 .s a g o 8 g n S g - -

, a- , -

39 O

to Ohg 's j.

D n.

Mu 16 D  ?

O O O -

1 I t.'! tilM'. IltUx I* Vi*?4I i'*4 RIST iPSil i 2 f r.( .,1:s f 6h t Iflil (101 '8 81 ** af 81813 -

g g, _

1 frA- I P.11 I t l 44J 300. - ' ' ' ' II I 3 " * *~ I ' "'

q 'I till as u ' .s. L t Lt44 5 'n i O 100. 2tt . -- -

1[

E*

b

$ 50. Q 1 i 100. --

~

g -

$  % 1 N

S _ _

M 3

0. -i -

I 1 ' O. .n .. 24 22 l3 u t O. 4. D. 12. 16. O. ti . U. 11. 16.

in 8

C I LEVft tlWH-ff f-SEP-SKIRT I volo nraitivlTY 4 2 WES f t 51tMt ow 2 Infilei 9XilvlTT 4-

. 3 Tif< tilt # < if e.atf t 0H 3 se Hi at H -1: I vi t

  • 200*

FFEEfreTEi 7 054 I'

flotse 16:TIVITf- $

5 G 3 4' I

  • m ,, ' 0' j .

, y N# N- y N k M $

0. 3 -' "~ '

-1.

~

4; e

s

- y _

W 100. - 8- * -2.--'-- *

0. 4. 8. 12. 16. O. 0.4 0.8 1.2 1.6 s TIME (SECl 11ME ISEC)

Figure 3b. Plant Response to Generator Load Rejection, Without Bypass EOC2 - 1000 FMd/t

u. __

1 t/p;f qa l ' lix  ! t *.f

  • F i 6 .!' ' Ir l',1 ti'Sil
  • f.! / 4 ., i i I!' 441 i t IJX .. d t l I L4 Igsta g$g, _li _t ( ii:4 lia Di IW g,j_ _

. e ii It i .1 llsu

's 6 s. .t f a t' 4 5 I . i.4i ea

't.

3 1

h. ..

2 200.

,@100. ? --

i; w

50. -

3 00. . _ _ -m. \.

-'( "y 3-g g' ,

-/

t

-l s, f 3

0. 4 u2122 1 _ __b= r_-_L I *
0. H si tus 2- 'l- h la
  • O. ii. 6. 11. I t>. O. it . D. 1J. I f. .

T IME ISEC D 11if (SECI

=I C

O I LEVEL tidt-fif f-5EP-Snini i vain hf E rivlTT O p- 2 srs .t i sloert od

-s lumit.t ti mi t 24 2 ra n in + mr.ilviti 3 t.: e.a n rivitt 4

v 200. 1.

37; g , g,j g,' gtgg-- D ohCfi. _ Ilill r- g 5 e 1

l00. % t .,

5 y 3 '3 2-'

  1. N'(= -- a- x O.

4

h. b- 7 N Q 7 %sM. h O. A. _

1.

4 _ tj _ <

it ,N 300. h i i -

O. 14 . 8. 12. 16.

  • 2.--<>>>.

O. U.44 0.8 1.2

\ 1.6 i TINE ISECB 11ME ISEC) 1 Figure 3c. Plant Response to Generator Load Rejection, Without Bypass EOC2 - 2000 mwd /t l

l t

i 1

\1 9

O O L

NED0-24166 r  :

$ j , I

  • r
n
_t-U1 =~IT -
s. 5 - .c , g E

.- d,__ :t. S cs , -

e C2Y h;g; gh

=

t :c.

trd e 5=95 2 .

, , ,,i - 2 j R2 ,3 -

u ,. 7 -

7 N n .-

- - g u y c .

a

. e- q E"y_ e

- - - =

3 - =

- w r t o

-. u n

. 3

s

- O c

. 2 , . 2 o l  : A 7 / 7 4 C

[

I o

. . i. . o

. . . .o . . . .o -*

" O 9 IC $ R.

a t $1SifGOd43 111 AI1)t:3W .

m o

N s-6 u 0

v

= .s n

% o d d L-w zB e m

e c o. o a o

  • o.

10:3 -

- $."2%,3

$g

  • E.w*_l- l -

3 u-. ,$:

S-3 :_--' '. e, -

wp -

5d.,,$13 c

$??, g*e

- y -3 c.e a*

CTE 5 d w0$d -

2c __ - .

g

' -- i

~ - :- # - / m.g w > '-[ o

- e. r Aw ,

- ~~ -

_- v , _

u

(" 7 u .

m i - y

- o e1 w

1 .

E .E .E -

8- 8_ "

{"

e R _

M

\ \ & . 2 5

. 2 k . .

.o

. . . .k o

8 8

S = R 8

S

.I O  %$ o @. b p_ h1 t3 hSo L

]

1 i ffUTMN Flux l VfST L PfES RISF IPSil i 2 AVE Sufi'fCE NfAT FLUX 2 5ffEIT Vs. VE FL N I 3 IUhf I'El I IlN a 3 fiII III V' ' TE Il CH 150' ID' 4 00ht"It6 Pio I 4 StrHSS vt tit iL0d 5 5

' 6 9

- N p-'N,l 4.

\ n. (

giOO.

s. \ '>

w >

So, \ 3,

-L u <

(_ _

i

- > Sh '

.,) 32 N 3 9 ~2 u D. - -I r i 4.'a 8- \ *

0. 10. 20. 30. 40. O. 10. 20. 30, 40.

TIME ISEC) Tiff ISECB

72

-  ?

N P I LEVELf!WH-REF-5EP-5K!AT I VOID fM TIVITY 2 VESSEL 51EAMfLOW 2 DOPPLER fEACTIVI T 3 SCRAM RfTCTIVII g$g* 3 itfiBINE ( !EAMFLOW 3*

4 FEEDESTEF TL~0w G UTALT6CTIVIT ~'- e i

4 5 1

100. z O.

    • -- 21 -

>\

] h

) i, b

50. ' L* O .l.

3 E k 2

Q -

M

0. '- ' 3 n 3 * * -2. - *-
  • O. 10. 20. 30. 40. O. 3. 6. 9. 12.

TIME 15Ecl TIME ISECl

\)-,G Figure Sa. Plant Response to Feedwater Controller Failure EOC2 O O O -

O A p U . b b '

I t.fuTRoteff tuX 1 VESSFt Pi S RISE tPSit .

2 A/f SlMf?E HfRT FLUX 2 50f t 1 T 0 : vE f l ed 150. LE11M LUd 125*

L ' II O' ' 'd I CL 4 Lulaf Irat 00- [ 4 b1116S L t il I LCW S S 6

300, 1 75,

(

l N b i F L L

50. 25.

I ln--

I

2 1 32

\\ 1.

0.

0.i- 10.

k-20 .

i \

30. 40.

b -25.

O.

10. 20. 30.

40.

TIME ISEC) TIME (SEC)

M 8

i LfVEll!NCH-REF-SEP-Stt!AT lVOIDREAdilVITT/ "

2 VESSEL S1E A>1 LCd 2 00PPLER f1EACTIV TT

  • 3 luRHirE c TEnMFtCW 3 SfPGM H4'llVIT
  • 150* 3*

q 4 FttGT4TU TECW 4 TOTTC FC 'TIv 4 5 .

1

~

0.

bM' -- "

100. z -

_r L

50. .

/ k% !1.

- )/

~

3 ,

3

~

0. ' - 1 3 L 3 4
  • J. '- *
0. 10. 20. 30. 40. O. 3. 6. 9. 12.

TIME ISECl Tilf (SECl Figure 5b. Plant Response to Feedwater Controller Failure EOC - 1000 mwd /t uh"k u

4

I I PEUTn0N fi ttI< -

2 Av! SuhfRE Nt AT FLUX 1 SIJ 2 Vre/It t I fF>fE'.s 0

  • T f t RISE 0W IPSI) 150. 2-EIW'A l' I t sti in*

3 I'flIII Vi VE ft?d-4 L.a:. INLL I.fl0d 'e bir6GS %1vElLOW

, 5 5

  • G M

._ 100.

46==21, 1

'q

- 75.

r ,

a i b

E 50. 25.

S~

~

'bi-32 9:

O. >>>' > , r)

> =

-25. '- - *

0. 10. 20. 30. 40. C. 10. 20. 30, 40.

TIME (SEEl TIME ISECl 5

o

- ILEVElllNdN-REF-$CP-541!)T I VOID MAdTIVITY  ?

  • 2 VESSEL SIEfML0d 2 EJPttM fif 4CIIVITT to 3 h ""I # SIf*#L0d 3 STRUM I"dIVIIT g r,0* - 1. TTCT.'CTC
  • TIVI E L;

'A 4 FEE a'ATETTLcw e S

)

S 1 1 100.

~91 I D -

D 0. "Wd I= -

z

/

i e ,

50. # y,I d .t.

D. ....e.... s su u * -2. '- - *

- '- ""- - '- u%,SEc, "-

, *ina asee?'-

~ ,/ Figure Sc. Plant Respotise to Feedwater Control Failure EOC - 2000 FNd/t O O O -

. - . . _ . _ . . . . . . - ~ . . .. . . - - - . - . - ~ _ . . . - - _ . - - - .- . . . - - . . .

i NEDO-24166-i lO j

! 01 03 05 07 09 11 13 52 22 4

l 50 36 36 to ,

I i

, 48 04 22 34 1 \

I 46 36 10 04

{ 44 22 34 40 i

42 28 10 04 00 i

40 22 34 40

!O 1, l l

l NOTES
1. ROD PATTERN IS 1/4 CORE MIRROR SYMMETRIC UPPER LEFT l QUADRANT SHOWN ON MAP
2. NUM8ERS INDICATE NUMBER OF NOTCHES WITHDRAWN OUT OF 48. BLANK IS A WITHORAWN ROD
3. ERROR ROD IS(13.42) i l

Figure 6. Limiting RWE Rod Pattern '

17

moo &*

l iS P

  • T

/ 4 e

E(Mu (H'i SLIL TvTT TlII T

lTY

~

lFIf i IiVV fEIC SVV .

VclI IAiT 6 EL'S 6 1

TErC Ki6(fE 1

P V V' v I i f11 t ffiT fE lfIs ElI

" EIr o iLMC DPnf i S Ie IPfT It i O0r0 EV R'II u 123956 2 V0S0 I23 2

1 8 1) -

3 C E 1 S C

( E

' S E (

M l!8.0IEM I

3

.T 1

T 3

2 4 1 4

' -0 c r

1 8

1

. .- _h . mE l

.O - . . .O 0- 0. 0 0 y 0 1 2-

- 0 0 0 -

3 2 1

- B 0G=$[

m X

U T

l f

K S

G L = P + 1 F EW T SHO OL X

UE AW EO HL F ~

I FtFW EFMd RMAE itfET s

EI 2N 6 LCi 0 C1* 1 N5 ETU d

1 Fff 3

fl l 4Hi l tLNM l

0Ul lE!

R$ ESED i T E VSRE UER EVO lI lFC EEUE LVT F m

l23y5 1 2 l234 2 1 l 1 l C

A C

E SI E

M 13 E S

(

E M

f I

I

.T .T

- 6 8 I

4 a -

4 I

N j l

f 1

l a hs i .T - .

g 0

.O ,

0.

j- 0* 0 0 r

g 0.

0 1

O S

O 0 2

0 1

0 1

yk'

{4

_g5 b ~

G

NEDO-24166 O

1.2 ,

1.0 - - - ULTIMATE

- - - -STABILITY

- _I M LI T __ ______

2 ~

~O x

'N i X l o o.6 - NATURAL

RECIRCULATION z

O i

~

105% ROD LINE 0.2 -

I I l l o

0 20 40 so 80 ioo POWER (%)

(

l 6

Figure 8. Decay Ratio l O 19

NEDO-26166 4

0

-5 -

-10 -

x o

d -15 -

u E

8 O

e -20 -

U t

O O

- 254 g SOUNDING VALUE FCR 280 cal /g. COLO A BOUNDING VALUE FOR 280 cal /g, HSB

$ CALCULATED VALUE - COLD

$ CALCULATED VALUE - HS8

- 30 I I I I I

~0 400 000 1200 1600 2000 2400 FUEL TEMPER ATURE (*C) l l

l Figure 9. Doppler Reactivity Coefficient Comparison for RDA O

20

NEDO-24166 O

20 16 -

k 00 C

$12 -

i 5 3

O I

O i D

l 38 - '

E uJ m  !

I e BOUNDING VALUE FOR 280 cal /g

& CALCULATED VALUE 4 -

I o__ l i I I O 4 8 12 16 20 ROD POSITION (ft OUT) l l

l l l

Figure 10. RDA Reactivity Shape Function at 200C O

21

0 NEDO-24166 O

16 -

3 -

Z -

O 2 12 -

l l E O

I

~

G

?

s h

G8 o

Lu C

9 BOUNDING VALUE FOR 280 cal /g 4 _ A CALCULATED VALUE f I f a_ l 0 4 6 12 16 20 ROD POSITION (ft OUT) l Figure 11. RDA Reactivity Shape Function at 286 C 22

V NED0-24166 O

70 G BOUNDING VALUE FOR 280 cal /g g _

A CALCULATED VALUE 50 -

G 1

o z

N 3

0 40 -

t w

l A

' i O 2 y 30 -

5 m

20 -

i l

I 10 -

l u k I I i 0 .

O 2 4 6 8 10 ELAPSED TIME (sec)

Figure 12. RDA Scram Reactivity Function at 20 C a 23

___J

w NEDO-24166 O

100 9 BOUNOING VALUE FOR 280 cal /g

& CALCULATED VALUE i

l G b

O z

g so -

8

_b g

i

!o 4o 5

h m

f M -

0 .

0 2 4 6 8 10 ELAPSED TIME (sec)

Figure 13. RDA Scram Reactivity Function at 286 C 24

r 4

4 l NEDO-24166 O

V APPENDIX A NEW BUNDLE LOADING ERROR EVENT ANALYSES PROCEDURES The bundle loading error analyses results presented in Section 15 in this supplement are based on new analyses procedures for both the rotated bundle and

.the mislocated bundle loading error events. The use of these new analyses pro-cedures is discussed below.

j A.1 NEW ANALYSES PROCEDURE FOR THE ROTATED BUNDLE LOADING ERROR EVENT The rotated bundle loading error event analyses results presented in this sup-plement are based on the new analyses procedure described in References A-1 and A-2. This new method of performing the analyses is based on a more detailed analysis model, which reflects more accurate analyses than that used in previous i analyses of this event.

The principle difference between the previous analyses procedure and the new g analyses procedure is the modeling of the water gap along the axial length of the bundle. The previous analyses used a uniform water gap, whereas the new analyses

utilize a variable water gap which ie representative of the actual condition.

The effect of the variable water gap is to reduce the power peaking and the R-factor in the upper regions of the limiting fuel rod. This results in the cal-

! culation of a reduced aCPR for the rotated bundle. The calculation was performed using the same analytical models as were previously used. The only change is in the simulation of the water gap, which more accurately represents the actual geometry.

In the new analyses, the axial alignment of a 180* rotated bundle conserv teively ignores the presence of the channel fastener. The more limiting condition of assuming that the spacer buttons are in contact with the top guide is assumed.

There is no known loading that could bend or break the channel spacer button during the insertion of a 180* rotated bundle, sinca both the top guide and spacer button are chamfered to provide lead-in. For a properly assembled bundle, no mechanism exists which could invalidate the assumption that a 180* rotated bundle leans to one side.

O v

i i( A-1 f I

s NEDO-24166 It should be noted that proper orientation of bundles in the reactor core is gg readily verified by visual observation and assured by verification procedures during core loading. Five separate visual indications of proper bundle orientation exist:

(1) The channel fastener assemblies, including the spring and guard used to maintain clearances between channels, are located at one corner of each fuel assembly adjacent to the center of the control rod.

(2) The identification boss on the fuel assembly handle points toward the adjacent control rod.

(3) The channel spacing buttons are adjacent to the control rod passage area.

(4) The assembly identification numbers which are located on the fuel

{ assembly handles are all readable from the direction of the center of the cell.

(5) There is cell-to-cell replication.

9 Experience has demonstrated that these design features are clearly visible so that any misloaded bundle would be readily identifiable during core loading verification. Figures A-1, A-2 and A-3 denote a normally loaded bundle, a 180*

l rotated bundle, and a 90* rotated bundle, respectively. Actual experience

! (References A-1 and A-2) has demonstrated that the probability of a rotated l

bundle is low.

l The new analyses procedure results show that the minimum CPR for the most limit-ing rotated bundle in the core is greater than the safety limit.

O A-2

r 9 * 'f

.t NEDO-24166 O arrzar c s A-1 Letter, R. E. Engel (GE) to D. Eisenhut (NRC), " Fuel Assembly Loading Error," MFN-219-77, June 1, 1977.

A-2 Letter, R. E. Engel (GE) to D. Eisenhut (NRC), " Fuel Assembly Loading

, Error," MFN-457-77, November 30, 1977.

1 l

9 8

! I l

j 4

iO 4

i i

i!

!t i

l l

l t

t 9

h 4

9 h

. !o A-3 ii

NEDO-24166 i O II l

l l

! O'\/'O p $

l O 'O O' o x - JK x z ,

- x 3r - x 0 so os O

\ \/

/

O <

O NOTE: SUNCLE NUMBERS ARE FOR ILLUSTRATIVE PURPOSES ONLY Figure A-1. Normal Loading A-4

l , .

I NEDO-24166 O

I

F

\

180* ROTATION - 8UND LE LJ 2348 %

/

i. (

t

'O 'O

x f 1 O,/

' N Nr / N

O ,O so O, O i

> cf

. '\/

t i

8 O[lO ll NOTE: SUNOLE NUMBERS ARE FOR ILLUSTRATIVE PURPOSES ONLY (

t i

ngure A-2. aocated sundle, 180 negree accation A-5

NEDO-24166 O

O' O'\

90' ROTATION - BUNOLE LJ 2348

/ /

/ /

O 'O - O 'O

\ / ~~

j \ /

/ \ / \

O

){ O

\o i O, g O

%* /-

v O[lO NOTE: SUNOLE NUM8ERS ARE FOR ILLUSTRATIVE PURPOSES ONLY I

1 Figure A-3. locatt! Sandle, 90 Degree Rotation l

A-6 f

l NEDO-24166 i

O APPENDIX B l l

' Fuel Loading Error LHCR: 17.1 Kw/ft i

l t

i O

i f

O-B-1/B-2 l

I

_ ___