ML18017A183

From kanterella
Jump to navigation Jump to search
Forwards Amend 42 to OL Application,Containing Revision 28 to FSAR
ML18017A183
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 01/15/1982
From: CURTIS N W
PENNSYLVANIA POWER & LIGHT CO.
To: SCHWENCER A
Office of Nuclear Reactor Regulation
Shared Package
ML17139A535 List:
References
PLA-1004, NUDOCS 8202020071
Download: ML18017A183 (1146)


Text

{{#Wiki_filter:18ITEATDEPINITIONSANDABBREVIATIONSDedinitiosusedthroughoutthepSANarelistedinthePossaryofTerms,ble18-1.Ancronymsandtechnicalabbrev'ationsarelistedinTles1.8-2and1.8-3,respectively.182DRAMINGDEXANDSYMBOLSDesigndrawingswhihavebeenusedinthiZSARhavebeenlistedwithacrossferencetotheFSARfigurenumberinTable1.8-4.AbbreviaionsusedonthesdrawingsarelistedinTable1.8-5.SymbolsusedonGEsuppled(PCID's)areshownonfigushownonfigures1.8-2a,l.InstrumentSymbolsareshownrespectively.'iping.dInstrumentDiagrams1.8-1.SymbolsforotherPCID'sare2b,ad1.8-2c.LogicSymbolsandnguresl.8-3andl.8-48.3PIPINGIDENTIFICATIOPipingisidentifiedonhePipinganInstrumentDiagrams{PCID's)byathree-grypidentifierwerethefirstgroupisthenominalpipesizein%ches;thesecondisathree-lettergroupforthepipeclass;ndthethirdisatree-digitgroupsequentiallyassigndwithinapipeclass.Example:6n-HBD-117izeClassSequenceThethreeettergroupforthepipeclassisdescridindetailinTabl1.8-6.Thetreedigitsequencenumberisassignedconsecutiveytoideifyspecificlinesinapipeclassasfollows:PpingcommontobothunitsipingforUnit1PipingforUnit20-99and3001-3999100-199and1000-1999200-299and2000-29991.8-1 SSES-FSAR1-84VALV.EIDENTIFICATIONAllmanualandremotelyoperatedvalveswillhaveuniqueidentificationnumbersfortrackingpurposesandwillbeshownonthePCID's.Listedbelowarethenumberingsystemsusedforeachgroupofvalves:Allmanualvalves,exceptthosewhichhaveaGENasterPartsList(MPL)number,andthosevalvessupplied.byvendorsaspartoftheequipmentpackageandnotinstalledbyBechtelwillbeidentifiedbythefollowingmethod:52006UnitNo.0-Common1-Unit12-Unit2SystemIdentification(last2digitsofPGIDs)SequenceNo.(3digitnumbers)RemoteoperatedvalveswhichdonothaveaGENPLnumber,areidentifiedbytheoperatornumber,eg:5240ValvetypeUnitNo.PGIDNo.(last2digits)SequenceNo.1.8-2 SSES-FSARThosevalvesinGE'sNPLareidentifiedbytheGEnumberingsystem,eg:E11HVF031NPLSystemNo.-(Referencedonfigurenotes)ValveTypeUnitNo.GEValveNo.Valvesthatarenotnumberedbutaresuppliedaspartofavendormountedequipmentwillbeidentifiedinthevendor'soperationandmaintenancemanuals.Thisistoavoidduplicationofnumberingthesevalves.18.5INSTRUMENTIDENTIFICATZON1.851InstrumentComponentsIdentificationofinstrumentsandcontroldevicesismadebytheuseofoneofthefollowingnumberingsystems:1.InstrumentsanddeviceswithinGEscopeofdesignarenumberedinaccordancewiththeGE!APLsystem.AssociateddevicesshownonPGID'sbutwithoutanynumericalidentity.arenumberedasin2below.2.Exceptasin1above,instrumentidentificationsarebasedonInstrumentSocietyofAmerica(ISA)StandardS5.1-1973,asmodifiedbyFiguresl.8-2athroughl.8-2c.Ingeneral,eachinstrumentordeviceinameasurementloopisassignedthesamenumber,however,loopscontaininginstrumentsanddevicesidentifiedintheGEHPLsystemareanexceptiontothisrule.%henaloopcontainsmorethanoneinstrumentcomponentofthesamefunctionaltype,asuffixletterwillbeaddedandusedtoestablishauniqueidentityforthosecomponents.Redundantmeasurementloopswillbeidentifiedbytheadditionofasuffixlettertoeachinstrumentcomponentordeviceintheloop.Inthecaseofredundantloopscontainingmorethanone1.8-3 SSES-FSARinstrumentofthesamefunctionaltype,thesuffixletterwillbefollowedbyanumber.Instrumentanddevicenumbersareconstructedasfollows:78IFunctionalIdentification----'er8856-N-100UnitNumberLast2DigitsofPGIDNumberLoopNumberSuffixAzerointheunitnumberpositionindicatesthattheinstrumentordeviceiscommontobothunits.1.8.5.2InstrumentLocationInstrumentcomponentsanddevicesaremountedonracksandpanelswhichareidentifiedbya5character,alpha-numbericcode.Thiscodeismarkedadjacenttotheinstrumentcomponentidentifier,asshownonFigure1.8-2a.Thecodenumbersidentifytheunitnumberandthegenerallocationoftherackorpanelbythefollowingblock-numberassignment:C001-C099C101-C199C201-C299C301-C399C401-C499C501-C599.C601-C699C701-C799NSSSLocalPanelsandRacksTurbineBuildingReactorBuildingRadwasteBuildingPrimaryContainmentMiscellaneousLocationsControlStructureAdministrationBuildingAprefixdassignmentigitisusedtoidentifytheunitorcommonplant1.8-4 SSES-FSARMitheachblock-numberassignmentabove,theseriesfrom076thru099arereservedforlocalracksandpanelsinheatingandventilationservice.Thefollowingexamplesillustratetypicalrackorpanelassignments:50UnitNumber>>C>>=RackorPanel>>CB>>=ComponentBox>>Z>>=PlantComputerControlStructurePanelNumber18.6ELECTRICALCOMPONENTIDENTIFICATIONThissectiondescribesthemethodsusedtoidentifyelectricalequipmentlocationsandtonumberelectricalschemes,cables,andracewaysAdditionalinformationiscontainedinSection8.3.1.86.1Egu~imentLocationNumbersEachpieceofelectricalequipmentisidentified.byanequipmentnumber.Tofacilitatecableroutingfromoneequipmentlocationtoanother,alocationnumberisalsoassignedtoeachpieceofelectricalequipment.Generally,theequipmentnumberandequipmentlocationnumberforaspecificpieceofelectricalequipmentareidenticalForlargepiecesofelectricalequipment,suchasswitchgear,loadcenters,andmotorcontrolcenters,whicharecompartmentalized,theequipmentlocationnumberconsistsofthebasicequipmentnumberplusadditionalsuffixedinformationtoidentifyalocationwithintheequipmentitselfThefollowingtwoexamplesillustrateequipmentlocationnumbers:1.8-5 SSES-PSAB101UnitNumber-(1)IIEquipmentClassification-(Transformer)----~PlantArea-(TurbineBuilding)SequentialNumber-(TransformerNo.1)11121UnitNumber-(1)EquipmentClassification-(MotorControlCenter(MCC))PlantArea;(TurbineBuilding)Sequentialnumber-(MCCNo.11)StackNumber-(12,lefttoright)CubicleNumber-(1,toptobottom)0IfttInthefirstexample,theequipmentnumberandequipmentlocationnumberfortransformers1X101areidentical.Inthesecondexample,thebasicMCCequipmentnumber13111issuffixedtoestablishanequipmentlocationnumber,1B111121,whichidentifiesaspecificcompartmentwithintheMCC.Todistinguishonepieceofelectricalequipmentfromotherduplicateequipmentusedin-thesameservice,asuffixletterisaddedtothebasicequipmentnumbertoestablishindividualequipmentlocationnumbers.Porexample,ifmaintransformer1X101iscomposedofabankofthreesinglephasetransformers,thetransformersforphasesA,BandCareidentifiedwithequipmentlocationnumbers1X101A,1X101Band1X101C,respectively.Equipmentlocationnumbersaregenerallyassignedtoitemslistedinthecircuitandracewayschedules.Accordingly,mostelectricalequipmentrelatedtosystemssuchaslighting,communications,andcathodicprotectionisnotincludedElectricalequipmentwhichisanintegralpartofmechanical,,equipmentisassignedthesamenumberasthemechanicalequipment.Allmajorpiecesofelectricalequipmentarelistedinanequipmentindex.Theequipmentindexprovidesadescriptionof1.8-6 SSES-FSARtheequipmentandidentifiespertinentdrawingssuchasapplicableelectricallayoutdrawingsandPAID's.1.8.6.2SchemeNumbersEachelectricalschemeisidentifiedbyasixcharacternumber.Thefirstcharacterisnumericandreferstotheplantunitnumberforwhichtheschemeisapplicable.Thesecondcharacterisalphabeticandclassifiestheschemebymajorplantsystem.Thelastfourcharactersarenumeric,withtheexceptionofGEsuppliedcable,andprovideasequential,butarbitrary,identityforeachscheme.Givenbelowisanexampleofatypicalschemenumber.0501UnitNumber-(1)ItPlantSystem-(NuclearSteamSupplySystem)---'chemeSequentialNumber-(ArbitraryNo.for.RHRPump1A)Alogofallschemesismaintainedintheschemenumberindexwhichcontainspertinentinformationsuchasschemedescription,schemedrawingnumberandsourcedrawingnumber.11.8.63SchemeCableNumhersExceptforcablingassociatedwiththeplantlighting,communications,andcathodicprotectionsystems,eachcableintheplantisidentifiedbyaschemecablenumbercomposedofninecharacters.Thefirstcharacter.isalphabeticandindicatestheseparationgrouptowhichthecablebelongs.Thesecondcharacterisalsoalphabeticanddenotesthesystemvoltagelevel.Charactersthreethrougheightidentifythesixcharacterschemenumbertowhichthecableisassigned.Theninthandfinalcharacterisalphabetic,exceptforGEsuppliedcables,andprovideadistinctiveidentitytoeachcableintheblockdiagramshownontheschemedrawings.Thefollowingtwoexamplesillustratetypicalschemecablenumbers:1.8-7 SSES-FSAHAKIlSeparationGroup-(SafeguardChannelA)------'VoltageLevel-(120Vacto250VdcControl)----'g0501SchemeNumber-(1Q0501forRHRPump1A)CableIdentity-(CableRinBlockDiagram)NISeparationGroup-(Non-SafetyRelated)-----'1R3007DVoltageLevel-(LowLevelInstrumentation)------'chemeNumber-(RadwasteBldg.SumpPumpA)CableIdentity(CableDinBlockDiagram)Analpha-numericlistingofallschemecablenumbersismaintainedintheelectricalcircuitschedule.Thecircuitschedulealsoidentifiesthecabletype,quantityofconductors,fromandtoeguipmentlocationnumbers,andthecablerouting.Thecircuitscheduleusesthefirsttwocha"actersoftheschemecablenumberasafacilitycode,ensuresthatseparationandvoltagecriteriaarenotviolated.Acablemarkerisaffixedtoeachendofthecableforpermanentidentification.CablemarkersforClassIEcableshavedistinguishingcolorsforeachseparationgroup.Additionally,allClassIEcablesaremarkedatregularintervalsalongtheirlengthwithcolorscorrespondingtothecablemarkercolors.1.8-8 SSES-PSAR1.8.6.4Racewa~NumbersAll.electricalcabletrays,ducts,conduits,manholes,conduitsleevesandjunctionboxesareidentifiedbysixcharacterracewaynumbers.Thetwoexamplesgivenbelowillustratetypicalracewaynumbersforengineeredsafetyfeatureandnon-safetyfeaturecabletrays,respectively.99SeparationGroup-(SafeguardChannelA)IUnitNumber-(1)VoltageLevel-(120VACto250VDCControl)II'IIIIMainorBranchRun-(B)SectionNumber-(TraySection99)UnitNumber-(1)1pII85VoltageLevel-{250VDCto480VACPower)----'ainBun-(MainTrayB)BranchRun-(BranchTrayC)SectionNumber-{TraySection85)Thefirstcharacterofeachengineeredsafetyfeaturecabletrayisanalphabeticletterthatrelatestothefirtcharacterofeachengineeredsafetyfeatureschemecableeligibleforrouting,therein.Non-safetyfeaturecabletray,whosefirstcharacterisnumericrepresentingtheunitnumber,mayonlycontainschemecablenumbersprefixedbytheletterN.Thissamepracticewasfollowedforconduitnumbersasshownbelow.AtSeparationGroup-(SafeguardChannelA)---'99UnitNumber-{1)VoltageLevel-{250VDCto480VACPower)ConduitSequentialNumber-(ArbitraryNo)1.8-9 SSES-FSAR005UnitNumber-(1)VoltageLevel-(13.8kVPower)PlantArea-(TurbineBldg.Elev.656')ConduitSequentialNumber-(ArbitraryNo.)AnalphanumericlistingofallracewaynumbersismaintainedintheelectricalRacewaySchedule,whichalsocontainstheracewaytype,lengthfromendpointlocations,percentfill,andlistofincludedcables.Racewaymarkersareaffixedtoeachracewayforpermanentidentification.IdentificationmarkersforClassZEracewaysaremarkedatregularintervalsalongthelengthoftheracewaywithuniqueanddistinguishingcolorsforeachseparationgroupcorrespondingtothecablemarkercolors.1.8-10 TABLE1.8-2ACRONYMSSheet1of6NameAbbreviationAmericanConcreteInstituteAmericanInstituteofSteelConstruction,Inc.AmericanNationalStandardsInstituteAmericanSocietyofCivilEngineersACIAZSCANSIASCEAmericanSocietyofMechanicalEngineers'EAmericanSocietyofMechanicalEnqineersBoilerandPressureVesselCodeASMEASNEBGPVCodeAmericanSocietyforTestingandNaterialsAmericanMeldinqSocietyAmericanPetroleumInstituteAmericanMaterMorksAssociationAreaRadiationMonitorAutomaticDepressurizationAveragePower,RangeMonitorBalanceofPlantASTMAPIAMMAARMADSAPRNBOPBechtelPowerCorporation(SanFrancisco)BechtelBeginningofcorelifeBOLBoilingMaterReactorBMRClosedCoolinqMaterControlRodDriveControlRodPositionIndicatorCoreSprayCriticalPowerRatioCCQCRDCRPICSCPR TABLE18-2ACRONYNSSheet2of6DeparturefromNucleateBoilingDNBDesignBasisAccidentDieselEnqineGeneratorDyePenetrantTest/LiquidPenetrantTestEastElectrohydraulicControlEmergencyCoreCoolinqSystemEndofcorelifeEndofCycleEngineeredSafetyPeaturesEnqineerinqChanqeAuthorizationEnqineerinqChangeNoticeEquivalentfullpoweryearsExcessPlowCheckValvePieldDeviationDispositionRequestFinalSafetyAnalysisReportFuelPoolCoolinqandCleanupPullArc(NodeofTCVOperation)Pull-LengthEmergencyCoolinqHeatTransferFunctionalControlDiaqramDGPT:,EHCECCSEOLEOCESPECAECNEPPYEPCVEDDRPSARPPCCPLECHTFCDGeneralElectricCompanyHeatExchangerHeatinqandVentilatingHeatingVintilatingandAir-ConditioninqHighefficiencyparticulateair-filterGEHXHVACHEPA Q/ TABLE18-2ACRONYMSSheet3of6HighPressureCoolantInjectionHydraulicControlUnitInstrumentDataSheetHPCIHCVXDSInstituteofElectricalandElectronicsEnqineersInstrumentSocietyofAmericaInsulatedPowerCableEngineersAssociationInterimAcceptanceCriteria(NRC)IntermediateRanqeMonitorLeakageControlSystemLeak-DetectionSystemLimitinqConditionofOperationLimitinqSafetySystemSettinqLocalPowerRanqeMonitorLoss-Of-CoolantAccidentLowPressureCoolantInjectionLowPopulationZo'neMagneticParticleTestMainSteamIsolationValveIEEEISAIPCEAIACLCSLDSLCOLSSSLPRMLOCALPCILPZMSIVMainSteamInsulationValveLeakaqeControlSystemMSIV-LCSNainSteamLineNanufacturersStandardizationSocietyMaximumAveragePlanarLinearHeatGenerationRateNSLNSS/NAPLHGRMeanLowWaterDatumMLD TABLE1.8-2ACRONYMSSheet4of6MeanSeaLevelMinimumCriticalPowerRatioMotorControlCenterMotor-GeneratorSetNationalElectricalManufacturersAssociationNeutron-MonitoringSystemNilDuctilityTransitionTemperatureNondestructiveExaminationNondestructiveTestinqNorthNuclearBoilerNuclearBoilerRated(power)NuclearEnergyDivision(GE)NuclearRequlatoryCommissionNuclearSafetyOperationalAnalysisNuclearSteamSupplyShutoffSystemNuclearSteamSupplySystemOperatinqBasisEarthquakePeakCladdingTemperaturePennsylvaniaPowerandLightCo.PipinqandInstrumentationDiaqramPlantVentStackPowerRangeMonitorPreconditioningCladdingInterimOperatingManagementRecommendationPreliminarySafetyAnalysisReportMSLMCPRMCCNEMANMSNDTTNDENDTNBNBRGEDNRCNSOANSSSSNSSSOBEPCTPPGLPSIDPVSPRMPCIOMRPSAR TABLE1.8-2ACRONYNSSheet5of6ProbableNaximumFloodProcessComputerSystemPublicAddressSystemQualityAssuranceQualityControlRadiographicTestReactorCoolantPressureBoundaryReactorCoreIsolationCoolingReactorManualControlReactorPressureVesselReactorProtectionSystemReactorSystemOutlineReactorMaterCleanupRequlatoryGuide(NRC)(formerlySafetyGuide)ResidualHeatRemovalRodBlockNonitorBodSequenceControlSystemRodPositionInformationSystemRodWorthNinimizerSafeShutdownSafeShutdownEarthquakeSafetyAnalysisReportSafety/ReliefValveSeismicCategoryIorIIPNFPCSRTRCPBRCICRNCRPVRPSRSORGRHRRSCSRPISRMNSSSSESARSCIorIZ I, TABLE18-2ACRONYMSSheet6of6ServiceWaterSourceRangeMonitorSouthStandbyGasTreatmentSystemStandbyLiquidControlTraversingEncoreProbeTurbineControlValveTurbine-GeneratorUltrasonicTestingWestSWSRMSGTSSLCTIPTCVTGUT 8 SSES-FSARSheet1of4TABLE18-4FIGUREINDEXZORPLANTSYSTEMSPGIDNUMBER+SYSTEMFSARFIGURENUMBERM-100M-101M-102M-103PGIDLeqendGSymbols,Shts.1~2G3MainSteamExtractionSteamVentsGDrains,Heaters1,2GDrainCooler1.8-2athru1.8-2c104-1104-6104-7M-104M-105M-106M-107M-108M-109M-110M-111M-112M-1'13M-114M-115M-116M-117M-118M-119M-120M-121M-122VentsGDrains,Heaters3,4G5CondensateFeed~aterAirRemovalGSealinqSteamCondensateGRefuelinqRaterStorageServiceMaterServiceWaterFmerqencyServiceWater,Sheets1G2RHRServiceMaterReactorBuildinqClcsedCoolingMaterTurbineBuildingClcsedCoolingWaterCirculatingMaterCondensateDemineralizer,Sheets1G2RawWaterTreatment,SheetslG2Make-UpDemineralizerLubeOilDieselOilStoraqeCTransferAuxiliarySteam,FireProtection,Shts.1,2,3G410.4-810.4-4104-5104-99.2-99.2-1a92-1b9.2-5a,9.2-Sb92-69.2-292-3NOTREFERENCED10.4-2,10.4-39.2-7a,9.2-7b92-8NOTREFERENCED95-19NOTREFERENCED,9.5-9thru9.5-12Rev.25,7/81 t SOS-JSARTABB/J8-4PIGUREINDEXFORPLANTSYSTEMSSheet2of4PCIDNUMBER*SYSTEMFSARFIGURENUMBERM-123M-124M-125N-2125PzocessSamplinq,'hts.1,2,3C4ProcessSampling,'heet5ChlozinaticnCompressedAir,Shts.1,2C3CompressedAir,Unit2,SheetslC2(later}9.3-6thru9.3-9NOTREFERENCEDNOTREFERENCED9.3-1,932,9~3-49.3-3a,9.3-3b(later)M-126M-127N-128M-129M-130N-131ContainmentInstrumentGasPeedPumpTurbineSteamNake-UpMaterSupplySystem9.3-5NOTREFERENCEDNOTREFERENCEDASMETestGaseousRadwasteRecombinerClosedCoolinqWaterNOTREPERENCED92-4ProcessValveSteamLeakoffCollectionNOTREFERENCEDM-132AcidInjectionfortheCirculatinqMaterSystemNOTREFERENCEDM-133M-134M-136M-137N-138N-139M-140HydroqenStoraqeDieselEngineAuxiliariesPrimaryCoolantDeqasifierPackageAreaRadiationMonitorinqCoolinqTowerBlowdownTreatmentNSIVLeakaqeCcntrolSystemNOTREFERENCED9.5-20NOTREFERENCED12.3-29NOTREFERENCED6.7-1ReactorRecirculaticnMotorGeneratorNOTREFERENCEDSetN-141N-142N-143NuclearBoilerNuclearBoilerVesselInstrumentationReactorRecirculaticn5.1-3a5.1-3b5.4-2bRev.25,7/Sl SSES-FSARSheet3of4TAB?K1,8-4FIGUREINDEXFORPIANTSYSTEMSPSIDNUMBER+SYSTEMFSARFIGURENUMBERM-144M-145M-146M-147M-148M-149M-150M-151M-152M-153M-154M-155M-156ReactorWaterClean-UpClean-UpFilter-DemineralizerControlRodDrive-PartAControlRodDrive-PartBStandbyLiquidControlReactorCoreIsolaticnCcolinqRCIC,Turbine-PumpResidualHeatRemoval,Sheets162CoreSprayFuelPoolCoolinq8Clean-UpFuelPoolFilter-DemineralizerHighPressureCoolantInjectionHPCITurbine-Pump,Shts.1,263(later)54-1654-184.6-5a4.6-5b7.4-3i9.3-1354-9a,7.4-1sh.154-9b,74-1sh25.4-13a,5.4-13b6.3-49.1-59.1-66.3-1a6.3-1bM-157M-l59M-160M-161M-162M-163M-164M-166M-167ContainmentAtmosphereControl,Sheet's1,2,a3(later)PrimaryContainmentLeakageHateTestingMiscellaneousDrainaqe6.2-55a,6.2-55b,6.2-55c(later)62-6793-12LiquidRadwasteChemicalProcessinqLiquidRadwasteLaundryProcessingSolidRadwasteCollectionRadwasteSolidification11.2-1111.2-12114-111.4-2LiquidRadwasteCollecticnSheets1629.3-10,9.3-11LiquidRadwasteProcessingSheets16211.2-9,11.2-10Rev.25,7/81 e SSES-FSARTABLE18-4FIGUREINDEXPORPLANTSYSTEMSSheet4of4PGIDNUMBER*SYSTEMFSARPIGUREN~UBERM-169M-171AmbientTemperatureCharcoalOffGasTreatmentSystem11.3-4OffqasReccmbinezSystem,Sheets16211.3-3a,11.3-3bM-173M-174M-175CirculatingMaterPumpHouseAirPlowDiaqramTurbineBuildingAirPlowDiagramReactorBuildinqAirFlowDiagramZoneIII9-4-209.4-139.4-5M-176ReactorBuildingAirFlowDiagramZone9.4-4M-177M-178M-179DrywellAirFlowDiaqramControlStructureAirPlowDiagramRadwasteBuildinqAirFlowDiagram,Sheets16294-159.4-19.4-10,9.4-11M-181M-182M-183M-184M-186M-187M-188MiscellaneousBuildingsAirFlowDiagramDieselGenerator6ESSWPumpHouseAirFlowDiagramMisc.HV6ACEquipmentDrainageSystemNGH,SGH,6SCCAirPlowDiagramControlStructureChilledWaterReactorBuildinqChilledMater,Sheets162TurbineBuildinqChilledMaterNOTREFERENCED94-19NOTREPERENCEDNOTREFERENCED92-119.2-13a,9.2-13b9.2-12M-189RadwasteBuildinqChilledMater9.2-14M-190NGH,SGH,6SCCRefriqerantNOTREPERENCEDNumberscorrespondtoUnit1andCommonSystemP6XD's.Unit2P6ID'sareprecededhythenumeral"2".Rev.25,7/81 SSES-FSAR,3.8.3,6.5DrywellPlatforms3.8-483.8.3.6.5.1Materials3.8.3.6.5.2WeldingandPondestructiveExaminationofWelds3.8,3.6,5.3ErectionTolerances3.8.3.6.6QualityControl3.8.3.7TestingandIn-serviceInspectionRequire-ments3.8-483.8-493.8-493.8-493.8-493,8.3.7.1PreoperationalTesting3.8-493.8.3.7.1.1StructuralAcceptanceTest3.8.3.7.1.2LeakRateTesting3.8-493.8-493.8.3.7.2In-serviceLeakRateTesting3.8.4OtherSeismicCategoryIStructures3.8-503.8>>503.8.4.1DescriptionoftheStructures3.8.4.2ApplicableCodes,Standards,andSpecifica-tions3.8.4.3LoadsandLoadCombinations3.8-503.8-553.8-553.8.4.3.1DescriptionofLoads3.8.4.3.2LoadCombinations3.8-553.8-563.8.4.4DesignandAnalysisProcedures3.8.4.5StructuralAcceptanceCriteria3.8.4.6Materials,QualityControl,andSpecialCon-structionTechniques3.8-563.8-573.8-573.8.4.6.1ConcreteandReinforcingSteel3.8.4.6.2StructuralSteel3.8-573.8-583.8.4.6.2.1Materials3.8.4.6.2.2WeldingandNondestructiveTesting3.8.4.6.2.3FabricationandErection3.8.4.6..2.4QualityControl3.8-583.8-583.8-593.8-593.8.4.6.3SpecialConstructionTechniques3.8.4.7TestingandIn-serviceInspectionRequire-ments3.8.4.8ComputerProgramsUsedintheDesignandAnalysisofOtherSeismicCategoryIStructures3.8-593.8-593.8-593.8.5Foundations3.8.5.1DescriptionoftheFoundations3.8-593.8-60Rev.27,10/81 3.8.5.23.8.5.33.8.5.43.8.5.53.8.5.63.8.5.7SSES-FSARApplicableCodes,Standards,andSpecifica-tionsLoadsandLoadCombinationsDesignand'nalysisProceduresStructuralAcceptanceCriteriaMaterials,QualityControl,andSpecialCon-structionTechniquesTestingandIn-serviceInspectionRequire-ments3.8-613,8-613.8-623.8-633.8-643.8-643.8ACOMPUTERPROGRAMS3.8A-13.8A.13.8A.23.8A.33.8A.43.8A.53.8A.63.8A.73.8A.83.8A.93.8A.103.8A.113D/SAPASHSDCECAPCE668EASEE0119E0781FINELME620SUPERBReferences3.8A-1"3.8A-13.8A-63.8A-103.8A-123.8A-133.8A-143.8A-193.8A-233.8A-263.8A-273.88CONCRETE,CONCRETEMATERIALS,QUALITYCONTROL,ANDSPECIALCONSTRUCTIONTECHNIQUES3.88.1ConcreteandConcreteMaterials-Qualifica-tions3.88-13.88-53.88.1.1ConcreteMaterialQualifications3.88.1.2ConcreteMixDesign3.88.1.3Grout3.88-53.88-83.88-93.88.2ConcreteandConcreteMaterials-Batching,Placing,CuringandProtection'3.88-103.88.2.13.88.2.23.88.2.33.88.2.43.88.2.53.88.2.6StorageBatching,Mixing,andDeliveringPlacingConsolidationCuringHotandColdWeatherConcreting3.88-103.88-103.88-113.88-123.88-123.88-123.88.33.88.43.88.5ConcreteandConcreteMaterials-ConstructionTestingConcreteReinforcementMaterials-Qualifica-tionsConcreteReinforcementMaterials-Fabrication3.88-123.88-133.88-143.88.5.1BendingReinforcement3.88.5.2SplicingReinforcement3.88-143.88-15Rev.27,10/813xvi 395133.9.5.1.43951539.5163951.739518395193951103.9.511139.5.1.123951.13SSES-FSARTopGuidePue1SupportControlRodGuideTubesJetPumpAssembliesSteamDryersFeedwaterSpargersCoreSprayLinesVesselHead,SprayNozzleDifferentialPressureandLiquidControlLineIn-CoreFluxHonitorGuideTubesSurveillanceSampleHolders3.9-833.9-8339-84'.9-8439-8439-8539-8539-8639-8639-8639-873.9.5.2DesignLoadingConditions3.9.5.2.1EventstobeEvaluated3.9.5.2.2PressureDifferentialDuringRapid'epressurization3.9.5.2.3RecirculationLineandSteamLineBreak3.9.5.2.3.1AccidentDefinition3.9.5.2.3.2EffectsofInitialReactorPowerandCorePlow3.9.5.2.4Earthguake3.9.5.3DesignLoadingCategories3.9.5.4DesignBases39-S73.9-8739-8839-8939-893.9-8939-9039-9139-9139.54.1395423.9.5.4.3395'39.54.5SafetyDesignBasesPowerGenerationDesignBasesResponseofInternalsDuetoInsideSteamBreakAccidentStress,Deformation,and,FatigueLimitsforReactorInternals(ExceptCoreSupportStructure)Stress,Deformation,andFatigueLimitsforCoreSupportStructures39-913.9-9239-92'9-923.9-933.9.6Zn-serviceTestingofPumpsandValves3.9.6.1In-serviceTestingofPumps3.9.6.'2In-serviceTestingofValves3.97Refer'ences39ACOHPUTERPROGRAHS3.9A.1HE101~3~9A2HE6323.9A.3HE9123,9A4HE9l339-9339-943.9-943.9-953.9A-13.9A-13.9A-23.9A-339A-4RZV17'/803-xxiii 39A.5ReferencesSSES-PSAR310SEISMICQUALIFICATIONOPSEISMICCATEGORYIINSTRUMENTATIONANDELECTRICALEQUIPMENT3.10aSEISMICQUALIPICATIONOPSEISMICCATEGORYINSSSINSTRUMENTATIONANDELECTRICALEQUIPMENT3.10a.lSeismicQualificationCriteria3.10a.l.lSeismicCategoryIEquipmentIdentification310a.1.2SeismicDesignCriteria3.10a.l.2.1NSSSEquipment3.10a.2MethodsandProceduresforQualifyingElectricalEquipmentandInstrumentation{ExcludingMotorsandValveMountedEquipment)39A-6310-13.10a-l)310A-13.10a-13.10a-l3.10a-13.10a-23.10a213.10a.2.2310a23310a.2.4MethodsofShowingNSSSEquipmentCompliancewithIEEE344-1971TestingProceduresforQualifyingElectricalEquipmentandInstrumentation(ExcludingMotorsandValveMountedEquipmentQualificationofValveMountedEquipmentQualificationofNSSSMotors3.10a-23.10a-33.10a-4310a-43.10a.4.13.10a.4.2310a-43NSSSControlandElectr'icalEquipment{OtherThanMotorsandValveMountedEquipment)NSSSMotorsValveMountedEquipment3.10a.3MethodsandProcedureofAnalysisorTestingofSupportsofElectricalEquipmentandInstrumentation3.10a.3.1SeismicAnalysisTestingProceduresandRestraintMeasures3.10a.3.1.1NSSSEquipment{OtherThanMotorsandValveMountedEquipment)3.10a.4Operating.LicenseReview3.10a-53.10a-5310a-53.10a-63.10a-6310a-7310a-73.10a.53.10a.6DynamicAnalysisByResponseSpectrumMethodSampleSeismicStaticAnalysis310a-73.10a-ll"3.-10a.6.1PartIREV17'-9/803-xxiv.3.10a-llC SSBS-FSAR~3/a~I.DA+DTORNADOLOADINGS3:a.1'fX.PQ.-LANDINGSAllexposedstructuresaredesignedforwindloading.Thedesignwindvelocityforallstructuresis80mphat30ftabovegroundfora100-yearrecurrenceinterval.ThedesignwindvelocityisbasedonFigure5ofRef3.3-1.(ReferencesarelistedinSubsection3.3.3).TheverticalvelocitydistributionisbasedonTable1(a)ofRef3.3-2.ThevelocitydistributionistabulatedinTable3.3-1.Aqustfactorof1.1,asqiveninRef3.3-2,isused.TheprocedureusedtotransformthewindvelocityintoaneffectivepressureappliedtoexposedsurfacesofstructuresisasdescribedinRef3.3-2andissummarizedasfollows:Thedynamicpressureisgivenby:0.002558V~where,DynamicpressureinpsfV=Mindvelocityinmph(designwindvelocityxgustfactor).1Thelocalpressureatanypointonthesurfaceofabuildingisequalto:qxCpwhereCp=PressurecoefficientThetotalpressureonabuildinqisequalto:qxCDwhere,CDShapecoefficient.3w31 SSES-FSABTheSusquehannaSESstructureshaveslopingroofswithapitchlessthan20degreesThefollowingarevaluesforCpandC(SeeBef3.3-2,p.1151andFigure7)Cpforvindvardvali=0.8(pressure)Cpforleevardwall=-0.5(suction)Cpforvindvardslope=0Cpforleevardslope=-0.6(suction)CD=13{pressure)WindloadsonstructuresaretabulatedinTable3.3-1.Exposedtanksaredesiqnedtoresistaminimumvindloadof30psfontheverticalprojection,basedonRef33-3.Forcylindricaltanks,windisconsideredactingonsix-tenthsoftheverticalprojection.Noincreasesinallowableworkingstressesarepermittedforthesestructuresforloadingconditionsinvolvingwind.Table3.3-2liststhesystemsthatareprotectedagainsttornadoesandtheenclosuresvhichprovidethisprotection.ThistableisbasedonNRCRegulatoryGuide1.117(Ref3.3-4).3~3g-,ggpBgjcgb~eDegigggagametegsThefollowinqdesignparametersareusedforthedesignoftornado-resistantstructuresandarebasedonRef3.3-5:a)QgngeicMindLoadingTanqentialspeed:300mphTranslationalspeed:60mphb)PressureDifferentialBetweentheInsideandOuts'~ofaBuildi~Apressuredropof3'psiattherateof1psipersecondc)Toggado-QenegatadIissilesThesearediscussedinSubsection3.5.].4.REV.29/7833-2 SSES-PSARThefollowinqproceduresareusedtotransformthe'tornadoloadinqsintoeffectiveloadsonstructures:Aprocedurethesameastheoneutilizedtotransformthewindvelocityintoaneffectivepressure,asdescribedinSubsection3.3.1.2,isusedwiththefollowinqexceptions:1)Velocityandvelocitypressureareassumednottovarywithheiqht2)Thequstfactoristakenasunity.AsshovninFigure5ofRef3.3-5,andas,explainedtherein,theequivalentuniformtornadovindvelocityonthebuildingduetoatangentialcomponentof.300mphandatranslationalcomponentof60mphis220mph.OnSusquehannaSESthepressureloadsarecalculatedonthebasisofauniform300mphwindvelocityandareasfollovs:Windwardpressureonwalls:185psfLeevardsuctiononvalls:115psfTotaldesignpressure:300psfSuction{uplift)onroof:140psf."Theturbinebuildingisdesiqnedtoresistthetornadoloadinqassuming2/3ofthemetalsidingandtheroofdeckbeinqblownaway.However,alltheframesaredesiqnedforthefullto"nadoloading.Themetalsidinqandtheroofdeckofallstructuresarenotdesignedtoresistfulltornadoloading.'~bDifferentialPressureLoadinq)Differentialpressureloadinqiscalculatedusingthefollovinqpressure-timfunction:Thedifferentialpressureisassumedtovaryfromzeroto3psiattherateof1psi/sec,remainat3psifor2secondsandthenreturntozeroat1psi/sec.REV.29/783~33 SSES-PSARBlowoutpanelsareusedasnecessaryonsafetyrelatedstructurestominimizedifferentialpressure.c)gogea+Genegated+issilesTheprocedureusedfortransformingthetornado-qeneratediissileloadinqsintoeffectivestaticloadsisdescribedinSubsection3.5.3Loadinqsa),b)~andc)arecombinedinthefollowingmannertoobtainthetotaltornadoloadinq:(iii)(iv)(v)(vi)M~Mw+0.SMpMw+WmMw+0.5Wp+Mmwhere,W~=TotaltornadoloadWw=TornadowindloadWp=Tornadodifferentialpressureload,andMm=Tornadomissileload3.3.2.3EffectofPailureofStructuresorComponentsNot~-Desi+.nedf~r-TornadoLoadsStructuresnotdesiqnedfortornadoloadsarecheckedtoensurethatdurinqatornadotheywillnotgeneratemissilesthathavemoresevereeffectsthanthoselistedinTable3.5-2Themodesoffailureofthesestructuresareanalyzedtoverifythattheywillnotcollapseonsafetyrelatedstructures.33-0 SSES-FSAR3.

3.3REFERENCES

3.3-1.H.C.S.Thorn,"NewDistributionsofExtremeMindsintheUnitedStates<',JournaloftheStructuralDivision,ASCE(July1968),pp1787.33-2.3.3-3-33-4.3.3-5.>>MindForcesonStructures",ASCEPaperNo.3269,Transactions,Volume126,PartII(1961),p1124."SteelTanks,Standpipes,Reservoir,andElevatedTanksforHaterStorage",AMMAStandard,D100-73."TornadoDesignClassification",USNBCRegulatoryGuide1.117,(June1976).J.A.DunlapandKarlMiedner,"NuclearPowerPlantTornadoDesignConsiderations<<,JournalofthePowerDivision,ASCE,(March"1971).3.3-5 SSES-FSABAPPENDIX3.8AC~omuterP~rorammThisappendixcontainsadescriptionofthecomputerprogramsusedforthestructuralanalysisofallSeismicCategoryIstructures.Foreachcomputerprogram,thereisabriefdescriptionoftheprogram'stheoreticalbasis,theassumptionsandreferencesusedintheprogram,andtheextentoftheapplication.ExamplesofverificationproceduresareincludedforeachBechtelin-hcuseprogram.3.8a1~3DSap3D/SAPisafiniteelementprogramusedtoperformthetaticanalysisofarbitrary,three-dimensional,elasticsolidssubjectedtoconcentratedocdistributed(pcessure)loadingsthermalexpansionand/orarbitrarilydirectedstaticbodyforces.3D/SAPisamathematicalversionof"SAP"(Reference3.8A-1)whichisageneralpurposestructuralanalysiscomputercode.3D/SAPwasdevelopedbytheControlDataCorporationandisinthepublicdomain.38A.2ASHSDASHSD(AxisymmetricShellAndSolid)isaspecial-purposeprogramwhichcanbeusedintheelastic,staticordynamicanalysisofstructuralsystemscapableofbeingrepresentedasaxisymmetricshellsand/orsolidsThisprogramisarefinementoftheoriginalASHSDcodedevelopedattheUniversityofCaliforniaatBerkeley.ThepresentprogramhasbeenhighlymodifiedforthespecialpurposeofstaticanddynamicanalysisofnuclearcontainmentstructuresThemodifiedpcogramhasthefollowingfeatures:oThecodehasashellfiniteelementwhichusesaninteractionstiffnessthatallowsanalysisoflayeredshells.oSinceshelllayersmaybebondedorunbondedfromeachother,.itispossibletodescribeconcceteshellsintheiractualgeometricform.Forexample,itispossibletodescribelinerplate,concrete,reinforcingsteel,andposttensioningsteelintheirrealspatiallocations38A-1 SSES-FSARoPosttensionforcesmaybeappliedtotheshellbysubjectingonlytheunbondedposttensioningelementstoapseudothermalloadinq.oIsotropicororthotropicelasticconstantsarepossibleforbothshellandsolidelements.Theorthotropicmaterialpropertiesmaybeusedtodescribethedifferentstiffnessofreinforcingsteelinthehoopandmeridionaldirections,forexample.oNonuniformthermalqradientsthrouqhthewallthicknessmaybeimposed.oEiqenvaluesandeigenvectorsmaybecomputedbytheprogram.oThreedynamicresponseroutinesareavailableintheprogram.Theyare:Arbitrarydynamic-loadingorearthquake-baseexcitationusinganuncoupled(modal)technique.Arbitrarydynamic-loadingorearthquake-baseexcitationusingacoupled(directintegration)technique.Responsespectrummodalanalysisforabsoluteandsquarerootofthesumofthesguaresdisplacementsandelementstresses.oThecoupledtime-historysolutionhasthecapabilitytoallowanarbitrarydampingmatrix.oThestiffnessandmassmatricesmaybeobtainedaspunchedoutputforinputintootherprograms.Thisprogramallowsausefulstudyoftheinteractionbetweenatypicalnuclearcontainmentstructuremodeledasanaxisymmetricshellandthesubsoilmodeledasanaxisymmetricsolid.Thisproqramwasverifiedbycomparingthecomputerresultswithhandcalculationsandpublishedreferences.ThreesampleproblemsarepresentedasexamplesofverificationSa~mle~poblemClosedClinderunderInternalpressureThisproblemdemonstratedthemembranestateofstressinaclosedcylindersubjectedtoauniformlydistributedinternalpressure.Handcalculationswereusedtoverifythisaspectoftheprogram.Theselectedproblemwasacylinderwithclosedendssubjectedtointernalpressure.Onlyonehalfofthecylinderwasrequiredinthemodelbecauseofsymmetry.Furthermore,itwasassumedthat3SA-2 SSES-PSARtheclosedendsveredistantfromthesectionbeinganalyzedandtheywereexcluded.TwomodelsofthecylinderwereactuallyanalyzedOnemodelusedthethinshellelementsandtheotherusedtheaxisymmetricsolidelements.ThesemodelsareshovninFigures3.8A-1and3.8A-2withtheirkeydimensions.Theproblemparametersforbothtestcasesareasfollows:BoundaryCcnditions:Nodel:2displacement=08displacement=0RotationinR-Zplane=0(freetomoveradially)Node16:8displacement=0(freetomoveaxially,radiallyandtorotateaboutthe8axis)NumericalData:Naterial:concreteNodulusofElasticity=E=4.031x106psiThickness=t=36"Radius=R=900"Po.isson'sRatio=v=-017'ressure=p=60psiLength=L=1800"N=27,000lb/in(anequivalentnodeloadappliedatNode16)Thetheoretica1valuesforthemembraneforceresultantswerecalculatedtobepR/2(=27,000lb/in)axialforce,andpR(=54,000lb/in)forthecircumferentialforce(hoopdirection).TheresultsobtainedfromtheASHSDprogramarepresentedinTable3.8A-1,bothforthethinshellandthelayeredshellmodels.AnalyticalcomputationsindicatedmaximumerrorsatNode16of.4%forthelonqitudinalforceand3.2%forthecircumferentialforce.Sa~mleProblem:CylindricalShellS~ub'ectedtoInternalPressureandUniformTe~meratureRiseThistestexampledemonstratedtheuseofacombinedstaticloadandthermalloadcondition.Ashortcircularcylindricalshellclampedatbothendswassubjectedtoaninternalpressureandauniformtemperaturerise.38A-3 SSES-PSARThetheoreticalsolutionsgiveninReference3.SA-2wereusedtoverifythisanalysis.Thistestusedashortcylinderthatwasclampedatbothends.Thecylinderhadaninternalpressureappliedandwassubjectedtoauniformtemperatureincrease.ThegeneralarrangementisshowninFigure3.8A-3.Becauseofsymmetry,onlyone-halfofthecylinderwasusedforthefiniteelementmodel.This.isshowninFigure38A-4withNode1locatedatthemiddleofthecylinder.Porthepurposeofinputtingthethermalcoefficientofexpansionofthisisotr~oicsheilaitwasrequiredtoidentifytheshellmaterialas'I-'""""':Atcenterofcylinder,Node1:Zdisplacement=09displacement=0RotationintheR-Zplane=0Atendofcylinder,Node26:Rdisplacement=0Zdisplacement=08displacement=0(tangential)RotationintheR-Zplane=0NumericalDataMaterial:concreteModulusofElasticity=E=4,030,508psiPoisson'sRatio=u=0.17ThermalCoefficientofExpansion=c=55x10-~in/in/<<PThickness=t=30<<Radius=R=600'<Length=L=1200<<Pressure=p=60psiTemperature=T=150>PR/t=20L/R=2ThetheoreticalresultsareshowninFigure3.8A-5.ThesevalueswereobtainedbyusingthefollowingequationsfromReference38A-2:RAxialMoment-M=2p~D(~+ReT)xxEt2whereRt=[]1/2Rt3.8A-4 SSES-FSABandDXEt12(1-9)2Normalizedlength:Ln.(8/R)(L/2R)Figure3.8A-5comparestheresultsobtainedfromtheASHSDprogramandthetheoreticalsolution.TheresultsofASHSDagreewellwiththoseofthereference.Sampleproblem:asymmetricBend~inofaCylindricalShellThepurposeofthistestexamplevastoillustratetheuseofhigherharmonicsforasymmetricloadingcases.Asacomparisontothecomputeroutput,resultsforthisproblemweretakenfromB.BudianskyandP.P.Ra~kowski'sNumericalA~nalsisofUns~mmetricBe~ndinofShellsofRevolution(Reference3Ba-3)Thecylindricalshellthatwasanalyzedvasashort,videcylinderasshowninFigure3.8A-6.ThefiniteelementidealizationofthecylinderandthepertinentdataareillustratedinFigure3.8A-7.Ateachendofthecylinder,moments,oftheformN=Ncosaewereinputforharmonicsn=0,2,5,20.Theproblemparametersareasfollows:Material:steelE=29x10~psi25nR=600"v=0.3L=60.0<<em=L/R=1R/t=48M~0E100(1-9)2mm497939.56lb-in/inThecomparisonresultsveretakendirectlyfromthereferenceThoseresultsvereplottedinFigure3.8A-8.ThecomparisonofthecomputerresultstothereferenceresultsareshowninFigure3.8A-8.(Notethatthelongitudinalmomentsandradialdisplacementsareexpressedasnondimensionalratios.)REV.18/783.8A-5 SSBS-ZSAB.Thereferenceandcomputerresultsshowedgoodagreement.Thisverifiedtheaccuracyoftheprogramforthistypeofanalysis3~8A3C~CAPCECAPcomputesstressesinaconcreteelementunderthermaland/ornonthermal(real)loads,consideringeffectsofconcrete,cracking.Theelementrepresentsasectionofaconcreteshellorslab,andmayincludetwolayersofreinforcing,transversereinforcing,prestressingtendons,andalinerplateCECAPassumeslinearstress-strainrelationshipsforsteelandconcreteincompression-.Concreteisassumedtohavenotensilestrenqth.Thesolutionisaniterativeprocess,wherebytensilestressesfoundinitiallyinconcretearerelieved(bycracking)andredistributedintheelement.Equilibriumofnonthermalloadsispreserved.Forthermaleffects,theelementisassumedfreetoexpandinplane,hutfixedagainstrotationThecapabilityforexpansionandcrackinggenerallyresultsinareductionin.thermalstressesfromtheinitialcondition.Toverifythisproqram,exampleproblemswereanalyzedbyCECAPandcomparedwithhandcalculationsolutions.TheseexampleproblemsconsideredareinforcedconcretebeamasshowninFigure3.8A-9.Theproblemparametersareasfollows:Concretemodulusofelasticity,Bebarnodulusofelasticity,ConcretePoisson'sratio,Concretecoefficientofthermalexpansion,Temperaturedifference,Rebarcoefficientofthermalexpansion,Ec3x106psEs=30x10~psi~c=.22~c=6x10-~in/in/~FT-100oFRThreesampleproblemsarepresentedasexamplesofverification.Sa~mleProblem:BeamWithaThemalNomentTheanalysisofareinforcedconcretebeamsub)ectedtoalinearthermalqradientwasperformedtotestthe'edistributionofthermalstressesduetotherelievingeffectofconcretecracking.Theresultsverecomparedwithhandcalculations.38A-6 SSES-PSA'RPiqure38A-10showsthereinforcedconcretebeamandthecorrespondingCECAPconcreteelementusedintheanalysis.Boundaryconditions,geometry,andappliedloadsareillustrated.Thefollowingillustrateshovthermalloadsaretreatedinacrackedsectionanalysisofareinforcedconcretebeam.Themainassumptionspertainingtothernalboundaryconditionsare.(1)Thebeam.isallowedtoexpandfreelyaxially.(2)Thereisnorotationoftheinitialthermalstressslope./hebeamcross-sectionandinitialthermalstressdistributionareshowninPiqure3.8A-11.PorAT=100oP,theequivalentthermalmomentandconcreteandrebarstressesare:=~T"cEbt~/12=(100)(6x10e)(3x10e)(12)(42)~/12=3~175,000in-lbsaTcE/2=(100)(6x10-~)(3x10e)/2=900psi(compression)ot2-2)o(21-2)c=c=900=814pst(tens3.on)ThestressdiaqramusedforthecrackedsectionanalysiswiththermalloadinqisshowainPiqure3.8A-12.Theassumptionsoffreemovementaxiallyandconstantthermalstressslopearemaintainedbyalateraltranslationoftheinitialreferenceaxistoafinalcrackedposition.Fromforceequilibrium:F+prebarconcrete01.0(814+ha)10-900(-Frebaraa(12)900-ha2+2[21+()21]=0FconcreteSo1vinqforha~cha=582psicBebarandconcretestressesare:fs=(814+582)10=13~970psi(Tension}f=900-582=318psi(Compression)3SA-7 SSES-FSAHLocationofcrackedneutralaxisis:900-592kdm(900)217.42inSelf-relievedthermalmomentis:fAd--N121245,690-in-1binTherebarandconcretestresses,self-relievedthermalmomentandneutralaxislocationobtainedfromtheCECAPprogramarecomparedwiththehandcalculationsinTable3.BA-2.ItcanbeseenthattheCECAPresultscomparefavorablywiththehandcalculations.SampleProblem:BeamlithaRealMomentTheanalysisofareinforcedconcretebeamsubjectedtoarealmomentvasperformedtotesttheCECAPprogramfornon-thermalmoments.Theresultsverecomparedwithhandcalculations.Figure3.8A-13showstheloadingandgeometryforthereinforcedconcretebeamandthecorrespondingCECAPconcreteelementmodel.Thefollovingillustratestheworkingstressanalysisofreinforcedconcretebeams.Thebeamcross-section,stressblock,andtransformedsectionsareshowninFigure3.8A-14.Theresultantforcesandmomentare:C=f(kd)(b)/2T=AsfsM=Cjd=TjdEquatingthefirstmomentsofthecompressionandtensionareasabouttheneutralaxisofthetransformedsection,kd(b)(kd)=nA(d-kd)2vhichyieldsIkd~+167kd-6667=0Solvingforkd;REV.18/283-BA-8 SSES-FSARkd=7.37in.Theresultantforcesare:GTM317300030(7.37)40~3C=T=84,570lbRebarandconcretestressesare:fs=T=84,574psi(tension)Asfo=2C=2/84~574/=l,l93psi(compression)kdb(737)(12)Table3.8A-3showsacomparisonofrebarandconcretestressesandneutralaxislocationsobtainedfromtheCECAPprogramandhandcalculations.TheCZCAPresultsareshowntocomparetohandcalculationswithintheforceaccuracylimitsintheprogram.SampleProblem:BeamwitharealMomentandaRealAxialLoadThisverificationprobleminvolvestheanalysisofareinforcedconcretebeamsubjectedtobotharealmomentandarealaxialcompressiveload.AhandcalculationsolutionusingtheequationspresentedinReference3.8A-4wasobtainedandcomparedwiththeCECAPresults.TheloadingandgeometryforthereinforcedconcretebeamandcorrespondingCECAPmodelareillustratedinFigure3.8A-15.fkd(3)f71(d-kd)Thefollowingillustratestheworkingstressanalysisofreinforcedconcretebeamssubjectedtobothmomentsandaxialcompressiveloads.-Thebeamcross-sectionandstressblockareshowninFigure3.8A-16.TheanalysisusestheequationspresentedinReference3.8A-4,whicharesimplifiedtothefollowing:6nAd6nAtM8(1)(kd)+3(--.-)(kd)-+-(4-2+N)(kd)-b(d--+-)0N2b2N(2)NMkd-tsA(-+-N32(d-kd)'3MforN>t/6REV.18/7838A-9 SSBS-FSABEquation(1)becomes:kd>+55&kd>-293kd=11720=0M/N31.4>t/6-7101000'6Solvingtheaboveequationsbyiterationforkdyields:kd=12.7in.Theresultingrebarandsteelstressesare:l01000(31.4+12.7/3-21)~(fm4132012.7)c10(40-12.7)~1,922psi(Compression)TherebarandconcretestressesandneutralaxislocationobtainedfromtheCECAPprogramarecomparedwiththehandcalculationsinTable3.&A-4.Theresultsforthetwosolutionmethodsagreeveryclosely38A4CE66&Thisprogramperformsthelinearelasticanalysisofaplatewitharbitraryshapeandsupports,stiffenerbeams,andelasticsubgrade,underloadsnormaltothemiddleplaneoftheplate.Thisprogramwasverifiedbycomparingselectedhand,calculatedvaluestoCE668valueswiththedeflectionsandmomentsofarectangularplatefordifferentloadingandsupportconditions.SampleProblem:RectangularPlatewithaConcentratedLoadattheCenterThesimplysupportedrectangularplate,showninFigure3.&A-17vassubjectedtoaconcentratedloadof300lbs.atthecenter.Becauseofsymmetryonlyhalfoftheplatevasmodelledbythefiniteelements.Theboundaryconditionsverezerodisplacementvithfreenormalrotationatthesimplysupportededgesandfreedisplacementvithzeronormalrotationatthesymmetryaxis.TheplatehadisotropicstructuralpropertiesTheproblemparametersareasfollows:REV.18/783.8A-10 SSES-FSABPoisson'sRatio0.3Young'sNodulus'hicknessConcentratedLoadE=29x10>psih=05in.P=300lb.TheformulaeforthedeflectionsandmomentsweretakenfromReference3.SA-5.a)Def1ectionP26centerI.01695D=.01695[300(100)121-(,3))](2.9X10)(.5)M~.00153in.8Node116b)MomentsMX'.(forb>>a)8x2,y0MX-1n[a]-P(l+V)1-sin~~7f1+sina-300(1.3)Sm5]'-15.52)(-1.348)1+sin5MX~20.921b-in8Node113My:(forb>>a)g()Sm[1-sin~1n[a]~Tf1+sina~3001.3)1n[1-sin-37r5]3'+sin5(-15.52)(-3.685)My~57.1981b-in9Node117ThehandcalculatedvaluesfordeflectionsandmomentsarecomparedwiththeCE668valuesinTable3.8A-5.Theresultsareveryclosewiththegreatestdifferencebeing1.55%.REV.4,1/793.SA-11 SSES-PSARS~amleProblem:UniformLoadonaRecta~nularPlateMithTherectangularplatehadoneedgefixed,oneedgefree,andtwoedgessimplysupportedasshowninPigure3.8A-18.Itwassubjectedtoauniformlydistributedloadofintensityq=2.0psi.Becauseofsymmetryonlyhalfoftheplatewasmodelledbyfiniteelements.Boundaryconditionswerespecifiedaccordingtotheappropriateedgesupportconditions.Theproblemparametersareasfollows:Poisson'sRatio03Young'sModulusE=29x10~psiThicknessLoadIntensityh.=0.2in.q=20psiTheformulaeusedtocalculatethedeflectionsandmomentsweretakenfromReference38A-5.a)DeflectionI-,--.(9(2.9X10)(.2).277in.8Nodellb)MomentsMX:8X~15y15MX=.0293qa~.0293(2)(30)MX~52.74in-lbs8Node11My:axMy~.319qb~.319(2)(15)22My~143.55in-lbs.8Node121ThehandcalculatedvaluesforthedeflectionandmomentsarecomparedtotheCE668resultsinTable3.8A-6.Theresultsagreeclosely,withthelargestdifferencebeing3.4%.38A5EASEEASE(ElasticAnalysisforStructuralEngineering)performsstaticanalysisoftwo-andthree-dimensionaltrussesandframes,planeelasticbodiesandplateandshellstructures.ThefiniteREV.18/783.8A-12 ~1~i~mentapprG@qg$jpjNItuithstandardlinearorbeamelements,aplaneStress'tjiegqygjf'plementoratriangularplatebendingelement.TgeE/SEprogramacceptsthermalloadsaswellaspressure,grqvity<jrqqncentratedloads.fTheprogramgQgppg,lIpsegyp,)ointdisplacements,beamforcesandtriangularq$jgygt')jypejyandmoments.EASEwasdeyygppyd4y)galgngineeringAnalysisCorporation,RedondoBeycg<Cy4igyyj,q,~in1969andisinthepublicdomain.TheversiqpggqgqqtggyespyBechtelismaintainedbythe<ontrolpa/9gqjpjtIII~gpGpuetservice.~3.6-~60+19Thisprogramperfoggganynalysisofaboltedflange.Flangedimensionsrefloat,$4@qoqrpdedcondition.Symbols,terms,andmathematicsarej.naccordancewithAppendixXIoftheASMECodeSectionIIIStressvaluesforbothdesign(operating)andbolt-upconditiOnsareprinted,Bothallowableandactualstressesareprintedoutgqrbo$tg,lqngitudinalflangestress,radialflanqestress,poptangynti~lflangestress.Theshapeconstantsandmomentsareqpiqgygqutfqpinformationonly.TwoprogramsolutionsareincludedinverifyingProgramE0119weldingneckflangedesignandaslip-onflangedesignhavebeenprepared.Alsoy,ttachedaresolutionsofthesameproblemsaspubliShedinBulletin502rucdernPl~ane~reminframGulf6WesternHanufaCtgqj.pgt.'ompany)Reference3.8A-6).rTheproblemparametersforthetwosampleproblemsareasfollows:Designpressure=%$0psiDesigntempyry$ure~5p04PAtmosphericgyyyqpggqgq~750PPoiqsonlsr04iqqgzg0corrosionallajpgce,j0GasketVigth".$z75jgBffectiyegpsgegwidth=0.306"GasketFactoryp"$7$Gasketseatingy5jynpth=3700psiS~amleProblem:Wed~inNeckFla~neIFigure3.8A~19showjgpqdimensionsoftheweldingneckflange.Table3.8A-7coppargyfhpresultsofEO119computerprogramwiththosepublisgepjnRpfgpqnqe3.8A-6.Theresultscompareveryclosely.REV.18/7838A-13 SSES-FSABFiqure3.8A-20showsthedimensionsoftheslip-onflange.Table3.BA-8comparestheresultsofEO119computerprogramwiththosepublishedinReference3.8A-6.Theresultscompareveryclosely.3BA7EO781TheShellsofRevolutionProgramwasdevelopedhyAertursKalninwhileatYaleUniversity.TheMathematicsarebasedonamethodofanalysiscontainedinhispaper"AnalysisofShellsofRevolutionSubjectedtoSymmetricalandNon-SymmetricalLoads>publishedintheJournalofAliedMechanics,Uol.31,September,1964(Reference3.8A-7).Thisprogramcalculatesthestressesanddisplacementsinthinwalledelasticshellsofrevolutionwhensubjectedtostaticedge,surface,and/ortemperatureloadswitharbitrarydistributionoverthesurfaceoftheshell.TheGeometryoftheshellmustbesymmetric,buttheshapeofthemedianisarbitrary.XtispossibletoincludeuptothreebranchshellswiththemainshellinasinglemodelInaddition,theshellwallmayconsistofdifferentorthotropicmaterials,andthethicknessofeachlayerandtheelasticpropertiesofeachlayermayvaryalongwiththemedian.ProgramE0781numericallyintegratestheeightordinacyfirstorderdifferentialequationsofthinshelltheoryderivedbyH.Reissner.Theequationsarederivedsuchthattheeiqhtvariablesarechosenwhichappearontheboundariesoftheaxiallysymmetricshellsothattheenticeproblemcanheexpressedinthesefundamentalvariables.Kalnin'sproqramhasbeenalteredsuchthata4x4force-displacementrelationcanbeusedasaboundaryconditionasanalternativetotheusualprocedureofspecifyingforcesordisplacements.Thisforce-displacementrelationcanbeusedtodescribetheforcesattheboundaryintermsofdisplacementsattheboundary,orthedisplacementsattheboundaryintermsofforcesorsomecompatiblecombinationofthetwo.Inthismanner,itispossibletostudythebehaviorofalargecomplexstructure.Xtisalsopossibletointroducea>SpringMatrix"attheendofanypartofthestressmodelThismatrixmustbeexpressedintheform,Force=SpringMatrixXDisplacement.Inaddition,totheabovechanges,theKalnin~sProgramhasbeenmodifiedtoincreasethesizeoftheproblemthatcanbeconsideredandtoimprovetheaccuracyofthesolution.3.BA-14 SSBS-PSABThisprogramwasverifiedbycomparingthecomputerresultswithexperimentalmeasurementsandpublishedreferencesTwosampleproblemsarepresentedasexamplesofverification.aneronlee-Cosa'nor2-ioidaa~ada~ishericalHadsHnetedaXnternapress~areoadThisproblemillustratesProgram80781'sabilitytogeneratecylindrical,torispherical,andellipsoidalshapesAcomparisonismadetoanexperimentalinvestigationof2:1ellipsoidalheadssubjectedtointernalpressure{seeReference38A-8).Theproblemconsistsofcomparinga2:1ellipsoidalheadtoanequivalenttorisphericalheadsubjectedtothesameuniformlydistributedinternalpressure.AnequivalenttorispherewillbedefinedasonehavinqthesameheightabovethetangentlineastheellipsoidandaminimalL/bratio(thushavingtheleastpossiblediscontinuitybetweenthetorusandthesphere).PorthegeometryshowninPigure3.8A-21:(L-b)siny=A-r(1)(L-b)cos4=L-B(2)MinimizingL/busing(1)and(2):tany=B/A=0.501926653C+~C-2C2C=B/A+A/B=2.494L=~[2.5+6.22-4.99]=32.778"1=B[B/A-L/A]+A=9.13[a5019-1.80198]+18.19=6.32"Note:PorpurposeofcalculationA=18.19"B=9.13"Segmentlengthsusedare:fromPigure3.8A-2138A-15 SSBS-FSARcylinder-/rt=18.16(0.31)=2.37torisphere54to104-411.254104to26.5674-494.134h26.5674to904-6910.574ellipsoid54to104-481254104to3044I54304to904-68104Bounda~rConditions:Itwillbeassumedthatat54fromthepoleamembranestateofstressexistsinboththeellipsoidandthetorisphere:Q~N$~0N$2s&$wherer=distancetopole=32.778"Q=tranverseshearinydirection.N4=momentresultantin$direction.NQ=membraneforceingdirection.Lettingp=680psiThenforthetorisphere:N4=(680/2)(32.778)=11,1445lb/in.IfN$=11,144.5lb/in.,apreliminaryrunyieldsQ=95.202lb/in.,soanewvalueforN$forthetorispherewascalculated:5NtangN$=11,144.5+hN=10056.3lb/in.andanappropriatemembranestatewasgenerated.REU.18/78.38A-16 SSES-FSARFortheellipsoid~As1nRwhereR=C+(1C)sin11Cl(B/A)=0.25192=R~2519+.7481(0.0871557)=0.5075~Asin918.19(680)12185.781b(in.R2sing2(0.5075)Tobettercomparetheheadsitseemeddesirabletohavethelongitudinaldisplacementatthecenterofthecylinder0(4=0).Sotheproblemwasruntwice,thefirstrunyieldingtheradialdisplacement,Wrequiredfor0displacementatthecenter(W=0.0966")l.StartW=0.0966"N$=10,056lb/inMg=N=02EndQ=N=iaaf'=0Ng=12,186lb/inFigure3.8A-24showstheanalyticalmodelwithboundaryconditions.ResultsTochecktheresults,firsttheanswersattheboundariesshouldbeexamined.Xtwasassumedthattherewasamembranestateofstressattheboundariesand,therefore,attheedgesQandNmustbeapproximately0.StartEndQ{lbs/in)0.0102700008613Nigi(in.-lbs/in.)0.0-00001487Alsotosatisfyequilibriuminthecylinder,Niii=05pr=6169lb/in.PlotsofthehoopforceandlongitudinalbendingfromE0781resultscomparetheellipsoidalandtorisphericalheads.Eventhoughthechangeinradiihasbeenminimizedthedisturbanceatthejunctionofthesphereandtorusisconsiderable(seeFigure38A-25.3.8A-17 SSES-ZSARComparisontotheexperimentalellipsoidalheadshovsgoodcorrelationofstressvalues.SeeFigures3.8A-26through3.8A-30forplotsofV)andVOontheinside,outside,andmeridianofthehead.Deviationsarecausedbythechangesinthicknessandtheexperimentalhead'svariationfromatrue2:1ellipsoidalhead.SamleProblem.ClindricalMaterTankwithTaeredSailsThisproblemillustratesProgramE0781'scapabilitytoanalyzeapressureloadwithonefixedboundaryconditionandonefreeboundarycondition.Theproblemusedforthisverificationis>>ShellofVariableThickness"takenfrom"StressesinShells",byQ.Plugge,pp.289-295(Reference3.8A-9)Theproblemconsistsofataperedshellfilledwithvater.Theshellhasaradiusof9'-0"andis12'-0"high.Theshellthicknessvariesfrom11>>atthebottomto3>>atthetop.SeeFigure3.8A-31forlocationoftheZaxis.Thelengthofaseqmentis18>>(~z)Takingtheveiqhtofwateras62Slb/ft~~thepressureatthebottomofthetankisp-(12~62~1bft=52083Psi144in./ftThepressureatthetopis,zero.Thepressurevarieslinearlysothatonlytvopointsareneededinthefunctiongeneratorinordertofullydescribethefunction.BoundarvConditionsdisplacementnormaltosurfaceU)-displacementcomponentin4directionBg-rotationofreferencesurfacein)directionQ-transverseshearin)directionHg-membraneforcein<directionMg-momentresultantingdirection1.fixedatstartlg=B$=02.freeatendQ=N$=Mg=0Rev4,l/7938A-18 SSES-FSAR~ResultTable3.8A-9liststheProgramE0781resultsandcomparesthemwiththetheoreticalsoluticnsfromReference3.8A-9attwolocations.ProgramE0781givesamaximumhoopforce,Ne=346.8lb/in.4160lb/ftat54~Rfromthebase.Thisvaluediffersfromthetheoreticalsolutionof4180lb/ftby0.48%.ProgramE0781givesamaximummomentofthebase,54=-1539in-lb/in.=-1539ft-lb/ft.Thisvaluediffersfromthetheoreticalsoluticnof-1470ft-lb/ftby.4-69%.Thisproqramperformsthestaticanalysisofstressesandstrainsinplaneandaxisymmetricstructuresbythefiniteelementmethod.Inthismethod,thestructureisidealizedasanassemblaqeoftwo-dimensionalfiniteelementsoftriangularorquadrilateralshapeshavingarbitrarymaterialproperties.Reinforcementofconcretematerialsisincludedbyadjustingtheelementmaterialproperties.Specialemphasisismadeonbilinearityincompressionandbilinearityorcrackingintension.FINELcomputesthedisplacementsofthecornersofeachelementandthestressesandstrainswithineachelement.Toverifythisprogram,exampleproblemswereanalyzedhyFINELandcomparedtoexperimentaland/orhandcalculatedsolutions.Threesampleproblemsarepresentedasexamplesofverification.~athe~CeuteThebeamshowninFigure3.8A-32has,beenthesubjectofanexperimentalandanalyticalinvestigationThepurposeofthisinvestiqationistocompareresultsobtainedfromtheFINELproqramwiththoseobtainedfromReferences38A-13and3.8A-14ThefiniteelementmeshusedinReference3.8A-14andintheFINELanalysisareshowninPiqures3.8A-33and3.8A-34,respectively.ThePINELanalysisrequiredafinermeshbecauseitusedlineardisplacementelementswhileReference3.8A-14usedquadraticdisplacementelements.Thematerialpropertiesoftheconcreteandreinforcingsteel,andtheloadinghistoryusedintheFINELanalysisaregiveninTables3.8A-10and3.8A-11,respectively.38A-19 SSES-PSARThisprob'lemwasnotcontinuedbeyondtheyieldpointofthereinforcingsteeldue-toanerrorinthePINELprogram.Thestiffnessofanelementwhichyieldedshouldhavebeendeterminedaccordingto:[6+n(.T-Ty)jEoeffwhere,E=initialmaterialstiffnessormodulus0T=yieldstressyT=elementstress,inyielddirection,atendofpreviouscycle((Ty)n=Eplast/Fo~EplastplasticstiffnessEeff=effectivestiffness,inyielddirection,touseinnextcycleAnewEeffshouldbecalculatedaftereachcycle.ThePINELprogramcalculated,anEeffonlyafterthefirstcyclefollowingyielding,(orfirstcycleinarestartrun),andusedthevalueofEeffforallsubsequentcyclesinthesamecomputerrun(Thiserrorcouldbeovercomebymakingaseriesofonecyclerestartruns.)ThecrackingpatternsobtainedfromReference3.8A-14andPINELareshowninFigure3.8A-35.Theload-deflectioncurvesfromReferences3.8A-13and3.8A-14andthePINELanalysisareshowninFigure3.8A-36.TheloaddeflectioncurveobtainedfromtheFINELanalysisshowsverygoodagreementwiththeexperimentalresults.ThecrackedregiongrowsfasterinthePINELanalysisandmoreslowlyinReference3.8A-14,sincethePINELandReference3.8A-14load-deflectioncurvesshowdifferentgradients{stiffnesses).Theresultsofanalytical,experimental,andPINELsolutionsareshowninFigure3.8A-36.TheFINELanalysisagreeswellwiththeexperimentalresultsuptothepointwherethereinforcingsteelinthebeamyields.Aftertheyieldpoint,thePINELanalysisincorrectlycalculatedtheeffectivestiffnessofelementswhichhaveyielded.Therefore,thesolutionwasnotvalidforfurtherloadinqsHowever,sinceallreinforcingsteelremainselasticforthecontainmentanalysis,thePINELprogramisverifiedandrestrictedforthatapplication.DistributedPressureLoading38A-20 SSES-FSARThisverificationinvolvestheresponseofanaxiallyconstrainedhollowcylindertointernalpressure.Ahandcalculatedsolutionyieldsvaluesoftangential,axial,andradialstressesatvariousradiifromthecenterofthecylinder,whicharethencomparedtothePINELvalues.ThefiniteelementmodelisillustratedinPigure3.8A-37.Nodalpointsarefreetomoveonlyintheradialdirection,representingtheconditionsofaxisymmetryandplanestrain.Theproblemparametersareasfollows:Poisson'sRatioYoung'sModulusNumberofnodalpointsNumberofelementsInternalPressure9=0.25E=432x105ksf2210P=10ksfPromReference3.8A-15~thefollowingequationsvereused:hooportangentialstress,TGT'p2b2+~28rb-aaxialstress,T<..82-P82radialstress,TR..a2b29>2TR=Pr2(b2@2)wherea=65.0ft.b=6875p=10ksfa<r<bTheresultsfromPINELfortangential,axial,andradialstressesofthehollowcylinderarecomparedwiththehandcalculatedvaluesinTable3.8A-12.Theresultsareexactlythesameexceptforonevaluewherethereisonly4.17%differenceALinearTemperatureGradient3BA-21 SSES-FSARTheresponseofan'axiallyconstrainedhollovcylindertoaradiallyvaryinglineartemperaturegradientvastheproblemusedforthisverification.Thetangential,axial,andradialstressesweredeterminedbyhandcalculationsandcomparedtotheFINFLresults.Figure3.8A-38illustratesthefiniteelementmesh.Theconditionsofaxisymmetryandplanestrainwereimposedbyusingtheaxisymmetricquadrilateralelementandrestrainingallnodesagainstaxialdisplacement.ThetemperatureprofileisshowninFigure3.8A-39.Theproblemparametersareasfollows:Poisson'Ratiov=0.25Young'st1odulusE=4.32x10~ksfCoefficientofThermalExpansiona=6x10~ft/ft/~FNumberofnodalpointsNumberofelements2210FromReferences3.8A-16and3.8A-17,thefollovingequationsvereused:hooportangentialstress,6826-2[(-)fTrdraE-r+ab81ur22ab-a+fTr~dr-Tr]aaxialstress,5z:e-[cE2v1-ub-a+bTrdr-TJradialstress,[OE1r1v2ro'22()fTrdr-JTrdr]2'2bab-awhere:a=65.0ft.b=6875ftT=T(r)=temperatureabovereference{TREF=100F)Expressionforthetemperaturefield:REV.4,1/7938A-22 SSES-PSART(r)=C2r+ClT(a)=25=Cl+65.0C2(b)25'l+6875C2solving,-5068.75-6513'33Cl287(1333)8167thenT(r)=-13.33r+891.67Evaluationoftheintegral:ITrdr~i(-13.33r+891.67)rdr32-13.33r+891.67r3+2=-444r~+445.83r~+CfTrdr=-4.44(b~-a~)+445.83(b~-a~)baJTrdr=-4.44(r~-a~)+445.83(r~-a~)aTheresultsfromPINELforthetangential,axial,andradialstressesarecomparedwiththevaluesobtainedbyhand.calculationsinTable3.8A-13.Theresultsbetweenthetwomethodsofsolutionagreeveryclosely.3.SA.9NE620Theheatconductionprogram,HE620,isusedtodeterminethetemperaturedistribution,asafunctionoftime,withinaplaneoraxisymmetricsolidbodysubjectedtostep-functiontemperatureorheatfluxinputs.Theprogramisalsousedforsteady-statetemperatureanalysis.Theprogramutilizesafiniteelementtechniguecoupledwithastep-by-steptimeintegrationprocedureasdescribedin~~ApplicationoftheFiniteMethodtoHeatConductionAnalysis"byE.L.WilsonandR.E.Nickell(Reference3.8A-18).REV.4,1/793.SA-23 SSES-PSARTheprogramwasdevelopedattheUniversityofCalifornia,Berkeley'yProfessorK.L.WilsonandsubsequentlymodifiedbyBecbtelCorporationtoincorporatethesaveandrestartcapabilities.Toverifythisprogram,exampleproblemsvereanalyzedbyME620andcomparedwithproqramdata.Twosampleproblemsarepresentedasexamplesofverification.~damleProblem:HeatConductionina~nnarcplateMithOneEdge~uenchedThisproblemtestedtheabilityoftheprogramtosolvethetemperaturechangesinaplaneregionsubjectedtoconductionboundaryconditions.Theplatewasbrouqhttoanequilibriumtemperatureandoneedgevasquenchedwhiletheotherthreeecgeswerekeptinsulated.Asquareplatewasbroughttoeguilibriumatagiveninitialtemperature,To.Threeedqesvereperfectlyinsulatedwhileathirdedqevassuddenlybrouqhttoalovertemperature,T.Thisquenchwaskeptconstantfortheentireanalysis.Atemperaturetimehistorywasthenobtainedforthecornerfarthestfromthequenchededge.Pigure3.8A-40shovstheactualplatearrangement,whilePigure3.8A-41shovsadiagramofthefiniteelements.Theproblemparametersareasfollovs:NomenclatureL=lengthoflongestheatflovpathTpinitialtemperatureofslab(~P)T>=quenchingtemperatureofedge(~P)Data:Theplatevas10"x10"square.To=100PTl=0~PDiffusivity<=1.0in~/sec(chosenforconvenience)TimeincrementAT=1secondfornumericalsolutionAtanytimetduringthetransientstate,thetimefactorT(orcharacteristictime)isqivenbyT=at/L>.Thetimetoreach3.8A-24 SSES-FSARsteady-stateisqivenvhenT=1.0,hencethetransienttimeist=I~/a=100seconds.TheresultsderivedfromReference3.8A-19areplottedinFigure3.8A-42.ThetemperaturevariationatpointAvasplottedinFigure3.8A-42accordingtotheresultsofNE620andcomparedviththetheoreticaltransientchange.Thecurvesareseentoagreequitewell.Deviationsareduetotheselectedfiniteelementmeshsizeandtotheselectedtimestep.fortheanalysis.ThisproblemtestedtheabilityofNE620toanalyzethetemperaturedistributioninanaxisymmetricsolidwithgiventemperatureboundaryconditionsTheresultsoftheprogramanalysisverecomparedtoaclosed-formsolutionderivedfromReference3.8A-20.Thisproblemconsideredasolidsteelsphere(showninFigure3.8A-43)thatwasbroughttoanequilibriumtemperature,andthenitssurfacevassuddentlyquenchedtoaloveruniformtemperature.Thequenchingenvironmentwasheldataconstanttemperature.Atemperature-timehistoryforthreeseconds,vasobtainedfromtheprogramforallnodepoints.Thepointsusedforthecomparisonvereataradiusof0.2inches,andonlyonetimeperiodvaschecked.Thefiniteelementmodeli.sshovninFigure3.8A-44Theproblemparametersareasfollovs:Nomenclature:L=lengthofthelongestheatflovpath(radiusofsphere)Tpinitia1temperatureofsphere(pF)Tlquenchingtemperatureofoutersurface(pF).DataRadiusofsphere=R=.59in.To1472PT=68PF1Conductivity=6.02x10-4Btu/in-sec-pF)Diffusivity=a=.0193in</secSpecificheat=.11Btu/(1b-pF)38A-25 SSES-CESARDensity=p=.284lb/in~Timeincrement=.2secAtanytime,t,duringthetransientstate,thetimefactorT(orcharacteristictime)isgivenbyT=~t/L~.Thetimetoreachsteady-stateisgivenwhenT=1.0,hencethetransienttimeistI,</+=3.0seconds.TheresultfromReference20forthetemperatureataradiusof0.2inchesattimet=1.8seconds;was933.8~FThetemperaturesfromboththeprogramandthereferenceareshowninTable3.8A-14.Thereisanerrorof1.1%.38A-10SUPERBSUPERBisageneral-purpose,isoparametric,finiteelementcomputerprogram.Theprogramdeterminesthedisplacementandstresscharacteristicsofcomplexstructuressubjectedtoconcentratedloads,pressuredistributions,enforceddisplacements,andthermalgradients,aswellasthetemperaturedistributionduetosteady-stateheattransfer.Isoparametricelementswithcurvedboundariesandhigh-orderstrainvariationspermitcurvedregionsandareawithhighstressconcentrationstobeaccuratelyrepresentedwithaminimumnumberofelements.TheSUPERBprogramisarecognizedprograminthepublicdomainandhashadsufficienthistoryofusetojustifyitsapplicationandvaliditywithoutfurtherdemonstration.TheversionoftheprogramcurrentlyusedbyBechtelismaintainedbytheControlDataCorporation,CybernetService.38A-26 SSES-FSARBA13BA-1-Milson,E.L.,"SAP;hGeneralStructuralAnalysisProgram",ReportMoUCSESN70-20,StructuresandHaterialsResearch,DepartmentofCivilEngineering,UniversityofCaliforniaatBerkeley,September19763BA-2Kraus,H.,"ThinElasticShells",JohnMile@,publisher,1967,p.136.3~BA-3Budianskv,B.andP.PHadkomski~~Nuncdca~kd~a1sisofUnseticBndofSlso~v~ut~o,AIAAJournal,Vol.l,No.8,Auqust1963.3BA-4Blodgett,O.M.,"DesignofMeldedStructures",TheJamesF.LincolnArcMeldingFoundation,June1966'p.3.3-83.3-10.3.BA-58BA-6Timoshenko,TheoofaesadShels,2ndEdition,HcGrav-Hill,1959,pp.208-211.5ManufacturingCompany38A-7Kalnin,A.,"AnalysisofShellsofRevolutionSubjectedtcSymmetricalandHonsymmetricalLoads'BJournalofAliedmechanics,Vol.31,September1964.3BA-8Horovits,J.HandHHenschel,H~xerimentalInvestiaionof21llioialHeadsHuh~ecLedtoJanuary17,1974toApril16,1976,FosterMheelerEnergyCorp.,forMeldingResearchCouncil.3BA-9Flugqe,M.,StressesinShells,Springer-Verlag,NewYork,1973.3BA-10Gerdeen,J.C,TheEffectofGeometricalVariationsOntheLimitPressureso2.11~isoidaj~eadVessesUdrInealPeueAril1975,HichiganTechnologyUniv.,forMeldingResearchCouncil.3.BA-113.BA-12GeometicalVariationsontheLimitPressHHesforiodalHeadVesselSetembe27~1972,MichiganTechnologyUniv,forMeldingResearchCouncil.Horowitx,JN.andR.Henschel,ExerimentalInvestiationof2~1lisoidalea+sSub~ectedtoIternalpressurevol~usermo,progressReportJanuary17,1974toApril16,1976,FosterMheeler SSES-PSAR38A-13EnergyCorp.,forMeldingResearchCouncil.M.H.BurnsandC.P.Siess,>>LoadDeformationCharacteristicsofBeam-ColumnConnectionsinReinforcedConcrete>>~StructuralResearchSeriesNo.230Civil~EnineerinHStudies,UniversityofIllinois,Urbana-Champaj,gniX13,.,January1962.3.8A-14MSuidanandM.CSchnobrich,"FiniteElementAnalysisofReinforcedConcrete",JournaloftheStructuralDivision,SSCE~Vol.99,No8210,pp2109-2122,October19733.8A-15Roark,Raymond,FormulasforStressAndStrain,McGras-Hill,FourthEdition,Copyright1965,p.30838A-16SecondEdition,McGrav-Hill,Copyright1951'.412.38A-1738A-1838A-19Manson,ThermalStressandLowCcleFatigue,McGrav-Hill,Copyright1960,pp.28-29.Milson,E.L.andNickell,R.E,"ApplicationoftheFiniteElementMethodtoHeatConductionAnalysis",JournalofNuclearEnSineer~inandDes~in,1966Arpaci,V.S,ConductionHeatTransfer,Addition-Mesley,(1966)3.8d-20HeatConductionNith~EnineerinSseolocpicalandOtherA~lications,Ingersol,Zobe1,Ingersol,1954,MaplePressCo,Inc.,York,Pa.,p.165.REV.18/7838A-28 SSES-PSABAPPENDIX39ACOMPUTERPROGRAMS39A.1ME101Pro@ramDescriptionME101isafiniteelementcomputerproqramwhichperformslinearelasticanalysisofpipingsystemsusinqstandardbeamtheorytechniquesTheinputdataformatisspecificallydesignedforpipestressenqineerinq,andtheEnglishsystemofunitsisused.Athorouqhcheckinqoftheinputhasbeenco-ordinatedintheproqram.Inaddition,modificationsaimedatachieving'nimprovedmodelareperformedautomatically.Theoutputmaybeuseddirectlyforpipingdesignandforconformationtocodeandotherregulatoryrequirements.Twopipinqcodes,ASMEBPYcode1974and831.1Summer1973addendaareincorporatedintheproqramtotheextentofcomputingflexibilityfactors,stressintensificationfactorsandstresses.ME101maybeusedforstaticandseismicloadanalysisofpipingsystemsandalsoperformseffectiveweightcalculations.Staticanalysisconsidersoneormoreofthefollowing:thermalexpansion,deadweiqht,uniformlydistributedloads,andexternallyappliedforces,moments,displacementsandrotations,orindividualforceloads.Seismicanalysisisbasedonstandardnormalmodetechniquesandusesresponsespectrumdata.Twomethodsofeigenvaluesolutionareavailable.DeterminantSearchorSuhspaceIterationconsidersalldatapointsasmasspoints.KinematicReductionandHouseholderQRconsidersmassesonlyatspecifieddatapointsindesiqnateddirections.Differentialseismicanchormovementanalysisandstaticseismicanalysisarealsoprovided.ME101generatesisometricplotsofthepipingconfigurationwithoptionalnodenumberinqTheplotsareobtainedbyeitherZETAorCALCOMP1036plotter.Theproqramusesout-of-coresolutiontechniquesforbothstaticanddynamicanalysis,andhasnopracticallimitationstothenumberofequationsorbandwidth.However,verylargesystemsmaybecomeprohibitiveduetocostofcomputation.Themaximumnumberofmodeshapesallowableiscurrently125.REV2,9/783.9A-1 SSES-FSARP~oqramVersionandComputerThecurrentUNIVACversion(C3)ofNE101isbeingusedbyBechtelPowerCorporation.ExtentofApplicationME101isapipingproqramdevelopedbyBechtelPowerCorporation(BPC).ItsdevelopmentbeganinJuly1975andisbeingcontinuouslysupportedbyBPC.IthasbeenusedbyvariousprojectsintheBPC.TestProblemsTheASIDEBenchmarkProblemNo.1demonstratesthesolutionfornaturalfrequenciesofathreedimensionalstructureasdescribedinReference3.9A-1.ThefollowinqtableliststhenaturalfrequenciesfromNE101andReference3.9A-1:NaturalFrequencyComparisions,CPS.NodeNo.Reference3.9A-1NE101123110117134112116138AdditionaltestproblemscanbefoundinReference3.9A-2.3qA2NE632PronramDescri2tionNE632performsstressanalysisof3-dimensionalpiping-systems.Theeffectsofthermalexpansion,uniformloadofthepipe,pipecontentsandinsulation,concentratedloads,movementsofthepipingsystemsupports,andotherexternalloads,suchaswindandsnow,maybeconsidered.Theinputdataformatisspecificallydesignedforpipestressengineering,andtheEnqlishsystemofunitsisusedAthoroughcheckingoftheinputhasbeencoordinatedintheprogram.Theout.putmaybeuseddirectlyforpipingdesignandforconformationtocodeandotherregulatoryrequirements.Pipingcodes,ASNEBPVcode,B31.1codeandB31.3codehavebeenincorporatedintheprogramtotheextentofcomputingflexibilityfactors,stressintensificationfactorsandstresses.REV2,9/783.9A-2 SSES-FSARAresponsespectrumanalysismaybeperformedtoanalyzetheeffectofearthquakeforcesonthepipingsystem,andtransienteffectsofwaterhammer,steamhammer,orotherimpulsivetypedynamicloadingarealsohandledbytheprogram.Also,aplotofpipinggeometryand/orresponsespectrumcurvesmaybeobtainedtoverifytheaccuracyofthemodel.~ProramVersionandComputerThecurrentUNIVACversion(B9)ofME632isbeingusedbyBechtelPowerCorporation.ExtentofApplicationME632isapipingprogramdevelopedbyBechtelPowerCorporation(BPC).Itsdevelopmentbeganin1970andisbeingcontinuouslysupportedbyBPC.IthasbeenusedbyvariousprojectsintheBPCTestProblemsTheASMEBenchmarkProblemNo.1demonstratesthesolutionfornaturalfrequenciesofathree-dimensionalstrucureasdescribed'nReference3.9A-l.ThefollowingtableliststhenaturalfrequenciesforME632andReference3.9A-l:NaturalFrequencyComparison,CPSModeNoReference3.9A-lNE632110117134ill116137AdditionaltestproblemscanbefoundinReference3.9A-339A3hK912~ProramDescription.Finite-differencerepresentationoftheheatdiffusionequationisusedforthepipesorcomponentwallsectionincontactwithfluidofspecifiedtemperatureandflowatetimehistories.Theprogramisquasi-two-dimensional,sothatreductionofseverityofagiventransientwithdistancefrominletisaccountedfor.REV117/793.9A-3 SSES-PSARThermalpropertiesofwater,liquidsodium,stainlessandcarbonsteelarebuiltintheprogram.Filmtransfercoefficientsforwaterorliquidsodiumarecomputedbytheprogramforeachtimestepandpipesection.Forotherfluidssuchassteam,theprogramisusedonaone-dimensionalbasiswithusersupplied.filmcoefficients.,Sequentialcomputationsaredoneforpipelengthsofdifferentdiametersor'wallthicknesses.Fluidoutlettemperaturedatafromonepipelengtharestoredforuseasinlettothenextlengthdownstream.AveragetemperaturedifferencesT~-Tbarethuscalculatedforstructuraldiscontinuity.~proramVersionandCom~nterTheHE912programhasbeenusedbyBechtelPowerCorporationinGaithersburg,andSanFranciscoofficesonvariousBPCprospects.AUnivac1110computerisusedtoruntheHE912program.ExtentofA~licationTheHE912programwasdevelopedfromReferences3.9A-4,3.9A-5and3.9A-6bytheStressGroupofGaithersburgandSanFranciscoofficesofBAC.TheHE912programhasbeenextensivelyusedsince1975fornuclearClassIcomponentdesignonPFTPproject.estg.oblemForlocalgradients,theprogramhasbeen,comparedwithanalyticalflatplatedataofRef.3.9A-5andnumericalresultsbyin-houseprogramHE643,Ref.3.9A-7.Theresultswereacceptable.Poraxialvariationsoffluidandwall-temperatures,theprogramagreescloselywiththeanalyticalsolutionofRef.3.9A-6.Table39A-2showsthecomparisonofHE912withHE643andanalyticalresults.TheHE643programwasdevelopedfromReferences3e9A-lland3.9A-.12bytheStressGroupofLosAngelesPowerDivisionofBPC.TheresultsofHE643transienttemperatureresponsesonbothinsideandoutsidesurfacesarecomparedwithChart36ofReference3.'9A-13andplottedFigure3.9A-1.3-9A-4HE913~ProramDe~seritionHE913candeterminestressintensitylevelsforClass1nuclearpowerpipingcomponentsforEquations9through14ofsubarticleNB-3650,ANALYSISOFPIPINGCOMPONENTSofSectionIII,ASHEBoilerandPressureVesselCode.BeforeattemptingtoexerciseREV.11$7/7939A-4 SSES-FSARthis=program,theusershoudlbefamiliarwiththerequirementsandproceduressetforthinsubarticleNB-3650.Priortousingthisprogram,th'eusershouldhavethefollowinginformationexternaltotheprogram.1.Pipingconfiguration2.Pipingandpipingcomponentproperties3.Homentreactionsduetoa.Thermalexpansionloadsb.Heightlooadsandc.Earthquakeloads4.Thethermalresponseofthepipingsystemduetothespecifiedtransients:hT,hT,andthe(T-Tb)valuesforthekeypointsduringsystemRife.Program.VersionandComgnterThecurrentHE913versionisbeingusedbyBechtelPowerCorporationinitsGaithersburg,LosAngeles,AnnArborandSanFranciscooffices.AUnivacll00computerisusedtoruntheHE913program.ExtentofAnvlicationNE913istherevisedandexpandedversionoftheLOTEHPprogramwhichwasoriginallydevelopedbythepipestressgroupoftheSanFranciscoPowerDivisionofBPCand.madeavailableforusethroughtheCDC6600computer.TheLOTENPprogram.hasbeenextensivelyusedbytheBechtelFastFluxTestFacility(FETF)SystemsAnalysisGroupsince1972inthepreliminarydesignofFZTFClassIpiping.TheNE913programhasbeenusedtoanalyzenuclearClassIpipingfor-Bechtelnuclearpowerplantprojects.TestProblesmTheGrandGulfProjectfeedwaterlinewasselectedasatestproblem.Handcalculationsofaselectedcomponentinthepipingsystemwereperformedinaccordancewiththesampleproblem(Reference3.9A-8).Theirresults'werecomparedwiththecomputeroutputforcodeequations9through14inME913{Reference3.9A-l0).REV.11,7/7939A-5 SSES-FSARTable3.9A-1showsthecomparisonbetweentheASMEsampleproblem{Reference3.9A-8)andME913,results(ButtWeldingTee,Location10)3-9A.5References39A-13.9A-23'A-3PressureVesselandPiping1972ComputerProgramsVerification,theAmericanSocietyofMechanicalEngineers.VerificationReportonME101,LinearElasticAnalysisofPipingSystems,Revision1,February,1977,BechtelPowerCorporation.VerificationReportonME632,SeismicAnalysisofPipingSystems,October1977,BechtelPowerCorporation.39A-4Tung,T.K.andChemC.Y.,>>DELTAT,aQuasi-Two-DimensionalProgramforPipeThermalTransients,"ASMEPVP-36,June1979.3.9A-5McNeil,D.R.andBrock,J.E.,"ChartsforTransientTemperaturesinPipes,<<Heating/Piping/AirConditioning,Nov1979'p.107-1193.9A-639A-739A-8Carslaw,8S.andJaeger,JC.,"Conduction.ofHeatinSolids,<OxfordUniversityPress,1959,pp.392-394.ME643ThermalandStressAnalysesProgramStressGroup,LosAngelesPowerDivision,October1977,BechtelPowerCorporation."SampleAnalysisofaClassIPipingSystem",preparedbytheMorkingGrouponPiping(SGD,ScIII)oftheASMEBoilerandPressureVesselCode,December1971.39A-9ASMEBoilerandPressureVesselCode,SectionIII,NuclearPowerPlantComponents,1974Edition.39A-1039A-113~9A-12ME913VerificationbyBechtelPowerCorporation,February1975.Milson,E.andNickell,S.R.,"ApplicationfortheFiniteElementMethodtoHeatConductionAnalysis,"NuclearEngineeringandDesign4,1966Wilson,E.~"StructuralAnalysisofAxisymmetricSolids>>,AIAAJournal,Vol.3,No.112,December1965.3.9A-6 SSES-PSAR3.9A-l3Schneider,P.J.,"TemperatureResponseCharts,>>JohnMileyandSons,Inc.,1963.REV.ll,7/7939A-7 0 SSES-PSAR3.12SEPARATIONCRITERIAFORSAFETY2+1%2--BXRKÃ<-IONThissectiondescribestheseparationcriteriausedforAuriliarySupportSystemtosafety-relatedsystemsthatareidentifiedinChapter7T'esectionaddressesseparationforbothmechanicalandelectricalequipment.FordiscussionofNSSSscope,seeSection7.1.-=SoS/i.HSTheAuxiliarySupportSystemstowhichtheseparationcriteriadescribedinthissectionappliesareidentifiedinTable3.12-2.mechanicaldescriptionsofthesystemsaregiveninChapter6,and9whileactuationsystemsandelectricalsystem'saredescribedindetailinChapters7and8respectively.~1-g;2-~~1."rites-ia-3~QQ~g~-1-GnepalCgitariaRedundantsystemsareseparatedfromeachothersothatsinglefailureofacomponentorchannelvillnotinterferewiththeproperoperationofitsredundant/diversecounterpart.Theaffectedmechanicalsystemsandequipmentareseparatedsothatsystemsimportanttosafetyareprotectedfromthefollowinqhazards:a)ThepipebreakdynamiceffectsoutlinedinSection36b)EnvironmentaleffectsasaresultofpipebreaksandasoutlinedinSection3.11c)FloodinqeffectsasaresultofpipebreaksandasoutlinedinSection3.4d)MissilesasdefinedinSection3.5e)Firescapableofdamaqinqredundantmechanicalsafetyequipment.REV17,9/803.12-1 SSES-FSARTheneedforandadequacyofseparationtoprotectthesafetyequipmentfromtheabovehazardsaredeterminedinconjunctionwiththecriteriaspecifiedinSections3.4,35,3.6,3.11,and95.P~4);)~1~~$~femSepagatjonCgitegiaPipingforaredundantsafetysystemisrunindependentlyof'itscounterparts,unlessitcanbeshownthatnosinglecredibleevent,eqLOCA,iscapableofcausinqpipingfailurethatco'uldpreventreactorshutdown.Supportsandrestraintsofredundantmechanicalcomponentsandpipinqarenotshared,unlesssuchsharingdoesnotsiqnificantlyimpairtheirabilitytoperformtheirsafetyfunction.Penetrationstotheprimarycontainmentareseparatedorotheradequateprovisionsaremadesothattheinitialbreakofonepiping,branchofasystemdoesnotrenderitsredundantcounterpart(s)inoperable..Hechanicalequipmentandpipingareseparatedfromeachothersothatsinqlefailureofadeviceorcomponentwillnotinterferewiththeproperoperationofitsredundantcounterpart.+1)-g~.-SepK44koRXachlljguesThemethodsusedtoprotectredundantAuxiliarySupportSystemsfromtheabovehazards(Subsection3.12.2.1.1)fallintofourcategoriesofseparationtechniques:plantarrangement,barriers,spatialseparation,andalternatives.a)~~ggrgggement-Abasicdesignconsiderationofplantlayoutisthatredundantdivisionsofasafetysystemshouldnotsharecommonequipmentareas.However,equipmentcommontoaparticularsafetysystemdivisioncanshareacommonareajf-thatequipment.-doesnotconstituteahazardwithinitselftoanothersafetysystemofthesamedl.YI.Sl.onaREV.17,9/803.12-2 SSES-PSARFailureofanynonsafetyrelatedstructuresystemorcomponentshallnotresultinfailureofanysafetyrelatedstructures,system,orcomponent.ToaccomplishAuxiliarySupportSystemsseparationsthroughplantarrangement,redundantdivisionofasafetysystemmaybeplacedindifferentcompartme'ntsorevenondifferentelevations.Nonsafetyequipment,components,.orpipingshouldnotberunabovesafety,equipmentunlesstheyareadequatelyrestrainedoritcanbedemonstratedthatfailurewillnotimpairfunctionofthesafetyequipment.b)Barriersaremostoftenusedinrestrictedareaswhereaparticularhazard(eg,smallturbinemissiles)ismoreeasilyidentifiedorwhereothertechniquesareinappropriate(eg,separationbetweencontrolboards).Separationbybarriersisanextensionofseparationbytheuseofcompartmentsinplantarrangement.Separationwasalsoaccomplishedthroughtheuseofsuitablydesiqnedequipmentthatinitselfactsasabarrier.Exampleswouldbeheavilyconstructed.control,boardsorheavywallconduitsandenclosedcabletrays.Inmanycases,thebarriermayenclosethehazard{eg,acompartmentaroundahighspeedturbinedrivenpump)inlieuofeffecting.'adirectseparationbetweenredundantsystems.c)Lg~eMXR<kon-SpatialseparationisanothermethodofseparatingredundantsafetysystemsandprotectingthemfromthehazardsdescribedinSubsection3.12.2.1.1.Zorexample,inareaswhereabarrierwouldbeimpractical,pipinghasbeenreroutedsothatgetimpingementresultinqfromabreakwouldbedissipatedbythe'istancetraveled.Znthisexample,partialbarriersorrestraintscouldalsobeused,aswellasbyhardeninqdesign(eg,heavierhousingconstruction)ofsystemcomponentswithinthehazardarea.Whenitcanbeshownthatahazardwouldhaveonlyacertainsphereofeffectiveness(eg,forpipewhip,arotationaboutaplastichingeatthenextrestraint),spatialseparationwasconsideredadequate.REVl79'/80312-3 SSES-PSABWhenoneoftheabovetechniquesisimpractical,asuitablealternativewasu'sed,someofwhichareadditionalrestraints,hardeningdesign,ortemporarysystemisolationunderaccidentconditions.Whentheredundantsafetycomponentcannotbeheldsafefromcommonhazardsbythealternativesoutlinedabove,moreresistantcomponentswereselected.Anexamplewouldbetheuseofhighpressurepipinginalowpressuresafetysystemtoensureitsabilitytowithstandtheeffectofabreakinadjacenthighpressurelines.QffectedSystemsTheelectricalportionsofthefollowingsystemsaredesignedtothecriteriaofSubsection3.12.3.2.a)Standbydieselgeneratorandauxiliariesb)Class1E4160Vswitchgearc)Class1E480Vloadcentersd)Class1E480YNCCse)Class1E120Vaccontrolandinstrumentsupplysystemf)Class1E125Vdcsupplysystemg)Class1E250Vdcsupplysystemh).480Vswingbusandassociated.motorgeneratorsetEguipmentcoveredbythereguirementsofthissectionincludesinstrumentchannels,tripsystems,andtripactuators.1-g.~-Genial.CriteriaTheresultinqinstallationssatisfythecriteriaofIEEE279-1971,10CFR50AppendixA,GeneralDesiqnCriteria3,17,and21,asfurtherclarifiedandlimitedbelow.BEV17,9/803.12-4 SSES-PSARTheaffectedelectricalsystemsandeguipmentareseparatedthatsystemsimportanttosafetyareprotectedfromthefollowinghazards:a)Firesincableracewaysduetoanelectricalfault'hatcould.causefailureofinsulationonothercables.b)Mechanicaldamageofelectricalequipmentinasingle'ocation.c)SingleDesignBaseEvent(DBE)shouldnotdisableessentialautomaticormanualprotectivefunction,ie,reactorscramprimarycontainmentisolation,corecooling,etc.Qgygg.f-ig~t'mIdentificationanddivision/channelsconformtothefollowing:a)Panelsandracks,notpartofthePGCC,arelabeledwithdistinctivemarkerplates.Themarkerplatesincludeidentificationoftheproperdivision/channel~aslistedinTable3.12-1.b)~Junctionand/orpullboxes,notpartofthePGCC,haveidentificationsimilartoandcompatiblewiththepanelsandracksconsideredabove.c)Cablesexternaltocabinetsand/orpanels,notpartofthePGCC,aremarkedtodistinguishthemincolorfromothercablesandtoidentifytheirseparationdivision/channelasapplicable.d)Raceways,notpartofthePGCC,identifiedasdescribedIinSubsection3.12.3.4..2.1b.e)ForPGCCpanelsandracksrefertoSection7.1.f)ForcablesexternaltopanelsandracksbutwithinthePGCC,refertoSection7.l.Q+g~$+Q~g~ia-SQBK9fioQCalifequiaSeeSection7.1.RBV17i9/80312-5 SSES-FSARXRjchl$e2Mg~ongk;iteKga~QQ4'-+~egg.pep~atj~oCgjtegj,y,geee'Q~~g~~gf.ioa-IIO$~,,',Theseparation'-ofcircuitsandequipmentisachievedbysafetyclassstructures,distance,orbarriers,oranycombinationthereof.separate~amWQCQ~CX~i~aXecja~iaLSXstem~.Class1Ecircuitsareroutedand/orprotectedsuchthatofrelatedmechanicalequipmentofoneredundantsystemdisableClass1Ecircuitsorequipmentessentialtotheoftheotherredundantsystem(s).failurecannotoperationSeeSubsection8.1.6.1..Q4~S~gjQ,gSgpkgati,onC~fepia~3-1Q~Q~~+~Q~y4],gy-~ndracewaysa)Geoega-1Theminimumseparationdistancesspecifiedinparagraphsd)ande)arebasedonopenventilatedtrays.Wherethesedistancesareusedtoprovideadequatephysicalseparation:1)Cablesplicesinracewaysareprohibited2)Cablesandracevaysinvolvedareflameretardant3)Thedesignbasisisthatthecabletraysvillnotbefilledabovethesiderails4)-'azardswillbelimitedtofailuresorfaultsinternaltotheelectricequipmentorcables.b).J~j,Qggfj,ops-Hoj-pGCCCableag~dace~aysExposedClass1Eracewaysareidentifiedinadistinctandpermanentmanneratintervalsnottoexceed15ft.Znaddition,theseracevaysarealsoidentifiedwheretheypassthrouqhvallsand/orfloors,andenclosedREV17,9/803.12-6 SSES-PSARareas.Class1Eracewaysareidentifiedpriortotheinstallationoftheircables.Cablesinstalledintheseracevaysareidentifiedatintervalsnotexceeding5fttofacilitateinitialverificationthattheinstallationconformstotheseparationcriteria.Thesecableidentifications'areappliedpriortoorduringtheirinstallation.Class1Ecablesareidentifiedbyapermanentmarkerateachendinaccordanceviththedesigndrawingsorcableschedule.ColorcodinqisusedtomeettheaboverequirementsandtodistinquishbetveenredundantClass1Ecablesandnon-Class1Ecables.c)RefertoSubsection7.l.2a.3~2.d)CableSpreadingAreas/ControlStructurego~my-xThecontrolstructurecomplexconsistsoftvoelevationsofrelayrooms,twocablespreadingareas,andthemaincontrolroom.Belowthemaincontrolroomisthelovercablespreadingroom,vhichfacilitatescableconvergencefromthecomputerroomendtheloverrelayrooms(whichar'ebelowthelovercablespreadingroom)totheqeneralplantareas,andtothecableentranceareasat'hebottomofthecontrolroompanels.Thelowerrelayroomsconsistmainlyofcontrolandinstrumentpanelsofnon-ClasslEsystemsandonedivision(i.e.,DIvisionII)ofredundantsystemsaslistedinSubsection3.12.3.l.Themaincontrolroompanelsaremountedonaraisedfloorassemblywithcabletraysandvirevayguttersthatenterthebottomofthemaincontrolroompanels.Abovethemaincontrolroomaretheupperrelayroomsandtheuppercablespreadingarea.Theuppercablespreadingareafacilitiescableconvergencefromtheupperrelayroomtothegeneralplantareas,tothetopofthemaincontrolroompanelsandtothecontrolroomraisedfloor.Theupperrelayroomconsistsmainlyofcontrolandintrumentpanelsofnon-class1Esystemsandtheotherdivision(ieDivisionI)oftheredundantsystemslistedinSubsection3.12.3.1.Therelayroompanelsandcabinetsareintegratedwithamoduletypefloorassemblywithlateralandlongitudinalductsthatactas'racewaysandbarriers.ThecablinginterfacebetweenthePGCCandthespreadingareaismadeat8EV17i9/80312-7 SSES-FSARterminationcubicle"ontheperipheryoftherelayroomfloorassemblies.Therelayroomsandspreadingroomareasdonotcontainhighenergyequipment(suchasswitchgear,transformers)orpotentialsourcesofmissilesopipewhipandarenotused-forstorinqflammablematerials.Circuitsintherelayroomandmaincon+rolroomarelimitedtocontrolfunctions,instrumentfunc"ions,and.thosepowersupplycircuitsandfacilitiesservingthemaincontrolroomandinstrumentsystems.dhereforoperationalreasonsredundantchannel/divisionClas1Ecablesarenotseparatedbydifferentsafetyclassstructures(eg,tworelayroomsandspreadinqareas),theminimumseparationdistancebetweentheredundantClass1Ecabletraysis1fthorizontallyand3ftver+ically.Where1fthorizontalseparationisnotoossible,oneofthetwofollowing~requirementaremet:afirebarrierisplacedbetweentheredundantcabletrays1ftabovethetraysortotheceilinq;orcablesofeachchannel/divisionareinstalledinrigidsteelconduituptoapointwhere+he1ftspacingrequirementismetWherecablesofredundantchannel/divisionsmustbestackedoneabovetheotherwithlessthan3ftverticalspacinq,oneothefollowinqr'equirementsaremet:a)afirebarrierisplacedbetweenthe+raysandextendedto6in.of'eachsideofthetraysystemortothewall,orb)asolidsteeltraycoverisinstalledonthelowercabletrayandtheuppertrayhasasolidbottomuptoapointwhere3ftverticalseparationismet;orc)thecablesofeachredundantchannel/divisionareinstalledinrigidsteelconduittoapointwherethe3ftverticalseparationexists.SeparationrequirementsbetwoenClass1Eandnon-Class1Ecircuitsarethearneasseparationofredundantchannel/division.eGeneralPlantArea.)Inplantareasfromwhichpotentialhazardssuchasmissiles,externalfires,andpipewhipareexcluded,theminimumseparationdistancebetweenredundantClass1Ecabletraysis3ftbetweentraysseparatedhorizontallyifnophysicalbarrierexistsbetweentrays.Xfahorizontalseparationoflessthan3ftexists,alternatemethodsasstatedinparaqraphd)abovearerequired.Verticalstackingoftraysisavoidedwhereverpossible;however,wherecabletraysREV.17,9/803.12-8 SSES-FSARofredundantchannel/divisionsarestacked,aminimumverticalseparationdistanceof5ftisrequired,oralternatemethodsasstatedinparagraphd)abovearerequired.Whereacross-overofonetrayoveranothercarryingredundantchannel/divisionismade,andminimumverticalseparationdistancecannotbemaintained;a)asolidcoverisinstalledonthelowertraytoextend1ft0in.minimumeithersideofuppertray,b)firebarriersareinstalledminimum1in.fromuppertrayandextend1ft0in.minimumbeyondthecrossingtray.SeparationrequirementsbetweenClass1Eandnon-Class1Ecircuitsarethesameasseparationofredundantchannel/division.f)PowerGenerationControlComlex-PGCCRefertoSubsection7.1.2a.3.3.6.g)Anexceptiontotheabovesubsectionsd)ande)isthe450MHZradioantennacablenetwork.The450MHZradioantennaistheplantsecuritycommunicationradiosystem(non-ClasslE).Thissystemutilizesanantennacablenetworkconsistingofinstalledexposed(notenclosedinraceway)onthecablerace~aysupportsthroughouttheplant.Thejacketingmaterialoftheantennacableismadeof*flameretardantRULAN.ThecablehasbeentestedandpassedIEEE383andASTMProc.D2633part30.Separationbetweenthe450MHZradioantennacableandthosesafe-shutdownClasslEracewayslistedinAppendixAoftheSusquehannaSESFireProtectionReviewReportisprovidedinaccordancewithRegulatoryGuide1.75.Separationbetweenthisantennacableandotherclass1Eracewaysisnotrequiredbecause:231)Theantennacableisalow'energycircuit.Ashortcircuitoftheantennacablewouldnotproduceenoughenergytocausedegradationofanyothercircuits.\2)Theantennacableisnotroutedwithanyothercables.3)Theantennacablejacketismadeofflameretardantmaterial.Rev.23,6/813.12-9 SSES-FSAR4)Theantennacabledoesnotterminateincloseproximityorroutedthroughanyequipmentwithvoltagelevelhigherthan120VAC.5)Themaximumradiofrequency(rf)poweroutputleveloftheantennacableis37.5watts.Rev.23,6/813.12-9a SSES-FSAR(Thispageintentionallyleftblank)Rev.23,6/813.12-9b~f SSES-PSARQ-~-1)~+~4~2-2-gfargbg(~oweSupply.RedundantClass1Estandbygeneratingunitsarelocatedinseparatesafetyclassstructuresandhaveindependentairandfuelsupplies.Theauxiliariesandlocalcontrolsforredundantstandbyqeneratinqunitsareinthesamesafetyclassstructureastheunittheyserve,exceptforthefueloiltransferpumpsthatarelocatedinseparatesafetyclassstructuresatthefueloilstoragetanks(SeeSubsection9.5.4).3~/A3~4-2-.3--QC-Systema)~BtteritsRedundantClass.1Ebatteriesareplacedinseparatesafetyclassstructures.ThestructuresareservedbyredundantventilationequipmentBatterycharqersforredundantClass1Ebatteriesareplacedinseparatesafetyclassstructureswiththeirrespectiveswitchqears.3~$2.~/~4~.2-4~j,et.giQutj~oSygtyma)SwifchgearRedundantClass1Edistributionswitchgeargroupsareplacedinseparatesafetyclassstructures.b)go~to--Co~tgo],CentypesRedundantClass1EmotorcontrolcentersarephysicallyseparatedinaccordancewiththerequirementsofSubsection3.12.3.4.1.REV17,9'/80312-10 SSES-FSARlistedinSubsection3.12.3.1.ThemaincontrolroompanelsaremountedonaraisedfloorassemblywithcabletraysandwirewayguttersthatenterthebottomoftheREV.5,2/79312-10a SSES-FSARThisPageHasBeenIntentionallyLeftBlankREV.5,2/793.12-10b SSES-PSARRedundantClass1EdistributionpanelsarephysicallyseparatedinaccordancewiththerequirementsofSubsection3.12.3.4.1.RedundantClass1EprimarycontainmentelectricalpenetrationsarephysciallyseparatedinaccordancewiththerequirementsofSubsection3.12.3.4.1.TheminimumphysicalseparationforredundantpenetrationsmeetstherequirementsforcablesandracewaysqiveninSubsections3.12.3.4.2.1through3.12.3.4.2.6.APorNSSSpanelsseeSubsection7.1.2a.3.1.1.BAllnon-NSSSpanelscontainingsafety-relatedequipmentandcircuitsareprovidedasfollows:Panelsaredivisionalized,i.e,aredevotedtoonetl)divisiononly,andarephysicallyseparatedfromtheredundantdivisionspanels.2QPanelswhichcontaintheredundantcircuitsofbothdivisionsarephysicallydividedbymetalbarrierswithonlyone(1)divisiononeachsideofthebarrier.3%AllrequirementsforconnectionofcircuitsbetweenseparateddivisionsareaccomplishedwithNDHrelaystoprovidepositiveisolationofthecircuits.REV17,9/80312-11 SSES-PSARTABLE312-1PSPDIVISIONSEPARATIONPa'ge1of2DivisionIDivisionTZ.CoreSprayLoopAAutomaticDepre.surizationSystemACoreSprayLoop9AutomaticDepressurizationSystem3Residualii.atReinovalLoopAReactorCoreIolationCoolingSystenResirlualfleatRemovalLoopBHighPresureCoolantInject.ionSystemNuclearSteamSupplyShutoffSystem(InboardValves)NuclearSteamSupplyShutoffSystern(OutboardValves)Reci:culationPumpTripLoopIRecirculationPumpTcipLoop8mmerge>>cyScrviceMatt.rLoopAEmarif<?llcySecv1ceIJatecLoo0RiRServiceRatecLooAi/iiRS~cvic>>haterLoopB~.CoritainmentInstrumentGasLoopACoritainmentInstriim>>ntvasLoof>BMainSteamI=olationValveL~akagriCoritcnlSystemDlvIHaitiSteamIsolatioiiValveLeakaijeControlSystemDivZIContairime>>thtrnosph>>ricControlSyst,errrCorrtainmerrtAtmos;rfrericControlSystemBStandliyr'asTreatmentSystemTrainhStundhyGasTceatmrntSystemTrainriReactorBuildirrgHVACIsolationarr'1R..cicculationSystemAReactorBuilrfincog!IVACIsolatio>>andfrecicculationSyst~mf3DrywelliiVACSystemAControlStructureHVAr'"SystrrrnTrainACont.colStructureChillr-..iRaterSystemLoopABat.teryRoomVeiitilutioriSystemhi)cywellHVACSystemf3ControlStructureiiVACSysteinTca1rl3Cont,rolStructur>>Chilleil'.iatocSy-temLoopBiiatteryRoomVenti'tionSy'iteol0Rev.15,4/80 SSES-FSARTABLE3.12-1/Continued)DivisionIDivisionIIHVACCoolersforDivIHVACCoolersforDivXTStandbyLiquidControlSystemPumpsA<>>anilB<>>andExplosiveValvesA<>>an3B<<>Class1E250VdcSupplySystemI480VSwingBusandAssociatedMotor-GeneratorSetDivIClass1E250V.dcSupplySystemII480VSwingBusandAssociatedMotor-GeneratorSetDivIIClass1E480VacMCCsClass1E480VacMCCsClass1E120VacDistributionPanelsClass1E120VacDitributionPanelsClass1H125VlcDistributionPanelsClass1E125Vdc'istributionPanel..7UTheredundantstandbyliquidcontrolpumpandexplosivevalvesarepoweredfromdifferentelectricalbuses.I'JRev.15,4/80 0ix'z>0 SSES-FSABCHAPTEB4REACTORTABL"OFCONTENTS1SUMMARYDESCRIPTION'I4.l.1ReactorVessel4.1.2ReactorInternalComponents4.1.2.1ReactorCore4.1.2.1.1General4.1.2.1.2CoreConfiguration4.1.2.1.3FuelAssemblyDescription4.1.2.1.3.1FuelBod4.1.2.1.3.2FuelBundlePage4.1-14.1-24.1-24.1-44.1-44.1-44.1-54.1.2.14AssemblySupportandControlRodLocation4.1-54.1.2.2Shroud4.1.23ShroudHeadandSteamSeparators4.1.24SteamDryerAssembly4.1.3ReactivityControlSystems4.1.3.1Operation4.1.3.2DescriptionofRods4.1.3.3SupplementaryReactivityControl41.4AnalysisTechniques4.1.4.1ReactorInternalComponents4.1.4.11MASS{MechanicalAnalysisofSpaceStructure)4.1-64.1-64.1-74.1-74.1-74.1-84.1-941-94.1-941-10414.14114.141414.1.1.1121314ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofApplication4.1-104.1-104.1-104.1-104.1412SNAPtMULTXSHELL)4.1-11414.l.4.1.4141414.1.4.12-1222324ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofApplication4.1-114l-ll4.1-114.1-11BEV12,9/794-i SSES-FSAR4.1.4.13GASP4.1-124.1.4.1.3.1ProgramDescription4.1.4.1.3.2ProgramVersionandComputer4.1.4.1.3.3HistoryofUse4.1.4.1.3.4ExtentofApplica'tion4.l.41.4NOHEAT41-124.1-124.1-124.1-124.1-124.14.1411414.24.14.1.434.1.4.l.4.4ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofApplication41-124.1-134.1-134.1-134.1.4.1.5FZVrTE4.1.4.1.5.1ProgramDescription4.1.4.1.5.2ProgramVersionandComputer4.1.4.1.5.3HistoryofUse41.41.5.4ExtentofUsage4.1.4.16DYSEA4.1-134.1-134.1-144.1-144.1-144.1-14141.4.1.4l.41.4.1.4.14.1.6162636.4ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofApplication4.1-144.1-154.1-154.1-1543.4.17SHELL54.1-154..1.4.1.4.l.4.14.1.4l.141.7.17.27.374ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofApplication1-154.1-164.1-164.1-164l.418HEATER4.1-1641.4.14.1.4.1.4.141.4.14.1.81828384ProgramDes'criptionProgramVersionandComputerHistoryofUseExtentofApplication4.1-164.1-164.1-174.1-174.l.4.l.9FAP-71(FatigueAnalysisProgram)4.1-174.1.4.1.4.1.4l.4.1.4.1.4-1-4-1.9192939ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofUse4.1-174.1-174.1-174.1-18REV12,9/794-ii SSES-FSAR4.14110CREEP/PLAST4.1-184.1.41.4.14.1.4.1.4.1.4.1.4l.10110210.3104ProgramDescriptionProgramVersionandComputerHistoryofUseExtentofApplication.4.1-184.1-184.1-184.1-184.1.4.24.1.4.31.4441.454.1.4.6FuelRodThermalAnalysisReactorSystemsDynamicsNuclearEngineeringAnalysisNeutronFluenceCalculationsThermalHydraulicCalculations4.1-194.1-194.1-194.1-194.1-204.1.5References42.FUELSYSTEMDESTGN4.2.1GeneralandDetailedDesignBases4.2.1.1GeneralDesignBases4.2.1.2DetailedDesignBases4.2.2GeneralDesignDescription4.2.2.1CoreCell4.222FuelAssembly4.2.2.3F>>elBundle4.2.2.4ReactivityControlAssembly4.2.3DesignEvaluations4.2.3-14-2.3.24.2.3.3ResultsofFuelBodThermal-MechanicalEvaluationsResultsfromFuelDesignEvaluationsReactivityControlAssemblyEvaluation(ControlRods)4.2.4Testi.ngandInspection424.242414'Fuel,HardwareandAssemblyTestingandInspection{EnrichmentandBurnablePoisonConcentrations)4.3SurveillanceInspectionandTestingofIrradiatedFuelRods4.1-204.2-14.2-14.2-14.2-14.2-14.2-14.2-14.2-14.2-14.2-14.2-14.2-142-14.2-142-14.2-14.2-14.2.42.43NUCL4.3.1DesignBases5OperatingandDevelopmentalExperience6ReferencesEARDESIGN42-14.2-14.3-14.3-1REV12,9/794-iii SSES-FSAR4.3.1.1SafetyDesignBases4.3.1.2PlantPerformanceDesignBases4.3.2Description4.3-14.3-14.3-1432.1432.24.3.2.34.32.44.3.2.54.3.2.64.3.2.74.3"28NuclearDesignDescriptionPowerDistributionReactivityCoefficientsControlRequirementsControlRodPatternsandReactivityWorthsCriticalityofReactorDuringRefueling'tabilityVesselIrradiations4.3-14.3-14.3-14.3-l4.3-14.3-14.3-14.3-14.3.3AnalyticalMethods4.3.4Changes435'References4-4THERHALANDHYDRAULICDESIGN4.4.1DesignBasis4.3-14.3-14.3-14-14.4-14.4.1.1441244.1.34.4144.41.5SafetyDesignBasesPowerGenerationDesignBasesRequirementsforSteady-StateConditionsRequirementsforTransientConditionsSummaryofDesignBases4.4-14.4-14-.14.4-24.4-244.2DescriptionofThermal-HydraulicDesignoftheReactorCore4.4.2.1SummaryComparison4.4;22CriticalPowerRatio44-34.4-34.42.2.1BoilingCorrelations4.42.3LinearHeatGenerationHate(LHGH)44.2.3.1DesignPowerDistribution4.4.2.3.2DesignLinearHeatGenerationHates(LHGB)44-44.4-44.4-54.4-5442.4.4.24424VoidFractionDistribution5CoreCoolantFlowDistributionandOrificingPattern6CorePressureDropandHydraulicLoads4.4-54.4-64.4-744.2.4424.42.44.2.6.162636.4FrictionPressureDropLocal.PressureDropElevationPressureDropAccelerationPressureDrop4-74.4-844-94.4-9REV12,9/794-iv SSES-FSAR44.2.7CorrelationandPhysicalData4.4.2.714.42.7.24.4.2.7.3PressureDropCorrelationsVoidFractionCorrelationHeatTransferCorrelation4.4.2.8ThermalEffectsofOperationalTransients4.4.29UncertaintiesinEstimates4.4.2.10FluxTiltConsiderations4.4-104.4-104.4-104.4-114.4-114.4-114.4-114.43.1.14.3.1-24.43.13ReactorCoolantSystemConfigurationReactorCoolantSystemThermalHydraulicDataReactorCoolantSystemGeometricData4.4.3DescriptionoftheThermalandHydraulicDesignoftheReactorCoolantSystem4.4.3.1PlantConfigurationData4.4-124.4-124.4-124.4-1244-1244324.4.3.3OperatingRestrictionsonPumpsPower-FlowOperatingMap4.4-124.4-134.4.3.3.1LimitsforNormalOperation4.4.3.3.1.1PerformanceCharacteristics44344.43.544.36Temperature-PowerOperatingNap(PQR)LoadFollowingCharacteristicsThermalandHydraulicCharacteristicsSummaryTable4.4.4Evaluation4.4.3.3.2RegionsofthePowerFlowNap4.4-134.4-134.4-144.4-144.4-144.4-164.4-174.4-4.144.42443444445CriticalPowerCoreHydraulicsInfluenceofPowerDistributionsCoreThermalResponseAnalytical(methods4.4-174-174.4-174.4-1744-174.4.4.5.1ReactorModel4.4.4.5.2SystemFlowBalances4.4.4.5.3SystemHeatBalances4.4.4.6Thermal-HydraulicStabilityAnalysis4.4-1844-1944-2044-2144464.44.6.444.64.44.61Introduction2Description3StabilityCriteria4MathematicalHodel4.4-214.4-214.4-224.4-23REV12,9/794-v SSES-FSAR4.4.4.6.5AnalyticalConfirmation4.4.4.6.6AnalysisResults4.5TestingandVerification44.6InstrumentationRequirements4.4.6.1LoosePartsMonitoring4.4.7.References45REACTORMATERIALS4.5.1ControlRodSystemStructura1Materials4.4-244.4-244.4-2644-274.4-274.4-274.5-14.5-14.5.1.145124.5.1.34.5.1.44.5.1.5MaterialSpecificationsSpecialMaterialsProcesses,InspectionsandTestsControlofDeltaFerriteContentProtectionofMaterialsDu"ingFabrication,ShippinqandStorage445-15-25-35-45-44.5.2ReactorInternalMaterials4.5-5452.14.5224.5.2.34.5.2.44525MaterialSpecifications4ControlsonMelding4.NondestructiveExaminationofinwrought4.SeamlessTubularProductsFabricationandProcessingofAustenitic4.StainlessSteel-RegulatoryGuideConformanceContamination,Protection,andCleaningof4.AusteniticStainlessSteel5-55-75-74.5.3ControlRodDriveHousingSupports46FUNCTIONALDESIGNOFREACTIVITYCONTROLSYSTEMS4.6.1InformationforCRDS4.5-94.6-14.6-14.6.1.1ControlRodDriveSystemDesign4.6.l.1.1DesignBases4.6.1.1.1.1GeneralDesignBases4.6.l.l.l.l.lSafetyDesignBases4.6.1.1.1.1.2PowerGenerationDesignBasis4.61.1.2Description4.6.1.1.2.1ControlRodDriveMechanisms4.6.1.1.2.2DriveComponents4.6-14.6-14.6-14.6-14.6-24.6-24.6-24.6-3REV12,9/79vi SSES-FSAR4611.2214.6.1.1.22.24.61122.34.6.1.12-2.446112254.6.l-l22.6611227DrivePiston'ndexTubeColletAssemblyPistonTubeStopPistonFlangeandCylinderAssemblyLockPlug4.6-34.6-44.6-44.6-54.6-54.6-64.6-64.6.j.1.2.3MaterialsofConstruction4.6-74.61.1.2314.611232461123.3461.12344.6l-l-2.35IndexTubeCouplingSpudColletFingersSealsandBushingsSummary4.6-74.6-74.6-74.6-84.6-84.61124461.1.241461-1.2-4-2ControlRodDriveHydraulicSystem'llHydraulicRequirementsSystemDescription46-946-94.6-104.6.1-1.2-4.21461124226.1.1.2.4.2.34.6'1.24.2.44.6.1.1.2.42.5hSupplyPumpAccumulatorChargingPressureDriveWaterPressureCoolingWaterHeaderScramDischargeVolume4.6-1046-104.6-114.6-114.6-124.6.1.1.2.43HydraulicControlUnits4.6-13461.14.6-1.1-46114.6.1.1.4611461.1.46.1.1.4.6114.6.1.1.2.4.3.1243224.3324342435243624372.4.3824.39InsertDriveValveInsert,ExhaustValveWithdrawDriveValveWithdrawExhaust.ValvoSpeedControlUnitsScramPilotValvesScramInletValveScramExhaustValveScramAccumulator4.6-134.6-134.6-1346-144.6-144.6-14Q.6-144.6-154.6-154.6.1.1.2.5ControlRodDriveSystemOperation4.6.1.1.2.5.1RodInsertion4.6.1.1.2.5.2RodWithdrawal4.6.1.1.2.5.3Scram4.6.1.1.26Instrumentation4.6.12ControlRodDriveHousingSupports4.6.121SafetyObjective4.6.1.22SafetyDesignBases4.6.1.23Description4.6-154.6-154.6-164.6-164.6-1846-1846-184.6-18'4.6-18REV12,9/794-vii SSES-FSAR4.6.2EvaluationsoftheCRDS4.6-204.6.2.1FailureNodeandEffectsAnalysis4.6.2.2ProtectionfromCommonNodeFailures4.6.2.3SafetyEvaluation4.6.2.3.1ControlRods4.6-204.6-204.6-206-20,4.6.23.1-14.6.2.3.1.24.6.2.3.134.62.3.1.44.62.3.154.62.31-64.6.23.174.6.2.3.184.6.23.1.9.NaterialsAdequacyThroughoutDesign.LifetimeDimensionalandToleranceAnalysisThermalAnalysisoftheTendencytoMarpForcesforExpulsion,FunctionalFailureofCriticalComponentsPrecludingExcessiveBatesofReactivityAdditionEffectofFuelRodFailureonControlRodChannelClearancesNechanicalDamageEvaluationo.fControlRodVelocityLimiter.6-2046-214.6-21.4.6-214.6-214.6-214.6-224.6-224.6-224.6.2.3.2ControlRodDrives4.6.2.32.1EvaluationofScramTime4.6.23.2.2AnalysisofNalfunctionRelatinqtoRodWithdrawal46-234.6-234.6-23~4.62.322.146.2322.2DriveHousingFailsatAttachmentWeldRuptureofHydraulicLinejs)toDriveHousingFlange4.6-234.6-244.6.2.3.2.2.2.1Pressure-underLineBreak4.6.2.3.22.22Pressure-overLineBreak4.6-244.6-2546.2.32234.623.2.242.3.2.2.52.32.262.3.2.2.723.2.2.84.6.46.4.6.46.4.6.2.3.22.946.23.22104."6.2.32.2.11AllDriveFlangeBoltsFailinTensionWeldJoiningFlangetoHousingFailsinTensionHousingMallRupturesFlangePlugBlowsOutBallCheckValvePlugBlowsOutDrivePressureControlValveClosure(ReactorPressure,0psig)BallCheckValveFailstoClosePassagetoVesselPortsHydraulicControlUnitValveFailuresColletFingersFailtoLatch4.6-264.6-274.6-284.6-294.6-3046-304.6-314.6-314.6-31REV12,9/79 SSES-FSAR4.6.2.3.2.2.12WithdrawalSpeedControlValveFailure4.6.2.3.2.3ScramReliability4.6.2.3.2.4ControlRodSupportandOperation4.6.2.3.3ControlRodDriveHousingSupports6.3TestingandVerificationoftheCRDs4.6.3.1ControlRodDrives4.6.3.1.1TestingandInspection4.6-324.6-324.6-33'.6-334.6-344.6-344.6-344.6.3.1.114-6.3l.1.24-6.311.3463.1146.31.1546.3116DevelopmentTestsFactoryQualityControlTestsOperationalTestsAcceptanceTestsSurveillanceTestsFunctionalTests4.6-344.6-344.6-354.6-364.6-364.6-384.6.3.2ControlRodDriveHousingSupports4.6.3.2.1TestingandInspection4.6.4InformationforCombinedPerformanceofReactivitySystems4.6.4.1VulnerabilitytoCommonNodeFailures4.6.4.2AccidentsTakingCreditforNultipie'eactivitySystems4.6-384.6-384..6-394.6-394.6-396546.6EvaluationofCombinedPerformanceReferences4.6-394.6-39REV12,9/794-ix SSES-FSARCHAPTERTABLESTableNumberTitle3-143-53-64-1ReactorCoreDimensionsCalculatedNeutronFluxes(UsedtoEvaluateVesselIrradiation)CalculatedNeutronFluxatCoreEquivalentBoundaryThermalandHydraulicDesignCharacteristicsoftheReactorCore44-la4.4-244-2A4-344-444-4a44-5AxialPowerDistributionUsedtoCalculateNCPROperatingLimitVoidDzstrioutxonAxialPowerDistributionUsedtoGenerateVoidandQualityDistributionsFlowQualityDistributionCoreFlowDistributionCalculatedvsMeasuredCorePlatePressureDropsTypicalRangeofTestData44-644-744-844-9DescriptionofUncertainties(BMR/4andBRR/5)Bypass'lowPathsPlantConfigurationDataLengthsofSafetyInjectionLinesNOTE:AdditionaltablesarepresentedinNEDE20944/20944-PREV12,9/794-x SSZS-FSAR1446FUPCTZONaj'.DESrGNOFREaCrrVXTTCONraOS.SVSXEgSII*P~t"Functionaldesignofthecontrolroddrivesystem(CRD)isdiscussedbelow.Functionaldesignsoftherecirculationflowcontrolsystemandstandby-lijuid'controlsgsteiaredescribedinsubsections5.4.1and9.3.5,respectively.<46.1XnformationforCRDS4.6.11ControlRodDrive~SstemDes~cCnea"r~4'4'I4.6.$11D~esinBases4-61-1-1.1GeneralDesignBases46~1.l.l.l.lSafetDesinBasesI'hecontrolroddrivemechanical.systemshallmeet,thefollowing,safetydesignbases:((1)Designshallprovideforasufficiently.rapidcontrol,'odinsertionthatnofueldamage'results.'fromany,,I'II'bnormaloperatingtransient.<I1(2)Designshallin'.udepositioningdevices,eachof,whichindividuallysuj'ports.','andpositionse,control.'~rod'.t<>'~t"""',(3)Eachpositioningdeviceshall:a.Preventitscontrolrodfrominitiatingwithdrawalasaresultofasinglemalfunction.bCeBeindividuallyoperatedso,thatafailureinonepositioningdevic'edoesnotaffecttheoperationofany.otherpositioningdevice.Beindividuallyenergizedwhenrapidcontrolrodinsertion'{scram)'ssignaled'sothatXailureofpowersourcesexternaltothepositioningdevicedoesnotpreventotherpositioningdevices'ontrolrodsfromheinginserted.Rev.19,1/8146-1 SSZS-PSARThecontrolrodsystemdrivedesignshallprovideforpositioningthecontrolrodstocontrolpowergenerationinthecore461.12DescriptionThecontrolroddrivesystem(CRD)controlsgrosschangesincorereactivitybyincrementallypositioningneutronabsorbingcontrolrodswithinthereactorcoreinresponsetomanualcontrolsignals.Xtisalsorequiredtoquicklyshutdownthereactor(scram)inemergencysituationsbyrapidlyinsertingwithdrawncontrolrodsintothecoreinresponsetoamanualorautomaticsignal.Thecontrolroddrivesystemconsistsoflockinqpistoncontrolroddrivemechanisms,andtheCRDhydraulicsystem(includinq'powersupplyandregulation,"hydrauliccontrolunits,interconnectingpiping,instrumentationandelectricalcontrols).461l.g1ControlRodDriveMechanismsTheCRDmechanism(drive)used.forpositioningthecontrolrodinthereactorcoreisadouble-acting,mechanically'atched,hydrauliccylinderusinqwaterasitsoperatingfluid.(SeeFigure4.6-1,4.6-2,4.6-3,'and4.6-4)Theindividualdrivesaremountedonthebottomheadof'thereactor'ressurevessel.Thedrivesdon'ot'interferewithrefuelingandareoperativeevenwhentheheadisremoved'fromthereactor"vessel..The,drivesarealsoreadilyaccessibleforinspectionand""".-',servi'ciInq.Thebotto'm'lo'cationmakesmaximumutilizationofthewaterinthereactorasaneutronshieldandgivestheleastpossibleneutronexposuretothedrivecomponents.Usingwaterfromthecondensatesystemastheoperatingfluideliminatestheneedforspecialhydraulicfluid.Drivesareabletoutilizesimplepistonsealswhoseleakagedoesnotcontaminatethereactorwaterbutprovidescoolinqforthedrivemechanismsandtheirseals.Thedrivesarecapableofinsertingorwithdrawingacontrolrodataslow,controlledrate,aswellasprovidingrapidinsertionwhenrequired.Amechanismonthedrivelocksthecontrolrodat6-inchincrementsofstrokeoverthelengthofthecore.Acouplinqspudatthetopendofthedriveindextube(pistonrod)engagesandlocksintoamatingsocketatthebaseofthecontrolrod.Theweightofthecontrolrodissufficientto46-2 SSES-FSARengageandlockthiscoupling.Oncelocked,thedriveandrodformaninteqralunitthatmustbemanuallyunlockedbyspecificproceduresbeforethecomponentscanbeseparated.Thedriveholdsitscontrolrodindistinctlatchpositionsuntilthehydraulicsystemactuatesmovementtoanewposition.Withdrawalofeachrodislimitedbytheseatingoftherodinitsguidetube.Withdrawalbeyondthispositiontotheover-travellimitcanbeaccomplishedonlyiftherodanddriveareuncoupled.Mithdrawaltotheover-travellimitisannunciatedbyanalarm.TheindiviDualrodindicators,groupedinonecontrolpaneldisplay,correspondtorelativerodlocationsinthecore.Aseparate,smallerhardwireddisplayislocatedonthestandbyinformationpanel.ACRTpresentationisavailableontheunitoperatingbenchboard.Thislatterdisplay'resentsthepositionofthecontrolrodselectedformovementaswellastheotherrodsintheaffectedrodqroup.Fordisplaypurposesthecontrolrodsareconsideredingroupsoffouradjacentrodscenteredaroundacommoncorevolume.EachqroupismonitoredbyfourLPRNstrings{seeSubsection7.6.1.5).Rodgroupsattheperipheryofthecoremayhavelessthanfourrods.Thesmallroddisplayshowsthepositions,indigitalform,oftherodsinthegrouptowhichtheselectedrodbelongs.Awhitelightindicateswhichofthefourrodsistheoneselectedformovement4.6.1.1.2.2DriveComponentsFigure4.6-2=illustratestheoperatingprincipleofadrive.Fiqures4.6-3and4.6-4illustratethedriveinmoredetail.Themaincomponentsofthedriveandth'eirfunctionsaredescribedbelow.4611.221DrivePistonThedrivepistonismountedatthelowerendoftheindextube.Thistubefunctionsasapistonrod.Thedrivepistonandindextubemakeupthemainmovinqassemblyinthedrive.Thedrivepistonoperatesbetweenpositiveendstops,withahydrauliccushionprovidedattheupperendonly.Thepistonhasbothinsideandoutsidesealrinqsandoperatesinanannularspacebetweenaninnercylinder(fixedpistontube)andanoutercylinder(drivecylinder).Becausethetypeofinnersealusediseffectiveinonlyonedirection,thelowersetsofsealringsaremountedwithonesetsealingineachdirection.46-3 SSES-PSARApairofnonmetallicbushingspreventsmetal-to-metalcontactbetweenthepistonassemblyandtheinnercylindersurfaceTheouterpistonrinqsaresegmentedstep-cutsealswithexpanderspringsholdinqtheseqmentsagainstthecylinderwall.Apairofsplitbushinqsontheoutsideofthepistonpreventspistoncontactwiththecylinderwall.Theeffectivepistonareafordowntravel,orwithdrawal,isapproximately1.2sg.in.versus4.1sq.in.foruptravel,orinsertion.Thisdifferenceindrivinqareatendstobalancethecontrolrodweightandassuresahigherforceforinsertiont'hanforwithdrawal4.6.1.12.22IndexTubeTheindextubeisalonghollowshaftmadeofnitridedstainlesssteel.Circumferentiallockinggrooves,spacedevery6inchesalongtheoutersurface,transmittheweightofthecontrolrodtothecolletassembly.4611.223ColletAssemblyThecolletassemblyservesastheindextubelockingmechanism.Itislocatedintheupperpartofthedriveunit.Thisassemblypreventstheindextubefromaccidentallymovingdownward.Theassemblyconsistsofthecolletfingers,areturn-spring,aguidecap,acollethousing(partofthecylinder,tube,andflange),'ndthecolletpiston.Lockinqisaccomplishedbyfingersmountedonthecolletpistonatthetopofthedrivecylinder.Inthelockedorlatchedpositionthefingersengagealockinggrooveintheindextube.Thecolletpistonisnormallyheldinthelatchedpositionbyaforceofapproximately150lbsuppliedbyaspring.Metalpistonringsareusedtosealthecolletpistonfromreactorvesselpressure.Thecolletassemblywillnotunlatchuntilthecolletfingersareunloadedbyashort,automaticallysequenced,drive-insignalApressure,approximately180psiabovereactorvesselpressure,mustthenbeappliedtothecolletpistontoovercomespringforce,slidethecolletupagainsttheconicalsurfaceintheguidecap,andspreadthefingersoutsotheydonotenqaqealockinqgroove.Aguidecapisfixedintheupperendofthedriveassembly.Thismember.providestheunlockinqcamsurfaceforthecolletfingersandservesastheupperbushingfortheindextube.Ifreactorwaterisusedduringascramtosupplementaccumulatorpressure,itisdrawnthroughafilterontheguidecap.4.6-4 SSES-.PSAR4.6~1~1.2.2.4PistonTubeThepistontubeisaninnercylinder,orcolumn,extendingupwardinsidethedrivepistonandindextube.Thepistontubeisfixedtothebottomflangeofthedriveandremainsstationary;Materisbrouqhttotheuppersideofthe.drivepistonthroughthistube.Abuffershaft,attheupperendofthepistontube,supportsthestoppistonandbuffercomponents.4,6,1,1.2.2.5StopPistonfAstationarypiston,calledthestoppiston,ismountedontheupperendofthepistontube.Thispistonprovidesthesealbetweenreactorvesselpressureandthespaceabovethedrivepiston.j:talsofunctionsasapositiveendstopattheupperlimitofcontrolrodtravel.Pistonringsandbushings,similartothoseusedonthedrivepiston,aremountedonthe'upperportionofthestoppiston.Thelowerportionofthestoppistonformsathinwalledcylindercontainingthebufferpiston,itsmetalsealring,andthebufferpistonreturnspring.Asthedrivepistonreachestheupperendofthescramstrokeitstrikethebufferpiston.Aseriesoforificesint.hebuffershaftprovidesaproqressivewatershutofftocushionthe,bufferpistonasitisdriventoitslimitoftravel.Thehighpressuresgeneratedinthebufferareconfinedtothecylinderportionofthestoppiston,andarenotappliedtothe'stopssteeltube.Theswitchesareactuatedbyaringmagnetlocatedatthebottomofthedrivepiston.Thepriv~piston,pistontube.andindicatortubeareallofnonmaqneticstainlesssteel,allowinqtheindividualswitchestobeoperatedbythemaqnetasthe,pistonpasses.Oneswitchislocatedat.eachpositioncorrespondinqtoanindextubegrooveandoneswitchislocatedatthemidpointbetweeneachlatchingpoint.Thus,indicationisprovidedforeach3inchesoftravel.Duplicateswitchesareprovidedforthefull-inandfull-outpositions.Redundantovertravelswitchesarelocatedatapositionbelowthenormalfull-outposition.Becausethelimitofdowntravelisnormallyprovidedbythecontrolroditselfasitreachesthebackseatposition,thedrivecanpassthispositionandactuatetheovertravelswitchesonlyifitisuncoupled.fromitscontrolrod.Aconvenientmeansisthusprovidedtoverifythatthedriveandcontrolrodarecoupledafterinstallationofadriveoratanytimeduringplant*operation.Rev.27,10/814.6-5 SSES-FSAR46.1.12.26FlangeandblinderAssemblyAflangeandcylinderassemblyismadeupofaheavyflangeweldedtothedrivecylinder.Asealinqsurfaceontheupperface*ofthisflangeformsthesealtothedrivehousingflange.Thesealscontainreactorpressureandthetwohydrauliccontrolpressures.Tefloncoated,stainlesssteelringsareusedfortheseseals..Thedriveflangecontainstheintegralball,ortwo-way,check(ball-shuttle)valve.Thisvalvedirectseitherthereactorvesselpressureorthedrivingpressure,whicheverishigher,totheundersideofthedrivepiston.Reactorvesselpressureisadmittedtothisvalvefromtheannularspacebetweenthedriveanddrivehousingthrouqhpassagesintheflange.Materusedtooperatethecolletpistonpassesbetweentheoutertubeandthecylindertube.Theinsideofthecylindertubeishonedto'providethesurfacereguiredforthedrivepistonseals.Boththecylindertubeandoutertubeareweldedtothedriveflange.Theupperendsofthesetubeshaveaslidingfittoallowfordifferentialexpansion.Theupperendof'theindextubeisthreadedtoreceiveacouplingspudThecouplinq(seeFigure4.6-1)accommodatesasmallamountofangularmisaliqnmentbetweenthedriveandthecontrolrod.Sixspringfingersallowthecouplinqspudtoenter.thematinqsocketonthecontrolrod.Aplugthenentersthespudandpreventsuncoupling.Twomeansofuncouplinqareprovided.Miththereactorvesselheadremoved,t.helock,plugcanberaisedaqainstthespringforceofapproximately50poundshyarodextendingupthroughthecenterofthecontrolrodtoanunlockinghandlelocatedabovethecontrolrodvelocitylimiter.Thecontrolrod,withthelockpluqraised,canthenbeliftedfromthe.drive.4.6,1,12.2.7LockPlugThelockplugcanalsobepushedupfrombelow,ifitisde"iredtouncoupleadrivewithoutremovinqthereactorpressurevesselheadforaccess.Inthiscase,thecentralportionofthedrivemechanismispushedupaqainsttheuncouplingrodassembly,whichraisesthelockplugandallowsthecouplinqspudtodisengagethesocketasthedrivepistonandindextubearedrivendown.Thecontrolrodisheavyenoughtoforcethespudfinqestoenterthesocketandpushthelockplugup,allowinqthespudtoenterthesocketcompletelyandtheplugtosnapbackintoplace.4.6-6 SSES-FSARTherefore,thedrivecanbecoupledtothecontrolrodusingonlytheweightofthecontrolrod.However,withthelockpluginplace,aforceinexcessof50,000lbisrequiredtopullthecouplingapart.461123materialsofConstructionFactorsthatdeterminethechoiceofconstructionmaterialsarediscussedinthefollowingsubsections.4.61.123.1IndexTubeTheindextubemustwithstandthe-lockingandunlockingactionofthecolletfingersAcompatiblebearingcombinationmustbeprovidedthatisabletowithstandmoderatemisalignmentforces.Thereactorenvironmentlimitsthechoiceofmaterialssuitableforcorrosionresistance.Thecolumnandtensileloadscanbesatisfiedbyanannealed,singlephase,nitrogenstrengthened,austeniticstainlesssteel.Thewearandbearingrequirementsareprovided.byMalcomizinqthecornpietetube.Toobtainsuitablecorrosionresistance,acarefullycontrolledprocessofsurfacepreparationisemployed.4.6.1.1.2.32Co~ulingSpudThecouplinqspudismadeofInconel750thatisagedformaximumphysicalstrengthandtherequiredcorrosionresistance.Becausemisalignmenttendstocausechafinginthesemisphericalcontactarea,thepartisprotectedbyathinchromiumplating(Electrolized).Thisplatingalsopreventsgallingofthethreadsattachingthecouplingspudtotheindextube.46,11.233ColletFin~ersInconel750isusedforthecolletfinqers,whichmustfunctionasleafsprinqswhencammedopentotheunlockedposition.Colmonoy6hardfacinqprovidesalongwearingsurface,adequatefordesignlife,totheareacontactingtheindextubeandunlockingcamsurfaceofthequidecap.46-7 SSES-PSAR4.6$.1.23.4SealsandBushingsGraphitar14isselectedforsealsandbushingsonthedrivepistonandstopp'iston.Thematerialisinertandhasalowfrictioncoefficientwhenwater-lubricated.BecausesomelossofGraphitarstrengthisexperiencedathighertemperatures,thedriveissuppliedwithcoolinqwatertoholdtemperaturesbelow250~P.TheGraphitarisrelativelysoft,whichisadvantageouswhenanoccasionalparticleofforeignmatterreachesaseal.-Theresultingscratchesinthesealreducesealingefficiencyuntilwornsmooth,butthedrivedesigncantolerateconsiderablewaterleakagepastthesealsintothereactorvessel.46.1.12.3.5SummaryAlldrivecomponentsexposedtoreactorvesselwateraremadeofausteniticstainlesssteelexceptthefollowing:(1)SealsandbushinqsonthedrivepistonandstoppistonareGraphitar14.(2)Allspringsandmembersrequiringspringaction(colletfingers,couplingspudsandspringwashers)aremadeofInconel-750.(3)TheballcheckvalveisaHaynesStellitecobalt-basealloy.(4)Elastomeric0-rinqsealsareethylenepropylene.(5)MetalpistonringsareHaynes25alloy.(6)Certainwearsurfacesarehard-facedwithColmonoy6.(7)NitridingbyaproprietarynewNalcomizingprocessandchromiumplatingareusedincertainareaswhereresistancetoabrasionisnecessary(8)ThedrivepistonheadismadeofArmco17-4ph.Pressure-containingportionsofthedrivesaredesignedandfabricatedinaccordancewithrequirementsofSectionIIIoftheASIDEBoilerandPressureVesselCode.46-8 SSES-FSAR4.6.1.1.2.4ControlRodDriveHdraulicSstemThe'controlroddrivehydraulicsystem(Figures4.6-5a,b)suppliesandcontrolsthepressureandflowtoandfromthedrivesthroughhydrauliccontrolunits(HCU).ThewaterdischargedfromthedrivesduringascramflowsthroughtheHCUstothescramdischargevolume.ThewaterdischargedfromadriveduringanormalcontrolrodpositioningoperationflowsthroughtheHCU,theexhaustheader,throughtheotherHCV'stocombinewiththecoolingwaterflow'attheCRD's,andintothereactorvessel.ThereareasmanyHCUsasthenumberofcontrolroddrives.4.6.1.1.2.4.1HdraulicReuirementsTheCRDhydraulicsystemdesignisshowninFigures4.6-5a,b,and4.6-6.Thehydraulicrequirements,identifiedbythefunctiontheyperform,areasfollows:(1)Anaccumulatorhydraulicchargingpressureofapproximately1400to1500psigisrequired.Flowtotheaccumulatorsisrequiredonlyduringscramresetorsystemstartup.(2)Drivepressureofapproximately250psiabovereactorvesselpressureisrequired.Aflowrateofapproximately4gpmtoinsertacontrolrodand2gpmtowithdrawacontrolrodisrequired.(3)Coolingwatertothedrivesisrequiredat.approximately30psiabovereactorvesselpressureandataflowrateof0.20to0.34gpmperdriveunit.(Coolingwatertoadrivecanbeinterruptedforshortperiodswithoutdamagingthedrive.)2323(4)Thescramdischargevolumeissizedtoreceiveandcontainallthewaterdischargedbythedrivesduringascram;aminimumvolumeof3.34gal.perdriveisrequired.Rev.23,6/814.6-9 SSES-PSAR4.6.11.24.2SystemDesirc12tionTheCRDhydraulicsystemsprovidetherequiredfunctionswiththepumps,filter,valves,instrumentation,andpipingshowninFigures4.6-5a,banddescribedinthefollowingsubsection.Duplicatecomponentsareincluded,wherenecessary,toassurecontinuoussystemoperationifanin-servicecomponentrequiresmaintenance.46.11.2~4.2.1SueyPum~Onesupplypumppressurizesthesystemwithwaterfromthecondensatesystem.Onesparepumpisprovidedforstandby.Adischargecheckvalvepreventsbackflowthroughthenonoperatingpump.Aportionofthepumpdischargeflowisdivertedthroughaminimumflowbypasslinetothecondensatestoragetank.Thisflowiscontrolled,byanorificeandissufficienttopreventimmediatepumpdamageifthepumpdischargeisinadvertentlyclosed.Condensatewaterisprocessedbytwofiltersinthesystem.Thepumpsuctionfilterisadisposableelementtypewitha25-micronabsoluterating.Thedrivewaterfilterdownstreamofthepumpisacleanableelementtypewitha50-micronabsoluterating.Differentialpressureindicatorsandcontrolroomalarmsmonitorthefilterelementsastheycollectforeignmaterials.J4.611.2.4.2.2AccumulatorChargingPressureAccumulatorchargingpressureisestablishedbythedischargepressureofthesystemsupplypump.Duringscramthescraminlet(andoutlet)valvesopenandpermitthestoredenergyintheaccumulatorstodischargeintothedrives.TheresultingpressuredecreaseinthechargingwaterheaderallowstheCRDsupplypumpto"runout"(i.e.,flowratetoincreasesubstantially)intothecontrolroddrivesviathechargingwaterheader.TheflowsensingsystemupstreamoftheaccumulatorchargingheaderdetectshighflowanddecreasesflowreturningtotheRPV.Thisactionmaintainsincreasedflowthroughthechargingwaterheader.Pressureinthechargingheaderismonitoredinthecontrolroomwithapressureindicatorandhighpressurealarm.REV.Sy2/7946-10 SSES-PSARDuringnormaloperationtheflowcontrolvalvemaintainsaconstantsystemflowrate.Thisflowisusedfordriveflow,drivecooling,andsystemstability.4.6.1.1.24.23DriveMaterPressureDrivewaterpressurerequiredinthedriveheaderismaintainedbythepressurecontrolvalve,whichismanuallyadjustedfromthecontrolroom.Aflowrateofapproximately6gpm(thesumoftheflowraterequiredtoinsertandwithdrawacontrolrod)normallybypassesthedrivewaterpressurestagethroughtwosolenoidoperatedstabilizingvalves(arrangedinparallel).Theflowthroughonestabilizingvalveequalsthedriveinsertflow;thatoftheotherstabilizingvalveequalsthedrivewithdrawalflow.Whenoperatingadrive,therequired.flowisdivertedtothatdrivebyclosingtheappropriatestabilizingvalve.Thus,flowthroughthedrivepressurecontrolvalveisalwaysconstant.Plowindicatorsinthedrivewaterheaderandinthelinedownstreamfromthestabilizingvalvesallowtheflowratethroughthestabilizingvalvestobeadjustedwhennecessary.Differentialpressurebetweenthereactorvesselandthedrivepressurestageisindicatedinthecontrolroom.4.61.1.242.4Cooli~nMaterHeaderAllwaterpassingthroughthepressurecontrolvalveandthestabilizingvalvesisroutedtothereactorviathecoolingwaterheader.Withoutflowinthedriveandchargingwaterheadersthecoolingwaterflowisequaltotheflowpassingthroughtheflowcontrolvalve.Theflowthroughtheflowcontrolvalveisvirtuallyconstant.Therefore,onceadjusted,thedrivepressurecontrolvalvecanmaintaintherequiredpressureindependentofreactorpressure.Changesinsettingofthepressurecontrolvalveisrequiredonlytoadjustforchangesinthecoolingrequirementsofthedrives,astheirsealcharacteristicschangewithtime.Aflowindicatorinthecontrolroommonitorscoolingwaterflow.Adifferentialpressureindicatorinthecontrolroomindicatesthedifferencebetweenreactorvesselpressureanddrivecoolingwaterpressure.Althoughthedrivescanfunctionwithoutcoolingwater,seallifeisshortenedbylongtermexposuretoreactortemperatures.TheREV.S,2/7946-11 SSES-PSARtemperatureofeachdriveisrecordedinthereactorbuilding,andexcessivetemperaturesareannunciatedinthecontrolroom.4.61.12.4.2.5ScramDischargeVolumeThescramdischargevolumeconsistsofheaderpipingwhichconnectstoeachHCUanddrainsintoaninstrumentvolume.Theheaderpipingissizedtoreceiveandcontainallthewaterdischargedbythedrivesduringascram,independentoftheinstrumentvolume.Duringnormalplantoperationthescramdischargevolumeisempty,andventedtoatmospherethroughitsopenventanddrainvalve.Whenascramoccurs,uponasignalfromthesafetycircuittheseventanddrainvalvesareclosedtoconservereactorwater.Lightsinthecontrolroomindicatethepositionofthesevalves.Duringascram,thescramdischargevolumepartlyfillswithwaterdischargedfromabovethedrivepistons.Afterscramiscompleted,thecontrolroddrivesealleakagefromthereactorcontinuestoflowintothescramdischargevolumeuntilthedischargevolumepressureequalsthereactorvesselpressure.AcheckvalveineachHCUpreventsreverseflowfromthescramdischargeheadervolumetothedrive.Whentheinitialscramsignalisclearedfromthereactorprotectionsystem,thescramdischargevolumesignalisoverriddenwithakeylockoverrideswitch,andthescramdischargevolumeisdrainedandreturnedtoatmosphericpressure.Remotemanualswitchesinthepilotvalvesolenoidcircuitsallowthedischargevolumeventanddrainvalvestobetestedwithoutdisturbingthereactorprotectionsystem.Closingthescramdischargevolumevalvesallowstheoutletscramvalveseatstobeleak-testedbytimingtheaccumulationofleakageinsidethescramdischargevolume.Sixliquid-levelswitchesconnectedtotheinstrumentvolume,monitorthevolumeforabnormalwaterlevel.Theyaresetatthreedifferentlevels.Atthelowestlevel,alevelswitchactuatestoindicatethatthevolumeisnotcompletelyemptyREV.5,2/7946-12 SSES-FSARdurinqpost-scramdrainingortoindicatethatthevolumestartstofillthrouqhleakageaccumulationatothertime-duringreactoroperation.Atthesecondlevel,onelevel'switchproducesarodwithdrawalblocktopreventfurtherwithdrawalofanycontrolrod,whenleakaqeaccumulatestohalfthecapacityoftheinstrumentvolume.Theremai.ningfourswitchesareinterconnectedwiththetripchannelsoftheReactorProtectionSystem(RPS)andwillinitiateareactorscramshouldwateraccumulation.filltheinstrument,volume.4.6.1l.24.3Hy<lraulicControlUnits1Fachhydrauliccontrolunit(HCU)furnishespressurizedwater,onsignal.toadriveunit.Thedrivethenpositionsitscontrolrodasrequired.OperationoftheelectricalsystemthatsuppliesscramandnormalcontrolrodpositioningsiqnalstotheHCUisdescribedinSubsection7.7.1.2.ThebasiccomponentsineachHCUaremanual,pneumatic,andelectricalvalves;anaccumulator;,relatedpiping;electricalconnections;filters;a>>dinstrumentation(eeFigures4.6-5b,4.6-6,and4.6-'7).Thecomponentsandtheirfunctionsaredescribedi>>thefollowingparagraphs.4.6.1.12.4.3.1insertDriveValveTheinsertdrivevalveissolenoid-operatedandopensonaninsertsignal.Thevalvesuppliesdrivevatertothebottomsideofthemaindrivepiston.46.1.12.4.32TnsertExhaustValveTheinsertexhaustsolenoidvalvealsooper>>onaninse"tsignal.Thevalvedischargeswaterfromabovethedrivepistontotheexhaustwaterheader.4.6.1.1.2.4.3.3WithdrawDriveValveThewithdrawdrivevalveissolenoid-operatedandopensonawithdrawsignal.Thevalvesuppliesdrivewatertothetopofthedrivepiston.4.6-13 SSES-FSAR4.6.1.1.2.434WithdrawPxhaustValveJThesolenoid-operatedwithdrawexhaustvalveopensonawithdrawsignal.anddischargeswaterfrombelowthemaindrivepistontotheexhaustheader.Xtalsoservesasthesettlevalve,whichopensfollowinqanynormaldrivemovement(insertorwithdraw)toallowthecontrolrodanditsdrivetosettlebackintothenearestlatchpostion.4.6.1.1.2.4.3.5SpeedControltJnitsTheinsertdrivevalveandwithdrawexhaustvalvehaveaspeedcontrolunit.Thespeedcontrolunitregulatesthecontrolrodinsertionandwithdrawalratesduringnormaloperation.Themanuallyadjustableflowcontrolunitisusedtoregulatethewaterflowtoandfromthevolumebeneaththemaindrivepiston.Acorrectlyadjustedunitdoesnotrequirereadjustmentexcepttocompensateforchangesindrivesealleakaqe.6.1.1.2.4,3,6ScramPilotValvesThescrampilotvalvesareoperatedfromthereactorprotectionsystem.Ascrampilotvalvewithtwosolenoidscontrolsboththescraminletvalveandthescramexhaustvalve.Thescrampilotvalvesarethree-way,solenoid-operated,normallyenergizedvalves.Onlossofelectricalsignaltothesolenoids,suchasthelossofexternala-cpower,theinletportclosesandtheexhaustportopens.Thepilotvalves(Figures4.5-5aandb)aredesiqnedsothatthetripsystemsiqnalmustberemovedfrombothsolenoidsbeforeairpressurecanbedischargedfromthesc.amvalveoperators.Thispreventsinadvertentscramofasingledriveintheeventofafailureofoneofthepilotvalvesolenoids.4.6.1.1.2.4,3.7ScramInletValveThescraminletvalveopenstosupplypressurizedwatertothebottomofthedrivepiston.Thisquickopeninqglobevalveisoperatedbyaninternalsprinqandsystempressure.Itisclosedbyairpressureappliedtothetopofitsdiaphragmoperator.Amaincontrolroomindicatinglightisenergizedwhenboththescraminletvalveandthescramexhaustvalvearefullyopen.Rev.27,10/814.6-C4 SSES-FSAR461.1.243.8ScramExhaustValveThescramexhaustvalveopensslightlybeforethescraminletvalve,exhaustingwaterfromabovethedrivepiston.Theexhaustvalveopensfasterthantheinletvalvebecauseofthehigherairpressuresprinqsettinginthevalveoperator.46.1;l.2.4.3.9ScramAccumulatorThescramaccumulatorstoressufficientenergytofullyinsertacontrolrodatlowervesselpressures.Athighervesselpressurestheaccumulatorpressureisassistedorsupplantedbyreactorvesselpressure.Theaccumulatorisahydrauliccylinderwithafree-floatingpiston.Thepistonseparatesthewaterontopfromthenitroqenbelow.Acheckvalveintheaccumulatorcharginglinepreventslossofwaterpressureintheeventsupplypressureis.lost.Durinqnormalplantoperation,theaccumulatorpiston.isseatedatthebottomofitscylinder.Lossofnitrogendecreasesthenitroqenpressure,-whichactuatesapressureswitchandsoundsanalarminthe.controlroom.Toensurethattheaccumulatorisalwaysabletoproduceascram,itiscontinuouslymonitoredforwaterleakage.Afloattypelevelswitchactuatesanalarmifwaterleakspastthepistonbarrierandcollectsintheaccumulatorinstrumentationblock.46.1l.25ControlRodDriveSystemOperationThecontrolroddrivesystemperformsrodinsertion,rodwithdrawal,andscram.Theseoperationalfunctionsaredescribedbelow.4.6.1.125.1RodInsertionRodinsertionisinitiatedbyasignalfromtheoperatortotheinsertvalvesolenoids.Thissiqnalcausesbothinsertvalvestoopen.Theinsertdrivevalveappliesreactorpressureplusapproximately90psitothebottomofthedrivepiston.Theinsertexhaustvalveallowswaterfromabovethedrivepistontodischargetotheexhaustheader.hAsisillustratedinFigure4.6-3,thelockingmechanismisaratchet-typedeviceanddoesnotinterferewithrodinsertion.46-15 SSES-FSARThespeedatwhichthedrivemovesisdeterminedbytheflowthrouqhtheinsertspeedcontrolvalve,whichissetforapproximately4gpmforashimspeed(nonscramoperation)of3in./sec.Durinqnormalinsertion,thepressureonthedownstreamsideofthespeedcontrolvalveis90to100psiabovereactorvesselpressure.However,ifthedriveslowsforanyreason,theflowthrouqh,andpressuredropacross,theinsertspeedcontrolvalvewilldecrease;thefulldifferentialpressure(260psi)willthenbeavailabletocausecontinuedinsertion.With260-psidifferentialpressureactin'gonthedrivepiston,thepistonexertsanupwardforceof1040lb.4-6-1-12-5.2RodWithdrawalRodwithdrawalis,bydesign,moreinvolvedthaninsertion.Thecolletfinger(latch)mustberaisedtoreachtheunlockedposition(seeFigure4.6-3).Thenotchesintheindextubeandthecolletfingersareshapedsothatthedownwardforceontheindextubeholdsthecolletfinqersinplace.Theindextubemustbeliftedbeforethecolletfingerscanbereleased.Thisisdonebyopeningthedriveinsertvalves(inthemannerdescribedintheprecedingparagraph)forapproximately1sec.Thewithdrawvalvesarethenopened,applyingdrivingpressureabovethedrivepistonandopeningtheareabelowthepistontotheexhaustheader.Pressureissimultaneouslyappliedtothecolletpiston.Asthepistonraises,thecolletfingersarecammedoutward,awayfromtheindextube,bytheguidecap.Thepressurerequiredtoreleasethelatchissetandmaintainedatalevelhighenouqhtoovercometheforceofthelatchreturnspringplustheforceofreactorpressureopposingmovementofthecolletpiston.Whenthisoccurs,theindextubeisunlatchedandfreetomoveinthewithdrawdirection.Waterdisplacedbythedrivepistonflowsoutthroughthewithdrawspeedcontrolvalve,whichissettoqivethecontrolrodashimspeedof3in./sec.Theentirevalvinqsequenceisautomaticallycontrolledandisinitiatedbyasinqleoperationoftherodwithdrawswitch.46.11.~53ScramDuringascramthescrampilotvalvesandscramvalvesareoperatedaspreviouslydescribed.Withthescramvalvesopen,accumulatorpressureisadmittedunderthedrivepiston,andtheareaoverthedrivepistonisventedtothescramdischargevolume.4.6-16 SSES-PSARThelargedifferentialpressure(initiallyapproximately1500psiandalwaysseveralhundredpsi,dependingonreactorvesselpressure)producesalargeupwardforceontheindextubeandcontrolrod.ThisforcegivestherodahighinitialaccelerationandprovidesalargemarginofforcetoovercomefrictionAftertheinitialaccelerationisachieved,thedrivecontinuesatanearlyconstantvelocity.Thischaracteristicprovidesahighinitialrodinsertionrate.Asthedrivepistonnearsthetopofitsstrokethepistonsealscloseoffthelargepassaqe(bufferorificesjinthestoppistontube,providingahydrauliccushionattheendoftravelPriortoascramsignaltheaccumulatorintheHydraulicControlUnithasapproximately1450-1510psiqonthewatersideandl050-1100psiqonthenitrogensideAstheinletscramvalveopens,thefullwatersidepressureisavailableatthecontrolroddriveactingona4.1sqin.area.AsCRDmotionbegins,thispressuredropstotheqassidepressurelesslinelossesbetweentheaccumulatorandtheCRD.Atlowvesselpressurestheaaccumulatorcompletelydischargeswithavaultinggassidepressureofapproximately575psi.Thecontrolroddriveaccumulatorsarereguiredtoscramthe.controlrodswhenthereactorpressureislow,andtheaccumulatorsretainsufficientstoredenergytoensurethecompleteinsertionofthecontrolrodsintherequiredtime.Theballcheckvalveinthedriveflangeallowsreactorpressuretosupplythescramforcewheneverreactorpressureexceedsthesupplypressureatthedrive.Thisoccurs,duetoaccumulatorpressuredecayandinletlinelosses,duringallscramsathighervesselpressures.Whenthereactorisclosetooratfullyoperatingpressure,reactorpressurealonewillinsertthecontrolrodintherequiredtime,althoughtheaccumulatordoesprovideadditionalmarginatthebeginningofthestroke.Thecontxolroddrivesystem,withaccumulators,providesthefollowinqscramperformancesatfullpoweroperation,intermsofaveraqeelapsed.timeaftertheopeningofthereactorprotectionsystemtripactuator(scramsignal)forthedrivestoattainthescramstrokeslisted:Percentoffullstroke5205090StrokeininchesAveragetimeinsec7.2037528872.0090~20129.63.546-17 SSES-FSAR6l.12.6InstrumentationTheinstrumentationforboththecontrolrodsandcontrolroddrivesisdefinedbythatgivenforthemanualcontrolsystem.TheobjectiveofthereactormanualcontrolsystemistoprovidetheoperatorwiththemeanstomakechangesinnuclearreactivitysothatreactorpowerlevelandpowerdistributioncanbecontrolledThesystemallowstheoperatortomanipulatecontrolrods~ThedesignbasesandfurtherdiscussionarecoveredinChapter746.12ControlRodDriveHousinqS~u)orts46.1.2.1Safet'bjectiveThecontrolroddrive{CRD)housingsupportspreventanysiqnif'icantnucleartransientintheeventadrivehousingbreaksorseparatesfromthebottomofthereactorvessel.46.122SafetyDe~sinBasesTheCRDhousinqsupportsshallmeetthefollowingsafetydesignbases:{l)PollowinqapostulatedCRDhousingfailure,controlroddownwardmotionshallbelimitedsothatanyresulting~nucleartransientcouldnotbesufficienttocausefueldamage.{2)TheclearancebetweentheCRDhousingsand'hesupportsshallbesufficienttopreventverticalcontactstressescausedbythermalexpansionduringplantoperation.46.1.23Desc~ritionTheCRDhousinqsupportsareshowninFigure46-8.Horizontalbeamsareinstalledimmediatelybelowthebottomheadofthereactorvessel,betweentherowsofCRDhousings.Thebeamsaresupportedbybracketsweldedtothesteelformlinerofthedriveroominthereactorsupportpedestal.46-18 SSES-FSARHanqerrods,approximately10ftlongand1-3/4in.indiameter,aresupportedfromthebeamsonstacksofdiscsprings.Thesesprinqscompressapproximately2inchesunderthedesignload.Thesupportbacsareboltedbetwee'nthebottomendsofthehangerrods.,Thespringpivotsatthetop,andthebeveled,loosefittingendsonthesupportbarspreventsunstantialbendingmomentinthehanqerodsifthesupportbarsareoverloaded.Individualgridsrestonthesupportbarsbetweenadjacentbeams.Becauseasinglepieceqridwouldbedifficulttohandleinthelimitedworkspaceandbecauseitisnecessarythatcontrolroddrives,positionindicators,andin-corein=trumentationcomponentsbeaccessiblefor-inspectionandmaintenance,eachgridisdesignedforin-place,assemblyordisassembly.Eachgridassemblyismadefromtwoqridplates,aclamp,and'abolt;ThetoppartoftheclampquidesthegridtoitscorrectpositiondirectlybelowtherespectiveCRDhousingthatitwouldsupportinthepostulated.accident.Whenthesupportbarsandqridsare.installed,agapofappcoximately1inchatroomtemperature(approximately700F)isprovidedbetweentheqridandthebottomcontactsurfaceofthecontrolroddriveflange.Ducinqsystemheatup,thisgapisreducedbyanetdownwardexpansionofthehousingswithrespecttothesupports.Inthehotoperatinqcondition,thegapiapproximately1/4inch.InthepostulatedCRDhou-inqfailure,theCRDhousingsuppoctsareloadedwhenthelowercontactsurfaceoftheCRDflangecontactstheqrid.Thecesultinqloadisthencarriedbytwoqridplates,twosupportbars,fourhangercods,theirdiscsprinqs,andtwoadjacentbeams.TheAmericanInstituteofSteelConstruction(AISC)ManualofSteelConstruction,"SpecificationfortheDesign,FabricationandErectionofStructuralSteelforBuildings,~'asusedindesiqninqtheCRDhousinqsupportsystem.However,toprovidestructurethatabsorbsasmuchenergyaspracticalwithoutyielding,theallowabletensionandbendinqstressesusedwece90%of.yieldandtheshearsrressusedwas60%of.yield.Thesedesignstressesare1.5timestheAISCallowablestresses(60%and40%ofyield,respectively).Focpurposesofmechanicaldesign,thepostulatedfailurecesultinqinthehighestforcesisaninstantaneouscircumferentialsarationoftheCRDhousingfromthereactocvessel,withanintenalpressureof1250psiq(reactorvesseldesiqnpressuce)act~ontheareaoftheseparatedhousing.Theweiqhtoftheseparatedhousinq,controlroddrive,andblade,plusthe,pressureof1250psiqactin<)ontheareaofthe46-19 SSES-PSARseparatedhousing,givesaforceof-approximately35~000lb.thisforceismultipliibyafactorof3forimpact,conservativelyassumingthatthehousingtravelsthrough.al-in.,gapbeforeitconta"tsthesupports.Thetotalforce(105,000lb)isthentreatedasastaticloadin.design.,AllCRDhousingsupportsubassembliesarefabricatedofcommonlyavailablestructuralsteel,exceptforthediscsprings,whichareSchnorr,TypeBS-125-71-8.462EvaluationsoftheCRDS.Thissubjectiscoveredundernuclearsafetyandoperationalanalysis(NSOA)inAppendix15A,Subsection15A.6.5.3.224.6.2.3SafetyEvaluation-Safetyevaluationoftoecontrolrods,CRDS,andcontrolroddrivehousingsupports.isiescribeibelow.Furtherdes"riptionof"ontrolrodsiscontainedinSection4.2.4.62.3.1-ControlRoisI4.62.3.1.1MaterialsAdequacyThroughoutDesignLifetimeTheadeguacyofthematerialsthroughoutthedesignlifewasevaluatedintheme"hanicaldesignofthe"ontrolrods..Theprimarymaterials,784=powderand304austniti"stainlesssteel,havebeenfoundsuitableinmeetingthedemanisoftheBRRenvironment.Rev.22,4/Sl4.6-2O SSES-FSAR.Layoutstudiesaredonetoassurethat,giventheworstcombinationofparttolerancerangesatassembly,nointerferenceexistswhichwillrestrictthepassageofcontrolrods.Inaddition,preoperationalverificationismadeoneachcontrolbladesystemtoshowthattheacceptablelevelsofoperationalperformancearemet.46.2.3.1.3ThermalAnalysisoftheTendencytoWarpThevariouspartsofthecontrolrod'ssemblyremainatapproximatelythesametemperatureduringreactoroperation,negatingtheproblemofdistortionorwarpageWhatlittledifferentialthermalgrowthcouldexistisallowedforinthemechanicaldesiqn.Aminimumaxialqapismaintainedbetweenabsorberrodtubesandthecontrolrodframeassemblyforthepurpose.Inaddition,dissimilarmetalsareavoidedtofurtherthisend.4.6.2.3.1.4forcesforExpulsionAnanalysishasbeenperformedwhichevaluatesthemaximumpressureforceswhichcouldtendto'ejectacontrolrodfromthecore.TheresultsofthisanalysisaregiveninSubsection4.6.2.322.2Insummary,ifthecolletweretoremainopen,whichisunlikely,calculationsindicatethatthesteady-statecontrolrodwithdrawalvelocitywouldbe2ft/secforapressure-underlinebreak,thelimitingcaseforrodwithdrawal.4~6.2.3le5FunctionalFailureofCriticalComponentsTheconsequencesofafunctionalfailureofcriticalcomponentshavebeenevaluatedandtheresultsarecoveredinSubsection4.6.2.3.22-4.6.2.3.16PrecludingExcessiveRatesofReactivityAdditionInordertoprecludeexcessiveratesofreactivityaddition,analysishasbeenperformedboth'nthevelocitylimiterdeviceandtheeffectofprobablecontrolrodfailures(seeSubsection462.322)4.6-2t SSES-PSAR4.6.2.3.17EffectofFuelRodPailureonControlRodChannelClearancesThecontrolroddrivemechanicaldesignensuresasufficientlyrapidinsertionofcontrolrodstoprecludetheoccurrenceoffuelrodfailureswhichcouldhinderreactorshutdownbycausingsignificantdistortionsinchannelclearances.4.6.2.3.18Nechaaica1DamacmeAnalysishasbeenperformedforallareasofthecontrolsystemshowinqthatsystemmechanicaldamagedoesnotaffectthecapabilitytocontinuouslyprovidereactivitycontrol.Inadditiontotheanalysisperformedonthecontrolroddrive(Subsection4.6.2.3.2.2andSubsection4.6.2.3.2.3)an'dthecontrolrodblade,thefollowingdiscussionsummarizestheanalysisperformedonthecontrolrodguidetube.Theguidetubecanbesubjectedtoanyorallofthefollowingloads:(1)Inwardloadduetopressuredifferential(2)Lateralloadsduetoflowacrosstheguidetube(3)DeadWeight{4)Seismic(VerticalandHorizontal){5)VibrationInallcasesanalysiswasperformedconsideringbotharecirculationlinebreakandasteamlinebreak.Theseeventsresultinthelargesthydraulicloadingsonacontrolrodguidetube.Twoprimarymodesoffailurewereconsideredintheguidetubeanalysis;exceedingallowablestressandexcessiveelasticdeformation.Itwasfoundthattheallowablestresslimitwillnotbeexceededandthattheelasticdeformationsoftheguidetubeneverareqreatenoughtocausethefreemovementofthecontrolrodtobejeopardized.462.319EvaluationofControlRodVelocit~LimiterThecontrolrodvelocitylimiterlimitsthefreefallvelocityofthecontrolrodtoavaluethatcannotresultinnuclearsystem4.6-22 SSES-PSARprocessbarrierdamage.ThisvelocityisevaluatedbytheroddropaccidentanalysisinChapter15.46232ControlRodDrives4.6232lEvaluationofScramTimeTherodscramfunctionofthecontrolroddrivesystemprovidesthenegativereactiv'ityinsertionrequiredbysafetydesignbasisinSubsection46.1l.l.l.l.Thescramtimeshowninthedescriptionisadequateasshownbythetransientanalysesof.Chapter15.4.6.2.3.22Analysisoft1alfunctionRelatingtoRodwithdrawalTherearenoknownsinglemalfunctionsthatcausetheunplannedwithdrawalofevenasingleccntrolrodHowever,ifmultiplemalfunctionsarepostulated,studiesshowthatanunplannedrodwithdrawalcanoccuratwithdrawalspeedsthatvarywiththecombinationofmalfunctionspostulatedInallcasesthesubsequentwithdrawalspeedsarelessthanthatassumedintheroddropaccidentanalysisasdiscussedinChapter15.Therefore,thephysicalandradiologicalconsequencesofsuchrodwithdrawalsarelessthanthoseanalyzedintheroddropaccident.4.62.3.2.2.1DriveHousi~nFailsatAttachmentHeldThebottomhead.ofthereactorvesselhasapenetrationforeachcontrolroddrivelocationAdrivehousingisraisedintopositioninsideeachpenetrationandfastenedbyweldingThedriveisraisedintothedrivehousingandboltedtoaflangeatthebottomofthehousing.Thehousingmaterialisseamless,Type304stainlesssteelpipewithaminimumtensilestrengthof75,000psi.ThebasicfailureconsideredhereisacompletecircumferentialcrackthroughthehousingwallatanelevationjustbelowtheJ-weldStaticloadsonthehousinqwallincludetheweightofthedriveandthecontrolrod,theweightofthehousingbelowtheJ-weld,andthereactorpressureactingon'he6-in.diametercross-sectionalareaofthehousingandthedrive.Dynamic,loadingresultsfromthereactionforceduringdriveoperation.46-23 SSES-FSARIfthehousingweretofailasdescribed,thefollowingsequenceofeventsisforeseen.Thehousingwouldseparatefromthevessel.Thecontrolroddriveandhousingwouldbeblowndownwardaqainstthesupportstructurebyreactorpressureactingonthecross-sectionalareaofthehousingandthedrive.Thedownwardmotionofthedriveandassociatedpartswouldbedeterminedbythegapbetweenthebottomofthedriveandthesupportstructureandbythedeflectionofthesupportstructureunderload.Inthecurrentdesign,maximumdeflectionisapproximately3in.Ifthecolletweretoremainlatched,nofurthercontrolrodejectionwouldoccur(Reference4.6-1),;thehousinqwouldnotdropfarenoughtoclearthevesselpenetration.Reactorwaterwouldleakatarateofapproximately220qpmthroughthe0.03-inchdiametralclearancebetweenthehousinqandthevesselpenetration.Ifthebasichousingfailureweretooccurwhilethecontrolrodisbeingwithdrawn(thisiasmallfractionofthetotaldriveoperatinqtime)andifthecolletweretostayunlatched,the.followingsequenceofeventsisforeseen.Thehousingwouldseparatefromthevessel.Thedriveandhousingwouldbeblowndownwardagainstthecontrolroddrivehousingsupport.Calculationsindicatethatthesteady-staterodwithdrawalvelocitywouldbe0.3ft/sec.Duringwithdrawal,pressureunderthecolletpistonwouldbeapproximately250psigreaterthanthepressureoverit.Therefore,thecolletwouldbeheldintheunlatchedpositionuntildrivingpressurewasremovedfromthepressure-overport.4.6.2.3.2.2.2RuptureofHydraulicLine(s)toDriveHousi~nFlangeTherearethreetypesofpossibleruptureofhydrauliclinestothedrivehousingflange:(1)pressure-underlinebreak;(2)pressure-overlinebreak;and(3)coincidentbreakageofbothoftheselines46.2322.21Pressure-underLineBreakForthecaseofapressure-underlinebreak,apartialorcompletecircumferentialopeningispostulatedatornearthepointwherethelineentersthehousingflange.Failureismorelikelytooccurafteranotherbasicfailurewhereinthedrivehousinqorhousingflangeseparatesfromthereactorvessel-Failureofthehousing,however,doesnotnecessarilyleaddirectlytofailureofthehydrauliclines.46-24 SSES-PSARIfthepressure-underlineweretofailandifthecolletwerelatched,nocontrolrodwithdrawalwouldoccur.Therewouldbenopressuredifferentialacrossthecolletpistonand,therefore,notendencytounlatchthecollet.Consequently,theassociatedcontrolrodcouldnotbewithdrawn,butifreactorpressureisgreaterthan600psig,itwillinsertonascramsignal.Theballcheckvalveisdesiqnedtosealoffabrokenpressure-underlinebyusinqreactorpressuretoshiftthecheckballtoitsupperseat.Iftheballcheckvalvewerepreventedfromseatinq,reactorwaterwouldleaktotheatmosphere.Becauseofthebrokenline,coolingwatercouldnotbesuppliedtothedriveinvolvedLossofcoolinqwaterwouldcausenoimmediatedamagetothedrive.However,prolongedexposureofthedrivetotemperaturesatornearreactortemperaturecouldleadtodeteriorationofmaterialintheseals.Hightemperaturewouldbeindicatedtotheoperatorbythethermocoup1einthepositionindicatorprobe..AsecondindicationwouldbehighcoolingwaterflowIfthebasiclinefailureweretooccurwhilethecontrolrodisbeingwithdrawnthehydraulicforcewouldnotbesufficienttoholdthecolletopen,andspringforcenormallywouldcausethecollettolatchandstoprodwithdrawal.However,ifthecolletweretoremainopen,calculationsindicatethatthesteady-statecontrolrodwithdrawalvelocitywouldbe2ft/sec.462.32.22.2Pressure-overLineBreakThecaseofthepressure-overlinebreakageconsidersthecompletebreakageofthelineatornearthepointwhereitentersthehousingflange.Ifthelineweretobreak,pressureoverthedrivepistonwoulddropfromreactorpressuretoatmosphericpressure.Anysignificantreactorpressure(approximately600psiqorgreater)wouldactonthebottomofthedrivepistonandfullyinsertthedrive.Insertionwouldoccurreqardlessoftheoperationalmodeatthetimeofthefailure.Afterfullinsertion,reactorwaterwouldleakpastthestoppistonseals.Thisleakagewouldexhausttotheatmospherethrouqhthebrokenpressure-overlineTheleakagerateat1000psireactorpressureisestimatedtobe4gpmnominalbutnotmorethan10qpm,basedonexperimentalmeasurements.Ifthereactorwerehot,drivetemperaturewouldincrease.Thissituation'ouldbeindicatedtothereactoroperatorbythedriftalarm,bythefullyinserteddrive,byahighdrivetemperature(indicatedandprintedoutonarecorderinthecontrolroom),andbyoperationofthedrywellsumppump.46-25 SSES-FSARForthesimultaneousbreakageofthepressure-overandpressure-underlines,pressuresaboveandbelowthedrivepistonwoulddroptozero,andtheballcheckvalvewouldclosethebrokenpressure-underline.Reactorwaterwouldflowfromtheannulusoutsidethedrive,throuqhthevesselports,andtothespacebelowthedrivepiston.Asinthecaseofpressure-overlinebreakage,thedrivewouldtheninsert(ifthereactorwereabove600psi)ataspeeddependentonreactorpressurePullinsertionwouldoccurregardlessoftheoperationalmodeatthetimeoffailure.Reactorwaterwouldleakpastthedrivesealsandouttheb"okenpressure-overlinetotheatmosphere,asdescribedaboveDrivetemperaturewouldincrease.Indicationinthecontrolroomwouldincludethedriftalarm,thefullyinserteddrive,thehighdrivetemperatureprintedoutonarecorderinthecontrolroom,andoperationofthedrywellsumppump.4.6.2.3.2.23AllDriveFlangeBoltsFailinTensionEachcontrolroddriveisboltedtoaflangeatthebottomofadrivehousing.Theflanqeisweldedtothedrivehousing.BoltsaremadeofAISI-4140steel,withaminimumtensilestrengthof125,000psi.Eachbolthasanallowab1eloadcapacityof15,200pounds.Capacityofthe8boltsis121,600pounds.Asaresultofthereactordesiqnpressureof1250psig,themajorloadonall8boltsis30,400pounds.Ifaproqressiveorsimultaneousfailureofallboltsweretooccur,thedrivewouldseparatefromthehousing.Thecontrolrodandthedrivewouldbeblowndownwardagainstthesupportstructure.Impactvelocityandsupportstructureloadingwouldbeslightlylessthanthatfordrivehousingfailure,becausereactorpressurewouldactonthedrivecrosssectionalareaonlyandthehousinqwouldremainattachedtothereactorvessel.Thedrivewouldbeisolatedfromthecoolingwatersupply.Reactorwaterwouldflowdownwardpastthevelocitylimiterpiston,throuqhthelargedrivefilter,andintotheannularspacebetweenthethermalsleeveandthedrive.Forworst-caseleakagecalculations,the.larqefilterisassumedtobedeformedorsweptoutofthewaysoitwouldoffernosignificantflowrestriction.Atapointnearthetopoftheannulus,wherepressurewouldhavedroppedto350psi,thewaterwouldflashtosteamandcausechoke-flowconditions.Steamwouldflowdowntheannulusandoutthespacebetweenthehousingandthedriveflangestothedrywell.Steamformationwouldlimittheleakageratetoapproximately840qpm.Ifthecolletwerelatched,controlrodejectionwouldbelimitedtothedistancethedrivecandropbeforecomingtorestonthesupportstructure.Therewouldbenotendencyforthecolletto4.6-26 SSES-FSARunlatch,becausepressurebelowthecolletpistonwoulddroptozero.Pressureforces,infact,exert1435poundstoholdthecolletinthelatchedposition.Iftheboltsfailedduringcontrolrodwithdrawal,pressurebelowthecolletpistonwoulddroptozero.Thecollet,with1650poundsreturnforce,wouldlatchandstoprodwithdrawal.4.6.2.3.2.2.4MeldJoiningFlangetoHousingFailsinTensionThefailureconsideredisacrackinorneartheweldthatjoinstheflangetothehousing.Thiscrackextendsthroughthewallandcompletelyaroundthehousing.Theflangematerialisforged,Type304stainlesssteel,withaminimumtensilestrengthof75,000psiThehousingmaterialisseamless,Type304stainlesssteelpipe,withaminimumtensilestrenqthof75,000psi.Theconventional,fullpenetrationweldofType308stainlesssteelhasaminimumtensilestrengthapproximatelythesameasthatfortheparentmetal.Thedesignpressureandtemperatureare1250psigand575~F.Reactorpressureactingonthecross-sectionalareaofthedrive;theweightofthecontrolrod,drive,andflange;andthedynamicreactionforceduringdriveoperationresultinamaximumtensilestressattheweldofapproximately6000psi.Ifthebasicflange-to-housingjointfailureoccurred,theflangeandtheattacheddrivewouldbeblowndownwardagainstthesupportstructure.Thesupportstructureloadingwouldbeslightlylessthanthatfordrivehousingfailure,becausereactorpressurewouldactonlyonthedrivecross-sectionalarea.Lackofdifferentialpressureacrossthecolletpistonwouldcausethecollettoremainlatchedandlimitcontrolrodmotiontoapproximately3inches.Downwarddrivemovementwouldbesmall,therefore,mostofthedrivewouldremaininsidethehousing.The.pressure-underandpressure-overlinesareflexibleenoughtowithstandthesmalldisplacementandremainattachedtotheflange.Reactorwaterwouldfollowthesameleakagepathdescribedabovefortheflangeboltfailure,exceptthatexittothedrywellwouldbethroughthegapbetweenthelowerendofthehousingandthetopoftheflange.MaterwouldflashtosteamintheannulussurroundingthedriveTheleakage'ratewouldbeapproximately840qpm.Ifthebasicfailureweretooccurduringcontrolrodwithdrawal(asmallfractionofthetotaloperatinqtime)andiftheco1letwereheldunlatched,theflangewouldseparatefromthehousing.Thedriveandflangewouldbeblowndownwardagainstthesupportstructure.Thecalculatedsteady-staterodwithdrawalvelocity46-27 SSES-PSARwouldbe0.13ft/sec.Becausepressure-underandpressure-overlinesremainintact,drivingwaterpressurewouldcontinuetothedrive,andthenormalexhaustlinerestrictionwouldexist.Thepressurebelowthevelocitylimiterpistonwoulddropbelownormalasaresultofleakagefromtheqapbetweenthehousingandtheflange.Thisdifferentialpressureacrossthevelocitylimiterpistonwouldresultinanetdownwardforceofapproximately70pounds.Leakageoutofthehousingwouldgreatlyreducethepressureintheannulussurroundingthedrive.Thus,thenetdownwardforceonthedrivepistonwouldbelessthannormalTheoveralleffectoftheseeventswouldbetoreducerodwithdrawaltoapproximatelyone-halfofnormalspeed.Witha560-psidifferentialacrossthecolletpiston,thecolletwouldremainunlatched;however,itshouldrelatchassoonasthedrivesiqna1isremoved.46.2.3.22.5HousingWallRupturesThisfailureisaverticalsplitinthedrivehousingwalljustbelowthebottomheadofthereactorvessel.Theflowareaoftheholeisconsideredequivalenttotheannularareabetweenthedriveandthethermalsleeve.Thus,flowthroughthisannulararea,ratherthanflowthroughtheholeinthehousing,wouldqovernleakageflow.ThehousingismadeofType304stainlesssteelseamlesspipe,withaminimumtensilestrengthof75,000psi.Themaximumhoopstressof11,900psiresultsprimarilyfromthereactordesignpressure{1250psig)actingontheinsideofthehousing.Ifsucharuptureweretooccur,reactorwaterwouldflashtosteamandleakthroughtheholeinthehousingtothedrywellatapproximately1030qpm.Choke-flowconditionswouldexist,asdescribedpreviouslyfortheflange-boltfailure.However,leakageflowwouldbegreaterbecauseflowresistancewouldbeless,thatis,theleakingwaterandsteamwouldnothavetoflowdownthelengthofthehousinqtoreachthedrywell.Acriticalpressureof350psicausesthewatertoflashtosteam.Nopressuredifferentialacrossthecolletpistonwouldtendtounlatchthecollet;butthedrivewouldinsertasaresultoflossofpressureinthedrivehousingcausingapressuredropinthespaceabovethedrivepiston.Ifthisfailureoccurredduringcontrolrodwithdrawal,drivewithdrawalwouldstop,butthe-colletwouldremainunlatched.Thedrivewouldbestoppedbyareductionofthenetdownwardforceactiononthedriveline.Thenetforcereductionwouldoccurwhentheleakageflowof1030gpmreducesthepressureintheannulusoutsidethedrivetoapproximately540psig,thereby4.6-28 SSES-FSARreducingthepressureactingontopofthedrivepistontothesamevalue.Apressuredifferentialofapproximately710psiwouldexistacrossthecolletpistonandholdthecolletunlatchedaslonqastheoperatorheldthewithdrawsignal.62.32.26FlangePl~uBlowsOutToconnectthevesselportswiththebottomoftheballcheckvalve,aholeof3/4-inchdiameterisdrilledinthedriveflange.TheouterendofthisholeissealedWithaplugof0.812inchdiameterand0.25inchthickness.Afull-penetration,Type308stainlesssteelweldholdsthepluginplace.Thepostulatedfailureisafullcircumferentialcrackinthisweldandsubsequentblowoutoftheplug.Iftheweldweretofail,theplugweretoblowout,andthecolletremainedlatched,therewouldbenocontrolrodmotion.TherewouldbenopressuredifferentialacrossthecolletpistonactingtounlatchthecolletReactorwaterwouldleakpastthevelocityj.imiterpiston,downtheannulusbetweenthedriveandthethermalsleeve,throuqhthevesselportsanddrilledpassage,andouttheopenplugholetothedrywellatapproximately320qpm.Leakagecalculationsassumeonlyliquidflowsfromtheflanqe.Actually,hotreactorwaterwouldflashtosteam,andchoke-flowconditionswouldexist.Thus,theexpectedleakageratewouldbelowerthanthecalculatedvalue.Drivetemperaturewouldincreaseandinitiateanalarminthecontrolroom.Xfthisfailureweretooccurduringcontrolrodwithdrawalandifthecolletweretostayunlatched,calculationsindicatethatcontrolrodwithdrawalspeedwouldbeapproximately0.24ft/secLeakaqefromtheopenplugholeintheflanqewouldcausereactorwatertoflowdownwardpastthevelocitylimiterpiston.Asmalldifferentialpressureacrossthepistonwouldresultinaninsiqnificantdrivingforceofapproximately10lb,tendingtoincreasewithdrawvelocity.Apressuredifferentialof295psiacrossthecolletpistonwouldholdthecolletunlatchedas3.ongasthedrivingsignalwasmaintained.Flowresistanceoftheexhaustpathfromthedrivewouldbenormalbecausetheballcheckvalvewouldbeseatedatthelowerendofitstravelbypressureunderthedrivepiston.4.6-29 SSES-FSAH46.232.2.7BallCheckValveplugBlowsOutAsameansofaccessformachininqtheballcheckvalvecavity,a1.25inchdiameterholehasbeendrilledintheflangeforging.Thisholeissealedwithaplugofl.31inchdiameterand0.38inchthicknessAfull-penetrationweld,utilizinqType308stainlesssteelfilier,holdsthepluginplace.Thefailurepostulatedisacircumferentialcrackinthisweldleadingtoablowoutofthepluq.Iftheplugweretoblowoutwhilethedrivewaslatched,therewouldbenocontrolrodmotion.Nopressuredifferentialwouldexistacrossthecolletpistontounlatchthecollet.Asinthepreviousfailure,reactorwaterwouldflowpastthevelocitylimiter,downtheannulusbetweenthedriveandthermalsleeve,throuqhthevesselportanddrilledpassage,throughtheballcheckvalvecageandouttheopenplugholetothedrywell.Theleakagecalculationsindicatetheflowratewouldbe350gpm.Thiscalculationassumesliquidflow,butflashingofthehotreactorwatertosteamwouldreducethisratetoalowervalue.Drivetemperaturewouldrapidlyincreaseandinitiateanalarminthecontrolroom.Iftheplugfailureweretooccurduringcontrolrodwithdrawal,(itwouldnotbepossibletounlatchthedriveaftersuchafailure)thecolletwouldrelatch"atthefirstlockinggroove.Ifthecolletweretostick,calculationsindicatethecontrolrodwithdrawalspeedwouldbe11.8feetpersecond.Therewouldbealargeretardinqforceexertedbythevelocitylimiterduetoa35psipressuredifferentialacrossthevelocitylimiterpiston4.6.2.3.2.2.8DrivePressureControlValveClosure/Reactorpressu~re~OsiThepressuretomoveadriveisgeneratedbythepressuredropofpracticallythefullsystemflowthroughthed~rivepressurecontrolvalve.Thisvalveiseitheramotoro'peratedvalveorastandbymanualvalve;eitheroneisadjustedtoafixedopening.Thenormalpressuredropacrossthisvalvedevelopsapressure260psiinexcessofreactorpressure.Iftheflowthroughthedrivepressurecontrolvalveweretobestopped,asbya'alveclosureorflowblockage,thedrivepressurewouldincreasetotheshutoffpressureofthesupplypump.Theoccurrenceofthisconditionduringwithdrawalofadriveatzerovesselpressurewillresultinadrivepressureincreasefrom260psiqtonomorethan1750psig.Calculations4.6-30 SSES-FSARindicatethatthedrivewouldacceleratefrom3in./sectoapproximately6.5in/sec.Apressuredifferentialof1670psiacrossthecolletpistonwouldholdthecolletunlatched.Flowwouldbeupward,pastthevelocitylimiterpiston,butretardingforcewouldbeneqligible.Rodmovementwouldstopassoonasthedrivinqsignalwasremoved.4.6.2.3.2.2.9BallCheckValveFailstoClosePassagetoVesselPortsShouldtheballcheckvalvesealingthepassagetothevesselportsbedislodgedandpreventedfromreseatingfollowingtheinsertportionofadrivewithdrawalsequence,waterbelowthedrivepistonwouldreturntothereactorthroughthevesselportsandtheannulusbetweenthedriveandthehousingratherthanthroughthe.speedcontrolvalve.Becausetheflowresistanceofthisreturnpathwouldbelowerthannormal,thecalculatedwithdrawalspeedwouldbe2ft/sec.Duringwithdrawal,differentialpressureacrossthecolletpistonwouldbeapproximately40psiTherefore,thecolletwouldtendtolatchandwouldhavetostickopenbeforecontinuouswithdrawalat2ft/sec,couldoccur.Waterwouldflowupwardpastthevelocitylimiterpiston,qeneratingasmallretardingforceofapproximately120pounds.462.3.2.2.10~HdraulicControlUnitValveFailuresVariousfailuresofthevalvesintheHCUcanbepostulated,butnonecould.producedifferentialpressuresapproachingthosedescribedintheprecedinqparagraphsandnonealonecouldproduceahighvelocitywithdrawal.Leakagethrougheitheroneorbothofthescramvalvesproducesapressurethattendstoinsertthecontrolrodratherthantowithdrawit.Ifthepressureinthescramdischarqevolumeshouldexceedreactorpressurefollowinqascram,acheckvalveinthelinetothescramdischargeheaderpreventsthispressurefromoperatingthedrivemechanisms.46.23.22.11ColletFingersFailtoLatchThefailureispresumedtooccurwhenthedrivewithdrawsignalisremoved.Ifthecolletfailstolatch,thedrivecontinuestowithdrawatafractionofthenormalspeed.Thisassumptionismadebecausethereisnoknownmeansforthecolletfingerstobecomeunlockedwithoutsomeinitiatingsignal.Becausethe4.6-31 SSES-FSARcolletfingerswillnotcamopenunderaload,accidentalapplicationofadownsiqnaldoesnotunlockthem.(Thedrivemustbeqivenashortinsertsignaltounloadthefingersandcamthemopenbeforethecolletcanbedriventotheunlockposition.)Ifthedrivewithdrawalvalvefailstoclosefollowinqarodwithdrawal,thecolletwouldremainopenandthedrivecontinuetomoveatareducedspeed4.62.3.2.2.12WithdrawalS~eedControlValveFailureNormalwithdrawalspeedisdeterminedbydifferentialpressuresinthedriveandissetforanomina1valueof3in./sec.Withdrawalspeedismaintainedbythepressureregulatingsystemandisindependentofreactorvesselpressure.Testshaveshownthataccidentalopeningofthespeedcontrolvalvetothefull-openpositionproducesavelocityofapproximately6in./sec.Thecontrolroddrivesystempreventsunplannedrodwithdrawalandithasbeenshownabovethatonlymultiplefailuresinadriveunitandinitscontrolunitcouldcauseanunplannedrodwithdrawal4.62323ScramReliabili~tHighscramreliabilityistheresultofanumberoffeaturesoftheCRDsystem.Forexample:(1)Tworeliablesourcesofscramenergyareusedtoinserteachcontrolrod:individualaccumulatorsatlowreactorpressure,andthereactorvesselpressureitselfatpower.(2)Eachdrivemechanismhasitsownscramandadualsolenoidscrampilotvalvesoonlyonedrivecanbeaffectedifascramvalvefailstoopen.Bothvalvesolenoidsmustbedeenergizedtoinitiateascram(3)ThereactorprotectionsystemandtheHCUsaredesignedsothatthescramsiqnalandmodeofoperationoverrideallothers.(4)Theco,lletassemblyandindextubearedesignedsotheywilLnotrestrainorpreventcontrolrodinsertionduringscram.4.6-32 SSHS-PSAR(5)Thescram.discharqevolumeismonitoredforaccumulatedwaterandthereactorwillscrambeforethevolumeisreducedtoapointthatcouldinterferewithascram.46.2.324ControlRodSupportandOperationAsdescribedabove~eachcontro1rodisindependentlysupportedandcontrolledasrequiredbysafetydesignbases.4.6.2.3.3ControlnoHpriusHousincCnSu>portsDownwardtraveloftheCRDhousinganditscontrolrodfollowingthepostulatedhousingfailureequalsthesumofthesedistances:(1)thecompressionof+hediscspringsunderdynamicloadinq,and{2)theinitialgapbetweenthegridandthebottomcontactsurfaceoftheCRDflange.Ifthereactorwerecoldandpressurized,thedownwardmotionofthecontrolrodwouldbelimitedtothespringcompression(approximately2in)plusagapofapproximately1in.Ifthereactorwerehotandpressurized,theqapwouldbeapproximately1/4in.andthespringcompressionwouldbeslightlylessthaninthecoldcondition.Ineithercase,thecontrolrodmovementfollowinqahousinqfailureissubstantiallylimitedbelowonedrive"notch"movement(6in.).Suddenwithdrawalofanycontrolrodthroughadistanceofonedrivenotchatanypositioninthecoredoesnotproduceatransientsufficienttodamageanyradioactivematerialbarrier.TheCRDhousingsupportsareinplaceduringpoweroperationandwhenthenuclearsystemispressurizedIfacontrolrodisejectedduringshutdown,thereactorremainssubcriticalbecauseitisdesignedtoremainsubcriticalwithanyonecontrolrodfullywithdrawnatanytime.Atplantoperatingtemperature,agapofapproximately1/4in.existsbetweentheCRDhousingandthesupports.Atlowertemperaturestheqapisgreater.BecausethesupportsdonotcontactanyoftheCRDhousinqexceptduringthepostulatedaccidentcondition,vorticalcontactstressesareprevented.46-33 SSES-FSAB46.3Test~in,andVerificationoftheCRDs4631ControlRodDrives4.6.31.1Testi~nandInn~ection4.6.3.111DevelopmentTestsThedevelopmentdrive(prototype)testingincludedmorethan5000scramsandapproximately100,000latchingcycles.Oneprototypewasexposedtosimulatedoperatinqconditionsfor5000hoursThesetestsdemonstratedthefollowing:(1}Thedriveeasilywithstandstheforces,pressures,andtemperaturesimposed.(2)Wear,abrasion,andcorrosionofthenitridedstainlesspartsarenegliqible.4}echanicalperformanceofthenitridedsurfaceissuperiortothatofmaterialsusedinearlieroperatingreactors.(3)Thebasicscramspeedofthedrivehasasatisfactorymarginaboveminimumplantrequirementsatanyreactorvesselpressure.I(4)Usableseal'lifetimesinexcessof1000scramcyclescanbeexpected.4.6.31.12Factory9uali~tControlTestsQualitycontrolofweldinq,heattreatment,dimensionaltolerances,materialverification,andsimilarfactorsismaintainedthroughoutthemanufacturingprocesstoassurereliableperformanceofthemechanicalreactivitycontrolcomponents.Someofthequalitycontroltestsperformedonthecontrolrods,controlroddrivemechanisms,andhydrauliccontrolunitsarelistedbelow:(1)Controlroddrivemechanismtests:aePressureweldscnthedrivesarehydrostaticallytestedinaccordancewithASlEcodes.b.Electricalromponentsarecheckedforelectricalcontinuityandresistancetoground.6-34 SSES-FSARciDrivepartsthatcannotbevisuallyinspectedfordirtareflushedwithfilteredwaterathighvelocity.Nosignificantforeignmaterialispermittedineffluentwater.d.Sealsaretestedforleakagetodemonstratecorrectsealoperation.e.Eachdriveistestedforshimmotion,latching,andcontrolrodpositionindication.f.Fachdriveissubjectedtocoldscramtestsatvariousreactorpressurestoverifycorrectscramperformance(2)Hydrauliccontrolunittests:a.Hydraulicsystemsarehydrostaticallytestedinaccordancewiththeapplicablecode.bElectricalcomponentsandsystemsaretestedforelectricalcontinuityandresistancetoground.c.Correctoperationoftheaccumulatorpressureandlevelswitchesisverifiedd.~Theunit'sabilitytoperformitspartofascramisdemonstrated.e.Correctoperationandadjustmentoftheinsertandwithdrawalvalvesisdemonstrated46.3.1.13OperationalTestsAfterinstallation,allrodsanddrivemechanismscanbetestedthroughtheirfullstrokeforoperabilityDurinqnormaloperation,eachtimeacontrolrodiswithdrawnanotch,theoperatorcanobservethein-coremonitorindicationstoverifythatthecontrolrodisfollowinqthedrivemechanism.Allcontrolrodsthatarepartiallywithdrawnfromthecorecanbetestedforrod-followingbyinsertingorwithdrawingtherodonenotchandreturninqittoitsoriginalposition,whiletheoperatorobservesthein-coremonitorindications.Tomakeapositivetestofcontrolrodtocontrolroddrive:couplingintegrity,theoperatorcanwithdrawacontrolrodtotheendofitstravelandthenattempttowithdrawthedriveto4.6-35 SSES-.FSARtheovertravelposition.Failureofthedrivetoovertraveldemonstratesrod-to-drivecouplinqintegrity.Hydraulicsupplysubsystempressurescanbeobservedfrominstrumentationinthecontrolroom.Scramaccumulatorpressurescanbeobservedonthenitrogenpressuregages.463.1.14AcceptanceTestsCriteriaforacceptanceoftheindividualcontrolroddrivemechanismsandtheassociatedcontrolandprotectionsystemswillbeincorporatedinspecificationand,testprocedurescoverinqthreedistinctphases:(1)pre-installation,(2)aftezinstallationpriortostartup,and(3)durinqstartup-testing.Thepre-installationspecificationwilldefinecriteriaandacceptableranqesofsuchcharacteristicsassealleakage,frictionandsczamperformanceunderfixedtestconditionswhichmustbemetbeforethecomponentcanbeshipped.Theafterinstallation,prestartuptestswillbeperformedasoutlinedinChapter14.Asfuelisplacedinthereactor,thepowertestprocedurewillbeperformedasoutlinedinChapter14.46.3.115SurveillanceTestsThesurveillancerequirementsforthecontrolroddrivesystemaredescribedbelow.(2)Sufficientcontrolrodsshallbewithdzawn,followingarefuelinqoutagewhencorealterationsareperformed,todemonstratewithamarginof0.25KAkthatthecorecanbemadesubcriticalatanytimeinthesubsequentfuelcyclewiththestrongestoperablecontrolrodfullywithdrawnandallotheroperablerodsfullyinserted.Eachpartiallyorfullywithdrawncontrolrodshallbeexercisedonenotchatleastonceeachweek.,Intheeventthatoperationiscontinuingwiththreeormorerodsvalvedoutofsezvice,thistestshallbeperformedatleastonceeachday.6-36 SSES-PSARTheweeklycontrolrodexercisetestservesasaperiodiccheckagainstdeteriorationofthecontrolrodsystemandalsoverifiestheabilityofthecontrolroddrivetoscram.Zfarodcanbemovedwithdrivepressure,itmaybeexpectedtoscramsincehigherpressureisapplieddurinqscram.Thefrequencyofexercisingthecontrolrodsundertheconditionsofthreeormorecontrolrodsvalvedoutofserviceprovidesevenfurtherassuranceofthereliabilityoftheremainingcontrolrods.(3}Thecouplinqinteqr3.tyshallbeverifiedforeachwithdrawncontrolrodasfollows:a.Whentherodisfirstwithdrawn,observediscernibleresponseofthenuclearinstrumentation;andb.Whentherodisfullywithdrawnthefirsttime,observethatthedrivewillnotqototheovertravelposition.Observationofaresponsefromthenuclearinstrumentationduringanattempttowithdrawacontrolrodindicatesindirectlythattherodanddrivearecoupled.Theovertravelpositionfeatureprovidesapositivecheckonthecouplingintegrity,foronlyanuncoupleddrivecanreachtheovertravelposition(4)Durinqoperation,accumulatorpressureandlevelatthenormaloperatingvalueshallbeverified.Experiencewithcontrolroddrivesystemsofthesametypeindicatesthatweeklyverificationofaccumulatorpressureandlevelissufficienttoassureoperabilityoftheaccumulatorportionofthecontrolroddrivesystem(5)Atthetimeofeachmajorrefuelingoutage,eachoperablecontrolrodshallbesubjectedtoscramtimetestsfromthefullywithdrawnposition.Experienceindicatesthatthescramtimesofthecontrolrodsdonotsiqnificantlychangeoverthetimeintervalbetweenrefuelingoutaqes.Atestofthescramtimesateachrefueling,outageissufficienttoidentifyanysignificantlengtheningofthescramtimes.46-37 SSES-FSAR4.6.31.16Functional.estsThe.functionaltestingprogramofthecontrolroddrivesconsistsofthe5yearmaintenancelieandthe1.5XdesignlifetestprogramsasdescribedinSubsection3.94.4.Thereareanu'mberoffailuresthatcanbepostulatedontheCBDbutitwouldbeverydifficulttotestallpossiblefailures.Apartialtestproqramwithpostulatedaccidentconditionsand,imposedsinglefailuresisavailable.Thefollowingtestswithimposedsinglefailureshavebeenperformedtoevaluate-theperformanceoftheCBDsundertheseconditions.SimulatedRupturedScramLineTestStuckBallCheckValveinCRDFlangeHCUDriveDowninletFlowControlValve(V122)FailureHCUDriveDownOutletFlowControlValve(V120)FailureCBDScramPerformancewithV120NalfunctionHCUDriveUpOutletControlValve(V121)FailureHCUDriveUpInletControlValve(V123)FailureCoolinqMaterCheckValve(V138)LeakageCBDFlangeCheckValveLeakageCRDStabilizationCircuitFailureHCUFilterRestrictionAirTrappedinCRDHydraulicSystemCRDColletDropTestCRQualificationVelocityLimiterDropTestAdditionalpostulatedCRDfailuresarediscussedinSubsections4.6.2.3.2.2.1through4.62.3.2.2.11.4.6.32ControlnodDriveDeus~inSuDorts46.3.2.1Testingandra~sectionCRDhousingsupportsareremovedforinspectionandmaintenanceofthecontrolroddrives.Thesupportsforonecontrolrodcanberemovedduringreactorshutdown,evenwhenthereactorispressurized,becauseallcontrolrodsaretheninserted.Mhenthesupportstructureisreinstalled,itisinspectedforcorrectassemblywithparticularattentiontomaintainingthecorrectgapbetweentheCRDflangelowercontactsurfaceandtheqrid.4.6-38 SSES-FSAR4.6.4InformationforCombinedPerformanceofReactivitySystems4.64.1Vulnerabili~ttoCommonNodeFailuresThereactivitycontrolsystemshavebeenlocatedinaccordancewiththeseparationcriteriadescribedinSection3.12.ThelocationsoftheequipmentforthesesystemsareshownonthefiguresinSection1.2.4.6.4.2AccidentsTakingCreditforMultipleReactivity~SstemsTherearenopostulatedaccidentsevaluatedinChapter15thattakecreditfortwoormorereactivitycontrolsystemspreventingormitiqatingeachaccident.46.5EVA'LUATIONOFCOiNBINEDPERFORMANCEAsindicatedinSubsection4.6.4.2,creditisnottakenformultiplereactivitycontrolsystemsforanypostulatedaccidentsinChapter15.466REFERENCES46-1Benecki,J.E.,<<ImpactTestingonColletAssemblyforControlRodDriveMechanism7RDB144A,"GeneralElectricCompany,AtomicPowerEquipmentDepartment,APED-5555,November1967.46-39 'SSES-FSARCHAPTER50h-Xu~~allutEIaL~IIT~ABEOFQgNT.~TS51SUHMARYDESCRIPTIONpage5.1-151.15.1.251.3SchematicFlowDiagramPipingand.InstrumentationDiagramElevationDrawing5.1-35.1-351<<452.1CompliancewithCodes.andCodeCases5.2.1.1Compliancewith10CFR50,Section50.55a5.2.1.2ApplicableCodeCases5.2.2OverpressureProtection5.2.2.1DesignBasis52INTEGRITYOFREACTORCOOLANTPRESSUREBOUNDARY5.2-15.2-15.2-15.2-15.2-15.2-15-22115.2.21.25.22135'2.1.4SafetyDesignBasesPowerGenerationDesignBasesDiscussionSafetyValveCapacity5.2-25.2-25.2-25.2-35.2.2.2DesignEvaluation52.2.21NethodofAnalysis5.2.2.2.2SystemDesign52222152222.252222.3522'24OperatingConditionsTransients.ScramSafety/ReliefUalveTransientAnalysisSpecifi'cations5.2.2.2.2.5SafetyValveCapacityI5.2.2.2-.3EvaluationofResults5.2-45.2-45.2-45.2-55.2-55.2-55.2-55.2-65.2-65222315.2.2232SafetyValveCapa'cityPressureDropinInletandDischarge52-65.2-75-2.2.35.2.2.4Piping6InstrumentDiagramsEquipmentandComponentDescriptionv'.2-75.2-7REU17'/805-i 5.2.2.4.1522.42SSES-PSARDescriptionDesignParameters5.2.2.4.2.1Safety/BeliefValve52-752-1152-115.2.25522652.275228522.95221052352315232~MountingofPressureReliefDevicesApplicableCodesandClassification-MaterialSpecificationProcessInstrumentationSystemReliabilityInspectionandTestingReactorCoolantPressureBoundaryMaterialsMaterialSpecificationsCompatibilitywithReactorCoolant5.2-1252-1252-1252-125.2-1252-1352-1452-1452-145.2.3.2.152322523-235-23-2-4523352.331PMRChemistryofReactorCoolantBMRChemistryofReactorCoolantCompatibilityofConstructionMaterialswithReactorCoolantCompatibilityofConstructionMaterialsWithExternalInsulationandReactorCoolantFabricationandProcessingofFerriticMaterialsFractureToughness52-1452-1452-2152-215.2-2252-2252331152331252.33.1.35.2.3.3.1.45'.2.3.3155233.1.6CompliancewithCodeRequirementsAcceptableFractureEnergyLevelsOperatingLimi'tsDuringHeatup,Cooldown,andCoreOperationTemperatureLimitsforISIHydrostaticorLeakPressureTestsTemperatureLimitsforBoltupReactorVesselAnnealing52-2252-2352-2352-245.2-2452-2452332ControlofMelding52-245.2-3-321523322523323ControlofPreheatTemperatureEmployedforWeldingofLosAlloySteel.RegulatoryGuidel.50(REV.0)ControlofElectroslagMeldProperties.RegulatoryGuidel.34(REV.0)MelderQualificationforAreasofLimitedAccessibility.RegulatoryGuide1.71(REV0)5.2-245~2-2552-255.2333NondestructiveExaminationofFerriticTubularProducts5.2-25REV17'/805-ii 52345.2.3.4.1AvoidanceofStressCorrosionCracking52~3~4115234125.23413AvoidanceofSignificantSensitizationProcessControlstoMinimizeExposuretoContaminantsColdWorkedhusteniticStainlessSteelsSSES-PSARFabricationandProcessingofAusteniticStainlessSteels52-255.2-265.2-2652-265.2-265.2.3.4.2ControlofWelding5.2-2752-34.2152.34225-2.342.3AvoidanceofHotCracking..ElectroslagWeldsWelderQualificationforAreasofLimitedAccessibility.RegulatoryGuide1.71(Rev.0)52-275.2-275.2-275.2.3.4.352.4524.152425.2.4.35.24452.44.15244.252443524.445.24.552465247NondestructiveExaminationofTubularProducts.RegulatoryGuide1.66(Rev..0)In-ServiceInspectionand'estingofReactorCoolantPressureBoundarySystemBoundarySubjecttoInspectionAccessibilityExaminationTechniquesandProceduresInspectionIntervalsReactorVesselPipingPressureBoundaryPumpPressureBoundaryValvePressureBoundaryEvaluationofExaminationResultsSystemLeakageand.HydrostaticPressureTestsAugmentedInserviceInspectiontoProtectAgainstPostulatedPipingFailures52-275.2-2852-2952-295.2-315.2-315.2-325.2-355.2-3752-3852-395.2-3952-4052.55.25'LeakageDetectionMethodsDetectionofLeakageThroughReactorCoolantPressureBoundary52-4052-4052.5.1.1525125.2.51252512DetectionofAbnormalLeakageWithinthePrimaryContainment(NSS-Systems)DetectionofAbnormalLeakageWithinthePrimaryContainment{Non-NSSS)p'1PrimaryContainmentTemperatureMonitoringSystem2PrimaryContainmentPressureMonitoringSystem5.2-425.2-425.2-435.2-43RBV17'/805-iii 52.512352512315251.24525124'15.2512-42525124352512.45.2512455.2512465251247SSES-FSARPrimaryContainmentAtmosphereHonitoring;AirborneParticulateRadioactivityHonitoringSensivityandResponseTimeDrywellFloorDrainSumpHonitoringSystemSystemDescriptionInstrumentationDrywellEquipmentDrainTankLevelHonitoringSystemSensitivityandResponseTimeofHeasurementSignalCorrelationandCalibrationSeismicQualificationsTestingandCalibration5.2-4452-4452-495.2-4952-515.2-51S.2-5152-5252-5352-535.2.5.1.3DetectionofAbnormalLeakageOutsidethePrimaryContainmentLeakDetectionDevicesforNSS-SystemLimitsforReactorCoolantLeakage52525.2.535.2.5.3.1TotalLeakageRate5.2.5.3.2NormallyExpected.LeakageBate5.2.5.4UnindentifiedLeakageInsidetheDrywell5.2-535.2-5552-565.2-565.2-565-25.4.1525-425.25435.2.5.4.4525455255525652.575258UnindentifiedLeakageRateSensitivityandResponseTimesLengthofThrough-MallFlawHarginsofSafetyCriteriatoEvaluatetheAdequacyandHarginoftheLeakDetectionSystemDifferentiationBetweenIdentifiedandUnidentifiedLeaksSensitivityandOperabilityTestsSafetyInterfacesTestingandCalibration52-57,52-5752-5852-605.2-6152-6152-615.2-625.2-6252.653REACTOR53.153.1.15.3.1-2531.35.314ReferencesVESSELCPReactorVesselHaterialsHaterialsSpecificationsSpecialProcessesUsedforHanufacturingandFabricationSpecialHethodsforNondestructiveExamin-ationSpecialControlsforFe'rriticandAustenitic52-625.3-15.3-15.3-15.3-15.3-2REV17'/80 SSES-PSKRStainlessSteels5.3.1.4.1ComplianceMithRegulatoryGuides53-25.3-253.14.1.35-3.1.4.1-553141653-45-3.1.4.1.1-RegulatoryGuide1.31(Rev.1),Contxolof'tainlessSteelMelding5.3-25-3-1.4.1.2RegulatoryGuide1.34(12/72),ControlofElectrogslagMeldProperties53-...2RegulatoryGuide1.43(5/73),Control,ofStainlessSteelMeldCladdingofLo~-AlloySteelComponents5.3-35.31.4.1..4RegulatoryGuide1.44(5/73),ControloftheUseofSensitizedStainlessSteel=5.3-3RegulatoryGuide1.50(5/73),ControlofPreheatTemperatureforMeldingLos-AlloySteel5.3-3RegulatoryGuide1.71(12/73),WelderQualificationforAreasofLimitedAccessibility.53-35.3.1.4.1.7RegulatoryGuide1.99(Rev.1),EffectsofResidualElementsonPredictedRadiationDamagetoReactorPressureVesselNaterials5.3-35.3.1.5FractureToughness531.5.1.153-1512531513MethodofComplianceAcceptableFractureEnergyLevelsOperatingLimitsDuringHeatup,Cool-dovnandCoreOperationTemperatureLimitsforISIHydrostaticorLeakPressureTestsTempexatureLimitsforBoltupReactorVesselAnnealingMaterialSurveillance5315.1.45.3.15.1-553.1.51.65.3.3..653161Compliancewith>>ReactorVesselMaterialSurveillanceProgramRequirements"NeutronFluxandPluenceCalculationsIntentionallyDeletedPositioningofSurveillanceCapsulesandMethodofAttachmentTimeandNumber.ofDosimetryMeasurements5.3.1625316353.16453.1.655.3.175.3.2.5321ReactorVesselFasteners~.Pressure-TemperatureLimitsLimitCurves5.3.1.5.1Compliancewith10CPR50AppendixG53-45.3-553-55"3-75.3-853-853-85.3-953-95.3-10MallMaterials53-105.3-10a53-1Oa5.3-1ob53-lobREVl79/805-v 5.3.2253.3533153.3-1.1SSES-PSAROperatingProceduresReactorVesselIntegrityDesignDescription5.3-1ob53-1153-1153-115.3.3.l.1.1ReactorVessel,5.3.3.1.1.2ShroudSupport5.3.3.1.1.3ProtectionofClosureStuds5.3-115.3-125.3-125.3,3,1.25.3.3.l.353.31.4SafetyDesignBasesPowerGenerationDesignBasisReactorVesselDesignData5.3-125.3-1353-135331415.331425.3.3.143S.3.3.1445.3.3.1.4.55.3.3.1.4.65.3.3.1.4.7VesselSupportControlRodDriveHousingsIn-CoreNeutronFluxMonitorReactorVesselInsulationReactorVesselNozzlesMaterialsandInspectionsReactorVesselSchematicHousings53-145.3-145.3-1453-1453-1553-1653-165.3.325.3.3353.345.3.3.553365337MaterialsofConstructionFabricationMethodsInspectionRequirementsShipmentandInstallationOperatingConditionsInserviceSurveillance5.3-1653-165.3-175.3-1753-185.3-19-05.4.1ReactorRecirculationPumps54COMPONENTANDSUBSYSTEMDESIGN5.4-15.4-154115.4.1.25.4.1.3541~45.4.1.55.4.254.35.44544154425.4.4.35.4.4.45.4.554.5.1SafetyDesignBasesPowerGenerationDesignBasesDescriptionSSafetyEvaluationInspectionandTestingSteamGenerators'PMR)ReactorCoolantPipingMainSteamlincFlowRestrictorsSafetyDesign'asesDescriptionSafetyEvaluationInspectionandTestingMainSteamlineIsolationSystemSafetyDesignBases5.4-154-154-15.4-554-654-654-65.4-754-754-75.4-85.4-954-954-9REV17~9/805-vi 54525~4535'545.4.6546--154611SSES-PSARDescriptionSafetyEvaluation.Inspection-and,TestingReactorCoreIsolationCoolingSystemDesignBasesResidualHeatandIsolation54-1054-1254-1454-1654-165.4-1654611.15.461.1~2ResidualHeatIsolation54-1654-175.4.6.1.2Reliability,Operability,and.HanualOperation5.4-1854-612154.6122ReliabilityandOperabilitymanualOperation54-1854-195.4.61.354.6.1.454615LossofOffsitePoserPhysicalDamageEnvironment54-19"5.4-195.4-20546254.6.2.1SystemDesignGeneral54-2054-20546211546212546213DescriptionDiagramsInterlocks5.4-205.4-2154-215.4.6.2.2EguipmentandComponentDescription54-235462215-4'6.222DesignConditionsDesignParameters54-235.4-235.4.6.2.3ApplicableCodesandClassifications5.4.6.2.4SystemReliabilityConsiderations5.4.6.2.5System,Operations54-2854-2854-295462554.6.25546255.4.6.2.5.1234AutomaticOperationTestLoopOperationSteamCondensing(HotStandby)OperationLimitingSingleFailure54-2954-3154-.,3254-33546354-6.4546'54.754-71PerformanceEvaluationPreoperationalTestingSafetyInterfacesResidualHeatRemovalSystemDesignBases5.4-335.'4-335.4-335.4-345.4-34REV17,9/805-vii 54711SSES-PSARPunctionalDesignBasis5.4-3454.711154711254.71.1.354711454711.5ResidualHeatRemovalNode{ShutdownCoolingMode)LowPressureCoolan'tInjection(LPCI)NodeSuppressionPoolCoolingNodeContainmentSprayCoolingNodeReactorSteamCondensingNode5.4-345.4-3554-355.4-3554-3654.7.1254.713547.1454.71.55.4.7.1.654.7.2SystemsDesignDesignBasisforIsolationofRHRSystemfromReactorCoolantSystemDesignBasisforPressureReliefCapacityDesignBasiswithRespecttoGeneralDesignCriteria5DesignBasisforReliabilityandOperabilityDesignBasisforProtectionfromPhysicalDamage54-3654-365.4-3754-375.4-385.4-385472-15472254.723547245.4.7.2.554.7-2-65.4.73SystemDiagramsEquipmentandComponentDescriptionControlsandInstrumentationApplicableCodesandClassificationsReliabilityConsiderationsManualActionPerformanceEvaluation54-3854-385.4-39b54-39b5.4-39b54-39b5.4-4154.85.48.1ReactorMaterCleanupSystemDesignBases5.4.7.3.1ShutdownWIthAllComponentsAvailable5.4.7.3.2ShutdownWithMostLimitingFailure5.4.7.4PreoperationalTesting5.4-425.4-425.4-4254-4354-4354811548l25.48254835495::.'4.9.l.5.4.92549.354.9.454.9.5SafetyDesignBasesPowerGenerationDesignBasesSystemDescriptionSystemEvaluationHainSteamLinesandPeedwaterPipingSafetyDesignBasesPowerGenerationDesignBasesDescriptionSafetyEvaluationInspectionandTesting5.4-435.4-435.4-435.4-455.4-465.4-465.4-4654-465.4-4754-47REV17'/805-viii SSES-PShR5-41054ll54125412154-1225.4.12.35412454135413154.l3254133541345.4.145414154.142541435.414454.155.4.1654.1754.18PressurizerPressurizerReliefDischargeSystemValvesSafetyDesignBasesDescriptionSafetyEvaluati'onInspectionandTestingSafety-andReliefValvesSafetyDesignBasesDescriptionSafetyEvaluationInspectionandTestingComponentSupportsSafetyDesignBasesDescriptionSafetyEvaluationInspectionandTestingHighPressureCoolantInfection(HPCI)SystemCoreSpray(CS)SystemStandbyLiquidControl(SLC)SystemReferences54-4754-4754-4754-4754-485.4-4854-4954-5054-505.4-5054-5054-5054-505.4-515'4-5154-515.4-515.4-5254-5254-525.4.52R'EV17'/805-ix SSES-FSARIIeCHAPTER5.0TablesTableNumber5.1-1TitleDesignandPerformanceCharacteristicsoftheReactorCoolantSystemandItsComponents5.2-1ReactorCoolantPressureBoundaryComponentsCodeCaseInterpretations5.2-2NuclearSystemSafety/ReliefSetPo'inta5.2-3DesignTemperature,PressureandMaximum,TestPressureforRCPBComponents5.2-45.2-5ReactorCoolantPressureBoundary'MaterialsBWRWaterChemistry5.2-65.2-75.2-8SystemsWhichMayInitiateDuringOverpressureEventFWaterSampleLocationsSummaryofIsolation/AlarmofSystemMonitoredandLeakDetectionMethodsUsed5.2-95.2.9A5.2-10SequenceofEventsforFigure5.2-1SequenceofEventsforFigure5.2-1ARCPBComponentsinCompliance.w'ith10CFR50.55(a)(2)(ii)5.2-11IdentifiedLeakagesintotheDrywel'1EquipmentDrainTank5.2-12UnidentifiedLeakagesintotheDrywellFloorDrainSump5.2-135.2-14EstimatedMonitor'ResponsesRCPBLeakDetectionMonitorsIns'idePrimaryContainmentDrywell5.3-la5.3-1b5.3-2aAppendixGMatrixForSusquehannaUnit'1AppendixHMatrixForSusquehannaSESUni.t1AppendixGMatrixForSusquehannaSESUnit'2Rev.26,9/815-x SSZS-FSAR52INTEGRITYOFREACTORCOOLANTPRESSUREBOUNDARYThissectiondiscussesmeasuresemployedtoprovideandmaintaintheintegrityofthereactorcoolantpressureboundary(RCPB)fortheplantdesignlifetime.521COMPLIANCEWITHCODESANDCODECASES5.2.1.1Co~mliancewith10CFR50~Section50.55aAtablewhichshowscompliancewiththerulesof10CFR50isincludedinSection3.2,(SeeTable3.2-1).Codeedition,applicableaddenda,andcomponentdatesareinaccordancewith10CFR50.55a.Table52-10liststhoseRCPBcomponentsvhichcomplyviththerulesof10CFR50inaccordancevith10CFR50.55(a)(2)(ii).52.1.2ApplicableCodeCases!\Thereactorpressurevesselandappurtenances,andtheRCPBpiping,pumpsandvalves,havebeendesigned,fabricated,andtestedinaccordancewiththeappplicableeditionoftheASMECode,includingaddendathatveremandatoryattheorderdatefortheapplicablecomponents.Section50.55aof10CFR50requirescodecaseapprovalonlyforClass1components.Thesecodecasescontainrequirementsorspecialruleswhichmaybeusedfortheconstructionofpressure-retainingcomponentsofQualityGroupClassificationA.ThevariousASMEcodecaseinterpretationsthatwereappliedtocomponentsintheRCPBarelistedinTable5.2-1.522OVERPRESSUREPROTECTIONThissectionprovidesevaluationofthesystemthatprotectstheRCPBfromoverpressurization.5.221DesignBasisOverpressureprotectionisprovidedinconformancewith10CFR50,AppendixA,GeneralDesignCriteria15.PreoperationalandstartupinstructionsaregiveninChapter14.rtev.lO,6/7952-1 SSES-PSAR5.~2..1.1Saf~etD~sic[aBasesThenuclearpressure-reliefsystemhasbeendesiqned:(1)Topreventoverpressurizationofthenuclearsystemthatcouldleadtothefailureofthereactorcoolantpressureboundary.(2)Toprovideautomaticdepressurizationforsmallbreaksinthenuclearsystemoccurringwithmaloperationofthehiqhpressurecoolantinjection(BPCI)systemsothatthelowpressurecoolantinjection(LPCZ)andthecorespray(CS)systemscanoperatetoprotectthefuelbarrier.(3)Topermitverificationofitsoperability.(4)Towithstandadversecombinationsofloadingsandforcesresultingfromnormal,upset,emergencyandfaultedconditions.52.2.1.2PowerGenerationDesignBasesThenuclearpressurereliefsystemsafety/reliefvalveshavebeendesignedtcmeetthefollowingpowergenerationbases:(1)Dischargetothecontainmentsuppressionpool.(2)Correctlyreclosefollowingoperationsothatmaximumoperationalcontinuitycanbeobtained.5.2.2.l.3DiscussionTheASLOPEFoilerandPressureVesselCoderequiresthateachvesseldesignedtomeetSectionEIIbeprotectedfromoverpressureunderupsetconditions.Thecodeallowsapeakallowablepressureof110%ofvesseldesignpressureunderupsetconditions.Thecodespecificationsforsafetyvalvesrequirethat".(1)thelowestsafetyvalvesetpointbesetatorbelowvesseldesignpressureand(2)thehighestsafetyvalvesetpointbesetsothattotalaccumulatedpressuredoesnotexceed110$ofthedesiqnpressureforupsetconditions.Thesafety/reliefvalvesaredesignedtoopenviaeitheroftwomodesofoperationasdiscussedinChapter15.TheSafety(springlift)setpointsarelistedinTable5.2-2.ThesesetpointssatisfytheASMECode52-2 SSBS-PSARspecificationsforsafetyvalves,becauseallvalvesopenatlessthanthenuclearsystemdesignpressureof1250psigTheautomaticdepressurizationcapabilityofthenuclearsystempressurereliefsystemisevaluatedinsection63andinsection73IThefollowingdetailed"criteriaareusedinselectionofsafetyreliefvalves:h(1)HastmeetrequirementsofASIDECode,SectionIIX;(2)Valvesmustqualifyfor100%ofnameplatecapacitycreditfortheoverpressureprotectionfunction;(3)Nustmeetotherperformancerequirementssuchasresponsetime,etc.,asnecessarytoproviderelieffunctionsThesafety/reliefvalvedischargepipingisdesigned,installed,andtestedinaccordancewiththeESNECode,SectionIIX.5221.4Sa'fat~Valve~CaacitThesafetyvalvecapacityofthisplantisadequatetolimittheprimarysystempressure,includingtransients,totherequirementsoftheASNEBoilerandPressureVesselCode,SectionIII,NuclearVessels(uptoandincludingSummer1970AddendaforUnit1andUnit2).Itisrecognizedthattheprotectionofvesselsinanuclearpowerplant'isdependentuponmanyprotectivesyste'msto'"relieveorterminatepressuretransients.Installationofpressurereliev'inqdevicesmaynotindependentlyprovidecompleteprotection.Thesafetyvalvesizingevaluationassumescreditforoperationof'thescramprotectivesystemwhichmaybetrippedbyoneoftwosources;i.e.adirectorfluxtripsignal.Thedirectscramtripsignalisderivedfrompositionswitchesmountedonthemainsteamlineis'olationvalvesortheturbinestopvalves-orfrompressureswitchesmountedonthedumpvalveoftheturbinecontrolvalve'hydraulicactuationsystem.Thepositionswitchesareactuatedwhen'herespectivevalvesareclosingandfollowinqLOXtraveloffullstroke.Thepressureswitchesareactuatedwhenafastclosureoftheturbinecontrolvalvesisinitiated.Further,nocreditistakenforpoweroperationofthepressurerelievingdevices.Creditistakenforthedualpurposesafety/reliefvalvesintheirASNECodequalified(springlift)modeofsafetyoperation.pltf52-3 SSZS-PSARTheratedcapacityofthepressurerelievingdevicesshallbesufficienttopreventariseinpressurevithintheprotectedvesselofmorethan110%ofthedesignpressure(110x1250psig=1375psig)foreventsdefinedinSubsection4.3.1.Pullaccountistakenofthepressuredroponboththeinletanddischargesidesofthevalves.Allcombinationsafety/reliefvalvesdischarge,intothesuppressionpoolthroughadischargepipefromeachvalvevhichisdesignedtoachievesonicflovconditionsthroughthevalve;thusprovidingflowindependencetodischargepipinglosses.Table5.2-6liststhesystemswhichcouldinitiateduringthedesignbasisoverpressureevent.522.2Des~ne51aationTodesignthepressureprotectionforthenuclearboilersystem,extensiveanalyticalmodelsrepresentingallessentialdynamiccharacteristicsofthesystemaresimulated.onalargecomputingfacility.Thesemodelsincludethehydrodynamicsoftheflowloop,thereactorkinetics,thethermalcharacteristicsofthefuelanditstransferofheattothecoolant,andalltheprincipalcontrollerfeatures,suchasfeedwaterflow,recirculationflov,reactorvaterlevel,pressure,andloaddemand.ThesearerepresentedvithalltheirprincipalnonlinearfeaturesinmodelsthathaveevolvedthroughextensiveexperienceandfavorablecomparisonofanalysiswithactualBMRtestdata.AdetaileddescriptionofeachmodelisdocumentedinReferences5.2-1and5.2-6.Safety/reliefvalvesaresimulatedinanonlinearrepresentation,andthemodeltherebyallowsfullinvestigationofthevariousvalveresponsetimes,valvecapacitiesandactuationsetpointsthatareavailableinapplicablehardvaresystems.ThetypicalvalvecharacteristicasmodeledisshowninPigure5.2-2forthespringmodeofoperation.Theassociatedbypass<turbinecontrolvalve,andmainsteamisolationvalvecharacteristicsarealsosimulatedinthemodel.52.22~2S~st~eDesignAparametricstudyvasconductedtodeterminetherequ3.redsteamflowcapacityofthesafety/reliefvalvesbasedonthefollovingassumptions.5.2HRev.26,9/81 SSES-PSAR5.2.2.22.~Operat~inConilitions{1)operatingpower=3439Stat(104.4%ofnuclearboilerratedpower),I(2)vesseldomepressure<1020psig;and(3)steamflow=14.153x10~lb/hr{105%ofnuclearboilerratedsteamflow)Theseconditionsarethemostseverebecausemaximumstoredenergyexistsattheseconditions.Atloverpowerconditionsthetransientswouldbelesssevere.Theoverpressureprotectionsystemmustaccommodatethemostseverepressurizationtransient.Therearetwomajortransients,theclosureofallmainsteamlineisolationvalvesandaturbine/generatortripwithacoincidentfailureoftheturbinesteambypasssystemvalvesthatrepresentthemostsevereabnormaloperationaltransientresultinginanuclearsystempressurerise.Theevaluationoftransientbehaviorwithfinalplantconfigurationhasshownthattheisolationvalveclosureisslightlymoreseverewhencreditistakenonlyforindirectderivedscrams,therefore,itisusedastheoverpressureprotectionbasiseventandshowninFigure5.2-1.Table5.2-9liststhesequenceofeventsofthevarioussystemsassumedtooperateduringthemainsteamlineisolationclosurewithfluxscramevent.TheODYHresultsforthesameeventareshowninPigure5.2-1A;sequenceofeventsinTable5.2-9A.IIII52.2.2.2.3Scram(2)scramreactivitycurve-Figure5.2-3fortheREDYmodelandFigure5.2-1AfortheODYNmodel.controlroddrivescrammotion-Figure5.2-35.2.2.2.2.4Safety/ReliefValveTransientAnalysisSpecifications(1)valvegroups:spring-actionsafetymode-5groupsRev.26,9/815.2-5 SSBS-PSAR(2)pressuresetpoint(maximumsafetylimit):spring-actionsafetymode-1177-1217psigThesetpointsareassumedataconservativelyhighlevelabovethenominalsetpoints.Thisistoaccountforinitialsetpointerrorsandanyinstrumentsetpointdriftthatmightoccurduringoperation.Typicallytheassumedsetpointsintheanalysisare1to2%abovetheactualnominalsetpoints.Highlyconservativesafety/reliefvalveresponsecharacteristicsarealsoassumed.5.222.2.5SafestValveCapacitySizingofthesafetyvalvecapacityisbasedonestablishinganadequatemarginfromthepeakvesselpressuretothevesselcodelimit(1375psig)inresponsetothereferencetransientsSubsection5.2.22.22.52.2.2.3EvaluationofResults5.2.2.2.3.1Safet~ValveCapacityTherequiredsafetyvalvecapacityisdeterminedbyanalyzingthepressurerisefromaHSIVclosurewithfluxscramtransient.Theplantisassumedtobeoperatingattheturbine-generatordesignconditionsatamaximumvesseldomepressureof1020psig.Theanalysishypotheticallyassumesthefailureofthedirectisolationvalvepositionscram.Thereactorisshutdownbythebackup,indirect,highneutronfluxscram.Portheanalysis,thespring-action,safetysetpointsareassumedto,;be;intherangeof1177to1217psig.Theanalysisindicatesthatthedesignvalvecapacityiscapableofmaintainingadequatemarginbelowthe.peakASIDEcodeallowablepressureinthenuclearsystem(1375psig).Figures52-1and5.2-1Ashowcurvesproducedbythisanalysis-Thesequenceofeventsassumedintheseanalyseswasinvestigatedtomeetcoderequirementsandtoevaluatethepressurereliefsystemexclusively.UndertheGeneralRequirementsforProtectionAgainstOverpressureasgiveninSectionIIIoftheASNBBoilerandPressureVesselCode,creditcanbeallowedforascramfromthereactorprotectionsystem.Inaddition,creditisalsotakenfortheprotectivecircuitswhichareindirectlyderivedwhendeterminingtherequiredsafetyvalvecapacity.Thebackupreactorhighneutronfluxscramisconservativelyappliedasadesignbasisindetedminingtherequiredcapacityofthepressurerelievingsafetyvalves.ApplicationofthedirectpositionscramsinthedesignbasiscouldbeusedsincetheyqualifyasRev.26,9/815.2-6 SSES-FSARacceptablepressureprotectiondeviceswhendeterminingtherequiredsafetyvalvecapacityofnuclearvesselsundertheprovisionsoftheASHEcode.Theparametricrelationshipbetweenpeakvessel(bottom)pressureandsafetyvalvecapacityfortheNSIVtransientwithhighfluxandpositiontripscramisdescribedinFigure5-2-4-AlsoshowninFigure5.2-4istheparametricrelationshipbetweenpeakvessel(bottom)pressureandsafetyvalvecapacityfortheturbinetripwith.acoincidentclosureoftheturbinebypassvalvesanddirectscram,whichisthemostseveretransientwhendirectscramisconsidered.Pressuresshownforfluxscramwillresultonlywithmultiplefailureintheredundantdirectscramsystem.ThetimeresponseofthevesselpressuretotheHSIVtransientwithfluxscramandtheturbinetripwithacoincidentclosureoftheturbinebypassvalvesanddirectscramfor16valvesisillustratedinFigure5.2-5.TheresultsoftheREDYanalysisshowthatthepressureatthevesselbottomexceeds1250psigforlessthan6secondswhichisnotlongenoughtotransferanyappreciableamountofheatintothevesselmetalwhichwasatatemperature'well'elow5500Fatthestart'fthe'=transient.TheODYNresult'sare'alsoshownonthesefigures.'he'more*extensivemodelpredictsevenmoresafetymargintotheallowablepressurelimitofthereactorvesselsystem.5.2.22~3.2Pressure~Do~inInletandDischargePressuredroponthepipingfromthereactorvesseltothevalvesistakenintoaccountincalculatingthemaximumvesselpressures.Pressuredropinthedischarge.piping.tothe"suppressionpoolislimited.byproperdischargelinesizingtopreventbackpressureoneachsafety/reliefvalvefromexceeding40%ofthevalveinletpressure,thusassuring'chokedflowin'hevalveorificeandnoreductionofvalvecapacityduetothedischargepiping.Eachsafety/reliefvalvehasitsownseparatedischargeline.5.2.2.3pagingSI~strumegtDiagramsFigure5.1-3isthePSIDfortheNuclearBoilerSystemincludingpressure-relievingdevices.Rev.26,9/815.2-7 SSES-FSAR~5..2.4.1DescriptionThe-nuclearpressurereliefsystemconsistsofsafety/reliefvalveslocatedonthemainsteamlinesbetweenthereactorvesselandthefirstisolationvalvewithinthedrywell.'hesevalvesprotectagainstoverpressureofthe-nuclearsystem.IThesafety/reliefvalvesprovidethree,mainprotectionfunctions:{1}Overpressurereliefoperation.Thevalvesopenautomaticallytolimitapressurerise.(2)Overpressuresafetyoperation.Thevalvesfunctionassafetyvalvesandopen{self-actuatedoperationifnotalreadyautomaticallyopenedforreliefoperation)topreventnuclearsystemoverpressurization.{3)Depressuzizationoperation.TheADSvalvesopenautomaticallyaspartoftheemergencyco'recooling,system:.(ECCS)foreventsinvolvingsmallbreaksin'henuclearsystemprocessbarrier.Thelocationand.numberoftheADSvalvescanbedeterminedfromFigure5.1-3.Chapter15discussestheeventswhichareexpectedtoactivatethe.primarysystemsafety/reliefvalves.Thechapteralsosummarizesthenumberofvalvesexpectedto-operateduringtheinitialblowdownofthevalvesandtheexpecteddurationofthisfirstblowdown.Forseveraloftheeventsitisexpectedthatthelowestsetsafety/relief,valvewillreopenandrecloseasgeneratedheatdropsintothedecayheatcharacteristics.ThepressureincreaseandreliefcyclewillcontinuewithlowerfrequencyandshorterreliefdischargesasthedecayheatdropsoffanduntilsuchtimeastheRHHsystemcandissipatethisheat.Thedurationofeachreliefdischargeshouldinmostcasesbe,less-than30seconds.Remotemanualactuationofthevalvesfromthecontrolroomisrecommendedtominimizethetotalnumberofthesedischarges,withtheintentofachievingextendedvalveseatlife.Aschematicofthesafety/reliefvalveisshowninFigure5.2-7.Itisopenedbyeitheroftwomodesofoperation:(1)Thespringmodeofoperationwhichconsistsofdirectactionofthesteampressureagainstaspring-loadeddiskthatwillpopopenwhenthevalveinletpressureforceexceedsthespringforce.Figure5.2-6diagramsthevalveliftvstimecharacteristic.Rev.26,9/815.2-8 SSES-FShR(2)Theposeractuatedmodeofoperationwhichconsistsofusinganauxiliaryactuatingdeviceconsistingofapneuaaticpiston/cylinderandmechanicallinkageasseliblywhichopensthevalvebyovercomingthespringforce,evenwithvalveinletpressureequaltozeropsigoRev.26,9/815.2-Sa SSES-FSAR(This=page'ntentionally-left'.blank)klIRev;26,9/815'.2-8b. SSES-FSARThepneumaticoperatorissoarranqedthatifitmalfunctionsitwillnetpreventthevalvediskfromliftingifsteaminletpressurereachesthesprinqliftsetpressure.Foroverpressuresafety/reliefvalveoperation(self-actuatedorsprinqliftmode),thesprinqloadestablishesthesafetyvalveopeninqsetpointpressureandissettoopenatsetpointsdesiqnatedinTable5.2-2.TheASMEcoderequiresthatfullliftofthismodeofoperationshouldbeattainedatapressurenoqreaterthan3'Xabovethesetpoint.Topreventbackpressurefromaffectingthespringliftsetpoint,eachvalveisprovidedwithadevicetocounteracttheeffectsofbackpressurewhichresultsinthedischargelinewhenthevalveisopenanddischarqinqsteam.Thesafetyfunctionofthesafety/reliefvalveisabackuptotherelieffunctiondescribedbelow.Thesprinq-loadedvalvesaredesiqnedinaccordancewithASMEIII,NB7640assafetyvalveswithauxiliaryactuatingdevicesandmanufacturedinaccordancewithASMESection'IIIClass.Icomponentrequirements.Foroverpressurereliefvalveoperation(poweractuatedmode),eachvalveisprovidedwithapressuresensingdevicewhichoperatesatthesetpointsdesiqnatedinChapter15.Whenthesetpressureisreached,itoperatesasolenoidvalvewhichinturnactuatesthepneumaticpiston/cylinderandlinkageassemblytoopenthevalveWhenthepiston'sactuated,thedelaytime,maximumelapsed,timebetweenreceivinqtheoverpressure-ignalatthevalveactuatorandtheactualstartofvalvemotion,willnotexceed0.lseconds.Themaximumfullstrokeopeningtimewillnotexceed0.15seconds.Thesafety/reliefvalvescanbeoperatedinthepoweractuatedmodebyremote-manualcontrolsfromthemaincontrolroom.Eachsafety/reliefvalveisprovidedwithitsownpneumaticaccumulatorandinletcheckvalve.Theaccumulatorcapacityissufficienttoprovideonesafety/reliefvalveactuation,whichisallthatisrequiredforoverpressureprotection.Subsequentactuationsforanoverpressureeventcanbespringactuationstolimitreactorpressuretoacceptablelevels.Thesafety/reliefvalvesaredesiqnedtooperatetotheextentrequiredfcroverpressureprotectioninthefollowinqaccidentenvironments:(1)340oFfor3hoursatdrywelldesignpressure52-9 SSZS-PSAR(2)3200Fforanadditional3hourperiod,atdrywelldesignpressure(3)250~Fforanadditional18hourperiod,at25psiq{4)200~Fdurinqthenext99daysat20psig.Thedura'tionofoperabilityistwodaysfollowingwhichthevalveswillremainfullyopenorclosedfortheremaininqtimeperiod.TheAutomaticDepressurization'ystem(ADS)utilizesselectedsafety/reliefvalvesfordepressurizationofthereactor(SeeSection7.3).Eachofthesafety/reliefvalvesutilizedforautomaticdepressurizationisequippedwithanairaccumulatorandcheckvalvearranqement.TheseaccumulatorsassurethatthevalvescanbeheldopenfollowingfailureoftheairsupplytotheaccumulatorsTheyaresizedtobecapableofopeningthevalvesandholdingthemopenagainstadrywellpressureof45psiqwiththereactorcompletelydepressurized.TheaccumulatorcapacityissufficientforeachADSvalvetoprovidetwoactuationsagainst31.5psigdrywellpressure.Eachsafety/reliefvalvedischargessteamthroughadischargelinetoapointbelowtheminimumwaterlevelinthesuppressionpool.Safetyreliefvalvedischargelinepipinqfromthesafetyreliefvalvetothesuppressionpoolconsistsoftwoparts.Thefirstpartisattachedatoneendtothesafetyreliefvalveandattachedatitsotherendtothecontainmentdiaphragmslabthrouqhapipeanchor.Themainsteampiping,includingthisportion'ofthesafetyreliefvalvedischargepiping,isanalyzedasacompletesystem.ThisportionofthesafetyreliefvalvedischargelinesisthereforeclassifiedasqualitygroupCandSeismicCategoryI.Thesecondpartofthesafetyreliefvalvedischargepipinqextendsfromtheupstreamanchortothesuppressionpool.Becauseoftheupstreamanchoronthispartoftheline,itisphysicallydecoupledfromthemainsteamheaderandisthereforeanalyzedasaseparatepipinqsystem.ZnanalyzingthispartofthedischarqepipinqinaccordancewiththerequirementsofqualityGroupCandSeismicCateqoryI,thefollowingloadcombinationwillbeconsideredasaminimum:PressureandtemperatureDeadweightFluiddynamicloadsduetoS/RvalveoperationAnchorrelativeseismic(SSE)movementNovementofthesafetyreliefvalvedischargelinewi11bemonitoredasapartofthepreoperationalandstartuptestingofthemainsteamlines,inaccordancewiththerequirementsofChapter14.52-10 SSES-FSARThesafety/reliefvalvedischargepipingisdesignedtolimitvalvecutletpressureto40%ofmaximumvalveinletpressurewiththevalvewideopen.Waterinthelinemorethanafewfeetabovesuppressionpoolwater-levelwouldcauseexcessivepressureatthevalvedischargewhenthevalveisagainopened.Forthisreason,avacuumreliefvalveisprovidedoneachsafety/reliefvalvedischarqelinetopreventdrawinganexcessiveamountofwaterupintothelineasaresultofsteamcondensationfollowinqterminationofreliefoperation.Thesafety/reliefvalvesarelocatedonthemainsteamlinepiping,ratherthanonthereactorvesseltophead,primarilytosimplifythedischargepipingtothepoolandtoavoidthenecessityofhavingtoremovesectionsofthispipingwhenthereactorheadisremovedforrefuelinq.Inaddition,valveslocatedonthesteamlinesaremoreaccessibleduringashutdownforvalvemaintenance.ThenuclearpressurereliefsystemautomaticallydepressurizesthenuclearsystemsufficientlytopermittheLPCIorCSsystemstooperateasabackupfortheHPCIsystem.FurtherdescriptionsoftheoperationoftheautomaticdepressurizationfeaturearefoundinSection6.3,andinSubsection7.3.1.1.1.522.4.2Des~inParametersTable5.2-3listsdesigntemperature,pressure,andmaximumtestpressurefortheRCPBcomponents.ThespecifiedoperatingtransientsfcrcomponentswithintheRCPBaregiveninTable3.9-15.RefertoSection3.7fordiscussionoftheinputcriteriafordesiqnofSeismicCategoryIstructures,systems,andcomponents.ThedesignrequirementsestablishedtoprotecttheprincipalcomponentsofthereactorcoolantsystemagainstenvironmentaleffectsarediscussedinSection3.11.5.2.2.4.2.1Safety/ReliefValveThedischarqeareaofthevalveis16.117squareinchesandthecoefficientofdischargeKisegualto0.966.Thediameterandlengthof.thedischargepipefromeachvalvetothedischargedeviceinthesuppressionpoolisdefinedintheDesignAssessmentReport(DAR),Table1.3-2.Thedischargepiperoutingwithinthesuppressionchamber.isshownintheDAR,Figures1.3-2throuqh1.3-4.Thedesignpressureandtemperatureofthevalveinletandoutletare1250psig8575~Fand550psig8500OF,respectively.5.2-11 SSES-FSARCyclictestinqhasdemonstratedthatthevalvesarecapableofatleast60actuationcyclesbetweenrequiredmaintenanceSeeFiqure5.2-7foraschematiccrosssectionofthevalve.52.2.5MountingofPressureReliefDevicesThepressurereliefdevicesarelocatedonthemainsteampipingheader.Themountingconsistsofaspecial,contournozzleandanover-sizedflangeconnection.Thisprovidesahighintegrityconnectionthataccountsforthethrust,bendingandtorsionalloadinqswhichthemainsteampipeandreliefvalvedischargepipearesubjectedto.Thisincludes:(1)Thethermalexpansioneffectsoftheconnectingpiping.(2)ThedynamiceffectsofthepipingduetoSSE.(3)Thereactionsduetotransientunbalancedwaveforcesexertedonthesafety/reliefvalvesduringthefirstfewsecondsafterthevalveisopenedandpriortothetimesteady-stateflowhasbeenestablished.{Withsteady-stateflow,thedynamicflowreactionforceswillbeself-eguilibratedbythevalvedischargepiping).(4)Thedynamiceffectsofthepipingandbranchconnectionduetotheturbinestopvalveclosure.Innocasewillallowablevalveflangeloadsbeexceedednorwillthestressatanypointinthepipingexceedcodeallowablesforanyspecifiedcombinationofloads.ThedesigncriteriaandanalysismethodsforconsideringloadsduetoSRVdischargeiscontainedinSubsection3.9.3.3.5.2.26~AlicableCodesandClassificationThevesseloverpressureprotectionsystemisdesignedtosatisfytherequirementsofSectionIII,NuclearVessels,oftheASMEBoilerandPressureVesselCode.ThegeneralrequirementsforprotectionagainstoverpressureasgiveninArticle9ofSectionIIIoftheCoderecognizethatreactorvesseloverpressureprotectionisonefunctionofthereactorprotectivesystemsandallowstheintegrationofpressurereliefdeviceswiththeprotectivesystemsofthenuclearreactor.Hence,creditistakenforthescramprotectivesystemasacomplementarypressureprotectiondevice.TheNRChasalsoadoptedtheASMECodesaspartoftheirrequirementsintheCodeofFederalRegulations(10CFR50.55A).52-12 SSES-FSARPressureretainingcomponentsofvalvesinQualityGroupAareconstructedonlyfromASMEdesignatedmaterials.52.2.8ProcessInstrumentationOverpressureprotect.ionprocessinstrumentationisshownonFigure5.1-3.5.2.29SystemReliabili~tThissystemisdesignedtosatisfythereguirmentsofSectionIIIoftheASMEBoilerandPressureVesselcode,therefore,ithashighreliability.Theconsegue'ncesoffailurearediscussedinsubsections15.1.4and15.6.1.5.2.2.10In~sectionandTestingThesafety/reliefvalvesaretestedatthevendor'sshopinaccordancewithqualitycontrolprocedurestodetectdefectsandtoproveoperabilitypriortoinstallation.Thefollowingtestsareconducted:(l)Hydrostatictestatspecifiedtestconditions.(2)Pneumaticseatleakagetestat90%ofsetpressure,withmaximumpermittedleakageof30bubblesperminuteemittingfroma0.250-indiameterholesubmerged1/2in.belowawatersurfaceoranequivalenttestusinganapprovedtestmedium.(3)Setpressuretest:valvepressurizedwithsaturatedsteam,withthepressurerisingtothevalvesetpressure.Valvemustopenatnameplatesetpressure+lX(4)Responsetimetest:eachsafety/reliefvalvetestedtodemonstrateacceptableresponsetime.Thevalvesareinstalledasreceivedfromthefactory.TheGEequipmentspecificationrequirescertificationfromthevalvemanufacturerthatdesignandperformancereguirementshavebeenmet.Thisincludescapacityandblowdownrequirements.Theset5.2-13 SSES-FSABpoint"areadcrusted,verified,andindicatedonthevalvesbythevendor.Specifiedmanualandautomaticactuationreliefmodeofeachsafety/relief-valveisverifiedduringthepreoperationaltestproqram.ltisnotfeasibletotestthesafety/reliefvalvesetpointswhilethevalvesareinplace.Thevalvesaremountedon1500-lbprimaryserviceratingflanges.Theycanberemovedformaintenanceorbenchchecksandreinstalledduringnor'malplantshutdowns.ThevalveswillbetestedtochecksetpressureinaccordancewiththerequirementsofChapter16.Theexternalsurfaceandseatingofallsafety/reliefvalvesare100%visuallyinspectedwhenthevalvesareremovedfo"maintenanceorbenchchecks.ValveoperabilityisverifiedduringtnepreoperationaltestproqraminaccordancewiththerequirementsofChapter14.5.2.3REACTORCOOLANTPRESSUREBOUNDARYNATEBIALS5.2.3.1lfaterialSpecificationsTable52-4liststheprincipalpressureretainingmaterialsandtheappropriatematerialspecificationsforthereactorcoolantpressureboundarycomponents.5.2.3.2CompatibilitywithReactorCoolant5.2.3.2.1PARChemistryofReactorCoolantNotapplicabletoBNRs.5.2.3.2.2BMRChemistryofReactorCoolantThecoolantchemistryrequirementsdiscussedinthissubsectionareconsistentwiththe"equiementsofRegulatoryGuide1.56(6/73).materialsintheprimarysystemareprimarilyausteniticstainlesssteelandZircaloycladding.Thereactorwaterchemistrylimitsareestablishedtoprovideanenvironmentfavorabletothesematerials.Limitsareplacedonconductivityandchlorideconcentrations.Conductivityislimitedbecauseitcanbecontinuouslyandreliablymeasuredandgivesanindicationofabnormalconditionsandthepresenceofunusualmaterialsinthecoolant.Chloridelimitsarespecifiedtopreventstress5~2-14 SSES-PSARcorrosioncrackingofstainlesssteel.Porfurtherinformation,seeReference5.2-2.Severalinvestigationshaveshownthatinneutralsolutionssomeoxygenisrequiredtocausestresscorrosioncrackingofstainlesssteel,whileintheabsenceofoxygennocrackingoccurs.Oneoftheseisthechloride-oxygenrelationshipofMilliamsfReference5.2-3),whereitisshownthatathighchlorideconcentrationlittleoxygenisrequiredtocausestresscorrosioncrackingofstainlesssteel,andathighoxygenconcentrationlittlechlorideisrequiredtocausecrackingThesemeasurementsweredeterminedinawettinganddryingsituationusingalkaline-phosphate-treatedboi.lerwaterand,therefore,areoflimitedsiqnificancetoBMRconditions.Theyare,howeveraqualitativeindicationoftrendsThewaterqualityrequirementsarefurthersuppoztedbyGeneralElectricstresscorrosiontestdatasummarizedasfollowsoType304stainlesssteelspecimenswereexposedinaflowinqloopoperatingat537~FThewatercontained1.5ppmchlozideand1.2ppmoxygenatpH7.Testspecimenswerebentbeamstripsstressedovertheiryieldstrength.After2100hoursexposure,nocrackingorfailuresoccurredoMeldedType-304stainlesssteelspecimenswereexposedinarefreshedautoclaveoperatingat550~F-Thewatercontained0.5ppmchlorideandl.5ppmoxygenatpH7Uniaxialtensiletestspecimenswerestressedat125%oftheiz550~Pyieldstrength.Nocrackingorfailuresoccurredat15F000hoursexposureMhenconductivityisinitsnormalrange,pH,chlorideandotherimpuritiesaffectinqconductivitywillalsobewithintheirnormalzanqe.Mhenconductivitybecomesabnormal,chloridemeasuzementsaremadetodeterminewhetherornottheyarealsooutoftheirnormaloperatingvalues.ConductivitycouldbehighduetothepresenceofaneutralsaltwhichwouldnothaveaneffectonpHorchloride.Insuchacase,highconductivityaloneisnotacauseforshutdown.Insometypesofwater-cooledreactors.conductivitiesarehighbecauseofthepurposefuluseofadditives.InBMRs,however,wherenoadditivesareusedandwherenearneutralpHismaintained,conductivityprovidesagoodandpromptmeasureofthequalityofthereactorwater.Significantchanqesinconductivityprovidetheoperatorwithawarninqmechanismsohecaninvestigateandremedytheconditionbeforereactorwaterlimitsarereached.Methodsavailabletotheoperatorforcorrectinqtheoff-standardconditionincludedoperationofthereactorwatercleanupsystem,reducingtheinputofimpurities,andplacingthereactorinthecoldshutdown52-15 SSES-FSARcondition.Themajorbenefitofcoldshutdownistoreducethe'emperaturedependentcorrosionratesandprovidetimeforthecleanupsystemtoreestablishthepurityofthereactorcoolant.ThefollowingisasummaryanddescriptionofBWRwaterchemistryforvariousplantconditions.Normalpla~ntoarationTheBMRsystemwaterchemistryisconvenientlydescribedbyfollowingthesystemcycleasshownonFigure5.2-8.ReferencetoTable5.2-5hasbeen-madeasnumberedonthediagramandcorrespondinglyinthetable.Fornormaloperationstartingwiththecondenser-hotwell,condensate~aterisprocessedthroughacondensatetreatmentsystem.Thisprocessconsistsoffiltrationanddemineralization,resultingineffluentwaterqualityrepresentedinTable52-5.Theeffluentfromthecondensatetreatmentsystemispumpedthroughthefeedwaterheatertrain,andentersthereactorvesselatanelevatedtemperatureandwithachemicalcompositiontypicallyasshowninTable5.2-5.Duringnormalplantoperation,boilingoccursinthereactor,decompositionofwatertakesplaceduetoradiolysis,andoxygenandhydrogengasisformed.Duetosteamgeneration,strippingofthesegasesfromthewaterphasetakesplace,andthegasesarecarriedwiththesteamthroughtheturbinetothecondenser.Theoxygenlevelinthesteam,resultingfrcmthisstrippinqprocess,istypicallyobservedtobeabout20'ppm(seeTable5.2-5).Atthecondenser,deaerationtakesplaceandthegasesareremovedfromtheprocessbymeansofsteamjetairejectors(SJAEs).Thedeaerationiscompletedtoalevelofapproximately20ppb(002ppm)oxygen.inthecondensate.Thedynamicequilibrium,inthereactorvesselwaterphase,establishedbythesteam-qasstrippingandtheradiolyticformation(principally)rates,correspondstoanominalvalueofapproximately200ppb(0.2ppm)ofoxygenatratedoperatingconditions.Slightvariationsaroundthisvaluehavebeenobservedasaresultofdifferencesinneutronfluxdensity,core-flowandrecirculationflowrate.Areactorwatercleanupsystemisprovidedforremovalofimpuritiesresultinqfromfissionproducts.formedintheprimarysystem.Thecleanupprocessconsistsof5.2-16 SSES-FSARfiltrationandionexchange,andservestomaintainahiqhlevelofwaterpurityinthereactorcoolant.TypicalchemicalparametricvaluesforthereactorvaterarelistedinTable5.2-5forvariousplantconditions.AdditionalvaterinputtothereactorvesseloriginatesfromtheControlRodDrive(CRD)coolingwater.TheCRDwaterisessentiallyfeedvaterquality.SeparatefiltrationforpurificationandremovalofinsolublecorrosionproductstakesplacewithintheCRDsystempriortoenterinqthedrivemechanismsandreactorvessel.Nootherinputsofvaterorsourcesofpresentduringnormalplantoperation.conditionsotherthannormaloperationandmechanismsarepresentasoutlinedsection.oxygenareDuringplantadditionalinputsiinthefollowing(2)PlantConditionsOutsideNormal0erationDuringperiodsofplantconditionsotherthannormalpowerproductiontransientstakeplace,particularlywithregardstotheoxygenlevelsintheprimarycoolant.Systemsotherthanthereactorarenotaffectedsignificantlytoimpactprimarysystemcomponentsorsubsequentoperation.Inessence,dependingonwhattheplantconditionis,i.e.,hotstandbywith/withoutreactorvesselventingorplantshutdown,thehotwellcondensatevillabsorboxygenfromtheairwhenvacuumisbrokenonthecondenser.Priortostartupandinputoffeedwatertothereactor,vacuumisestablishedinthecondenseranddeaerationofthe.condensatetakesplacebymeansofmechanicalvacuumpumpandsteamjetairejector(SJAE)operationandcondensaterecirculation.Duringtheseplantconditions,continuousinputofcontrolroddrive(CRD)coolingwatertakesplaceasdescribedpreviously.a)PlantD~eressurizedandReactorVentedDuringcertainperiodssuchasduringrefuelingandmaintenanceoutages,thereactorisventedtothecondenseroratmosphere.Underthesecircumstancesthereactorcoolsandtheoxygenconcentrationincreasestoamaximumvalueof8ppm.Equilibriumbetveentheatmosphereabovethereactorwatersurface,theCRDcooling~aterinput,anyresidualradiolyticeffects,andthebulkreactorwaterwill5.2-17 SSES-FSABbeestablishedaftersometime.Nootherchangesinwaterchemistryofsignificancetakeplaceduringthisplantconditionbecausenoappreciableinputstakeplace.b)PlantTransientConditionsPlantStart~ugShutdownDuringtheseconditions,nosignificantchangesinwaterchemistryotherthanoxygenconcentrationtakeplace.Dependingonthedurationoftheplantshutdownpriortostartupandwhetherthereactorhasbeenvented,theoxygenconcentrationcouldbethatofairsaturatedwater,i.e.,+8ppmoxygen.Followingnuclearheatupinitiation,theoxygenlevelinthereactorwatervilldecreaserapidlyasafunctionofwatertemperatureincreaseandcorrespondingoxygensolubilityinwater.Theoxygenlevelwillreachaminimumofabout20ppb{0.02ppm)atacoolanttemperatureofabout380F,atwhichpointanincreasewilltakeplaceduetosignificantradiolyticoxygengeneration.Fortheelapsedprocessuptothispointtheoxygenisdegassedfromthewaterandisdisplacedtothesteamdomeabovethewatersurface.Furtherincreaseinpowerincreasestheoxygengenerationaswellasthetemperature.Thesolubilityofoxygeninthereactorwaterattheprevailingtemperaturecontrolstheoxygenlevelinthecoolantuntilratedtemperature(w540OF)isreached.Thus,aqradualincreasefromtheminimumlevelof20ppbtoamaximumvalueofabout200ppboxygentakesplace.At,andafterthispoint{540OF)steamingandtheradiolyticprocesscontrolthecoolantoxygenconcentrationtoalevelofaround200ppb.(ii)PlantShutdownUponplantshutdownfollowingpoweroperation,theradiolyticoxygengenerationessentiallyceasesasthefissionprocessisterminated.5.2-18

SSES-FSARacidcanbecalculated,seeFigure5.2-9.Valuesforthesecompoundsessentiallybracketvaluesofothercommonchloridesaltsormixturesatthesamechlorideconcentration.Surveillancerequirementsarebasedontheserelationships.Inadditiontothisprogram,limits,monitoringandsamplingrequirementsareimposedonthecondensate,condensatetreatmentsystemandfeedwaterbywarrantyrequirementsandspecifications.Thus,atotalplantwaterqualitysurveillanceproqramisestablishedprovidingassurancethatoffspecificationconditionswillquicklybedetectedandcorrected.Thesamplingfrequencywhenreactorwaterhasalowspecificconductanceisadequateforcalibrationandroutineauditpurposes.Mhenspecificconductanceincreases,andhigherchlorideconcentrationsarepossible,orwhencontinuousconductivitymonitoringisunavailable,increasedsamplingisprovided.Forthehiqherthannormallimitsof<1pmho/cmmorefrequentsamplingandanalysesareinvokedbythecoolantchemistrysurveillanceprogram,seeTable5.2-5.Theprimarycoolantconductivitymonitoringinstrumentation,ranges,accuracysensorandindicatorlocationsareshowninTable5.2-7.Thesamplinqiscoordinatedinareactorsamplestationespeciallydesiqnedwithconstanttemperaturecontrolandsampleconditioningandflowcontrolequipment.MaterPurit~Dur~inaCondenserLeakageThecondensatecleanupsystemisdesignedtomaintainthereactorwaterchlorideconcentrationbelow200ppbduringacondensertubeleakof23qallonsperminuteindefinitely.Thecondensatecleanupsystemwillsustainaneffluentconductivityof0.15'micromhowitha46gpmcondenserleakwhenthecirculatingwatercontains1000ppmofTDS.RefertoSubsection104.6.Toprotectagainstamajorcondensertubeleak,sufficientinstrumentationisprovidedtomaintainareserveof50percentofthetheoreticalionexchangecapacityduringnormaloperationperRequlatoryGuide156.52-20 SSES-FSAR5.2.3.2.3CompatibilityofConstructionMaterialswithReactor'CoolantThematerialsofconstructionexposedtothereactorcoolantconsistofthefollowing:=(1)Solutionannealedausteniticstainlesssteels(bothwroughtandcast)Types304,304L,316and316L(2)Nickelbasealloys-Inconel600andInconel750X(3)Carbonsteelandlowalloysteel.(4)Some400seriesmartensiticstainlesssteel(alltemperedataminimumof.11000F).(5)ColmonoyandStellitehardfacingmaterial.AllofthesematerialsofconstructionareresistanttostresscorrosionintheBWRcoolant.Generalcorrosiononallmaterials,exceptcarbonandlowalloysteel,isnegligible.Conservativecorrosionallowancesareprovidedforallexposedsurfacesofcarbonandlowalloysteels.5.2.3.2.4CompatibilityofConstructionMaterialswithExternalInsulationandReactorCoolantThematerialsofconstructionexposedtoexternalinsulationare:(1)Solutionannealedaustentiticstainlesssteels.Types304,304Land316.(2)Carbonandlowalloysteel.TwotypesofexternalinsulationareemployedonBWRs.Reflectivemetalinsulationuseddoesnotcontributetoanysurfacecontaminationandhasnoeffectonconstructionmaterials.Nonmetallicinsulationusedonstainlesssteelpipingandcomponentscomplieswiththerequirementsofthefollowingindustrystandards:(1)ASTMC692-71,StandardMethodsforEvaluatingStressCorrosionEffectsofWickingTypeThermalInsulationonStainlessSteel(DanaTest).(2)RDT-M12-1T,TestRequirementsforThermalInsulatingMaterialsforUsecnAusteniticStainlessSteel,Section5(KAPLTest)52-21 SSES-FSARChemicalanalysesarerequiredtoverifythattheleachablesodium,silicate,andchloridearewithinacceptablelevelsInsulaticnispackaqedinwaterproofcontainerstoavoiddamageorcontaminationduringshipmentandstorageSincetherearenoadditivesintheBMRcoolant,leakagewouldexposematerialstohighpurity,demineralizedwater.Exposuretodemineralizedwaterwouldcausenodetrimentaleffects.5.23.3pabricationandproces~sinofFerriticmaterials5.2.3.3.1FractureToughnessFracturetoughnessreguirementsfortheferriticmaterialsusedforpumpspipingandvalvesofthereactorcoolantpressureboundarywereasfollows:Thepumpcomponentsexceptforthebolting,areausteniticstainlesssteel.TheboltingmeetsSectionIIIofASMEBSPVCode,Summer1971Addendawhichrequiresimpacttestingtobeperformedat10oF.Safety/ReliefValveswereexemptedfromfracturetoughnessrequirementsbecauseSectionIIIofthe1971ASMEBoilerandPressureVesselCodedidnotrequireimpacttestingonvalveswithinletconnnectionsof6inchesorlessnominalpipesize.MainSteamIsolationValveswerealsoexemptedbecausetheCodeexistinqatthetimeofthepurchase,ASMESectionIIISummer197lAddenda'didnotreguirebrittlefracturetestingonferriticpressureboundarycomponentswhenthesystemtemperaturewasinexcessof2500Fat20%ofthedesignpressure.MainSteamPipingwastestedinaccordancewithandmetthefracturetoughnessrequirementsofparagraphNB-2300ofthe1972SummerAddendatoASMECode,SectionIII,theapplicablecodeatthetimeofthepurchaseorder.5.2.3.3.1.1CompliancewithCodeR~euirementsTheferriticpressureboundarymaterialofthereactorpressurevesselwasqualifiedhyimpactte'stinginaccordancewiththe1968EditionofSectionIIIASMECodeandAddendatoandincludinqtheSummer1970Addenda.Fromanoperationa1standpoint,thisCedewouldrequirethatforanysignificantpressurization(takentobemorethan20'AofCodehydrostatictestpressure=312psig)theminimummetaltemperatureofallvesselshellandheadmaterialbe100~F(NDTT+60<F).5.2-22 SSES-FSAR5.2.33.l.2AcceptableFractureEnemyLevelsOperatinqlimitsonreactorvesselpressureandtemperaturedurinqnormalheatupandcooldovn,andduringinservicehydrostatictesting,veceestablishedusingasaguideAppendixG,Summer1972Addenda,ofSectionIIIoftheASNEBoilerandPressureVesselCode,1971Edition.Theseopecatinqlimitsvillassurethatalargepostulatedsurfaceflav,havingadepthofone-quarterofthematerialthickness,canbesafelyaccommodatedinregionsofthevesselshellremotefromdiscontinuities.Inadditionthespecificadditionalmarginsrequiredby10CFR50,AppendixG,paragraphIV.A.2.careincludedintheoperatinglimitsforcoreoperations.Forthepurposeofsettingtheseoperatinglimits,thereferencetemperature,RTNDT,vasdeterminedfcomtheimpacttestdatatakeninaccordancewithrequirementsoftheCodeto'whichthisvesselisdesiqnedandmanufactured.ThedropveightNDTtemperaturewasusedasthereferencetemperature.Thehiqhest.ceferencetemperatureofanypartofthereactorpressurevesselpressureboundarymaterialvasusedasthereferencetemperatureforcalculatingonesetofoperatingtemperatureandpressurelimitsfortheshellremotefromthecorebeltlineregion.Asecondsetoftemperatureandpressurelimitsforthecorebeltlinereqionvascalculatedbasedonthecorebeltlineregionmaterialreferencetemperature.TherequirementsoftheCodetovhichthevesse1wasdesignedandmanufacturedcesultsinathirdsetofvesselshelltemperaturepressurelimits;namely,NDTT+60ForCVN+60Fatpressureqreaterthan20Aofpreoperationalsystemhydrostatictestpressure.Themoreconservativeoftheabovethreelimitsvasusedtosetpressureandtemperaturelimitsforthevesselshell.5.2.3.3.1.3OpecatinqLimitsDuringHeatup,Cooldovn,andCoreOperationSince1000F/houristhemaximumaveragenormalheatuporcooldownratefocvhichthereactorvesselisdesiqned,aconservativefracturetoughnessanalysiswasdoneforthisassumedrateThemaximumtemperaturegradientthroughthevalicorrespondingtothisratevasconsidered.Theresultsofthisanalysisareasetofoperatinglimitsfornon-nuclearheatuporcooldovnfollowinqnuclearshutdown,andanothersetforoperatinglimitsforoperationwheneverthecoreiscritical(exceptforlowlevelphysicstests).5.2-23 SSES-PSAR5.2.3.3.1.4TemperatureLimitsforISIHydrostaticorLeakPressureTestsThefracturetoughnessanalysisforpressuretestsresultedinthecurvesshownonPiqure5.3-4ofminimumvesselshellandheadtemperaturesversusvesselpressureasmeasuredinvesseltophead.Thedashedlinecurve,beltlineregion,isbasedonanassumedinitialRTNDTof+100P,thepredictedshiftintheRTfromFigure5.3-5basedonneutronfluenceat1/4ofvesselwallthicknessmustbeaddedtothebeltlinecurvetoaccountfortheeffectoffastneutronsonthebeltlinematerialproperties.Thecurveforareasremotefromthebeltline(uppercurve)isbasedonanassumedRTgDTof+400P.Thecontrollingminimumtemperatureforadesiredpressureisthenselectedasthegreaterofthesolidcurveorthedashedcurveplustheshift.5.2.3.31.5Te~meratureLimitsforBoltugMinimumclosureflangeandclosurestudtemperaturesof70op(NDTT+60oP)arerequiredwhenevertheclosurestudsareunderpreloadorarebeingtensioned52.3.3.16ReactorVesselnnneali~nIn-placeannealingofthereactorvesselbecauseofradiationembrittlementisunnecessarysincethepredictedvalueintransitionofadjustedreferencetemperaturewillnotexceed200oF-see10CPR50,AppendixG,ParagraphIV.C.5.23.32:Controloffielding5.23.3.2.1ControlofPreheatTemperatureEmployedforifeldingofLowAlloySteel.Regu'latoryGuidel.50.gRev.~0Theuseoflowalloysteelisrestrictedtothereactorpressurevessel.Otherferriticcomponentsinthereactorcoolantpressureboundaryarefabricatedfromcarbonsteelmaterials.Preheattemperaturesemployedfor'eldingoflowalloysteelmeetorexceedtherecommendationsofASMESectionIII,SubsectionNA.Componentswereeitherheldforanextendedtimeatpreheattemperaturetoassureremovalofhydrogen,orpreheatwasmaintaineduntilpostweldheattreatment.Theminimumpreheatandmaximuminterpasstemperatureswerespecifiedandmcnitored.5.2-24 SSES-FSARAllveldsverenondestructivelyexaminedbyradiographicmethods.Inaddition,asupplementalultrasonicexaminationvasperformed.5.2.3.3.2.2ControlofElectroslagWeldPropertiesl-NoelectroslagveldingwasperformedonBWRcomponents.5.2.3.3.2.3WelderQualificationforAreasofI.imitedAccessibili~tReulatorGuide1.7~1RevOgFornon-NSSSitems,refertoresponsetoRegulatoryGuide171inSection3.13TherearefewrestrictedaccessweldsinvolvedinthefabricationofNSSSreactorcoolantpressureboundarycomponents.Welderqualificationforveldswiththemostrestrictedaccessvasaccomplishedbymock-upwelding.Nock-upsvereexaminedwithradiographyorsectioning.5.2.3.3.3NondestructiveExaminationofFerriticTubularProductsPornon-NSSSitems,refertoresponsetoRegulatoryGuide1.66inSection3.13WroughttubularproductsweresuppliedinaccordancewithapplicableASTN/ASNEmaterialspecifications.Thesespecificationsrequireahydrostatictestoneachlengthoftubingorpipe.ThesecomponentsmetthereguirementsoftheASMECodesexistingatthetimeofplacementoforderwhichpredateRegulatoryGuide1.66.(Rev.0)5.2.34FabricationandProcessingofAusteniticStainlessSteelsPornon-NSSSitems,refertoresponsetoRegulatoryGuide1.44inSection3.1352-25 SSES-FSAR5.2.3.4.1AvoidanceofStressCorrosionCracki~n5.2.3.4.1.1AvoidanceofSignificantSensitizationAllausteniticstainlesssteelwaspurchasedinthesolutionheattreatedconditioninaccordancewithapplicableASIDEandASTNspecifications.Carboncontentwaslimitedto0.08%maximum,andcoolinqratesfromsolutionheattreatingtemperatureswererequiredtoberapidenouqhtopreventsensitization.Meldinqheatinputwasrestrictedto110,000joulesperinchmaximum,andinterpasstemperatureto3500F.Highheatweldingprocessessuchasblockweldinqandelectroslagweldingwerenotpermitted.Allweldfillermetalandcastinqswererequiredbyspecificationtohaveaminimumof5%ferrite.Hheneveranywroughtausteniticstainlesssteelwasheatedtotemperaturesover800oF,bymeansotherthanweldingorthermalcutting,thematerialwasre-solutionheattreated.Thesecontrolswereusedtoavoidseveresensitization.CompliancewithRegulatoryGuide1.44(5/73)isdiscussedinSection3.13.5.2.3.4.l.2ProcessControlstoMinimize~EmosntetoContaminantsExposuretocontaminantscapableofcausingstresscorrosioncrackingofausteniticstainlesssteelcomponentswasavoidedbycarefullycontrollinqallcleaningandprocessinqmaterialswhichcontactthestainlesssteelduringmanufactureandconstruction.Specialcarewasexercisedtoinsureremovalofsurfacecontaminantspriortoanyheatingoperations.Haterqualityforcleaning,rinsinq,flushing,andtestingwascontrolledandmonitored.Suitablepackagingandprotectionwasprovidedforcomponentstomaintaincleanlinessduringshippingandstorage.ThedeqreeofsurfacecleanlinessobtainedbytheseproceduresmeetstherequirementsofRegulatoryGuidesl.44(5/73)and1.37(3/73)-5.2.3.4.1.3ColdMorkedAusteniticStainlessSteelsAusteniticstainlesssteelswithayieldstrengthgreaterthan90,000psiarenotused.5.2-26 SSES-FSAH5.2.3.4.2ControlofWcldin'ornon-NSSSitems,refertoresponsetoRegulatoryGuide1.31inSection3.13.5.2.3.4.2.1AvoidanceofHotCrackingAllausteniticstainlesssteelfillermaterialswererequiredbyspecificationtohaveaminimumof5%ferrite.Thisamountofferriteisconsideredadequatetopreventhotcrackinginausteniticstainlesssteelwelds.AnextensivetestproqramperformedbyGeneralElectricCompany,withtheconcurrenceoftheRequlatoryStaff,hasdemonstratedthatcontrcllinqweldfillermetalferriteat5>minimumproducesproductionweldswhichmeettherequirementsofRequlatoryGuidel.31,(Rev.1).Atotalofapproximately400productionweldsinfiveBWRplantsweremeasuredandallweldsmettherequirementsoftheInterimRegulatoryPositiontoRegulatoryGuide1.31.52.3.4.2.2Electrosl~afieldsElectroslaqweldinqwasnotemployedforreactorcoolantpressureboundarycomponents.5.2.3.4.23WelderQualificationforAreasofLimitedAccessibility.Regulato~rGuide1.71.QRev0}Fornon-NSSSitems,refertoresponsetoRegulatoryGuide1.71inSection3.13.Therearefewrestrictiveweldsinvolvedint.hefabricationofNSSSreactorcoolantpressureboundarycomponents.Welderqualificationforweldswiththemostrestrictiveaccesswasaccomplishedbymock-upweldinq.Nock-upswereexaminedwithradiographyorsectioninq.5.2.3.4.3NondestructiveExaminationofTubulazProducts.RegulatoryGuide1.66.QRev.OJFornon-NSSSitems,refertoresponsetoREgulatoryGuide1.66inSection3.13.WroughttubularproductsweresuppliedinaccordancewithapplicableASTN/'ASIDEmaterialspecifications.These5.2-27 SSES-FSARspecificationsrequireahydrostatictestoneachlengthoftubing.Additionally,thespecificationforthetubularproductusedforCRDhousingsspecifiedultrasonicexaminationtoparagraphNB-2550ofASNECodeSectionIII.ThesecomponentsmettherequirementsofASNECodesexistingattimeofplacementoforder.5.24IN-SERVICEINSPECTIONANDTESTINGOFREACTORCCQLANTPRESSUREBOUNDARYTheconstructionpermitsfortheSusquehannaSBSwere.issuedinNovember,1973.Relatinqthisdatetotherequirementsof10CFR50.55a(g),thepreserviceexaminationprogramwithprovisionsfordesignandaccessshouldcomply,asaminimum,withthe1971EditionoftheASIDEBGPVCodeSectionXIincludingtheSummer1972Addenda..TheSusquehannaSESpreserviceexaminationprogramwillnotbeconductedtotheminimumrequirementsof10CFR50.55a(q)butrathertothemorecurrent1974EditionofSectionXIincludingtheWinter1975AddendafortheRPVandtheSummer1975addendaasmodifiedbyAppendixIIIfromtheWinter1975addendaandIHA-2232fromtheSummerl976addendaforthepipingsystemstotheextentpracticalwithinthelimitationsofdesign,geometry,andmaterialsofconstructionofthecomponent.ThroughouttheservicelifeoftheSusquehannaSES,componentsandtheirsupportsclassifiedasASNECodeClass1,Class2orClass3,exceptforcomponentsexcludedunder'HB-1220,IHC-1220,andIWD-2600(c),willmeettherequirements,exceptdesignandaccessprovisions,setforthinEditionsofSectionXIoftheASIDEBGPVCodeandAddendathatbecameeffectivesubsequenttotheeditionsspecifiedaboveandareincorporatedbyreferencein10CFR50.55a(q),andtotheextentpracticalwithinthelimitation-ofdesign,geometry,andmaterialsofconstructionofthecomponent.Theinitialin-serviceexaminationsconductedduringthefirst40monthswillcomply,totheextentpractical,withtherequirementsoftheASMEBGPVCodeSectionXIandAddendaincorporatedbyreferencein10CPR50.55a(g)andineffectnomorethansixmonthspriortothestartingdateofeachunitofSusquehannaSEScommercialoperation.Thein-serviceexaminationsconductedduringsuccessive40-monthperiodsthroughouttheservicelifeoftheSusquehannaSESwillcomply,totheextentpracticalwiththerequirementsoftheASIDEBGPVCodeSectionXIandAddendaincorporatedbyreferencein10CFR50.55a(q)andineffectnomorethansixmcnthspriortothestartofeach40-monthperiod.5.2-28 SSES-FSAH5.2.4.1SystemBoundarySubecttoInsectionTheinspectionrequirementsofSectionXIoftheCodearemetforallClass1pressure-containingcomponents(andtheirsupports)exceptforcomponentsexcludedunderIMB-1220ofSectionXI.Thesystemboundaryincludesallpressurevessels,piping,pumps,andvalvesthatarepartofthereactorcoolantsystem,orconnectedtothereactorcoolantsystem,uptoandincluding:a)Theoutermostcontainmentisolationvalveinsystempipinqthatpenetratestheprimaryreactorcontainmentb)Thesecondoftwovalvesnormallycloseddurinqnormalreactoroperationinsystempipingthatdoesnotpenetrateprimaryreactorcontainment,c)Thereactorcoolantsystemsafetyandreliefvalves.5.24.~AccessibilityThedesiqnandarrangementofsystemcomponentsareinaccordancewithIMA-1500,"Accessibility",ofthe1971EditionofSectionXI.Adequateclearancesforgeneralaccessareprovidedasfollows:a)Sufficientspaceisprovidedforpersonnelandequipmenttcperforminspections.b)Provisionsaremadefortheremovalandstorageofstructuralmembers,shieldingcomponents,andinsulatingmaterials,topermitaccesstothecomponentsbeing.inspected.c)Provisionsaremadeforhoistsandotherhandlingmachineryneededtohandleitemsin(b),above.d)Provisionsaremadeforalternativeexaminationsifstructuraldefectsorindicationsrevealthatsuchexaminationsarerequired.e)Provisionsaremadeforthenecessaryoperationsassociatedwithrepairorreplacementofsystemcomponentsandpiping.Pipinqsystemsrequirinqvolumetricultrasonicinspectionaredesignedsothatweldsrequiringinspectionarephysicallyaccessibleforinspectionandultrasonicequipment.Accessisprovidedbyleavingadequatespacearoundpipesattheseweldsandbyremovinginsulationandshieldingasrequired.5.2-29 SSES-FSARThesurfacesofweldsrequiringultrasonicexaminationhavebeenqroundandcontouredtopermiteffectiveuseofultrasonictransducers,andtominimizegecmetricreflectorsthatcouldbemisinterpretedasflaws.Pipingsystemsrequiringsurfaceorvisualexaminationaredesignedtoallowaccessandvisibilityadequateforperformanceofsuchexaminations.Accessisprovidedtoreactorvesselcomponentstomeet,asaminimum,theexaminationrequirementsofASMESectionXZasoutlinedabove.Becausehighpotentialradiationlevelsinthevicinityofthereactorvessellimitaccesstothevessel,considerationsformeetingASMESectionXIhavebeenincorporatedintotheplantdesignasfollows:a)Anannularspace(8-in.minimum)sufficienttoaccommodateremotelyoperatedinspectionequipmentisprovidedbetweenthereactorvesselshellandthethermalinsulationforareasbehind.thereactorshieldwall.b)Removablesectionsofthermalinsulationandopeningsinthereactorshieldwithhingedshieldplugsareprovidedtoallowaccessforremoteormanualexaminationofthereactorvesselnozzle-to-shell,nozzle-to-safe-end,andsafe-end-to-pipewelds.c)Accesstofullpenetrationvesselwelds,nozzleweldsabovethereactorshield,anda11topheadweldsisprovidedbyremovable,freestandingthermalinsulation.d)Openingsinthereactorshieldandremovab1einsulationareprovidedtoallowaccesstothereactorskirt-to-bottomheadwelds.e)Openingsinthereactorskirt,removableinsulationpanels,andwalk-ongratingareprovidedtoallowaccesstothebottomheadweldsinsidethesupportskirt.f)Remotevisualexaminationofthereguirednumberofpatchesontheinteriorcladsurfaceofthereactorvesselwillheperformedin-accordancewiththerequirementsofASMESectionXZ.q)Thereactorvesselclosureheadisstoreddryinanaccessibleareatoprovidedirectaccessforinspection.h)Reactorvesselstuds,nuts,andwashersare-removedtodrystorageforinspection.52-30 SSES-PSAHIn-serviceinspectionaccesstoothermajorreactorcoolantsystemcomponentsisprovidedasfollows:a)Morkingplatformsareprovidedtofacilitateaccesstoinspectionareas.b)Theinsulationcoveringcomponentandpipingweldsandadjacentbasemetalisdesignedforeasyremovalandreinstallationinareaswhereinspectionisrequired.c)Thephysicalarrangementofpipe,pumps,valves,andothercomponentsallowspersonnelaccesstoweldsrequirinqin-serviceinspectioninaccordancewithASIDESect'ionXI5243ExaminationTechniquesandProceduresThemethods,techniques,andproceduresusedintheSusquehannaSESin-serviceinspectionprogramcomplywiththerequirementsofASIDESectionX.I,SubarticleIMA-2200.Thevisual,surface,andvolumetricexaminationtechniquesareincompliancewithIMA-2210,2220,and2230,respectively.Xfanyalternativeexaminationmethods,combinationofmethods,ornewlydevelopedtechniquesaresubstitutedfortheabove-describedmethods,resultswillbeprovidedthatdemonstratethatthealternativemethodsareequivalenttoorsuperiortothosemethodsspecifiedinSectionXI.If,asaresultofthepreserviceorin-serviceexaminations,flawindicationsarefoundtohavedevelopedand/orpropagatedbeyondtheacceptancestandardsofIMB-3000,thenfurtherexaminationswillbeconducted,asneeded,todeterminetheexactcondition.Followingevaluationofthisevidence,adecisionwillbemadereqardinqrepairrequirementsrelatedtoplantsafety.Anyrepairs,ifneeded,willbepezformedtotherulesof'IMB-4000.5.244Ins2ectionIntervals.Zn-serviceinspectionswillbeperformedduringplantoutagessuchasrefuelingshutdownsor'maintenanceshutdcwns.Miththeexceptioncftheexaminationsthatmaybedeferreduntiltheendoftheinspectioninterval,therequiredexaminationswillbecompletedinaccordancewithZMB-2412,(ZnspectionProgramB)forthevessel(Minter1975addenda)andIMB-2411(RegularProgram)forpipinq(1974edition)5.2-31 SSES-FSARDiscussedbelowisthefirstinspectionintervalprogramthatwillbeperformedcntheSusquehannaSESUnits1and2ClassIsystems.EachsystemisdiscussedincategoriescorrespondingtoASIDESectionXIEditionsandAddendaspecifiedinSubsection5.2.4.Thisdiscussionincludestheareaandextentofexaminationofeachcategory.Acombinationofmanualandmechanizedtechniqueswillbeusedforin-serviceexaminations.Preservice{orbaseline)datawillbeqeneratedaccordinglyusinqthetechniquethatwillbeusedforin-serviceexaminations.Thedetailedpreserviceandin-serviceinspectionprogramsarepresentedinthetechnicalspecifications,Section3f'44.8ofChapter16.52.4.4.1ReactorVesselItem1.1,CateqoryA-PressureRetainingMeldsinReactorVesselIn-serviceexaminationcfpressureretainingweldsinthereactorvesselincludesmanualultrasonicexaminationof100percentoftheaccessiblelengthofeachofthefollowingwelds:a)Meridional,circumferential,andradialweldsinthevesselheadsb)Vesselshell-to-flangeandclosurehead-to-flangewells.c)Lonqitudinalandcircumferentialweldsinthevessellocatedabovethereactorshieldwallupto,butexcludingthevessel-to-flangeweld{vesselshellcourseNos.4and5).In-serviceexamination.ofpressureretainingweldsinthereactorvesselalsoincludesremotemechanizedultrasonicexaminationof100percentoftheaccessiblelenqthofeachofthefollowingwelds:a)Longitudinalandcircumferentialweldsinthecoreregion(vesselshellcourseNo.2)b)Longitudinalandcircumferentialweldsinthevessellocatedbehindthereactorshieldwall{vesselshellcourseNos.1and3)5.2-32 SSES-FSARItem1.0,CategoryD-FullPenetrationMeldsofNozzlesinVesselsThevesselnozzleweldsandnozzletovesselinsideradiusedsectionwillbeultrasonical.lyexaminedbyremotemechanizedequipmentfornozzlediameters10inandlarger,andbymanualultrasonictechniquesfornozzlessmallerthan10in.thatarenotexcludedbyIMB-1220.Theexaminationofeachnozzlewillcover100percentofthenozzle-to-vesselweldsand100percentoftheinnerradiussectionofthenozzle-to-vesse1junctures.Item1.5,CateqoryE-PressureRetainingPartialPenetrationMeldsinVesselsThe185controlroddrivepenetrations,55in-corepenetrations,onedrainpenetration,andonecoredifferentialpressureandliquidcontrolpenetrationforeachunitareincludedinthiscategory.Theareaaroundeachofthesepenetrationswillbevisuallyexaminedwhenthesystemboundaryissubjectedtoapressuretest.Theexaminationwillinclude25percentofeachqroupofpenetrationsofcomparablesizeandfunction.Item1.6,CategoryF-PressureRetainingDissimilarMetalMeldsThevesselnozzle-to-safe-endweldswillbeultrasonicallyexaminedbyremotemechanizedequipmentfornozzlediameters10in.andlarqerandbymanualultrasonictechniquesfornozzlessmallerthan10in.thatarenotexcludedbyIMB-1220.Nozzle-to-safe-endweldswillalsobeexaminedforsurfaceindicationsusinqdyepenetrants.Theexaminationwillcover100percentofthewelds.Items17,1.8,1.9,1.10,CategoryG-1-PressureRetainingBolting~Largerthan2in.inDiameterTheclosurestudsandnutswi.llbesurfaceexaminedwhentheyaredisassembledforremovalofthevesselhead.Theclosurewashersandthreadsintheflangestudholeswillbevisuallyexamined.Thevesselstudsandflangeligamentsbetweenthreadedstudholesinthe'vesselflangewillbevolumetricallyexaminedusinqmanualultrasonictechniques.Therearenobushingsusedinthethreadedstudholes.Theexaminationsperformedduringtheinspectionintervalwillcumulativelycover100percentofthestuds,nuts,washers,threadsinhasematerial,andflangeligamentsbetweenthreadedstudholes.5.2-33 SSES-FSARItem1.11,CategoryG-2-PressureRetainingBolting,2in.andSmallerinDiameterThereisnopressureretaining.bolting,2inandsmaller,onthereactorvesselItem1.12~Cat~e~orH-VesselSu2HortsThereactorsupportskirt-to-reactorvesselweldwillbeexaminedvolumetricallyusingmanualultrasonictechniques.Theexaminationwillincludetheweldtothevesseland'thebasemetalbeneaththeweldzoneandalongthesupportskirtforadistanceoftwosupportthicknessesTheexaminationperformedduringeachinspectionintervalwillcoveratleast10percentofthecircumferenceoftheweldtothevesselitem.'1,13mCateHo~ri-1-ClosureHeadCladdi~uThereisnocladdingontheclosurehead.Item1.14,CateqoryI-1-InteriorCladSurfacesofReactorVesselsTherearesixcladdinqexaminationpatchesatleast36sqin.eachdistributedonthecladdingsurfaceoftheNos.3and4shellringandtheshellflange.Thepatchesareaccessibleforexaminationbyremotevisualmethods.Theexaminationsperformedduringeachinspectionintervalwillcover100percentofthepatchareas.Item1.1~5Catego~rN-1-InteriorofReactorVesselsSurfacesinthespaceaboveandbelowthereactorcorewillbeexaminedinselectedareasbyremotevisualmethodswhenthoseareasaremadeaccessiblebytheremovalofcomponentsduringnormalrefuelingoutages.Theexaminationwillbeconductedatthefirstrefuelingoutageandsubsequentrefuelingoutagesatapproximatelythree-yearintervals.Item1.16,CategoryN-2-IntegrallyWeldedCore-SupportStructuresandInteriorAttachmentstoReactorVesselsAllvisuallyaccessibleattachmentweldsandvisuallyaccessiblesurfacesofthecoresupportstructurewillundergoaremotevisualexaminationdurinqeachinspectioninterval.Item117CategoryN-3-RemovableCore-SupportStructuresNotapplicabletodirect-cycleboilingwaterreactors.5.2-34 SSES-FSARItem1.1S,Category0-PressureRetainingMeldsinControlgoddriveHous~insThecontrolroddrivehousingweld.metalandbasemetalforonewallthicknessbeyondtheedgeoftheweldwillbeexaminedmanually.Duringeachinspectioninterval,100percentoftheweldsin10percentoftheinstalledperipheralcontrolroddrivehousingswillbevolumetricallyexamined.Forthepreserviceexamination,100percentoftheweldsintheinstalledperipheralcontrolroddrivehousingswillbeexamined.Item1.19,CategoryP-ComponentsExemptedfromExamination~bIWB-1220AllaccessiblecomponentswithinthiscategorywillreceiveavisualexaminationasrequiredbyArticlesIMA-5000andIWB-5000.5.2.4.4.2P~iin@PressureBoundaryItem4.1,CateqoryF-PressureRetainingDissimilarMetalMeldsVolumetricandsurfaceexaminationsofsafeendtopipingandsafeendinbranchpipingweldswillbeperformedon100percentofeachdissimilarmetalweld.Examinationwillincludethebasematerialforone-halfwallthicknessorl-inch,whicheverislessbeyondtheedgeoftheweld.Item4.2and4.3,CategoryG-1-PressureRetaininqBolting,2in.andlairerinDiameterThereisnopressureretainingboltinglargerthan2in.indiameterwithinthepipinqpressureboundary.Item4.4,CateqoryG-2-PressureRetainingBolting,Smallerghan2in.andSmallerinDiameterSafetyvalvetoflangepipeconnectionbolting,topheadnozzleflange-to-pipeflangeboltingandflangedpipeconnectionboltingwillunderqovisualexamination.Boltingatflowmeterorificeswillunderqovisualexamination.Theexaminationswillincludethebolt:,studs,andnutswheninplaceundertension,whentheconnectionisdisassembled,orwhentheboltingisremoved.Thevisualexaminationswillcumulativelycover100percentofthebolts,studs,andnuts.52-35 SS2S-FSARItem45,4.6,4e7and48,CategoryJ-PressureRetainingnelds~in~iinDuringeachinspectioninterval,100percentofthecircumferentialweldsandlongitudinalweldsandthebasemetalforonewallthicknessbeyondtheedgeoftheweldvillbevolumetricallyexamined.Longitudinalveldswil1bevolumetricallyexaminedforatleast1-footfromtheintersectonwiththeedqeofthecircumferentialveldselectedforexamination.Forpipebranchconnectionsexceeding6-inchdiameter,theweldmetal,thebasemetalforonepipevalithicknessbeyondtheedgeoftheweldonthemainpiperun,andatleast2-inchesofbasemetal,alongthebranchrunvillbevolumetricallyexamined.Branchpipeconnectionvelds6-inchdiameterandsmallerandsocketweldswillundergosurfaceexamination.Theexaminationsperformedduringeachinspecitonintervalvillcoveralloftheareaof25percentofthecircumferentialjointsincludinqtheadjoining1-footsectionsoflongitudinaljointsand25percentofthepipebranchconnectionjoints.Item4.4,4.5,4.6,4.8,CategoryJ-PressureRetainingItem49Cate~o~rK-1-SngportKembersforpipingInteqrallyweldedpipesupportsvillbevolumetricallyexaminedtotheextentpracticableon25percentofthesupportsduringeachinspectioninterval.TheexaminationwillcovertheveldstothepressureretainingboundaryandthebasemetalbeneaththeweldzoneandalonqthesupportattachmentmemberforadistanceoftvosupportthicknessesIntegrallyweldedpipesupportsthatcannotbepracticallyinspectedbyvolumetricexaminationwillbeexaminedbythesurfacemethod.Item4.10~Categor~K-2-S~uportComponentsforPipingPipingsupportsandhangersinthiscategorywillbevisuallyexamined.Theexaminationwillcoverthesupportcomponentsfromthepipetoandincludingtheattachmenttothesupportingstructure.Theexaminationsperformedduringeachinspectio'nintervalvillcumulativelycoverallsupportmembersandstructures.Alsoincludedwill,beverificationofthesettingsofconstantandvariablespringtypehangers,snubbers,andshockabsorbers.52-36 SSES-FSARItem4.11,Category'P-ComponentsExemptedfromExaminationh2MB-1220Allaccessiblecomponentswithinthiscategorywillreceiveavisualexaminationduringeachsystempressuretest,asrequiredhyArticlesIMA-5000andIWB-5000.5.2.443PumpPressureBounda~rItems5.2and5.3,CateqoryG-1-PressureRetainingThereactorcoolantrecirculationpumpcover-to-casestudsareincludedinthiscateqory.MhentheboltingisremovedforrequiredmaintenanceorfortheexaminationsspecifiedunderItem5.7attheendoftheinspectioninterval,avolumetricandsurfaceexaminationwillbeperformed.Thereactorcoolantrecirculationpumphangerbracketassemblies,whichareintegrallyweldedtothepumpcasings,areincludedinthiscateqory.Theconfiqurationoftheseassembliesprecludesmeaninqfulvolumetricexamination.Duringtheinspectioninterval,25percentoftheintegrallyweldedsupportswillbeexaminedbyasurfacemethodtotheextentpracticableItem5.5CateorK-2-Su5portCos2onentsforpus2sThereactorcoolantrecirculationpumpsupportswillbevisuallyexaminedduringtheinspectioninterval.Theexaminationsperformeddurinqeachinspectionwillcumulativelycoverallaccessiblesupportmembersfromthepumpat'tachmenttoandincludingtheattachmenttothesupportingstructure.Alsoincludedwillbeverificationofthesettingsoftheconstantsupporthanqersandhydraulicsnubbers.Item5.6,CateqoryL-1-PressureRetainingfieldsonPumpCasi~nsTherearenopressureretainingweldsinpumpcasingswithintheinspecticnboundary.52-37 SSES-PSARItem6.7~Catepo~rt-2-P~umCa~mlssTheinternalpressureboundarysurfacesofthereactorcoolantrecirculationpumpsarenotnormallyaccessible.Ifmaintenanceofthepumpinternalsisrequiredduringtheinspectioninterval,visualexaminationwillbeperformedontheaccessiblesurfaces.Otherwise,visualexaminationofonepumpwillbeperformedineachgroupofpumpsperformingsimilarfunctionsinasystemattheendoftheinspectionintervalItem5.8,.CateqoryP-ComponentsExemptedfromExamination~bIMB-1220Allaccessiblecomponentswithinthiscategorywillreceiveavisualexaminationduringeachsystem'pressuretest,asrequiredbyArticlesIMA-5000.Item5.9,CategoryG-2-PressureRetainingBolting,andSmaller2in.inDiameterThereactorcoolantrecirculationpumpsealassemblyboltingunderthiscategorywillbeexaminedvisuallyinplace.Thevisualexaminationperformedduringeachinspectionintervalwillcumulativelycovertheaccessibleboltsonallpumps.5.2.4.4.4ValvePressureBounda~rItems6.1~6.2and6.3,CateqoryG-1-PressureRetainingBolting2in.andLarqerinDiameterTherearenoitemsinthiscategory.Item6.n~Catepo~rK-1-SupportnemhersforValvesIntegrallyweldedvalvesupportswillbeexaminedtotheextentpracticableon25percentofthesupportsduringeachinspectioninterval.Integrallyweldedsupportsthatcannotbepracticallyexaminedbyultrasonicmethodswillbeexaminedbyasurfacemethod.Item66aCate~urIK-2-SuPPOrtCpmPOnentSfarValyeSSupportsandhangersofthevalvesinthiscategorywillbevisuallyexamined.Duringeachinspectioninterval,allaccessiblesupportmembersfromthevalveattachmenttoandincludinqtheattachmenttothesupportingstructurewillbeexamined,andthesettingsofconstantandvariablespringtypehangers,snubbers,andshockabsorberswillbeverified.5.2-38 SSES-FSARItem6.6,Category5-1-Pressu"eRetainingWeldsinValveBodiesTherearenopressureretainingweldsinvalvebodieswithintheinspectionboundary.Item6.7~Cate~~orN-2-ValveBodiesTheinternalpressureboundarysurfaceofonedisassembledvalveexceeding4in.nominalpipesizeineachgroupofvalvesofthesameconstructionaldesignwillbevisuallyexaminedineachinspectionintervalwhenthevalveisdisassembledfornormalmaintenance,orneartheendoftheinspectioninterval.Item6.8,CategoryP-ComponentsExemptedfromExaminationby1MB-1220Allaccessiblecomponentswithinthiscategorywillreceivea'isualexaminationduringeachsystempressuretest,asrequiredbyArticlesIWA-50,00.Item6.9,CategoryG-2-PressureRetainingBolting,Smallerthan2in.inDiameter1Allvalvebonnetboltingwillbeaccessibleforavisualexaminationthatwillcumulativelycoverallaccessiblebolts,studs,andnuts.5.2.4.5/valuationofExaminationResultsa)ThestandardsforexaminationevaluationareinagreementwiththerequirementsofSectionXIiIWB-3000,"StandardsforExaminationEvaluations<<.TheprogramforflawevaluationagreeswithTableIWB-3410,"EvaluationStandards".b)TheprogramregardingrepairsofunacceptableindicationsorreplacementofcomponentscontainingunacceptableindicationsisinagreementwiththerequirementsofSectionXI,IWB-4000,"RepairProceduresii.ThecriteriathatestablishtheneedforrepairorreplacementareinaccordancewithSectionXI,IWB-3000.5.2.4.6~SstemLeakageandHydrostaticPressureTestsThepressureretainingCodeClass1componentleakageandhydrostaticpressuretestprogramagreeswiththerequirementsofSection'XI,IMB-5000,>>SystemLeakageandHydrostaticPressure5.2-39 SSES-FSARTests".XWB-5222,"SystemHydrostaticTestPressure>>,presentscriteriaandatableofequivalenttesttemperaturesversustestpressuresatwhichthesystemmustbetested.TheprogramisinagreementwithIWB-5222withregardtothetemperature-pressurerelationshipofthesystemattest;andisinagreement,withthetechnicalspecificationssreguirementsforoperatinglimitationsduringheatup,cooldown,-andsystemhydrostaticpressuretesting.Insomecases,theselimitationsmaybemoresevere.thanIWB-52225.24'7AUGMENTEDINSERVICEINSPECTIONTOPROTECTAGAINSTPOSTULATEDPIPINGFAILURES'heaugmentedinserviceinspectionprogramtoprovide.100percentvolumetricexami'nationofcircumferentialandlongitudinalpipeweldsinhighenerqysystemsbeweencontainmentsiolationvalveswillbereviewedandimplementedonanssdoscribodinsubsection6,6-8.5.2.5DETECTIONOFLEAKAGETHROUGHREACTORCOOLANTPRESSUREBOUNDARY52.5lLeakageDetectionmethodsThenuclearboilerleakdetectionsystemconsistsoftemperature,pressure,andflowsensorswithassociatedinstrumentationand'alarms.Thissystemdetects,,annunciates,andisolates{incertaincases)leakagesinthefoliowings'ystems:(1)Mai-nsteamlines(2)Reactorwatercleanup(RWCU)system(3)Residualheatremoval{RHR)system{4)Reactorcoreisolationcooling(RCIC)system{5)Feedwatersystem{6)HighPressureCoolantInjection(HPCI)SystemIsolationand/oralarmofaffectedsystemsandthedetectionmethodsuse'daresummarizedinTable5.2-8.Smallleaks(5gpmandless)aredetectedbytemperatureandpressurechangesanddrainpumpactivities.LargeleaksarealsoREV.II7/795.2-40 ThispageintentionallyleftblankRev.17,9/805.2-41 SSES-FSARdetectedbychangesinreactorwaterlevelandchangesinflowratesinprocesslines.The5gpmleakagecateisatechnicalspecificationlimitonunidentifiedleakage.Theleakdetectionsystemisfullycapableofmonitoringflowrateswithanaccuracyof.onegpmandis,thus,incompliancewithParagraphC.2ofRegulatoryGuide1.45.5.25.l1DetectionofAbnormalLeakageWithinthe.PrimaryContainmentQNSS-Systems}Normalleakageandapressurevesselshroud.themainsteamwillresu.ltinadecreaseofreactorwaterleveldifferentialbetweenthecorespcaylineand+heAlowreactorwaterlevelwillcauseisolationoflines.5.2.5.1.2DetectionofAbnormalLeakageWithinthePrimarvContainment/Non-NSSS}Leakagethroughthereactorcoolantpressureboun<kacywithintheprimacycontainmentisdetectedbymonitoringtemperatures,pressures,airborneparticulateradioactivity,andchangesoflevelsindrain.,umps.ThesemonitorsandtheirrespectivelocationsarelistedinTable5.2-14.Thefollowingsystemsaceusedtomonitorthesevariables:a)Primarycontainmentandsuppressionpooltempecaturemanitoringsystem.b).Primacycont.ainmentandsuppressionchamberpressuremonitoringsystemc)Primarycontainmentatmospheremonitoringsystem(containment'radiationdetection)d)Drywellfloordrainsumpmonitoringan3dcywellequipmentdraintanklevelmonitoring'system.TheabovementionedleakdetectionsystemsaredesignedinaccordancewithrecommendationsofRegulatoryGuide1.45.Thedrywellleakdetectionsystemisnot'ntendedtobequalifiedasapostLOCAsystem;itisdesignedforuseduringpoweroperationasimpliedbytheTechnicalSpecifications.'herewouldhenopracticalwayofrecalibratingt.hesystemaftertheLOCAtransient.Rev.17,9/805.2-42 SSFS-FSAR52.5.1.2.1PrimaryContainmentTemperatureMonitoringSystemTemperatureswithinthe,drywellaremonitoredatvariouselevations.Adrywellambienttemperaturerise'illindicatethepressureofreactorcoolantorsteam,leakage.Temperaturemonitoringofthecontainmentprovidesanindirectindicationofleakageasdefinedintheregulatoryposition(3)ofRegulatoryGuide1.45.A-detaileddescriptionofthe.system,sensitivityandresponsetime,andthesystemreliabilityisdiscussedinSubsection76.1b1.2.Limiting,leakageconditionsareincludedinthetechnicalspecificationofChapter16.ProvisionsfortestingandcalibrationaredescribedinSection76.2b.5.2.5.1.2.2PrimaryContainmentPre.,uremonitoringSystemPressuremonitoringwithinthecontainmentprovidesanindirectmethodofdetectingleakage.Thedryvellpressurefluctuatesslightlyduringreactoroperationasaresultofpressurechangesinthereactorbuildingandout-leakage.Apressureincreaseabovenormalvaluesindicatesaleakintheprimarycontainment.TheprimarycontainmentmonitoringsystemandinstrumentationisdescribedinSection7.6.1b.Section7.5lbidentifiessafetyrelateddisplayinstrumentation.Rev.17,9/8043 SSES-FSAR5.2.5.1.2.3PrimaryContainmentAtmosphereMonitoring-AirborneParticulateRadioactivitgMonitoringTheprimarycontainmentiscontinuouslymonitoredforairborneradioactivity.Asampleisdrawnfrom-heprimarycontainmentandasuddenincreaseofactivityindicatesasteamorreactorwaterleakage.5.2.5.1.2.31SensitivityandResponseTimeTheobjectiveofthedrywellleainH.G.1.05istodetect1gpmpressureboundaryleakagein1hsuppliedtoaccomplishthisare(seeSubsection5.2.5.1.2.4),aradioiodinemonitor,andapartithreeradiationmonitorssampleontheassumptionthatflashingradioactivityintheatmosphere.kdetectionmonitorsasindicatedofunidentifiedprimarycoolantour.Severaldetectionsystemsthedrywellsumplevelmonitornoblegasradiationmonitor,aculatesradiaticnmonitor.Thedrywellfortheactivitylevel-coolantleakagewillresultinThereliability,sensitivityandresponsetimesofradiationmonitorstodetect1gpminlhourofReactorCoolantPressureBoundaryleakagewilldependonmanycomplexfactors.Themajorfactorsarediscussedhelow:SourceofLeakage1)LocationofLeakageTheamountofactivitywhichwouldbecomeairbornefollowinga1gpmleakfromtheRCPBwillvarydependingupontheleaklocationandthecoolanttemperatureandpressure.Forexample,afeedwaterpipeleakwillhaveconcentrationfactorsof100to1000lowerthanarecirculationlineleak.Asteamlineleakwillbeafactorof50to100lowerin,iodineandparticulateconcentrations,thantherecirculationlineleak,butthenoblegasconcentrationsmaybecomparable.ARMC[1leakupstreamofthedemineralize""andheatexchangerswillbeafactornf10to100higherthandownstream,exceptfor,noblegases.Differingcoolanttemperaturesandpressureswillaffecttheflashingfractionandpartitionfactorforiodinesanilparticulates.Thus,anairborneconcentrationcannotbecorrelatedtoaquantityofleakagewithoutknowingthesourceoftheleakage.2)CoolantConcentrationsRev.17,9/8044 SSES-FSARVariations.incoolantconcentrationsduringoperationcanbeasmuchasseveralordersofmagnitudewithinatimeframeofseveralhours.Theseeffectsaremainly,.duetospikingduringpowertransientsorchangesintheuseof.theRWCUsystem.Fxamplesofthesetransients'forI-131canbefoundinNEDO.-10585{8/72),BehaviorofIodineinReactorMaterDuringPlantShutdownandStartup.Thus,anincreaseinthecoolantconcentrationscouldgiveincreasedcontainmentconcentrationswhennoincreaseinunidentifiedleakageoccurs.3)OtherSourcesofLeakageSincetheunidentifiedleakageisnotthesolesourceofactivityinthe.,containment,changesinothersourceswillresultinchangesinthecontainmentairborneconcentrations.Forexample,identifiedleakageispipedtotheequipmentdraintankinthedrywel1,butthetankisventedtothedrywellatmosphereallowingthereleaseofnoblegasesandsomesmall~quantitiesofiodinesandparticulatesfromthedraintank.BDrywellConditionsAffectingMonitorPerformanceFquilihriumActivityLevelsDuringnormalopecationtheactivityrelease.fromacceptablequantitiesofidentifiedandunidentifiedleakage'illbuilduptosignificantamountsinthedrywellair.Conversationswithseveraloperatingplantsindicatethatlevelsashighas.1to10timesMPCarenotuncommonfornoblegasesandiodines.,(MPCrefersto"maximumpermissibleconcentration'~asdefinedhy10CFR20,MPCisusedhereonlyzsaconvenientreference).Duetothesehighequilibriumactivitylevelsthesmallinc~"ease.duetoa1gpmincreaseinleakagemaybedifficulttoseewithinanhour.TypicalMPCrangesare...1MPCto10HPCNobleGasesParticulateslodineslx10-~-lxl0-~MCi/cclx10-<-lx10-4PCi/cc5x10-~-'5x10-sPCi/ccFreshfuelbarkgroundswerenotconsideredbecausenofissionproductsareavailableatthatpointintime.ThenumbersgivenaboveincludeamountsofRev.17,9/805."2-45 SSES-FSARfailedand/orirradiatedfuel.Thesenumbersalsoincludenormalexpectedleakagerates.2)PurgeandPressureReleaseEffectsChangesinthedetectedactivitylevelshaveoccurredduringperiodicdrywellpurgestolowerthedrywellpressure.Thesechangesareofthesameorderofmagnitudeasapproximatelya1gpmleak,andaresufficienttoinvalidatetheresultsfrom.iodineandparticulatemonitors.Plateout,affixing,FanCoolerDepletionPlateouteffectsoniodinesandparticulateswillvarywiththedistancefromthecoolantreleasepointtothedetector.Largertraveldistanceswouldresultinmoreplateout.Inadditionthe~pathwayoftheleakagewillinfluencetheplateouteffects.Forexample,aleakfromapipewithinsulationwillhavegreaterplateoutthanaleakfromanuninsulatedpipe.Althoughthedrywellairwillbemixedbythefancoolers,itmaybepossibleforaleaktodevelopinthevicinityoftheradiationdetectorsamplelines.Tnaddition,condensationinthecoolerswillremoveiodinesandparticulatesfromtheair.Variationsintheflow,temperatureandnumberofcoolerswillaffecttheplateoutfractions.Plateoutwithinthedetectorsampletubewillalsoaddtothereductionoftheiodineandparticulateactivitylevels.Theuncertaintiesinanyestimateofplateouteffectscouldbeasmuchasoneortwoordersofmagnitude.C.PhysicalPropertiesandCapabilitiesoftheDetectorsDetectorRangesThedetectorswerechosentoensurethattheoperatingrangescovere'heconcentrationsexpectedinthedrywell.Theoperatingrangesare:NobleGasesParticulatesIodineslxl0-~tolxl0"<pCi/cclx10-~tolxl0-~pCi/cclx10-~tolx10-~pCi/cc2)SensitivityIntheabsenceofbackgroundradiationandequilibriumdrywellactivitylevels,thedetectorshavethefollowingminimumsensitivity.Rev.17,9/805.2-46 SSES-FSAR3)NobleGaslxl0-~pCi/ccParticulateslx10-~pCi/ccIodinelxl0-~pCi/cc\CountingStatisticsandMonitorUncertaintiesIntheorytheseradioactivitymonitorsarestatisticallyabletodetectincreasesinconcentrationassmallas2or3timesthesquarerootofthecountrate,i.e.,at106cpmanincreaseof2x10~,or0.2%,isdetectable;at10~cpmanincreaseof240,or20%isdetectable.5nadditionathighcountratesthemonitorshavedead-timeuncertaintiesandthepotentialforsaturatingthemonitorortheelectronics.Uncertaintiesincalibration(+5%)sampleflow(+10%)andotherinstrumentdesignparameterstendtomaketheunrertaintyinacountratecloserto20%to40%oftheequilibriumdrywellactivity.4)MonitorSetpointsDuetotheuncertaintyandextremevariabilityoftheconcentrationstobemeasuredinthecontainmenttheuseofalarmsetpointsontheradioactivitymonitorswouldnotbepracticaloruseful.Asindicatedinthefollowingsectionthesetpointswhichwouldherequiredtoalarmat1gpmwouldbewellwithintheboundsoF.uncertaintyofthemeasurements.Theuseofsuchsetpointswouldresultinmanyunnecessaryalarmsandthefrequentresettingofsetpoints.Asetpointalarmonthesumplevelmonitoraloneisused;theradioactivitymonitorsareforsupportinginFormation+oconfirmthattheleakisradioactive.Thealarmsetpointsfortheradiationmonitorswillbesetsignificantlyabovebackgroundtopreventnuisancealarms.TheactualsetpointwillbechangedasbackgroundincreaseAttheselevels,theradiationmonitorswillprovidenowarningofa1gpmleakinonehour.5)EstimatedMonitorResponsesTable5.2-13estimatestheexpectedmonitorresponsesforseveraltypesofleaksandseveraltypesofmonitors.Asindicatedincolumn3,theaddedactivityincontainmentfroma1gpmleakfor1hourislessthanthenominal20%increasewhichcouldbemeaningfullydetected.Thefinalcolumnsestimatethedetectableleakagein1hour.Rev.17,9/805.2-47 SSES-FSAR6)OperatorActionThereisnodirectcorrelationorknownrelationshipbetweenthedetectorcountrateandthelea'kagerate,becausethecoolantactivityleavels,sourceofleakage,andbackgroundradiationlevels(fromleakagealone)arenotknownandcannotbecost-effectivelydeterminedinexistingreactors.Therearealsoseveralothersourcesofcontainmentairborneactivity(e.g.safetyreliefvalveleakage)vhichfurthercomplicatethecorrelation.Thus,therecommendedprocedureforthecontrolroomoperatoristosetanalarmsetpointatlgpmin1houronthesumplevelmonitor(measuringwaterrollectedin.thesumpwhichmaynotexactlycorrespondtowaterleakingfromarrunidentifiedsource).Whenthealarmisactuated,theoperator.villrevievallothermonitors(e.g.,noblegas,particulates,temperature,pressure,fancoolerdrains,etc.)todetermineiftheleakageisfromtheprimarycoolantpressureboundaryandnotfromanSRVorcoolingwatersystem,etc.AppropriateactionswillthenbetakeninaccordancewithTerhnica1Specification3/4.4.3..Thereviewofothermonitorswillconsistofcomparisonsoftheincreasesandratesofincreaseinthevaluespreviouslyrecordedonthestripchartrecorders.increasesinallparameter-exceptsumplevelvillnotbecorrelatedtoaRCPBleakagerate.Irrsteacl,theincreaseswillbecomparedtonormaloperatinglimitsandlimitations(e.g.,2psimaximumpressureforECCSinitiation)andabnormalincreaseswillbeinve.tigateB.Sincethe5gpmTechnicalSpecificatiorrlimitisallowedtobeaveragedover24hours,quickandaccurateresponsesarenotnecessaryunlesstheleakageisverylarge'andindicativeofapipebreak.Irrthi"case,thecontainmentpressure-andreactorvesselwaterlevelmonitorsvillalarmwithinseconds,andthesumplevelmonitorwouldalarmwithinminuteso.tensofminutes.jTheradiationmonitoralarmsvillnotbesettolevelsthatcorrespondtoRCPBleakagelevelssincethecorrelationscan'bemade.Also,sincethecontainmentairborneactivitylevelsvarybyordersof'agnitudeduringoperationduetopovertransients,spiking,steamleaks,andoutgassingfromsumpetc.,anappropraitealarmsetpoint,ifRev.17,9/805.2-48 SSES-PSARoneisused,shouldbedeterminedbytheoperatorbasedonexperienceviththespecificplant.Asetpointlevelof2to3timesthebackgroundlevelluringfullpoversteadystateoperationmaybeusefulforalarminglargeleaksandpipebreaks,butitvouldnotalvaysalarmforlgpminlhour.7)ConclusionDuetothesumtotaloftheuncertaintiesidentifiedinthepreviousparagraphstheiodineandparticulatemonitorswillnotberelieduponforleakdetectionpurposesbutonlyassupportinginstrumentation.Thenoblegasmonitorisusedtogivesupportinginformationtothatsuppliedbythesumplevelmonitoranditvouldbeabletogiveanearlywarningofamajorleakespeciallyifequilibriumcontainmentactivitylevel'sarelow.However,theuncertaintiesandvariationsinnoblegasleaksandconcentrationsvouldprecludethesettingofameaningfulsetpointonthemonitors.5.2.5.1.2.4DryvellFloorDrainSumpMonitoringestemThedrywellfloordrainsumpmonitoringsystemisdesignedtopermitleakdetectioninaccordancewithRegulatoryGuide1.45.5~5.1.2.4.1~SstemDescrytionTwodryvellfloordrainsumpsarel.ocatedintheprimarycontainmentforcollectionofleakagefromventcoolers,.controlroddriveflangeleakage,chilled.waterdrains,coolingwaterdrains,andoverflowfromtheequipmentdrainsump.Thedrywellfloordrainsumpislocatedatthedrywelldiaphragmslablowpoint.Unidentifiedleakagesvill,bygravity,flovdowntheslabsurfaceintothefloordrainsump.No.floordrainpipingsystemisemployed.Pipedinputstothedryvellfloordrainsumparefromcleansystemdrains.Nosurveillanceprogramisplannedtodetectpipedequipmentdrainsystemblockage.Small,unidentifiedleakagesofconcernflovingintothedrywellfloordrainsumpwillnotbemaskedbylarger,acceptable,identifiedleakagesoverflowingfromthedrywellequipmentdraintank.Thedrywellequipmentdraintankdrainshygravity.Duringconditionsofacceptableidentifiedleakagerates,thegravityflowfromthedryvellequipmentdraintankvillhecapableofpreventingthedrywellequipmentdraintankfromRev.17,9/805.2-49 SSES-FSAR17overflovingtothedrywellfloordrainsump.TheoperationandcontrolofthedrywellequipmentdraintankdrainisthesameasdiscussedinSubsection5.2.5.1.2.4.1forthedrywellfloordrainsumps.Raterflowratebetterthan0.5gpmcanbeobtainedbymonitoringchangesofleveloveratimeperiod.Thefollovingmethodof-flovratemeasurementwasselectedtocomplyviththerequirementsofRegulatoryGuide1.45.Thenecessarysensitivityisobtainedbymeasuringthechangesoflevelduringafixedtimeinterval.Forthispurposeacontinuouslevelmeasurementsystemisinstalledineachofthesumps.Anelectronicsignaldirectlyproportionaltotheactualsumplevelisappliedtoonepenofatwo-penrecorder,toanelectronicsampleandholddevice,andtoanelectronicdifferentialswitch.Thesampleandholddevice,uponcommandfromatimer,appliesitsoutputsignaltothesecondpen,ofthetvo-penrecorderandtothesecondinputoftheelectronicdifferentialswitch.Thesampleandholdunit'soutputsignallevelisregularlyupdatedtothereferencesumplevelsignal.12Theactuallevelsignalofthesumpandthereferencelevelsignalarecontinuouslydisplayedonthetwo-penrecorder.Thesamesignalsarebeingmonitoredbytheelectronicdifferentialsvitch.Shenthelevelsignalsdifferby+50gallonsormoreduringa50minuteperiod(equalto1gpm)analarmisactuatedonthelocalpanelandonthecontxolboardinthemaincontrolroom.Thechangeinsumplevelperunitoftimedeterminestheleakrateandisavailablefromtherecorderslopeforconfirmation.17Thereisnoreliablequantitativerelationshipbetveenthesumplevelandtheleakageratefromanysource.Thequantityisdependentuponthetemperatureandpressureofthecontainmentandtheleakandthelocationoftheleak.Partoftheleakvillflashtosteam;it'aybepartiallytrappedbetveeninsulationlayers.Presumablytheleakagewillgettoanequalibrium:levelwheremostofitendsupinthesump,unlessthe'rywellisventedtorelievethepressurebuildup.SincetheTechnicalSpecificationallows24-houraveragedleaklimits,shorttermvariationsintheabilitytorelatethesumpquantitytotheleakedquantityareignored,anditsisassumedthatallleakagereachesthesump.Theerrorsiritroducedwillnotimpairtheabilitytodetectlargerleakswhichcouldrapidlyresultinsevereaccidents.Someleakagewillnodoubthetrappedininsulationetc.,butnolargereservoirsforleakagehavebeenfound.Eachsumpisequippedwithtwosubmergedpumpswhichoperateinanalternatingmode.-Highsumplevelstartsthepumpautomatically.Remotemanualcontrolofthepumpisprovidedinthecontrolroom.BothpumpsvillbeoperatingassoonasanRev.17,9/805.2-50 SSES-PSARabnormal,highlevelisdetected.Thecapabilityofeachpumpissuchthatnormalexpectedflowratescanbeeasilyaccomplished.52.5e12.42InstrumentationMagneticfloattypecontinuouslevelprobesareusedtomeasurethefluidlevelandprovidethesignalfortherecordingoftheactualsump.levelandtherateof-levelchangeinthecontrolroom.Excessiveleakrateisalarmedonthelocalsystempanelandwithagrouptroublealarminthecontrolroom.Theleakratecanbeobservedbythecontrolroomoperator.52.5.1.24.3DrywellEquipmentDrainTankLevelHonitoringSystemThedrywellequipmentdraintankcollectsidentifiedleakagewithintheprimarycontainmentfromreactorheadsealleakoff,bulkheaddrain,refuelingbellowsdrain,RPVheadvent,recirculationpumpseals,reactorrecirculationpumpcoolerdrains,andRPVbottomdrain.Alliden'bifiedleakageswhichmayhavetemperaturesof212o7orabovearepard-pipeddirectlytothedrywellegnipmentdraintank.rheshleakageswilltendtopartiallyflashintosteamandthencondenseinthedrainpipe.Thisapproachminimizesthepossibilitythatleakagewillescapeassteamintothecontainmentatmospherepriortomeasurementintheequipmentdraintank.I1211)17I12~Thedrywellequipment'draintankdrainsbygravity.Thedraintank'sdischargevalvesautomaticallyopenwhenapredeterminedhighlevelinthetankisreached.Thedischargevalvescloseatapredeterminedlowlevel17~5.5.1.2.4.4Sensitivit~andResponseTimeofNeasurementThemethodforliquidleakdetectionintheprimarycontainmentisdesignedtomeettherecommendedwaterflowratechangesof0.5to10qpmasdefinedinRegulatoryGuide1.45.Thefollowingassumptionsanddesignconsiderationswere.incorporated:Rev.17,9/8052-51 SSES-'PSARIa)Leakrateisdirectlyproportionaltotheassociatedchangeinsumplevel.b)measurementofthedrywellfloordrainsumpisdiscontinuedduringthepumpoperationandstartsimmediatelyafterthepumpstops.Measurementofthedrywellequipmentdraintankisdiscontinuedwhenthetank~sdischargevalvesareopenedand,startsimmediatelyafterthedischargevalvesclose.cjTheselectedmeasurementperiodTfortheaveragechangeinlevelis50minutesd)Thedrywelldrainsumpshavea,capacityof300galwithadepthof5in.Thedrywellequipmentdraintankcapacityis1000galwithadepthof42in.e)Thelevelinstrumentationaccuracy'is+5percentoffullr;angef)Recorderresponseisbetterthan1secondforfullrangeg)Recorderchartsize/drivespeed:4'n./3/4in./hr.h)Theelectronicdifferentialswitchsetpointwillalarmrateslessthanorequaltoonegpm.Thesedesignfactorsallowadetectionof1gpmflowratewithin'50minutetimeperiod.Theoperatorcanverifythisleakrateontherecorderinthecontrolroombyobservationoftheaveragechangeoflevel.5.2.5.12.4.5~SinalCorrelationandCalibrationDr~wellDrainSumpThesumpdepthof0-5in.isdisplayedona0-100percentrecorderchart,whichrelatestothetotalsumpcapacityof0-300gal.Theaverageflowrate(changesoflevel)duringthemeasurementperiodTiscalibratedtoread0-4gpmoverthefullchartrange.CD~rwellEquipmentDrainTankThetankdepthof42in.isdisplayedona0-100percentrecorderchart.Thisrelatesdirectlytothetankcapacityof1000gal.Rev.17,9/805.2-52 SSES-PSARTheaverageflowrateiscalibratedtorecord0-4gpmoverthefullchartrange.52-5.1.2.4.6SeismicqualificationsThedrywellfloordrainsump,alldrywelldrainpiping,andallinstrumentationusedtomonitordrywellfloordrainsumpandequipmentdraintanklevelwillbequalifiedtooperatefollowinganOBE.Thedrywellequipmentdraintank,drywellequipmentdraintankcoolingcoil,and,drywellfloordrainsumppumpsarenotqualifiedtooperatefollowinganOBE.Creditwillbetakenformonitoringunidentifiedleakage.followinganOBEthrutheuseofthedrywellfloordrainsumplevelmonitoringsystemTheproperfunctioningofatleastoneleakagedetection.systemfollowinganSSEisprovidedbythedesignoftheairborneradioactivitymonitoringsystem.RefertoSection7.6.1bfordescription.52.51,2,a.77natan5annCalibrationCalibrationoflevelsensorsispossiblebyobservingthechangeinlevelduringtheperiodicpumpdownoperationsofthedrywellfloordrainsump,andperiodicdrainingofthedrywellequipmentdraintank.Forthedrywellfloordrainsump,thepumpsare-automaticallystartedandstoppedbymechanicallevelsensingswitches(highandlowlevelsetpoints),butcanalsobeoperatedmanuallyat.anytime,tocheckthecalibrationofthelevelsensors.Intheeventthatthehigh-highlevelisreached,twopumpswilloperate.Thedraintankdischargevalvesareopenedautomaticallyonhighlevelandcanbeoperatedmanuallyatanytime,tocheckthecalibrationofthelevelsensors.5.2.5.1.3DetectionofAbnormalLeakageOutsidethePrimaryContainmentOutsidethedrywell,thepipingwithineachsystemmonitoredforleakageisincompartmentsorrooms,separatefromothersystemswherefeasible,sothatleakagemaybedetectedbyareatemperatureindications..Eachleakagedetectionsystemdiscussedbelowisdesignedtodetectleakratesthatarelessthanthetechnicalspecificationleakagelimits.ThemethodusedtomonitorforleakageforeachRCPBcomponentmaybeseeninTable52-8.Rev.17,9/805.2-53~ SSES-FSARfl)AmbientandDifferentialRoomVentilationTemperatureAdifferentialtemperaturesensingsystemisinstalledineach,roomcontainingequipmentthatinterfaceswiththereactorcoolantpressureboundary.ThesearetheHPCI,RCIC,RHB,andreactorwatercleanupsystemsequipmentrooms,andmainsteamlinetunnel.Temperaturesensorsareplacedintheinletandoutletventilationducts.Othersensorsareinstalledintheequipmentareas,tomonitorambienttemperatureAdifferentialtemperatureswitchbetweeneachsetofsensorsand/orambient,temperatureswitchinitiatesanalarmandisolationwhenthetemperaturereachesapresetvalue.TheHPCI,RCICandRHRleakdetectionareaambienttemperatureswitchsetpointsaredesignedtoinitiateisolationsignalsat1670FThissetpointincludessufficientmarginabovethepostLOCAmaximumareatemperaturetoprecludeinadvertentisolationsignals.Considerationhasbeengiventokeepingthissetpointlowenoughtoallowatimelydetectionofa5GPMleak,.withtheroomstartingatthedesignminimumtemperature.TheHPCT,RCICandRHRventilationinletandexhaustdifferentialtemperatureswitchsetpointsaredesignedtoinitiateisolationsignalsatadifferentialtemperatureof89~FThissetpointincludessufficientmargintopreventinadvertentisolationsignalswhentheareaventilationexhaustisatthemaximumpostLOCAtemperature,andtheventilationinletcorrespondstotheminimumreactorbuildingrecirculatingventilationdesigntemperature.Thissetpointwillallowwidefluctuationsinoutsideairtemperaturewithoutcausinginadvertentisolationsignals.Thissettingwillalsopermittimelydetectionofa5GPMleak,withtheareastartingatminimumdesigntemperatures.AnnunciatorAccessibleareasareinspectedperiodicallyandthetemperatureandflowindicatorsdiscussedabovearemonitoredregularlyasrequiredbyChapter16.Anyinstrumentindicationofabnormalleakagewillbeinvestigated.(2)VisualandAudibleInspectionAccessibleareasareinspectedperiodicallyandthetemperatureandflowindicatorsdiscussedabovearemonitoredregularlyasrequiredbyChapter16.Anyinstrumentindicationofabnormalleakagewillbeinvestigated.(3)Differentia1FlowMeasurement{ReactorWaterRev.17,9/805.2-54 SSES-FSARCleanu~SstemO~nlBecauseofthearrangementofthereactorwatercleanupsystem,differentialflowmeasurementprovidesanaccurateleakagedetectionmethod.Theflowfromthereactorvesseliscomparedwiththeflowbacktothevessel.Analarminthecontrolroomandanisolationsignalareinitiatedwhenhigherflowoutofthereactorvesselindicatesthataleakmayexist.Majorleakageisalsodetectedbyexcessflowmonitoringinthecleanupsystemsuctionlines.~5..5.gLeakDetectionDevicesforNSS-SfsteeReactor~VesselHeadClosureThereactorvesselheadclosureisprovidedwithdoublesealswithaleakoffconnectionbetweensealsthatispipedthroughthenormallyclosedmanualvalvestotheequipmentdraintank.Leakagethroughthefirstsealisindicatedlocallyin,thereactorbuilding.Thesecondsealthenoperatestocontainthevesselpressure.(2)ReactorMaterRecirculationPumpSealAsdisussedinSubsection5.4.l.3,thereactorrecirculationpumpshaftisprovidedwithtwoseals.,LeakagepasteachsealispipedtotheDrywellEguipmentDrainTank.Teakagepastthefirststagesealisdesignedtoflowatapproximately0.75gpmnormally..Thefirststagesealleakofflineisprovidedwithahigh/lowflowalarmwhichactuatesatOe9gpmincreasingor0.5gpmdecreasing.Thesecondstage'pumpsealisdesignedforzeroleakagenormally.ThesecondstagesealleakofflineisprovidedwithahighflowalarmwhichactuatesatO.lgpm.(3)Safet~eliefValvesTemperaturesensorsconnectedtoamultipointrecorderareprovidedtodetectsafety/reliefvalveleakageduringreactoroperation.Safety/reliefvalvetemperatureelementsaremounted,usingathermowell,inthesafety/reliefvalvedischargepipingseveralfeetfromthevalvebody.Temperatureriseaboveambientisannunciatedinthemaincontrolroom.SeethenuclearboilersystemPGID,"Figure5.1-3.(4)ValvePackingLeakagePower-operatedvalvesinthenuclearboilersystemandrecirculationsystemareprovidedwithvalvestem/ReVe17,9/8052-55 SSES-PSARX4/packingleakoffconnections.Thepackingleakoffconnectionisprovidedwithnormallyclosedisolationvalves,andiscappedThesevalvestempackingleakoffisolationvalveswillbeopenedonlyduringshutdownorhydrostatictestconditionstoverifytheinnervalvepackingleaktightness.Keepingtheseleakoffconnectionsisolatedprovidestwosetsofpackingsforlimitingstemleakage.5~.5.3LimitsforreactorCoolant'eakage5~5.31Total.Leak~acRateThetotalleakagerateconsistsofallleakage,identifiedandunidentified,thatflowstothedrywellfloordrainandequipmentdrainsumps.ThecriterionforestablishingthetotalleakageratelimitisbasedonthemakeupcapabilityoftheRCICsystem.Thetotalleakageratelimitisestablishedat30gpm,25identifiedand5unidentified.Thetotalleakageratelimitisalsosetlowenoughtopreventoverflowofthedrywellsumps52.5.3.2Hormall~E~xectedLeakageRateThepumppackingglands,=valvestems,andothersealsinsystemsthatarepartofthereactorcoolantpressureboundaryandfromwhichnormaldesignleakageisexpectedareprovidedwithdrainsorauxiliarysealingsystems.NuclearsystemvalvesandpumpsinsidethedrywellareequippedwithdoublesealsLeakagefrom.theprimaryrecirculationpump'ealsispipedtothedrywell17)equipmentdraintanka'sdescribedinSubsections5.2.5.2(2)and,5.4.1.3.Leakagefromthesafety/reliefvalvesisidentifiedbytemperaturesensorsinthedischargelinethattransmittothecontrolroom.Anytemperatureincreaseabovethedrywellambienttemperaturedetectedbythesesensorsindicatesvalveleakage.Exceptfortheleakoffsfromthereactorrecirculationpumps,alldrainsroutedtotheDrywellEquipmentDrainTankarenormally17isolatedbyclosedvalues.Therefore,anyleakagemeasuredduringnormalplantoperationintheEquipmentDrainTankisattributabletotherecirculationpumps.17(1Theleakageratesfromtherecirculationpumps,plusanyotherleakageratesmeasuredwhilethedrywellisopen,aredefinedasidentifiedleakagerates.Table5.2-11listsnormalandmaximumidentifiedleakage'atesdirectedintotheDrywellEquipmentDrainTank,andtheassociatedactivityconcentrations.Rev.17,9/805.2-56 SSES-PSAR5.2.5.4OnidentifiedLeakageInsidetheDrgwell5.2.54lUnidentifiedLeakageRateTheunidentifiedleakagerateistheportionofthetotalleakageratereceivedinthedrywellsumpsthatisnotidentifiedaspreviouslydescribed.Athreatofsignificantcompromisetothenuclearsystemprocessbarrierexistsifthebarriercontainsacrackthatislargeenoughtopropagaterapidly(criticalcracklength).Theunidentifiedleakageratelimitmustbelowbecauseofthepossibilitythatmostoftheunidentifiedleakageratemightbeemittedfromasinglecrackinthenuclearsystemprocessbarrier.Anallowanceforleakagethatdoesnotcompromisebarrierintegrityandisnotidentifiableismadefornormalplantoperation.Theunidentifiedleakageratelimitisestablishedat5gpmratetoallowtimefogcorrectiveactionbeforetheprocessbarriercouldbesignificantlycompromised.This5gpmunidentifiedleakagerateisasmallfractionofthecalculatedflowfromacriticalcrackina'rimarysystempipe{Pigure5.2-10)..SafetylimitsandsafetylimitsettingsarediscussedinChapter16.Table5.2-12listsunidentifiedleakage"atesdirectedintotheDrywellPloorDrainSump,andtheassociatedActivityConcentrations.5.2.5.4gSensi+ivit~andResponseTimesSensitivity,includingsensitivitytestsandresponsetimeoftheleakdetectionsystemarecoveredinSubsectionI.6.1.Rev.17,9/805.2-57 SSES-TSARExperimentsconductedbyGEandBattelleMemorialInstitute,(BHI),permitananalysisofcriticalcracksizeandcrackopeningdisplacement(Reference5.2-4).Thisanalysisrelatestoaxiallyorientedthrough-sallcrackers.(l)CriticalCrackLe~nthSatisfactoryempiricalexpressionshavebeendevelopedtofittestresults.AsimpleeQuationvhichfitsthedataintherangeofnormaldesignstresses(forcarbonsteelpipe)is150000cwhereRc=criticalcracklength(in.)D~=meanpipediameter(in.)a>=nominalhoopstress(psi).of(2)CrackO~eni~nDi~slacementThetheoryofelasticitypredictsacrackopeningdisplacement2la(EQ.5.2-1)where1=cracklengtha=appliednominalstressE=Young'NodulusRev.17,9/8052-.58-SSES-FSARNeasurementsofcrackopeningdisplacementmadehyBNXshowthatlocalyieldinggreatlyincreasesthecrackopeningdisplacementastheappliedstresssapproachesthefailurestresssf.Asuitablecorrectionfactorforplasticityeffectsis:C=SEC2af(Eq.5.2-2)Thecrackopeningareaisgivenhymmk2amaA=gWR=-SEC-42E2af(Eq.5.2-3)ForagivencracklengthR,af=15,000D/l.(3)LeakageFlowRateThemaximumflowrateforhlowdownofsaturatedwaterat1000psiis55lb/sec-in~.andforsaturatedsteamtherateis14.6lb/sec-in~,(Reference5.2-5).Frictionintheflowpassagereducesthisrate,butforcracksleakingat5gpm(0.7lb/sec)theeffectoffrictionissmall.Therequiredleaksizefor5gpmflowisA=0.0126in'.(saturatedwater)A=0.0475(saturatedsteam)Promthismathematicalmodel,thecriticalcracklengthandthe5gpmcracklengthhavebeencalculatedforrepresentativeBWRpipesize(Schedule80)andpressure(l050psi).Thelengthsofthrough-wallcracksthatwouldleakattherateof5gpmgivenasafunctionofwallthicknessandnominalpipesizeare:NominalPipeSize~Sch80}in~AverageWallThickness~in.CrackLengthP~in.SteamLineWaterLine412240.3370.68712187.28.5864.94.84.6Theratiosofcracklength,g,,tothecriticalrrackasafunctionofnominalpipesizeare:length,RcRev.17,9/8052-59 .SSES-PSARHomina1.pipeSix~eSch8~0in1224SteamLine0.7450-4320247Ratio</<cMate~Liny0.51002430132Itisimportanttorecognizethatthefailureofductilepipingwithalong,through-wallcrackischaracterizedbylargecrackopeningdisplacementswhichprecedeunstablerupture.JudgingfromobservedcrackbehaviorintheGEandBMIexperimentalprograms,involvingbothcircumferentialandaxialcracks,itisestimatedthatleakratesofhundredsofgpmwillprecedecrackinstability.MeasuredcrackopeningdisplacementsfortheBMIexperimentswereintherangeofO.lto0.2in.atthetimeofincipientrupture,correspondingtoleaksoftheorderof1sqin.insizeforplaincarbonsteelpiping.Forausteniticstainlesssteelpiping,evenlargerleaksareexpectedtoprecedecrackinstability,althoughthereareinsufficientdatatopermitquantitativeprediction.TheresultsgivenareforalongitudinallyorientedflawatnormaloperatinghoopstressAcircumferentiallyorientedflawcouldbesubjectedtostressashighasthe550Fyieldstress,assuminghighthermal-expansionstressesexist.Itisassumedthatthelongitudinalcrack,subjecttoastressashighas30,000psi,constitutesa"worstcase"withregardtoleakrateversuscriticalsizerelationships.Giventhesamestresslevel,differencesbetweenthecircumferentialandlongitudinalorienta-tionsarenotexpectedtobe,significantinthiscomparison.Figure5.2-10showsgeneralrelationshipsbetweencracklength,leakrate,stress,andlinesize,usingthemathematicalmodeldescribedpreviously.Theasterisksdenoteconditionsatwhichthecrackopeningdisplacementis,0.1in.,atwhichtimeinstabilityisimminentasnotedpreviouslyunder"LeakageFlowRate<<.Thisprovidesarealisticestimateoftheleakratetobeexpectedfromacrackofcriticalsize.Ineverycase,theleakratefromacrackofcriticalsizeissignificantlygreaterthanthe.5gpmcriterion.Ifeitherthetotalorunidentifiedleakratelimitsarerexceeded,anorderlyshutdownwouldbeinitiatedandthereactorwouldbeplacedinacoldshutdownconditionwithin24hours.52.5.44Ha~rinsofSafet'hemarginsofsafetyforadetectable,flawtoreachcriticalsizearepresentedinSubsection5.2.5.4.3.Figure5.2-10showsRev.17,9/805.2-60 SSES-PSARgeneralrelationshipsbetweencracklength,leakrate','stressandlinesizeusingthemathematicalmodel.5.2.5.4.5CriteriatoEvaluatetheAdequacyand~sarin,oftheLeakDetection~sstes"rForprocesslinesthatarenor~allyopen,thereareatleasttwodifferent'ethodsofdetectingabnormalleakagefromea'chsystemwithinthenuclearsystemprocessbarrierlocatedinthe'rywell'ndreactorbuildingasshowninTable5.2-8.Theinstrumentationisdesignedsoitcanbesettoprovidealarmsatestablishedleakageratelimitsandisolatetheaffectedsystem,ifnecessary.Thealarmpointsaredeterminedanalyticallyorbasedon'eas'urementsof"appropriateparametersmadeduringstartupandpreoperationaltests.Theunidentifiedleakageratelimitisbased,withanadequatemarginforcontingencies,onthecracksizelargeenough'topropagaterapidly.Theestablishedlimitissufficientlylovsothat,eveniftheentireunidentifiedleakageratewerecomingfromasinglecrackinthenuclearsystemprocessbarrier,correctiv'eactioncouldbetakenbeforetheintegrityofthebarrierwouldbethreatenedwithsignificantcompromiseTheleakdetectionsystemvillsatisfactorilydetectunidentifiedleakageof5gpm.Sensitivity,includingsensitivitytestingandresponsetimeoftheleakdetectionsystem,andthecriteriaforshutdownifleakagelimitsareexceeded,arecoveredinSection7.6.1.5.2.5.5DifferentiationBetweenIdentifiedandUnidenti~fieLeaksSubsection5.2.5.1describesthesystemsthataremonitoredbytheleakdetectionsystem.TheabilityoftheleakdetectionsystemtodifferentiatebetveenidentifiedandunidentifiedleakageisdiscussedinSubsections5.2.5.1,5.2.5.4and7.6.1.5+.56Sensitivit~and~Oerabilit~TestsTestabilityoftheleakagedetectionsystemiscontainedinSubsection7.6.1.Rev.17,9/8052-61 SSZS-PSARILK'heBalanceofPlant-GE'uclearSteamSupplySystemsafetyinterfaces.fortheLeakDetectionsystem.arethe-signalsfrom--themonitoredbalanceofplantequipmentandsystemswhich.-arepartofthenuclear"systemprocessbarrier;-.andassociatedwiringandcablelying.outsidetheNuclearSteam'SupplySystem'quipment.Thesebalance'fplant-systems"andequipmentinclude:themain'team,line'tunnel,thesafety/reliefvalves,.andthe-turbine-building.sumps.5.25.8:iest+g~ailC~lib~tionProvisionsforTestingand.Calibration,ofthe--leak~,detectionsystem;iscoveredinChapter14.5.2.6References.5.2-152-.2:R.Linford,"AnalyticalMethodsofPlantTransientEvaluationforthe.GeneralElectric'BoilingWaterReactor,"NEDO-10802,April,1973.J.-M;-SkarpelosandJ..M.Bagg;"Chloride-ControlinBWRCoolants,"June,1973,NEDO-10899..52-.352-.4-5.2-.55.2-6W.L.,Williams;Corrosion;Vol..13,1957,p..539tGEAP-5620FailureBehavior'nASTIA106BPipesContainingAxialThrough-MallFlows,by-'.B.Reynolds;April,1968.<InvestigationahdEvaluation"ofCracking,in-AusteniticStainlessSteelPipingofBoilingMaterReactorPlants,"NUREG-.'76/067,NRCJPCSG,,datedOctober;1975.F.:Odar,'~SafetyEvaluationforGeneral,Electric,TopicalReport:Qualificationof.theOne-DimensionalCoreTransientModelfor.BoilingMaterReactors"NEDO-24154,NEDE-24154-PVol.I,II,III"datedJune1980.Rev.26,9/815.2-62, SSES-PSARTABLE52-11IDENTIFIEDLEAKAGESINTOTHEDRYMELLEQUIPHENTDRAINTANKLeakageSourceNormalActivityConcentration~cgccNormalLeakRate/GPSS)MaximumExpectedLeakBateQGPH)ReactorHeadSealLeakoffBulkheadDrainBellowsLeakageDrainRPVVentRecirculationPumpSealsRecirculationPumpCoolerDrainRPVBottomDrain10-i1010->000015005{Note1)0{Note2)0{Note2)50(Note1)2000(Note2)NOTESl.Duringhydrotestorcooldownonly,withisolationvalvesopen.2Drainsvalvedclosed.Drainopenedonlyduringshutdown,refuelingormaintenance.REV.11,7/79 0 SSES-PSARTABLE52-12UNIDENTXPIEDLEAKAGESINTOTHEDRYWELLFLOORDRAINSUMPLeakageSourceNormalActivityConcentration-'ccNormalLeakMaximumExpectedLeakRat~e~GPMRat~eG~PMVentCoolerDrainsCRDPlange/ControlBladeBackseatChilledWaterDrainsCooling$faterDrainsMisc.Valves6'Equipment10-i10-><1050202(Note3)0(Note1)0(Note1).5(Note2)NOTES:l.Drainsvalvedclosedandcapped.Openedonlyformaintenance.2.Assumedvalue.3.2-gpm/drive,maintenanceonly,onedriveatatime.REV.11,7/79 SSES-PSAR6.3.2463.2.5632663.2.76.3.2.8632963.36.3.3.16'.3.26.3.336.3.3.4633563.3.663.376.3.3.7.16.3.3.7.2633736.337.4633.756.3.3.7.66.337~76.3.3.86.3.46341'"63426.342.16.3.4.2.26342363.42463.563.66.3.7MaterialsSpecificationsandCompatibilitySystemReliabilityProtection'rovisionsProvisionsforPerformanceTestingManualActionsPositionVerificationforManualValvesECCSPerformanceEvaluationECCSBasesforTechnicalSpecificati.onsAcceptanceCriteriaforECCSPerformanceSingleFailureConsiderationsSystemPerformanceDuringtheAccidentUseofDualFunctionComponentsforECCSLimitsonECCSSystem'ParametersECCSAnalysesforLOCALOCAAnalysisProceduresandInputVariablesAccidentDescriptionBreakSpectrumCalculationsLargeRecirculationLineBreakCalculationsTransition,RecirculationLineBreakCalculationsSmallRecirculationLineBreakCalculationsCalculationsforOtherBreakLocationsLOCAAnalysisConclusionsTestsandInspectionsECCSPerformanceTestsReliabilityTestsandInspectionsHPCITestingADSTestingCSTesting'LPCITestingInstrumentationRequirementsNPSHAMarginandVortex,FormationAfteraPassiveFailureinaWaterTightECCSPumpRoomReferences6.3-20b6.3-2Ob63-20b63-20c63-20c63-20d6.3-20e6.3-216.3-2163-226.'3-226.3-236.3-2363-246.3-24,6.3-256.3-2663-276.3-296.3-30.6.3-30a6.3-30a63-30a6.3-3Oa63-30b'6.3-30c63-3Od6.3-316.3-316.3-3263-326.3-336.4HABITABILITYSYSTEMS6.4-16.416.4.2DesignBasesSystemDesign6.4-16.4-2REV17,9/806-vii SSES-FSAR6.4.2.16.4.2.26.4.2.36.4.2.46.4.2.5ControlRoomandSecondaryEnvelopeVentilationSystemDesignLeaktightnessInteractionwithOtherZonesandPressure-ContainingEquipmentShieldingDesign6.4-26.4-36.4-36.4-46.4-56.4.36.4.4SystemOperationalProceduresDesignEvaluations6.4-56.4-66.4.4.16.4.4.2RadiologicalProtectionToxicGasProtection6.4-76.4-86.4.56.4.66.4.7TestingandInspectionInstrumentationRequirementsReferences6.4-86.4-96.4-106.5.1EngineeredSafetyFeature(ESF)FilterSystems6.5FISSIONPRODUCTREMOVALANDCONTROL'YSTEMS6.5-16.5-16.5.1.1StandbyGasTreatmentSystem(SGTS)6.5-16.5.1.1.16.5.1.1..26.5.1.1.36.5.1.1.46.5.1.1.56.5.1.1.6DesignBasesSystemDesignDesignEvaluationTestsandInspectionsInstrumentRequirementsMaterials6.5-16.5-36.5-66.5-66.5-66.5-76.5.1.2ControlRoomEmergencyOutsideAirSupplySystem(OV-101)6.5-86.5.1.2.16.5.1.2.26.5.1.2.36.5.1.2.46.5.1.2.56.5.1.2.6DesignBasesSystemDesignDesignEvaluationTestsandInspectionsInstrumentationRequirementsMaterials6.5-86.5-96.5-116.5-116.5-116.5-126.5.26.5.3ContainmentSpraySystemsFissionProductControlSystem6.5-136.5-136.5.3.16.5.3.2PrimaryContainmentSecondaryContainment6.5-136.5-13a6.5.46.5.5IceCondenserasaFissionProductCleanupSystemReferences6.5-156.5-15Rev.26,9/816-viii SSES-FSAR6.6INSERVICE6.6.16.6.26.6.2.16.6:2.26.6.2.3INSPECTIONOFCLASS2AND3COMPONENTSComponentsSubjecttoExaminationAccessibilityhPipingandComponent'WeldsInsulationRemoval'naccessibleClass3Piping6.6-16.6-16.6-16.6,-26.6-26.6-26.6.3ExaminationTechniquesandProcedures6.6-26.6.3.16.6.3.26.6.3.3VisualExaminationSurfaceExaminationVolumetricExamination6.6-26.6-36.6-36.6.46.6.56.6.66.6.76.6.8InspectionIntervalsExaminationCategoriesandRequirementsEvaluationofExaminationResultsSystemPressureTestsAugmentedInserviceInspectiontoProtectAgainstPostulatedPipingFailures6.6-36.6-36.6-36.6-46.6-46.7MAINSTEAMISOLATIONVALVELEAKAGECONTROLSYSTEM(MSIV-LCS)6.7-16.7.1DesignBases6.7-16.7.1.16.7.1.26.7.1.3SafetyCriteriaRegulatoryAcceptanceCriteriaLeakageRateRequirements6.7-16.7-26.7-36.7.2SystemDescription6.7.2.1GeneralDescription6.7-36.7-36.7.2.1.16.7.2.1.2DownstreamSystemUpstreamSystem6.7-46.7-56.7.2.26.7.2.3SystemOperationEquipmentRequired6.7-56.7-66.7.3SystemEvaluation6.7-76.7.3.16.7.3.26.7.3.36.7.3.46.7.3.56.7.3.66.7.3.76.7.3.8FunctionalProtectionFeaturesEffectsofSingleActiveFailuresEffectsofSeismicInducedFailuresIsolationProvisionsLeakageProtectionEvaluationFailureModeandEffectsAnalysisInfluenceonOtherSafetyFeaturesRadiologicalEvaluation6.7-76.7-76.7-76.7-76.7-86.7-96.7-96.7-10Rev.27,10/816-ix SSES-FSAR6.7.46.7.5APPENDIX6AAPPENDIX68InstrumentationRequirementsInspectionandTestingSubcompartmentDifferentialPressureConsiderationsCompartmentDifferentialPressureAnalysisDescription6.7-106.7-106A-16B-1.Rev.27,10/Sl6-x SSES-FSAR0HabitabilitysystemsaredesignedtoensurehabitabilityinsidetheControlroomTechnicalSupportCenter(TSC),OperationalSupportCenter(OSC),computer,relay,cablespreading,andbatteryroomsforbothUnits1and2duringallnormalandabnormalstationoperatingconditionsincludingthepostLOCArequirements,incompliancewithDesignCriterion19of10CFR50,AppendixA.Thehabitabilitysystemscoveralltheequipment,supplies,andproceduresrelatedtothecontrolandauxiliaryelectricalequipmentsothatcontrolroomoperatorsaresafeaqainstpostulatedreleasesofradioactivematerials,noxiousgases,smoke,andsteam.Adequatewater,sanitaryfacilities,andmedicalsuppliesareprovidedtomeettherequirementsofoperatingpersonnelduringandaftertheaccident.Inaddition,theenvironmentoftheControlStructureEnveloperoomsaremaintainedtoensuretheintegrityofthecontainedsafetyrelatedcontrolsandeguipment,duringallthestationoperatingconditions.64.1DESIGNBASESeThedesiqnbasesofthehabitabilitysystems,uponwhichthefunctionaldesignisestablished,aresummarizedasfollows:a)Thecontrolstructureenvelopeisoccupiedcontinuouslyonayear-roundbasis.Theoccupancyoftheoperatingpersonnelisensuredforaminimumof5days,afteradesign-basisaccidenttDBA).b)c)HVACsystemsforradiologicalhabitabilityaredesigned,-tosupportpersonnelduring.normalandabnormalstationoperatingconditionsintheControlStructureEnvelope.Kitchen,sanitaryfacilities,andmedicalsuppliesforminorinjuriesareprovidedfortheuse.offivecontrolroompersonnelforfivedaysduringnormalandaccidentconditions.d)TheradiologicaleffectsontheControlStructureEnvelopethatcouldexistasaconsequenceofanyaccidentdescribedinChapter15willnotexceedtheguidelinessetby10CFR50,AppendixA,GeneralDesignCriteria19.e)Thedesignincludesprovisionstoprecludetheeffectsofchlorineandsmokefrominsideoroutsidetheplantfrominhibitingthehabitabilityofthecontrolroom,TSCandOSC.6.4-1Rev.26,9/81 SSES-FSARf)Eyewashesandemergencyshowersarelocatedonthebatteryroomfloor.Respiratoryandskinprotectionforemergenciesareprovidedwithinthecontrolroom.g)ThehabitabilitysystemsaredesignedtooperateeffectivelyduringandaftertheDBAwiththe~simultaneouslossofoffsitepower,SafeShutdownEarthquake,.andfailureofanyoneoftheHVACsystemactivecomponents.h)Radiationmonitors,andchlorineandsmokedetectorscontinuouslymonitortheoutsideair'atthecontrolstructureenvelopeoutsideairintakes.Thedetectionofhighradiation,chlorine,.orsmokeisalarmedinthecontrolroomandrelatedprotectionfunctionsaresimultaneouslyinitiatedforhighradiationandchlorine.Theoperatormayisolatethecontrolstru'ctureonsmokealarmathisdiscretion.6.42SYSTEMDESIGNHabitabilitysystem"boundariesforSusquehannaSESisthecontrolstructureenvelope.a)b)AnindependentHVACsystemisprovidedforthecontrolroomarea.Thisincludes:controlzoom,TSC,OSC,kitchen,toiletandlocker,office,andstoragespace.AdetaileddescriptionofthisredundantsystemisprovidedinSubsection9.4.1.I~4&I~TwoindependentHVACsystemsareprovidedfortheremainingareas.Onesystemservesthecomputerroom,relayrooms,computermaintenanceroom,office,andOPSrooms.Theothersystemservesthelovercablespreadingroom,upperrelayrooms,uppercablespreadingrooms,.electrician'soffice,batteryrooms,coldinstrumentrepairshop,andHVequipmentroom.EachofthesesystemsisdescribedinSubsection9.4.1.JThereareelevenexteriordoorsinthecontrolstructureenvelope.Thesedoorsaregaskettedtominimizeleakageandwillbetestedto1/8"H20differentialpressuretoassuretightness.Theleakagepathacrosstheventilationbarrierbetweenthecontrolstructureenvelopeandoutsideenvironmentisthrutheisolationdamperblades..Theisolationdampersarelocatedinthesmokeremovalsystemsandthereliefairductsystem.t6.4-2Rev.26,9/81 SSES-PSABTestsontheisolationdampersindicatealeakagerateasshovnonTable6.4-1at-a4inchw.g.pressuredj.fferential.*Theanalysisforcontrolroomhabitabilitygiveninsection15.6-5andAppendix15Bassumedaleakageof10cfmofoutsideairtotheControlStructureEnvelopetoa'cgoantfordooropeningsetc.Nakeupairtotheenvelopeisalsofiltered,sotheinleakagetotheControlStructureEnvelopewouldnptbeatoutsideairconcentrations.TheenvironmentoftheControlStructureEnvelopeismaintainedtoensuretheintegrityofthecontainedsafetyrelatedcontrolsandequipment,duringalloperatingconditions.TechnicalSpecification3/4.7.2discussesleakageallowableandpressurizationverificationtesting.-.64.2.2VentilationSystemDesian~~e9ThedetailedHVACsystemdesignispresentedinSubsection9.4.1.ThesesystemsareshownonPigures9.4-1,9.4-2,and9.4-3.DesignparametersarelistedinTable9.4-2.AlistofisolationdamperswiththeirleakagecharacteristicsandclosuretimesisshowninTable6.4-1.AllthecomponentsaredesignedtofunctionduringandafteraSSEexceptfortheoutsideairintakeelectri:cheatingcontrolsandhumidificationequipment,controlroomrelieffan,reheatcoilsandtheircontrols,whicharesupportedtostayinpositioneventhoughtheymaynotfunction.,'-,~;Componentsareprotectedfrominternallyandexternallygeneratedmissiles.Layoutdiaqramsofthecontrolstructure,shovingdoors,corridors,stairways,shieldvalls,equipmentlayout,andtheControlStructureEnvelopeareshovn'onFigures6.4-1athrouqh6'.,4-,'1e.;.;."-'",.'"-~'~",~',,";~,'<,~",'.i~.'"."",.q",,Thedescriptionofcontrols,instruments,andradiationandchlorinemonitorsforthecontrolstructureHVARsystemisincludedinSubsections9.41and7.3.1.ThelocationsofoutsideairintakesandpotentialsourcesofradioactiveandtoxicgasreleasesareindicatedonPigure.6.4-2.Adetaileddescriptionoftheemergencymakeupairfiltertrainsispresentedi.nSubsection6.5.1.TheentireControlStructureEnvelopeisofleaktightconstruction.Thefreeairspacevolumeisapproximately110,000cubicfeetinthecontrolroomfloor,80,000cubicfeetinthebatteryroomfloor,and320,000cubicfeetintheremaining64-3Rev.26,9/8l SSES-PSARspaces.oftheenvelope.Allcabletrayandduct..penetrationsaresealed.Approximately5810cfmofoutsideairis.introducedthroughcharcoalfiltersintotheenvelope,tomaintainapproximately1/8in.Hq0positivepressureoveratmosphere;thisincludes3500cfmKothebattery:rooms'asmake-upair.Thebatteryroomsareexhaustedthruth'eSGTSexhaustvent.Theairintakerates'rethesamefornormaloperationandforemergencymodes,excepthighchlorineisolationmode.WhenchlorineisolationoftheControlStructureEnvelopeisinitiated,alltheisolationdamperswillautomaticallyclose,andthecontrolroomtoiletexhaust,kitchenexhaustfans,thebatteryroomexhaustfan,andthecontrolroomreliefairfanwillshutoff.Whenisolated,theonlysourceofoutsideairintotheControlStructureEnvelopeisbyleakagethroughthedampersandaround-doors,approximately0.25airchangesbyvolumeperhour.6.4.2.4InteractionwithOtherZonesandPressure-Containing'ggujpme'rjtTheControlStructureEnvelopeissurroundedbytheturbinebuilding,reactorbuilding,andcentralaccesscontrolarea.EachoftheseareasisseparatedfromthecontrolstructurebyshieldwallsandfloorsandservedbyindependentHVACsystems.Allpenetrationsforconduits,pipesandductworkpenetratingtheControlStructureEnvelopewillbecompletelysealed;allairoutletopeningswhichcontinuetoareasoutsideoftheenvelopewillbeisolatedbya;."set.of"redund'an'tisolationdampers;"."<<"Thuctworkpenetrationisofweldedconstruction.TheControlStructureEnvelopeissurroundedbythe'TurbineBuildingandReactorBuilding.TheseareasareservedbyindependentHVACsystemsdescribedinSection9.4.Thecontrolstructureisisolatedbytheventilationbarrierbetweenthecontrolstructureandtheotherareasconsistingofconcretewallandfloorslabconstructionandleaktightdoors.Exceptforfireprotectionhalonbottles,fireextinguishersandself-containingbreathingapparatus,,therearenopressure-containingtanksinthecontrolroomarea.~Steampipingisexcludedfromthecontrolstructure.6.4-4Rev.26,9/81 SSES-FSAR6.4.g.5ShieldingDesignTheControlStructureradiationshieldingdesignisdiscussedinSection12.3whichdescribescontrolstructureroomshieldwallthicknesses,thelocationofassociatedplant-structuresrelativetothecontrolstructure,andprovisiontoreduceradiationfromexternalsources.Adescriptionofradiation"sourcesusedtodesiqncontrolstructureshieldingispresentedin'ection12.2andinreference6.4-1andincludessourcestrength,geometry,andattenutationparameters.,Duringnormalplantoperation,themixtureofrecirculatedairandoutsideairforthecontrolstructureHVACsystemsisfilteredthroughULClass1particulatefiltersupwitharatedefficiencyof90-percentbyASHRAEStandard52-68atmoshericdustspotmethod.ThecontrolstructureHVACsystemsarestartedthroughremotehandswitchesthatare,locatedinthecontrolroomHVACcontrolpanel.TheoperationofthecontrolroomHVACsystemis;descfibedinSubsection9.'4.1:2.1.r'vg),,gag,~lpnLi,4<'~,.)n".'p't-'fff'Ig>'""[~%Toremoveanynoxiousqasesandodorsfromthecontrolroom,theoperatorcanmanuallyisolatethecontrolroomHVACsystem(highchlorinesimulation)andplacetheemergencyoutsidefiltertraininrecirculatinqoperation.Toremovesmokefromthecontrolroom,theoperatorcanmanuallyoperatethesmoke,exhaustfanandfireprotectioncontroldamperfromthefireprotectioncontrolpanelinthecontrolroom.Smokewillbeexhaustedbythefans,throughtheductsystem-totheturbinebuilding'xhaustvent;~"'-;Intheeventofhiqhradiationattheoutsideairintake'fthecontrolstructureHVACsystems,theradiationmon'itoringsystemautomaticallyshutsoffnormaloutsideairsupplytothesyst'ems.TheoutsideairisautomaticallyroutedthroughtheemergencyoutsideairfiltertrainbeforeenteringtheHVACsystem.Intheeventofareactorisolationsignal,thecontrolstructureHVACsystemwillautomaticallytransfertotheemergencyoutsideairfiltertrainasdescribedinthehighradiationmode.'ntheeventofhighchlorineintheoutsideairintakeofthecontrolstructureHVACsystems,thechlorinedetectionsystemautomaticallyshutsoffallisolationdampersandclosesofftheoutsideairsupplytothecontrolstructure.ThecontrolstructureHVACsystemsareautomaticallyputintherecirculationmode.Afterisolation,theemergencyoutsideairfiltertrain6.4-5Rev.26,9/81 SSES-FSARsystemcanbemanuallyplacedin.operation.This.,operationcleansuptheairinthecontrolroom.Twoemergencyoutsideairfiltertrainsandfansareprovided.Eachtrainconsistsofanelectricheater,prefilter,upstreamHEpAfilter,charcoaladsorber,anddownstreamHEPAfilter.ThesystemisdesiqnedtohandlethereguirementsofoutsideairfortheHVACsystems.Eachtrainissizedtoprocess6000cfm110%ofoutsideair,providing500cfma10%tothecontrolroomHVACsystem,400cfmf10%tothecomputerroomHVACsystem,and5100cfma10%tothecontrolstructureHVACsystem.TheemerqencyoutsideairfiltertrainsystemisdescribedindetailinSection6.5.64,4DESIGNgVQJ,UQTIQ]gSThecontrolstructureHVACsystemsdesignedtomaintainasuitableenvironmentforpersonnelandeguipmentinthecontrolstructureunderallthestationoperatingconditions.Thesystemsareprovidedwithredundantequipment,tomeetthesinglefailurecriteria.TheredundantequipmentissuppliedwithseparateClass1E,-powersourcesandis'operableduringlossofoffsitepower".'Thepowersupplyand"'control",and'instrumentationmeetIEEE-279andIBEE-308criteria.AlltheHVACequipments,exceptthenormaloutsideairintakeheating,humidification,controlroomrelieffan,reheatcoilsandtheircontrols,andsurroundingstructure,aredesignedforSeismicCategoryI..Thelikelihoodofaneguipmentfireaffectingcontrolstructurehabitabilityisminimizedbecauseearlyionizationdetectionisanticipated,firefiqhtingapparatusisavailable,andfiltrationandpurgingcapabilitiesareprovided.RefertoSubsection9.5.1forfurtherdescription'f*thePireprotection'System-Thefollowingprovisionsaremadetominimizefireandsmokehazardsinsidethecontrolstructureanddamagetonuclearsafetyrelatedcircuits:a)Hostelectricalwiringandequipmentaresurroundedby,ormountedin,metalenclosures.b)Thenuclearsafetyrelatedcircuitsforredundantdivisions(includingwiring)arephysicallysegregated.c)Cablesusedthroughoutthecontrolstructureareflameretardant.d)Structuralfloorsandinteriorwallsareofreinforcedconcrete.Interiorpartitionsareconstructedofmetal,masonry,orgypsumdrywallsonmetaljoists.Thecontrolroomceilinqissuspendedtypewithnon-6.4-6Rev.26,9/81 SSES-PSAHcombustibleacoustictile,thedoorframes,anddoorsaremetallic.Woadtrimisnotused.ThecontrolroomraisedfloorconsistsofsteelplatesandsupportscoveredwithcarpetwithacceptaMefiresafetycharacteristics(seeRe~tinn3.2oftheSusquehannaFireProtectionReviewReport).Asystemisprovidedto.detecthiqhradiationattheoutsideairintake.Thesemonitorsalarmthecontrolroomupondetectionofhighradiationconditions.Theemergencyoutsideairfiltertrains,desiqnedtoremoveradioactiveparticulatesandadsorbradioactiveiodinefromtheHVACsystemoutsideairsupply,areautamaticallystarteduponhiqhradiationsignals.Achlorinedetectionsystemisprovidedtodetectchlorineattheoutsideairintake.Thesedetectorsalarmi'nthecontrolzoomwhenchlorineisdetectedandautomaticallytripallisolationdampersandshutoffallrelatedfans.PurtherdescriptionisprovidedinSection9.4.,TheemerqencyoutsideairfiltertrainsandcontrolroomshieldinqaredesignedtolimittheoccupationaldoselevelsrequiredbyDesignCriterion-19of10CPB50,AppendixA.TheintroductionofsufficientoutsideairtomaintaintheControlStructureEnvelope.atapositivepressurewithrespecttosurroundinqs,precludesinfiltrationofunfilteredaizintothecontrolstructureatallthestationoperatingconditionsexceptwhenthesystemisintherecirculationmode.6.4.4.1RadiologicalProtectionThecontrolroomairpurificationsystemandshieldinqdesignsarebasedon,themostlimitingdesiqnbasisassumptions,thoseofRegulatoryGuide1.3.-TheairbornefissionproductsourcetermintheprimarycontainmentfollowinqthepostulatedLOCAisassumedtoleakfromthecontainmentatarateof1.0'Xperday.Pullmixinginthebuildingwake,inwhichthecontrolroomanditsventilationintakearepresumedtobeimmersedforthedurationofthepostaccident,phase,isalsoassumed.Theconcentrationofradioactivity,whichispostulatedtosurroundthecontrolroomafterthepostulatedaccident,isevaluatedasafunctionofthefissionproductdecayconstants,thecontainmentspraysystemeffectiveness,thecontainmentleakrate,andthemeteorologyfor'achperiodofinterest.Theassessmentoftheamountofradioactivitywithinthecontrolroomconsiderstheflowratethroughthecontrolroomoutsideairintake,theeffectivenessofthecontrolroomairpurificationsystem,thezadioloqicaldecay'ffissionproducts,andtheexfiltrationratefromthecontrolroom.Rev.27,10/8164-7 SSES-PSARThecontrolroomemergencyfiltrationtraindrawstheincomingairthrouqh.anelectricheatingcoil,moderateefficiencyfilter,HEPAfilters,andacarbonadsorbertominimizetheexposureofcontrolroompersonneltoairborneradioactivity.Inordertoincreasetheeffectivenessofthecarbonadsorbers,incomingairiswarmedbytheheatinqcoiltodecreaseitsrelativehumidity.Airwithinthecontrolroom,TSCandOSCisrecirculatedcontinuouslythrouqhtheair'handlinqunit,whichcontrolsroomtemperature75~Px5oPandhumidity50%a5%.Theresultingcalculateddosesforcontrolstructureingress,egress,andoccupancy,(onarotatingshiftbasis)arelessthan5remtothewholebodyortheeguivalenttoanyorgan.ThesedosesarewithinthedoselimitsspecifiedinGeneralDesignCriterion19.AdetaileddiscussionofthedosecalculationmodelforcontrolstructureoperatorsisdiscussedinSubsection15.1.13.Controlstructureshieldingdesign,basedonthemostlimitingdesignbasisLOCAfissionproductrelease,isdiscussedinSection12.3andisevaluatedinSubsection15.1.13.TheevaluationsinChapter15demonstratethatradiationexposurestocontrolstructurepersonneloriginatefromcontainmentshine,externalcloudshine,andcontainment,airborneradioactivitysources.TotalexposuresresultingfromdesignbasisaccidentsarebelowthedoselimitsspecifiedbyGeneralDesignCriterion19;theportioncontributedbycontainmentshineandexternalcloudshineisreducedtoasmallfractionofthetotalbymeansofshieldinq.6.4.4.2ToxicGasProtectionThecontrolstructurerecommendationofthesystemsaredescribedAdetaileddiscussionSubsection2.2.3.HVACsystemsaredesignedtosatisfytheRegulatoryGuide1.78and1.95.TheHYACinSubsection9.4.1.Iofthetoxicqasprotectionisin6.4.5TESTINGANDINSPECTIONThecontrolstructureHVACsystemsandtheircomponentsarethoroughlytestedinaprogramconsistingofthefollowing:a)Factoryandcomponentqualificationtests{seeSubsection9.4.1)b)Onsitepreoperationaltesting{seeChapter14)Rev.26,9/8164-8 SSBS-FSARc)onsitesubsequentperiodictesting{seeChapter16).Allsafety-relatedinstrumentsandcontrol'sforthecontrolstructureHVACsystemsare'lectricorelectronic,,'exceptforisolationdamperactuators"whicharepneumaticallyoperated.Thesedampersaredesiqnedtofailsafeonlossofcompressedair.The,compressedairsystemisnotsafety-related.a)EachredundantHVACsystemisprovidedwithanindependentlocalcontrolpanelandeachsystemisseparatelycontrolled.ImportantoperatingfunctionsarecontrolledandmonitoredfromthecontrolroomHVACpanel.b)Instrumentationisprovidedtomonitorimportantvariablesassociatedwithnormaloperations.Instrumentsareprovidedtoalarminthecontrolroomifabnormalconditionsaredetected.c),Aradiationdetectionsystemis'prov'idedtomonitortheradiationlevels'atthesystemoutsideairintakes.highradiationsignalisalarmedonthemaincontrolboard.d)Achlorinedetectionsystemisalsoprovidedtomonitorthechlorineconcentrationatthesystemoutsideairintakes.Achlorinepresentsignalisalarmedonthemaincontrolboard.e)Firedetectioncapabilityisprovidedintheoutsideairintakeplenum.Piredetectionisannunciatedonthemaincontrolboardviathefireprotectioncontxolpanel.f)ThecontrolroomandcontrolstructureHUACsystemsaredesignedforautomaticenvironmentalcontrolwithmanualstartingofthefans.Thechilledwatersystemhasamanual/autoselectorswitch.g)Afireprotectionwaterspraysystemisprovidedforeachcharcoaladsorberbedintheemergencyoutsideairfiltertrain.h)TheemergencyoutsideairfiltertrainairflowrateandupstreamHEPAfilterdifferentialpressurearetransmittedtotheHSVcontrolboardinthecontrolroom,recorded,andalarmed.Rev-26,9/816~4-9 SSES-FSAR6.

4.7REFERENCES

6.4-1,Susquehanna.,Steam-Electric'tation;"UpdatedResponse,toTMI.Related-.Requirements",PLA-659,datedMarch16,1981(N.W.Curt'istoB.J.Youngblood),sectionX.1.20Rev.26,9/816.4-10 SSES-FSAR6.6INSERVICEINSPECTIONOFCLASS2AND3COMPONENTS"-TheconstructionpermitforSusquehannaSESvasissuedinNovember1973.Basedontheconditionslistedin10CFR50.55a(g),themandatorypreserviceinspectionrequirements,includingprovisio'nsfordesignandaccess,arestipulatedtobeSectionXIoftheASMEBGPVCodeeffectivesixmonthspriortothedateofissuanceoftheconstructionpermit.ForSusquehannaSESthecodeineffectwouldbethe1971EditionincludingtheSummer1972Addenda,whichrequiredinspectionofthereactorcoolantpressureboundaryonly.TheactualpreserviceinspectionforSusquehannaSESvillbeconductedinaccordancewiththereguirementsofthe1974EditionoftheASIDECode,SectionXI,'includingAddendathroughSummer,1975asmodifiedbyAppendixIIItoWinter1975AddendaandIWA-2232oftheSummer1976Addendatotheextentpracticalvithinthelimitationsofdesignandaccessprovisionsandthegeometryandmaterialsofconstructionofthecomponent.Subsequentinsezviceinspectionsvillbeconductedinaccordanceviththerequirementsof10CFR50.55a(q),also,onan"aspractical"basis.6.61CONPONENTSSUBJECTTOEXANXNATIONTheinspectionrequirementsofASNECodeSectionXI,ArticlesIWC-2000andIWD-2000,villbemetwithinthelimitationsofdesignandaccessprovisionsandthegeometryandmaterialsofconstructionofthecomponent,forallClass2andClass3pzessureretaininqcomponents(andtheirsupports)exceptforcomponentsexcludedunderIWC-1220.ThescopeandspecificcomponentssubjecttotherequirementsofIWC-1000andIQD-1000ofSectionXI,CodeClass2and3,arecontainedintablesthatwillbeprovidedinanamendmenttotheFSAR6.6.2ACCESSIBILITYInserviceinspectionaccesstotheASIDECodeClass2and3componentslistedinthetechnicalspecificationsisprovidedinthedesignoftheplantonan"aspractical"basis.Thereis,atthistime,nomandatoryrequirementforpreserviceinspection,and10CFR50.55a(q){4)requiresinserviceinspectiontEtotheextentpractical"withinthelimitationsofdesignandaccessprovisionsforCodeClass2and3components.Asidefromprovidinqnormalaccesstocomponentsforinstallation',6.6-1 SSES-FSARmaintenance,andtesting,thefollowinqprovisionshavebeenconsideredintheSusquehannaSESdesign:6.621a~tingandC~omanentmeldnAccessenvelopeshavebeenconsideredforClass2componentsrequirinqvolumetricand/orsurfaceexaminations.Weldcontoursandsurfaceshavebeenpreparedformeaningfulultrasonicexaminationwhererequired.6.6.22InsulationRemovalClass2pipingorcomponentsrequiringvolumetricand/orsurfaceexaminationsareequippedwithremovable,numbered,insulationpanels.Class2andClass3pipingrequiringavisualexaminationduringsystempressuretestswillnotbeequippedwithremovableinsulation.Thevisualexaminationsvillbeperformedbyinspectingtheexposedsurfacesofandjointsincomponentinsulationtolocateevidenceofleakageandthefloorareas(orequipment)directlyunderneathcomponentsforevidenceofaccumulatedleakagethatmaydripfromcomponents.6.62.~InaccessibleClass3~Pii~nAccesswillbeprovidedforburiedClass3pipingsystems.Spraypondpipingisembeddedinconcreteandisopen-ended.66.3EXAHINATIONTECHNIUESANDPROCEDURESInserviceexaminationtechniquesandproceduresusedforCodeClass"2and3componentswillconformtotherequirementsofSubsectionIWA-2200ofthe1974EditionofSectionXI,asmodifiedAddendathroughSummer,1975withtheadditionofAppendixIIItotheMinter,1975AddendandSubparagraphIMA-2232oftheSummer,1976Addenda.6.6.3.1VisualExaminationVisualexaminationtechniqueswillbeinagreementwithIMA-2210ofSectionXIoftheCode.Visualexaminationwillbeemployedasabasisforreporting-thegeneralconditionofthepart,component,orsurface.6.6-2 SSES-FSAR6.6.3.2SurfaceExaminationSurfaceexaminationtechniqueswillbeinagreementwithIWA-2220ofSectionXIoftheCode.Surfaceexaminationwillbeusedtoverifythepresenceofsurfaceornearsurfacecracksordiscontinuities.6.6.3.3VolumetricExaminationVolumetricexaminationmethodswillbeinagreementwithIWA-2230ofSectionXIoftheCode.Volumetricexaminationwillbeusedtodeterminethepresenceofsubsurfacediscontinuities,theirsize,locations,andorientation.66,4INSPECTIONINTERVALSTheISIprogramscheduleofrequiredexaminationstobecompletedineachinspectionintervalmeetsthe.requirementsofIWC-2400andIWD-2400ofSectionXI.ThisschedulewillbeprovidedinanamendmenttothePSAR.1'-6.5EXANINATIONCATEGORIESAND~REUIREMENTS~ISIexaminationcategoriesandrequirementsforASIDEClass2and3componentswillbeexaminedinaccordancewiththecriteriainIWC-2500,IWC-2600,andIWD-2600ofSectionXI.AreassubjecttoexaminationandtheextentofexaminationforClass2componentscomplywiththe.requirementsofTableIWC-2520ofSectionXIonan<<aspractical"basis.AlistofthesecomponentswillbeprovidedinanamendmenttothePSAR.66.6EVALUATIONOFEXAMINATIONRESULTSEvaluationofexaminationresultswillbeinaccordancewithIWA-3100forASMECodeClass2and3components.Repairsto,orreplacementofcompo'nentscontainingunacceptableindicationswillagreewiththerequirementsofIWB-4000ofSectionXI.CriteriatoestablishtheneedorreplacementwillconformtoIWB-3000.6.6-3 SSES-PSAR667'SYSTEMPRESSURETESTSSystempressuretestswillmeettherequirementsofINC-5000andIWD-5000ofSectionXI.668AUGMENTEDINSERVICEINSPECTIONTOPROTECTAGAINSTPOSTULATEDPIPINGFAILURESTheaugmented,inserviceinspectionprogramtoprovideassuranceagainstpostulatedpipingfailuresofhighenergysystemsbetweencontainmentisolationvalveswillbereviewedandimplementedasdescribedbelow.TherearenoguardpipesusedtoenclosehighenergypipingontheSusquehannaSES.Thefollowingaugmentedinspectionprogramappliestopipingbetweenthecontainmentisolationvalvesfor'whichnobreaksarepostulated;4ForASMEIII,Class1and2piping,therequriementsoftheapplicableCodeappliesasis,withtheexceptionthattheextent'fexaminationwillbeaugmentedsuchthat100%ofthecircumferentialweldswithinthecontainmentisolationboundarywillreceive100Kvolumetricexaminationduringeachinspectioninterval.Volumetricexaminationofbranchconnectionscontainingweldolets,half-couplings,andsocketweldswouldnetbemeaningfulduetothegeometryofthebranchconnectionandthesmallpipesizesinvolved.Fullcoverageofthe.weldandrequiredvolumecannotbeobtained.Therefore,surfaceexaminationwillbeperformedonallbranchtomainrunweldsandallsocketweldsuptothefirstisolationvalveonthebranchline.Allbuttweldsincludedinthebranchpipinguptothefirstisolationvalvewillreceivefullvolumetricexamination.Theinspectionprogramwillbeperformed,completelyinaccordancewithASMESectionXIrequirements,however,theextentofexaminationofASMESectionXI.willbesupplementedtocomp'ywiththeaugmentedinspectionprogramrequirementsoutlinedabove.Rev.17,9/806.6-4 SSES-FShRCHAPTER80ELECTRICPOMERT~ABEOPCONTEQTS81INTRODUCTIONPage8.1-181-181281.38.1.481.5GeneralUtilityPoverGridandOffsitePoverSystemsOnsitePowerSystemsSafetyRelatedLoadsDesignBases8.1-18.1-18.1-28.1-38.1-38.28.1.5.1SafetyDesignBases8-.1.6RegulatoryGuidesandIEEEStandards8.1.6.1CompliancewithRegulatoryGuides8.1.6.2CompliancevithIEEE338-1975,344-1971and387-1972OFFSITEPOMERSYSTEM8.1-38.1-581-58.1-238.2-18.2.1Description82-182.1.182128'138-2.13.18.21.3.282.13.382.1.3.482.1-3.58'2.1.3.68.2-1.48215TransmissionSystemTransmissionInterconnectionSwitchyardsStartupTransformers¹10and¹20SusquehannaUnit¹1230KVMainTransformerLeadsSusquehanna230KVSwitchyardSusquehannaUnit¹2500KVMainTransformerLeadsSusquehanna500KVSwitchyardMontourandMountain230kVSwitchyardsOffsitePoverSystemMonitoringIndustryStandards8.2-18.2-38.2-38.2-38.2-48.2-58.2-582-68.2-6a8.2-782-98.2.2Analysis'8.2-98.22.182.2.2GridAvailabilityStabilityAnalysis82-98.2-10REV179/'80I8-i SSES-PSARAPPENDIX8~2ARELIABILITYPRINCIPLESANDSTANDARDSFORPLANNINGBULKELECTRICSUPPLYSYSTEMOPISAACGROUP83ONSITEPOWERSYSTEMS8.3.1ACPowerSystems82A-183-183-183.1.18.3.1.28.3.1.2.18.3.1.2.28.3138.3.1.3.18313.283.1338-3-1-3-48.31-3.58.313.68.3.1.3.7831388.31-3-98.3.1.3.108313.118.31.3.128.3.13.138313148.3.13.1583.148.3.1.4183142.831438.31448.3.1.4.58.3.14.68.314.7DescriptionNon-ClassIEACSystemOperationNon-ClassIEEquipmentCapacitiesClassIEACPowerSystemPowerSupplyFeedersPowerFeederCablesBusArrangementsLoadsSuppliedfromEachBusClassIEIsolatedSwingBusManualandAutomaticInterconnectionsBetweenBuses,BusesandLoads,andBusesandSuppliesInterconnectionsBetweenSafetyRelatedandNonsafetyRelatedBuses,NonsafetyBelatedLoads,andSafetyRelatedBusesRedundantBusSeparationClassIEEquipmentCapacitiesAutomaticLoadingandLoadSheddingSafetyRelatedEquipmentIdentificationInstrumentationandControlSystemsfortheApplicablePowerSystemsWiththeAssignedPowerSupplyIdentifiedElectricCircuitProtectionSystemsTestingoftheACSystemDuringPowerOperationClasslELoadsNotTestableDuringPowerOperationsStandbyPowerSupplyAutomaticStartingInitiatingCircuitsDieselStartingMechanismandSystemAlarmandTrippingDeviceBreakerInterlocksControlPermissiveLoadingCircuitsTesting8.3-183-183-283-483-78.3-78.3-883-88.3-983-98.3-98.3-108.3-118.3-118.3-128,3-138.3-138.3-148.3-168.3-1683-178.3-198.3-208.3-208.3-2383-238.3-248.3-24REV179/808-ii SSES-FSAR8.2OFFSITEPOMERSYSTEM8.2.1DESCRIPTION8.2.1.1TransmissionSystemThebulk500KV.suppliesandUnitseparateplantissystem.powertransmissionsystemofPPGLoperatesat230KVandUnit¹1oftheSusquehannaSteamElectricStationpowertothe230KVsystemthrougha230KVswitchyard<<2suppliespowerto'the500KVsystemthrougha500KVswitchyard.Theoffsitepowersystemforthesuppliedthroughthe230KVportionofthebulkpowerFigure8.2-1showstheSusquehanna230KVand500KVsvitchyardsandthetransmissionlinesassociatedwitheachyardandinthevicinityoftheplant.Thefigureshowsthelinearrangementwithbothunitsinoperation.Thetvoswitchyardsarephysicallyseparateandaretiedtogetherbya230KVyardtielinewitha230-500KVtransformerinthe500KVyard.TwoindependentoffsitepoversourcesaresuppliedtotheSusquehannaplant.OnesourceisestablishedbytappingtheMontour-Mountain230KVlinenorthoftheplantandconstructing1300ft.of230KVlineonpaintedsteelpolestructurestostartuptransformer¹10.TheMontour-MountainlinesharesdoublecircuitsteelpolestructureswiththeStanton-Susquehanna¹2230KVlineinthevicinityoftheplant.Thedoublecircuitlineextendstoapoint1.5mileseastofthetransformer¹10tapatvhichpointthetwocircuitssplitasshowninfigure8.2-1.TheMontour-Mountainlineextends16.8milesnorthondoublecircuitlatticetowerswiththeStanton-Susquehanna¹1230KVlineandterminatesintheMountainSubstation.TheStanton-Susquehanna¹2circuitextendssouthwardondoublecir=uittoverswiththeStanton-Susquehanna¹1circuitandterminatesintheSusquehanna230KVSvitchyard.TothevestofthetapintotheSusquehannaplanttheMontour-Mountain230KVcircuitextends1500feet.ondoublecircuitsteelpolestructuresatwhichpointtheStanton-Susquehanna¹2circuitseparatesandextendsnorthwardtoStantonSubstation.TheMontour-Mountain230KVcircuitthenjoinstheMontour-Susquehanna230KVcircuitondoubl,ecircuitsteellatticetowersandextends29.0milestotheMontourSwitchyard.ThetotaldistancetoMountainSubstationfromthetapintotheplantis18.7miles.ThedistancefromMontourtothetapis29.7miles.SeverallinesfeedtheMontourSvitchyardandMountainSubstation,ascanbereadilyseeninfigure8.2-3.TheselinesRev.15,4/808.2-1 SSES-FSARofferamultitudeofpossiblesuppliesforthetapintoSusquehannastartuptransformer¹10.MontourSwitchyardissupplieddire"tlybygenerationfromtheMontourSteamElectricStation.Othergeneratingstationsareindirectlylinkedbythebulkpowergriisystem.Theconductorsforthetransformer¹10tapandtheMontour-Mountainlineare1590kcmil45/7ACSRandaresupportedbysinglestringinsulatorassemblies.Maximumconductortensionislimitedto16,000poundsoasteelpolelinesectionsand21,900poundsonlatticetowersectionsundermaximumanticipatedloadingconditions.Thesecondoffsitepowersourceissuppliedat230KVfromtheyardtiecircuitbetweentheSusquehanna500kVand230kVSubstationssouthoftheSusquehannaSteamElectricStation.Thesourceisprovidedbyasingle400ft.spantapfromthe230KVyardtiecircuittostartuptransformer¹20.Theyardtielineconsistsof230KVdoublecircuittubularsteelpolestructuressupportingtwoparallelcircuitsof1590kcmil45/7ACSRconductorsonsinglestringinsulatorassemblies.ThecircuitsaretiedtogethertoformatwoconductorperphasesinglecircuitlineThe400ft.taptotransformer¹20consistsofone1590kcmil45/7ACSRconductorperphase.Thedistancefromthetappointwesttothe500KVyardis1500ft.Thedistancefromthetappointeasttothe230KVyardis1.6miles.Maximumconductortensionislimitedto16,000poundsintheyardtielineundermaximumloadingconditions.Thesecondoffsitepowersupplyisfurnishedbythemultiplesourcesthroughoutthebulkpowergridsystemthroughthe230KVand500KVlinesemanatingfromtheSusquehanna230KVand500KVswitchyards.Seefigure8.2-3.AlltransmissionlinesmeetorexceeddesignrequirementssetforthbytheNationalElectricSafetyCode.Oneortwooverheadgroundwiresareemployedonthetransmissionlinesabovethephaseconductorstoprovideadequatelightningflashoverprotection.AlllinesmeettheArmyCorpsofEngineersrequirementsforclearanceoverfloodlevels.Allbulkpowertransmissionlinesaredesignedtowithstand100mphhurricanewindloadsonbareconductors.TheMontour-Mountain.230KVlineiscrossedbytheStanton-Susquehanna¹2230KVline.NotransmissionlinescrossovertheSusquehanna500KVto230KVyardtielineorthetwotaplinessupplyingtransformers¹10and¹20.NosingledisturbanceinthebulkpowergridsystemwillcausecompletelossofoffsitepowertotheSusquehannaSES.Thisisabasicsystemdesigncriteria.Rev.15,4/808.2-2 SSES-FSAR82.12TransmissionInterconnectionPPGLisamemberofthe.Pennsylvania,HewJersey,andMarylandInterconnectionwhichpermitseconomicalexchangesofpowerwithneighboringutilitiesandprovidesemergencyassistance.DirectbulkpowertiesarebetweenPPGLandPhiladelphiaElectric,LuzerneElectric,DivisionofOGI,MetropolitanEdiso,PennsylvaniaElectric,JerseyCentralPowerandLight,PublicServiceElectricandGas,andBaltimoreGasandElectricCompanies.8.2.1.3Switchyards82.1.3.1StartupTransformers010and020TheMontour-Mountain230KVlineandthe'230KV'yardtielinesupplypowertostartuptransformersf10and420,respectively,throughmotoroperatedairbreakswitches.Highspeedpositivegroundswitchesareinstalledbetweenthemotoroperatedairbreakswitches(NQABs)andthestartuptransformers.Thestartuptransformersandlow.,idehnsconnectionsarediscussedinSection8.3.1.Thestartuptransformeryardsarephysicallyseparatedfromeachother,theUnitNland<<2maintransformeryardsandthe230KVand500KVswitchyardsascanbeseenonfigure8.2-1.1590kcmil45/7ACSRconductorsconnecttheairswitchestothestartuptransformers.13.8KVcablesareinstalledinundergroundconduitbetweenthestartuptranformersandtheturbinebuilding.Non-segregatedphasehusductestablishthetietothe13.8KVstartupbuseswithintheturbinebuilding.Seefigure8.2-4foraone.linediagramoftheoffsitepowersystem.LinerelayprotectionfortheMontour-Mountain230KVlineandthe230KVyardtiecircuitisprovidedbytwoindependentdirectionalcomparisoncarrierhlockingpilotrelayingandtwozonedirectionaldistancebackupsystemswhichensuresadequatelineprotectionintheeventofamalfunction.Theserelayingschemesdetectfaultsonthetransmissionlineand,isolatethepowersourcestothetransformersbytrippingthepowercircuitbreakers(PCBs)atthelineterminals.Breakerfailurerelaying,appliedateachlineterminal,detectsafailuretotriporfailuretointerruptconditionatthelineterminalandtripsallassociatedPCHsnecessarytoisolatetheline.Powertothelinerelayingfacilities.issuppliedfromthelocal.switchyardpowersources.Startuptransformers410and$20areprotectedhyhighspeedpercentagedifferential,suddenpressureandovercurrentRev.l5,4/808.2-3 SSES-FSARrelaying.DirecttransfertripfacilitiesareutilizedastheprimaryrelayingschemetoopenthePCBsatthetransmissionlineremoteterminalsintheeventoftransformertrouble.Backupprotectionisprovidedbythehighspeedgroundswitchonthe230KVsideofthestartuptransformer.Thisswitchisclosedtoplaceapositivefaultonthe230KVtransmissionlinewhichwillbedetectedbytheremotelineterminalrelayingsystemsiftheprimarydirecttransfertripschemefailstofunctioncorrectly.Themotoroperatedairswitchautomaticallyopensafterthe230KVsystemisde-energizedtoisolatethestartuptransformerfromthetransmissionsystemandpermitreclosingofthetransmissionlineterminalPCBs.Atimedelayundervoltagerelaymonitorsthe13.8KVstartupbusvoltage.Onlossofoffsitepowertherelaytripsthe'startupbusincomingfeederbreakerandinitiatestransferofthebusloadstotheotherstartuptransformerthroughclosureofthestartupbustiebreaker.Thetimedelayundervoltagerelayalsopreventsunnecessaryautomatictripoftheincomingfeederbreakerforshortdurationdisturbancesonthetransmissionline.Powertotransformer¹10and¹20switchgear,motoroperatedairbreakswitches,andhighspeedgroundswitchesissuppliedfromthestation125VDCpowersupplies.8.2.1.3.2SusquehannaUnit¹1230KVHainTransformerLeadsOverhead1S90kcmil45/7ACSRcond.uctors,bundledtwoperphase,tietheUnit51mainstepuptransformers,throughahighvoltageDisconnectswitch-SynchronizingPCB-Disconnectswitcharrangement,tothe230KVswitchyard.Thesynchronizingbreakeranddisconnectswitcharrangementisprovidedat.theSusquehannaSESsitetoimprovereliabilityinsynchronizationandflexibilityofoperatingUnit1.Steelpolestructuressupportthestrainbusandthe2.2mile230KVtiewithsinglestringinsulatorassemblies.Thetielineiscapableoftransmittingthefull1280NVAoutputoftheUnit¹1generator.RelayprotectionbetweentheUnit¹1tranformerandthesynchronizingbreakerisprovidedbyhighspeedpercentagedifferentialrelays.whichtripUnit$1andthesynchronizingbreakerbytheunitmastertriplockoutrelays.AsecondprotectionschemeisprovidedbytheUnit¹1overalldifferentialrelayingwhichalsodetects'faultconditionsbetweenUnit,¹1transformerandthesynchronizingbreaker.Twodirectionalcomparisoncarrierblockingpilotandtwozonedirectionaldistancebackuprelayingsystemsprovidefaultprotectionbetweenthe230KV.synchronizingPCBandtheSusquehanna230KVSwitchyard.BreakerfailureprotectionrelayingisappliedatRev.15>4/808.2-4 SSES-FSAReachterminaltodetectafailuretotriporfailuretointerruptconditionandtoelectricallyisolatethefaultycomponent.Controlpowertothesynchronizingpowercircuitbreakerandpowertotheonsiterelayingequipmentareprovidedbytheplant125VDCpowersupplies.8.2.1.3.3Susquehanna230KUSwitchyardThe230KVswitchyardisanoutdoorsteelstructure,comprisedof6baypositionscontaining14-230KVpowercircuitbreakers,'arrangedinabreakerandonehalfscheme.Terminatingpositionsare~pi:ovidedforsevenlines,onegeneratorlead,andayardtieto"the500KVswitchyard.TheswitchyardbreakerscanbeoperatedbyremotesupervisorycontrolfromthePPGLSystemOperatingOffices.Servicepowertothe230KVswitchyardisprovidedbyalocal12KVdistributionlinewithabackupdieselgeneratorinthe230KVswitchyard.Anautomaticthrowoverschemeisemployedintheevent'fonesourcefailure.Lineprotectionequipmentpowerisprovidedbyasingle125UDCswitchyardservicebatteryequippedwithtwofullcapacitychargers.8.2.1.3.4SusquehannaUnit<<2500KVMainTransformerLeadsUnit¹2generatoroutputisconnectedtothe500KVswitchyardbya1400ft.overhead500KVtransmissionline.2493kcmil,;54/37ACARconductorsbundledtwoperphasearesupportedbyU-stringinsulatorassembliesonsteelpoleH-framestructures.Tkietieiscapableoftransmittingthefull1280MVAgeneratoroutputofUnit¹2tothe500KVswitchyard.BelayprotectionfortheconnectionbetweentheUnit¹2transformerandtheSusquehanna500KVswitchyardisprovidedbyhighspeedbusdifferentialrelayswhichtripUnit¹2andthethree500KVswitchyardgeneratorbreakersbythemastertriplockoutrelaysforafaultintheconnection.Anoveralldifferentialprotectionschemeprovidesasecondsy'temtotripUnit¹2andthethreePCBsconnectedtothegeneratorinthe500KVswitchyardforafaultonthetransformerleads.Breakerfailureprote"tionisappliedateachterminaltodetectafailuretotriporfailuretointerruptconditionandtoelectricallyisolatethefaultycomponent.Rev.15,4/808.2-5 SSES-FSAR82.1.3.5Susquehanna500KVSwitchyardThe500KVswitchyardisanoutdoorsteelstructure,comprisedofthreebayscontainingfive500KVpowercircuitbreakersarrangedinamodifiedringbusconfiguration.Theswitchyardprovidesforultimatefutureexpansionto5baysinabreakerandonehalfscheme.Terminatingpositionsareprovidedfortwolines,one500KVgeneratorleadcircuit.andacircuittoabankofthreesinglephase500-230KVautotransfomers.Manualoperationofthe500KVgeneratorleadsynchronizingcircuitbreakersisbytheplantcontrolroomoperator.TheremainingPCBscanbeoperatedbyPPGL'sremotesupervisorycontrolorbytheplantsupervisorycontrol.Servicepowertothe500KVswitchyardsources:onefromthegeneratingstatthetertiarywindingoftheyaritieaautomaticlowvoltagethrowoverschemefailure.Lineprotectionequipmenti-DCswitchyardservicebatteryequippedbatterycharger.."..isprovidedbytwoion,andthesecondfromutotransformerswithanintheeventofonesourcepoweredbyasingle125Vwithtwofullcapacity8.2.1.3.6Mo>>toura>>dMountain230kVSwitchyarlsFigure8.2-5.howsaonelinediagramoftheoff-sitepowersystemforStartupTransformer410.TheNontourSwitchya"disanoutdoor-teelstructurecomp"isedoi:.fourbaypoitionscontaining11-2.30kVpowercircuitbreakersarrangedinabreakerandonehalfscheme.TwogeneratingleadsfromtheMo>>tourSteamElectricStationandfivetransmissionlinesareterminatedintheyard.Theswitchyardbreakersranbeoperate0byromot>>controlromthePPGLSystemOperatingoffice,.TheMountainSwitchyardisownedandop'oratedbyUGICorporation,LuzerneElectricDivision.1'tisanoutdoorsteelstruct.urewithtwobaypositioneachcontainingone230kVPCB.ThetwoPCBsarearrangedbacktobackbetweentheMontour-MountainandMountain-Lackawan>>aLines.BetweenthetwoPCBsisanormallyopenMOABtotheSusquehanna-Sta>>tonPlline.ThePCBsandMOABcanbeoperatedbyremotesupervisorycontrolfromtheIJGICorporationSystemoperator'soffice.PCBa>>d.MOABstatusismonitoredbyPPBL~sSystemOperatingofficeRev.15,4/808.2-6 SSES-FSAR8.2.1.4OffsitePowerSystemMonitoringPPSL'stransmissionlinesarepatrolledapproximatelythreetimesthroughoutayeartoensurethatthephysicalandelectricalintegrityofthetransmissionlinesupports,hardware,Rev.15,4/808.2-7 SSES-FSABinsulators,andconductorsismaintainedforsafeandreliablecontinuityofservice.Theperiodictransmissionlinepatrolisconductedhyhelicopter.Lessfrequentfootpatrolsandselectivestructureinspectionsareperformeddependingontheageoftheline.MonitoringoftheUnit¹1andUnit¹2offsitepowersourcesintheplantcontrolroomisviaahardwiredmimicbusarrangemen+.whichshowsstartuptransformers¹10and¹20,thetransformer¹10and¹20motoroperatedairbreakswitches,the13.8KVstart-upbuses,the13.8KVbusfeederbreakers,andthe13.8KVbustiebreaker.Annunciationsignalsabnormaltrippingtothecontrolroomoperator.Controlandstatusindicationareprovidedforthe230KVMOABswitchesandthe13.8KVbreakers.Potent.ialindicationforthePPGLgridand13.8KVbusandstatusindicationofthe230KVhighspeedgroundswitchesareprovided.Acathodecaytube(CRT)displayisprovidedbytheplantcomputersystemwhichprovidestheoperatorwi.thadditionalinformationabouttheoffsitepowersources.Thedisplayisamimicbusarrangement,imilactothehardwiredmimicbus,andincludesthestatusofthePCBsattheremoteterminalsofthetransformer¹10and¹20supplylines.MonitoringoftheUnit¹1maingeneratoroutpu+.leadstothe230KVswitchyardisprovidedinthecontrolcoom.Ahardwiredmimichusarrangement.ProvidescontrolandstatusindicationofthesynchronizingPCB.Potentialindicationandmonitoringofcurrent,watts,vars,watthoucsandvoltageareprovided.Annunriationsignalsan<<bnormalchangeinstatusofthesynchronizingPCB.ThecomputerCRTdisplaysystemprovidestheoperatorwiththestatusofallPCB'sinthr230KVswitchyardandthesynchronizingPCBviainputfromPPF.L'ssupervisorycontrolsystem.Annunciationaccompaniesafailureofthesupervisorysystem.Manualcontrolofthe230KVswitchyardishyasupervisorysystemfrom..electedPPGLSystemOperatingfacilities.MonitoringoftheUnit¹2maingeneratoroutputleadsandthe500KVswitchyardisprovidedinthecontrolroomviaamimicbusarrangement.PCBopen-closestatusindicat.ionandcontrolareprovidedforallPCBsinthe500KV.,witchyacd.Exceptforthemaingeneratorsynchronizingbreaker.,whicharehardwireddirertlytothecontrolcoomalongwithpotentialindication,all500KVPCBcontrolandstatusindirationinthecontrolJnomisprovidedthroughasupervisorysystem.Digital.displaysmonitoroutputcurrent,watts,vars,watthou"s,andvoltage.Annunciationaccompanie"uncommandedPCHstatuschanges,lossofpotential,transformertrouble,fireprotectionsystemactuation,carrierequipmentfailure,andfaultrecorderfailure.Controlofthe500KVswitchyardfaultcecorlerandtapchangecontrolonRev.15,4/808.2-8 SSES-FSARthe500-230KVtransformeraremadeavailabletotheoperator.SimilarinformationisprovidedtothecontrolroomoperatorviathecomputerCRTmimicbusarrangementdisplaythroughthesupervisorysystem.Primarycontrolofthe500KYswitchyardisviatheSystemOperatingsupervisorycontrolsystemexceptforthemaingeneratorsynchronizingbreakerswhichcanhecontrolledonlybytheplantoperator.Preoperationalandinitialstartuptestingofallapparatus+equipment,relaying,andPCBsisconductedattransformers<<10and<<20andthe500KVand230KVswitchyardstoensurecompliancewithdesigncriteriaandstandard..PCBprotectiverelaytesting,maintenance,andcalibrationinthe230KVand500KVswitchyards,Montourswitchyardandattransformers<<10and<<20willbeconductedapproximatelyonceeverytwoyears.PCBprotectiverelaytesting,maintenanceandcalibrationatMountainswitchyardisperformedapproximatelyeveryyear.8.2.15IndustryStandardsTherequirements,criteriaandrecommendedpacticessetforthinthefollowingdocumentsareimplementedintheResignofthetransmissionsystem;ABC.D.E.NationalElectricSafetyCode,7thAddition.PJMInterconnectionProtectiveRelayingPhilosophyandDesignStandardsMAACGroupReliabilityPrinciplesandStandardsforPlanningBulkpowerElectricSupplySystemofMAACGroup,July18,1968(AppendixR.2A)Ingeneral,highvoltagecircuitbreakersaremanufacturedandtestedinaccordancewiththelatestrecommendationsandrulesoftheANSI,IHEF.,NEMA,andAEIC.PennsylvaniaPower6Light.CompanySubstationandRelayandControlEngineeringInstructionManuals,FngineeringandConstructionStandards,OperatingPrinciplesandPractices;RelayandControlFacilities3/3/76andsoundengineeringprinciples.Thedesigncriteriaincludeconsiderationofaesthetics,reliability,economics,andsafety.8.2.2Analysis8.2.2.1GridAvailabilityRev.15,4/808.2-9 SSES-FSARTheoffsitepowersourcesprovideadequatecapacityandcapabilitytostartandoperatesafetyrelatedequipment;Jnaddition,thesourcesprovidebothredundancyandelectricalandphysicalindependencesuchthatnosingleeventislikelytocauseasimultaneousoutageofbothsourcesinsuchavaythatneithercanbereturnedtoserviceintimetopreventfueldesignlimitsanddesignconditionsofthereactorcoolantpressureboundaryfrombeingexceeded.Eachofthecircuitsfromtheoff-sitetransmisionnetvorktothesafetyrelateddistributionbuseshasthecapacityandcapabilitytosupplytheassignedloadsduringnormalandabnormaloperatingconditions,accidentconditionsandplantshutdownconditions.ThePPGLbulkpowersystemisplannedinaccordancewithestablishedPPGLhulkpoverplanningcriteria.ThesecriteriaarebasedontheReliabilityPrinciplesandStandardsoftheMid-AtlanticAreaCouncil{MAAC).MAACisaregionalreliabilitycounciloftheNationalElectricReliabilityCouncil(NERC).MAACiscomprisedoftheelectricutilitycompaniesofthePennsylvania-NewJersey-Maryland(PJM)Interconnection,ofwhichPPGLisamember.TheprimaryobjectiveofNAACistoaugmentreliabilitythroughacontinuingreviewofallplanninginconnectionvithadditionsorrevisionstogeneratingplantorbulkpowertransmissionfacilities.ThePPGLhulkpowersystemisdesignedtomeettheMAACReliabilityPrinciplesandStandards,whichareincludedinAppendix8.2A.DigitalpowerflowandtransientstabilitystudiesvereconductedtodemonstratethatbulkpowersystemisincompliancewiththeMAACreliabilitycriteria.Thedigital.powerflovstudiesincludedanevaluationofallpracticalsinglecontingencies,includingdoublecircuittoverline,outageconditionsandseveralabnormalsystemdisturbanceconditions.BasedonhistoricaloperatingdataforthePPGLtransmissionnetwork,theannualforcedoutagerateper100circuitmilesfor500KVand230KVlinesis0.46and6.04outages,respectively.Thenumberofpermanentfaultsperyearper100circuitmilesfor500KVand230KVlinesis0.23and1.79respectively.Thedurationoftheindividualoutagesvariesgreatly(from3minutestoinexcessof8hours)dependingonthecauseoftheoutage.Themajorcausesofforcedoutagesandpermanentfaultsarelightningandveatherrelatedphenomena,treecontacts,equipmentfailureormalfunction,andemergencymaintenance.8.2.2.2StabilityAnalysisTransientstabilitystudiesvereconductedusingadigitalcomputerprogram.Thesestudiesshowthatforvarious230KVand500KVbusandlinefaults,systemstabilityandsatisfactoryRev.15,4/8082-10 SSES-FSARrecoveryvoltagesaremaintainedresultinginuninterruptedsupplytotheoffsitepowersystem.Specifically,thesystemisstableforanythreephasefaultclearedinnormalclearingtimeandforanysinglephasetogroundfaultwithdelayedclearing.Thesystemisalsostableforanythreephasefaultappliedtothe500KVand230KVtransmssionassociatedwiththeSusquehannaplantandclearedwithdelay.AtransientstabilitycaselistisincludedinTable8.2-1.ThelossofeitherSusquehannatJnit41ortJnit02representsthelossofthelargestsinglesupplytothenetwork.ForthelossofeitherSusquehannaunit,gridstabilityandtheintegrityofsupplytotheoffsitepowersystemaremaintained.Gridstabilityandtheintegrityofsupplytotheoffsitepowersystemarealsomaintainedforthelossofanyothersinglegeneratingunitinthenetwork.Supplytoatleastoneoftheoffsitepowersourcesisalsomaintainedforthefollowingabnormaldisturbances:1.ThesuddenlossofalllinesemanatingfromtheSusquehanna230KVSwitchyard,2.ThesuddenlossofalllinesemanatingfromtheSusquehanna500KVSwitchyard.Nosingleoccuranceislikelytocauseasimultaneousoutageofalloffsitesourcesduringoperating,accident,oradverseenvironmentalconditions.Mhilethelossofalloffsitepowerisimprobable,suchaneventwouldnotpreventthesafeshutdownofthestationbecausetheonsitebatteiesandstandbydieselgeneratorsareabletosupplythenecessarypowertosystemsrequiredforsafeshutdown.Rev.15,4/808.2-11 SSES-FSARTABLE8.2-1198250'XOFSUNNZRPEAKLOADSUSQUEHANNAUNIT¹16¹2STABILI'IYCASELISTCASEDESCRIPTIONResult3phaseSaultatSusquehanna500KVontheStableSunbury500KVline.Faultclearedinnormal3.5cycleclearingtime.3phasefaultatSusquehanna500KVontheSunbury500KVlinewithonebreakerpolestuckatSunbury.ClearSusquehannain3.5cyclesClearremoteterminalin7.5cycles.3phasefaultatSusquehanna500KVonRescosville500KVlinewithoneSusquehanna500/230KVtransformerbreakerpolestuck.Clearremoteterminalin3.5cycles.ClearSusquehannain75cycles.StableStable3phasefaultatSusquehanna500KVonStableSunbury500KVlinewithoneSusquehanna500/230KVbreakerpolestuck.Clearremoteterminalin3.5cycles.ClearSusquehannain7.5cyclesPhase-groundfaultatSusquehanna500KVonSunbury500KVlinewithSusquehanna500/230KVbreakerstuck.Clearremoteterminalin3.5cyclesClearSusuqehannain120cycles.Stable3phasefaultatSusquehanna230KVontheSusquehanna500/230KVtransformer.Faultclearedinnormal4.0cycleclearinqtime.Stable3phasefaultatcontour230KVonSusquehanna230KVline.Faultclearedinnormal40cycleclearingtime(Reclosedafter10seconds).Stable3phasefaultatSusquehanna230KVonMontourlinewithstuckwestbusbreaker.Clearremoteterminalin4.0cycles,clearSusquehannain8.0cycles{loseStanton-Susquehanna¹2230KVline).Stable3phasefaultatSusquehanna230KVonJenkinslinewithstuckStable SSES-FSARTABLE8.2-1~ContinuedgCASEDESCRIPTIONRESULTeastbusbreaker.Clearremoteterminalin6.0cycle",clearSusquehannain8.0cycles103phasefaultatSusquehanna230KVonthe500/230KVtransformerwithonepolestuckonwestbusbreakerCleartwopolesin4.0cycles,clearfaultin80cycles(loseStanton-Susquehannaf2230KVline).Stable123phasefaultatSusquehanna230KVonHarwoodlinewithstucktiebreakerpole.Cleartwopolesin4.0cycles.Clearstuckpolein80cycles(loseSunbury-Susquehanna230KVline)3phasefaultatSusquehanna230KVonE.Palmertonlinewithonepolestuckonwestbusbreaker.Cleartwopolesin4.0cycles.Clearstuckpolein8.0cycles(loseStanton-Susquehanna42230KVline)StableStable13Phase-groundfaultatSusquehanna500KVonStableWescosville500KVlinewithSusquehanna500/230KVbreakerstuck.Clearremoteterminalin3.5cycles.ClearSusquehannain12.0cycles.1415Susquehanna-Wescosvill.e500KVandSusquehan<<a-Harwood(E.Pa1merton)DoubleCircuit230KVcrossingfailure(3phasefaultonallcircuits)TripSusquehannaUnit51in12cycles.ClearSusquehanna-Wescosville500KVlinein3.5cycles.ClearSusquehanna-HarwoodandSusquehanna-E.Palmerton230KVlinesin40cycles.3phasefaultnearE.PalmertononalllinesinEPalmerton-HarwoodR/Wcorridor.ClearSusquehanna-Wescosville500KVlinein35cycles.ClearE.Palmerton-SusquehannaandHarwood-Sieqfried230KVlinesin4.0cycles.StableStable SSES-FSARCASEDESCRIPT?0MTABLE8.2-~1Continue~dRESULT163phasefaultnearSusquehannaonbothlinesinSunbury-SusquehannaR/Mcorridor.ClearSunbury-Susquehanna500KVlinein35cycles.ClearSunbury-Susquehanna230KVlinein4.0cycles.Stable1718193phasefaultnear.Susquehanna500KVatSunbury230KVlinecrossing.TripSusquehanna-Nescosville500KV,Sunbury-Susquehanna500KV,andUnit¹2in3.pcycles.TripSunbury-Susquehanna230KVin4.0cycles.3phasefaultatSusquehanna230KVonHarwood{E.Palmerton)DoubleCircuit.TripHarwoodandE.Palmertonbreakersin4.0cycles.3phasefaultatColumbia-Frackville230KVlinecrossinq.TripSunbury-Susquehanna500KVlinein3.5cycles.TripColumbia-FrackvilleandSunbury-Susquehanna230KVlinesin6.0cycles.StableStableStable203phasefaulton230KVmaintransformer.Triptransformer.TripUnitovertripUnit<<2in4.0entirestation).sideofUnit<<1Unit<<1main¹1andcycles{lossofStable3phasefaultatSusquehanna230KVonUnit¹1generatorleadswithastuckwestbusbreaker.TripUnit¹1andStanton<<2linein120cycles.Stable SSES-PSAH~A~enclix9BCOMPLIANCEWITHNRCBRANCHTECHNICALPOSITIONASB9-1SUSQUEHANNASTEANELECTRICSTATIONUNITIREACTORBUILDLNGCHANEREV.18/789B-1 SSES-PSABTheattachedtablecomparesthedesignoftheUnit1cranewithBranchTechnicalPositionASB9-1.CompliancewitheachregulatorypositionintheBTPisclassifiedintooneofthefollowingcategories:a)complyb)compliedwithbasedonourinterpretationoftheintentofregulatorypositionc)compliedwithbyuseofalternatemeansormethodsd)donotcomplyJustificationisprovidedforeachitemofnoncompliance..REV.18/78 SSES-FSARTABLE9B-1COHPARISOHOPUNIT1REACTOBBUILDINGCRAHEDESIGNMITHBTPASB9-1REGULATORIPOSITIONComplianceCompliancebasedonourinter-pretationofregulatorypositionUseofalternativemethodtomeettheintentofregulatorypositionNon-cornplianceRemarksC~1~aSeparatePerformanceSpec.Environ.Oper.Conti-tionsStruc-turalmvt.selectionItem41C2SeismicCategoryIHDE-LamellarTearingPatiqueAnalysisPreheat-Postheat-MeldingControls-Devices-SafeHoldingPositionItemS2Item$3ItemtaAUX+SystsgDua1Comp.ImmobPositionHeansforRepairingItem45REV.18/78 SSES-FSARTABLE9B-lae2CONPARISONOPUNITlREACTORBUILDINGCRANEDESIGNQITHBTPASB9-1REGULATORYPOSITIONComplianceCompliancebasedonourinter-pretationofregulatorypositionUseofal-ternativemethodtomeettheintentofregulatorypositionNon-cornRemarksplianceC3aDualLoadAttach.PointsLiftingDevices-RedundantDesignDualhoist-ingeg.5fpmlim.HeadLoadBlockbalanceDualReev-ingSystem-RopeStd.fFleetAngles200-staticdesiqntestSensorover-speedover-loadingetc.Controlsys-temNotors-torqueTvo-blocking-precautions,etc.kDrumprotectionREV18//8Item46ItemA7Item48Item09 SSES-PShRCONPhRISONOPUNITlBEhCTORBUILDINGCBhNEDESIGNWITHBTPhSB9-1REGULATORYPOSITIONComplianceCompliancebasedonourinter-pretationofregulatorypositionUseofal-ternativemethodtomeettheintentofregulatorypositionNon-cornRemarksplianceExcessivebreakdovntorqueHoistingbrakeshold-ingbrakesDynamic-StaticalignmentIncrementdrivesItem¹10Item¹11Trolley+Bridgei.Notorsii.SpeedsCablocatedcontrolsSafetyde-vices,limitdevicesOperatingNanuals-HWLItem¹12Item¹13ChangefromConstr.toOperatingInsta1lationInstructionsNechanicalCheckREV18/78 SSES-FSARTABLE98-~1aa4CONPARISONOFUNIT1REACTORBUILDINGCRANEDESIGNMITHBTPASB9-1REGULATORYPOSITIONComplianceCompliancebasedonourinter-pretationofregulatorypositionUseofal-ternativemethodtomeettheintentofregulatorypositionNon-cornplianceRemarksb125%Statictest(2-block)i.125%sta-tictestii.2-blockcPreventiveNaintenanceProgramX'temv10Item$15REV.18/78 SSES-FSARTABLE9B-l~~ae5NOTES'tem¹1Theloadliftsduringconstructionarenotgreaterthanthoseforplantoperation,thereforenoseparatespecificationshavebeenprepared.Item¹2MeconsiderthattheRegulatoryPositioniscompliedvithtotheextendthatallmajorstructuralloadcarryingweldsare100%magneticparticle(NT)tested.Volumetricexamination,inouropinion,(RTorUT)oftheweldsusedintheassemblyofthecranevillnotproducemeaningfulresultsbecauseofthejointgeometries,therefore,theyarenotperformed.Item¹3ThecraneisspecifiedandhasbeendesignatedasServiceClassC,perCNAA-70.Thisstandarddeterminesallovablestressesforthecranestructuralandmechanicalcomponentsasafunctionofthespecifiedcraneserviceclass.ServiceClassCallowsfor100,000to500,000loadingcycles,whichbyfarexceedsourconservativelyestimatedF000cyclelife.Therefore,noadditionalfatigueanalysishavebeenperformed.Item¹4ThisregulatorypositioniscompliedwithtotheextentthatthepreheatandpostheattreatmentoftheveldsisinaccordancewithAWSD11.Item¹5Provisionsaremadeformanualoperationofthemainhoistholdingbrakesforloveringtheload(Item¹11).Nospecialprovisionsaremadeformanuallymovingtheimmobilizedbridgeortrolley.However,thereareoptionsformovingthebridgeortrolley,iftheelectricpowercannotberestored.Itern¹6Thefleetanglefromdrumtoleadsheaveandbetweensheavesdoesnotexceed3-1/2degrees(3~7~~actualdesign).TheNRCpositionrecommendslimitingthefleetanglesbetveenindividualsheavesto1-1/2degrees.Theuseofthe3-1/2degreeslimitisjustifiedbecause:1.The3-1/2degreelimitationhasbeenproventobeareliableparameterforropeleadsoffofdrumswhicharemorecriticalREV.18/78 SSES-ZSARTABLE9B-lphoaegthanropeleadsfromsheaves;thelatterbeingmoredeeplyqrooved2.Withredundantreeving,sheavespacingsaredoublethenormalspacings.Thustomaintaina1-1/2degreefleetangle,thedistancefromthehooktothetopofthecranewouldhavetobeneedlesslyandexcessivelyincreasedtosuchadegreethatitwouldbeinconsistentwithagoodcranedesign.Thiswouldhavenecessitated,atleast,eighttoninefeetincreaseinthebuildingheight.Thedesignratioofrunningsheavespitchdiameterstotheropediameteris24:1insteadofthe30:1or26:1recommendedbytheNRC.The24:1ratioisjustifiedbecause:Duetothelargediameteroftheworeropeused,30:1and26:1diameterratiosheaveblanksarenotreadilyavailable.Also24:1rationisrecommendedbyASMEStandardCommitteeontheDesignofOverheadandGantryHandlingSystemsforCriticalLoadsatNuclearPowerPlants,intheircommentstotheNRConQG1.104datedMarch18,1976,andisconsistentwiththerecommendationsofCMAASpecification570.Item$7The2005loadtestisinconflictwithcurrentsafetystandardcodes,specificallyANSIB.30.2whichstatesthattheentirecraneistobeload-testedinthefieldat125%oftheratedload.Ifthisrequirementfortheloadtestof200%oftheratedloadisto,meetthesafetyrequirementsandbewithintheallowablestressvaluesforthecranedesign,itwouldreguirealargecrane.Also,thetestmaynotproofthewireropeat200%loadaspermanentdeformationcanresults,andtheropewillhavetobediscardedafterthetest.Medonotrecommendtestinganyportionofthecraneat200%load,excepteachredundanthook,whichisspecifiedtobetestedattwicetheratedload.However,thehoistingsystemcomponentsarealldesignedtosupportastaticloadof200%ofthedesignratedload.Item$8Theelectriccontrolsaresettolimitthemotortorqueto150%ofratedmotortorque,andarefieldadjustablebetween125%and200%ofthattorgue.Notethatthe"rated",not"required"torqueislimitedThe"required>>ratingofthemotorisnotclearlydefinedandopensthepossibilityforitsmisapplication.RatiosofmotorhorsepoweraregiveninItems10and12.Item49Themechanicalandstructuralcomponentsofthehoistingsystemshouldbeprotectedagainstthepossibilityoftwoblockingorloadhangupoccurrenceduringhoisting.ThisprotectionisREV.l8/78 SSES-FSABTABLE9B-l~~aeprovidedbyasystemoflimitswitchessuch'hattwoblocking'ouldnotoccurafterafirstorderfailure.Firstorderprotectionforraisingandloweringisprovidedbyagearedlimitsvitchcoupledtoashaftonthedrivegearcaseandwiredtostopthehoistmotionandsetahoistbrakebyopeningareversingswitchcontrolcircuit.Thesecondorderprotectionintheraisingdirectionisprovidedbyapovercircuitlimitswitchwiredtopositivelyinterruptmotorraisingandloweringcircuitsandsetbrakes.Theinterruptionbythepovercircuitlimitswitchvillrequiremanualreleaseofthehoistholdingbrakestolowertheupperblockandresetthesvitch.Withthisarrangementtheoperatorwillbealertedtothefactthatthegearedtypeloverupperlimitsvitchhasfailed.Thesecondorderprotectionintheloweringdirectionisprovidedbyasecondgearedlimitswitchcoupleddirectlytodrumshaftandviredsoastoopenthecontrolcircuitofthelinecontactor.Thefirstorderprotectionagainstloadhangupisanoverloaddeviceinthehoistingtrainthatsensestheoverloadandinterruptsmotorraisingcircuitandsetbrakes.Theoverloaddevicecanbesetaslovas110%oftheratedload.Thesecondorderofprotectionisprovidedwith>>overcurrent"and"currentrateofrise>>setatahighertorque(load)level,thantheoverloaddevice.Thisisnecessarytoallowforanadditionaltorquerequiredtoacceleratetheloadandthehoistmechanismsfromastandstillposition.Item¹10Thehoistmotorratingislimitedto105%ofthecombinedcalculatedrunningandacceleratinghorsepoverrequi'redtoacceleratetheratedloadtothemaximumdesignhoistspeed.Thisregulatorypositiondoesnotdirectlyaddresstheacceleratingportionofthecalculateddesignhorsepover;however,theparagraphentitled,"DriversandControls>>onpages1.104-364ofRegulatoryGuide104'atedFebruary1976callsforitsconsideration.Basedontheaboveinterpretation,thisregulatorypositionisconsideredimplemented.Item¹11ThecranedesignmeetstherequirementsofthisRegulatoryPositionexceptthatholdingbrakeheatdissapationwillbeaccomplishedbyalternatingtheloweringandholdingtoprovidetimeforcoolingthebrakingmechanism.Alsoadministrativecontrol(handheldtachometer)willbeusedtolimittheloweringspeedtolessthan3.5fpm.REV.l8/78 SSES-PSARTABLE9B-l~a~e8Item¹12Theratiosofmotorhorsep'overratingstothecombinedcalculatedrunningandacceleratinghorsepoversrequiredtoacceleratetheloadtothemaximumdesignspeed,areasfollows:trolley-101%bridge-104%RefertoItem9foradiscussionoftheinclusionoftheacceleratinghorsepowertothemotorhorsepowers.Nospecialprovisionsaremadeformanualoperationoftheb.ridgeandtrolleyholdingbrakesIfnecessary,theycanbereleasedbyusingvariousmethodsnotexcludingbrakepartialdisassembly.Therequirementthat"oppositewheelsonbridgeandtrolleyhaveidenticaldiameters,'~isnotpractical,sinceithasnotoleranceallowance.Ourspecificationcallsforwheelsgroundtrueto.001inchperinchofdiameter.Trolleyspeed,usingmainhoistis10fpm,wellbelov30fpmrecommendedbyNRC.However,thetrolleyspeed,usingauxiliaryhoist,is50fpm,thereforeadministrativecontrolsmustbemaintainedtopreventinadvertentrunningofthetrolleyvithloadedmainhoistatthehigher(50fpm)speed.Thebridgespeed(50fpm)exceedsslightlytheNRCrecommendedspeedof40fpm.Thesubstantialrunwaylength(323ft.)steplesstypebridgespeedcontrol,andminor(10fpm)differencebetweentheNRCrecommendedandthespecifiedspeedsdonotjustifythereductionofthebridgespeedfrom50fpmto40fpm.Item¹13TheUnit1and2cranemainhoistratedloadsanddesignloadsarethesameandequal125tons.Item¹14AsstatedinItem9,protectivemeansareprovidedtopreventtheoccurrenceoftwo-blockingorloadhang-ups.Therefore,thereisnoneedtoruntherecommendedtests.Inaddition,therecommendedtestspresentapotentialforinjuringpersonnelandforcausinganundetectabledamagetothehoisecomponents.TheseconditionswillexistwhetherthetestsareperformedinthevendorshoporatthesiteAlso,itvouldbedifficult,afterthetests,toassessanypotentialdamagesthatmighthaveresultedfromthosetests.Verificationtestingoftheupperlimitswitchesandtheoverloadsvillbeperformedtoassuretheirproperfunctioning.REU.18/78 TABLE9B-lpage9Item015TheUnit1and2cranesvillbemaintainedattheirratedcapacities,i.e.,125tonsmainhoistsand5tonsauxiliaryhoists.REV.18/78 SSES-FSARCHAPTER10STEAMANDPOWERCONVERSIONSYSTEMTABLEOFCONTENTS10.1SUMMARYDESCRIPTION102TURBINE-GENERATOR10.2.1DesignBases10.2.2DescriptionPa~e10.1-110.2-110.2-110.2-210;2211022.210.2.23102-2.410.2.2.51022610.2.2.71022.8TurbineGeneratorandExciterProtectiveValvesFunctionsExtractionSystemCheckValvesControlSystemOverspeedProtectionTurbineShellDiaphragmsTurbine-GeneratorLoadFollowingCapability10.2-210-2-310.2-410-2"510.2-510.2-510.2-6all10.2-6a10.2.3TurbineDiskIntegrity10.23.110.2.3.21023.3102.3.410."-2.3.510-23.6MaterialSelectionFractureToughnessHigh-TemperaturePropertiesTurbineDesignPre-serviceInspectionInserviceInspection10;2.4Evaluation10.25References103MAINSTEAMSUPPLYSYSTEM10.2-7102-710-2-810.2-81410~28I102-910.2-914102-10i102-1110.3-110.31103210.3.310.3.410.3.5DesignBasesDescriptionEvaluationInspectionandTestingRequirementsWaterChemistrytPWR)103-110.3-110.3-2103-310.3-310.3.6SteamandFeedwaterSystemMaterials10.-3.6.1FractureToughness10.3.6.2MaterialSelectionandFabrication103-410.3-410.3-4Rev.14,2/8010-i SSES-FSAR10.4OTHERFEATURESOFTHESTEANANDPOMERCONVERSIONSYSTEM10.4.1MainCondenser10.4.1.110.4.1.210.4-1.3DesignBasesDescriptionSafetyEvaluation104-1104-110.4-210.4.1.3.1RadioactiveGases10.4.1.3.2CondenserI.eakage10.4.1.3.3CirculatingMaterSystemRupture10.4.l.4TestsandInspections10.4.1.5Cont'roisandInstrumentation10.4.1.5.1Condenser10.4.1.5.2CondensateContamination10.4.2MainCondenserEvacuationSystem.10.4-210.4-2104-310.4-410.4-410.4-410.4-510.4-5104.2110-4.2.210.4.2310.4.2.4104.2.5DesignBasesSystem.DescriptionSafetyEvaluationTestsandInspectionsControlsandInstrumentation104-51O.4-51O.4-6a10.4-710.4-710.4.3SteamSealSystem10.4-810-4.3.1.10.4.3.2104.3.310.4.3410.4.3.5DesignBasesDescriptionSafetyEvaluationTestsandInspectionsControlsandInstrumentation10.4-810.4-810.4-9104-910.4-1010.4.4TurbineBypassSystem10-4"1110.4.4.110.4.4.210.4.4.310.44.4104.4.5DesignBasesSystemDescriptionSafetyEvaluationTestsandInspectionsControlsandInstrumentation10.4-111'0.4-1210.4-1310.4-1410.4-1410.4.5CirculatingMaterSystem104-1410.4.5.110.4.5.210.4.5.310.4.5.410.4.5.5DesignBasesSystemDescriptionSafetyEvaluationTestsandInspectionsControlsandInstrumentation10.4-14104-14a10.4-16104-1610.4-1710.4.6CondensateCleanupSystem10.4-17REV12'/7910-ii SSES-FSAR10.4.6.1DesignBases10.4.6.2SystemDescription10.4"1710.4-1810.4.6.2.110.4.6.2'10.4.6.2.310.4.6.2.4CondensateDemineralizerSystemExternalRegenerationSystemAcidandCausticDilutionSystemsWasteSystem10.4-1810.4-1910.4-2010.4-2010'.6.3SafetyEvaluation10.4.6.4TestsandInspections10.4.6.5ControlsandInstrumentation10.4-2110.4-2210.4-22a10.4.7CondensateandFeedwater10.4-22a10.4.7.110.4.7.210.4.7.310.4.7.410.4.7.5DesignBasesSystemDescriptionSafetyEvaluationTestsandInspectionsControlsandInstrumentation10.4-22a10.4-2310.4-2510.4"2610.4-2710.4.8SteamGeneratorBlowdownSystem(PWR)10.4.9AuxiliaryFeedwaterSystem(PWR)10.4.10ExtractionSteamandFeedwaterHeaterDrainandVentSystem10.4.10.1DesignBasis10.4.10.2SystemDescription10.4.10.3SafetyEvaluation10.4.10.4TestsandInspections10.4.10.5ControlsandInstrumentation10.4.11AuxiliarySteamSystem10.4-2810.4-2810.4-2810.4-2910.4-3010.4-3210.4-3210.4-3310.4-3310.4.11.110.4.11.210.4.11.310.4.11.410.4.11.5DesignBasesSystemDescriptionSafetyEvaluationTestandInspectionsInstrumentationApplication10.4-3310.4-3310.4-3410.4-3510.4-35Rev.19,j./8110"iii SSES-CESARCHAPTER'0TABLESpumber10.1-11211102-1104-110;4-2Ti.tieSummaryofTypicalDesignandPerformanceCharacteristicsofPoserConversionSystemTurbineOverspeedProtectionCondenserDesignParameters(ValvesMideOpen)InfluentConcentrationstotheCondensateDemineralizerSystem10.4-3CirculatingMaterQualityDesignParametersUsedfortheCondensateDemineralizerSystem10.4-4CondensateDemineralizerActivitybyIsotope10.4-510.4-6CondensateDemineralizerSourceStrengthDesignConditionsfor.PeedvaterHeatersREV12,9/7910-iv SSES-FSAR10.1SUNNAR'YDESCRIPTIONThecomponentsofthesteamandpowerconversionsystemare-designedtoproduceelectricalpowerfromthesteamcomingfromthereactor.condensethesteamintowater,andreturnthecondensatetothereactorasheatedfeedwater,withamajorportionoftheqaseous,dissolved,andparticulateimpuritiesremoved.Thepowerconversionsystemconsistsofthefollowinqcomponent~1)TurbineGeneratorwithAuxiliaries2)HainCondenser3)CondensatePumps4)AirEjectorwithMaterCondenser5)GlandSteamCondenser6)CondensateDemineralizer7)FiveStagesofFeedwaterHeaters8)ReactorFeedPumpswithTurbineDrivesandAuxiliaries9)InterconnectingPipingandValves10)DrainCoolersSteamqeneratedinthereactorissuppliedtothehighpressureturbinethroughthemainstopandcontrolvalves.Thesteamthenpassesthrouqhthehighpressure(HP)turbineandexhauststhroughcrossaroundlinestotwomoistureseparatorswhichremovemoisturefromthesteam.Thedriedsteamleavesthemoistureseparatorsandentersthelowpressure(LP)turbines,whichshareacommonshaftwiththeHPturbine,throughcombinedinterceptvalves.Afterpassinqthroughthelowpressureturbinesthesteamexhauststothemaincondenserswhereitiscondensedbythecirculatinqwatersystem(Subsection10.4.5)deaeratedandcollectedinthehotwellofthecondenser.Thecondensatepumpsremovethecondensatefromthehotwellandpumpitthrouqhtheairejectorintercondenser,theglandsteamcondense=,thecondensatedemineralizer,thedraincoolersandthefivestagesoffeedwaterheaterstothesuctionofthereactorfeedpumpswhichpumpthecondensatehackintothereactorvessel.SteamisextractedfromtheHPandLPturbinesandusedtoheatthecondensateasitpassesthrouqhthevariousfeedwater10.1-1 SSES-FSARheaters.Theextractionsteamiscondensedineachheaterandthecondensedsteamdrainedtothenextlowestpressureheater.Thetotalcascadedheaterdrainsare.collectedinthedraincoolerfromwhichtheydrainbacktothecondenser.ThemoistureremovedfromthesteambythemoistureseparatorsisdrainedtoHeaterNo.4whereitmixeswiththecondensedextractionsteamandiseventuallydrainedbacktothecondenserShouldthewater.levelinanyheaterormoistureseparatorbecometoohigh,thedrainswillbedumpeddirectlytothecondensertopreventwaterdamagetotheturbine.Ifthereactorproducesmoresteamthantheturbinecanusetheexcess,upto25percentofratedflow,isdumpedtothecondenserthroughthebypassvalves(SeeSubsection104.4).Thesteamandpowerconversionsystemsaresizedfortheturbinevalveswideopenconditionof3439NWt.Biologicalshieldingisprovidedaroundmoistureseparators,feedwater-heaters,feedpumpturbinestoprotectoperatingtohighradiationlevels.Section12.3discussiononradiationprotection.themainturbine,condensersandreactorpersonnelfromexposureprovidesadditionalFigures10.1-1and101-2showthemaximumguaranteedandmaximumcalculatedheatbalancesrespectively.TypicalparametersaresummarizedinTable10.1-1.Instrumentationiscommercialquality,designedtomeettheprocessrequirementsandtheG.E.turbinegeneratorreguirements.TheseinstrumentsaredescribedfurtherinSections10.2through104.TheturbineinstrumentationisdiscussedinSubsection7.2.2.1.3:ControlvaluefastclosureandstopvalueclosurewhichinitiatesscramintheRPS.Rev.6,3/7910.1-2 SSES-FSAR10.2TURBINE-GENERATOR1021DESIGNBASESTheturbineisan1,800rpm,tandemcompound,six-flov,non-reheatsteamturbinewith38in.last-stagebuckets.Thecapabilityoftheturbineis1,084,825kHwhenoperatingwithinitialsteamconditionsof965psia,1191.5H,whileexhaustingtothemultipressurecondenserat299,3.56and4.43in.HgAbs,backpressures,0percentmakeupandextractingsteamfornormalfivestagefeedvaterheatingandfeedpumpturbinedrives.Theturbineisexpected{notguaranteed)toproduce1,134,993kMvhenoperatingatvalveswideopen{VROjandwithcorrespondingVROsteamandcycleconditionsshovnontheheatbalance.Thegeneratorisa1,280,000kVa,1,800rpm,directconnected,4pole,60Hz,24,000V,liquidcooledstator,hydrogencooledrotor,synchronousgeneratorratedat0.90powerfactor,0.58shortcircuitratioatamaximumhydrogenpressureof75psig.Thegeneratorissizedtoacceptthegrossoutputoftheturbine.TheAlterrexexcitationsystemconsistsofa60Hz,1,800rpmaircooledAlterrexgeneratorandliquidcooledrectifierswithstaticthyristorautomaticregulationequipment.Theexciterisratedforamaximumoutputof3210kWat530VTheturbine-generatorcontrolisaccomplishedbyanelectrohydrauliccontrol(EHC)systemcapableofcontrollingspeed,load,steampressureandflovunderstartup,shutdown,transientandsteadystateconditions..Theturbine-generatorisnormallybaseloaded.Hovever,thedesignallovsfortheunitstooperateonaloadfollowingbasis.Theturbine-generatorunit,aGEdesign,isbuiltinaccordancewithGEstandardsandcodes.ThemoistureseparatorvesselsandsteamsealevaporatorvesselsarebuiltinaccordancevithASMEBSPVCode,SectionVIII.Thesteamgenerationratehastheabilitytofollowturbineloaddemandchangesbyasmuchas35percentwithoutcontrolrodmovementmerelybychangingtherecirculationflowratethroughthecore.Ifaloadreductionofmorethan10percentoccurs,theturbinebypassvalveswillopenmomentarilyuntiltherecirculationrateissufficientlyreduced.Bypassvalveshavetheabilitytobypass25percentoftheflow.Theturbinecontrolvalvesarecapableofchangingturbinesteamflovatarateofatleastl0percentnuclearboilervarrantedREV.7,4/7910.2-1 SSES-FSARflowpersecondinboththeopeningandclosingdirectionsforadequatepressurecontrolperformance.Duringanyeventresultinqinturbinestopvalveclosure,turbineinletsteamflowisnotreducedfasterthanpermittedbyFigure10.2-1Durinqanyeventresultinginturbinecontrolvalvefastclosure,turbineinletsteamflowisnotreducedfasterthanpermittedbyFiqure10.2-2.1022DESCRIPTION10.2.21TurbineTheturbineunitconsistsofonedoubleflowhiqhpressureturbineandthreedoubleexhaustflovlowpressureturbines.The-unitincludestwohorizontalmoistureseparatorvesselslocatedontheoperatinqfloor,oneoneachsideoftheturbine.Themoistureseparatorvesselsareofthenon-reheattype.Steamfromthereactorentersthepowerconversionsystemthroughfourmainsteamlines.Eachofthefourmainsteamlinestothehiqhpressureturbineisconnectedtoamainsteamstopvalveandamainsteamcontrolvalve.Thefourstopvalvesandfourcontrolvalvesarecombinedtoformasinglevalvechest.Apressureequalizinqlineconnectsthestopvalvestogetherjustbelowthevalveseats.Sixcombinedintermediatevalves(CIV){eachcomposedofaninterceptvalveandanintermediatestopvalve)arelocatedineachlinebetweenthemoistureseparatorvesselsandthelowpressureturbines.Afivevalvebypassvalvechestisconnectedtoeachofthemainsteamlinebetweenthemainsteamisolationvalvesandmainsteamstopvalvestoremoveexcessflowtothecondenser.There-isonestageofextractionfromthehighpressureturbineandfourstaqesofextractionfromeachlowpressureturbine.Theextractionsteamisusedtoheatthefivestagesoffeedvaterheatinq-Aportionofthecross-aroundsteamisusedtodrivethereactorfeedpumpturbines(RFPTs)duringnormaloperation.Theturbine-generatorisprovidedwithanemergencytripsystemthatclosedthemainstopvalves,controlvalvesandcombinedintermediatevalves,thusshuttingdowntheturbine,onthefollowinqsignals:1Turbineapproximately10%aboveratedspeed.10.2-2 SSES-FSAR2.Turbineapproximately12%aboveratedspeed.3.Vacuumdecreasestolessthan21.7Hg.4.Excessivethrustbearingwear.5.Exhausthoodtemperatureinexcessof225O.6.Prolongedlossofgeneratorstatorcoolant.7.Electricaltrip,viamastertripsolenoids.8.Lossofhydraulicfluidsupplypressure.Lossofemergencytripsystemfluidpressureautomatically-closestheturbinevalvesandthenenergizesthemastertriprelaytopreventafalserestartat1100psigdecreasing.9.SignalfromHighturbinevibration.10.Lossofbothspeedsignalsabove100rpm.ll.Lossofboththeprimaryandsecondary24VDCpowersupplies.12.Mechanicaltripviamanualtriphandleofmechanicaltripsolenoid.13.Highlevelinamoistureseparatordrainsystem.14.Mainshaftlubeoilpumplowpressuretripabove1300rpm.15.Primaryandbackupunitprotectionlockoutrelaytrip.16.Highreactorwaterleveltripat54".17.LossofETSpressuretripat800psigdecreasing.Trippingtheturbinewillautomaticallycausethereactortoscramforreactorpowergreaterthan30percent.10.2.2.2GeneratorandExciterThegeneratorstatoriswatercooledandtherotorishydrogencooled.Thegeneratorhydrogensystemincludesallnecessarycontrolsandregulatorsforhydrogencooling(SeeFigure10.2-ll).Thehydrogenpurityinsidethegeneratorismonitoredonacontinualbasis.ThepipefromtheGeneratorHydrogensystemisroutedbelowgradetothegeneratoranddoesnotenteranysafetyrelatedareas,Asealoilsystemisprovidedtopreventhydrogenleakagethroughthegeneratorshaftseals.TheBulkHydrogensystemislocatedbetweenthecoolingtowersatgradelevel.Ahydrogenmakeupsupplyisprovidedoutsidetheturbinebuildingtoreplaceanyhydrogenleakagefromthegenerator.Toavoidhavinganexplosivehydrogen-airmixtureinthegeneratoratanytime,eitherwhenthegeneratorisbeingfilledwithhydrogenpriortobeingplacedintoservice,orwhenhydrogenisbeingremovedfromthegeneratorpriortoopeningthegeneratorforinspectionorrepairs,carbondioxideisusedforpurgingouttheairorhydrogeninthegeneratorcasing.Thegeneratorisdesignedtowithstandahydrogendetonation.Automaticwatertypefireprotectionsystemsareprovidedtoprotecttheturbineandgeneratorbearings,theareabelowthegenerator,thehydrogensealoilsystem,thepermanentbulkhydrogenstorageareaandthehydrogentruckunloadingarea.Inaddition,portablefireextinguishersandfirehosewillbeprovided.Rev.26,9/8110.2-3 SSES-FSAR102.2.3protectiveValvesFunctionslTheprimaryfunctionoftheturbinestopvalvesistoquicklyshutoffsteamtotheturbineunderemergencyconditions.Thestopvalvedisksaretotallyunbalancedandcannotopenagainstfullpressuredrop.Aninternalbypassvalveisprovidedinoneofthefourstopvalvestopermitslowwarmingofallstopandcontrolvalvesandtopressurizethestopvalve'belowseatareatoallowvalveopening.Thefunctionoftheturbinecontrolvalvesistothrottlesteamflowtotheturbine.Thevalvesareofsufficientsize,relativetotheircrackingpressure,torequirethattheybepartiallybalanced.Asmallinternalvalveisopenedfirsttodecreasethepressureinabalancechamber.Thevalvesareopenedbyindividualhydrauliccylinders.Thefunctionofthebypassvalvesistopasssteamdirectlyfromthereactortothecondenserwithoutthesteamgoingthroughtheturbine.Thebypassvalvechestisconnecteddirectlytothesteamleadsfromthereactor.Thischestiscomposedoffivevalvesoperatedbyindividualhydrauliccylinders.Hhenthevalvesareopensteamflows-fromthechet,throughthevalveseat,outthedischargecasing,andthroughconnectingpipingtothepressurebreakdownassemblieswhereaseriesofbaffleplatesandorificesisusedtofurtherreducethesteampressurebeforethesteamentersthecondenser.{SeeSubsection10.4.4)Thefunctionofthecombinedintermediatevalves(CXV's)istoprotecttheturbineagainstoverspeedfromstoredsteaminthecross-aroundpipingandmoistureseparatorvesselsandtothrottleandbalancesteamflowtotheLPturbines.Eachvalveiscomposedofaninterceptvalveandanintermediatestopvalveincorporatedintoasinglecasing.Thetwovalveshaveseparateoperatingmechanismsandcontrols.Thevalvesarelocatedasclosetotheturbineaspossibletolimittheamountofuncontrolledsteamavailableasanoverspeedsource.Duringnormalplantoperationtheinterceptvalveswillbeopen.Theinterceptvalvesarecapabloofopeningagainstmaximumcross-aroundpressureandofcontrollingturbinespeedduringblowdownfollowingaloadrejection.Theintermediatestopvalvesalsoremainopenfornormaloperationandtripclosedbyactuationoftheemergencygovernororoperationofthemastertrip.Theyprovidebackupprotectioniftheinterceptvalvesorthenormalcontroldevicesfail.REV.11,7/79102-4 SSES-PSAR10-2.2.4SxtsactionSlstemCheckValvesTheenergycontained'intheextractionandfeedwaterheatersystemcanbeofsufficientmagnitudetocauseoverspeedoftheturbine-generatorfollowinganelectricalloadrejectionorturbinetrip.Topreventthistheenergymustbecontainedinthepipingandfeedwaterheaters.Thisisdonebyinstallingpositiveclosingnonreturnvalves(PCNBV)andantiflashbafflesintheheaters,GEsteamturbinedesignrulesandcoderequirementsspecifythattheturbinecontrolswillbecapableofpreventingtheturbinespeedfromrisingaboveacertainmaximumvalueafterafullloadrejectionoztrip.ThePCNBvalvesandantiflashbaffleslimitthe.amountofenergyflashingbackintotheturbinesothattheturbinespeedincreaseisheld.belowthemaximumvalue.Antiflashbafflesareusedinfeedwaterheaters1and2extractionsteamlinesincethedistancetotheturbineisshortandinternalenergyislow.PCNHVsareinstalledintheextractionlines,tofeedwaterheaters3,4,and5.'1.22.5Contsol~sstemTheturbinegeneratorcontrolsystemisaGEMarklelectrohydrauliccontrol{EHC)system.Thespeed.controlunitproducesthespeed/accelerationerrorsignalthatisdeterminedbycomparingthedesiredspeedfromthereferencespeedcircuit,withtheactualspeedoftheturbineforsteadystateconditions.Forstepchangesinspeed,anaccelerationreferencecizcuittakesovertoeitheraccelerateozdeceleratetheturbineataselectedratetothenewspeed.Thereisnolimittothedeceleration.Thespeed/accelerationerrorsignaliscombinedwiththeloadrequirementsontheloadcontrolunittoprovidetheflowsignaltothecontrolvalves.Becauseoftheimportanceofoverspeedprotectionthespeedcontrolsignalhastwoindependentredundantchannels.Twoindependentpulsesignalsareobtainedfrommagneticpick-upslocatedoveragear-toothedwheelontheturbineshaft.I.ossofboth-speedsignalswilltriptheturbine.10.2.26OverspeedProtectionToprotecttheturbinegeneratoragainstoverspeedtwotripdevicesareprovidedeitherofwhichwheninitiatedwillclosethemainstopvalves,controlvalves,andcombinedinterceptvalvesthusshuttingdowntheturbine.Thesetwotripdevicesareasfollows:REV.11,7/79,102-5 SSES-FSAR1.Amechanicaloverspeedtripwhichisinitiatediftheturbinespeedreachesapproximately10%aboveratedspeed,and2.Anelectricaloverspeedtripwhichserve'sasabackuptothe,mechanicaltripandisinitiatedatapproximately12Kaboveratedspeed.Themechanicaloverspeedtripdeviceisanunbalancedringmountedontheturbinesha'ftandheldconcentricwithitbyaspring(SeeFigure10.2-.3).Mhentheturbinespeed,reachesthetripspeed(10%aboverated)thecentrifugalforceactingontheringovercomesthetensionofthespringandtheringsnapstoaneccentricposition.Indoing'thisitstrikesthetripfingerwhichoperatesthemechanicaltripvalve,HTV.Thisisathreevayvalvethatfeedshydraulicfluid(1600psi)tothelockoutvalve,andwhentrippedblocksthehydraulicfluidsupplysystemandremovestheemergencytripsystempressurewhichcausesthemainstopvalves,controlvalvesandcombinedinterceptvalvestoclose.Failure.ofthehydraulicportionofthistripwillresultinastopvalveclosure..Theelectricaloverspeedtripreceivesitssignalfroma112%speedtriprelay(VCS840)thatisoperatedbyaspeedsignalsensedbyamagneticpickupfromatoothedvheelontheturbineshaftandfedtoapoweramplifierand.megacyclescircuit,whoseoutputisadcvoltageproportionaltospeed(SeeFigure10.2-4).ThesignalfromthespeedtriprelayenergizesthemastertriprelayXKT1000(Figure10.2-5)vhich.thenenergizesthemechanicaltripsolenoidITSanddeenergizesthemastertripsolenoidvalves5TSV-A6HTSV-BEitheroneoftheseactionswilltriptheturbine,thatisclosestop,-controlandcombinedinterceptvalves.Mhentheoverspeedtripsystemisun'dertest,thelockoutvalve,L,V,isactuated,vhichbypassesthemechanicaltripvalve.Hovever,underthiscondition,systemprotection'sprovidedbythebackupoverspeedtripactingonthemastertripsolenoidvalve,MTSV,bydeenergizingBTSV-A6HTSV-B.Anadditionalfeatureoftheprotectivesystemvhichwillminimizethelikelihoodofanoverspeedconditionisthepower/loadunbalancecircuitry(Figure10.2-6)).Generatorloadissensedbymeansofthreecurrenttransformersandiscomparedwiththeturbinepowerinputvhichissensedbytheturbineintermediatepressuresensor..Ifthedifferencebetweenthesteampowerinputandthegeneratoroutputrisestoatleast40%i35msec,auxiliaryrelayswillbeactuatedvhichvillenergizethecontrolvalvesfastclosingsolenoids,removetheloadreferenceattheloadcontrolunitandautomaticallydrivetheloadreerencemotortozerosetpoint.REV.11,7/79102-6 SSES-FSARTable10.2-1summarizestheoverallturbinecverspeedprotection'ssurancethatastableoperationfollowsaturbinetripcanbeobtainedfromtherequirementthatboththestopvalvesandthecombinedinterceptvalvescloseinaturbinetriptherebyaccomplishingtwothings:a)Preventingsteamfromthemainsteamlinefromenteringtheturbineandb)preventingtheexpansionofsteamalreadyinthehigh-pressurestageandinthemoistureseparator.Anaddiitonalprovisionisalsomadetoisolatethemajor.steamextractionlinesfromtheturbine.Therearefoursteamlinesatthehighpressurestage,eachlineisprovidedwithonestopvalveandonecontrolvalveinseries.Steamfromthehighpressurestageflowstothemoistureseparatorsandthentothethreelowpressurestages.Eachofthesixlowpressurelineshasacombinedinterceptvalvewhichisactuallymadeupofastopvalveinserieswithacontrolvalveinonehousing.Allofthe'bovevalvescloseonturbinetrip.Assumingasinglefailuretotheabovesystemof20valvesincaseofaturbineoverspeedtripsignal,theturbinewillbesuccessfullytripped.Purthermore,eachofthemajorsteamextractionlineshaveanisolationvalveandableedertripvalvewhichareindependentlyclosedincaseofaturbinetrip.-10.2.2.7TurbineShellDiap~hramsPoroverpressureprotectionoftheturbineexhausthoodsandthecondensershells,twodiaphragmsareprovidedineachlowpressureturbineexhausthood,whichruptureatapproximately5psig.Anexhausthoodspraysystemisprovidedtospraycondensateintothehoodsforovertemperatureprotection.1022.8TURBINE-GENERATORLOADFOLLOWINGCAPABILITYTheloadfollowingfeatureoftheturbine-generatorsystemmaybediscussed.withtheaidofPigs.10.2-7through10.2-10.Thisdiscussionstartswiththegeneratorrunningatratedspeedanda'tanygivenload,withbypassvalvesfullyclearedandwithcontrolandinterceptvalvepositionscorrespondingtothegeneratorload.Theloadfollowerrespondstotheincreaseordecreaseingeneratoroutputduetosystemfrequencychangesbycontrollingthereactorrecirculationflowandhencethereactorsteamgenerationrate.Pastresponsetoasteploadchangeistakencareofbythefast,adjustmentofthecontrolandintercept"valvespositions.Thisincreasesordecreasesthesteampressuredropatthevalveswhentheyarethrottledclosedoropenandadjustssteampressuretotheturbine.Afteratimedelaythereactorwillhavegeneratedenoughsteamtocovertheadditionalloadrequirement.TheloadfolloweralsoadjuststhereactorrecirculationflowinresponsetoanoperatoradjustmentoftheREV.11,7/79102-6a SSES-FSAHloadreferenceattheloadcontrolunit.The.loadfollowingcapabilityislimitedto+35%of,reactorpowerlevelonly.Assumeanelectricalloadincreaseduetoasystemfrequencydipwithsteadysteaminputtotheturbine,theturbinespeeddecreases.InFigure10.2-7,regionC-3,twospeedsensorsSSPU-18SSPU-2pickupthechange,inspeed.Thissignaliscomparedwiththespeedreferenceatthespeedsummingamplifiersanditsderivativeiscomparedwiththeaccelerationreferenceattheaccelerationsummingamplifierineachoftwolowvaluegates(A236A26).Theresultingoutputsaregatedtogetherandthecontrollingsignal(SCU)feedsintotheloadcontrolunitforthecontrolandinterceptvalves.XnFigure10.2-8,thesignalSCUfrom.thespeedcontrolunit(Figure10.2-7)iscomparedwiththeloadreference,whichisremotemanuallyset,andinputedtothecontrolandinterceptvalveamplifiers(A488A50).Theseamplifiersprovidethepositionsignalsfortheflowcontrolunitsoftherespectivevalveswhicharethefinalcontrollingunits,ofthecontrolandinterceptvalves.AtypicalvalveflowcontrolunitisshowninFigure10.2-9.Therecirculationflowcontrolsignalisthespeedsignalminusthespeedreference(Figure10.2-8).Thisisamplifiedintheauto-loadfollowingunitFigure10.2-10andfedintothereactorrecirculationsystemflowcontroller.Thisistheendpointoftheturbine-generatorsystemcontrolofloadfollowing.Theaboveanalysisisbasedonageneratorloadincrease.Asimilardiscussionalsoappliestoloaddecrease.Thesameeffectcanbeobtainedif,insteadofachangeinelectricalload,aloadreferencechange.ismadebytheoperatorsincearecirculationflowerrorsignalisachievableineithercase.REV.11,7/79>0.26b. SSES-FSAR1023TURBINEDISKINTEGRITYTheturbineassemblyisdesignedtowithstandnormalconditionsandanticipatedtransientsincludingthoseresultingin,turbinetripwithoutlossofstructuralintegrity.Thedesignoftheturbineassemblymeetsthefollowingcriteria:8a)Turbineshaftbearingsaredesignedtoretaintheirstructuralintegrityundernormaloperatingloadsandanticipatedtransients,includingthoseleadingtoturbinetrips.b)Themultitudeofnaturalcriticalfrequenciesoftheturbineshaftassembliesexistingbetweenzerospeedand20percentoverspeediscontrolledinthedesignandoperationsoastocausenodistresstotheunitduringoperation.c)Themaximumtangentialstressinwheelsandrotorsresultingfromcentrifugalforces,interferencefitandthermalgradientswillnotexceed0.75oftheyieldstrengthof'thematerialsat115percentofratedspeed.10.2.3.1MaterialSelectionTurbinewheelsandrotorsfor.turbinesoperatingwithlightwaterreactorsareforgedfromvacuumdegassedNi-Cr-No-Valloysteelbyprocesseswhichminimizeflawoccurrenceandprovideadequatefracturetoughness.Trampelementsarecontrolledtothelowestpracticalconcentrationsconsistentwithgoodscrapselectionandmeltingpractices,andconsistentwithobtainingadequateinitialand.longlifefracturetoughnessfortheenvironmentinwhichthepartsoperate.Theturbinewheelandrotor.materialshavethelowestfractureappearancetransitiontemperatures{FATT)andhighestCharpyV-notchenergiesobtainable,onaconsistentbasisfromwaterquenchedNi-Cr-No-Vmaterialatthesizesandstrengthlevelsused.SinceactuallevelsofPATTandCharpyV-notchenergyvarydependinguponthesizeofthepartandthelocationwithinthe,part,etc.,thesevariationsaretakeninto,accountinacceptingspecificforgingsforuseinturbinesfornuclearapplication.CharpytestsessentiallyinaccordancewithSpecificationASTNA-370areincluded.Rev.14,2/80102-7 SSES-FSAR10.2.3.2FractureTo~uhnessSuitablematerialtoughnessisobtainedthroughtheuseofmaterialsdescribedinSubsection10.2.3.1toproduceabalanceofadequatematerialstrengthandtoughnesstoensuresaietywhilesimultaneouslyprovidinghighreliability,availability,efficiency,etc.,duringoperation.Borestresscalculationsincludecomponentsduetocentrifugalloads,interferencefit,andthermalgradientswhereapplicable.Theratioofmaterialfracturetoughness,Kzc(asderivedfrommateria'ltestsoneachwheelorrotor)tothemaximumtangentialstressforwheelsandrotorsatspeedsfromnormalto115percentofratedspeedisatleast2~in.(Thehighestanticipatedspeedresultingfomalossofloadis110percentofratedspeed).AdequatematerialfracturetoughnessneededtomaintainthisratioisassuredhydestructivetestsonmaterialtakenfromthewheelorrotorusingcorrelationmethodswhicharemoreconservativethanthatpresentedbyJ.A.BegleyandW.A.LogsdoninWestinghouseScientificPaper71-1E7-NSLHF-P1.Turbineoperatingproceduresareemployedtoprecludebrittlefractureatstartupbyensuringthatthemetaltemperatureofwheelsandrotors(a)isadequatelyabovetheFATTand(b)asdefinedaboveissufficienttomaintainthefracturetoughnesstotangentialstressratioatorabove2~an.Detailsofthesestart-upproceduresarecontainedinReference10.2-1.10.2.3.3~Hih-Te~meraturePro3ertiesTheoperatingtemperaturesof.thehighpressurerotorinturbinesoperatingwithlightwaterreactorsarebelowthecreeprupturerange.Therefore,creepruptureisnotconsideredtobeasignificantfactorinassuringrotorintegrityoverthelifetimeoftheturbine.Basicdataisobtainedfromlaboratorycreeprupturetests.10.2.3.4TurbineDssic[nTheturbineassemblyisdesignedtowithstandnormalconditionsandanticipatedtransientsincludingthoseresultinginturbinetripwithoutlossofstructuralintegrity.Thedesignoftheturbineassemblymeetsthefollowingcriteria:a)Themaximumtangentialstressinwheelsandrotorsresultingfromcentrifugalforces,interferencefit,andthermalgradientsdoesnotexceed0.75oftheyieldstrengthofthematerialsat115%ofratedspeed.Rev.14,2/80102-8 SSES-FSARb)Turbineshaftbearingsaredesignedtoretaintheirstructuralintegrityundernormaloperatingloadsanticipatedtransients,includingthoseleadingtoturbinetrips.c)Themultipleofnaturalcriteriafrequenciesoftheturbineshaftassembliesexistingbetweenzerospeedand20~ooverspeedarecontrolledinthedesignandoperationsoastocausenodistresstotheunitduringoperation.10.2.3.5.Pre-serviceInsectionThepre-serviceinspectionprogramisasfollows:a)Wheelandrotorforgingsareroughmachinedwithminimumstockallowancepriortoheattreatment.b)Eachrotorandwheelforgingissubjectedtoa100~ovolumetric(ultrasonic)examination.Eachfinish-machinedrotorandwheelissubjectedtoasurfacemagneticparticleandvisualexamination.ResultsoftheaboveexaminationareevaluatedbyuseofGeneralElectricacceptancecriteria.ThesecriteriaaremorerestrictivethanthosespecifiedforClass1componentsintheASMEBoilerandPressureVesselCode,SectionsIIIandVandincludetherequirementthatsubsurfacesonicindicationsareeitherremovedorevaluatedtoassurethattheywillnotgrowtoasizewhichwillcomprisetheintegrityoftheunitduringtheservicelifeoftheunit.c)Allfinish-machined.surfacesaresubjectedto'magneticparticleexamination.Nomagneticparticleflawindicationsarepermissibleinbores,holes,keyways,andotherhighlystressedregions.Eachfullybucketedturbinerotorassemblyisspintestedatorabovethemaximumspeedanticipatedfollowingaloadrejectionfromfullload.10.2.3.6InserviceInsectionThein-serviceinspectionprogramfortheturbineassemblyandvalvesincludethefollowing:a)Disassemblyoftheturbineisconductedduringplantshutdowncoincidingwiththein-serviceinspectionschedule.Inspectionofallpartsthatarenormallyinaccessiblewhentheturbineisassembledforoperation,suchascouplings,Rev.14,2/8010.29 SSES-FSARcouplingbolts,turbineshafts,lowpressureturbinebuckets,lowpressurewheels,andhighpressurerotorsisconducted.Thisinspectionconsistsofvisual,surface,andvolumetricexaminations,asindicatedbelow.1.Theboreandkeywayregionofeachwheelreceivesanultrasonicexamination.Inaddition,eachwheelisinspectedvisuallyandbymagneticparticletestingonallaccessiblesurfaces.Also,ultrasonicinspectionofthetangentialentrydovetailsandpinsofthefingerdovetailsareconducted.Thisinspectionisconductedatintervalsofabout6years.2.Athoroughvolumetricultrasonicexaminationofthehihressurerotorisconducted.Inaddition,allaccessiblerotorsurfacesareinspectedvisuallyandbymagneticparticletesting.Thisinspectionisconductedatintervalsofabout10years.3.Visualandsurfaceexaminationofallpressurebuckets.4.100~asurfaceexaminationofcouplingsandcouplingbolts.b)Dismantleatleastonemainsteamstopvalve,onemainsteamcontrolvalve,onereheatstopvalve,andonereheatinterceptvalve,atapproximately3-1/3yearintervalsduringrefuelingormaintenanceshutdownscoincidingwiththein-serviceinspectionscheduleandconductavisualandsurfaceexaminationofvalveseats,wheels,andstems.Ifunacceptableflawsorexcessivecorrosionarefoundinavalve,allvalvesofitstypeareinspected.Valvebushingsareinspectedandcleaned,andborediametersarecheckedforproperclearance.c)Mainsteamstopandcontrol,reheatstopandinterceptvalvesareexercisedatleastonceaweekbyclosingeachvalveandobservingbythevalvepositionthatitmovessmoothlytoafullyclosedposition.Atleastonceamonththisobservationismadebyactuallywatchingthevalvemotion.10.2.4EVALUATIONTheturbinegeneratorandtherelatedsteamsystemhavebeenradiologicallyevaluatedandtheresultsaredescribedinChapter12.Rev.14,2/8010.2-10 SSES-FSAR10.

2.5REFERENCES

,10.1-1Spencer,R.C.;andTimo,D.P.;StartingandLoadingofTurbines,GeneralElectricCompany,Presentedatthe36thAnnualmeetingoftheAmericanPowerConference,Chicago,Illinois,April29-May1,1974.Rev.14,2/8010.2-11 10080ACCEPTABLEREGIONFORTURBINESTOPVALVECLOSURERESPONSE0IChI-zLL0IzOCC0I-VlIzzCI4020000.10TIMEAFTERSTARTOFSTOPVALVECLOSUREMOTIONIsec)0.20SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTTURBIHESTOPVALVECLOSURECHARACTERISTICFIGUREI0.2-I 0 SSES-FSAR'HAPTER17QUALITYASSURANCETABLEOFCONTENTS171QUALITYASSURANCEDURINGDESIGNANDCONSTRUCTION17.2QUALITYASSURANCEDUBINGTHEOPERATIONSPHASEPage17.1-1172-117.2.017.21IntroductionOrqanization17.2-1172-217.2.l.1.SeniorVicePresident-Nuclear17.2.111VicePresident-Enqineering6ConstructionNuclear17.2.1.l.l.1AssistantProjectDirectors17.2.1.1.l.2Manager-NuclearPlantEngineering17.2.1.1.1.3ProjectConstructionManager17.2.1.1.14Manager-NuclearLicensinq17.2.112VicePresident-NuclearOperations17.2.1.1.2.1SuperintendentofPlant17.2.1.1.2.1.1AssistantSuperintendentofPlant17.2.1.1.2.1.1.1IntegratedStartupGroupSupervisor172-2172-3172-417.2-4172-4172-417.2-5172-517.2-517.2-617.21.117~2.1.l.17.2.1.1-17.2.1.1.17.2.1-122232.42.52.6Manager-NuclearManager-NuclearManager-NuclearManager-NuclearManager-NuclearSupportTraininqFuelAdministrationSafetyAssessment172-617.2-6172-617.2-617.2-717.2..1l.3Manager-NuclearQualityAssurance172-7172.1.217.21.3172.217-2-317.2.4172.517.2.617.27ConstructionManagerManager-ProcurementQualityAssuranceProgramDesignControlProcurementDocumentControlInstructions,ProceduresandDrawingsDocumentControlControl'fPurchasedMaterial,Equipment172-1117.2-12172-1217.2-1517.2-17172-1917.2-19Rev.18,11/80 SSES-PSAR1728172917.2.10172ll17.2.1217213172-1417.2.1517.2.1617.2.1717.2.18andServicesIdentificationandControlofNaterials,PartsandComponentsControlofSpecialProcessesInspectionTestControlControlofNeasuringandTestEquipmentHandling,Storage,andShippingInspection,TestandOperatingStatusNonconformingMaterials,PartsorComponentsCorrectiveActionQualityAssuranceRecordsAudits172-21172-2317.2-2317.2-24172-2617.2-2717.2"2817.2-2917.2-2917.2-3017.2-3117%232Rev.18,11/80171i SSBS-PSAB17~-UALIT.ASSURCBDURINGTHEPERTXSPHASE17.0.IACTIPPSXisfullyresponsiblefortesting,operatingmaintaining,',refuelinqandmodifyingtheSusquehannaSESincompliance.withFederal,State,andlocallawsandtheplantoperatinglicenserequirements'.',.Thesea'ctivities'arealsoperformedinresponseto.reguired'codesandspecifiedQArelatedNRCrequlatoryguides..Thes'ererqulatoryguidesandassociatedANSIstandards.arelisted'nTable-17.2-1..'Toassure,compliancewith10CFR50,AppendixBrequirements,PPSL'has.establishedand.implementedamanagementcontrolplanfor*assuringthequalityofsafety-relatedactivitiesduringtheoperationsphase.Theplanconsistsof1)thisOperationalQualityAssurance{OQA)Programwhichcontains'PPSL'sgualityassurancecommitmentstotheNuclearRegulatoryCommission;2)theOQAHanualwhichcontainsOperationalPolicyStatements(OPS)anddefinesPPSL'spoliciesformeetingthesecommitments;and3)functionalunitprocedureswhichcontain.thedetailedsteps-necessaryforafunctionalunittccomplywiththeOQAProgramrequirements.Therelationshipsbetweenthesedocumentsare.showninFigure17.2-1InimplementingtheOQAProgram,PPSLassuresthatitsactivitiescomplywithFederalRegulationswhicharedesignedtoprotectthehealthandsafetyofthepublic.TheOQApolicies'oalsandobgectivesofPPSLarestatedinthefollowinqNuclearQualityPhilosophyandIntentstatement.FortheSusquehannaSteamElectricStation,PennsylvaniaPowerSLightCompanywillcomplywiththerequirementsof10CFR50,IL--andrdel~ejrocessi~nplantsandotherapplicahlefederalregulationswithrespecttoallsafety-relatedactivitieswhichincludeengineering,design,procurement,construction,preoperationaltesting,powertesting,operation,maintenance,refuelinq,repairing,modificationandin-serviceinspection.PPSLisalsocommittedtoberesponsivetotheapplicableRequlatoryGuides,IndustrialCodesandStandards,orpartsthereof,asspecificallynotedincontrollingdocuments.TheapplicabilityoftheseGuides,Codes,andStandards,orpartsthereof,andtheireffectivenessshallbeinterpretedbytheresponsiblemanagers.IfGuides,CodesorStancardsarenonexistentorinadequate,PPSLshalldevelopthereguiredpracticesandprocedureswiththecontrolsnecessaryfortheirimplementation.REV18'l/80172-1 SSES-PSARRGNITI.PPSLhasestablishedtheNuclearDepartmentinordertoprovideacohesivemanagementteamwiththeprimaryobjectiveofprovidinglongtermtechnicalandmanagementsupportforSusguehannaSES..InadditiontotheresourceswithintheNuclearDepartment,auxiliarysupportisprovidedbytheConstructionHanagerandthe'anager-ProcurementThekey.nanagementpositionsresponsiblefortheperformanceofsafetyrelatedactivitiesaredescribedin~.thefollowingsubsections.Figure172-2showstheorganizationalstructureandlinesofresponsibilityforthegr'oupsthatprovidetechnicalandmanagementsupportforSusquehannaSES.Thepositionslistedbelowaredescribedinthefollowingsubsections:SeniorVicePresident-NuclearVicePresident-EngineeringandConstruction{ESC)-Nuclear(ProjectDirector)VicePresident-NuclearOperationsAssistantProjectDirectorsManager-NuclearPlantEngineeringProjectConstructionManagerManager-NuclearQualityAssurance(NQA)SuperintendentofPlantAssistantSuperintendentofPlantIntegratedStartupGroupSupervisorManager-NuclearSupport'Manager-NuclearTrainingHanaqer-NuclearSafetyAssessmentManager-NuclearFuelsManager-NuclearLicensingManager-NuclearAdministrationConstructionManagerManager-ProcurementInadditiontotheyboveindividuals,theSusquehannaReviewCommittee{SRC)isestablishedasareview,auditandadvisorygroup,comprisedofatleastfivekeyNuclearDepartmehtmanagers,whosefunctionistoindependentlyverifythattheSusquehannaSESisbeingtested,operatedandmaintainedinaccordancewithallsafetyrelated,ALARAandenvironmentalreguirements.TheSRCwillperformtheindependentreviewmandatedbyANSIN18.7.~17211seniorvi~ceresident-nnclearR'8Ve18gll/8017e22 SSBS-PSARTheSeniorVicePresident-NuclearhasoverallauthorityandresponsibilityfortheSusquehannaOQAProgramand,asaresult,he:0Requirestheperformanceofanannual,preplannedanddocumentedassessmentoftheO{}APrograminwhichcorrectiveactionisidentifiedandtracked.SetsOQAPolicies,.goalsandobjectivesforsafeoperationofSusquehannaSES."oCommitsPPSLtoanOQAProgramdesignedtoassurecompliancelithregulatory,requirements.o.RequirescomplianceliththeprovisionsoftheOQAProgramandcausesperiodicassessmentsofPPSLcommitmentsandestablishedpracticesforsafeplantoperation.InordertomaintainacontinuinginvolvementinQAmatters,theSeniorVP-NuclearreceivesmonthlywrittenreportsonthestatusandadequacyoftheOQAProgramissuedbytheManaqer-NQAandreviewsandapprovestheOperationalPolicyStatementscontainedintheOQAManualTheSeniorVP-NucleardelegatestotheVP-ESC-Nuclearandthe'VP-Nuclear=OperationsthoseresponsibilitiesforattainingspecifiedqualitylevelsandtctheManager-NuclearQualityAssurancethoseresponsibilitiesforverifyingthatthosequalitylevelshavebeenmet.TheSeniorVP-NucleardelegatestotheManager-NuclearSafetyAssessme'nttheresponsibilityforperformingtheon-siteIndependentSafetyEngineeringGroup(ISEG)functionmandatedbyNUREG-0731Inaddition,theSeniorVice'President-Nuclearhasoverallcorporateresponsibility'forSusquehannaSESactivitiesrelated'oengineering,construction,startupandoperations.TheSeniorVP-NucleardeleqatestheseresponsibilitiestotheVicePresident-ESC-Nuclear,andtheVicePresident-NuclearOperations.ThereportingrelationshipsareshowninFigure17.2-2.172.1~1)NicePEesident-EnEineeri~nsConstruction-NuclearTheVP-ESC(alsoidentifiedastheProjectDirectoronFigure17.2-2)hasoverallcorporateresponsibilityfortheSusquehannaengineering,constructionandlicensingactivitiesasdelegatedbytheSenior.VP-Nuclear.Inaddition,asProjectDirector,hedirectsandisaccountableforallfacetsofprojectperformancethroughprojectcompletion.REV.18,ll/8017e23 'SSES-FSAR1711.1Ass~a~n~roectDiectsTheAssistantProjectDirectorsatthesite(APD-S}andAllentown(APD-A)areresponsibletotheProjectDirectorfortheengineeringandconstructionaspects.oftheproject.Theirresponsibilitiesencompasstheday-to-daydecision-makingprocess,conductofpxojectactivities,andcontractadministration.TheyalsocoordinatethesupportfunctionsofothercompanydepartmentsastheyinterfacewiththeprospectTheAssistant.ProjectDirectoratSSES(APD-S}hasadirectcoordinationandintegrationrelationshipwith'theNQAResidentNuclearQualityAssuranceEngineex(BNQAE)TheBNQAE,inturn,hastheresponsibilitytosuppcrttheAPDSobjectivesbyalerting;,theAPDStoqualityrelatedmatterswhichhavethepotentialforadverselyaffectingconstructionactivities.~1721~1,~1ga~acaeN-NucleagPlantEncninee~inqTheHanaqer-NPEisresponsibleforengineeringactivitiesandtheirqualitymanagement.Theseactivitiesincludea)designanddesignverificationxelatedtoplantmcdifications,b)thetechnicalevaluatienandapprovalofacceptablesuppliers(excludinqnuclearfuel)ofparts,components,equipment,andsystems,c)specifyingtechnicalrequirementsfoxtheprocurementofspareparts,d)modificationstothe<as-builtPNplantande)enqineerinqoutagesupport.TheProjectConstructionHanagerisrespcnsiblefcr'theperformanceofccnstruction'ctivitiesatSusquehannaSES,includinqthatofprimecontractors,andfortheprepaxationofequipmentandsystemsforturnovertotheIntegratedStartupGroupfortesting.TheProjectConstructionHanagerreceivestadministrativeandprojecttechnicaldirectionfxomtheProjectDirectorthrouqhtheAssistantProjectDirector-SSES.17.211.1.4Ma~acaen-NucleauLi~censinTheHanaqer-NucleaxLicensingisresponsiblefordirectingthelicensinqaspectsforSusquehannaSES.ThisincludesinterfacingwiththeLicensingBranchoftheNRC,updatingandchangingthePSARtoreflectas-builtconditionsormodifications,andcoordinatingresponsestotheNRCrelativetoIEBulletinsBEV18ll/80172-4 II1"SSBS-FSAB,TheVicePresident-NuclearOperationsisresponsibleforthe'nitialTest'ProgramandoperationofSusquehannaSBS.This'ncludesfor'mulatingandestablishingthenecessary'technicalandadministrative'taffandplanningandcoordinatingtheactivities~.of,'hese'ersonnel.The.VicePresident-Nuclearoperationsdelegatesresponsibilitiesto,theSuperintendentofPlant,Hanager-NuclearSupport,Hanager-NuclearTraining,andNanager-NuclearFuel.='RIRU.-.,h'.SuperintendentofPlantisresponsibleforSusquehannaSBS,dur'ingplanttesting,startupandoperationandhasoverallre'sponsibilityfortheInitialTestProgramconductedbytheIntegratedStartupGroup.TheSuperintendentofPlantis;responsibleforthesafeoperationofSusquehannaSESandhasoverallresponsibilityfortheexecutionoftheadministrativecontrolsattheplanttoassuresafety.The,SuperintendentofPlantensuresthatplantoperations.areconductedinaccordancewiththeplantoperatinglicense,technicalspecifications,theFSAR,andtheOQAProgramwithits'implementingdocuments.TheSuperintendentofPlantdelegateshisauthorityforperformingactivitiesrelatedto,opera'tionoftheplanttotheAssistantSuperintendentofPlant,SupervisorofOperations,SupervisorofNaintenance,TechnicalSupervisor,andotherpersonnelassignedtothestafforganization..TheSuperintendentofPlanthasdirect'ccountabilitytoandreportstotheVicePresident-NuclearOperationsfor.activitiesdirectlyrelatedtoplantsuppcrtofpreoperationaltesting.TheAssistantSuperintendentofPlantassiststheSuperintendentofPlantinallmattersandassumestheresponsibilitiesoftheSuperintendentofPlantinhisabsence.172-5 SSES-PSARIeedSt~Go~S~uej;~g~oTheIntegratedStartupGroupSupervisorhastheresponsibilityforsupervisinqtheconductoftheIntegratedStartupGroup{ISG).TheISGSupervisorreportstotheSuperintendentofPlantonmatterspextainingtotheInitialTestProgram{ITP).ThequalificationsforthispositionarelistedinChapter14.2..e8-lla*.TheHanaqer-NNucle'arSupportis',responsibleforcoordinatingboth..NuclearDepartmentactivitiesandselectedoutsideserviceorqanizationactivitiesinsupportofSusguehannaSESstartupand',operation.TheHanager-NuclearSupportprovidestechnicalassistancetotheSusquehannaSESPlantStaffintheareasofoperationandmaintenance.TheHanaqer-NuclearSuppoxtadvisestheVP-NuclearOperationsof~activitieswithinoraffectingtheNuclearDepartmentandadvises.theSusquehannaSESPlantStaffofpotentialchangestoplantoperatinqandmaintenancereguirementsbyreviesingchangestoRequlatoryGuides,IndustryStandardsandotherindustryliterature.172.'1.1.2.3danaer-Nuclearrrai~ninTheHanaqer-NuclearTrainingisresponsibleforassessingthelongtermtrainingneedsregardingSusquehannaSZSanddevelopingtrainingprogxamscommensurateviththoseneeds.1721.1$~5Na~nae~l1uclea5NuelTheManager-NuclearPuelisresponsibleforfuelmanagementactivitiesoff-site,suchasprocurement{includingthetechnicalevaluationandapprovalofacceptablefuelsuppliers),designdataverification,coretransientanalyses,andcoreanalysisforthepurposesofin-corefuelmanagementandoperationssupport.TheManager-Nuclear,Puelsinterfaceswiththeonsiteoperationsgroupregardinqnuclearfuelshippingandreceiving,fuelandcoreperformancemonitorinq,andspentfuelshipping/~72.11.255anacane-nuclearNdalnistratlun8EV18~ll/80172-6 CCtwaSSES-FSARTheNanaqer-NuclearAdministrationisresponsiblefordevelopingandimplementinqanuclearrecordsmanagementsystemanddirectinq'llinterfacinqorganizationstowardtheimplementationofthesystem.TheNanager-NuclearAdministrationisalsoresponsibleforestablishingandmaintaininqadocumentcontrolsystemforSSPS.'I17.2.1.1.2.6JNanaer-NuclearSafetvAssessment18TheNanaqer-NuclearSafetyAssessmentisresponsibleforindependentlyrevievinqandmonitoringallnuclearactivitiestoensurethattheyareperformedinamannerwhichresultsinsafereliableoperation.u17,2.l~la4~nape~-+ucleaggualit~assuancehTheNanaqer-NQAisresponsiblefor:0DirectinqandcoordinatingthedevelopmentandupdatinqofPPGL'sOQAProgram.000AssuringoverallimplementationoftheOQAProgram.InterpretingtheOQAProgram,subjecttotheapprovaloftheSeniorUicePresident-Nuclear.Auditing,monitoring,inspectingandwitnessing,asnecessary,contractor,vendorandplantsafety-relatedactivitiestoassesscompliancewiththerequirementsoftheOQAProgramand/orprocurementdocuments,andreportinqtheresultsoftheseactivitiestoresponsiblemanagement.fxs0BeviewinqfunctionalunitprocedurestoassurecompliancewiththeOQAProgram.ProvidinqtraininqassistanceinOQAProgramrequirements.oImplementingtheQAandsiteQCactivitiesidentifiedintheOQAProgram.oReviewinqandauditingtheOQAProgramprovisionsthatareappliedtothefireprotectionprogramand22Rev.22,4/8117e27 SSBS-FSAR00reportinqtheresultsoftheseactivitiestoresponsiblemanagement.Implementingthenondestructiveexaminationtraining,qualificationandcertificationprogram.Evaluatingpotentialsuppliersofmaterialequipmentandservicestodeterminetheircapabilitiesforprovidinqqualityproductsorservices.AdministrativeintegrationoftheOQAandEnvironmentalauditingproqzamsforSusquehannaSES.llReviewingandapprovinggualityassurancerequirementsinprocurementdocuments.TheManager-NQAisresponsiblefortakingaction(includingworkstoppaqe),exceptforplantoperation,asnecessary.to'orrectconditionsadversetoquality.AtSusguehannaSES,theManager-NQAisresponsibleforinformingtheSuperintendentofPlantwhenitisdeterminedthatsafety-relatedcorn'ponentsortheactivitiesperformedonthesecomponentsfailtocomplywithappzovedspecifications,plans,ozprocedures.TheSuperintendentofPlantretainstheresponsibilityfortheevaluationofconditionsadversetoqualitywithregardtoplantoperationandisresponsiblefozdeterminingwhenanoperatingunitts)istobeshutdown.PPGLrequiresthattheManager-NQAshallhavequalificationsthatarecommensuratewiththeresponsibilitiesofthatposition.Asaminimum,theseshallincludeaB.S.inEngineeringandtenyearsexperienceinEngineeringand/orConstruction.Atleastoneyearofthistenyearsexperienceshallbenuclearpowerplantexperienceintheoverallimplementationofthequalityassuranceprogram.TheManaqer-NQAandtheNQAStaffareindepend'entoforganizationsresponsibleforperforminqsafety-relatedactivities.TheNQASectionhassufficientauthorityandorganizationalfreedomtoidentifyqualityproblems,toinitiate,recommendorprovidesolutionsthroughdesignatedchannels,andt'overifyimplementationofsolutions.ThePPSLNuclearQualityAssurancefunctionalstructureisshowninPigure17.2-3.TheManaqer-NQAdelegatesfunctionalresponsibilitiesforaccomplishingqualityassuranceactivitiesasfollows:1.QualityZnqineerinqRev.18,ll/8017.2-8 SSBS-FSAB(a)Interfacewithengineeringorganizationstoaccomplishtheincorporationofqualityreguirementsin4'esign,test,8procurementdocumentsviathespecification,reviewandapprovalprocess.(b}'InterfacetoprovideQAcoverageofnuclearfuel.{c)'eviesandmaintaincognizanceofapplicablecodesandstandards.(d)ReviewandsupportresponsestoNBCBulletins,Circulars,andInfornaticnNotices'(e)Beviewandsupportforreportingitemsper10CER50.55(e)and10CFB21.(f)Providetechnicalsupportforauditing2.Procurement(a)VendorQAprogramevaluations'urveysandperformancetrendingandrating,vendoraudits(b)Technicalreview/acceptanceofVendorQArecords.(c)PostAwardVendormeetings(reviewP.O.provisions).(d),Sourcesurveillance/verification0Cons~t~utjogInterfacewithQAandQCorganizationsforplantconstructicnsupport.(b)Interfacewi'thNBCconstructioninspectors.(c)Directsupportofthepreserviceinspectionactivities.{d)DirectresponsibilityforthereviewofNDEprocedures.(e)QAsupportforspecifiedma)ormodificationsduringplantoperationsInterfacewiththeAuthorizedNuclearInspector.(g)Auditsofconstructionactivities.REV18~ll/80$72-9 SSES-PSAR(h)Reviewofconstructionproceduresandinstructions.'i)PieldchecksandverificationofresponsestoNRCcitations,bulletins,circularsandreportableconditionsrelatedtoconstructionactivities.(g)CompletionofN-3Pores.0{k)Qualitytrendingofconstructionrelatedactivities.tg~ey~ions1.QualityAssurance(a)XnterfacewiththePlantStaffandXSGfortheQAsupportofpreoperational~startuptestingandplantoperations{b)Reviewadministrativepreoperaticnalandstartuptestprocedures{c)InterfacewithNRCoperationsinspectors.(d)PieldchecksandverificationofresponsestoNRCcitations,bulletins,circularsandreportableconditionsrelatedtooperationsactivities.(e)Auditsofoperations.(f)Qualitytrendingofplantoperationsrelatedactivities.2.QualityControl(a)(b)Inspectionofmaintenance,modification,repair,testingandPPCI.Constructionactivities'.PerformingandinterpretingtheresultsofNDE(c)Receiptinspectionandacceptanceofmaterial,equipmentandconsumables.,(d)EvaluatingNCRsfortrends.(e)Procedurereviewfor'insertionofwitness/holdpoints.(f)Inspectionplanning.gu~alitsstemssTrainingREV.18'l/80172-10 SSES-PSARl..(a)Auditortraining,qualificationandcertification.(b)Xnspectortraining,gualificationandcertification.(c)QAindoctrinationandtrainingfortheNQAsectionandotherPLorganizations.(d)maintainingtheconstructionQAprogram(e)DevelopingandmaintainingtheoperationalQA,proqr'am.(f).DevelopingandmaintainingNQASectionprocedures.(q)CoordinationofresponsestoNRCinspections.(h)Administrativesupportfunctions.o~Aditingl.(a}SchedulingandscopinqprogrammaticauditsofPPSLandotherorganizations(b)CoordinatingtheimplementationofprogrammaticauditsandtheallocationofauditcrresourcesthrouqhtheotherNQAsupervisors.(c)PerformingauditsofotherNQAsubsections.(d)Evaluatingandtrendingtheresultsoftheauditingeffort.(e)Auditfollow-upandverification/close-outTheManager-NQAisresponsibleforinitiatingcorrespondencesuchthattheNRCisnotifiedofchangesto(l)theacceptedPSARQAprogramdescriptionpriortotheirimplementation,and(2)organizationalelementswithinthirty(30)daysaftertheirannouncement.{Note-editorialchangesorpersonnelreassiqnmentsofanon-substantivenaturedonotreguireNBCnotification.)17.2.1,2ConstructionManagerTheConstructionNanaqerisresponsibleforprovidingthenecessaryorganizationandtrainedresourcesandequipmentfortheperformanceofmaintenancetasksduringnormaloperationsandforoutaqes.Thesesameresourceswillalsoberesponsibleforcompletionofplantmodificaticnsrepairsand/oradditionstotheoperatinqplant.Theseoperationswillencompassprojects/tasksBEV.18'l/8017M211 SSES-FSARassignedbytheSuperintendentofPlanteitherdirectlyorthroughhison-siteorganization.ActivitieswillbedefinedinfunctionalunitproceduresdevelopedinaccordancewithOQAProgramrequirements.172.13Hangover-geocnceaentTheManager-Procurementisresponsibleforthepurchaseofeguipment,materials,suppliesandrelatedservicesthatconformtoallapplicablepurchasingspecificationsandforplacingordersforequipment,materials,supplies,andserviceswithappzovedsuppliers(exceptfornuclearfuelasspecifiedinSubsection17.2.1.1.2.5).FunctionalunitproceduresshalldefinehowtheprocurementprocessiscontrolledinaccordancewithOQAProgramrequirements.TheOperationalQualityAssurance(OQA)Programisappliedtoallsafety-relatedSusquehannaSESstructures,systems,components,andactivities.SAFETYRELATEDisagenerictermappliedto:Thosesystems,structures,andccmponentsthatmeetoneormoreofthefollowinqrequirements:a.Haintaintheintegrityofthe.ReactorCoolantSystempressureboundary;bAssuretheircapabilitytopreventozmitigatetheconsequencesofaccidentsthatcouldcausethereleaseofzadioactivityinexcessof10CFR100limits;CePrecludefailureswhichcouldcauseorincreasetheseverityofpostulatedaccidentsorcouldcauseunduerisktothehealthandsafetyofthepublicduetothereleaseofradioactivematerial;d.Provideforsafereactorshutdownandimmediateorlongtermpostaccidentcontrol2Thoseactivitiesthataffectthesystems,structuresandcomponentsdiscussedinItem1abovesuchastheirdesign,procurement,construction,operation,refuelinq,maintenance,modificationandtesting.REV18~ll/8017e212 SSES-FSARTheManager-NPEisresponsibleformaintainingalistdesignatingthosestructures,systems,components,parts,andprocuredservicesvhicharesafety-related(SeeTable3.2-1).TheOQAProgramwillheimplementedatleast90dayspriortofuelload.Safety-relatedactivitiesoccurringpriortotheimplementationoftheOQAProgramwillbecontrolledbytheSusquehannaQAProqram.TheSusquehannaQAProgramwillbemodified'hroughamendmentstothePPCLQAmanual,asnecessary,tocovernevactivitiesoccurringduringthepreoperationaltestinqphase.i'heSeniorVicePresident-Nuclearhasassigned'totheNanager-NuclearSafetyAssessmenttheresponsibilityforreqularlyassessinqthescope,status,implementation,andeffectivenessoftheOQAProgram.ThisvillassurethattheProgramisadequateandcompliesvith10CFR50,AppendixB.tTheOQAProgramrequiresthatsafety-relatedactivitiesbeperformedusingspecifiedequipmentundersuitableenvironmentalconditions.andthatprerequisiteshavebeensatisfiedpriortoinspectionand=test.182218TheManager-NQAisresponsibleforestablishingandmaintaininqtheOOAProqramandforinsurinqthatitprovidesadequatecontrolofallactivities.TheManager-NQAisresponsibleforassuringthatfunctionsdelegatedtoprincipalcontractorsarebeinqproperlyaccomplished.SupplierQAprogramsareevaluatedtodeterminethattherequirementsof10CFR50AppendixBwillbeimplementedandthisevaluationisdocumented.ThecorporateOQApolicies,goals,andobjectivesaretransmittedtothepersonsperforminqactivitiesvhicharerequiredbytheOQAProgramandsupportingdocuments.Thecommitments-oftheOQAProgramaredescribedinChapter17whichalsoassignsresponsibilitiesforimplementingOQAProgramcommitments.TheOQAManualcontainsOperationalPolicyStatements(OPS)whichstipulatePPGLQApolicies,goalsandobjectivesforimplementinqtheOQAProgramcommitments.Thesepoliciesgivegenericdirectionfortheperformanceofactivities.AsynopsisoftheOPSandamatrixwhichcross-referencesthemtoeachcriterionofAppendixBto10CFRPart50,iscontainedinTable17.2-2.TheOOAProgramispatternedafterandfullycomplieswithANSIN18.7-1976asmodifiedhyNRCRegulatoryGuide1.33,Revision2.ThedegreeofcompliancewithotherrequlatoryguidesandassociatedANSIStandardsislistedinTable17.2-1.Mhereguides,codesorstandardsarenonexistentorinadequate,PPGLvilldevelopmethodstoprovidethenecessarycontrol.tf'!Rev.22,4/81172-130~ SSES-FSAR18is/Z.s[1822TheOQAProgramrequirementsaremandatoryforallsafety-relatedactivities.Eachfunctionalunitmanagerisresponsibleforassuringthatsafety-relatedactivitiesperformedbythatfunctionalunit,meettherequirementsoftheOQAPzoqram.TheManaqer-NQAisresponsiblefortheaudit,review,inspectionandverificationofactivitiesbothonsiteandoffsitetoassurethattheyareaccomplishedaccordingtotheOQAProgramrequirements.QCactivitiesshallbeperformedincompliancewiththeOQAProgramrequirements.DisaqreementsbetweenNQAandotherdepartmentpersonnel(suchasEnqineering,Construction,Fuels,EnqineeringServices,andProcurement)concerninqtheOQAProgramandrelatedactivitieswillberesolvedbetweentheManager-.NQAandtheaffecteddepartment'ssupervisorormanaqer.DisagreementsnotresolvedattheselevelswillbereferredtotheSeniorVicePresident-Nuclearforresolution.IITheOQAManualwhichcontainsOPS,iscontrolledanddistributedbytheNQASection.Allmanagersresponsiblefortheperformanceofsafety-related.activitiesvillbeissued'controlledcopiesoftheOQAManual.,TheManaqer-NQAisresponsibleforobtainingappropriatereviewandapprovalofthecontentandchangestotheOQAProgramandManual.AnygroupperformingactivitiesgovernedbytheOQAProgramandManualmayproposechangestothesedocuments.AllOQAProgram(FSARSection17.2)changesrequirereviewbytheManager.-NQA,theVicePresident,-ECC-NuclearandtheV.P.NuclearOperations,andapprovalbytheSeniorVicePresident-Nuclear.AllOQAManualchangesshallbereviewedbyfunctionalunitmanaqersaffectedbythechangeandreviewedandapprovedbytheHanaqer-NQA,VicePresident-ECC-Nuclear,V.P.-NuclearOperationsandSeniorVP-Nuclear.FunctionalunitproceduresshallbereviewedbytheManager-'NQAandreviewedandapprovedbytheappropriatefunctionalunitmanaqer.ControlofQAprogramsotherthantheapplicant~sisaddressedinSubsection17.27-~Individualsperforminginspection,examinationandtestingfunctionsassociatedwithnormaloperationsoftheplant,suchasurveillancetesting,routinemaintenanceandcertaintechnicalreviewsnormallyassiqnedtotheon-siteoperationorganizationshallbequalifiedtoANSIN.18.1-1971.PersonnelwhosequalificationsarenotrequiredtomeetthosespecifiedinANSIN18.1andwhoareperforminginspection,examinationandtestingactivitiesduringtheoperationalphaseoftheplantshallbequalifiedtoANSIN45.2.6-1973,exceptthattheQAexperiencecitedforLevelsI,IIandIIIshallbeinterpretedtomeanactualexperienceincarryinqoutthetypesofinspection,examinationandtestingactivitybeinqperformed.'"Rev.22,4/8117~214 SSZS-TSARHanaqersareresponsibleforassuringthattheirpersonnelreceive-theindoctrinationanltrainingnecessarytoproperlyperformtheiractivities.Theindoctrinationandtrainingprogramshallhesuchthatpersonnelperformingactivitiesareknowledgeableinproceduresandrequirementsandproficientinimplementingthoseprocedures.Theprogramassuresthat:oPersonnelresponsibleforperformingactivities,areinstructedastothepurpose,scope,anlimplementationofthesafety-relatedmanuals,instructions,and.procedureswhichcontroltheiractivities:'o,'Personnelperformingactivitiesaretrainedandqualifiedintheprinciplesandtechniquesofthe'ctivity'einqperformed.oThescope,theobgective,anlthemethodofimplementingtheindoctrinationandtrainingprogramaredocumented.oProficiencyofpersonnelperformingactivitiesismaintainedbyretraining.Re-examinationand/orrecertificationwillbeutilizedasapplicable.~oHethodsareprovidedfordocumentingtrainingsessions;includingadescriptionofthecontentandresultsandarecordofattendance.TheHanagementandtechnicalinterfacesbetweenBechtelGeneralElectricandPPSLduringtheInitialTestProgramaredescribel,intheStart-upAdministrativeHanual.TheSusguehannaSESQA.ProgramasmodifiedbyamendmentstotheQAHanualwilldescribethereceiptand'processingofQArecordsbyPPST..Znadditiontosafety-relatedstructures,systems.,componentsanlactivities,certainprovisionsoftheOQAProgramareappliedtofireprotection.Theseprovisionsapplytothoseitemswithinthescopeofthefireprotecticnprogramsuchasfireprotectionsystems,emergencylightingcommunicationanlbreathingapparatus,aswellasthefireprotectionreguirementsofapplicablesafety-relatedequipment.Specifically,theOQAProgramappliestothe10criterialistedinRegulatoryPositionC.3intheU.S.NRCRegulatory,Guile1.120,Revision1PireProtectionGuidelinesforNuclearPowerPlants.TheOQAProgramdocumentsidentifythosemanagersresponsibleforperforminqdesiqnactivitiesanddescribetheirresponsibilitiesandmethodsformeetingtheOQAProgramrequirements.REV18,ll/80172-15 SSES-PSABThefunctionalunit'sproceduresdetailthestepsnecessaryforitscompliancewiththerequirementsforitsassociateddesignactivitiesTheseproceduresassurethatdesignactivitiesincludingchangesinthedesignarecarriedoutinaplanned,-'ontrolled,andorderlynanner.Applicabledesigninputssuchasregulatoryrequirements,codesandstandards,anddesignbasesshallbereflectedindesignoutputdocumentssuchasspecifications,drawingswrittenprocedures,andinstructions.Thesedesignoutputdocumentsshall,sp'ecifytheappropriatequalitystandardsandany.deviations'fro'm,thesequalitystandardswillbeaccomplishedinaccordancewithOQlLProgramreguirements.~The'design.controlprocessshallinclude,butnotbelimitedto,thefollowing,whereapplicable:o'ReactorphysicsoSeismic,stress,thermal,hydraulic,radiation,andaccidentanalysesoHaterialcompatibilityoAccessibilityofitemsforin-serviceinspection,maintenance,andrepairoVerificationthatthedesigncharacteristicscanbecontrolled,inspectedandtested'o1dentificationofinspectionandtestcriteriaThedesignengineershallevaluateandselectsuitablematerials,parts,equipment,andprocessesforsafety-relatedstructures,systems,andcomponents.Thisevaluationandselectionshallincludetheuseofappropriateindustrystandardsandspecifications.Hate'rials,'arts,andequipmentwhicharestandard,commer'cial(offtheshelf),orwhichhavebeenpreviouslya'pprovedforadifferentapplication,shallhereviewedforsuitability'intheintendedapplicationpriortouse.Internalandexternalinterfacesbetweenorganizationsperformingworkaffectingqualityofdesignshallbeidentified.Proceduresshallbeestablishedtocontroltheflowofdesigninformationbetweenorganizations.Theseproceduresshallincludethereview,approvalrelease,distribution,andrevisionofdocumentsinvolvingdesigninterfaceswithotherorganizations.Designsshallbereviewedtoassurethatdesigncharacteristics-canbeverifiedandacceptancecriteriaareidentifiedREV18o11/80.172-16 SSES-PSARDesignsshallheverifiedhyrevieving,alternatecalculations,orqualificationtesting.Designverificationshallheperformedbyaqualifiedpersonorgroupotherthantheoriginaldesignerorthedesigner'simmediatesupervisorHowever,supervisorsmayperformdesignverificationsubjecttotherestrictionsofParagraphC.2ofRegulatoryGuide1.60Revision2Proceduresfordesignverificationshallidentifytheresponsibilityandauthorityofpersonsorgroupsperformingdesignverifications.'henatestprogramisusedtoverifytheadeguacyofadesign,thetestvillheperformedonaprototypeunitorinitialproductionunitandshalldemonstrateadeguacyofperformanceunderthemostadversedesignconditions.Changestodesignoutputdocuments,includingfieldchanges,shallbesubjectedtodesigncontrolmeasuresthesameas,or*equivalentto,theoriginalmeasures.Responsibleplantpersonnelaremadeawareofdesignchanges/modificationswhichmayaffecttheperformanceoftheirdutiesby:oPlantOperationsReviewCommitteereviewofallmodificationpackagespriortoinstallation.oInstallationofmodificationsarecontrolledbytheplantworkauthorizationsystem.oNuclearPlantEngineeringnotifiesplantsupervisorsofdesiqnchangestoallowupdatingofprocedures.'oEffectsofmodification'sareincorporatedintotheplanttraininqprogram.Errorsanddeficienciesinthedesignorthedesignprocessthatcouldadverselyaffectsafety-relatedstructuressystems,and,componentsvillbedocumentedandcorrectiveaction'illhetakeninaccordancewithSubsecti'on172.16.Designdocuments,includingchangesarefiledasdescribedinSubsection17.2.171724P~ROCUHURRIDOCUMHHTCOHTROIOQAProgramdocumentsidentifythosemanagersresponsibleforactivitiesrelatedtothecontrolofprocurementdocumentsanddescribetheirresponsibilitiesandmethodsformeetingtheOQAProgramrequirements.Punctionalunitproceduresdetailthestepstobeaccomplishedinthepreparation,reviev,approvalandcontrolofprocurementdocumentsEachmanagerisresponsibleforestablishing,maintainingandimplementingthefunctionalunit!,sproceduresincompliancevithOQAProgramrequirements.REV.18,llr80172-17 SSES-FSARProcurementdocumentsshallcontainorreferenceasapplicable:oDesignbasistechnicalrequirementsincludingtheapplicableregulatoryreguirements.oComponentandmaterialidentificationrequirements.oDrawingsoSpecificationsoCodesandindustrystandards.oManufacturers'estandinspectionrequirements.oSpecialprocessinstructions.Procurementdocumentsshallidentifya)theapplicablequalityrequirementswhichmustbemetanddescribedinthesupplier'sQAprogram,b)thedocumentation(suchasdrawings,specifications,procedures,inspectionandfabricationplans,inspectionandtestrecords,personnelandproceduzequalificationsandmaterial,chemicalandphysicaltestresults)tobeprepared,maintainedandsubmittedtoPPSLforrevie'wandapproval,andc)thoserecordswhichshallberetained,controlled,maintainedordeliveredtoPPSI.priortouseorinstallationofthepurchaseditems.ProcurementdocumentsshallalsocontainprovisionsforPPSLoritsaqent,asapplicable,tohavetherightofaccesstosuppliers'ndsubtiersuppliers'acilitiesandrecordsforsourceinspectionandaudits.Procurementdocumentsshallalsorequirethatthesuppliersubmit,whenrequired,itsQAProgramorportionsthereoftoPPGLfozreviewandapprovalbyqualifiedQApersonnelpriortoinitiationofactivitiescontrolledbytheProqramProcurementdocumentsshallbereviewe'dbygualifiedpersonnelforadequacyofqualityzeq'uirements(suchasacceptanceandrefectioncriter'ia).Qualityrequirementsshallbecorrectlystated,inspectableandcontrollable.Priortotheirrelease,procurementdocumentsshallhavebeenprepared,reviewedandapprovedinaccordancewithOQAProgramreguirements.TheprocurementdocumentreviewandapprovalisdocumentedandfiledasdescribedinSubsection17.2.17.Shenprocurementdocumentsarerevised,theyaresubjecttothesameozequivalentreviewandapprovalastheoriginaldocument.Procurementdocumentsforsafety-relatedspareorreplacementpartsforstructures,systemsandcomponentsaresubjecttocontrolsthesameasorequivalenttothoseusedfortheoriginalequipment.Allactivitiesdescribedinthissubsectionaretobeperformedbypersonnelqualifiedtoperformtheactivity.REV18ill/80472-18 SSZS-FSARActivitiesshallbeaccomplishedin.accordancewithdccumentedinstructions,proceduresordrawingsThissubsectionappliestointernalPPSLinstructions,proceduresanddrawings.SuchrequirementsfarcantractorsandvendorsareincludedinprocurementdocumentsasdiscussedinSubsection17.2.4.TherearetwogenerallevelsofOQAProqramdocumentswhichareusedto.implementtheOQAProgram.ThefirstdocumentleveliscomprisedofOperationalPolicyStatements{OPS)whichdescribePPSI.spoliciesforcomplyingwith,10CFB50,AppendixBandOQAProgram,requirements.TheseOPSdelineatethereguirementsforpreparing,reviewinq,approving,andcontrollinginstructions,procedures,anddrawings.TheseconddocumentlevelusedtoimplementtheOQAProgramconsistsoffunctionalunitprocedureswhichdescribehaweachfunctionalunitperformsitsactivities.Theseactivitiesincludespecifyingininstructions,praceduresordrawingsthemethodsforcomplyingwithOPSreguirements.Instructions,proceduresanddrawingscontrolledbytheOQAProgramshallincludequantitative(suchasdimensions,tolerances,andoperatinqlimits)andqualitative(suchasworkmanshipsamples)acceptancecriteriaforuseindeterminingthatimportantactivitieshavebeensatisfactorilyaccomplished.Thefunctionalunitmanagershall'prepare,obtaintheappropriatereview,approve,issue,andrevisethefunctionalunitprocedureswhichcontroltheactivitiesofthatgroupTheseproc'eduresarereviewedbycognizantfunctionalunitpersonnelforaccuracyandworkabilityandbyQApersonnelforcompliancewithOQAProgramrequirementsXnspectianplans;test,calibration,specialpxocess,maintenance,modificationandrepairprocedures;drawingsandspecifications;andchangestheretoaresubjecttoauditfortheircampliancewithOQAProgramrequirements./17~26OCUNRNTCONTROI.ThedocumentcontrolsystemdescribedinOQAProgramdocumentsrequiresthat,priortotheirrelease,documentsandchangestheretoarereviewedfortheiradequacyandapprovedandreleasedbyauthorizedpersonnelanddistributedforuseatthelocationwheretheprescribedactivityistobeperformed.Thedocumentscontrolledunderthissubsecticnasaminimuminclude:oDesignSpecifications172-19 'ISSRS-,FSARo'rocurenentDocumentso,TestProceduresoDesign,Banufacturing,ConstructionandInstallationDrawings.'o.Hanufacturing,inspection,andtestinginstructions=oFinalSafety'AnalysisReportoOQAProgramdocuments,.-o...Haintenance,modificationandoperatingprocedureso'Non-conformanceReportsTheN{}'ASectionozotherqualifiedindividualsdelegatedbyN{}Abutotherthanthepersonwhogeneratedthedocument,shallreviewandconcurwith'thedocumentandchangesthereto,withregardto{}A-relatedaspectspriortoimplementation.Eachmanagerwhoisresponsibleforissuingadocument,isalsoresponsibleforobtainingthepropezreviewandapprovalofthatdocument.Changestodocumentsarereviewedandapprovedbythesameorganizationsthatperformedtheoriginalreviewandapprovalunlessspecificallydelegatedtoothergualifiedorganizations.Thisreviewwillbecompletedpriortoissuingthedocumentexceptfortemporaryprocedures/instructionsissuedbytheSusguehannaSESPlantStaff.Thisspecialcaseisdescr'ibedinSection6oftheTechnicalSpecificationsandtheSusguehannaplantAdministrativeProcedures.Eachfunctionalunitmanagerisresponsibleforpreparingandperiodica1lyissuingdistributionlistsandrevisionstatuslistsforthecontrolofqualitydocumentsissuedbythat'funcfionalunit.Theselistsidentify'headditionsandchangesmadetodocumentssincethepreviousreportperiodandassistrecipientsinmaintainingup-to-datefiles.Eachrecipientisresponsibleforreviewingthelatestdistributionliststoconfirmthatthecurrentrevisionofeachdocumentisavailable.Priortoimplementation,approvedchangesareincludedininstructions,procedures,drawingsozotherdocumentsbyprocedurallycontrolledchangemechanisms.Itistheresponsibilityofeachfunctionalunitsupervisor/managertoassurethattheproperdocumentssuchasinstructions~procedures,anddrawingsareavailableatthelocationwheretheprescribedactivitiesareperformedREV18~11/80172-20 ~~SSES-FSARITheissuinqdepartmentisresponsiblefordescribingand'implementinqmeasuxeswhichprovidecontrolstopreventtheinadvertentuseofobsoleteorsupercededdocumentsIndividualsor.groupsresponsibleforpreparation,review,approval,issueanddistributicnofqualitydocumentsandtheirrevisionsareidentifiedintheOQAProgramdocuments.I!-"PPSLOQAProgram.documentslistthosemanagersresponsiblefor..performi.ngactivitiesrelatedtothecontrolofpurchased~-material,!equipmentandservices;describetheir.responsibilities;andspecifytheirmethodsformeetingtheOQArequirements.Eachfunctionalunit'sproceduresdetailthesteps,necessar'yforcomplyingwiththeserequirementsfortheiractivities.PPSL~ssystemforcontroliscomprisedofsupplierevaluation,surveillanceofthesupplierduringproduction,receiptinspectionofitemsorservices,andevaluationcfsupplierrecords.Theextentandmethodsofcontrolusedassurecompliancewithapplicabletechnical,manufacturing,andqualityrequirements.Priortotheawardofapurchaseorder.orcontract,PPSLevaluatestheprospectivesuppliersabilitytoprovidematerial,equipment,andserviceswhichcomplywiththetechnical,design,manufacturingandqualityrequirements.Thesuppliersludgedcapableofmeetingtherequirementsareconsideredapprovedsuppliersforthespeci'ficarticle.TheresultsofsupplierevaluationsaredocumentedandtherecordsmaintainedinaccordancewithSubsection17217.Theevaluationincludes,asnecessary,reviewsoftherecordsandperformanceofsupplierswh'ohavepreviouslysuppliedsimilararticles,surve'ysoftheirfacilitiesandevaluationscftheirqualityassuranceprogramstodeterminetheirabilitytomeetthedesign,manufacturingandqualityrequirementsofthepurchaseorder.'Zhesegualityrequirementsincludetheapplicableelementsof10CFR50AppendixB.Suppliersactivitiesduringthedesign,fabrication,inspection,testing,andpreparationforshipmentofmaterial,eguipmentandcomponentsareundersurveillancetoassuretheircompliancewiththepurchaseorderrequirements.ThesurveillanceofsuppliersisplannedandperformedinaccordancewithwrittenproceduresasdescribedinSubsection17.2.18.Theseproceduresspecifythecharacteristicsorprocessestobewitnessed,inspectedorverifiedandaccepted;REV18,ll/8017-2-21 SSES-ESAB'hemethodofsurveillance;theextentofdocumentationreguired;andthoseresponsibleforimplementingtheseprocedures.Theseproceduresalsospecifytheauditsandsurveillancesrequiredtoassurethatthesuppliercomplieswiththegualityreguirementswherecompliance-cannotbe'eterminedbyreceiptinspection.Asapplicable,qualifiedpersonnelperformreceiptinspectionofmateri.al,equipmentandservicestoassurethat:0Thematerial,componentorequipmentisproperlyidentifiedandcorrespondswiththereceivinqdocumentation./o.-The'aterial,componentoreguipmentanditsacceptancerecordsarejudqedacceptableinaccordancewithpre-"determinedinspectioninstructionspriortoinstallationoruse.oInspectionrecordsorcertificatesofconformanceattestingtotheacceptabilityofmaterial,components,andequipmentareavailableatSusguehannaSESpriortoitsinstallationoruse'.Uponcompletionofthereceiptinspection,itemsacceptedandreleasedareidentifiedastotheirinspectionstatuspriortoforwardingthemtoacontrolledstorageareaorreleasingthemforinstallationorfurtherwork.Supplierfurnishedrecordsshallbereviewedandacceptedbyaqualifiedindividualknowledqeableinqualityassurance.Theserecor'dsshall,asaminimum,contain:oDocumentationthatspecificallyidentifiesbypurchaseordernumberthepurchasedmaterialorequipmentandthespecificprocurementreguirements,suchascodes,standards,andspecificationsmetbytheitems.oDocumentationthatidentifiesanyprocurementrequirementswhichhavenotbeenmettogetherwithadescriptionofthosenonconformancesdispositioned"acceptasis"or"repair".Therequirementsofthissubsectionshall.alsoheappliedtothepurchaseofspareandreplacementpartsandshallassurethatthesepartshavealevelofqualityconsistentwiththeirimportance,complexity,andquantity.Suppliercertificatesofconformanceareperiodicallyevaluatedtoverifytheirvalidity.RZV18,ll/80172-22 SSBS-PSARTheeffectivenessofthecontrolofqualitybysuppliersisassessedbyPPSLatintervalsconsistent~iththeimportance,complexity,andquantityofanitem.OQAProgramdocumentslistthosemanagersresponsibleforperformingactivitiesrelatedtotheidentificationandcontrolof-materials,partsandcomponents,includingpartiallyfabricatedsubassemblies,describetheirresponsibilities,andspecify.themethodsformeetingtheOQAprogramreguirements.Eachfunctionalunit'sproceduresdetailthestepsnecessarytocomplywiththeserequirements.ProcurementdocumentsspecifytherequirementsthatPPGLsuppliersmustcomplylithfortheidentificationofmaterial,parts,andcomponents(includingpartiallyfabzicatedsubassemblies).Xtemidentificationismaintainedeitherontheitemoronrecordstraceabletotheitemtopreventtheuseofincorrectordefectiveitemsthroughoutfabrication,erection,installationanduse.Thelocation,type,andapplicationmethod'oftheidentificationshallnotaffectthefit,function,orqualityoftheitembeingidentified.Materialsandparts,asrequiredbytheirimportancetoplantsafetyandapplicableCodes,StandardsandRegulatory.requirements,shallbetraceabletoappropriatedocumentationsuchas'rawings,specifications,purchaseorders,manufacturingandinspectiondocuments,deviationreportsandphysicalandchemicalmilltestreports.Thecorrectidentificationofmaterials,parts,~andcomponentsisverifiedanddocumentedpriortoreleaseforfabrication,assembly,installationorshippinq.1729CONTROLOPSPECIALPROCESSESSpecialprocessesarethosethatrequireinterimin-processcontrolsinadditiontofinalinspectiontoassureguality.OQAProgramdocumentsidentifythosemanagersresponsibleforthewriting,qualifying,approvingandissuingofproceduresforspecialprocesses.Proceduresfor"specialprocessesarepreparedinaccordancewithapplicablecodes,standards,specifications,criteria,andotherspecialrequirementstocontrolprocessessuchasMelding,heattreating,nondestructiveexaminationfNDE),'EV~18'l/8017M223 SSES-PSARandchemicalcleaning.Personnelperformingspecialprocessesandtheproceduresandequipmentusedforthisactivityarequalifiedinaccordancewithapplicablecodes,standardsandspecificationsTheproceduresforspecialprocessesspecifytherequirementsfortheircontrol~theparameterstobeconsidered,themethodsofdocumentation,andapplicablecodes,standards,specificationsorsupplementaryrequirementswhichgoverntheir.qualification.Thespecialprccessesareaccomplishedinaccordancewithwrittenprocesssheets,orequivalentwithrecordedevidenceofverification.Whenspecialprocessesare".notcovered.byexistingcodesandstandards,orwhenitemqualityrequirements-exceedtherequirementsofestablishedcodesorstandards,thenecessaryqualificationsforpersonnel,proceduresorequipmentaredefined.Recordsverifyingthequalificationofpersonneltoperformspecialprocessesaremaintainedinacurrentstatus*Procurementcontrollingverifythatestablisheddocumentsspecifycontractorresponsibilityforspecialprocessesandformaintainingrecordstospecialprocessesareperformedinaccordancewithrequirements.17210XHSPZCTIONOQAProgramdocumentsidentifythosemanagersresponsibleforthe,pzeparation,approval,andissuanceofinspectionprocedures.Thedocumentsalsoidentifythosemanagersresponsiblefortheperformanceofinspections.Onsiteandoffsiteactivitiesaffectinqqualityazeinspectedinaccordancewithwrittencontrol'ledpzocedurestoverifyconformancewithapplicableprocedures,designdocuments,codesandspecificationsforaccomplishingtheactivity.Activitiesaffectingqualityaresubjecttoinspectionsinareassuchas:1*o~SpecialprocessesasidentifiedinSubsection17.2.9.0Modificationstotheplant.0Receiptofmaterials,partsozcomponents.Plantoperation00Repairsorreplacementofequipment.Insezviceinspection.REV18,ll/80172-20 SSES-FSAR/Inspectionactivitiesconformtothefollowingreguirements:0Inspectionpersonnelarequalifiedindividualsotherthanthosewhoperformedordirectlysupervisedtheactivitybeinginspected..0Mandatoryinspectionholdpointsareidentifiedininspectionprocedures.0Modifications,repairsandreplacementsareinspectedinaccordancewiththeoriqinaldesignandinspectionrequirementsorapprovedalternatives.0Maintenanceandmodificationproceduresarereviewedbyqualifiedpersonnelknowledgeableinqualityassurancerequirementstodeterminetheneedfor(a)inspection,(b)identificationofinspectionpersonnel,and(c)documentinqinspectionresults.Thecriteriaforperforminqinspectionsarebaseduponanactivity'scomplexity,uniquenessandimpactonsafety.Xfdirectinspectionofprocessedmaterialarproductsisimpossibleordisadvantageous,indirectcontrolbymonitorinqprocessingmethods,equipment,andpersonnelisprovideda0Inspectorsaretrainedandqualifiedinaccordancewithappropriatecodes,standards,andcompanytrainingprogramsandtheirqualificationsandcertificationsarekeptcurrent.Inspectioninstrumentationiscalibratedandhasanuncertainty(error)equaltoorlessthanthetolerancestatedintheacceptancecriteria.4Inspectionofactivitiesisaccomplishedaccordingtoapprovedprocedures,instructions,andchecklists.Theseinspectiondocumentscontainthefollowing:(a)Identificationoftheitemsoractivitiestoheinspected.(b)Identificationofthecharacteristicsoftheitemsor'ctivitiesinspected.(c)Identificationoftheindividualsorgroupsresponsibleforperformingtheinspection.(d)Identificationofacceptanceandre]ectioncriteria.Rev.l8,ll/80172-25 SSES-FSAR-(e)Adescriptionofthemethodofinspectionincludingnecessarymeasuringandtestequipment.(f)Evidenceofcompletionandverificationofamanufacturinginspection,ortest.(g)Arecordoftheinspector,ordatarecorder,thedateandresultsoftheinspection.Inspectionproceduresorinstructionscontainorreferencenecessaryprocedures,drawingsandspecificationstobe'usedwhenperforminginspectionoperations.Provisionsforinspectionresultstobedocumented,evaluatedandacceptedbythesupervisorresponsiblefortheinspectionfunction.17211TESTCONTROLTheOQAProgramdocumentsidentifythosemanagersresponsiblefortestinqstructures,systemsandcomponentsduringthepreoperationaltesting,powertestingandoperationsphasesofSusquehannaSES.(PriortoimplementationofthisOQAProgrampreoperationaltestingwillbeperformedunderthecontroloftheSusquehannaQualityAssuranceProgramassupplementedbyinterimprocedurestothePPGLQualityAssuranceManual.)ThetestproqramdescribedhereinandfurtherdetailedinOperationsPolicyStatementsisdesignedtoassurethatstructures,systemsandcomponentswillperformsatisfactorilyinservice.Modifications,repairsandreplacementsaretestedinaccordancewiththeoriginaldesignandtestingreguirementsorbyapprovedalternates.Testingisestablished,documentedandaccomplishedinaccordancewithwrittencontrolledprocedures.Theseprocedurescontainorreference:0Therequirementsandacceptancelimitsspecifiedintheapplicabledesignandprocurementdocuments.0Theinstructionsforpezforminqthetest.Thetestprerequisitessuchas:oThattestinstrumentationiscalibratedandhasanuncertainty(error)equaltoorlessthanthetclerancestatedintheacceptancecriteria.Rev.22,4/81172-26 SSES-FSARoThattestingequipmentisadequateandappropriateforthetest.oThatpersonnelperformingthetestareproperlytrainedandqualifiedandlicensedorcertifiedasrequiredoThattheitemissufficientlycompletetobetested.oThatenvironmentalconditionsaresuitableandcontrolled.oThatprovisionsaremadefordatacollectionandstoraqe.oThemandatoryinspectionholdpcintsforwitnessbyPPSItheircontractororagent.oThetestacceptanceandrejectioncriteria.oThemethodsofdocumentingorrecordinq,thetestdataandtestresults.Testsarerequiredtobeperformed:oPeriodicallytoprovideassurance,thatfailuresorsubstandardperformancedonotremainundetectedandthattherequiredreliabilityofsafety-relatedsystemsismaintained.oPollowinqmaintenance,modificationorproceduralchangestodemonstratesatisfactoryperformance.Thetestresultsaredocumentedandevaluatedtodeterminetheacceptabilityofthetest.Theindividualsorgroupsresponsibleforevaluatingthete'stres'ultsshallbequalifiedtoperformthisevaluation.Whenbyevaluationofthetestresults,thestructure,systemorcomponentisdeterminedtobenonconforming,itshallbecontrolledinaccordancewithSubsection17.2.15.172'l2CONTROLOEMEASURINGANDTE~STEBIPMENTPPGL'EsOQAProgramdocumentsprovidemeasurestoassurethattools,gauges,instrumentsandothermeasuringandtesting'evicesarecontrolled.Calibrationsarescheduledwithsufficientfrequencytomaintainrequiredaccuracy.The'easurinqandtestequipmentcontrolsassurethat=REV18'l/80172-27 SSES-7SARoProceduresareusedtocontrolmeasuringandtestequipment.Theseproceduresdescribethecalibrationtechniqueandfrequency,maintenanceandmethodofcontrolofmeasuringandtestequipment(suchasinstruments,tools,gauges,fixtures,referenceandtransferstandards,andnondestructiveexamination.equipment)whichareusedinthemeasurement,inspection,andmonitoringofcomponents,systemsandstructures.oMeasuringandtestequipmentisidentifiedandtraceabletothecalibrationtestdata.o:Heasurinqandtestinstrumentsarecalibratedatospecificintervalsbasedontherequiredaccuracy,,purpose,-degreeofusage,stabilitycharacteristicsandotherconditionsaffectingthemeasurement.oNeasurinqandtestequipmentislabeledortaggedtoindicatethedateofthecalibrationandtheduedateofthenextcalibration.oMhenmeasurinqortesteguipmentisfoundtobeoutofcalibration,measuresaretakenanddocumentedtodeterminethevalidityefpreviousinspectionsperformedsincethelastvalidcalibration.oCalibrationstandardshaveanuncertainty(error)ofnomorethan1/4ofthetoleranceoftheeguipmentbeingcalibrated,unlesslimitedbythe>>state-of-the-art>>.0Acompletestatusofallitemsunderthe'calibrationsystemisrecordedandmaintained.oReferenceandtransferstandardsaretraceahletonationallyrecognizedstandards;orwhere'ationalstandardsdonot'exist,provisionsareestablishedto~documentthebhsisforcalibration.OghProgramdocumentslistthosemanagersresponsibleforthehandling,preservation,storage,cleaning,packagingandshippingofmaterials,partsandcomponents;anddescribetheirauthoritiesandmethodsformeetingthequalityrequirements.Eachfunctionalunit'sprocedurescontroltheiractivitiesandassurecompliancewiththequalityrequirementscontainedindrawings,specificationsandprocurementdocumentsTheserequirementsincludethosenecessitatedbythedesign,asBEV1811/80172-28 SSES-PSABoutlinedinthedesiqnoutputdocuments,andthosesubmittedbythesupplier.Theseproceduresprovidecontroltopreventdamageandlossordeteriorationbyenvironmentalconditions,suchastemperatureorhumility,andspecifythepersonnelqualificationsrequiredtosatisfactorilyaccomplishtheactivity.Consumablessuchaschemicals,reagents,veldrod,lubricants,etc.shallbestoredinaccordancevithmanufacturer'sinstructionsorotherapprovedmethodstopreventharmfuldeteriorationoftheitem.Materialsvithanidentifiedshelflifeshallbecontrolledsuchthattheyareusedordiscardedpriortoexpirationdate.17210ZNSPCTIOTESTANDOPERATINGSTATUSOQAProgramdocumentslistthosemanagersresponsibleforthedevelopmentandimplementationofprocedurestoassurethattheinspection,test,andoperatingstatusofstructures,systems,.andcomponentsisproperlyidentifiedandcontrolled.Theseproceduresincorporatethefollovingprovisions:Theinspection~test,andoperatingstatusofstructures,systems,andcomponentsisidentifiedto.theaffectedparties.Applicationandremovalofinspectionandveilingstampsandstatusindicators,suchastags,markings,labelsoandstampsareprocedurallycontrolled.0Hethodsforbypassingofrequiredinspection,tests,anlothercriticaloperationsarecontrolledthroughdocumentelPunctionalUnitProcedures.~Thestatusofnonconforming,inoperativeormalfunctioningstructures,systemsorcomponentsisidentifiedtopreventtheirinadvertentuse.OQAProgramdocumentslistthosemanagersresponsibleandtheirmethodsforhandlingnonconforminqmaterials,parts,components,orservices.Procedurescontrcltheidentification,documentation,segregation,reviev,dispositionandnotificationtoaffectedorganizationsofnonconformingmaterials,parts,components,orservices.REV18~11/80172-29 SSES-PSABMaterials,parts,componentsorserviceswhichdonotmeetestablisheddrawing,specification,orworkmanshiprequirements,areidentifiedasnonconforminganddocumentedonanonconformancereport.Nonconformingitemsareidentifiedasdiscrepantandsegregatedfromacceptableitemsuntiltheyareproperlydispositioned.ThemanaqerofeachfunctionalunitisresponsibleforthereviewanddispositionofnonconformingitemswhichfallunderthescopeofresponsibilityofthatmanagerQhenrequested,oridentifiedashavingresponsibilityforthedispositioning~otherdepartmentswillbenotifiedofthenonconformance.NonconformancereportsandassociatedrecordsaremaintainedinaccordancewithSubsection17.2.17.Informationpertainingtononconformingitemsisrecordedonthenonconformancereportwhichidentifiesthenonconformingitemorservice,detailsofthenonconformance,thedispositionandtheapprovalsignature(s).Acceptabilityofreworkorrepairofmaterials,partscomponents,systems,andstructuresisverifiedbyre-inspectingandre-testingtheitembyamethodwhichisthesameasorcomparabletotheoriginalinspectionandtestandinaccordancewithwrittenprocedures.Inspection,testing,rework,andrepairproceduresaredocumented.Vendornonconformancereportsdispositioned"acceptasis"or"repair"aremadepartoftheinspectionrecordsandforwardedwiththehardwaretoPPSLforreviewandassessment.Nonconformancereportsareperiodicallyanalyzedforqualitytrends,andtheresultsarereportedtomanagementforreviewandassessment.17-2-16CORRR~CTIVACTIONPPSI,~sOQAProgramestablishestherequirementsforcontrollingconditionsadversetoquality(suchasnonconformances,failures,malfunctions,deficiencies,deviations,anddefectivematerialandequipment).Conditionsadversetoqualityarepromptlyidentified,reported,evaluated,correctedanddocumented.0{}AProgramdocumentsidentifythemethodsusedandpersonnelresponsiblefortheseactivites.Conditionsadversetoqualityazeidentifiedandreportedtotheappropriatelevelsofmanaqementoftheaffectedorganizations.3EV18~11/80172-30 SSZS-PSARTherespansibleorganizationevaluatestheconditionstodetermineiftheyaresignificantconditionsadversetoqualityandtodeterminethecorrectiveactionreguired.Ifsignificantconditionsadversetogualityaredetected,thecauseoftheconditionandthecorrectiveactiontakenarereportedtotheappropriatemanagementlevelsofaffectedhomeofficeorganizatians,plantstaffandgualityassuranceforreviewandassessmentThecorrectiveactionforconditionsadversetoqualityshallcorrectthespecificconditians.Forconditionsdeterminedtobesignificant',thecorrectiveactionprovidesmeasurestocorrectspecific'onditionsandprecluderecurrence.Theresponsibleorganizationshallimplementthecorrectiveactionanddocumentthedetailsoftheconditionsincludingtheirresolution.Pallow-upactionisconductedtodeterminethattherequiredcorrectiveactionhasbeencompletedandthatthecorrectiveactiondocumentationhasbeenclosedout.AQArecordsystem,detailedinOQAProgramdocuments,hasbeenestablishedbyPPGIwhichassuresthatrecordsareidentifiable,retrievableandthatsufficientrecordsaremaintainedtoprovidedocumentaryevidenceofthequalityofitemsandservices.Thesystemassuresthatreguirementsandrespansibilitiesforrecordtrans'mittal,retention(suchasduration,locationfireprotectionandassignedresponsibilities)andmaintenance,subsequenttocompletionofwork,areconsistantwithapplicablecodes,standardsandprocurementdocumentsQArecordsinclude:oPlanthistoricalrecordsoOperatinqlogs'PrincipalmaintenanceandmodificationactivitiesoReportableoccurrencesoResultsofreviews,inspections,tests,auditsandmaterialanalyses>oMonitoringofworkperformanceoQualificationofperscnnel,proceduresandequipmentREV1811/80l7&231 SSZS-PSARTheserecordsalsoincludeotherdocumentationsuchasdrawings,specificationsprocurementdocuments,calibrationproceduresandreports,nonconformancereports,andcorrectiveactionreports.EachmanagerisresponsiblefordevelopingprocedureswhichcontroltheoriginationandtransmittalofQArecordswithinthatfunctionalunit.EachmanagerisresponsiblefortransmittingQArecordstothestoragelocationdesignatedforthatrecord.PPSLrecordstoragefacilitiesareconstructed,located,andsecuredtopreventdestructionoftherecordsbyfire,flooding,theft,anddeteriorationbyenvironmentalconditionssuchastemperatureorhumidity.17218~AUDITSThePPSLauditprogramreguirestheplanning,performingdocumenting,andevaluatingofauditsItassurescompliancewithlicensecommitments,OQAProgramrequirements,technicalspecifications,andotherapplicablereguirements.Italsoassuresthatcorrectivemeasuresaretakeninresponsetoauditfindingstoresolvetheoriginalproblemandminimizetheprobabilityofitsrecurrence.AuditsofselectedoperationalphaseactivitiesareperformedbyNQA.Theseauditsincludeareaswhichrequireimplementationof10CPR50,AppendixB.Theseareasincludeactivitiesassociatedwith:Plantoperation,maintenanceandmodification.Thepreparation,review,approvalandcontrolofdesigns,specifications,procurementdocuments,instructions,proceduresanddrawings.o~Receivingandplantinspections.oIndoctrinationandtrainingprograms.oTheimplementationofoperatingandtestprocedures.oCalibrationofmeasurinqandtestingeguipment.Auditsareregularlyscheduledbasedonthestatusandsafetyimportanceoftheactivity.AuditsarealsoscheduledaccordingtotherequirementsofSection6oftheTechnicalSpecification.Theaudx,tscheduleassurespropercoverageofallapplicableactivities.Additionally,theauditprogramprovidesforschedulingauditswhichcanbeconductedonshortnoticetorespondtospecificqualityproblems.REV1811/8017%232 SSES-FSABAuditsare'structuredwithasufficientlydefinedscopetopermitobjectiveeyaluaticnoftheactivityobserved.Quality-relatedpractices,'rocedures,andinstructionsareauditedtomeasure,boththeeffectivenessoftheirimplementationandtheirconformancetoOQAProgramrequirements.Theauditprocessisconductedaccordingtoprocedureswhichrequirethata'writtenauditplanbeprepared.Theauditplan'nsurestheproperscope,teampreparation,anddepthofcoverage.Theauditprocessincludes,asapplicable,an'evaluationofworkareas,activities,processes,anditems.~Auditsi'ncludeareviewofassociateddocument'sandrecords.~Auditteamsconsistoftrainedpersonnel,notdirectly'responsiblefortheareasaudited.Eachteamshallhaveadesignatedleaderwhoisresponsiblefortheplanning,conduct,an'dreportingofthe.audit.Theauditorqualificationprogramensuresthatauditteammembersarequalifiedtoperformtheirassignedtasks-Auditresultsaredocumentediaaformalauditreportwhichistransmittedtotheresponsiblelevelsofmanagement.Auditteamleaders,throughtheirsupervisors,ensurethatresponsiblemanagementtakesnecessaryactiontocorrectdeficienciesnoted,andprovideabasisforpreventingtheirrecurrence.Teamleadersverify,eitherthroughreviewofdocumentationresultingfromcorrectiveaction,orifnecessary,reaudit,thatdeficiencieshavebeenproperly-correctedFormalauditreportsarereviewedbyHQAmanagementtodeterminetheeffectivenessoftheOQApxogram,andindicationsofqualitytr'ends.Ifadditionalmanaqementactionisrequired,theresultsofthesereviewsareformallyreportedtotheappropriatemanageroftheresponsibleorganization.RZV18,ll/8017%233

0SSES-FSARTABLE17.2-1OPERATIONALUALITYASSURANCEPROGRAMCOMPLIANCEMATRIXPage1NRCReg.GuideANSIStandardSubjectClarifications8Exceptions1.8Rev.11.17Rev.11.28Rev.11.308/721.33Rev.21.373/731.38Rev.21.39Rev.2N18.1-1978N18.17-1973N45.2-1977N45.2.4-1972N18.7-1976N45~2~1-1973N45.2.2"1972N45.2.3-1973PersonnelSelection8Training,SecurityQARequirementsElectricalIastallation,Inspection8TestingAdmiaistrativeControls8OperationalQACleaningFluidSystemsStComponeatsPackaging,Shipping,Receiv-ing,Storage8HandlingHousekeepingSeeChapter13NotincludedintheOQAProgramFullcomplianceCommitmenttotheexteatrequiredbyANSIN18.7-1976*FullcomplianceCommitmenttotheextentrequi.redbyANSIN18.7-1976*CommitmenttotheexteatrequiredbyANSINlg.?-1976*CommitmenttotheextentrequiredbyANSIN18.7-1976*221.546/731.58Rev.11.64Rev.21.742/741.88Rev.21.94Rev.11.116Rev.0-R1.123Rev.1Rev.22,4/81N101.4-1972N45.2.6-1978N45.2.11-1974N45.2.10-1973N45.2.9-1979N45.2.5-1974N45.2.8"1975N45.2.13-19?6QAforProtectiveCoatingsQualificationsofInspection,Examination,8TestingPersonnelQAforDesigaQATerms8DefinitionsCollection,Storage6MaintenanceofRecordsCoacrete8StructuralSteelInstallation,Inspection,8TestingMechanicalInstallation,Inspection8TestingQAforProcurementofItems8ServicesCommitmenttotheextentrequiredbyANSINlg.?-1976*CommitmenttotheextentrequiredbyANSINlg.?-1976+;personnelwhoonlyhandletestresultsorperformdocumentcontrolactivitieswillnotbecertified.FullcomplianceFullcomplianceFullcompliaaceCommitmenttotheextentrequiredbyANSIN18.7-1976+CommitmenttotheextentrequiredbyANSINlg.?-1976*Fullcompliance(2o

SSES-PSARpage21120Rev.1'11441/791.1468/80H45-212-1977H45223-1978PireProtectionGuidelinesforHuclearPowerPlantsAuditingof{}AProqraas{}ualificationof{}AProgranAuditPersonnelPullcoaplian"eliaitedtoRegulatoryPosition".3,puRlil:yAssnrln"eproqraaPallcoapliaaceFullcoapliance+ThesestandardswillbeappliedasdirectedbytheHanager-H{}Aforactivitia-whi"h"...arecomparableinnatureandextenttorelatedactivitiesoccurringduringconstruction>asrequiredbyAHSZH18.7-1975.REV.20>2/81 Table17.2-2OPERATIONALPOLICYSTATEMENTCROSSREFERENCEMATRIX~WITH10CFR50APPENDIXBCRITERIAOPSTITLE1OperationalQualityAssuranceProgramDefinitionSYNOPSISDefinesthescopeandapplicabilityoftheOQAProgram.EstablishesrequirementsfortheOQAManualanddefinesthetiersofdocumentscomprisingtheOQAProgram.CRITERIA1,2II,V,VI2TermsandDefinitionsDefinesthosetermshavingparticularmeaningwithinthecontextoftheOQAProgram.3ControlandIssuanceofDocumentsEstablishescontrolsfortheissuanceanduseofdocuments.DefinesthosedocumentscontrolledbytheOQAProgramandrequiresreview,approval,anduseofdocumentsatrequiredlocations.V>VI4DocumentReviews5DeficiencyControlEstablishestherequirementsforperforminganddocumentingdocumentreviews.Delineatesthoseactivitiesassociatedwiththecontrolandcorrectionofnonconformingmaterial,partsorcomponents;otherconditionsadversetoquality;andsignificantconditionsadversetoquality..III>IV,VIVIII,XV,XVI6PersonnelQualificationandTrainingEstablishestherequirementsforthetrainingandqualificationofpersonnelperformingII,IX,XVIIIactivitiesaffectingqualitytoassurethattheyachieveandmaintainsuitableproficiency.7Auditing/QualityVerificationActivitiesEstablishestherequirementsforthedevelopmentofprogramsforauditingandmonitoringqualityrelatedactivitiesandincludesperformance,qualifications,reporting,andfollow-upaction.II,XVIII8RecordsEstablishestherequirementsforthecollection,storage,andmaintenanceofqualityassurancerecords.XVZI9ControlofModifications&DesignActivities10ProcurementEstablishestherequirementsforensuringthatthequalityofmodifiedstructures,systemsorcomponentsisatleastequivalenttothatspecifiedintheoriginaldesignbases,materialspecifications,andinspectionrequirements.Establishestherequirementsfortheprocurementofmaterial,parts,components>servicesandspareparts.IV,VII11ProcurementofNuclearFuelsEstablishestherequirementsfortheprocurementofreloadnuclearfuel.IV,VII12AdministrativeControlofPlantOperationsEstablishestherequirementsfortheadministrativeandproceduralcontrolsthatensuretheplantisoperatedinasafeandefficientmanner.13ControlofMaintenanceEstablishestherequirementsforensuringthatstructures,systems,andcomponentsaremaintainedinaconditiontoperformtheirintendedfunction.Thefieldactivitiesassociatedwithmodificationsarealsoincluded.IX,XIV14ControlofTestingandInspectionActivitiesEstablishestherequirementsfortestingandinspectionactivities.X>XI>XIV15InserviceInspectionEstablishestherequirementsforthequality-relatedInserviceInspectionactivities.X,XI16InstrumentandCalibrationControlEstablishestherequirementsforthecalibrationandcontrolofcalibrationstandards,installedplantinstrumentation,andmeasuringandtestequipment.XII17ControlofPlantMaterialRev.18,11/80Establishestherequirementsforthecontrolofplantmaterialandincludesreceiptinspection,handling,storage,andshipping.VII>VIII>>XIII

Page2Table17.2-2Cont.18ASMESupplementEstablishestherequirementsforPP&Ltoperformengineering,fabrication,andrepair.N(A,activitiesinaccordancewithSectionXIoftheASHECode.19ReportingofSubstantial-SafetyHazardsandLicenseeEventsEstablishestherequirementsforreportingsubstantialsafetyhazards(10CFR21)andN/Areportableoccurrences.Footnotes:(1)CriterionI,Organization,iscoveredextensivelyinSection17.2.1andisnotrepeatedinaseparateOPS.However,the"Responsibility"sectionineachOPSidentifiesthemanagersresponsibleforimplementationandverificationoftheOPS'equirements.(2)CriteriasuchasV,Instructions,Procedures,andDrawings,andXVII,Records,couldbecrossreferencedwiththema)orityofOPSidentified.AdeliberateeffortwasmadetocrossreferencetheCriteriaonlytothoseOPSwhichhaveadirectrelationship.Rev.18,11/80 0Ni Su'70egpes~spyI'og1617.2OperationalQualityAssurance(OQA),Program17.2I';LIJ',O.O~'O,OOPS1'SOPS4OperationalPolicyStatements(OPS)PPEFunctionalUnitProceduresNQAFunctionalUnitProceduresSusquehannaSESPlantFunctionalUnitProceduresProcurementFunctionalUnit.ProceduresOtherDepartmentFunctionalUnitProceduresl.Engineeringdesign2.PreparationofEngineer-ingoutputodocumentslgOOI-I-OOl.ActivitiesofNQAper-sonnelsuchasauditanddocumentreviews1.Preparationl.Preparationofproceduresofpurchasecontrollingordersactivitiessuchasoper-ation,mainten-ance&testing2.Preparation,control&coord-inationofrequi-sitionsforsparePartsI~1.NuclearDepartmentInstructions2.Safety-relatedactivitiesidentifiedinOQAProgramDocumentsasrequiringcontrolOporationalQualityAssurance.OocuEIantsRelitionshipsRev.18,11/80SUSQUEHAIC8ASTEANELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTFtGUREi7.$ai SSES-FSAR2.4.8.4.1DesignBasisPloodLevel(DBPL).4.8.4.2SafeShutdownandOperatingBasisEarthquakes2.4.ChannelDiversions2.4.10FloodingProtectionReguirements2.4.11owMaterConsiderations)8'72.4-2724-3024-3324-3324-342-411-12.411112411.12wFlowinRivers-andStreamsI.wPlowResultingFromHydrometeoro-lo'calEventsLowlowResultingfromDamPailues24-342.4-342.4-352.41122411324114LowWateresultingfromSurges,Seiches,oTsunamiHistoricalLwWaterFutureContros2.4-3524-362.4-362.4.11.4.1LegalConsumpiveUseRestrictions2.4.11.4.2ChangesinConumptiveUseUpstream24.11.5PlantRequirements2.4.11.6HeatSinkDependabityReguirements2.412DispersionDilutionandravelTimeofAccidentalReleaesofLiquidEffluentsinSurfaeWaters2.4.12.1RiverFlowCharacteristics2.4-3624-372.4-38I224-382.4-402.4-412.4.12.1.1FlowDuration2.4.12.1.2ExtremeLowFlow2.412.13TravelTimes2.4.12.2.AccidentalReleases2.4.123Efflue.ntDilution24.13Groundwater2.4.13.1DescriptionandOnsiteUse2.4.13.1.1RegionalGroundwaterConditions2.4-412.4-4124-422.4-4224-432.4-4524-4524-4524.131124.131124.13122.413131PrimaryAguifersoftheRegionPleistocene-Age<<Deposits2SecondaryAguifersoftheRegionLlewellynFormationLocalGroundwaterConditionsOnsiteUseofGroundwater24-482.4-532.4-72.4-6REV12'/792-v SSES-PSAR2.4.13.2Sources24.132-124132.22.4.13.2.3MaterMellInventoryGroundwaterMithdrawalAquiferCharacteristicsandGroundwaterConditionsattheSite24.13.2.3.1DataSources24.13.2.32GroundwaterParametersandMovementattheSite2.4.13.3AccidentsEffects24-6024-602.4-612.4-622.4-622.4-632.4-722413.3.12.4.1332241333241334PostulatedAccidentandPotentialPlowPathsDescriptionoftheModelsUsedSelectionofParametersSimulationandResultsofAnalysis24-7224-732.4-762.4-822.4-13.4DesignBasesforSubsurfaceHydrostaticLoadings2.4.14TechnicalSpecificationandEmerg4ncyOperationRequirements24.15References2.4-8224-8324-8325GEOLOGY'EISMOLOGY,ANDGEOTECHNICALENGINEERING2.5-12.5.1BasicGeologicandSeismicInformation251121251122251.12.3TheAppalachianBasinTheValleyandRidgeProvinceStratigraphicUnitsMithintheSiteVicinity2.5.1.1.3ReqionalTectonics252-5.2.5.11.31TectonicProvinces11.3.2StructuralElementswithintheCraton1.1.3.3StructuralElementsintheSiteVicinity2.S.1.1RegionalGeology2.5.1.1.1PhysiographyandGeomorphology2.51.1.2StratigraphyandLithology2.5-12.5-12.5-12.5-42.5-42.5-62.5-72.5-152.5-152.5-1625-20REV12,9g792-vl. SSES-FSAR2.51.1.3.4RelationshipAmongStructuralElements2.5.1.13.5AgeofDeformation2.5.1.1.4RegionalUpliftandSubsidence2.5.11.5NaturalHazards25-2325-2425-272.5-282.5.1.2SiteGeology2.5-29251.212.5.12.2SitePhysiographySiteLithologyandStratigraphy25-292.5-312512212.51.22.2LithologyandStratigraphyintheSiteVicinityLithologyandStratigraphyattheSite25.1.2.3StructuralGeology2.5-312.5-372.5-3925123125-1.2-32251.233MajorGeologicStructuresinSiteVicinityGeologicStructuresattheSiteGeologicFeaturesinSurficialMaterialsattheSite2.5-3925-412.5-532.5.1.2.4SiteGeologicHistory2.5.1.2.5EngineeringGeologyEvaluation2.5-542.5-562512512.5-1-2.522.5.1.25.32.5.1.2.5.42512552.51.256251.25725.1.2582.5.12.5.9GeologicConditionsUnder-'CategorylStructuresLandslidePotentialAreasofPotentialSubsidence,Uplift,orCollapseBehaviorofSiteDurinqPrior,EarthquakesZonesofDeformationorStructuralWeaknessZonesofAlterationorIrregularWeatherinqPotentialforUnstableorHazardousRockorSoilConditionsUnrelievedResidualStressonBedrockConclusionsandSummary2.5-562.5-572.5-582.5-6125-612.5-6225-632.5-642.5-642.5.1.2.6SiteGroundwaterConditions2.5.2VibratoryGroundNotion2.5-6425-65REV12,9/79 SSES-FSAR2.5.2.2.12522.22.5.2.2.325.2.2.4TectonicProvincesTectonicDifferentiationoftheAppalachianOrogenTectonicDifferentiationoftheCratonTectonicDifferentiationoftheMobileBelt25.21Seismicity2.5.2.2GeologicStructuresandTectonicActivity2.5-662.5-692.5-6925-702.5-702.5-7225232.5.2.42.5.2525262.52.7CorrelationofEarthquakeActivitywithGeologicStructuresorTectonicProvincesMaximumEarthquakePotentialSeismicWaveTransmissionCharacteristicsSafeShutdownEarthquake(SSE)OperatinqBasisEarthquake(OBE)2.5-7425-802.5-812.5-8125-822.5.3SurfaceFaultinq2.5.4StabilityofSubsurfaceMaterialsandFoundations2.5-822.5-832.5.4.1GeoloqicFeatures2.5.4.1.25412.54.125.4.1.2.5.4.11AreasofPotentialSubsidence,Uplift,orCollapse2PreviousLoadinqHistoryoftheFoundationMaterials3StructuresandZonesofWeathering,DisturbanceorWeaknessinFoundationMaterials4UnrelievedResidualStressesinBedrock5PotentialforUnstableorHazardousRockorSoilConditions2.54.2PropertiesofSubsurfaceMaterials2.5.4.2.1PropertiesofFoundationRock2.5.4.22PropertiesofFoundationSoils2.5-8325-842.5-842.5-84a2.5-882.5-882.5-892.5-892.5-9125.432.54.425.4.5ExplorationGeophysicalSurveysExcavationsandBackfill2.5-932.5-9425-96254.5.2.5.45.1ExtentofSeismicCategoryIExcavations,Fills,andSlopes2ExcavationMethodsandDewatering25-962.5-96REV12,9/792V1ii SSES"FSAR2.5.4.5.2.1ExcavationsinRock2.5.4.5.2.2ExcavationsinSoil2.5-962.5-972.5.4.5.3BackfillandCompaction2.5.4.5.4BeddingMaterialforSeismicCategoryIPipesandElectricalDuctBanks2.5.4.6GroundwaterConditions2.5.4.7ResponseofSoilandRocktoDynamicLoading2.5.4.7.1ResponseofRocktoDynamicLoading2.5.4.7.2ResponseofSoiltoDynamicLoading2.5.4.7.3SoilStructureInteraction2.5.4'LiquefactionPotential2.5.4.9EarthquakeDesignBases2.5.4.10StaticStability2.5.4.10.1StaticStabilityofSafety-RelatedStructuresSupportedonRock2.5.4.10.2StaticStabilityofSafety-RelatedStructuresSupportedonSoil2.5.4.11DesignCriteria2.5-972.5"992.5-99a2.5-1012.5-1012.5"1012.5-1022.5-1022.5-1032.5-1032.5-1032.5-1032.5-1062.5.4.11.12.5.F11.2DesignCriteriaofSafety-RelatedStructuresonRockDesignCriteriaofSafety-RelatedStructuresonSoil2.5"1062.5-1062.5.4.12TechniquestoImproveSubsurfaceConditions2.5-1072.5.4.12.1FoundationsinRock2.5.4.12.2FoundationsinSoil2.5"1072.5-1072.5.4.13SubsurfaceInstrumentation2.5-1072.5.4.13.1InstrumentationforRockFoundations2.5.4.13.2InstrumentationforSoilFoundations2.5-1072.5"1072'.4.14ConstructionNotes2.5.5StabilityofSlopes2.5.5.1SlopeCharacteristics2.5-1082.5-108a2.5-108a2.5.5.1.12.5.5.1.22.5.5.1.32.5.5.1.4GeologicConditionsGroundwaterConditionsFieldSamplingandTestingLaboratoryTesting2.5-1092.5"1102.5-1112.5-114REV20,2/812ix SSES-CESAR2.5.5'.4.12.5.5.1.4.22.5.5.1.4.32.5.5.1.4.42.5.5.1.4.5,2.5.,5.1.4.62.5.5.1.4.7GeneralGrainSizeDistributionUnitWeightMaximum-MinimumDensitiesRelativeDensityStaticTriaxialShearTestCyclicTriaxialShearTests2.5-1142.5-1142.5-1142.5-1152.5"1152.5-1162.5"1162.5.5.2DesignCriteriaandAnalyses2.5;5.2.1DesignCriteriaforSprayPond2.5.5.2.1.1GroundSurfaceAcce'leration2.5.5.2.1.2Liquefaction2.5.5.2.1.3SlopeStability2.5.5.2.2DesignAnalysesforSprayPond2.5.5.2.2.1SprayPondSeepageAnalysis2.5.5.2.2.2IiquefactionPotential2.5-1172.5-1172.5-1172.5"1182.5-1182.5-1182.5-1182.5-120a2.5.5.2.2.2.12.5.5.2.2.2.22.5.5.2.2.2.32.5.5.2.2.2.42.5.5.2.2.2.52.5.5.2.2.2.62.5.5.2.2.2.7MethodofAnalysisSoilProfilesandPositionsofGroundwaterTableShearModuliCyclicShearStrengthDeterminationofDynamicShearStressesDesignEarthquakeResultsofLiquefactionAnalyses2.5-120a.2.5-1212.5-1212.5-1222.5-1232.5-1242.5-1242.5.5'.2.2.7.1LiquefactionPotentialUndertheDesignSSE2.5.5.2.2.2.7.2VariationsofShearModuliandDampingRatiosforEvaluationofLiquefactionPotential2.5.5.2.2.2.7.3ResultsofLiquefactionAnalysesUsingRealEarthquakeRecords2.5.5'.2.3SlopeStabilityAnalyses2.5.5.2.2.3.1StabilityofRockSlopes2.5.5.2.2.3.2StabilityofSlopesinSoil2.5.5.2.2.4Earthquake-InducedSoilStrainandSettlement2.5"1242.5-1252.5-1262.5-1272.5-1272.5-1272.5-1282;5.5;3LogsofBorings2.5.5.4CompactedBackfill2,5-1312.5-133REV20,2/812"x SSES-FSAR2.5.6References2.5AU.S.DEPARTMENTOFTHEINTERIORREPORTONINVESTIGATIONOFANEARTHDISTURBANCEATWILKES-BARRE2.5BCITYOFWILKES-BARREREPORTONANEARTHDISTURBANCE2.5CBORINGIOGS2.5-13625.A-12.5B-125.C-1REV20,2/81 SSES-FSARCHAPTER2TABLES21-1PopulationChangesofCountiesWithin20MilesoftheSite.2A122w132.1-42.1-521-62w1721-821-921-1021-1121-122&1132.1-1421-1521-162&1172.1-1821-19PopulationbyResidenceforCountiesWithin20MilesoftheSite,1960-1970PopulationDistribution,1970,0-10MilesCommunitiesWithin10MilesoftheSite,1970PopulationDistribution,1970,10-50MilesSeasonalPopulationofCountiesinStudyAreaPopulationDistribution,1980,0-10MilesPopulationDistribution,1980'0-50MilesPopulationDistribution,1990,0-10MilesPopulationDistribution,1990,10-50MilesPopulationDistribution,2000,0-10MilesPopulationDistribution,2000,10-50MilesPopulationDistribution,2010,0-10MilesPopulationDistribution,2010,10-50MilesPopulationDistribution,-2020,0-10MilesPopulationDistribution,2020,10-50MilesIndustriesWithin5MilesoftheSitePatternsofCommutationinLuzerneandColumbiaCounties,1970-OriginofCommutersfor.ColumbiaCountyandDestinationofCommutersfromLuzerneCounty,197021-202w121CumulativePopulationsfor1970and1980CumulativePopulationsfor1990,2000,2010,and2020PipelinesWithin5MilesoftheSiteREV12,9/792-XiL SSES-FSAB25GEOLOGYSFISNOLOGYANDGEOTECNNICALENG'INEERIMG251BASICGEOLOGICANDSEISNECINFORNATION2511RegionalGeolo~2.5.1.1.1~PheiocCra~handGeoeo~rh~oloIThesiteislocated(Fiqure2.5-1)intheValleyandRidgePhysioqraphicProvincewhichisborderedonthesoutheastbytheReadinqProngandonthenorthwestbytheAppalachianPlateauPhysioqraqhicProvince(Fiqure2.5-2).TheValleyandRidgeProvinceischaracterizedbyfoldedPaleozoicsedimentaryrocksofvaryingerosionalresistance.Thesestrataformaseriesoflevelridgesandinterveningvalleyswhichtrendgenerallynortheasttosouthwest.Higherridgesareformedonthemoreresistant,inclinedsandstonewhereaslowerridgesareunderlainbyothercompetentformations.Thevalleysoccurinlessresistantlimestoneandshale.TheValleyandRidqeProvinceattainsamaximumwidthofabout80milesalongalinedrawnnorthwestthrouqhfharrisburg,Pennsylvania.InPennsylvania,foldsgenerallyplungeawayfromthislinetothenortheastandtothesouthwest.Becauseofthefoldinq,resistantstrataformbroad,zig-zagoutcroppatternsacrosstheprovince.Thesestrataformsteepslopes,thatflankanticlinalvalleys,andcanoe-shapedsynclinalvalleys.Lithologyandstructurecontrolthedrainagepattern,theprincipaldirectionofwhichistothesoutheast.Najordrainagegenerallyfollowsthestrikeoflesscompetentstrataandcrossesthestrikeatwatergapswheretransversestructures,suchasahiqhconcentrationoffractures,exist.Minordrainagetrendsnormaltotheregionalstrikeoralongmajorfracturesets,andusuallyintersectsmajorstreamsatrightanglestoformatrellispatternTheGreatValleySection,inthesoutheasternthirdoftheprovince,consistsofbroad,rollinqvalleysoflowreliefformedinPaleozoicsoftlimestonesandcalcareousshales.Tothesoutheast,theBeadinqProngexposestheoldestrocks(Precambrian)within50milesofthesite(Figures2.5-2and25-3).Inqeneral,theReadinqPronqconsistsofhighgrademetasedimentaryandmetavolcanicrocksalongwithdominantlyacidicplutonicrocks.TheserocksexperienceddeformationcommencingwiththeGrevillianorogenyabout1billionyearsagowhichimpartedthedominantstructuralfabric,i.e.,foliations,lineationsandpolyphasefolds,presenttoday.Succeeding2.5-1 SSES-FSARtectonismduringthePaleozoicandMesozoiceras,andpossiblyevenmorerecently,havealsoaffectedtheserocks.AccordingtoDrake(Ref2.5-1)therocksoftheReadingProngareallochthonous.TheTriassicLowlandsofthePiedmontProvincelietotheeastandsoutheastoftheReadingProng,andcontaintheyoungestrocksineasternPennsylvania'Figures2.5-2and25-3).Therocksinthelovlandsaredominantlyredclasticsedimentsvithassociatedbasicintrusivesandflows.DiabasedikesnearPottstown,PennsylvaniayieldedK/Arwholereckagesof151to198millionyears(Ref.2.5-2,p.3-25).Northeastofthesite,foldsarebroaderandmoreopenandgivewaytothegentlesynclinalPoconoPlateauSectionvhichisunderlainbyDevoniansandstoneandshale.Tothenorthwest,theValleyandRidgeProvinceterminatesabruptlyattheAlleghenyStructuralFront.BeyondthefrontliestheAppalachianPlateaus(Figure2.5-2),aqentlyrollinghighlandformedonbroadfoldsoflowstructuralreliefthatplungegentlytothesouthvest.ThestrataconsistpredominantlyofanupperPaleozoiccyclicsequenceofsandstone,shale,limestoneandcoal.TheSusquehannaRiver,whichflowspastthesite,hastwoimportantfeaturesassociatedwithit.Firsttherivermakesseveralsharpbendsalongitslengthwiththeclosestbeingadjacenttothesite.Eastofthesitetherivermaintainsavest-southwestcoursewhichparallelstheregionaltectonicfabric.HoweveratShickshinny,Pennsylvania,about5milesnorthofthesite,itmakesasharpright-anglebendandflovsinasouth-southeastdirectionforabout5milesJustbelowthesiteitagainswinqssharplyandresumesitsvest-southwestflovdirection.ThisphenomenonhasbeencogentlyexplainedbyZtter(Ref.2.5-3)..HenotedthatthisareawassubmergedduringtheCretaceousandcoastalplainsedimentationensuedSedimentationcompletelycoveredthepre-existingdrainagepatternFollovingcoastalplainsedimentation,theareaunderwentbroadupliftwhiletheNorthBranchoftheSusquehannaRiverapparentlyflowedsoutheastward,acrossthePoconoPlateautoTrenton,NewJersey(Ref.2.5-3,p.12-13).Tributariesmustalsohavedevelopedonthiscoastalplain.Followingdowncuttingofthecoastalplainsedimentsthestreamsencounteredbedrock.Ofthesedovncuttingstreamsthepresent-daySusquehannaRiver,southoftheconfluenceoftheNorthandWestBranches,apparentlyvasabletoincisemorerapidlythanothermajorstreams.Thisresultedinstreamcaptureandthepronouncedbendsseenalongtherivertoday.ThesecondfeatureofimportistheburiedvalleyoftheSusquehanna.Thisburiedvalleyoccursinbedrockoverlainbyabroad,flatplainacrossvhichthepresent-daySusguehannaflovs{Ref.2.5-3,p.26).Xtextendsupstreamasaseriesofelongatebasins,forabout15miles,fromnearNanticoke,Pennsylvania(approximately10milesnortheastofthesite)tojustaboveWest2.5-2 SSES-FSARPittston(Ref.2.5-4,p.8).Thisvalleyisfilledwithalternatinqlayersofwaterlaidgravel,sandandclay.ThedevelopmentofthisvalleyisattributedtotheerosiveactionoftheWisconsinanicesheetwhichmusthavefloweddiagonallyacrossthevalley(Ref.2.5-3,p.27and2.5-4,p.7).lSubsequently,thisvalleywasfilledwithsedimentdepositedbystreamswhichemanatedfromthisaeltingice.Hostofthereqion,northandeastofthesite,hasbeenscouredbyatleastthreeperiodsofglaciationinthelast150,000years{Ref.2.5-5,p.15and2.5-6).Thethreemajordirectionsoficeadvancewerepostulatedasfollows:1)southandsoutheastfromcentralOntario,2)southandsouthwestfromapproximatelytheAdirondackregion,and3)southandsouthwestfromtheHudsonValleybywayoftheCatskills(Ref.2.5-5,p.18).EffectsofqlacialscouringazemostnotableonthePoconoPlateau.Atthepresenttime,thereisnopositiveevidencethatanypre-IllinoianqlaciationoccurredinnortheasternPennsylvaniaalthouqhelsewhereintheeasternUnitedStates,suchevidencedoesexistforpre-Illinoianglaciation.Itisthussuggestedthatitshouldalsohaveoccurredhere(Ref.2.5-6).TherecordedqlacialeventsincludetheIllinoianandtwostagesoftheWisconsinan,theAltonianwhichspanstheintervalfromabout70,000yearstoabout28,000yearsB.P.,andthe.Woodfordianwhichlastedfromabout21,000yearstoapproximately13,000yearsB.P.Inearlierliterature(Ref.2.5-5)thetermsAltcnianandWoodfordianwerenotutilized.InsteadtheWisconsinanwasdividedintotheBinghamton,Olean,ValleyHeadsandNankatosubstaqes.Hovever,itisnotpreciselyknownhowtheAltonianandMoodfordiansubdivisionsrelatetotheoldertermsexceptthattheMankatoissomewhatyoungerthantheWoodfordian(Ref.2.5-6).InthesiteregionalobeofIllinoianiceextendeddownthevalleyoftheSusquehannaRiverfromjustaboveBerwicktotheWestBranchoftheSusquehannaatNorthumberland,PennsylvaniaTheexposedlengthofdepositsleftbythislobeisabout40mileswhezeasthemaximumwidthdoesnotexceed8milesIllinoiandriftispresentontheslopestovithin60feetofthepresentriverlevelsuggestinqthatonlymoderatedeepeningoftheSusquehannaValleyhasoccurredsincedepositionoftheIllinciandrift(Ref.2.5-7,p.24-25).ValleytrainsofMisconsinangravelwereexaminedalongtheSusquehannaRiveranditstributariesbyLeverett(Ref.2.5-7)Henotedthatfromjusteastof.Berwickdownstream(westward)totheMestBranchatNorthumberland,thesurfaceofaWisconsinangraveltrainiswelldefinedandgenerallyoccursatabout40to60feetabovetheriver.2.5-3 SSZS-FSARModeratelyerodedterracesunderlainbyfreshlyappearinqgravelsmarktheupperlevelattainedbywatersderivedfromtheWisconsinanicesheetalongtheSusquehannaRiveranditstributaries.TheseterracesoccuratloverelevationsthanthoseexposinqIllinoianqravelandhavealsobeenmuchlessextensivelyerodedthanIllinoiangravel(Ref.2.5-7,p16).EngeneraltherelativeheightsoftheterracelevelsrepresentingeachofthefourWisconsinansub-stagesarefairlyconstant.Porexample,inthesitevicinityrelativeheightsfortheMankato,ValleyHeads,BinqhamtonandOleanare9,15,30and45feetrespectively(Ref.2.5-5,p.77).Thesurfacesofmostoftheterraceshavebeenerodedsubjectinqtheobservedheightofanyterracetoanerrorofasmuchas30percent.However,noevidenceispresentedinDicatingdifferentialverticaloffestoftheseterraces.AtBervickseveralwelldevelopedkameterracesandterraceremnantsoffrontalkamesvhichformedattheendofmarginalkamesoccur(Ref.2.5-5,p.91).ThefourlowestmarginalkameswereidentifiedbyPeltierastheFirstOlean,SecondOlean,ThirdOlean,andFourthOleankameterracesvhicharerespectively86,98,110,and158feetabovetheriver.2.51.1.2Strati~r~ahandI.ithologg2B.11.21The~ABalachianBasinTheValleyandRidgeProvince,invhichthesite,islocated,ispartofastructuralentityknownastheAppalachianBasin.AsdefinedbyCol'ton(Ref.25-8,p.6-7),theAppalachianBasinisnotaphysioqraphicprovince.Rather,itisanelongatefeatureextendingfromtheCanadianShieldinsouthernQuebecandOntario,southwestwardtocentralAlabama(Figure2.5-4).ItisboundedonthewestbythePindlayArchandonthesouthbytheboundarybetweenPaleozoicandCretaceousstrataTheeasternedgeismarkedbythesurfacecontactbetweenslightly-to-unmetamorphosedPaleozoicrocksonthewestandmoreintenselymetamorphosedPaleozoicandPrecambrianrockontheeast.XnPennsylvaniathisboundarycoincideswiththeboundarybetweentheValleyandRidqeandPiedmontPhysiographicProvincesIsopachmapsandstratigraphiccolumnsshowtherespectivethicknessesandrelationshipsoftheCambrianthroughPennsylvaniansequencesintheAppalachianBasin(Figures2.5-5and2.5-6).IntheAppalachianBasin,asoutlinedbyColton(Ref.2.5-8),theJ.overCambrianclasticsequenceisavedge-shapedmasswhichisthickestalongtheeasternmarqinofthebasinandthinnestalong25-4 SSES-FSARthenorthernandwesternmarqins.TherocksalongtheeasternmarginaredominantlyEarlyCambrianwhereastherocksalongthenorthernandwesternmarqinsaremainlyLateCambrian.TheLowerCambriansequenceisconformablyoverlaininmostoftheAppalachianBasinbyasuiteofdominantlycarbonaterockswithlesseramountsofquartzsandstone.ThisoverlyingsuiteconsistsmainlyofrocksranqinqinagefromMiddleandX.ateCambriantoEarlyandMiddleOrdovicianandwasdesignatedbyColton(Ref25-8,p19)astheCambrian-Ordoviciancarbonatesequence.Thissequencerangesinthicknessfromabout600ft.innorthernNewYorkStatetoalittlemorethan10,000ft.insoutheasternTennessee.Abeltofmaximumthicknessextendsalonq,andapproximatelyparallelto,theeasternedqeoftheAppalachianBasinfrcmsoutheasternNewYorkStatetonorthernAlabama{Ref.25-8,p.23).Thiscarbonatesequenceisconformablyoverlaininmostofthebasinbydominantlynon-calcareousclasticrocks,themajorityofwhichareLateOrdovicianinaqe.TheseUpperOrdovicianclasticrocksarethickestalonqthenortheasternmarginofthebasininPennsylvaniaandshowaqenerallyuniformthinningtothenorth,westandsouthwest.AnexceptiontothisgenerallyuniformpatternofthinninqoccursinPennsylvaniaandadjacentNewYorkStatewherethesequencethinsmoreabrupt1yagainstthesouthwesternextensionoftheAdirondackaxis(Ref.2.5-8,p.23)AlthouqhtheboundarybetweentheserocksandtheolderCambrian-Ordoviciansequenceisconformable,theboundarywiththeoverlyinqSilurianclasticsismarkedbyanunconformityinthenortheastandsouthwestportionsoftheAppalachianBasin."VolumetricallytheunconfirmityisqreatestineasternPennsylvaniaandcontiguouspartsofNewJersey"{Ref.25-8,p.23).ThisunconformitywasconsideredbyColtonasevidenceofLateOrdovicianorEarlySiluriandiastrophism.TheEarlySilurianrocksaremainlyclasticandextendacrossmostoftheAppalachianBasin.Theserocksarethickest(2,600ft.)andcoarsestinthenortheasternpartofthebasinwheretheyarecomposedmainlyofsandstoneandconglomerate.Carbonaterocks,cSilurian-DevonianSiluriantoearlythebasin.They,eastandthinnestnortheasternPennsnortheasternPennsactuallyconsistscomprisinq,amongnorthwestandsoutalternatinqsuitelassifiedbyColton(Ref.2.5-8,p.31)asthecarbonatesequence,rangeinaqefromMiddleMiddleDevonianandoccurthroughoutmuchofliketheoldersequences,arethickestintheinthewest.Thethickestsectionisfoundinylvaniawhereitisabout3300ftthick.Inylvaniathelowerhalfofthissequenceofathickwedgeofredclasticrocksothers,theBloomsburqRedBeds.Rest,hwestofthisareatheredbedsgradeintoanofvarieqatedshaleandsiltstone,carbonates2.5-5 SSES-PSARandevaporites.ThemarginsofthissuitearepredominatlydolomiteandlimestoneRocksofMiddleandLateDevonianageconsistofamoderatelythicksequenceofshale,mudrock,siltstoneandsandstoneandextendthrcuqhoutmostofthebasin.InmostareastheseMiddletoUpperDevonianclasticrocksrestconformablyonthestrataoftheSilurian-Devoniancarbonatesequence.LiketheunderlyingrocksthisDevoniansuiteiswedge-shapedwiththethickestpartneartheeasternmarginofthebasinandthethinnestpartnearthewesternperipheryThenortheasternpartofthebasin,whichincludeseast-centralPennsylvania,containsthethickestaccumulation(morethan10F000ft.)dominatedbycoarse-grainedsedimentaryrocks{includingredbeds).Asthethicknessdecreasestheaverageqrainsizeoftherocksshowsacorrespondinqdiminution,beingmedium-grainedwheretherocksareofintermediatethicknessandfine-grainedwherethesectionisthinnest"(Ref.2.5-8~p34).TheMiddletoUpperDevonianclasticsuiteisconformablyoverlainbyMississippianrocksinmostofthebasin,butthecontactisslightlydisconformablealongmuchoftheeasternmargin.However,inpartsofnortheasternPennsylvaniatheentireMississippianismissinq.ThisanomalousunconformityisprobablyduetoerosionpriortoPennsylvaniansedimentation(Ref.2.5-9,p.35).GenerallytheMississippiansequencedefinesacrudelywedge-shappedmass.TheqreatestaccumulationoccursinsoutheasternVirginia(6800ft.),butWood{Ref.2.5-10,p.C39)reportedathicknessexceeding6,000ft.ineasternPennsylvania.PennsylvanianrocksoverliethoseofMississippianagewiththebasalboundary,inmuchofthebasin,markedbyasuddenchangefromolder,thinly-bedded,relativelyfine-grainedrockstoyounger,massively-bedded,conglomeraticquartzsandstone.ThePennsylvaniansequenceiscommonlythickestandcoarsest-grainedalonq,theeasternperiphery.IneasternPennsylvania,whereonlythelowerhalfofthePennsylvanianispreserved,athicknessof4600ft.ofprincipallysandstone,conglomeraticsandstoneandconglomeratewasrecorded(Ref.2.5-10).25.1.12.2TheValleandRidgeProvinceTheValleyandRidgeisaphysiographicprovincewhichissituatedwithintheAppalachianBasin,andconsistsofanearlycontinuoussequenceofrocksextendinqfromtheCambriantothePennsylvanian.Withinthissequencearetwomajorclasticintervals,theCambrian-SilurianTaconiccycleandtheDevonian-PennsylvanianAppalachiancycle(Ref.2.5-11,p.231).Eachcycleconsistsofpre-orogeniccarbonatesandorthoquartzites25-6 SSES-FSARoverlainbyturbiditeflyschdepositswhichare,inturn,succeededbymolasse.ThefirstphaseoftheoldercycleisrepresentedbyCambriantoMiddleOrdoviciancarbonates(Ref.25-12,p.4).Theflyschphaseisrepresentedbysiltstone,silty-shaleandqraysandstoneoftheUpperOrdovicianReedsvilleThemolassephasecomprisestheUpperOrdovicianBaldEagleandJuniataFormationsandtheLowerSilurianTuscaroraFormation.ThetransitionfromthemolassephasetotherenewalofmarineconditionsisdelineatedbythesuccessivelyyoungerRoseHill,Keefer,NifflintownandBloomsburqFormationsofMiddleSilurianage.UpperSiluriantoLowerDevoniancarbonates(WillsCreektoOnondaga)identifythefirstphaseoftheAppalachiancycle(Ref.2.5-12,p.4)Withinthisyoungercycledirectpassaqefromthecarbonatephasetotheturbiditephasewasinterruptedbydepositionofalocalsub-aqueousdeltaidentifiedincentralPennsylvaniaastheMahantanqoFormation.FollowingsedimentationoftheNahantango,theturbiditebedsoftheUpperDevonianTrimmersRockFormation,constitutingthesecondphaseoftheAppalachiancycle,werelaiddown.ThemolassephasewasinitiatedbytheUpperDevonianCatskillFormationwhich,atanoutcropalongtheLehighRiver(Fiqure2.5-7),isinqradationalcontactwiththeunderlyingTrimmersRock(Ref.2.5-13'.8).Themolassephaseculminatedtwice,firstintheMisissippianPoconoFormationandlaterinPennsylvanianrocks(Ref.2.5-12,p.4).25.11.2.3Stratiqr~ahicUnitsWithintheSiteVicinityStratiqraphicnomenclatureusedthroughoutthisFSARfollowstherecentusageofthePennsylvaniaGeologicSurveywhohavenotrecentlyusedthetermsSusquehannaGroup,HamiltonGrouporFortLittletonFormationinthesitevicinity(SeeforexampleRef.2-5-12and2.5-17)MiddleSiluriantoPennsylvanianrockswithin10milescfthesitehavebeenfoldedontheBerwickAnticlinorium.Theunitsexposedacrossthefoldare:0000000000TheMiddleSilurianBloomsburqUpperSilurianWillsCreekUpperSilurianTonolowayMiddleDevonianMarcellusMiddleDevonianMahantanqoUpperDevonianTrimmersRockUpperDevonianCatskillUpperDevonian-LoverNississippianPoconoNiddleNississippia-PennsylvanianNauchChunkPennsylvanianPottsvilleand"Post-Pottsville"(Llewellyn)Formations2.5-7 SSES-FSAHIncentralPennsylvaniatheBloomsburgFormationwasdepositedinabrackish,shallowwater,marineenvironmentwhichistransitionalbetweenfluvial,continentalsedimenttotheeastandmarinecarbonates,shaleandmarloftheinterfingeringMillsCreekFormationtothewest(Ref2.5-14,p.119).Itisathick-tomassive-bedded,dominantlygrayish-redsiltyclaystonewithtwosandstoneintervalswhichoccurbothatthebaseandnearthetop(Ref2.5-14,p119).Thesandstoneintervalsaremedium-to-.thin-bedded,poorlysortedhematiticsub-graywackeTheBloomsburgishighlycalcareousinthevicinityofLewisburg,Pennsylvania,approximately40milessouthwestofthesite.IncentralPennsylvaniatheBloomsburgisseparatedfromtheNarcellusFormationbyabout1770ftofdominantlylimestoneandcalcareousshaleTheselitholoqiesbelong,instratigraphicallyhigherorder,totheMillsCreek(UpperSilurian),Tonoloway(UpperSilurian),Keyser(UpperSiluriantoLowerDevonian),OldPort(LowerDevonian)andOnondaqa(LowertoMiddleDevonian)formations(Ref.2.5-12,Table1).TheMillsCreekFormationgradationallyoverliestheBloomsburgandconsistsofinterlayereddarkgraytogreenishshale,redsiltstone,lightgray-qreentoolivesiltstoneandsiltyshale(allcalcareous)andlightqraydolomitetoarqillaceousdolomiteNediumgraylimestonemaybepresentTheTonolowayFormationgradationallyoverliestheMillsCreekandisccmposedofmediumtcdarkqray,thinlylaminatedtothinlybeddedlimestonewithsomethinbedsofmediumgraycalcareousshale.TheTonolowayisdolomiticatseverallocations.TheUpperSiluriantoRiddleDevonianKeyser,OldPortandOnondagaFormationswerenotmappednorthof,noreastofBloomsburq,Pennsylvania.TheKeyser,therefore,doesnotappeartooccurwithintenmilesofthesitebutwasmappedfurthersouthwest(Subsection2.5.1.1.3.3).ThelowerKeyserisdominantlymediumgray,fossiliferous,"pseudo-nodular>>limestonewhichiscobblywhenweathered.TheupperKeysercontainslaminatedtothinbeddedlimestonesimilartotheunderlyinqTonoloway.TheOldPortandOnondagaFormationsdonotoccurinthesitevicinitybutdocropoutnorthofBloomsburg(Subsection2.5.1.1.3.3).TheOldPortconsistsofdarkgray,whitishweatherinqchert,underlainhycalcareousshaleandthinqraylimestcne.Thechertislocallyoverlainbygraytobuff,mediumtocoarsegrainedfossiliferoussandstone.2.5-8 SSES-FSARThelowerOnondagaismediumqray,hiqhlyfissileshalewhichiscalcareoustowardthetop.TheupperOnondagaismediumtodarkqray,dense,fossiliferousargillaceous,locallycarbonaceous,microcrystallinelimestone.TheNarcellus,incentralNewYorkState,whereitwasdefined,isabout350ft.thickandconsistspredominantlyofblackshalewithlsseramountsofblacklimestone(Ref.2.5-15,p.103).Xneast-centralpennsylvania,betweenHarrisburgandHilliamsport,theNarcellusisauniformlymassiveblack,carbonaceousshalewithseveralthintothickbeddedfinegrainedsandstoneunits(Ref25-16,p.156).AccordinqtoFaill(Ref.2.5-l7)theNarcellusrefersexclusivelytoblackshaleoverlyingtheOnondagaFormation.TheNahantanqoFormation,whichunderliesmostofthesite,consistsprimarilyofsiltymudrock,shale,siltstoneandsandstonewithlocaloccurrencesofconglomerate,limestoneandircnstone(Ref.2.5-18,p.13-14).IneasternPennsylvaniatheNahantanqooverliestheNarcellusshaleandis,inturn,overlainbytheHarrelShale(Ref.2.5-19p.18),afeaturecorroboratedbyKaiser(Ref.2.5-18,p.6)whoindicatedthattheNahantangoisdefinedbyblackshale,bothatitsbaseanditstop.Kaiser(Ref.25-18,p.18).informallydividedtheNahantangointolower,middleanduppermembers.Thebasalmemberconsistsofanolive-grayshalewithabasalsandstoneandthemiddlemembercontainssiltstoneandshale,butwhereitissandyitisidentifiedastheNontebello.Theuppermembercomprisesanolive-,coloredshale,siltstoneandsandstonewiththesandstonelocallyhighlyferruqinous,finerqrained,darkercoloredandmoreargillaceousthantheunderlyingNontebelloZail1(Ref.2.5-17,p.23-24)dividedtheNahantangointofivememberswhichare,instratiqraphicallyhigherorder,theTurkeyRidge,Dalmatia,FisherRidqe,NontebelloandShermanCreekAccordingtoHellsandFaill(Ref.25-12,Table1)theTurkeyRidgeisalighttoolive-gray,finetocoarse-grainedsandstoneandtheFisherRidgeispredominantlyalaminatedolivegraytomedium-qraysiltyshale.TheNontebelloisanolive-gray,medium-lightgraytoduskyyellow,finetomedium-grained,locallyconqlomeratic,fossiliferoussandstonewithinterbeddedsiliceoussiltstoneandsiltyclaystonewhichdisplaycyclesofreversegradedbedding.TheShermanCreek(Ref.2.5-17)orShermanRidge(Ref.2.5-12)comprisesolive-qray,fossiliferous,siltyclaystonewithtwointerbeddedsiltstoneandfinesandstoneunitswhichcoarsenupward.Faill(Ref.2.5-17,p.23-24)notedthattheNiddleDevonianrocksarecyclicwitheachcyclemarkedbyblacktodarkgray,siltyclaystoneatthebaseanddisplayinganupwardincreaseinqrainsizetoconqlomeraticsandstone.Immediatelyoverlyingthe2.5-9 SSES-FSARcoarsestrockunitsthereisamarkeddecreaseingrainsizewithclaystoneorsiltstonemarkinqthebaseoftheoverlyingcycle.-.ThecyclicnatureoftheMiddleDevonianstrataisreflectedwithintheMahantanqo.TheseinternalcyclesareasymmetricandaresmallerscalereflectionsofthecyclicityrecordedthroughouttheentireMiddleDevonian.Thatis,theycommencewithblacktodarkorolive-graysiltyclaystonewhichjradesupwardintoarqillaceoussiltstone,siltysandstoneandfinetomedium-qrained,locallyconglomeratic,siltysandstone.ThecycleswithintheMahantanqoarerepetitiveandrange,,inthickness,fromapproximately7to250ft.Thethickercyclescanusuallybetracedoverdistancesoffrom5to35miles.(Ref.2.5-20,p.113).TheaveraqethicknessoftheMahantangoisabout1650ft.withrespectivemaximumandminimumthicknessesofabout2900ft.atMcCullocbsMills,Pennsylvaniaand840ft.atRiversidewhichisnortheastofMcCullochsMillsandabout20-22mileswestofthesite(Figure2.5-7).OveralltheMahantanqoshowsaqeneralthinninqtothenorth,afeaturereflectedintheMontebellosandstonememberwhichisthickestjustwest-northwestofHarrisburqandthinstothewest,northandeast.Northofthe41stparallel,whichliesjustsouthofthesite,theMcntebellohastotallydisappeared(Ref.2.5-18,p.13-14).IntheAnthraciteregionofPennsylvaniatheMahantangoandtheMarcelluswerecombinedtoformalithotectonicunit.AsdefinedbyWoodandBerqin(Ref.2.5-21,p151)thisJ.ithotectonicunitactuallyincludestheMarcellus,HarrellandBrallierShalesandtheTully,Limestone.HowevertheBrallieroverliestheMahantanqoatabouttheTullyhorizon(Ref.25-19,p18).TheTully,inthisarea,hasbeenincorpoatedintotheMahantango.Thus,inthisreport,thelithctectonicunitofWoodandBerginisconsideredascontaininqtheMarcellus,Mahantanqo,TullyandHarrell.InthesouthwesternandwesternpartsoftheAnthraciteregionthisunitis1100+.ft.thickwhereasinthecentralandeasternpartsitisabout3000+ft.thick;theaveragethicknessis2000+ft.(Ref;2521,p148).However,agreatlythickenedsectionofthisunitoccursinthePGoodNolWell(Figure2.5-7)onthecrestoftheBerwickAnticlinorium,eastofthesite.Thisexcessthicknessisbelievedtobedue,tofaultinqanddisharmonicfolding(Ref.2.5-21,p.148)AtthesitetheMahantanqoconsistsofalower,qray,calcareoussiltstone(120-150ft.thick)overlainbyadarkgray,locallyfossiliferoussiltstonewhichisintermittentlycalcareous.ThesetwomembersarelithologicallysimilartoandoccurwithinthesamestratigraphicintervalastheHarrellShaleandtheunderlyingTullyLimestone;thus,thelattertwounitswereincorporatedintotheMahantango.2.5-10 SSES-PSARInthesitevicinity,theMahantanqoisrepresentedonlybytheuppermostmember,theShermanCreekwhichisdominantlyadarkgraytobluegray,olivegraytobrownweatheringmudrock.Siltstoneandfineqrainedsandstoneunitscropoutlocally.Bothcalcareousandnon-calcareousstrataoccuratseverallocalities.Inthesitevicinityanintervaloflight,medium-grayargillaceouslimestone,nearoratthetopoftheMahantango,wasrecoqnizedasaTullyLimestoneequivalentandwasincludedwithintheMahantanqo.CalcaroussiltymudrockswhichmaybeTullyequivalentsalsooccur(Subsection2.5.1.2.2).Paill(Ref.2.5-17,p.24)alsoincludedtheTullyaspartoftheMahantangobecauseofitslitholoqicsimilaritytotheShermanCreekMember.TheoverlyingHarrellPormation,apoorlyexposed,darksiltyshalewhichappearstobeinqradationalcontactwiththeMahantanqowasincorporatedintothismapunit(Subsection2.5.1.2.2)FossilsarerelativelyabundantwithintheShermanCreekmemberoftheMahantangoFormationandincludevariousgeneraofbrachiopods,bryozoa,pelecypods,coral,trilobitesandcrinoidfraqments.Fossilcastsareabundantwithoccasionalmoldsandrazepreservationofinternalstructureandoriginalshellmaterial.Concretions(commonlyrustyweathering),spheroidalweatheringandprominentcloselyspacedsteeplydippingcleavage,whichmayquiteeasilybemistakenforprimarybeddinqfissility,areotherfeaturescharacteristicoftheMahantanqo.Duetoitspredominantlyarqillaceousnatureandcleavage,theMahantangoisfairlyeasilyerodedandisthustopographicallyexpressedasarelativelylowarea.InthegeneralareamarkedbytheconfluenceoftheSusquehannaandJuniataRivers,theTrimmersRockFormationcomprisesaninterlayeredassemblage(about2000ft.thick)ofthintomedium-bedded,mediumqraysiltstoneandmediumgray,slightlysiltyandsomewhatfissileshale.Thinlayersoffine-grained'sandstoneoccurintheupperpart(Ref.2.5-12,Table1).Gradedbedding,alonqwithgrooveandflutecasts,occurinsomeofthesiltstonebedsindicatingdepositionbyturbiditycurrents.Loadcastsorballandpillowstructuresarealsopresentinsomesiltstonelayers.TheselitholoqiesandsedimentarystructuresarealsopresentintheTrimmersRockatanoutcropalongtheLehighRiverabout16milessoutheastofthesite(Ref.2.5-13,p.8)(Figure25-7).Atthisexposurebothbeddingthicknessandgrainsizeincreaseupwardinthisformationwhichisabout1165ft.thick.XnthesiteareatheMahantanqoandHarrellgradeupwardintotheTrimmersRock(Subsection2.5.1.2.2).TheTrimmersRockisdominantlyinterbedded,mediumtoolivegray,thinlylaminated2.5-11 SSES-PSARsiltstone,siltyshaleandfinegrained,laminatedtomassivesandstone.Theserocksweathertobrownishgraycolor.Sedimentarystructuresincludefining-upvardsequences,groovecasts,currentlineations,loadcasts,ballandpillowandflowrollstructuresRipplemarkswerealsolocallyindentifiedThesestructuresindicatedepositionbyturbiditycurrentsinamarineenvironmentFossilsareoftenrestrictedtorelativleythinlayersofbrachiopods.Otherfossilsincludepelecypodsandcrinoidfragments.TheupperTrimmersRockFormationconsistsoflighttomediumgrayishgreensiltyshaleandmicaceous,darkgreenishgraysiltstone(bothofvhichweathertoadarkreddishbrowncolor),areddishbrovnsiltyfinetomediumgrainedsandstonetosiltstoneandanolivegreenvitreous,finegrainedsandstonetosiltstone.TheuppermostunitsoftheTrimmersRockFormationqradeupwardintothebasalCatskillFormationThisgradationbetweentheTrimmersRockandtheCatskillhasapparentlycausedproblemsconcerningtheplacementofthecontactbetweenthemHowever,PaillandWells(Ref.2.5-22)haveplacedthiscontactatthebaseofathicksandstoneunitwhichisthelowestoccurrenceofupwardfiningcycles,afeaturecharacteristicoftheCatskillThisunitvasselectedbyFaillandWellsbecauseitiseasilymappable.Glaeser(Ref.2.5-13,p.4)evidentlyconcurredvithFaillandWellsforheconsideredthebaseoftheCatskilltolieatthefirstoccurrenceofdistinctivesandstoneunitswhicharefoundaboveornearthetopoftheturbiditesuitevhichconstitutesthebulkoftheTrimmersRockPormation.TheCatskillFormationattheLehighRiveroutcropisabout7675ft.thickandconsistsmainlyofsiltstoneandsandstonevit,hsomeccnqlomerateandshale.UpwardfiningcycleswererecognizedatvariousintervalsthroughouttheentireformationbothatLehighRiver(Ref.2.5-13,Figure2)andnearHalifax,Pennsylvania(Figure25-7),(Ref2.5-22,p.107).CompleteornearlycompletesectionsofUpperDevonianrocksarepreserved,bothinoutcropandinthesubsurface,attheLehiqhRiveroutcrop,theRichardsWellandtheHudsonRealtyMell{Piqure2.5-7).BasedontheseoccurrencesGlaeser(Ref.2.5-13,p35)estimatedtheoriginalthicknessoftheUpperDevoniansectionatvariouslocationsinnortheasternPennsylvania.Hethencomparedtheseestimatestotheamountofsectionpreservedtodayandultimatelyestimatedtheamountofsectionlost.Theamountofmissingsectionrangesfrom0ft.toabout6125ft.(Ref.2.5-13,p.38)avariationduemainlytothelocationofthesectionswithrespecttostructure.Forexample,intheP.GoodWell,vhichoccursonthenoseoftheBerwickAnticlinorium,about8mileseastofthesite(Figure2.5-7),about5203ftaremissinq.Glaeser(Ref.2.5-13,p36)assumedthatthesesectionswerelostduetoerosion.2.5-12 SSES-FSARInthesitearea,thecontactbetweentheCatskillandtheunderlyingTrimmersRockwasdravnatthebaseofthefirstrelativelythickreddishbrowntomaroonsandstoneorbrownishredsiltstoneandmoremassivereddishbrown'(maroon)micaceousfineqrainedsandstone.Thismappablecontactappearstooccuratornearthelowestfiningupwardseguences.ThelowerCatskillFormationcontainssedimentarystructuressuchasintraformationalclastsofgreenshalevithinlightgrayfinesandstoneoscillationripplemarksandrootswhichareindicativeofthemarinetonon-marinetransitionzone.ThePoconoFormationwhichoverliestheCatskill,consiststypicallyofmediumandcoarsegrainedlightgraytovhite,rustyweatherinqquartzsandstonewiththinlayersofquartzpebbleconglomerate.Oliveqray,finegrainedsandstone,reddishgraymediumtofinegrainedsandstoneandsiltstoneandgreenishgraymediumgrained,crossbeddedsandstonealsooccurwithinthisformation.Crossbeddingiscommon.GrayishredsandstonelayersoccurnearthebaseofthePocono.ThesevererecoqnizedalonqtheeastsideoftheSusguehannaRiverSouthofNocanaquaandalongtheroadbetweenAldeanandFolstovn.Northofthesite,thePoconoconsistsofaninterlayeredsequenceofpredominantlymediumgray,thick,welllaminated,grayweatherinqquartzsandstoneandsubordinate,red,flagqyquartzsandstone.NearFolstovn,welllaminatedredsandstoneisinterlayeredwith,butdecidedlysubordinateto,welllaminated,rustyveatherinq,lightgray,coarsegrainedsandstoneandfinegrainedgraysandstoneCoarsetomediumgrained,mainlyqrayishtogreenishqraysandstonefeaturingrathersubtlecrossbeddinqdominatetheupperportionoftheexposure.Thesestrata,alonqwithanunderlyingthinzoneofliqhtqreenishgraysandstone,inturn,underlainbygreenshaleandmudrock,hasbeenselectedasmarkingthebasalPocono.Beneathalloftheseunits,isared,welllaminated,argillaceoussiltstonewhichisinterpretedasmarkingthetopoftheCatskill.Redshale,whichmarksthebaseoftheoutcropunderliescrossbeddedmedium,liqhtgray,olivegrayweatheringquartzsandstone.Thelower(topographicallyandstratiqraphically)portionoftheoutcropisdominatedbyredlitholoqiesincontrasttotheupperpartinwhichnoredlitholcqiesvereexposedBesidestheobviouscolorchangethesandstoneabovetheinferredcontactiscoarsergrainedandmoresubtlycrossbeddedthansandstonewhichoccursbetveentheredunitsnearandatthebaseoftheoutcrop.Thus,contrarytootherinterpretationstheCatskill-Poconocontactappearstobegradationalinthesitearearatherthanunconformable.TheupperPoconoFormationinthevicinityofShickshinnyconsistsofmediumtolightgrayconqlomeraticsandstonewithroundedtosub-roundedquartzpebblesandshalefragmentsandrustyveatherinq,finetomediumqrayishgreen,micaceous25-13 SSES-FSARsiliceoussandstoneandfinelylaminatedgreenishgray,rustyweatherinq,siliceousquartzsandstone.Rustyweathering,mediumliqhtqray,mediumtocoarseqrainedquartzsandstoneisinterbeddedwiththinlayersofdarkgraysiltShaleandmediumgrayquartzlithicsandstonefillschannels.TheoverlyingMauchChunkFormationisgenerallybrightredincolorandconsistsofmudrock,siltyshale,siltstoneandfinetomediumqrainedcrossbedded,veillaminatedsandstone.InthesouthernpartoftheAnthraciteregion,thissequenceofredbedsis2,400+feetthickandisoverlainbyasequenceofalternatingredsandstoneandshalebeds.andgrayconglomerateandsandstonebeds300to600feetthickThisuppersequencerepresentsatransitionzoneinwhichredbedstyp'icaloftheunderlyinqMauchChunkareinterbeddedwithgraybedstypicaloftheoverlyingPottsvilleFormation(Ref.2.5-10).Detailedstratiqraphicstudiesindicatethatthebedsofthetransition.zone(upperMauchChunk)intertonquewithandlaterally.replacethelowerbedsofthePottsvilleFormationfromsouthtonorth.TheupperMauchChunkis,therefore,lateMississippianandEarlyPennsylvanianinaqe(Ref.2.5-10).BothloveranduppermembersoftheMauchChunkFormationareexposedinthesitearea.Thelowermemberisexposedimmediatelyabovetheconformablecontactviththeunderlying,PoconoFormationatseverallocations.TheupperpartoftheformationalongthesouthlimboftheLackawannaSynclinoriumismarkedbyinterlayeredredandolivegraysandstone,siltstone,andsiltyshale.Locallythesiltstonecontainslayersofrounded,circulartoellipticalcalcitefilledvoids.ElsewheretheMauchChunkcontainsgreenishgraytograyishgreenmediumtocoarseqrained,locallymicaceoussandstone,thinlylaminatedgray,finegrainedsandstoneandsiltstoneandmassivemediumgrainedsandstone.ThePottsvilleandLlevellynformationsrepresentthecoalbearingzonesoftheAnthraciteRegionand.have,forthepurposeofthisreport,beencombinedandtreatedasasingleformation.ThePottsvilleiscomposedofcoarsepebbleconglomerate,quartzosesandstone,subqrayvacke,siltstone,shaleandanthracite.Thisformationrangesinthicknessfromabout1,400feetinthesouthernAnthracitefieldtoabout600feetintheMesternMiddleAnthracitefield(Ref.2.5-10)StrataoverlyingtheEarlytoMiddlePennsylvanianPottsvillehavebeeninformallytermed<<Post-Pottsville>>rocks(Ref.2.5-24).<<Post-Pottsvillerocks>>intheSouthernandMesternMiddleAnthracitefieldsverenamedtheLlewellynFormationbyMood(Ref25-10).Thisnameisinformallyusedforthegrayishandbrownishconglomeraticsandstones,quartzsandstones,subgraywackes,andsiltstonesoverlying,butnotsubdividedfrom,thePottsvilleFormationinthesiteareaUsageofthename25-14 SSES-PSARLlewellynfor"Post-Pottsville"rocksintheNorthernAnthracitefieldisconsistentwithBerqin(Ref.2.5-23).withinfivemilesofthesite,thePottsvilleandLlewellyn,collectivelyconsistofquartzpebbleconglomerateinaquartzsandstonematrix,quartzpebbleconqlomerateinacarbonaceousquartzsandstonematrix,coarsegraineddarktomediumgray,massiveandflaqqy,carbonaceoussandstoneandshale,darkgraytoblacksiltstoneandcoal.Thenon-carbonaceousquartzpebbleconglomeratedisplayscrossbeds.2.51.1.3BeionalTectonics2.51131TectonicProvincesTheAppalachianorogeninthenortheasternUnitedStateswasdividedintotwoparts,themobilebeltandthecraton{Ref.2.5-25andSubsection2.5.2.2).Themobilebeltinthisarealiesalongtheeastcoastwithitswesternedgeparalleltc,andwestof,theeasternlimitofNorthAmerica(Figure2.5-8).Ingeneralthemobilebelt.isunderlainpartlybyPrecambriancrustalrocksandpartlybypresumablymaficcrust.However,intheMaritimeProvincesofCanadaaswellasinsoutheasternMassachusettsitisunderlainbyavolcanic-sedimentarysequencewhichformedlessthan600millionyearsaqo.Thesethreegrossly-qroupedlitholoqies,i.e.Precambriancrustalrocks,maficcrustandvolcanic-sedimentaryrocksoftheAvalonPlatformprovidedthebasisfordividinqthemobilebeltintothe1)easterncratonicmargin,2)theCentralNewEnglandtectonicprovinceand3)theAvalonPlatformtectonicprovincerespectively(Ref.2.5-25).IntheeasterncratonicmarginthePrecambrianbasementisoverlainby1)LatePrecambrianclasticrocksandassociatedmaficdikesandvolcanics,2)amiogeosynclinalassemblaqeand3)aeuqeosynclinalassemblage(Ref.2.5-25)Theeasterncratonicmarginismarkedbyazoneoffaulting,contrastingstructural'tylesandcontrastingmetamorphicfacies.TheCentralNewEnglandprovinceisboundedontheeastbytheAvalonplatformandonthewestbytheInnerPiedmont.Itfeaturesathick,dense,presumablymaficcrustoverlainbyeuqeosynclinalsed.iments.ItisalsomarkedbyintensedeformationandLoverPaleozoicmetamorphism.TheAvalonPlatformprovinceischaracterizedbycrystalline,continentalcrust(LatePrecambrian)intrudedbyOrdoviciantoDevonianageplutons.Injuxtapositionwith,andtothevestofthemobilebelt,liesthecratonwhichisunderlain.byPrecambriancrystallinerocksthatweredeformedduringtheGrenvillianorogenyabout1billionyearsago.Basedongrossgeologicstructurethecratonvasdividedintoaneasternbeltandawesternbasin.Theeasternbeltiscoincidentalviththe2.5-15 SSES-PSARHighlandsTectonicProvince(Figure2.5-8)whichischaracterizedbyGrenvillian(Precambrian)rocksdeformedduringPaleozoiccrustalconvergence.Thewesternportion,whichissubdividedintotheFold~andThrustBeltandthestableinteriorischaracterizedbytheabsenceofbasementinvolvementduringPaleozoiccrustalconvergence(Ref.2.5-25).TheFoldandThrustBelt,inwhichthesiteislocated,isincontactwiththeHighlandsProvinceoftheeasterncratonandexposestightlyfoldedandfaultedPaleozoicsedimentaryrocks.Tothewestof,andinsharpcontactwith,theFoldandThrustBeltliestheStableInteriorwhichisunderlainbyverygentlyfolded,shelfdeltatypedeposits.TheFoldandThrustBeltandtheStableInteriorcoincideapproximatelywiththeValleyandRidge(includingtheGreatValley)andAppalachianplateausPhysiographicprovincesrespectively251.13.2StructuralElementswithintheCratonThesiteissituatedupontheScrantongravityhigh(Figure2.5-9)whichextendssouthwestwardfromAlbany,HewYorktoHarrisburg,Pennsylvaniawhereitabruptlyterminates(Ref.2.5-26,p.198;Ref.2.5-27,p.711).Tothe.westofthistermination,zegionalgravitypatternssuggestanorthwesttrendingPrecambrianfaultwithleftlateraldisplacementofseveraltensofmiles{Ref.2.5-27,p.711).Thehigh,itself,islocatedinboththeFoldandThrustBeltandtheStableInterior.ThemaximumBougueranomalyvaluesassociatedwiththisfeatureoccurinnortheasternPennsylvaniaandadjacentNewYorkStatewheretheoverlyingsedimentarysectionisatleast39,370ft.thick(Ref.2.5-28,p.52and2.5-26,p.201).Ofallthemodels(whichincludetensionallyinducedrifting)proposedtoexplainthisfeature(seeRef.2.5-26,p.203-209)thefavoredoneinvolveswarpingofthemantlewiththeanomalyduetoanextensivelybroadmassoccurringdeepwithinoratthebaseofthecrust.ThisstructureisapparentlyrelatedtothetectonicevolutionoftheAppalachiansystem(Ref2.5-26,p.213and218-219)PrincipallytheFoldandThrustBeltcontainsdeformationalfeaturesindicativeofregionalcrustalcompression(Figure2.5-8).IntheareanortheastofRoanoke,Virginiathestructuralstyle,atthesurface,isdominatedbyfoldingwithfaultingsubordinate,whereassouthwestofRoanokereversefaultspredominateoverfoldingatthesurface(Ref.25-29,p.125).Anotherfeaturepresentinthisbelt,andindeedintheentireAppalachianOrogen,isanarcuateconfigurationwhichisespeciallywellexpressedincentralPennsylvania2.5-16 SSES-FSARThelargestfoldsintheFoldandThrustBeltexceed125milesinlengthbutfoldsofmicroscopictohandspecimenscalehavealsobeenrecognized.Thelarqestfolds,withwavelengthsrangingfrom6to11miles,wereclassifiedbyNickelsen(Ref.2.5-30,p.16)asfirstorderfolds,vhereasthehandspecimenandmicroscopicsizefoldswereclassifiedasfifthorderfolds.Secondthroughfourthorderfoldsareintermediateinsize.ThelarqestfoldsarenotrestrictedtotheFoldandThrustBeltfortheyalsooccurintheadjacentStableInterior(Ref.2.5-30).Generallythesefoldsdonotdisplayanideallyparallelform,rathertheirhingesareusuallynarrowrelativetotheirwavelengths.Theyaresomewhatakintosimilarfoldsyettheylackthecharacteristicfeaturesofsimilarfoldsvhichincludeattenuatedlimbs,vithcorrespondinglythickenedaxialregions,andasinusoidalform(Ref2.5-31,p10).Thus,accordingtoFaill,thefoldgeometryisneitherparallel,similarnorintermediateforitshowsfeaturesthatarenotassociatedwitheithergeometrictype,i.e.,thebeddinginthelimbsisplanarandthehinqesarenarrow(Ref.2.5-30,p19).Althouqhthefoldslackthecharacteristicgeometryofparallelfolds,theyareflexuralslipinnaturefortheydisplaywedgefaults,uniformbednormalthicknessacrossthefoldandslickensidesonbeddingsurfaces(Ref.2.5-32,p.1289and2.5-31,p.11).Inadditiontotheseflexuralslipfolds,kinkbands,afevinchestohundredsoffeetvide,arevisibleinoutcrop.Kinematicallyandgeometricallythekinkbandsandtheflexuralslipfoldsarecongruentand,therefore,related(Ref2.5-32,p1289)Kinkbandsareusuallyconsideredtobesmallscalestructures,howevertheyoccuronamuchlargerscaleintheFoldandThrustBeltvithsmallerkinkbandsandfoldspresentinthelimbsofthelarger-scalestructures.Faillattributedtheexistenceoflargescalekinkbandstothevidespacingbetweenbeddingsurfaces.FrcmsoutheasttonorthwestacrosstheFoldandThrustBelt,andwestwardintotheStableInterior,thefoldsbecomeprogressivelylesstightlyappresedThisgradualchangefromtiqhttomereopenfoldsisillustratedbychangesintheinter-limbanglewhichisabout50Ž70~ontheeastsideoftheGreatValleyandapproximately80~onthevestside.InthecentralValleyandRidqe(Foldand.ThrustBelt)thelimbssubtendananq'leofabout100oandintheAppalachianPlateaus(StableInterior)thisangleisnearly180~(Ref.2.5-32,p.348).Thischangeisalsoexpressedbydifferencesinstructuralreliefwhichdiminishesfrompossibly.35,000ft.ontheSouth5ountainAnticlinoriumonthesoutheast(Ref.2.5-33,p.348)to7,000-9,000ftinthecentralValleyandRidgetoabout4,500ftinthewesternValleyandRidge.IntheeasternPlateausarea2,5002.5-17 SSES-FSARto3,000feetofstructuralreliefoccur.AcrossthePlateausareathisreliefcontinuesitsprogressivedecreasewiththemostwesterlyfoldsshowinglessthan300ft.(Ref.25-33,p.349).InfactinthePlateausreqionthefoldsaresobroadandgentlethatstructuralcontourmapsarerequiredinordertoanalyzethem.BetweentheValleyandRidge(FoldandThrustBelt)andtheAppalachianPlateaus(StableInterior)thereisanabruptdecreaseinstructuralrelief.ThisareahasbeentermedtheAppalachianStructuralFront(Ref.2.5-34).LANDSATimaqesofanareaalonqthewestbranchofthe.SusquehannaRiveratLewisburq,Pennsylvaniasuggestedthepresenceofanearlynorthwesttrendingcrossortearfault.ThisstructureshowsaboutonemileofleftlateralseparationofaprominentridqeunderlainbytheTuscaroraFormation.However,geologicalreconnaissancemappingconfirmsthatthisleftlateraltopographicoffsetiscausedbyakink,foldasshownontheGeologicHapofPennsylvania(Ref.2.5-24).Faults,likethefolds,occuronallscaleswithintheFoldandThrustBeltandshowdisplacementsrangingfrominchestohundredsoffeetThelargest'faultsrangeinlengthfromabout7milesto200miles(Ref.2.5-33,p.349).AccordingtoFaillandNickelsen(Ref.2.5-31,20)mostfaultsseenatthesurfacecanbeclassifiedaswedgefaultsorcrossfaults.Root(Ref.2.5-33,p.349)statedthatallmajorfaultsintheFoldandThrustBeltandtheStableInterior.aremoderate-tosteepthrustswithdipsranginqfrom40o-70~tothesoutheast.However,inthesouthernGreatValley(affectingpartoftheFoldandThrustBelt),healsoidentifiedsteeplydipping,westfacingthrustfaultsandtearorcrossfaults(Ref.2.5-34).WoodandBerqin(Ref.2.5-21)notedthatinthesoutheasternpartoftheAnthraciteregion(oftheValleyandRidgeProvince)therearehundredsofreverse,tearandbeddingfaults,whereasinthenorthernpartfaultsarefarmorescarcewithonlyreversefaults,showinqminordisplacements,havingbeenrecognized.Glass(Ref.2.5-36,p.9)identifiedatleasteightymajor,essentiallyverticalfaultsintheAppalachianPlateausProvince.GenerallythesefaultsarenormaltotheregionaltectonicgrainalthouqhvariationsbetweenNO5WandN891wereobserved.Wedge,splayandreverse(thrust)faultsarecategorizedtogetherbecausetheyallresultincrustalshorteningandduplicationofstrata.Faill(Ref.2.5-32,p.1298)indicatedthatsplaysoffdecollementsandwedqefaultsareidentical.However,.Root(Ref.2.5-35)distinquishedbetweenthrustsdippingsteeplytothewestandthosedippinqsteeplytotheeastwiththeformerequatedtowedgefaultsandthelattertosplayfaultsoffdecollements.TheHuntingValley-CreamValleyFaultsandtheSweetArrowThrust(Fiqure2.5-7)appeartofitintothiscategory.25-18 SSES-FSARWedgefaultsintersectbeddinqatalovangle(10~-30>)andterminateinbeddinqplanes{Ref.25-32,p.1295),althoughanumberofthemterminateinfolds(Ref.2.5-32,p.1298).Commonlytheyoccurasisolatedstructuresonthelimbsoffoldsbuttheyhavealsobeenobservedinfoldhinges.Inoutcropvedqefaultsgenerallyoccurininterlayeredsequencesdisplayingcontrastinqmechanicalpropertiesandonlycutacrossbedsofsandstoneorsiltstonethataresurroundedbyshale(Ref.2.5-32,p1297and2.5-31'23).Thissamerelationshipalsoholdsonamuchlargerscale,sincemostofthelarge,mappablefaultsoccurininterlayeredsequencesofcontrastinglithologies.Root(Ref2.5-35,p.105-106)identifiedfaultsinthesouthernGreatValleywhichpresentlydipsteeplytoboththeeastand'est.Thesteeplyinclined,eastdippingreversefaultsgenerallyparallelthetraceofanticlinalhingesandcuttheverticaltooverturned,westfacinganticlinallimbs.Thesefaultsdevelopedassteeplydippingschuppenstructureswhichsplayedoffsubhorizontalreversefaults(decollements)(Ref.2.5-37,Figure5,2.5-33,P350and2.5-35,Figure5).Reversefaults,whichdipsteeplytothevest,arealsopresentinthevest-facinqsubverticaltooverturnedlimbsandparallelthestructuralfabricHowever,somehavebeenrotatedduringfoldinqandnowdisplaythegeometryofeast-dippingnormalfaults.IntheAnthracitereqion,faults(akintothesteeplyeast-dippiaqsglaysdescribedbyRoot)areinferredtooccurinthecoresofanticlines(Ref.2.5-21).WoodandBergininterpretedthatmanyofthesefaultsverefoldedalongviththerockunits,howeverfoldedsplayfaultshavenotbeendepictedinotherpublications(e.q.Ref.2.5-37.and2.5-33)Cross(transverse)faultsarecommonlyverticaltonearlyverticalstructuresvhichareapproximatelyperpendiculartotheregionaltectonicgrain.TheyarelesscommonthanwedgefaultsalthoughtheyhavebeenmappedinthesoutheasternpartoftheAnthraciteregion,intheGreatValleyandintheAppalachianPlateausregion(Ref.2.5-21,p.149,2.5-35and2.5-36)TheyarealsoevidentintheCambro-OrdovicianrocksoftheConestogaValleynearYorkandLancaster,Pennsylvania(Ref25-24)Commonlycrossfaultsdisplaystrike-separationand,infact,havebeendescribedintheAppalachianPlateausProvinceasvrenchfaults(Ref.2.5-36).AccordingtotheverbaldescriptionprovidedbyGlass(Ref.2.5-36,p6)atleastsomeofthesefaultscouldbeidentifiedaspairedconjugatewrenchfaults,forthosethatstrikenearlynorthshowleftlateralseparationwhereasthosewhichstrikeinamorevester'lydirection'displayrightlateralseparation.DespitehisverbaldescriptionthemappatternshowsaqeneralpatternofanastomosingfaulttraceswhicharemoreorlesssubparalleltoeachotherandnormaltothetrendoftheAlleghenyStructuralFront{Ref.2.5-36,p.8).2.5-19 SSES-FSARItisconceivablethatbothwrenchfaultsandcrossfaultsoccurintheAppalachianPlateaubutattemptingtodistinguishthemisoflittleimportforbotharepredictablecogeneticproductsofreqionalhorizontalcompression.TwocrossfaultsinthesouthernGreatValleyhavelateralmovementsassociatedwiththem(Ref.2.5-35,p.104),andthemappatternintheConestogaValleyshowslateralseparationsoflithologicunitsalongthecrossfaultsthere(Ref.2.5-24).Anotherfeaturecommontomostcrossfaultsisthatreverseorwedgefaultsfreguentlyterminateagainstthem.AccordingtoRoot{Ref.2.5-35,p.103),however,theirmostdistinctivefeatureisthattherockscneithersideofthesefaultshaveexperienceddifferentamountsofhorizontalshorteninq25.11.33StructuralElementsintheSiteVicini~tThesiterestsontheeasterlyplungingnoseoftheBerwickAnticlinoirum.Acrossthisfoldedstructure,atdepthsof17,500-25,000ft+3,500ft,thestrata(basedonseismicreflections)arenearlyhorizontalto-slightlynorthdipping(Ref.2.5-38,p.134).AccordingtoMoodandBergin(Ref.2.5-21)eitheramajordeco11ementoraseriesofdecollementsprobablyexistswithintheMarcellusShalethroughoutmostoftheAnthraciteregion.Althouqhnotseenatthesurfacethepresenceofdecollementsisinferredbasedupontheexistenceofdisturbedoutcrops"differinqstyles,wavelengthsandamplitudesoffoldsaboveandbelowtheNarcellus,andby~elisthatpenetratedeitherduplicatedsectionsorgreatlythickenedsections"(Ref.25-21p151)Itisworthytonote,however,thatneitherthisfaultnoranyotherfaultappearsasasurfacefeatureassociatedwiththeBerwickAnticlinoriumineitherWoodandBerqin~spaper(Ref.2.5-21,Figure2)orGwinn'spaper(Ref.2.5-38,Figure1)The1960editionofthePennsylvaniaGeologicNap(Ref.25-24)doesindicateafaultalongpartofthenorthlimboftheBerwickAnticlinoriumjustnorthofBloomsburg.Thisfaultapproximately8mileslong,separatestheundifferentiatedMillsCreek,TonolowayandKeyserFormationsfromundifferentiatedOnondaga,NarcellusandNahantanqoFormations(Ref.2.5-24,mapunitSkwfrommapunitDho,respectively).Accordingtothestatemap,themissinqintervalbetweenthesetwosetsofunitsincludestheNandataandOriskanyFormations.Recentmappingindicatesthat'theTonolowayFormationisjuxtaposedtotheNarcellusFormation(Figure2.5-10,StationsDJ-4B~-33and-34).ThefaultontheqeoloqicmapofPennsylvaniawasprobablypostulatedtoexplainthemissingstratigraphicintervalonthenorthlimboftheBerwickanticlinorium,.whichincludesdominantlycarbonaterocksoftheKeyser,OldPortandOnondagaFormations;theseunitsarepresentwestoftheindicatedfault.Thesouthlimbofthe25-20 SSES-FSARBerwickanticlinoriumshowsthesamerelationshipsoccuronthenorthlimb;thatis,thattheKeyser,OldPort,andOnondagaFormationsaremissingalongthemorewesternportion.However,nofaulthasbeenindicatedtoaccountforthemissinqsectionalongthesouthlimb(Ref.2.5-24).Nappingonascaleof1:24,000(Figure2.5-10)indicatesthatvestoftheconfluenceofFishingCreekandLittleFishingCreek(andalsowestoftheinterpretedfault),theTonolovay,OldPort,OnondagaandNarcellusFormationsvererecognizedbutnolimestoneoftheKeyserFormationwasidentifiedThus,oneoftheunits(theKeyserFormation)vhichisinterpretedasmissingduetofaultinqisabsentfromthestratigraphicsectionabout4,000feetvestofthepostulatedfault,despitethefactthattheOldPortandOnondagaarepresentthere.Fieldinvestigationsattwolocationsalongthetraceoftheproposedfault(StationsDJ-4A,DJ-4B,DJ-32,DJ-33,andDJ-34;Figure2.5-10)failedtorevealanyevidenceofcataclasisexceptfordipslipslickensidesassociatedwithasmallflexuralslipfoldintheNarcellusFormationatDJ-4B.InbothcasestheTonolowaylimestoneandNarcellusshalevereexposedvithin100feetofthehypothesizedfault.Intheformercase,hovever,atDJ-4AandDJ-4BtheTonolowayandMarcellusareseparatedbylessthan20feet.Considerationvas.qiventothedifficultyofdetectinqfaultingwithinargillaceousunits;however,vherefaultingwasrecognizedwithinthestudyarea,alllithologies(i.e.,limestone,shale,mudrock,siltstone,'andsandstone)showedsomeevidenceofcataclasis.Whilecontinuousexposureacrossthepostulatedtracewasnotavailable,nopositiveevidenceforfaultinqwasobservedandthus,atbest,thefaultcanonlybeinferred.TheonlylocationalonqornearthetraceofthepostulatedfaultwheresignificantcataclasisoccursisatStationDJ-31(Figure2.5-10)about1,500feetnorthofthe>>faulttrace>>whereshaleoftheMahantangoFormationisexposed.Herethestratashownoticeablevariationsinbothstrikeanddipdirections.Forexample,atthewestendoftheexposurestrataswingfromanattitudeofN45E:35~SEtoN40M:15~SM.InthecentertheattitudechanqesfromN20~E:30oSEtoN10>M:35>EbacktoN15oE:45~SE,andattheeasternend,strataareorientedaboutN60~E:400NWandN35E:45SE.Atthewesternendoftheoutcropthechanqeinorientationrepresentsafairlysmoothcontinuumwhereasattheeasternendbothcontinuousanddiscontinuouschanqesinorientationoccur.Thediscontinuouschanqesaremarkedbyobliqueslipfaultsvithslickensidesdisplayinqrakesofabout60~to70~.ThreesuchfaultstrendN55OE:.35NM,N80E:350NM,andN88E:29~NM.Nounequivocalmovement.planwasidentified~butstructuresrecognizedelsewhereintheValleyandRidqeProvince,asveilastheareawithinfivemilesofthesite,showthatreversefaultsforminresponsetothereleaseofstoredstrainenergyintightlyappressedkinkhands;thus,thesefaultsareinterpretedasrelativelysmall2.5-21 SSES-PSARscaleaccommodatingreversefaults.Thisexposure(DJ-31)occurswithinanareainwhichthereismapscalefoldingproducingdeflectionsinthelithologies,whichisnotunlikepatternsseenelsewhereintheValleyandRidgeProvince.IntheP.GoodWell,locatedontheBerwickAnticlinoriumeastofthesite(Figure25-7),faultinghasbeeninterpretedatanapproximatedepthof5,800feetwhichiswellabovethedepthrange(17,000to25,000ft)atwhichamajordecollementisimplied{Ref.2.5-38).Thus,thedecollementalludedtobyWoodandBergin(Ref2.5-21)aswellasthefaultseenontheGeoloqicMapofPennsylvania(Ref.2.5-24)12mileswestofthesitemayactuallybeasplayfault{s)offamoredeeplyburieddecollement.Thissuggestedsplayfaultmayalsobe,inpart,responsiblefortheexcessthicknessseeninthePGoodWelloflithotectonicUnit2,asdefinedbyWoodandBergin(Ref.2.5-21)Insummary,nodirectunequivocalevidenceexiststoeitherpostulateozrefutetheexistenceofthefaultwhichhasbeenmappedonthenorthlimboftheBerwickAnticlinoziumwestofthesite(Ref.2.5-24).'However(1)theabsenceoftheKeyserPormationonthenorthlimb,westofthewesternlimitoftheinferredfault,and(2)themappatterninwhichtheunitsmissinqfromthenorthlimboftheanticlinoriumarealsoabsentfromthesouthlimb,yetthefaultrestrictedtothenorthlimbsuqqeststhatthemissingsectionofthenorthlimbisperhapsbetterexplainedbyanunconformitythanbyfaultinq.Regardlessofwhetherornotafaultisinterpreted,datafromtheP.GoodMellshowthatthelimestonesequencemissingfromboththenorthandsouthlimbsoftheBerwickAnticlinoriumisabsentfromthenoseofthefoldaswell.Thus,ifafaultispostulated,itpre-datestheformationoftheBerwickAnticlinoriumanddoesnotposeasafety-relatedproblemtothesite.FlankingtheBerwickAnticlinoriumonthenorthandsouthrespectively,aretheLackawannaandEasternMiddlesynclinoria.TheLackawannaSynclinozium,theaxisofwhichpassesabout3-1/2milesnorthofthesite,isabout120mileslonganddisplaysawavelengthof8to9milesandanaverageamplitudeof4,000-5,000ft(Ref.2.5-21,Table2)NeartheaxisofthisfoldtheMocanaquadecollementisexposed.TheaxisoftheEasternMiddleSynclinoriumisapproximately3-4milessouthofthesite.ThisfoldisaboutthesamesizeastheJ.ackawannaSynclinorium(Ref.2.5-21,Table2).TheNittanyAnticlinoriumisalargestructurewhichislocatedgusttothewestoftheBerwickAnticlinoriumabout50mileswestofthesite.Basedonseismicrecordsgarneredfromlongitudinalandtraverseprofiles,thereexistsaseriesofwelldefined,subhorizontalvelocityinterfaceswhicharecorrelativewithsimilarvelocitycontrastsintheCambriansequenceandatthe25-22 SSZS-FSARtopofthePrecambrian.basement(Ref.2.5-38,p.134).Thedeepestinterfacewasestimatedtooccuratadepthofabout25,000+3,000TheBirminghamFaultislocatedinthecoreoftheNittanyAnticlinoriumandistheonlyfaultinPennsylvaniaassociatedwithamajor,well-exposeddecollementknownastheSinkinqValleyFault(Ref.2.5-33,p.350).Thisfaultisasteeply,eastdippinqsplay(thrust)whichisabout33mileslong.2.5.1.1.3.4RelationshipAmognStructuralElementsIntheopinionofallpreviousworkersallofthestructuralelementsencounteredintheValleyandRidgeProvincearegeneticallyrelated,afeaturewhichisclearlydemonstratedinseveralinstances.First,crossfaultsandreversefaultsaregenerallyspatiallyrelatedwiththereverse(orwedge)faultscommonlyterminatingagainstthecrossfaults.Infact,thereareinstanceswhereonepassesintotheotherAprimeexampleofthisisintheCarbauqh-MarshCreekFaultibthesouthernGreatValley.Thisfaultiscomposedoftwosegments,aneastdippinqreversefaultwhichparallelstheregionalgrainandpassescontinuouslyintoanearlyeasttrending,subverticalcrossfaultacrosswhichrightlateralseparationhasoccurred(Ref.2.5-37,p.8,9and822and2.5-35,p.102-103)Rockunitsacrossthiscross,ortransverse,faultseqmenthaveshortenedindependentlyofoneanotherBecauseofthisindependentbehaviorofrockunitsacrossthetransverseportionofthisfault,Root(Ref.2.5-35,p.103)concludedthatthissegmentexistedpriortomostoftheregionaldeformationFaillandNickelsen{Ref.2.5-31)andFaill(Ref.2.5-32)pointedoutthatslickensideorientaticnson:1)beddingsurfacesassociatedwithflexuralslipfoldinq,2)wedgefaults,and3)crossfaultsaresimilarindicatinqkinematiccompatibilityamonqthesethreestructuralelements.Furthermore,thelinesofintersectionofthewedqefaultsandbeddingaresubparalleltothefoldaxes.Splayfaultswithlargedisplacementsoccurinthehingesofanticlineswhichpossesakinkbandgeometrysuqqestinqthatthesefoldswereproducedbythesplayswhichoriqinateatdepthalonqunexposeddecollements(Ref.2.5-38,2.5-37and2.5-33,p.349).Faill(Ref2.5-32,p.1298)alsoconcededthatpossiblyallmajoranticlinoriaareunderlainbysplayfaults.PriortoGwinnswork,theexistenceofmajordecollementsandthinskinnedtectonicsintheAppalachianorogenwassomewhatdebatablebuttheresultsofhislateststudy(Rf25-38)indicateclearlythatthesesubsurfacestructuresexistInthesouthernGreatValley,Hoot(Ref.2.5-35)deducedthesequentialdevelopmentoffoldingandfaulting.Hesuggested2.5-23 SSES-FSARthatthecrossfaultsexistedpriorto,orattheinitiationof,mostofthereqionaldeformation,althoughheindicatedthattheiroriginisnotunderstood.Nonetheless,heconcluded(Ref.2.5-35,p109)thatthecrossfaultswhicharesubverticalandnormaltotheregionalgrainwere,duringfolding,equivalenttoacfractures.Thisislogicalsincetheorientationofcrossfaultsvithrespecttotheotherstructuralelementsisnotconsonantwithhavingoriqinatedasshearfractures;ratheritislikelythattheyformedearlyinthetectonichistoryofthisareaasextension(ac)fractureswhichweresubsequentlyutilizedasstraindiscontinuities(tearfaults)duringthesameprotractedperiodofstressapplication.ThisinterpretationissupportedbyNickelsenandHough(Ref.25-39)vhostatedthatsystematicextensionfracturesinshalesaregrosslytransversetonortheast-trendinqfoldaxes,andformedearlyandindependentlyoffoldingandfaulting.Rootcontinued(Ref.2.5-35,p.111)byindicatingthattheearliestfoldsverebroadandopenandashorizontalshorteningcontinuedandthefoldsbecamemoreappressed;westdippinqsteepthrusts(wedges)formedintheupperstrata.Continuedshorteningresultedinthedevelopmentofsubsidiaryfolds,eastdippingthrusts(splayfaults)andtherotationoftheearlierformed,vestdippingthrusttoasteeperinclination.InthecaseoftheCarbaugh-MarshCreekFaulttheeastdippinqsplayfaultlinkedupwithaportionofthecrossfaultstoformtheCarbauqh-MarshCreekFaultsystemFaillandNickelsen(Ref.2.5-31,p.37)notedthatdeformationvasinitiatedbyverticalcompactionduringsedimentation.Regionalhorizontalcompressionfollowed,vhilethestrataverestillhorizontal,withtheearlieststagemarkedbymicrofoldinginshal'esandlimestones.Majordecollementsprobablyalsooccurredduringthisearlystageandverefollovedbybucklingandkinkbandfolding.Asthefoldstightened,faultsinthehingealongwithsomewedgeandcrossfaults,developed.Thesefaultswereaccompaniedbytightlyspacedfractures(fracturecleavage)whichformedparalleltotheaxialplanesofthefoldsFaillandNickelsenfurtherconcludedthatwithtimethedeformedmaterialspassedprogressivelyfromaductilestagetoamorebrittlestaqe.25.1.135~AeofDeformationBoot(Bef.2.5-35)concludedthatallthestructuralelementsinthecratcndevelopeddurinqasingleorogenicevent(hlleghenian)about230millionyearsaqo.Thisageisbasedonaninferredepisodicleadlossabout230millionyearsagorecordedbyRankin(Ref.2.5-00)inzirconsfromtheCatoctinFormation.However,FaillandNickelsen{Ref.2.5-36,p.19)impliedthatthedeformationoccupiedagreatertimespan,possiblycommencingpriortocompletelithificationofSilurianagesediment{e.g.,25-24 SSES-FSARtheLowerSilurianTuscaroraFormation).Despitethisapparentdifferenceconcerninqtheaqeoftheonsetofdeformation;thereisqeneralagreementthatthemajorstructuralelementsintheFoldandThrustBeltandtheStableInteriorarenoyoungerthanLatePermiantoRiddleTriassicinage(Ref.2.5-37,2.5-33,2.5-35,2.5-32,2.5-31,2.5-38,2.5-l1,2.5-34,and2.5-21).Thereisconsiderabledisagreementastotheage,natureandmethodofform'ationofthecurvaturethatissoprominentalongtheentireAppalachianChainDrakeandNoodward(Ref.2.5-42,p.49)conlcudedthatthisarcuationincentralPennsylvaniaistrulyaroundedstructurewhichformedinresponsetorightlateralslioalongtheeasttrendinqCornwall-KelvinFault,perhapsaroundLateDevoniantime(Ref.2.5-42,p.59)-Faill(Ref.2.5-32,p.1305-1306)notedthatitisnotsmoothandcontinuous,asitappears,butinsteadiscomposedofstraight,seqmentsthejoiningofwhichmarkstheboundarybetweenthenorthernandsouthernAppalachiansFurthermore,heconcludedthatthis"curvature"andthemajorfoldswerecontemporaneous.Root(Ref.2.5-37,p.825)notedthesameobservationsasFaillandindicatedthattheserectilinearelementsorientedN17EsouthoftheCarbauqh-,"larshCreekFaultandaboutY40~-50~Enorthofthefault,assumetheirpresentpositionbyrotationacrossthefault.HealsoaddedthatallstructuralelementsseeninthePiedmonttothesoutheastwouldbemorecompatibleifthePiedmontwerearcuatehytheEarlyPaleozoic.Thisappearstobeacontradictionsinceontheonehand,RootsuggestedthatrotationacrosstheCarbauqh-MarshCreekFault(presumablydurinqtheLatePaleozoicAlleqhenianevent)wasresponsibleforthiscurvature,whereasontheotherhand,hesuggestedthatthecurvaturealreadyexistedbyEarlyPaleozoictime.FlemingandSumner(Ref.2.5-42,p.58)suqqestedthatanembaymentassociatedwiththeLatePrecambrian-EarlyPaleozoicproto-AtlanticwasresponsibleforthisarcurationincentralPennsylvania.Rankin(Ref2.4-40)andRodgers(Ref.2.5-44)statedthatAppalachiansalientsandrecessessformedduringtheinitialbreakupofacontinentalmasswhichcommencedabout820millionyearsaqo.Thus,atpresent,althoughthereisnouniquehypothesisconcerningtheaqeandoriginofthiscurvaturethereisqeneralagreementthatitispre-MesozoicinageEvidenceofyoungertectonicsisconfinedtothemobilebelt.ThesouthernborderoftheNewark-GettysburgbasinisobscuredinNewJerseybytheoverlapofCoastalPlainsediments;however,inPennsylvaniaandMaryland,theTriassicsedimentaryrockslieunconformahlyuponlowerPaleozoicquartzitesandcarbonatesand,inafewareas,uponPrecambriangneisse's,qranitesandmetabasalts.Residualgravityanomaliesindicatethatsouthern>>borderfaults"arecoveredbytheyounqerTriassicsediments(Ref.2.5-45).2.5-25 SSES-FSARThenorthernedqeofthebasin,intheareaeastoftheSchuylkillRiver,bordersonthegranitic-gneissiccomplexoftheNewJerseyHighlandsanditssouthwestextension,theReadingProngNestoftheSchuylkillRiver,rocksnorthoftheborderareCambrianandOrdoviciancarbonates.Triassicrocksunconformablyoverlieadjacentolderrocksalongmuchofthenorthernbordersuggestinqthatthismarginisnotcontinuouslyfaulted(Ref.2.5-2).InPennsylvania,only35percentofthemarginisknowntobefaulted(Ref.2.5-46).Thenorthernborderfaultsarecharacterizedasenechelonfaultzonesthatgivesacrenulatedappearance'othenorthernmargin.Whereover1aphasoccurredthecontactdipsapproximatley20otothesouth(Ref25-46)TheRamapoFaultSystem,acontinuationofthenortheasttrendingsystemofborderfaults,crossestheNewYork-NewJerseyStateboundarynorthofNewYorkCityNoevidenceofsurfacerupture,warpinqoroffsetofqeomorphicfeatureshasbeenobservedalongitsmemberfaultzones(Ref.2.5-47).SeveralfaultsofapparentlylargedisplacementoccurwithinthecenteroftheNewark-Gettysburgbasin(Figure2.5-11).ThesearetheChalfontandFurlongFaultsinPennsylvaniaandtheFleminqtonandHopewellFaultsinNewJersey.Orientationanddirectionofmovementofthesefaultsarenotknown.Althoughgenerallyconsideredtobesteeplysouthdippingnormalfaults(Ref.2.5-48and25-49)~Sanders(Ref.2.5-50)hassuggestedpredominantstrikeslipmovementandFaill(Ref.2.5-46)indicatestheymaybehighanglereversefaultsresultingfromintersectionoftwodifferentaxesofmonoclinalfoldinqwithinthebasin.SmallerTriassicfaultscrosscutthebasinmarginsandextendwellintothesurroundingrocks,butusuallyshowlessthan3,000feetofdisplacement.Associatedwiththese.faultsarelocal.concentrationsofsmallfaultsofconstantattitudeandsenseofdisplacement(Ref.2.5-2).TheTriassicbasinsandassociatedfaultingarelocatedinthemobilebelt,whereasthesiteissituatedonthecratonwhichincludestheFoldandThrustBelt.NotectonicstructuresofMesozoicoryoungeragehavebeenrecognizedintheFoldandThrustBelt.AnalysisoflineamentsobservableonI.ANDSATimageryyieldeddataconsistentwiththeseobservations.ThegreatestnumberoflinearsplottedintheValleyandRidgeProvincewithintheAppalachiansalientstrikeN10-250M(Figure25-11)Thisisrouqhlynormaltofoldaxesintheareaandthustheclusteroflineamentsparallelsthedirectionofextensionfracturesandcrossfaults.Thefoldaxesandbeddingarewellexpressedasaclusterofeast-northeasttrendinqlineaments.25-26 SSES-FSARSeccndarytrendsorientednorth-northeastandnortheastmayindicatejointingofMesozoicage;ThesearethedominantlineamenttrendsexpressedintheNewark-GettsburgBasin.SeveralinvestigatorshavepresentedevidenceforpresentdaycrustalmovementintheAtlanticCoastalPlain,theFoldandThrustBeltandexposedshieldareas(Ref.2.5-51,2.5-52,2.5-53and25-54)Basedontheaccumulationofaneastwardfacingclasticwedqeofsedimentsalongthecoastalplain,Owens{Ref.2.5-52)concludedthatpost-TriassicdiastrophismhasaffectedtheentirecentralandsouthernAppalachianswiththelatestrecordedupwarpinqhavingoccurredinthePliocenetoQuaternary.BrownandOliver(Ref.2.5-54)concludedthatthe'~AppalachianHiqhlandsarepresentlyrisingrelativetotheAtlanticCoastatratesofupto6mm/yr"withtheelongatezonesofrelativemovementparallelingeitherthemajorAppalachianStructuraltrendortheAppalachiandrainaqedivide.Superimposedonthisbroaderupliftarelocalzonesmarkedbyaslightlyqreaterrateofverticalcrustalmovement.Oneofthese,knownastheHarrisburgfeature,occursneartheeasternlimitoftheValleyandRidgeProvincealongalinewhichextendsnorthwardfromtheeastern.edgeoftheBlueRidgeProvince(Ref.2.5-54,p.26).Theyfurthersuggestedthattheentirethicknessofthelithosphereisinvolvedinthesemovements.Noinstancesoffaultingduetotectonismhave.beenassociatedwiththisregionalscaleactivity.TheonlyknowninstanceofsurficialdisplacementsintheFoldandThrustBeltoccursinNewYork(about120mileseastofthesite)andNewEnglandwheresmallscale(lessthanoneinchofverticalseparation),highanqlereversefaultsthatparalleltheregionaltectonicfabricoffsetqlacialstriations.Oliverandothers{Ref.2.5-51)haveconsideredglacialreboundandsurficialeffectssuchasthermalchanqes,hydrationorachemicalprocessintheshalesaswellastectonicstressesaspossiblecausesofthesefaults.Whileadmittinqtheavailabledataareinconclusive,theyappeartofavorthehypothesisthatthefaultsaretheresultofexpansionduetohydrationorthereleaseofcontinuingpressurebymeltingofoverlyingiceorothercauses.Theyfurthersuggestthatifthefaultsareoftectonicorigin,anapparentlypoorcorrelationbetweenfaultlocationsandmodernseismicityindicatesthatthatepisodeofdeformationisalreadycompleted(Ref.2.5-51,p587).NostructuresofthisnaturehavebeenfoundinPennsylvania."AsdiscussedfurtherinSubsection2.5.1.2.3,theavailabledatadonotindicatethatregionalupliftisofsignificancetotheSusquehannaSES.2.5-27 SSES-FSAR2.5.1.1.5NaturalHazardsAnaturalhazardhasbeendefinedbyBurtonandKatesas"thoseelementsofthephysicalenvironmentthatarepotentiallyharmfultomanandhisworks".Thus,qeologicalnaturalhazardswouldbepotentiallyharmfulgeologicalelementsofthephysicalenvironment.Theqeoloqichazardstobeconsideredare:subsidenceduetocoalminecollapse,subsidenceduetokarstcollapse,andlandslides.Thecoal(anthracite)ofnortheasternPennsylvaniaislocatedintheNorthern,Middle,andSouthernAnthracitefields.ThesouthwestendoftheNorthernFieldistheclosesttothesitebeingabout'milestothenortheast(Figure25-7).WithinthisNorthernFieldtherearemanywelldocumentedincidencesofsubsidence,particularlyinthecitiesofScranton,Wilkes-Barre,Nanticcke,andPittstown(Ref.2.5-55).TherehavealsobeenincidencesofsubsidenceintheMiddleandSouthernFields,whichattheirclosestpoints,areabout10milessoutheastofthesite(Fiq.2.5-7).Thus,thesitewillnotbeaffecteddirectlybysubsidenceduetocoalminecollapse.ThenearestmajorcarbonateunitsaretheSilurianKeyserandTonolowayFormationswhicharecomposedofgraytodarkgray,thicktothinbedded,crystallinetoargillaceouslimestones(Ref.2.5-24).Theseformationsarenotmajorcavernproducers(Ref.2.5-56)especiallyinthisportionofPennsylvania,andthusdonotposeahazardofcollapse.Asmapped,thesetwoformationsoccurasrelativelythinbedsonbothlimbsoftheBerwickAnticlinoriumwhichcometogetherinthetownofBerwick,Pennsylvania.Thislocationisabout5mileswestofthesite;thus,theseunitswouldposenosubsidenceproblemsatthesite.Miller(Ref.2.5-57)statedthatOnondagalimestonecropsoutalongroadandrailroadcutsnearBeachHaven,PennsylvaniaExaminationoftheseoutcropsindicatesthattherockisdarkgray,brownishweatheringcalcareoussiltymudrockinterbeddedwiththinlayersofsilttoclayshaleorwithsiltstone.LithologyandfossilfaunaindicatesthattheserocksbelongtotheMahantangoFormation(Subsection2.5.1.2.2)whichdoesnotposeasubsidenceproblematthesite.Radbruch-Hall(Ref.25-58)placedthesiteinaregionofmoderatelandslideincidencewithahighsusceptibilitytolandsliding.Moderateincidencemeansthatgenerallylessthan15percent,butmorethan1.5percent,oftheunderlyingrockorearthmaterialisestimatedtobeinvolvedinlandsliding.Ahiqhsusceptibilitymeansthatnaturalorartificialcutting,loadinqofslopesoranomalouslyhighprecipitationmaycauselandslidinqinvolvingmorethan15percentoftherockorsoil.Onthisregionalbasisnospecificstatementcanbemadeonlocalsusceptibilitytolandslidinq.However,somegeneralstatements2.5-28 SSES-FSARcanbemade.Althouqhmoderatetosteep,natura1slopesofthelocalformations(Marcellus,Manhatango,whichisstratiqraphicallyequivalenttotheHamilton,andTrimmersRock)arestable,cutslopesqenerallyhaveonlypoortofairstabilityduetorapiddisintegrationoftheshalesuponexposuretoweatherinq.Muchofthesurfaceareainthevicinityofthesiteiscovered,withglacialtillandoutwash.ThestabilityofthismaterialincutslopesneedstobecarefullyanalyzedSlopestabilityandlandslidepotentialatthesitearediscussedingreaterdetailinSubsection25.1.2.5.25.12SiteGeo~lo251.2.1SitePhsiozahTheSusquehannaSteamElectricStationislocatedintheValleyandRidqePhysiographicProvincewhichisdescribedinSubsection2.5.1.1.1.Thesiteissituatedwithinabroadundulatingvalleydevelopedinmudrock,shaleandsiltstoneoftheDevonianMahantanqoFormationalongtheaxisoftheBerwickAnticlinorium(Fiquze2.5-12).LeeMountain(about2-,1/2milesnorth)andNescopeckMountain(about4-1/2milessouthofthesite)areheldupbythemoreresistantsandstoneandconglomerateoftheMississippianPoconoGroup.LesserridqesformedbysandstoneoftheTrimmersBockFormationoccuratthenorthendofthesiteandalongthesouthbankoftheSusquehannaRiver(about2milessouthofthesite).Topographyanddrainageoftheareaiscontrolledtoalargedeqreebythelithologicandstructuralcharacteristicsofthebedrock.Ridqesandvalleysgenerallytrendeast-northeastparalleltothestrikeofthePaleozoicstrata.ThesitefrontsonthesouthflowingSusquehannaRiverwhichhereflowsperpendiculartotheeast-northeasttrendingaxisofthefold,resuminqitswest-southwestflowaboutl-l/2milessouthofthesite,tofollowthestrikeoftheshalevalley.Thenorth-northwestsegmentoftheSusquehannaRiverwhichflowsnormaltothestrikeappearstohavebeeninheritedfromthecourseoftheAncientLittleSchuylkillRiver(Ref.2.5-3)(RefertoSubsection25124)Topographicelevationsinthesitevicinityrangefrom500to1,100feetabovesealevel.Hiqherelevationsoccurinthemoreruqgedterrainfurthernorthandwestofthesite.Thesiteitselfcontainsgenerallygentletomoderatelyslopinghillsandwelldevelopeddrainagepatterns.Existingsurfaceelevationsvaryfromabout+750feetinthewesternportiontoabout+500feetintheeastPortionsoftheareawereformerlycultivated.2.5-29 SSES-PSARInthoseareasnotcultivated,heavytomoderatewoodlandsandscrubbrusharefound.Asteepsandstoneridgebordersthenorthsideofthesite.Anarroweast-westtrendinginteriorbedrockridge,risingsome60feetabovethesurroundinggroundsurface,islocatedjustnorthofthecenterofthesiteAroundedbedrockknollabout80feethighoccursatthewesternedgeofthesiteinthesouthwestquandrant.Thesiteiswell-drainedbyeastwardtrendingdepressionsnearthenorthandsouthedgesofthesite.Plantgradeat650feetabovesealevel(about150feetabovethefloodplainoftheSusquehannaRiver)isataboutthelevelofthePourthCleanKameTerrace(Ref.2.5-5)whichiswellpreservedsouthwardbetweenthesiteandtheSusquehannaRiver.Theirreqularbedrocksurfaceunderlyingthesiteistheresultofacombinationofpreglacialweatheringandstreamerosion,glacialscour,latererosionbyglacialmeltwaters,andthevaryingresistanceofthelithologicunitstoerosion.Themaximumthicknessoftheoverburdenisontheorderof40feetinthesouthernhalfofthesite,withbedrockoccasionallycroppingoutatthesurface.Northoftheeast-northeastbedrockridgethatislocatednearthecenterofthesitejustnorthofthereactorandturbinebuildings,glacialdepositsfillabedrockvalleytoadepthexceeding100feetDuringexcavationatthesite,abundantevidenceofglacialandqlacio-fluvialscourofthebedrocksurfacewasfoundintheformofchannels,potholes,grooves,striationsandflutedrock.Alarge,buriedpotholeover30feetwideandmorethan30feetdeepwasexposedintheUnit1turbinebuildingexcavation(Pigure2.5-13)SimilarlargeburiedpotholeshavebeendocumentedfarthernorthalonqtheSusquehannaRiverVa1ley(Ref25-3,p.23-27and2.5-59,p.195).Atthesite,numerousothersmallerpotholesandroundedpitsandchannelsinunweathere'dbedrockwereobservedintheexcavations.Smooth,east-northeasttrendinqlinearchannelsabout6to8feetdeeperodedinunweatheredbedrockwereobservednorthoftheradwastebuilding.Similarly,somewhatlarqerfeatureswereexcavatedinthenortheastandwestrimsoftheUnit1coolingtowerThisflutinqoftherocksurfaceobservedinanumberofplacesatthesitewaseithergougedbyice,erodedbywaterorb'oth,andapparentlyservedasflumesfortorrentialglacialmeltwaterrunoffwhichevidentlyatonetimecascadedacrossmuchofthesitearea.UndoubtedlymanysteeporevenundercutsurfacesofthebedrockatthesiteareattributabletoicescourandintensefluvialerosionthatwasassociatedwiththeOleanandearlierglaciations.ThesefeaturesarediscussedinSubsection25.1-2.3.3-2.5-30 SSES-FSARAsindicatedinSubsection2.5.1.25,landslidepotential,surfaceorsubsurfacesubsidence,upliftorcollapsearenotofccncernatthesite.2.5.1.2.2SiteLitholoqaandStnatignaphg~25.1..21r.it~hole~anddtnatigra~hintheSiteVicinityFigure2.5-12illustratesthedistributionofthegeologicunitswithinatleast5milesofthesite.Thestratigraphicrelationshipsofthevariousformationsareshownonthesiteqeoloqiccolumn(Piqure2.5-14).SilurianandDevonianformationsoccurthrouqhouttheValleyandRidgeProvince.SilurianandlowerandmiddleDevonianstrataconsistofmarineshale,mudrock,siltstone,sandstoneandlimestone.TheupperDevonianstrataaregenerallynon-marinesandstoneandshale.Anortheasttrendingfold,referredtoastheBerwickAnticlinorium,completelyencompassesthesitearea.Thisfeaturehasbeenbreachedby'rosion,exposingrocksofSilurianandDevonianaqealongthecoreandattheflanksoftheanticlinorium.Asitplungesto'heeast,progressivelyyoungerformationsareexposed.Silurianformationspresentwestofthesiteinclude,fromoldesttoyounqest:theTuscarorasandstone,theClintonferruginoussandstone,theMcKenziegreenishshalewithlimestone,theBloomsburqredshale,theMillsCreekshaleandtheTonolowaylimestone.TheTuscarorasandstonecapsMontourRidgealonqtheaxisoftheBerwickAnticlinoriuminthevicinityoftheWestBranchoftheSusquehannaRiver.HereaselsewhereintheValleyandRidgeProvince,theTuscaroraisaprominentridqeformer.TheClintonFormationcontainsafossilironorewhichwasformerlyminedalongMontourRidge.TheBloomsburgPormationsupportstheeasternextensionofMontourRidqe.,TheMillsCreekandTonolowayFormationsoccurintheflanksoftheAnticlinoriumwestofBerwick(Pigure2.5-10).ThebasalDevonianformationsaretheKeyserlimestoneandOldPortsandstone.TheseformationscropoutalongtheflanksoftheBerwickanticlinorium.HastofBloomsburgtheyarenolongerexposedhavingpresumablybeenremovedfromthesectionhyerosionorfaulting(Subsections2.5.1.1.3and1.5.1.23).Stratiqraphicunitsexposedinthemapareaarefromoldesttoyounqest:theDevonianMahantango(whichincludestheMarcellusShale,TrimmersRockandCatskillFormations),theNississippianPoconoFormation,theMississippiantoPennsylvaniaNauchChunkFormation,andthePennsylvaniaPottsvilleandpost-PottsvilleFormations.2.5-31 SSES-PSARAbovetheMarcellus,theMahantangoFormationisrepresentedonlybytheuppermostmember,theShermanCreekwhichisdominantlyadarkgraytobluegray,olivegraytobrownweatheringmudrock.Siltstoneandfinegrainedsandstoneunitscropoutlocally,includinqatthesiteandatcertainoutcroplocationsbothcalcareousandnoncalcareousstratacoexist(Figure2.'5-12,StationsDF-2,DF-3,andDF-6).Anintervaloflight,mediumgrayargillaceouslimestonenear.thetopoftheMahantango,wasrecognizedascorrelativewiththeTullyI.imestoneandwasmappedaspartoftheMahantango(Figure2.5-12,StationsDF-53andDF-45).TheoverlyingHarrelShale,apoorlyexposed,darksiltyshalewhichappearstoqradationallyoverlietheMahantango(Fiqure2.5-12,StationsDP-30,DF-31,DF-43,andDE-44b)wasalsomappedaspartoftheMahantangoShale.FossilsarerelativelyabundantwithintheShermanCreekmemberoftheMahantanqoFormationandincludevariousgeneraofbrachiopods,bryozoa,pelecypods,coral,trilobites,andcrinoidfragments.Fossilcastsareabundantwithoccasionalmoldsandrarepreservationofinternalstructureandoriqinalshellmaterial.Concretions(commonlyrustyweatherinq),spheroidalweathering,andprominent,closelyspacedsteeplydippingcleavage,whichmayquiteeasilybemistakenforprimarybeddingfissility,areotherfeaturescharacteristicoftheMahantango.TheMahantangogradesupwardintotheTrimmersRock(Pigure2.5-12,StationsDF-30andDF-33).TheTrimmersRockPormationisdominantlyinterbeded,mediumtoolivegray,thinlylaminatedsiltstcne,siltyshaleandfinegrained,laminatedtomassivesandstoneTheserocksweathertoabrownishqraycolor.Sedimentarystructuresincludefining-upwardsequences(Figure2.5-12~DP-7,DF-8,andJW-10);groovecasts,currentlineations,loadcasts,ballandpillowstructure,andflowrolls(Figure2.5-12,JM-7B,JM-10,andJM-ll).Ripplemarkswerealsolocallyidentified.Thesestructuresindicatedepositionbyturbiditycurrentsinamarineenvironment.Fossilsareoftenrestrictedtorelativleythinlayersofbrachiopods(spirifersDF-9).Otherfossilsincludepelecypodsandcrinoidfragments(DP-17b).ChannelswereobservedatDF-25.TheupperTrimmersRockFormationconsistsoflighttomediumgrayishqreensiltyshaleandmicaceous,darkgreenishgraysilstone,bothofwhichweathertoadarkreddishbrowncolor,areddishbrownsiltyfinetomediumgrainedsandstonetosiltstone,andolivegreenvitreousfinegrainedsandstonetosiltstone(DF-26,DF-27,DP-28,DF-32,DP-36,DF-37andDF-68).TheCatskillFormationrestsconformablyuponlithologicallysimilarinterlayeredrocksoftheupperTrimmersRockbutis2.5-32 SSES-FSARpredominantlyredcolored.Itisthisdominantlyredcoloraswellassedimentarystructures(roots,oscillationripplemarks;StationDF-68)whichdistinguishestheCatskillfromtheTrimmersBock.ThecontactbetweentheCatskillandtheunderlyingTrimmersRockwasmappedtherefore,atthebaseofthefirstrelativelythickreddishbrowntomaroonsandstone(Figure2.5-12,StationDF-68)orbrownishredsilstoneandmoremassivereddishbrown{maroon)micaceous,finegrainedsandstone(Figure2.5-12,Stat.ionDF-37c)AtStationJW-65(Figure2.5-12),theupperTrimmersRockconsistsoffinegrained,mediumgraysandstoneoverlainbyathinbandofgreenmudrockwhichis,inturn,overlainbyafinegrained,green,welllaminatedsandstone.Thegreensandstonegradesupwardintoafineqrained,red,welllaminatedsandstonevhichmarksthebasalunitoftheCatskill.ThebasalredunitatStationDF-37c(Figure2.5-12)isoverlainbyqreenishgray,finegrainedsandstoneandolivegreenshaleandatDF-68itisoverlainbythinlylaminated,lightgreen,siltyshaleandsiltstone.Theseunitsaresucceeded,upvard,byinterbeddedmaroonandlightolivegraytogreenishgraysandstone,siltstone,andshale(Figure2.5-12,StationsDF-37candDF-68).StratiqraphicallyyoungerunitswithintheCatskillinclude:(a)reddishbzovnmudrockandsiltymudrock,(b)brownishredmediumgrainedsandstone,(c)reddishbrowntomaroonmicaceous,finegrainedsandstone,and(d)greenishqraym'caceous,finetomediumgrainedsandstone.Sedimentarystructuresincludeintraformationalclastsofqreenshale,oscillationripplemarks,roots,andprominentcrossbedding.ThePoconoFormation,vhichoverliestheCatskill,consiststypicallyofmediumandcoarsegrain'edlightgraytowhite,rustyweatherinqquartzsandstonewiththinlayersofquartzpebbleconglomerate.Olivegray,finegrainedsandstone,reddishqzaymediumtofineqrainedsandstoneandsiltstone(Figure2.5-12,StationDF-14)andgreenishgraymediumgrained,crossbeddedsandstone(Figure2.5-12,StationDF-67)alsooccurwithinthisformation.Crossbeddingiscommon.NearthebaseofthePocono,grayishredsandstone.layersoccur.ThesevererecognizedalongtheeastsideoftheSusquehannaRiversouthofMocanaqua(StationsJW-landJW-64)andalongtheroadbetveenAldenandFolstown(StationsJW-28andJW-29).AtJW-1andJW-64,thePoconoconsistsofaninterlayeredsequenceofpredominantlymediumgray,thick,welllaminated,grayveatherinqquartzsandstoneandsubordinate,red,flaggyquartzsandstone.AtJW-28welllaminatedredsandstoneisinterlayeredwith,butdecidedlysubordinateto,welllaminated,rustyweatherinq,liqhtqray,coarsegrainedsandstoneandfinergrainedgraysandstone.Coarsetomediumqrained,mainlygrayishtoqreenishgraysandstonefeaturingrathersubtlecrossbeddingdominatetheupperportionoftheexposureatJW-29This,along2.5-33 SSES-FSARwithanunderlyingthinzoneoflightgreenishgraysandstoneinturn,underlainbyqreenshaleandmudrock,hasbeenselectedasmarkinqthebasalPocono.BeneathalloftheseunitsatJM-29,isared,welllaminated,argillaceoussiltstonewhichwehaveinterpretedasmarkingthetopoftheCatskill.1hisredsiltstonerestsuponagreenshalewhichoverliesacrossbedded,mediumliqhtgray,olivegrayweatherinqquartzsandstone.Redshale,whichmarksthebaseoftheoutcrop,underliesthequartzsandstone.Thelower(topographicallyandstratigraphically)portionoftheoutcropisdominatedbyredlithologiesincontrasttotheupperpartinwhichnoredlithologieswere'xposed.Besidestheobviouscolorchangethesandstone,abovetheinferredcontact,iscoarserqrainedandmoresubtlycrossbeddedthanthesandstonewhichoccursbetweentheredunitsnearandatthebaseoftheoutcrop.Thus,contrarytootherinterpretations(e.g.Ref.2.5-16)wesuggestthatthePocono-Catskillcontactisqradationalinthisarea,ratherthanunconformable.TheupperPoconoFormationinthevicinityofShickshinnyconsistsofmediumtolightgrayconqlomeraticsandstonewithroundedtosub-roundedquartzpebblesandshalefraqments,andrustyweatherinq,Sinetomediumgrayishgreenmicaceoussiliceoussandstone(DF-56)andfinelylaminatedgreeni.shgray,rustyweatherinq,siliceousquartzsandstone(DE-57,DF-58).Rustyweathering,mediumlightgray,mediumtocoarsegrainedguartzsandstoneisinterbeddedwiththinlayersofdarkgraysiltyshaleandmediumgrayquartz-1'ithicsandstonefillschannelsatDF-59.TheMauchChunkFormationisgenerallybrightredincolorandconsistsofmudrock,siltyshale,siltstoneandfinetomediumqrained,crossbedded,welllaminatedsandstone.TheupperpartoftheformationalongthesouthlimboftheLackawannaSynclinorium(Figure2.5-12,StationsJM-22toJW-24)ismarkedbyinterlayeredredandolivegraysandstone,siltstone,andsiltyshale.Locallythesiltstonecontainslayersofrounded,circulartoellipticalcalcitefilledvoids.ElsewheretheMauchChunkconsistsofgreenishgraytoqrayishgreenmediumtocoarsegrained,locallymicaceoussandstone,thinlylaminatedgray,finegrainedsandstoneandsiltstone(Figure2.5-12,StationDF-54)andmassivemediumgrainedsandstone(StationDF-55).ThePottsvilleandLlewellynFormationsrepresentthecoalbearingzonesoftheAnthraciteRegionandhave,forthepurposeofthisreport,beencombinedandtreatedasasinqleformation.Collectively,thePottsvilleandLlewellyn(formerlypost-Pottsville)consistofquartzpebbleconglomerateinaquartzsandstonematrix,quartzpebbleconglomerateinacarbonaceousquartzsandstonematrix,coarsegraineddarktomediumgray,massiveandflaggy,carbonaceoussandstoneandshale,darkgray2.5-34 SSES-PSARtoblacksiltstoneandcoal.Thenon-carbonaceousquartzpebbleconqlomeratedisplayscrossbeds.'Pleistoceneunconsolidateddepositsofglacialdriftblanketmostoftheregionnorthofthesite.Theyextendapproximately10milestothesouthand50milestothewestofthesite.Depositsofvariousglacialadvancesarerecognizedintheregion.Thedriftmaterialsincludeglacialtillandstratifiedwaterlaindepositsconsistingofpoorlysortedmixturesofclay,silt,sand,gravelandboulders.TheyoungestandbestpreserveddepositsarethoseoftheMisconsinanglacialstage.ThesiteliesjustbehindthePleistoceneterminalmoraineofOleandrift,depositedbetween55,000and60,000yearsago(Ref.2.5-60,Zigure4;2.5-61,plate3;and2.5-5,p.25).'.ZheOleandriftrepresentsanearlyqlacialsubstageoflatePleistocene,orMisconsinantimeandhasbeencorrelatedwiththeAltoniansubstagebySevon(Ref.2.5-62)todistinguishitfromthelaterMisconsinan,orMoodfordian,driftfarthernorth.TheOleandriftisanassemblageofcontemporaneousdriftsdepositedbyseveralicelobesthatoccurredfromNewJerseywestwardtoIndiana,believedtorepresentaregionalglacialadvanceinearlyMisconsinantime.AcorrelationchartofdepositsofearlyandmiddleMisconsinanagebyDreimanisandGoldthwait(Ref.2.5-60,Figure4)utilizinqavailableqeomorphic,lithologic,paleontoloqicandradiocarbondatashowstheOleandrifttobebetweenabout55,000and60,000yearsold;conservatively,theOleandriftmaythereforebeconsideredtobeinexcessof50,000yearsoldaccordingtothiscorrelation.DriftsrecordinglatericeadvancesinMisconsinantimearenotpresentinnortheasternPennsylvania(Ref.2.5-61,plate4),sointhisareaevidenceoftheearlierMisconsinandriftispreserved(Ref.2.5-62and2.5-63)TheleadinqedgeoftheOleanterminalmoraineisdepictedbyDennyandLyford(Ref.2.5-61,plate4)asoccurringintheSusquehannaValleyaboutthreemilessouthwestofthesite,justwestofthevillageofBeachHaven.Aheadof(downstreamfrom)thismorainearedepositsleftbyanearlierIllinoianglaciation(Ref.2.5-7,p.24);however,noIllinoiandepositshavebeenrecoqnizednorthoftheMisconsinanterminalmoraineinPennsylvania(Ref2.5-5,p.26),indicatingthatOleaniceoverrodeandreworkedapparentlyallofthepre-existinqIllinoiandrift.Nevertheless,itispossiblethatsomeburieddriftatthesiteandelsewhere,particularlythatlocatedinbedrockdepressions,mayrepresentunrecognizedremnantsofoverriddenIllinoianorearlierdeposits.TheglacialdepositsneartheSusquehannasitehavebeenstudiedinsomedetailbyPeltier(Ref.2.5-5).Hedescribes(Bef.2.5-5,p.25)thevariousfeaturesandprocessesassociatedwiththeterminalmorainenearBeachHavenHecharacterizesthe,morainic2.5-35 SSES-FSARmaterialas"aqravelmoraine..composedlargelyofpoorlysorted,coarsekamegravel,medium-grainedvalleytraingravel,andsand...Duringtheearlystaqesofkameterracedevelopment,themarqinalchannelsflowedatalevelwhichwashighabovethevalley..ContinuedablationoftheiceintheValleyprobablycausedthemarqinalstreamstoflowatsuccessivelylowerlevels.Thesestreams,wheretheyflowedalongtheice,botherodedtheearlierdepositsandfilledintheirchannels...Inthismanneranytilldepositedattheicefrontbecameburiedoreroded."Thisdescriptionoferosion.anddepositionnearthesitebyice-marginstreamsatelevationsabovethevalleyfloorisconsistentwiththedevelopmentoflargepotholesandsteeporevenundercuterosionalcontactsatthesite.Evidentlywaterfallsandlarge-volumetorrentialstreamsoccurredatthesiteduringretreatoftheearlyMisconsinanice.(AdditionaldiscussionoftheoriginandfeaturesofglacialdepositsatthesiteispresentedinSubsection2.5.1.2.3.3).Peltier(Ref.2.5-5,Figure33)profilesdiscontinuous.kameterracesalonga25-milestretchoftheSusquehannaRiverincludinqthesite.Thehighest,suchterraceformedbyastreammarqinaltoOleaniceisindicatedtooccuratabout650ft.mslatthesite(aboutmile165),orabout160ft.abovetheriver.Glacialdepositsatelevationshigherthanthis,whichwouldincludetheglacialdepositsinmostofthesitearea,wouldbepartofeithertheOleanterminalmoraineorthegroundmorainebehinditThemoraineintheBerwick-BeachHavenareaisnoncalcareous(Ref.2.5-5,p.24).Sedimentaryrocks,mostlygrayandredsandstoneandsiltstone,constituteoverfour-fifthsofthematerialinthemoraine(Ref.2.5-5,Table3).Peltier(Ref-2.5-5,p24)considersthattheremainingigneousandmetamorphictypesinthemoraineindicateitwasderivedfromtheMohawktongueofanOleanicelobeoriginatinqfromtheAdirondackareaoreastofit(Ref2.5-60,p83).UnconsolidatedsedimentsmantlemostoftheSusquehannaRiverValleywithin5milesofthesite.Thevalleydepositsconsistofqlaciofluvialdeposits(outwashalluvialterraces,kameterraces),alluviumandcolluvium.UnconsolidateddepositswereexaminedatStationsDF-4,DF-15,DF-16,DF-37,DF-42,DF-44a,DF-44b,DF-52,DF-64,andDF-66atallDJUstations.Thindepositswerenotedatvariousotherlocalities(Figure2.5-12}.StationDJU-1islocatedatacurrently(Spring,1977)operatinggravelguarryexhibitingexcellentexposures.Thisquarrycontainswelllayered,brownishqray,verycoarsesandtomediumqravelinterlayeredwithgray,medium,wellsortedgravelwithmediumtocoarsegravelandcobblelayersThisisoverlainbypebbletocobblegravelwithcoalandrarebouldersinterlayeredwithcoarsesandtomediumqravelwithlittlecoal.Thedipof2.5-36 SSES-PSARbeddinqtendstodecreaseorflattentowardthesouth.The,middlelevelcontainsmediumtocoarse,wellrounded,gravelwithcoarsesandcontaininglensesofcobblesandgravelbelowfinetomediumgravelandcoarsesandwithsomecoalrichlaminae.Theoverlyingunitisgenerallyfinergrainedanddominantlyfinetomediumsand,somesiltwithfinelaminaeofcoal.Thisunitcontainslayersofcobblygravel,siltplusfinesand,andcoarsetomediumfinelylaminatedgravelandcoarsesand;Localcoarsesandtomediumgravelpluscobblelayershavesteeperdipp'ingbedswhichappeartoflattensouthvard.Ontheuppermostlevel,tancobblygravelwithrarebouldersundertanfinegrained'sandwithcoalexhibitingpossibleloadcastsisexposedaboveslumpedmaterial.Thisisoverlainbymediumyellowbrownsiltwithlittlefinesand.Thissiltcontainsraresub-angularcobbles.Feintlayerinqisvisibleinthethicklybeddedsilt.Thedepositdescribedaboveisthe.largestgoodexposureofunconsolidatedsedimentsobservedduringthismappingprogram.Basedonsedimentology(wellsorted,roundedgravelsincontactwithwellsortedsandsorwellsortedsiltswhichappeartoindicaterapidlychanginghydraulicregimes;gravelswithintersticialsilt)sedimentarystructure(steeplydippingbeddingwhosedipflattenssouthwardordownstream)andqeographicallocation(aqainstthevalleywall);thesesedimentsareinterpretedasakameterracedeposit.Nofaultswereobservedcuttingthislayeredsequence.KameterracedepositsvereobservedattheotherDJUstations.Xcecontactdeformationvasobsrvedatseverallocations(refertoSubsection2.5.1.2.3).Ayellow-brovnsiltwithsomefinesand,occasionaltorarepebblesorcobblesvasobservedatseveral,locations(DJU-1atElevation<665feet;DJU-2atElevation+600feet;DJU-3atElevation+580feet;DJU-4atElevation>595feet;possiblyatDJU-7atElevation+640feetoverlainbycobblygravel;and'F-15atElevation+1040feet).Thesedepositshavebeeninterpretedasloess(Ref.2.5-5)butmayrepresentrelativelyquietfluvialconditionsMellroundedcobblyqravelsobservedatDF-52andDJU-5mayrepresenteithervalleytrainorkameterracedeposits.2.5.1.2.22Lithol~ogandStratigr~a~hattheSiteAtthesite,thethicknessofthesurficialmaterialsoccurringsouthofcoordinatelineN342,000,vhichincludesalloftheprincipalplantstructuresexceptthespraypondfacilities,rangesfromzerotoabout40feet.Thesematerialsconsistoftillandkameoutvash,typicallygradingupwardfromabasal2.5-37 SSES-FSARgravellyboulderzonetoa'urfacelayerofsiltyfinesandandsandysilt.Thesurfacelayermayrepresentreworkedloess.Rockfragmentsinthegravellyoutvasharewellroundedandareconposedmainlyofhard,wellcemented,-whitetobrownorredsandstonesofvarioustextures.Nocalcareous'raqmentswerenoted.Inplaces,the'sandsand'ravelscontainminoramountsofanthracitegrainsandroundedanthracitepebbles'pto'footindiameterTheseanthracitefragmentscannothavebeentransportedless.than3-1/2milesfromShickshinny,thenearestoccurrenceofcoalbeds.Inthespraypondareainthenorthernpartofthesite,permeable,qravellyoutwashandalluvialmaterialfillaneast-westbedrockvalleytodepthsinexcessdf100feet.Cobbleandboulderpocketswereencounteredatvariousdepthsinmostoftheboreholesdrilledinthislocality.Thedepositisglacialinorigin,possibleinpartpre-glacialand.overriddenbyice,andreworkedbywaterderivedfromablationoftheicemassinthemannerdescribedhyPeltierItconsistsofsequencesofsand,gravelandboulders,overlainbysindandgravel,overlaininturnbysandandsiltysandageologicmapofthesurficialmaterialsexcavatedinthespraypondareaispresentedonFigure25-15Bedrockatthesite,isin,theupperpartoftheHiddleDevonianHahantanqoFormation,exceptfor,astripalongthenorthernmarginofthesite.Theuppermostmemberoftheformation,vhichformsthetopofrockintheeast-vestbedrockvalleynorthofaboutN342,000,isadarkgray,noncalcare'oussiltstoneinvhichbeddingisgenerallydelineatedbythin,inconsistent,light-gray,fine-grainedsandstonestringers.Upwardandwithincreasingsandcontent.theHahantanqoFormationgradesintotheTrimmersRockFormation,vhichoccursnorthofaboutN342,500atthenorthernedgeofthesite.TheTrimmersBock,agrayfine-@rainedsandstonewhichcapsthehigh,northeast-trending.ridgenorthofthesite,ismassivetoflaqqyandexhibitswell-developed)ointsystems.Beneathitsuppermostmember,theHahantanqoiscomprisedof120to150feetofhard,darkgraycalcareoussiltstone.Itisharderandmoreresistanttoerosionthantheuppermostmember,forming.theeast-vesttrendingbedrockridgegustnorthofthereactorlocation'ndunderlyinqthesitetopastthesouthernlimitofthesiteareaTheprincipalplantstructuresarefoundedonit.tThesetvouppermembersoftheHahantangoFormationaresimilarinlithologyandoccuratthesamestratigraphicpositionastheHarrellshaleandunderlyingTullylimestone.However,thecharacteristicfossilsoftheTullyarenotpresentinthesiteareavhichrequirethesememberstobeassignedtotheHahantangoFormation.REV311/7825-38 SSES-FSARAsexposedinthefoundations,theunweatheredbedrockisadarkgray,massivetothickbeddedslatysiltstone,homogeneousinappearanceandlackinqthebeddinqplanefissilitythatisnormallyassociatedwithlesswellinduratedshalyrocks.Therockalsoexhibitsavariablydevelopedslatycleavageorfracturecleavage,furtherindicationofitsinduratednature.Typicallytherockisslightlycalcareousandhasintermittentfossiliferouszoneswhichdisplayimpressionsofbrachipods,crinoids,corals,'bryozoaandtrilobites.Scatteredveinletsandjointfillingsconsistofwhite,crystallinecalciteoramixtureofcalciteandquartz.Therockweatherstoabrowncolor,withirorioxidestainsonjointandcleavaqe'surfaces.Meatheringprogressesinitiallybydissolutionofcalcitefromjointandfracturefillings,followedbymorepervasiveweatherinqoftherockmassandrefillingofjointsandveinletswithclayandotherweatheredmaterial.Advancedweatheringonexposed,naturalsurfacesevidentlyproceededmainlyalongcleavageplanes,sothatonwellweatheredoutcropstheplatycleavagefabricdominatesgreatlyoverjointingorbedding.Lackofsignificantweatheringoftherocksurfaceisoftenassociatedwithareaswherethereisevidenceofconsiderableglacialscourorfluvialerosionoftherock.AdditionalinformationontheengineeringcharacteristicsofthebedrockatthesiteisgiveninSubsection2.5.1.2.5.2.51.2.3StructuralGeoloqprThemajorstructuralfeaturesinthevicinityofthesitearetheBerwickAnticlinoriumandtheLackawannaandEasternMiddlesynclinoriawhicharediscussedinSubsection2.5.1.1.3StructurallythesiteissituatedslightlynorthoftheaxisoftheBerwickAnticlinorium.Theterm>>anticlinorium>>asusedhereinisdefinedasaseriesofminor,intermittentanticlinalstructuressoarrangedthattheyformageneralarchoranticline.virtuallyallstructuralelementsinthesiteareaarerelatedtoPaleozoiccrustalcompression.Theseelementsincludekinkbandswhichoccuronallscales(Ref.2.5-31and=2.5-32)andmostlikelyaccountfortheBerwickandLackawannafolds,contraction(reverseandbedding-plane}faults,andsmallscaleflexuralslipfolds.Thesestructuresoccuronallscales(e.g.,Ref2.5-30and2.5-31).Whereexposeditcanqenerallybeinferredthatthesmallscalekinkbands,contractionfaults,andflexuralslipfoldsarecogenetic,developedearlyinthetectonichistoryandwererotatedbylater,larqerscale,geneticallyrelatedfolds.25-39 SSES-FSARForexample,atStationJW-3(Figure2.5-12)beddingstrikesN700-75~Eanddips70-75~NM.AreversefaultstrikesN80oE,dips70>NNM,anddisplaysslickensideswhichrake85~inthedirectionS80~M.Theaxisoftheassociateddragfoldplunges15~inthedirectionN850E.TheenvelopingbeddingonasmallkinkfoldatthissameexposureisorientedN70~E:70~NMandthekinkbandisorientedN68E:600SE.Similarly,atStationsDF-,34andDF-55thegeometricrelationsamongcleavage,faultingand.foldinqstronglysuqqestthesestructuresareallcoeval.Likethefolds,contractionfaultsalsooccuratdifferentscales.Atleastsomeofthelargerfaultsappeartohavedevelopedinresponsetoaspaceproblemcreatedbythedevelopmentoftightlyappressedfolds.AnexampleofthisisnotedatStationJM-30,wherethestrainenergyassociatedwithatiqhtkinkfoldwasreleasedalongonefairlylargereversefault(whichparallelsbeddingonthehangingwallandcrosscutsbeddinqonthefootwall)andseveralsmallerfaultswhichstrikeparalleltothelargeroneyetdipintheoppositedirection.AtJM-30bedding,thekinkfoldandtheassociatedfaultsallshownearlyparalleltrends;slickensidesonthefaultsandbeddingsurfacesdeformedbythekinkbandrakeapproximately90~.SimilarobservationshavebeenmadeelsewhereintheFoldandThrustBelt(ValleyandRidgeProvince)and,asdescribedbyFaillandNickelsen(Ref.25-31),allofthesestructuresarekinematicallycongruent,i.e.,cogenetic.Besidestheaforementionedstructures,localevidenceoflateralmovementwasrecognizedalongthenorth-southsegmentoftheSusquehannaRiveratStationsJW-3andJM-60.AtJM-3~slick'ensidesrake20~inthedirectionS05~EonasurfacestrikingN05~Wanddippinq70~MAtJW-60,slickensidesrake20~inthedirectionS100MonasurfacestrikingN100Zanddipping50oE.Thismovementappearstoberelatedtocrossfaultingin.whichcaseit,too,wouldbecoqeneticwiththeotherstructures(Subsection2.51.1.3).Xnanycaselateralmovementalongthisseqmentoftheriverwastoosmalltoproduceanyperceptibledisplacementonthemapscaleof1:24,000.AsindicatedinSubsection2.5.1.1.3,allofthesestructuralelementsdevelopeddurinqtheLatePaleozoic.Noevidencewasobservedinoutcropswithinfivemilesofthesitewhichwouldsuggestthattheyhavebeenactivesincethattime.Minorstructuralfeatureswere'bservedinPleistocenesedimentatafewlocationsinthesitevicinity.Twosmallfaults{exhibitinq18inchesand2.5inchesofverticalseparation)wereobservedatthemarginofanapparenticemeltcollapsefeatureinkameorkameterracedepositsatstationDF-47.Asymmetric,reclinedfoldsinunconsolidatedsandandsiltwereobservedatstationsDJU-3,DJU-7,DF-7andDF-47(Figure2.5-12).AsmallscalefaultorientedN30-35E:73-75SEwithappzoximately2mmof2.5-40 SSES-FSARdipslipseparationoccursatDJU-9.Thisapparentreversefaultdiesoutupward.Acoalbearinqsandwhichliesabout6cmabovetheobserveddisplacementisnotdisturbed.Similarfeaturesatthesitehavebeenrelatedtosyndepostionalslump,differentialcompactionandicecontactphenomena{Subsection2.5.1.2.3.3).2.5.1.2.32GeolocpicStructuresattheSiteDuringpz.econstructionexplorationatthesite,geologicstructuresinthebedrockatthesiteweredefinedandevaluated.Sincebedrockexposuresatthesitewerescarce(seeFigure2.5-17),mostofthisinformationwasobtainedfromboreholecores,supplementedbygeophysicalloggingofboreholes,seismicrefractionsurveys,cross-holeanddown-holemeasurements,testpitsandtrenches,andgeologicmappingofthesurface.Presentedhereinisasummarydiscussionofthegeologicstructuresatthesiteasdefinedfromthepreconstructionexploration,followedbyadescriptionanddiscussionofthegeologicstructuresthatwereobservedintheexcavationsfortheprincipalplantfacilitiesTheprincipalstructuralfeaturesinbedrockbeneaththesiteareshownonFiqure2.5-18.Theaxisofaminoranticlinecrossesthesitegenerallyalonqtheeast-vestbaseline(approximatelyN341,700).Tothenozthofthisbaseline,thestratadiptothenorthatbetween20degreesand35degrees.Southofthebaselinedipsaretothesouthatbetween5degreesand15degrees.ThepredominantstrikeofthestrataisN75E.Theprominentjointdirectionsareparallelandperpendiculaztothestrikeofthestrata.Themajorjointsstrikeparalleltobeddinq.Thisjointsetisnearlyperpendicularanddipsoppositeindirectiontothedipofthebeddinq.Amoreopenbutlessfrequentseriesofverticaljointsstrikesparalleltothedirectionofdipofthestrata.Highanglejointshealedbysecondarycalciteandquartzmineralizationarepresentinthevicinityofminorshearzones.Themostprevalenttypeofrockdisplacementsoccurringinthereqiongenerallyazelowanglethrustfaults.Ithasbeenindicated(Ref.2.5-21)that.manylowanglethrustsshearupwardthrouqhcompetentrocksutilizingincompetentstrataasglidezones.Smallshearplanesthatstepstratigraphicallyfromoneshale-siltstonelayertoanotherbyshearingacrossinterveningsandstoneorconglomeratestratahavebeenreportedexposedinnumerousroadcutsandstrippits(Ref.2.5-21)BasedoninterpretationofinitialdataobtainedforthePSARfrom100and200seriesborings,particularlythoselocatednearcoordinatelineE2,442,400{locationofSectionA-B,Figure2.5-2.5-41 SSZS-FSAR22),twoareasofminorshearingwererecognizedatthesite;namely,oneinthevicinityofN341,200,slightlyeastofthereactorfacilitiesandtheotherinthevicinityofN342,700.Theevidenceofshearingismanifestedby.thepresenceofslickensides,calcite-healedgashfractures,andbrecciazones.Theshearsareofthelow-angletypegenerallyparalleltothebeddingandaremechanicallyassociatedwiththeforcesthatactedtoproducethefoldingofthestrata.TheshearzonewhichoccurstothenorthofN342,600ischaracterizedbyaseriesofbeddingplaneslipsassociatedwithbreccia,slickensides,thinclayseams,andnumerousfractures.TheshearzoneiscontainedwithinthelesscompetentuppermemberoftheNahantangoFormationandthelowerportionoftheTrimmersRockFormation.Theshearzoneprobablyterminatesat.depthinthemorecompetentcalcareousmemberoftheMahantango.Noevidenceofdisplacementwasencounteredinthemainbody,ofthemorecompetentstrataofthecalcareousmemberoftheNahantanqoFormationbetweenN341,950andN342,600.Thestressesthatactedonthesestrataweretakenupbythedevelopmentof.jointsandfracturecleavaqe.Detailedinspectionoftherockcoresextractedfromthisarearevealsmicroshearoffsetsalongthecleavaqeplanes.Theneteffectofthismechanismistothickenthestrataasrevealedhythestackingandshorteningofsandystringers.Thecleavageplanesaregenerallyhealedbysecondarylithificationoftherockmatrix.ThecontactbetweenthetopoftheMahantangoFormationandthebaseoftheTrimmersRockFormationwasencounteredinborings117,108,122and126,alllocatednorthofN342,550.Detailedexaminationofbeddingplanescbservedintherockcoresfromtheseboringsindicatedthatthedipofthestrataincreaseswithincreasinqdepth.Thisisconfirmedbyboreholegeophysicaldata.Thenumerousbreccia,slickensides,thinclayseamsandfracturesencounteredinborinqs122and126,andtoalesserextentinborinq108,representazoneofenechelonshearplanes,bothparallelandsubparalleltothebedding.Theseshearsarerelatedtotheoriginaltectonicstresseswhichproducedtheregionalfoldinq.ApetroqraphicexaminationoftheclayandrockencounteredinsomeoftheseboringsinthenorthernpartofthesitewasconductedbyDr.CharlesThorntonofPennsylvaniaStateUniversity.Theexaminationindicatedthattherockandclayinthebrokenzonesweremineraloqicallysimilartotheintactrockobtainedfromthecoreaboveandbelowthebrokenzones.Sincenosecondarymineralizationwasencounteredinassociationwiththeclayandbrokenrock,itappearsthatthisconditionwasmechanicallyinducedandisnotaresultofchemicalalterationand/orweathering.25-42 SSES-FSARInthesecondareaofminorshearingidentifiedabove,evidenceofstructuraladjustmentwhichmaybecalledashearzoneispresentasslickensidesandhealedbrecciaatvariousdepthsinborinqs125,127,132and103asindicatedonthesubsurfacesection(Figure2.5-21)~andinborings100,217andtoaminorextentin105perpendicularto-thesection.Theseboringsareintheareaadjacenttoandimmediatelyeastofthereactorfacilities.Basedonthisevidence,thiszoneofstructuraladjustmentstrikeseast-notheastanddipssoutherlyatapproximately10degrees.Ifthiszoneofstructuraladjustmentextendednorthwardbeyondboring102,ithasbeensubseguentlyremovedbyerosion.Detailedinspectionofthemicrostructueintherockcozeextractedfromtheboringsatthesiterevealshear-foldstructuralrelationshipssimilartothoseencounteredonalargerscaleacrossthesite.Thedisplacementsobservedintherockcorearecompletelyhealedbysecondarycalciteandquartzmineralization.Itisprobablethatthebedrockatthesiteservedasaninterveningbufferoradjustmentzoneduringtheregionalfoldingofthestrata.StressesthatformedtheBerwickAnticlinoriumandsynclinalstructuresappeartohavebeenabsorbedwithintherocksofMahantanqoandunderlyingHarcellusformations,asflexuralslip,disharmonicfoldinqandglidethrustinqThestressesthatverenecessarytoproducethesestructuralfeatureswerecompressionalfromthesoutheast.ThesestructuralfeaturesvereformednolaterthanthecloseofthePaleozoicEra,approximately200millionyearsaqo.Basedonthoroughconsiderationofalltheinformationprovidedbythepre-constructionfoundationexploration,itwasconcludedthattheminorstructuralconditionsobservedatthesitearenotofsiqnificancewithrespecttositingordesiqnfortheuseofthesiteforitsintendedpurpose.Anevaluationofsubsequentdataassembledfromadditionalboringexplorationandfromqeoloqicmappinqofthefoundations,confirmstheinitialconclusion.Duringexcavationandclean-upoftherockatUnit1reactorandturbinefoundations,atthecirculatinqwaterpumphouse,andalongthetrenchforthehotwaterintakepipelinetoUnit1coolinqtower,abeddingplaneshearshowingstronqslickensidesvasuncovered.Thisbeddingplaneshearisthesameshearplanethatwasidentifiedintheearlyphasesofthesiteexplorationandishereinreferredtoas"beddingplaneshearA"(refertoFigures2.5-18and2.5-19)2.5-43 SSES-FSARInthenortheastcorneroftheUnit1reactorfoundation,beddingplaneshear"A"strikesN85~Eanddips7~SE.Thesurfacesofthebeddingplanecontain1/4-inchto3/4-inchthicklaminaeofcalcite,siltstoneandsomequartz.Thecalcitelaminaeareapproximately1/16-inchthick,alternatinqwiththinnersiltstonelaminae.TheentireexposedareaofthisbeddingplanecontainsprominentslickensidestrendinqN30~to40~M,witha6oto7~SEplunge.Up-dipandclosertotopofrock,thebeddingplanecontainsa1/2to1-inchwide,iron-stainedzone,anditalsoshowsextensiveleachingofthemineralsfillingtheshearInplaces,theadjacentrockisweatheredtoagranular,sandysoil.ThecalcitewhichfillsthebeddingplaneshowsnosignofcrushingTheweatherinqandstainingonthebeddingplaneshearoccursonlyneartopofrockwheresurface,waterandgroundwatercouldpenetratealongtheplane;atfoundationgradewhichiswellbelowtheweatheredzone,theunweatheredlaminaehavethepropertiesoffirmrock.Inplacesthebeddingplaneshearisapparentlynotaprominentfeatureintheunweatheredrock.Forexample,itwasidentifiedonlyasaslickensidesurfacewithassociatedjointinqinborinq105andashorizontaljointingplanesinborinq351(geologicsectionE-E~,onFigure2.5-19)JAsecondessentiallyparallelbeddingplaneshearstrikingN75~Eanddippinq7~SEwasexposedinthetrenchforthecirculationpipe,attheinteresectionofcolumnlines19andG.Slickensidestrending.N30~Wwitha7oSEplungearealsoexposedonthisplane.Thesurfaceiscoatedwitha1/8to1/4-inch-thicklayerofunweatheredcalcite.Thisshearplaneisdesignated'~beddingplaneshearB"onFigure2.5-18AlthoughsimilarinappearancetobeddingplaneshearAatthislocation,apparentlythisshearismorerestrictedinarealextent,becauseitwasnotrecordedonthelogsofnearbyboreholes.norwasitmappedintheradwastefoundationareawhereitshouldhavebeenexposedifithadcontinuedthatfarnorth.Itprovedpossibletocollectintactsamplesfromtheshearedportionofbeddingplaneshear"A"formoredetailedanalysis,includinqpetrographicthinsectioning.Themineralizationalongthebeddingplaneconsistsofthin,parallelbandsofinterqrowncalciteandquartz.Thebands,0.5to5.0mmwide,areseparatedbythin.filmsofdarkshalymaterialonwhichslickensidedstriationscausedbyshearinghaveformed.Withinthebands,themajorityofguartzqrainsshowsrecrystallizationintointerlocking,strain-freeqrainsupto5mmlong,butbecomingcryptocrystallineinthethinnerbands.Theserelationshipssuggestthatthequartz-calcitemineralizationwasnotalate,post-tectonicoccurrence,butratherwasprobablyintroducedinassociationwithshearinq,whichisknowntohavetakenplaceattheendofthePaleozoic(refertodiscussionattheendofthisSubsection25.1.2.3.2).UndeformedmicroscopicveinletsofcalcitecanbeobservedtocutacrossthebandsatnearlyrightanglesTheseveinletsarenotthemselvesoffset,andtherefore25-44 SSES-FSARconstitutemineralizationthathasnotbeencrushedordeformedsinceitsdeposition.SimilarinstancesofundeformedcalciteveinletscrossingslickensidedbeddinqplanesareobservedonameqascopicscaleinthesiteexcavationFigures2.5-20athrough2.5-20qillustratesuchoccurrencesBeddinqplaneshear>>A>>wasmappedintheexcavationswestwardfromthenortheastcorneroftheUnit1reactorfoundationtothewestslopeofthecirculatingvaterpumphouseexcavation(Figure2.5-18).XtwasalsoexposedinthetrenchfortheUnit1coolingtowerhotwaterintakepipingandintwopedestal(No.6andNo.7)excavationsforthetoweritself.Althoughitdisplaysminorundulations,theaveragestrikeofthebeddingplaneshearisclosetoN850Eeastvardfromtheturbineandreactorfoundations,approximatelyparalleltotheaxisoftheminoranticlineatthesiteandtotheregionalstructuraltrend.NeartheUnit1coolingtower,thebeddingplaneshearstrikesaboutN70oE,consistentvithmeasuredbeddingattitudesinthatarea.Representativedipmeasurementsontheshearplaneinthefoundationsvere.between5~and8oS,whichisparalleltothedipofbedding.ThetrendoftheslickensidelineationonthisbeddingplaneshearacrossthefoundationarearangesbetweenS100EandSPODE,mostbetweenS20~EandS30~E,adirectionconsistentwithregionalnorth-northvestcompressionduringfoldinq.Drillholedatawereutilizedtoprojectbeddinqplaneshear>>A>>down-dip.GeologicsectionsE-E'ndF-F'nFigure2.5-19shovprofilesoftheshearthroughthereactorandturbinefoundations.Thesourceofdatafortheeprofilesisfromfoundationgeoloqicmappingandelevationsurveys,supplementedbysubsurfacedatafromtheboringlogs.Ztisevidentthatthefoundationmappingandboringlogdataareinverygoodagreement,andthattheminorshearzoneoriginallyidentifiedinthisareafrom'exploratoryboringsisidenticaltothebeddingplaneshear>>A>>identifiedduringconstruction(seeFigure2.5-21,vhichvaspreparedbeforeexcavationfortheplantstructuresbeqan).Althoughthisfiguresuggeststhatbeddingplaneshear>>A>>maynotbecompletelypara.lleltobedding,noevidencewasfoundduringlaterexplorationandexcavationtoindicatethattheshearplanetransectsbeddinqBeddinqplaneshear>>A>>canbetracedupdipalongtheUnit1hotwaterintakepipelinetrenchtotheexcavation'forUnit1coolingtowerpedestals6and7,wheretheshearplanecrossestheaxi"oftheminoranticlinethattrendsthroughthesiteAtpedestal6vhichvasexcavat'edtoElevation667feet,theveatheredbeddinqplaneshearvasexposedanddipsgentlyscuth,conformabletobedding(Fiqure2.5-18)Attheadjacentpedestal7whichvasexcavatedtoelevation668feet,thesameweatheredbeddinqplaneshearwasagainexposed,buthereitdipsgentlynorth,aqainconformabletobeddingAttheselocationsthe25-45 SSES-FSARweatheredshearistwotothreeinchesthick.Whereunveathered,theshearistightlyhealedvithcalciteandquartzmineralization;vhereweathered,thesemineralshavebeenpartiallyremovedandreplacedwithclaylikematerial.Aroller-bitprobemadeduringtheUnit1coolingtowerfoundationexplorationrecordedathinseamofsoftrockinthevicinityofpedestals8and9ataboutelevation662feet,whichvasprobablyapenetrationofbeddinqplaneshear<<A<<,and,togetherwithmeasuredbeddingattitudes,revealsacontinuationofthenorthwarddipoftheshearplane.Westandsouthofthecirculatingwaterpumphouse,undulationsinthebeddingareevidencedbylocalnorthwarddipsof5to10degreesElevationsatwhichshearsvereintersectedbyboreholes318,321andB-5suggestthatbeddingplaneshear<<A<<closelyparallelstheundulaticnsofthestratainthisarea.ThesestructuralrelationshipsareshovninprofileingeologicsectionG-G~onFigure25-19.Thefactthattheshearplaneisfoldedinconformancetolocalstructuredemonstratesthattheshearplaneoriginatedbeforeorduringthetimeoffoldingandeffectivelydatesitsformationat200millionyearsagoorearlier,whichistheminimumaqeofAppalachiandeformationintheregion(RefertoSubsection25.11.3andthediscussionattheendoft'hisSubsection2.5.1.2.3.2).Otherslickensideswererecordedonmanyjointplanesatthesite,particularlyonlov-anglejointplanes.Mostoftheseslickensidesplungesoutheast.Thegeologicmap(Figure2.5-18)shovsthesemeasurements.Numerousslickensidedjointplaneshadbeenrecordedinbedrockcoresintheearlystagesofthesiteexplorationseeboringlogs,holes100-132and210-219,Figures2.5-23athrough2.5-23t);theywerealsoobservedinrockremovedduringfoundationexcavation.Manyoftheselow-angleslickensidedjointplanesarecalcite-coated,andsomeareundulatoryinformratherthanplanar.Theyverenotedinsomeinstancestosplayoutfromthemoreprominentbedding-planeshearsdescribedabove.Evidently,differentialmovementwhichoccurredprincipallyalongbeddingplaneswastransmittedlaterallytotheencompassingbedrockmassalonqthesebifurcatingslickensidedjointsorshearplanes.Suchslickensidesandshearsshouldbeexpectedinvievofthetectonichistoryandthenatureofdeformationvhichtheregionhasunderqone.Siqnificantly,regardlessoftheorientationoftheplanesonvhichslickensidesoccur{whethertheydipnorthorsouth),thetrendoftheslickensidelineationisalmostinvariablyinthenorthwest-southeastquadrant,clusteringN20-35~8{orS20-35~E).Thisdirectioniscompletelyconsistentviththenorthwesterly-directedtectoniccompressivestressthatproducedtheregionalfoldinqandthrustfaultinqdurinqtheAppalachianorogeny,and.isfurtherevidencethattheslickensidesthatoccuratthesiteareqeologicallyold;thatis,theyoriginatedover200million2.5-46 SSZS-FSAByearsaqo.Theirconsistentorientationsuggestsdeformationdurinqasinqletectonicepisode,ratherthanrecurrentdeformationatdifferenttimesingeologichistory.Beddinqplaneshear>>A<<intersectsthetopofbedrocksurfaceinthedieselqeneratorandUnit1turbineandreactorarea.Duringexcavation,tvoexposuresofthisintersectionvereexaminedtodeterminethenatureofthiscontact(exposuresatintersectionsofgridlineN341,400withcolumnlineGandwithcolumnlineN(Fiqure2.5-18),andphotographs(Figures2.5-20bthrough2.5-20e)veretaken.Glacialdepositsoverlaytherockatthesepoints.Ineachcasetheerodedrocksurfacewascontinuousacrossthetraceofthebeddinqplanewithoutdisplacementoroffset.Ifdisplacementhadoccurredsubsequenttoerosionoftherocksurface,thiswouldbeapparentasanangular,sharpprojectionofrockintotheoverlyingglacialdeposits;instead,therocksurfaceacrossthetraceofthebeddingplaneissmoothedbyerosion.Figures2.5-20bthrough2.5-20dshovthisrelationship.Intheareanorthofthisintersection,thebeddingplaneshearhadbeenerodedavay,thusconfirmingtheoriginalevaluationbasedonexploratoryborings(comparegeoloqicsectionE-E~,Figure2.5-19vithgeologicsectionB-C,Figure2.5-21).Theerosionoftherocksurfacewouldnecessarilyhaveoccurredpriortcthedepositionoftheoverlyingglacialdeposits,whichhavebeenestablishedasbeingmorethan50,000yearsold(refertoSubsection25.1.221).Consequently,thisrelationshipshowsthatanydisplacementalongbeddingplaneshear>>A<<occurredmorethan50,000yearsago.Actually,regionalrelationshipsplusthefacttheplaneisfoldedindicatethatanydisplacementsarearesultofthetectonicforceswhichoccurredpriortothelateTriassic,over200millionyearsago.Thus,theoriginalpreconstructionappraisalofshearswhichoccuratthesiteasreportedinthePSARremainsthesame.TheseminorshearsandstructuralconditionsareconsistentwiththemodeofdeformationwhichoccurredduringtheAppalachianoroqeny,over200millionyearsaqo.Theyarenotsignificanttotheplantsiteortotheoperationoftheplant.Clea~vae.Secondarycleavageisvariablyasdevelopedintherockexposedatthesite;insomeplaces,suchintheslopesoftheESSMpipetrenchnorthofthecirculationwaterpumphouseandinpartsofthecoolinqtowerareas,itformsthedominantstructuralfeatureoftherock,bothonfreshandonweatheredexposures.Thestrikeofthecleavageisorientedeast-northeast,approximatelyparalleltothetrendofthemajorfoldaxes,anddipswithvariablesteepnesstothesouth,butgenerallyintherangeof40-800.Wherethedipofthecleavagelocallybecomesfairlyshallow,suchasalongtheeasternperimeterofthesouthcoolinqtower,itissometimesdifficulttodistinguishcleavageplanesfrombeddingplanes.Thefact25-47 SSES-FSABthatthecleavageisobliquetobeddinqdemonstratesitssecondaryorigin,apparentlyduringtheepisodeofregionaltectonicdeformation,200millionormoreyearsagoJointsandFracturesJointingintherockexcavatedforfoundationsisfairlywelldeveloped.Figure2.5-18mapstheprincipaljointsencounteredatfoundationgrade,vhichisatasufficientdepthbelowtopofrocktobeinessentiallyunweatheredmaterial.Herejointsaretightandeitheruncoatedorcoatedvithcalciteoramixtureofquartzandcalcite.Relativelyfewjointsatfoundationlevelcontainedsignificantironstaining;someiron-stainedjointsaremappedintheradvastefoundationarea.Towardthesurfacethesejointsqenerallybecomemoreheavilyiron-stainedwithgreaterdegreeofveatherinq,andcalcitecoatinqstendtobeleachedout,resultinqinopenjoints,injointspartlycoatedwithquartzorinclay-filledjointsinthezoneofweathering.Themostabundantjointsetintheprincipalfoundationsarea{Figure2.5-18)strikeseast-northeast(N60~-85>E)~roughlyparalleltothemajorreqionalfoldaxesandtotheseccndaryfoldaxisatthesite.NorthoftheanticlinalaxisatN341,300,thesejointsstrikeN70-85~Eanddip,withsomeskatteraboutthevertical,75oS-75~N,most850S85N.SouthofN341~100similarbutmorenumerousjoints,showndiaqramaticallyonFigure2.5-18,strikeN500-60oE,dipuniformly500-600SE,andappeartocompriseadistinquishableset.Lessnumerousbutguiteprominentjointswithasimilareasttoeast-northeasttrenddipgentlynorthwardat10~-180andarebestrepresentedalongthevicinityofcoordinatelineN341,200.Otherdominantjointsetsaresteeplydippingtoverticalnorth-northwesttonorthwestjoints,andnorth-southjoints.Dipsinbothsetsareusuallygreaterthan700withbotheastandvestdipsrepresentedalthoughthemajorityofthosemeasureddiptowardthewest.Manyjointsarefilledwithwhitecalciteoramixtureofcalciteandquartz,butthereappearstobenopreferentialorientationforthesefilledjoints.Thelov-anqlejointsarecommonlyslickensided(discussedabove).Intheturbinebuildingexcavation,tvovertical,calcite-filledjointscutacrossbeddinqplane"B"Thecalciteintheseverticaljointsiscontinuousacrossthebeddingplanewithnooffset,showingthatthejointsvereformedandthecalcitewasdepositedinthejointssubsequenttothedevelopmentoftheslickensidesonthebeddingplane.Photographsweretakenofthisexposure(Figures2.5-20ethrouqh2.5-20f).Inadditiontotheseprincipaljoints,high-angle,discontinuous,whitecalciteandquartz-calciteveinletsaretypicallyexposedlocallythroughoutprincipalplantfoundations.Theseveinlets25-48 SSZS-FSARprobablyrepresentfracturesthatoriginatedduringLatePaleozoictectonicdeformation.Theytendtooccur.mostabundantlyinthevicinityofbeddingplaneshears(discussedbelow)andassuchmayhavearisenasgashfractures,asforexampletheveinletsmappedinthevicinityofN341,350-E2,441,550(Figure2.5-18)Atthissamelocationisasingularoccurrenceofnumerousvest-dippingopenvugsandseamsuptoseveralincheswidecontaininqundeformed,euhedralquartzcrystalsupto2incheslongTheseseamswerehereexposedseveralfeetaboveabeddingplaneshear(seedescriptionabove).Chunksofloose,coarselycrystallinewhitecalcitealsooccurinthevuqs.Itisevident'thatthesevugshadoriginallybeenrelativelywide(upto5inches)gashfracturescontainingacoarselycrystallinequartz-calcitemineralfilling;latertherockweatheredandthecalcitewasselectivelydissolvedbycirculatinggroundwater(RefertoSubsection2.5.12.5.1).Bedrock~ConfiurationattheSite.Figure2.5-77,auapshovingtopofrockcontoursatthesite,illustratesthegeneraloriginalconfigurationofthebedrocksurface.Itisevidentthatthemajorerosionalfeatureofthissurfaceisaburied,east-vestbedrockvalleyinthenorthernpartofthesite,includinqthespraypondlocation.Hereglacialorpre-glacialerosionhasincisedthebedrocksurfaceapproximately100feetbelowtheqeneraltopofrockelevationstothesouth.Indetail,thebedrocksurfaceisveryirreqularduetotheactionofglacialpluckinqandsubsequentglacio-fluvialerosion.Thelargepotholeover30feetdeepand30feetwidewasfoundintheUnit1turbinebuildingexcavation;othersmalleronesalsooccuratthesiteAdditionaldiscussionoferosionalfeaturesinbedrockatthesiteispresentedinSubsections2.512.1and25.12.33RelationofSite~GenicicStructuretoRegionalStructure.Geoloqicmappingatthefoundationexcavationsfortheplantstructures,togetherwithsubsurfaceboreholedata,showsthatbeddingplaneshear"A",theonlyshearplanetraceableacrossasiqnificantpartofthefoundationsareais,withintheaccuracyofthedata,paralleltobeddingandfollows,thefoldswhichthebeddingdefines,indicatingthatthebeddingplaneshearwaseitherformedpriortofolding,or,morelikely,developedinconjunctionwithfolding(refertogeologicsectionG-G~onFigure2.5-19).Therefore,knowledqeoftheagecffoldingwouldprovideaminimumdateoforiginofthebeddingplaneshearsexposedatthesite.Withthatobjectiveinmind,theliteraturewasexaminedfirsttodeterminewhetherornotthestructuresofthesiteareconsistentwiththereqionalstructureandsecondtodateasaccuratelyaspossibletheageofdeformationTheattitudeoftheshearedbeddingplanesandthetrendoftheslickensidesontheplanesmaybecomparedtothenearestmajortectonicstructure(TheBerwickAnticlinorium)tothesitethat25-49 SSES-PSARisanobviousandconsistentmemberofthepatternofregionaldeformationintheValleyandRidqeprovince.Thestrikeoftheshearedbeddingplanes(N75~-85~F)areessentiallyparalleltotheaxisoftheBervickAnticlinorium(N75>-80>E)immediatelysouthwithcompressiveforcesfrom,,thesoutheastwhichcausedthefoldinqintheregion,andoftheBerwickAnticlinoriuminparticular.TheBerwickAnticlinoriumisoneofaseriesoffoldsinthePennsylvaniaValleyandRidgeProvinceXtislocated,inthenorthwesternpartoftheprovinceneartheAlleghenyplateauRocksinvolvedinthisdeformationwithintheValleyandRidgeprovincerangeasrecentasPermianinaqe,and"theintensityofdeformationincreasestovardthesoutheast-frombroad,gentleopenfoldingattheAlleghenyfronttooverturned,recumbentfoldsandnappescomplicatedbythrustfaultingattheBlueRidge.AmdtandMood(Ref.2.5-64)haveclassifiedthisprogressivedeformationresultingfromcompressivestressesoriginatingtothesoutheastintoanumberofstaqes,eachstagebeingcategorizedbyeffectsofsuccessivelymoreintensedeformation.Thus,theeffectsofdeformationveretransmittedvithtimenorthwestwardoveranincreasinqlygreaterdistance,anddeformationactedatanyonelocalitywithincreasinglygreaterintensitywithtime.Itfollowsthat"theareasofmostcomplexstructurestothesoutheastunderventeachofthefirstfourstagesofdeformation,whereastheleastintensivelydeformedareatothenorthwestvassubjectedonlytothelastorogenicforceandcontainsfeaturescharacteristicofonlythefirststaqeofdeformation<<(Ref.2.5-64).Thefirststageofdeformationischaracterizedbyhorizontalstratacastintobroad,openfoldswithoutsignificantthrustfaultinq.Thesecondstage,whichcharacterizestheareainwhichtheBerwickAnticlinoriumislocated,exhibitslov-anglethrustinqandimbricatefaultingfollowedbyformationofsubsidiaryfoldsonthelargerfoldstodevelopanticlinoriaandsynclinoria.Structuresinthevicinityofthesiteareconsistentwiththiscategorization.Subsidiaryflexuresatthesitearebroad,openfeatures(refertogeologicsectionG-G~,'Fiqure2.5-19),andlow-anglethrustfaultingisrepresentedbythedecollementinthesitevicinityasdiscussedinSubsection2.5.1.1.3.Subsequentstages,invhichthefoldsareoverturnedandthenadditionallyfoldedandfaulted,areabsentfromtheBervickanticlinearea.AmdtandMood(Ref.2.5-64,p.B134)state,"theprocessofstructuralevolutionappearstohavebeencontinuousandtheresultofasingleorogenythatvasnotnecessarilypunctuatedbypulsations....TheorogenybeganafterrocksofPennsylvanianaqewereconsolidatedandpriortodepositionofrocksofLateTriassicaqe<<Itisobviousfromthismodelofdeformationthatthrustfaultingvasalogicalandintegralaccompanimenttofolding,ratherthanbeingpartofsomeseparatetectonicepisodesubsequenttofolding.25-50 SSES-FSARInthisprocessofdeformation,>>rocksofthemorecompetentunitscharacteristicallyfoldedintogenerallyconcentric,symmetrictoasymmetricanticlinesandsynclinesbrokenvariablybyfaults.Therocksofthelesscompetentunitsdevelopeddisharmonicfoldsbrokenbydecollements,lovanglethrustandbeddinqfaults,andcommonlyseparatediscordantfoldsinthemorecompetentrocks<<(Ref.2.5-21,p.160).Asaresult,itisexpectedthatrocksleastabletovithstandgreatshearpressures,suchasshales,woulddisplayevidencenotonlyoflargemagnitudedifferentialmovementasisfoundnearthemajorthrustzones,butalsooflesserbutmoreprevalentminorstructuraladjustments,suchasshears,incipientbeddingplanefaults,zonesofcloselyspacedjointsorfractures,slickensides,slatycleavage,andsoon.Thus,itwouldbesurprisinqiftheMahantangoFormationwhichoccursatthesitedidnotshowatleastsomeofthesefeaturesproducedduringAppalachiandeformation.<<Northwestward-directedstressesofthelatePaleozoicAppalachianoroqenywerelargelyresponsibleforthedevelopmentofthetectonicframevorkoftheAnthraciteregionandtheremainderoftheValleyandRidgeprovinceinPennsylvania"(Ref2.5-21).ThereisgeneralagreementthatthetimeoftheValleyandRidgedeformation,whichisequatedwiththe"AppalachianRevolution<<(Ref.2.5-28,p.645),alsotermedthe>>Alleghany<<or"Alleghenyorogeny<<(Ref.2.5-65),endedbeforelateTriassictimeover200millionyearsago,butthereis'surprisinglylittleevidencetoindicateamoreexactdatingoftheevents.AsRodgers{Ref.2.5-34,p.34)states,<<traditionally...thedeformaticnhasbeendatedattheendofthePaleozoic,andinfactforqenerationsAmericanstudentsveretaughtthatitwastheeventthatmarkedtheendoftheera.<<TheyoungestknowndeformedstrataarelowerPermianinaqe(intheGeorgesCreeksynclinejustwestoftheprovinceboundaryinMaryland)(Ref2.5-34p.64).Therefore,typicalValleyandRidgefoldingandfaultingoccurred,inthePermianandperhapscontinuedintotheearlyTriassic;apparentlyitformedmostifnotallthemajorstructuralfeaturesoftheprovince(Ref.2.5-34,p.64).AccordingtoWoodvard(Ref.2.5-65'2320),"thereisnotangibleevidenceregardinqthetimeofthisdeformationsavethatpartofitmusthaveoccurredafterthePennsylvanian(oraftertheearlyPermian)andallofitbeforethelateTriassic...NothingfixesitsappearancespecificallyattheendofthePermian;evenitslatestmovementscouldhaveceasedbyMiddlePermian.TheycouldalsohavecontinuedthroughtheMiddleTriassicforanyevidencetothecontrary."TheUpperTriassicshaleandredbeddepositsintheirtiltedanddownfaultedbasinsprovideanupperagelimitfortheAlleghenyorogeny{Ref.2.5-34,p.115)becauseitisthoughtthatthepervasivenorthwest-southeastcompressiveforcefieldrequiredforthenorthvest-directedthrustfaultingandfoldingduringthe25-51 SSZS-FSARAlleqhenyorogenycouldnothavebeenpresentduringtheformationoftheUpperTriassicbasins,whichrequiredessentiallyextensionalortensionalstressactingintheeast-westornorthwest-southeastdirectionInseveralplacesundeformedTriassicfeaturesaredirectlysuperimposedonValleyandRidgestructures,establishinqanupperlimitforValleyandRidgedeformation,ofwhichtheBerwickanticlineisapart.BetweentheSchuylki11andSusquehannaRivers,Triassicbasinsedimentsrestdirectlyonandtruncatetherecumbentfoldsandnappes(Ref.2.5-66)developedinthesoutheastpartoftheValleyandRidgeprovince.TheseupperTriassicsedimentsweredepositedonapeneplainedsurface;thus,theValleyandRidgestructureshadbecomeinactiveandwereexposedanderodedtonearbaseleve1beforeupperTriassictimeover200millionyearsago.J.ateTriassicdiabasedikesareshownontheTectonicMapoftheUnitedStates(Ref.2.5-67)crossingAppalachianfoldstructuresabout20milesnorthwestofHarrisburgnearthemouthoftheJuniataRiver.SincethesedikesareneitherdeformednoroffsetbyValleyandRidqefaults,theyalsoestablishapre-lateTriassicageforValleyandRidgetectonismAccordingtoDr.GordonH.MoodoftheU.S.GeologicalSurvey{verbalcoamunication,1974)therearenolocalspecificfieldrelationshipsintheAnthracitebasinwhichcouldbeusedtosupplyadefinitedateforfaultinqandfoldinqintheAnthracitebasin.TheonlyknowndateforAppalachianstructuresissuppliedbyregionalrelationshipssuchastheTriassicevents.However,Dr.MoodstatedthatallfaultingrelatedtoAppalachianstructures,exceptpossiblyforsomeveryminorTriassicfaulting,isPaleozoicinage.onthebasisoftheforegoingdiscussion,itisconcludedthatthrustfaultinq,shearing,beddingplanefaultsandothersimilarfeaturesintheareanearthesite,andtheslickensidesandstriationsinthefoundationrockunderlyingthesite,wereformedduringthe"Alleqhenyorogeny"or"AppalachianRevolution"whichproducedthefoldsandthrustsoftheValleyandRidgeprovince,ofwhichtheBerwickAnticlineisapart;thus,theseeventsbecametectonicallyinactivebeforeupperTriassictimeorover200millionyearsaqo.TheslickensidesandshearingwhichareevidentonvariousbeddinqplanesandjointplanesinthefoundationrockattheSusquehannaSitearethereforeofnosignificancetotheplantstructures.25-52 SSES-FSAR25.1.2.3.3GeoloicFeaturesinSurficialMaterialsattheSiteSurficialmaterialinthesitevicinityconsistsofglacialdriftdepositedneartheOleanterminalmoraine(refertoSubsection2.5.1.2.2.1).TheglacialdepositsneartheSusquehannasitehavebeenstudiedinsomedetailbyPeltier(Ref.2.5-5,p.25).HedescribesthevariousfeaturesandprocessesassociatedwiththeterminalmorainenearBeachHaven(3milessouthwestofthesite)asfollows:(Themoraine)isagravelmoraineandiscomposedlargelyofpoorlysorted,coarsekamegravel,medium-grainedvalleytrainqravel,andsand.Theseqravelsweredepositedinmarginalchannelsbetweenastagnanttongueofice,whichlayinthecenterofthevalley,andthevalleywalls...Durinqtheearlystagesofkameterracedevelopment,themarqinalchannelsflowedatalevelwhichwashighabovethevalley,and,atthefrontoftheice,fellsharplytothevalleyfloor.Attheicefrontasteepalluvialdeposit,composedlargelyofcoarsegravel,wasformed.Continuedablationoftheiceinthevalleyprobablycausedthemarginalstreamstoflowatsuccessivelylowerlevels.Thesestreams,wheretheyflowedalongtheice,botherodedtheearlierdepositsandfilledintheirchannels;wheretheycrossedthe"terminalmoraine"theycutchannelsinthepreviouslydepositedalluviumandlaiddownsandandgravelonmoregentlyslopinggradientstowardtherivervalleybeyondit.Inthismanneranytilldepositedattheicefrontbecameburiedoreroded.Atthesite,littletillwasexposedintheexcavationsfortheprincipalplantstructures,inconformancewithPeltier'snearbyobservations.Essentiallyalloftheglacialmaterialexcavatedconsistofstratifieddriftintheformofkamedeltaandterracedeposits,alluvialoutwashandstreamqravels,muchofitprobablyreworkedinthemannerdescribedbyPeltierIndeed,thescouredandflutedbedrock'surface,largepotholes,andsteepandevenundercutcontactsbetweenbedrockandglacialdriftattesttothetorrentialflowofwaterwhichatonetimeevidentlycascadedacrossthesite;andthecoarseboulderqravelsanderosionchannelswithintheoutwashindicateenerqeticreworkingofthematerials.Inkeepingwiththisglacio-fluvialmodeofdeposition,contemporaneoussedimentaryfeatures,suchasthoseresultingfromslumpsatundercutoreversteepenedstreambanks,fromdifferentialcompactionofmaterialsdepositedonirregularsurfaces,andfromotheradjustmentsdurinqdepositionmaybeexpected(seeforexample(Ref25-68,p.184-185).Afewminorfeaturessuchassedimentarycreeporsmallslumpswereobservedinthestratifieddrift,asforexamplenorthoftheradwastebuilding,wherethey25-53 SSES-PSARareassociatedwithanundulating,flutedrocksurface.Apparentlythesefeatures,whichterminateabove'herocksurface,arosethroughdifferentialcompactionacrosstheirregularbedrocksurface.None'fthesedime'ntaryfeaturesexposedintheqlacialmaterialswereobservedtoextenddownwardtointersectthebedrocksurface.Etisconcludedthatallsuchfeaturesobservedinthesurficialmaterialsatthesiteareconsistentwiththeirknownmodeoforiginbyqlacio-fluvialprocessthatoccurredneartheterminalmoraineoftheOleanglaciation.2.5.1.0SiteGeoloicHisterThegeologichistoryofthisregioncanbetracedfromPrecambriantimes.RocksbeneaththePaleozoicstrataatthesiteformtheGrenvilliancratonicbasement,approximatelylbillionyearsold.ThesedimentsthatweredepositedtoformthePrecambrianrocksintheregionweresubjectedtomagmaticintrusion,metamorphismanderosionbeforetheonsetofCambriantime.Paleozoicsedimentarystratainthesitevicinityareestimatedtobeontheorderof30,000feetthick(Ref.2.5-28and2.5-38).ThedepositionanddeformationofthesestrataisrelatedtotheopeningandclosingoftheProto-AtlanticOcean{Ref.2.5-69).AlthouqhdeformationintheAppalachianOrogenculminatedthreetimesinthePaleozoic-theTaconic,theAcadian,andtheAlleqhenian(Appalachian)orogenies-theeffectsofthefirsttwoorogeniesinthefoldedAppalachiansinwhichthesiteoccursweremainlysedimentologicratherthanstructural,beingevidencedasunconformitiesandaschangesinprovinence,lithologyandinsedimentationcharacteristics,incontrasttotheintensefolding,faultinq,volcanismandmetamorphismwhichoccurredatthesetimesontheMobileBeltduringtheTaconicandAcadianeventsTheAlleghenianorogeny,ontheotherhand,resultedinthestructuralconfigurationatthesitetodayThestructuralevolutionoftheFoldandThrustBeltisdescribedinSubsection2.5.1.13CrustaldiverqenceinLatePrecambrian,CambrianandEarlyOrdoviciantimeallowedtheaccumulationofathicksequenceofmioqeosynclinalsedimentintheAppalachianBasin(Subsection25.11.2).TheTaconicOrogenybeginninginMiddleOrdoviciantimesiqnifiesconvergenceandupliftintheMobileBelt.ThehighlydeformedearlyPaleozoicstrataareunconformablyoverlainbylessdeformed,coarsergrainedclasticsedimentwhichisinturnoverlainbytheSiluro-Devoniancarbonatesequence.Thissequenceisthickestintheeastandthinswestward.2.5-54 SSES-FSARNortheastwardfromthesitethecarbonatestratainterfingerwithclasticdetritus.LatePaleozoicstrataareclasticthroughmostoftheAppalachianBasin(Subsection2.5.1.1.2).ThesestratareflecttheclosingoftheProto-AtlanticOcean.AtthepeakoftheTaconicOrogenyalongthecratonicmargintotheeast,ophioliticrocks(presumablyoceaniccrust)werecbductedfromtheeuqeosyncline,andthemiogeosynclinalstrata(carbonateanddetritalalike)werethrustontothecraton.ThegeologicsettinqatthesiteistheresultofthisactivityFoldingandthrustfaultinqoccurredthroughmechanicaldetachmentfromrigidbasementrocksalongdecollementsinshalystratanearthebaseofthePaleozoicsection(Ref.2.5-38).Thesiterestsonthenorthernlimbofonesuchfold~theBerwickAnticlinoriumThedeformationproqressive'lyincreasedinintensitytowardthesoutheast,frombroad,gentleopenfoldingnorthvestoftheAlleghenyfronttooverturned,recumbentfoldsandnappescomplicatedbythrustfaultinqattheBlueRidge.TheeffectsoffinalconvergenceandtranslationduringtheLatePaleozoicappeartobelimitedtotheMobileBelt(Subsection2.5.1.13and2522)TheAppalachiansappeartohaveundergoneerosionthroughmostoftheMesozoicEra.TectonicactivityrelatedtotheopeningoftheAtlanticOceanappearstohavehadnosignificantstructuraleffectintheFoldandThrustBeltandStableInterior(Subsections2.5.1.13and2.5.2.2)untiltheCretaceousPeriodAtthattime,subsidenceoftheAtlanticcontinentalmarginallowedtransqressionoftheseawellinlandofthesitevicinity.DuringCenozoicuplift,majordrainageintheareafollowedrelativelystraiqhtsoutheastwardcoursesthroughtheCretaceoussedimentarystratatotheAtlantic.TheAncientLittleSchuylkillRiverflowedpastthesitetowardthepresentdayDelawareBay.TheancientnorthbranchoftheSusquehannaRiverflowedthroughRilkes-Barre,PennsylvaniatowardTrenton,NewJersey.AstheAppalachianswereexhumed,theeast-northeaststructuralfabricbegantoexhibitcontrolofthedrainagepattern.ThepresentcourseofthenorthbranchoftheSusquehannaRiverresultedfromstreamcaptureoftheAncientLittleSchuylkill.andancientnorthbranchthroughtheireast-northeasttributariesbythemainbranchoftheSusquehannaRiver(Ref.2.5-3)NortheasternPennsylvaniahasundergoneatleastthreeqlaciationsduringthelast150,000yearsandpossiblyoneormorepriortothatdate.TillatthesitewasdepositedduringtheOleansubstageabout55~000to50,000yearsaqo(Ref.25-5and25-6)OlderIllinoiandriftoccursinthevalleyoftheSusquehannaRiverbetweentheOleanterminalmorainatBeachHaven(about3milessouthwestofthesite)andtheconfluenceof2.5-55 SSES-FSARthenorthandwestbranchesoftheSusquehannaRiver.Post-oleanadvancesdidnotreachthesitevicinity(Ref.2.5-5and2.5-6).Peltier(Ref.25-5)mappeddiscontinuouskameterracesalongtheSusquehannaRiverinthesitevicinityThehighestsuchterraceformedbyicemarginalstreamsoccursatabout650feetabovesealevelatthesite.RefertoSubsections2.5.1.2.2and25.1.2.3.3forfurtherdiscussionofPleistoceneerosionanddepositionatthesite.SincetheretreatoftheMisconsinanicesheetsfromtheregion,broadreqionalupliftappearstohaveoccurred,probablyatleastinpartasaresultofcrustalreboundsubsequenttotheremovaloficeloadErosionhascontinuedandsoilprofileshaveformed~2.5.1.5E~ninee~rinGeolocCOEvaluationSitesubsurfaceexplorationisdescribedanddiscussedinSubsection2.5.4.3.Laboratorytestsoffoundationmaterials,andinsitugeophysicaltestsofthefoundationmaterialsarediscussedinSubsections2.5.4.2and25.5GeologicmappingofthefinalfoundationsisdescribedinSubsections2.5.1.2.2,2.5.1.2.3and2.5.4.1.3.Itwasconcludedfromthesestudiesandevaluationsthatthesiteqeologicandfoundationconditionsareentirelysuitablefortheconstructionandoperationoftheplant.2.~5.1-.5.1Ge~oloicConditionsUnderCat~e~or1StructuresAllSeismicCategorylplantfacilities,exceptthespraypondandtheEngineeredSafeguardServiceMater(ESSM)pumphouseandpipeline,arefoundedonbedrock.TheESSMpipelinetrenchisexcavatedpartlyinsoilandpartlyinrock.ThelocationofthesefacilitiesisshownonFigure2.5-24.Thefoundationrockisahard,induratedsiltstone,amemberoftheDevonianNahantangoFormation.Inthefoundationsareaitisquitemassiveandlitholoqicallyhomogeneous,withbeddinggenerallynotwelldefined,andlackinqthebeddingplanefissilityusuallyassociatedwithlesswellinduratedshalysiltstonesandsiltyshales.Inplacestherockexhibitsaslatycleavage,furtherevidenceofitsinduratednature.AllCategorylrockfoundationswereexcavatedtounweatheredbedrock.GeologicmapsandsectionsoftheCategorylexcavationsinrockareshowninFigures2.5-18and2.5-19.BoredetaileddiscussionofthefoundationgeologicconditionsiscontainedinSubsections2.5-56 SSES-PSAB25122and2.5.1.23.Engineeringproperties,ofthefoundationrockaredescribedinSubsection250Thespraypondissituatedoveraglacialorpreglacial,east-vesttrendingbedrockvalleyasoutlinedbycontoursontopofbedrock{Figure25-17)Thevalleyisfilledwithdensegravellyandsandyglacialoutvashandtilldepositswhichattainanaxinunthicknessofabout110feetadjacenttothespraypondareaTheyveredepositednolaterthantheOleansubstage{earlyHisconsinan)oftheHisconsinanglaciationwhichoccurredower50,000yearsagoIngeneral,thedepositsarepermeableandconsistofaseguenceofsand,qravel,andbouldersoverlainbysandandgravel,overlaininturnbysiltysand.Theentiresequenceishighlyvariableingrainsizedistributionandsorting,andcontainsdiscontinuouspocketsofsimilarmaterials.Asarule,grainsizedecreasesandsortingincreasestowardthetopoftheseguence.Thesouthvesterntipofthespraypondiscutintobedrockwhiletheremainderwasexcavatedinthesepermeableglacialmaterials.Thethicknessoftheglacialdepositsbeneaththebottomofthespraypondrangesfromzeroattherockcontactto93feetattheeasternend.of.thepondThespraypondislinedtominimizeseepagelossestotheunderlyingpermeableglacialdeposits.Thefoundationofthepunphousestructurelocatedatthesoutheasterncornerofthepondisunderlainby35to60feetofglacialmaterial.TheESSHcirculationpipelinesbetveenthepumphouseandtheplantintersectbedrockatanelevationof668feet,approximately260feetsoutheastofthepumphouse(refertoFigure2.5-17A).Ageologicmapofthespraypondareaisl2presentedonFigure2.5-15.FurtherdiscussionofconditionsattheESSMpumphouseandspraypondarecontainedinSubsections2.51.2.2,2.5.3and.2.5.5.etNaturalslopesadjacentorclosetotheprincipalplantstructuresarerelativelyflatHostoftheseslopesarecomposedofsoil;fevrockslopesoccur(Figure2.5-17showsareasofrockoutcrops)NorthofthespraypondtheTrimmersRockFormationformsa,relativelysteepridqerisingapproximately380ft.abovethepond.Thesouth-facingslopeofthisridgeisessentiallyarockslopeunderlainbyflaggy,resistantsandstonethinlymantledvithsoilandrockfragments.Theclosestapproachofthisslopetothespraypondisalongthenorthernperimeterofthepond;thetoeoftheslope,atelevation710-720feet,is250feetormorefromtheedgeofthepond(atelevation679feet).The2maximunslopealongtheridgeisabout2horizontalto1vertical,vithanoverallslopeof3-1/2horizontalto1vertical,arelativelyflatslopeforcompetentrock.Figure25-56showsatypicalprofilealongthesteepestportionofthisBBV311/7825-57 SSES-FSMslopenorthofthespraypondarea.Beddingintherockdipsapproximately300tothenorthintotheslope;thus,itisfavorablyorientedforslopestability.DataofMcGlade,etal.{Ref.2.5-56,p.108)indicatethatnaturalslopeserodedonTrimmersRockstrataare"steepandstable".Nooldlandslides,rockslips,orlandslidescarshavebeennotedneartheplantstructuresItisconcludedtha'tthenaturalslopespresentnosignificanthazardstoplantstructures.StabilityofexcavatedandfillslopesisdiscussedinSubsection255.25.1.2.5.3A5easofPotentialsnbsiaence~Ulift~onCollapsePotentialsourcesofsubsidenceorcollapseinthePennsylvaniaValleyandRidgeregionincludecoalminesandkarstterrain;however,neitheroftheseconditionsareknowntooccurwithinseveralmilesofthesitearidthereforetheyarenotsignificanttothesiteNocoalbedsarepresentbeneaththesite;thenearestcoalmeasuresareabout3-l/2milesnorthofthesitenearShickshinny,whichisattheextremewesternendoftheanthraciteproducingbeltintheX,ackawannasyncline(Figures2.5-25and2.5-26).Thenearestundergroundcoalworkingsareabout2mileseastofShickshinny(Ref.2.,5-70);thenearest.thathavebeenassociatedwithsurfacesettlementarenearNanticoke,Pennsylvania,approximately10milesnortheastofthesite.Rocksinthesiteareahavenoknownpotentialforoilorgasproduction.Thenearestoilorgasfieldislocated25milesnortheastofthesite.The.shallowestcarbonaterockthatmaybepresentbeneath'hesiteoccursbelowtheHarcellus-ManhantangosequenceaslimybedswithintheUpperSilurian,TonolowayandMillsCreekFormationsandtheLowerDevonian,Keyser,OldPort,andOnondagaFormations,{refertoSubsection2.5.1.1.2.3andFigure2.5-14).SomeoftheseunitscropoutontheflankoftheBerwickanticlinorium.northofBloomsburqabout10mileswest-southwestofthesite,butmostareabsentnearerthanthistothesitehavingbeenremovedbyerosionorfaulting(Subsection2.5.1.1.2.3).Nonehavebeenmappedwithinfivemilesofthesite(Figure2.5-'12)TheOnondagamayoccurinthesubsurfacenearBerwick,fivemileswest-southwestofthesite,inasmuchasmud-filledcaveshavebeenencountereddurinqwelldrillingoperationsatBerwick;however,sincethesecondaryporosityalongjointsandbeddingREV3ll/782.5-SS SSES-FSARplanesintheOnondagahasbeencharacterizedasofonly"medium<<magnitude(Ref.2.5-56),suchcavitieswouldbeexpectedtobeneitherlargeinsizenorextensivelydeveloped.IftheOnondagadoesextendeastwardbeneaththesite,itwouldbeatadepthprobablyexceeding1,000feetandbeneaththeMarcellus-Nahantanqoshaleandsiltstonesequence(Figure2.5-14)Aethisdepthofburialbeneaththesite,carbonatebedspossiblypresentwouldhavenosiqnificantpotentialforsubsidenceorcollapseatgroundsurface.Thesiteisnotknown'tobeinanarea,experiencinglocalizeddominqorsubsidence.Relativeratesofregionalupliftorsubsidencearenotwelldefinedforthisarea,butsomerecentstudieshavebeen'presentedintheliteratureBrownandOliver(Ref.2.5-54,Figures5and7)showarelevelingprofileacrosstheAppalachiansatthelatitudeofHarrisburgabout60milessouthofthesite.ThisprofilesuqqeststhattheValleyandRidgeprovinceatthelatitudeofHarrisburgisrisinquniformlyattherateofabout5mmperyear.Theyfindingeneralthat"theAppalachianHighlandsarebeingupliftedwithrespecttotheAtlanticCcastatratesupto6mmperyear"(Ref2.5-54,p.31).Becausethemeasurementsarereferencedtoagivenstation,itisnotpossibletodetermineabsoluteverticalcrustalvelocities.SinceBrownandOliver(Ref.2.5-54.p.31)alsostatethe"AtlanticCoastalPlain...istiltingawayfromthecontinentalinterior"thedatamayindicatesimplythattheAppalachianHighlandsarenearlystationary,orthattheyaresuhsidinqmoreslowlythanthecoastalregionInasmuchasdifferentialratesofthismagnitudearegreaterthanthegeologicrecordsuggestscouldbesustainedovergeologictime,theauthorspresumeanoscillatorymodeofcontinentalinteriorupliftorcoastaldepressionwithtimeontheorderof10~yearsperoscillationSuperimposedonthesebroad,regionaldifferentialsaresmaller,secondaryvariationsintherateofverticalmovementwithintheAppalachianHighlandontheorderof1to3mmperyeartotalamplitude(Ref.2.5-54,Figures7and8)The1ocationofsomeofthesesecondarymaximaor,minimaappeartocorrelatespatiallywithseismicity;othersdonot.Thewavelengthbetweensuchsecondarymaximaisontheorderof300km,adistancesuggestiveoforiqinin"largescalemovementsoftheearth'scrust"(Ref.25-54,p.27)Althoughtheauthorsspeculatetheremaybe,insomeareas,apossibleassociationofthesesecondarypeaksintheverticalvelocityprofileswithseismicity,theyacknowledge(Ref.2.5-54'.30)that"withoutfurtherdataitisimpossibletodemonstratethattherelationshipismorethancoincidental."Znanyevent,flexureofaveryfewmillimetersoverhundredsofkilometersisverybroadindeedandisnotsignificanttostructures.25-59 SSES-FSARIneasternNewYorkpost-glacialoffsetsinshalesandslatesaredocumentedbyOliver,etal.(Ref.2.5-51).Thenearest'ocalitylistedbyOliver,etal.(Ref.2.5-51)isnearHydePark,NewYork,about120mileseastofthesite.Theauthorswonderwhetherthecauseoftheseoffsets"mightstemfromcrustalreboundfollowinqremovaloftheiceloadorfromstillmorebroadlybasedtectonicororogenicforces"(Ref.2.5-51,p586).However,itissignificantthatthesehigh-anglereverseoffsetsoftheglacialstriationsinbedrockareontheorderofonlyoneinchorlessofdisplacement.Theauthorsalsomentionotherpossiblemechanismssuchas"---thermalchanges,hydration,orachemicalprocessintheshales,>>andconcludethedata<<donotseemadequatetoresolvethispoint"(Ref.2.5-51,p.569).Anotherassessmentofthesamedataconcludedtheoffsetsarisefromeitherfrostheaveorglacialrebound.Ifrelated,insomewaytofrostactionortheseverityoffrost,thenonemightexpecttheeffectsofheave,suchasonpreciselevelingmonuments,tobemorepronouncedwithaltitudePreciselysuchacorrelationofsecondaryvelocitymaximawithelevationwasnotedanddiscussedbyBrownandOliver(Ref.2.5-54,p.27)AdditionalindependentevidenceonthemagnitudeofgeneralAppalachianuplift,orlackthereof,inthePlioceneandQuaternaryisprovidedbyOwens(Ref.2.5-52),whobasedhisassessmentontheassumptionthatupliftinthesourceareaisaccompaniedbyerosionaltransportofclasticmaterialtoadjacentbasins.HefoundthatPlioceneandQuaternarysedimentsoftheAtlanticcoastalplainfromNewJerseysouthwardareonly50feetorlessinthickness,indicatingnogreatintensityofupliftthroughthisperiod;andmoreoverthattherearenomarkedaccumulationsofsedimentincentersofdeposition,suggestingaqeneral,uniformuplift,orevenstaticconditions,oftheentireAppalachians.Therefore,thetotalgeologicrecordstronglysuggeststhatunusualregionalcrustalinstabilityhasnotrecentlyoccurredintheAppalachians.BrownandOliver(Ref2.5-54,p.31)conclude,"Althoughtheratesofrelativeverticalmovementsdeterminedfromlevelingseemlarqebycomparisonwithratesdeducedfromsomeformsofgeologicalevidence...thesevelocitiesdonotseemunreasonableintermsofothertypesofgeologicalinformation."Further,"theratesofverticalcrustalmovementpresented.compareveryfavorablywiththose.found.inotherportionsoftheworld>>.Relativeratesofverticalupliftobservedforthesiteregionthereforeappeartobequitetypicalcomparedtoobservationselsewhere,andaccordinglydonotseemtobereflectiveofabnormalconditions.ThebalanceofevidencefavorsAppalachiancrustalactivityrestrictedtogenerallyunifor~uplift,probablydifferingslightlyinlocalareas,andperhapshavinganoscillatorycharacterwithtime.Littleifanyevidencehasbeenpresented25-60 SSES-PSARtodemonstratethatthesemaybesiqnificantt'oengineering,planninqorseismicriskevaluation.Nofaultinghasbeenshowntobeinvolvedinthisrecentactivity,andcorrelationwithseismicityislikewisenotestablished.InareasadjacenttotheAppalachians,small-scalepost-glacialoffsetshavenotbeencorrelatedwithseismicityandtectonicoriqinoftheoffsetshasnotbeenestablished.Itisconcludedthattheavailabledatadonotindicatethatexistingorfutureupliftorsubsidence,asfromman~sactivitiesorfromqeoloqicconditionssuchasregionalwarping,villbesiqnificanttothesite.25.125.4BehaviorofSiteDurinPriorEa~rthuakesThereisnoevidenceatthesiteofanyeffects,suchaslandslides,fissuringorsubsidence,whichcouldbeattributedtotheoccu'zrenceofpriorearthquakes.NoPennsylvaniaearthquakeshavebeenreportedasfeltinthe'itevicinity.Withinhistoricaltimes,approximatelyfourteenearthquakesoriginatinqoutsidePennsylvaniacouldhavebeenfeltatthesite,withtheprobablemaximumintensityofIVontheNodifiedNercalliScale.Thenearestoftheseearthquakesoccurred90to100milesfromthesite(Wilmington,Delaware,1871,epicentralIntensityVII).Groundmotionatthisintensity(IV)wouldhavehadnoeffectonthesite.51..55ZonesofDeformationorStructuralWeaknessAsreportedinthePSAR,thepreconstructioninvestigationdefinedanumberofstructuralfeaturesatthesitesuchasfolds,joints,fractures,cleavage,slickensidedjointplanes,andbeddingplaneshears.ThePSARstated(p.2.5-16),Theprominentjointdirectionsareparallelandperpendiculartothestrikeofthestrata..Themajorjoints...(strike)paralleltobedding.Thisjointsetdipsnearlyperpendicularandoppositeindirectiontothedipofthebedding.Amoreopenbutlessfrequentseriesofverticaljointsstrikesparalleltothedipofthestrata.Highanglejointshealedbysecondarycalciteandquartzmineralizationarepresentinthevicinityofminorshearzone's.Theobservedfractures,whilerelativelynumerousintheupper20feetofrock,decreasewithdepth.Atadepthofabout20feetintorock,thefracturesaretight(generallyhealedwithcalcitefilling)andvouldnotadverselyaffectfoundationperformance.25-61 SSES-FSARNinorbeddinq-planeslipsatdepthhavebeenobservedinthesite-area,bothnorthandsouthoftheinteriorridge.Thoseslipshaven'otexperiencedmovementsinmorethan200millionyears.Aminorslipofthisnaturecouldbeexposedinanylarqeexcavationanywhereinthearea;however,itwouldnotaffectthestructuraldesiqnofthefacilities.ExcavationduringconstructionconfirmedthePSARevaluationandsuppliedadditionaldata.Duringexcavation,numerousslickerisidedjointplanesvereexposedandmapped(Figure2.5-18)Thin,slickensidedbeddingplaneshears,wellhealedwithlaminarquartzandcalcitemineralization,werealsoexposedinthefoundationsThefielddataindicatetheseshearplanesarefoldedinthesamemannerasthebedding(Figure2.5-19).Theyare,moreover,cutbyvertical,calcite-filledjointswhicharecontinuousacrosstheshearswithnooffset.Inaddition,wheretheshearscanbetracedtoanintersectionwithasmooth,glaciallyerodedsurfaceformingthetopofrock,theerodedsurfacedisplaysnodisplacementoroffsetacrosstheshearplane.Sincetheerosionoftherocksurfacevouldnecessarilyhaveoccurredpriortothedepositionoftheoverlyingglacialdeposits,whichhavebeenestablishedasbeingmorethan50,000yearsold(refertoSubsection2.5.1.2.2.1),thisrelationshipshovsthatanydisplacementalonqtheshearingoccurredmorethan50,000yearsaqoInreality,themostprobableageoftheshearingispre-Triassic,orover200millionyearsago.Thisisindicatedbyregionalrelationshipsplusthefactthattheshearplaneisfolded,(AdetailedpresentationandanalysisoftherelaticnshipbetweensiteandregionalstructureispresentedattheendofSubsection2.5.1.2.3.2).Allfeaturesarisingfromtectonicdeformationatthesitearegeologicallyold.Inthefoundationrock,allshearsandjointsaretightorarefullyhealedwithcalciteandquartzmineralization;accordingly,theydonotadverselyaffectthestrength,bearingcapacityorcompressibilityofthefoundationrockTheyarethereforenotsignificanttotheplantstructures.TheconclusionstatedinthePSAR(P.2.5-18)that"theminorstructuralconditionsobservedatthesitearenotofsignificancewithrespecttositingordesignfortheuseofthesiteforitsintendedpurpose,".hasbeenconfirmed.BedrockbeneaththeseismicCategoryIstructuresisadarkgray,indurated,massivesiltstone.Itisnotsusceptibletorapidweathering';noappreciableslakinqoffreshrockexposuresvasobservedinthefoundations.Depthofveatheringbeloworiginaltopofrockvariesfromzerotcabout20feet.Therocksoccupyinqdepressionsinthebedrocksurfacearegenerally25-62 SSBS-ZSABunweatheredHowever,openfractureswereencounteredtoadepthofabout20feet.Belowthatdepth,fracturesarenotcommonbutwheretheydooccur,theyaregenerally"healed"vithcalcitefillinq.Heatheringappearstohaveprogressedinitiallydownwardbydissolutionofcalcitefromcalcite-coatedjoints,seamsandshearplanes,andrefillingbyclayorotherweatheredmaterial.Znoneexceptionalcase,weatheringalongjointsandfractures,asdistinguishedfromweatheringoftherockitself,vasobservednearly70ft.beloworiqinaltopofrockInthisinstance,vhichvasbetweenthecirculatingwaterpumphouseandtheUnit1coolinqtower,thebedrockoriginallyformedaknollandcontainednumerouslovangle,slickensided,calciteandquartz-filledjointplanesandabundantvertical,calcite-filledfractures,forminganintersecting,permeablenetvorkofchannelsthroughvhichwaterreadilypercolateddownward,dissolvingthesolublecarbonatejointandfracturefillings.Notvithstandingthedepthofweatherinqhere,thedesignelevationofthebottomofthecirculatingwaterpumphouseisbelowthedepthtowhichthiszoneisWeathered,andthisstructurevasfoundedonsoundunveatheredbedrock.2.5.1.25.7PotentialforUnstableorHazardousRoc'kor*----Ri-1Cond-it-ionsFoundationrockatthesiteishard,indurated,unweatheredsiltstone,amemberoftheHiddleDevonianMahantangoFormation.Similarmaterialsunderliethesitetoadepthofover1,000feet.Thisrockdoesnotcontainunstableminerals;itprovideshighlystablefoundationconditionsanddoesnotconstituteasourceofpotentialhazardtotheplantSoilsatthesiteare,exceptforthe'uppermostfevfeet,glacialinoriqinandconsistofresistantfragmentsofrockthatwere'ransportedfromtheregionnorthofthesite.Hostveredepositedbyfiowingmeltwaterfromtheglaciersundertorrentialflowconditions,andsomeofthesoilsprobablyhavebeenoverriddenbyicesheets.Theseglacialsoilsarenoncalcareousandoverfour-fifthsoftherockinthemconsistsofsandstone(Ref.2.5-5).Theoriginandmineralogyofthesoilsissuchthattheypresentnohazardousconditions.Detailedengineerinqcharacteristicsofsoilsinregardtoslope-stability,bearingcapacity,stabilityunderdynamicloadsandconsolidationcharacteristicsunderstructuralloadsarediscussedinSubsections2.5.0and2.5.5.AllfoundationsfortheCategory1plantstructuresthatarefoundedonrockareexcavatedtoorintoessentiallyunweatheredmaterial.Nosignificantirregular'alterationorweathering,orzonesofstructuralweaknessduetoweathering,shearingor2.5-63 SSES-FSABfracturinqwereencounteredatthebearingelevationforthosestructuresdesignedtozestonunweatheredrockW.2=-.mNoindicationswerefounddurinqexcavationandconstzuctionatthesiteofthepresenceofsignificantstressinbedrockNopoppingorspallinqrockwasobservedTherewerenoindicationsofheaveatthebaseof,roc'kslopesorinthebottomofexcavations.Someverticaljointsclosetoandsubparalleltoverticalexcavatedslopesopenedveryslightly,butthiswasattributedtogravi.tyforces,notinsitustresses.Xfsiqnificantinsitustressesdidinfactexistintherock,evidenceofthisshouldhavebeennotedintheexcavation;nosuchindicationswerenoted.Forexample,athinmudmatwasroutinelyplacedontherockafterevacuationtofoundationqrade.Ifsignificantheavehadoccurred,itwouldhavebeenreadilydetectedbycrackinqofthemudmatNosuchcrackinqwasobserved.~2.5..25.9.Conclumj;ournandSummaryConsiderationofallengineeringgeologicfactorsattheSusquehannasiteleadstotheconclusionthatthesiteiswellsuitedfortheconstructionandoperationoftheplant.Thereisnogeoloqicfeatuzeorconditionatthesiteorinthesurroundinqareawhichprecludestheuseofthesiteforanucleargeneratingfacility.Thebedrockintheconstructionareaiscompetentandprovidessatisfactoryfoundationsupportforallmajorstructures.2.5~l~+6--Site-GroundwaterConditionsTheqroundwatertablebeneaththesitegenerallyoccurswithin35feetoftheqroundsurface.Thenotableexceptioni:sinthedeep,easterlyslopinq,buriedbedrockvalleypresentabout1000feetnorthofthecenteroftheplant,whereawatertabledepthofasmuchas79feetwasrecorded.Generally,thelowerpartoftheoverburdendepositsissaturated,althoughovexportionsoftheuplandareaonthesite,thegroundwaterlevelisfoundonlyintheunderlyinqbedrock.Depthtobedrockisvariableandrangesfzomzerotoover100feet.ThegroundwaterlevelcontoursshowninFigure2.4-31appeartobecontrolledtoalarqeextentbythetopofbedrockcontours(Figure2.5-17)REV2,9/782.5-64 SSES-FSARGroundwatermovementonthesiteisgenerallyinaneasterlydirection.Withtheexceptionofafewspringsonsite.MostofthegroundwaterisbelievedtodischargeultimatelytotheSusquehannaRiver.Theaveragegroundwatervelocityisestimatedtobebetween1.5and2.0feetperdayalongflowpathsfromthestationtotheSusquehannaRiver.Thesiteisnotlocatedinarecharqezoneforanyaquifer.However,qroundwaterrecharqetotheuncolsolidatedsandandqraveldcesoccuroverthesitearea.ThepredominantlysiltstonestrataoftheMahantangoFormationbeneaththesiteconstitutesasourceoflimiteddomesticwatersupply.Becauseofitsrelativelylowtransmissibilitycharacteristics,theMahantanqocannotbeconsideredtobeanaguifer.Fromahydroloqicstandpoint,'therearetwogeneraltypesofaquifersintheregion.ThefirsttypeconsistsofsandstoneandoccasionallimestonestratawhichoccurwithinthepredominantlyshalesectionsofthePaleozoicagebedrock.ThesecondtypeisunconsolidatedQuaternarydepositswhichconsistforthemostpartofPleistocenestratifieddrift,till,orkameswhichareoftenoverlainbyathinrecentsoilcover.Fromasurveyofdomesticwatersupplieswithintwomilesofthestation,itwasfoundthatnearlyallofthewellsarecompletedinshalebedrock.DetailedinformationongroundwaterconditionsandmovementonthesiteandintheregionisgiveninSubsection2.4.13.252VIBRATORYGROUNDMOTIONAdiscussionandevaluationoftheseismotectoniccharacteristicsoftheSusquehannaSESsiteandthesurroundingregionispresentedinthissection.ThepurposeofthisinvestigationistopresenttheseismicdesigncriteriaformajorstructuresatthestationinconformancewithguidelinesasoutlinedinStandardFormatandContentoftheSafetyAnalysisReportsforNuclearPowerPlants,andAppendixAof10CFR,Part100.Adescriptionandresultsofthefieldinvestigationandlaboratorytestingprogram,whichprovidedbackgroundinformationforthisinvestiqation,ispresentedindetailinSubsection2.5125-65 SSES-FSAR2.5.21Seisn~icitThestationissituatedinaregionwhichhasexperiencedonlyaminoramountofmoderateearthquakeactivityinhistorictime.Therecordofearthquakeoccurrencesintheregiondatesbacktothemiddle16thcentury.Manyearthquakeshavebeenreportedsincethattimeandminorstructuraldamagehasbeenassociatedwithseveraloftheevents;however,noneoftheseearthquakeswereconsideredtobeofmajororcatastrophicproportion.Becausethisregionhasbeenfairlyheavilypopulatedsincetheearly18thcentury,itisquitecertainthatanysignificantearthquakeactivity(MMIntensityVIIorgreaterasdefinedbytheModifiedMercalliIntensityScale,1931,seeTable2.5-1)wouldhavebeenreportedinlocalnewspapers,privatejournalsordiariesThelackofanysuchdocumentationisindicativeoftheabsenceofsignificantmajorearthquakeactivityintheregionduringthisperiodStructuraldamageistheprimaryratingcriterionforlargershocks.Theeffectsofearthquakesontheratherlargevarietyofconstructionmaterialsusedinolderstructuressuchaschimneys,rockwalls,etc.,arehighlyvariable,makingintensityevaluationsbasedonsuchreportsimprecise.Theratherlongperiodofrecord,however,andtheevenlydistributedpopulationprovideareasonablebasisforestimatesoffutureactivity.Table25-2listsalleventswithin200milesofthestationwithmagnitudes(Richter)greaterthan3.0orMMintensitiesgreaterthanIII,andallseismiceventswithin50milesofthestation.Piqure2.5-8displaystheseeventsontheregionalstructureoftheareaaroundthestaticn,alongwiththesiqnificantearthquakes(MMIntensityVandgreater)whichhaveoccurredoutsidethe200-mileradius.ThelargesteventstohaveoccurredintheimmediatestationvicinityweretheMilkes-BarredisturbancesofFebruary21and23,1954(localdates),withassignedintensitiesofVIIandVI,respectively.Theseintensitieswerebasedonthedamaqeinflicteduponaverysmallarea,about015squaremilesofthecity.Thesedisturbancesoccurredonly16milesfromthestation;however,theyareconsideredtohaveresultedfromminecollapseasdiscussedindetailinAppendices2.5Aand25B.Thus,theseshocksneednotbeconsideredintheanalysisofearthquakeriskasregardsthestation.Thelargesteventtohaveoccurredwithin200milesofthestationwastheIntensityVII-VIIIshockatAttica,NewYork,onAugust12,1929,some150milesnorthwestofthestation.ThisearthquakeimposedsomemoderatedamageatAtticaandvillagesintheimmediatevicinityoftheepicenter,butwasnotreportedasfeltintheBerwickarea(Ref.2.5-71).25-66 SSES-FSARPourIntensityVIIearthquakeshaveoccurredatadistanceofabout100milesfromthestation:tvo(1737and1884)werenearNevYorkCity,one(1927)nearAsburyPark,NevJerseyandone(1871)nearMilminqton,Delaware.TheclosestoftheseIntensityVIIeventsvastheshockwhichoccurredinthevicinityofMilmington,Delav'areonOctober9,1871,approximately100milestothesouthofthestation.Basedondamagereportsandintensitiesfelt,theepicenterhasbeenlocatednearMilminqton,whereastheshockwasfeltfromnearChester,PennsylvaniaonthenorthtoMiddletovn,Delaware,onthesouthandfromSalem,NewJerseyontheeasttoOxford,Pennsylvaniaonthevest.TheinitialshockvasfollowedbyamuchsmallershockgustaftermidnightonOctober10.AcontemporarynevspaperaccountindicatesthattheinitialshockvasfeltatMilminqton<<withgreaterdistinctness.<<BuildingswereshakenseverelyandanumberofchimneysveredamagedinthesurroundingtownsofOxford,Pennsylvania,andNewCastleandNewport,Delaware.Aninterestingaspectofthisearthguakeisthefactthatitvasaccompaniedbyaveryloudsound,asofanexplosion.Thisloudnoise,infact,ledtothebeliefthattheshockwascausedbyanexplosion,probablyatthepowdermilloftheE.IDuPontdeNemoursCompany,nearMilmington.Thispossibilitywascarefullyinvestiqatedatthetimeanditvasconcludedthattheshockwasalegitimateearthquake.Existingreports,however,donotreporttheshockbeinqfeltintheBerwickarea.ThetwoeventsnearNewYorkCity,about118milesfromBervick,mayhavebeenfeltatthestation,butwithanintensitycertainlynogreaterthanIII.The1884shockaffectedanareaextendinqfrcmPortsmouth,N.H.,toBurlington,Vt.,southwesttoBinghamton,N.Y.,Milliamsport,Pa.,southeasttoBaltimore,Md.,andAtlanticCity,N.J.AtBradford,Pennsylvania,reportsveremadeofpanesofglassbrckeninalargehotel,andothermoderatedamagevassustained.AllhotelsinBrooklyn,NewYorkvereshakenviolently.In1927,asimilarshocklistedasIntensityVIIwascenterednearAsburyPark,'evJersey.Severalsuccessivewaves,describedasseemingtotravelfromvesttoeast,causedhomesnearAsburyParktoshakeandoscillateperceptibly.SeveralIntensityVIearthquakeshaveoccurredlessthan100milesfromthestationOnMay31,1908,48milesfromthesite,Allentown,Pennsylvaniawasshakenbywhatvasbelievedtobeamildearthquake.Theshocklastedaboutasecondandwasdescribedasarumblingsoundfollowedquicklybyareportwhich"soundedlikethefailingofchimneysofabuilding"(TheLehighRegisterJune3,1908).ThePhiladelphiaInquireradds,"TheonlyotherplacewheretheshockwasfeltvasCatasauqua,threemilesaway.Atfirstitvasthoughtthatabatteryofboilersinsomelocalindustrymighthaveexploded,butnosuchaccidentwas25-67 SSES-FSARreportedThequakewasaccompaniedbyalowrumblingnoiseandlastedabouttwosecondsbutwasonlyfeltoveranareaofsome50squaremiles.OnJanuary7,1954,anIntensityVIshockoccurredapproximately54milesfromthestationThiswasthefirstofaseriesofminorshocksinBerksCounty.TheReadingTimesreportedonJanuary8,1954,thata<<minor"earthquakeshookBerksCountycommunities,andsucceedingtremorsoflesserintensitywereexperiencedmainlybyresidentsinWestReading,WyomissinqWestLouwe,WestWyomissing,WyomissingHillsandSinkinqSpringContinuedmildaftershocksshookthedowntownareaofSinkinqSpringwhichappearedtobetheepicentralareaforthesedisturbances.Thedamagewasdescribed{Ref.2.5-72)asminor:brokenchimneys,breaksinbrickandplasterwalls,andbrokendishware.Similardamage,includingbrokenwindows,wasreportedinothercommunitieswestoftheSchuylkillRiver.ThemainshockwasrecordedbyseismographstationsatFordham,Palisades(ColumbiaUniversity)andtheU.S.Coast8GeodeticSurveyatWashington,D.C.Dr.JackOliverofColumbiaUniversitydescribedtheinitialtremoras>>atypicaleastcoastearthquake.<>AccordingtothePhiladelphiaInquirer,asofJanuary8,1954,theearthtremorswhichhadbeenrecordedinBerksCountysince1900were:August30,1902-June6,1915February28,1925November1,1935June8,1937February18,1938September4,1944Theeventsof1902,1915and1938arenotreportedinthestandardcataloguesandare,therefore,consideredasverysmall,localizeddisturbancesforwhichthereisonlylocalrecord.Theshocksof1925and1944werelargeeventsintheSt.I.awrenceRivernearQuebec,CanadaandHassena,NewYorkwhichwerefeltwithintensitiesoflessthanIIIatthestation.ShocksonJanuary24,1954andonAugustll,1954affectedSinkinqHole,Pennsylvania,accordinqtotheReadingTimes(August11,1954).TheseshockswereattributedbytheU.S.G.S.tothecavingofsolutioncavities.Similarconclusionsaboutthe"sinkingoftheearthingeneral"werereachedbyPennStateUniversityscientistsaftertheeventonSeptember24,1954whichwasassiqnedanIntensityI1atSinkinqSpringBorough,5mileswestofReadinq,Pennsylvania.AnothershockofIntensityVIoccurred63milessoutheastofthestation,nearCornwall,Pennsylvania,onltay12,1964.CoffmanandVonHake(Ref.2.5-72)reportacrackedwall,fallenplaster,2.5-68 SSES-FSARandsmalllandslides.TheLebanonDailyNewsreported:"...thetremorwassomildthatmanypersonssleptrightthroughit."However,Dr.B.F.Howell,Jr.,ChairmanoftheGeophysicsDepartmentatPennStateUniversityreportedthatthequakewasthemostintensivetohitthestatein10years.OnSeptember1,1895,aneventofIntensityVInearPhiladelphia,76milesfromthestation,vasfeltfromSandyHook,NevJerseytoBrooklyn,NevYorktoDarby,Pennsylvania,andWilmington,Delaware.AnothershockofIntensityVIoccurredonMarch23,1957inthesamegeneralvicinity,79milessoutheastofthestationTheseshockswerenotreportedfeltintheBerwickarea.Fiveshocks(IntensityVI,III,V,III,andIV)occurredincentralandsouthernNewJerseyonAugust23,1938,116to128milesfromthestation.ThelargestshockvasfeltfromnorthernNewJerseytoMilmington,Delaware.Althoughitisindicatedthatseveralofthelarge,distantshockslistedabovevereprobablyfeltatthestation,nodamagingeffectswereexperienced.NoPennsylvaniaearthquakeshavebeenreportedasfeltintheareaoftheSusquehannaSES.Insummary,therearenoreportsfromtheBervickareaofPennsylvaniawhichwouldindicatethatgroundmotionsfromanyhistoricalearthquakeintheeasthaveexceeded]orevenequalled)anintensityasgreatasXVonthecompetentrockonwhichthestationislocated.2.522GeologicStructuresandTectonicActivity2.5.221TectonicProvincesTheareawithina.200mileradiusoftheSusquehannaSESincludespartsofsixtectonicprovinces(Figure2.5-8).Theprovincesare,from'westtoeast,StableInterior,FoldandThrustBelt,BlueRidge-Highlands,ConestogaValley,InnerPiedmont,andCoastalPlain.ThetectonicprovinceconceptusedtodefinetheseprovincesisbasedonanevolutionarymodeloftheAppalachianorogen{Ref2.5-73)andderivedfromearlystudiesintheregion(Ref.25-74).Thisconceptwasusedinthisstudytoprovidetheprovinceboundariesofsignificancetothestation.2.5-69 SSES-FSAR25222TectonicDifferentiationoftheA~alachianOrogenTheoutlineanddiscussionpresentedbelowsummarizestherelationshipsandderivationsoftectonicprovincesoftheAppalachianorogen,asdisplayedinFigure25-8anypartsofwhichoccurwithin200milesofthestation.1.Cratona.EasternBelt(1)BlueRidge-Highlandsb.WesternBasin(1)Stable1nterior(2)FoldandThrustBelt2MobileBelta.EasternCratonicMargin(1)ConestoqaValley(2)innerPiedmont(3)CoastalPlainConsideringthetectonicevolutionoftheAppalachianorogen,itissubdividedasaboveintotwofundamentalareas;thepartaffectedonlybyccnvergentdiastrophism(craton),andthepartaffectedbyinitialdiverqent,convergent,translational,andfinaldivergentdiastrophisms(mobilebelt).Themobilebelt,asdefinedinthisreport,issituatedeastofthegreatanticlinoriacoredbyGrenvillianrocks;i.e.,eastoftheLongRanqe(NovaScotia),theGreenMountains,theBerkshireHighlands,theHudson-NewJerseyHighlands-ReadinqProng,andtheBlueRidgeMountains.ThemobilebeltthuscorrespondstotheAppalachianeuqeosynclineandincludesthequasi-cratonicmargins.Thewesternedgeofthemobilebeltparallelsandliestothewestofwhatwasoriqinallytheeasternedge.oftheNorthAmericancontinentduringCambro-OrdoviciantimeasdefinedbyBodqers(Ref.2.5-74).2.52.23TectonicDifferentiationoftheCratonThecratonicportionoftheAppalachianHighlandsisunderlainbycontinentalcrustcomposedof1000million-year-oldcrystallinerockswhichweredeformedduringtheGrenvillianorogeniccycle.Ontheeasternedqeofthecraton,theserockscropoutatthesurfaceasgreatanticlinoria.Restoftheseelevated25-70 SSES-.FSARanticlinorialiesanelongated,downwarpedsegmentofthecontinentalcrustformingtheasymmetricAppalachianbasin.ThefloorofthisbasinisformedofGrenvillianrocksgreatlydepressedintheeast(upto40,000feetbelowsealevel)andqraduallyrisingtovardthevest.Thebasinisfilledwithlargely-unmetamosphosedsedimentaryrocks(bothclasticandcarbonate)ranqinqinaqefromEarlyCambriantoCarboniferous.Theserocksformasedimentarywedge,thickeningtothesoutheast,reflectinqtheasymmetryofthebasinfloor.BlueRidge-HighlandsTectonicProvinceTheeasternportion,termedheretheBlueRidge-Highlands,canstitutesatectonicprovinceandischaracterizedbyGrenvillianrocksdeformedduringthePaleozoicconvergentstage.Characteristically,theterrainismountainousandexhibitsexposureafsomeoftheoldestrocksintheeasternU.S.(1000-1100millionyears).EarthquakesnogreaterthanIntensityVIarecharacteristicofthistectonicregime,andnonehavebeenrelatedtospecificstructures.StableInteriorTect'onicProvinceTheStableInteriorTectonicProvinceofthevesternbasinischaracterizedbytheabsenceofintensedeformatianandthepresenceofshelf-deltatypePaleozoicsediments.TherocksdisplayqentlefoldingasopposedtotheintenselyfaldedandfaultedrocksoftheFoldandThrustBeltimmediatelytothesoutheast.Thelargestsignificantearthquaketohaveoccurredinthisprovince(vithintheregionalscopeofthisstudy)vasthe1929Attica,NewYork,event(initiallycatalogedasIntensityVII-VIII)approximately168milesfromthestation.ThisshockandanaccompanyingconcentrationoflessereventshasbeenspatiallyrelatedtotheClarendon-LindenFault,ananomalousstructureintheessentiallyuntectonizedrocksmakingupthisportionoftheStableInterior.Asmallconcentrationofactivity,apparentlyrelatedtodomingoftheAdirondakmassif,occurs150to200milesnortheastofthestation.Withtheexceptionofthesemoderatelyactiveareas,theprovinceisvirtuallyaseismic.Folda~dThrustBeltTectonicProvinceTheFoldandThrustBelttectonicprovinceischaracterizedbytightlyfoldedandthrust-faultedPaleozoicsedimentarystratadepositedasflyschormolasse.Thenorthvesternboundaryofthisprovincegenerallymarksatransitionbetweengentlyfoldedstrataonthenorthwest(StableInterior)andintenselyfoldedandfaultedstrataonthesoutheast,thusmarkingthewesternlimitcfPaleozoicthrusting(Ref.2.5-75).25-71 SSES-FSARThelargestearthquakewhichhasbeenrecordedintheFoldandThrustBelttectonicprovinceswastheGilesCounty,Virginia,IntensityVIIIshockof1897,over350milesfromthestation,andinthesouthernlydivisionoftheFoldandThrustBelt.Otherearthquakesinthisprovinceare.widelyscatteredwithonlytwoeventsaslargeasIntensityVIoccurringwithin200milesofthestation.ThemobileportionofthenorthernAppalachianorogenwithintheregionofinterestforthisstudyincludestheeasterncratonicmargin,whichisunderlainbycontinentalcrustofpredominantlyGrenvillianaqe(InnerPiedmontandConestogaValleytectonicprovinces).TheeasterncratonicmarginisboundedonitswesternsidebytheBlueRidqe-HighlandstectonicprovinceandonitseasternsidebytheeasternmostextentofGrenvillianbasement.Thiseasternboundaryisinterpretedprincipallyfromalineofgneissdomesofonebillionyear-oldcontinentalcrustincludingthePineMountainbelt,theSauratownMountainsanticlinorium,theBaltimoreGneissdomes,and,possibly,theChesterdomeofVermont.ThisboundarycorrespondstotheeasternlimitoftheancientcontinentalmarginofNorthAmerica(Ref.2.5-76and25-77).Italsocoincideswithseveralsignificantgeologicalandgeophysicalchanges(Ref.2.5-76).First,itparallelsthemainqravityhiqhoftheAppalachians(Ref.2.5-78).Second,itismarkedbycontrastingseismicrefractionprofilesthatreflectdeepcrustalcontrast.Finally,itisazoneoffaultingcontrastingstructuralstyleandcontrastingmetamorphicfacies.ThiscratonicmarginisdividedintotwotectonicprovincesnorthofVirginia,theConestogaValleyprovinceandtheInnerPiedmontprovince.TheboundarybetweentheseprovincescorrespondstotheMarticLineinPennsylvania(Ref.2.5-79)andthesouthwardextensionofCameron'sLineinwesternConnecticut.TheConestogaValleytectonicprovinceischaracterizedbyamioqeosynclinalassemblageoverlappinganolderclasticassemblage.TriassicBasinsoftheNewarkGrouparecharacteristicoftheConestogaValleyprovince(and,toalesserextent,theInnerPiedmontandCoastalPlain)andarefoundintheareabetweenMassachusettsandNorthCarolinaTriassicrockshavebeenencounteredinboringsatBowlingGreenandEdqehill,VirginiaandnearBrandywine,Maryland25-72 SSES-PSARThesebasinswereformedduringTriassictimeasdownfaultedandfoldedelonqategrabenstructures.Non-marinearkosicsedimentsandintercalatedlavaflowsfilledthesebasinsastheyweredown-faultedandtiltedAtthecloseoftheperiod,theprocessesoferosioncontinuedtomodifythetopographyoftheeasternsectiontoformthebasefordepositionofCoastalPlainsedimentsXntheTriassicBasinsandassociateddown-faultinq,intrusionsofTrio-Jurassicaqearecutanddisplaced,indicatingapost-Trio-JurassicaqeforsomeofthefaultingSimilarintrusionsintheInnerPiedmontarenotdisruptedoroffsetinthismanner.EarthquakesnolarqerthanIntensityVIhavebeennotedintheConestoqaValleyprovince,althouqhsomesmallevents,uptoIntensityVI,arereportedandhavebeententativelyassociatedwithTriassicbasinborderfaults.InnerPiedmontTectonicProvinceTheInnerPiedmontTectonicProvinceischaracterizedbyaeuqeosynclinalassemblageoveranolderclasticassemblage,whichischaracterizedinthisregionbyanortheast-southwesttrendingbeltofPrecambriantoearlyPaleozoicschists,qneisses,slate,metaconglomeratesandsomeigneousintrusionsTheserocksareinterrelatedinacomplexmannerbyfaultingandfoldinq.EarthquakesascribedtotheInnerPiedmontshouldincludetheboundary(InnerPiedmont-CoastalPlain)IntensityVIZeventsatQilminqton,Delaware(1871)andAsburyPark,NewJersey'1927)aswellasseveralConnecticutvalleyeventsofIntensityVIIwhichoccurredover200milesfromthestation,albeit,intheInnerPiedmontProvince(Ref.2.5-73).Nolargereventshavebeenrecordedinthisprovinceandnoneofthehistory.calshockscanbesatisfactorilyrelatedtospecificstructuresTheInnerPiedmontis,inqeneral,apparentlythemostseismicallyactiveportionoftheareawithin200milesoft'estation.ConcentrationsofmoderateeventsareapparentintheNewYorkCityareainandtheCentralVirginiaseismiczonenearCharlottesvilleasdescribedbyBollinger(Ref.2.5-80).Bothofthesezonesarecharacterizedbylowtomoderateseismicactivity.Seismicityelsewhereintheprovinceisrelativelyrareandapparentlyrandom.CoastalPlainTectonicProvinceTheCoastalPlaintectonicprovinceischaracterizedbythedevelopmentofamioqeosynclinalwedgeduringtheadvancedphasesofthefinalcrustaldivergence.Intheregionsouthandeastofthestation,thisprovinceischaracterizedbyastratigraphicsequenceofinterbeddedsands,gravels~claysandsiltysandsofbothmarineandcontinentalorigin.ThesematerialsweredepositedonthedownwarpedbasementcomplexfromEarly2.5-73 SSES-FSARCretaceoustoQuaternarytime.ThestratawedgeoutatthePallZonetoformawedge-shapedmassthatthickenstothesoutheast.Theaveragedipofthesestratavariesfrom75feetpermilewithintheCretaceoussedimentstoapproximately10feetpermileintheupperTertiaryformations.PewqeoloqicstructuresareknownintheCoastalPlainProvince.TheSalisburyEmbaymentisastructurallovinthebasementrocksbetweenNewportNews,VirginiaandAtlanticCity,NewJersey.TheEmbaymentismarkedbyadeepaccumulationofMesozoicandCenozoicsediments,whichapproachathicknessof3,500to7,500feetattheMarylandcoastlineThefeatureisfairlyprominentinthebasementrocksbutlosesformintheyoungersedimentarysequences,sugqestingthatitispredominatelyapre-Tertiaryfeature.TheCoastalPlainunderventregionalepeirogenicmovementsfromPliocenetoQuaternarytime,whichliftedaportionofthecontinentalterraceabovesealevelThesiqnificantseismicactivityintheCoastalPlainincludestheIntensityXeventatCharleston,SouthCarolina,and,forthesakeofconservatism,theWilmington,DelavareeventofIntensityVII2.5.2.3CorrelationofEarthquakeActivitywithGeologicStructuresorTectonicProvincesOnlyafevofthehistoricalearthquakesinthenortheasternUnitedStatescanbesatisfactorilyrelatedtospecificstructuresatthistime.Therefore,aconsideration,ofthesiqnificanteventsvhichcouldinfluencetheseismicdesignfortheSusguehannaSESvillrely,forthemostpart,onanapproachbasedonthetectonicsettingsdiscussedabove.Toaugmentthetectonicprovinceapproach,theconceptoftheseismiczonesvithintheprovincesasdiscussedbyBollinqer(Ref.2.5-80)andHadleyandDevine(Ref.2.5-81)willbeaddressed.ThoseeventswhichconstitutethelargestearthquakesofrecordintheEasternUnitedStatesandwhichembraceallsignificantconsiderationsfortheSafeShutdownEarthquakeforthestation,arelistedbelow:1)Thelargeevents(maximumIntensityIX)suchasthoseintheSt.LawrenceValleyandOttava-BonnechereGrabenarea2)Thelarqeeventssuchasthose(maximumMMIntensityVIII)whichoccurredintheCapeAnnMassachussettsarea3)The(originallycatagorizedasIntensityVII-VIII)Atticashock(1929)inwesternNevYorkState SSES-FSAR4)TheIntensity(IXtoX)Charleston,SouthCarolinaearthquakeintheCoastalPlain5)The.IntensityVIIIGilesCo.,Virginiaearthquakeof18976)TheIntensityVIIeventssuchasthoseshockswhichhavebeenrecordedinandaroundNewYorkCity,Wilmington,Delaware,AsburyPark,NewJersey,andLakeGeorge,NewYork,and7)TheIntensityVIeventswhichoccuronlyinfrequentlyinthegeneralregionSt.LavrenceVall~eTheSt.LawrenceValleyandtheOttava-BonnechereGrabenareaarecontainedintheOttawaBasintectonicprovince(Ref.2.5-73).EarthquakesaslargeasIntensityIXarereportedinthisregion.Thestructuralinterpretationshowsthatthisareaistheextensioncfatransversetroughandmobilezoneintothestableinterior(Ref.2.5-73).Becauseoftheobvioushistoricalconfinementofseismicactivitytothisreqionmarkedbyanintraplateweakness,recurrenceofsuchlarqeshocksareexpectedtoremainintheareaandarethusnottranslatabletothestation.Thelarge(MaximumIntensityVIII)eventsintheBoston-CapeAnnareavereformerlyhistoricallyassociated.withtheBoston-Ottawatrendofearthquakeactivity(Ref.2.5-82)whichincludedtheOttava-BonnechereGrabenareaHowever,arecentre-evaluation(Ref.25-73)hasresultedintheidentificationoftectonicreqimeswhichseparatetheformer"Boston-Ottawatrend"intospecifictectonicprovinces.Onthebasisofthis,theCapeAnnIntensityVIIIevent,beingthelargesteventtohaveoccurredintheAvalonPlatformprovince(Ref.2.5-73)wouldberestrictedtoadistancefromthesiteofnolessthan250milesMoreover,accordingtoBallardandUchupi(Ref.2.5-83),itispossiblethatthesignificantBoston-CapeAnnseismicactivityisassociatedwiththefaultednorthwesternboundaryoftheAvalonPlatform.Forthesereasonsitisnotdeemednecessarytotranslatethisactivity(NaximumVIII)outoftheAvalonPlatform.WestenNewYorkTheshockof1929nearAttica,NevYorkisanomalouswithrespecttotheexceedinglysparceseismicityofthisportionofthe25-75 SSES-PSARStableInterior.Itdoesmark,however,anotedconcentrationofearthquakeswhicharespatiallyrelatedtothewell-recognizedfeatureoftheimmediatearea,theClarendon-LindenStructure(Ref.2.5-114).ItisgenerallyacceptedthatanyrecurrenceofasimilareventwouldbeconfinedtotheAtticaarea.Therefore,thepostulationofarecurrenceofthisshockattheclosestapproachofStableinteriortothestationisnotwarranted.Arecurrenceofthelargestevent,atanylocationalongtheClarendon-LindenStructurecouldresultinonlyminimalgroundmotionatthestation(lessthanIntensityIV).CharlestonSouthCarolinaThelargesteventstooccur.intheeasternUnitedStatesweretheeventsofapproximatelyIntensityXatCharleston,SouthCarolinain1886.Theconcentrationofseismicactivity(over400events)intheimmediatevicinityofCharlestonisuniquetotheAtlanticCoastalPlain;moreover,suchaconfineddensityofepicentersisunmatchedanywhereinthecentralandeasternUnitedStates,withthepossibleexceptionoftheNewMadrid,Missouriregion.Onthestrengthofthisarealdistributionalone,itwouldbeconcludedthataspecifictectonicanomalyisresponsibleforthislocalizedactivity.Independentlinesofinvestigationhaverecentlysuggestedastructuralregimewhichmayberesponsiblefortheobservedseismicity.OnthebasisofseismicreflectionprofilesparalleltothecoastofSouthCarolina-,Dillon(Ref.2.5-84)hasreportedevidenceofnorthwest-trendingfaultsinthecontinentalshelfalongtheSouthCarolinacoast,andstatesthatthiswould'seemtobetheonlyzoneof,activefaultingintheUnitedStatessouthofCapeHatterasandeastoftheAppalachians.PossibleevidenceoffaultingisnotedinthebasementrocksoffshoreandintheTertiaryrocksofthecontinentalmargin.Thispossiblefaultingalignswiththenorthwest-:trendingseismiczone(Ref.2.5-80)andhasbeenpostulatedtobetheextensionofanactiveoceanicfracturezoneintothecontinentalblock(Ref.2.5-84,and25-82).Morelocally,amild,breachedfoldintheshallowsedimentsseveralmilesvest-southwestofCharlestonhasbeenidentifiedbyColquhounandComer(Ref.2.5-85)astheStonoArch.Theaxisofthisarchtrendswest-northwestandhaspossibleassociatedfaulting.Thetrendofthisstructureisalignedwith,andqrosslyparallelto,theseismiczoneandtheoffshorestructurediscussedabove,andrepresentstheonlyknowndeformationintheimmediatevicinityofCharleston.Thus,itmaybeanear-surfaceexpressionofthemorereqional(anddeeper)anomalysuggestedbyoffshorereflectionsurveysandmagneticanomalytrends(Ref.25-86).25-76 SSES-FSARTransversetothestrikeofthesestructuralfeaturesarethen'ortheast-trendinqaxesoftwostructuralhighswhichareidentifiedalongthecoast,fromSavannah,GeorgiatojustsouthofCharleston,astheBeaufort-BurtonHighandtheYamacrawRidge(Ref.2.5-94).AccordingtoDillonetal.(2.5-84),theBeaufort-BurtonHighmaybeashallowexpressionofthedeeperlyinqYamacrawRidqe.TheintersectionofthesestructureswiththesuqqestednorthwesttrendsinthevicinityofCharlestonmay,atleast,bean'expressionofdeeperbasementcomplexityinthearea,andlendssupporttoadefinitionofstructureresponsibleforthewell-definedclusterofseismicactivityintheCharlestonarea.NootherstructuralanomaliesofsignificanceareknowninthisareaoftheCoastalPlain.Therefore,theuniquedensityofearthquakeactivityintheCharlestonareaisconsideredtobeassociatedwithlocalizedstructure,thecharacterandextentofwhichareonlygrosslysuggestedatthepresenttime.Inthisrespect,anearthquakesimilartothelarqestCharlestonshockwouldbeexpectedtorecurinthesamelocale,andwouldnotbesubjecttotranslationthroughouttheAtlanticCoastalPlaintectonicprovince.TheGilesCounty,Virginiaearthquakeof1897isthelargestshocktohaveoccurredinthesouthernAppalachianregion.Itislisted(Ref.25-72)asIntensityVIII,andoccurredintheSouthernAppalachianSeismicZonenearitsintersectionwiththeCentralVirqiniaSeismicZone(Ref.2.5-80),morethan350milesfromthestation.Thisintersectionismarkedbyadefinitebreakinthecontinuityoftheactivityofthenortheast-trendingSouthernAppalachianSeismicZoneandlieswelltothesouthofanareaofapparentdifferentiationofthesystemoftectonicstressesalonqtheAppalachianscalledtheCentralAppalachianSalientinsouthernPennsylvania.Thissalientwasprobablyinitiatedduringearlycrustal"diverqenceinlatePrecambriantime(Ref25-73and2.5-87)resultinqinaprofounddifferencebetweenthenorthernandsouthernpcrtionsoftheAppalachianorogenasevidencedbythreestagesoftheoroqen'sdevelopment:InlatePrecambriantheinitialriftingstagedevelopedwithabend,offsettingthenorthernandsouthernportionsofthecontinentalmarqin.2Durinqtheendoftheconvergentstage(middletolatePaleozoic),theAlleghanianorogenywaspronouncedonlyinthesouthandtranslationwasrestrictedtothenorthernAppalachians.2.5-77 SSES-PSAR3.IntheJurassicduringthefinalriftingstage,differentstressregimesprevailedinthenorthernandsouthernportions(Ref.2.5-88).TheCentralAppalachianSalientoccurswheretheNNEtoNEtrends,commontotheAppalachians,changetoEMinthevicinityof40~NlatitudeTheEMtrendhasbeeninterpretedtobeamajorcrustalstructurebyseveralauthors(Ref.2.5-89and25-90)basedlargelyoncircumstantialevidenceofinterpretedoffsetsofqeophysicalanomalies,isopachcontours,andgeologicmappatterns.DrakeandMoodward(Ref.2.5-90)havesuggestedthat80-90milesof,dextraloffsethasoccurredonthisfeatureandthat.noevidenceofpost-Cretaceousmovementhasbeenfound.Pigure2.5-8showstheapproximatelocationofthisstructureasdefinedbyMoodward(Ref.2.5-89).Eventhoughitssurficialexpressioncannotbewelldefined,theCentralAppalachianSalientclearlydividesthenorthernandsouthernpcrticnsoftheorogen.ThisisborneoutbyinspectionofthehistoricalseismicityshownonFigure25-8,whereinconsistentchanqesintheseismicitywithinthedescribedprovincesarenotedfromnorthtosouth.ThevirtuallyaseismiccharacterofthatportionofthePoldandThrustprovincecontainingthestationhasbeennotedbytheNuclearRegulatoryCommission(Ref.2.5-91).Thus,inconsiderationofthetectonicdevelopment,theinferredgeologicalandgeophysicalevidence,andseismicity,theexistenceofafundamentalboundarybetweenthenorthernandsouthernorogenishereinconsideredandillustratedasazoneonPiqure2.5-8.ThischangeofseismotectonicstyleisfurthercorroboratedbyHadleyandDevine(Ref.2.5-81,Sheet3)whohaveshownaseismotectonicprovincegenerallyrecognizingtheearthguakeactivitycfBollinqer~s(Ref2.5-80)SouthernAppalachianSeismicZonewithintheFoldandThrustBelt.Atitsnorthernextent,theirboundarystopsat,thesouthernPennsylvaniaborderabout125milesfromthestation.Theydescribethezoneasanareawhereepicentraldistributionorrelationtoknownstructureindicatesalimitinqstructuralfactor,andwhereatleastoneearthquakeofIntensityVIIor,VIII{GilesCountyevent,1897)hasbeenrecorded.Becauseof{l)thenotablechangeintectonicstyleintheFoldandThrustBeltProvinceSouthofthePennsylvaniaborder,(2)thereductioninseismicitynorthoftheCentralAppalachianSeismicZone,(3)theassignmentofadifferentseisotectoniccharactertotheFoldandThrustBeltsouthofPennsylvania,'nd(4)thehistoricalrecordwhichshowsasparcityofearthguakesinPennsylvania,weconsiderthatatranslationofanIntensity25-78 SSES-FSARVIIIevent(GilesCountyrecurrence)closerthan100milestotheSusquehannaSESisnotwarranted.IntensitVIIEventsConsiderationmustbegiventothelikelihoodofIntensityVIIeventswhichareknowntooccuroccassionallyinthisregionofthenortheast.Within200milesofthestation,nineshocksofIntensityVIIhavebeendocumentedFiveoftheseareearlyreports(1568,1574,1584,1592and1791-SeeTable2.5-2)ofconcentratedactivityintheConnecticutBasinabout200milesfromthesite.ThisarealieswithintheInnerPiedmontTectonicProvince.TheotherfouroccurredwithinthePiedmontprovince,oratits(eastern)boundarywiththeCoastalPlainnearNewYorkCityandnorthernDelaware.Theclosestapproachtothestationofthetectonicprovincecontainingtheseeventswouldbe50miles.SuchaneventwouldattenuatetoaboutIntensityVevenonunconsolidatedmaterialsatthestation,accordingtoconservativecentralU.S.attenuationcharacteristics(Bef2.5-92),andwouldbelessoncompetentrock.TheIntensityVIIeventatLakeGeorqeinnorthernNewYork,althouqhover200milesfromthestation,isspatiallyassociatedwithageneralconcentrationofsmallerearthquakes.HadleyandDevine(Ref.2.5-81,PlateC)confinethisLakeGeorgeeventto(1)atectonicprovincewhosenearestapproachtotheSusquehannaSESisgreaterthan150miles,and(2)aboundedareaofseismicactivity"inwhichknownfaultsareassociatedwithepicentralaliqnmentsordistributioninsuchawayastoindicatethat'ovementsontheknownfaultsorcloselyrelatedfaultshavebeenthesourceofrecordedearthquakes."Thisseismicareaboundaryapproachesnocloserthan150milestothestation.Itisseen,then,thatIntensityVIXeventscanbeconfinedtoapproachesoftectonicprovinces,seismiczones,and/orstructurewhicharenocloserthan50milestotheSusguehannaSES.Zntensit~VIventsWithin200milesofthestation,aXewscatteredIntensityVZeventsarenoted(Figure2.5-8).Thetwoclosesteventsoccurabout48-60milesduesouthattheclosestapproachoftheirtectonicprovinceandare,atleastspatially,relatedtoTriassicborderfaults(Ref2.5-81).SeveralothersareconcentratedintheimmediatevicinityoftheClarendon-LindenstructureinnorthwesternNewYorkState.Itshouldbenotedthatinthestationprovince(FoldandThrustBelt)noIntensityVIeventsoccurnorthoftheCentralAppalachianSalientinsouthernPennsylvania,adistanceofover100milesfromthestation.IntheStableInterior,anIntensityVIeventinnorthernNewYork,180milesnorthofthestation,isnotrelatedtoknownstructure,andcouldconservativelybetranslatedtothe2.5-79 SSES-FSARclosestapproachofitsprovincetothestation,adistanceofabout40miles.25.2.4MaximumEarthuakePotentialTheprevioussectiondefinedthemaximumpotentialearthquakeintermsoftheclosestpostulatedapproachofmaximumhistoricaleventstotheSusquehannaSES.Considerationwasgivenineachcasetoaconservativeutilizationoftectonicprovincemodels,recoqnizedseismiczones,and/oranyassociatedtectonicstructure.TheresultinqcandidatesfortheSafeShutdownEarthquake(SSE)are:Intensit~N~MXIXVIIIVIIVIClosestApproachtoSite450miles)300miles100miles50miles40milesMaximumSiteIntensityVVV-VIV-VIIV-VInderivinqthemaximumIntensitytobefeltatthestationfromtheabovecandidates,theattentuationcurvesdevelopedforthecentralUnitedStates(Ref.2.5-92)wereused.ThesecurvesarethemostconservativeavailablefortheUnitedStatesinthatbothwestern(California)andeastern(Canada,NewYork,Charleston-,SC)datashowaqreaterattentuationofIntensitywithdistancethandoesthecentralUnitedStatesexperience.Itshouldbenoted,also,thatsuchattentuationrelationsarebasedonisoseismalmapswhichtendtorecordthemaximumIntensityfeltinaqivenlocale,usuallyonpoorsoilconditions.Itislikelythen,thattheIntensities(damaqepotential)actuallyexperiencedonsolidfoundationmaterialoftheSusquehannaSESwouldbesomewhatlessthanthoselevelsspecifiedintheforeqoinqtablewhichareusedintheSafeShutdownEarthquakederivationinSubsection2.5.2.6below.Frominspectionoftheabovecandidates,astationintensityoflessthanVIisthemaximumconsistentwiththetectonicmodel,seismiczones,and/orassociatedstructureThisisentirelyinkeepinqwiththehistoricalearthquakerecordwhichshowsthattheareaofthestationisvirtuallyaseismic.moreover,therearenoknownfaultswhichappearcapableofgeneratingotherthanminordisturbanceswellbelowdamaqinglevelsofgroundmotion25-80 SSZS-PSAR252.5SeismicRaveTransmissionCharacteristicsThestaticanddynamicpropertiesofthesubsurfacematerialsatthestationarepresentedinSubsection2.5.4.2Theanalysespresentedinthisreferencedsectionarebasedoncharacteristicgroundmotionandsignificantfrequenciesgeneratedbythemaximumpotentialearthquakedescribedaboveandquantifiedbelow.25.26SafeShutduenEa~rthnake/SEEDAsaresultofthederivationsdiscussedabove,-anSSEoflessthanIntensityVIisthemaximumearthquakeconsistentwithtectonicmodelsandhistoricalevidencepresentedforthesite.Howeve'r,anSSEgeneratingahorizontalgroundaccelerationof.10percentofgravity(q)hasbeenselectedincompliancewiththeminimumdesignrequirementoftheregulatoryagencies.Tojustifytheconservativenatureofthisdesignlevelasananchorfordesignresponsespectra,theacceleration/intensitycorrelationswhichhavebeendevelopedforanIntensityofVXarediscussed,althoughthisIntensityisnotexpectedtobefeltatthestationonthebasisofthediscussionsabove.RecentcorrelationsbetweenIntensityandpeakhorizontalqroundaccelerationhavemadeuseofcurrentlyavailabledataforthewesternUnitedStates(Ref.25-113)andworldwide(Ref.2.5-93).Theresultsofthesecurrentstudiesdonotdifferqreatlyfrompriorparallelstudies,butaregenerallymoreconservative.Therefore,theseinvestigationscanbeusedasageneralguideforanexpectedvalueofacceleration(fromanIntensityVIevent)onwhichtoanchordesignresponsespectraThesestudiesshowanexpectedaccelerationlevelofabout6to7percentofgravityasaresultofaIntensityVIevent.Onthebasisoftheserelationships,thedesignaccelerationfortheSusquehannaSESforstructuresfoundedonrockisconservativelyselectedastherequiredminimumof10percentqinaccordancewith10CFR100,AppendixA.ThislevelisusedtoanchorthedesignresponsespectrashownonFigure2.5-27.Forstructuresfoundedonsoil,theNRCrequiredthattheSSEbeincreased50percentorto0.15qinordertoaccommodateanyamplificationofqroundmotioninthesoiloverlyinqthebedrock.Itshouldbenoted,however,thatthemaximumearthquakeforthestationislessthanIntensityVI,whichcorrelateswithanaccelerationofnomorethan006qIf.thisvaluewereincreasedby50%toaccommodateamplificationduetosoils,theresultingSSEforstructuresfoundedonsoil~ouldnotbemorethan010g.Thus,theselectedvalueof0.15qprovidesalargemarginofsafety.The0.15qvalueisappliedatfoundationlevel.25-81 SSES-FSARThedurationofstrongmotionfromtheSSEisnotexpectedtoexceed5seconds(Ref.2.5-95and25-96)andinallprobability,wouldbeconsiderablylessatfreguenciescriticaltodesiqn.Durationofmotionfromalarger,moredistanteventsuchastheCharleston,SouthCarolinaevent(X)wouldberelativelylongerthanthatfromthedesiqnevent,butthelowaccelerationswhicharecharacteristicsoflongperiodmotionfromdistantlargeeventswillbeadequatelyenveloped.byresponsespectraanchoredattheminimumlevelof10percentq.252.7~aeratingBasisEarthsake~OBE)OnthebasisofthehistoricalseismicitydescribedabovewhereinamaximumIntensityfeltatthestationfromhistoricalearthquakeswasnolarqerthanIV,anOperatingBasisEarthquake(OBE)whichwould,duringthelifeofthefacility,generateagroundaccelerationatthestationnohigherthan5percentg(1/2SSE)hasbeenselected.ThislevelofaccelerationwillnotbeexceededbytheoccurrenceofevenanIntensityVshockadjacenttothestationorarecurrenceoflarge,regionaleventsatadistance.AccordingtoTrifunacandBrady(1975),afeltIntensityofVwillresultinaccelerationlevelsbelow4percentq.Returnperiodsforsuchgroundmotionat,thestationareofanextremelylcworderofprobability,asevidencedbythefactthatnolocal(Pennsylvania)shockshavebeenreportedasfeltatthestation.Fiqure2.5-28isthedesignspectraanchoredattheOBElevelof5percentq.Forstructuresfoundedonsoil,anOBEof0.08qwasusedfordesiqn.253SURFACEFAULTINGBasedonthedatacontainedinSubsections2.5.1and2.5.2andtheinterpretationsandconclusionstherein,thereisnocapablefault(AppendixA,10CFR,Part100)withinatleastfivemilesoftheSusquehannaSteamElectricStation.Adetaileddescriptionofthelithologic,stratiqraghicandstructuralconditionsatthesiteandthesurroundingregioniscontainedinSubsection.2.5.1.Allhistorical,reportedearthquakeswithin50milesofthesite,andallearthquakeswithin200milesofthesitewithmaqnitudes(Richter)qreaterthan3.0orMNintensitiesgreaterthanIIIaredetailedinSubsection2.5.2.TheabovereferencedinformationclearlyindicatesthatsurfacefaultinqisnotofsignificancetotheSusquehannaSteamElectricStation.25-82 SSES-FSAR25.4STABILITYOFSUBSURFACEMATERIALSANDFOUNDATIONS2.5.41GeologicFeaturesGeneral.TheupperbedrockatthesiteareaincludestheMiddleDevonianMahantangoFormation.TheupperpartoftheMahantangoisadarkgraysiltstone,withbeddinggenerallydelineatedbythin,consistent,lightgray,fine-grainedsandstonestringers.'Beneaththeuppermember,theMahantangoiscomprisedof120to150ftofdarkgray,hardcalcareoussiltstone,typicallyhavingbeddingobscuretoabsentanddisplayingcleavage.Thismemberwhich'upportsthepowerblockstructuresisharder,moremassive,andmoreresistanttoerosionthantheuppermember.Theirregularbedrocksurfaceunderlyingthesiteistheresultofacombinationofpreglacialweatheringandstreamerosion,glacialscour,latererosionbyglacialmeltvaters,andthevaryingresistanceoftherockunitstoerosion.Thdbedrockisblanketedbytillandglacialoutvashwhichgradesupvardfromagravellyboulderzonetoasurfacelayerofsiltyfinesandsandsandysilt.Thesurfacelayerisbelievedtobereworkedloess.Themaximumthicknessofover'burdenisaround40ftinthesouthernhalfofthesite,withbedrockoccasionallycroppingoutatthesurface.Northoftheeast-vestbedrockridgesituatedjustnorthofthereactors,theglacialdepositsfillavalleyerodedintobedrocktoadepthexceeding100ft.Structurally,thesiteissituatedonthenorthlimboftheBerwickAnticlinorium;itsaxispassesjustsouthofthesiteTheanticlinoriumtrendseast-northeastandplungesgentlytothenortheast.Asviththeregionalpicture,foldingisthemostcharacteristicfeatureofthesitearea.Minorfaultingintheformofsmallbedding-planeslipsandintraformationalshearzonesoccur,buttheyareofnosignificancetothesite.Theyapparentlydevelopedduringthepaleozoic(morethan200millionyearsago)duringtheAppalachianorogeny.Thezonesaretypicallyhealedwithcalciteandquartz(AdditionaldescriptionofsitegeologicconditionsispresentedinSubsection2.51.2)AllSeismicCategoryIplantstructuresexceptthespraypond,theEngineeredSafeguardServiceMater(ESSM)pumphouseandpipelinearefoundedonbedrock.TheESSMpipelinetrenchisexcavatedpartlpinsoilandpartlyinrock.Mostoftheothermajorplantstructures,includingthecoolingtowers,arealsofoundedonbedrock.SitegeologicandfoundationconditionsareentirelysuitablefortheconstructionandoperationoftheSusquehannaSES.2.5-83 SSES-FSAR2.5.41.1AreasofPotentialSubsidence~Uplift~orCollapseThepotentialforsignificantupliftorsubsidenceatthesite,duetoman~sactivitiesorgeologicconditionssuchasregionalwarping,isnegligible.The,shallowestcarbonaterockthatmay'bepresentbeneaththe.siteistheOnondagaFormation,abovewhichoccursmorethan2,000ftofMiddleDevonianshalesandsiltstones"(Figure2.5-14).AtthatdepththeOnondagaFormation,ifpresent,wouldnotbeexpectedtohaveasignificantpotentialforsubsidenceorcollapseevenifitcontainedsolutioncavities.Nocoalbedsarepresentbeneaththesite;thenearestcoalmeasuresareabout3-1/2milesnorthofthesitenearShickshinnyRocksinthesiteareahavenoknownpotentialforoilorgasproduction.Thenearestoilorgasfieldislocated25milesnortheastofthesitePreciselevelingsurveysandotherdataintheliteratureprovidenoindicationthattheSiteisinanareaexperiencinganyabnormalregionalwarping,uplift,orsubsidence.MoredetaileddiscussionofthepotentialforupliftorsubsidenceatthesiteispresentedinSubsection2.5.1.2.5.3.2.5.41.2PreviousLoadingHistoryoftheFoundationMaterials3edrockatthesitehadbeenburiedanddeformedduringtheAppalachianorogeny{over200millionyearsago)withsufficientintensitytoimposesecondarycleavageinplacesandtomobilizecalciteandtosomeextentguartz,resultinginahard,induratedrocklackingthebedding-planefissilitynormallyassociatedwithless.wellinduratedsiltyshalesandshalysiltstones.DuringQuaternarytime,atleasttwoicelobesadvancedoverthesite;theonlydirecteffectthisadditionalloadmighthaveonthebedrockatthesitewouldbeatendencytoscourlooseorweatheredrockfromtherock-soilinterface.Anypre-existingsurficialdepositsnotremovedbytheglacierswouldhavebeenpreconsolidatedandtherebystrengthenedbyiceloading.Sufficialmaterialatthesiteconsistsofglacialdriftlargely,ifnotwholly,depositedby-theOleanadvanceoftheWisconsinicesheet.Thesedeposits,whicharedescribedinSubsection2.5.4.1,wouldbeexpectedtohavevaryingconsolidationorpreloadingcharacteristicsdependingonlocaldepostionalhistory.Soilsinthespraypondexcavation(includingtheESSWpumphouseexcavation)andinthepipelineexcavationsleadingtothespraypondareofparticularinterestbecausetheysupportSeismicCategoryIfacilitiesintheseareas.HeregeologicmappingshowsthatthesesoilsconsistofwellstratifiedoutwashRevg,2/79 SSES-FSARsandsandgravels,togetherwithpoorlystratifiedtounstratifiedkame-likegravels(refertogeologicmaps,Figures2.5-15and2.5-18).Theyevidentlyweredepositedduringorsubsequenttostagnationofthefinaliceadvanceinthesitearea,sincetheyarenotoverlainbyatillblanket,nordothestratashowstructuralevidenceofhavingbeenoverridenbyice.Geologicevidence,therefore,indicatesthatthestratifiedsurficialmaterialsexposedintheexcavationsforthesoil-supportedSeismicCategoryIfacilitiesarelikelytobenormallyconsolidatedandnotpreloadedbyiceduringorsubsequenttodeposition.2.5.4.1.3StructuresandZonesofWeathering,Disturbance,orWeaknessinFoundationMaterialsFoundationmaterialsconsistoftwobasictypes;namely,glacialtillandoutwashinthespraypondarea,andsiltstoneorinduratedslatyshaleintheremainderoftheprincipalplantfoundations.2.5-84a SSES-FSARThisPageHasBeenIntentionallyLeftBlankRev.5,2/792.5-84b SSES-PSARhgeologicmapofthefoundationrockfortheprincipalplantstructuresispresentedonFigure25-18.,Itshowsjoints,shears',attitudesofbeddingandotherfeatures.Allfoundationsshownvereexcavatedsothatstructuresarefoundedonfirmbedrock,theDevonianNahantangoFormationGeologicsectionsthroughthefoundationsareshownonFigure2.5-19.AgeologicnapforthespraypondispresentedonFigure2.5-15.The.southwesterntipofthespraypondiscutintobedrockwhiletheremainderisexcavatedinglacialmaterials.Thethicknessoftheglacialdepositsbeneaththebottomofthespraypondrangesfromzeroatthe,rockcontactto93ftattheeasternendofthepond.Thefoundationforthepumphousestructure,locatedatthesoutheasterncorneroftheponderisunderlainby35to60ftof.glacialmaterial.Thewatercirculationpipelines,betweenthepumphouseandtheplant,intersectbedrockatanelevationof668ft,approximately260ftsoutheastofthepumphouse.Thevicinityofthespraypond'ssituatedoveraglacialorpreglacial,east-vesttrendingbedrockvalleyasoutlinedbycontoursontopofbedrock(Figure2.5-17).Totalreliefofthebedrocksurfaceisabout130ft.Thevalleyisfilledwithdense,permeablegravellyandsandyqlacialoutwashandtilldepositsthatattainamaximumthicknessofabout110ftinthespraypondarea.TheyveredepositedduringtheOleansubstage(earlyWisconsinan)oftheQisconsinglaciationwhichoccurredatleast50,000yearsaqo,andthereisapossibilitythatatleastsomeofthebedrockerosionandoverlyingglacialdepositsaretheresultofanearlierIllinoianglaciation(refertoSubsection2.5.1.2).Ingeneral,thedepositsconsistofasequenceofsand,gravel,andbouldersoverlainbysandandgravel,overlaininturnbysiltysand.Theentiresequenceishighlyvariableingrainsizedistributionandsorting,andcontainsdiscontinuouspocketsofsimilarmaterials.Asarule,grainsizedecreasesandsortingincreasestowardthetopofthesequence.Theglacialmaterialsinthedepositarenoncalcareous;mostoftherockparticlesconsistofinduratedsandstones.Theoriginandcompositionofthedepositaresuchthatitisnotsusceptibletosignificantweatheringoralteration.Inthepoverblockandcoolingtowerfoundations,theprincipalstructuralfeatureisaminoranticline,theaxisofwhichtrends=aboutN85DEandvasexposedin.theradvasteandUnit1coolingtoverfoundations(Figure2.5-18).Southofthisfeature,beddinggenerallydipsgentlysouthvithminorundulations;tothenorth,bedsdipmoresteeplynorth.Bedding,whichgenerallystrikesN70to85~E,isobscureinthefoundations;thefoundationrockisquitemassiveandisnotcharacterizedbyweakzonesdevelopedalongbeddingorcleavageplanes.@hereREV3ll/7825-85 SSES-PSARobserved,thebeddingplanesasarulearesmoothanduncontortedwithonlyminorundulationsIntheturbineand,reactorbuildingfouridations,thebeddinglips5to10degreestothesouth,whilenorthofthecirculatingwaterpumphousethedipsareinplacesupto5to8degreesnorthtonortheast,reflectingthisminorundulatoryvariability.ofbedding.Small-scalefoldsafewfeetindimensionoccurbutarenotprevalentinthesitearea;onesuchsmallanticlinalfoldwasrecognizedatthenorth.edgeofthecirculatingwaterpumphouseexcavationCleavageisvariablydeveloped,strikesgenerallyparalleltothestrikeofbedding,anddipssteeplysouth.Jointingintherockexcavatedforfoundationsisfairlywelldeveloped.Pigure2.5-18showstheprincipaljointsencounteredatfoundationgrade,whichisatsufficientdepthbelowthetopoftherocktobeinessentiallyunweatheredmaterial.Herejointsaretightandeitheruncoated,orcoatedwithcalcite.ora~ixtureofquartzandcalcite.Fewjointsatfoundationlevelcontainedsignificantironstaining;someiron-stainedjointsaremappedintheradvastefoundationarea.Towardthesurfacethesejointsgenerallybecomemoreheavilyiron-stainedwithgreaterdegreeofweathering,andcalcitecoatingstendtobeleachedout,resultinginopenjoints,injointspartlycoatedwithquartz,orinclay-filledjointsinthezoneofweathering.Themajorjointsetstrikeseast-northeast{N60-85oE),anddipsvertically{within15Oofvertical).Othersteeplydippingtoverticaljointsetsstrikenorthwesttonorth-northwest,andnorth-south.J.esssteeplydippingjointsgenerallyhaveaneast-northeaststrike;onegroupdipsgentlynorthwardat10-18O,andanother,inthesouthernpartoftheexcavation,dips50-60oSE.Someofthejointsurfaces,particularlythelow-anglejoints,areslickensided.Znadditiontotheseprincipaljoints,high-angle,discontinuous,whitecalciteandquartz-calciteveinletsaretypicallyexposedlocallythroughoutprincipalplantfoundations.Afewminorshearplanes,originallyrecognizedinthecoresobtainedduringtheearlyphaseofsiteexploration,vereexposedduringfoundationexcavation.andaremappedonPigure2.5-18.Oneshearplane,tracedfromthenortheastcorneroftheUnit1reactorfoundationnorthwardtotheUnit1coolingtower,vasfoundtobeorientedparalleltobeddingandisdenoted~~beddingplaneshearA"onPigure2.5-18.Thesurfacesofthebeddingplanesheararehealedwith1/4to3/4inthicklaminaeofcalcite,siltstoneandsomequartz.Thecalcitelaminae,areapproximately1/16in.thick,alternatingwiththinnersiltstonelaminae.TheentireexposedareaofthisbeddingplanecontainsprominentslickensidestrendingN30~to40oW,witha6Oto7~SEplunqeUpdipandclosertothetopoftherock,thebeddingplanecontainsa1/2to1in.vide,iron-stainedzone,anditalsoshowsextensiveleachingofthemineralsfilling.theshear.Inplacestheadjacentrockisweatheredtoagranularsandy25-86 SSES-FSARsoil.Thecalcitewhichfillsthebeddingplaneshovsnosignofcrushing.Itshouldbeemphasizedthattheweatheringandstainingonthebeddingplaneshearoccursonlynearthetopoftherockwheresurfacewaterandgroundvatercouldpenetratealonqtheplane;atfoundationqradewhichiswel1belowtheweatheredzone,theunweatheredlaminaehavethepropertiesoffirmrockInplacesthebeddingplaneshearisapparentlynotaprominentfeatureintheunweatheredrock.Forexample,itwasidentifiedonlyasaslickensidedsurfacewithassociatedjointinginborinq105andashorizontaljointinqplanesinborinq351(showninprofileonFiqure2.5-19).Foundationmappingrevealsthatthebeddingplanesheariswarpedinconformancetothefoldingofbedding.TheshearcanbetracednorthvardtotheexcavationfortheUnit1coolingtover(Fiqure2.5-18)Measuredattitudesofbeddingshowthattheaxisoftheminoranticlinedescribedaboveoccursnearthefoundationsforpedestals6and7ofthecoolinqtowerSouthofpedestal7,thebeddingplanesheardipsgentlysouth;northofpedestal6,thebeddingplanesheardipsgent1ynorth.Additionalsubsurfacedatafromboreholesfarthersouthandnorthstronglysuggestthattheconfigurationofthebeddingplanecloselyfollowstheundulationsinbedding(Figure2.5-19).Noevidencewasfoundatthesitetoindicatethattheshearplanesubstantiallydeviatesfrombeddingplanes.Duringexcavation,thisbeddingplaneshearwastracedupdiptoitsintersectionviththetopofrockatasteep,glaciallyerodedcontactTheerodedrocksurfacewascontinuousacrossthetraceofthebeddingplane,withoutdisplacementoroffset(Figures25-20athrough2.5-20g).Sincetheerosionoftherocksurfacewouldnecessarilyhaveoccurredpriortothedepositionoftheoverlyingqlacialdeposits,whichhavebeenestablishedasbeinqmorethan50,000yearsold(refertoSubsection2.5.1.2.2.1),thisrelationshipshovsthatanydisplacementalongbeddinqplaneshearAoccurredmorethan50,000yearsago.Inreality,themostprobableageoftheshearingispre-Triassicorover200millionyearsaqo.Thisisindicatedbyregionalrelationshipsplusthe'actthattheshearplaneisfolded{AdetailedpresentationandanalysisoftherelationshipbetweensiteandregionalstructureispresentedattheendofSubsection251.2.32).Asecondbeddinqplaneshear(ShearB),afevfeetbelowandparalleltothefirstbeddingplaneshear,wasexposednearthenorth~estcorneroftheUnit1turbinebuildingfoundation..ltissimilarinappearancebutapparentlymorerestrictedinarealextentthanthefirst.Tvovertical,calcite-filledjointscutacrossthissecondbeddingplane(Figures2.5-20athrough2.5-20q}.Thecalciteintheseverticaljointsiscontinuousacrossthebeddingplanevithnooffset,shovingthatthejointswere2.5-87 SSES-FSARformedandthecalcitewasdepositedinthejoints,subsequenttodevelopmentoftheslickensidesonthebeddingplane.TheconclusionstatedinthePSAR(p.2.7-2)regardingthesignificanceoftheseshearplanesisstillappropriateanddeservesrestatement:"minorbeddingplaneslipsatdepthhavebeenobservedinthesitearea,bothnorthandsouthoftheinteriorridgeThoseslipshavenotexperiencedmovementsinmorethan200millionyears.Aminorslipofthisnaturecouldbeexposedinany.largeexcavationanywhereinthearea;however,itwouldnotaffectthestructuraldesignofthefacilities".Alldeformationalfeaturesobservedinrockatthesitearegeologicallyoldandarenotsiqnificanttoplantstructures.Xnunweatheredrock,minorshearsthatdooccuraretightlyhealedwithcalciteandquartzmineralization,andjointsarelikewisetightandunweathered.Allfoundationsforplantstructuresdesignedtorestonsoundrockwereexcavatedto,orinto,unweatheredbedrock.Nostructurallyweakzoneswereencounteredinthesefoundations(Refer'oSubsection2.5.1.2.5.5).FurtherdescriptionofdepthofweatheringandgeologicstructuresatthesiteandinthefoundationsispresentedinSubsections2.51.2.3.2and2.51.2.562.5.414UnrelievedResidualStressesinBedrockNoindicationswerefoundduringexcavationandconstructionatthesitecfthe.presenceofanysignificantstressinbedrock(refertoSubsection2.5.1.2.5.8foradditionaldiscussion).2.5.4.1.5PotentialforUnstableorHazardousRockorSoilConditionsFoundationrockatthesiteisahard,indurated,unweatheredsiltstone,amemberoftheMiddleDevonianNahantangoFormation.Similarmaterialsunderliethesitetoadepthofatleast1~000ft.Thisrockcontainsnounstablemineralsandprovideshiqhlystablefoundationconditions.Soilsatthesiteareq'lacialinorigin,depositedmostlybyflowingglacialmeltwater,muchundertorrentialconditions.ThesoilisnoncalcareousNostoftherockfragmentsconsistofinduratedsandstones.Theoriginandmineralogyofthesesoilsissuchthattheypresentnohazardousconditions(refertoSubsection2.5.1.2.5.7).2.5-88 SSES-FSAR2.5.4.2PropertiesofSubsurfaceNaterialsAfewofthesafety-relatedprincipalplantstructuresarefoundedonsoil.ThesestructuresconsistoftheEngineeredSafequardServiceMater(ESSM)pumphouse,thespraypond,andportionsoftheSeismicCategoryIpipelinelinkingthereactorbuildingtothespraypond.Nostotherplantstructuresarefoundedonrock.ThelocationofthesestructuresisshownonPiqure2.5-24;soilandrockfoundationsareidentifiedonFigure2.5-17A-Thestaticanddynamicengineerinqpropertiesofthesitebedrockandoverburdensoilsweredeterminedbyfieldinvestigationandlaboratorytesting.Theresultsoflaboratorytestingofthematerialssampledfromtheprojectsitearecoveredintworeports(Ref.2.5-97and2.5-98).AdetailedstudyofthesoilpropertiesatthesiteofthespraypondandESSWpumphouseisgiveninSubsection2.5.5.2,.5,4,2,1propertiesofFoundationRockTheCateqoryIreactorbuildingsanddieselgeneratorbuilding,a-wellasthenon-CategoryIturbineandradwastebuildings(seeFiqure2.5-24)arefoundedonunweatheredsiltstonebedrock.Thesiltstone,amemberoftheNahantanqoFormationofDevonianage,ishardandindurated,andinthefoundationsareaislitholoqicallyhomogeneouswithbeddinggenerallynotwelldefined,andlackinqthebeddingplanefissilityusuallyassociatedwithlesswellinduratedshalysiltstonesandsiltyshales.Inplacestherockexhibitscleavage,furtherevidenceofitsinduratednature.Intheareaoftheprincipalplantstructures,bedrockbeddingwhereobservedqenerallydipsqently(lessthan10o)south;locally,suchasnorthofthecirculatingwaterpumphouse',bedsdipslightlynorth.AtthenorthendoftheradwastebuildingandthenorthsideoftheUnit1coolingtower,beddingdipsmoresteeplynorth.Thecleavageissteeplyinclinedtothesouth.NinorslickensidedbeddinqplaneshearsandjointplanesoccurinthefoundationsasdescribedinSubsections2.5.4.1and2.5.1.2.3.Allsuchshearsbeneaththeprincipalplantfoundationsarefullyhealedwithunweatheredcalciteandquartzmineralizationanddonotadverselyaffectthestrengthandcompetenceofthefoundationrock.FurtherevidenceofthehealednatureoftheseshearsisfurnishedbytheRQDvaluesandcorerecoveryratesinborinqsthatpenetratedbeddingplaneshearA(refertoFigure2.5-18anddiscussioninSubsection2.5.4.1)atelevationsbelowthebottomofthefoundationoftheprincipalplantstructures,suchasinborings302,309,and314.InallcasesRQDvaluesareabove35percentthroughtheshearplane;inmostcases,RQDvaluesexceed80or90percentandcoreREV2,9/782.5-89 SSES-PSARrecoverywascloseto100percent(FurtherinformationonfoundationgeologicconditionsispresentedinSubsection2.541)Typicalvaluesofunconfinedcompressivestrengthofunweatheredsiltstoneunderlyingtheprincipalplantfoundationsrangefrom3,650to16,000psi(seeTable2.5-3).Themodulusofdeformationdeterminedfromtheselaboratorytestsoncoresamplesranqefrom3.1x10~to94x10~psi.Thesevaluesindicatestrongcompetentrock.P-wavemeasurementsweremadebyDamesandMooreinthelaboratoryonindividualcorespecimens.Thecoreswerefromborings303,314,and315whicharelocated,respectively,neartheUnit1turbinebuildingcondensatepumppitatthecenteroftheUnit1reactor,andatthecenteroftheUnit2reactor.TheaveraqeseismicP-wavevelocitydeterminedfor10samplesatorbelowfoundationgradebeneathpowerblockstructuresis13,236fps.Forthreesamplesfromboring303intheUnit1turbinebuilding,theaverageVvalueis14,272fps,orapproximately14,000fps.ThesedeterminationsarelistedinTables2.5-4and2.5-5.Rockqualitydesignation(RQD)measurementsmadebyDamesandMooreonrockcoresfrombelowthefoundationelevationsinthereactor,turbine,radwaste,dieselqenerator,andcirculatingwaterpumphousefoundationsexceed80percent(refertoboringlogs,Ref2.5-97).Inthereactorarea,cross-holeanddown-holemeasurementsofinsituseismicvelocitiesshowhighvalues.ThemeasurementsweremadebyMestonGeophysicalEngineers,Inc.,June8-Auqust6,1971usingboreholes105,303,307,314,315,and316(refertoFigure2.5-29).Valuesobtainedfromthecross-holearrayfortheelevationinterval550-640ftMSLare16,000fpsfortheP-wavevelocityand7500fpsfortheS-wavevelocityinthereactorarea(designelevation'fbottomofreactorfoundations,639ftNSL).Theresultsofthedown-holemeasurementsyieldvaluesthatareslightlylower,byafactorofabout15percent;thatis,aVvalueofabout14,000fpsandVofabout6,200fps.The-einsituresultsareinqoodaqreementwiththelaboratorydeterminations.Additionalcross-holeandup-holeinsituseismicvelocitymeasurementsweremadeinthespraypondarea(Bef2.5-99).Resultsofthecross-holeexplorationsatthesitearefurtherdiscussedinSubsections2.5.4.2.2and2.5.4.4.PlateloadtestswerecarriedoutonsoundrocknearthecenteroftheUnits1and2reactorbuildinqexcavationinthevicinityofboring105(refertoFigure25-18).Plates24,13.5,and8in.indiameterweresubjectedtosuccessivelyincreasingtotalloadinqsof7,22'nd60tonspersquarefoot(tsf),respectively.Atotaldeflectionof.062in.occurredwhenthe24in.platewasloadedtoamaximumof7tsf.Anadditionaldeflectionof0.036in.wasrecorded,onsubsequentloadingto22tsf~andanother0.036inofdeflectiononapplicationoftheREY2,9/782.5-90 SSES-FSAR60tsfmaximumload,producingatotalsettlementof0.134in.forthethree-stageloadingto60tsf.Recoveryoftherockbyelasticrebounduponreleaseoftheseloadswassubstantial:68,75,and80percentrepeatableelasticrecoveryofthetotaldeflectionswererecordedafterreleaseofthe7,22,and60tsfloadings,respectively.'dditionaldeflectionsduetocyclicloadingweresmallApplicationof14cyclesofloadat7,15,and30tsfresultedinadditionalsettlementsofonly0.012,0.003,and0.002in'.,respectively,overthecorrespondingsingleloadings.Theseresultsareconsistentwiththehighmodulusvaluesandseismicvelocitiesofthefoundationrock,and.indicatestructurallystrong,competentmaterialforfoundationsinunweatheredrock.JtisconcludedfromtheengineeringpropertiesoftheunweatheredbedrockoftheMahantangoFormationthattherockprovidesadequatesupportforthemajorplantstructuresunderbothstaticanddynamicconditions.Settlementofstructuresunderstaticloadingisinsignificant.Itconsistsofpseudo-elasticcompressionoftheunderlyingrocksandoccursessentiallyuponloadapplication.Moreover,thebedrockwillundergonolossofstrengthandwillexperiencenegligibleadditionalsettlementunderearthquakeloading.AsummaryofthepropertiesofthefoundationrockiscompiledinTable2.5-5.2.5.4.2.2PropertiesofFoundationSoilsTheresultsofdetailedexplanationofthesoilsinthespraypondareaaregiveninSubsection2.5.5.Onlyinformationonthepropertiesofthepumphousefoundationsoilsisgiveninthissubsection.Thenaturalsoilsatthepumphousesitearenormallyconsolidatedandconsistpredominantlyofsand,gravel,cobbles,andboulders.Thesoilsarepoorlystratified,startingassandorsandygravelatthesurfaceandgradingtomostlycobblesandbouldersnearbedrock.Thedepthofthesoildepositbelowfoundationgraderangesfromabout35ftatthesouthendofthepumphousetoabout60ftatthenorthend.Asubsurfacecross-sectionthroughthepumphousesiteisshownonFigure2.5-30,cross-section"D-D.Thesoilsbelowthefoundationlevelarepredominantlysandygravelswithlargeamountsofcobblesandboulders.Thepropertiesofthesesandy'andgravellysoilsareasfollows:a)GrainSizeDistributionGrainsizedistributiontestsweremadeonmostofthesplitspoonsamplesforclassificationpurposes.SieveRev5p2/792.5-9~ SSES-PSARandhydrometeranalyseswereperformedaccordingtoASTMProcedureD-422.TherangeofgrainsizecurvesisshownonFigure2.5-31.Themeangrainsize(<50)ofthegravellysoils,whicharethepredominantmaterialbelowthepumphouse,wasfoundtobeintherangeof45to25.0mm.Whereverthesandispresentbelowthepumphouse,theDsizeisintherangeof0.14to3.0mm50b)RelativeDensi~tRelativedensitydatawerederivedfromstandardpenetrationtestresultsusingtheGibbsandHoltzprocedure(Ref2.5-100).Thisprocedureisvalidfornormallyconsolidatedsands.ValuesofrelativedensityobtainedinthiswayaresummarizedonFigure2.5-32.Adirectcomparisonofrelativedensityfrom'N'aluesgiveninFigure2.5-32andfromundisturbedsamplesand/orinsitudensitytestscannotbemadebecausenorelativedensitytestsweremade.ThesoildepositsareglacialinnatureThedepositsarequitevariableinparticlesizeandsortingandcontaindiscontinuoussandpocketsandgravelpockets.Grainsizeingeneralincreaseswithdepth.Atthefoundationlevelofthepumphouse,themaximumsizesoftheparticlesareinthe,rangeof3tol2inches.Undisturbedtubesamplescouldnotbeobtainedinthegravellysoils.Thegravelalsowillinfluencetheresultsofinsitudensitytestssothat.theymaynotrepresenttheinsituconditionasawhole.TheStandardPenetrationresistanceversuselevationisgivenonPigure2.5-33.The'N'alueswillbeinfluencedbygravelBecauseofthisthehigherblowcountswerenotconsideredrepresentativeofsiteconditions.AvalueofN=40wasselectedfordesign.Ofthe49standardpenetrationtestsmadebeneaththefoundationlevelattheESSWPumphouse,43exceeded40blowsperfoot.Ofthe6valuesthatwerelessthan40blowsperfootonlyonewaslessthan30blowsperfoot.c)StaticandDynamicShearStrengthUndisturbedsamplingofgravellysoilswasnotpossible.Therefore,shearstrengthtestingwasconductedonlyonthesands.Theshearstrengthofthegravellysoilswasthenconservativelyassumedtobeequaltothatofthesands.Rev.5,2/792.5-92 SSES-FSARThedetailsofthetestingproceduresandselectionofdesignstrengthsaregiveninSubsection2.5.5.Theeffectiveangleofinternalfrictionwasselectedfromthetestdatatobe35O(Figure2.5-34).Thecyclicshearstressratiosatthetwoeffectiveconsolidationpressuresl.0ksfand6.0ksfweredeterminedtobe0.320and0.260,respectively,for5loadingcycles(Figure2.5-35,Subsection2.5.5).AlinearrelationshipwasassumedincomputingcyclicshearRev5,2/7925-92a SSES-FSARThisPageHasBeenIntentionallyLeftBlankRev5,2/792.5-92b SSES-PSARstressratiosatothereffectiveconsolidationpressures.Cross-holeshearwavevelocitymeasurementswereperformedbytestonGeophysicalEngineers,Xnc.(Ref2.5-99).Compressionalandshearwavevelocitiesweremeasuredinsitutodepthsofabout)00ft.TheaveraqeshearwavevelocitiesobtainedfromthemeasurementsaregivenonPigure2.5-36-REV2,9/782.S-92a SSES-FSARTHISPAGEHASBEENINTENTIONALLYLEFTBLANKsREV2,9/782.5-92b SSES-FSARShearmoduliwerecomputedfromthevaluesofshearwavevelocity:G<~2gS.Qhere:G=shearmodulus,psfunitweiqht,pcfg=gravitationalacceleration,ft/sec~VS=shearwavevelocity,fpsAdiscussiononhowtheshearmodulusisinfluencedbytheconfiningpressure,thestrainamplitude,andtherelativedensityisgiveninSubsection2.5.5.2.2.5.43ExplorationThelocationofallfieldexplorationsisshownontheplotplan,Figure2.5-22.Atotalofapproximately250exploratoryboringswasmadeinsoilandrockatthesite.Boringswereloqgedindetail;borinqlogsarecontainedinRefs.25-97,25-98and25-99andAppendix2.5C.ThesoilswereclassifiedinaccordancewiththeUnifiedSoilClassificationSystem.RocklogsincludeR{}D{rockqualitydesignation)values.CoringinrockwasperformedusinqNXdouble-tubedcorinq.equipment.Drillinqwasconductedinlate1970(100and200series'borings)toestablishgeneralgeologic.relationshipsoverthesiteareaandtodeterminegeneralsoiland,rockconditionsatthesite.Amoreintensiveproqram(300seriesborings)wasconductedintheSpringof1971tcdefinefoundationconditionsintheprincipalplantstructuresarea.Four45-degreeangleholesweredrilledinthereactorareaAdditionalexplorationdrillingwasnecessarytolocatethesitefortheSusquehannaRiverintakeand,dischargestructures(700-800seriesborings),todefinesoilandrockconditionsatthespraypondandESSQpumphousesite(1100seriesandsome400seriesborings),andtoinvestigatefoundationconditionsforthecoolingtowers{boringsB1toB'IO)andtherailroadspurandbridgeoverStateHighway11.{borings417to455and929to940).Becauseofthesafety-related2-5-93 SSBS-FSAR(CategoryI)functionofthespraypondandESSRpumphouse~theexplorationprogramforthesefacilitieswascomprehensiveandincludedsplitspoonandundisturbedsamples,laboratorytesting,hydrologicsurveys,permeabilitytests,andseismiccross-holeandup-holesurveys.Aftercompletionofgeologicboringsgstaticwaterlevelsweremeasuredinsomeoftheboringsdrilledonthesite.Perforatedplasticpipeswereinstalledinanumberoftheboringstoallowcollectionoffuturewaterlevel'ata.Theseboringsaredenotedontheplotplan,Figure2.5-22.Forty-seventestpitswereexcavatedbybackhoeatselectedlocationstoobservesoilandrockconditions.Twonorth-southtrenchestotallingover700ftinlengthwereexcavatedtoobtaininformationonphysicalproperties,structure,andvariabilityofthenear-surfacematerialsatthesite.LogsofthetestpitsandtrenchesarecompiledinAppendix2.5C.AgeologicmapoftheCategoryIandotherprincipalplantfoundationsispresentedonFigure2.5-18.AgeologicmapoftheexcavationforthespraypondisshownonPigure2.5-15.GeologicprofilesareidentifiedonPiqures2.5-18,2.5-22,2.5-330andshownonFigures2.5-19,2.5-21,2.5-30'.5-40and2.5-56Photographsdepictingsignificantfeaturesintheprincipalplant.foundationexcavationsareshownonFigures2.5-20athrough2.5-20q2.5.4,4GeophysicalSurveysSeismicrefractionprofilesandcross-hole,up-holeanddown-holemeasurementswereconductedatthesiteduringthePallof1970,Summerof1971,andSummerof1974.Theseismicrefractionlinestotalledover40,000lfofcoveraqe.TheyareidentifiedonPiqure2.5-29.TherefractionprofilescollectedinAppendix25CAsinterpretedfromrefractionmeasurements,overburdenatthesiteconsistsofasurficiallayerofunconsolidated,unsaturated,materialupto15ftthick,constitutingatleastinpartthesoilhorizon,>>ndelainbymoreconsolidated,,partlyorfullysaturatedtillandcompactoutwash,whichextendtothebedrocksurface.Compressional(P-wave)velocityofthesurficialmaterialistypicallyabout1500fps.Velocitiesinthelowertillandoutwashmaterialgenerallyrangebetween3,000and4,500fps,althouqhinsomeplacesvelocitiesattain6~000fps(north-southbaselineatboring107).REV3,ll/782.5-94 SSES-PSARTherefractionsurveyobtainedapersistentP-wavevalueof12,000to10,000fpsforunweatheredbedrock,whichinaanyplacesiscoincidentwiththetopofrock.Preguently,however,REV3,ll/782.5-94~ SSES-FSkRThisPageIntentionallyLeftBlankREV3,ll/7825-94b SSES-FSABlowervelocitieswererecordedinazone0to20ftthicknearthetopofrockTheselowercompressionalvelocitiesareintherangeof6,000to9,000fps,andareindicativeofthezoneofsurficialweatheringnearthetopofrockAtthesite,materialhavingaP-wavevelocityof4,000to6,000fpsmayrepresenteitherdensesoilormorethorouqhlyweatheredorfracturedbedrock;constructionexperienceatthe'iteindicatesthatheresuchmaterialisgenerallycorrelativewithdensesoil.Seismiccross-holevelocitymeasurementswereperformedinthereactorandspraypondareas,theprincipalsitesoftheCategoryIstructures.Twoarrayswereemployedinthespraypondarea;namely,a.north-southarrayacrossthelocationoftheESSHpumphouse,andaneast-westarrayovertheapproximatelocationoflowesttopofrockelevationsinthespraypondBothlatterarraysprovideddatafromwhichwerecalculatedvaluesforthedynamicmoduliofthesoilmaterials.Inaddition,down-holemeasurementsweremadeinthereactorareaandup-holemeasurementsinthespraypondarea.Figure2.5-29showstheborinqsthatwereusedforthecross-holearraysXnthespraypondarea,theseismiccharacteristicsofthesubsurfacematerialsasmeasuredineacharrayaresimilar.ThematerialoverlyingbedrockhasaP-wavevelocityrangingfrom4,200to4,800fpsandanS-wavevelocityranqinqfrom1~600to1,900fps.Itisoverlainbylowervelocitymaterialataboutelevation658attheESSMpumphouselocationandataboutelevation643fartherwestinthespraypond.AttheESSMpumphouse,thisuppermaterialhasP-waveandS-wavevelocityranqesof2,300to2,400fpsand1,300to',350fps,respectively,whilefartherwestbeneaththepondthematerialsbetweenapproximateelevations643and673haveP-waveandS-wavevelocityrangesof3,000to3,300fpsand1,450to1,500fps,respectively.Table25-6summarizestheresultsoftheseismicvelocitymeasurementsinthespraypondareaandlistsdynamicmodulicornputed.fromthesedata.Inthereactorarea,cross-holemeasurementsweremadeonmaterialaboveandbelowfoundationqrade.Abovefoundationqradethebedrockwasweatheredtoadepthofabout10ftbeloworiqinaltopofrock.P-wavevelocityofthisweatheredmaterialwas7,600fpsandS-wavevelocity,3,600fps.AP-wavevelocityof14,800fpsfortheinterval640to660ftMSLindicatesthetopofunweatheredrockisatabout660ftAtandbelowfoundationqradeinthereactorareahighseismicvelocitieswererecorded(Vp=16,000fps,Vg=7,500fps)indicatingthepresenceofstrong,competentfoundationrock.Table2.5-7liststheresultsoftheinsitucross-'holevelocitymeasurementsmadeinthereactorarea;Table2.5-5liststhemodulivalues.FurtherdiscussionofthepropertiesoftheunderlyingsoilsandbedrockaregiveninSubsections2.5.4.2and25.5'.5-95 SSES-'FSAR2.5.4.51ExtentofSeismicCategoryIExcavations,Fills,Piqure2.5-37showsthelocationandlimitsofexcavations,fills,andbackfillsassociatedwithSeismicCategoryI!structuresatthesite..TypicalfoundationsectionsforseismicCateqoryIstructuresareshown.)~5~4.5~$-Bgaavation-QethodsandDewatering5-4~5)~1~ggcavationsinpockAllSeismicCateqoryIrockfoundationswerecarriedtoorwellbelowunweatheredbedrock.Rockfoundationsfortheturbineandradwastebuildings,althoughtheyarenotSeismicCateqoryIstructures,werepreparedaccordinqtothesamegeneralproceduresandcriteriausedinpreparingtheSeismicCategoryIrockfoundations.ExcavationofrockproceededbyinitialrippingofanyweatheredsurficialrockmaterialfollowedwherenecessarybylineLlastingandpresplittinqinholesdrilledtoprovideslopesof1horizontalto4vertical.Essentiallyverticalslopesinunweatheredrockprovedstablethroughoutthedurationofconstructionandnospecialprotectivemeasureswererequired.Weatheredrockwascutonslopesof1horizontalto2vertical.~Inafewplaces,wiremeshwasusedforprotectionofhigherweatheredrockslopesthatwereexposedforextendedperiods.Thesurfaceoftheexcavatedfoundationrockwasscaledtoremoveloosedebrisandjettedwithwater,orairtoremoveloosefraqmentsandtopreparethesurfaceforconcrete.Beforeplacementofstructuralconcreteorconcretebackfilltodesignele'vationallSeismicCateqoryIfoundationswereinspectedbyanenqineerinqqeoloqisttoverifythesuitabilityoftherockanditspropersurfacepreparationtoreceiveconcrete.All.foundationrockbearinqaSeismicCategoryIstructurewasqeoloqicallymapped(seeFigure2.5-18).Poundationsforeachofthe.coolinqtowers(nonseismic-CategoryIstructures)consistof40individualpedestalssupportingthecolumnsandextendedtobedrock.Excavationproceededbycuttingarinqtrenchandpreparingforeachpedestalasuitablesurfaceinunweatheredorpartlyweathered'edrockbyrippingorblastingasnecessary,followedbyscalingandjetting.REV2,9/782.5-96 SSES-FSARDuringconstructionofprincipalplantstructuresfoundedonrock,excavationsextendedbelowthewatertableandsomedewaterinqwasrequired.Duetothelowpermeabilityoftherock~qroundwaterinflowwassmall.Dewateringwasaccomplishedbysurfacedrainsand-sumps.2.5~4.5.2.2gxgavgtionsinSoilTheexcavationforthespraypondandESSWPumphousewaspredominantlyinsoil-.Excavationproceededinitiallybyusinglarqeearthmovinqequipment,thenfinishedbyusingmorerefinedprocedures.Oncompletionofexcavation,thesurfacelayerofthenaturaloilformationwasrecompactedasfollows:a),Forsoilshavingnotmorethan12percentpassingtheNo.200sievesize,80percentrelativedensityasdeterminedbyASTID2049b)Forallothersoil~,95percentofmaximumdrydensityasdeterminedbyASTl".01557TestResultsareincludedinAooendix2.5C.ThelocationoftestspecimenswithrespecttothespraypondisshownonFigure2.5-59.Astatisticalanaly-isofthetestresultswasmadeandissummarizedonFigure2.5-ti0.Therequiredcompactionwasmetorexceeded.AprotectiveconcrotematwasimmediatelyplacedoverthecompactedsoilundertheESSWPumphouseandaminimumof5in.thick.reinforcedconcretelinorplacedovertheentirespraypondarea.Alltemporaryslopesinsoilwereformedatamaximumslopeof11/2horizontalto1vertical.ThetemporaryslopesinthevicinityoftheESSWPumphouseworeprotectedwitha3in.layerofconcretetomaintainthenaturalsoilformationintactAllpermanentslopesinoilwereformedataslopeof3horizontalto1vertical.TheexcavationfortheSeismicCatoqory1pipelinesinsoilwascarriedoutsimilarly.Allslopeswerecutatamaximumof11/2horizontalto1vertical.Theminimumclearanceswere1ftbeneaththepipeand2fttoth:sikes.25.45.3Backf-illandComoactiongGenorally,theexcavatedarea,foraminimumditanceof10ftsurroundinqthemad'orstructures,wasbackfilledwithanon-Rev.17,9/802.5-97 SSES-PSARcorrosiveleanmixconcreteknownassand-cement-flyashbackfill.Aminimalamountofbackfillinghastakenplaceusing.granularbackfill.withtheexceptionofthespraypondandvicinitya~ldressedlaterinthis".ection.TheSeismicCateqoryIpipeli>>esweregenerallybackfilledviththesand-cement-flyash;otherwisegranularmaterialwasused..BuriedSeismicCateqoryIelectricalductbanksarecomposedofreinforcedconcreteencasementsaroundplasticormetalducing;theconcreteencasement'eingcastdirectlyaqainsttheexcavatedqrade.Granularorsand-cement-flvahbackfillwasusedthesameasforburiedpipes.Thepropertiesofthese"espec,.ivebackfillsverea'"follows:a)Sand-Cement-FlyashlfeiqhtSlumpStrenqth110lb/cuftminimum3in.minimum6in.maximumQOpsiminimumat28daysb)GranularGranularbackfillwaswell-qraded,sound,dense,anddurablemaerial.tconsistedofsand,gravelnrcrushedrockanddidnoconainanytopsoil,humus,brush,roots,peat,sod,cinders,shale,rubbishorotherperishablematerials,orportionofclay,wateconcrete,trash,orfrozenmaterial.Nomoretha>>fivepercentbyweiqntpassedtheNo.200sieve.Themaximumsizeofthematerialwas0in.inconfinedareaswherehandtampinqwasrequiredand6in.inothera"eas.ThePlacementspecificationoftheerespectivebackfillswasasfoliows:a)Sand-Cement-Flyash,Sand-cement-flyashbackfillwaseithermixedathebatchplantorobtainedfromanoffsitesource,conveyedtothepointotplacementbyt"uck,andplacedinliftsnotexceedina30in.inheight.Themaximumrateofpourdidnotexceedrrf/hr.Itwa=vibratedinplacewithapprovedequipment.Itwasprotectedfromfreezingtemperaturesfo"nminimumof3days.b)GranularGranularbackfillwasPlacedin'aximum8in.loosehorizontallayers,moist>>reconditioned,andcompactedRev.17,9/802.5-98 SSHS-FSARtoatleast80percentrelativedensityasdeterminedhyASTMD2049.Backfillmaterialwithin2ftofstructuresandinareaswherelarqeconstructionequipmentcouldnotbouedorwheretherewasadangerofdamagetostructureswascompactedtothespecifieddensitybyhandoperatedequipment.Someareasbeneaththespraypondconcretelinerwerefilled.Thematerialandplacementspecificationforthistypeoffill(arbitrarilydesiqnatedFillTypeA)wasasfollows:FillTypeA.MaterialThemaximumsizeofthi'aterialwa4inchesandnomorethan5percentbydryweiqhtpassedtheNo200sieve.FillTypeA,PlacemenFillTypeAwasplacedinmaximum6inchuncompactedlayers,moistureconditionedtoobtaintherequiredcompaction,andcompactedtoatlease.80percentrelativedensityasdeterminedbyASTMD2049.Theareatothesouthandsouth-eastofthespraypondwasfilledinacontrolledmanner.Thematerialandplacement~specificationforthistypeoffill(arbitrarilydesiqnatedFillType'B')wasasfollows:FillTypeB,MaterialThemaximumsizeofthismaterialwas.12inchesandnomorethan35percenthydryweightpassedtheNo.200sieve.FillTypeB,PlacementPillTypeBwasplacedina15inchmaximumuncompactedlayerthickness,moist,ureconditionedtoobtaintherequiredcompaction.andcompactedtosatisfybothofthefollowingrequirements:a)Atleast80%relativedensityasdeterminedbyASTMD2049formaterialhavinqnotmorethan12%passingtheNo.200sieveor90kofmaximumdrydensityasdeterminedbvASTMDl557forallothermaterial.b)Irrespectiveofthecompactinqeffortrequiredtosatisfypa"ta)above,thefillwascompactedinone'ofthefollowinqmannersasaminimumeffort:Rev.17,9/802.5-98a SSFS-FSARUsinqacrawlertractorhavingaweightatlea"tequaltothatofaD8Caterpillartractorwithbulldozerblade.Eachtrackoverlappedtheprecedinqtrackbynotlessthanfourinches.Whenthetractorhasmadeoneentirecoveraqeofanareainthismanner,itwasconsideredtohavemadeonepass.Eachfillliftwascompactedwithfourpasses.ii)Usinqavibratoryrollerofminimumweight20,000poundshavingarollerwidthofapproximately78inchesandadiameterofapproximately60inches.Therollerhadavibratorfrequencyrangeofbetween1100and1600vibrationsperminuteandhadaminimumvibratorydynamicforceof40,000pounds.Therollerspeeddidnotexceed3mphandeachtrackoverlappedtheprecedingonebyatleast4inches.Mhentherollerhadmadeoneentirecoverageofanareainthismanner,itwasconsideredtohavemadeonepass.Fachfillliftwascompactedwithfourcompletepasses.iii)Usinqaha'ndcontrolledvibratorycompactorinlocationsinaccessiblebytractor,orvibratorycompactorswasonthebasisofthedemonstratedabilityofthecompactortocompactthematorialtothosamedensityasthecontiguousbackfill.TestreultsareincludedinAppendix2.5.C.Thelocationoftestspecimenswithrespecttothe-praypondishownonFigure2.5-59.Astatisticalanalysisofthetestresultswa-madeandissummarizedonFigure2.5-60.Therequiredcompactionwasmetorexceeded.Rev.17,9/802.5-98b SSES-FSARTocomputethelateralpressuresactingonsubterraneanwalls,allbackfillwasconservativelyassumedtobegranular.Thestaticanddynamicengineeringpropertiesofthisgranular'ackfillwasassumedasfollows:Bulkunitweight,'Yb135pcfSaturatedunitweight,p'140pcfSCoefficientactiveearthpressure,K0.30Coefficientearthpressure"at-rest",K0.70ThecomputationofstaticanddynamiclateralsoilpressuresactingonsubterraneanwallsisaddressedinSubsection2.5.4.10.2.2.5.4.5.4BeddinMaterialforSeismicCateorIPiesandElectricalDuctBanksThebeddingmaterialwassand-cement-flyashasdefinedinSection2.5.4.5.3.Theexcavationwasmadetooriginalgroundorinsand-cement-flyashbackfilltorequiredbeddingsubgrade.Thebeddingsubgradewasinspectedandverifiedtobesoundanddensemeetingvisualrequirementsforbackfilladequateforsupportofbeddingmaterial,thusmeetingspecificationintent.Thesubgradewasalsoinspectedforunsuitablematerialsuchaswater,frozen,organicordeleteriousmaterial.Suchmaterial,whenfound,wasremoved.Thesand-cement-flyashbeddingmaterialwaseithermixedatthebatchplantorobtainedfromanapprovedoffsitesource.Thesand-cement-flyashwasthenplacedinliftsnotexceeding30inchesinheightnor4feetperhour.Forpipesthepourwasbroughttothepipespringlineandwasallowedtosetforductbanksthebeddingwasnotplaceduntilthyductbankconcretereachedtherequiredstrength.Sand-cement-flyashwasthenpouredtothetopoftheductbankandallowedtoset.Installationofthebeddingmaterialisnotpartofthequalitycontrolinspectionproceedure.AnalysisoftherelevantfieldtestforbeddingmaterialisincludedinthesummarygiveninFigure2.5-61REV.20,2/812.5-99 SSES-FSAR2.5.4.6GroundwaterConditionsSpecialmeasuresforcontrolofgroundwaterlevelsbeneathSeismicCategoryIplantstructuresfoundedonrockarenotrequired.However,controlofgroundwaterlevelsandseepageisneededatthespraypond;discussionofdesigncriteriaforstabilityofthespraypondispresentedinSubsection2.5.5.Periodicwaterlevelreadingswereobtainedinthevicinityoftheprincipalplant(powerblock)structuresbetweenDecember1970andAugust1972.Groundwaterfluctuationsrangedfrom1.5ftindrillholes209,311,to6.2ftindrillhole213.~Themaximumgroundwaterlevelmeasuredintheplantstructuresareaduringthispreconstructionperiodrangedfromapproximately690ftatthewestedgeofthesiteoftheturbinebuilding,toabout655ftattheeastedgeofthesiteofthereactorbuildings(refertoFigure2.5-55).Theselevelswereobviouslyinfluencedbythetopographichighof749ftjustwestofthesiteofthepowerblockstructures.However,subsequentexcavationandgradingintheseareasprecludewaterlevelsfromrisingtothisheightinthefuture.Duringconstruction,theareajustwestofthepowerblockstructureswasgradedtoelevation710ftorless.Excavationsforthefoundationsoftheprincipalplantstructuresextendedbelowthewatertableandsomeminordewateringwasrequired.Duetothelowpermeabilityoftherock,groundwaterinflowwassmallandwasconfinedtoseepagefromfractures.Dewateringwasaccomplishedbypumpingfromlowareasandsump'hereseepswerenotedissuingfromfracturesintherock,holesweredrilledREV.20,2/812.5-99a SSES-FSARTHISPAGEHASBEENINTENTIONALLYLEFTBLANKREV.20,2/812.5-99b SSES-PSARintothefracturesandpipescaulkedintheholestocontrolwaterwhilethemudmatwasplaced.Inthefoundationforthereactorbuilding{elevation639ft)andintheturbinecondensatepumppit(atelevation635ft),hydrostaticpressurecausedliftingofsmallareasofthe3inchthickconcretemudmatthathadbeenplacedovertheimperviousmembrane.Approximately20reliefwellsdrilledthroughthemudmatreleasedthepressureandallowedthemattosettlebacktoitsoriginalposition.Theweightofthestructuralconcreteslabsubsequentlyplacedonthismudmatwasmorethansufficienttoresistanyupliftpressures.Thehighestseepsnotedinthefoundationrockdurinqconstructionwereatelevation642ftintheradwastebuildingexcavationandataboutthesameelevationinthepipetrenchinthesouthernpartoftheUnit2turbinebuilding.Someseepswerealsonotedinthefoundation'ockforthereactorbuildingsatelevation639ftandinsumpsbelowthis.Tothewestoftheturbinebuildinqinthecirculatingwaterpumphouseexcavation,waterwasnotedtoentertheexcavationtoanelevationofapproximately660ft.Hydrostaticlifting(describedabove)oftheimperviousmembranedidnotoccuratfoundationelevationsabove640ft.AdditionalinformationwithregardtogroundwatermonitoringandwatertablefluctuationsintheprincipalplantstructuresareaisprovidedinSubsection2.4.13andTables2.4-31and2.4-32.Atthespraypond,waterlevelinformationtakenbetweenJuly29,1974andAugust4,1975,andfromJanuarythroughlarch1977,indicateaminimumwaterlevelfluctuationof4.0ftrecordedatobservationwells1111and1113,andamaximumfluctuationof7.0ftin1115.AdditionaldiscussionofgroundwaterfluctuationsinthespraypondareacanbefoundinSubsection2.5.5.Becausegroundwaterlevelsatthepondwillbehigherthanthemaximumprojectedfloodelevation(refertoFigure2.5-38andSubsection2.4.3,respectively),Xloodinqconditionswill~notsignificantlyaffectthegroundwaterlevels.LocalwellswithintwomilesoftheplantsitewereinventoriedandtheinformationisgiveninTable2.4-22.Groundwaterflowsaway,fromtheprincipalplantstructuresareatothenorth,east,andsouth.However,thepredominantdirectionofflowistotheeastandsoutheastatgradientsof0.05and0.06,respectively.Theflowrateinbedrockisestimatedtobelessthan1ftperdayasdiscussedinSubsection2.4.13.GroundwatercontoursatthesiteareshownonFigure25-38Permeabilityoftheintactbedrockatthesiteislessthan1ft/year.Theaveragepermeabilityoftheglacialmaterialsat25-100 SSES-FSARthespraypondis2,000ft/year;hovever,thisvaluehasbeenconsiderablyexceededinsometests.Foracompletedescriptionofpermeabilityatthespraypondandplantstructuresareas,consultSubsections2.5.5and2.413,respectively.MeasuredpermeabilityvaluesmaybefoundinTable2.4-33and2.4-34.=2.5.4.7ResponseofSoilandRockt~oDnamicLoadingRockatthesitewouldbeunaffectedbydynamicloadingfromearthquakes.Duringhistoricaltime,noPennsylvaniaearthquakeshavebeenfeltatthesite.Approximately14earthquakesoriqinatinqoutsidePennsylvaniacouldhavebeenfeltatthesite,butwithaprobablemaximumintensityofonlyIVcntheModifiedMercalliScale.Groundmotionatthisintensityvouldhavehadnoeffectonthesite.Thecompressionalandshearvavevelocitiesofsound,unweatheredfoundationrockinthereactorarea(V=14,000to16,000fps;V6,200to7,500fps)indicatethattherockpossessesahighrigidityandprovideseffectiveresistanceagainstdynamicloadsforallstructuresfoundeduponit(refertoTable2.5-5).Suchrockwillnotbesubjecttoanylossofstrengthunderearthquakeloadinqs.25472a~empnmeofSoilto~nnamicLoadie~Theanalysisofearthquake-inducedsoilstrainandsettlementofthespraypondandESSWpumphousearegiveninSubsection2.5.5.Ifthesandsatthesitebehavelikedrysanddurinqanearthquake,thesettlementwillbelessthan005in.Ifthesanddepositsaresaturatedandexcessporepressuresdevelop,theywillreconsolidatefollowinqtheearthquakeandsettlementsupto1.2in.attheeastendofthepondandupto10in.at=theESSWpumphousemaybeexpected.Thebearingcapacityofthepumphousematfootinqwasevaluatedbythefollovinqequation(Ref.2.5-115):qf=1/2BYNY+D(N1)dfq25-101 SSES-FSARWhere:q'ultimatebearingcapacitydB=widthofthefootinqunitweightofthesoildepthofsurcharge0,8=bearingcapacityfactors'YqThisequationwasderivedforthestaticcondition;however,aconservativeevaluationofthebearingcapacityforthedynamicconditioncanbemade,byassumingthat,duringdynamicloading,,thefootinghasaneffectivewidthequalto1/3oftheactualfootinq(Ref.2.5-115).SubstitutingallvaluesgiveninSubsection2.5.4.10.2intotheequationbutusingB=213ftinsteadof64ft,theultimatebearingcapacitywascalculatedtobe52kips/sgft.Thecorrespondingfactorofsafetyagainstbearinqfailureis17.25.4.7.3SoilStructureInteractionSoilstructureinteractionhasbeenaddressedinSubsection37.2.4TheanalysisanddesignofburiedpipelineshasbeenaddressedinSubsection3.7.312.2.5.4.8LiuefactionPotentialForthesoilsupportedspraypond,ESSWpumphouseandSeismicCateqoryIpipelines,theliquefactionpotentialwasevaluated.Thesoilunderneaththesestructuresispredominantlysand,qravel,cobbles,andboulders.TheliquefactionpotentialofthesoilsbeneaththespraypondandtheESSWpumphouseisdiscussedindetailinSubsection2.5.5.Theminimumfactorofsafetyagainstliqueficationforthesestructureswasfoundtobe1.26,whichislargerthantheminimumacceptablefactorofsafetyof1.20.ThesoilsupportedSeismicCategoryIpipelinesdonotofferaworsesituationregardinq-liquefactionpotentialincomparisonwithspraypond,sincethepipelinesareunderlainbythesameqlacerialdepositsasthespraypondareaandthedepthtothemaximumpredictedwaterlevelisqreater.25-102 SSES-FSARThedesignbasesfortheSSEandOBEareaddressedinSubsections2.5.2.6and2.5.2.7.254.10StaticStability2.5.4.10.1StaticStabilityofSafety-RelatedStructures~Su~ortedonRockThereactorbuildings,controlstructure,andthedieselqeneratorbuilding,allofwhichareSeismicCategoryIstructures,arefoundedonsound,unweatheredsiltstonebedrock.TheSeismicCategoryIpipelineslinkingthereactorbuildingswiththespraypondaretrenchedpartlyinsoilandpartlyinbedrock.Thestrengthoftheunweatheredbedrockamplyaccommodatestheloadsoftheplantprovidinghighlystablefoundationconditions.AsmeasuredintheSeismicCategoryIreactorarea,compressionalvelocitiesareintherangeof14,000to16,000fps;shearwavevelocityranqesbetween6,200and7,500fps.Staticdeformationalmoduliasmeasuredonrockcoresvarybetween3.1to9.4x106-psi(refertoTable2.5-3).Measurementsofunconfinedcompressivestrengthofunweatheredfoundationrockfromthevicinityoftheprincipalplantstructureswerebetween3,650and16F000psi(Table2.5-3).StaticpropertiesofthefoundationrockaresummarizedinTable2.5-5.Loadsinducedbytheplantstructuresarelessthantheallowablebearingpressureoftherockandfarbelowtheultimatebearingcapacity.Thestructuralloadswillproducenosignificanttotalordifferentialsettlementofthefoundations.Safety-relatedstructuresfoundedonrockweredesignedforahydrostaticgroundwaterloadingcausedbyamaximumgroundwaterlevelof665ft.Thisishigherthantheexpectedmaximumwaterlevel,asdiscussedinSubsection2.413.2.5.4.10.2StaticStabilityofSafety-RelatedStructures~SuorteBonSoilThematfootinqoftheESSMpumphouseis112ftlong,64ftwide,and3ftthickThe'otaldeadandliveloadsare20,000kipsand2,100kips,respectively.Thecorrespondingunitpressuresare280ksfand0.30ksf,respectivelyThebottomofthematisatelevation657ft.25-103 SSES-FSARTheultimatebearingcapacityofthematcanheestimatedbythefollowingequation(Ref.2.5-115):q~=1/2ByN+D(N-1)d'YfqWhere:q'ultimatebearingcapacitydB=widthofthemat=64ftunitweightofthesoil=30pcfD=depthofsurcharge,conservativelyassumedtobezeroNy<Nqhearingcapacityfactors38,and33,respectively(Ref.25-115)correspondingtop=350(Subsection2.5.4.22)Theultimatebearingcapacityofthematfoundationvasfoundtobe158kips/sqftThefactorofsafetyvascomputedtobe51,whichindicatesnodangerinoverstressingthesupportinqqranularsoil.Therefore,theallowablebearinqpressureandsettlementofthematfootingvereevaluatedbythemethodoflimitingsettlementssuqqestedbyPeck,Hanson,andThornburn{Ref.2.5-116).Theallowablehearingpressureforamaximumsettlementnottoexceed2in.vascomputedbytheformula:q=022CCNwaMhere:q=allowablebearinqpressures,tsfaN=numberofblovsperfootinthestandardpenetrationtestCnrCwcorrectionfactorsfor"N",fortheeffectsofoverburdenpressureandlocationofgroundwatersurface-AconservativeNvalueof40wasselectedtorepresentthesoilsbelowthematfoundation(Elevation657ft,Figure2.5-38).TheStandardPenetrationTestsbelowthefoundationlevelweremadeatanaverageoverburdenpressureofabout6,000psf(Figure2.5-39);thecorrespondinqcorrectionfactorCnvasobtainedfromFigure19.6ofRef.2.5-115tobe0.63.Assumingthattheqrcundwatersurfaceisat7ftbelovthematandnosurcharge,thecorrectionfactorCvascomputedtobe0.55byequation,l94ofRef.2.5-115.25-104 SSES-PSARTheallowablebearingpressurevascomputedtobe6.0kips/sqftbasedonthevaluesof8,Cg,andC.givenabove.Atthisbearingpressure,thesettleuentofthenatfoundationshouldbelessthan2in.andthedifferentialsettlementshouldbelessthan3/4in.Therefore,byproportion,foradesigntotalpressureof3.1kips/sqft,thecorrespondingmaximumanddifferentialsettlementswouldbelessthan1in.and1/2in.,respectively.Settlenentinsandandgraveldepositsoccursalmostsimultaneouslywiththeapplicationofload.Sincemorethan80percentofthetotalloadisdealload,thenlessthan0.2in.ofsettlementisexpectedafterthecompletionoftheconstruction.ThestructuralstabilityoftheESSMpumphouseisdiscussedinSubection3.8.4and3.8.5.Thesustainedloadfromthespraypondislessthantheveightofoverburdenremoved;therefore,thereisanadequate.factorofsafetyagainstoverstressingtheunderlyingsoil.Soilsreboundduringexcavationingranularsoilsofthetypeatthespraypondisinsignificant.ThemaximumpredictedelevationofthewatertableisbelovthebaseofthespraypondandESSMpumphouse;therefore,dewateringwasnotnecessaryandhydrostaticvaterloadingswerenotconsideredinthedesignofthesestructures.Afulldiscussionofthewatertablein'hisvicinityisinSubsection2.5.5.ThelateralearthpressureactingonsubterraneanwallsofSeismicCategoryIstructureswascomputedassuminggranularbackfillhavingthepropertiesstatedinSubsection2.5.4.5.3.Thecoefficientofearthpressure"at-rest>>wasused.Additionally,thewallsveredesignedforsurchargeloadingsanddynamicsoilpressuresasappropriate.The.typicalpressurediagramsandcombinationsareshownonFigure2.5-39.Materlevelsinthespraypondareaarediscusseli'nSubsection2.5.5.1.2.ContoursonthegroundvatertableinthespraypondareaareshownonFigure2.5-38.Profilesofmeasuredandpro)ectedprofilesofthegroundwatertablebeneaththespraypondareshownonFigure2.5-40O.jREV.18/7825-105 SSES-PSABesnCte-)25411.1DesignCriteriaofSafety-BelatedStructuresoockL~AssummarizedinSubsection2.5.4.9,theplantstructuresfounded.onrockaredesignedforamaximumaccelerationof0.10gfromanoccurrenceoftheSSgeventPromconsiderationofitsengineeringproperties,itisevidentthatthefoundationrockwillnotbemeasurablyaffectedbyseismicloadings,andnegligibleadditionalfoundationsettlementwillaccompanythesemaximumpotentialdynamic,loads.Themaximumcontemplatedtotalstaticanddynamicloaf'sof40tsfareonlyafractionofthe.bearingcapacity.oftherock,thusensuringanamplemarginofsafety.2.5.4.11.2DesignCriteriaofSafety-RelatedStructuresonSoilAssummarizedinSubsection2.54.9,thespraypondslopesaredesignedforamaximumaccelerationof0.15gfromanoccurrenceoftheSSEeventatthesite.Thespraypondriserpipecolumns,theSeiSmicCategory1buriedpipes,andtheESSMpumphousearedesiqnedforamaximumaccelerationof0.15gfromanoccurrenceoftheSSKeventatthesite.Theallowablebearinqpressureunderbothstaticanddynamicconditionssatisfiestheseconditions:a)Sustaineddeadloadplusofsafetyof3liveloadwithaminimumfactorb)Sustained,deadloadplusmaximumliveloadwithaminimumfactorofsafetyof2rc)Sustaineddeadloadplusliveloadkeepingsettlementwithintolerablelimits.Atthespraypond,alinerhasbeen'designedtorestricttheseepaqeratefromthepondinordertolimitbuildupofagroundwatermoundintheglacialmaterialsunderlyingthepond.Thepondhasbeendesignedforamaximumgroundwaterelevationof665ft.DetaileddescriptionofdesigncriteriaforcontrolofgroundwaterlevelsandseepageatthespraypondandthestabilityofthepondareinSubsection2.5.5.25-106 SSES-FSAR2.5.4.12TechniuestoImroveSubsurfaceConditions2.5.4.12.1'FoundationsinRockNospecialtreatmentwasrequiredtoimprovefoundationconditionsbeneaththeSeismicCategoryIstructuresbearingonrock.Duringconstruction,highloadswerecarriedbythegantrycranerails,oneofwhichwasadjacenttothetopofthetemporaryverticalslopeontheeastsideofthereactorbuildingexcavation.Asaprecautionarymeasuretoensurestabilityofthisslopeduringconstruction,tensionedrockboltswereinstalledintheslope.Onelargepotholewas'encounteredintheVnit1turbinebuildingarea,necessitatingoverexcavationofsome23ftbelowdesignbaseelevation.Theresultinghole,whichwasinfresh,unweatheredrock,wasbackfilledwith574cubicyardsofconcrete(f=2,000psi)tofoundationgrade.2.5.4.12.2'oundationsinSoileNoimprovementofthenaturalsoilformationatthissitewasrequired.2.5.4.13SubsurfaceInstrumentation2.5.4.13.1InstrumentationforRockFoundationsSincesettlementsarenegligibleforthesafety-relatedfacilitiesfoundedonrock(refertoSubsections2.5.4.7and2.5.4.10),noinstrumentationtomonitorsuchsettlementsisnecessary.2.5.4.13.2InstrumentationforSoilFoundationsThefoundationdesignfortheESSWpumphousewasbasedonmeasuredsoilparametersobtainedbyfieldandlaboratorytesting.Theactualsettlementshould.notexceedtolerablelimitsforthestructureanditspipingconnections.Asystematicmonitoringprogramwasthereforeinstitutedtostudythesettlementperformanceofthestructure.Thefollowinginstrumentationprogramwascarriedout:a)PermanentBenchMarks:Twopermanentbenchmarkswereinstalledasreferencepointsformeasurements.REV.20,2/812.5107 SSES"FSARb)SettlementPins:Atotalofsixsettlementpinswerecastintothestructuralmatand5settlementpinswereinstalledinthepumphouseflooratElev.685'-6".DetailsareshownonFigure2.5-41andFigure2.5-62.Asurveyreadingwastakenoneachpinatapproximatelymonthlyintervals.Thetotalsettlementanddifferentialsettlementofthematfoundationwasthereforededuced.SurveyreadingswillbetakenonthefivepinslocatedatESSWpumphousefloorelevation685'-6".Thesereadingswillberecordedonceayearuntil1983.Thiswillgiverecordingsofatleast4yearsfromthepumphousecompletion.Inadditiontotheannualreadingasurveyofthesepinsshallbeconductedafteranyofthefollowingevents:1.)Earthquake2.)100yearstorm3.)Majorleakageorbreakinawaterpipeinthepumphousefillarea.ResultsareshownonTable2.5-8.2.5.4.14ConstructionNotesDuringconstructionofthespraypondliner,crackingwasobservedinseveralareas,themostextensivebeingtheareaalongthesouthwestedgeofthespraypond.Theremainderofthecrackingwasdistributedbetweenareasjustnorthandsouthofthespillwayandtwosmailareaslocatedalongthenorthandsouthcentralportions.Thecracksalongthesouthwestandspillwayareawereapproximately50feetinlengthwhilethecracksalongthecentralareaaveraged7to10feetinlength.Thecracksinallareasrangedfrom1/2"to11/2"indepth.Thecrackslocatedaboveelevation676'-6"andthecrackswiderthan1/16"belowelevation676'-6'ere"V"grovedtoadepthof1/2"andsealedwithHornFlexIsealantAmanufacturedbyW.R.GraceCo.Cracksbelowelevation676'-6"andhavingwidthssmallerthan1/16"wereleftasis.Thehairlinecrackingwhichispredominantinthesouthwestsectionofthepondiscoincidentwiththeconcretelinerbeingplaceddirectlyonbedrock.Sincethelinerincontactwiththebedrockismorerestrainedduringtheinitialconcretecuringandshrinkageperiodithasbeendeterminedthattheseshrinkageforceswerethemajorcauseforcracksinthisarea.InadditiontwoslabsinthisareaweredisplacedbyhyprostaticupliftREV.20>2/812.5-108 SSES-FSARiforcescausingsomeadditionalcracking.Thisupliftoccurredduringtheconstructionphasewhenthepondwasemptyofwater.Thehydrostaticupliftpressurewasrelievedbymeansof2inchdiametercoredrillsthrutheliner.Thesereliefholeswerethenfilledwithgroutjustpriortofillingthepondwithwater.Aslablocatedsouthofthespraypo'ndspillwaywasdisplaced.bymeansoffrostheaveandresultedincracking.Thisactionalsotookplaceduringtheconstructionphasewhenthepondwasemptyofwater.Thedisplacedsectionwasremovedandrepairedinaccordancewithsection7.14ofspecificationC36.Thecrackswererepairedasdescribedabove.Upliftduetohydrostaticpressureuptodesignelevationandfrostheaveareofnodesignconcernwhenthepondisfilledwithwaterasrequiredduringplantoperation.Inareaswherethelinerwasplacedonsoilverylittlehairlinecrackinghasoccurred.Asaresulttherehasbeennoindicationofcracksbeingcausedbysoilsettlement.2.5.5STABILITYOFSLOPESNaturalslopesatthesitearedepictedinthesitetopographicmap,Figure2.4-1.FinalplantgradesareshownonFigure2.5-24.Fewrockslopesarepresentatthesitethatneedtobeconsideredwithrespecttopossibleadverseeffectsonthesafety-relatedoperationoftheplant.Withintheareaimpoundedbythespraypond,bedrockformsaportion.ofthesouthwestslope,cutonagradientof3horizontalto1vertical.Northofthespraypond,anaturalslopeformedonTrimmersRocksandstonerisesatamaximumgradientof2horizontalto1verticaltoaheightofapproximately380ftabovethebottomofthepond(refertoFigure2.5-56).AsdiscussedinSubsection2.5.5.2.3.1,suchrockslopeswouldpresentnosignificanthazardtosafetyrelatedplantstructures.Thesoilslopestobeconsideredarethoseformingandsurroundingthespraypond.2.5.5.1SloeCharacteristics.Theslopesanalyzedincludethecutslopesofthespraypondandtheslopesoftherailroadembankmentadjacenttothespraypond.ThefailureofeitherslopecouldaffectthenormaloperationofREV.20,2/812.5-108a SSES-FSARthespraypond.Thestabilityoftheseslopesisalsodependent'.uponthestabilityofthesprayponditself.Therefore,the"safetyanalysesoftheslopesandthestabilityofthespraypondareinvestigatedanddiscussedtogetherinthissection.Thecutslopesofthespraypondconsistoftwoportionsseparatedbya20ftserviceroad;bothweremadeat3horizontalto1vertical(Figures2.5-42and2.5-43).Thelowerportionisa17.5ftslopebetweentheserviceroad{Elevation685.5)andthepondbottom{Elevation668).Theupperportionextended.fromtheserviceroad.todaylight,theheightoftheslopesvariesfromREV.20,2/8lF5"108b SSES-FSAR0ftattheeastendtoabout40ftatthewestendofthepond.Exceptforafewcutslopesthataremadeinbedrock,themajorityoftheslopesaremadeofgranularmaterial.Theslopesoftherailroadembankmentadjacenttothespraypondweremadeofshot-rock.Theslopesareat3horizontalto1verticalwithamaximumheightof30ft.2.5.51.1GeoloqicConditionsThevicinityofthespraypondissituatedoveraglacial,orpreglacial,east-vesttrendingbedrockvalleyasoutlinedbycontoursontopofbedrock(Figure2.5-17).Thesecontoursindicatethatthebedrocksurfaceofthevalleywaserodedabout100ftbelowtheaverageelevationof,bedrocktothesouthandconsiderablymorethanthatbelowbedrockelevationstothenorth.Totalreliefofthebedrocksurfaceisabout130ft.Thevalleyisfilledwithdensegravellyandsandyglacialoutwashandtilldepositswhichattainamaximumthicknessofabout110ftinthespraypondarea.TheyweredepositedduringtheOleansubstage(earlyWisconsinan)oftheWisconsinglaciation,whichoccurredapproximately50,000yearsago,andthereisapossibilitythatsomeofthebedrockerosionandoverlyingglacialdepositsaretheresultofanearlierIllinoianglaciationknowntohaveoccurredhere(refertoSubsection2.5.1.2).Ingeneral,thedepositsarenormallyconsolidatedandconsistofasequenceofsand,gravel,andbouldersoverlainbysandandgravel,overlaininturnbysiltysand.Theentiresequenceishighlyvariable,ingrainsizedistributionandsorting,andcontainsdiscontinuouspocketsofsimilarmaterials.Asarule,grainsizedecreasesandsortingincreasestowardthetopofthesequence.Topsoilofvariablethickness,consistingofbrownsandysiltandorganicmatter,overliestheglacialdrift.BedrockbeneaththespraypondiscorrelatedwiththeuppermoststrataoftheNiddleDevonianNahantangoFormati'on.StrataoftheoverlyingTrimmersRockFormationcropoutalongtheridgenorthofthespraypond;thecontactbetweenthesetwoformationsisburiedbyglacialmaterial,buthasbeeninferredfromdrillholedatatooccurimmediatelynorthofthespraypondalongtheburiedsouth-facingbedrockslope(refertoSubsection25.12.22andFigures2.5-40and25-56).Thestrata,whichconsistofdarkgray,noncalcareoussiltstonewithfinesandstonestringersintheupperNahantangogradingtomoresandymaterialintheTrimmersRockFormation,strikeN75~Eanddip15~to400north.Thesouthwesterntipofthespraypondiscutintobedrockwhiletheremainderisexcavatedinglacialmaterials.ThethicknessHev.5,2/792.5-109 SSES-FSARoftheglacialdepositsbeneaththebottomofthespraypondrangefromzeroattherockcontactto93ftattheeasternendofthepond.TheESSMpumphousestructurelocatedatthesoutheasterncornerofthepondisunderlainby40to80ftofRev.5,2/792.5-109a SSES-FSARThisPageIntentionallyLeftBlankREV.3~11/7825-109b SSES-PSARglacialmaterial.Thewatercirculationpipelinesbetweenthepumphouseandtheplantoverlieglacialmaterialhavingamaximumdepthof65ft.Theyintersectbedrockatanelevationof668ftapproximately260ftsoutheastofthepumphouse(refertoFigure2.5-17A).Northofthespraypond,theTrimmersBockPormationformsasteepridgerisingapproximately380ftabovethespraypond.Thesouth-facingslopeofthisridgeisessentiallyarockslopeunderlainbyresistantsandstonethinlymantledwithsoilandrockfragments.Thesandstoneismassivetoflaggyandexposuresexhibitwelldevelopedjointsystems.ThelowerportionsoftheTrimmersRockarelesssandyandoccurbeneaththesurfacefromthebaseofthishighridgesouthwardtothenorthernpartofthespraypondarea(Zigure2.5-56).GeologicconditionselsewhereatthesitearereviewedinSubsection2.5.4.1.2.5.51.2GroundwaterConditionsThegroundwatertableelevationsandcontoursshownonPigure25-38arebasedonwaterlevelmeasurementsmadeJune30,1971inthevicinityofthemajorplantstructures,andonmeasurementsmadeAugust6,1974inthespraypondarea.Materlevelmeasurementsintheplantstructuresareawerediscontinuedbeforetheobservationwellsinthespraypondareawereinstalled,andthewellsweredestroyedduringconstructionoftheplant.Thewaterleveldatashowthatthegroundwatertableisinbedrockbeneaththemajorplantstructures,whereasbeneathmostofthesprayponditisintheglacialdrift.Modification(lowering)ofthewatertablebyexcavationinthemajorplantstructuresareaisdescribedinSubsection2.4.13.5.However,somemovementofgroundwaterfromtheplantstructuresareatowardthespraypondtothenorthcanstillbeexpected,eventhoughthemajordirectionofmovementistowardtheSusguehannaRivertotheeast.ThedirectionofgroundwatermovementfromthespraypondisalsoeasterlytowardtheSusquehannaRiver.Theundisturbedgroundwatertableelevationbeneaththesouthwestendofthespraypondisabout670ftwhereitisinbedrock.Attheeastendc+thepond,itisinsoilatanelevationof615ft.Theobservationwellsinstalledinthespraypondareahavenotbeenmonitored.longenoughtoallowaclosedeterminationofaREV3,ll/7825110 SSES-FSARmaximumhighvaterlevel.MonitoringoftheobservationpointswasdiscontinuedinAugust1975andvasresumedinJanuary1977.Therecordedmeasurementssuggestthat,insomecases,upto11ftoffluctuationhasoccurred.Hovever,themeasurementstakenduringOctober1974areconsideredtobeincorrect;'therefore,theyarenotincludedintheevaluation.Eliminatingthosemeasurements,themaximumfluctuationis7ft(Table2.5-9).IntermittentmeasurementsofwaterlevelsatobservationveilsintheareaoftheprincipalplantstructuresweretakenbyDames6Mooreoveraperiodof11months(1970through1971).Thesedataindicatefluctuationoflessthan10ft.Usingtheselimiteddata,itisestimatedthatthemaximumriseofgroundvaterlevelsbeneaththespraypondvillnotbegreaterthan10ftabovethoseonAugust6,1974.25.5.1.3FieldSamlinandTestonThefieldexplorationforthespraypondwascarriedoutfromJune27,1974throughAugust15,1974.ThedrillingsubcontractorwasAmericanDrillingandBoringCompanyofProvidence,RhodeIsland.TheboringlocationsareshownonFigure2.5-44.Atthetimeoftheinvestigation,thespraypondareahadbeenusedasaspoilareaforexcavationfromtheplantsite.Asmuchas33ftofsoilandrockvasdumpedabovenaturalground.Themajorityofthisvasintheeasthalfofthespraypondarea.Atthevestendofthespraypond,arailroadfi.'llconsistinginlargepartofshotrockskirtedthespraypondTherailroadfillvas30ftdeepatBoring1120.TheareabetveenBorings1110and1107wastheonlyareavithoutanyspoil.Underlyingthespoilmaterialisglacialdriftwhichinturnoverliessiltstonebedrock.Thedepthofglacialmaterialvariesfrom0ftatBorings1118and1121to108ftatBoring1104.Thebedrocksurfacegenerallyslopestotheeast.Atthesouthwestendofthesite,bedrockisexposedatgroundsurface.Thenaturalsoilsconsistpredominantlyofsand,gravel,cobbles,andboulders.Thesoilsarepoorlystratified,startingassandorsandygravelatthesurfaceandgradingtomostlycobblesandbouldersnearbedrock.However,cobblesandboulderswereencounteredatvariousdepthsinmostoftheborings.SomeofthesandsandqravelsweresiltyGeneralizedsectionsthroughthepondareaaregivenonFigure25-30.Tventy-fivetestboringsweredrilled.Tenholeswerecompletedforthegeophysicalsurvey,tenforpermeabilityandfiveasgroundvaterobservationwells.AlsoshownonFigure25-44areboringsinthe300and400seriesmadein1971and1972(Ref.2.5-97and2.5-98).Informationprovidedbytheseearlyborings SSES-PSARwasusedforpreparingtheqeneralizedsectionsgivenonFigure25-30.ThedetailsofthedrillinqandsamplinqprogramareincludedinSubsection2.5.5.3alongwithlogsofborings.Permeabilitytests,usingeitherpackersordrivencasingtoisolatezonestobetested,wereconductedinnineholesinthespraypondsite.ThemethodofanalysisusedisdescribedinUSBureauofReclamationEarthManual,DesignationE-18.Onehole(1124)wasconstructedforpermeabilitytestingusingthefieldpermeametermethod,asdescribedintheUSBureauofReclamationEarthManual,DesignationE-19.LocationsofthesetestholesareshownonPiqure2.5-44,andresultsofthetestsarelistedinTable2.5-10.Thetestswereconductedprimarilytodeterminepermeabilitycharacteristicsoftheglacialdriftandthecontactzonebetweentheqlacialdriftandthebedrock(siltstoneoftheMahantangoformation).PermeabilitytestingoftheMahantanqo.Pormationwasperformedduringinvestiqationoftherailroadbridqe(Table25-11)Thesiltstonebeneaththespraypondissimilartothattestedattherailroadbridge,andthesedataaretakenasrepresentativeoftheintactbedrockbeneaththespraypondOneofthetestsectionsinthespraypondwasisolatedintheweatheredandfracturedsiltstone(Boring1117)immediatelybelowthecontactwiththeglacialdriftThecalculatedaveragepermeabilityofthattest(Table2.5-10)ismarkedlyhigherthananyofthetestsperformedintheintactbedrock,aswouldbeexpected.Theexploratoryholesinthespraypondareapenetratednomorethan10ftofthemorepermeableweatheredbedrock.Threeofthetests(Borings1112,1113,and1114)measuredpermeability,ofthecontactzone{includingfrom5to10ftoftheweatheredbedrockwithoverlyingglacialdriftinthetestsection),andthe'alanceoftestsinthespraypondmeasuredpermeabilityofdifferentmaterialsintheglacialdrift.Theborinqlogsindicatethattheglacialdriftisprimarilyoutwashdepositsconsistingofpermeablesandsandqravels,withsomediscontinuouslensesoflesspermeablesiltysands.Thematerialstendtobecoarserand,presumably,morepermeabletowardthebaseofthedepositsfillingthesmallvalley.ThetestssummarizedinTable2.5-10indicatethatthepermeabilityofthesematerialsvariesconsiderably.Permeabilityofthepredominantsandandgraveldepositsisgreaterthan2,000ft/yr(Borinqs1111and1115)Thesiltysandlensesaremuchlowerinpermeability(Boring1122through1125).Thesedataindicatethattheaveragepermeabilityoftheglacialdriftisconsiderablyhigherthanthatoftheintactbedrock.Therangeofpermeabilityintheglacialdriftisgreater,withpermeabilityofsomesiltysandsaslowassomeofthebedrock.25-112 SSES-PSABThemaximummeasuredpermeabilityofintactbedrock.is277ft/yr,andthemedianvalueofthe41testedintervals(Table2.5-11)is81ft/yr.Assigninganaveraqepermeabilityof200ft/yrtothebedrockappearsconservative.Porpurposesofseepageanalysis,itcanbeassumedthatbedrockisimpermeableandgroundwatermovementoccursintheglacialdrift.Thehighpermeabilityoftheglacialoutwashdepositsisindicatedbythetwotestsinwhichthecapacityofthemeasuringequipmentwasexceeded.Also,d,uringdrillingofeightoftheexploratoryholes,therewasconsiderabledifficultybecauseoflossofdrillingfluid(seeTable2.5-12)Commonly,itwasnecessarytodrivecasingtosealoffhighlypermeablezones.Thecoarsenatureoftheselost-circulationzonesprecludedattemptstoperformmeaningfulpermeabilitytests.Further,thepermeablenatureoftheglacialdriftisdemonstratedbytheperformanceofthetwoplantsitewaterwellsforconstructionuse(Figure2.5-38).Eachofthesewellshasacapacityof150gpm,andatleastoneisoperatingcontinuously.Thesewellsdrawfromamaximumof60ftofsaturatedglacialdriftPromtherelationshipofspecificcapacityofawaterwelltothethicknessoftheaquifer,thepermeabilityoftheaquifercanbeestimated(Ref.25-101).Thismethodindicated4,000ft/yrastheapparentminimumaveragepermeabilityatthesewells.Anaveragepermeabilityof2,000ft/yrfortheglacialdriftwasusedintheseepageanalysis.Consideringtheevidencethathighlypermeablematerialsarepresent,theresultsofthepermeabilitytests,andtheyieldfromthewells,assumptionofanaveraqepermeabilityof2,000ft/yrisconservativeinrelatingseepaqelossestogroundwaterlevelsandsafetyagainstliquefaction.Intheseepageanalyses,thepossibledifferencesofverticalandhorizontalpermeabilitiesmustbeconsidered.Theverticalpermeabilityofglacialoutwashdepositscanbeassmallasone-fifththehorizontalpermeability.Becausegroundwaterinthesaturatedzonemovesinapredominantlyhorizontaldirection,theeffectivepermeabilityisthehorizontalpermeabilityInanalyzingseepagethroughtheunsaturatedzone,however,movementofqroundwatermaybepredominantlyvertical;thus,thepossiblylowerverticalpermeabilitieswereconsidered.BeneaththespraypondlensesofmaterialswithlowpermeabilityarethinanddiscontinuousandthereforedonotappeartocauseasignificantlylowerpermeabilityintheverticaldirectionThisisconfirmedbythefactthatnoperchedwaterhasbeendetectedinthearea25-113 SSES-FSAR2.5514LaboratorTestin2.5.5.1.a.1Ge~nealIngeneral,thegranulardepositsunderlyingthespraypondconsistofsiltysandatshallowdepth,underlainbysandygravelvithbouldersandcobblesThetestprogramwasconductedonlyonthesandsbecauseofdifficultiesincollectingundisturbedgravelsamples.Theundisturbedsampleswereobtainedinsandzoneswhichhadlowerstandardpenetrationblowcountsthaninthecoarsermaterial.TherelativelocationsofsoilsamplesforwhichthetestsveremadeareshownonthegeneralizedcrosssectionsEandP,onFigure2.5-45.ThelaboratorytestresultsaresummarizedinTable2.5-13.Fordetailedinfcrmationontestproceduresandresults,seeRef.2.5-10225.51.42GrainSizeDistributionGrainsizedeterminationsweremadeonmostofthesplitspoonsamplesandonShelbytubesamplesforclassificationpurposesandtodeterminetheDgosizethatcanbeusedasanindexforevaluatinqthepotentialsusceptibilityofgranularsoilstoliguefaction.SieveandhydrometeranalyseswereperformedaccordingtoASTMProcedureD422-63,1972.TherangeofgrainsizecurvesforthegranulardepositsisshownonFigure2.5-31.ThemeangrainsizestD>0)ofthesamplesofsandandgravelverefoundtobeintherangeof014to3.0mmand4.5to,25.0mm,xespectively.255.143UnitMeihtUnitveightswereobtainedforallundisturbedShelbytubesamplescnwhichstrengthtestswereperformed.TheundisturbedsampleswereobtainedbycuttinqtheShelbytubesintoapproximately7in.lengthsbyatubecutter.ThelengthandweightofeachsamplesectionwasdeterminedwhileinthetubeforunitveightcomputationsTheunitweightisrequitedtodeterminetherelativedensityofthesitesoils.25-114 SSZS-FSAH2.55.14.4Maximum-MinimumDensitiesMaximumdrydensityvaluesvereobtainedusingtwoprocedures;namely,impactcompactionandvibratorycompaction.BothtestswereperformedonsamplesobtainedbymixingbulksamplesfromTestPitNo.1.TheimpactcompactiontestsvereperformedusingASTMProcedureD1557-70,methodD,modifiedsothateachofthefivelayerswascompactedwith20blowsofa10lbhammerdropping18in.,i.e.,atotalcompactionenergyequalto20,000ft.1b/ft~ofsoil.ThevibratorycompactiontestvasperformedaccordingtoASTMProcedureD2049-69usinga0.1cuftmoldandthewetmethod.Themaximumdrydensityobtainedfromthesetvotestsvere106.1pcfand108.2pcf,respectively.TheminimumdrydensityvasalsoperformedonbulksamplesobtainedfromTestPitNo.1accordingtoASTMProcedureD2049-69Theminimumdrydensityobtainedvas91.5.pcf.Therelativedensityoftheinsitusoilsvasdeterminedusingthemaximumandminimumdensities.2.55.1.4.5RelativeDgnsi~tBelativedensitydatavereobtainedfromtwosources:densitiesoftheundisturbedShelbytubesamplesverecorrelatedtothemaximum-minimumdrydensities,andcorrelationsweremadevithstandardpenetrationtestresultsobtainedduringthedrillingo'perationsusinqtheGibbsandHoltzprocedure(Ref2.5-100).Therelativedensitiesbasedonmaximum-minimumdrydensitiesveredeterminedusinqtherelationship:Dd=Ymax~Y-Ymin)X100YtYmax-Ymin)asgiveninASTMProcedureD2049-69,whereDdYmaxYmimrelativedensity,percentagemaximumdrydensity,pcfminimumdrydensity,pcfdrydensityofundisturbedsamples,pcf2.5-115 SSES-FSARTherewasinsufficientdatatodirectlydeterminetherelativedensityofeachofthesamplesofinsitusoils.Therefore,therelativedensityofundisturbedsampleswasnotusedintheanalyses.Thedesignengineeringpropertiesofthesitesoilswerebasedontestsonundisturbedsamples.Duringdrillingoperation,aStandardPenetrationTestwasperformedevery3ftineachofthedrillholes.FromthesedataandthevaluesofeffectiveoverburdenpressureatthelocationofeachStandardPenetrationTest,therelativedensitiesweredeterminedfromthecorrelationbetweenstandardpenetrationresistance,effectiveoverburdenpressure,andrelativedensityofgranularsoilsgivenbyGibbsandHoltz(Ref.2.5-100).TheGibbsandHoltzprocedureisvalidfornormallyconsolidatedsands.ValuesofrelativedensityobtainedinthiswayaresummarizedonFigure2.5-462.5514.6StaticTriaxialShearTestEightstaticconsolidated-drainedtriaxialtestswereperformedonundisturbedsamples.Thepurposeofthetestwastoobtainthestrengthdatarequiredtoevaluatethestaticstabilityofthecutslopes.Thetestswerecarriedoutintriaxialcellsandthetestspecimensweresaturatedbythebackpressuremethod.Thesaturationwaschecked'ydeterminingthevalueofSkempton'sBcoefficient(Ref.2.5-103).SpecimenswereconsideredtobesaturatedwhentheBcoefficientwas0.95orhigher.Thespecimenswereobtainedbycuttingthe3in.Shelbytubesinto7in.lengths.Theywerethenextrudedandtrimmed.Thespecimenswereconsolidatedisotropicallyundereffectiveconsolidationpressuresrangingfrom0.50to6.0ksf.Theseconfiningpressuresrepresenttherangeofeffectiveoverburdenpressuresatthesite.Theresultsofthesetestsarepresented'nFigure2.5-34whichalsoshowstheselecteddesignparameters.2.55.1.47~CclicTriaxialShearTestsTwenty-fivecyclicloadingtriaxialsheartests(CR)wereperformedtodeterminethecyclicshearstrengthofthesoils.Sixteentestswereperformedonundisturbedsamples.Ninetestswereperformedonremoldedsamples.Undisturbedspecimenswerepreparedinthesamemannerasforstatictriaxialtests.Aftercompletionofthetestsonselectedundisturbedspecimens,theywereovendried,brokendown,andcompactedbyvibrationtothesamedrydensityastheoriginalundisturbedspecimen.Rev5,2/79gl6 SSES-FSARTestspecimensweresaturatedasinthecaseofthestatictriaxialtestsandconsolidatedunderanisotropicpressureequaltoeither1.0kspor6.0ksf.Duringthecyclicsheartests,a~/792.5-116a ,SSES-FSARThisPageHasBeenXntentionallyLeftBlankRev.g,2/792.5-116b SSES-FSAEsymmetricalcyclicdeviatorstresswasappliedataconstantfrequencyranqingbetween1cycleper2to3secondswhilemeasuringaxialdeformation,axialload,andporepressurecontinuouslybymeansofelectrictransducersandachartrecorder.TheresultsofallCRtestsincludingthenumberofcyclestoreachatotalstrainof5percentaregiveninTable25-14Theundisturbedspecimensweregenerallyfoundtobemoreresistanttocyclicj.oadinqthanthecorrespondingremoldedspecimenspreparedatthesamedrydensity.Thelossofshearresistancemaybeduetochangesintheoriginalsoilstructureanddestructionofslightcementationwhichexistsinthesoilintheundisturbedstate.ThetestresultsonundisturbedsamplesareshownonFiqure2.5-35.AlsoshownonFiqure2.5-35aretheresultsoffourcyclictriaxialtestsreportedbyDames6Moore(Ref.2.5-98).Xngeneral,theDames8Mooresamplesyieldedhighercyclicstrength.Thereasonfor.thedifferencemaybeduetothedifferenceinthemethodofsamplinq.TheundisturbedsamplestestedbyGEI(Ref.2.5-102)weresampledwithathin-walledShelbytubesamplerwhichwaspushedbyhydraulicpressureinaccordancewithASTMD1587-67.However,theundisturbedsamplestestedbyDames6Moorewereobtainedwiththe"Dames6Moore"sampler.Thearearatioofthe"Dames6Moore"samplerislargecomparedtothethin-walledShelbytubesampler,andthegreaterarearatiomayresultinqreaterdisturbancetothesample.SincetheamountofdisturbancecouldnotbeevaluatedandsincetheGEIsamplesyieldedlowercyclicstrength,theDames6Mooreresultswerenotusedintheliquefactionanalysisforconservatism.2.55.2Des~inCriteriaandAnalyses255.2.1DesignCriteriafor~SragPondThedesiqncriter'iaadoptedfortheanalysisofthespraypondandtheslopessurroundinqthespraypondincludecriteriaforgroundsurfaceacceleration,liquefaction,andslopestability.2.5.5.2.11GroundSurfaceAccelerationThehorizontalgroundaccelerationsusedfordesignofthespraypondare0.15gfortheSafeShutdownEarthquake(SSE)and0.08gfortheOperatingBasisEarthquake(OBE).2.5-117 SSES-FSAR255.212LiquefactionForthemostadversewaterlevelconditionsatthespraypondsite,thefactorofsafetyprovidedagainstliquefactionshouldnotbelessthan1.2fortheSSEcondition.2552.13SlopeStabilityTheslopesintheareaofthespraypondmustbedesiqnedtoprovideaminimumfactorofsafetyof1.5forthestaticconditionand1.1whensubjectedtoanSSEevent2.5-5.22DesignAna~lsesfor~SragPondThedesiqnanalyses,includingtheseepageanalysis,liquefactionpotentialofthespraypond,stabilityofslopes,andtheearthquakeinducedsettlement,aregiveninthefollowingfourSubsections.2.5.5.2.2.1SprayPondSe~eageAnalysisThetotalinventorythatdeterminesthespray,pondcapacityincludessufficientwatertocompensateforlossesthatcouldoccuroverthe30dayshutdownperiod.Additionally,seepagelossesmustbecontrolledduringnormaloperationsothatthegroundwatertableisnotartificiallyelevatedtoalevelthatwouldagqravatethesafetymarqinagainst-liquefactionSeepageanalysesweremadetodeterminewhatdesignparametersarerequiredforthespraypondtomeettheserestrictions.Itwasfirstdeterminedthatseepagefromanunlinedponddoesnotmeettheserestrictions,andthataliningofthepondisrequired.ThesecondcasedeterminesthedesiqnparametersforaliningthatwillsufficientlycontrolthequantityofseepagetosatisfyliquefactionrequirementsTomaintainthegroundwaterlevelbelowthelevelsnecessarytoensureanadequatefactorofsafetyagainstliquefaction,anunsaturatedzonemustbemaintainedbeneaththespraypond.Alinermustbedesiqnedthatwillsufficientlyrestrictseepageandpreventgroundwaterlevelsfrom.risingabovethedesignlevels.SeepaqefromthepondwillincreasethetotalqroundwaterunderflowbeneaththepondanddevelopagroundwatermoundThatis:TotalUnderflow=PondSeepageandBaseFlow(thepresentunderflow)Thegroundwaterflowpathfromthepondiseastwardalongthetroughinbedrockwhichisfilledwithglacialdeposits.Thedownstreamdischargepointofthegroundwatermoundisassumedto25-118 SSES"FSARbeatthesurfaceatelevation600nearapresentspring.Thequantityofunderflow,Q,beneaththepondmaybecalculatedusingDarcy'slaw:Q=KIAWhere:quantityofunderflow(fthm/yr)K=permeability(ft/yr)I=averagehydraulicgradient(ratio)A=crosssectionalareaofflowpath(sqft)Thecontrollingpermeabilityforthiscaseistheaveragepermeabilityoftheglacialdrift,2,000ft/yr.Theaveragehydraulicgradientmaybetakenasthedifferenceinelevationbetweentheelevationoftheassumeddischargepoint,600ft,andtheelevationofthewatertablebeneaththecenterofthepondoverthedistancebetweenthetwopoints,1,850ft.Gradientsweredeterminedforseveralassumedelevationsbeneaththepond.Theaveragecross-sectionalareaofsaturatedglacialdraftalongtheflowpathwasdetermined.foreachassumedelevationofthegroundwatermoundbeneaththepond.Anaveragebaseunderflowof4.3X10ft/yrwascalculatedfortheundisturbedgroundwaterconditions,representedbywaterlevelsshownonFigure2.5-38.Theamountoftotalunderflowwasthencalculatedforseveralassumedgroundwaterelevationsbeneaththecenterofthepond.Theseepagewhichisproducingthegroundwatermoundcanbedeterminedbysubtractingthebaseflowof4.3X10ft/yrfromthetotalunderflow.Then,byusingaformofDarcy'sLaw(Ref.2.5-105):q=Kp+d;andQ=qAdWhere:q=quantityofseepagethroughonesquarefootoflinerassumedtobesaturatedK=effectivelinerpermeability(ft/yr)p=headofwaterinpond(ft)d=linerthickness(ft)0=effectiveseepagelossesthxoughtheliner(ft/yr)A=areaofthespraypond(sqft)REV.20,2/812.5-119n SSES-FSARTheseepagelossasrelatedtomaximumgroundwaterlevelbeneaththepondcanbecalculated.Then,thelinerthicknessandpermeabilitythatwouldrestricttheamountofseepagesufficientlytomaintaintheselectedgroundwaterelevationcan-becalculated.This'providesarelationshipbetweenlinerparametersandthe,elevationofthegroundwatermound.ThegroundwaterelevationsbeneaththepondthatwouldbemaintainedbyspecificlinerparametersarelistedinTable2.5-15andshownonFigures2.5-38and2.5-40.Therelationshipbetweenseepagelossesandthegroundwaterelevationbeneaththepondis'hownonFigure2.5-47.Tomaintainthegroundwaterlevelbelowthemaximumallowableleveldeterminedbytheliquefactionanalysis,665gft,areinforcedconcretelinerhasbeenconstructed.Theconcretelinerhasexpansion,contractionandconstructionjointsatappropriatespacingtocontrolcracking.Both'expansionandconstructionjointshaveimpermeablerubberwaterstopsincorporated.Therelationshipbetweenthethicknessoftheliner,permeabilityofthelinerandseepagelossisshownonFigure2.5-57.Thepermeabilityofreinforcedconcreteisconservatively1X10feetperyear.Theminimumthicknessoflinerprovidedovertheentirepondis5inches.Therefore,duringnormaloperation~theseepagelossfromthespraypondisestimatedtobe5.9X10gallonsper30days.Morethan5timesthisamountisrequiredtoraisethegroundwaterleveltothedesignvalueof665feetwhichwasusedfortheliquefactionanalysis.Accidentconditionsandtheirpossibleeffectontheintegrityofthelinerandonseepagelosseshavealsobeenexamined.Shouldatornado-generatedmissilehavingafrontalareaof20squarefeetpuncturetheliner,theadditionalleakagewouldbe1.6X104gallonsper30days.Thisvolumeofwaterwouldnotbesufficienttoelevate'hewatertabletoanunacceptablelevel.IntheeventofanSSE,thesoilsanalysiscoveringslopestability,discussedinSubsection2.5.5.2.2.3.2,showsthatthecutslopeswillremainstable.Nocreditistakenintheanalysisforthepresenceoftheconcreteliner.Subsection2.5.5.2.2.4discussesthesettlementwhichmightresultfromanearthquakeinducedmotion.Therelativesettlementacrossthepondwouldbeverysmall,lessthan1inchin500ft.ItisthereforeanticipatedthatthelinerwillnotundergoanysignificantdisplacementasaresultofanSSE.Someadditionalcrackingcouldoccur.However,sinceaveryconservativeapproachhasbeentakeninprovidingalinerwithapermeabilitywellbelowthatrequiredtoestablish1'iquefactorpotential,theadditionalcrackingcanbetolerated.Seepagefromthespraypondwillbemonitoredbyperiodicmeasurementsof'aterlevelsinobservationwellsnearthespraypond;refertoSubsection2.4.13.4fordiscussionofmonitoringprogramsandlocation,ofobservationwells.Additionally,actualseepagelossesfromthepondwillbemeasuredbyperiodicallyREV.20,2/812.5-120 SSES-PSARrecordingwaterlevelsinthepondandbymeasuringamountofprecipitationina'aingaugeandrateofevaporationinanevaporatingpanlocatednearthespraypond.g,5~~/2~i~ufa~ctogPotygtial2-V~TheevaluationoftheliquefactionpotentialofthesoilsatthesitewasmadebycomparingtheshearstrengthofthesoilsundercyclicloadingconditionstothedynamicshearstressinducedinthesoilsbythevibratorymotionassociatedwiththeSSE.Theratioofshearstrengthtoinducedshearstressistermedthe,.factorofsafetyagainstliquefaction.Sinceboththeshear'~strengthofthesoilsandtheinducedshearstressesaredependentondepthbelowgroundsurface,determinationsofthefactorofsafetyaqainstliquefactionweremadeatvariousdepths.Soilprofilesandthecorrespondingqroundwaterlevelsrepresentativeofthesiteconditionswerechosenforthestudy.TheSSEwasappliedatthegroundsurfaceanddeconvolveddownwardtobedrockusingtheSHAKE3ComputerProgramtRef.2.5-106).Thesoilprofilesusedintheanalyseswereconservativelyassumedtoconsistonlyofsandeventhoughtheyincludedgravel,boulders,andcobblesinplacesasdiscussedinSubsection2.5.5.1.Basedonlimitedinformationavailable{Ref.2.5-107),theresistanceto,liquefactionofgravel,boulders,andcobblesisequalorbetterthanthatofsand.PorinstanceKishida(Ref.2.5-112)hasindicatedthatsoilswithDlessthan2mmandwithuniformitycoefficientslessthan10aremostsusceptibletoliquefaction(Ref.2.5-98).Thesaturatedunit'REV.29/78l1I2.5-120a THISPAGEHASBEENINTENTIONALLYLEFTBLANKIREV.29/782.5-120b SSES-PSARweightofthesandwastakentobe130pcfandthebuoyantunitweiqhttobe67.5pcf.Thespraypondwassimulatedasamaterialwithalowshearmodulusvalueof1.0ksf.Becausewaterdoesnottransmitshearwaves,thesimulationwasnecessarysothatthecomputerprogramSHAKE3couldbeusedtocomputetheshearstresses.inducedbytheearthquake.Useofthissmallmodulushasaninsignificantinfluenceonthe.inducedshearstresses.2.5.5.2.2.2.2SoilProfilesandPositionsofGrcundwaterTableAsdisclosedbythefieldinvestiqation,thethicknesscfoverburdenvariesatthesiteofthespraypond.ThebedrockcontoursareshownonFigure2.5-17.Atthesouthwestend,bedrockwasexposedattheqroundsurfaceandover90ftofqranulardepositswereencounteredatthenortheastend.Therefore,toevaluatetheliquefactionpotential,threesoilprofileswerechosentorepresentthreethicknessesofoverburden.Thedepthsfromthebottomofthepond(Elevation668ft)tothebedrockforthethreesoilprofileswere93ft(Profile1-eastendofspraypond),57ft(Profile2-centralsection,andpumphouse),and20ft(Profile3-westendofspraypond).ThepredictedmaximumgroundwaterlevelsthatwilloccurbeneathalinedpondasdiscussedinSubsection255.2.2.1wereusedateachprofile.Toevaluatetheliquefactionpotentialatotherlocationsinthespraypond,thesamesoilprofileswereusedandthegroundwatertablewasvariedinaccordancewiththepredictedmaximumwatertableelevations:qivenonFigure2.5-40.Figure2.5-48showsthesoilprofilesandthemaximumgroundwaterlevelsusedatProfiles1,2,and3intheanalyses.2.55.2.2.2.3SheaModuliCross-holeshearwavevelocitymeasurementswereperformedduringAugustandSeptember1974(Ref.2.5-99).Compressionalandshearwavevelocitiesweremeasuredinsitutodepthsofabout100ftbythecross-holeprocedure.TheaverageshearwavevelocitiesobtainedfromthemeasurementarepresentedonFigure2.5-36.Asshownonthefigure,theshearwavevelocityincreaseslinearlywithdepth.Theaverageshearwavevelocitiesusedforsoilandrockintheliquefactionanalysesarealsoshown.Theshearmoduliofsandwerecomputedfromthevaluesofshearwavevelocityasfollows:25-121 SSES-FSARG=gV~SQhere:Vshearmodulus,psfunitweight,pcfgravitationalacceleration,ft/sec~shearwavevelocity,fpsTheshearmodulusisinfluencedbytheconfiningpressure,thestrainamplitude,andtherelativedensityand,ingeneral,thesecanberelatedbytheequation:G=1000K(a)(Ref.2.5-108)Mhere:G=shearmodulus,psfkS--avariableparameter,dependentonrelativedensity,shearwavevelocity,andstrainamplitudea=meanprincipaleffectivestress,psfIntheliquefactionanalysis,theshearmodulusvaluesatthecorrespondingeffectiveconfiningpressuresobtainedfromtheaboveequation,wereusedasinitialvaluesatverysmallstrainsThestrain-compatibleshearmoduliwerethendeterminedfromthecurveofshearmodulus-shearstrainrelationshipasgivenbySeedandXdriss(Ref.2.5-108).25.5.22.2.4CyclicShearStrengthTheresultsofcyclictriaxialsheartestsaregiveninTable!2.5-14andonFigure2.5-35.Theresultsaregivenintermsofthecyclicshearstressratio(a1-a>)cy/2acandthenumberofloadingcyclesrequi'r'edforthetestspecimentoreachatotalaxialstrainof5percent,where:(a1-a~)cycyclicdeviatorstresseffectiveconsolidationpressureacTheselecteddesigncyclicshearstrengthisgivenonFigure25-35.BasedonresultsofthesiteseismicitystudyandontheSSEREV.S,2/792.5-122 SSES-FSARhavingamagnitudelessthan6,thecyclicshearstrengthat5equivalentuniformloadcycleswasconsideredappropriateandthiswasusedinevaluatingtheliquefactionpotentialatthepond(Ref.2.5-96).Thecyclictestswereperformedattwoeffectiveconsolidationpressures,1.0and6.0ksf.Thesepressureswereselectedtoenvelopetheactualfieldconditions.However,the1.0ksfwasselectedasalowerlimitforthetestingpressure.Testingofsandsamplesatverylowpressuremaynotberelative.Fromthetestresults,thecyclicshearstressratiosatthesetwoeffectiveconsolidationpressuresweredeterminedtobe0.320and0.260,respectively,for5loadingcycles.Alinearrelationshipwasassumedincomputingcyclicshearstressratiosatothereffectiveconsolidationpressures.Thecyclictriaxialtestingconditionsdifferfromfieldconditionsandtoaccountforthesedifferences,andalsotopermittheuseofeffectiveverticalpressuresinsteadofeffectiveconsolidationpressures,acorrectionfactor,Cymustbeappliedtothetestresultsbeforeusingtheminliquefactionanalyses.ThecorrectionfactorisafunctionofrelativedensityandvalueshavebeenpublishedbySeedandIdriss(Ref.2.5-108).Avalueof0.57wasusedintheanalyses.Thiscorrespondstoanaveragefieldrelativedensityof50percentfornormallyconsolidatedsandsatthesite.Usingtheabovedata,thefollowingrelationshipwasestablishedbetweenfieldcyclicshearstrength,z,andtheeffectiveverticalpressure,o':CyclicShearStrength,<=0.57o(0.332-0.012'Nor="a(0.189-0.0068a)(vandoinksf)Theaboveexpressionpermitsthecalculationofthecyclicshearstrengthatanydepthdowntobedrock.25.5.2.2.2.5DeterminationofDynamicShearStressesIThevibratorymotionoftheSSEwasappliedatthegroundsurfaceanddeconvolveddownwardtothebedrock;thus,inducingshearstressesintothesoil.ThesynthetictimehistoryofgroundsurfaceaccelerationduringtheSSEwasusedwithamaximumaccelerationof0.15gasdiscussedinSubsection2.5.4.9.ThemaximumshearstressesdevelopedatvariousdepthswithinthesoilduringtheSSEwerecalculatedusingthecomputerprogramSHAKE3developedbySchnabel,Lysmer,andSeed(Ref.2.5-106).REV.S,2/792.5-123 SSES-FSARInadditiontotheSSEtimehistoryandmaximumgroundacceleration,thecomputerprogramusesthefollowingparameters:a)Unitweightsofthesubsurfacestrataanddepthtothegroundwatertableb)Dampinqratiosofthesubsurfacestrataandthevariationofthesedampingratioswithshearstrainc)ShearmoduliofthesubsurfacestrataandthevariationofthesemoduliwithshearstrainTheoutputoftheSHAKE3computerprogramprovidesvaluesofthepeakshearstressesinducedinthevariousstrataduringanSSEevent.However,fortheliquefactionpotentialanalysis,theequivalentuniformaveraqeshearstressisrequired.TheaverageshearstressduringtheSSEhasbeentakentobeequalto0.65times'thepeakshearstress(Ref.2.5-107).Theresultsoftheaverageshearstressdeterminationsforthevariouscasesanalyzedarecomparedwiththecyclicshearstrength.ThesyntheticaccelerationtimehistoryasdiscussedinSubsection3.7b.1.2vasusedintheevaluationofliquefactionpotential.BasedonthesiteseismicitystudiesdiscussedinSubsection2.5.5.1.2,thegroundaccelerationof0.15gwasadoptedfortheSSEforstructuresfoundedonsoil.2552.2271LiuefactionPotentialUnder.theDesignSSETheaverageshearstressesinducedbytheSSEof0.15gandthecorrespondingshearstrengthsandfactorsofsafety,forthreedifferentprofilesandvariousgroundwaterlevels,aregiveninTable2.5-16.ThefactorsofsafetyarealsoshovnonFigure25-49Basedonthesevalues,itwaspossibletoobtainandtointerpolatethefactorofsafetyatanyparticularlocationinthepondforthepredictedmaximumgroundwaterelevationasshovnonFigure2.5-38.OnFigure2.5-50thefactorsofsafetyat25-120 SSES-PSARsevenselectedlocationsareshowntheelevationofmaximumpredictedminimumfactorofsafetywasfoundthantheminimumacceptablefactorSubsection2.5.5.2.1alongwiththeinformationonwatertableandbedrock.Thetobe1.26,whichislargerofsafetyof'l.20,asgiveninAsindicatedbytheresultsshownonFigure2.5-50,thefactorofsafetydecreasesasthegroundwatertabl'erises,andatthesamewaterlevelthefactorofsafetydecreasesasthedepthtobedrockincreases.2.5.5.2.2.2.72VariationsofShearNoduliandDampingRatiosforEvaluationofLiquefactionPotentialAsmentionedinSubsection2.5.5.2.2.2.5,the"standard"relationshipbetweentheeffectivestrainandthedynamicproperties(shearmodulianddampingratios)givenbySeedandIdriss(Ref.25-108)wasusedintheliquefactionanalysisforestimatinginducedcyclicstresses.Toevaluatetheeffectsofpossiblevariationsoftheserelationships,liquefactionstudiesweremadeinitiallyinwhichthevaluesofshearmodulianddampingratioswerevariedbyx30percent.Themostcriticalsoilprofile{Profi'le2)withthemaximumpredictedwatertableat665ftwasusedinthestudy.Thestudyincludedthefollowingcases:a)Varyingshearmoduli130percent,dampingratiosremainunchangedb)Varyingdampingratiosby130percent,shearmoduliremainunchangedc)Changebothshearmodulianddampingratiosby130percentTheaverageinducedcyclicshearstresses,shearstrengths,andfactorsofsafety,alongwiththeresultsusingthestandardrelationship,aresummarizedinTable2.5-17.Themaximumchangeofshearstressisfoundtobeabout3percent.Thisreducestheminimumfactorofsafetyto1.23,butitisstilllargerthantheacceptablevalueof1.2(Subsection2.5.5.2.1).Theresultsofthisstudyindicatethattheeffectsofvariationsofmodulianddampingaresmallanddonotchangetheconclusionthatthereisanadequatefactorofsafetyagainstliquefaction.AsubsequentreviewoftheresultsinTable25-17weremadetodeterminetheeffectofvaryingthedampingratioby+50%andtheshearmodulesby+50%.ThereviewwasmadebyprojectingtheREV.7i4/7925-125 SSES-FSARresults.AplotshowingtheeffectonthefactorofsafetyisgivenonFigure2.5-50A2.5.5.2.2.2.7.3ResultsofLiquefactionAnalysesUsingRealEa~k~huakeaecuraaAlltheresultsoftheliquefactionstudy,presentedintheprevioussections,werebasedonthedesignSSEof0.15gatthegroundsurface.Somerealearthquakerecordsobtainedatsiteswithcomparablegeologicconditionsandinthesamerangeofmagnitudewer'eavailableandwereusedtochecktheliquefactionpotential.Threerockrecords:GoldenGate(N=53,1957),Helena(M=6.0,1935),andParkfield(temblorStation,N=5.6,1966)wereusedforthispurpose.Liquefactionstudiesweremadeusingtheserecordsappliedatrockoutcroppingforobtainingcycleshearstressesinthesoil.TheresultingfactorsofsafetyalongwiththefactorofsafetyforthedesignSSE(Bechtelsynthetic)aresummarizedonTable2.5-18andFigure2.5-51.Theminimumfactorsofsafetyobtainedfromtherealrecordswerelargerthantheonesobtainedfromthesyntheticearthquake.ThestressesinducedbyboththedesignSSEandtherealearthquakesarealsoshownonFigure2.5-52.REV.7,4/7925-126 SSES-FSAR~2.55.2.3Slo~estabili~tnnalyses255223.1Stabil~itofRockSlopesThesouthwesterntipofthespraypondiscutintobedrock.However,sincethecutslopeis3horizontalto1vertical,theslopewillobviouslybestable,consideringtheengineeringpropertiesofthebedrockasdiscussedinSubsection2.5.4.Adetailedanalysisofthestabilityofsuchaslopeinrockisthereforenotrequired.Northofthespraypond,theTrimmersRockFormationformsasteepridqerisingapproximately380ftabovethebottomofthespraypond.Thesouth-facingslopeofthisridgeisessentiallyarockslopeunderlainbyflaggy,resistantsandstonethinlymantledwithsoiland.rockfragments.Theclosestapproachofthisslopetothespraypondisalongthenorthernperimeterofthepond;thetoeofslopeatelevation710-720ftisatleast150ftfromthetopofthenorthslopeofthepondatelevation700-727ft{RefertoFigure2.5-24forfinalsitegradesinthisarea).Themaximumslopealonqtheridgeisabout2horizontalto1vertical,andanoverallslopeof3-1/2horizontalto1vertical,arelativelyflatslopeforrock.Beddingintherockdipsapproximately30~tothenorthintotheslope;thu~,itisfavorablyorientedforslopestabilityDataofNcGlade(Ref.2.5-56,p108)indicatethatnaturalslopeserodedonTrimmersBockstrataare"steepandstable>>.Inconsiderationofthecompetencyoftherockformingtheslopeandthefavorableorientationofrockstructure,togetherwiththe'factthatsuchgentlerockslopesarenormallystableinthisregion,itisconcludedthatthereisanamplemarginofsafetyagainstfailureoftheslopenorthofthespraypond.2.5.5.22.3.2StabilityofSlopesinSoilStabilityanalyseswereperformedforthespraypondcutslopesandthefillslopesoftherailroadembankmentthatareimmediatelyadjacenttothepond.Bothcutandfillslopesareconstructedat-3horizontalto1vertical.Exceptasmallportionofcutslopesthataremadeinbedrock,themajorityofcutslopesandallthefillslopesaremadeofgranularmaterials.Thegranularmaterialsrangefromsandandsandygravelforthecutslopetotheshotrocksfortheembankmentslopes.TheshotrockswereobtainedfromthemainplantexcavationToevaluatethestabilityoftheslopes,theeffectiveangleofinternalfrictionofthesanddepositswasfoundtobe35~from25-127 SSES-FSARthetestdatashownonFigure2.5-34.Porthesandygravelandtheshotrock,theeffectiveangleofinternalfrictionwasconservativelyassumedtobethesameasthatofthesand.Thepondislinedandthemaximumpredictedgroundwaterlevelisbelowthebottomoftheslopes.Therefore,theinfiniteslopeanalysisandtheyieldaccelerationanalysisbySeedandGoodman(Ref.25-109)areconsideredappropriateforevaluatingthestabilitycftheslopes.Forstaticconditions,theinfiniteslopeanalysiswasusedtodeterminethefactorofsafetyofsoilslopes:Mhere:PStanktan.1frictionanqleofsandinclinationofslopeTherefore,forgt=35~andi=tan-~(1/3),thefactorofsafetyunderstaticconditionisfoundtobe2.10Forthedynamicconditiontheyieldaccelerationanalysiswasused.Theyieldaccelerationisdefinedastheaccelerationatwhichslidingwillbegintooccur.Theyieldaccelerationcoefficient(k)isdefinedas:kqYtan(yf-i)qwherepandiweredefinedinthepreviousparagraph.Forp=350andi=tan-~(1/3),kisfoundtobe0.297.ComparedtotheSSEof0.15q,thefactorofsafetyforthedynamicconditionVwouldbe:PS=0297=1980.150Consequently,therailroadembankmentslopesandthecutslopeswillbestableunderboththestaticanddynamicconditions.25.52.24Ear~thnake-InducedSoilStrainandSettlementTwomethodswereusedforestimatingtheearthquakeinducedsettlement.SeedandSilverhaveproposedamethodfcrdetermininqsettlementofsandsthataresufficientlyfreedraininginthefieldsuchthatexcessporepressurecannotdevelopduringanearthquake(Ref.2.5-110).LeeandAlbaisa2.5-128 SSES-FSARhaveproposedamethodthataccountsforthereconsolidationsettlementthatresultsfromdissipationofexcessporepressurefollovinqtheearthquake(Ref.2.5-111).FollovinqtheproceduresuggestedbySeedandSilver(Ref.2.5-110),thedistributionsofaverageinducedshearstrainasafunctionofdepthforthesoilprofilesshownonFigure2.5-48vereplottedandareshovnonFigure2.5-53.Itwasconservativelyassumedthattherelationshipbetweenverticalstrainandcyclicshearstrainforsandat60percentrelativedensity,asshovnonFigure8bofRef.2.5-110,vasapplicableforthesanddepositsatthesite.Thecorrespondingvaluesofverticalstrainweretheninterpolatedbasedon-thevaluesofshearstrainasshownonFigure2.5-53.Thesettlementofeachlayervasobtainedbymultiplyingthelayerthicknessand.theverticalstrainThetotalsettlementvasthenobtainedbysumminqupthesettlementsofalllayers.Bythisapproach,theverticalsettlementsatthreeProfiles1,2,and3shovnonFigure2.5-48werefoundtobe0.05,0.03,and0.01in.,respectively.TheresultsofthesecomputationsaresummarizedinthefirsthalfofTable25-19.Toestimatetheverticalsettlementresultingfromdissipationofexcessporepressurefollovingtheearthquake,theprocedureproposedbyLeeandAlbaisa(Ref2.5-111)vasfollowed.TheresultsofcyclictriaxialsheartestscarriedoutbyGEI(Ref.2.5-99)'ndananalysisusingtheSHAKE3computerprogramwereusedinadditiontotheexperimentaldatashownonFigures6and7ofRef.2.5-111.Thestressratiocausinqliquefactionisre'latedtofieldconditionsbytheequation(Ref.25-104):inwhichadc=stressratioaaandC=correctionfactorrshearstress.induceda'effectiveoverburdenpressure0Thestressratiosdevelopedatvariousdepthscanbecomputedvhentheshearstressinduceddurinqanearthquakeandtheeffectiveoverburdenpressureareknown.Thestressratiosdevelopedatvariousdepthswerecomputedbasedonthevaluesof2.5-129 SSES-FSARinducedshearstressgiveninTable2.5-16,thecomputedeffectiveoverburdenpressure,andacorrectionfactorCy=057.EnteringthesestressratiosonFigure2.5-35,thecorrespondingnumberofcycles{Ny)toreachatotalaxialstrainof5percentareobtained.Anondimensionalcycleratio(N/N>)iscomputedforeachdepthwithNequalto5.Figure2.5-54waspreparedtoshowtherelationshipbetweenthepeakexcessporepressureandcycleratio.Thecorrelationwasbasedonthedataobtainedfromthecyclictriaxialsheartestsonundisturbedsamples(Ref25-99)ThisfigureissimilartoFigure9ofRef.2.5-111Thepeakexcessporepressureratio(Ap/g3c)thatwilloccurduringancarthquakecanbeest'imatedfromFigure2.5-54usingthecycleratio{N/N])obtainedpreviously.ThevolumetricstrainswereestimatedfromFigures6and7ofRef.2.5-110usingthepeakexcessporepressuredatainFigure2.5-54.Fiqure6ofRef.2.5-110wasusedfirsttoobtainthevolumetricstrainsforsandat50percentrelativedensity.Thesestrainswerethencorrectedtocorrespondtostrainsinsandat60percentrelativedensitybymultiplyingbyafactorof08obtainedfromthecurveshownonFigure7ofRef.2.5-110.LeeandAlbaisaassumedintheirpaper(Ref.2.5-110)thatverticalstrainisequaltothemeasuredvolumetricstrainintriaxialtests.However,whenlateralmovementisrestrictedasisthecaseofthesoildepositattheSusquehannasite,theverticalstrainisone-halfofsuchvolumetricstrain.Therefore,thevolumetricstrainsobtainedbytheprocedureofLeeandAlbaisaweredividedbytwotoobtaintheappropriateverticalstrainsforthesiteconditions.Theverticalsettlementofeachlayerwasthendeterminedbymultiplyingthethicknessofeachlayerbytheverticalstraininthelayer.Thetotalsettlementwasobtainedbysumminqupthesettlementsofeachlayer.Theresultsof'thesecomputationsaresummarizedinthesecondpartofTable2.5-19.Thevaluesoftotalverticalsettlementarealsosummarizedbelow:25-130 SSES-FSARResultingfromCompactionofDrySoils(Inches)ResultinqfromReconsolidationofSaturatedSoils(Inches)PROFILE1(EastEndofPond)0050.1-12PROFILE2(CentralSection,Pumphouse,etc)00301-1.0PROFILE3(MestEndofPond)001001-0.2Basedontheresultsgivenabove,itisapparentthatifthesandsatthesitebehavelikedrysandduringanearthquake,thenthesettlementwillbelessthan0.05.in.However,ifthesanddepositsaresaturatedandexcessporepressuresdevelop~theywillreconsolidatefollowingtheearthquakeandsettlementsupto1.2inattheeastendofthepondandupto1.0inattheESSWpumphousemaybeexpected.Thesettlementsgivenabovewerebasedonsoilprofilesconsistinqofsanddeposits(Fiqure2.5-48);theimposeddeadandliveloadsonthematfootinqofthepumphousewerenotconsidered.Theimposedweightwillincreasetheconfiningpressureofthesoil,resultinqinahigherreconsolidationvolumetricstrain.However,accordingtoLeeandAlbaisa(Ref.2.5-111),theinfluenceofconfininqpressureisnotstrongandisonlysignficantfordevelopedexcessporepressureratiosqreaterthanabout0.6AsshownonTable2.5-19,theonlysoilthatmaydevelopaporepressureratiogreaterthan0.6isatadepthbelow43ftnearthebedrockofProfile2Thesoilatthatdepth,however,hasahigherrelativedensitythanthe60percentusedforestimatingthesettlementSincethevolumetricstraindecreasesrapidlyastherelativedensityincreases(Ref.2.5-111),thenetcombinedeffectsofalargerpotepressureratiodevelopedandahigherrelativedensitywouldresultinasmallervolumetricstain.Therefore,theresultsgivenabovearestillvalidfortheadditionalimposedweightatthesurface.2.5.53LoqsofBoiincpsLogsof25testboringsandtwotestpitsarepresentedinAppendix2.5C.2.5-131 SSES-FSARStandardPenetrationTestsveremadein16oftheseholesat3ftintervals.Undisturbedsamplesweretakeninfiveofthesplitspoonholeswheresoilconditionspermitted.Tenholeswerecompletedforthegeophysicalsurvey,10forpermeabilityandfiveasqroundwaterobservationwells.ThelocationsofboringsandtestpitsareshovnonFigure2.5-44Holes1118,1119,and1121wereplannedbutnotdrilled.BasedontheresultsoftheStandardPenetrationTestborings,sixborinqs(1106A,1107A~1110A,1112A,1113A,and1115A)weredrilledi.mmediatelyadjacenttosixoftheStandardPenetrationTestborinqsforundisturbedsamplinqofstratainwhich,basedonclassificationofthesplitspoonsamplesitwasbelievedundisturbedsamplescouldbeobtainedTwotestpitsweredugwithaCasebackhoetoadepthof12fttoobtainbulksamples.Duetothelargeamountsofoversizematerialencountered,drillingoperationswereslovanddifficult.Frequentmudlosseshampereddrillinqoperationsinspiteofusingadditivesinthedrillinqfluid.Theadditivesincludedvalnutshells,sawdust,cottonwasteandQuick-gel.Insomeholes,itwasnecessarytocasetheholeinordertocontinuedrilling.Soilsamplingconsistedofbothsplitspoon(StandardPenetrationTest)andundisturbedsamplingThesplitspoonsamplingwascarriedoutinaccordancevithASTND1586-67.TheundisturbedsamplingwasconductedinaccordancevithASTID1587-67.Theundisturbedsamplingwascarriedout'usingbothShelbytubeandpitcherbarrelsamplermethods.Inbothcases,thesampletubewere3inoutsidediameter,3ftlongandthetubesvereof16qaqesteel.Undisturbedsamplesweredifficulttoobtainduetothelargeamountofgravel,cobbles,andbouldersintheglacialdrift.ThemajorityofundisturbedsampleswereobtainedfromBorings1106,1106A,1107A,1113A,and1122.Mherepossible,everyattemptwasmadetoobtainsamplesbelowtheproposedbottomelevationofthespraypond(Elevation668ft).Allundisturbedsampleswerehandledinthesamemanner.Thetopendofthetubewascleanedout;apieceofplasticfollowedbydamppapertowelsvasinsertedandaplugwasthenformedvithmicrocrystallinewaxThebottomendofthetubevastrimmedandanexpandablepackervasinstalled.Thepackerswereperforatedwitha1/16indiameterholefordrainageoffreevaterfromthesample.Bothendsofthetubeverecappedanddippedinvax.Thesampleswerestoredverticallyviththeexpandablepackeronthebottominthesubcontractor'sequipmenttrailerinspecialboxessuppliedforthispurpose.Thetemperatureswerewellabovefreezingdurinqthetimetheyverestoredsonoprovisionsforheatingverenecessary.25-132 SSES-PSAHSoilsamplesselectedforthelaboratorytestingareindicatedontheboringlogs.Thefollowingsymbolswereusedontheboringlogstoindicatethetypeoflaboratorytestconducted.CR-CyclicConsolidated-UndrainedTriaxialTestS-Consolidated-DrainedTriaxialTestGs-SpecificGravityDeterminationGrainSize-GrainSizeDetermination2.5.5.4~CcmactedBackfillCompactedfillisplacedatthesoutheastcornerofthespraypondtosatisfyfreeboardrequirements.Thisfillhasbeenplacedwithamaximumslopeof3horizontalto1vertical.Thematerial,placement,andtestingspecificationswereasfollows:a)Materia1Wellqraded,sound,dense,durablematerial.Itdoesnotcontainanytopsoil,roots,brush,logs,trashorwastematerial,ice,orsnow.Themaximumsizeofthematerialis12in.andnomorethan35percentbyweightpassedtheNo200sieve.b)PlacementThematerialwasplacedinuniformhorizontallayerssothatwhencompacteditwasfreefromlenses,pockets,andlayersofmaterialdifferingsubstantiallyinqradinqfromsurroundingmaterial.Itwasnotplacedonfrozenground.Placementforwhichmoistureconditioningwasrequiredwassuspendedwhenevertheambienttemperaturereached340Pandfalling.Thecompactionrequirementswerespecifiedasfollows:Pillshallbeplacedina15in.maximumuncompactedlayerthickness,moistureconditionedtoobtaintherequiredcompaction,andcompactedtosatisfybothofthefollowingrequirements:a)Atleast80percentrelativedensityasdeterminedbyASTMD2049Xormaterialhavingnotmorethan12percentpassingtheNo.200sieveor90percentofmaximumdrydensityasdeterminedbyASTMD1'l57forallothermaterial.25-133 SSES-FSABb)Irrespectiveofthecompactingefforttosatisfyparta)abovethefillshallbe'compactedinoneofthefollowingmannersasaminimumeffort:Usingacrawlertractorhavinga,weightatleastequaltothatofaD8Caterpillartractorwithbulldozerblade.Eachtrackshalloverlaptheprecedingtrackbynotlessthan4in.Mhenthetractorhasmadeoneentirecoverageofanareainthismanner,itwillbeLconsideredtohavemadeonepass.EachfillliftshallbecompactedwithfourpassesUsinqavibratoryrollerofminimumweight20000lbhavingarollerwidthofapproximately78inandadiameterofapproximately60in.Therollershallhaveavibratorfrequencyrangeofbetween1,100and1,600vibrationsperminuteandhaveaminimumvibratorydynamicforceof40,000lb.Therollerspeedshallnotexceed3mphandeachtrackshalloverlaptheprecedingonebyatleast4in.Whentherollerhasmadeoneentirecoverageofanareainthismanner,itshallbeconsideredtohavemadeonepass.Eachfillliftshallbecompactedwithfourcompletepassesiii)UsinqahandcontrolledvibratorycompactorinlocationsinaccessiblebytractororvibratoryrollerApprovaltousehandcontrolledvibratorycompactorswillbeonthe.basisofthedemonstratedabilityofthecompactortocompactthematerialtothesamedensityasthecontiguousbackfillc)TestingThetestingrequirementswerespecifiedasfollows:TheinsitudensityofthefillshallbedeterminedinaccordancewithASTID1556andperformedatafrequencyofatleastonetestperliftandevery10,000sqftonplan.Tests.inaccordancewithASTND2049orASTllD1557,asappropriate,shallbecarriedoutonthesamematerialextractedfortheASTND1556test.Thefrequencyofthistestingshallbeonceinevery10ASTMD1556tests. SSES-FSARGradationtestsinaccordancewithASTHD422shallbecarriedoutatleasttviceineach8hoursduringplacingoperationsTherailroadembankmenttothenorthofthespraypondwasconstructedoutofrock,obtainedfromthemainplantareaexcavaticn.Thematerialandplacementspecificationswereasfollows:a)materialFillshallconsistofrockderivedfromClass8andCexcavationhavingamaximumsizeof20in.ClassBandCexcavationsaredefinedasfellows:1)ClassBExcavationRockthatcannotbeexcavatedexceptbysystematicrippinq.Rippinqshallnotbejudgednecessarywhenthematerialcanbecutbyabulldozerinthefollowingmanner:Afifty-threeandone-half(531/2)inchhighbulldozerbladewithstandardrockorcornerbitsmountedonacatepillarD-8orequaltractorhaving270netflyvheelhorsepowermovedthroughforty(40)feetoftravelshall-fillevenwiththetopwithaminimumangleofreposeofforth-five(45)degrees,oravolumeoften(10)cubicfeetperonelinearfootofwidthoftheblade.2)ClassCExcavationHockthatcannotbeexcavatedexceptbysystematicdrillingandblasting.Blastingshallnotbejudgednecessaryiftherockcanberippedbyatractorratedatnotlessthan385netflywheelhorsepower,equippedvithasingleshankbeam,paralleloqramtype(72'~fordeeparrangement),andweighingnotlessthan40tonsfullyequipped;ie.,withdozerblade,ripperandotheraccessoriesDrawbarpullvillnctbelessthanthefollovingratios:1stgear-95,000lbsat1mph2ndgear-48,0001bsat2mph3rdqear-30,000lbsat3mph2.5-135 SSES-FSARFillshallheplacedinliftsnotexceeding24in.inuncompactedthicknesandinsuchamannersoastoproduceawellgradedmatrix.b)PlacementFi11shal1becompactedinoneofthefol1ovingmanners:1)Usingacrawlertractorhavingaweightat'leastequaltothatofaD8CaterpillartractorwithbulldozerbladeEachtrackshalloverlaptheprecedinqtrackbynotlessthan4inWhenthetractorhasmadeanentirecoverageofanareainthismanner,itwillbeconsideredtohavemadeonepass.Eachfillliftshallbecompactedwithfourpasses2)Usinqavibratoryrollerofminimumweiqht20,000lbhavingarollerwidthofapproximately78in.andadiameterofapproximately60in.Therollershallhaveavibratorfrequencyrangeofbetween1,100and1,600vibrationsperminuteandhaveaminimumvibratorydynamicforceof40,000lb.Therollerspeedshallnotexceed3mphandeachtrackshalloverlaptheprecedinqonebyatleast4in.Whentherollerhas.madeoneentirecoveraqeofanareainthismanner,itshallbeconsideredtohavemadeonepass.Eachfillliftshallbecompactedwithfourcompletepasses.3)UsinqahandcontrolledvibratorycompactorinlocationsinaccessiblebytractororvibratoryrollerApprovaltousehandcontrolledvibratorycompactorsvillbeonthebasisofthedemonstratedabil'ityofthecompactortocompactthematerialtothesamedensityasthecontiguousbackfill.256REFERENCES25-1Drake,A.A.,Jr.,1970,StructuralGeologyoftheReadingProng:inFisher,G.W.,and.others(eds.),StudiesofAppalachianGeology:CentralandSouthern,Interscience,NewYork,p.271-291.2.5-2Dames6moore,1974,GeologicReport-I,imerickGeneratingStation,Limerick,Pennsylvania.25-3Itter,H.A.,1938,TheGeomorphologyoftheMyominq-LackawannaRegion:PennsylvaniaTopographicandGeologicSurvey,BulletinG9,p.21-23.2.5-136 SSES-FSARAsh,S.H.1950,BuriedValleyoftheSusquehannaRiver:AnthraciteRegionofPennsylvania,U.S.Bur.MinesBulletin494,p.27.Peltier,L.C.,1949,PleistoceneTerracesoftheSusquehannaRiver,Pennsylvania,Penna.Geol.Survey,4thSer.,Bull.G23,p158.Sevon,M.D.,andothers,1975,TheLate'MisconsinanDriftBorderinNortheasternPennsylvania,inGuidebook,40thAnnualFieldConferenceofPennsylvaniaGeoloqists,p.108.Leverett,Prank,1934,GlacialDepositsOutsidetheWisconsinTerminalMoraineinPennsylvania~PennsylvaniaTopographicandGeologicSurvey,4thSer.,Bull.G7,p.123Colton,G.M.,1970,TheAppalachianBasin-ItsDepositionalSequencesandTheirGeologicRelationships:inFisher,G.M.,etal.(eds.),StudiesofAppalachianGeology:CentralandSouthern,Interscience,NewYork,p5-47Sevon,M.D.,1970,MississippianUnconformityinNortheasternPennsylvania(abs.):Geol.Soc.AmericaAbs.withPrograms,V.2,No.1,p.35-36Mood,G.H.Jr,etal.,1962,PennsylvanianRocksoftheSouthernPartoftheAnthraciteRegionofEasternPennsylvania,U.S.Geol.SurveyProf.Paper450-C,p.C39-C42Potter,P.E,andPettigohn,FJ.,1963,PaleoCurrentsandBasinAnalyses,AcademicPressInc.,NewYork,p.362.Hells,R.B.andFaill,R.T.,1973,Stratigraphy:inFaill,R.T.(ed.),Guidebookforthe38thAnnualFieldConferenceofPennsylvaniaGeologists,p.4-8.Glaeser,J.D.,1974,UpperDevonianStratigraphyandSedimentaryEnvironmentsinNortheasternPennsylvania,PennsylvaniaGeol.Surv.,Gen.Geol.Report63,p.89.Nickelsen,R.P.,1973,DeformationalStructuresintheBloomsburqFormation,Cowan,Pa.:inZaill,R.T(ed.)Guidebookforthe38thAnnualFieldConferenceofPennsylvaniaGeologists,p.119-129.ChuteN.E;andBrower,J.C.,1964,StratigraphyoftheHamiltonGroupintheSyracuseArea:inPrucha,J.J.25-137 SSES-FSAR(ed.),New.YorkStateGeologicalAssociationGuidebook,36thAnnualMeeting,p.102-108Hoskins,D.M.,1973,DalmatiaQuarries:inFaill,R.T.(ed.),Guidebookforthe38thAnnualFieldCcnferenceofPennsylvaniaGeologists,p.156-161.Faill,R.T.,andothers,1974,MiddleDevonianStratiqraphyinCentralPennsylvania,ARevisicn(abs.):Geol.SocAmericaAbs.withPrograms,V.6,No.1,p.23-24Kaiser,W.R.,1972,DeltaCyclesintheMiddleDevonianofCentralPennsylvania,Unpub.doctoraldissert.,TheJohnsHopkinsUniv.,p.183.Dennison,J.M.,andHasson,K0.,1974~LithostratiqraphicNomenclatureRecommendationsforDevonianHamiltonGroupinSouthernPennsylvania,MarylandandtheVirginias(abs.):Geol.Soc.AmericaAbs.withPrograms,V.6,No.1,p.18.Wells,R.B.,1973,FieldTripStopNoVIZ:inFaill,R.T.(ed.),Guidebookforthe38thAnnualFieldConferenceofPennsylvaniaGeologists,p.112-115.Rood,G.H.,Jr,andBergin,M.J,1970,StructuralControlsintheAnthraciteRegion,Pennsylvania,in:Fisher,G.Wandothers(eds.),StudiesofAppalachianGeology:CentralandSouthern:IntersciencePublishers,NewYork'.147-160.Faill~R.T.andWells,RB.,1973,GirtysNotchSection:inFaill,R.T.(ed.),Guidebookforthe38thAnnualFieldCcnferenceofPennsylvaniaGeologists,p.105-110Berqin,M.J.,1976,BedrockGeologicMapoftheAnthracite-BearinqRocksintheWilkes-BarreWestQuadrangle,LuzerneCounty,Pennsylvania,U.S.GeologicalSurvey,Misc.Invest.MapI-838Gray,C,andothers,1960,GeologicMapofPennsylvania.Dames6Moore,1975b,Report-TectonicProvincesintheNortheasternUnitedStatesandtheRelationshipsofHistoricEarthquakestotheIndianPoi.ntSite.Revetta,F.A.,1970,ARegionalGravitySurveyofNewYorkandEasternPennsylvania,Unpub.doctoraldissert.,Univ.ofRochester,p.229.25-138 SSZS-FSARDiment,W.H.,andothers,1975,SpeculationsaboutthePrecambrianBasementofNewYorkandPennsylvaniafromGravityandMagneticAnomalies(abs.):Geol.Soc.AmericaAbs.withPrograms,V.6,No.7,p.711King,P.B.,1950,TectonicFrameworkofSoutheasternUnitedStates,Amer.Assoc.Petrol.GeologistBull.,V.34,No.4,p.635671.Weaver,K.N.,1970,'Introduction:inFisher,G.W.,andothers,(eds.)StudiesofAppalachianGeology,CentralandSouthern,Interscience,NewYork,p.125-126.Nickelsen,R.P.,1963,FoldPatternsandContinuousDeformationMechanismsoftheCentralPennsylvaniaFoldedAppalachians:inTectonicsandCambrian-OrdovicianStratigraphyintheCentralAppalachiansofPennsylvania,PittsburghGeol.Soc.AppalachianGeolSoc.Guidebook,p.13-29.Faill,R.T.andNickelson,R.P.,1973,StructuralGeoloqy:inPaill,R.T.(ed.),Guidebookforthe38thAnnualPieldCcnferenceofPennsylvaniaGeologists,p.9-38.Faill,R.T.~1973,Kink-BandFolding,ValleyandRidgeProvince,Pennsylvania,Geol.Soc.AmericaBull.,V.84,p1289-1314Root,SI.,1973a,Structure,BasinDevelopmentandTectoqenesisinthePennsylvaniaPortionoftheFoldedAppalachians:inDeJong,K.A.andScholten,R.(eds.),GravityandTectonics,JWileyandSons,NewYork,p.343-360Rodgers,John,1970,TheTectonicsoftheAppalachians:Wiley-Interscience,NewYork,p271.Root,S.I.,1973h,SequenceofFaulting,SouthernGreatValleyofPennsylvania,Am.J.Sci.,V.273,p.97-112.Glass,G.B.,1971,WrenchFaultingintheAppalachian'lateausofPennsylvania,Penn.Geology,V.2,No.3,p.711Root,S.I,1970,StructureoftheNorthernTerminusoftheBlueRidgeinPennsylvania,Geol.Soc.AmericaBull.,V.81,p.815-830.Gwinn,VE.,1970'inematicPatternsandEstimatesofLateralShortening,ValleyandRidgeandGreatValleyProvinces,CentralAppalachians,South-Central2-5-139 SSES-FSARPennsylvania:inFisher,G.W.,andothers'eds.),StudiesofAppalachianGeology,CentralandSouthern,IntersciencePublishers,NewYork,p.127-146.'ickelsen,R.PandHough,V.D.,1967,JointingintheAppalachianPlateauofPennsylvania,Geol.Soc.AmericaBull.,V.78,p609-630.Rankin,D.W.,1976,AppalachianSalientsandRecesses:LatePrecambrianContinentalBreakupandtheOpeningof'theZapetusOcean,J.GeophysRes.V.81,p.5605-5619.Alterman,X.B.,1973,TectonicEventsinandAroundtheEasternEndoftheHamburqKlippe,East-CentralPennsylvania(abs.):Geol.Soc.AmericaAhs.withPrograms,V.5,No.2,p.133-134.Drake,C.L.,andWoodward,H.P.,1963,AppalachianCurvature,WrenchFaultingandOffshoreStructures,Trans.N.Y.Acad.Sci;,V.26,p.48-63.Fleming,R.S,Jr.,andSummer,J.R.,1975,InterpretationofGeophysicalAnomaliesovertheArcuate,Appalachians(abs.):Geol.Soc.AmericaAbs.withPrograms,V.7,No.1,p.58.Rogers,John,1975,AppalachianSalientsandRecesses,GSAAbstracts,10thAnnualmeeting,Syracuse,5arch,1975,Vol.7~No.1,p111-112.Summer,J.R.,1976,ResidualGravityAnomalyHapoftheNewark-GettysburgTriassicBasin(abs.):Geol.Soc.Amer.,Abstr.withProq.,V.8,N.2,p.280.Faill,R.T.,1973b,TectonicDevelopmentoftheTriassicNewark-GettysburgBasininPennsylvania,Geol.Soc.AmericaBull.,V84,p.725-740.Dames6Noore,1977,GeotechnicalInvestigationoftheRamapoFaultSystemintheRegionoftheIndianPointGeneratinqStation,ConsolidatedEdisonofNewYork,Inc.,2Vols.Kummel,H.B,1897,NJ.GeolSurvey,AnnRept.StateGeoloqistfor1896.Zetz,I.andGray,C.,1960,GeophysicalandGeologicalInterpretationofaTriassicStructureinEasternPennsylvania,U.S.Geol.Surv.,Prof.Paper400-B,p.174-17825-140 SSES-FSARSanders,J.E.,1962,Strike-SlipDisplacementonFaultsinTriassicRocksinNewJersey,Science,V.136,p.40-112Oliver,J.E.,andothers,1970,Post-GlacialFaultingandSeismicityinNevYorkandQuebec,Can.Jour.EarthScience,V.7,=p.579-590.Ovens,J.P.,1970,Post-TriassicTectonicMovementsintheCentralandSouthernAppalachiansasRecordedbySedimentsoftheAtlanticCoastalPlain:inFisher,G.M.,andothers(eds.),StudiesofAppalachianGeology,CentralandSouthern,XntersciencePublishers,NewYork,p.417-427.Isachsen,Y.M,1975,PossibleEvidenceforContemporaryDominqoftheAdirondackMountains,NevYorkandSuggestedImplicationsforRegionalTectonics,andSeismicityTectonophysics,V.29p.169-181.Brown,L.D.,andOliver,J.C.,1976,VerticalCrustalMovementsfromLevelingDataandtheirRelationtoGeologicStructureintheEasternUnitedStates,ReviewGeophys.andSpacePhys.,V.14,p.13-35Dames6Moore,1976,TheDimensionsoftheNaturalHazardPhenomenaintheAppalachianRegion,p.20-25,55,57,59McGlade,M.G,Geyer,A.R,andMilshusen,J.P.,1972,EngineeringCharacteristicsoftheRocksofPennsylvania,PennsylvaniaTopographicandGeologicSurvey,4thSer,Bull.EGI.Miller,B.L.,1934,LimestonesofPennsylvania,PennsylvaniaTopographicandGeologicSurvey,BulletinM20,p.112-125,320-328,526-527.Radbruch-Hall,D.H.,etal.,1976,PreliminaryLandslideOvervievMapoftheConterminousUnitedStates,U.S.GeologicalSurvey,MiscellaneousFieldStudiesMapMF-77.1-Lobeck,A.K.,1939,Geomophology,McGraw-HillBookCo.,p.731Dreimanis,A.,andGoldthwait,R.P.,1973,MisconsinGlaciationintheHuron,BrieandOntarioLobes:inBlack,R.F.,Goldthwait,R.P.,andMillman,H.E.(eds.),TheMisconsinanStage,Geol.Soc.Amer.,Mem136,p71-10625-141 SSES-FSAR25-61Denny,C.S.,andLyford,M.H.,1963,SurficialGeologyandSoilsoftheElmira-MilliamsportRegion,NewYorkandPennsylvania,U.S.Geol.Survey,ProfessionalPaper379.2.5-62Sevon,M.D.,1974,RelativeAgeandSequenceofGlacialDepositsinCarlsonandMonroeCounties,Pennsylvania(abs.):Geol.Soc.Amer.,Abs.withProg.(NortheasternSect.),V.6(MistitledV.5),No1,p.71.2.5-63Sevon,M.D.,1973,"Early"MisconsinanDriftinLycomingCounty,Pennsylvania(abs):Geol.Soc.Amez.,Abs.withProg.(NortheasternSection),V.5,No.2,p.218.25-64Amdt,H.H.,andMood,G.H.,Jr.,1960,LatePaleozoicOrogenyinEasternPennsylvaniaConsistsofFiveProgressiveStages,U.S.Geol.Survey,ProfessionalPaper400-B,p.B182-B184.25-65Moodward,HP.,1957,ChronologyofAppalachianFolding:Amer.Assoc.PetrolGeologistsBull.,V.41,No.10,p.2312-2327.2.5-66Gray,Carlyle,1959,NappeStructuresinPennsylvania(abs):Geol.Soc.Amer.Bull.,v.70,p.1611.2.5-6725-68Cohee,G.F.(Chairman),1962,TectonicHapoftheUnitedStatesExclusiveofAlaskaandHawaii,U.S.Geol.SurveyandAmer.Assoc.PetrolGeologists,Mashington,D.C.(Scale12,500,000).Flint,R.Z.,1971,GlacialandQuaternaryGeology,JohnMileyandSons,NewYork,p.892.25-69Bird,J.N.,andDewey,J..F.,1970,LithospherePlate-ContinentalMarginTectonicsandtheEvolutionoftheAppalachianOrogen,Geol.Soc.Amer.Bull.,V.81,p.1031-106025-70Barton,N.H.,1940,SomeStructuralFeaturesoftheNorthernAnthraciteCoalBasin,Pennsylvania,U.S.Geol.Survey,Prof.Paper193-D.25-71Heck,N.H.andBodle,R.R,1929,UnitedStatesEarthquakes:1929,U.S.C.GG.S.,U.S.Dept.ofCommerce.25-72Coffman,J.L.andVonHake,C.A,1973,EarthquakeHistoryoftheUnitedStates,N.O.A.A.,Publication41-1,Revisedthru1970.25-142 SSES-PSARDames6Moore,1976,IndianPointSeismicProceedingsbeforetheAtomicSafety8LicensingAppealBoardonBehalfofConsolidatedEdisonofNewYork,1976.Rodgers,J.,1968,TheEasternEdgeoftheNorthAmericanContinentdurinqtheCambrianandEarlyOrdovician,in:Zen,E-an,White,W.S.,Hadley,JB.,andThompson,J.B.(eds.),StudiesofAppalachianGeology:NorthernandMaritime,Wiley,p.141-149.Bryant,B.andReed,J.C.,Jr.,1970,StructuralandMetamorphicHistoryoftheSouthernBlueRidge,in:Studiesof~AalachianGeol~opCentralandSouthern;ed.,byFischer,G.W.,Peitijohn,F.J.,Reed,J.C.,andWeaver,K.N.,Interscience,N.Y,p.213-225Williams,H.andStevens,R.K.,1974,TheAncientContinentalMarginofEasternNorthAmerica,p.-781-796~in:Burk,CA.andDrake,CL.{eds),TheGeologyofContinentalMarqins,Sprinqer-Verlag,p.781-796.Rakin,D.W.,1975,TheContinentalMarginofEasternNorthAmericaintheSouthernAppalachians,AmericanJournalofScience,V.275-A,p.298-330.Mayhew,MA.,1974,GeophysicsofAtlanticNorthAmerica,p.409-427,in:BurkandDrake(eds.).Wise,D.U.,1970,MultipleDeformation,GeosynclinalTransitionsandtheMarticProbleminPennsylvania,in:Fisher,etal.(eds.),1970,p.317-334.Bollinqer,G.A.,1973,SeismicityoftheSoutheasternUnitedStates,Bull.Seism.Soc.Amer.,V.63;October,1973.Hadley,JB.andDevine,J.F.,1974,SeismotectonicMapoftheEasternUnitedStates:Misc.FieldStudies,MapHP-620,U.S.GeologicalSurve'y,in:Harrison,C.G.A.andM.H.Ball,1973,TheRoleofinSeaFloorSpreading,Jour.Geophys.Res.,7785.Sbar,M.L.andSykes,LR.,1973,ContemporaryCompressiveStressandSeismicityinEasternNorthAmerica,AnExampleofIntraPlateTectonics,GeologicalSocietyofAmericaBulletin,V.84,p1861-1882.Ballard,R.PandUchupi,E.,1975,TriassicRiftStructureinGulfofMaine;Amer.Assoc.Pet.GeolBull.,V.59,No7.,p.1041-1072. SSES-FSAR25-84Dillon,W.P.,1974,FaultsRelatedtoSeismicityofftheCoastofSouthCarolina,U.S.G.S.OpenFileReportNo74-145-25-85Colquhoun,D.J.andComer,C.D.,1973'heStonoArch,ANewlyDiscoveredBreachedAnticlinenearCharleston,SouthCarolina,GeologicNotes,SouthCarolinaStateDevBoard,V.17,No.425-862.5-87Zietz,Isadore,Popenoe,Peter,andHigqins,BrendaB1976,RegionalStructureoftheSoutheasternUnitedStatesasInterpretedfromNevAeromagneticMapsofPartoftheCoastalPlainofNorthCarolina,SouthCarolina,GeorgiaandAlabama.Abs.S.E.SectionMtg.ofGeol.Soc.Amer.,March25-27,1976,Arlington,Va.,p.307.Wise,D.UandWerner,M.L.,1969,TectonicTransportDomainsandthePennsylvaniaElbovoftheAppalachians,(abs.):Progr.Amer.Geophys.UnionMtgs.25-88DeBoer,J.,1967,Paleomagnetic-TectonicStudyofMeosozoicDikeSwarmsintheAppalachians,JcurnalGeophys.Res.V.72,No.8,p.2237-225C.25-89Woodward,H.P.,1968,APossibleMajorFaultZoneCrossinqCentralNevJersey:BullNevJerseyAcadSci~V.13,n1.,p.40-46.25-90Drake,C.L.andWoodvard,H.P.,1963,AppalachianCurvature,WrenchFaulting,andOffshoreStructures:Trans.NevYorkAcad.Sci.,Ser.II,V.26,p.48-63.25-91NRC,1975,SafetyEvaluationReportbytheDivisionofReactorLicensing,U.S.NuclearRegulatoryCommission,inthematterofDelmarvaPover6LightCo.,SummitPowerStation,Units1and2,DocketNos.50-450and50-4512.5-92EarthquakeDataListing,1974,NevYorkStateMuseumandScienceService,GeologicalSurvey(Preliminary),Gupta,I.N.andO.W.Nuttli,1976,SpatialAttentuationofIntensitiesforCentralU.S.Earthquakes,B.S.S.A.,V.66,No.3,June,1976,p.7487522.5-93O'rien,L.,Murphy,J.,andLahoud,J.,1977,TheCorrelationofPeakGroundAccelerationAmplitudewithSeismicIntensityandotherPhysicalParameters,ComputerScienceCorp.forU.S.Nucl.Reg.Comm.ReportNUREG-043,March,1977.25-94'oulter,H.W,WaldronH.H.,andDevineJ.F.,1973,SeismicandGeologicSitingConsiderationsforNuclear25-144 SSES-PSARFacilities,ProceedingsoftheWorldConferenceonEarthquakeEngineering,5th,Rome,Italy,1973Donovan,N.C.,1974,EarthquakeHazardsforBuildings,EngineerinqBulletinNo.46,DamesCMoore,December,1974Seed,H.B.,Idriss,I.M.,Makdisi,P.,andBanerjee,N.,1975,RepresentationcfIrregularStressTimeHistoriesbyEquivalentUniformStressSeriesinLiquifactionAnalyses,ReportNo.EERC75-29,Univ.ofCalif.,Berkeley,Calif.,October,1975.EasesSMoore,PoundationInvestigation~Reort,ProposedSusquehannaSteamElectricStation,Units1and2,May12,1972DamesCMoore,~SuelementalPoundationInvestigation~Reort,SusquehannaSteamElectricStation,Units1and2,September24,1973.MestonGeophysicalEnqineers,Inc.,SeismicVelocityandElasticModuliMeasurements~S2~raPond~SusguehannaSteamElectricStation,October18,1974.Gibbs,H.J.,andHoltz,M.G.,"ResearchonDeterminingtheDensityofSandbySpoonPenetrationTest",Proc.4thInt.Conf.onSoilMechanicsandPoundationEngineering,London,Vol.I,1957,p.35-59.Lohman,S.M.,1972,"GroundwaterHydraulics",U.S.G.S.ProfessionalPaper708.GeotechnicalEngineers,inc.,~ReortonSoilTesting,SusuehannaSteamGeneratingStation,October11,1974Skempton,A.M.,1954,"ThePorePressureCoefficientsAandB>>,Geotechnique,Vol.4,p.143.Davis,S.N,andDeMiest,R.J.M.,1966,Hydrogeology,JohnRileyCSons,IncKisch,M.,"TheTheoryofSeepagefromClayBlanketedReservoirs",Geotechnique,Vol.9,No.1,March1959,p.9-12SchnabelRPBLysmerJ~andSeedH.B~"SHAKEAComputerProgramfor-EarthquakeResponseAnalysisofHorizontallyLayeredSites>>,ReportNo.EERC72-12,UniversityofCalifornia,Berkeley,December1972.2.5-145 SSES-FSARSeed,H.B.,andIdriss,I.N.,>>SimplifiedProcedureforEvaluatinqSoilLiquefactionPotential",JournaloftheSoilMechanicsandFoundationsDiv.,ASCE,Vol.97,No.SM9,September1971,p.1249-1273.Seed,H.BandIdriss,IN.,<<SoilNoduliandDampingFactorsforDynamicResponseAnalysis",ReportNo.EERC70-10UniversityofCalifornia,Berkeley,December1970.Seed,H.B.,andGoodman,R.E,>>EarthquakeStabilityofSlopesofCohesionlessSoils",JournalcfSoilMechanicsandFoundationDiv.,ASCE,Vol.90,NoSN6,November1964,p43-72Seed,H.B.,andSilver,N.L,"SettlementofDrySandsDuringEarthquakes>>,JournalofSoilMechanicsandFoundationsDiv.,ASCE,Vol.98,No.SN4,April1972,p.381-397.LeeK.L.,andAlbaisaA.,"EarthquakeInducedSettlementsinSaturatedSands",JournalofGeotechnicalEngineeringDiv.,ASCE,Vol.100,No.GT4,April1974,p287-406Kishida,H.,>>CharacteristicsofLiquefiedSandsduringNino-OwariTohnankaiandPukuiEarthguakes<<,SoilsandFoundation,Japan,Vol9,No1,March-1969Trifunac,ND.,andBrady,AG.,1975,OntheCorrelationofSeismicIntensityScaleswithPeaksofRecordedStrongGroundNotion,Bull.Seis.Soc.Amer.,Vol.65~No1,February1975.Pomeray,P.R.,andFahunding,R.H.,1976,SeismicActivityandGeologicStructureinNewYorkandAdjacentAreas,NapandChartSeries,No.27,NewYorkStateNuseumandScienceService,Albany,NewYork.Peck,RB.~Hanson,ME.,andThronburn,T.H,1974,FoundationEngineering,2ndEd.,JohnWiley6Sons,Inc.25-146 31.25531.2563125.731.25.8SSES-PSARPipingSystemsPenetratingContainment{Criterion54)ReactorCoolantPressureBoundaryPenetratingContainment(Criterion55)PrimaryContainmentIsolation(Criterion56)ClosedSystemIsolationValves(Criterion57)3.1-563.1-57'.1-583.1-59'.1.2.6FuelandRadioactivityControl(GroupVI)3.1.26-131262312.633126431265ControlofReleaseofRadioactiveMaterialstotheEnvironment(Criterion60)FuelStorageandHandlingandRadioactivityControl{Criterion61)PreventionofCriticalityinFuelStorageandHandling(Criterion62)MonitoringFuelandWasteStorage{Criterion63)monitoringRadioactivityReleases(Criterion64)32CLASSIFICATIONOFSTRUCTURESCOllPONENTSANDSYSTEMS3.1-6031-603.1-613.1-633.1-643.1-653.2-13213-2-2SeismicClassificationSystemQualityGroupClassification32-13&223.2.2.1QualityGroupD(Augmented)3.2.3SystemSafetyClassifications3.2.3.1'afetyClass13.2.3.1.1DefinitionofSafetyClass13.2.3.2SafetyClass23.2.3.2.1DefinitionofSafetyClass23.2.3.3SafetyClass3DefinitionofSafetyClass3OtherStructures,SystemsandComponents32331323432432532.3.41DefinitionofOtherStructures,Systems,andComponents3.2.3.4.2DesignReguirementsforOtherStructures,SystemsandComponentsQualityAssuranceCorrelationofSafetyClasseswithIndustry3%233%233.2-43.2-432-43.2-432-53.2-53.2-63.2-63.2-63&273w27REV17,9/803-l.ii SSES-FSARCodes33MINDANDTORNADOLOADINGS3.3.1HindLoadings3.3.11DesignHindVelocity33.1.2DeterminationofAppliedForces3.3.2TornadoLoadings3.3.2.1ApplicableDesignParameters3.3.2.2DeterminationofForcesonStructures3-3.2.3EffectofFailureofStructuresorComponentsNotDesignedforTornadoLoads33-13&313'-13%313%323~323%3333-4343.533.3ReferencesQATERLEVEL(FLOOD)DESIGNHISSILEPROTECTION3.5.1HissileSelectionandDescription3.5.1.1InternallyGeneratedMissiles(OutsidePrimaryContainment)3.5.1.1.1RotatingComponentFailureMissiles3.5.1.1.2PressurizedComponentFailureMissiles3.5.1.2InternallyGeneratedMissiles(InsideContainment)3.5.1.2.1Rotating:ComponentFailureMissiles3.5.1.2.2PressurizedComponentFailureMissiles3.5.1.2.3GravitationallyGeneratedMissiles3.5.1.3TurbineMissiles3.3-53.4-13.5-13.5-13.5-13.5-13.5-23.5-53.5-53.5-6a35-6a35-6b3~5.13.1351323.5.1.3.335.1335135351.363.5.1.3.7TurbinePlacementandOrientationMissileIdentificationandCharacteristicsProbabilityAnalysisMissileGenerationProbability(Pl)CalculationofStrikeProbability(P2)CalculationoftheDamageProbability(P3)ProbabilityofTurbineHiss'ileDamage(P4)3.5-6b35-6b3.5-735-935-103.5-133.5-163.5.1.4MissilesGenerated.by.NaturalPhenomena3.5.1.5SiteProximityMissiles3.5.1.6AircraftHazards3.5-173.5-1735-183.5.1.6.1AirportOperations3.5.1.6.2AircraftCrashProbability3.5-183.5-19REV17'/803-iv SSES-FSAR3.5.1.6.3CriticalTargetAreaforthePlant3.5.1.6.4StrikingProbabilities3.5.2SystemstoheProtected35-203.5-233.5-243.5.213'2235335.44MissileProtectionDesignPhilosophyStructuresDesignedtoWithstandMissileEffectsBarrierDesignProceduresReferences3.5-243.5-2435-243.5-2536PROTECTIONAGAINSTDYNAMICEFFECTSASSOCIATEDWITHTHEPOSTULATEDRUPTUREOFPIPING3.6.1PostulatedPipingFailuresinFluidSystems3.6.1.1DesignBases3.6.1.2Description36-13.6-13.6-13.6-3a3.61-2136.1;2.236.12.33.61.24MainSteamSystemZeedwaterSystemHighPressureCoolantInjection(HPCI)SystemReactorCoreIsolationCooling(RCIC)System36-43.6-63.6-736-83613362SafetyEvaluationDeterminationofPipeFailureLocationsandDynamicEffectsAssociatedwiththePostulatedPipingFailure3.6-936-93.6.2.1CriteriaUsedtoDeterminePipeBreakandCrackLocationsandtheirConfigurations3.6-9362113.6.21.236.21.33.6.2;l.4HighEnergyFluidSystemPipingOtherThanRecirculationSystemPipingModerateEnergyFluidSystemPipingOtherRecirculationPipingSystemTypesofBreaksandLeakageCracksinFluidSystemPipingOtherThanRecirculationPipingSystemCriteriaforRecirculationSystemPiping3.6-103.6-12a3.6-1336-14,.362.14136214236.2.1433.6.2.1..4.4DefinitionofHighEnergyFluidSystemDefinitionofModerateEnergyFluidSystemPostulatedPipeBreaksExemptions,fromPipeWhipProtectionRequirements3.6-1436-153.6-153.6-15REV17,.9r80'-v 3.62145362146SSES-FSARLo'cationforPostulatedPipeBreaksTypesofBreakstobePostulatedinFluidSystemPiping36-163.6-173.6.2.2AnalyticalModelstoDefineForcingFunctionsandResponseModels36-18)362.2.136222ForPipingOtherThanRecirculationPipingSystemAnalyticMethodstoDefineBlovdownForcingFunctionsandResponseModelsforRecirculationPipingSystem36-1836-20362221362222AnalyticalMethodstoDefineBlowdownForcingFunctionsPipeWhipDynamicResponseAnalysesforRecirculationPipingSystem36-203.6-233.6.23DynamicAnalysisMethodstoVerifyIntegrityandOperability3.6.2.3.1ForPipingOtherThanRecirculationPipingSystem36-253.6-253.6.2.3.1.1DesignLoadingCombinations3.6.2.3.1.2DesignStressLimits3.6.2.3.2DynamicAnalysisMethodstoVerifyIntegrityandOperabilityforRecirculationPipingSystem3.6-263.6-2636-27362.3.2.1362.3.2.23.6.2.3.23JetImpingementAnalysesandEffectsonSafetyRelatedComponentsResultingfromPostulatedRupturesoftheRecirculationPipingSystemAPipeWhipEffectsFollowingaPostulatedRuptureoftheRecirculationSystemPipingLoadingCombinationsandDesignCriteriaforRecirculationPipingPipe'hipRestraints3~6-273.6-273.6-283.6.2.4GuardPipeAssembly'esignCriteria3.6.2.5MaterialtobeSubmittedfor.OperatingI.icenseReview36-303.6-313.6.2.5.1ForPipingOtherThanRecirculation-PipingSystem3.6.2.5.2ImplementationofCriteriaforPipe3.6-313.6-31HEV17i9/803vi SSES-FSAR3.8.1ConcreteContainment3.8.1.1DescriptionoftheContainment,3.8-13.8-13.8.1.1.1General3.8.1.1.1.1Dimensions3.8-13.8-23.8.1.1.2BaseFoundationSlab3.8-23.8.1.1.2.13.8.1.1.2.23.8.1.1.2.3ReinforcementLinerPlateandAnchoragesPedestalandSuppressionChamberColumnBaseLineAnchorages3.8-23.8-33.8-33.8.1.1.3ContainmentWall3.8-33.8.1.1.3.13.8.1.1.3.23.8.1.1.3.33.8.1.1.3.43.8.1.1.3.53.8.1.1.3.6ReinforcementLinerPlateandAnchoragesPenetrationsInternalContainmentAttachmentsExternalContainmentAttachmentsSteelComponentsNotBackedbyStructuralConcrete3.8-33.8-43.8-43.8-63.8-63.8-73.8.1:2ApplicableCodes,Standards,&Specifications3.8-73.8.1.3Loads6LoadingCombinations3.8-73.8.1.3.1General3.8.1.3.2.DescriptionofLoads3.8-73.8-73.8.1.3.2.1DeadLoad3.8.1.3.2.2LiveLoad3.8.1.3.2.3DesignBasisAccidentPressureLoad3.8.1.3.2.4ThermalLoads3.8.1.3.2.5WindandTornadoLoads3.8.1.3.2.6SeismicLoads3.8.1.3.2.7ExternalPressureLoad3.8.1.3.2.8MissileandPipeRuptureLoadsr3.8.1.4DesignandAnalysisProcedures'.8-83.8-83.8-83.8-93.8>>93.8-93.8-93.8-93.8-103.8.1.4.1General3.8.1.4.2ContainmentWall3.8.1.4.3BaseFoundationSlab3.8.1.4.4AnalysisofAreasAroundEquipmentHatches3.8.1.4'.5LinerPlateandAnchorages*3.8-103.8-113.8-123.8-123.8-133.8.1.5StructuralAcceptanceCriteria'I3.8.1.5.1ReinforcedConcrete3.8.1.5.1.1'orkingStressMethod3.8-133.8-133.8-13Rev.27,10/813-xi SSES-PSAR3.8,1,5,1.2StrengthMethod3.8.1,5.2LinerPlateandAnchorages3.8.1.6Materials,QualityControl,andSpecialConstructionTechniques3.8-133.8-143.8-143.8.1.6.1ConcreteContainment3.8.1.6.2LinerPlate,Anchorages,andAttachments3.8-143.8-143.8.1.6.2.13.8.1.6.2.23.8.1.6.2.33.8.1.6.2.43.8.1.6.2.53.8.1.6.2.6MaterialsWeldingMaterialsTestingNondestructiveExaminationofLinerPlateSeamWeldsQualityControlErectionTolerances3.8-143.8-153.8-153.8-153.8-163.8-173.8.1.7TestingandIn-ServiceSurveillanceRequirements3.8-183.8.1.7.1PreoperationalTesting3.8-183.8.1.7.1.1StructuralAcceptanceTest3.8.1.7.1.2LeakRateTesting3.8-183.8-213.8.1.7.2Xn-ServiceLeakRateTesting3.8.2ASMEClassMCSteelComponentsoftheContain-ment3.8-213.8-213.8.2.1DescriptionoftheASMEClassMCComponents3.8>>213.8.2.1.1DrywellHeadAssembly3.8.2.1.2EquipmentHatchesandPersonalLock3.8.2.1.3SuppressionChamberAccessHatches3.8.2.1.4CRDRemovalHatch3.8.2.1.5Penetrations3.8-213.8-223.8-223.8-223.8-223.8.2.2ApplicableCodes,Standards,andSpeci-fications3.8.2.3Loa'dsandLoadingCombinations3.8-233.8-233.8.2.3.1General3.8.2.3.2DescriptionofLoads3.8-233.8-233.8.2.3.2.13.8.2,3.2.23.8.2.3.2.33.8.2.3.2.43.8.2.3.2.53.8.2.3.2.6DeadandLiveLoadDesignBasisAccidentPressureLoadExternalPressureLoadThermalLoadsSeismicLoadsMissileandPipeRuptureLoads3.8-233.8-233.8-243.8-243.8-243.8-25Rev.27,10/813-xii SSES-FSAR3.8.2.4DesignandAnalysisProcedures-3.8-253.8.2.4.1DrywellHeadAssembly3.8.2.4.2AccessHatches3.8.2.4.3PipeandElectricalPenetrations3.8-253.8-263.8-263.8.2.5StructuralAcceptanceCriteria3.8.2.6Materials,QualityControl,andSpecialConstructionTechniques3.8.2.6.1Materials3.8-26'3.8-273.8-273.8.2.6.1.13.8.2.6.1.23.8.2.6.1.33.8.2.6.1.4General.,DrywellHeadAssemblyAccessHatchesPenetrations3.8-273.8-273.8-273.8-28'.8.2.6.2Welding3.8.2.6.3MaterialsTesting3.8.2.6.4NondestructiveExamination'ofWelds3.8.2.6.5QualityControl3.8.2.6.6ErectionTolerances3.8.2.7TestingandIn-serviceInspectionRequire-ments3.8-283.8-283.8-293.8-29"3.8-293.8-303.8.2,7.1PreoperationalTesting3.8-303.8.2.7.1.7.StructuralAcceptanceTest3.8.2.7.1.2LeakRateTesting3.8-303.8-303.8.2.7.2In-serviceLeakRateTesting3.8-303.8.3ContainmentInternalStructures3.8.3.1DescriptionoftheInternalStructures3.8-373.8-313.8.3.1.13.8.3.1.23.8.3.1.33.8.3.1.43.8.3.1.53.8.3.1.63.8.3.1.7DrywellFloorReactorPedestal.ReactorShieldWallSuppressionChamberColumnsDrywellPlatforms.SeismicTrussandSeismicStabilizerReactorSteamSupplySystemSupports3.8-313.8-323.8-323.8-333.8-333.8-333.8-343.8.3.2ApplicableCodes,Standards,andSpecifica-tions3.8.3.3LoadsandLoadingCombinations3.8-343.8-353.8.3.3.13.8.3.3'23.8.3.3.2.1GeneralDrywellFloorand:ReactorPedestal"DescriptionofLoads3.8-353.8-353.8-35Rev.27,10/813-xiii SSES-FSAR3.8.3.3.3ReactorShieldWall3.8.3.3.3.1DescriptionofLoads3.8-363.8-363.8.3.3.4SuppressionChamberColumns3.8.3.3.5DrywellPlatforms3.8.3.3.6SeismicTruss3.8-373.8-383.8-383.8.3.4DesignandAnalysisProcedures3.8-383,8.3.4.13.8.3.4.23.8.3.4.33.8.3.4.43.8.3.4.53.8.3.4.63.8.3.4.7DrywellFloorDrywe11FloorLinerPlateandAnchoragesReactorPedestalReactorShieldWallSuppressionChamberColumnsDrywellPlatformsSeismicTruss3.8-393.8-393.8-393.8-413.8-423.8-433.8-433.8.3.5StructuralAcceptanceCriteria3.8-433.8.3.5.1ReinforcedConcrete3.8,3.5.2DrywellFloorLinerPlateandAnchorages3.8.3.5.3StructuralSteel3.8-433.8-443.8-443.8.3.6Materials,QualityControl,andSpecialConstructionTechniques3.8-443.8.3.6.1ConcreteContainmentInternalStructures3.8.3.6.2DrywellFloorLinerPlate,Anchorages,Attachments3.8-443.8-453.8.3.6.2.13.8.3.6.2.23.8.3.6.2.33.8.3.6.2.4MaterialsWeldingNondestructiveExaminationofLinerPlateSeamWeldsErectionTolerances3.8.3.6.3ReactorShieldWallandSeismicTruss3.8-453.8-453.8-453.8-463.8-463.8.3.6.3.13.8.3.6.3.23.8.3.6.3.33.8.3.6.3.4MaterialsWeldingandNondestructiveExaminationofWeldsMaterialsTestingErectionTolerances3.8-463.8-463.8-463.8-473.8.3.6.4SuppressionChamberColumns3.8-473.8.3.6.4.1Materials.3.8.3.6.4.2Welding3.8.3.6.4.3NondestructiveExaminationofWelds3.8.3.6.4.4FabricationandErectionTolerances3.8-473.8-473.8-473.8-48Rev.27,10/813-xiv SSES-FSAR3.8.3.6.5DrywellPlatforms3.8-483.8.3.6.5.1Materials3.8.3.6.5.2WeldingandNondestructiveExaminationofWelds3.8.3.6.5.3ErectionTolerances3.8.3.6.6'ualityControl3.8,3.7TestingandIn-serviceInspectionRequire-ments3.8-483.8-493.8-493.8-493.8-493.8.3.7.1'PreoperationalTesting3.8-493.8.3.7.1.1StructuralAcceptanceTest3.8.3.7.1.2LeakRateTesting3.8-493.8-493.8.3.7.2In-serviceLeakRateTesting.3.8.4Other.SeismicCategoryIStructures3.8-503.8-503.8.4.1DescriptionoftheStructures3.8.4.2ApplicableCodes,Standards,andSpecifica-...tions3.8.4.3LoadsandLoadCombinations3.8-503.8-553.8-553.8.4.3.1DescriptionofLoads3.8.4.3.2LoadCombinations3.8-553.8-563.8.4.4DesignandAnalysisProceduies3.8,4.5StructuralAcceptanceCriteria3.8.4.6Materials,QualityControl,andSpecialCon-structionTechniques3.8.4.6.1'oncreteandReinforcingSteel3.8.4.6.2StructuralSteel3.8-563.8-573.8-573.8-573.8-58-3.8.4.6.2.1Materials3.8.4.6.2.2WeldingandNondestructiveTesting3.8.4.6.2.3FabricationandErection3.8.4'.6.2.4QualityControl3.8.4.6.3SpecialConstructionTechniques3.8.4.7TestingandIn-serviceInspectionRequire-ments,3.8.4.8ComputerProgramsUsedintheDesignandAnalysisofOtherSeismicCategoryIStructures3.8-583.8-583.8-593.8-593.8-593.8-593.8-593.8.5Foundations3.8.5.1DescriptionoftheFoundations3.8-593.8-60Rev.27,10/81 SSES-FSAR3.8.5.23.8.5.33.8.5.43.8.5.53.8.5.63.8.5.7ApplicableCodes,Standards,andSpecifica-tionsLoadsandLoadCombinationsDesignandAnalysisProceduresStructuralAcceptanceCriteriaMaterials,QualityControl,andSpecialCon-structionTechniquesTestingandIn-serviceInspectionRequire-ments3.8-613.8-613.8-623.8-633.8-643.8-643.8ACOMPUTERPROGRAMS3.8A-13.8A.13.8A.23.8A.33.8A.43.8A.53.8A.6'.8A.73.8A.83.8A.93.8A.103.8A.113D/SAPASHSDCECAPCE668EASEE0119E0781FINELME620SUPERB'eferences3.8A-13.8A-13.8A-63.8A-103.8A-123.8A-123.8A-133.8A-183.8A-233.8A-253.8A-263.8BCONCRETE,CONCRETEMATERIALS,QUALITYCONTROL,ANDSPECIALCONSTRUCTIONTECHNIQUES3.8B.1ConcreteandConcreteMaterials-Qualifica-tions3.8B-13.8B-53.8B.l.lConcreteMaterialQualifications3.8B.1.2ConcreteMixDesign3.8B.1.3Grout3.8B-53.8B-83.8B-93.8B.2ConcreteandConcreteMaterials-Batching,Placing,CuringandProtection3.8B-103.8B.2.13.8B.2.23.8B..2.33.8B.2.43.8B.2.53.8B.2.6StorageBatching,Mixing,andDeliveringPlacingConsolidationCuringHotandColdWeatherConcreting3.8B-103.8B-103.8B-113.8B-123.8B-123.8B-123.8B.3ConcreteandConcreteMaterials-ConstructionTesting3.8B.4ConcreteReinforcementMaterials-Qualifica-tions3.8B.5ConcreteReinforcementMaterials-Fabrication3.8B-123.8B-133.8B-143.8B.5.1BendingReinforcement3.8B.5.2SplicingReinforcement3.8B-143.8B-153-xvi SSES-FSAR3.8B.5.3PlacingReinforcement3.8B.5.4SpacingReinforcement3.8B.5.5SurfaceCondition3.8B-153.8B-153.8B-153.8B.6ConcreteReinforcementMaterials-ConstructionTesting3.8B-16Rev.27,10/81 SSES-FSAR3.4WATERLEVEL/FLOOD}DESIGNAsdiscussedinSection2.4,allSeismicCategoryIstructuresaresecureagainstfloodingduetoprobablemaximumflood(PMF)oftheSusquehannaRiverorprobablemaximumprecipitation(PMP)ontheareasurroundingtheplant.Theefore,specialfloodprotectionmeasuresareunnecessary.TheSeismicCategorylstructureshave,however,beendesignedforhydrostaticloadsresultinqfromqroundwater,asdiscussedinSection3.8.Theqroundwatertableisatelevation665MSLinthemainplantarea.Apostulatedbreakinthecoolingtowerbasinsorofthewaterdeliverypipestothebasincouldresultinabuild-upofwateragainstthewallsofeitherorbothoitheESSWpumphouseandtheturbinebuildinq.Intheeventofsuchwaterbuild-upbreachingtheturbinebuidlinqwall,waterthatwouldnotbeinterceptedbythefloordrainsorqrillesandthuswouldflowthroughtheturbinebuildinqtothereactorbuildingwouldbepreventedfromendanqerinqequipmentinthelatterbymeansofwatertightdoors.FloodwaterbuildingupagainsttheESSWpumphousewouldalsobepreventedfromenterinqthebuildingbymeansofwatertightdoors.ImpactforcesandwaterpressureduetofloodwaterwillnotendanqertheintegrityoftheESSWpumphouse.Allsafety-relatedsystemsarelocatedintneReactorBuilding,DieselGeneratorBuilding,ControlStructureandtheEngineeredSafequardServiceWater(ESSW)PumphouseSufficientphysicalseparationbetweenthesebuildingsisprovidedtopreventinternalspreadingofanyfloodsfromonebuildingtoanother.RedundantEnqineeredSafetyFeatures,pumpsanddrives,heatexchanqersan4associatedpipes,valvesandinst"umentationinthereactorbuildinqsubjecttopotentialfloodinq,arehousedinseparatewatertightrooms.SeismicCategoryIleveldetectorstripalarmsinthemaincontrolroomwhenthewaterlevelinanyroomexceedsthesetpoint.Isolationofthefloordrainagelinesfromtheseroomsisprovidedbyoutsidemanualvalves.Allotherroomsinthereactorbuildingandcontrolstructurecontaininqsafetyrelatedequipmentwhicha"esubjecttopotentialfloodinqbyprocessfluidleakageorfireprotectionwaterareprovidedwithatleastoneopenfloordrain.Floodsinexcessoftheapproximately80gpmfloordraincapacityincreasethewaterlevelintheaffectedareaandarereleasedthrouqhthedoor-to-floorclearanceoftheserooms.RefertoSubsection9.3.3foradetaileddescriptionofthe.reactorbuildinqandcontrolstructuredrainagesystem.3.4-1 SSES-PSARThefourdieselgener'atorsetsarehousedinindividualwatertightcompartmentswithinthedieselgeneratorbuilding.Floordrainlinebranchesfromeachofthesecompartmentsareequippedwithcheckvalvestopreventbackfloodingfromthecommonsump.,TheESSRpumphouseisdividedintotworedundantcompartments.Ploodinqfrominternalleakagewould,therefore,onlyaffectoneoftheredundantpumpsets.Thecontrolandelectricalpanelsaremountedonminimum4inchhiqhconcretepadsorstructuralsupports.OperatinqflooropeningsallowdrainageofanyleakagetotheESSRpumpsuctionspacebelowortoareservesumpspacethatcouldbeemptiedwithaportablepump.3.4-2 SSES-FSAR3'MISSILEPRDTEZTION.Wherepossible,theSeismi"-CategoryI-andsafetyrelatedstructures,equipment,andsystemsareprotectedfrommissilesgeneratedbyinternalrotatingorpressurizedequipmentthroughbasicstationcomponentarrangement,sothat,ifequipmentfailureoccurs,themissiledoesnotcausethefailureofthesestructures,equipment,orsystems..Whereitisinpossibletoprovideprote"tionthrough.plantlayout,suitablephysicalbarrierssillbeprovidedtoisolate"thecrediblemissilesortoshieldthecriticalsystemorcomponent..Also,redundantSeismicCategoryIcomponentsaresuitablyprotectedsothatasinglemissilecannotsimultaneouslydamageacritical,,systemcomponentanditsbackupsystem.,Table3.g-1providesatabulationofsafetyrelatedstructures,systems,andcomponents,alongwiththeirapplicableseismiccategoryandqualitygroupclassification.,Se"tion3.12-Separation.CriteriaforSafetyRelateRMechanicalandElectricalEquipmentprovidesadetaileddiscussionofprotectionfrommissles,'su"hasequipmentseparationandredundancy,toprecludedamagetothesystemsnecessarytoachieveandmaintainasafeplantshutdown..351MISSILESELECTI3NANDDESCRIPTIGN3.5.1.1InternallyGeneratedMissiles(OutsidePrimaryContainment)Therearetwogeneralsour=esofpostulatedmissilesoutsidetheprimarycontainment:.a)Rotatingcomponentfailuremissilesb)Pressurizedcomponentfailuremissiles3.5.1.1.1-RotatiagComponentFailureMissilesThesystemslocatedoutsidetheprimarycontainmenthavebeenexaminedtoidentifyandclassifypotentialmissiles.,Thebasi"approach.istoensuredesignadequacyagainstgenerationofmissilesratherthantoallowmissilformationandthencontainingtheireffects.."atastrophicfailureoErotatingequipment,such.aspumps,turbines,fans'ndcompressorsleadingtothegenerationofmissiles,is'notconsideredcredible.,MassiveandrapidfailureRev.16,7/80.3.5-1 SSES-FSAR'fthesecomponentsisinccediblebecauseofthe,"onservativedesign,materialchara"teristics,inspections,quality"ontrolduringfabricationandece"tion,andpcudentoperationasappliedtotheparticularcomponent.Zthasb'eenconcludedthatlarge,massiverotatingcomponents,suchasthevariousEC"Spumpsanlmotors,fans,.andcompressorsoutsidetheprimarycontain'ment,donothavesufficientenergy'tomovethemassesoftheicrotatingpartsthrough.thehousingsinwhichtheyare"ontainad..Similarly,itisconcludedthattheHP"IandRCIC'turbines"annotgeneratemissiles'.OvarspaedtrippingdevicesensurethattheHP"Iand.RCZCturbinesvill..notreachrunavayspeedvhecacomponentfailurecoulltake'placeeeHowevec,evenwiththisconservativedesign,theRCICandHPCItucbinesarelocatediaseparatecompartmentssothatanyturbinemissilevillaffectonlyonedivision-ofequipment.Thisisalsotrueforotherlargerotatingsafetyrelatedequipment,suchaspumps,fans,andcompressors..Redundantequipmentisnormallylocatediadiffacantareasoftheplantocsepacatedbywalls,sothatasinglemissilefromarotatingmassvillnotdamagebothradundantsystems.<3.5.1.12pressurizedComponentPa'ilureMissiles'hefollowingpotential'internalmissiledonorsfrom-pressurizedaquipmentwereinvestiyatel:ip~'a)HighEnergyPigingPressurizedŽomponantsinsystemswhereservicetemperatureexceeds2300Porsacvicepressureexceeds275psigwareevaluatedastothirpotantialforbeŽomingmissiles.Pipawhiprestraintsvraprovidedatpossiblebreakpointsofthesehighenergylines,whichmayimpactonsafetyrelatedequipmentorstru"tures(seeSection3.6).,10Additionalattentionhasbeen-giventoensurethatsafetyreliefvalvasandvalveheadersarenotcrediblemissiles.AllSRVhe@Sacsararestrained"iaaccordancewiththepipewhipcriteriadasccibelinSection3.6toensurethatinthaeventofa"iccumfarentialtypebreakofthe-healer,nomissilewoullresult.eThesafetycalifvalvsaraattachedtowelded,Schedule150sweepoletfittingsontheheaders.,Thedesignofthisattachmentin"lulesalldynamicloadsthatmaybeassociatedwiththeSRVdischarge.,This'attachmentisnotapostulatelRev.16,7/803.5-2 SSES-PSARbreak.locationinaccordancewith.thecriteriastatedin*Section3.6.2.Verificationofthiswill..beavailableuponcompletionofthestressreport.TheSRVheaderisdesignedandbuilttotheconservativerequirementsoftheASHESectionIII,Class1,CodeandassuchissubjecttotheASHESectionXIInservi"eInspectionrequirements..ThisinspectioniplustheRCPBleakdetection-capabilitywouldprovideearlyindicationofanypossiblefailureinthisarea.10ll6)16b)Therefore,itisconcludedthatthelikelihoodofmissilesfromhighenergypiping,whichmayimpactonsafety-relate'dequipment,isremote.,ValveBonnetslioValvesofANSI900psigratingandabove,constructedinaccordancewithSe=tionIIIoftheASIDEBoilerandPressureVesselCode,arepressuresea1.bonnettypevalves.Porpressuresealbonnetvalves,valvebonnetsarepreventedfrombecomingmissilesbytheretainingring,which.wouldhavetofailinshear,andbytheyoke,whi"hwouldcapturethebonnetorreducebonnetenergy..Thebonnetboltspreloadthepressuresealgasketsothevalvevillbesealedwhen-itis:notunderpressure.Shenpressurized,thevalveissealeRbyprocessfluidpressureandthebonnetboltsareundernoload.AllASIDEIIIClassI;9004bonnet-sea1.typevalveswereanalyzeRperASIDEB6PVCode,SeŽtionIII.Standardcalculationpressureusedintheseanalyses~givnbyPigureNB-35451-2forweld-endvalves.Usingthetypical.pressuresealvalveshowninPigures3.5-9and3.5-l0asanexample,thetotalthrustloadontheretainingringandvalvebodywascalculated.,TheresultsarelisteRinTable3.5-7.TheresultsshowboththeretainingringandvalvebodymeettheNB-3227requirementwhileusingacalŽulationpressurewhichismuchhigherthanthenormaloperatiagpressureofthevalve.10Themajorityofvalvesinsidecontainmenthavemassivevalveoperatorswhi"haresupporteRbythyoke..Porthesevalves,thevalveoperatorsactasanadditionallimitationtotheyokebecomingamissile.10Porayoke"lampt>'ail,onewouldhavetoassumethattheretainingringfailscompletelyandinstantaneouslysothatthebonnetcoulRstriketheyoke.,Theyokeisnormallyundernoloadandcompletefailureoftheyokeclampisnotconsidered"redible.16Becauseofthehighly"onservativedesignoftheretainingringofthesevalves,bonnetejectionishighlyimprobableandhencebonnetsarenotconsideredcrediblemissiles.Rev.16,7/803.5-:3 SSES-PSARHostvalvesofANSIrating6DOpsigandbelowarevalveswithboltedbonnets.Valvebonnetsarepreventedfrombecomingmissilesbylimitingstressesinthebonnet-to-bodyboltingmaterialbyrequirementssetforth.intheASHEBoilerandPressureVesselCoie,SectionIII;andbydesigningflangesinaccordancewithapplicablecoderequirements..Evenifboltfailureweretoo"curthelikelihooiofallboltsexperiencingsimultaneouscompleteseverancefailureisremote.Thewiiespreaiuseofvalveswithboltedbonnetsandthelowhistorical'incidenceofcompleteseverancefailureofbonnetsconfirmthatboltedvalvebonnetsneednotbeconsideredascrediblemissiles.ValveStems)0~a)Valvestemsarenot"oasidereipotentialmissilesifatleastone'featureinadditiontothestemthreadsisincludedintheirdesigntoprventejection.Valveswithbackseatsare'reventedfrombec>mingmissiles.bythisfeature.Inaddition,airormotoroperatedvalvestemswi11beeffectivelyrestrainedbythevalveoperators.TemperatureietectorsTemperatureorotherdetectorsinstalledonpipingorinwellsareevaluateiaspotentialmissilesifasinglecircumferentialvaliwouldcausetheirejection.,Thisishighlyimprobable,sin"eacompleteand.suddenfailureofacircumferentialveldisneededforadetectortobecome'amissile.Inadiition,becauseofthespatialseparationofredundantsafetyrelatedequipment,asmallmissilesuchasaietector,assumingthecircumferentialweldfailscompletely,isnotlikelytohitrduniantsafetyrelatedequipment..10e)NutsandBoltsNuts,bolts,nutandboltcombinations,andnutandstudcombinationshavelittlestoredenergyandthusareofnoconcernaspotentialmissiles.BlindFlanges10BoltedbliniflangasarenotŽonsidredcrediblemissilesbecauseoftheextremelyunlikelyoccurrenceofallboltsexperiencingsimultaneouscompleteseverencefailureasdiscusseiin{b)above..SafetyReliefValveaniHainSteamIsolationValveAccumulators.PressurizeiASIDEIIIvesselssuch,'asSRVandHSIVaccumulatorsarenotconsideredcrediblemissiles.Theseaccumu1atorsareoperated.atamaximumpressureandRev.16,7/803.5-4 SSES-FSARIttemperatureof150psiy,and150OF..Thesevesselshavelowstressesandoperateinthe"moderateenergy<rangeandthereforeanyfailuresvouldbeaslottypeandnotofconcernformissila;,generation.,103.5.1.2-InternallyGeneratedmissiles/InsideContaigmant}.iherearethreegeneralsourcesofpostulatedaissilesinsittethe.(i6primarycontainment:a)Rotatingcomponentfailuremissilesb)Pressurizedcomponentfailuremissiles.,Gravitationallygeneratedmissiles.3.5.1.2.1-RotatingComponantFailuremissilesZhamostsignificantpieces'ofrotatingequipmentintheprimarycontainmentarethere"irculationpumpsandmotors.GELicensingTopical'ReportNED0-10677,submittedto'heNRC,containedadiscussionofthepotentialoverspeedofarecirculationpumpduetoLOCAblovdovnflowpastthepumpimpellerandthepossibleresultsofsu"hoverspaad..Thatreportalsopresentsadecouplarcon=apttoprotctthepumpmotorundersuch.conditions.lnalettertotheNHCdatedNovember6,~1975,GEvrotethatananalyticalstudyhasshownthatadecouplingdeviceisnotneaded,andthatthNED3-10677reportshouldberescinded.ZhefollowingrsuitswareoutlinedintheGElettertotheNRC:a)Zfabreakveretooccurinthpumpdischargepipe,eitheraguillotineorlongitudinalbreak,thamaximumcalculatedrasul.tantpumpspeedwouldbe110percentofrated.Inthisanalysis,theflowchokingatthevolumediffuserinletareainthepumpcasingdeterminesthedifferentialfeedandvolumetricflowrateusedtopredi"tpumpspeciduringblovdovn.Longitudinalbreaks'ptoonepipacross-sectionalarea,vereconsidered.)10b)Foralongitudinalbreakinthepumpsuctionpipe,themaximuncalculatedpumpspeedinthereversedirectionwouldbe140percentofrated.,Thisspeeddoesnotresultinmechanicalmotordamage,Longitudinalbreaksuptoonepipacross-sectionalareawereconsidered.c)Foraguillotinesuction-pl'pebreakthemaximumcalculatedpumpspeedinthereversedirectionis710Rev.16,7/803.5-5 percentofrated,whichisadestructiveoverspeedofthemotor.Hovevr,theinitialtorque.forthiseventis40timestheratedmotortorqueandthisissufficienttodecouplethemotorfromthepumpbymechanicalfailureofthepumptomotorshaft.,Mechanicalfailureiscalculatedtooccurat5to10timestheratedmotortorquewithorwithoutadecouplerdevi"einthedrivetrain..Thusaninherentselfdecouplingwouldexistforthiscase.,3nNovember19,1976~theNRCwroteGEaletterstatingthatapplicantsmustfileaformalapplicationforamendmentoftheirconstructionpermitoroperatinglicensebeforetheywouldbereleasedfromtheircommitmenttoinstallthedecoupler.Theletteralsostatedthat"anysu"happlicationtodeletetheRecouplerfromaboiliagwaterreactordesignmustincludeathoroughsafetyevaluationsettingforththereasonsvhyare"irculationpumpdecouplerisnolongernecessary"GEhascompletelysu"hasafetyanalysisreportonagenericbasis,inaletterfromE.l.Hughes{GE)toR.t;.DeYoung(NRC),January18,1977,>>GERecirculationPumpPotentialOverspeed>>.Xtisconcludedintheaboveletterthatdestructivepumpoverspeedcanresultincertaintypesofmissiles.,Scarefulexaminationofshaftandcouplingfailuresshowsthatthefragm'entswillnotresultindamagetothecontainmentortovitalequipment.{1)LovEnergyMissiles(Kineticenergylessthan1,000ft-lbs):Lowenergylevelmissilesmaybecreatedatmotorspeedsof300%ofrated,throughfailureoftheendstructureoftherotor.,Thestructure"onsistsoftheretainingring,theendring,andthefans.Missilespotentiallygeneratedinthismannervillstriketheoverhangingendsofthestatorcoils,thestatorcoilbracing,supportstructures,andtvowallsofone-halfinchthickstealplate.,Duetotheabilityofthesestructurestoabsorbenergy,itisconcludedthatmissileswouldnotes"apethisstructure.,Itisatthispointfrictionalfarceswouldtendtobringtheoverspeedsequencetoastop.(2)MediumEnergyMissiles(Kineticenergylessthan-20,000ft-1bs):Inthepostu1ated'eventthatthebodyoftherotorveretoburst,mediumenergymissilescouldbecreated.,Thelikelihoodthatthesemissilesvouldescapethemotorisconsideredlassthanthelikelihoodofescapeforthelov-energymissilesdescribedabove,Ruetotheadditionalamount.ofmaterialconstrainingmissileescape,suchasthestatorcoil,field"oils,andstatorframedirectlyadjacenttotherotor.,Rev.16,7/803.5-6 'SSES-FSAR{3)TheMotorasaPotentialMissile:Sinceboltingiscapableofcarryinggreatertorqueloadsthanthepumpshaft,pumpbolt.failureisprecluded.Since'umpshaftfailuredecouplestherotorfor'heoverspeeddrivingblowdownforce,onlythosecases'withpeak.torqueslessthanthatrequiredtofailthe,pumpshaft{fivetimesrated)willhavethecapabilitytodrivethemotortooverspeed.Whenmissil'egenerationprobabilitiesareconsideredalongwithadiscussionoftheactualloadbearingcapabilitiesofthesystem,itisevidentthattheseconsiderationssupportthe,,conclusionthatitisunrealisticthatthemotorwouldbecomea'missile.Itisconcludedthattheotherrotatingcomponentsinsidethe"containmentsuchasfansandchillersdonothavesufficientenergytomovethe'assesoftheirrotatingpartsthroughthehousingsinwhichtheyarecontained.Inaddition,redundantsafetyrelatedcomponentsarelocatedindifferentareasofthecontainment,sothatarotatingcomponentfailuremissilewillnot*damagebothredundantcomponents.35.1.22PressurizedCo~monentFailurellissilesAdiscussionofthepotentialformissilegenerationfromthefailureofpressurizedcomponents,e.g.valvestems,valvebonnets,andtemperatureelementassemblies,ispresentedinSubsection3.5.1.1.2.Thatdiscussionisalsoapplicabletopressurizedcomponentsinsidecontainment."I35.1.2.3GravitationallyGeneratedMissiles'omponentsnecessaryfortheoperationandsafetyofthereactoraredesignedtoremain,'inplaceandfunctioningduringalldesignbasisconditions.Equipmentwhichisnotnecessaryforoperation,startuptesting,orsafetyisremovedfromthecontainmentorseismicallysupportedandsecuredinplacepriortooperationtoensure.thatitwillnotbecomeamissileduringplantoperationorduringasafeshutdownearthquake.Therefore,duringreactoroperationandfollowingaLOCAallequipmentinsidecontainmentissecured.Duringmaintenancewhensuchequipmentisreturnedtothecontainmentormadeoperationaladministrativeandproceduralmethodswillbeusedtoensurethatsignificantdamageisnotcausedtosafetyequipmentevenwhenthereactorisintheshutdowncondition..106Rev.16,7/803.5-6a SSES-PSAR3.5.1.3TurbineMissilesAnanalysisvasperformedtoevaluatetheprobabilityofdamagefrompostulatedturbinemissilestosafetyrelatedcomponentsatSusquehannaSES.Theprobabilityofunacceptabledamagetosafetyrelatedcomponentsduetoturbinemissileshasbeencalculatedas2.61E-10perunitperyearforthetwoturbinetrains.Basedonthislowprobability,theturbinemissilehazardisnotconsideredasadesignbasiseventforSusquehannaSES.Inthefollowing,thedatausedinthisanalysisalongwithsalientfeaturesoftheanalysisaredescribed.3.5~13.1Tughin~elacementandOrientationThesafetyrelatedstructuresarethoseinwhichasinglestrikebyapostulatedturbinemissilecouldresultinaloss,,ofthecapabilitytofunctioninamannernecessarytomeettherequirementsof10CPR100.AtSusquehannaSES,thesearethereactorbuildings,dieselgeneratorbuilding,thecontrolstructure,andtheESSMpumphouse.ThelocationsofthesebuildingswithreferencetotheturbineareshownonFigure3.5-5.Thefigurealsoshovsthe+25degreemissileejectionzonevithrespecttothelow-pressureturbine-vheelsforeachturbineunitwithinreachoftheplantstructure.3.5.1.3.2MissileIdentificationandCharacteristicsTheturbinegeneratorsatSusquehannaSESaremanufacturedbyGE.Eachunitconsistsofatandem-compoundsix-flow,nonreheat,1800rpmturbine,directlyconnectedtoasynchronousgenerator.Theturbinehas38in.laststagebuckets.Rev.10,6/7935-6b SSES-FSAHGEhasperformedastudy{Ref3.5-1)todeterminethecharacteristicsofthemissileswhichcanbeexpectedasaresultofaturbineburst.Themethodologyisdiscussedintheirmemoreportsonhypotheticalturbinemissiles(Ref.3.5-1,3.5-2and35-3).EachofthesevenstagesinatypicalLPturbinevereanalyzed.Significantsimilaritieswerefoundinthedimensions,shapes,veights-,andinitialenergiesofmissilesfromadjacentstages.ThesesimilaritiesjustifygroupingthestagestosimplifytheprobabilitycalculationsThreestagegroupsareconsidered.StageGroupIincludesthefirstthreestages.StageGroupIIconsistsofstagesfourthroughsix.ThelaststageisincludedinStageGroupIII.Itispostulatedthatfourtypesofmissilescanbeejectedbywheelsineachstagegroup.ThesemissiletypesareillustratedbyFigure3.5-1ThecharacteristicsofthemissilespostulatedforeachstagegrouparegiveninTable3.5-1.3.5.13.3ProbabilityAna~lsisTheprobabilityofturbinemissiledamageisexpressedas:P4=P1P2P3{Eq-3-5-1)where:P4=probabilityofturbinemissiledamage,peryearP1=probabilityofaturbinefailureresultingintheejectionofamissile,peryearP2=probabilitythatamissilevillstrikeabarrierthathousesacriticalplantcomponent,giventhat,amissilehasbeenejectedfromtheturbine,andP3probabilitythatamissilewillspallabarrier,thusdamagingacriticalplantcomponent,giventhatamissilehasbeenejectedfromthetubineandhasstruck,thebarrier.P1,P2,andP3areevaluatedusingamethodologythatconsidersturbinecharacteristics,turbinefailuremechanisms,plantlayout,andbarriertypes.Theanalysisconsidered18missileejectionpointrepresentingthetwoturbinetrains.ItwasassumedthatStageGroupIandStageGroupIImissilescanbeejectedfromthecentersofthesixhoodssoanejectionpointwasplacedateachofthoselocations.EachoftheseejectionpointsincludessixStageGroupIwheelsandsixStageGroupIIwheels.StageGroupIIImissilescanoriginateateachofthetwoendwheelsineachhood.Theremaining12ejectionpointsverelocatedaccordingly.35-7 SSES-FSARTheprocedureforcalculatingthetotalP2andP2xP3foreachtargetisdiscussedbelow.Theprobabilitiesforeachtargetwereobtainedfrom:6(PIQIpII)p@IIIpIII181'Iiiiii)iii=l(Eq.3.5-2)wherethesuperscriptsrefertotheStageGroupsandthesubscriptireferstoaparticularejectionpoint.IInP2xP3calculationsP,.isdefinedas:Pi=Max{(P2XP3)i,(P2XP3)i,(P2XP3)ij(P2XP3)i}(P2XP3).(Eq.3.5-3)wherethesuperscriptsa,b,c,anddrefertomissiletype.InP2calculationsPIisdefinedas:3.I0P=Max{(P2)~(P2),(P2)p=(p2)iii'P2XP3)i=P2XP3ip=(p2)ii'P2XP3)i=(P2XP3)iIIbiIIcI(P2)Ic.i'p2Xp3).=(P2XP3ip-(p2)if(P2XP3).=(P3iI=IdiP.andP.aresimilarlydefined.III11W-,andW.areweightingfactorsassociatedwitheachejectionpoint.Theyaretheprobabilitiesthataparticularwheelincludedinejectionpointifails,giventhattheturbinehasfailed.GEstatesthatthewheelsfailwithequalprobability(SeeReferences3.5-1and35-3).Sincethereisatotalof42wheelsperturbine,itfollowsthat:IIIWi=W,=6g42andwi1/42Thecontributionsfromeachturbinearecomputedinasimilarfashion.3.5-8 SSES-FSARPT=PT1+PT2,then(Eg.3.5-4)PT1=Z(W.P+IIii-16PT2=Z(WP+i=4NotethatifPI=Pthen:1PTl=Z(p+~)i=1IIIIIIIIIWP.)+ZW.P.andiii7iip)+ZWIIIpIII1813iII1(i=1,2,3)andPIII11+Z(72)=3XV-+6XVl1112722TheP4forthetargetisobtainedbymultiplyingitsP2xP3byP1.TheP2,P2xP3,andP4foreachoftheunitsonthesiteiscomputedbysummingtheprobabilitiesforthetargetsintheunit.AveragevaluesofP3fortheindividualtargetsandunitsarecalculatedbydividingP2xP3byP2.Theanalysisassumesthateachmissiledamagesatmostonetargetandignoresricochets.Thesecondassumptionisjustifiedhythegeometryofthetargetswhichwereconservativelydefinedtobeentirebuildings.Thefirstassumptionavoidsdoublecountingtheeffectsofthemissileunderconsideration.ThecalculationofP2andP2xP3isdiscussedbelowindetailasisthevalueofP1usedintheanalysis.3.5.1.34NissileGenerationProbabilityQP1},Ingeneral,twospecificoverspeedconditionsarepostulatedforwhichthemissilegenerationprobabilityvalues(P1)andthemissilecharacteristic"areevaluated:a)Designoverspeed(lowspeedhurst):Thisis120percentofratedspeedoftheturbineandisbasedonthepreceptthat,shouldtheturbinespeedgoverningsystembeincapacitatedsothattheturbineistrippedbytheoverspeedtripmechanism,theattainedspeedwillnotexceed120percentofratedspeed,Discfailurewouldoccuratthisspeedasaresultofundetectedmaterialdeficienciesleadingtobrittlefracture.b}Destructiveoverspeed(highspeedburst):Thisis180percentofratedspeedandist.helowestcalculatedspeedatwhichanylow-pressurerotordiscwillburstbasedontheaveragetangentialstressheingequaltothemaximumultimatetensilestrengthofthediscmaterial,assumingnoflawsorcracksinthedisc.3.5-9 SSES-FSAHAteitheroverspeedcondition,itispostulatepthattheruptureofonediscwilldosufficientdamagetotheunitsothatfurtheroverspeedingandadditionalmissilegenerationwillnotoccur.GEhasestablishedthattheprobabilityofmissilegenerationatthedesignoverspeedconditionsisstatisticallyinsignificant.TheprobabilityofdiscfailureleadingtotheejectionofamissileatthedestructiveoverspeediscalculatedbyGEas1.5E-7intheestimated30-yearlifeoftheturbine.Thiscorrespondstoayearlyprobabilityofoccurrenceofdestructiveoverspeedturbinemissilesof5.0E-9.Forfurtherdetailsofthisanalysisforestimatingthemissilegenerationprobabilities,referenceismadetoGE'smemoreports.SeeRef3.5-3.Turbineoverspeedprotectionisalsodiscussedinsubsection10.2.26.3.513.5CalculationofStrikeProbabilityQP2$Figure3.5-2illustratesaCartesiancoordinatesystemusedtospecifythedirectionofmissileejectionfromtheturbine.Thexaxiscorrespondstotheturbineshaftandtheyaxisisnormaltotheshaftinthehorizontalplane.Thedirectionofmissileejectionisspecifiedbytwoangles:subtendstheyaxisandtheprojectionoftheejectionvectoronthey-zplane,Qistheanglefromthey-zplanetotheejectionvector.Twoadditionalanglesarederivedfrom$and4:4'stheverticalejectionanglemeasuredfromthex-yplanetotheejectionvector;4'sthehorizontalanglesubtendedbytheyaxisandtheprojectionoftheejectionvectoronthex-yplane.Theanglesarerelatedbythefollowingformulae:sin-~(sin4cos0)tan-~tanfcos4(Eq-3.5-5)(Eq.35-6)Iftheeffectofairresistanceisdiscounted,themissilewillfollowaparabolictrajectorywhichlieswithintheverticalplanedefinedbytheformula:x/y=tan4'nequationforthetrajectorymaybederivedfromelementaryphysics:z=rtan'-ar~2(Vcosg')~(Eq.3.5-7)Intheaboveequation,risthehorizontaldistancefromthepointofmissileejection;Vistheejectionvelocity;f'stheverticalejectionangledefinedinEquation3.5-5;andgisthegravitationalconstant.3.5-10 SSES-CESARPromEquations3.5-5,3.5-6,and3.5-7,itcanbeseenthatamissiletrajectoryisdeterminedbythetwoangularvariables4andQ,whichdetermine)~,andbytheejectionvelocityV.TheprincipleofthecalculationofthestrikeprobabilityP2istodetermine,outoftherangeofpossiblevalues,therangeofy,andVwhichdefinemissiletrajectoriesintersectingthe,target.Functionsmustbedefined,P($),P(Q),andP(V),whichdeterminetheprobabilityofmissileejectionovertherangeofeachofthethreevariables.P2isthentheproductoftheprobabilitydistributionsintegratedovertherangecorrespondingtomissilestriketrajectories:$2$2($)V2($,tjl)41Jtt,l(~)fvo(~0),(~)P(0),(.),~ded{Eq.3.5-8)23Theejectionprobabilitydistributionfortheangle4isassumedtobeuniformoverthe360oarcabouttheturbineaxis:P(Q)d$=d$(Eq.3.5-9)Theprobabilitydistributionfortheangle0isassumedtobeuniformwithinsomerange/mintogmaxspecifiedbytheturbinemanufacturer:(Q)d4(Eq35-10)P(Q)dQ=0;Q<~inorQ>/maxRev.23,6/813~511 SSES-FSARTheejectionprobabilitydistributionP(V)forthespecifiedrangeofpossibleejectionvelocitiesisuniformwithV:P(V)QV=QV;Vmin<V<VmaxVmax-Vmin(Eq3.5-11)P(V)dV=0;V<VminorV>Vmax23Thisanalysisconservativelyneglectstheprotectionagainstlowtrajectorymissilesbythemoistureseparatoranditsradiationshields.Thiseffectwouldbetreatedbygeneratinganon-uniformvelocitydistributionbasedonequations3.5-19,3.5-20,3.5-21,3.5-22,3.5-23and3.5-24andthefullrangeofprojectedmissilerimareasdescribedbyequations3.5-28,3.5-29or3.5-30.ThemaximummissilevelocitywouldcorrespondtotheresidualvelocitycalculatedbasedonVmaxandtheminimumprojectedrimarea.TheminimumvelocitywouldcorrespondtotheresidualvelocitybasedonVminandthemaximumprojectedrimarea.Sinceequation3.5-8isnotreadilyintegrableover$andQ,anumericalintegrationisnecessarytocompletetheevaluationofP2Anappropriaterange,41to42,isselectedforwhichatargetstrikeispossible,typically,00(4(900.TherangeisdividedintoLdiscreteejectionangles,4i,eachrepresentinganangularincrementofwidthA4Foreachvalueof41,theangularinterval(l(41)toQ2(41)correspondingtotargetstriketrajectoriesmustbedetermined.TheprojectionofQ1(g1)andQ2(Ql)onthex-,yplanedefinestheangles41'ndQ2~whichsubtendthetargetatthemissileoriginasillustratedonFigure3.5-3.Ql~and,Q2~maybecalculatedfromsimplegeometry;$1($1)andQ2($1)areobtainedbyinver'tingFormula(Eq.3.5-6).<1(<.)=tan(tanQi>cos>.)(f~)=tan(tanif)cosf.)(Eq.3.5-12)Rev.23,6/8135-12 SSES-PSARIf41>0max.or:42<%min.thetargetcannotbestruck.Thisangularrangein4isdividedintoJdiscreteejectionanglesQij,eachrepresentinganangularincrementofwidth~%iThenumericalintergrationthustreatsJvaluesof4foreachvalueof$oratotalofIxJmissileejectiondirectionseachrepresentingasolidangleofareaPoreachdirectionofmissileejectionspecifiedby$iandQijEq.3.5-7fortheparabolictrajectoryisinvertedtosolvefortherangeofejectionvelocitieswhichcorrespondtotrajectoriesintersectingthetarget.Theverticalplanecontainingthetrajectoryintersectsthetargetataminimumdistancerlandamaximumdistancer2fromtheturbine.Equation3.5-7isinvertedtosolveforU2,themaximumejectionvelocitycorrespondingtoatargetstrike,byinsertingr2forr,andZr,thetargetroofelevationrelativetotheturbine,forZ.IfV2>Vmax.,V2issetequaltoVmax.Theminimumvelocitycorrespondingtotargetstrike,Vo,canbedeterminedbyinsertinginEquation3.5-7rlforrandthegroundelevationwithrespecttotheturbineforZ.IfVo)Vmin,VoissetequaltoVmin.IfVo>Vmaxnostrikesarepossible.ThusamissileejectedatvelocityV2willintersectthefaredgeofthetargetroof.AmissileejectedatvelocityVovill-'ntersecttheloweredgeofthetargetwallnearesttheturbine.MissilesejectedatvelocitiesgreaterthanV2willovershootthetarget;thoseejectedatvelocitieslessthanVowillfallshort.23Todistinguishbetweenstrikesonthetargetroofandstrikesonthewall,anadditionalejectionvelocityisdetermined.Vlcorrespondstoatrajectoryintersectingtheupperedge.ofthetargetwall.ItisdeterminedbyinsertingrlforrandZrforZinEquation3.5-7.IfVl>Vmax,VlissetequaltoVmax.TheejectionvelocityrangeVotoVlthencorrespondstowallstrikes,therangeVltoV2toroofstrikes.The'trajectoriescorrespondingtothesethreeejectionvelocitiesareillustratedonFigure3.5-4.Portheejectionanglesgandgij,anincrementinthestrikeprobability,P2ij,iscalculatedfortheformula:2m/max-/minV2'VOVmax-Vmin(Eq.3.5-13)Rev.23,6/81.3.5-13 ~SSES-FSAHTheincrementsaresummedtoobtaintliestrikeprobability:{Eq.3.5-14)JP2=EEP2i)i=1)=135.1.3.6CalculationoftheDam~acProbabilitg+~P3Amissilestrikingaconcretewallwithsufficientimpacttocausespalling,whichistheejectionofconcretefragmentsfromtheinnerwallface,mayconstituteahazard,evenifthewallisnotpenetrated.Thus,amissileimpactthatcausesspallingfromthewallscfatargetstructureisconsideredthethresholdoftargetdamage.Thisanalysisusedtheformulationpresentedbelowtopredicttheminimumvelocityrequiredtoinitiatespallingcnabarrier.Thedatafromlowvelocitymissileimpacttest(Ref.Eq.3.5-12,3.5-13)haveenableddevelopmentofempiricalrelationshipsdefiningtheconcreteelementthicknessforthresholdofspallingbylowvelocitysolidsteelndssiles-Forsolidsteelmissiles:Tss=15.5t~Vs0.2fc(Eq.3.5-15)whereTss=thicknessforthresholdofspallingforsclidsteelmissiles(in.)M=missileweight'lbs.)D=missilediameter(in.)f'c=concretestrength(psi)Vs=missilestrikingvelocity{fps)Equation(3.5-15)definesthethresholdofspallingforlowvelocitymissiles.TheCorpsofEngineers'quation(Ref.3.5-14)0Rev.23,6/813-5-14 SSZS-FSARisselectedtodefinethe,thresholdofspallingforhighvelocitynondeformablemissiles.Thiseguationisrewritten'inthefollowingform:384flcD1.785',1000I+2.80D(Eg3.5-16)whereTcs=thicknessforthresholdofconcretespallingForhighvelocitymissiles,thisequationisconsideredmorereliablethanotheravailableempiricalrelationshipssinceitisbasedonthemostextensiveaccumulationofexperimentaldatafromtestsinvolvinghighvelocitynondeformablemissileswithalargevariationofmissilesizeandweight.Also,acomparisonofeguations{3.5-15and3.5-16)revealsaconvergenceinpredictedthicknessesatintermediatevelocities.1.585Vt4250W(Zq.3.5-17)Thethicknessversusvelocitycurvesdefinedbytheseequationsforaparticularmissilemayormaynotintersect,dependinguponmissileweightanddiameter.However,thedifferenceinpredictedthicknessissmallatavelocityVtwherethetwocurvesbecomeparallel.Forsolidsteelmissiles,thevalueofVtwouldbe:23whereVt=transitionvelocity(fps)ThevelocityVtdefinesthetransitionvelocitybetweeneguations3.5-15and3.S-16.ForstrikingvelocitylessthanVt,thresholdofspallingisdefinedbyequation3.5-1S'.AtstrikingvelocitiesgreaterthanVt,thevalueofTswouldbebetweenTcsandTssandconvergetowardTcsasVsapproaches2Vt.Rev.23,6/Sl3.5-15 SSES-FSARThevalueofTinthisvelocityrangewouldthereforebecloselyrepresentedby:(Eq35-19)IT=Vcs-(Test-Tsst)SVtVs.VswhereVt=transitionvelocityfromequation3.5-17Test=TcsatvelocityVtfromequation3.5-16Tsst=TssatvelocityVtfromequation3.5-15Forstrikingvelocitiesgreaterthan2Vt,thet~esbol<<fseal>>>gisdeterminedfromequation3.5-'16.Althoughthepresentlyavailablelowvelocitytestdatadonotallowindependentdevelopmentofperforationformulaeinthelowvelocityrange,animprovedestimateofthethicknessforthresholdofperforationcanbeobtainedbycorrelationoftestdatawithlowvelocityandhighvelocitye'quationsforperforationandspalling.ItisnotedthatthethicknessforperforationforlowvelocitymissilesshouldconvergetowardthatpredictedhytheCorpsofEngineersequation(3.5-19)forperforationasthemissilevelocityincreasesandapproachesthelowerlimitsofapplicabilityoftheCorpsofEngineers'quation.Thisequationcanberewritteninthefollowingform:350WD1.785rvs+1.94D1000(Eq.3.5-19)whereTcp=thicknessforthresholdofperforationbyCorpsofEngineers'quation(in.)TherelationshipbetweenthicknesstospallandthicknesstoperforateforlovervelocitymissilescanbeobtainedfromRev.23,6/813.5-16 SSES-PSARequations(3.5-16)and(3.5-19)atthetransiticnvelocityVt(Eq.3.5-17).TheestimatedthicknessforthresholdofperforationTpforlowvelocitysolidsteelmissileswouldthereforebe:TestVs<Vt(Eq.3.5-20)whereTp=thicknessforthresholdofperforationTss=thicknessforthresholdofspallingfromequation3.5-15NTcpt=thicknessobtainedfromequation3.5-19withVsequaltoVtTest=thicknessobtained'fromequation3.5-16withVseuqaltoVtVs=strikingvelocityVt=transitionvelocityforsolidsteelmissilesfromequation3.5-17AsthestrikingvelocityincreasesaboveVt,thethicknessforthresholdofperforationwouldbebetweenthatgivenbyequation(3.5-20)andTcpobtainedfromequation(3.5-19),andwouldconvergetowardTcpasVsapproaches2Vt.Therefore,Tpwouldbecloselyapproximatedby:23TestVsVt2Vs-Vt(Eq.3.5-21)whereTsst=thevalueofTssfromequation(3.5-15)atVsequaltotransitionvelocityVt(equation3.5-17)NhenVsexceeds2Vt,Tpisobtainedfromequation(3.5-19).Accountingformultipleelementconcretebarriersinvolvesdeterminationoftheresidualvelocity,Vr,afterperforatinganelementofthebarrierandapplyingthisvelocityasthestrikingvelocity,Vs,forimpactcalculationsonthenextbarrierintheseries.Rev.23,6/813-5-16a SSES-FSARTestdataindicatethatthevelocityofspallparticles,whenthestrikingvelocityisequaltoorgreaterthanthatforthresholdofperforationVp,seeAppendixE,is:WVsVrW+W(D+'~T2(Eq3-5-22)whereVr=residualorspallvelocity(fps)8=weightofmissile(pounds)Vs=strikingvelocity(fps)=density.ofconcrete(lb./ft.~)D=diameterofmissile(ft.)T=thicknessofconcreteelement(ft.)23Also,whenVsexceedsVpbyabout20%,theresidualvelocityofthemissilecanbecloselyapproximatedbyequation(3.5-22).WhenVsisequaltoVp,thespallparticlevelocityisrepresentedbyequation(3.5-22)buttheresidualvelocityofthemissileisessentiallyzero.ShenthestrikingvelocityisbetweenVpandthatforthresholdofspalling,spallvelocitiescanbeestimatedbyalinearinterpolationbetweenavalueofVequalto10fpswhenVsisthatforthresholdofspallingtoVrdeterminedfromequation(3.5-22)withVsequaltoVp.Anestimateofthesteelelementthicknessforthresholdofperforationfornondeformablemissilesisprovidedbyequation.(3.5-23)(whichisamoreconvenientformoftheBallisticResearchLaboratory(BRL)equation(Ref.3.5-15)forperforationofsteelplateswithmaterialconstanttakenasunity):~~2/3672D'm's22(Eq.3.5-23)where:Rev.23,6/8135-16b SSES-PSARTp=steelplatethicknessforthresholdofperforation(in.)Zk=missilekineticenergy(ft./lbs.)Nm=massofthemissile{lb.-sec./ft.)Vs=missilevelocity(fps)D=.missilediameter{ft.)Itmaybenecessarytoaccountforseveralsteelelements.Analysisof"missilebarrierscomposedofseveralelements'nvolvesdeterminingtheresidualvelocity,Vr,afterperforationofoneelementandusingthisvalueforthestrikingvelocity,Vs,onthenextelement.ThefollowingformulaisusedtodeterminetheresidualvelocityVr:Vr=ps-Vp)Vr'=0for(Vp<Vs)for{Vp>Vs){Eq35-24)where:Vr=residualvelocityofmissileafterperforationofanelementofthicknesst{fps)Vs=strikingvelocityofthemissilenormaltotargetsurface(fps)23Vp=velocityrequiredtojustperforateanelement(fps)Inordertoapplytheequationsdevelopedabove,itisnecessarytouseanequivalentdiameter.Thisdiameter.D,iscalculatedonthebasesoftheprojectedrimareaoftheturbinemisilefrom:{Eq.3.5-25)whereAistheprojectedareaofthemissile.Theprojectedrimareaofamissiledependsonthemissileorientationaboutitsaxis.ForfragrantgroupAandfragmentgroupBlet:Al=R3T2+R2(Tl-T2)A2={R3-R2)T2+(R2-R"1)Tl(Eq.3.5-26)(Eq-3.5-27)Rev.23,6/8135-16c SSES-PSARHhereRl,82,R3,TlandT2areillustratedbyfigure3.5-1.ValuesoftheseparametersforeachfragmentgrouparegiveninTable3.5-1.TheprojectedareaoffragmentgroupAmissilesisthengivenby:A(e)=Al-(Al-A2)cos(~/6+e)Al(1+sin(9-m/6))&3A1sin90<9<n/6Eq.3.5-28m/6<e<m/3m/3<e<m/2=eswhere9describestheorientationofthemissile.9=0-correspondstotheorientationwithminimumprojectedrimarea,andOscorrespondstotheorientationwithmaximumprojectedarea.Similarly,forfragmentgroupBmissile:23A(e)Al-(Al-A2)cos(vr/6+9)Alsin9+A2cos(m/6+9)Alsin9{Eg.3.5-29)O<e<m/6m/6<e<m/3m/3<9<m/2=OsForfragmentgroupCandDmissile:{Eq.3.5-30)A(9)=A3(cos9+sine)o<e<m/4=OswhereA3=XT2andXandT2areillustratedbyPigure3.5-1.ValuesofXandT2aregiveninTable3.5-1foreachstagegroup.Eguations3.5-15,3.5-16and3.5-18areusedtogeneraterangesofdamageinitiationvelocitiesVw0toVwlandVr0toVrl,correspondingtominimum{9=0)andmaximum(9=Os')projectedareasofthemissile,forthewallsandroofofthetarget,respectively.Iftherearebarriersadjacenttothetargetwallorroof,equations3.5-19,3.5-20,35-21and3.5-22or3.5-23and3.5-24areusedtoincrementthesevelocitiessothattheycorrespondtotheminimumnormalimpactvelocitieswhichwillresultinperforationofthebarriersystemwithsufficientresidualvelocitytospallthetargetwallorroof.PornormalimpactvelocitiesbetweenVw0andVwl,therewillbesomeprojectedareasforwhichwalldamageisnotpossible;TheRev.23,6/8116d SSES-FSARminimumnormalimpactvelocityiscalculatedfortvoadditionalvaluesofO.TheresultsofthesecalculationsareusedtogenerateathirdorderpolynomialwhichgivesthemaximumvalueofOforwhichvalidamageispossiblefornormalimpactvelocityV{Eq3.5-31)Ow(V)=AwV-BwV+CwV-Dw(Vwo<V<Vwl)32Theprobabilitythatwalldamagevilloccurissimply,-'w(V)/Os{Eq35-32)whereitisassumedthatthedistributionofmissileorientationisuniform.Asimilarexpressionisdevelopedfortheroof.~{Eq3.5-33)Or(V)=ArV-BrV-+CrV-Dr3(Vro<V<Vrl)Forstrikesonthetargetwall,thecalculationofthenormalcomponentofimpactvelocityissimplifiedsince,forparabolictrajectories,thehorizontalvelocitycomponentisconstant,Vcos4'.Definingavastheanglebetweenthewallnormalandtheverticalplanecontainingthetrajectory,thenormalimpactvelocityccmponentisgivenby:{EQ~35-.34)Vnv=Vcos4'osaw23Therangeofthenormalcomponentsofthemissilevelocitieswhichresultinwallstrikesis:{Eq.3.5-35)Vno=Vocos$'osaw<=Vnv<Vlcos$'osaw=VnlForeachvalueof$iandQij,anincrementinthedamageprobability,P3ijw,cannowbecalculated.Let)'ij=sin.~(sin$icosQij)andCij=ccs$ij'cosawIfVnl<Vwo,P3inw=0IfVno<Vwo<Vnl<Vwl~VnlOwVnP3ijw=J'woOsdVn(Vmax-Vmin)Cij{Eq.3.5-36)Rev.23,6/8116e SSES-FSARXfVno<Vwo<Vwl<Vnl,owlOwVn'VnP3ijw=J'w0Os(Vmax-Vmin)CijVlVwl+Cij{Eq.3.5-37)(Vmax-Vmin)IfVwo<Vno<Vnl<Vxl~VnoOwVndVnP3ijw=OsVn1(Vmax-Vmin)Cij{Eq.3.5-38){Eq.3.5-39)IfVwo<Vno<Vwl<VnlowlOw(Vn)dVnVwlp3ijw=I+Vl-CiVrioOs,(Vmax-Vmin)Cij(Vmax-Vmin)23V1-VoIfVno>Vwo,P3ijw=(Vmax-Vmin)(Eq.3.5-40)Tosimplifythecalculationsfortheroof,itwasasumedthattheroofisatthesameelevationastheturbine.Thisisconservativeforslabswhichareabovetheturbine.Underthisassumption,therangeofverticalvelocitieswithwhichthemissilestrikestheroofis:Vn2=Vlsin4'ij<Vnr<V2sin4~ij=Vn3(EG.35-41)ThecomputationoftheincrementsP3ijrduetoroofstrikesissimilartothecalculationoftheincrementsP3ijw.Toobtain.Rev'.23,6/81 SSES-PSALMP3ijrreplaceVnowithVn2VnlwithVn3,gwwither,VwowithVro,VwlwithVrl,andCijwithsin$ijintheexpressionsforP3ijw.Theprobabilitythatthetargetisdamaged,givenaturbinefailure,is(Eg35-42)P2xP3=EE'2~~(P3ijw+P3ijr)i=1j=1AnaverageP3forthetargetiscalculatedbysetting:(Eq.3-5-43)23p3P2xP3P23.5.13.7ProbabilityofTurbineMissileDamageQP4,LTable3.5-8summarizesthepertinentdataforthetargetsconsidered.Table3.5-9locatestheejectionpcintsusedtomodeltheturbine.Nobarriersforadditiontothewallandslabsofthetargetstructureswereaccountedfor.TheresultsofthisprobabilityanalysisareshowninTables3.5-2and3.5-3.Table3.5-2presentsthevaluesofP2,P3,P2xP3,andP4computedforUnit1targetsduetoeachcfthetwoturbinetrains.Thetargets,denotedbylettersymbols,aremarkedonFigure3.5-5.Table3.5-3presentsthetotalvaluesofP2P3,P2xP3,andP4foreachoftheUnit1targetsandthetotalsfortheentireunit.BecauseofthesymmetricalarrangementoftheSSES,theresultsforUnit2areidentical.Table3.5-3showsthatthetotalprobabilityofturbinemissiledamageforthetwo'turbinetrainsis2.61E-10perunitperyear.Rev.23,6/813.5-16g SSES-FSARTHISPAGEHASBEENINTENTIONALLYLEFTBLANKRev.23,6/813.5-16h SSES-FSAR3.5.1.4MissilesGeneratedb~NaturalPhenomenaOnlytornadogeneratedmissilesareconsidered.Table3.5-4liststhemissilesconsideredinthedesign.ThestructuresdesignedfortornadogeneratedmissilesarelistedinTable33-235.1.5SiteProximit~MissilesNooffsitedesignbasishazardsvereidentifiedinSection2.2.3.Fragmentsormissileswhichmightreachtheplantwalls,eventhoughnotassociatedwithadesignbasisevent,wouldincluderiflebulletsfiredbyvandals,.fragmentsfromatruckexplosion,andgasbottlespropelledbypressurizedgases.Thevelocitydecayoffragmentsduetoairfrictionisgivenapproximatelyby:V/Vpexp.004R/Wfwhere,V,VarethepresentandinitialvelocitiesRistherangeinfeetMfisthefragmentveightinounces(Ref.35-6).Forarangeof3,000feet(outbeyondthefencelineortotJ.S.Highvayll),theratioV/Voisequalto6xl0-~foraoneouncefragment,13x10-~forasixouncefragment.MaximumtheoreticalfragmentvelocitiesfromaTNSdetonationarel0,000to12,000fps(feetpersecond),witha6,000-8,000fpsrepresentingtypicalmaximumvelocitiesachievedinexplosions.Strikingvelocityof10-15fpsmightbereachedatplantrange.Nodamagetotheconcretewallsoftheplantwouldresultfromsuchafragment.Highvelocityriflescanachievemuzzlevelocitiesover4,000fps;ordinaryriflemuzzlevelocityisabout2,500fps.Thevelocitydecaylawgivenabovedoesnotapplybecauseoftheaerodynamicpropertiesofthe.pinningbullet.Thevelocitydecaylawgivenabovdoesnotapplybecauseoftheaerodynamicpropertiesoftehspinningbullet.Hovever,decaytoatleast1/3muzzlevelocitywouldoccurovera3,000footrange.Thepenetrationofatwoounceprojectilefromahigh-velocityweaponatpointblankrangevouldbeabout,fiveinchesinto3517 SSES-FSARconcreteof4,000psistrengthconcrete.Riflebulletscouldpenetratethemetalsidingoftheroofcap,butwouldnothaveatrajectoryforenergeticallyenteringthespentfuelpooliffiredfromthefenceline.Gasbottles,whichweighl00lbs.ormoremayachievevelocitiesofupto900fpsiftheyareallowedtofallover,breakingoffthevalvefittingtocreatearocket.Theinitialsurgecouldcreateamissilesomewhatmoreseverethantornadomissile"D"(285lbs.,6"diameterbylS'ongsteelpipeat230fps,NRCStandardReviewPlan,Sect.35.1.4).Itcouldspalloutfiveinchesofconcreteatpointblankrange.Noneofthesehypotheticalsituationswouldcauseenergeticspallingorpenetrationofthecriticalconcretewalls,whicharedesignedat36-inchthicknessof4,000psiorbetterreinforcedconcrete.Railcarshavealsobeenconsideredasahypotheticalmissilehazardtotheplant.Arailspurintthereactorbuildingwillservicetheplantfromtherailtrackagealongthewest"iverbank.Useofthisformermainlinetrackageisdiscontinued,exceptforplantservice.Twofactorsareexpectedtoeliminatethehazardpotentialfromrumanaryoruncontrolledrailcarsonthespur:l)thetopographyisupslopefromtheriverbank;2)twoderailersareinuse,andathirdwillbeinstalledwhentheplantisinoperation.35.1.6AircraftHazards3.5.1.61AirportO~nrationnTheaircraftoperationsidentifiedinSubsection2.2.25whichcouldconstituteapotentialhazardatthe,siteweretake-off/landingmovementsattheBerwickAirportandcommercialflightsintheFederalairwaysTheBerwickAirportisfourmileswest-southwestofthesite.Ithasasinglegrassstripof2,300feet,basicallyeast-vest,withitsaxismakinganangleof16~withtheplant.Itusageislimitedtogeneralaviationlightaircraft.Seetable3.5-5forabreakdownofaircraftmovementsatBerwickAirportbytypeofaircraftA3,600lbsingleengineaircraftwaschosenforanlyzingaircraftimpacts.Thisrepresentsaconservativechoicesince96%ofallaircraftmovementsatBerwickAirportinvolveaircraftoflessthan2,500lbs.Asurveyoftheairporttrafficisbeingconducted,includingthatfromaflightschoolinoperationattheairport.Annualmovementsareestimatedatabout13,000;4,000inprivateusage35-18 SSES-FSARand9,000bythethreeaircraftoftheflightschool.Trafficisquitevariable,peakingat,over50dailyonweekends,lighterduringtheweek.Operationsoftwinengineaircraftareestimatedat28annually,fromcurrentobservations.Alltrafficpatternsareusedattheairport,buttraffictendstoprefertheriverasaguide,turninginlandfromtheriverandintotheapproachabouttwomilesfromtheeastendoftherunway.Thustrafficinthesoutheastquadrantoftheairportisgreaterthanthenortheastquadrant,inwhichthesitelies.TheridgelinerunningnorthofBerwickandthesitecontributestothistrafficpreference.Mindpatternsfortheairportare47percentfromthewest,42percentformtheeast,andllpercentnull(crosswindorcalm).The13,000movementsestimatedfortheannualtrafficcanbeallocated45-55percent,easttowest.Thuseastboundtakeoffs(towardthesite)areestimatedat2925annually,andwestboundlandingswouldbeestimatedat3575annually.Thecomplementofthistraffic,3575westboundtakeoffsand2925eastboundlandings,passesoverBerwick,awayfromthesite.Eastboundtakeoffsoftwinengineaircraftareetimatedatsixannually,witheight,westboundlandings.eFiveFederalVortacairwaysnearthesitewereidentifiedinSubsection2.2.2.5,Figure2.2-2.Ofthe-e,V-106,passing3.5milesfromthesite,hastrafficofeightsflightsdaily,or3,000annualmovements.V-232,ninemilesdistant,hasatrafficpotentialofaboutl8,000movementsannually,butactualtrafficisabout9,000movements(Newark-Cleveland,Cleveland-NewYorkandChicago-NewYorkflights).ThereisnoscheduledcommercialtrafficonV-499orV-164andonlytwoflightsperdayonV-188/226.TheselatterflightsarenegligibleincomparisonwithV-232becauseofthegreaterdistance.3.51.6.2AircraftCrashProbabilityAirportOperationsAmodeloftheprobabilityofanairplanecrashbeyondtheendoftherunwaywasdevelopedbyEisenhut(1973)andhasbeenadoptedasacriterionoftheNRCStandardReviewPlanforSection3.5.1.6(Ref.3.5-7).Thismodelspecifiesthatthecrashprobabilityinanannularsectorbetweenfourandfivemilesfromtheendofarunwayand300oneachsideoftherunwaycenterlineis1.2x10-8persquaremileforeitherlandingortakeoffby"anaircraftinU.S.generalaviation.35-19 SSES-PSARCommercialAircraftAmodelfortheprobabilitythatanaircraftcrashwillresultata.distancexnormaltoitsflightpathwasdevelopedbySolomon(Ref.3.5-8and35-9)usinganegativeexponentialdistribution.Solomon'smodelrequiresestimationofthedeviation,whichwasdeterminedbya200anglefromtheflightpath.AdeviationisestimatedherebyreferencingSolomon'sangleat14,000feet,andaddingonemilefordeviationintheairway.Thisgivestheprobability:f(x)=1exp(x/1.97)3.94wherexisinmiles.Theprobabilitythatanenroutecrashwilloccurisabout0.45x10-~perflightpathmile,baseduponU.S.commercialaviationperformanceintheperiod1970-75(Ref.3.5-10)Thus,thecrashprobabilityatthesiteperpassageineachoftheFederalairwayscanbeestimatedbytheproductofthesetwoprobabilities.V-499V-106V-164V-232V-188/2262.5x10->>pe"squaremile(3miles)19x10a<<persquaremile(3.5miles)0.38x10-ii0.12x10-iipersquaremile(9miles)0.02x10-iipersquaremile(13miles)3.516.3CriticalTargetAreaforthePlant.Theaircraftcrashprobabilityestimatesthechancethatagivenaircraftmaneuver(passage,takeoff,orlanding)willresultinstrikingthegroundwithinaspecificunitarea.withoutregardtotheobstructionofsurroundingobjects.Iftheassumedflightrayoftheaircraftincrashingshouldpassthroughanobstructingobject,thentheprobabilityofcrashintothatobstructingobjectwillbethesameasfortheassociatedunitgroundarea.ThetypesoftargetareaswhichwillapplytotheSusquehannaplant,dependingonthetypeofcrasheventconsidered,include:(i)therooforplanarea'augmentedbythewingspanof.thestrikingaircraft),whichmaybeprojectedtoanequalgroundarearegardlessoftheangleofflightpathslope;(ii)thewallshadowarea,BhcotA,whichisthegroundareaprojectedbyawallofverticaldimensionh,width83.5-20 SSES-FSARnormaltotheflightpath(andaugmentedbythewingspanofthestrikingaircraft),withanaircraftglidepathmakinganangleAwiththeground.SincetheBerwickAirportliesatanangleof160fromthenorth-southfaceoftheplant,thewidthnormaltotheassumedglidepathwouldbeBcost16ofortheeast-west,wallsandBsin160forthenorth-southfacingwalls;and(iii)theskidarea,associatedwithagroundstrikeaheadofawall,followedbyslidingintothewall.Thecontrollingparametersforthetargetareaofthismodearethewidthofthewallnormaltotheskidpath(augmentedbythewingspanofthestrikingaircraft),andthedistancethewreckagewillslide.Thestructuresidentifiedascriticaltonuclearsafetyarethereactor-building,thedieselgeneratorbuilding,thecontrolstructureadjacenttothereactorbuilding,andtheESSMpumphouse.However,thedesignofthereinforcedportionofthesestructuresisadequatetoprecludepenetratonorinternalspallingofconcretefragmentsresultingfromthedesignimpactofanyofthesingle-enginecraftobservedattheBerwickAirport.Specifically,aBeechcraftA36impactinghorizontallyat100mphwasusedasthemodeltodeterminethevulnerabilityofthecriticalstructures.Themodeledimpactconsistsofa100mphcrashnormaltotheconcretewall.Thisglideangleisingeneraluseofaircrafttargetcross-"ectionanalyses(Ref.3.5-11).Theexceptiontotheinvolnerabilityofthecriticalstructurestosingle-engineaircraftimpactsistheopeninginthereactorbuildingroofforthespentfuelpools.Aplanecouldpenetratethedeckingmaterialandcauseentryofenergeticwreckagefragmentsintothepool.Althoughthepresenceoffragmentsordebrisinthepoolwouldnotbeconsideredaproblem,theirenergeticentryintothepoolhasapotentialofcausingtheruptureofthecladdingof.someofthefuelelementsstoredthereForaircraftwithanassumedglide-angleincrashingof15~,thezoneofimpactintotheroofcapwhichcouldgeneratepieceofplanewreckagefallingintothepool,orpropelpartofthedeckingintothepool,isthedeckingwallaheadofthepool,andtherooffromthewalltothefarsideoft.hepool.Althoughanimpactintotheroofbeyondthepoolopeningcouldbringportionsofthedecksheetingdownontoorintothepool,thatsituationisnotexpectedtoresultinruptureof.fuelelements.Notallimpactsaheadofthepoolopeningwouldbeexpectedtoresultinfuelelementrupture,sincetheroofsupportsysteiscapableofabsorbingconsiderableimpactene"gy;however.,allŽuchimpactsarecountedascritical.Thesupportsystemforthemetaldecking,orroofcap,isdesignedtoisolatecollapseofanimpactedsectionwithouttransmittingthecollapsethroughouttheentirecap.Theportionofthecapstructureoverthespentfuelpoolopeningsislimitedtofourbayssupportedatthefive3.5-21 SSES-FSAR,locations26.5,27.5,29,30.5and31.(Seefigures3.5-6and35-7).Thesefourbayscompriseawidthof108feetintheplantcrosssection.Foreastboundaircraft,theroofspanfromthewalltothefarsideofthpoolinvolvesadecingspanof101feet,.fromstationsMtoS.Theroofcapwallexposedtoeastboundmovementsrisesabout47feetabovethecontrolstructureroof.Aircraftimpactingthecontrolstructureroofmayalsoskidacrossitandimpacttheroofcapwall.Askiddistanceof49feetacrosthecontrolstructureroofmustbeincludedintheplanttargetarea.However,thetargetsectionoftheplantispartiallyshieldedfromapproachesfromtheBerwickAirportbythecoolingtowerofUnit2.Theminimumdiameterofthstoweris301feet.Afteraugmentingthisminimumradiuby16feet,halfofthewingspanforatypicalsingle-engineplane,theshadowofa16~rayfromtheairportisfoundtofallacrossthecenterofthecontrolroomstructure(Seefigure3.5-8).Thus,atleasthalfofthewallexposure,andabout60%oftheroofareainvolved,isshieldedfromeastboundaircraftmovements.Forwestboundaircraft,theimpactexposureinvolvestheroofdeckingwalloppositethepoolopening,andthedeckingbetweenstationsUaandQ,aspanofabout118feet.Thereisnoskidazeafozwestboundmovements.Theresultantplanttargetareasforssingle-enginecraftaretabulatedinTable3.5-6.Thewidthdimensionsinthecross-sectionsareaugmentedbythe32footwingspanassumedasrepresentativeofsingle-enginecraft,exceptforsituationsinvolvingshadowing.Theplanttargetareasareapproximately15.8x10-~and5.7x10-4squaremilesforwestboundandeastboundcraft,respectively.Forthefewtwinengineaircraftexposures,ithasbeenestablishedthatanimpactoftheheaviesttwinengineaircraftwhichcanusetheBerwickAirportcouldinducespallinginsomeofthecriticalstructures(specifically,aCessna400).AlthoughnoneofthetwinengineaircraftmovementsobservedattheBerwickAirportareasheavyastheCessna400,theplantcriticalstructureshavebeenusedconservativelyasthetargetarea.TheresultsaretabulatedinTable3.5-6.Awingspanof50feetandaglideslopeof15~incrashingisusedinthecalculations.Ashadowingofthereactorbuildingby508andthecontrolstructureby40%,isusedforeastboundmovements.Theskiddinglengthisbaseduponaroughnessfactorof2.5intheformula:Skid(mi)=2.52x10-~(V~)whereVisinmilesperhour(Ref5).ThetargetareaforcommercialjetairczaftflyingalongthetraceoftheVortacairwayscanbecomputedusingtheeastfaceofthereactoranddieselgeneratorbuildingsasanaverage3.5-22 SSES-FSARexposure.Thisis.notthegreatesttargetareafortheplant,butisselectedasanaverageoftheexposuresaroundthecompass.Onthewestside,thereisshieldingfromthecoolingtowers,andthereareseveralgroundobstaclestoskidding,whichcomprisesthelargestportionoftargetarea.Asacrashevent,a727-typewingspread(l10feet)andapower-outglideimpactingat290mphareassumed.Theresultantplanttargetareaofabout.04mi~istabulatedinTable3.5-6.351.6.4StrikingProbabilitiesTheprobabilitythatanaircraftmightstriketheSusquehannaSES,resultinginapotentialnuclearsafetyhazard,istheproductof:'theannualtraffic(numberofaircraft)(3.5.1.6.1)Thecrashprobability(eventspermi~)(3.51.6.2)Theapplicabletargetarea(mi~)(3.5.1.6.3)Thecomputationsforthethreetypesofaircraftconsideredare:Single-encnineEastboundtakeoffs2925movementsx1.2x10-~/mi~x5.7x10-~mi~=2.00x10-~peryear.Westboundlandings3575movementsx1.2x10-~/mi~x15.8x10-4mi~=6.78x10-~peryear.TwinEnaineEastboundtakeoffs6movementsx12x10~/mi~x.0064mi~.05x10-~peryearMestboundlandings8movementsx1.2x10-~/mi~x.0064mi~.17x10-~peryear.CommercialAircraftInV-23218,'000movementsx0.12x10->>/mi~x.04mi~.09x10-~pe"year.InV-1063,000movementsx1.9x10-~~/mi~x.04mi~23x10-~peryear.ThesumoftheseeventprobabilitiesattheSusquehannaSESsiteisabout9.3x10-~.3.5-23 SSES-PSAR352SYSTENSTOBEPROTECTED3.5.21NissileProtectionDesignPhilosophySystemsthatarereviewedformissileprotectionarelistedinSubsection3.12.2.Forinternallygeneratedmissiles,protectionisprovidedthroughbasicstationcomponentarrangementsothat,ifequipmentfailureoccurs,themissiledoesnotcausethefailureofaSeismicCategoryIstructureoranysafetyrelatedsystem.Whereitisimpossibletoprovideprotectionthroughstationlayout,suitablephysicalbarriersareprovidedwhosefunctioniseithertoisolatethemissileortoshieldthecriticalsystemorcomponent.Inaddition,redundantSeismicCategoryIcomponentsaresuitablyprotectedsothatasinglemissilecannotsimultaneouslydamageacriticalcomponentanditsbackupsystem.352.2StructuresDesignedtoWithstandNissileEffectsSeismicCategoryIstructuresaredesignedtowithstandpostulatedexternalorinternalmissileswhichmayimpactthemTable3.3-2isalistofthestructuresdesignedtowithstandexternaltornadogeneratedmissiles,andthesafetyrelatedequipmentwhichtheyprotect.ThemissilesarelistedinTable35-4353BARRIERDESIGNPROCEDURESThestructuresandbarriersaredesignedinaccordancewiththeproceduresdetailedinReference3.5-5.Theproceduresinclude:a)Predictionoflocaldamage(penetration,perforation,andspalling)intheimpactareaincludingestimationofthedepthofpenetrationb)Estimationofbarrierthicknessrequiredtopreventperforationc)Predictionoftheoverallstructuralresponseofthebarrierandportionsthereoftomissileimpact.35-24 SSES-CESARTheuseofaductilityratiohigherthan10butlessthantheallowablesgiveninReference>3.5.5willbegovernedbythefollowingconditions:(l)ReinforcedconcretebarriersTheallowabledisplacementofreinforcedconcreteflexurememberscanbebasedonanupperlimitforplastichinge,rotationrfollows:8r=0.0065--0.07ewhered=distancefromcompressionfaceto.centroidoftensilesteelreinforcement(inch)c=distancefromcompressionfacetotheneutralaxisatultimatestrength(inch)ThisconditionisgiveninsectionC.3.5ofAppendixCandcommentarytoAppendixCofACI349-76.(2)SteelbarriersToinsuretheabilityofasteelbeamtosustainfullyplasticbehaviorandthustopossesstheassumedductilityatplastichingeformation,itisnecessarythattheelementsofthebeamsectionmeetminimumthicknessrequirementssufficienttopreventlocalbucklingfailure.TheconditionstoprecludelocalbucklingasgiveninAISCManualaresatisfied.Rev.27,10/813.5-24a SSES-FSAR(THISPAGEINTENTIONALLYLEFTBLANK)Rev.23,6/813.5-24b 354REFZRENCESSSES-FSAR3.5-135-2.35-335-4.GEMemoReport>>HypotheticalTurbineMissileData-38inchLastStageBucketUnits"(March16,1973).GEMemoReport"HypotheticalTurbineMissiles-GeneralDiscussion>>(March13,1973).GEMemoReport"HypotheticalTurbineMissiles-ProbabilityofOccurrence>>(March14,1973).D.C.Gonyea,"AnAnalysisoftheEnergyofHypotheticalMheelMissilesEscapingfromTurbineCasings",GETechnicalInformationSeriesNo.DF73SL12(February1973).3'5-5."DesignofStructuresforMissileImpact",BC-TOP-9A,Rev.2,BechtelPowerCorporation,SanFrancisco,California(September1974).35-6U.S.Army,"StructurestoResisttheEffectsofAccidentalExplosions>>,Dept.oftheArmy,Navy,andAirForce,1969.35-73.5-835-9NuclearRegulatoryCommission,"StandardReviewPlanSection3.5.1.6>>,NURFG-751087,24NOV1975.Solomon,K.A.,>>HazardsAssociatedwithAircraftandMissiles",presentedatAmericanandCanadianNuclearSocietyMeeting,Toronto,Canada,June,1976.Solomon,K.A.,"EstimateofprobabilitythatanAircraftwillimpactthePVNGS>>,NUS-1416,NUSCorp.,June1975.35-103~5-11.35-1235-13NationalAirTransportationSafetyBoard,"AnnualReviewofAircraftAccidentData<<,Published1972andannuallythereafter.Chelapati,C.V,Kennedy,R.P.,andMall,I.B.,ProbabilisticAssessmentofAircraftHazardforNuclearPowerPlants,Nuc.Eng.Design19,336(1972).Barber,R.B.,SteelRoad~ConcreteSlabImpactTest/ExperimentalSimulation.),BechtelCorp,October,1973Vasallo,F.A.,MisileImpactTestingofReinforcedConcretePanels,PreparedforBechtelCorp.,CalspanCorp.,January,197523Rev.23,6/Sl3.5-25 SSES-FSAR.2335-143.5-l5NationalDefenseResearchmmittee,EffectsofImpactandExplosion,SummaryTechnicalReportofDivision2,~Volume1,Mashington,DCGvaltney,R.C.,l1issileGenerationandProtectioninLight-Water-CooledPowerReactors,OrnlNSIC-22,OakRidgeNationalLaboratory,OakRidge,Tennessee,fortheU.S.A.E.C.,September,1968Rev.23,6/Sl3.5-26 SSES-PSARTABLE35-2PROBABILITIESPORUNIT1TARGETSDUETOEACHTURBINEI<iTaryetP2P3UNIT1TURBINEP2XP3P4P2P3UNIT2TURBINEP2xP3P423hReactorBuilding<>>8SteanTunnel3.25E-3.8925.95E-2.752447E-22.90E-3224E-101.45E-11447E-41.59E-5.993776443E41-23E-5222E-12516E-14CControlStructure831E-48827.338-4366E-12831E-4882733E-4366E-12DDieselGeneratorBuildingEESSNPunphouse3.75E-3104i-5664.956249E-39978-6125E-11498E-145.71E"69678168-5100816E-55.52E-64ORE-13276E-14Unit2issynnetricaltoUnit1sotheprobabilitiesareidentical.c>>Includesthespentfuelpool.Rev.23,6/81 0 SSES-FSARTABLE3.5-3TOTALPROBABILITIESFORUNIT1<>>TargetP2p3(3)P2xP3p4AReactorBuilding<>>5.99E-2.754BSteamTunnel327E-3891CControlStructure1.66E-3.882451E-22.26E-10291E-31-46E-111.47E-37.33E-12DDieselGeneratorBuildingEESSMPumphouseTotal3.84E-3671161E-59606.87E-2.759257E-31.29E-111.55E-57.75E-14521E-22618-10Unit2issymmetricaltoUnit1sotheprobabilitiesareidentical.Includesthespentfuelpool.P3=P2xp3/P2 SSES-FSARTURBINETABIZ3.5-8TARGETPAI~~RSTargetUnit1RBNorthWallUnit1RBWestWallNorthofTunnelVentStructureUnit1SteamTunnelVentStructureNorthWallUnit1SteamTunnelVentStructureWestWallUnit1SteamTunnelVentStructureAboveEl.778ControlStructureUnit1FuelPoolUnit1RBRoofUnit2RBWestWallSouthofTunnelVentStructureUnit2VentStructureWestWallBelchEl.771Uit2NtlAboveEl.Unit2~""""RoofSlabUnit2Spent,FuelPoolUnit2RBRoofSlabDieselGeneratorBuildingRoofDieselGeneratorBuildingRoofDieselGeneratorBuildingRoofDieselGeneratorBuildingRoofDieselGeneratorBuildingRoofESSWPumpHouse(SouthEnd)ESSWPumpHouse(NorthEnd)Xl163.0104.0104.066.o66.o-66.o9.50.0-163.0-104.0-104.0-104.0-30.0-163.0161.2211.2163.21211.2237.21945.0982-5163.o163.0104.0104.0104.066.oo50.0163.0-104.0-66.o-66.o-66.o9.50.0285.2237.2211.22372285.2982.51000.8Yl116.5116.5100.3100.3100.356.o144.o116.5116.5100.33100.3100.33144.o116.5193.5227.0277.0261.0227.0320.0320.02535116.5116.5100.33116.5100.1201.02535116.5100.33looo33116.5201.0253.5227,0261.02755273.5273.5408.5408.5729.0729.0729.0729.0771.0729.0818.1818.1729.0729.0771.0818.1818.1818.1737.0737.0723.0723.0713.0685.56155818.1818.1771.0771.0818.1825.63819.1818.1818.1,771.0818.1818.1818.1818.1737.0737.0723.0763.o722.0716.0685.5Coordinates(Ft.)WallThickness(Zn.)36.o76.o84.o54.o36.o36.o36.o54.034.o24.oSlabThickness(In.)27.474.5027.027.0027.018.018.018.018.018.o24.o4.o(1)RelativetoanoriginairEl.0'0'ndtheintersectionoftheplantandwiththeturbineaxis.ThepositiveX-axisrunsnorthoftheorigin.ThepositiveY-axisrunseastoftheorigin.Rev.23,6/81 SSES-FSARTABLE35-9TURBINEMISSILEEJECTIONPOINTPARAMETERSMissileEjectionPointCooodinate~sftgMissileDeflectionAngleRange1958187.8179.81610153014501262118.21102-110.2-1182-126-2-145.0-153.0-1610-179.8-187.8-195.80073350to25-5to5-25to00to255to5-25to00to25-5to05-25to00to25-5to5-25to00to25-5to5-25to00to25-5to5-25to0(1)SeeTable358Rev.23,6/81 SSES-FSAR38DES1GNOFCATEGORYISTRUCTURES38.1CONCRETECONTAINNENTTheSusquehannaprimarycontainmentsUnits1and2areboilingvaterreactor,NarkII(over/under)types.3.81.1DescritionoftheContainment3.8.1.1.1GeneralTheprimarycontainmentisanenclosureforthereactorvessel,thereactorcoolantrecirculationloops,andotherbranchconnectionsofthereactorcoolantsystem.Essentialelementsoftheprimarycontainmentarethedrywell,thepressuresuppressionchamber,thatstoresalarqevolumeofwater,thedrywellfloorthatseparatesthedrywellandthesuppressionchamber,theconnectinqventpipesystembetweenthedrywellandthesuppressionchamber,isolationvalves,thevacuumreliefsystem,andthecontainmentcoolingsystemsandotherserviceequipment.Theprimarycontainment(asshowninFigures3.8-1through3.8-8)isintheformofatruncatedconeoveracylindricalsection,withthedryvellintheupperconicalsectionandthesuppressionchamberinthelovercylindricalsection.Thesetvosectionscompriseastructurallyintegratedreinforcedconcretepressurevessel,linedwithveldedsteelplateandprovidedvithasteeldomedheadforclosureatthetopofthedryvell.ConnectionofthedrywellheadtothetopofthedryvellvaliisshovnonFigure3.8-9.Thedrywellfloor.isareinforcedconcreteslabstructurallyconnectedtothecontainmentvalias.shovnonFigure38-10Theprimarycontainmentisstructurallyseparatedfromthesurroundingreactorbuildingexceptatthebasefoundationslabsvhereacoldjointbetweenthetwoadjoiningfoundationslabsisprovided.38-1 SSES-FSAR38.1.1.1.1DimensionsThedimensionsoftheprimarycontainmentareasfollows:a)InsideDiameter1)Suppressionchamber-88ft0in.2)Baseofdrywell-86ft3in.3)Topofdrywell-36ft41/2in.b)Height1)Suppressionchamber-52ft3in.2)Drywell-87ft9in.c)Thickness1)Basefoundationslab-7ft9in.2)Containmentwall-6ft0in.3.8.1.12BaseFoundationSlahThecontainmentbasefoundationslabisa7ft9in.thickreinforcedconcretemat.Thetopofthebasefoundationslabislinedwithacarbonsteellinerplate.3.8.1.1.21ReinforcementThehasefoundationslabisreinforcedwith418~Grade60rebarattopandbottomfaces.Theaveragerebarspacingis18in.Shearreinforcementconsistsof48and49verticalandinclinedties.Mechanical(<<Cadweld<<)splicesareusedforsplicingallmainreinforcingbars.Figure3.8-11showsplanandsectionviewsofreinforcement.38-2 SSES-FShR3.81.1.2.2LinerPlateandAnchoragesThesteellinerplateis1/4in.thickandisanchoredtotheconcreteslab.bystructuralsteelbeamsembeddedintheconcreteandweldedtotheplate.SeePigure3.8-12tordetailsofthelinerplateandanchorages.Alllinerplateweldseamslessthanl/2inchthickareprovidedwithaleakchasesystem.3.8.1.1.2.3Pedestaland.SuppressionChamberColumnBaseLinerAnchoraaesFigures3.8-13and3.8-14shovthebasefoundationslablineranchoragesfo"thereactorpedestalandthesuppressionchambercolumnsrespectively.Forthepedestalanchorage,8-series>>Cadweld>>sleevesarewelded.tothetopandbottomsurfacesofthethickenedbaselinertopermitanchorageofthepedestalverticalrebarintothebase.foundationslab.Metalstudsareweldedtothetopandbottomsurfacesofthethickenedbaselinerinordertotransferradialandtangentialshearforcesfromthepedestaltothebasefoundationslab.Porthesuppressionchambercolumnanchorage,pipecapsareweldedtothethickenedbaseliner,wherethecolumnanchorboltspenetratethebaseliner,toensuretheleak-tightintegrityofthebaseliner.3.8.1.l.3ContainmentMallThecontainmentwallisa6ft0in.thickreinforcedconcretewall.Theinsidesurfaceofthecontainmentwallislinedvithacarbonsteellinerplate.3.8.1.1.3.1ReinforcementThecontainmentwallisreinforcedwith018,Grade60rebaratinnerandouterfaces.Theinnerrebarcurtainconsistsoftwomeridionallayersandonehooplayer.Theouterrebarcurtainconsistsofonemeridionallayer,tvohooplayersandtwohelicallayers.Shearreinforcementconsistsof46horizontalandinclinedties.mechanical(>>Cadweld>>)splicesareusedforsplicingallmainreinforcingbars.Pigures3.8-15and3.8-16shovsectionanddevelopedelevationvievsofsuppressionchamberanddryvellwallreinforcementrespectively.REV.18/783.8-3 SSES-PSAR3.8.1.1.LinerPlateandhnchoraes'Thesteellinerplateis.1/4in.thickandisanchoredtotheconcretewallbystructuralteeverticalstiffenersspacedhorizontallyevery2ft.Horizontalplatestiffenersandhorizontalstructuralchannelsspacedverticallyevery5ftprovideadditionalstiffening.SeeFigures3.8-17and3.8-18fordetailsofthelinerplateandanchorages.Aroundthecontainmentlinerplatepenetrations,thelinerisreinforcedinaccordancewithASIDEBoilerandPressureVesselCode,SectionIII,1971Edition.SeeSubsection3.8.1.1.3.3forafurtherdescriptionofpenetrationsLoadsfrominternalcontainmentattachmentssuchasbeamseatsandpiperestraintsaretransferreddirectlyintothecontainmentconcretewall.Thisisaccomplishedbythickeningthelinerplateandattachingtoitstructuralweldmentstotransfertotheconcreteanytypeofloadwithoutrelyingonthelinerplateoritsanchorages.Whereinternalcontainmentattachmentloadsarelarge,thestructuralweldmentspenetratethelinerplateratherthanbeingweldedtooppositesidesofthelinerplate.Thiswasdonetoeliminatethepossibilityoflamellarteari.ng.SeeSubsection3.8.1.1.3.4forafurtherdescriptionofinternalcontainmentattachments.38.1.1..33PenetrationsGeneralServicesandcommunicationsbetweentheinsideandoutsideofthecontainmentareperformedthroughpenetrations.Basicpenetrationtypesincludethedrywellhead,accesshatchesjequipmenthatches,personnellock,suppressionchamberaccesshatches,CRDremovalhatch),pipepenetrations,andelectricalpenetrations.Penetrationsconsistofapipewithaplateflangeweldedtoit.Theplateflangeisembeddedintheconcretewallandprovidesananchoraqe,forthepenetrationtoresistnormaloperatinqandaccidentpipereactionloads.Thepipeisalsoweldedtothecontainmentlinerplatetoprovidealeak-tightpenetration.MeridionalandhoopreinforcementarebentaroundtypicalpenetrationsasshownonFigures3.8-19and3.8-20.AdditionallocalreinforcementinthehoopanddiagonaldirectionsisaddedatalllargepenetrationsasshownonFigures3.8-19and3.8-20.Localthickeningofthecontainmentwallatpenetrationsisgenerallynotrequired.SeeSubsection3.8.2.1.forafurtherdescriptionofpenetcations.38-4 SSES-FSAR~PiePenetrationsDetailsoftypicalpipepenetrationsareshownonFigure3.8-21.TherearetwobasictypesofpipepenetrationsForpipingsystemscontaininghiqhtemperaturesteamorwater,asleevedpenetrationisfurnished,therebyprovidinganairgapbetweenthecontainmentconcretewallandthehotpipe.Thisairgapislargeenoughtomaintaintheconcretetemperatureintheareaofthepenetrationbelow2000F.Afluidheadoutsidethecontainmentconnectstheprocesspipetothepipesleeve.Forpipingsystemscontaininglowtemperaturewater,anunsleevedpenetrationisfurnished.Forthistypeofpenetration,theprocesspipeisweldeddirectlytothepipepenetration.ElectricalPenetrations1Fiqure3.8-22showsatypicalelectricalpenetrationassemblyusedtoextendelectricalconductorsthroughthecontainment.Theassemblyissizedtobeinsertedinthe12in.,Schedule80penetrationnozzlesthatarefurnishedaspartofthecontainment.Thepenetrationsarehermeticallysealedandprovideforleaktestingatdesignpressure.~EuimentHatchesannPersonneiLockTwo12ft2in.ID.equipmenthatchesarefurnishedinthedrywellwall.Oneoftheseequipmenthatchesincludesan8ft7in.I.D.personnellock.Figure3.8-23showsdetailsofreinforcementaroundtheequipmenthatches.Additionalmeridional,hoop,helical,andshearreinforcementisprovidedtoaccountforlocalstressconcentrationsattheopening.Theshellisthickenedattheequipmenthatchestoaccommodatetheadditionalrebars.DrwellHeadAsse~mblThedrywellheadlowerflangeassemblyisanchoredtothetopofthedrywellwallbyone-third(108}ofthetotalnumberofmeridionalreinforcingbarsintheinnercurtainasshownonFiqure38-9.~suEressionChamberAccessHatchesTwo6ft0in.I.D.accesshatchesarefurnishedinthesuppressionchamberwall.Fiqure38-24showsadetailofreinforcementaroundthesuppressionchamberaccesshatches.Additionallocalreinforcementinthemeridional,-hoop,anddiaqonaldirectionsisaddedasshownonFigure3.8-24.38-5 SSES-FSAR3811.3.4InternalContainmentAttachmentsThedrywellfloorisattachedtothecontainmentwallbyastructuralweldmentatthejunctionofthetwostructuralcomponentsshownonFigure3.8-10.Radialforceandbendingmomentcarriedbythedrywellfloormainreinforcementistransferredtothecontainmentwallbycadweldingthedrywellfloorrebartothetopandbottomflanqesofthestructuralweldment.Thetopandbottomflangesofthestructuralweldmentpenetratethethickenedcontainmentlinerplateandareembeddeddeeplyintothecontainmentconcretewall.Flexuralshearinthedrywellflooristransferredtothecontainmentwallthroughthewebofthestructuralweldment,whichisweldedtooppositesidesofthecontainmentlinerplateBeamSeatEmhedmentsBeamseatsareprovidedtosupportthedrywellplatforms.AtypicalbeamseatembedmentisshownonFigure3.8-25.PieRestraintEmbedmentsPiperestraintsareprovidedtopreventpipewhipforallhighenerqypipingsystems.TypicalpiperestraintembedmentsareshownonFiqure3.8-26.SeismicTrussEmbedmentsTheseismictrussprovides.lateralsupportforthereactorvessel.AtypicalseismictrussembedmentinthedrywellwallisshownonFiqure3.8-27.SnubberEmbedmentsSnubbersdampenthevibratorymotionofpipingsystemsduetoseismicoranyotherdynamicloading.AtypicalsnubberembedmentinthedrywellwallisshownonFigure3.8-28.3.8.1.1.35ExternalContainmentAttachmentsTherearenomajorexternalstructuralattachmentsA2in.wideseparationgapisprovidedbetweenthecontainmentandthesurroundingreactorbuildingtopreventinteractionofthetwostructures.Theonlyplacewherethecontainmentisincontactwiththereactorbuildingisatthebasefoundationslabswhereacoldjointbetweenthetwoadjoininqfoundationslabsisprovided.38-6 SSES-FSAB38.1.1.3.6SteelComponentsNotBackedbyStructuralConcreteAdescriptionofsteelportionsofthecontainmentthatarenotbackedbyconcrete,suchasthedrywellhead,equipmenthatches,personnellock,suppressionchamberaccesshatches,CRDremovalhatch,andpipingandelectricalpenetrations,isgiveninSubsection3,82Q]~~alicab]eCodesaStandatdsaan~dscoificatioasThecodes,standards,andspecificationsusedinthedesignandccnstructionofthecontainmentarelistedinTable3.8-1andqivenareferencenumber.Thereferencenumbersfortheconcretecontainmentare10A,12A,lC,2C,3C,6Cand2K.Thereferencenumbersforthelinerplateandanchoragesare4C,1H,1Jand1K.3e8.1.3LoadsandLoadinCombinations381.3.1GeneralTable38-2liststheloadinqcombinationsusedforthedesignandanalysisofthecontainment.TheloadingcombinationsareincompliancewiththosegiveninReference12AofTable38-1.TheloadinqcombinationsshowninTable3.8-2donotincludethehydrodynamicloads.Thecontainmenthasalsobeenanalyzedanddesignedforhydrodynamicloadsfrommainsteamsafety/reliefvalvedischargeandLOCA.Foradefinitionoftheseloadsandloadingcombinationsincludinghydrodynamicloads,refertoGEs"MarkZIContainmentDynamicForcinqFunctionsInformationReport>>(HEDO-21061),andthe>>SusquehannaPlantDesignAssessmentReport"NormalLoads:Thoseloadsencounteredduringnormalplantoperationandshutdown,includingdeadloads,liveloads,thermalloadsduetooperatingtemperature,andotherpermanentloads3.8-7 SSES-PSALMcontributingstresssuchashydrostaticloads.DeadandliveloadsaredescribedinSubsection38.$.3.2.1and38.l.3.22respectively.Severe~anyonnentalLongs:Thoseloadssustainedduringsevereenvironnentalconditions,includingthoseinducedbytheoperatingbasisearthquake{OBE)andthedesignbasiswind.LoadsduetoOBEarediscussedinSection3.7andSubsection38.132.6.MindloadsarediscussedinSection3.3g~xteeBenioneenalpads:Thoseloadssustainedduringextremeenvironmentalconditions,includingthoseinducedbythesafeshutdownearthquake(SSE)andthedesignbasistornado.LoadsduetoSSEarediscussed.inSection3.7andSubsection3-8.1-3.2.6.TornadoloadsarediscussedinSection33.~AbnoaalLoads:Thoseloadssustainedduringabnersalplantconditions.Suchabnormalplantconditionsincludethepostulatedruptureofhigh-energypipingLoadsinducedbysuchanaccidentincludeelevatedtemperaturesandpressureswithinoracrosscompartments,andgetimpingementandimpactforcesassociatedwithsuchruptures.LoadsduetopostulatedruptureofpipingarediscussedinSection3.6.3.8.1.32.1DeadLoadDeadloadincludestheweightofthestructureplusanyotherpermanentloadscontributingstress,suchashydrostaticLoads.3.813.2.2LiveLoadLiveloadincludesthoseloadsexpectedtobepresentwhentheplantisoperating,suchasmovableequipment,piping,cables,andlateralearthpressure.38l.3gn3Des~inBasisAccidentpressureLoadThedesignbasisaccident(DBA)isdefinedasalossofcoolantaccident(LOCA}thatproducesthelargestcontainmentpressure.TransientsresultingfromthedesignbasisaccidentarepresentedinSubsection621andserveasthebasisforthecontainmentinternaldesignpressureof53psig.REV.18/7838-8 SSES-PSAR38.1.3.4ThermalLoadsThetemperaturegradientsthroughthecontainmentwallareshownonPiqure3.8-29fortheoperatinqandthepostulateddesignaccidentconditions.ThedesignaccidenttemperaturegradientshownonPiqure3.8-29occursfiveminutesafterLOCA.Thistransienttemperaturegradientisusedforthedesignofthecontainmentsinceitproducesthelargeststressesinthestructure.ThermaleffectsanticipatedatthetimeofthestructuralacceptancetestareinsignificantbecausechangesintemperatureinsideandoutsidethecontainmentduringtheUnit1structuralacceptancetestweresmall.Therefore,thermaleffectsatthetimeofthestructuralacceptancetestareinsignificant.3.8.1.3.25MindandTornadoLoadsMindandtornadoloadsarenotconsideredbecausethecontainmentissurroundedbythereactorbuilding381.3.2.6SeismicLoadsa)LoadsfromtheOperatinqBasisEarthquakeresultfromqroundsurfacehorizontalaccelerationof0.05q,andverticalgroundsurfaceaccelerationof0.033g,actingsimultaneously.b)Loads.fromtheSafeShutdownEarthquakeresultfromgroundsurfacehorizontalaccelerationof010q,andverticalqroundsurfaceaccelerationof0.067q~actingsimultaneously.3.81.3.~7ExternalPressureLoadThecontainmentshellisdesignedtowithstandanexternalpressureof5psidifferential.3.81.3.28MissileandPipeR~utureLoadsThecontainmentwallisdesiqnedtowithstandthemissileandpiperuptureloadsduetoapostulatedruptureofa26in.diametermainsteampipe,whichproducesthelargestloadsonthe38-9 SSES-FSARcontainmentsall.Theseloads"includetheeffectsofjetimpingement,pipewhip,andpipereaction.Anequivalentstaticloadof1000kipsisconsidered.Thisloadincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.SeeSection3.6forafurtherdiscussionofpostulatedpiperuptureloads.3.8.1.4DesignandAnalysisProcedures3.8.1.41GeneralIThissubsectiondescribestheproceduresusedforthedesignandanalysisofthecontainment.Thedescriptiondoesnotincludetheeffectsofhydrodynamicloadsfrommainsteamsafety/reliefvalvedischargeandLOCA.ForadescriptionofthedesignandanalysisproceduresthatconsidertheeffectsofhydrodynamicloadsrefertoGE~s<<NarkIXContainmentDynamicForcingFunctionsReport<<(NEDO-21061)andthe<<SusquehannaPlantDesignAssessmentReport<<.Theanalysisprocedureconsistsoftwoparts.First,theuncrackedforces,moments,andshearsforbotharisymmetricandnon-axisymmetricloadsaredetermined.Axisymmetricloadsaredeadload,liveLoad,designaccidentpressureload,verticalseismicload,andoperatinganddesignaccident.thermalloads.Non-axisymmetricloadsarehorizontalseismicloadandlocalizedmissileandpiperuptureload.Thesecondpartconsistsoftakingintoaccounttheexpectedcrackingoftheconcreteanddeterminingtheconcreteandreinforcingsteel,stressesandstrains.Thelinerplateisnotconsideredtoresistanyload.The3D/SAPcomputerprogram(Appendix3.8A)isusedtodeterminetheuncrackedforces,moments,andshearsduetoaxisymmetricloads.TheoperatinganddesignaccidenttemperaturegradientsarecomputedusingNE620'computerprogram(Appendix3.8A).Fortransientloadssuchasdesignaccidentpressureandthermalloads,themostcriticalcombinationoftheseloadsisconsidered.Theforces,moments,andshearsintheuncrackedstructureduetoseismicloadsaredeterminedperBechtelTopicalReportBC-TOP-4-A(Ref.2KofTable38-1)Theeffectofvariationsinthevaluesofstructuralandfoundationparametersonthemodalfrequenciesisconsidered.SeeSection3.7foradescriptionofthecontainmentseismicanalysis.The3D/SAPprogramisusedtoanalyzethecontainmentfornon-axisymmetricloadsduetomissileandpostulatedpiperupturq.REV.18/783.8-10 SSES-FSARTheCECAPcomputerprogram(Appendix3.8A)isusedtodeterminetheextentofconcretecrackingandtheconcreteandrebarstressesandstrains.TheinputdatafortheCECAPprogramconsistsoftheuncrackedforces,moments,andshearscalculatedbythe3D/SAPandseismicanalysisprograms.TheCECAPprogrammodelsasingleelementofunitheight,unitwidth,anddepthequaltothethicknessofthewallorslab.Theprogramassumesisotropic,linearelasticmaterialpropertiesandusesaniterativetechniquetoobtainstressesconsideringtheirredistributionduetocracking.Theprogramdeterminestheredistributionofthermalstressesduetotherelievingeffectofconcretecracking.38.1.42ContainmentWallFigure3.8-30showsthe3D/SAPfiniteelementmodelusedtoanalyzethecontainmentwallforaxisymmetricloads.A10degreewedgeofthecontainmentismodeledusingsolidfiniteelementshavinglinearelastic,isotropicmaterialproperties.Themodelincludesthecontainmentwall,basefoundationslab,drywellfloor,reacto"pedestalandthefoundationmaterialBoundaryconditionsareimposedontheanalyticalmodelbyspecifyingnodalpointforcesordisplacements.ReferringtoFigure3.8-30,thenodalpointslyinqalongBoundaryAareallowedtomovewithintheX-Zplane,andBoundaryBwithintheX-Yplane.PointsalongBoundaryCarepreventedfrommovingintheradialdirectionandpointsalongBoundaryDarepreventedfrommovinginthehoopdirection.Nodalforces,moments,andshearsareappliedtoBoundariesEandFtoaccountforreactionloadsfromthedrywellheadandreactorvesselandreactorshieldwallrespectively.Figure3.8-31showsthe3D/SAPfiniteelementmodelusedtoanalyzethedrywellwallfornon-axisymmetricmissileandpiperuptureloads.A180degreehalfmodelofthedrywellwallconsistingoflinearelastic,isotropic,solidfiniteelementsisused.ReferrinqtoFiqure3.8-31,thenodalpointslyingalongBoundaryAareallowedtomovewithintheX-Zplane.PointsalongBoundaryBareprevented.frommovingintheverticalandradialdirections.Nodalforces,moments,andshearsareappliedtoBoundaryCtoaccountforreactionloadsfromthedrywellhead.TangentialshearscausedbyseismicloadsaretotallyresistedbyhelicalreinforcingbarsandconcreteNotangentialshearistakenbytheconcrete.Thetangentialshearisconsideredasdiaqonaltensionandcompressioncomponents.Thehelicalreinforcingbarsresistdiagonaltensionandtheconcreteresistsdiagonalcompression.Incalculatingthereinforcingsteelrequirement,thehelicalreinforcementisdesiqnedtoresiststressesduetoRev.12,9/7938-11 SSES-FSARdesiqnaccidentpressureandthermalloadsaswellastangentialshearscausedbyseismicloads.3.8,14.3BaseFoundationSlabFigure3.8-32showsthe3D/SAPfiniteelementmodelusedtoanalyzethebasefoundationslab.A180deqreehalfmodelofthebasefoundationslabconsistingoflinearelastic,isotropic,solidfiniteelementsisused'.Themodelincludesthebasefoundationslab,aportionofthecontainmentwallandthefoundationmaterial.ReferringtoFigure3.8-32,thenodalpointslyingalongBoundaryAareallowedtomovewithintheX-2plane,andBoundaryBwithintheX-Yplane.PointsalongBoundaryCarepreventedfrommovingintheradialdirection.Axisymmetricforces,moments,andshearscalculatedusingthe3D/SAPcontainmentmodelandseismically-induced,tangentialshearsareappliedtoBoundaryD.Theheightofthemodelischosensothattheoverturningmomentcausedbythetangentialshearisthesameastheoverturningmomentdeterminedbytheseismicanalysis.Inordertobeabletoconsiderupliftingofthebasefoundationslabfromitsfoundation,athinlayeroffoundationmaterialisprovidedimmediatelybeneaththefoundationslab.Ifthecomputeroutputindicatestensioninanyofthesethinfoundationelements,themodulusofelasticityoftheseelementsisreducedtoalmostzero.Thenasecondcomputerrunismadeandanyadditionalupliftisidentified.Furtheriterationsandmodificationsoffoundationmaterialpropertiesaremadeuntilthecompleteextentofupliftisdetermined.Upliftdoesnotresultinoverstressingthecontainmentfoundation.3.8.1.4.4AnalysisofAreasAroundEquipmentHatchesFigure3.8-33showsthe3D/SAPfiniteelementmodelusedtoanalyzetheareasofthecontainmentwallaroundtheequipmenthatches.A60degreewedgeofthecontainmentwallismodeledusingsolidfiniteelementshavinglinearelastic,isotropicmaterialproperties.Toreducethesizeoftheanalyticalmodel,BoundaryAfollowstheverticalplaneofsymmetryoftheequipmenthatch.Thepointsdelineatingtheoutermostboundariesofthemodelarelocatedatasufficientdistancefromtheopeninqsothatthebehaviorofthemodelalongtheboundariesiscompatiblewiththatoftheundisturbedshell.ReferringtoFigure3.8-33,thenodalpointslyingalongBoundaryAareallowedtomovewithintheX-Zplane,andBoundaryBwithintheX-Yplane.PointsalongBoundaryCarepreventedfrommovinginthehoopdirection.Arisymmetricforces,moments,andshearscalculatedusingthe3D/SAPcontainmentmodelareappliedtoRev.12,9/793.8-12 SSES-PSARBoundaryD.Seismicloadscalculatedbytheseismicanalysisareappliedlocallytotheelements.Seismicallyinduced,tangentialshearsaroundtheequipmenthatchesareresistedbyhelicalreinforcingbarsandconcreteincompression.3Q1,45LinerPlateandAnchoragesThedesiqnandanalysisofthelinerplateandanchoragesisperBechtelTopicalReportBC-TOP-1{Ref.1KofTable38-1).3815StructuralAcceptanceCriteria3.81.5.1SeinforcedConcrete3.8.1.51.1Mor~kin'tressNethodThepreoperational'testingconditionlistedinTable3.8-2isdesignedaccordingtothestresslimitationsofACI318,Section8.10exceptthatthemaximumpermissibletensilestressforreinforcementshallbe0.5Py.ThiscriterionconformstoReference12AofTable3.8-13.8.1.5.1-7.StrengthSethodThefactoredloadcombinationslistedinTable3.8-2aredesignedaccording+othestrengthmethodofACI318.Thefollowingallowablestressesareused:a)Concrete1)Compression-0.85f'c2)Tension-notpermitted.3)Radialshear-ACX318-7't{Chapter11)4)Tangentialshear-notpermittedb)ReinforcinqSteel1)Tension-0.90Py2)Compression-0.90FvREV.11>>7/7938-13 SSES-FSARTheallowablesaredefinedas:f'cFySpecifiedcompressivestrengthofconcreteSpecifiedyieldstrenqthofreinforcingsteel3.8.1.52LinerPlateandAnchoragesTheallowablestraininthelinerplateduetodesignbasisacc'identthermalloadis0.5percent.ThisvalueisbasedonASNECode,SectionIII(Ref.1JofTable3.8-1),FigureJ-9.1whichpermitsanallowablestrainofapproximately2percent'for10cycles.SincetheqraphinFigureI-9.1doesnotextendbelow10cycles,10cyclesareconservativelyusedfortheDBAinsteadofonecycle.TheallowableforcesonthelinerplateanchoragesareinaccordancewithBechtelTopicalReportBC-TOP-1(Ref.1KofTable38-1).3.8.1.6Materials,QualityControl,andSpecialConstructionTechnigues381.6.1ConcreteContainmentTheconcreteandreinforcinqsteelmaterialsforthecontainmentarediscussedinAppendix3.8B.ConcretedesigncompressivestrengthsaregiveninTable3.8-11.3.8,1,62LinerPlate~Anchorage~sandAttachments38.1.6.21materialsLinerplatematerialsconformtotherequirementsofthestandardspecificationslistedbelow:ItemSpecificationLiner,plate(lessthan1/2in.thick)ASTNA285,GradeAREV.11,7/7938-14 SSES-FSAHLinerplate(1/2in.thickorthicker)ASMESA-516,Grade60or70conforminqtotherequirementsofASIDEBoilerandPressureVesselCode(ASHEBGPVCode),1971Fditionvith,AddendathrouqhSummer1972,SectionIIX,ArticleNE-2000AnchoraqesandattachmentsotherthanpiperestraintsASTNA36PiperestraintattachmentsASTNA441REV.11,7/7938-14a SSES-FSARTHISPAGEHASBEENINTENTIONALLYLEFTBLANK,REV.11,7/793~8-14b SSES-PSAR3.81.622e~eldinLinerplateandstructuralsteelweldingconformtotheapplicableportionsofPartUWofSectionVIIZoftheASMEBGPVCode.Specifically,.ParagraphUW-26throughUW-38inclusiveapplyintheirentirety.Theveldingoflinerplatebuttveldsandattachmentsthatpenetratethelinerplateisperformedbyeithertheshieldedmetalarcortheautomaticsubmergedarcprocess.Theminimumnumberofindividualweldlayersforweldsthatmustmaintainleak-tightnessistwo.WeldersandweldproceduresarequalifiedinaccordancewitheitherSectionIXoftheASMECodeorAWSD1.1.381.6.23MaterialsTestinLinerplatematerial3/4in.thickoroverisimpacttestedat'OPor.belowasrequiredbytheASMECode.LinerplateorattachmentmaterialsubjectedtotransversetensilestressisvacuumdegassedandultrasonicallytestedinaccordancewithASMECode,Section,III,NB-2530andconformstotherequirementsofArticleNE-2000ofSectionIII.3.8.1.6.2.4NondestructiveExaminationofLinerPlateSeamWeldsNondestructiveexaminationoflinerplateweldsisperformedinaccordancewithRequlatoryGuide1.19,Revision1exceptthatforleakchasetesting,theleakchasepressureis115percentofdesiqnpressureinsteadof100percentofdesignpressure,andthepressureis'eldfor15minutesinsteadoftwohours.Thisexceptionisconsideredjustifiablesinceanysignificantleakage(i.e.anypressuredecayinexcessoftheratedaccuracyofthepressuregage)willbedeterminedwithin15minutes.SpotradiographicexaminationisperformedforallradiographablelinerplateseamveldsRadiographyisperformedinaccordancewithSectionV,Article3oftheASMECode.PersonnelperformingradiographicexaminationsarequalifiedinaccordancewiththeSocietyforNon-DestructiveTesting'sRecommendedPracticeNo.SNT-TC-1A,SupplementA,plusanyadditionalrequirementsoftheASMECode,SectionV.AcceptaricestandardsareinaccordancevithParaqraphUW-51,ofSectionVXII,Division1oftheASMECode.Thefirst10ftofweldforeachwelderandveldingpositionis100percentradioqraphed.Thereafter,one12in.longradiographistakenforeachwelderandveldpositionineachadditional50ftincrementofveld.Aminimumof2percentofalllinerseamweldsareexaminedbyradiography.For3.8-15 SSES-PSABnonradioqraphablewelds,thelengthofweldneededtomeetthe2percentrequirementisaccountedforbyadditionalradiographsofthatlenqthfortheaccessiblevelds.Wherenonradioqraphableveld~jointsareused,theentirelengthofweldismagneticparticleexamined.AllmagneticparticleexaminationsconformtotheASMECode,SectionV.PersonnelperforminqmagneticparticleexaminationsarequalifiedinaccordancewithSNT-TC-1AplusanyadditionalrequirementsoftheASMECode,SectionV.Acceptancestandardsareinaccordancewiththe.ASMECode,SectionVIIX,Division1,AppendixVI.Thevacuumboxsoapbubbletestisperformedonallaccessiblelinerplateweldseams.A5psiminimumpressuredifferentialismaintainedforaminimumtimeof20seconds.Theleakdetectingsolutioniscontinuouslyobservedforbubblesthat'ndicateleaks.Ifaleakisdetected,thedefectiveweldisrepairedandreinspectedbyvacuumboxtesting.Weldsthatareinaccessibleforvacuumboxtestingare100percentliquidpenetranttestedLiquidpenetrantexaminationsconformtotheASMECode,SectionV.Personnel,performingliquidpenetrantexaminationsarequalifiedinaccordancewithSNT-TC-1AplusanyadditionalrequirementsoftheASMECode,SectionV.~Acceptance.standardsconformtotheASMECode,SectionVIIX,Division1,AppendixVIII.Aleakchasesystemisprovidedonlinerplateseamveldslessthan1/2in.thickon'thebasefoundationslablinerplateandonthatportionofthesuppression'hamberwalllinerplatethatisbelowthesuppressionpoolwaterlevel.Thissystemwillallowperiodic'eaktestingofveldsthataresubmergedinthe'uppressionpool.~Italsoprovidesasecondaryleak-tightbarrieratthelinerplateveldseams.Followinginstallationoftheleakchasesystem,theleakchasesystemispressurizedto63psiq.Thepressureismonitoredbyvalvingoff"theairsupplyandmeasuringanypressuredecaywithapressuregage.Anypressuredecayinexcessoftheratedaccuracyofthepressureqaqewithin15minutesiscauseforrejectionofthatportionoftheli,nerplate'seamwellsandtheleakchasesystem.Anyleaksarerepaired,andfollovinqrepajr,theaffectedportionoft'eleakchasesy'temisretested.3.81.6.25~ualitContro1Qualitycontrolrequirementsarediscussedin-AppendixDandamendmentstothePSARfor.theconstructionphase.3..8-16 SSES-PSAB~38.16.2.6Erection1'oleranceeThespecifiederectiontolerancesforthelinerplateareasfollows:a)Theslopeofany10ftsectionofcylindricallinerplate,referredtotruevertical,doesnotexceed1:180.Thedeviationfromtheoreticalslopeofany10ftsectionofconicallinerplate,measuredwithinaverticalplane,doesnotexceed1:120.b)Thecylindricalshellisplumbwithin1/400oftheheight.Theverticalaxisoftheconicalshell,asestablishedatthetopandbottomoftheconicalsection,isplumbwithin1/400oftheheight.c)Theradialdimensiontoanypointonthelinerplatedoesnotvaryfromthedesignradiusbymorethan1in.,andatanygivenelevationthemaximumdiameterminustheminimumdiametershallnotexceed4in.,exceptthatthereisaradialtoleranceofa2in.forlocalout-of-roundness.Radialmeasurementsaretakenat24locationsspacedequallyaroundthecontainmentatanyelevation.Localout-of-roundnesstoleranceisusedfornotmorethantwomeasurementsatanygivenelevationandisnotusedatadjacentmeasurements.Platesjoinedbybuttweldingarematchedaccuratelyandretainedinpositionduringtheweldingoperation.MisalignmentincompletedjointsshallnotexceedtherequirementsofParagraphUM-33ofSectionVXII,Division1oftheASMBCode.e)Thelevelnessofanchoragesplacedinthebasefoundationslabiswithinx1/4in.ofthetheoreticalelevationovertheentirearea,plusalocaltoleranceofa1/8in.inany30.ftlength.ActualdeviationsfromtheabovewerehandledinaccordancewiththeprocedurescoveredinSubsection3.8.1.6.2.5.REV.18/7838-17 SSES-FSARTestinandIn-eviceSuveillaaceBeuements3.8.171PeoeationalTetin38.17.1.1StructualAcetanceTestThissubsectionbrieflydescribestheUnit1containmentstructuralacceptancetest.Poramoredetaileddescription,refertothe"SSES,Unit1ContainmentStructure,StructuralIntegrityTestReport>TheUnit1containmentstructuralacceptancetestwasperformedaftercompletionofthecontainmentstructurebutpriortoinstallationofpipingandequipment.Thereactorvesselwasinstalledatthetimeofthetestandthesuppressionchamberwasfilledwithwatertothenormallevel.TheUnit2containmentstructuralacceptancetestwillbeperformedaftercompletionofthecontainmentincludingallpipingandequipment.TheUnit1testwasaprototypetestand,therefore,internalconcretestrainsweremeasured.TheUnit2testwillbeanon-prototypetestand,therefore,internalconcretestrainswillnotbemeasured.TheUnit1testwasdoneandtheUnit2testwillbedoneinaccordancewithRegulatoryGuide1.18'evision1,exceptforthefollowinq:a)Acontinuousincreaseincontainmentpressure,ratherthanincrementalpressureincreases,wasused.Thisisconsideredjustifiablesincedataobservationsateachpressurelevelweremaderapidly.Rapidlyisdefinedasrequiringatimeintervalforthedatapointsamplesufficientlyshortsothatthechangeinpressureduringtheobservationwouldcauseachangeinstructuralresponseoflessthanfivepercentofthetotalanticipatedchange.Also,themaximumrateofpressurizationwaslimitedto3psi/hrtoensurethatthestructurewouldrespondtothepressureloadwithoutanytimelaq.b)Thedistributionofmeasuringpointsformonitoringradialdeflectionswasselectedsothattheas-builtconditioncouldbeconsideredintheassessmentofthegeneralshellresponse.Ingeneral,thelocationsofmeasurinqpointsforradialdeflectionswasinagreementwithRequlatoryGuide1.18,PigureB,exceptpoint1.Point1wasprovidedatadistanceoftwotimesthewallthickness(12ft)abovethebasemat.Thisvariationwasmadetoproperlypredict,thecontainmentbehavior38-18 SSES-FSARsearthebasemattowallconnection.Zfpoint1wasprovidedataheightofthreetimesthewallthickness(18ft),itwouldbelocatedclosetopoint2(suppressionchamberwallmidheightis26ft)andwouldnotyieldanyadditionalbehaviorpatternofthecontainment.c)Someofthestraingageinstrumentationwasfartherfromtheequipmenthatch<han0.5timesthewallthickness(3ft)asrequiredbyRegulatoryGuide1.18,ParagraphC.5.ThiswasrequiredinordertoclearreinforcementandisconsideredjustifiablesincetheintentoftheRegulatoryGuide,ie,todemonstratethestructuralintegrityofthecontainment,wasmet.Tanqentialdeflectionsofthecontainmentwalladjacenttotheequipmenthatchwerenotmeasuredbecausethepredictedvaluesoftangentialdeflectionweresmallanditwouldhavebeendifficulttoobtainfixedreferencepointsformeasurementof'localtangentialdeflections.e)Triaxialconcretestrainmeasurementswerenotusedtoevaluatetheconcretestraindistributionbecausethemeasuredstrainvaluescouldnotbeproperlyinterpreted.Thedifficultyininterpretingthedatawasduetothelargesizeofthestraingagesrelativetothewallthickness.Theconcretestainwasevaluatedusinglinearstrainmeasurementsinthemeridionalandhoopdirections.f)Humidityinsidethecontainmentwasnotmeasuredduringthetestsinceitdoesnotaffecttheresponseofthestructure.Thecontainmentwaspneumaticallypressurizedto1.15timesthedesignaccidentpressureasshownonFigure3.8-34.Thedrywellfloorwastestedto1.15timesthedesiqndownwarddifferentialpressure.Structuralmeasurementsweretakenatpeakpressureandpeakdifferentialpressureaswellasatintermediatestages.Measuredstructuraldataincludethefollowing:1)Radialandverticaldeflectionsofthecontainment2)Internalconcretestrains3)Externalconcretesurfacecracks.Theabovedataweremeasuredforthecontainmentandforthelarqestopeningwhicharethetwoequipmenthatches.Sincethe38-19 SSES-FSARareasofthecontainmentwallaroundtheequipmenthatchesareofidenticaldesign,onlyoneofthehatcheswasinstrumented.SeeFigures-.3.8-35and3.8-36forthelocationsofdeflectionmeasurinqdevicesforthecontainmentandtheequipmenthatchrespectively.SeeFigures3.8-37and3.8-38forthelocationofstraingageinstrumentationforthecontainmentandtheequipmenthatchrespectively.Straingageswerelocatedwithinthewallsandslabsattherebarlayersinthedirectionofthemainreinforcement.Aninspectionofexternalconcretesurfacecrackswasperformedatsixlocations.Eachcrackinspectionareawasatleast40sqft.Figure3.8-39showsthelocationsofthecrackmappingareas.Deflectionsandstrainswerecalculatedpriortothetest.A15percentmarginwasaddedtothecalculatedvaluesofdeflectionandstraintoarriveatthepredictedvalues.TheFLHELcomputerproqram(Appendix3.8A)wasusedtocalculatethedeflectionsandstrainsforthecontainment.Theprogramperformsa.finiteelement,staticanalysisofaxisymmetricstructureswithaxisymmetricloadinq.Specialmaterialpropertiesthatcanbeconsideredincludebilinearityincompressionandbilinearityorcrackingintension.Figure3.8-40showsaverticalsectionthrouqhthemodel.PointsalongBoundaryAarepreventedfrommovingintheverticaldirectionandpointsalongBoundaryBarepreventedfrommovingintheradialdirectionConcrete,reinforcingsteel,andlinerplatematerialsareincludedinthemodel.TheSUPERBcomputerprogram(Appendix3.8A)wasusedtocalculatethepredicteddeflectionsandstrainsfortheequipmenthatch.Fiqure3.8-41showstheanalyticalmodeloftheequipmenthatch.Shellelementsareusedtorepresentthecontainmentwallaroundtheequipmenthatchandthedrywellfloor.PointsalongBoundaryAareallowedtomovewithintheX-2plane,andBoundaryBwithintheX-Yplane.PointsalongBoundaryCareprevehtedfrommovinqinthehoopdirection,andpointsalongBoundaryDarepreventedfrommovingintheradialdirectionNodalforces,moments,andshearsareappliedtoBoundaryEtoaccountforthereactionloadsfromtheupperportionofthedrywellwallDeflectionsandstrainsmeasuredduringthe'.testwerelessthanoregualtothepredictedvaluesatallcriticallocations.Thus,thedesignofthecontainmentprovidesanadequatesafetymarginagainstinternalpressure.Figure3.8-42showsacomparisonbetweenmeasuredandpredicteddeflectionsforthecontainmentatpeakpressure.Fiqure3.8-43showsacomparisonbetweenmeasuredandpredicteddeflectionsfortheeguipmenthatch-atpeakpressure.Themaximumstrainoccursatmidheightofthesuppressionchamberwall.Figures3.8-44through3.8-48comparemeasuredandpredictedstrainsatthislocation.Verylittleconcretecrackingwasobserved.Figure38-49showsthecracksmappedatmidheiqhtofthedrywellwallwherethegreatestamountofconcretesurfacecrackswereobserved.38-20 SSBS-FSAR3.8.1.7.1.2LeakRateTestinPreoperationalleakratetestingisdiscussedinSubsection62.63.8.1.72In-serviceLeakRateTestinIn-serviceleakratetestingisdiscussedinSubsection6.2.6.3S2ASHECLASSMCSTEELCOMPONENTSOPTHECONTAINMENTThissubsectionpertainstotheASMEClassHCsteelcomponentsoftheconcretecontainmentthatformaportionofthecontainmentpressureboundaryandarenotbackedbystructuralconcrete.Thesecomponentsincludethedrywellheadassembly,theequipmenthatchesandpersonnellock,thesuppressionchamberaccesshatches,theCRDremovalhatch,andpipingandelectricalpenetrations.38.2.1Des~critionoftheASIDEClassNCComonents3.8211orwellHeadAssem~blThedryvellheadprovidesaremovableclosureatthetopofthecontainmentforreactoraccessdurinqtherefuelingoperation.Thedryvellheadassemblyconsistsofa2:1hemi-ellipsoidalheadandacylindricalloverflange.ThelowerflangeissupportedonthetopofthedryvellwallasshownonFigure3.8-9.Theheadismadeof1-1/2in.thickplateandissecuredwith802-3/4in.diameterboltsatthe4in.thickmating.flange.Doublerubberqasketsareprovidedatthehead-to-lowerflangeconnectiontopermitlocalleakaqetestingofthegaskets.Theinsidediameter(ID)ofthedryvellheadatthematingflangeis37ft7-1/2in.A24in.diameterdouble-qasketedmanholeisprovidedinthedrywellhead.Figure3.8-50showsdetailsofthedrywellheadassembly.3.8-21 SSES-FSAR3.8.2.12EquipmentHatchesandPersonnelLockTwo12ft2in.IDequipmenthatchesarefurnishedinthedrywellwalltopermitthetransferofequipmentandcomponentsintoandoutofthedrywell.Onehatchisfurnishedwithadouble-gasketedflangeandabolteddisheddoor.Theotherhatchisfurnishedwithadouble-gasketedflangeandaboltedpersonnellock.Thepersonnellockisan8ft7in.IDcylindricalpressurevesselwithinnerandouterflatbulkheads.Interlocked,double-gasketeddoorsarefurnishedineachbulkhead.Aquick-acting,equalizingvalveventsthepersonnellocktothedrywelltoequalizethepressureinthetwosystemswhenthedoorsareopenedandthenclosed.Thetwodoorsinthepersonnellockaremechanicallyinterlockedtopreventthemfrombeingopenedsimultaneouslyandtoensurethatonedoorisclosedbeforetheopposite,doorcanbeopened.ThepersonnellockhasanASIDECodeN-stamp.SeeFigures3.8-51and3.8-52fordetailsoftheequipmenthatchandtheequipmenthatchwithpersonnellockrespectively.3.8.2.1.3SuppressionChamberAccessHatchesTwo6ft0in.IDaccesshatchesarefurnishedinthesuppressionchamberwalltopermitpersonnelaccessandthetransferofequipmentandcomponentsintoandoutofthesuppressionchamber.Eachhatchisfurnishedwithadouble-gasketedflangeandaboltedflatcover.SeeFigure3.8-53fordetailsofthesuppressionchamberaccesshatches.3.8.2.1.4CRDRemovalHatchOne3ft0in.IDCRDremovalhatchisfurnishedinthedrywellwalltopermittransferofthecontrolroddriveassembliesintoandoutofthedrywell.Thehatchisfurnishedwithadouble-gasketedflangeandaboltedflatcover.SeeFigure3.8-54fordetailsoftheCRDremovalhatch.3.8.2.1.5PenetrationsTheentirelengthofanypenetrationsleeveisconsideredanNCcomponentand,assuch,isdesignedinaccordancewithSubsectionNEoftheASIDEBSPVCode,SectionIII.SeeSubsection3.8.1.1.3.3foradescriptionofthecontainmentpenetrations.Figures3.8-21and3.8-22showdetailsoftypicalpipeandelectricalpenetratiopsrespectively.REV,18/7838-22 SSES-PSAB3.8-2+2~alicableCodesStandardsand~seciticationsThecodes,standards,andspecificationsusedinthedesignandconstructionofthecontainmentarelistedinTable3.8-1andgivenareferencenumberThereferencenumbersfortheASIDEClassMCcomponentsare7C,18,lJ,and1K.Table3.8-3liststheloadingcombinationsusedforthedesignandanalysisoftheASMEClassMCcomponentsTheloadingcombinationscomplywithRegulatoryGuide1.57.TheloadingcombinationsshowninTable3.8-3donotincludethehydrodynamicloads.TheASMEClassMCcomponentshavealsobeenanalyzedforhydrodynamicloadsfrommainsteamsafety/reliefvalvedischargeandLOCA.Foradefinitionofloadsandloadingcombinationsincludinghydrodynamicloads,refertoGE's"MarkIIContainmentDynamicForcingFunctionsInformationReport'~(NEDO-21061),andthe"SusquehannaPlantDesignAssessmentReport"KLJ'oradescriptionofdeadandliveload,seeSubsections38.1.321and381.322respectively.U.TheHCcomponentsaredesignedforacontainmentdesignbasisaccidentinternalpressureof53psig.Thepersonnellockisalsodesignedforadesignbasisaccidentinternalpressureof53psig.REV4I1/7938-23 SSES-FSAR38.2.3~3ExternalPressureLoadTheHCcomponentsaredesignedforacontainmentexternalpressureof5psidifferential38.23.24ThermalLoadsTheoperatingandpostulateddesignaccidenttemperaturesfortheMCcomponentsareasfollows:Te~merature$0F)ConditionOperatingDesignAccidentDrwell135340SuppressionChamber90220Thermalcyclesusedindesignareasfollows:a)Startupandshutdown-'00cycles,105~Frangeb)DesignBasisAccident-1cycle,220~Frange.3.823.25SeismicLoadsTheNCcomponentsaredesignedforaccelerationvalues,whicharecalculatedusingmethodsdescribedinBechtelTopicalReportBC-TOP-4-A(Ref2KofTable3.8-1).Thefollowingaccelerationvaluesareusedforthedesignofthedrywellheadassembly:a)OperatingBasisEarthquake-1.0ghorizontal,10.4gverticalb)SafeShutdownEarthquake-1.5ghorizontal,10.6gverticalThefollowingaccelerationvaluesareusedforthedesignofallotherclassllCcomponents:a)OperatingBasisEarthquake-0.4ghorizontal,a0.3gverticalREV4,1/7938-24 SSES-FSARb)SafeShutdownEarthquake-0.6ghorizontal,a0.4qvertical3.8.2326NissileandPieRutureLoadsThedrywellheadassemblyisdesignedforalocalpiperuptureloadof48,000lbuniformlydistributedoveracircularareaof0.56sqftatanylocationonthedrywellhead.Thisloadisduetothepostulatedruptureofthe6indiameterreactorvesselheadspraypipe,whichproducesthelargestloadonthedrywellhead.Theequipmenthatchesaredesignedforapiperuptureloadof1,200,000lbuniformlydistributedoveracircularareaof12ftdiameter.TheCRDremovalhatchisdesignedforapiperuptureloadof160,000lbuniformlydistributedoveracircularareaof3ftdiameter.TheloadsontheeguipmenthatchesandtheCRDremovalhatchareduetot'eruptureofa28in.diameterrecirculationloopoutletpipe,whichproducesthelargestloadonthecomponents.Theabovevaluesofstatic.loadincludeanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.SeeSection3.6forafurtherdiscussionofpiperuptureloads.38.2.4DesinandAnalsisProcedures38.2.41DrwellHeadAssemb~lTheanalysisofthedrywellheadassemblyisdoneusingthethinshellcomputerprogramE0781(Appendix3.8A).Thisprogram.calculatesthestressesanddisplacementsinthin-walled,elasticshellsofrevolutionwhensubjectedtostaticedge,surface,and/ortemperatureloadswithanarbitrarydistributionoverthesurfaceoftheshell.Thedrywellheadassemblyisdividedintotwoanalyticalmodels.Figure3.8-55showsthedrywellheadmodelandthelowerflangemodel.,Displacementcompatibilityofthetwomodelsatthematingflangesurfaceismaintainedintheanalysis.Boundaryconditionsareimposedontheanalyticalmodelsbyspecifyingboundaryforcesordisplacements.ReferringtoFigure3.8-55,thetranslationandrotationofthetopofthedrywellwallareimposedasboundaryconditionstoBoundaryABoundaryforces38-25 SSES-FSARappliedtoBoundaryBarecalculatedinaccordancewiththinshelltheory.3.8.2.4.2AccessHatchesAccesshatches,includingtheequipmenthatches,personnellock,suppressionchamberaccesshatchesandCRDremovalhatch,aredesignedaspressureretainingcomponents.TheportionsofthesleevesnotbackedbyconcretearedesignedandanalyzedaccordinqtotheprovisionsofSectionIII,SubsectionNEoftheASIDEBGPVCode.Atthe)unctionofthehatchcovertotheflangeonthesleeve,wherelocalbendingandsecondarystressesoccur,thecomputerprogramE0119(Appendix3.8A)isusedforanalysis.Thisprogramisalsousedfortheanalysisoftheflatheadcovers.3824.3PieandElectricalPenetrationsFornuclearClassIfluedheadpenetrations,thestresscalculationsareperformedaccordingtotherequirementsofArticleNB-3200oftheASIDEBSPVCode,SectionIIIfordesign,normalandupset,emergency,andfaultedconditions.NuclearClassIIfluedheadpenetrationsaredesignedforthemostsevereconditionwhichisthefaultedcondition.Thestresscalculationsareperformedusingacceptablesimplifiedequationsorfiniteelementcomputerproqram.ForClassIEelectricalcablepenetrations,theproceduresusedindesignandanalysisareincompliancewithSubsectionNEoftheASl1ECode,SectionIII,Division1Thestresscalculations'wereperformedusingacceptablesimplifiedeguationsshowninAppendixA-5000oftheASIDECode,SectionIII.38.2.5StructuralAccetanceCriteriaTable3.8-3liststheallowablestresscriteriausedforthedesignandanalysisoftheASNEClassNCcomponents.ThecriteriacomplywithRegulatoryGuide1.57exceptthattheCodeaddendum{Summer1973)applicabletotheRegulatoryGuideissubsequenttotheCodeaddendumusedforthedesignoftheNCcomponents(Summer1972).38-26 SSES-PSAR3.82.6Materials,QualityControl,andSpecialConstructionTechniues382.61Materials382.61.1GeneralAllcarbonsteelmaterialsconformtotherequirementsofArticleNE-2000,Materials,SectionIIIoftheASMEBGPVCode,1971Edition,withaddendathroughSummer1972.StainlesssteelmaterialsfortheCRDsupplyand,returnpipepenetrationsconformtotherequirementsofSubsectionNCofSectionIIIoftheASMEBGPVCode,1971Edition,withaddendathroughSummer1972.38.2.6.1.2DrwellHeadAssemblItemSecificationDrywellheadandlowerflangeSA-516,Grade70,normalizedBoltsNutsSA-320,Grade143SA-194,Grade73.82.613AccessHatches,ItemSleeveandcoverBoltsNutsSA-516,Grade60or70,normalizedSA-193,GradeB7SA-194,Grade738-27 SSES-FSAR3826.14PenetrationsItemSecificationCarbonsteelsleevesSA-333,GradeIor6orSA-516,Grade60or70normalizedCarbonsteelcapsforsparepenetrationsSA-234,GradeWPBStainlesssteelsleevesforCRDsupplyandreturnpenetrationsSA-312,GradeTP304StainlesssteelSA-182,GradeF304fittingsforCRDsupplyand,returnpenetrationsR3.8.2.62~ReldinWeldinqconformstothereguirementsofSubsectionNE,SectionIII,ASMEBGPVCode,exceptallweldingoftheCHDsupplyandreturnpenetrationsconformstotherequirementsofSubsectionNCofSectionIIXoftheASMEBGPVCode.Allpressureboundaryweldsarefullpenetrationweldsofdoublewelded,'beveltypeWeldersandweldproceduresarequalifiedinaccordancewitheitherSectionIXoftheASMECodeorAWSDl.lPenetrations,accesshatches,andthedrywellheadflangearepostweldheattreatedinaccordancewithArticleNE-4000ofSectionXIIoftheASMECode.Penetrationsarepreassembliedintothelinerplatesectionsandpostweldheattreatedascompletesubassemblies.3.8.2.63MaterialsTes~tinImpacttestingasrequiredbytheASMECodeisperformedatODForbelow38-28' SSES-PSAB3.82.6.4NondestructiveExaminationofMeldsAllweldsbetweenpenetrationsandlinerplate,accesshatchesandlinerplate,andpressureretainingveldsnotbackedbyconcreteareexaminedinaccordancewithArticleNE-5000ofSection.IIIoftheASNECode.NondestructiveexaminationcomplieswithRegulatoryGuide1.19.38.2.65ualitControlQualitycontrolrequirements,fortheconstructionphasearediscussedinAppendixDandamendmentstothePSAR.38.2.66ErectionTolerancesThespecifiederectiontolerancesforASIDEClassNCsteelcomponentsofthecontainmentareasfollovs:a)Suppressionchamberpenetrationsarevithin1in.oftheirdesignelevationsandcircumferentiallocations.b)Drywellpenetrationsarewithin1inoftheirdesigncircumferentiallocations.Criticalpenetrations,suchasmainsteam,feedwater,corespray,etc,arevithin1in.oftheirdesignelevations.Allotherdryvellpenetrationsvaryfromwithin1in.ofdesignelevationsforpenetrationsnearthebaseofthedryvellvalitowithin2in.ofdesignelevationsforpenetrationsnearthetopofthedryvellwall.c)Alignmentsofpenetrationsarewithin1degreeofthedesignalignments.d)Theaverageelevationofthematinqflangebetweenthedryvellheadandthelowerflangeiswithin3inofthedesignelevation.Thematingflangeiswithin1/2in.oflevel.ActualdeviationsfromtheabovewerehandledinaccordancewithprocedurescoveredinSubsection38.26.5.38-29 SSES-PSAR3.82-7TestinandIn-serviceInsectionR~enireaents382.71Preperational.Testin3.827.1.1StructuralAccetanceTestThedrywellheadassembly,eguipmenthatches,suppressionchamberaccesshatches,.CBDremovalhatch,andpipeandelectricalpenetrationsarepneumaticallytestedto115timesthedesignaccidentpressureduringthecontainmentstructuralacceptancetest.SeeSubsection3.8.1.7.1.1foradescriptionofthestructuralacceptancetests.Thepersonnellockispneumaticalllytestedto1.15timesthedesignaccidentpressure,followingshopfabricationandfollowinqfielderection,toverifyitsstructuralintegrity.TheCRDsupplyandreturnpipepenetrationsarehydrotestedto1.5timesthedesiqnpressureof1510psiiJfollowingshopfabricationinaccordancewiththeASMECode,SectionIII,SubsectionNC.38.27-1.2LeakRateTe~stinLeaktiqhtnessofthecontainmentClassMCcomponentsthatarepressureretainingisverifiedduringtheintegratedleakratetest.SeeSubsection62.6foradescriptionofthecontainmentintegratedleakratetest.Thepersonnellockisleakratetestedto100percentofthedesignaccidentpressurefollowingshopfabricationandfollowingfielderectionThemaximumallowableleakrateis0.2percentoftheweightofthecontainedairin24hrwhenmeasuredatambienttemperatureandtestpressure.Xn-serviceleakratetestinqisdiscussedinSubsection6.26.38-30 SSES-FSAR383CONTAXNMEHTINTERNALSTRUCTURES383.1DescritionoftheInternalStructuresTheinternalstructuresofthecontainmentperformthefollowingmajorfunctions:a)Supportand.shieldthereactorvesselb)Supportpipinqandequipmentc)Formthepressuresuppressionboundary.Thecontainmentinternalstructuresareconstructedofreinforcedconcreteandstructuralsteel.Thecontainmentinternalstructuresincludethefollowinq:a)Drywellfloorb)Reactorpedestalc)Reactorshieldwalld)Suppressionchambercolumnse)Drywellplatformsf)Seismictrussq}ReactorsteamsupplysystemsupportsFiqures3.8-1throuqh3.8-8showanoverviewofthecontainmentincludinqtheinternalstructures.3.8.31.1DrwellFloorThedrywellfloorservesasabarrierbetweenthedrywellandsuppressionchamber.Itisareinforcedconcretecircularslabwithanoutsidediameterof88ft0inandathicknessof3ft6in.SeePiqure3.8-56fordetailsofthedrywellfloorreinforcement.Thedrywellfloorissupportedbythereactorpedestal,thecontainmentwall,and12steelcolumnsTheconnectionofthedrywellfloortothecontainmentwall'isshownonFigure3.8-10.Thedrywellfloorispenetratedby8724-in.diameterventpipes.Additionalreinforcementisfurnishedatventpipepenetrations.SeeSubsection6.2.1foradescriptionoftheventpipes.38-31 SSES-FSARA1/4in.thickcarbonsteellinerplateisprovidedontopofthedrywellfloorandanchoredtoit.ThelinerplatepreventsbypassoftheventpipesduringLOCA.RefertoSubsection6.2.1foradescriptionofthebypassleakagerequirementsFigure3.8-57showsthedrywellfloorlinerplateandanchoragesystem.3.8.312ReactorPedestalThereactorpedestalisa82fthigh,uprightcylindricalreinforcedconcreteshellthatrestsonthecontainmentbasefoundationslabandsupportsthedrywellfloor,reactorvessel,andreactorshieldwallaswellasdrywellplatforms,piperestraints,andrecirculationpumps.TheconnectionofthereactorpedestaltothebasefoundationslabisshownonFigure3.8-13.Thereactorpedestalbelowthedrywellfloorhasa19ft7in.insidediameteranda5ft1in.wallthicknessThereactorpedestalabovethedrywellfloorhasa20ft3in.insidediameteranda4ft5in.wallthickness.Thethicknessatthetopofthepedestalisincreasedto5ft4in.,whereitsupportsthereactorvesselandthereactorshieldwall.SeeFigures3.8-58and3.8-59fordetailsofreinforcement.Openingsareprovidedinthereactorpedestaltopermitflowofairandsuppressionpoolwaterintoandoutofthepedestalcavity.Additionalreinforcementisfurnishedatopenings.A1/4in.thickcarbonsteelformplateisprovidedontheinsideandoutsidesurfacesofthereactorpedestalbelowthedrywellfloorThisplateactsasaconcreteformduringconstructionandpreservesthewaterqualityofthesuppressionpoolbypreventingtheleachingofchemicalsfromthereactorpedestalconcreteintothesuppressionpool.3.831.3ReactorShieldMallThereactorshieldwallisa49fthighuprightcylindricalshellwhichrestsonthetopofthereactorpedestalandprovidesprimaryradiation.shieldinqaswellassupportsforpiperestraintsanddrywellplatforms.Thereactorshieldwallis.constructedofinnerandoutercarbonsteelplatesand.unreinforcedconcretebetweenthetwoplates.SeeFigure3.8-60fordetailsofthereactorshieldwall.Thereactorshieldwallhasa25ft7in.insidediameteranda1ft9in.wallthickness.Theoutersteelplateis1-1/2in.thickandisdesignedtowithstandanylocalpiperestraintanddrywellplatformattachmentloads.Theinnersteelplateis1/2in.thickandisdesignedtoactwiththeouterplatetowithstandlocalandnonlocalizedloads.Theinnerandouterplatesareconnectedwithsteelbarsspacedon2ft6in.centers.Theannularspacebetweentheinnerandouterplatesisfilledwith38-32 SSES-FSARunreinforcedconcrete.Theconcreteisusedforradiationshieldingonlyandisnotrelieduponasastructuralelement.Normaldensityconcreteisusedinthetopandbottomportionsofthereactorshieldwall.Highdensityconcreteisusedatthemidheightofthereactorshieldwalloppositethereactorcoreforadditionalradiationshielding.Thereactorshieldwallisconnectedtothetopofthereactorpedestalby482-in.diameter,highstrengthanchorboltsasshownonFigure3.8-61.Theseismictrussandseismicstabilizer,whichprovidelateralsupporttothereactorvessel,areattachedtothetopofthereactorshieldwall.Penetrationswithhingeddoorsorremovableplugsareprovidedinthereactorshieldwalltofacilitatepipingconnectionstothereactorvesselandtoprovideaccessforin-serviceinspection."Thewallthicknessesofpenetrationsleevesare'argeenoughtopreventlocalstressconcentrationsintheinnerandouterplates.3-8-3.1.4SuppressionChamberColumnsTwelvehollowsteelpipecolumnsarefurnishedtosupportthedrywellfloor.Eachcolumnis52ft6ix.'ong,42in.outsidediameter,witha1-1/4in.wallthicknessasshownonFigure3.8-62.Thecolumnsareconnectedtothebasefoundationslabatthebottomandtothedrywellflooratthetopwithembeddedanchorbolts.Figure3.8-14showstheconnection'tothebasefoundationslab.3-8-315DrywellPlatformsPlatformsarefurnishedatfiveelevationsinthedrywelltoprovideaccessandsupporttoelectricalandmechanicalcorn'ponents.Theplatformsconsistofstructuralsteel'ramingwithsteelgratingBuiltupboxshapesareusedforbeamsthatmustresistbiaxialbending.Beamsthatspanbetweenthepedestalorshieldandthe,containmentwallareprovidedwithslidingconnectionsatoneend.Thus,nothermalaxialloadsaredevelopedinthebeamsandnoradialloadsareimposedon.thepedestal,shield,orcontainmentwall.SeeFigures3.8-63through38-67fordetailsofthedrywellplatforms.3.8.31.6SeismicTrussandSeismicStabilizerTheseismictrussandtheseismicstabilizerprovidelateralsupportforthereactorvesselduringearthquakeandpiperuptureloading.Theseismictrussspansbetweenthecontainmentwallandthereactorshieldwall,andtheseismicstabilizerspans3;8-33 'SES-FSARbetweenthereactorshieldwallandthereactorvessel.Foradescriptionoftheseismicstabilizer,seeSection3.9.Theseismictrussisshapedlikeaneight-pointedstarandisfabricatedofsteelplates.SeeFigure3.8-68fordetailsoftheseismictruss.Figure3.8-27showstheconnectionoftheseismictrusstothecontainmentwall.Thisconnectionisdesignedtoallowverticalandradialmovementoftheseismictrussrelativetothecontainmentwallbuttopreventtangentialmovement.'8317ReactorStea~Suppl~SystemSuPPortsThesteamsupplysystempipingandpumpsaresupportedbyhangers,whichinturnaresupportedbythereactorpedestal,reactorshield,anddrywellplatforms.'descriptionofthesesupportsisgiveninSection3.9.Inaddition,thereactorvesselitselfissupportedonthereactorpedestalby120,3-1/4in.diameter,highstrengthanchorboltsasshownonFigure3.8-61.ThereactorvesselissupportedlaterallybytheseismictrussandseismicstabilizerasdiscussedinSubsection383.163.8.3.2APPlicableCodes~StandardsandSPecificationsThecodes,standards,andspecificationsusedinthedesignandconstructionofthecontainmentinternalstructuresarelistedinTable3.8-1andgivenareferencenumber.Thereferencenumbersforthedrywellfloorare10A,12A,1C,2C,3C,6C,and2K.Thereferencenumbersforthedrywellfloorlinerplateandanchoragesare4C,18,lJ,andlK.IIThereferericenumbersforthereactorpedestalare7A,10A,12A,1C,2C,3C,6C,and2K.Thereferencenumbersforthereactorshieldwallare1B,6C,1H,and2K.TheThearereferencenumbersforthesuppressionchambercolumnsare1H,3H,1J,and2K.referencenumbersforthedrywellplatformsandseismictruss1B,1H,2H,3Hand2K.REV.ll,7/7938-34 SSES-FSAR3.8.3.31GeneralTables38-2,-3.8-2aand3.8-4through3.8-7listthe.loadingcombinations-.used.forthedesignandanalysisofthecontainmentinternalstructures.Theloading.combinationsshowninthesetablesdonot'includehydrodynamicloads.Theinternalstructureshavealsobeenanalyzedforhydrodynamicloadsfrommainsteamsafety/reliefvalvedischargeandLOCA.Foradefinitionofloadsandloading,combinationsincludinghydrodynamicloads,refertoGE's'3MarkXIContainmentDynamicForcingFunctionsInformationReport"(NEDO-21061)andthe"SusquehannaPlantDesignAssessmentReport".3B.33.2~nrwellFloorandReactorPedestalTable3.8-2liststheloadingcombinationsusedforthedesignofthedrywellfloor.TheloadingcombinationsareincomplianceIwiththosegiveninReference12AofTable3.8-1.Table3.8-2aliststheloadingcombinationsusedforthedesignofthereactorpedestal.Theloadingcombina'tionsareincompliancewiththosegiveninSRPSection3.8.3.II.3.38332.1DescriptionofLoadsDeadLoa~dLiveLoa~d'ndSeismicLoadsForadescriptionofdeadload,liveload,andseismicloads,seeSubsections3.8.1.3.2.1,3.8.1.3.2.2and3.8.1.3.2.6respectively.~DesinBasistccident.PressureLoadThedrywellfloorandthereactorpedestalaredesignedforthefollowingpressures:a)Maximumpressure:53psiginthedrywellandthesuppressionchamberb)Maximumdifferentialpressure:28psig(53psiginthedrywelland25psiginthesuppressionchamber).3.8-S5REV.11,7/79 'SSES-FSAR'hermalLoadsThetemperaturegradientsthroughthedrywellfloorandthereactor.pedestalareshownonFigure3.8-69fortheoperatingandthepostulateddesignaccidentcondition.The.designaccidenttemperaturegradientsshownonFigure3.8-69occurfiveminutesafterLOCA.Thesetransienttemperaturegradientsareusedforthedesiqnofthedrywellfloorandthereactorpedestalbecausetheyproducethelargeststressesinthestructure.Thermaleffectsanticipatedatthetimeofthestructuralacceptancetestare.insignificantsincechangesintemperatureinsideandoutsidethecontainmentduringthetestwillbesmall.Nissileand~PieRutureLoadsThedrywellfloorandthereactorpedestalaredesignedtowithstandthemissileandpiperuptureloadsduetoapostulatedruptureofa28in.diameterrecirculationlooppipe,whichproducesthelargestloadsonthestructuresTheseloadsincludetheeffectsofjetimpingement,pipewhip,andpipereaction.Anequivalentstaticloadof1030kipsisconsideredThisloadincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.SeeSection3.6forafurtherdiscussionofpostulatedpiperuptureloads.3.833.3ReactorShieldi!lailThereactorshieldwallisdesignedusingtheelasticworking.stressdesiqnmethodsofAISC,<<SpecificationfortheDesign@Fabrication,andErectionofStructuralSteelforBuildings",dated1969,PartITable3.8-4liststheloadcombinationusedforthedesignofthereactorshieldwall.Sincethisloadingconditioncombinesthedesignbasisaccidentloadswiththemaximumseismicloads,itisthemostsevereloadingconditionandother,lesssevereloadcombinationsarenotconsidered.38.3.33.1DescrytionofLoadsDeadLoa~dLiveLoad~andSeismicLoads-Foradescriptionofdeadload,liveload,andseismicloads,seeSubsections3.8.1.3.2.1,3.8.1.3.2.2and3.8.13.26respectively.38-36 SSES-FSARDesinBasisAccidentPressureLoadThereactorshieldwallisdesignedforinternalpressureduetoapostulatedpiperuptureattheconnectionofthepipetothereactorvesselnozzlesafeend.Thefollowingtwopressureconditionsareconsidered:a)Maximumunbalancedpressure:pressureconditionshortlyafterpipebreak,whichproducesthelargestlateralloadonthereactorshieldwall,asshowninFigure6A-3b.b)Maximumuniformpressure:70psiginternalpressure.ThermalLoadsThetemperaturegradientsthroughthereactorshieldwallareshownonFigure3.8-70fortheoperatingandthepostulateddesignaccidentconditions.ThedesignaccidenttemperaturegradientshownonFigure3.8-70occursfiveminutesafterLOCA.Thistransienttemperaturegradientisusedforthedesignofthereactorshieldwallsinceitproducesthelargeststressesinthestructure.MissileandPieRutureLoadsThereactorshieldwallisdesignedtowithstandthemissileandpiperuptureloadsduetoapostulatedruptureofanyhighenergypipethatpenetratesthereactorshieldwallandconnectstothereactorvessel,suchasrecirculationandfeedwaterpipes.Theseloadsincludetheeffectsofgetimpingement,pipewhip,andpipereaction.Equivalentstaticloadsareconsidered,whichincludeanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.SeeSection3.6forafurtherdiscussionofpostulatedpiperuptureloads.3.8.3.3.4SuressionChamberColumnsThesuppressionchambercolumnsaredesignedusingtheplasticdesignmethodsofAISC,"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelfor'uildingsdated1969,Part2.Table3.8-5liststheloadcombinationsusedforthedesignofthesuppressionchambercolumns.ThecolumnsaredesignedtoresistthereactionloadsfromthedrywellfloorfortheLOCAconditions.Subsection3.8.3.3.2includesadescriptionoftheloadsforthedrywellfloor.Theabnormalloadingconditionsgovernthedesignsincetheyincludethedesignbasisaccidentpressureload,whichisthecriticalloadforcolumns.Rev.25,7/813.8-37 YSSES-FSAR3.8.3.35DrywellPlatformsThedrywellplatformsaredesigned.usingworkingstressdesignmethodsexceptforthepiperestraintssupportedontheplatforms.Thepiperestraintsaredesignedtoundergolocalinelasticdeformationsduetopostulatedpiperuptureloads.However,thereisnolossoffunctionofthepiperestraintssincetheywillrestrainanypostulatedpipewhip.Thebuilt-up-boxbeamsthatsupportthepiperestraintsaredesignedtowithstandallpostulatedpiperuptureloadsDesignaccidentpressureandoperatinganddesignaccidentthermalloadsdonot-affectthedesignofthedrywellplatforms.Forthedesignofboxbeams,seismicloadsduetodeadweightofthebeamsmaybeneglectedsincetheseloadsareinsignificantrelativetothepiperuptureloads.Forthedesignoftheframingbeams,seismicloadsduetodeadweightofthebeamsaresmallandmaybeneglectedsincethesebeamsar'elaterallybracedbyotherframingbeamsandbythegrating.Theuniformdesignliveloadforthegratingandframingbeamsis200psf.Theliveload.fortheframingbeamsalsoincludesthegravityload,thermalreactionload,andseismicSSEreactionloadofallpipingandequipmentsupportedonthebeams.Table3.8-6liststheloadcombinationsusedtodesignthedrywellplatforms.Pressure,thermalandseismicloadsarenotconsideredsincetheyarenotcritical.3.8.3.3.6SeismicTrussTheseismictrussisdesignedusingworkingstressdesignmethods.Itisdesignedprimarilyforlateralseismicloads-However,itisalsodesignedforjetimpingementloadsduetothepostulatedruptureofa26in.diametermainsteampipe.Designaccidentpressureandoperatinganddesignaccidentthermalloadsdonotaffectthedesignoftheseismictruss.Table3.8-7liststheloadcombinationusedtodesigntheseismictruss.Pressure.andthermalloadsarenotconsideredsincetheyarenotcritical.Thissectiondescribestheprocedures,usedforthedesignandanalysisofthecontainmentinternalstructures.The.descriptiondoesnotincludetheeffectsofhydrodynamicloadsfrommainsteamsafety/reliefvalvedischargeandLOCA.Foradescriptionofthedesignandanalysisproceduresthatconsidertheeffectsofhydrodynamicloads,refertoGE's"HarkIIContainmentDynamicForcingFunctionsReport"(NEDO-21061)andthe"SusquehannaPlantDesignAssessmentReport".REV.11,7/7938-38 SSES-PSAR3.8.3.4.1~DrwellFloprThedesignanda*nalysisproceduresusedforthedrywellflooraresimilartothoseusedforthecontainmentwall.Usedfortheanalysisare3D/SAP,CECAP,NE620,andseismicanalysiscomputerprograms(Appendix3.8A).SeeSubsection3.8.1.4.1foradetaileddescriptionoftheanalysisprocedures.Figure3.8-71showsthe3D/SAPfiniteelementmodelusedtoanalyzethedrywellfloorforallloadsotherthanseismicloads.A15degreewedgeofthedrywellfloorismodeledusingsolidfiniteelementshavinglinearelastic,isotropicmaterialproperties.Oneverticalboundaryplanegoesthroughasuppressionchambercolumnandtheotherishalfwaybetweentwocolumns..Themodelincludesthedrywellfloor,suppressionchamberwali'eactorpedestalbelowthedrywellfloor,andasuppressionchambercolumn.Boundaryconditionsareimposedontheanalyticalmodelbyspecifyingnodalpointforcesordisplacements.ReferringtoFigure3.8-71,thenodalpointslyingalongBoundaryAareallowedtomovewithintheX-2plane,andBoundaryBwithintheX-Yplane.PointsalongBoundaryCarepreventedfrommovinginthehoopdirection.PointsalongBoundaryDarepreventedfrommovingintheradialdirectiontoaccountfortherestrainingeffectoftheinnerportionofthedrywellfloor.Nodalforces,moments,andshearsareappliedtoBoundariesEandPtoaccountforreactionloadsfromthedrywellwallandreactorpedestalabovethedrywellfloorrespectively.AnalyticaltechniquesasdescribedinBechtelTopicalReportBC-TOP-4-A(Ref.2KofTable3.8-1)areusedtoanalyzethedrywellfloorforseismicloads.3.8.3.n.2DrgaellploorLinerp'lateandhoch~eraeeThedesignandanalysisofthedrywellfloorlinerplateandanchoragesisinaccordancewithBechtelTopicalReportBC-TOP-1(Ref.1KofTable3.8-1).3.8.34.3ReactorPedestalThereactorpedestalisdesignedforaxisymmetricloadsusingthePINELcomputerprogram(Appendix3.8A).Theprogramperformsafiniteelement,staticanalysisofaxisymmetricstructureswithaxisymmetricloading.Bothconcreteandreinforcingsteelmaterialsareincludedinthemodel.Specialmaterialpropertiesincludebilinearityincompressionandbilinearityorcrackingintension.Theoperatinganddesignaccidenttemperaturegradients38-39 SSES-PSARarecomputedusingNE620computerprogram(Appendix3.8A).Fortransientloadssuchasdesignaccidentpressureandthermalloads,themostcriticalcombinationoftheseloadsisconsidered.Figure3.8-40showsaverticalsectionthroughtheFINELmodelofthecontainmentusedtoanalyzethereactorpedestalbelowthedryvellfloor.PointsalongBoundaryAarepreventedfrommovingintheverticaldirectionandpointsalong~BoundaryBarepreventedfrommovingintheradialdirection.Figure3.8-72showsthePINELmodelusedtoanalyzethereactorpedestalabovethedrywellfloor.Themodelincludesthereactorpedestalabovethedrywellfloorandportionsofthereactorvesselandthereactorshieldwall.LocalthermaleffectsatthetopofthereactorpedestalduetoheatinputfromthereactorvesselaredeterminedbyusingtheNE620computerprogram(Appendix3.8A).ReferringtoFigure3.8-72,nodalpointsalongBoundaryAarepreventedfrommovingintheverticalandradialdirections.Nodalforces,moments,andshearsareappliedtoBoundariesBandCtoaccountforreactionloadsfromthereactorvesselandthereactorshieldwallrespectively.Non-axisymmetricloadsonthereactorpedestalincludeseismicloadsandreactorvesselandreactorshieldreactionloads.Seismicforces,moments,andshearsarecalculatedasdescribedinSection3.7.Verticalforces,horizontalshears,andoverturningmomentsatthebaseofthereactorshieldwallaredeterminedasdescribedinSubsection3.8.3.4.4.Theseloadsareappliedtothetopofthereactorpedestal.ConcreteandreinforcingsteelstressesinthereactorpedestalduetotheaboveloadsarecalculatedusingthedesignmethodsofACI307-ACI307includesequationsfordeterminingtheneutralaxisofreinforcedconcretecylindricalshellssubjectedtoaxialforceandoverturningmoment.Thepositionoftheneutralaxissatisfiestheequilibriumofinternalstressesandexternalforcesandmoments.Concreteandreinforcingsteelstressesduetoaxisymmetricandnon-axisymmetricloadsarecombinedtodeterminethetotal'tress.Additionalmeridional,hoop,andshearreinforcementisprovidedatthetopofthepedestalasshowninPigure3.8-59toresistlocalloadsonthepedestalfromthereactorvesselandthereactorshield.Theseismically-inducedtangentialshearsonthereactorpedestalareconsiderablylessthantheseismically-inducedtangentialshearsonthecontainmentwall.Therefore,helicalreinforcementisnotprovidedinthereactorpedestalinordertoresisttangentialshears.MeridionalandhoopreinforcementisdesignedtocarrytheentiretangentialshearbyshearfrictionusingthedesignmethodsofACI318-71.Rev4,1/793.8-40 SSZS-FSAR3.8.3.4.4ReactorShieldWallThereactorshieldwallisanalyzedintwostages.First,theeffectofopeningsonthebehaviorofthereactorshieldisinvestigated.Thisisdonetodeterminewhethertheshieldmaybeanalyzedasanaxisymmetriccylindricalshellwithoutopeningsorwhethertheopeningscauselocalstressconcentrations.Loadsconsideredforthisanalysisaredesignaccidentpressureandpostulatedpiperuptureloads.TheEASEcomputerprogram(Appendix38A)isusedforthisanalysis.Figure38-73showsthefiniteelementmodel.Afull360degreesectionofthereactorshieldwallismodeledusinqplateelementshavinglinearelastic,isotropicmaterialproperties.One64in.diameterrecirculationoutletpenetrationandtwoadjacent48in.diameterrecirculationinletpenetrationsareincludedinthemodel.Smallerfiniteelementsareusedintheareaoftheopeningstoobtainanaccuratestressgradient.ReferringtoFigure3.8-73,.pointsalongBoundaryAarepreventedfrommovingintheverticalandradialdirections.BoundaryBisafreeedge.Theresultsofthisanalysisconfirmthattherearenosignificantlocalstressconcentrationsintheshieldaroundtheopenings.Thisisduetothestiffeningoftheshellthatisprovidedbythethick-walledpenetrationsleeves.Therefore,theuseofanaxisymmetricanalyticalmodelwithoutopeningsisjustified.Thesecondstageanalyzesthereactorshieldwallasanaxisymmetricshell.Foraxisymmetricloads,whichincludedeadloadanddesignaccidentthermalload,theFINELcomputerprogramisused.ThemostcriticaltemperaturegradientasdeterminedbytheNE620computerprogram(Appendix3.8A)isconsidered.TheFINELprogramperformsafiniteelement,staticanalysisofaxisymmetricstructureswithaxisymmetricloading.Fornon-axisymmetricloads,whichincludedesignaccidentpressureload,seismicload,andpiperuptureload,theASHSDcomputerprogram(Appendix3.8A)isused.TheASHSDprogramperformsanelastic,finiteelement,static,ordynamicanalysisofaxisymmetricstructureswith.non-axisymmetricloading.Thedistributionofnon-axisymmetricloadaroundtheshellisapproximatedbya.Fourierseriesexpansion.Figure3.8-74showsaverticalsectionthrouqhthemodelusedforFINELandASHSDprograms.PointsalonqBoundaryAarepreventedfrommovingintheverticalandradialdirections.Fornon-axisymmetricloads,BoundaryBattheconnectionoftheseismictrusstothecontainmentwallispreventedfrommovingintheradialdirectionTotalstressesinthereactorshieldwallaredeterminedbysummingtheaxisymmetricandnon-axisymmetricstresses.3.8-41 SSES-FSAR3.8.3.45SuressionChamberColumnsAxialforce,shear,andmomentinthecolumnsduetoaxisymmetricloads,suchasdeadloadanddesiqnaccidentpressureandthermalloads,aredeterminedusinqtheFINELcomputerprogram(Appendix3.8A).Fiqure3.8-40showstheFINELmodelofthecontainmentusedtoanalyzethesuppressionchambercolumn".AdescriptionoftheprogramandtheboundaryconditionsisgiveninSubsection3.8.3.4.3.SincetheFINELprogramcanconsideronlyaxisymmetricstructures,the12columnsaremodeledasanequivalentcylinderhavingthecross-sectionalareaandaxialstiffnessofthecolumns.AxialforceinthecolumnsiscalculatedfromtheaxialstressdeterminedbytheFINELprogram.ShearandmomentinthecolumnsarecalculatedfromrelativedisplacementsofthedrywellfloorandthebasefoundationslabdeterminedbytheFINZLprogram.Axialforce,shear,.andmomentinthecolumnsduetoseismicloadsaredeterminedusinqseveralmethodsAxialforceinthecolumnsduetohorizontalseismicloadisdeterminedusingtheASHSDproqram(Appendix3.8A).Figure3.8-75showsthemodel.Axisymmetricshellandsolidfiniteelementshavinglinearelastic,isotropicmaterialpropertiesareused.NodalpointslyinqalongBoundaryAarepreventedfrommovingintheverticaldirectionandpointsalongBoundaryBarepreventedfrommovingintheradialdirection.TheloadappliedtotheASHSDmodelistheseismichorizontalshearandoverturningmomentforthecontainmentcalculatedasdescribedinSection,3.7.ShearandmomentinthecolumnsduetohorizontalseismicloadaredeterminedusingtheanalyticalproceduresdescribedinBechtelTopicalReportBC-TOP-4-A(Ref.2KofTable3.8-1).ThelumpedmassmodelofthecontainmentincludingcolumnsandventpipesisshowninFiqure3.8-76.Sincetheventpipesare.laterallybracedtothecolumns,shearandmomentareproducedinthecolumnsduetoseismicmotionoftheventpipes.Axialforceinthecolumnsdue,toverticalseismicloadisdeterminedbyapplyinqtheverticalforcescalculatedfromthecontainmentseismicanalysistothedrywellflooratitsconnectionstothecontainmentwallandthereactorpedestal.Theverticalforcetransmittedtothecolumnsthroughthedrywellflooriscalculated,consideringtherelativeverticalstiffnessesofthecontainmentwall,reactorpedestal,andcolumns.Thepostulatedruptureofa28in.diameterrecirculationlooppipeproducesaverticaljetimpingementloadonthetopofthedrywellflcorand,therefore,producesloadsinthecolumnsAxialforce,shear,andmomentinthecolumnsduetojetforceiscalculatedbytheCE668computerprogram(Appendix3.8A)Theproqramperformsastatic,linearelasticanalysisofflatslabs3.8-42 SSZS-FSARofarbitrarydimensionssubjectedtoarbitraryloading.Figure3.8-77showsthe180degreemodelofthedrywellfloorAverticaljetforceisappliedalongtheaxisofsymmetryandthereaction,iscalculatedinthecolumnadjacenttotheappliedload.Edqesofthedrywell.flooralongBoundariesAandBareconsideredtobefixedsupports.Nodalpointsatthecolumnsarefixedintheplaneofthemodel.Thetotalaxialforce,shearandmomentinthecolumnsforallloadcombinationsaredeterminedbysummingtheresultsoftheseparateanalyses.StabilityofthecolumnsforthemostcriticalloadcombinationischeckedusinqtheplasticdesignmethodsofAISC,"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings",dated1969,Part2{Ref.1HofTable3.8-1).3.8.3.4.6D~rwellPlatformsThedrywellplatformsaredesignedusingconventionalelasticdesiqnmethodswhichconformtotheAISCSpecification,1969,Part1(Ref.1HofTable3.8-1).38.3.4.7SeismicTrussSeismic'orcesintheseismictrussarecalculatedusingthemethodsdescribedinBechtelTopicalReportBC-TOP-4-A(Ref.2KofTable3.8-1).Axialforce,shearforce,andmomentintheseismictrussduetopostulatedpiperuptureloadsarecalculatedusinqmomentdistribution.Figure3.8-78showstheriqidframemodelincludinqboundaryconditions3.8.35StructuralAcceptanceCriteria3835.1ReinforcedConcrete~Theallowablestressesforthereinforcedconcreteportionsofthecontainmentinternalstructuresarethesameastheallowablestressesforthereinforcedconcreteportionsofthecontainment.SeeSubsection3.8.1.5.1foradescription.3-8-43 SSES-FSAH33--283.5.2DrvwellFloorLinerPlateandAnchoraaesThestructuralacceptancecriteriaforthedrywellfloorlinerplateandanchoragesarethesameasthestructuralacceptancecriteriaforthecontainmentlinerplateandanchoragesseesubsection3.8.1.5.2foradescription.~8~.5.~StructuralSteelStructuralsteelportionsofthecontainmentinternalstructuresincludethereactorshieldwall,suppressionchambercolumns,drywellplatforms,andseismictruss.Fornormalloadingconditions,theallowablestressesareinaccordan'cewiththeAISCSpecification(Hef.1HofTable38-1).Forextremeenvironmentalandabnormalloadingconditions,the-allowablestressesareasfollows:a)Bending-0.90Fyb)Axialtensionorcompression-0.85Fyexcept,,whereallowablestressisgovernedbyrequirementsofstability(localorlateralbuckling),allowablestressshallnotexceed1.5Zs.c)Shear-0.50FyTheallowablesaredefinedas:AllowablestressaccordingtotheAISCSpecification,Part1(Ref.1HofTable3.8-1)\Specifiedyieldstrengthofstr'ucturalsteel3.8.3.6Materials,QualityControl,andSpecialConstructionTechnigues38.3.6.1ConcreteContainmentInternalStructuresTheconcreteandreinforcingsteelmaterialsforthecontainmentinternalstructuresarediscussedinAppendix38B.ConcretedesigncompressivestrengthsaregiveninTable3.8-11;REV.ll,7/7938-44 SSES-FSAR3.8.3.62DrywellFloorLinerPlate,Anchorages,Attachments3.83.6.2.1MaterialsLinerplatematerialsconformtotherequirementsofthestandardspecificationslistedbelow:ItemLinerplate(lessthan1/2in.thick)~SecificationASTMA285,GradeALinerplate(1/2in.thickorthicker)ASMESA-516,Grade60or70conformingtotherequirementsofASMEBoilerandPressureVesselCode(ASIDEBGPVCode),1971EditionwithAddendathroughSummer1972,SectionIII,ArticleNF;2000,MaterialsAnchoragesandattachmentsASTMA36383.62.2Weldi~nMeldingrequirementsforthedrywellfloorjinerplateandanchoragesarethesameastheweldingrequirementsforthecontainmentlinerplateandanchorages.SeeSubsection3.8.162.2foradescriptionoftheweldingrequirements.3.8.3.6.2.3NondestructiveExaminationofLinerPlateSeamWeldsNondestructivetestingoflinerplateweldsisperformedinaccordancewithRequlatoryGuide1.19,Revision1.Linerplateseamweldsare100percentmagneticparticleexamined.Linerplateseamweldsarealso100percentvacuumboxsoapbubbletested.fieldsthatareinaccessibleforvacuumboxtestinqare100percentliquidpenetranttested.Examinationprocedures,personnelqualification,*andacceptancestandardsareinaccordancewithSubsection3-8.1.6.2.438-45 SSES-ZSAR.38.3.6.24ErectionTolerancesThespecifiedlevelnessofanchoragesplacedinthedrywellflooriswithini1-1/4in.ofthetheoreticalelevationovertheentirearea,plusalocaltoleranceofi1/8in.inany30ftlength.ActualdeviationsfromtheabovewerehandledinaccordancewithprocedurescoveredinSubsection3.8.3.6.6.3.83.63ReactorShieldWallandSeismicTruss3.8.363.1MaterialsItemSpecificationInnerandouterplates,seismictruss,piperestraints,etc.ASTMA588,GradeAorBInternalstiffenersSeismicTrussMaleStabilizerBlockASTMA36ASMESA181,GradeII3.8.3.6.3.2WeldingandNondestructiveExaminationofWeldsWeldingandnondestructiveexaminationisperformedinaccordancewithAWSD113.8.36.3.3MaterialsTestingThe1-1/2in.thickouterplateandotherplatessubjectedtotransversetensilestressarevacuumdegassedandultrasonicallytestedinaccordancewithsupplementaryrequirementsS-1andS-8.1respectivelyofASTMA20-72a.3.8-46 SSES-FSAR3.8.3.6.3.4ErectionTolerancesThespecifiederectiontolerancesforthereactorshieldareasfollows:a)Theradialdimensionfromtheas-builtcenterlineofthereactorvesseltoanypointonthereactorshieldisIwithin3/8in.ofthetheoreticalradius.b)Thetopofthereactorshieldissetwithin1/4in.ofitstheoreticalelevation.c)Theazimuthsoftheshieldpenetrationsarewithin1/2in.ofthetheoreticalazimuths.d)Seismictrussmembersdonotdeviatefromaxialstraightnessbymorethan1/1000ofaxiallength.ActualdeviationsfromtheabovewerehandledinaccordancewithprocedurescoveredinSubsection3.8.3.6.6.3.83.6.4SuppressionChamberColumns3.8.3.6.4.1MaterialsThecolumnshafts,baseplates,andtopplatesarefabricatedofASMESA-516,Grade70material.38.3.64.2Weld~inWeldproceduresandqualificationsconformtotheprovisionsofSectionIXandSectionVIIX,Division1oftheASMEBoilerandPressureVesselCode,1971EditionwithaddendathroughSummer1972.Allweldersarequal.ifiedinaccordancewithSectionXXoftheASMECode.3.8.3.6.4.3NondestructiveExaminationofWeldsNondestructiveexaminationsconformtoSectionVoftheASMEBGPVCode,1971EditionwithaddendathroughSummer1972.AllpersonnelperformingnondestructiveexaminationarequalifiedinaccordancewiththeAmericanSocietyforNondestructiveTesting'sRecommendedPracticeNo.SNT-TC-1AanditsapplicableREV.l8/7838-47 SSES-PSARsupplements.AcceptancestandardsconformtoSectionVIII,Division1oftheASIDECode.3.8.3.6.4.4FabricationandErectionTolerances1~Thespecitiedfabricationanderectiontolerancesforsuppressionchambercolumnsareasfollows:a)Theoutsidediameter,basedoncircumferentialmeasurements,doesnotdeviatefromthetheoreticaloutsidediameterbymorethan0.5percent.b)Out-of-roundness,definedbythedifferencebetweenthemaximumandminimumdiametersrelatedtothetheoreticaldiameter,isinaccordancewithASIDECode,SectionVIII,.Division1,ParagraphUG-80.c)Thefinishedlengthdoesnotdifferfromthetheoreticallengthbymorethan1/4in.d)Thefinishedcolumnshaftdoesnotdeviatefromstraightnessbymorethan1/8in.in1ft,withamaximumforthefulllengthof1/1000ofthetotallength.e)ErectiontolerancesareinaccordancewiththeAISCSpecification(Ref.1Hand2HofTable3.8-1).ActualdeviationsfromtheabovewerehandledinaccordancewithprocedurescoveredinSubsection3.8.3.6.6.3.8.3.6.5~DwellPlatforms3.8.3.6.5.1MaterialsItem~SecificationBoxbeamsRolledshapesConnectionboltsASTHA441ASTIA36ASTNA325Rev4,1/7938-48 SSES-FSAR3.8.3.6.5.2MeldingandNondestructiveExaminationofMeldsMeldingandnondestructiveexaminationisperformedinaccordancewithAMSD113.8.3.6.53ErectionTolerancesErectiontolerancesforthedrywellplatformsareinaccordancewithAISCSpecification{Ref.2HofTable3.8-1)QualitycontrolrequirementsforconstructionarediscussedinAppendixDandamendmentstothePSAR.3.8.3.7TestingandZn-serviceIn~sectionRequirements38.3.7.1Preo~erationalTesti~n383.71.1StructuralAc~cetanceTestThedrywellflooristestedto1.15timesthedesigndownwarddifferentialpressure.SeeSubsection3.8.1.7.1.1foradescriptionofthestructuralacceptancetests.DeflectionsandstrainsofthedrywellfloormeasuredduringtheUnit1testwerelessthanthepredictedvalues.Thus,thedesignofthedrywellfloorprovidesanadequatesafetymarginagainstinternalpressure.Figure3.8-79showsacomparisonbetweenmeasuredandpredicteddeflectionsforthedrywellflooratpeakdifferentialpressure.3.8.3.7.1.2LeakRateTesti~nAPreoperationalleakratetestingisdiscussedinSubsection6.2.6.REV.18/783.8-49 -$$5$-PSAR~3.8--7.QIn-seviceeakaaeTestnIn-serviceleakratetestingisdiscussedinSubsection6.2.6.ThissectiongivesinformationonallSeismicCategoryIstructuresexcepttheprimarycontainmentanditsinternals.Italsodescribessafetyrelatednon-SeismicCategoryIstructures.Thestructuresincludepinthissectionareasfollows:SeismicCateorIStructursReactorBuildingContxolBuildingDieselGeneratorBuildingEngineeredSafequardsServiceMaterPumphouseSprayPondNon-SeismicCateorISafetRelatedStructuresTurbineBuildingRadwasteBuildingTheqeneralarrangementofthesestructuresisshownonFigures38-80through38-1033.8.4.1DescritionoftheStructues~eactcnauilaingRefertoFigures3.8-80through3.8-89.Thereactorbuildingenclosestheprimarycontainment~andprovidessecondarycontainmentwhentheprimarycontainmentisinserviceduringpoweroperation.Italsoservesascontainmentduringreactorrefuelinqandmaintenanceoperations,whentheprimarycontainmentisopen.Ithousestheauxiliarysystemsofthenuclearsteamsupplysystem,newfuelstoragevaults,therefuelinqfacility,andeguipmentessentialtothesafeshutdownofthereactor.38-50 SSES-PSABThereactorhiiildinq,uptoandincludingtheoperatingfloor,isofreinforcedconcreteonamatfoundation.ThebearingwallsareofreinforcedconcreteandaredeiqnedasshearwallstoresistlateralLoadsThefloosareofreinforcedconcretesupportedbyasteelbeamandcolumnframingsystemandaredesiqnedasdiaphragmstoresistlateralload.Theframingrunsinbotheast-westandnorth-southdirections,withtheexteriorendsofthebeamssupportedbyeitherthebearinq~allsorsteelcolumns.Thesteelcolumn"aresupportedbybaseplatesoiithematfoundation.Thereinforcedconcretewallsand.floorsmeetstructuralaswellasradiationshield.ingrequirements.Mherestructurallypermissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidehetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheradiationshieldinqrequirements.Thereacto.buildingsuperstructureabovetheoperatinqfloorisasteelstructure.Thestructuralsteelframingsupportstheroof,metalsidinq,andoverheadcranes.Theframingconsistsofaseriescfrigidframesconnectedbyroofandwallbracinqsystems.Theroofconsistsofbuilt-uproofingonmetaldeck.Therefuelinqfacilityislocatedabovethecontainmentstructure.Itconsistsofpentfuelpool,fuelshippingcaskstoragepool,steamdryeraridseparatorstoragepool,reactorcavity,skimmersurgetankvault,andloadcenterroom.Thefacilityissupportedbytworeinforcedconcretegirdersrunningnorth-south,spanningove"thecontainment.Thegirdersaresupportedattheendsbyconcretewallsandatintermediatepointsbysteelboxcolumns.hgapisprovidedbetweenthebottomoftheqirdersandthetopofthecontainmenttoensurethatloadsfromtherefiielinqfacilityarenottransferredtothecontainment.Thewallsandslabsofthespentfuelpool,thefuelshippinqcaskstoragepool,thereactorcavity,andthesteamdryerandseparatorstoraqepoolarelinedontheinsidewithastainlesssteellinerplateThefacilitymeetstheradiationshie.ldinqrequirements.Thereactorbuildingisseparatedfromtheprimarycontainmentbyaqap,exceptatthefoundationlevel,whereacoldjointisprovidedbetweenthetwomats.Aqapisalsoprovidedattheinterfaceofthereactorbuildingwiththedieselqeneratorandturbinebuildinqs.ControlBuildingRefertoFigures3.8-80through3.8-88.Thecontrolbiiildinqhousesthecontrolroom,thecablespreadinqrooms,computerandrelayroom,thebatteryroom,HGVequipment.room,off-qastreatmentroom,andthevisitors'alleryforthecontrolroom.3.8-51 SSES-FSARThecontrolbuildingisstructurallyintegratedwiththereactorbuilding.Itisareinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesiqnedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbysteelbeams,andaredesignedasdiaphraqmstoresistlateralloads.Thebeamsspanintheeast-vestdirectionandaresupportedbythebearingwallsattheends.Thereinforcedconcretewallsandfloorsmeetstructuralaswellasradiationshieldingrequirements.Wherestructurallypermissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheradiationshieldinqrequirements.Thecontrolbuildingisseparatedfromtheturbinebuildingbyaqap,exceptatthefoundationlevel,whereacoldjointisprovidedbetweenthetwomats.DieselGeneratorBni~leinBefertoFigures3.8-92and3.8-93.Thedieselgeneratorbuildinghousesthedieselgeneratorsessentialforsafeshutdownoftheplant.Thedieselgeneratorsareseparatedfromeachotherbyconcretewalls.Aconcreteoverhangontheeastsideofthebuildingservesasanairintakeplenum.Aconcreteplenumfordieselexbaustislocatedontheroof.Itisareinforcedconcretestructureonamatfoundation.Thebearinqwallsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbysteelbeams,andaredesignedasdiaphragmstoresistlateralloads.Thesouthsideofthebuildinginterfaceswiththereactorbuilding;there,areinforcedconcretewallisprovidedfromfoundationuptothedesiqnhighwatertablelevelandthenasteelframeisprovideduptotheroof.Wherestructurallypermissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipmentThedieselgeneratorsaresupportedbyreinforcedconcretepedestals.Thepedestalsareseparatedfromtheoperatingfloorbyaqaptoallowfortheirindependentvibration.38-S2 SSES-FSABEnSineeredSateSuardaServiceMate~rESS~MP~uahou"eRefertoFiquce3.8-94.TheESSWPumphousecontainstheemergencyservicewater(ESW)andresidualheatremoval(BHB)pumpsandtheweiranddischargeconduitforthesunraypond.Itisatwo-storyreinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Theoperatingflcocandroofareofreinforcedconcretesupportedbysteelbeamsandaredesiqnedasdiaphraqmstoresistlateralloads.Amezzaninefloor.composedofgratingovecsteelbeamsisprovidedtosupporttheheatinqandventilatingequipment.SprayPorrdBefertoFigures3.8-.95throuqh3.8-98.Thespraypon1isaresecvoir,freeforminshape,whichholdsappcoximately25milliongalofwaterdurinqnormaloperation.Thewatersucfaceareaisapproximatelyeightacresandhasadepthofapproximately1Cft6inItisdesignedsothatnormaloperatinqwaterisretainedinexcavationalone,ie,notbyconstructedembankments.Embankmentsareprovidedtoensureaminimumfreeboardof3ftandtodirectfloodwaterawayfromsafetyrelatejfacilitiesinacontrolledmanner.TheESSWpumphouseislocatedatthesoutheastcornerofthespraypond.AreinforcedconcretelinercoverstheentirespraypondandisinteqratedwiththeouterwallsoftheESSWP.ThewaterlevelinthepondiscontrolledbyaweirhousedintheESSWpumphouse.Durinqnormaloperation,excess~aterisdischargedintotheSusquehannariverviaaconduitfromtheESSWpumphouse.Anemerqencyspillwayisprovidedattheeastendofthepond.TheonlyanticipateduseofthisspillwaywillbeeitherduringamalfunctionofthedischargeconduitleadingoutoftheESSWpumphouseordurinqcertainpostulatedfloodconditions.ThisisdiscussedinSubsection2.4.8.TheESWandRHBpipesenterthesouthsideofthepondandtraversetothespraybankareasburiedin18in.ofconcrete,providedasmissileprotection.Concretecolumnssupporttheriserpipesinthespraybankareas.3-8-53 SSES-FS'ARTurbineBuildinRefertoFiqures3.8-80through3.8-84,3.8-88,3.8-90,and3.8-91Theturbinebuildinqisdividedintotwounitswithanexpansionjointseparatinqthetwounits.Ithousestwoin-lineturbineqeneratorunitsandauxiliaryequipmentincludingcondensers,condensatepumps,moistureseparators,airejectors,feedwaterheaters,reactorfeedpumps,motor-generatorsetsforreactorrecirculatingpumps,recombiners,interconnectingpipingandvalves,andswitchqears.Two220-tonoverheadcranesareprovidedabovetheoperatingfloorforserviceofbothturbinegeneratorunits.Tworeinforcedconcretetunnels,oneforeachunit,areprovidedfortheoff-qaspipelinesatthefoundationlevelbetweentherecombinersandtheradwastebuilding.Reinforcedconcretetunnelsarealsoprovidedforthemainsteamlinesbelowtheoperatinqfloorfromthereactorbuildinqtothecondenserareaso.ftheturbineqenezators.Theturbinebuildingrestsonareinforcedconcretematfoundation.Thesuperstructureisframedwithstructuralsteelandrein.forcedconcrete.Rigidsteelframessupportthetwo220-toncranes.Theyalsoresistalltransverse{east-west)lateralloads.Steelbracingsresistlongitudinal(north-south)lateralloadsabovetheoperatingfloor.Belowthislevel,reinforcedconcreteshearwallstransferalllateralloadstothefoundations.seismicseparationgap,alsoservingasanexpansionjoint,isprovidednearthecenterofthebuildingbetweenthetwounitsSeismicseparationgapsarealsoprovidedattheinterfaceofturbinebuildingwiththereactor,control,andradwastebuildingsThefloorsoftheturbinebuildingareofreinforcedconczeteonstzucturalsteelbeams.TheyaredesignedasdiaphragmsforlateralloadtransfertotheshearwallsTheroofisbuilt-uproofinqonmetaldecking.Exteriorwallsareprecastreinforcedconcretepanelsexceptfortheupper30ft,whicharemetalsiding.Interiorwallsrequiredforradiationshieldingorfireprotectionazeconstructedofreinforcedconcreteblock.Thesewallsarenotusedaselementsoftheloadresistant,system.Theturbinegeneratorunitsaresupportedonfreestandingreinforcedconcretepedestals.Thematfoundationsforthepedestalsarefoundedonrockatthesamelevelasthebasemat3.8-54 SSES-FSARfortheturbinebuilding.Separationjointsareprovidedbetweenthepedestalsandtheturbinebuildingfloorsandwallstopreventtransferofvibrationtothebuilding.Theoperatingfloorofthebuildingissupportedonvibrationdampingpadsatthetopedgeofthepedestal.RadwasteBuildingRefertoPigures3.8-99through3.8-103.Theradwastebuildinghousessystemsforreceiving,processing,andtemporarilystoringtheradioactivewasteproductsgeneratedduringtheoperationoftheplant.Itisareinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbyabeamandcolumnframingsystemandaredesignedasdiaphragmstoresistlateralloads.Thecolumnsaresupportedbybaseplatesonthematfoundation.Thereinforcedconcretewallsandfloormeetstructuralassellasradiationshieldingrequirements.Mherestructurallypermissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheradiationshieldingrequirements.Theradwastebuildingisseparatedfromtheturbinebuildingbyagap-Thecodes,standards,andspecificationsusedinthedesign,fabrication,andconstructionofthestructureslistedinSubsection3.8.4areshowninTable3.8-1andincludereferencenumbers10A,1B,lH,2H,3H,18,2K,,3K,and1L.3.8.4.3LoadsandLoadCombinationsThefollowingloadsandloadcombinationsareconsideredinthedesignofSeismicCategoryIstructures(otherthanthecontainment).3.8.4.3.1Descci~tioaofLoadsPorageneraldescriptionofloads,seeSubsection3.8.1.3.2.Rev4,1/793.8-55 SSZS-TSARTable38-8describestheloadcombinationsapplicabletothereactorbuilding.Table3.8-9containstheloadcombinationsapplicabletoSeismicCategoryIstructuresotherthanthereactorbuilding.Table3.8-10describestheloadcombinationsusedinthedesignoftheturbineandtheradwastebuildings.ThestructuresdescribedinSubsection3.8.4.1aredesignedtomaintainelasticbehaviorundervariousloadsandtheircombinations.TheloadsandtheloadcombinationsarefullydescribedinSubsection3.8.4.3.Allreinforcedconcretecomponents,ofthestructurearedesignedbythestrengthmethodperACI318(Ref'tOAofTable3.8-1).AllstructuralsteelcomponentsaredesignedbytheworkingstressmethodperAISCspecification{Ref18ofTable3.8-1).DeterminationofwindandtornadoloadsisdescribedinSection3030SeismicdesignofstructuresisdescribedinSection3.7.Thebuildingsareanalyzeddynamically.DesignofstructureformissileprotectioniscoveredinSubsection3.5.3.ComputerprogramsSTRESSandZCESSTRUDL-II{Ref1and2respectivelyofSubsection3.8.4.8)areusedtoanalyzestructuralsteelframing.TherefuelingfacilityofthereactorbuildingisdesignedbasedonfiniteelementanalysisbyuseofcomputerprogramNRI/STARDYNE3{Ref3ofSubsection3.8.4.8).Thespraypondisbasicallyasoilstructure.ItsdesignisdiscussedinSubsection2.5.5.ConcretemasonryblockwallsinallSeismicCategoryIstructureshavebeenanalyzeddynamicallyasdescribedinSection37b.3.1.5.Theyaredesignedforout-of-planeandin-planeinertiaforcesgeneratedbythemassoftheblackwallandattachmentloads,combinedwithotherloadsasdescribedinTables3.8-8and3.8-9.Mails.intheturbineandradwastebuildingshavebeendesignedforseismicloadsperUBC(Ref.1LofTable3.8-1)Rev.18,fl/808&6 SSES-PSAR-3.8.4.5StructuralAcceptanceCriteria".'-'einfpacedConcretekkThereinforcedconcretestructuralcomponentsaredesignedbythestrenqthmethod"perACI.318'{Ref:,'10Aof'Table3'.8-1)forloadsandloadcombinationsdescribedinSubsection3.8.4.3.Themarqinsofsafetyarecontainedinthecapacity"reductionfactors{g)specified,.in.thecode.StructuralSteelkThestructuralsteelcomponentsaredesignedby'heworkin'gstressmethodper,-AXSCspecification{ReflHofTable3.8-1)forloadsandloadcombinationsdescribedinSection3.8.4.3.Theallowablestressesfordifferentloadcombin'ationsareindicatedtherein.ConcreteBlockMasonryHallsAllmasonryblockwallsarereinforcedwallsanddonotactasshearwalls.MasonryblockwallsaredesignedbytheworkingstressmethodperUBC(Ref.lI,ofTable3.8-').TheallowableloadsperUBCTables24-Bor24-H(specialinspection)aremodifiedasdescribedinTables3.8-8,3.8-9and3.8-12,exceptasnotedbelow.hkkkI'ordoublewythewallsdesignedascompositesections'andhavingconcreteorqroutinfillthicknessof8inchesormore,theallowableshearortensionbetweenmasonryblockandin.fillisl.l~tkei.e.u3o.s.i.Houever,theactualdesiuutressdoesnotexceed15p.s.i.Porotherdoublewythewalls,allowableshear/tensionstressisassumedtobezeroattheinterface.3.8.4.6Materials,QualityControl,andSpecialConstructionTechnigues38.4.6.1ConcreteandReinforcingSteelTheconcreteandreinforcingsteelmaterialsarediscussedinAppendix3.8B.ConcretedesiqncompressivestrengthsaregiveninTable3.8-11.MaterialsforconcreteblockmasonrywallsarediscussedinAppendix3.8C.Rev.27,10/813-8-"57 SSES-PSAR3.8.4.6.2StructuralSteel3.8.4.6.2.1MaterialsThevariousstructuralsteelcomponentsconformtothefollowingspecifications:ItemBeams,girder,andplatesBoxcolumnsincludingbaseplatesandcapplatesStructuraltubingHighstrengthboltsStudsASTNA36andASTNA588ASTMA588ASTMA500andASTNA501ASTNA325andASTNA490AQSD113.8.4.6.2.2Qeldinaand"Nondestructive'TestinaWeldingandnondestructivetestingisperformedinaccordancewitheitherAWSD1.1(Ref..1BofTable3.8-1)orSectionXXoftheASMZCode(Ref.1JofTable3.8-1).Rev.27,10/8138-58 SSES-FSAR3.8.4.6.2.3FabricationandErectionThefabricationanderectionofstructuralsteelconformstotheAISCspecification(Ref.1H,2Hand3HofTable3.8-1).3.8.4.6.2.4ualitControlQualitycontrolofstructuralsteelfortheconstruction,phaseisdiscussedinAppendixDofthePSARandamendmentstothePSAR.3.8.4.6.3SecialConstructionTechniuesTechniquesinvolvedintheconstructionofSeismicCategoryIstructuresarestandardconstructionprocedures.3.8.4.7TestinandIn-serviceInsectionReuirementsTestingandin-serviceinspectionarenotrequiredforSeismicCat'egoryI,structures(otherthanthecontainment).3.8.4.8ComputerProgramsUsedintheDesignandAnalysisofOtherSeismicCateorIStructuresSTRESS,DepartmentofCivilEngineering,MassachusettsInstituteofTechnology2)ICESSTRUDL-II,DepartmentofCivilEngineering,MassachusettsInstituteofTechnology3)Forother3.7MRI/STARDYNE(Version3),ControlDataCorporation.computerprogramsrefertoSubsection2.5.5andSection3.8.5FOUNDATIONSThissubsectiondescribesfoundationsforallSeismicCategoryIstructuresexceptthespraypond.ThespraypondisbasicallyasoilstructureanditsdesignisdiscussedinSubsection2.5,5.Descriptionsoffoundationsforsafetyrelatednon-SeismicCategoryIstructures,suchastheturbinebuildingandtheradwastebuilding,arealsoincludedinthissection.Rev.27,10/813.8-59 SSES-FSAR3,8.5.1DescriptionofthyFoundationsTypicaldetailsofthefoundationsforvariousstructuresareshownonFigure3.8-104.Reinforcedconcretematfoundationshavebeenprovidedforallstructures.ThematsrestonsoundrockexcepttheESSEpumphousematissupportedbynaturalsoil.Allbearingwallsofthestructuresarerigidlyconnectedtothefoundationmat.Mheresteelcclumnsareprovided,theyareattachedtothematbybaseplatesandanchorbolts.Thebearingwallsandthesteelcolumnscarryallthevexticalloadsfromthestructuretothemat.Horizontalshearsduetowind,tornado,andseismicloadsaretransferredtotheshearwallsbytheroofandflooxdiaphragms.Theshearwallstransferthehorizontalshearstothefoundationmatandfromtheretothefoundationmediumthroughfriction.Also,asshownonFiqure3.8-104,thesidesofthebasematsofallthestructuresexcepttheESSMpumphousearekeyedtothefoundationrockallaroundbypouredconcrete,whichhelpsintransferringthehorizontalshearstothefoundationrock.TheedgesoftheESSMpumphousebasematarepoureddirectlyaqainsttheexcavatedslopesofthenaturalsoilformation.Amudmat(unreinforcedconcretelayer)isprovidedbetweenthebaseofthefoundationmatandthefoundationmedium.ExceptfortheESSMpumphouse,awatexproofinqmembraneispovidedinthemudmatandontheoutsidefaceofperipheralsubterraneanwalls.Perforatedpipesareprovidedaroundtheperipheryofthebuildingstocollectgroundwaterseepageanddrainittothesumps.QaterproofingmembxaneundertheESSMpumphousefoundationmatisnotconsiderednecessaxyasthepredictedgroundwatertableatthepumphousesiteiswellbelowthefoundationmat(refertoSubsection2.5.5).Peripheralsubterraneanwallsaredesignedtoresistlateralpressuresduetobackfill,qroundwater,andsurchargeloads,inadditiontodeadloads,liveleads,andseismicloads.Containment:ThecontainmentfoundationisdescribedinSubsec+.ion3.8.1.ReactorBuildingandControlBuilding.Thefoundationmatsofthereactorandcontrolbuildingsarepouredmonolithically.Thereactorbuildingfoundationmatisapproximately4ft9in.+hickandisreinforcedtypicallywith%11barsat12in.centersattopandbottominboththenoxth-southandeast-westdirections.Thematsuxxoundsthecontainmentmat,withacoldJointseparatinqthetwo.Rev.'27,10/8138-60 SSES-FSARThecontrolbuildinqfoundationmatisabout2ft6'in.thickandisreinforcedtypicallywith48barsat12in.centersattopandbottominthenorth-southdirectionand$11barsat12incentersattopand48barsat12in.centersatbottomintheeast-vestdirection.Acoldjointisprovidedbetweenthecontrolandtheturbinebuildinqmats.DieselGeneratorBuilding:Thefoundationmatofthedieselgeneratorbuildingisapproximately2ft6in.thickandisreinforcedtypicallyvithf9barsat12in.centersattopandbottom'nboththenorth-southandeast-westdirections.Acoldjointisprovidedbetweenthedieselgeneratorpedestal-matandthedieselgeneratorbuildingESSWPumphouse:ThefoundationmatoftheESSWpumphouseisabout3ftthickandisreinforcedtypicallywith$9barsat12in.centersattopandbottominboththenorth-southandeast-westdirections.TurbineBuilding:Theturbinebuildingmatisapproximately2ft6in.thickandisreinforcedtypic'ally"with46barsat12in.centersattopandbottominboththenorth-southandeast-vestdirections.Acoldjointisprovidedbetweentheturbinepedestalmatandtheturbinebuildingmat.RadvasteBuilding:Theradvastebuildingmatisabout3ftthickandisreinforcedtypicallyvith09barsat12in.centersattopandbottominboththenorth-southandeast-westdirections.38.5.2~AplicahleCodes~Standards~andSpecificationsThecodes,standards,andspeci'ficationsusedinthedesiqn,fabrication,andconstructionoffoundationsofstructuresarelistedinTable3.8-1.3-8.5.3LoadsandLoadCombinationsTheloadsandloadcombinationsusedinthedesiqnofthecontainmentfoundationaredescribedinSubsection3.8.1.3.Theloadsandloadcombinationsusedin'hedesignoffoundationsofotherSeismicCateqoryIstructuresarediscussedinSubsection3.8.4.3.Xnaddition,thefollovingloadcombinationsareconsideredtodeterminethefactorsofsafetyagainstsl'idingandoverturningduetowinds,tornadoes,andseismicloads,andaqainstflotationduetogroundwaterpressure:Rev.27,10/Sl3.8-61 SSES-FSARa)D+H+1b)D+H+W~c)D+H+Ed)D+H+E~e)D+Fwhere:D,W,W~,E,andE'reasdescribedinSubsections3.8.1.3and3.8.4.3andHandFareasfollows:H=X.ateralearthpressureF=Buoyantforceduetogroundwaterpressure.3.8.5.4=DesignandAnalysisProceduresThefoundationsaregenerallydesignedtomaintainelasticbehaviorunderdifferentloadsandtheircombinations.TheloadsandtheloadcombinationsaredescribedinSubsection3.8.5.3.ThedesiqnandanalysisofthereinforcedconcretematfoundationshavebeencarriedoutinaccordancewithACI318(Ref10AofTable3.8-1).Thebearingwallsandthesteelcolumnscarryalltheverticalloadsfromthestructuretothefoundationmat.Thelateralloadsaretransferredtotheshearwallsbytheroofandfloordiaphragms,whichthentransmitthemtothefoundationmat.DeterminationofoverturninqmomentduetoseismicloadsisdiscussedinSubsection3.7.2.14.ExceptforESSWpumphouse,settlementofthefoundationsofSeismicCategoryIstructuresisconsiderednegliqibleasthefoundationsaresupportedbysoundrock.ThesettlementoftheESSWpumphousematisconsideredinthedesignandisdiscussedinSubsection2.5.4.AsexplainedinSubsection3.8.5.1andshowninFigure3.8-104,thesidesofthefoundationmats{exceptfortheESSMpumphouse)arekeyedtotherockbypouredconcrete,whichresistsslidingofthemats.StabilityagainstslidingfortheESSWpumphouseismaintainedbythefrictionontheundersideofthebasematandpassiveresistanceofthesoilagainsttheedgeofthemat.DetaileddescriptionofthefoundationrockandsoiliscontainedinSubsections2.54and2.5.5.Fordesiqnpurposes,theRev.27,10/8138-62 SSZS-.PSARallowablebearinqpressuresofrockand,soilare40and2.5tons/sqftrespectively.Thecalculatedbearingpressures'forloadsandloadcombinationsdescribedinSubsection3.8.5.3donotexceedtheseallowablevalues.ThedesiqnandanalysisofthecontainmentfoundationmatarediscussedindetailinSubsection3.8.1.4.3.8.5.5StructuralacceptanceCriteriaThefoundationsofallSeismicCategoryIstructuresaredesignedtomeetthesamestructuralacceptancecriteriaasthestructuresthemselves.ThesecriteriaarediscussedinSubsections'-'3-;8.1.5and3.8.4.5.Inaddition,fortheadditionalloadcombinations'elineatedinSubsection3.8.5.3,theminimumallowablefactorsofsafetyaqainstoverturning,sliding,andflotationareasfollows:LoadCombinationNinimumFactorsofSafetyOverturninaSlidinaFloatationa)D+H+Wb)D+H+W'.51.11.511Rev.27,10/813.8-63 SSES-PSAHc)D+H+Ed)D4H+E')D+F1.511l.511Thecalculatedfactorsofsafetyexceedtheaboveminimumfactorofsafety.3.8.5.6Haterials,QualityControl,andSpecialConstructionTechniguesThefoundationsofSeismicCategoryIstructuresareconstructedofreinforcedconcrete.Theconcreteandreinforcingsteelmaterials.arediscussedinAppendix3.8B.ConcretedesigncompressivestrengthsaregiveninTable"3.8-11.'echniquesinvolvedintheconstructionofthesefoundationsarestandardconstructionprocedures.38.5.7TestingandXn-serviceInspectionReguirementsThecontainmentfoundationisloadtestedduringthestructuralacceptancetestasdescribedinSubsection3.8.1.7.Anin-servicesurveillanceprogramtomonitorthesettlementoftheESSQpumphousefoundationhasbeeninstituted.DetaileddiscussionoftheprogramiscontainedinSubsection2.5.4.Testingandin-serviceinspectionisnotnecessaryforfoundationsofallotherSeismicCategoryIstructures.Rev.27,10/813.8-64 SSES-PSARTABLE38-1(Pg1of5)LISTOPAPPLICABLECODES,STANDABDSRECOHHEHDATIOHSANDSPECIPICATIOHSReferenceDesignationHuaberTitleEdition(t(lsericanConcrete~(astiuteACI2111ACI214RecoaaendedPracticeforSelectingProportionsforHoraalandHeavyveightConcreteBecoaaendedPracticeforEvaluationofCoapressionTestResultsofPieldConcrete197019653h4h5A6ABA9A10A11A12AACI301ACI304\ACI305ACI306ACI307ACI308ACI309hcI318ACI347ACI349SpecificationsforStructuralConcreteforBuildingsBecoaaendelPracticeforHeasuring,Hiring,Transporting,andPlacingConcreteRecoaaenledPracticeforHotWeatherConcretingRecoaaendelPracticeforColdWeatherConcretingSpecificationfortheDesignandConstructionofBeinforcedConcreteChianeysBecoaaendedPracticeforCuringConcreteRecoaaendedPracticeforConsolidationofConcreteBuildingColeBeguireaentsforReinforcedConcreteRecoaaenledPracticeforConcretePoravorkCriteriaforReinforcedConcreteNuclearPoverContainaentStructures(includedinACI=HanualofStandardPractice,Part2,1973)1972197319721966(1972)19691971197219711968~I13AhcISP2(B)faeicanWeldinSocietHanualofConcreteInspection19751B2BAWSD11AWSD121StructuralMeldingCodeBecoaaendedPracticeforWeldingReinforcingSteelandConnectionsinReinforcedConcreteConstruction1972(Generallyallvork)1975(SoaevorkafterJune1975)1961(r(~BSaclearReelateCosslssion1CBG110Hechanical(Cadveld)SplicesinReinforcingBarsofRevision1REVl8/78 SSES-PSAREliggg3.5~1C~eetiteed(pg315)ReferenceNumberDesignationTitleEdition2C3C4CSC6C7C8C9C10CRG115RG118BG119RG154BG1.55RG157RG1e58RG169RG194CategoryIConcreteStructuresTestingofReinforcingBarsforCategoryIConcreteStructuresStructuralAcceptanceTestforConcretePriaaryReactorContainaentsNondestructiveEzaninationofPriaaryContainaentLinerVeldsQualityAssuranceReguireaentsforProtectiveCoatingsAppliedtoVater-CooledPoverPlantsConcretePlaceaentinCategoryIStructuresDesignLiaitsandLoadingCoabinationsforNetalPriaaryBeactorContainaentSysteaCoaponentsQualificationofNuclearPoverPlantInspection,Ezanination,andTestingPersonnelConcreteRadiationShieldsforNuclearPoverPlantsQualityAssuranceBequireaentsforInstallation,Inspection,andTestingofStructuralConcreteandStructuralSteelDuringtheConstructionPhaseofNuclearPoverPlantsJan.1973Revision1Dec1972Revision1Dec.1972Revision1Aug1972June1973June1973June1973Aug.1973Dec.1973Apr.1975(D)AaericaSi~tforTestinandNaterials1D2D3D4D5D6D7DASTNA519ASTNA615ASTNC29ASTNC31ASTNC33ASTNC39ASTNC40SeaalessCarbonandAlloySteelNechanicalTubingDeforaedandPlainBilletSteelBarsforConcreteReinforceaentUnitVeightofAggregateNakingandCuringConcreteTestSpecinensinthePieldConcreteAggregatesCoapressiveStrengthofCylindricalConcreteSpecinensOrganicIapuritiesinSandsforConcrete1971'974~1975197219741975197119691971,197419721966'973BEYl8/78 SSES-PSARTABQE-38-1~Continued)(page3of5)ReferenceNumberDesignationTitleBditionBD9D10D11D12D13D'!4D15D16D17D18D19D20D21D22D23DASTIC87ASTIC88ASTIC94ASTIC109ASTIC117ASTIC123ASTIC127ASTIC128ASTIC131ASTIC136ASTIC138ASTIC142ASTIC143ASTIC150ASTIC215ASTIC231Effect'.ofOrganicImpuritiesinPine'ggregateonStrengthofHortarSoundn~ssofAggra7atesbyUseofSodiumSulfateorHagnesiumSulfate'eady-HiredConcreteCompressiveStrengthofHydraulicCementHortarsHaterialsFinerthanNo.200SieveinHineralAggregatesbyMashingLight<<eightPiecesinAggregateSpeciticGravityandAbsorptionofCoarseAggregateSpecificGravityandAbsorptionofPineAggregateResistance'toAbrasionofSmallSizeCoarseAggregatebyUseoftheLosAngelesHachineSieveorScreenAnalysisofFineandCoarseAggregatesUnitReiqht<Yield,andAirContentofConcreteClayLumpsandFriableParticlesinAggregatesSlumpofPortlandCementConcretePortlandCementPundamentalTransverse,Longitudinal,andTorsionalFrequenciesofConcreteSpecimensAirContentofPreshlyHiredConcretebythePressureHethod19691971i19731973,19741973r1975196919691968,19731968'973196919711973m1974~197519711971,19741973r1974'976m1978r1980I1819601973m1974~197524DASTIC23526D27D28DASTIC289ASTIC295ASTIC311Rev.18,11/8025DASTIC260ScratchHardnessofCoarseAggregateParticlesAirEntrainingAdmirturesforConcretePotentialReactivityofAggregatesPetrographicExaminationofAggregatesforConcreteSamplingandTestingFlyAshforUseasanAdmirtureinPortlandCementConcrete19681973,1974197119651968 SSES-PSARJhSL3.B-1Contnu(pg.4of5)ReferenceWuaberDesignationTitleEdition29D30D31D32D33D34DASTHC330ASTHC469ASTHC494ASTHC566ASThC618hSTEC637LightveightAggregatesforStructuratConcreteStaticHodulusofElasticityandPoisson'sRatioofCoacreteinCoapression"ChenicalAdaixturesforConcreteTotalHoistureContentofAggregatebyDryingPlyhshaadRavorCalcinedRaturalPozxolansforUseinPortlandCeaentConcreteAggregatesforRadiationShieldingConcrete1969,1975196519711967197319733EAASHTOT26AASHTOT150hASHTOT161{}ualityofRatertobeUsedinCoacretePercentageofParticlesofLessThaa1.95SpecificGravityinCoarsehggregateResistanceofConcreteSpeciaenstoRapidFreexingandThavinginRater197019491970(FlUSggaze~o~sofgg~~es1P2PCRDC36:CRDC39TestforTheraalDiffusivityofConcreteTestforCoefficientofLiaearTheraalExpansionofConcrete197319553PCRDC119TestforFlatandElongatedParticlesinCoarseAggregate1953(G)})HE~canRati~oalstand~a~dInstitute1G2GaSSrH45.2.5A){SIN10L6Suppleaentary{}AReguireaentsforZastallation,InspectionandTestingofStructuralConcreteandStructuralSteelDuringtheConstructionPhaseofRuclearPaverPlants.ConcreteRadiationShields19721972(H)~pecanIn~~~u~eoSConstution1HAISCSpecificationfortheDesign,Pabrication,aadErectionofStructuralSteelforHaildingsandSappleaentSos1,2and31969RH{t3,11/78

SSES-FSARTABLE38-1(Continuell(Page5of5)ReferenceNumberDesignationTitleEdition283H4HAISCAISCAISCCodeofStandardPracticeforSteelBuildingsandBridgesSpecificationforStructuralJointsUsingASTNA325orA490BoltsSpecificationforthedesign,fabricationanderectionofStructuralsteelforbuildings1970(Somevorkbefore)1972(Generallyallvork)1976(SomevorkafterSept.1976)1966,1972and19761978(SomevorkafterJuly1977)(C)~AsaicanSonic~non~nchanica~la~i~eecs1JASNEASNEBoilerandPressureVesselCole,SectionsII,III,V,VIII,andIZ1971vithAddendathroughSummer1972BC-TOP-1BC-TOP-4-ABC-TOP-9AContainmentBuildinglinerPlateDesignReportSeismicAnalysesofStructuresandEguipmentforNuclearPoverPlantsDesignofStructuresforNissileImpactRevision1Dec.,1972Revision3Nov1974Revision2Sept.1974(LInternationalConferenceofBuildinaOfficials)1LUBCUniformBuildingCole1973,1976Rev.18,ll/80 Notations:SSES-FSARTABLE3.8-2LOADCOMBINATIONS'FORPRIMARYCONTAINMENTANDDRYWELLFLOORPae1RequiredcapacityofthesectionbasedontheworkingstressdesignmethodandtheallowablestressesinACI318"71,Section8.10exceptthatthemaximumallowabletensilestressforreinforcementshallbe0.5g'y,whereFyisspecifiedyieldstrengthofreinforcingsteel.RequiredcapacityofthesectionbasedonthestrengthdesignmethoddescribedinACI318-71.D=DeadloadL=LiveloadTt=Thermaleffectsanticipatedattimeofstructuralacceptancetest.T0Thermaleffectsduringnormaloperatingconditionsincludingtemperaturegradientsandequipmentandpipereactions.TaAddedthermaleffects(overandaboveoperatingthermaleffects)whichoccurduringadesignaccident.P=DesignbasisaccidentpressureloadLocalforceorpressureonstructureduetopostulatedpiperuptureincludingtheeffectsofsteam/waterjetimpingement,pipewhip,pipereaction,steampressurization,andwaterflooding.E=I,oadduetoOperatingBasisEarthquake.E'LoadduetoSafeShutdownEarthquake.BHydrostaticloadingduetopost-LOCAfloodingoftheprimarycontainmenttothereactorcore.P'Pressureofatmosphereintheprimarycontainmentwiththecontainmentfloodedtothereactorcore.P=ExternalPressureLoadVTheprimarycontainmentanddrywellfloorare'esignedforthefollowingloadcombinations:ConditionPreoperationalTestingRev.19,1/SlS=1.0D+1.0L+1.0Tt+1.15P SSES-FSARTABLE3.8-11CONCRETEDESIGNCOMPRESSIVESTRENGTHSStructureConcreteDesignCompressiveStrength,[osisTurbinegeneratorpedestalAllotherSeismicCategoryIandsafety-rel'ated,non-Sex.smicCategoryIstructuresandtheirassociatedfoundationmatsincluding:a)Containment(includingitsinternalstructures)b)ReactorBuildingc)ControlBuildingd)DieselGeneratorBuildinge)ESSHPumwhousef)SprayPondg)TurbineBuildingh)RadvasteBuilding30004000REV.11,7/79

SSES-PSARAPPENDIX383CONCRETEDCONCRETEMATERIALSrQUALITYCONTGAOLANDSPECIALCONSTRUCTIONTECHNIUESMaterials,workmanship,andqualitycontrolarebasedonthecodes,standards,recommendationsandspecificationslistedinTable3.8-1.Thesedocumentsaremodifiedasreguiredtosuittheparticularconditionsassociatedwithnuclearpoverplantdesignandconstructionvhilemaintainingstructuraladeguacy.Extentofapplicationandprincipalexceptionsareindicatedherein.andasfollows:ACI301-72a)ProvisionsofACI301-72,Chapter12,Curingandprotection,shallbemodifiedasfollows:i)Pararah12.21shallberevisedtoreadasfollows:~~Forconcretesurfacesnotincontactvithforms,oneofthefollovinqproceduresshallbeappliedimmediatelyaftercompletionofplacementandfinishingexceptthatthecuringprocessmaybeinterruptedasnecessarynottoexceed8hoursprovidingreguirementsforveatherprotectionaremaintained.Suchcuringprocessmaynotbeinterruptedmorethantvicewithaminimumof8hourselapsingbetweeninterruptions.Ifthecuringis,interruptedforupto8hoursthecuringtimeshallbeextendedtoprovideatotalof7dayscuringfollows:"Curinginaccordancevi'thSection12.21and12.2.2shallbecontinuedforatleast7daysinthecaseofallconcreteexcepthigh-early-strengthconcreteforwhichtheperiodshallbeatleast3days.Alternatively,iftestsaremadeofcylinderskepta'djacenttothestructureandcuredbythesamemethods,moistureretentionmeasuresmaybeterminatedpriorto7daysvhentestresultsindicatethattheaveragecompressivestrengthhasreached70percentofthespecifiedstrength,f'c.Requiredperiodofinitialcuringneednotbegreaterthanthelesserofthetvoperiods.IfoneofthecuringproceduresofSection12.2.1.1throuqh12.2.1.4isusedinitially,itmaybe SSES-FSAHreplacedbyoneoftheotherproceduresofSection12.2.1anytimeaftertheconcreteisonedayoldprovidedtheconcreteisnotpermittedtobecomesurfacedryduringthetransition.CuringduringperiodsofcoldveathershallbeinaccordancewithSection12.3.1iii)Pararah12.3.1shallbedeletedandreplacedwiththefollowinq:>>Initial-curingandprotectionmeasuresfortheconcreteduringperiodsofcoldveathershallbeinaccordanceviththerecommendationsofACX306-66(1972)."b)ProvisionsofACI301-72,Chapter14,MassiveConcrete,shallbemodifiedasfollows:pa~raraph1441shallbedeletedandreplacedaiththefolloainq:"Theslumpoftheconcreteasplacedshallbe3>>orlessexceptthatatoleranceofupto2>>abovethisindicatedmaximumshallbeallowedforbatchesprovidedtheaverageforallbatchesorthemostrecent10batchestested,vhicheverisfever,doesnotexceed3>>.Concreteoflowerthanusualslumpmaybeusedprovideditisproperlyplacedandconsolidated."paraqraphandsubstitutethefolloving:iii)>>Concreteshallbeplacedinlayersapproximately24"thick."Pa~raraph14.5.1shallbedeletedandreplacedaiththefollowinq:>>TheminimumcuringperiodshallbeinaccordancewithSection12.2.3.>>iv)paraqragh145.4.Therequirementforcontrolledcoolingattheconclusionofthespecifiedheatingshallbeaccomplishedbyleavingthecoldveatherprotectioninplaceatleast24hoursafterheatingisdiscontinuedInextremelycoldveather,thefieldengineershallrequirethatadditionalmeasuresbetakentopreventrapidcoolingoftheconcretebythismethod.38B-2 SSES-FSARACI318-71a)ProvisionofACI318-71,Chapter5,>>HixingandPlacingConcrete<<shallbemodifiedasfollows:i)Pana~r~ah55shallbezevisedbytheadditionofthefollowingnewparagraph5.5.3:5.5.3ThecuringrequirementsasdescribedinSections5.5.1and55.2abovemaybeinterruptedasnecessarynottoexceed8hoursprovidingrequirementsforweatherprotectionaremaintained.Suchcuringprocessmaynotbeinterruptedmorethantwicewithaminimumof8hourselapsingbetweeninterruptions.Ifthecuringisinterruptedforupto8hours,thecuringtimeshallbeextendedtoprovideatotalof7dayscuring.b)ProvisionsofACI318-71,Chapter6~Pormwork,EmbeddedPipes,andConstructionJoints,shallbemodifiedasfollows:i)Par~graphs6.32463.256326and6.3.27shallbedeletedandreplacedwiththefollowing:6.3.2.4<<Allpipingandfittingsshallbetestedinaccordancewiththereguirementsofthecodegoverningthatpipingsystem(e.g.,ASMEBoilerandPressureVesselCode,ANSIB31.1,stateorlocalplumbingcodes,etc.)orinaccordancewithapplicabledesignortechnicalspecifications,ordesigndrawings.Mheneverthepipingsystemisnotgovernedbysuchapplicablecodes,codecasesordesigndocuments,thensuchsystemsshallbetestedforleakspriortoconcreting.Thetestingpressureaboveatmosphericpressureshallbe50percentinexcessofthepressuretowhichthepipingandfittingsmaybesubjected,buttheminimumtestingpressureshallbenotlessthan150psig.Thepressuretestshallbeheldfor4hourswithnodropinpressureexceptthatwhichmaybecausedbyairtemperature.<<38B-3 SSES-FSAR"Drainpipesandotherpipingsystemsnotgovernedbyapplicablecodesanddesignedforpressuresofnotmorethan1psigneednotbetestedasrequiredabove.""Pipingsystemswhicharenotgovernedbyapplicablecodes,codecasesordesigndocumentsandwhichcarryliquid,gasorvaporwhichisexplosiveorinjurioustohealth,shallberetestedinaccordancewithSection6.3.2.4subsegueattothehardeningoftheconcrete.<<"Pipingsystemsmaybeenergizedwithwaternotexceeding50psinor90oFifapprovedbytheresponsibleFieldEngineer".Otherpipingsystems,includingsystemsgovernedbypipingsystemcodesordesigndocumentsexceeding50psior90oForenergizedwithotherthanwater,maybeenergized7daysaftertheconcreteplacementprovidedthatthetemperaturedoesnotexceed150oFnorthepressureexceed200psig.Pipingsystemsmaybeenergizedpriortoandduringtheplacementofconcreteprovidedthat:(a)theabovetemperatureandpressurerestrictionsareapplied,(b)theenergizedsystemisnotshutdownwithin24hoursofconcreteplacement,and(c)ifthepressureintheenergizedsystemdrops,thelowerpressureshallbecomethelimitingpressureuntiltheseven-daypost-placementtimelimithaselapsed.Pipingsystemswhichhavebeenenergizedwithin24hoursofconcreteplacementmaybereenergizedatanytimemorethan24hoursafterconcreteplacementuptothelimitinqpressure38B-4 SSES-FSAR38B1CONCRETEANDCONCRETE5ATEBIALS-UALIFICATIONS3.8B.11Concretenateri~alualificationnCementCementisTypeII,portland,cementconformingtoASTMC150.Certifiedcopiesofmaterialtestreportsshowingchemicalcompositionofthecementandverificationthatthecementbeingfurnishedcomplieswithrequirementsarefurnishedbythemanufacturerforeachbatchorlot.FineandcoarseaggregatesconformtoAST5C33.Aggregatesourceacceptabilityisbasedonthefollowingtestrequirements:NethodofTestUnitHeightofAggregateOrganicImpuritiesinSandsEffectofOrganicImpuritiesinFineAggregateonStrengthofMortarDesinationAST5C29AST5C40AST5C87SoundnessofAggregates5aterialsFinerThanNo200SieveAST5C88AST5C117LightweightPiecesinAggregateSpecificGravity6AbsorptionofCoarseAggregateSpecificGravity6AbsorptionofFineAggregateL.A.AbrasionSieveorScreenAnalysisofPine6CoarseAqqreqatesClayLumps6FriableParticlesScratchHardnessofCoarseAqqreqatesAST5C123AST5C127AST5C128AST5C131AST5C136AST5C142AST5C23538B-5 SSES-FSARPotentialReactivityofAqqrcqateASTMC289PetrographicExaminationLightweightAggregatesASTMC295ASTMC330PercentageofParticlesofLessAASHTOT150Than1.95SpecificGravityinCoarseAggregateResistanceofConcreteSpecimensAASHTOT161toRapidFreezingandThawinginMate"FlatandElongatedParticlesCRDC119CoarseaggregatelossfromtheL.A.AbrasionTest(ASTMC131)usingGradingAislimitedto40pexcentbyweightat500revolutions.Coarseaqqreqategradingisforsizenumbers4,8,and67asdefinedinASTNC33andthequantityofflatandelongatedparticlesislimitedto15percentinanynominalsizegroup.WhenfineandcoarseaggregatesaretestedperASTMC117tomeettherequirementsofASTMC33,andwhentheresultsofanyoftheaggregatesizesexceedsthestatedlimitsforfines,theaggregateisaccepted,providedthetotalamount'ofaggregatefinesinaqivenmixisnotgreaterthanthetotalamountpermittedforeachaggregatesizeatASTMC33.limits.~HihDen~sitagg~teatesTherequirementsforhighdensityaggregatesarethesameasfornormaldensityaggregatesexceptasnotedbelow.FineandcoarseaggregateconformstoASTMC637exceptthatgradingisasfollows:38B-6 SSES-FSARSieveSizeUS.Std.S.MeshPercentagePassingFineAggregateCoarseAggregate~Sand~1-12in.2in~1-1/2in.3/4in.3/8in.No.4No'8No.16No.30No50No10010075-9555-'530-6015-4510-300-1510095-10035-7010-302-150-10Thefinenessmodulusofthefineaggregateisnotlessthan3.2normorethan4.2.Bothfineandcoarseaggregatehaveaminimumbulkspecificgravityof4.0.TheseaggregatesarenottestedperAASHTOT161unlessthestructureisexposedtoadesignfreeze-thawenvironmentandarealsonottestedperASTMC330.Certifiedtestreportsarepreparedbyanindependenttestinglaboratoryforeachmaterialshipmentattestingtoaggregateconformancetocleanlinessrequirement@whentestedperASTMC117andspecificgravityrequirementswhentestedperASTHC127andC128.PozzolanPozzolan,whenused,conformstoASTMC618forClassFexceptthatthemaximumlossonignitionis6percent.PriortoshipmentaminimumofonesampleistakenandtestedinaccordancewithASTMC311todemonstrateconformancewiththeabove.Suchdocumentationaccompaniesnaterialshipment.MixingWaterandIceRaterandiceusedinmixingconcreteisfreeofin]uriousamountsofoil,acid,alkali,organicmatter,orotherdeleterioussubstancesasdeterminedbyAASHTOT26.Suchwaterandicedoesnotcontainimpuritiesthatwouldcauseeitherachangeinthesettingtimeofportlandcementofmorethan25percentorareductionincompressivestrengthofmortarofmorethan5percentcomparedwithresultsobtainedwithdistilledwater.Thewaterandicedonotcontainmorethan250ppmofchloridesasCl,ormorethan1000ppmofsulphatesasSO4.ThepHrangeisbetween4.5and8.S.REV.18/7838B-7 SSES-FSABAdmixturesAirentrainingadmixtures,whenused,conformtoASTMC260Waterreducingandretardingadmixtures,whenused,conformtoASTMC494fortypesAandD.TypesAandDareusedinaccordancewiththemanufacturer'srecommendations.CertificatesofconformancestatingconformancetotheapplicableASTMspecificationarefurnishedwitheachshipment.Useofcalciumchlorideisnotpermitted.3.SB12ConcreteNixDesinConcretePr~oertiesConcretepropertiesverifiedbytestingbelow:requiredforeachtypeofmixdesignarefortheapplicablepropertiesindicatedP~roer~tCompressiveStrengthUnitWeightSlumpAirContentTestDes~isationASTMC39ASTNC138ASTNC143ASTMC231Thefollowingadditionalpropertiesofselectedmixdesignshavebeendeterminedtoascertainmaterialcompatibilitywithdesignassumptions:StaticNodulusofElasticityASTMC469StaticPoisson'sRatioASTNC469Dynamic.NodulusofElasticityASTNC215DynamicPoisson'RatioThermalDiffusivityASTMC215CRDC36ThermalCoefficientofExpansionCRDC39ConcreteMixProortionsProportionsofingredientsaredeterminedandtestsconductedinaccordancewithACI211.1,exceptasnotedbelow,forcombinationsofmaterialsestablishedbytrialmixes.Theseproportioningmethodsproviderequiredconcretestrength,38B-8 SSES-FSARdurability,andunitweightwhilemaintainingadequateworkabilityandproperconsistencytopermitrequiredconsolidationwithoutexcessivesegregationorbleeding.Thedesignstrength(f'c)ofmixesthatcontainpozzolanismeasuredat90days;forthosethatdonotcontainpozzolan,f'cismeasuredat28days.Threecylindersaretestedforeachmixdesignandaqeasfollows:PozzolanMixNonnozzolanMix3days7days28days90days3days7days28daysConcretemixesforlimitedusessuchasinradiation-sensitivefacilitiesandhiqhdensityconcretedonotcontainpozzolan.Allotherconcretemixesare.basedonuseofapproximately15to20percentpozzolanbyweightascementreplacement.Furtherconcretemixesexceptlimitedapplicationuse,suchashighdensityconcrete,arebasedon3to6percentairentrainmentforboth3/0and1-1/2in.nominalmaximumsizecoarseaggregate.Thesemeasuresprovideaconcretepossessinqbothqoodfreeze-thawandsulphateresistance.Inlieuofestablishinqlimitsonwater-cementratio,theconcreteisproportionedandmixedsoastobeplacedatspecifiedslumps.Theaverageslumpatthepointofplacementislessthanthe"WorkingLimit",whichisthemaximumslumpforestimatingthequantityofmixingwatertobeusedintheconcrete.An"InadvertencyMargin"istheallowabledeviationfromthe"workingLimit<'orsuchoccasionalbatchesasmayinadvertentlyexceedthe"WorkingLimit".Jobsitetestshaveindicatedthatconcretewithslumpsatthe>>InadvertencyMargin"willproduceacceptablequalityconcrete.38B.1..3~GroutConstruct.ionGr~>4Constructiongroutforuseathorizontalconstructionjointsandsimilar'applicationsisproportionedfromthesamematerialsasforconcrete.GroutstrengthisdeterminedinaccordancewithASTMC]09REV2>9/783.88-9 SSES-PSARS-/we-tag.Ki-xStartermixesareusedinapplicationssuchasatthebottomoffoundationslabsandinlieuofconstructiongroutandareproportionedfromthesamematerialsasforconcrete.Thesemixesaregenerallyproportionedfora~~WorkingLimit"slump2in.qreaterthantheassociatedconcretemix.Trialmixesarepreparedandtestedforstrengthasdescribedforgeneralconcretemixes.Nogshgj;nk-Grout.NonshrinkqroutispreparedfromproprietarymaterialssuchasEmbecoLL-636byNasterBuildersCompanyorPiveStarGroutbyUSGroutCorporationSuchgroutsareproportionedinaccordancewiththemanufacturer'srecommendationsandaretestedforexpansion,compressivestrength,andflowcharacteristicswithmaximumwatercontentrecommendedbythemanufacturerpriortouse.38B2CONCRETEANDCONCRETEMATERIALS-BATCHINGEPLACINGECDRXNGANDPROTECTICN.3+B~2~1SgogggeStoraqeofaqqreqates,cement,pozzolan,andadmixturesisinaccordancewiththerecommendationsofACI304.3.8B2.-2--.Batchi~n~Nixing~andDeliveringConcreteforprincipalstructuresisprovidedascentralmixedconcretefromabatchplantlocatedonthejobsite.Somelimitedamountsofconcreteareobtainedfromanoffsitebatchplant.AllsuchbatchplantfacilitiesarecertifiedbytheNationalReadyMixConcreteAssociation(NRMCA)andmeasuringdevicesarecalibratedatreguiredintervalsandmorefrequontlywhendeemedappropriate.Measuringofmaterials,batchinq,mixinq,anddeliveringnormalweightconcreteconformtoASTIC94,AlternateNo1exceptasotherwisenoted.RegulatoryGuide1.69hasbasicallyadoptedANSIN101.6.ThisANSIstandardisintrepretedtobeapplicableonlytohiqhdensityconcreteservinqasradiationshieldsandisthereforenotusedonthisproject.As,theconcretehasadua1functionofprovidinqshieldingandstructuraladequacy,thestandard38B-10 SSES-FSARpracticesasdescribedhereinareadoptedfornormalweightconcrete.Qhenhigherdensityconcreteisrequiredforshieldingpurposes,thepracticesadoptedareingeneralagreementwiththoseoutlinedintheACIJournalofAugust1975reportbyACICommittee304:"HighDensityConcreteMeasuring,Mixing,Transporting,andPlacinq".Thedeliveryofmaterialsfromthehatchingeguipmentiswithinthefollowinglimitsofaccuracy:Over.andnader~PecentMaterial~lleiht~eicehCCementLessthanGreaterthanoregualto3030percentofpercentofscalecapacityscalecapacityMinus0Plus4PozzolanMinus0Plus4WaterIceAqqregateequaltoorsmallerthan1-1/2(Seenotebelow)AdmixturewhenbatchedseparatelyNote:Orplusorminus03percentofscalecapacity,whicheverisless.3SB23PlacinaPlacinqofnormalweightconcreteisinaccordancewiththerecommendationsofACI304.Placingofhighdensityconcreteisasdescribedabove.3BB-11 SSES-FSAR3.8B.24ConsolidationConsolidationofconcreteisinaccordancewiththerecommendationsofACI309.38B2.5CuringCuringofconcreteisinaccordancewiththerecommendationsofACI308.3.8B.2.6HotandColdHeatherConcret~inmeasurestakentomitigatetheeffectsofhotandcoldweatherduringeachstepoftheconcretingoperationareinaccordancewithACI305and306respectively.38B3CONCRETEANDCONCRETEMATERIALS-CONSTRUCTIONTEST'INGAnindependentconcreteandconcretematerialstestinglaboratoryhasbeenestablishedattheprojectsitetomonitorthequalityofsuchworkandmaterialsandtopromptlyreportanydeviationsfromspecifiedconditions.SuchtestingpersonnelarequalifiedtomeettherequirementsofNRCRegulatoryGuide1.58.ProceduresandtestsforaccomplishingsuchworkarereviewedandacceptedbyBechtelpriortouse.QualificationsandproceduresinusebyBechtelqualitycontrolpersonnelandextentofconformancetoRegulatoryGuide1.94aredescribedinSection3.13.productiontestingforconcreteandconcretematerialsisasshowninTable3.88-1.Materialsthatdonotmeettestrequirementsarenotusedintheconstruction.Ifthemeasuredconcretetemperature,slump,unitweight,oraircontentfallsoutsidethelimitsspecified,acheckismade.Intheeventofasecondfailure,theloadofconcreterepresentedisnotusedintheconstruction.ConcretecylindertestresultsarereviewedforcompliancewithChapter17ofACI301andareevaluatedinaccordancewithACI21438B-12 SSES-FSARMaterialsorportionsthereofthatdonotmeettheabovecriteriabutmayinadvertentlybeusedarehandledasdescribedinAppendixDandamendmentstothePSAR.38B4CONCRETEREINFORCEMENTMATERIALS-OALIFICATIONSReinforcingsteelforconcretestructuresconformstoASTMA615,Grade60,includingSectionS1forbarsizes14and18.Certifiedcopiesofmaterialtestreportsindicatingchemicalcomposition,physicalpropertiesanddimensionalcompliancearefurnishedbythemanufacturerforeachheat.Shenpermittedbythedesigndrawings,reinforcingsteelisfurnishedbythesuppliertospecialchemistryrequirementstoenhancereinforcingweldcharacteristicsThechemistryofsuchbarsmeetsthefollowingchemicalanalysisrequirementsexpressedinmaximumpercentagebyweight:C-050%Mn-1.30%P-005%S-005%Meldsplicingofreinforcingisnotperformedintheprimarycontainmentstructures.Eachbundleofreinforcinqsteelistaggedtoensureuniqueheattraceabilityduringproduction,whileintransitandintostorage.Durinqstoraqeandinstallationreinforcingsteeliscollectivelytraceabletothegroupofcertifiedmaterialtestreportsreceived.PriortoinstallationatthejobsiteallreinforcingsteelissubjectedtoatestingprogrammeetingtherequirementsofNRCRegulatoryGuide1.15.Anyreinforcingsteelwhichdoesnotmeettheserequirementsisnotused'intheconstructionSleevesforreinforcingsteelmechanicalsplicesconformtoASTMA519forGrades1018and1026.Certifiedcopiesofmaterialtestreportsindicatingchemcialcompositionandphysicalpropertiesarefurnishedbythemanufacturerforeachsleevelot.38B-13 SSES-FSAR3~8B5CONCRETEREINFORCEMENTHATERIAS-FABRICATION38B.51BendinReinforcementHooksandbendsarefabricatedinaccordancewithACI318Chapter71.Barspartiallyembeddedinconcretearebentsubjecttothefollowingconditions.~Bedin~antiallEmbeddedBinoemtTheminimumdistancefromexistingconcretesurfacetothebeginningofbendandtheminimuminsidediameterofbendis:BanSizeNo.3throughNo.8Nin.Dist.fromSurfacetoBeinninofBend3BarDiametersNo.14,No.185BarDiametersNo.9,No.10,No.114BarDiametersBin.InsideBediamete6BarDiameters8BarDiameters10BarDiametersBarsNo.3toNo.5inclusivemaybebentcoldonce.HeatingisreguiredforsubseguentstraighteningorbendingBarsNo.6andlarqermaybebentandstraightened,providedthatheatinqisused.Whenheatisused,itisappliedasuniformlyaspossibleoveralengthofbarequalto10bardiameters,andiscenteredatthemiddleofthearcofthecompletedbendThemaximumbartemperatureisbetween1100and12000P,andmaintainedatthatleveluntilbendinq(orstraightening)iscomplete.Temperature-measurinqcrayonsoracontactpyrometerisusedtodeterminethetemperature.Heatisappliedinsuchawayastoavoiddamagetotheconcrete.CareistakentopreventrapidquenchingofheatedbarsStraightenedbarsarevisuallyinspectedtodeterminewhethertheyarecracked,reducedincrass-sectionorotherwisedamagedAnydamagedportionsareremovedandreplaced38B-14 SSES-FSAR3.BB.5.2BplicinciReinforcementZngeneral,lappedsplicesareusedforNo.11andsmallerbars.SuchlapsplicesareinaccordancewithSections75,7.6,and7.7ofACI318.MechanicalS~licesIngeneral,mechanical(Cadweld)splicesareusedforallNo.14andNo18splices,forsplicesacrosslinerplatesandinlieuofstandardhookswhenaplateanchorageisrequiredordesirable.Toobtainaneffectivelevelofqualitycontrolforthissplicingprocess,aqualification,inspection,testing,andacceptanceprograminaccordancewithNRCRegulatoryGuide1.10hasbeenused.Meldingofsplicesleevestoliners,orotherplatesandshapesisinaccordancewithAMSD1.1wheneverbothlapandmechanicalspliceshavebeendeterminedtobeimpractical,weldedsplicesareusedonacase-by-caseapprovalbasis.SuchweldingisperformedbyqualifiedweldersusingaprocedureconformingtothebasicrecommendationsofAWSD12-1-3.8B53PlacinReinforcementReinforcement.issecurelytiedwithwireandheldinpositionbyspacers,chairs,andothersupportstomaintainplacementaccuracywithinthetolerancesestablishedforreinforcementprotectionandthedesignrequirements.38B.5.4S~acinReinforcementSpacingofreinforcementisinaccordancewithSections3.3.2,741,and745ofACI31838B55SurfaceConditionReinforcementsurfaceconditionatthetimeofconcreteplacementisinaccordancewithSection7.2ofACI318.3.8B-15 SSES-PSAR38B6CONCRETEREZNPORCENENT5ATZRIALS-CONST'RUCTIONTESTINGInspectionofreinforcementmaterialstoensurethatbending,placinq,splicing,spacing,andsurfaceconditionrequirementsaremetisinaccordancewiththeprogramdescribedinChapter17asistheextentofconformancetoRegulatoryGuide1.943~8B7FORMMORKANDCONSTRUCTIONJOITSPormworkisdesignedandconstructedinaccordancewithACI347.Suchformworkmaintainspositionandshapetokeepdeformationswithinlimitsestablishedbythedesignrequirements.Prior.toconcreteplacement,constructionjointsarecleanedtoremoveunsatisfactoryconcrete,laitance,coatingsidebris,andotherforeignmaterialandtoexposetheaggregateThe.jointsarethensaturatedtoproduceasaturatedsurfacedrycondition.Horizontalconstructionjointsthenshallbecoveredwitheitherapproximately1/4in.ofconstructiongroutoralayerofstartermixwhichisapproximately4to6indeep.Exceptasdiscussedbelow,concreteisplacedinaccordancewithRegulatoryGuide1.55.Regulatorypositions2and3oftheRegulatoryGuidestatethepresumedfunctionalresponsibilitiesofthe"Designer"andthe>>Constructor>>.Underthedesigner'srolearelistedtheresponsibilitiesforcheckingshopdrawingsandlocationsofconstructionjoints.Onthisproject,theformerisfullydelegatedtotheBechtelfield,althoughthedesignengineeringofficemaychecksignificantportionsandmayadvisethefield~accordingly.Theresponsibilityforconstructionjointlocationispartlydelegatedtothefieldinthesensethatthefieldhastofollowtheguidelinessetoutinthedesigndrawingsandspecificationspreparedbythedesignengineeringoffice.Ininterfaceareas,adelegationofthedesignengineeringoffice'sresponsibilitytothefieldofficeiswithinthedefinitionoftheterms"responsibility>>and"delegatedresponsibility>>asdiscussedinParagraph1.3oftheproposedANSIN45.2.5.Delegationoftheresponsibilitiesforcheckingthereinforcingdrawingstothefieldengineeringgroupisjustifiedbythefollowinq:a)TheBechtelfieldengineeringgroupissegregatedfromthefieldsupervisiongroup,althoughbotharelocatedatthejobsiteandeventuallyreporttotheprojectconstructionmanager38B-16 SSBS-PSARb)Thefieldengineeringgroupisstaffed,forthemostpart,byqraduateenqineerswhohavebeentrainedintheuseoftheACIcodeandunderstandthedesignimplicationoftheproperlocation,splicing,andembedmentofreinforcingsteelc)Thefieldinspectionoftheactualrebarasplacedintheformsisconductedusingtheengineeringdrawingsastheprimarysourcedocument.Thisensuresacheckonanyerrorswhichmayhavepassedthecriticalreviewofthefieldengineerincheckingtheshopdetailorerectiondrawings.d)Itisstandardpracticein,thecivilengineeringprofessionthatengineeringreguirementdrawingsforreinforcingbeconvertedtoshopdetailanderectiondrawinqsinaccordancewithACIstandardsappliedbysteeldetailersatthereinforcingsteelvendor'sshop.Mostcontractorsinstallingreinforcingsteelrelyupontheirsuperintendentandforemanforcorrectinterpretationofthesedetaildrawingsinerectingthereinforcingsteel.MhilethisisalsotrueofBechtelfieldoperation,wedohavetheadditionalhelpandguidanceofthefieldengineersbothduringtheinstallationphaseandfinallyattheinspectionphasepriortofinalsign-offonthereportcard.e)Thefieldengineershavetheaddedbenefitofheingabletoplanandwitnesstheactualinstallationandcan,therefore,betterforeseeanydifficultiesinmeetingtheintendeddesignrequirementsTheirassessmentofthesituationisfurtherassistedbyregulartelephonecommunicationwiththedesignengineerswhoalsoperiodicallyvisittheJobsite.Theaboveprocedureofdelegationofthedesignengineeringoffice'sresponsibilitytothefieldpersonnelandperiodicmonitoringbytheengineeringofficeensurescorrectnessandconformanceoftheshopdrawingstothedesigndrawingsandthereforemeetstheintentofRegulatoryGuide1.55.3BB-17

SSES-FSARAPPENDIX38CCONCRETEUNITMASONRY'ASONRYMATERIALSANUALITYCONTROMaterials,workmanshipandqualitycontrolarebasedontheapplicablecodes,standards,recommendationsandspecificationslistedinTable3.8-1.Thesedocumentsaremodifiedasrequiredtosuittheperticularconditionsassociatedwithnuclearpowerplantdesignandconstructionwhilemaintainingstructuraladequacy.38C1CONCRETEUNITMASONRYANDMASONRYMATERIALS-~UALIPICATIONSConcreteUnitMasonryConcreteunitmasonryconformstoeitherASTMC90,TypeI,GradeNforhollowmasonryunitsorASTMC145,TypeI'radeSforsolidmasonryunits.Maaoa~rNortarMasonrymortarconformstoASTMC270,TypeM,andisofthefollowingingredients:Portlandcement,conformingtoASTMC150,TypeIorII.HydratedlimeconformingtoASTMC207,TypeS.Aggregatec'onformingtoASTMC144.Masonr~GroutMasonrygroutconforms-tbASTMC476.ConcreteInfillConcreteinfillconformstotheprogramandrequirementsdescribedinAppendix3.8B.ReinforeinqSteelReinforcingsteelconformstotheprogramandrequirementsdescribedinAppendix3.8BREV.18/7838C-1 SSZS-FSARHorizontalJointReinforcementHorizontaljointreinforcementismadeofwireconformingtoASTMA82.CertificatesofcompliancestatingconformancetoASTMA82arefurnishedforthejointreinforcement.38C2CONCRETEUNITMASONRYANDMASONRYMATERIALS-CONSTRUCTIONANDERECTIONConstructionanderectionofconcreteunitmasonryandmasonrymaterialsisinconformancewiththerequirementsoftheUniformBuildingCode.38C3CONCRETEUNITMASONRYANDMASONRYMATERIALS-CONSTRUCTIONTESTINGAnindependenttestinglaboratoryhasbeenestablishedattheprojectsitetomonitorthequalityofconcreteunitmasonryandmasonrymaterialsandtopromptlyreportanydeviationsfromspecifiedconditionsProceduresandtestsforaccomplishingsuchworkarereviewedandacceptedbyBechtelpriertouse.Productiontestingforconcreteunitmasonryandmasonrymaterialsisasfollows:ConcreteUnitMasonryTestsofconcreteunitmasonryareperformedatafrequencyofsixunitsrandomlyselectedfromeachlotof5000unitsorfractionthereofdeliveredtothejobsite.,SuchunitsaretestedinaccordancewithASTMC140todemonstratecompliancewithASTMC90forhollowmasonryunitsandwithASTMC145forsolidmasonryunits.Suchtestsareperformedandacceptabilitydetermined,prior.touseofthatlotofmasonryunits.MasonsMortarTestsofmasonrymortarareperformedpriortouseinitiallyandthenforeach5000concretemasonryunitsplacedSuchtestsareperformedinaccordancewithandmeettheacceptancestandardsofASTMC270Masons~GroutTestsofmasonrygroutareperformedatafrequencyofonceforeach100cubicyardsofeachclassofmasonrygroutproduced.Eachtestconsistsof6twoinchcubesmade,curedandtestedinaccordancewithASTMC109.Threecubesaretestedat7daysandthreeat28days.3.8C-2 SSES-FSARConcreteInfillConcreteinfillistestedatthesamefrequencyandbythemethodsdescribedforAppendix3.SB.Materialsthatdonotmeettestrequirementsarenotusedintheconstruction.MaterialsorportionsthereofthatdonotmeettheabovecriteriabutmayinadvertantlybeusedarehandledasdescribedinAppendixDandamendmentstothePSAR.3.8C-3

SSES-FSAR3'15ESTIMATEDCHEMICALPHYSICALANDRADIATIONENVIRONMENT3.11.5.1SuppressionPool,ResidualHeatRemovalSystem,andILThewaterinthesesystemsshallnotbechemicallyinhibited.ThemaximumlimitsforthesuppressionpoolhavebeenestablishedtobecompatiblewiththoseoftheprimarycoolantandarelistedinTable3.11-7forcornparison.Observationsmadeofsuppressionpoolwaterqualityoveraperiodofseveralyearsinsuppressionpoolwithandwithoutcoatings,indicatethatthefeedandbleedtoradwastethatoccursduringnormalsystemtestingandleveladjustmentsmaintainthewaterqualitywellwithintheabovelimits.Duringreactorshutdowncooling,theRHRsystemwatermixeswithreactorwater.Therefore,toinsurereactorwaterqualitytheshutdowncoolingpipingandequipmentshallbeflushedwithwaterofthequalityspecifiedaboveformaximumlimitwithsuspendedsolidsconcentrationof5ppmorless.DuringlayuptheRHRsystemwillbefilledwithwaterofthefollowinglimits.ParameterRHRSystemMaximumLimitConductivityChlorides(asCl)pH3mho/cmat250C0.05ppm5.3to7.5at250C3.11.5.2P~hsicalEnvironmentEngineeredsafetyfeature(ESF)systemsaredesignedtoperformtheirsafetyrelatedfunctionsinthetemperature,pressure,andhumidityconditionsdescribedinSubsection3.11.2,andSections6.2and6.3.Thecontainmentatmosphereismaintainedbelow4percentbyvolumehydrogenconsistentwiththerecommendationsofRegulatoryGuide1.7asdiscussedinSubsection6.2.5.3.11.5.3RadiationEnvironmentESFsystemsandcomponentsaredesignedtoperformtheirsafetyrelatedfunctionsafterthenormaloperationalexposureplusanaccidentexposure.Thenormaloperationalexposureisbasedon SSES-FSARthedesignsourcetermspresentedinChapter11andSubsection12.2.1andtheequipmentandshieldingconfigurationspresentedinSection12.3.Post-accidentESFsystemandcomponentradiationexposuresaredependentonequipmentlocationInthecontainmentandcontrolroomarea,exposuresareduetoahypothesizedLOCA.SourcetermsandotheraccidentparametersarepresentedinSubsection12.2.1,andChapter15,andareconsistentwiththerecommendationsofRegulatoryGuides1.3and1.7.inthedeactorBuilding,exposuresarebasedontheassumptionthat50percentofthecorehalogeninventoryand1percentofthecoresolidfissionproducts,aslistedinSubsection5.6.3.5,arerecirculatedbytheECCSsystems.Normal,accident,anddesign(normalplusaccident)radiation'exposuresforplantareas,basedontheaboveassumptions,'representedinTable3.11-6.OrganicmaterialsthatexistwithinthecontainmentareidentifiedinSubsection6.1.2.ThedesignradiationexposuresidentifiedinTable3.11-6arebasedongammaradiationexposureonlyexceptasnoted.Theeffectofbetaradiationiseffectivelyattenuatedbysmallamountsofshielding,suchasconduitsforcableandcasingsforequipment.Fortheorganiccoatingmaterialsusedinsidethecontainment(seeTable6.1-2),irradiationtestshavebeenperformedforacumulativegammadoseupto1x10~rads,whichexceedsthedesigncalculatedvalueinTable3.11-6,andtherefore,conservativelyaccountsforthesurfaceexposureduetobetaradiationinthedesignbasisaccidentenvironment.3.116REFERENCES3.11-1J.J.DiNunno,R.E.Baker,F.D.Anderson,andR.L.Materfield,<<CalculationofDistanceFactorsforPowerandTestReactorSites<<,TID-14844,DivisionofLicensingandRegulation,AEC,Rashington,D.C.(1962).311-2J.F.KircherandR.E.Bowman,EffectsofRadiationonMaterialsandComponents,VanNostrandReinhold,NewYork,1964.REV.5i2/79311-16 PageITABLE3.11-6NORMALANDMAXIMUMPLANTENVIRONMENTALCONDITIONSj18NORMALOPERATINGCONDITIONSMAXIHUMCONDITIONSRELATIVEDOSEINTEGRATEDRELATIVELOCATOTALINTEGR.TEHPFHUHIDITYRATE(12)DOSEPRESSURETEMPHUMIDITYDOSERATEDOSE4KEYPRESSUREMAX/HINHAX/MI+,(R/HR)(RAD)'F(RAUS/HR)(RAUS)5(10)PrimaryContainmentDrywell,No.RPVShieldWithVesselShield:C2.1psig150/10090/20Gamma4SeeSeeSeeto6.5X10(2)2.3X10NotesNotesNotes1.3X102.3X101.5psigNeutrons16(l)>(13)(1)>(13)(1)>(13)6.3X107.9X10and(7)and(7)and(7)-7.9X10)i)isZone1AboveCoreZone2CoreRegion~Zone3UnderVesselZone4NearRecirculationPumpsC2a.1psigto1.5psigC2b.1psigto1.5psigC2c.1psigto1.5psigC2d.1psigto1.5psig150/10090/20150/10090/20185/10090/20135/10090/20Gamma(2)Neutron3X10Gamma50Neutrons1.4X10Gaum>a7.2Neutron<1Gamma25Neutron(2X108.8X106.3X10131.8X10I.sx10142.5X10<1.3X108.8X102.5X10AsAboveAsAboveAsAbove1.3X106AsAboveAsAboveAsAboveAsAboveAsAboveAsAbove1.3X106AsAboveAsAboveAsAboveAsAboveAsAboveAsAbove1.3X106AsAboveAsAboveAsAboveAsAboveAsAboveAsAbove1.3X106AsAboveAsAboveAsAbove3.4X106.3X104.4X10l.sx10142.8X10<1.3X103.4X102.5X10)iis5)IORev.18,11/80 Page2TABLE3.11-6NORHALANDMAXIMUMPLANTENVIRONMENTALCONDITIONSI]8AREANORMALOPERATINGCONDITIONSRELATIVEDOSETEMPoFHUMIDITYRATEKEYPRESSUREHAX/HINMAX/MIFg,(R/HR)(10)INTEGRATEDDOSE(RAD)MAXIMUMCONDITIONSRELATIVELOCATOTALINTEGR.PRESSURETEHPHUMIDITYDOSERATEDOSE'F(RADS/HR)(RADS)Zone5>15ft..fromRecircPumpsZone6SuppressionPoolCoreSprayPumpRoomsHPCIPumpRooms&PenetrationRoomC2e.1psig150/100to1.5psig90/20C3.1psig125/90to1.5psig100/50Rla-.375"wg100/6090/10Rlb-.375"wg104/6090/10Gamma4Neutgon2X10Gamma(2)Neutron2X10.015.0151.4X1025X10123.5X105.3X105.3X102.7X102.5X10SeeNoteSeeNoteSeeNote(8)(8)(8)-.25"wg130100/90Note(15)1.3X101.6xlo2.6X107X105X106.1psig305for100/90[-.25"wg]60se~3)Note(15)[130]1.6X105X10AsAboveAsAboveAsAbove1.3X106AsAboveAsAboveAsAbovebI))1618RHRPiping&PenetrationRoomAtEl.683Rlc-.375"wg115/6090/10.0155.3X102.48psig305for100/90[-.25"wg]60se~3)Note(15)[130]1.6X105X10RWCUSystemHeat.ExchangerRoomRid-.375"wg110/6090/10158.8X102.4psig220for100/90[-.25"wg]40se~3)Note(15)[130]6.5X108.9X10Rev.18,11/80 Page3TABLE3.11-6NORMALANDMAXIMUMPLANTENVIRONMENTALCONDITIONSNORHALOPERATINGCONDITIONSRELATIVEDOSETEHPoFHUMIDITYRATEKEYPRESSUREMAX/MINMAX/Milg(R/HR)(10)INTEGRATEDDOSE(RAD)MAXIHUHCONDITIONSRELATIVELOCATOTALINTEGR.PRESSURETEMPHUMIDITYDOSERATEDOSE(4)'F~'RAUS/NR)(RAUS)RWCUSystemRecir-culationPumpRoom8PenetrationAreaRWCUSystemFiltersTanks8PumpRoomsReactorBuildingSteamTunnelRefuelingFloorRle-.375"wg104/6090/10<.05Rlf-.375"wg104/6090/1010R3-.375"wg130/4090/105R5-.25"wg100/6090/101.8X103.6X101.8X103.5psig222for[-.25"wg]40sec3[130]i)-25"wg1048.2psig300Ffor[-.25"wg]15se(3)[130125"wg10100/90Note(15)100/90Note(15)100100/90Note(15)6.5X101.9X106.5X103.8X10I6X102(5)1SX10[>2.5X10]RNRPumpRoomsRCICPumpRoom8PenetrationRoomRlg-.375"wg100/6090/10Rlh-.375"wg102/6090/10.015.0155.3XIO5.3X101.84psig296for100/90[-.25"wg]60ses3Note(15)[130]42.2psig306for100/90[-.25"wg]25sec(3)Note(15)[130]1.6X105X101.6X105X10Rev.18,11/80 Page4TABLE3.11-6NORMALANDHAXIMUMPLANTENVIRONMENTALCONDITIONSNORMALOPERATINGCONDITIONSRELATIVEDOSEINTEGRATEDTEHPopHUMIDITYRATE12DOSEKEYPRESSUREHAX/MINMAX/MIN,(R/HR)(RAD)(10)PRESSURETEHPopMAXIMUMCONDITIONSRELATIVELOCATOTALINTEGR.HUMIDITYDOSERATEDOSE(RADS/HR)(RADS)ReactorBuildingGeneralAccessAreasStandbyLiquidControlAreaEmergencySwitchgearPenetrationRoomsNotOtherwiseNotedCRDHydraulicAreaReturnAirPlenun,RecircSystemReactorBldg.H&VEquiPmentRoomRln-.25"wg100/6090/10Rln-.25"wg100/6090/10Rli-.125"wg104/7090/10Rlj-.375"wg130/6090/10Rlk-.25"wg100/6090/10R4-.25"wg104/4090/10.0025.0025.0025.0025.00258.8X108.8X108.8X10S.SX108.8X10-.25"wg104-.25"wg104-25"wg122-.25"wg130-.25"wg104-1.5"wg104-.25"wg104909090909090906.5X101.7X106.5X101.7X101.7X101.7X101.7X10SOTSEquipmentRoomCS4Atmos104/40100/10.0155.3X10Atmos1041005.7X103.8X10ControlRoomCS1+.125"wg80/7055/45.00051.75X102+125"wg,80551.78X10Rev.18,11/80 Page5TABLE3.11-6NORMALANDHAXIHUHPIANTENVIRONMENTALCONDITIONSNORHALOPERATINGCONDITIONSRELATIVEDOSEINTEGRATEDTEMPFHUMIDITYRATE12DOSEKEYPRESSUREHAX/HINHAX/HINT,(R/HR)(RAD)(10)MAXIMUMCONDITIONSRELATIVELOCATOTALINTEGR.PRESSURETEMPHUMIDITYDOSERATEDOSE(4)'F(RADS/HR)(RADS)CableSpreadingRooms8HVACEquipmentRoom,RelayRoomsElect.Equip.RoomsCS2+.125"wg80/1060/10.00051.75X10+.125"wg9060BatteryRoomComputerRoomRadwasteControlRoomRadwasteValveandPumpRoomsStorageTankRooms(unprocessed)Die'selGeneratorRooms(14)ESW'PumphouseUPSRoomsRW2-.125104/4090/10RW3,-.125GAtmos120/4090/10104/7290/5SWAtmos104/40'00/5CS3.125"wg104/6560/40CS5+.125"wg80/6060/10CS3+.125"wg85/6560/40RW1Atmos75/5080/10.0025.02208.8X107.0X107.0X10+.125"wg80+.125"wg85Atmos80606080-.25"wg120100-.25"wg120100Atmos12050Atmos104100.125"wg10460Rev.18,11/80

Page6TABLE3.11-6NORMALANDMAXIMUMPLANTENVIRONMENTALCONDITIONSNORMALOPERATINGCONDITIONSRELATIVEDOSETEMPOFHUMIDITYRATEKEYPRESSUREMAX/MINMAX/MI)g(R/HR)00)MAXIMUMCONDITIONSINTEGRATEDRELATIVELOCATOTALINTEGR.DOSEPRESSURETEMPHUMIDITYDOSERATEDOSE(4)(RAD)F(RADS/HR)(RADS)TurbineBuildingOperatingFloorTurbineBuildingGeneralAreas(shielded)T2aAtmos104Tl-.125"wg10490/1090/10.005-.0207.7X10.0014X10-.125"wg104100-.125"wg104~90HPTurbineLPTurbineFeedwaterHeatersCondensersSteamJetAirEjectorsCondensateTreatmentT2b-.125"wgT2c-.125"wgT3-.125"wg120T4-.125"wg120T5-.125"wg12090/1090/101590/10101.8X103.5X101.8X105.3X103.5X10-.125"wg.125"wg-.125"wg120-.125"wg120-.125"wg1201001001005.3X105.3X10(1)Temperaturesareforsmalllinebreak;pressuresareforrecirculationlinebreak.Temperaturesforrecirculationlinebreakarelower.(2)Unitsforneutronfirnarenutronspercm-sec.2'CRev.18>11/80

Page7TABLE3.11-6NORHALANDMAXIHUHPLANTENVIRONHENTALCONDITIONS(3)Pipebreakoutsidecontainmentresultsinshorttermpeaktemperatureandpressureshown,untilthebreakisisolatedwithinthetimenoted.Showninbracketsisthelongtermtemperatureandpressureforthepipebreakoutsidecontainment.Theconditionsinbracketsarealsothoseforthefulldurationofapipebreakinsidecontainment.Duringtheshorttermtransient,capabilitytodetectandisolatethepipebreakandcapabilitytoshutdownthereactorexists.(4)Includesintegratedaccidentandnormaldoses.(5)AccidentisroddropnotLOCA.(6)Pressure,temperature,andhumiditymaximumsarenotsimultaneous.(7)a)0-45sec.b)45sec.-3hrs.c)3hrs.-6hrs.d)6hrs.-24hrs.e)24hrs.-100days(8)a)0-45sec.b)45sec.-3hrs.c)3hrs.-6hrs.d)6hrs.-30hrs.e)30hrs.-150hrs.f)150hrs.-100days44psig3535-201529psig3030151010340oF3404F3200F2504F200oF130oF200oF210DF2000F200oF1404F100$R.H.100'.H.100%R.H.100$R.H.IOOXR.H.100%R.H.100KR.H.100$R.H.100$R.H.100KR.H.100$R.H.(9)Spentfuelpoolboilingresultsinhighertemperaturesnotexceeding210'F.(10)Keyletterandnumberidentifiesaparticulargroupofenvironmentalparameters.(ll)Pipebreaksoutsidecontainmentcanresultinhighertemperaturesandpressuresincertainofthesecompartments,however,leakdetection,isolation,andshutdownisaccomplishedfromoutsidethesecompartments.(12)Ifnototherwisenoted,doseisGama.Rev.18,11/80 Page8TABLE3.11-6NORMALANDMAXIMUMPLANTENVIRONMENTALCONDITIONS(13)Minimumdryvellpressureis-5psig.(14)ForDGrooms:NormaloperationmeansDGinStandby,maximumconditionsmeansDGoperating.(15)RelativeHumidityMaximum:100$,1-12Hours;90$,12Hoursto100days.Rev.18,11/80 SSES-FSAR6.3.2.46.3.2.56.3.2.66;3.2.76.3.2.86.3.2;9MaterialsSpecificationsandCompatibilitySystemReliabilityProtectionProvisionsProvisionsforPerformanceTestingManualActionsPositionVerificationforManualValves6.3-20b6.3-20b6.3-20b6.3-20c6.3-20c6.3-20d.6.3.3ECCSPerformanceEvaluation6.3-20e6.3.3.16.3.3.26.3.3.36.3.3.46.3.3.5ECCSBasesforTechnicalSpecificationsAcceptanceCriteriaforECCSPerformanceSingleFailureConsiderationsSystemPerformanceDuringtheAccidentUseofDualFunctionComponentsforECCS6.3-216.3-216.3-226.3-226.3-236.3.3.66.3.3.76.3.3.7.16.3.3.7.26.3.3.7.36.3.3.7.4~6.3.3.7.56.3.3.7.66.3.3.7.76.3.3.8LOCAAnalysisConclusions6.3.4TestsandInspectionsLimitsonECCSSystemParametersECCSAnalysesforLOCALOCAAnalysisProceduresandInput'ariablesAccidentDescriptionBreakSpectrumCalculationsLargeRecirculationLineBreakCalculationsTransitionRecirculationLineBreakCalculationsSmallRecirculationLineBreakCalculationsCalculationsforOtherBreakLocations6.3-236.3-246.3-246.3-256.3-266.3-276.3-296.3-306.3-30a6.3-30a6.3-30a-6.3.4.16.3.4.2ECCSPerformanceTestsReliabilityTestsandInspections6.3-30a6,3-30b6.3.4.2.1HPCITesting6.3.4.2.2ADSTesting6.3.4.2.3CSTesting6.3.4.2.4LPCITesting6.3-30c6.3-30d6.3-316.3-316.3.56.3.66.3.7InstrumentationRequirementsNPSHAMarginandVortexFormationAfteraPassiveFailureinaWaterTightECCSPumpRoomReferences6.3-326.3-326.3-336.4HABITABILITYSYSTEMS6.4<<16.4.16.4.2DesignBasesSystemDesign6.4-16.4-2Rev.28,1/826-vii SSES-FSAR6.4.2.16.4.2.26.4.2.36.4.2.46.4.2.5ControlRoomandSecondaryEnvelopeVentilationSystemDesignLeaktightnessInteractionwithOtherZonesandPressure-ContainingEquipmentShieldingDesign6.4-26.4-36.4-36.4-46.4-46.4.36.4.4SystemOperationalProceduresDesignEvaluations6.4-56.4-66.4.4.16.4.4.2RadiologicalProtectionToxicGasProtection6.4-76.4-86.4.56.4.6TestingandInspectionInstrumentationRequirements6.4-86.4-96.5.16.5.1.1EngineeredSafetyFeature(ESF)FilterSystemsStandbyGasTreatmentSystem(SGTS)6.5FISSIONPRODUCTREMOVALANDCONTROLSYSTEMS6.5-16.5-16.5-16.5.1.1.16.5.1.1.26.5.1.1.36.5.1.1.46.5.1.1.56.5.1.1.6DesignBasesSystemDesignDesignEvaluationTestsandInspectionsInstrumentRequirementsMaterials6.5-16.5-36.5-66.5-66.5-66.5-76.5.1.2ControlRoomEmergencyOutsideAirSupplySystem(OV-101)6.5-86.5.1.2.16.5.1.2.26.5.1.2.36.5.1.2.46.5.1.2.56.5.1.2.6DesignBasesSystemDesignDesignEvaluationTestsandInspectionsInstrumentationRequirementsMaterials6.5-86.5-96.5-11'.5-116.5-116.5-126.5.26.5.3ContainmentSpraySystemsFissionProductControlSystem6.5-136.5-136.5.3.16.5.3.2PrimaryContainmentSecondaryContainment'.5-136.5-13a6.5.46.5.5IceCondenserasaFissionProductCleanupSystemReferences6.5-156.5-15Rev.28,1/826-viii SSES-PSAR6-"XSS0PODCTBOVALANDCONTROLSYSTEMS---SsnBasesTheSGTSisdesignedtoaccomplishthefollowingsafetyrelatedobjectives:a)Exhaustsufficientfilteredairfromthereactorbuildingtomaintainanegativepressureofabout0.25in.wqintheaffectedvolumesfollowinqsecondarycontainmentisolation(seeSubsection9.4.2forthesecondarycontainmentisolationsignals)fozthefollowinqdesiqnbasisevents:('I)spentfuelhandlinqaccidentintherefuelinqflcozarea(2)LOCAb)Piltertheexhaustedairtoremoveradioactivepazticulatesandbothradioactiveandnonzadioactive.formsofiodinetolimittheoffsitedosetotheguidelinesof10CPR100.c)FilterandexhaustdischargefromthemainsteamisolationvalveleakcontrolsystemNonsafetyrelatedobjectivesfordesignoftheSGTSareasfollows:a)Pilterandexhaustaizfromtheprimarycontainmentforpuzginqandventilatinqb)FilterandexhaustdischargefromtheHPCIbarometriccondenserc)Filterandexhaustfromtheprimarycontainmentpressurerelieflined)PilterandexhaustnitrogenfromtheprimarycontainmentfoznitrogenpurginqThedesiqnbasesemployedforsizingthefilters,fans,andassociatedductworkareasfollows:REV3,11/786.5-1 SSES-FSARa)Eachtra'inissizedandspecifiedfortreatingincomingair-steammixtureat180&F,andcontainingfissionproductsandincomingparticulatesequivalentto1.0volumepercentperdayofthefissionproductsavailableintheRev.25,7/Blla SSES-FSARThispagehasbeenintentionallyLeftBlank.REV.3,ll/786.5-1b SSES-FSARprimarycontainmentasdeterminedinaccordancewithRegulatoryGuide1.3andTXD-14844.b)Systemcapacitytomatchthemaximumairflowraterequiredfortheprimarycontainmentpurge.Thesystemcapacitytobemaintainedwithallfiltersfullyloaded(dirty).d)ForHEPAfilters,maximumfreevelocitynottoexceed300fpm,withmaximumairflovresistanceof1in.vgwhencleanand3in.vgvhendirty,andminimumefficiencyof99.97percentbyDOPtestmethod.e)Forprefilters,maximumfacevelocitynottoexceed300fpm,withmaximumairflowresistanceof0.5in.vgwhenclean,and1.0.in.vqvhendirty.Associatedductworkisdesignedusingtheequalfrictionmethodatarateofapproximately.06in.wg/100ft.q)Charcoaladsorberisratedfor99percenttrappingofradioactiveiodineaselementaliodine(I),and99percenttrappingofradioactiveiodineasmethyliodine(CHI)vhenpassingthroughcharcoalat70percentrelativehumidityand250C.h)Eachequipmenttraincontainstheamountofcharcoalrequiredtoabsorbtheinventoryoffissionproductsleakingfromtheprimarycontainment,basedonaoneunitLOCAmediacoolingarrangementforeachSGTStrainisdesignedtoremoveheatqeneratedbyfissionproductdecayontheHEPAfiltersandcharcoaladsorbersduringshutdovnofthetrain.Relativehumidityatcharcoaladsorberislimitedtomaxim,umof70percentbyremovingmoistureentrainedintheairstreamandbypreheatingtheair.Failureofanycomponentofthefiltrationtrain,assuminqlossofoffsitepower,cannotimpairtheabilityofthesystemtoperformitssafetyfunctionThesystemremainsintactandfunctionalintheeventofaSafeShutdownEarthquake(SSE).6.5-2 SSES-FSAR6.5.1.12sstem~esicenEachofthetworedundantSGTStrainsconsistsofamisteliminator,anelectricairheater,abankofprefilters,twobanksofHEPAfilters,upstreamanddownstreamofcharcoaladsorber,andavertical8in.deepcharcoaladsorberbedwithfiredetectiontemperaturesensors,waterspraysystemforfireprotection,andassociateddampers,ducts,instruments,andcontrols.TheairflowdiagramfortheSGTSisshownonFigure9.4-5.TheinstrumentsandcontrolsareshownonFigure9.4-9.ThesystemdesiqnparametersareprovidedinTable6.5-1.Thework,equipmentandmaterialsconformtotheapplicablerequirementsandrecommendationsoftheguides,codes,andstandardslistedinSection3.2.ComplianceofthesystemdesignwithRegulatoryGuide1.52,isdescribedinSection3.13.AlsoseeTable6.5-2.EachredundantSGTStrainhasacontrollablecapacityof3,000cfmto10,500cfm,andeachiscapableoftreatingrequiredamountofairfrombothUnit1andUnit2reactorbuildingvolumes.(seeSubsection6.5.3).ComponentsforeachSGTSaredesignedasexplainedinthefollowingparagraphs.Thefanperformanceandmotorselectionisbasedonthemaximumairdensityandthemaximumsystempressuredrop,thatis,700Fairtemperatureatthefan(55~FairattheinletoftheSGTStrainplusapproximately150Fconstanttemperaturepickupacrosstheheater)~andthepressuredropisbasedonmaximumpressuredropsacrossdirtyfilters.Thecharcoaladsorberisagasketless,weldedseamtype,filledwithKI,impregnatedcoconutshellcharcoal.Thebankholdsatotalofapproximately6,920lbofcharcoalof28lb/ft~density,havinqaniqnitiontemperatureofnotlessthan330~C.Thecharcoaladsorberisdesiqnedforamaximumloadingcapacityof2.5mqoftotaliodine(radioactiveplusstable)pergramofactivecharcoal.Sixtestcanistersareprovidedforeachadsorber.Thesecanisterscontainthesamedepthofthesamecharcoalthatisintheadsorber.Thecanistersaremounted,sothatapara'llelflowpathiscreated'etweeneachcanisterandtheadsorbez.Periodicallyoneofthecanistersisremovedandlaboratorytestedtoverifytheadsorbentefficiency.Thirtybyfiftyin.accessdoorsintoeachfiltercompartmentareprovidedintheequipmenttrainhousing.Thedoorshavetransparentportholestoallowinspectionofcomponentswithoutviolatinqthetrainintegrity.6.5-3 SSES-PSARThehousingisofallweldedconstruction.Gas,tightinteriorlightswithexternallightswitchesandfixtureaccessareprovidedbetweenalltrainfilterhankstofacilitateinspection,testing,andreplacementofcomponents.Pilterhousingsincludingwaterdrains,areinaccordancewithrecommendationsofSection4.3ofRef.6.5-1Ductworkisdesigned,inaccordancewithrecommendationsofSection2.8ofReference6.5-1,exceptforsheetmetalgagesthatareslightlyless,andtheroundductreinforcements.Theductwork,however,hasbeenseismicallyqualifiedbyanalysisandtestingofductspecimens.OutdoormakeupairsupplementslowexhaustairflowratesformostoftheSGTSoperationalmodestosatisfytheSGTSfanminimumairflowreguirement,whichisapproximately3000cfm.Theoutdoormakeupairisalsoused,atarateof3000cfm,forcharcoalbedcoolingafteracharcoalpre-ignitiontemperatureisdetected.ThemisteliminatorisdesignedtopreventblindingoftheBEPAfilterwhenoperatedat200~Pwithsteam-airmixturecontaining1galofwaterdropletsactuallyentrained.intheairstreamper1000cfmairflowTheelectricheaterreducestherelativehumidityoftheenteringairtobelow70percentforcharcoaladsorberoperation,bymaintainingaconstanttemperatureriseacrosstheheater.Ananalysisofheatercapabilitiesforvariousenterin'gsaturatedairconditionsrangingfrom550Pto180~Pyieldsapeakheatingrequirementof180,000Btu/hr,atmaximum10,500cfmairflow.Inaddition,55,400Btu/hrheatlossiscalculatedfromthesectionofSGTShousinqbetweentheheaterandthecharcoalbed.Overallrequiredcapacityis235,400Btu/hr.A90kWheaterisprovided.ThecharcoalbedisprovidedwithanintegralwaterspraysystemconnectedtothestationfireprotectionsystemAdeluqevalveandSeismicCateqoryIbackupvalvearemountedinseriesadjacenttothecharcoaladsorber.Thebackupvalveisprovidedtopreventcharcoalfloodinqifthedelugevalvefailsinanopenposition.FireprotectionfortheSGTSfiltertrainsisalsodiscussedinSubsection9.5.1.Acontinuoustypethermisterisprovidedontheinletandoutletofthecharcoalbed.TheSGTSisactuatedeitherautomatically(safetyrelatedmode),ormanually(nonsafetyrelatedmode).Theautomaticactuationisoriginatedbythereactorbuildingisolationsignal,orbydetectionofpre-iqnitiontemperatureinthecharcoaladsorb'er6.5-4 SSES-PSARbed,thelatterforcharcoalcoolinqpurposes.ThemanualactuationiscontrolledbyadministrativeproceduresinsuchawaythattheSGTSisstartedandairflowestablished(outdoormakeupair)priortointroductionofairorgastobeexhaustedfromareactorbuildingsourceTheautomaticormanualactuationwillresultinastartofaleadfan;then,associatedcontrolswillbeactivatedtoopenormodulateappropriatedampers,sothatthesystemfunctionisaccomplished.TheSGTSinletheaderpressureismonitoredandcontrolledtoprecludethepossibilityofnonfilteredgasorairbypassingthefiltrationtrainthroughtheoutdoorairmakeupduct.Thispressureismaintainedatapproximately1in.wgnegative,referencedtothestaticpressureattheoutdoormakeupairintakeduringthesyste~operation.TheleadSGTSisstartedautomaticallyandanalarmsoundedinthecontrolroom,ifthispressurerisesto2in.wgpositivewhenthesystemisnotinoperationandthenegativepressurewillbeestablishedandmaintained.Thesystemwillbestoppedmanually,oncethecauseofthehighinletheaderpressureisidentifiedandeliminated.Outsideairisusedforeithercharcoalcoolingormakingupthetotalsystemflowtoapproximately3,000cfmtoensureeachfan'sstableoperation.Oncetheexhaustair/gasflowfromthereactorbuildingreaches3,000cfmthemakeupairdampers,twoinparallel,willbemodulatedgraduallytoaclosedposition.Aninletheaderpressurecontrollersetsthesystemflowratetomaintaintheinletheadernegativepressure.Inturn,aflowcontrollersequentiallymodulatesthefaninletvanesandtheoutdoormakeupairdamper,thusmaintainingtheflowrateandtheinletheadernegativepressure.Anysectionofthecharcoalbedinletoroutletthermisterssensinqatemperaturehigherthanpresetcharcoalpre-ignitionorignitiontemperatureswillresultinthefollowing:a)Thepre-ignitiontemperature(setat190oP)willactuateanalarminthecontrolroom,andwillautomaticallyinitiatetheaffectedSGTStrain'scharcoalcoolinqmodeofoperationbyestablishingaflowofapproximately3,000cfmofoutdoormakeupairacrossthecharcoalbed.b)Theignitiontemperature(setat450~F)willactuateanalarminthecontrolroomandopenthedelugevalveandthebackupvalve,thusintroducingthefireprotectionwatertothecharcoalspraysystem.Fourdrainvalvesprovidedtodrainthedelugewaterwillbeopenedautomaticallybytheignitiontemperaturesignal.Theoperationofthedelugesystemwillcoatinueuntilthe65-5 SSES-FSARcharcoaltemperaturefallsbelovtheignitiontemperature.Thedelugewaterflovvillbecontrolledbythebackupvalve;thedelugevalvevillremainopenaftertheinitialactuation.TheSGTSisdesignedtoSeismicCategoryIrequirements.ThepowersupplymeetsIEEE-308criteriaandensuresuninterruptibleoperationintheeventoflossofnormal,onsite,acpover.6.5.11.3Des~inEvaluationTheSGTSisdesignedtoprecludedirectexfiltrationofcontaminatedairfrom.eitherreactorbuilding,follovinganaccidentor.abnormaloccurrencewhichcouldhaveresultedinabnormallyhighairborneradiationinthesecondarycontainment.EquipmentispoveredfromessentialbusesandallpowercircuitswillmeetIEEE-279andIEEE-308.Redundantcomponentsareprovidedwherenecessarytoensurethatasinglefailurevillnotimpairorprecludesystemoperation.SGTSfailuremodeandeffectanalysisispresentedinTable6.5-3.ExceptforItem5,alltestsandinspectionsdescribedinTable9.4-1applytotheSGTS.ThesystemvillbepreoperationallytestedinaccordancewiththerequirementsofChapter14.RefertoChapter16forperiodictestrequirementsfortheSGTS.6.51.15InstrumentBeuirementsTheSGTScanbeactuatedmanuallyfromthecontrolroom.EachSGTStrainisdesignedtofunctionautomaticallyuponreceiptofanESFsystemactuationsignalThestatusofsystemeguipment,whichisanindicationofpertinentsystempressuredropsandflowrates,isdisplayedinthecontrolroomduringbothnormalandaccidentoperation.Table6.5-2addressestheextenttowhichtherecommendationsofNRCRequlatoryGuide1.52arefollowedwithrespecttoinstrumentation.65-6 SSES-PSARAllinstrumentationisqualifiedtoSeismicCategoryIrequirements.Redundancyandseparationoftheinstrumentationismaintained,anditfollowstheredundancyandseparationoftheequipment.Thefollowingalarmsareannunciatedinthecontrolroom:a)Panfailureb)Heaterfailure(lowtemperatureriseacrosstheheater)c)HighorlowpressuredropacrosstheupstreamHEPAd)Highpressuredropacrossanyfilter(agroupalarm)e)Pre-ignitioncharcoaltemperaturef)Ignitioncharcoaltemperatureq)Charcoaltemperaturedetectionsystemfailure(includethedelugevalvesolenoidcircuitdiscontinuity)h)Lowpressuredifferential,referencedtotheoutdoorambientpressure,inthereactorbuildingventilationzonesbeinqisolatedi)HighandlowpositivepressureintheSGTSheaderj)Outsidemakeupairdamperfailedopenk)Outsidecharcoalcoolingairdamperfailedopen.6.5.1.1.6MaterialsThematerialsofconstructionusedinoronthefiltersystemsareqiveninTables6.1-1and6.5-5.Eachofthematerialsiscompatiblewiththenormalandaccidentenvironmentalconditions.Accidentenvironments(ie,extremetemperatureorradiation)thatcouldpotentiallyproduceradiolyticorpyrolyticdecompositionoffiltermaterialsarenotapplicabletothecontrolstructurewheretheSGTSislocatedThus,filtersystemdecompositionproductswillnotbepresent.6.5-7 SSES-FSAR6.5.1.2ControlRoomEmergencyOutsideAirSupply~61.2.1Des~inBasesThecontrolroomemergencyoutsideairsupplysystem(CREOASS)isdesignedtoaccomplishthefollowingobjectives:a)Filterparticulatematterwhichmayberadioactiveandremovegaseousiodineb)Recirculateandcleanuproomairwhenchlorineispresentintheoutsideairc)Naintainventilationairsupplyforthecontrolroomandcontrolstructureenvelopewhenradiationisdetectedintheoutsideaird)Maintainapositivepressureaboveatmospherictoinhibitoutsideairinfiltrationintothecontrolroomduringradiationisolation(025in.wg.inthecontrolroomand0.125in.wg.inothercontrolbuildingareas)e)Operateduringandafterdesignbasisaccidentandreactorbuildingisolationmodeconditionswithoutlossoffunctionf)ProvideradiationmonitoringandchlorinedetectionofoutsideairsupplyThebasesemployedforsizingthefilters,fans,heater,andassociatedductworkareasfollows:IIa)Systemcapacity(flowrate)tobebasedonrequiredairchanqesforthecontrolroom,theairexhaustedfromthebatterystoragearea,andadditionalairtoslightlypressurizethecontrolroomb)Thesystemcapacitytobemaintainedwithallparticulatefiltersfullyloaded(dirty)c).HEPAfilters,maximumfacevelocitynottoexceed300fpmwithmaximumairflowresistanceof1in.wg.whencleanand3in.wg.whendirty.Aminimumefficiencytobe99.97percentbyDOPtestmethode)Prefilters,maximumfacevelocitynottoexceed300fpm,withmaximumairflowresistance0.3in.wg.whencleanand0.9in.wq.whendirty.6.5-8 SSES-FSARf)Ductworkisdesignedusingequalfrictionmethodatarateofapproximately.06in.wg/100ft.g)Charcoaladsorberisratedfor99percenttrappingofradioactiveiodineaselementaliodine(I2),and99percenttrappingofradioactiveiodineasmethyliodine(CH3l)whenpassingthroughcharcoalat70percentrelativehumidityand25~C.h)Maximumrelativehumidityforairenteringthecharcoaladsorbertobelimitedto70percentbyappropriateair,heating.Pj)TheCREOASSfiltertrainsaredesignedtomeetsinglefailurecriteria.k)TheCREOASSisdesignedtoSeismicCategoryIrequirements,sothatitremainsoperableduringandafteraSafeShutdownEarthquake(SSE)..m)ThepowersupplytomeetXEEE308criteriaandensureuninterruptedoperationintheeventoflossofnormalacpower.ThecontrolsmeetIEEE279.6.D.1.22~Setee~Desin~<m6LC>~i~yD*SOP~EachofthetvoredundantCREOASSfiltertrainsconsistsofanelectricheater,abankofprefilters,twobanksofHEPAfilters,oneupstreamandonedownstreamofthecharcoaladsorber,andavertical4in.deepcharcoaladsorberbedwithfiredetectortemperaturesensors,associateddampers,instruments,controls,andwaterfloodingsystemforfireprotection.TheCREOASSisshownonFigure9.4-1.TheinstrumentandcontrolsareshownonFigure9.4-2.ThesystemdesignparametersareshowninTable6.5-1.Thevork,equipmentandma'terialsconformtotheappl'icablerequirementsandrecommendationsoftheguides,codes,andstandardslistedinSection3.2.ThesystemdesignisconsistentvithrecommendationsofHRCRegulatoryGuide1.52,asdescribedinSection3.13,andshovninTable6.5-2.EachCREOASSfiltertraincontainsthefollovingcomponentslistedinthedirectionofairflov:a)A30kHelectricheatertomaintainrelativehumidityoftheentering'airbelow70percent.Theheaterisenergizedatthesametimeasthef'anandprovides6.5-9REV.11,7/79 SSES-FSARb)approximately15~Ptemperatureriseacrossthecoil,ensuringthatenteringoutsideairrangingfrom-15"Fto100oFwillenterthefilterswitharelativehumidityoflessthan70percent.EAcharcoaladsorberdesignedwithsixgasketlesswelded4in.verticalbeds,containingatotalof2336lbofcoconutshellcharcoal(30lb/ft~)impregnatedwithKl>andtriethylenediamine(TEDA).Sixcanistersareprovidedforeachadsorber.Thecanisterscontainthesamedepthofidenticalcharcoalastheadsorber.Thecanistersaremounted,sothataparallelflowpathiscreatedbetweeneachcanisterandtheadsorber.Periodicallyoneofthecanistersisremovedandlaboratorytestedtoverifytheadsorbentefficiency.c)ThehousingisconstructedofcarbonsteelweldedconstructioninaccordancewithRef6.5-1.Stainlesssteelisusedforfiltersupportbrackets.Thehousingisdesignedfor-20in.wg.anda+5psig.Eachhousingisprovidedwithfive20x50in.accessdoorsforservicingtheheaterandfilterbanks.Theaccessdoorsareprovidedwithtransparentportholestoallowinspectionofcomponentswithoutviolatingthetrains'ntegrity.Pilterhousings,includingwaterdrains,areinaccordancewithrecommendationsofSection4.3ofRef.65-1d)Interiorlightswithexternallightswitchesandoutsideaccessiorbulbreplacementareprovidedtofacilitateinspection,testing,andreplacementofcomponents.Acentrifugalfandesignedforaflowrateof6,000cfm.Thefanperformanceandmotorselectionisbasedonthe-.maximumairdensityandthemaximumsystempressuredropsyDuctworkisdesignedinaccordancewithrecommendationsofSection2.8.ofRef.6.5-1,exceptforsheetmetalgagesthatareslightlylessandroundductreinforcement.Theductwork,however,hasbeenseismicallyqualifiedbyanalysisandtestingofductspecimens.Afireprotectionsystem,designedtoextinguishafirewithinthecharcoalbedbyfloodingthehousing,isprovided.Thefireprotectionsystemisdesignedtospray36gpmofwaterat15psionthecharcoal.Adelugevalveanda-backupvalveareinstalledinseriesinthef.ireprotectionwaterconnectionadjacenttothe6.5-10REV.11,7/79 SSES-PSARhousing.Theback-upvalveisinstalleddownstreamofthedelugevalvetopreventcharcoalfloodingintheeventofamalfunctionofthedeluqevalve.Onepre-iqnition{190~Fsetting)andoneiqn'ition{450~Fsetting)temperature'witcharelocatedinthedischargeductconnection.Sixpre-ignitionandsixignitionswitchesareevenlyspacedacrossthedownstreamfaceofthecharcoaladsorberA190~Forqreaterleavingairtemperaturewilltripanyoftheseventemperatureswitches,andalarminthecontrolroomA450~Porgreaterleavingairtemperaturewilltripanyoftheseventemperatureswitches,alarminthecontrolroom,stopthefan,enerqizethedelugevalveandtheback-upvalve.Anoverflowisprovidedinthehousingtoallowwatertodrainoncethehousingisfull.Thewatermustbeshutoffmanually.Thehousingisdrainedbyopeningfivemanualdrainvalves.SeeSubsection9.4.1.2.4foradditionaldetailsoftheCBEOASSoperation.TheCREOASSisdesignedtoSeismicCategoryIrequirementsThepowersupplymeetstheIEEE-308criteriaandensuresuninterruptibleoperationintheeventoflossofnormal,onsite,acpower.65.1.2,3DesignEvaluatj.onTheCREOASSworkinconjunctionwiththecontrolroomandcontrolstructureHVAC,systemsto'maintainhabitabilityinthecontrolroom.ThedesiqnevaluationisgiveninSubsection94.1includinqfailuremodeandeffectanalysispresentedinTable9.4-19.65.1.2.4Testsand~InsectionsWiththeexceptionofItems5,6,and7,alltestsandinspectionsdescribedinTable9.4-1applytotheCREOASS.6.5.1.2.5InstrumentationR~euirementsTheCREOASScanbeactuatedmanuallyfromthecontrolroom.EachCREOASSisdesiqnedtofunctionautomaticallyuponreceiptofaradiationdetectionsignalfromdetectorelementslocatedintheoutsideairintakeplenum.InadditiontostartingtheCBEOASS,hiqhradiationisannunciatedinthecontrolroom.6.5-11 SSES-FSARShenchlorineisdetectedintheoutsideairintake,thefollovinqautomaticactionsareinitiated:a)Highchlorineisannunciatedinthecontrolroom.Alloutsideairintakeandexhaustairdamperscloseandthestructureisisolatedbeforechlorinereachestheintakeisolationdampers.b)Thebatteryroomexhaustsystemisshutdown.RecirculationdampersopenandtheCREOASSstartsintherecirculationmodetocleanuptheairvithinthecontrolroom.ThereactorbuildingisolationsignalwillcausetheCREOASStooperateinexactlythesamemannerasahighradiationsignalfromtheoutsideairintake.Thestatusofsystemequipment,indicationofpertinentsystempressuredrops,andflowratesaredisplayedinthecontrolroom.Table6.5-2addressestheextenttowhichtherecommendationsofHRCRequlatoryGuide1.52arefollowedwithrespecttoinstrumentation.AllinstrumentationisqualifiedtoSeismicCateqoryIrequirements.Redundancyandseparationoftheinstrumentationismaintainedandfollovstheredundancyandseparationoftheequipment.Thefollowingalarmsareannunciatedinthecontrolroom:a)Panfailureb)Heaterfailure(lowtemperaturedifferentialacrosstheheater)c)HighpressuredropacrosstheupstreamHEPAd)Highcharcoaltemperaturee)High-highcharcoaltemperature.651~6materialsThematerialsofconstructionusedinoronthefiltersystemsareqiveninTables6.1-1and6.5-6.Eachofthematerialsiscompatiblewiththenormalandaccidentenvironmentspostulatedinthecontrolstructureandthefuelhandlingbuilding.65-12 SSES-FSARAccidentenvironments(ie,extremetemperatureorradiation)thatcouldpotentiallyproduceradiolyticorpyrolyticdecompositionoffiltermaterialsarenotapplicabletothecontrolstructurewherethefilterunitsarelocated.Thus,filtersystemdecompositionproductswillnotbepresent.652CONTAINMENTSUNRAYSYSTEMSThecontainmentspraysystemisdescribedinSubsection6.2.2.Thecontainmentspraysystemisnotreguiredforfissionproductremoval.653PISSXONPRODUCTCONTROLSYSTEM65.3.1PrimaryContainmentThestandbygastreatmentsystem(SGTS)isusedtocontrolthereleaseoffissionproductstotheenvironmentwhenpurgingthecontainment.ThisisdescribedindetailinSubsection6.5.1.1.ThePrimaryContainmentischargedwithnitrogenduringplantstart-upinaccordancewiththeTechnicalSpecifications.Gaseousnitrogenisusedtoreducetheconcentrationofoxygen,asdiscussedinSubsection6.2.5.2.ThecontainmentispurgedofnitrogenduringreactorshutdowninaccozdancewiththeTechnicalSpecificationswithairfromtheReactorBuildingVentilationSupplyAirSystem.ThepurgepipingandvalvesareshownonPigure6.2-55.The24>>diameterand18>>diameterpipingcanbeusedforpurgingduringreactorpoweroperation(asmentionedabove),start-upandhotstandby;otherwise,thepurgesupplyandexhaustvalvesHV-15704,HV-15714,HV-15721,HV-15722,HV-15723,HV-15724andHV-15725remainclosed.Thesevalvescannotbemanuallyoverriddentoopenfollowingcontainmentisolation.The2>>ventby-passvalves,HV-15711andHV-15705,andtheinnerisolationvalves,HV-15703andHV-15713,onthepurgeexhaustlineswillbeusedtorelievecontainmentpressureincreasescausedbythermalexpansionduringnormaloperations.ContainmentisolationvalvesHV-15711,HV-15705,HV-15703andHV-15713cannotbeopeneduntil60minutesfollowingcontainmentisolation.Thecontainmentmake-uplinevalvesSV-15767andSV-15737alsocannotbeopeneduntil60minutesfollowingcontainmentisolation,whilevalvesSV-15776AandSV-15736Aareisolatedforaperiodof10minutes.Aftertheisolationperiodhaselapsed,thesevalvesmayheopenedremotemanuallyunderadministrativecontrolfozcontrolofhydrogen,asdiscussedinSubsection6.2.5.2.65-13 SSES-FSARLayoutdrawingsoftheprimarycontainmentarelistedin-Section12HydrogenrecombinersandthehydrogenpurgesystemarediscussedinSubsection6.2.5.TheprimarycontainmentleakratesarediscussedinSection6.2.6.532SeconderContainmentThefollowingareprovidedtocontrolfissionproductswithinthesecondarycontainmentfollowingadesignbasisaccident:a)Asecondarycontainmentthatcompletelysurroundseachofthetwoprimarycontainmentsb)TheStandbyGasTreatmentSystem{SGTS)discussedinSubsection6.5.1.1c)ArecirculationsystemRev.12,9/796.5-13a SSES-FSARTHISPAGEHASBEENINTENTIONALLYLEFTBLANK,Rev.12,9/796.5-13b SSES-PSABThesecondarycontainmentconsistsofareinforcedconcretestructureuptotherefuelingfloor(el818ft1in.)andofametalsidedsuperstructureaboveel818ft1in.,bothdiscussedinSubsection3.84.ThesecondarycontainmentisolationisdiscussedinSubsection9.4.2.1.Thissectionalsodefinesthreeventilationzones(I,II,andIXI).TheSGTSisusedtomaintaintheaffectedzone(s)ofthesecondarycontainmentunderapproximately0.25in.wg.negativepressureandcontrolthecleanupofthefissionproductsfromtheprimarycontainmentfollowingadesignbasisLOCA,orfromtherefuelingfloorfollowingarefuelingaccident..AcommonrecirculationsystemisprovidedforUnits1and2toperformthefollowingfunctions:a)MixtheatmosphereinthereactorbuildingtoobtainalesserandmoreuniformconcentrationofradioactivityfollowingadesiqnbasisLOCAandrefuelingaccidentb)Preventthespreadofradioactivitybytheheating-ventilating-coolingsystemsbetween:1)ZoneIandZoneII2)ZoneIIIandZonesIorIIduringandafterarefuelingaccidentc)Providemixingoftheatmospherewithinthereactorbuilding.ThismayinvolvemixingtheatmosphereofZoneIorZoneIIandtherefuelingarea(ZoneIII)orofZoneIIIabove.SeeSubsection9.42.1.3forthesecondarycontainmentisolationmodes.AlsoseeSubsection6.2.3forthesecondarycontainmentanalysis.TherecirculationflowdiagramisshownonFigures94-4and9.4-5.TheinstrumentsandcontrolsareshownonFigure9.4-7.Estimatedrespectivezone(s)recirculationflowratesandtheirvolumesarelistedinTable6.5-7.Therecirculationsystemconsistsoftwo100percentredundant,vane-axialfansconnectedtotheemergencypowersupply,associatedductwork,dampers,andcontrols.Therecirculationairisdistributedtoallareasandroomsthroughtheexistingnormalventilationductwork.65-14 SSES-FSARBothfans,ductwor3cusedintherecirculationmode,supports,andinstrumentsandcontrolsmeettheSeismicCategoryIrequirements.Therecirculationsystemstartsautomaticallyonreceivingthereactorbuildingisolationsignal,whichisdefinedinSubsection9.4.2.1.3.FortherecirculationsystemfailuremodeandeffectanalysisseeTable6.5-4.Thetestsandinspectiondescribedinitems1,2,3,13and14ofTable9.4.1areapplicabletotherecirculationsystem.65.4ICECONDENSERASAFISSIONPRODUCTCLEANUPSYSTEMNotapplicable.655REFERENCES65-1ORNL-NSXC-656.5-15 SSES-FSARCHAPTER8.0ELECTRICPOWERTABLEOFCONTENTS

8.1INTRODUCTION

~Pae8.1-18.1.6.18.1.6.2CompliancewithRegulatoryGuidesCompliancewithIEEE338-1975,344-1971and387-19728.2OFFSITEPOWERSYSTEM8.2.1Description8.1.1General8.1.2UtilityPowerGridandOffsitePowerSystems8.1.3OnsitePowerSystems8.1.4SafetyRelatedLoads8.1.5DesignBases8.1.5.1SafetyDesignBases8.1.6RegulatoryGuidesandIEEEStandards8.1-18.1-18.1-28.1-38.1-38.1-38.1-58.1-58.1-238.2-18.2-18.2.1.18.2.1.2'.2.1.38.2.1.3.18.2.1.3.28.2.1.3.38.2.1.3.48.2.1.3.58.2.1.3.68.2.1.48.2.1.5TransmissionSystemTransmissionInterconnectionSwitchyardsStartupTransformers//10and//20SusquehannaUnitill230KVMainTransformerLeadsSusquehanna230KVSwitchyardSusquehannaUnit//2500KVMainTransformerLeadsSusquehanna500KVSwitchyardMontourandMountain230kVSwitchyardsOffsitePowerSystemMonitoringIndustryStandards8.2-18.2-38.2-38.2-38.2-48.2-58.2-58.2-68.2-68.2-78.2-88.2.2Analysis8.2.2.1GridAvailability8.2.2.2StabilityAnalysis8.2-98.2-98.2-10Rev.28,1/828-i SSES-FSARAPPENDIX82h8.3.1ACPowerSystemsRELIABILITYPRINCIPLESANDSTANDARDSFORPLANNINGBULKELECTRICSUPPLYSYSTEMOPHAACGROUP83ONSITEPOHERSYSTEMS82A-183-183-183.1.1831283.1218.3.1.2.28.3.1.38.3.13.18.3.l.3.2831338-3.13.48.313.58.313683.1378313883139831-3.108313.1183131283.13.1383.131483.13.1583.14831.41831-4.283-1438314~48.3.14.58314.68.3147DescriptionNon-ClassIEACSystemOperationNon-ClassIEEquipmentCapacitiesClassIEACPowerSystemPowerSupplyFeedersPowerFeederCablesBusArrangementsLoadsSuppliedfromEachBusClassIEIsolatedSwingBusManualandAutomaticInterconnectionsBetweenBuses,BusesandLoads,andBusesandSuppliesInterconnectionsBetweenSafetyRelatedandNonsafetyRelatedBuses,NonsafetyRelatedLoads,andSafetyRelatedBusesRedundantBusSeparationClassIEEquipmentCapacitiesAutomaticLoadingandLoadSheddingSafetyRelatedEquipmentIdentificationInstrumentationandControlSystemsfortheApplicablePowerSystemsWiththeAssignedPowerSupplyIdentifiedElectricCircuitProtectionSystemsTestingoftheACSystemDuringPowerOpezationClasslELoadsNotTestableDuringPowerOperationsStandbyPowerSupplyAutomaticStartingInitiatingCircuitsDieselStartingNechanismandSystemAlarmandTripp'ngDeviceBreakerInterlocksControlPermissiveLoadingCircuitsTesting8.3-18.3-183-283-483-78.3-78.3-,883-88.3-983-983-98-3-108.3-118.3-1183-128.3-1383-138.3-148.3-168.3-1683-1783-1983-208.3-208.3-238.3-238.3-2483-24REV179/808-ii ISSES-FSAR8314~88314.98314108~31411FuelOilStorageandTransferSystemDieselGeneratorCoolingandHeatingInstrumentationandControlSystemsforStandbyPoserSupply{}ualificationTestProgram83-2483-2483-258.3-268314.11.18.3.1.4.12ControlandAlarmLogic8.3.1.583168317831~883.198-31108.3.1118.3111.18311128.3.1ll.383111.48.3.111.5ElectricalEquipmentLayoutReactorProtectionSystemPowerSupplyClassIE120VACInstrumentationandControlPowerSupplyNon-ClassIEInstrumentandVitalACPowerSupplyDesignCriteriaforClassIEEquipmentSafety-RelatedLogicandSchematicDiagramsAnalysisGeneralDesignCriteriaandRegulatoryGuideComplianceSafetyRelatedEquipmentExposedtoAccidentEnviron-mentPhysicalIdentificationOfSafetyRelatedEquipmentIndependenceofRedundantSystemsAdministrativeResponsibilitiesandControlsforEnsuringSeparationCriteria8.3.2DCPowerSystems8.3.2.18.321.1DescriptionClassIEdcPowerSystemClassIEEquipmentIdentification8.3.1.4.11.2{}ualificationTechniques.andDocumentation8.3.14.11.3PerformanceinServiceEnvironment8.3-2683-2783-288.3-298.3-328.3-3283-32a83-338.3-.3483-358.3-358.3-3683-3783-3783-3983-3983-408.3-4083-408.321.1183.21.1.28.321138321148321;15125VdcSubsystems250VdcSubsystems24VdcSubsystemsClassIEStationBatteriesandBatteryChargersClassIEdcSystemEquipmentRatings8.3-408.3-418.3-428.3-4383-43Rev.25,7/818-iii SSES-FSAR8.3.2.1.1.6Inspection,Maintenance,andTesting8.3.2.1.1.7SeparationandVentilation8.3.2.1.1.8Non-C1.assIEdc-System8.3-4583-4583-4583i22832218-32-228322.3AnalysisCompliancewithGeneralDesignCriteria,RegulatoryGuides,andIEEBStandardsPhysicalIdentificationofSafetyRelatedEquipmentIndependenceofRedundantSystems83-468.3-4683-5183-518.3.3FireProtectionforCableSystems83-51833183~3283338334CableDeratingandCableTrayFillFireDetectionforCableSystemsFireBarriersandSeparationBetweenRedundantTraysFireStops8.3-518.3-528.3-528.3-53RBV179/808-iv SSES-FSAR8.1.INTRODUCTION8.1.1GENERALTheelectricpowersystemsoftheSusquehannaSteamElectricStationUnits1and2aredesignedtogenerateandtransmitelectricpowerforthesupplyofPPGLcustomerneedsutilizingthepowernetworkofthePPGLandofthePennsylvania-NewJersey-MarylandtPJMlinterconnection.ThetwoindependentoffsiteelectricconnectionstoSusquehannaSESaredesiqnedtoprovidereliablepowersourcesforplantauxiliaryloadsandtheengineeredsafetyfeaturesloadsofbothunitssuchthatanysinglefailurecanaffectonlyonepowersupplyandcannotpropaqatetothealternatesource.TheonsiteacelectricpowersystemconsistsofClassIEandnon-ClassIEpowersystemsThetwooffsitepowersystemsprovidethepreferredacelectricpowertoallClassIEloadsthroughtheClassIEdistributionsystem.Intheeventoftotallossofoffsitepowersources,fouronsiteindependentdieselgeneratorsprovidethestandbypowerforall,engineeredsafetyfeaturesloads.Thenon-ClassXEacloadsarenormallysuppliedthroughtheunitauxiliarytransformerorthestartuptransformer.However,durinqplantstartup,shutdown,andpost-shutdown,powerissuppliedfromtheoffsitepowerthroughthestartuptransformers.OnsiteClassIEandnon-ClassIEdcsystemssupplyalldcpowerrequirementsoftheplant.812UTILITYPOi?ERGRIDANDOFFSITEPOWERSYSTEMSUnit1and2generatorsareconnectedbyseparateisophasebusestotheirrespectivemainstep-uptransformerbanksasshownonFiqure83-1.Unit1mainstep-uptransformerbank,withtwothree-phase,halfcapacitypowertransformers,stepsupthe24kVgeneratorvoltageto230kV;theUnit2bank,withthreesinglephasepowertransformers,stepsupthe24kVgeneratorvoltageto500kVAsshownonFigure8.3-1,thestep-uptransformerforUnit,1connectstothe230kVsubstationandforUnit2tothe500kVsubstation.The230kVsubstationusesabreakerandone-halfschemedesign,andthe500kVsubstationaringbusarranqementwithprovisionforfutureexpansiontoabreakerandone-halfoperation.Thesubstationsareapproximately1.9milesapartandare,interconnectedbya500-230kVbustietransformer8.1-1 SSES-FSARandtransmissionline.Aerialtransmissionconnectsthe230kVsubstationwithtwoothergeneratingstations,SunburyandMontour,andwithStanton,Siegfried,Harwood,andJenkinssubstations.Aerialtransmissionlinesintegratesthe500KVsubstationintothe500KVsystemwithconnectionsatWescosville,AlburtisandSunbury.Boththe500kVsubstationsandthe230kVsubstationsaretiedintothePJMInterconnection.TheplantstartupandpreferredpowerfortheengineeredsafetyfeaturessystemsisprovidedfromtwoindependentoffsitepowersourcesFigure8.2-1.a)AtapfromtheMontour-Mountain230kVlinefeedsthestart-uptransformerNo.10.b)A230kVtapfromthe500-230kVtielinefeedsthestartuptransformerNo.20.Thetransmissionsystem,includingthe230kVlinetoUnit1maintransformersandthetwooffsitepowerlinestothetwostartuptransformers,isoperationalbeforeUnit1fuelload.ThetransmissionlinetoUnit2maintranformersisoperationalbeforeUnit2fuelload.TheoffsitepowersystemsandtheirinterconnectionsaredescribedindetailinSection8.2.813OHSITEPOMERSySTEMSTheonsitepowersystemforeachunitisdividedintotwomajorcateqories:a)ClassIEPowerSystemTheClassIEpowersystemsuppliesallengineeredsafetyfeatures(ESF)loads,andotherloadsthatareneededforsafeandorderlyshutdown,andforkeepingtheplantinasafeshutdowncondition.TheClassIEpowersystemforeachunitconsistsoffourindependentloadgroupchannels,channelsA,B,C,andD.Anycombinationofthreeoutoffourloadgroupchannelsmeetsthedesignbasisrequirements.'Inaddition,twodivisionalizedloadgroupsareestablishedforthoseESFloadswhichrequireoneoutoftwoload,groupstomeetthedesignbasisrequirements.ESFloadgroupdivisionseparationandchannelseparationareshowninTables3.12-1and3.12-2respectively.81-2 SSES-PSARPhysicalseparationisdiscussedfullyinSubsection3.12.3TheClassIEpowersystemdistributespowerat4.16KV,480V,+24Vdc,125Vdc,250Vdcvoltagelevels.TheClassIEpowersystemisshownonFigures8.3-3thru83-8b)Non-ClassIEPowerSystemThenon-ClassIEacportionoftheonsitepowersystemsupplieselectricpowerto'allnonsafetyrelatedplantauxiliaryloads.Thenon-ClassIEacauxiliarysystemdistributespowerat13.8kV,4.16kV,480V,and208/120Vvoltagelevels.Thesedistributionlevelsaregroupedintotwosymmetricalbussystemsemanatingfromthe13.8kVlevelasshowninFigure8.3-1.PowertransmittedtotheutilitygridisdiscussedinSubsection8.1.2.Non-ClassIEdcpowerisdiscussedinSubsection8.3.2.Adetaileddescription-oftheonsitepowersystemisfoundinSubsections8.3.1and8.3.2.814SAFETYRELATEDLOADSTheClassIEloadssuppliedbyth'eClassIEacpowersystemarelistedinTables8.3-1to8.3-5.ClassIEloads,suppliedbytheClassIEdcsystemarelisted,inTables8.3-.6,to8.3-8.8-15DESIGHBASES8.1.5.1SafetyDesignBasesThefollowingprincipaldesignbasesareappliedtothedesignoftheonsiteandoffsitepowersystems:Offsite~ower~Sstewa)Electricpowerfromtheoffsitepowersourcestotheonsitedistribution.system.isprovided.bytwophysicallyseparatedtransmissionlinesdesignedandlocatedtominimizethelikelihoodofsimultaneousfailure.Rev.13,ll/7981-3 SSES-PSARb)Thelossofoneorbothgeneratingunitsorthelossofthemostcriticalunitonthepowergridwillnotresultintotallossofoffsitepower.OnsitePowerSystema)Oneunitauxiliarytransformerpergeneratingunitisprovidedtosupplypowertotheplantelectrical'uxiliarydistributionsystem.b)TwostartuptransformerscommontobothunitsareprovidedtosupplyoffsitepowertotheClassIEpowersystemandcommonplantauxiliarypowersystemandtosupplypowertotheUnitAuxiliaryloadsduringstartup,shutdown,andintheeventoflossofaunitauxiliarytransformer.c)Outageofonestartupand/oroneengineeredsafeguardtransformerwouldnotjeopardizecontinuedplantoperationexceptwheretheoperationislimitedassuggestedbyRegulatoryGuide1.93..SeecompliancestatementtoRegulatoryGuide1.93inSubsection8.1.6.1d)Standbydieselgeneratorsaresharedbytwounits.SeeSubsection8.1.6responsestoRegulatory'Guide1.81,fordieselgeneratorcapabilityandcompliancediscussions.e)Each-generatingunithasitsownindependentdcsystem.f)TheonsiteClassIEelectricpowersystemforeachunitisdividedinto'fourindependentloadgroups.Besidesthesharingofthedieselgeneratorwiththecounterpartg)loadgroupoftheotherunit,each-loadgrouphasitsowndistributionbusesandloads.Minimumengineeredsafetyfeatureloadsrequiredtoshutdowntheunitsafely;andmaintainitinasafeshutdownconditionaremetbyanythreeof.thefourloadgroupchannels.ThefourClassIEloadgroupsaresubgroupedgenerallytoformtwodivisionsformeetingthedesignbasisofoneoutoftwoESPloadrequirements.h)AutomaticormanualtransfersarenotprovidedbetweenredundantloadgroupsexceptswingbusesasdiscussedinSubsection8.3.1.3.S.TheClassIEelectricsystemsaredesignedtosatisfythesinglefailurecriterioninaccordancewithIEEE379-197281-4 SSES-PSARj)Thedcsystembatterybanksareindividuallysizedforfourhoursofoperationunderthemaximumdesignloadingwithoutthesupportofthebatterycharger.m)RacewaysarenotsharedbyClass'Eandnon-ClassIEcables.However,theaffiliatedcablesthataresuppliedfromtheClassXEbusesaretreatedasClassIEcableswithregardtoredundantsystemseparationandidentificationcriteria.Specialidentification'criteriaappliesforClassIEequipment,cabling,raceways,andaffiliatedcircuits.Affiliatedcircuitsareuniquelyidentified.Separationcriteriaapplywhichestablishrequirementsforpreservingtheindependence'fredundantClassIEsystemandprovidinqisolationbetweenClassIEandnon-ClassIEequipment.nlClassIEequipmenthasbeendesignedwiththecapabilityforperiodictesting.8~1~6-8eauXatorv-GuidesandIEERStandardsCodesandstandardsapplicabletotheonsitepowersystemarelistedinTable3.2-1.Generally,thesystemisdesignedinaccordancewithIEEEStandards308-1974,317-1972,323-1971,334-1971,344-1971,382-1972,384-1974,387-1972,and450-1972.Q-1~6;1--Compliancewith-regulatory.Guide'sCompliancewithGeneralDesignCriteria17and18of10CFR50,AppendixA,isdiscussedinSubsections8.3.1.11.1and8.3.2.2.1.CompliancewithapplicableRegulatoryGuides1.6,1.9,1.22,129'30r132~140'41r147<153r162m163r173m175'.81,1.89,1.93,and1.106isdiscussedbelow.ThedesiqnofthestandbypowersystemisincompliancewithRegulatoryGuide1.6.Thestandbypowersystemconsistsoffour'ndependentloadgroups.Allsafetyrelatedloadsaredividedamongthesefourloadgroupssothatlossofany'onegroupwillnotpreventthe'inimumsafetyfunctionsfrombeingREV.17,9/808.1-5 I'SES-PSARperformed.Eachloadqroupconsistsofbothstandbyacanddcpowersystems.Eachacloadgrouphasconnectionstotwoindependentoffsitepowersuppliesandtoasingleonsitedieselqenerator.Thepowerfeederbreakerstoeachloadgroupareinterlockedsothatonlyoneofthepowersuppliescanbeconnectedatanyonetimeexceptduringdieselgeneratorloadtestwherethedieselgeneratorissychronizedtooneofthepreferredoffsitepowersources.Onlyonedieselgeneratoristestedatatime.Eachdieselqeneratorisexclusivelyconnectedtothecorrespondingloadgroupofthetwounits;ie,dieselqeneratorAconnectstoloadqroupchannelAofbothunits,etc.Thedieselgeneratorofoneloadqroupcannotbeparalleled,eithermanuallyorautomatically,withthedieselqeneratoroftheredundantloadgroups.NoprovisionexistsforautomatictransferofloadsbetweenloadgroupsexceptasdiscussedinSubsection8.3.1.35.Thedcpowersystemofeachofthefourloadgroupsconsistsofa125Vdcbatteryandacharger.Thebatterychargerissuppliedbyitscorrespondingacpowersystem.Thedcpowersystemofanyoneloadgroupisindependentofanyotherdcpowersystem.Twoindependent250Vdivisionalizeddcpowersystemsarealsoprovidedforeachunittosupplylargedcloads.Lossofanyone250Vdcsubsystemwillnotpreventthesafetyfunctionsfrombeingperformed.PhysicalseparationofClassIEequipmentisfullydiscussedinSection3.12.EillThestandbydieselgeneratorscomplywithRegulatoryGuide1.9exceptasnotedin(5)and(6)ofthefollowing:1)Thecontinuousorthe2000hrratingofthestandbydieselgeneratorsisgreaterthanthesumofconservativelyestimatedloadsneededtobesuppliedfollowinqanydesignbasiseventwithinoneofthetwounits.LoadrequirementsarelistedinTables.8.3-1to8.3-5. SSES-PSAR2)ThestandbydieselgeneratorsarecapableofstartinqandacceleratinqallengineeredsafetyfeaturesandforcedshutdownloadstotheratedspeedinthetimeframeandsequenceshowninTables83-1to8.3-5.3)Thestandbydieselgeneratorsarecapableof,maintaining,duringsteadystateandloadingsequence,thefrequencyandvoltageabovealevelthatmaydegradetheperformanceofanyofthe-loads.4)Thestandbydieselgeneratorsarecapableofrecoveringfromtransientscausedbysteploadincreaseorresultingfromthedisconnectionofpartialorfullloadsothatthespeeddoesnotdamageanymovingparts.5)Thesuitabilityofeachdieselgeneratorisconfirmedbyfactoryqualificationtesting.6)powergualityisinaccordancewithIEEE308-1974,Section4.3.Atnotimeduringtheloadingsequencevillthefrequencyand/orvoltagedroptoalevelthatvilldegradetheperformanceofanyoftheloadsbelowtheirminimumrequirements.Thepowergualityisconfirmedbypreoperationaltests.c)RegulatoryGuide1.22$2/72)RefertoSection3.13forcompliancestatement.d)RequlatoggGuide12~92/76/RefertoSection3.13forcompliancestatement.e)~egulat~orGuide1.30/8~2'efertoSection3.13forcompliancestatement.fj~egulatoulGuide1.~323/26gAllsafetyrelatedelectricsystemsareincompliancewithRegulatoryGuide1.32.Complianceisdiscussedasfollovs:TheportionsofRegulatoryGuide1.32applyingtodcpowerarediscussedinSubsection8.3.2.21(d).TheavailabilityoftheoffsitepowermeetsthecriteriasetforthinRegulatoryGuide1.32.Thetwooffsite8.1-7 SSES-PSARcircuitshaveimmediateaccesstothetransmissionnetwork.SeeresponsetoRegulatoryGuide1.93foroperatingrestrictionswhenoffsitepowerisnotimmediatelyavailable.XEEE308-1974isgenerallyacceptedbyRegulatoryGuide1.32.CompliancewiththeRegulatoryGuideisdiscussedasfollows:ClassIEacpowersystemsaredesignedtoensurethatanydesignbasisevent,aslistedinTable1ofIEEE308,doesnotcauseeither(1)lossofelectricpowertomorethanoneloadgroup,surveillancedevice,orprotectionsystemtojeopardizethesafetyofthereactorunit,or{2)transientsinthepowersupplies,whichcoulddegradetheperformanceofanysystem.ControlsandindicatorsfortheClassIE4.16kVbussupplybreakersareprovidedinthecontrolroomandontheswitchqear.Controlsandindicatorsforthestandbyacpo'wersuppliesarealsoprovidedinthecontrolroomandonthelocaldieselgeneratorcontrolpanels.ControlandindicationforthestandbypowersystemisdescribedinSubsection8.3.1.ClasslEequipmentandassociateddesign,operating,andmaintenancedocumentsaredistinctlyidentifiedasdescribedinSubsection8.3.1.3.EachClassIEequipmentisqualifiedbyanalysis,bysuccessfuluseunderrequiredconditions,orbyactualtesttodemonstrateitsabilitytoperformitsfunctionunderapplicabledesignbasisevents.ThesurveillancerequirementsofIEEE308arefollowedindesiqn,installation,andoperationofClassIEequipmentandconsistofthefollowing:1)preoperationalequipmentandsystemtestsandinspectionsareperformedinaccordancewiththerequirementsdescribedinChapter14.2)PeriodicequipmenttestsareperformedinaccordancewiththerequirementsofChapter16.ThestandbyacpowersuppliesaresharedbybothunitsThetotalstandbycapacityissufficienttooperatetheengineeredsafetyfeatureloadsfollowingadesignbasisaccidentononeunitandaconcurrentforcedshutdownoftheotherunit.8.1-8 SSFS-FSARThetwopreferred.offsitepowersuppliesarealsosharedbybothunits.Thecapacityofeachoffsitepowersupplyissufficienttooperatetheengineeredsafetyfeaturesofoneunitandsafeshutdownloadsoftheotherunit.Connectionofnon-ClassIEequipmenttoClassIEsystemsisdiscussedintheresponsetoRegulatoryGuide1.75.SelectionofdieselgeneratorsetisdiscussedintheresponsetoRegulatoryGuide1.9.gegulatorgGuide1.40~~373$RefertoSubsection3.11.2forcompliancestatement.gegu~latovGuide1.41g3g73gThepreoperationaltestingprogramconformstotheqeneralquidanceprovidedbyRegulatoryGuide1.41asdescribedinChapter14.TheonsiteClassIEelectricpowersystem,designedinaccordancewithRegulatoryGuides1.6and1.32,istestedaspartofthepreoperationaltestingprogramandalsoaftermajormodifications.ThetestsareperformedinaccordancewiththerequirementsoutlinedinChapter14.Facilitiesareprovidedtotesttheindependencebetweentheredundantonsitepowersourcesandtheirloadgroups.=TheonsiteClassIEelectricpowersystemcanbetestedfunctionally,oneloadgroupatatime,byallowingoneloadgrouptobepoweredonlybyitsassociateddieselgeneratorwhilethebusisisolatedfromthepreferredoffsitepo~ersource.TheisolationoftheoffsitepowersourcecanbedonebydirectactuationofundevoltaqerelaysmonitoringtheClassIEsystem.Eachtestmayincludeinjectionofsimulatedaccidentsignals,startupofdieselqenerators,andautomaticloadapplications.Functionalperformanceoftneloadsischecked.Eachtestisofsufficient.durationtoachievestableoperatingconditionsandthuspermittheonsetanddetectionofadverseconditionsthatcouldresultfromimproperassignmentofloads.DurinqtestofoneClassIEloadgroup,thebusesandloadsoftheredundantloadgroupnotundertestaremonitoredtoverifyindependanceofloadgroups. SSES-PSABRefertoSection3.13forcompliancestatement.RefertoSection3.13forcompliancestatement.k)lieGulatouyGuide1~6210/7~3RefertoSection3.13forcompliancestatement.l)gegulato~rGuide1.63~10/7~3ThedesignofelectricpenetrationassembliesisincompliancewithRegulatoryGuide1.63.InaccordancewithRegulatoryGuide1.63,theelectricalpenetrationassembliesaredesignedtowithstand,withoutlossofmechanicalintegrity,themaximumfaultconditionvstimeconditionswhichcouldoccurasaresultofasinqlerandomfailureofcircuitoverloaddevices.ThefollowingsystemfeaturesareprovidedtoensurecompliancewiththerequirementsoftheRegulatoryGuide.1)MediumVoltaqeSystemPormediumvoltagecircuitsfeedingloadsintheprimarycontainmentthecircuitbreakerassociatedwiththeloadisbackedupbythemainbusfeederbreakertointerruptthecircuit,shouldtheloadbreakerfailtoopenduringafault2)480VSystemThe480Vmotorcontrolcentersfeedall480Vloadsinsidetheprimarycontainment.Inadditiontotheprimaryfeedercircuitbreakerabackupbreakerisprovidedtoeachcircuittoprovidebackupprotectionofthepenetrationassemblies.Thepenetrationwithstandstheavailablefaultcurrentandtimedurationforeitherprimaryorbackupcircuitbreakerstointerruptthecircuit.208VandLowerVoltageSystemsThemajorityoflowvoltagecontrolandpowercircuitsareselflimitinqinthatthecircuitresistanceand/orshortcircuitcapabilitylimitsthefaultcurrenttoalevelthatdoesnotdamage8.1-10 SSES-CESARthepenetrationassemblies.,Theremainingcontrolandpowercircuitshaveprimaryandbackupfuseorbreakertoensurefaultisolation.4)InstrumentSystemsTheoverloadandshortcircuitcapabilityintlieinstrumentsystemsaresufficientlylowsuchthatnodamagecanoccurtothepenetrationassemblies.SelectionofelectricvalveoperatorsforuseinsidethecontainmentisincompliancewithRegulatory'Guide1.73.TheelectricvalveoperatorsforserviceinsidethecontainmentaretypetestedinaccordancewithIEEE382-1972asmodifiedbyRegulatoryGuide1.73.Thetestsconsistof(1)aging,(2)seismic,and(3)accidentorotherspecialenvironmentalrequirements.TestparametersarediscussedinSubsections3.11.2a.3and3112b2.SeeSection3.13forcompliancestatementforGEfurnishedvalveoperators.TheRequlatoryGuideendorsestheXEEE384-1974,subject,totheadditionsandclarificationsdelineatedinSectionCoftheguide.RegulatorycompliancefortheNSSSscopeofsupplyPowerGenerationControlComplex(PGCC),AdvanceControlRoomsystem(ACR)andNuclearSteamSupplyShutoffSystem(NSSSS)localpanelsareaddressedinSection3.13.Allremainingbalanceofplant(BQP}circuitsandequipmentmeettherequirementsoftheRegulatoryGuide1.75exceptasdiscussedandclarifiedinitems4,5,7,ll,13,14,15and16below.1)TheelectricpowersystemhasphysicalindependencerequiredbyGeneralDesiqnCriterion3,17,and21ofAppendixAof10CPRPart50toprovidetheminimumnumberofcircuitsandequipmenttoperformtherequiredsafetyandprotectivefunctionsassuminqasinglefailure.I2)Theseparationofcircuitsandequipment(includingClassIEfromnon-ClassIEcircuits)isachievedbystructuraldesign,distance,orbarrier(asdefinedperIEEE384-1974Section4and5),oranycombinationthereof.REV17,9/808.1-11 SSES-FSARTwobasiccircuitisolationschemesareusedtoisolatecontrolcircuitsoftworedundantloadqroupsandClassIEfromnon-.classIEcontrolcircuits.Thefirstschemeconsistingofanisolationtype=relay,PCBtypeHDRrelay,isusedtoisolate'nterfacingcontrolcircuits.Thisrelayhasaninternalphysicalseparationbetweenthecoilandtheelectricalcontacts.Therelaycoilmotivepower.istransmittedthrough.anextendedrotaryshaftwhichactuatesacontactassembly.Thisrelay,is.ofClassIEcategoryandisdesignedformetalplate(barrier)mountingsothatthecoilcircuitisatonesideoftheplatewhilethecontactcircuitsareontheother.Inallapplicationsofthisrelay,eitherthemetalplateiswideenoughtoprovidea6inchminimalairspacebetweentheisolatedcircuits,ortherelayisboxedsothatthecircuitshavenocommonairspaceatall.3)Thesecondisolationschemeisapplicabletonon-interlockingcontrolcircuitsofredundantseparationgroups(includingnon-classIE)thatarehousedinthesamecabinetforoperationalexpediency.Inthiscase,theisolatedcircuitdeviceiscompletelyboxed,andallcabinetwiringtothedeviceiseitherenclosedinaflexiblemetalconduitorisinawirewaywithatleast6'nchesofseparationfromthewiringanddevices'ofthecircuitsitisisolatedfrom.Isolationdevicesforpowercircuitsareaddressedinparagraph5below.Themechanicalsystemsthatareservedbytheelectricalsystemssatisfythephysicalindependencerequirements.4)"Affiliated'~circuitsarenon-ClassIEcircuitswhichsatisfyatleastoneofthefollowingconditions:Supplypowertonon-ClassZEloadsfromClassZEpowersupplies.RoutedinacommonracewaywithClassIEcircuits.SharethesameenclosurewithClassIEcircuitswithouta6inchminimumseparationoraphysicalbarrierREV17,9/808.1-12 SSES-PSAR>>Affiliated>>circuitsareusedinSSESinplaceof"associated"circuitswhicharedefinedinSection4.5ofIEEE384-1974.Affiliatedcircuitsaresameasassociatedcircuitsexcepttheterminalequipment/devicesarenotsubjecttotherequirementsofClassIEequipment/devices.>>Affiliated>>circuitsencompasstheisolationmethodsdescribedinparagraph5).TheaffiliatedcircuitsaresubjecttothesamerequirementsasClassIEcircuits,suchasuniqueidentification,derating,environmentalqualification,flameretardance,splicingrestriction,racewayfill,andseparation,exceptcircuitslocatedintheTurbineBuilding.AllClassIEcircuits(RPS)andaffiliatedcircuits(controlroddrivewaterpumpmotors,turbinebuildinqchillers,maincondensatevacuumpumpmotors,andinstrumentaircompressors),locatedintheTurbineBuilding,areroutedinqualifiedClassIEracewaysalthoughtheyaresupportedfromanon-SeismicCategoryIstructure..5)

Reference:

Section4.5and4.6ofIEEE384-1974.Affiliatedcircuitsareavoidedwhereverpossible,butwherenon-ClassIEloadsareconnectedtoaClassIEpowersupply,isolationbetweentheClassIEandnon-ClassIEequipmentisaccomplishedbyeitherofmethodsithroughivbelow.MethodVisapplicabletonon-ClassIEpowersupplyfeedinganon-ClassIEcircuitwhichbecomesaffiliatedduetothecircuitsproximitytoClassIEcircuits/devices.IsolationMethods:(i)Shunt-trippingtheClassIEcircuitbreakerortrippingofthemotorcontactor(ClassIE)onalossofcoolantaccident(LOCA)signal.(ii)Shunt-trippingtheClassIEcircuitbreakerortrippingofthemotorcontactor(ClassIE)onalOCAandtotallossofoffsitepower(LOOP)signal.(iii)AnisolationsystemwhichconsistsofaClassIEcircuitovercurrentinterruptingdeviceisplacedinserieswithanon-ClassIEcircuitovercurrentinterruptingdevice.Thecircuitbetweenthetwodevicesisaffiliated.Thismethodisusedforanon-ClassIEdistributionbus.Rev.26,9/818.q-13 SSES-FSAR(iv)AClassZEcircuitinterruptingdeviceactuatedbyovercurrent.isplacedinserieswithanon-ClassIEequipment.Thecircuitbetweentheinterruptingdeviceandthenon-ClassIEequipmentisaffiliated.(v)Fornon-ClassIEcircuitinproximityofClassIEcircuits,anisolationsystemwhichtripsonanovercurrentisplacedinserieswiththenon-ClassIEcircuit.Allnon-Class1EloadsconnectedtoClasslEpowersuppliesperisolationmethodsithroughivaresummarizedintable8.1-2.CircuitsusingisolationmethodvareallClassIEequipmentspaceheaters,utility,orliqhtingcircuitswheretheminimumphysicalseparationcannotbemet(SeePara.16).Anisolationsystemisdefinedastwoseparateovercurrentdevices(isolationmethodiiiandv)placedinseriesinacircuittominimizeanyfailureinthenon-ClassIEequipmentfromcausingunacceptableinfluencesintheClassIEsystem.Thetypeofisolationdevicesusedactuatedbyovercurrentarebreakersandfuses.oneoftheovercurrentdevicesoftheisolationschemeisClassIEandlocatedinoradjacenttotheClassIEeguipment.Theotherisnon-ClassXEandlocatedatornearthenon-ClassIEequipment.Thebasisfortheselectionoftwodevicesinseriesare:a)Bothdevicesareofdifferenttypeanddifferentelectricalcharacteristictoeliminatethepossibilityofacommon.modefailureduetoamanufacturingdefect.b)ThedevicesareselectedtominimizetheeffectsontheClasslEpowersupplyagainstfaultsinthenon-Class1Eequipment.c)Thedevicesarecoordinatedtoclearthefaultinthenon-ClasslEequipment,withouttrippingtheClass1Emainsourcebreaker.d)Duringaseismicevent,theClass1Edevicesfeedinqtonon-class1Eeguipmentwillprovideadequatecircuitisolationintheeventofanon-ClassIEequipmentfailure.e)ThedevicesareselectedtoprotecttheClassXEcircuitsaqainstfaultsatthenon-ClassIEREV17r9/808.1-14 SSES-FSARC6)powercircuit(isolationmethodv)suchasshort'ircuit"andovervoltage.Non-ClassIEpowerandcontrolcircuitsareseparatedfromtheClassIEandassociatedcircuitsbytheminimumseparationrequirementsspecifiedinSection5ofIEEE'384-1974."'solationdevicesareusedwhereanon-ClassIEcontrolcircuitandClassIEcontrolcircuitsareinterfaced.(Seeparagraph2).7)

Reference:

PositionC.7ofRegulatoryGuide1.75andSections5.1.3,5.1.4and5.6.2ofIEEE384-1974.ExceptiontoSection5.1.3ofIEEE384-1974:The1"minimumseparationrequirementoftotallyenclosedracewayisnotmetduetospacelimitationinsomeareas.Thisislimitedtoinstrumenttoinstrument,instrumenttocontrol,andcontroltocontrol,andnon-Class1EcontroltoClasslEpowertotallyenclosedracewayonly.ForJustification,refert'oWyleLab.TestReportNo.NE56719datedNovember20,1980.Non-Class1E,lowenergycircuitsfordigital/analoginformationandinstrumentationsuchas'annunciators,dataloggers,meters,recordersandtransientmonitoringsystemarepermittedtobeconnectedto'ClasslEdevicesforrequiredinputs.Thesenon-Class1Ecircuitsareexemptedfromseparationrequirementonlywiththesamechannel/divisionwhichthecircuitsareconnectedfortheirinputs.Thecabling-ofthesenon-ClasslElowenergycircuits,withtheexceptionofannunciators,areroutedex'elusivelyinnon-ClasslEinstrumentationracewayswhichd'onotcontaincontrolorpower(highenergy)circuitsexcept120VAC.Allannunciatorcircuits'arenon-ClasslE.ThecablerunsofthesecircuitsareseparatedfromClass1EcircuitsbytheminimumseparationrequirementsspecifiedinSection5ofIEEE384-1974.However,annunciatorcabl'es"arerouted'onlyinthenon-ClasslE.controlracewayswhichcontaincablesofvoltagelevelof120VAC,125VDCand250VDC.Rev,27,10/81Allinstrumentationandannunciatorcableshavefireretardantinsulation(SeeSubsection,8.3.3).8,1&5 SSES-PSARTheracevaysareoffireretardantmaterials.Instrumentationcableshavegroundedshields.Analysis:Annunciatorandinstrumentationcircuitsarelowenergycircuits.Theannunciatorcircuitsoperatein125Vdchighimpedance{60KQ)source.Hostoftheinstrumentationsystemsoperateon.1-5VDCsignalsinhighimpedancecircuitsor4.-20masignalsinlowimpedancecircuits.Sinceonlylowenergycanbederivedfrominstrumentationcircuits,theprobabilityofthesenon-Class1EcircuitsprovidingamechanismoffailuretotheClass1EcircuitsinsideClass1Edevicesorenclosuresisextremelylow.TheworstcredibleeventwhichcouldaffecttheClass1Esystemthroughthenon-Class1Elowenergycircuitsisafireinvolvingacontrolracewaycontainingannunciatorcables.AssumeintheworstcasewhereannunciatorcablesframredundantclasslEequipmentarebothshortedtoa120.VAC,125VDCor250VDCcableduetothefire,furtherassumethatthesensorcontactsareboth'losedandthattheovercurrentprotectivedeviceofthe120VAC,125VDCor250VDCcabledoes'nottrip.Thentheclass1EdevicescouldbedamagedandthereforepreventthedevicesfromperformingtheirClass1Efunction.Tosummarizetheabavefailuremode,theredundantClasslEsystemswillfailonlyifallofthefollowingconditionsoccurat.thesametime:Fa.AnnunciatorcablefromaClasslEdeviceisfusedtothehighestvoltagecircuitconductors(250VDC).b.AnnunciatorcablefromaredundantClasslEdeviceisalsofusedtothehighestvoltagesource{250VDC).C~Thehighestvoltage(250VDC)circuitconductors-arenotshortcircuitedorgraunded.Thehighestvoltage(250VDC)circuitprotectivedevicesfailed(breakerorfusefailedtoperformitsintendedfunction)Rev.26,9/818.1-16 SSES-PSARe.ClassIEdevicecontactclosed(alarmstate)f.RedundantClasslEdevicecontactclosed{alarmstate)geInorderfortheClass1Bprotectivesystem,asdesigned,tofailduetofire,theabovesixindependentlowprobabilityeventsmusthappensimultaneously.This'sconsideredextremelyunlikely.Thus,thelowenergynon-ClasslEcircuits,whicharenotseparatedfromtheClasslEcircuitsattheinputdevicesdonotprovide'amechanismoffailureoftheClasslEsystem.8)Inadditiontotheminimumseparationrequirementsasoutlinedinitems6and7above;(a)therearenocablesplicesinraceways,(b)cablesandracewaysareflameretardant,(c)cabletraysare~limitedto30percentfillandareno'tfilledabovethesiderails.9)RacewayandcableidentificationsareincompliancewithRegulatoryGuide1.75.DetaileddescriptionisgiveninSubsection1.8.6.10)Standbydieselgeneratorsarehoused'inseparateroomswithinaSeismicCategoryIstructurewithindependentairsupplies.Theauxiliariesandlocalcontrolsofeachunitar'ealsohousedinthesameroomastheunittheyserve.'RedundantClassIEbatteriesarelocatedinseparateroomswithinaSeismicCategoryIstructure;however,eachbatteryzoomisexhaustedbyanindividualventilationducttoacommonexhaustplenum.-TworedundantClass'Ecentrifugalexhaustfansservicethecommonexhaustductwork.BatterychargersofredundantloadgroupsarephysicallyseparatedinaccordancewiththereguirementsofRegulatoryGuide1.7512)AllredundantClassIEswitchgear,motorcontrolcenters,anddistributionpanelsarephysicallyseparatedinaccordancewithRegulatoryGuide1.75.Rev.26,9/818.1-l7 '13)RedundantClassIEcontainmentelectricalpenetrationsaredispersedaroundthecircumferenceofthecontainmentandarephysicallyseparatedinaccordancewiththerequirementsofSection.5.5ofIREE384-1974.,Duetolimitedspace,cable.penetrationsintothesuppressionpoolcontainbothnon-ClassIEandClassIEcircuits.Thesenon-.ClassIEcircuitsareforinstrumentation,.annunciation,andcomputerinputsandarenot'treatedasaffiliatedcircuits.Thesuppressionpoolareaisservicedbythree(3)electricalpenetrationassemblies:M300,M301,and'M330B.PenetrationsforUnitI,1M300and,1M301,eachcontainscircuitsofonedivisionoftheClassIE:systemsandnon-classIEcircuits..Thethird,.penetration,1M330B,containsonlynon-ClassIEcircuits.TheUnitIIpenetrations2M300and2M301containonlycircuitsofoneoftheredundantClass'IEdivisionsandthethirdpenetration2M330Bcontainsallthenon-ClassIEcircuitstothesuppressionpoolarea.PenetrationsM300andM301arelocatedinoppositequardrentsofthesuppressionpoolforeachunit.'TheunitIpenetrations1M300and1M301have'bothClassIEandnon-ClassIEpower,controlandinstrumentationcircuits.TheclassIEpowercircuitconductorsareroutedthroughthepenetrationina2inchflexiblemetalicconduit,.TheconduitextendsbeyondthepenetrationandthepowercablesaresplicedtotheplantcableinajunctionboxusedonlyfortheClassIEpowercircuit.TheseClassIEpowercircuitsareseparatedfromallothersbythe2inchconduit.'Thenon-ClassIEpowercircuitsservicethe=portablelightsandserviceeguipmentduringpersonnelentrancetothesuppressionpoolarea.Duringplantoperationtheloadsareremoved.PenetrationslM300and1M301alsohavenon-ClassIEinstrumentandcontrolcircuits.Threeofthenon-C1assIEinstrumentcircuitsarefornon-ClassIE=RTDinputs(ExceptonaffiliatedRTDcable,RMlI9804E,isroutedtogetherwithnon-.ClassIEcircuitssinceitcannotbeaccommodatedbyanotherpenetrationmodule).Thesearelowenergyanddo'notdegradetheClassIEcircuitsasdiscussedinSection8.1.6.l.n7).Thenon-ClassIEcontrolcircuitsareusedforannunciatorinputsonly.Rev.26,9/818.1-18 SSES-FSARTheseannunciatorcircuitsderivedigitalinformationfromthesameClassIEequipmentastheClassIEcontrolcables(iePSV-15704A2,solenoidvalvecontrolandvalvepositionannunciation).Hoothernon-ClassIEcircuitcablesareroutedinthesameracewaywiththeannunciatorcablesfromtheClassIEvalvetothepenetrationinboardtothesuppressionpool.ForfurtherjustificationonannunciatorcircuitsseeSection8.16.1.n-7).Theremainderofnon-ClassIE"instrumentandcontrolcircuitsareusedfortheIntegratedLeakRateTest(ILRT).ThisRev.26,9/818.1-18a SSES-FSAR(Thispageintentionallyleftblank)Rev.20,2/818.1-18b SSES-PSARtestinqisperformedonlywhenthereactorisinthecoldshutdownmodeandpersonnelaccesstothesuppressionpoolispermitted.AftertheILRTtestarecompletedthesecircuitsareisolatedfromtherestoftheplantasalltestinstrumentsandsensorsaredisconnectedandremovedfromboththesuppressionpoolandthereactorbuildingareas'.ThesegmentsoftheILRTcircuitsnot.disconnectedaftertestingareruninseparateplantracewaysusedonlyfortheILRTsystem.Allfuturenon-ClassIEcircuitswill.beroutedthrouqhthepenetration1W330Breservedfornon-ClassIEonly.14)

References:

Section5.6.2and5.6.3ofIEEE384-1974Ingeneral,circuitsforredundantClassIEsystemsandcircuitsfornon-ClassIEsystemsarelocatedinseparateenclosuressuchas,boxes,racks,andpanels.However,incaseswhereredundantchannel/divisionClassIEcircuitsorClassIEandnon-ClassIEcircuits,orRPSandotherClassIEandnon-ClassIEcircuitsarelocat'edintheseenclosure,physicalseparationisachievedeitherbyminimumof6"horizontalandverticalseparation,steelbarriers,metallicenclosure,ormetallicflexibleconduit(exceptiontothisseparationrequirementistakenfornon-ClassIElowenergycircuitsdiscussedinparagraph7ofthissection).Wheretheaboveseparationmethodsarenotfeasible,oneoftheseparationgroupcircuitsaretobecoveredwithoneofthe.followingqualifiednonflammablematerial:HavegIndustries,siltempsleevingtypeSandwoventapetypeWT65.ii.Carborundum,FiberfraxsleevingtypeHP144Tandwoventapetype3L144T.Thesematerialshavebeenqualifiedtobeusedasseparationbarriers(HyleLab.TestReportNo.56669datedNay,1980).Applicationsofthesematerialsarecontrolledanddocumentedbytheengineeringoffice.EnclosuresthatcontainwirinqanddevicesforClassIEcircuitsarelabeleddistinctivelytoidentifyexternallytheseparationssystemandqroupinq(seeREV17r9/8081-19 SSES-PSARSubsection3.-12.3.2).Internaltoenclosures,terminalblocksanddevicessuchasrelays,switchesandinstrumentsareuniquelyidentified.Inaddition,externalcablesarecolorcodedandmarkedtobereadilyidentified(seeSubsection3.123.4.2).Hire'bundlesorcablesinternaltocont'rolboardsarenotdistinctivelyorpermanentlyidentified.15)Duetospatiallimitationbeneaththereactorvessel,thefollowingisadescriptionofelectricalcableseparationfortheNeutronNonitorinqSystem(NNS),ReactorProtectionSystem(RPS),andControlRodDriveSystem(CRD):AllClassIEcablesareroutedthroughenclosedracewaysuchasenclosedwireways,rigidandflexibleconduitsexceptasnotedinparaqraphiv.ii.Non-ClassIEcablesareroutedinopentrays.iii.Cablesofdifferentsystemsmayberoutedinsomeportionofraceway.Butchannelseparationismaintained.Becauseofspacelimitationandneedforflexibility,theflexibleconduitsendafterthehorizontalrunswherecablesdropdownforconnectiontoconnectors..VoThe1inchminimumseparationrequirementofXEEE384-1974isnotmetforenclosedracewaysbeneaththereactorvesseL.Also,theminimumseparationrequirementsofIEEE384-1974Section5.1.3and5.1.4arenotmetforClassIEenclosedracewaysandnon-ClassIEopentrays.Allcables("lassIEandnon-ClassIE)beneaththereactorvesselarelowenergyinstrumentationscircuits.FirehazardbeneaththereactorvesselisdescribedinFireProtectionReviewReportSection4.3.8FireZonel-lH.16)Non-ClassIEcircuitsinsideaClassIEequipment,suchasliqhtinq,utilityorspaceheatercircuit,shallbeconsideredaffiliated,unlessa6"minimumseparationorphysicalbarrierfromtheClassIEcircuitsisprovidedorunlessanalysisortestshowsthatthenon-ClassIEspaceheatercircuitsBEV.17,9/808-1-20 SSES-PSARwillnotaffecttheClassIEsystem.,Ifpowerissuppliedfromanon-ClassIEdistributionpanel,anisolationdeviceorsystem{IsolationmethodV)isinstalledatorneartheequipmenttopreventfailuresinthenon-ClassIEcircuitsfromaffectingredundantClassIEcircuits.Alternatively,thenon-ClassIEsupplycablesmayberoutedinseparateracewayssuchthatnocommonmodefailurecouldaffectredundantClassIEcircuitsduetoasingleevent.o)gegulgtorg-Gugde1~81-$1$75$-ThedesignofthestandbyelectricpowersystemsmeetsRegulatoryGuide1.81.,Thedcpowersystemsarenotsharedbetweenthetwounits.Thestandbyacpowersuppliesaresharedbetweenthetwounits.Thestandbyacpowersystemshavethecapabilitytoconcurrentlysupplytheengineeredsafetyfeatureloadsofoneunitandthesafeshutdownloadsoftheotherunit,assumingatotallossofoffsitepowerandasinglefailureintheonsitepowersystem,suchasthelossofonedieselgenerator.Thestandbyacpowersystemsforthetwounitsaredesiqnedwithminimuminteractionsbetweeneachunit'ssafetyfeaturecircuitsothatallowablecombinationsofmaintenanceandtestoperationsineitherorbothunitswouldnotdegradethecapabilitytoperformtheminimumrequiredsafetyfunctionsinanyunit,assumingatotallossofoffsitepower.p)ItRefertoSection3.13forcompliancestatement.Redundantoffsiteandonsitepowersourcesareprovidedtomeetthe"LimitingConditionsforOperation"asdefinedinRegulatoryGuide1.'93.,SeeChapter16forplantoperatingrestrictionsafterthelossofpowersources.r)g~g~lto~yGu~ie1.106$11/75)ThereguirementsofRegulatoryGuide1.106aremet.REV17r9/808.1-21 SSES-PSARThethermaloverloadprotectiondevicesforallsafetyrelatedmotorson,motor-operatedvalves(NOV)arebypassedexceptduringtesting.Thisisaccomplishedbytheuseofanoperate/testornormal/testtypeselectorswitchlocatedinPanelOC697atrearsectionofcontrolroom:A.Operate/TestTypeSwitchesIntheoperateposition,asetofnormallyclosed(N.C.)contactsforeachMOVisconnectedinparallelacrossthethermaloverloadtripcontacts,thusbypassingtheoverloadtrip.2.Inthetestposition,theabovesetofcontractsopenthuspermittingtheoverloadtripcontactstotripthemotoronclosingoropeningshouldanoverloadconditionoccur.BNormal/TestTypeSwitchesInthenormalposition,asetofnormallyopen(N.O)contactsinserieswithoneormorerelays(desiqnatedas95)deenergizesthe95relays.Asetofnormallyclosedrelaycontactsisparalleledacrossthethermaloverloadtripcontactsthusbypassingtheoverloadtrip.,Lossofpowertotherelayswillcausetheoverloadstobebypassed.2.Inthetestpositiontheabove,N.O.contactsclose,energizingthe95relays,andthusopensthecontactacrosstheNOVoverloadtripcontacts.Thispermitsamotoroverloadtotripthemotorduringaclosingoropeningtestoperation.AbypassindicationsystemisprovidedtoalertthecontrolroomoperatorvhenasafequardNOVisinadisabledcondition.Lossofpowersupply,suchaswhenthebreakeristrippedformaintenance,orlessofcontrolpowerisindicatedinthebypassindicationpanelC694locatedbehindtheunitoperatingbenchboard.AdivisionIorIIgroupalarmvillthenbemadeandthisvillbeannunciatedattheemerqencycarecoolingbenchboardC601.REV17,9/808.1-22 SSES-PSARTable8.1-1providesalistingofallNOV~swiththeirthermaloverloadbypassedduringplantoperation(refertoSection1.7forchanqes)..8</6g--Com~igace-wj,th-IEEE338-1975344-1971-and387-1972aI.Egg~38--197-1~SeeresponsetoRegulatoryGuide1118inSection3.13forcompliancestatement.bCompliancewiththisstandardisdiscussedinSection310c~~IEQ-387-1972-ThefollowingparagraphsanalyzecompliancewiththedesigncriteriaofZEEE387-1972.Adequatecoolingandventilationequipmentisprovidedtomaintainanacceptableserviceenvironmentwithinthedieselqeneratorroomsduringandafterany-designbasisevent,evenwithoutsupportfromthepreferredpowersupply.Each,dieselgeneratoriscapableofstarting,accelerating,andacceptingloadasdescribedinSubsection8.3.1.4.Thedieselgeneratorautomaticallyenergizesitscoolinqequipmentwithinanacceptabletimeafterstartinq.Frequencyandvoltagelimits-andthebasisofthecontinuousratinqofthedieselgeneratorarediscussedinthecompliancestatementtoRegulatoryGuide1.9inSubsection8.16.1.1mechanicalandelectricsystemsaredesignedsothatasinqlefailureaffectstheoperationofonlyasingledieselgenerator.Desiqnconditionssuchasvibration,torsionalvibration,andoverspeedareconsideredinaccordancewiththerequirementsofIEEE387-1972.REV-17,9/8081-23 SSES-FSAREach:dieselgovernorcanoperateinthedroopmodeandthevoltageregulatorcanoperateintheparalleledmodeduringdieselgeneratortesting.Ifanunderfrequencyconditionoccursvhilethedieselgeneratorisparalleledwiththepreferred(offsite)powersupply,thedieselgeneratorwillbetrippedautomatically.Eachdieselgeneratorisprovidedwithcontrolsystemspermittingautomaticandmanualcontrol.Theautomaticstartsignalisfunctionalexceptvhenthedieselgeneratorisinthemaintenancemode.Provisionismadeforcontrollingthedieselgeneratorfromthecontrolroomandfromthedieselgeneratorroom.Subsection8.3.1.4.10providesfurtherdescriptionofthecontrolsystems.Voltage,current,frequency,andoutputpowermeteringisprovidedinthecontrolroomtopermitassessmentof.theoperatingconditionofeachdieselgenerator.SurveillanceinstrumentationisprovidedinaccordancevithIEEE387asfollovs:StartingSystemStartinqairpressurelowalarm2)LubricationSystemLubeoilpressurelovtripandlubeoiltemperaturehighandlowalarms.Lubeoilpressurelovtripisbycoincidentlogic.3)FuelSystemFueloillevelindaytankhighandlow,fueloilpressurehighandlow,andfueloillevelinstoragetankhighandlovalarms4)PrimaryCoolinqSystemEssentialservicevaterlowpressureSecondaryCoolingSystemJacketcoolanttemperaturehighandlow,jacketcoolantpressurelow-CombustionAirSystemsFailurealarmisprovidedREV17r9/808~1-24 SSES-FSAR7)ExhaustSystemPyrometerslocatedatdieselgeneratorlocalcontrolpanel8)GeneratorGeneratordifferential,groundovercurrent,andreverse-power,underfrequency,andovervoltagetripandalarm.Neutralovervoltageandovercurrentalarm.9)ExcitationSystemLowfieldcurrentandoverexcitationrelaytripandalarm10)VoltaqeRegulationSystemDieselgeneratorovervoltagealarm11)GovernorSystemDieselqeneratorunderfrequencyalarmandtrip,andengineoverspeedtrip12)AuxiliaryElectricSystem4.16kVbusundervoltagerelaysinitiatebustransferandalarm.AdetailedlistoftripandalarmfunctionsandtestingofthedieselgeneratorisdiscussedinSubsection8.3.1.4.REV17,9/8081-25 jCr1ll'i~44II'V4p Page8eCIRCUITNUMBER71727374757677787980NONCLASS1ELOAD480/277VEssentialLightingPanelOEPOl480V/277VEssentialLightingPanelOEP02480V/277VEssentialLightingPanel1EP05ReactorBldg.Chillercompressor1K206AControlRodDriveWaterpump1P132ATurbineBldg.'hillercompressor1K102AReactorBldg.Chillercompressor1K206BMaincondenserMechanicalvacuumpump1P105TurbineBldg.Chillercompressor1K102BControlRodDriveWaterpump1P132BCLASSlEPOWERSUPPLYControlstructureHGV-RoomEng.Div.ISafeguardMCCOB136ControlstructureHSVRoomEng.Div.IISafeguardMCCOB146ControlstructureHSVRoomEng.Div.IISafeguardMCCOB146ChannelA/Div.IEmergencyauxiliarySwitchgear1A201ChannelA/Div.IEmergencyauxiliarySwitchgearlA201ChannelA/Div.IEmergencyauxiliarySwitchgearlA201ChannelB/Div.IIEmergencyauxiliarySwitchgearlA202ChannelB/Div.IIEmergencyauxiliarySwtichgearlA202ChannelB/Div.IIEmergencyauxiliarySwitchgearlA202ChannelD/Div.IIEmergencyauxiliarySwitchgearlA204METHODOFISOLATION7Ref.RSAR8.1.6.ln.5)1.1.1.I.VI.VI.VI.VI.VI.VI.V2381~ControlStructurePassengerElevatorODS108ControlStructureHSVRoomDiv.IEngineeredSafeguardMCCOB136Engr.SafeguardDiv.IEngr.SafeguardServiceWaterPumphouseServiceWaterPumpOLP16houseMCCOB517I.VRev.23,6/81 Page10CIRCUITNUMBER94ControlRodDriveWaterPump2P132A'hannelA/Div.IEmergencyAuxiliarySwitchgear2A201NONCLASSlELOADCLASS1EPOWERSUPPLYMETHODOFISOLATION~Ref.FRAR8.1.6.ln.5)I.V239596979899.100TurbineBldg.ChillerCompressor2K102AReactorBldg.ChillerCompressor2K206BMainCondenserMechanicalVacuumPump2P105TurbineBldg.ChillerCompressor2K206AControlRodDriveWaterPump2P132BTurbineBldg.ChillerCompressor2K102BChannelA/Div.IEmergencyAuxiliarySwitchgear2A201ChannelB/Div.IIEmergencyAuxiliarySwitchgear2A202ChannelC/Div.IEmergencyAuxiliarySwitchgear2A203ChannelC/Div.IEmergencyAuxiliarySwitchgear2A203ChannelD/Div.IIEmergencyAuxiliarySwitchgear2A204ChannelD/Div.IIEmergencyAuxiliarySwitchgear2A204I.VivI.VivivI.V101ReactorBldg.ClosedReactorAreaCoolingWaterPumpDiv.IIEngineered2P210ASafeguardMCC2B247102103104105ReactorBldg.ClosedCoolingWaterPump2P210BProcessRadiationMonitoringCabinet2C604ReactorAreaDiv.IIEngineeredSafeguardMCC2B226Div.I24VDCDistributionPanel2D672iv23Rev.23,6/Sl SSES-FSAR8.3ONSITEPOWERSYSTEMS8.3.1ACPOWERSYSTEMS8.3.1.1DescritionTheonsiteacpowersystemsaredividedintoClassIEandnon-ClassIEsystems.Figure8.3-1showsthesinglelineofbothsystemswiththeClassIEsystemidentifiedbyadottedlineenclosure.Theonsiteacpowersystemsconsistofmaingenerators,mainstep-uptransformers,unitauxiliarytransformers,anddieselgenerators.Thedistributionsystemhasnominalratingsof13.8kV,4.16kV,480V,and208/120V.Theoff-siteacpowersystemsuppliespowertoplantsystemsthroughtwostart-uptransformers.8.3.1.2Non-ClassIEacSstemThenon-ClassIEportionoftheonsitepowersystems'providesac,powerfornon-nuclearsafetyrelatedloads.AlimitednumberofnonsafetyrelatedloadsareimportanttothepowergeneratingequipmentintegrityandarefedfromtheClassIEdistributionsystemthroughtheisolationsystemasdiscussedinSubsection8.1.6.1(n).Thenon-ClassIEacpowersystemdistributespowerat13,8kV,4.16kV,480V,and208/120Vvoltagelevels.Thesedistributionlevelsaregroupedintotwosymmetricaldistributionsystemsemanatingfromthe13.8kVbuses.,Allnonself-activatedswitchgearsreceivecontrolpowerfromthe125Vdccontrolpowersources.The125Vdccontrolpowersourcesforthenon-ClasslE13.8kVand4kVswitchgearbreakersand480VloadcenterbreakersareshowninTables8.3-17and8.3-18respectively.Rev.15,2/818.3-1 SSES"FSAR8.3.1.2.1eration-Theunitauxiliarytransformersuppliesallthenon-ClassIEunitauxiliaryloadsexceptunitHVACandUnits1and2commonloads,whicharefedbythetwostartuptransformersasshownonFigures8.3-1and8.3-2.Theunitauxiliarytransformerprimaryisconnectedtothemaingeneratorisolatedphasebusducttap(24kV)whilethesecondaryofthetransformerisconnectedtotwo13,8kVunitauxiliarybusesthroughanonsegregatedphasebus.Duringplant'tartup,shutdown,andpostshutdown,powerissuppliedfromtheoff-sitepowersourcesthroughthetwostartuptransformers.Inaddition,capabilityisprovidedtotransfertheunitauxiliarybusestothestartuppowersourcetomaintaincontinuityofpowerattheunitauxiliarydistributionsystem.Inadditiontotheloadingconditionsmentionedintheaboveparagraph,the13.8kVstartupbusesalsosupplythepreferredpowersuppliestotheClassIEloadgroupsthroughtheirrespective13.2kV-4.16kVengineeredsafeguardtransformersasdiscussedinSubsection8'.1.3(Figure8.3-1).Theauxiliarybusfeederbreakersfromtheunitauxiliarytransformersandthestartuptiebussectionareinterlockedtopreventsupplyingpowertothestartupbusfromtheunitauxiliarytransformer.A13.8kVtiebusisprovidedforthetwostartupbuses.Aseparate(notinswitchgearline-up)bustiebreakerislocatedinthetiebus.Intheeventofalossofstartuppowersupplytothe13.8kVstartupbus,analarmisinitiatedand,.atimedelayundervoltagerelayinitiatesthetrippingofthe13.8kVincomingbreakerandtheclosingofthetiebreaker,resultinginaslowtransfer.However,thistransferispreventedifeitherauxiliary13.8kVbusisbeingfedfromtheundervoltagetiebussection.Thisconditionissensedbytheclosureoftwo(2)auxiliary"b"contactsinseries,.onefromeachoftheunitauxiliarybustotie-buscircuitbreakersconnectedtoacommontiebussection.Manualinitiationofthetiebreakerisalsoprovided.However,theuseofthismanualcontrolisadministrativelylimitedasanoverridingmeansonly.Underautomaticoperatingconditionsofthetiebreaker,auxiliaryswitch"b"contactsofthestartuptransformerincomingbreakersarealsoutilizedasapermissivetoclosethetiebreakerto!preventtyingofthetwostartuptransformers.Atthe4kVESFpowerdistributionsubsystemathree-waytransfersystemisprovidedtoenabletheESFloadstoconnecttoeitherofthetwooff-sitepowersourcesortothestandbydieselRev.23,6/818.3"2 SSES-FSARgenerators.EachESFbusisnormallyconnectedtoapreferred,sourcewhichisoneoftwoEStransformersconnectedrespectivelytothetwostartupbuses.Duringlossof'oneoff-sitepowersource,thatis,upstreamofthestartupbus,thestartupbusundervoltagerelaywilltripthefeederbreakertotheEStransformer,causingatransferatthe4kVESFbus.Ifpowerlossoccursbetweenthe13kVstartupbusandthe4kVESFbus,a4kVtransferwilloccur.The4kVESF'bustransferisinitiatedbythebusundervoltagerelay,which'tripsthenormalincomingbreakerandsubsequentlyclosesthealternateincomingbreaker.Thisispracticallyadeadbustransfer.Ifbothoff-sitepowersourcesareunavailable,thedieselgeneratorbreakerclosesassoonasthedieselgeneratorpowerisavailable.Theabovetransfermechanismallowsonlyonesourcebreakertobeclosedatanyonetimeandtoensurethis,breakerauxiliaryswitchcontactsareusedforinterlocking.Amanuallivebustransferispossiblethroughasynchronizingdeviceinwhichcaseanalternatesourcebreakerisfirstclosedandisfollowedby.anautomatictrippingofthepreferred'supplybreaker.Inthiscasethedurationofthetieismerelyafewcycles.Furthermore,thedieselgeneratorcanbetiedwithanyoneofthetwooff-sitesourcesforanindefinite"timeundertestconditionbutthisdoesnotinanywaycausethetwooffsitepowersystemstobetiedtogether.Theplantsecurityloadcenterisdoubleended,eachendbeingsuppliedfromoneofthe13kVstart-upbusesthroughastepdowntransformerandisprovidedwithanormallyopentiebreaker.Eachbusissuppliedfromitsownstart-upsource.Shouldonesourcebelosttheundervoltagerelayatthetransformersecondarytripsthebusincomingbreaker.Thebusundervoltagerelaytheninitiatesclosureofthetiebreakerprovidedthe,incomingbreakerhassuccessfullytripped.Uponreturnofthefailedsourcetheincomingbreakerwillnotautomaticallycloseandcanonlybemanuallyclosedafterthetiebreakerhasbeentripped.Inalloftheforegoingtieortransfersystems,thereisnowaythatthetwooff-sitepowersystemscanbetiedtogetherattheon-sitebusesassuminglossofoneoff-sitesource.Rev.23,6/Sl8.3-3 SSES-FSARAutomaticbustransferforthenon-ClassIEpowersystemisprovi'dedatthe13.8kVlevelonly.The13-8kVswitchgear-providepowerforlargeauxil'iaryloadsand480V.load,centers.The13.8kVswitchgearfeeddouble-ended480Vloadcenters.Amanualtiebreakerisprovidedforeachsetofloadcenterstointertiethetwoloadcentersintheeventoffailureofoneloadcentertransformer.Load:centersgenerallysupplypowerto480Vloadslargerthan.100hpandpowerfortheirrespectivemotorcontrolcenters..Themotorcontrolcenterssupply480Vloadssmallerthan100hpwhile'480U,480/277V,208/120Vpanelsprovidemiscellaneousloadssuchasunitheaters,,spaceheaters,lightingsystems,.etc.8.3.1.2.2Non-ClassIEFguigmentCapacitiesRefertoFigure8.3-1forinterconnectionsofthefollowingequipment.PhysicallocationsofeachofthefollowingequipmentcanbefoundinSection1.2.a)UnitAuxiliaryTransformer33/44/55NVA,3P~OA/FA/FOA~55C37/49.3/61.6MVA,,OA/FA/FOA,65C23.0-13.8k.VGrd.Y/7.96kVZ=9.0%833MVAb)StartupTransformer45/60/75MVA3',,OA/FOA/FOA,650C225/129,9--13.8/7.97kVZ=15.0%945NUALTCs158in15/165stepsc)EngineeredSafeguardTransformer10,5/13.12NVA,3',OA/FA~55oC11.76/147NVA,OA/FA,650C13.2-4.16kVGrd.Y/2.4kVZ=6.8%ib10.5NVAd)1JnitAuxiliary13.8kVSwitchgearBuses2000Acontinuousrating,,750MVAbracingIncomingbreakers2000Acontinuousrating,-750NVA3JtJClass28,000AsyminterruptingratingRev.26,9/818.3-4 SSES-PSARFeederbreakers1200Acontinuousrating~750MVA3'lass28,000Asyminterruptingratinge)Startup13.8kVSvitchgearBuses3000Acontinuousrating,750MVAbracingIncomingbreakersTiebreakerFeederbreakersIf)4.16kVSwitchgearBuses.IncomingbreakersPeederbreakersg)480VLoadCentersTransformersControlstructureandAdministrationandmachineshoptransformersonlyBuses3000Acontinuousrating,750MVA3'lass28,000Asyminterruptingrating3000Acontinuousrating,750MVA3'lass28,000Asyminterruptingrating1200Acontinuousrating,750MVA3pClass28,000Asyminterruptingrating1200A"ontinuousrating,250MVAbracing1200AŽcontinuousrating,250MVA3'lass29,000Asyminterruptingrating1200Acontinuousrating,250MVA3'lass29,000Asyminterruptingratingi1500/2000kVA,3',A'A/PA,13200-480VGrd.Y/277V1000/1333kVA,3',AA/PA,13200-480VGrd.Y/277V3000Acontinuous;65,000Abracing(1500/2000kVA)1600Acontinuous;50,000.Abracing(1000/1500kVA)Rev.15,4/808.3-5 SSES-FSARIncomingbreakersFeederbreakersTiebreakers3000Acontinuous,65,000Asymintarrnptingrating(l500/2000kVA)1600Acontinuous,50,000Asyminterruptingrating(1000/1500kUA)600Acontinuous,30,000Asyminterruptingrating1600Acontinuous,50,000Asyminterruptingratingh)480VMotorControlCentersHorizontalbus(main)VerticalbusBreakers(MoldedCase}150Aframe250Aframei)480VDistributionPanelBus600Acontinuous;42,000Abracing400Acontinuous;42,000Abracing25,000Asymmetricalinterruptingrating22,000Asymmetricalinterruptingra+ing225Arating,14,000AbracingBranchbreakers100Aframe,14,000Ainterruptingratingj)208/120UacInstrumentacDistributionPanelsMainbreaker{mo13edcase)BusesBranchbreakers(moldedcase)225Acontinuous22,000Asyminterruptingrating225Acontinuous100Afrarnesize10,000Asyminterruptingrating8.3-6 SSES-FSAR8.3.1.3ClassIEacPowerSystemTheClassIEa"portionoftheonsitepowersystemisshownonFigure8.3-1.TheClassXEa"systemdistributespowerat4.16kV,480V,and208/120Vtothesafetyrelatedloads.ThesafetyrelatedloadsaredividedintofourloadgroupspergeneratingunitandaretabulatedinTable8.3-1.Eachloadgrouphasitsowndistributionsystemandpowersupplies.The4.16kVbusofeachClassIF.loadgroupchannelisprovidedwit.hconnectionstotwooffsitepowersourcesdesignatedaspreferredandalternatepowersupplies.Dieselgeneratorsareprovidedasastandbypowersupplyintheeventoftotallossofthepreferredandalternatepow..rsupplies.StandbypowersupplyisdiscussedinSubsection8.3.1.4.Preferredandalternatepowersuppliesuptothe4.16kVbusesoftheClassIEpowersystemareconsideredasnon-ClassIF..Allnonself.-activatedswitchgearsreceivecontrolpowerfromthe125Vdccontrolpowersources.The125VR"controlpowersourcesfortheClass1F,4.16kVswitchgearbreakersand480VloadcenterbreakersareshowninTables8.3-19and8.3-20respectively.Inordertoachieve'adequateseparationbetweenchannelizedloadgroupandRivisionalizedloadgroup,two125Vdccontrolpowersuppliesareprovidedforeach4.16kVswitchgear(refertoTable83-19).8.3.1.3.1PowerSupplyFeedersEachClassIE4.16kVswit,"hgea.ofaloadgroupchannelisprovidedwithapreferredandanalternate(offsite)power'supplyfeederandonestandbydieselgeneratorfeeder.Eachbusisnormallyenergizedbythe.preferredpowersupply.Ifthepreferredpowersourceisnot.availableatthe4.16kVbus,automatictransferismadetothealternatepowersourceasdescribedinSubsection8.3.1.3.6.TfbothpreferredandalternatepowerfeedersbecomeRe-energizeR,thesafety-relatedloadsoneachbusarepickedupautomaticallybythestandbydieselgeneratorassigneRtothatbusasdescribedinSubsectio'n8.31.4.Rev.15,4/808.3-7 SSES-FSAR8.3.1.3.2.PowerFeederCablesPowerfeedercablesforthe4.16kVsystemarealuminumconductor,andarerated5kV,90OCconductortemperaturewithhightemperatureKeriteinsulation.ThecablesareprovidedwithanoverallflameresistantKeritejacketcovering.Forthe480Vsystem,cablesofsize<<4/0ANGandlargerarealuminumconductor;cableslessthan<<4/0AMGarecopperconductor.Bothtypesofcablesarerated600V,90oCconductortemperaturewithethylene-propyleneinsulationwithaflame-resistanthypalonjacketcovering.Theconductorsaresizedtocarrythemaximumavailableshortcircuitcurrentforthetimerequiredfothecircuitbreakertoclear.thefault.AllClassIF.cableshavebeendesignedforoperationasdiscussedinSection-3.11.The4.16kVswitchgear,D.C.loadcenters,andD.C.Controlcentersareequippedwithaluminumbussesandsilver-platedboltedconnections.-The480Vloadcentersandmotorcontrolcentersareequippedwithcopper/aluminumbussesandtheboltedconnectionsarealsosilver-plated.Allcircuitbreakerterminalsarecopper.For,powercableterminat,ions,Burndycompressionaluminumterminals{HYLUG)areused.Theset.erminalsareofseamlesstubularconstru"tion,tin-platedtoresistcorrosion,andfactoryfilledwithoxideinhibitingcompoundpenetroxA."ompressionadaptersilAADAPTMPTseriesorequivalentareused'forequipment/vendorsuppliedcomponentshavingmechanicallug.whichcannot.beconvertedtoacceptaBurndycompressionlugduetophysicalorpract.icallimitations.A.non-oxidizinglubricantsuchasD50H47orequivalentwillbeappliedonallcontactsufacesatboltedjointstoavoiddamagingthesilver-platedcontactsuface"..8.3.1.3.3BusArrangementsTheŽlassIEa"systemisdividedintofourloadgroupchannelsperunit{loadgroupChannel,sAB,".,andD).PowersuppliesforeachloadgrouparediscussedinSubse=tion8.3.1.3.1.AllClassIF.acloadsaredividedamongthefour.loadgroupssothatanycombinationofthreeoutoffourloadgroupshasthecapabilityofsupplyingtheminimumrequiredsafetyloads.ThedistributionsystemofeachloadgroupŽonsistsofone4.16kVbus,one480Vloadcenter,fourorfivemoto"controlcenters,andseverallowvoltagedistributionpanels.ThebusarrangementsareshownonFigure8.3-1,8.3-3,8.3-4,8.3-7and83-8.Rev.15,4/808.3-8 SSES-TSAR0k-3;3.+-~S-Suppliersfromggchym~~/rTable8.3-1providesalistinqofalltheloadssuppliedfromeachClassIEbus.Tvoredundant.480Vswing,.buses,.areprovidedforeachunitfortheRHB"injectionvalve'motoroperators,recirculationloopbypassvalvemot'oroperators,.andrecirculationdischargevalvemotoroperators.ThesinglelineoftheswingbusisshovnonPiqure8.3-9.'ClassIE480Vloadcenterofoneloadgroupchannelsuppliesthepreferredpowertothesvinqbusthroughtheelectricalisolationofamotor-generator(M-G)set.ThealternatepoverissupplieddirectlyfromanotherredundantClassIE480VloadcenterTheM-Gsetisusedforelectricallyisolatingtworedundantloadqroups.Faultsatthesvingbuscannotbepropagatedontomorethanoneloadqroup.-TheswingbusesareClassIEmotorcontrolcenterconstructions.Anautomatictransfer'switchisprovidedfortransferringtheswingbusfromthepreferredtothealternatepowersourceuponreductionorlossofvoltageattheswinqbus..Iftheundervoltageiscausedbyafaultattheswingbus,thetransferwillbepreventedevenifthealternatepowerisavailable.Thesvingbuswillberetransferredbacktopreferredpowervhenthevoltaqeisrestoredwithinacceptablelimits.Theswingbusandtransferswitcharedesignedsothatforalossofoffsitepowerandanysinglefailure,theminimumrequiredECCSflowtomeet10CPB50AppendixKcriteriaisalwaysavailable.Thefollowinqis'commonmode-commoncausefailureanalysis(CMCCFA)fortheautomatictransferswitches:Piqure8.3-l3depictsasimplifiedsinqlelinediagramforthesvingbussystemtofacilitatetheanalysis.Table8.3-24providesastep-by-stepCMCCPAoftheautotransferswitchbypostulatinqthevarioumajorcommoncausativefactors(events).Normalconservatismindesiqnandmanufacturingmargins,mandatoryrequirementsofQA/QCprocedures,InitialTestProgram,PreoperationalTests,applicableadministrativeproceduresandmaintenanceprogramsaswellasoperatoractionscontributetominimizethesusceptibilityoftheautotransferswitchtothevariouscommoncausativefactorsasanalyzedinTable8.3-24.Thisanalysisdemonstratesthatthetransfersvitch,asacomponentofthesvinqbussystemdesign,villnotdegradetheRev.17,9/808.3-9 SSES-PSARindependenceandseparationbetweentheredundantClassIEchannels{loadcenterchannelsAandCorBandD).Thetestprogram(Section14.2andTechnicalSpecification314.8)forthe480Vswingbussystem(Figure8.3-13)consistsof:a)Periodicinspectionofwiring,insulation,andconnectionsetc.toassessthecontinuityofthecomponentsandsystem.b)Periodictestingtoverifytheoperabilityandfunctionalperformanceofindividualcomponentsinthesystemc)-Periodictestingofoperationalsequenceandoperabilityofthesystemasawhole.8.3.1.36NanualandAutomaticInterconnectionsBetween-.Buses-,BusesandLoadsandBusesandSunnliesNoprovisionexistsfor'utomaticallyormanuallyconnectingoneClassIEloadgrouptotheredundantClassIEloadgrouporforautomaticallytransferringloadsbetweenloadgroupsexcepttheswingbusesasdiscussedinSubsection8.3.1.3.5.Rev.17,9/808.3-9a SSES-FSAR(Thispageintentionallyleftblank)Rev.17,9/808.3-9b SSES-PSARUForeachloadgroup,one4.16kVfeedercircuitbreakerisprovidedforthenormalincomingpreferredpoversource,andanother4.16kVfeedercircuitbreakeris"onnectedtothealternatepoversource(seeSubsection8.3.1.3.1).Thenormalpreferredpowersourcetoeachbusiselectricallyinterlockedwiththealternatepowersourcesuchthatthebuscanbeconnectedtoasinglepowersourceatanyonetime.Intheevent'flossofpreferred.powertotheloadgroup,undervoltagerelaysllf(lessthanorequalto15percentvoltage)onthe4.16kVsvitchgearvillinitiateanautomatictransfertothealternatepowersourceifavailable.Intheeventoflosingbothpreferredandalternatepowersupplies,theloadgroupvillbepovered,fromthestandbydieselgenerator.15RestorationofpoverfromstandbypowertoalternatepoverismanuallyinitiatedinthecontrolroomonpanelOC653;Aftersynchronizingthestandbypowersourcetothealternatepoversource,thealternatesourceinomingbreakerisclosed.Uponclosingofthisalternatesourcebreaker,thestandbysourcebreakerwillautomaticallytrip.Thistrippingisinitiatedbythealternatesourcebreakerauxiliaryswitchcontactinterlock.~Asimilarprocedureisusedtorestorepoverfromstandbytothepreferredsour"e.RestorationofpoverfromstandbypowertoalternatepoverismanuallyinitiatedinthecontrolroomonpanelOC653.Aftersynchronizingthestandbypowersourcetothealternatepoversource,thealternatesourceincomingbreakerisclosed.'ponclosingofthisalternatesourcebreaker,thestandbysourcebreakerwillautomaticallytrip.Thistrippingisinitiatedbythealternatesourcebreaker.auxiliarysvitchcontactinterlock.Asimilarprocedureisusedtorestorepowerfromstandbytothe<preferredsource.8.3.1.3.7InterconnectionsBetweenSafetyRelatedandNonsafetyRelatedBuses,NonsafetyRelatedLoads~andSafetyRelatedBusesDiscussionofinterconnectionsbetweensafetyrelatedandnon-safetyrelatedbuses,nonsafetyrelatedloads,andsafetyrelated'usesispresentedinSubsections3.12.2and8.1.6.1.Rev.1S,4/808.3-'10 SSES-FSAR831.3.8RedundantBusSeparationTheengineered.safetyfeatur'essvitchgear,loadcenters,andmotorcontrolcentersfortheredundantClassIEloadgroupsarelocatedinseparateSeismicCategoryIroomsinthereactorbuildingtoensureelectricalandphysi'calseparation.ElectricalequipmentseparationisdiscussedinSubsection3.12.2.EquipmentlayoutdrawingscanbefoundinSection1.2.8313.9ClassIEPguipmentCapacitiesa)4.16kVSwitchgearBuses1200Acontinuousrating,250MVAbracingIncomingbreakersFeederbreakers1200Acontinuousrating,250.=NVA3'lass29,000Asyminterruptingrating1200Acontinuousrating,250NVA3gClass29,000Asyminterruptingratingb)480VLoadCentersTransformers(Unit1)750/1000kVA~3',AA/FA~4160-'.3480VGrd.Y/277VTransformer(Unit2)750kVA,,3g,AA~4160-480V3Grd.Y/277VBusesBreakers1200Acontinuous,30,000Abracing600Aframesize,30,000Asyminterruptingratingc)480VHotorControlCentersBusesHorizontal(main)Vertical600Acontinuous,42,000Abracing400Acontinuous,42,000AbracingBreakers(moldedcase)Rev.15,4/80 SSFS-FSAR150Aframe250Aframe25,000Asyminterruptingrating22,000Asyminterruptingratingd}Automatictransferswitch480V,3',400continuous31,000Asymwithstandcapabilitye)208/120VacInstrumentacDistributionPanelsBusesBranchbreakers(moldedcase)225Acontinuous10,000Asyminterruptingrating100Aframesize10,000Asyminterruptingrating8'.3.1.3.10AutomaticLoadingandLoadSheddingXfpreferredoffsitepoverisavailabletotheClass1E4.16kVbusfollowingaLOCAsignal,the'requiredESFloadswillstartasshowninTables8.3-1and.8.3-lb.Intheeventoflossofpreferredandalternateoffsitepowersupplies,theClasslF.4.16kVbusesvillshedallloadsexceptthe480Vloadcenters.andconnectthetandbydieselgeneratortotheClass1F.hus.TheloadingsequenceisshownonTable8.3-1-However,ifaslowhustransfer(husvoltageontransferislessthan25'I{)attheClass1E4.16kVhusisinitiatedtothealternateoffsitepowerasaresultofalossofpreferredoffsitepower,allloadsareshedexceptthe480Vloadcenters.ThentherequiredFSFloadswillstartasshownonTables8.3-1and.8.3-lb.Emergencyloadsarealsosequencedvithoffsitepoverbecauseofthepowersystemlimitation{transformercapability}.Loadsequencingisdesingedtominimizesystemdisturbanceandhenceinsuresystemstability.Tables8.3-land8.3-lhshowtheanticipatedstartingtimeofaJ1FSFloads.BothUnit,1andUnit2hussesforagivendieselgeneratorarenormallysuppliedhythesameoffsitepowersupply.AnindividualtimingunitisprovidedforeachoftheESFloadswithautomaticstartfunction.Failuretostartononeload,villnotaffectthestarti.nginitiationofotherloads.Rev.15,4/8083-12 SSES-PSARTheloadingsequenceforasimultaneousLOCAinoneunitandafalseLOCAintheotherunitisshowninTable8.3-lb.AfalseLOCAsignalasusedinthissectionreferstoanon-mechanisticfailureresultinginaLOCAsignalinonereactorunitwhenaLOCAhasnotoccurredinthatunit.TheloadstartingtransientnthedieselgeneratorisreducediftheUnit1,andUnit2loadsequencesdonotstartsimultaneously.Ifoffsitepowerisavailable,theLOCAsignalinoneunitandfalseLOCAsignalintheotherwillshed2RHRmotorsand2corespraymotorsofeachunitandsequentiallystart2RHRand2corespraymotorsasshowninTable8.3-1b.Thisisdoneinordernottoexceedtheloadinglimitationsofthe>STransformersandtoprovideatleasttheminimumcorecoolingrequirementsofbothunits.Underthemodifiedcorecoolingarrangement,2RHRpumps(oneineachloop)and2corespraypumps{bothinthesameloop)willsatisfytheminimumcoolingrequirementsofeachunit.Approximatelytenminutesaftertheaboveeventtheoperatorwill.beabletodeterminewhichisthefalse-LOCAunitandshutdownnon-essentialloadsinthenon-LOCAunit.Incaseoff-sitepowerisnotavailable,theloadingisthesameasdiscussedabove,hutthesequencingisslightlyalteredashowninTable8.3-16.UnderallconditionsdiscussedinSubsections8-3.1.3.10.1and8.3.1.3.10.2,safetyfunctionaremetwithinthetimelimitsshowninTable6.3-1.I83.1.3.11SafetyRelatedEquipmentIdentificationSubsection8.3.1.11.3provideinformationregardingthephysicalidentificationofClasslEequipment.8.3.1.3.12InstrumentationandContolSystemsfortheApplicablePowerSystemswiththeAssignedPowerSupplyIdentiFiedThedcpowers>>ppliesforthecontrolof.theredundantClasslEequipmentarephysicallyandelectricallyseparateandindependent.RefertoSubsection8.3.2foeadetaileddiscussionofthedcsystem.Rev.15,4/8093-13 SSES-FSAR8.3.1.3.13ElectricCircuitProtectionSystemsProtectiverelayschemesanddirect-actingtripdevicesonprimaryandbackupcircuitbreakersareprovidedthroughouttheonsitepowersysteminorderto:a)Isolatefaultedequipmentand/orcircuitsfromunfaultedequipmentand/orcircuitsb)Preventdamagetoequipmentc)Protectpersonneld)Minimizesys+emdisturbancese)MaintaincontinuityofthepowersupplyNajortypesofprotectionmeasuresemployedinrludethefollowing:a)BusDifferentialRelayingAbusdifferentialrelayisprovidedforeachClasslE4.16kVbus.Thisrelayprovideshighspeeddisconnectingofbussupplybreakerstopreventpropagationofinternalbusfaulttoanotherbus.b)OvercurrentRelayingFachClasslE4.16kVbusfeedercircuitbreakerisequippedwiththreeextremelyinverse-timeovercurrentrelaystosenseandtoprotect.thebusfromovercurrentcondition.Thestandbydieselgenerato"feedercicuitbreakertothe4.16kVbusisequippedwiththreevoltagerestrainedovercurrentrelaysandoneinverse-timegroundfaultrelayforfeedercir"uitprotection.Each4.16kVmotorfeedercirruitbreakerhasthreeovercurrentrelays,eachwithonelongtimeandoneinstantaneouselementforoverload,lockedrotor,andshort.-circui+protection.Fachbreake"isalsoequippedwithaninstantaneousgroundcurrentrelay.EachŽlassIF.4.16kVsupplycircuitbreakertoa480Vloadcentertransformerisprotectedbythreeovercurrentrelayswithlong-timeandinstantaneouselements.Aninstantaneousovercurrentgroundsensorrelayprovidessensitivegroundfaultprotection.Rev.15,4/808.3-14 SSES-PSARforsimultaneousoperationwhentheengineisbelow280rpm.'efertoSubsections9.55and9.57forfurtherdescription.8.3.14.3Alarmand'IripgingDeviceTheprotectiveandalarml'ogicdiagramsforthediesel'eneratoranditsassociatedbreakersareshownonFigures8.3-11and8.3-12Mhilesupplyingloadsfollowinganautomaticstart,eachdieselengineandrelatedgenerator'circuitbreakeraretrippedbyprotectivedevicesunderthefollowingconditionsonly:REV.ll,7/798~3-14a SSES-FSARThisPageHasBeenintentionallyLeftBlankREV.11,,7/798.P-14b SSES-FSARc)Under/OvervoltageBelayingEach4.16kVClassIEbusisequippedwithundervoltagerelaysfordieselgeneratorstartingandundervoltageannun"iation.Each480VClassIEloadcenterbusisequippedwithunder/overvoltagerelaysforannunciation.d)DieselGeneratorDifferentialBelayingEachdieselgenerator.isequippedwithdifferentialrelayingprotection.7hiscircuitryprovideshighspeedd~isconnectiontopreventseveredamageincaseofdieselgeneratorinternalfaults.e)480VLoadCenterProtectionFachloadcentercircuitbreakerisequippedwithintegral,solid-state,dualmagnetic,adjustab'le,direct-actiontripdevicesprovidinginverse-timeovercurrentprotection.Notorfeedersareequippedwithlong-timeov<rcurrentandinstantaneousshort-circuitprotection.f)480VHotorControlCenterProtectionMolded-casecircuith..eakersprovideinverse-timeovercurrentand/orinstantaneousshortcircuitprote"tionforallconnectedloads.Formotorcircuits,themolded-casecircuitbreakersareequippedwithanadjustableinstantaneousmagnetictripfunctiononly.!lotortherma1overloadprotectionisprovidedbytheheaterelementtripunitineachphaseofthemotorfeedercircuit.Themolded-casebreakersfornonmotorfeedercircuitsprovidethe"malinverse-timeovercurrentprotectionandinstantaneousshortcircuit,protection.'hethermaloverloadtripunitforsafetyrelatedmotor-operatedvalvesarenormallybypassedexceptduringmaintenancetests.Thecircuitprotectionsystemisdesignedsothatfaultisolationissecuredwithaminimumcircuitinerruption.Thecombinationofdevicesandsetting.applieda'ffordstheselectivitynecessarytoisolateafa<iltedareaquicklywith'aminimumofdisturbancetotherestofthesystem.Thepro+ective<devicesarepreoperationallytestedinaccordancewiththerequirementsofChapter14.Aftertheplantisinoperation,periodictestswillbeperformedtoverifytheRev.15,4/808.3-15 SSES-FSABprotectivedevicecalibration,setpoint.",andcorrectoperationinaccordancewiththerequirementsofChapter16.831.3.14TestingoftheacSystemDuringPowerOperationAllClassIF.circuitbreakersandmotorstarters,exceptfortheelectricequipmentassociatedwithClassIEloadsidentifiedinISubsection8.3.1.3.15,aretestableduringreactoroperation.DuringperiodicClassIF,systemtests,suhsystemsoftheFSFsystemsuchassafetyinjection,containmentspray,andcontainmentisolationareactuatedtherebycausingappropriatecircuitbreakerorcontactocoperation.The4.16kVand480Vcircuitbreakersandcontrolcircuitscanalsobetestedindependentlywhileindividualequipmentisshutdown.The.circuithreakerscanbeplacedinthetestpositionandexercisedwithoutoperationoftherelatedequipment.83.1.3.15Class1F.LoadsnotTestabl>>DuringPowerOperationsA.FeedwaterLineIsolationValvesThefeedwaterlineisolationvalves'(HV-F032A/0)areofthemotoroperatedcheckvalvetypeandarenottestablewiththefeedwaterflowpresent.'totoroperationi.,notrequiredforisolation.Onlytheoutermostisol.ationvalveisClass1F,poweredandwouldbemotoroperatedfoclongtermisolationafterisolationofthefoedwaterline.ConformancewithPequlatocyGuide1.22Section0.4:1.Thefeedwaterisolationisnotdesignedforisolationwithfeedwaterflowpresentasthelossofflowwouldadverselyaffectoperabilityof,theplant.2.Rotoroperationisnotrequiredfocisolation.3.Themotoroperatoroftheoutermostisolationvalveisfullytestableduringshutdown.B.HainSteamI.olationValvesThemainsteamisolationvalval'anbetestedindividuallytothe90'5openpositionatfull.powerwiththeslowactingtestsolenoidvalve.Afullyclosedtestusingthetwofastactingmainsolonoidswoul.drequireareductioninreactorpowerConfocmancewithRegulatoryc'uidc1.22:7.3.2a.2.2.1.2and5.4.5.4.Seesection.,Rev.15,4/808.3-16 SSES-FSARC.ADSSystem-Safet.y/ReliefValvesTheactivecomponentsoftheADSsystemexceptthesafety/reliefvalvesandtheirassociatedsolenoidvalvesaredesignedsotheymaybetestedduringplantpoweroperation.Thereliefvalveandassociatedsolenoidarenottestedduringreactorpoweroperation.ConformancewithRegulatoryGuide1.22:l.Thesafety/reliefvalvesarenottestedduringpoweroperationbecauseofresultingadversoaffectonplantoperation.2.Becau.eof1owfailureratesofvalveactuation,theprobabilityoffailureisacceptablylowwithout.testing.3.Thesafety/reliefvalvesandassociatedsolenoidvalvescanbetestedduringstartunfollowingshutdown.D.RecirculationLoopIsolationValv~,Therecirculationpumpisolationvalvesarenottestedduringreactorpoweroperations.ConformancewithRegulatoryGuide1.22SectionD.4:1.Operationofarecirculationloopisolationvalvewoul<lresultinareductionofcirculationwhichwouldadverselyaffectthesafetyaniloperabilityoftheplant.2.Theprobabilityoffai1ureisacceptablylowwithouttestingthevalvemotorduringoperat..ion.3.Thevalveandmotorarefullytestableduringreactorshutdown.83.1.4StandbyPowerSupplyThestandbypowersupplyforeachsa.otyrelatedloadgroupconsistof,on<.dieselgenerato"completewithitsaccessoriesandfuelstorageandtransfersystems.Eachdie."-elgeneratorisrated4000kwat0.0pfforcontinuousoperationand4700kwfor2000hroperation.TheratingsforeachdieselgeneratorarecalculatedinaccordancewiththerecommendationofRegulatoryGuide1.9(discusse<linSubsectionS.1.6.1).Thediesel-generatorscanoperateatloadsoffrom50i:o100percentforunlimitedperiodswithout;harm.Anydieselgeneratorcontinuouslyoperatedat.load..'fle~.':han50percentwillbeRev.15,4/80A.3-17 SSES-FSARloadedto75-,100percentfor15-30minutesapproximatelyeverysixhoursandimmediatelypriortoshutdown.Suchoper'ationwillenhanceengineperformanceandreliability.Thefourdieselgeneratorsaresharedbythetwounits.Eachdieselgeneratorisconnectedtothe4.16kVbusoftheassignedloadgroupperunit.Thecapacityofthedieselgenerators(assumingonedieselfails)issufficienttooperatetheengineeredsafetyfeaturesloadsofoneunitandthosesystemsrequiredforconcurrentsafeshutdownofthesecondunit.Noprovisionsareprovidedforparalleloperationofthedieselgeneratorofoneloadgroupwiththedieselgeneratoroftheredundant,loadgroup.Thedieselgeneratorcircuitbreakerandtheoffsitepowerincomingcircuitbreakersareinterlockedtopreventfeedbackintotheoffsitepowersystem.Theseinterlocksarebypassedduringdieselgeneratorloadtests;however,onlyoneunitistestedatanyonetime.Duringthetestperiod,thedieselgenerato"undertestismanuallysynchronizedtothepreferredoffsitepowersystem.UponreceiptofaLOCAsignalunderthetestcondition,thedieselgeneratorbreakeristrippedbutthedieselgeneratorcontinuestorun.Thedieselgeneratorsarephysicallyandelectricallyisolatedfromeachother.PhysicalseparationforfireandmissileprotectionisprovidedbetweendieselgeneratorsbyseparateroomswithinaSeismicCategory'Istructure.Powerandcontrolcableforeachofthedieselgeneratorsandassociatedswitchgearareroutedinseparateraceways.PhysicalelectricalequipmentlayoutofthedieselgeneratorroomsisshownonFigure8.3-10.AuxiliariesreauiredforstartinaandcontinuousoperationofeachdieselgeneratorarefedbytheClassTEpower'loadgroupassociatedwiththatdieselgenerator.Controlpowerforeachdieselgeneratorisprovidedbyitscorresponding125Vdcsystemsfrombothtlnit.1andUnit2.Thesetwopowerfeedersarenotredundant,buthavebeenprovidedforeaseof.maintenance.Indicationofwhichunitissupplyingthedccontrolpowerisnotprovidedinthecontrolroom.Manualswitchesareinstalleda+thelocalpanel.toselectthepreferredpowerfeeder.Sinceeachdieselgeneratorissharedbybothunits,eithersourceofDCcont"olpoweri=adequate.LossofD"powertotheDieselGeneratorisindicatedontheBISpanelsasagrouptroublealarmonpanelOC653inthemaincontrolroom.Eachdieselgeneratorisprovidedwithalocalenginecontrolpanel,agenerator-excitercontrolpanel,xlocal4.16kVRev.18,11/808.3-18 SSES-FSARdistributionpanel,anda480Vmotorcontrolcenterinthedieselgeneratorroom.a)LocalEngineControlPanel-consistsofalocalannunciator,enginecontroldevices,gages,andcontrolfordieselgeneratorauxiliaryequipmentsuchasfueloiltransferpump,standbyjacket.waterpump,etc.Thedieselgeneratorcontrolsystemisdesignedinsuchamannerthatsomecontroldevicesaremountedinthefreestandingcontrolpanelseparatefromtheengine,whileothersaremounteddirectlyontheengine,asrequiredforreliableservice.Alldevicesthatareessentialtothestart-uporpoweroutputofthediesel-generatorsethavebeenseismicallyqualifiedbyanalysisortesttoaccelerationlevelsconsistentwiththeirmountinglocation.b)Generator-Exciter"ontrolPane3.-consistsofgeneratorexcitationcontrolequipment,generatorprotectiverelaysanddevices,etc.c)4.16kVDistributionPanel-providesconnectionsfordieselgenerato"feederstoUnit1and2.Alsohousespotential.transformersandcurrenttransformer,etc.d)480VMotorControlCenter-providespowertoall480Vauxiliaryequipmentrelatehwiththatdieselgenerator.ThisNCCisequippedwithanautomatictransferswitchfo-connectiontoeitherUnit1or2480VClassXHloadcenter.Thesetwoloadcentersbelongtothesameloadgroupchannelasthedieselgenerator.PhysicalseparationofstandbypowersystemisdiscussedinSection3.12.83.1.4.1AutomaticStartingInitiatingCircuitsThedieselgeperator~at.eautomaticallystartedbyanyofthefollowingconditions:a)Totallossofpoweratthe4.16kVClassIEbusofeitherunittowhichthedieselgeneratorisconnectedb)Safetyinjectionsignal-lowwaterlevelinthereactor,highdrywollpressure,ormanualactuation.Tworedundantcontrol/startingcircuitsareprovidedforeachdieselgenerator.Failureofonecircuit.wouldnotpreventtherespectivedieselgeneratorfromsta+ingorfromcontinuousoperation.Thedieselgeneratorsarereadytoacceptloadswit.hin10secaftertheinitiationofthestartrircuit.Rev.18,ll/80 SSES-PSAR83.1.4.2DieselStartingNechanismandSystemThedieselgeneratorstartsystemisdescribedinSubsection95.6.Toensurefastandreliablestarting,eachdieselengineisprovidedwithimmersionheatersintheenginejacketwaterandthelubeoilsystemtomaintaintheenginecoolantandlubeoiltemperatureatanoperablelevel.Theelectricjacketwaterimmersionheaterandthewatercirculatingpumpareinterlockedforsimultaneousoperationwhenthejacketwatertemperaturedropsbelowthepresettemperature.Theelectriclubeoilimmersionheaterandtheprelubecirculatingpumpareinterlockedforsimultaneousoperationwhentheengineisbelow280rpm.RefertoSubsections9.5.5and9.5.7forfurtherdescription.8.31.4.3AlarmandTrippingDeviceTheprotectiveandalarmlogicdiagramsforthedieselgeneratoranditsassociatedbreakersareshownonFigures8.3-11and8.3-12Whilesupplyingloadsfollowinganautomaticstart,eachdieselengineandrelatedgeneratorcircuitbreakeraretrippedbyprotectivedevicesunderthefollowingconditionsonly:a)Engineoverspeedb)T,ubeoillowpressure.c)GeneratordifferentialTopreventspurioustrippingofthedieselgeneratorduetomalfunctionoftheenginelubeoillowpressureripdevice,fourindependentsensorsare.providedandconne"tedinacoincidenceone-out-of-twotakentwicetripping.logic.Anindividualtrippingalarmisprovidedbytheannunciatorateachlocalcontrolpanel.Thestartingcircuitisalsoeguippe3witha"failtostart~'elayoperatorthatinterruptsthestartingofthedieselgeneratorifapredetermined..peedisnotreachedwithinalimitedtimef'ollowingastartinitiation.Xnadditiontotheabove-listedtrips,eachgeneratorcircuitbreakeristrippedhythefollowingprotectiverelaystodisconnectthegeneratorfromafaultybus(thedieselgeneratorcontinuestorun):a)VoltagerestrainedovercurrentRev.15,4/808.3-20 SSES-FSARb)0kVhusdifferential.Followingamanualstart,adieselgeneratorisinthetestmodeandreadyforaloadtest.Hhensooperated,inadditiontotheabove-listedtrips,eachdieselengineandrelatedgeneratorcircuitbreakerareautomaticallytrippedbythefollowingprotectivedevices:a)Generatorlossoffieldb)Generatoroverexcitationc)Ant.imotoringd)Generatorunderfrequencye)Generatorovervoltagef)Generatorhighbearingtemperatureg)Highjacketwatertemperatureh)Turbolubeoilpressurelow'i);")ainandconnectingrodbearingtemperaturehighj)Enginevibrationk)Turbothrusthearingfailure.Anindividualalarmisalsoprovidedforeachoftheseabnormalconditionsatthelocalcontrolpanel.hgroupalarmisprovidedinthemaincontrolroomas-ahighpriorityalarm.IOtherrelaysanddevicesareprovidedtoannunciateabnormaldieselengineandgeneratorconditionsatthelocalcontrolpanelasfollowing.Theseconditionsareannunciatedinthemaincontrolroomasalowpriorityalarm.Generatorfieldgroundb)Generatorvoltageunbalancec)Generatorneutralovervoltagod)Enginelubenilpre.surehighe)Crankcasepressurehighf)Enginelubeoiltempoffnormalg)EnginecrankcaselevellowRev.15,4/809.3-21 SSES-FSARh)Auxiliarystandbypumponi)Jacketwatertemperatureoffnormalj)Jacketwaterlowpressurek)Fueloilpressurehigh1)Fueloilpressurelowm)Fuelstrainerhighdifferentialpressuren)Fuelfilterhighdifferentialpressureo)Lubeoilfilterhighdifferentialpressurep)Startingairsystem1owpressureormalfunctionq)Voltageregulatortransfertostandbyr)Jacketwaterstandpipelevelhighs)Jacketwaterstandpipelevellowt)Pueloildaytanklevelhighu)FueloilRaytanklevellowv)Fuelstoragetank1evelhighw)Fuelstoragetanklevellowx)Notorcontrolcenternotproperforautomaticoperation(actuatedbyblowncontrolfuse,etc.)y)Controlswitchesnotproperforremoteautomaticoperation(dieselgeneratorauxiliaries)z)Lubeoilcirculatingpumpmalfunctionaa)Lubeoilheatermalfunctionbb)Jacketwaterheatermalfunctioncc)JacketwatercirculatingpumpmalfunctionThefollowingalarmsareprovidedinthemaincontrolroomannunciator:ia)~DieselgeneratortrippedRev.15,4/8083-22 SSES-CESARb)Highpriorityalarm(alltripconditionslistedpreviouslyc)Lowpriorityalarm(allabnormalconditionslistedpreviouslyd)Dieselgeneratorbreakertripped.e)Dieselgeneratorfailtostartf)Dieselgeneratornearfullloadg)Dieselgeneratornotinautomaticmode.8.3.1.4.4BreakerInterlocksInterlockshavebeenprovidedintheclosingandtrippingofthe4.16kVClassIEcircuitbreakerstoprotectagainstthefollowingconditions:a)Automaticenergizingofelectricdevicesorloadsduringmaintenanceb)Automaticclosingofthe'dieselgeneratorbreakertoanyenergizedorfaultedbusc)Connectingtwosourcesoutofsynchronism,8314.5ControlPermissiveAsinglekey-operatedswitchatthelocalcontrolpanelisprovidedforeachdieselgeneratortoblockautomaticstartsignalswhenthedieselisoutofserviceformaintenance.Anannunciatoralarminthemaincontrolroomandanindicationatthebypass-indication-systempanelindicatewhentheswitch'snotinautomaticposition.Apushbuttoninthecontrolroomandalocalpushbuttonatthelocalcontrolpanelinthedieselgeneratorroomareprovidedtoallowmanualstartofthedieselwhenallprotectivesystemsarepermissive.Duringperiodicdieselgeneratortests,permissivesandinterlocksaredesignedtopermitmanualsynchronizingandloadingofthedieselgeneratorwitheitheroffsitepowersource.v3.5,4/808.3-23 SSFS-FSAR8.31.4.6LoadingCircuitsUponautomaticstartingofthediesel(emergencymode),connectionofthedieselgeneratortothe4.16kVbusisnotmadeunlessbothoffsitepowersourcesarelost.Asthegeneratorreachesthepredeterminedvoltageandfrequencylevels,controlrelaysprovideapermissivesignalfortheclosingoftherespectivedieselgeneratorbreakertothecorresponding4.16kVbus.Thedieselgeneratorcircuitbreakerisclosedwithin10secafterthereceiptofthestartingsignal.TherequiredsafetyrelatedloadsareconnectedinsequentialordertotheClassXEbusesasshowninTable8.3-1.Thispreventsdieselgeneratorinstabilityandensuresvoltagerecoverytherebyminimizingmoto"..acceleratingtime.Afast-respondingexciterandvoltageregulatorensuresvoltagerecoveryofthedieselgeneratoraftereachloadstep.83.1.4.7TestingPreonerat.ionalTestFachdieselgeneratoristestedatthesitepriortoreactorfuelloadinginaccordancewithrequirementsofChapter14.PeriodicTestingAfterbeingplacedinservice,thestandbypowersystemistestedperiodicallytodemonstrate.continuedabilitytoperformitsintendedfunction,inaccordancewiththerequirementsofChapter16.8.3.1.4.8FuelOilStorageandTransferSystemThedieselgeneratorfueloilsystemisdescribedinSubsection95.48.3.1.49DieselGeneratorCoolingandHeatingThedieselgeneratorcoolingsystemisdescribedinSubsection95.5Rev.y5,4/808.3-24 SSES-PSAR83.1.4.10InstrumentationandControlSystemsforStandbyPowerSupplyTheinstrumentationandcontrolcircuitofeachdieselgeneratorisprovidedwithamanualselectorswitchforconnectiontoeitherUnit1or2125Vdcpowe"supply.Thesetwopowersuppliesbelongtothesameloadgroupchannel'towhichthedieselgeneratorisconnected.Controlhardwareisprovidedinthecontrolroomforeachdieselgeneratorforthefollowingoperations:a)Startingandstoppingb)Synchronizationc)P'requencyandvoltageadjustmentd)manualorautomaticvoltageregulatorselectione)Isochronousanddroopselection..Controlhardwareisprovidedateachlocalcontrol'panelforthefollowingoperations:a)Startingandstoppingb)Frequencyandvoltageadjustmentc)Manualorautomaticdieselgeneratormode(keylockselectorswitch)d)Automaticormanualvoltageregulatorselectione)NormalorstandbyvoltageregulatorselectionIf)Units1or2dccontrolpowersupplyselection.Electricalmeteringinstrumentsareprovidedinthecontrolroomforsurveillanceofthedieselgenerator:a)Voltageb)Currentc)preguencyd)Poweroutput.Electricalmeteringinstrumentsareprovidedatthelocalcontrolpanelforsurveillanceofthedieselgenerator:Rev.15,I/808.3-25 SSES-FSARa)Voltageb}Currentc)Frequencyd)'ower{watt}outpute)Reactivepower{var)output.83.1.4.11QualificationTestProgram8.3.14.11.1ClassIEEguipmentIdentificationThediesel-generatorsetsaredesignatedClassIEsincetheyperformessentialsafety-relatedfunctions.Therefore,theequipmentvasqualifiedperIEEE323-1971anddocumentedinCooperEnergyServices{CFS)ReportFACE-0188-1.Thediesel,engine,synchronousgenerator,andauxiliaries,suchasheatexchangers,airreceivers,andfueltanksverequalified.83.1.4.11.2QualificationTechniguesandDocumentationAlltestingconductedbyCHSfortheSusquehannaSFSdiesel-generatorsetsprovidesthebasisfordataevaluationoffuture,ongoing,periodic,jobsitetesting.Periodicexercisingofthe.diesel-generatorsetsshowsavailabilityandreliability.Datatakenduringthosetestsvillbecomparedtodatatakenundercorrespondingloadconditionsduringfactorytesting.Bycomparison,trendswhichmayindicateequipmentdegradationaredevelopedandutilizedtopredictmaintenanceintervals.Testingandanalysescompletedtoverifyequipmentperformanc~capabilityareasfollows:a)Testingperformedonthefirstgeneratorofthiscontractincludedthefollovingparameters,withtestingproceduresasoutlinedinIEEF.115.RefertoElectricProdu"tstestreportforgeneratorserialnumber17402243-200dated5-20-76fordocumentationoftestresults.2.Synchronousimpedancecurve.Zeropoverfactorsaturationcurve.Losses(forefficiencycalculation).Direct-axissynchronousreactance.8.3-26 SSES-FSAR5.Negativesequencereactance.6.Direct-axistransientreactance.7.Direct-axistransientopencircuittimeconstant.8.Opencircuitsaturationcurve.9.Startcircuittest.b)Testingperformedoneachgeneratorfurnishedunderthiscontract.includedthefollowinqparameterswithtestingprocedureasoutlinedinXEEE115.RefertoElectricProductstestreportforgeneratorserialnumbers17402244/246-200dated6/22/76fordocumentationoftestresults.1.Tnsulationresistance.2.Highpotentialtests.3.Windingresistance.4.Overspeed.5.Phasesequencerotation.6.Mechanicalbalance.c)Testingwasperformedoneachassembledengine-generatorsetperIFFF,387andincludedthefollowing.RefertoCEStestprocedureTl-TRandtoCESreportsforengineserialnumbers7157-60fordocumentationoftestresults.1.Highpotentialtestingofcontrolwiring.2.Measurementofenginevibration.3.Faststar.capability.Transientperformanceevaluation.Steadystateloadcapability.ILoadrejection.7.'umberofstartsfromasingleairreceiver.8.Performanceevaluationofpowerfactordiscriminatorandstandbyvoltageregulator.Rev.15,4/808.3-27 SSFS-FSARd)Functionalauxiliaries,suchaslubeoilpumps,jacketwaterpumps,heaters,andcoolerswereevaluatedtoensureproperoperationduringtheassembledengine-generatorsettestingdescribedincabove.ThefunctionalcapabilityoftheauxiliariesisdocumentedinthetestlogsectionoftheCESreportsforengineserialnumbers7157-60.Theestablishmentofadequatepressuresandtemperaturesinthelubeoil,coolingwat.er,andfueloilsystemsconfirmscorrectoperationof,auxiliaries.e)Engineandgeneratorcontrolpanelswereassembledandtestedwiththeirrespectiveengine-generatorsetsandevaluatedforpropercontrolandmonitoring.RefertoCESreportsforengineserialnumbers7157-60fortestresults.Theachievementofengine-generatortransientandsteadystateperformanceconfirmscorrectoperationofcontrolpanels.f)Toevaluatetheseismiceffectsonthesafeshutdowncapabilitysometestshavebeenperformed,butmostevaluationswereachievedbyanalysis.BothCESandvendorfurnishedequipment,whichareessent.ialtothepoweroutputcapabilityofthegenerator,havebeenseismicallyevaluat.edanddeterminedadequatetomeetthespecifiedresponsespectrawithnolossoffunctionalorstructuralintegrity.RefertoCESseismicreportsnumberedCPS-1throughCES-09fordocumentationof.seismicanalysesandtests.8.3.1.0.11.3PerformanceInServiceEnvironmentActualperformancerequirementsandserviceconditionsareachievableinthefieldinstallationonly.Simulationofperformanceisattainedthroughcomputertechniqueswhichcomparativelyanalyzemotorstartingdatatakenduringfactorytestingwithmotorloadstartingcharacteristicspredictedfortheessentialpumps-motorstobestartedatthejobsite.Simulationofserviceenvironments,suchasthepredicteddieselgeneratorroomambienttemperature,wouldrequireanenvironmentalchamberlargeenoughtostoret,heentireengine-generatorset.Inordertoascertaintheabilityofthisequipmenttoperforminthepredictedenvironment,operatingexperienceanddesignexperienceareused.Thevariedtypesofenginesdesigned,thevariedinstallationapplications,andtheresultantexperiencegainedhavedete"minedthecapabilitiesofthisequipmenttoperformunderdifferentserviceconditions.ThisexperienceisaugmentedbypreviousandongoingRGDtestingofasimilarCFSTypeKSVenginewherespecificdatamaybeneededrelativetoparticularperformancerequirements.However,muchofthisdataisproprietary.Rev.15</8083-28 SSES-FSARAsaresultoFthisexperienceandtesting,itiscon'eludedtheserviceconditionsdescribedinSection3.11canbeaccommodatedwhilefulfillingtheperformancerequirements.Forexample,installationelevationsofupto1500feetareaccommodatedwithoutanyder<<tingordesignmodification.The676feetelevationfortheSusquehannaSFSdiesel-generatorsetsfallswellwithinthisrange.Toarcommodatevarianceincombustionairtemperature,coolers/heatersaresuppliedwhicheitheraddheattoort.akeheatf,"omcombustionairasneede:ltoprovidethenecessarymanifoldairtemperat:ure.Therangeof-190Fto+105~Fairtemperatureisthereforeaccommo;lated.Tnaddition,allservicewaterheatexchangersaredesignedwithfoulingfactorsinrorporatedpermi.t:+ingthe'uildupofspecifiedamountsofdi'torsludgewhilen!aintainingthenecessaryheattansferchiractcristirsunderthemostadverseloadandcoolingwatertemperat;urecondi.tion..Particle~ormineral:intheservicewateraretherefore"accommodatedinheatexchangerdesign.Seismiceffect;saretaken.intoarcountanalyticallyandhy,testforallessentialcomponentan.l'sy.,'.msof.thediesel-generatorset;s.8.3.1.4.12ControlandAla"mLog<icThecontrolandalarmlogicForthedie..elqeneratorsisshownonFig.0.3-12.Condi!.ionswhirh.ende"+hedieselgeneratorincapableofrespondingto>nautomaticemergencystartareshovnonTable8.3-16.Thefol'lowingiŽanitemhyitem<<nalysisofeachoftheseco!!ditions:GeneralNoteThedieselgeneratorwill.betrippedhy(1)generatordifferentialrelay,(2}engineoverspeel,and(3)lowenginelube,oilpressure(one-o>>t-of-twotakentwicelogic)>>nde"emergenryoperation.Fortestoper<<.ion,theliesplgeneratorwillbetrippedbyallcondition..li.sted>>nde"DieselGeneratorHighPriority"alarmasshownonFigure8.3-12.Follow'ingamanualstop,noresetisnero.;.aryforsu!;sequentemergenryortest.operationexceptthemodeselectorswitchmustbereturnedto"Remote"position.T)isconditioni:<<nn>>nciaedlocallyandinthecontrolroom.Fol.lowirgatrip,controlcircuitmusthereset.Diese1gene:ator".'ipi=alsoalarmedlorallyandint.he'ontrolroom.Therearetwoengi.nestar+ingcircuitsforeachdieselgeneratorforaddedreliability.Pact.rircuiti"uppliedfromthesame125Vbatterysystembutthrn>>yhscpaateci=cuit.breakers.OnlyRev.15,4/803-~9 SSES-PSAPonecircuit.isre<quiredforstartingandkeepingthedieselgeneratorinarunningmode.Therefore,anysinglecomponentfailure(asliste<linColumn8ofTable8.3-16)cannotpreventthediesel<jeneratorfromstarting.TD-B.1GeneratorDifferentialRelayactivatedAgenerator.differential"elayisprovidedfor<.arhdieselgeneratorforinternalfault.protection.Thisrelayvilltripthedieselgen>>ratorunderanymodeofoperation.The.dies>>3generatordiff<ren<.ia1alarmisannunriatedlocallyan<1repeatedasagt.oupalarm"DieselGeneratorHighPriorityTrouble"inthemaincontrolroom.2)ID-B.?FngineOverspee<lBelayactivatedAnindependentoverspe<<Rsensorisp:ovidedforeachdieselgeneratorstartingcirruit.Activationofanyonesensorisalarmed,butwillnotpreventthediesel.generatorfromstartingorrunning.3)ID-B.3FnginoLubeOilLovPres-"ureRelayactivate<iEachof.thecontrol.cirr>>it::havetvoindependentenginelubeoillowprcssureswitrhesarranged.inaoneout,oftwologir..PressureswitchesarebypassedRuingenginestarting.Therefore,alarmisinitiated".oranyonepressuresvitch(orrelay)activation.Disablingofthe,!lieselgeneratorcanonlybeaccomplishe<1vi..honeenginelubeoillnvpressurerelayactivatedineachcontrolrircuit.4)ID-B.4OperatingYoReSwitchin"Local"Dperat.ingmodeswitch(keylockeR)isputon"Local"localtestingandmaintenanceserviresonly."Localposition"isannunciatedinthemaincontrolroomasGeneratorno+inAuto.<<Alarmisal.oindicatedintBypassIndicationSystem(VIS)on"DieselGeneratorSLocal"{alsoint.hemainrontrolroom).Automaticbythe."Local"operatinqmodeunderemergencyconditionprovided.on)yoneRie."elgene."ationwillbetestedoutfors<..rviceatanyon~tim>>.for"Dieselhewatchx.npass0f.isnotortakenID-B.5Lossof125VDCFngin<Cont"olPowerAsRisrussedabove,twoseparaterontrolcircuitsareprovidedforeach<lie..elgenerator.Alarmisindicatedlorallyandannunciat<.dinthemaincontrolroomas"DieselGeneratorHighPriority."XnlirationisalsoprovidedattheBISpanel.Lossofeithercicui"willnotpreventthedie,elgenerator.fromstartingnroperating.6)I)-B.6Control'c'layMal.functionRev.15,4/8083-'30 SSES-PSARControlrelayscanfailineithercontactopenorclosedstate.Sincetherearetwocircuitsprovided,assumingasinglerelayfailure,thedieselgeneratorwillnotbepreventedfromstartingoroperating.7)ID-B.7Engine6GeneratorMechanicalTroubleLowpriorityandhighprioritytroublealarmsareprovidedforengineandgeneratormechanicaltroubleasshownonFigure8.3-12andTable8.3-16.8).XD-B.8StartingAirControlSolenoidValveFailureTherearetwostartingairsolenoidvalvesforeachofthetwostartingcircuitsforeachD/G.Lossofanythreestartingsolenoidswillnotpreventthedieselgeneratorfromstarting.9)ID-B.9StartingAirSystemTroubleSee(9)ID-B.9andSection9.5.6fo"acompletestartingairsystemdiscussion.Thestartingairpressureismonitoredatalltimeswithannunciationprovidedlocallyandinthemaincontrolroom.10)ID-B.10FuelOilControlSolenoidFailureOnefueloilcontrolsolenoidisprovidedineachofthetwocontrolcircuitsforeachdiesel-generator.Afailureofeitherfueloilcontrolsolenoidwillnotpreentthedieselgeneratorfromstarting.ID-B.11Lossof125VDCGeneratorControlPowerLossofthegeneratorcontrolpowerwillpreventtheoperationoftheexcitation,system.IndicationisprovidedattheBypassIndicationSystemas"ExcitationControlpowerLoss"(MainControlRoom).12)ID-B.12DisablingofEngineanilGeneratorMechanicalpartsDuringMaintenanceServicesBeforethedieselgeneratoristakenoutofautomaticmodeformaintenanceservices,theoperatingmode..electorswitchmustbein"Local."positionasrequiredbymaintenanceprocedures.Thiswillresultinanalarminthemaincontrolroomas'~Dieselgeneratornotinauto"('iDieselgeneratorcontrolswitchinLOCAL"inBISpanel)Noalarmsarespecificallyprovidedformonitoringofengineandgeneratormechanicalpartsunderthesubjectcondition.Rev.15,4/808.3-31 SSES-FSARCogcggsionNo,modificationsarenecessaryasaresultofthisevaluationbecauseadequatealarmsandindicationsareprovidedinadditiontothealarmredundancyofthecontrolcircuits.8~3~1~5Elegtgical~suipmgnt~aoutClassIEswitchqear,loadcenters,motorcontrolcenters,anddistributionpanelsofredundantloadgroupsareinseparateroomsofthereactorbuildingandthecontrolstructure.StandbydieselqeneratorsandassociatedequipmentareinseparateroomsoftheSeismicCategoryIdieselgeneratorbuilding.Eachroomisprovidedwithaseparateventilationsystem.Plantlayoutdrawings-areincludedinSection1.2.Thereactorprotectionsystem(BPS)powersupplyisanon=ClassIEsystem.Thenormal120Vacpowertoeachofthetworeactorprotectionsystemsissupplied,viaaseparatebus,byitsownhighinertiamotorgeneratorset.Thedrivemotorissuppliedfroma480Vnon-ClassIEmotorcontrolcenter.Highinertiaisprovidedbyaflywheel.Theinertiaissufficienttomaintainvoltageandfrequencywithin5percentofratedvaluesforatleast1.0secfollowingalossofpowertothedrivemotor.Thealternate120Vacpowerforeachofthereactorprotectionsystemsissuppliedbya'on-ClassIEmotorcontrolcenterthrouqha480-120V,1'ransformer.Aselectorswitchisprovidedfortheselectionofthetwopowersupplies.Theswitchalsopreventsparallelingthemotorgeneratorsetwiththealternatesupply.Theelectricalprotectiveassembly(EPA),consistingofClass1Eprotectivecircuitry,isinstalledbetweentheBPSandeachofthepowersources.TheEPAprovidesredundantprotectionto+heRPSandothersystemswhichreceivepowerfromtheRPSbussesbyactinqtodisconnecttheRPSfromthepowersourcecircuits.TheEPAconsistsofacircuitbreakerwithatripcoildrivenbyloqiccircuitrywhichsenseslinevoltageandfreqencyandtripsthecircuitbreakeropenontheconditionsof.overvoltage,undervoltaqeandunderfrequency.Provisionismadeforsetpointverification,calibrationandad)ustmentunderadministrativeRev.25,7/8183-32 SSES-'PSARcontrol.Aftertripping,thecircuitbreakermustberesetmanually.Tripsetpointsarebasedonproviding115VAC,60HzpowerattheRPSlogiccabinetsTheprotectivecircuitfunctionalrangeis+10%ofnominalACvoltageand-5%ofnominalfrequency.TheEPAassembliesarepackagedinanenclosuredesignedtobewallmounted.TheenclosuresaremountedonaseismicCategoryIstructureseparatelyfromthemotorgeneratorsetsandseparatefromeachother.TwoEPAsareinstalledinseriesbetweeneachofthetwoRPSmotor-qeneratorsetsandtheRPSbussesandbetweentheauxiliarypowersourcesandtheRPSbusses.TheblockdiagraminFigure7.2-9providesanoverviewoftheEPAunitsandtheirconnectionsbetweenthepowersourcesandtheRPSbusses.TheEPAisdesignedasaClasslEelectricalcomponenttomeetthequalificationrequirementsofIEEE323-1974andIEEE344-1975.Itisdesiqnedandfabricatedtomeetthequalityassurancerequirementsof10CPR50,AppendixB.TheenclosurescontainingtheEPAassembliesarelocatedinanareawheretheambienttemperatureisbetween40~Fand122~F.Thecircuitswithintheenclosurearequalifiedtooperateunderaccidentconditionsfrom400Pto1370P,at10%to95%relativehumidityandsurviveatotalintegratedradiationdoseof2x10~rads.TheassembliesareseismicallyqualifiedperIEEE344-1975,totheSafeShutdownEarthquake(SSE)andOperatingBaseEarthquakeaccelerationresponsespectraandenvironmentallyaualifiedtotherequirementofIEEE323-1974.Theenclosuredimensionsareapproximately16x24x8.inchesandaccommodatepowercablesizesfrom7AMGto250HCN~8.3.1.7ClassIE120VacInstrumentationandControlPowerSuonlvFourindependentClassIE120Vacinstrumentatio'nandcontrolpowersuppliesareprovidedtosupplythefourchannelsofengineeredsafetyfeaturesloadgroups.Thefourbusarrangementprovidesaseparatesingle-phaseelectricpowersupplyto.eachofthefourprotectionchannelsthatareelectricallyandphysicallyisolatedfromtheotherprotectionchannels.EachRev.25,7/818.3-32a SSES-FSAR(Thispageintentionallyleftblank)Rev.25,7/818.3-32b SSES-FSARpoversupplyconsistsofa480-120Vtransformerandadistributionpanel.The480Vpoversupplyisprovidedbythecorresponding480VClassIF.motorcontrolcenter.Thereisnomanualorautomatictransferbetweenthefour120VacClassIF.panels..Thereisnoautomaticloadingorloadsheddingofthepanels.8.3;1.8Non-ClassIF.Instrumcnt.andVitalicPowerSupplyNon-ClassIEInstrumentacPowerSupplyTwo208/120Vnon-ClassIEinstrumentacpowersuppliesperunit.furnishreliablepowertonon-ClassIEmiscellaneousinstrumentationsystems.Thenon-ClassIEinstrumentacpoversupplyforeachunitconsistsoftvosubsystems,eachwitharegulatingtransformer,anautomatictransferswitch,anda208/120Vdistributionpanel.EachdistributionpanelissuppliedasanassoriatedcircuitfromtwoClassTF.motorcontrolcenters.ThetransferswitchmaintainsseparationbetveenthetwoClassIEpowersupplies,andtheredundant,breakersactasanisolationsystembetweentheClassIF.powersupplyandthenon-ClassIF,load.VitalacPowerSUDDlgTwo208/120Vnon-ClassIF.vitalacpowersuppliesfuninterruptiblepowersupplies)perunitsupplyessentialnon-ClassIEequipment.uchnstheplant.romputer.Fachvitalacpowersupplyconsistsofoneinvorter,automatir.transferswitch,manualbypassswitch,anddistributionpanel(s).Normally,thedistributionpanelissuppliedhytheinverter.EachinverterissuppliedbyaseparateClassIE250VdcsubsystemasdescribedinSubse"tion8.3.2.Iftheinverte"isinoperableori,toheremovedfromserviceformaintenanceortesting,atransfertothebackupsupplyismadethroughthemanualbypassswitch.Thebackupsupplyisaregulatingtypetransformerfroma480VClassIEmotorcontxolcenter.Atransfersvitchprovidestheautomaticswitch-overincaseofinverterfailure.ThesupplyfromtheClassIF.480VMCCisanassociatedcircuit.RedundantbreakersactasanisolationsystembetveentheClassIEpoversupplyandnon-ClassIEload.Rev.15,4/808.3-33 SSES-PSAR8.31.9DesignCriteriaforClassIEEquipmentThefollowingdesigncriteriaareappliedtotheClassIF.equipment.MOTORSIZF.-Motorsize(horsepowercapability)isequaltoorgreaterthanthemaximumhorsepowerrequiredbythedrivenloadundernormalrunning,runout,ordischargevalve(ordamper)closedcondition.MINXMUMMOTORACCELERATINGVOLTAGE-TheelectricalsystemisdesignedsothatthetotalvoltagedropontheClassXEmotorcircuitsislessthan20percentof,thenominalmotorvoltage.TheClassIEmotorsarespecifiedwithacceleratingcapabilityat80percentnominalvoltageattheirterminals.MOTORSTARTINGTORQUE-Themotorstartingtorqueiscapableofstartingandacceleratingtheconnectedloadtonormalspeedwithinsufficienttimetoperformitssafetyfunctionforallexpectedoperat.ingcondit.ions,includingthedeignminimumterminalvoltage.MINIMUMMOTORTORQUEMARGINOVERPUMPTORQUETHROUGHACCELERATINGPERIOD-Theminimummotortorquemarginoverpumptorquethroughtheacceleratingperiodisdeterminedbyusingactualpumptorquecurveandcalculatedmotorto"quecurvesat80and100percent.terminalvoltage.Theminimumtorquemargin(acceleratingtorque)issuchthatthepump-motorassemblyreachesnominalspeedinlessthanfiveseconds.Thismarginisusuallynotlessthan10percentofthepumptorque..MOTORINSULATION-Insulationsystemsareselectedonthebasisoftheambientconditionstowhichtheinsulationisexposed.ForClassImotorslocatedwithinthecontainment,theinsulationsystemisselectedtowithstandthepostulatedaccidentenvironment.TEMPERATUREMONITORINGDEVICZSPROVIDEDINLARGEHORSEPOWERMOTORS-Sixresistancetemperaturedetectors(BTD)areprovidedinthemotorstatorslots,twoperphase,formotorslargerthan-1500hp.Innormaloperation,theRTDatthehottestlocation'selectedhytest)monitorsthemotortemperatureandprovidesanalarmonhightemperatue.RTDsareprovided.formotorsfrom250to1500hp.Eachbearingthat'snotantifrictiontypehasachromel-constantanISATypeEthermocouplebearingtemperaturedevicetoalarmonhightemperature.'NTERRUPTINGCAPACITIES-Theinterruptingcapacitiesoftheprotectiveequipmentaredeterminedasfollows:Rev.15,4/80 SSES-FSARa)SwitchgearSwitchgearinterruptingcapacitiesaregreaterthanthemaximumshortcircuitcurrentavailableatthepointof.application.ThemagnitudeofshortcircuitcurrentsinmediumvoltagesystemsisdeterminedinaccordancewithANSIC37.010-1972.Theoffsitepowersystem,asingleoperatingdieselgenerator,andrunningmotorcontributionsareconsideredindeterminingthefaultlevel.HighvoltagepowercircuitbreakerinterruptingcapacityratingsareselectedinaccordancewithANSIC37.06-1971.b)LoadCenters,MotorControlCenters,andDistributionPanelsLoadcenter,motorcontrolcenter,anddistributionpanelinterruptingcapacitiesaregreaterthanthemaximumshortcircuitcurrentavailableatthepointofapplication.Themagnitudeofshortcircuitcurrentsinlow-voltagesystemsisdeterminedinaccordancewithANSIC37.13-1973,andNEMAAB1.Low-voltagepowercircuitbreakerinterruptingcapacityratingsareselectedinaccordancewithANSIC37.16-1970.MoldedcasecircuitbreakerinterruptingcapacitiesaredeterminedinaccordancewithNEMAAB1.ELECTRICCIRCUITPROTFCTION-ElectriccircuitprotectioncriteriaarediscussedinSubsection8.3.1.3.13.GROUNDINGREQUIREMENTS-EquipmentandsystemgroundingaredesignedinaccordancewithIEEE80-1961and102-1972.8.3.110Safety-relatedLogicandSchematicDiagramsSafety-relatedlogicandschematicdiagramsareprovidedaslistedinSection1.7.831.11AnalysisAfailuremodeeffectsanalysisfortheacpowersystemispresentedinTable8.3-9.Rev.15,4/808.3-35 SSES-PSAR8.3.1.11.1GeneralDesignCriteriaandRegulatoryGuideComplianceThefollowingparagraphsanalyzecompliancewithGeneralDesignCriteria17and18.AllRegulatoryGuidesarediscussedinSubsections3.13and8.1.6.1.GENERALDESIGNCRITFRION17~ELECTRICPOMFRSYSTEMSAnonsiteelectricpowersystemisprovidedtopermitfunctioningofstructures,systems,andcomponentsimportanttosafety.Withtotallossofoffsitepower,theonsitepowersystemprovidessufficientcapacityandcapabilitytoensuretha+:a)Specifiedacceptablefueldesignlimitsanddesignconditionsofthereactorcoolantpressureboundaryarenotexceededasaresultofanticipatedoperationaloccurxencesb)Thecoreiscooledandcontainmentintegrityandothervitalfunctionsaremaintainedintheeventofpostulatedaccidents.Tables8.3-1to8.3-5listthoseloadsimportanttosafetyunderResignconditions.Theonsiteelectricpowersystemincludesfourloadgroups.Theloadgroupsareredundantinthatthreeloadgroupsarecapableofensuring(a)and(b)above.Sufficientindependenceisprovidedbetweenredundantloadgroupstoensurethatpostulatedsinglefailuresaffectonlyasingleloadgroupandarelimitedtotheextentoftotallossofthatloadgroup.Theredundantloadgroupsremainintacttoprovideforthemeasuresspecifiedin(a)and(b)above.Duringalossofoffsitepower,theClassIHsystemisautomaticallyisolatedfromtheoffsitepowersystem.Thisminimizestheprobabilityoflosingelectricpowerfromtheonsitepowersuppliesasaresultofthelossofpowerfromthetransmissionsystem.Protection,suchasvoltagerestraintovex'currentand4.16kVbusdifferentialrelays,isprovidedtotripthedieselgeneratorcircuitbreaker,ifabnormalco'nditionsoccux.Thisprotectionpreventsdamagetoorshutdownofthedieselgenerator.Theturbinegeneratorisautomaticallyisolatedfromtheswitchyardfollowingaturbineorreactortrip.Therefore,itslossdoesnotaffecttheabilityofeitherthetransmissionnetworkortheonsitepowersuppliestoprovidepowertothe'Rev.15,4/808.3-36 SSES-FSARClassXEsystem.Transmissionsystemstabilitystudiesindicatethatthetripofthemostcriticalfullyloadedgeneratingunitdoesnotimpairtheabilityofthesystemtosupplyplantstationservice.FurtherdiscussionisprovidedinSubsection8.2.2.GENERALDESIGNCRITERION18,INSPECTIONANDTESTINGOFELECTRICALPOSERSYSTENSTheClassIEsystemisdesignedtopermit:a)Periodicinspectionandtesting,duringequipmentshutdown,ofwiring,insulation,connections,andrelaystoassessthecontinuityofthesystemsandtheconditionofcomponentsb)Duringnormalplantoperation,periodictestingoftheoperabilityandfunctionalperformanceofonsitepowersupplies,circuitbreakersandassociatedcontrolcircuits,relays,andbusesc)Duringplantshutdown,testingoftheoperabilityoftheClassIF,systemasawhole,includingthesystem~soperationalsequence,operationofsignalsofthe'ngineeredsafetyfeaturesactuationsystemandthetransferofpowerbetweentheoffsiteandtheonsitepowersystem.8.3.1.11.2SafetyRelatedEquipmentExposedtoAccidentFnvironmentThedetailedinformationonallClassIEequipmentthatmustoperateirianaccidentenvironmentduringand/orsubsequenttoanaccidentisfurnishedinSection3.11.83.1'.11.3PhysicalIdentificationofSafetyRelatedEquipmentFachcircuitandracewayisgivenauniquealphanumericidentification,whichdistinguishesacircuitorracewayrelatedtoaparticularvoltage,function,channel,orloadgroup.Onealphacharacteroftheidentificationisassignedtoaloadgrouponthebasisofthefollowing'riteria:SEPARATIONGROOPCHANNELA(RedColorCode)-ClassIF.instrumentation,controls,andpowercables,raceways,andequipmentrelatedtoChannelAloads,dcsubsystemA,120V'cinstrumentationandcontrolchannelA,DivisionIraceways.Rev.15,4/808.3-37 SSES-FSARSEPARATIONGROUPCHANNEL8(GreenColorCode)-ClassIEinstrumentation,controls,andpovercables,raceways,andequipmentrelatedtoChannelBloads,dcsubsystemB,120VacinstrumentationandcontrolchannelB,DivisionIIraceways.SEPARATIONGROUPCHANNELC(OrangeColo"Cade)-ClassIEinstrumentation,controls,andpovercables,raceways,andequipmentrelatedtoChannelCloads,dcsubsystemC,120VacinstrumentationandcontrolchannelC.SEPARATIONGROUPCHANNELD(BlueColorCode)-ClassIEinstrumentation,controls,andpowercables,raceways,andequipmentrelatedtoChannelDloads,120VacinstrumentationandcontrolchannelD.SEPARATIONGROUPN{BlackColorCode)-Non-ClassIEinstrumentation,controls,andpowercables,racevays,andrelatedequipment.SEPARATIONGROUPDIVISIONI(Red/BrownColorCode)-ClassIEinstrumentation,control,andpowercables.SEPARATIONGROUPDIVISIONII(Green/BrovnColorCode)-ClassXEinstrumentation,control,andpowercables.Theassociatedpovercablesareroutedwiththeseparationgroupstheyareassociatedvith.Theassociatedpovercablesareidentifiedasfollows:a)Red/Brown-associatedwithseparationgroupchannelAordivisionI.b)Green/Brovn-associatedwithseparationgroupchannelBordivisionII.c)Orange/Brown-associatedvithseparationgroupchannelCd)Blue/Brown-'ssnciaedwithseparationgroupchannelD.'ableandracewayseparationgroupsaresummarizedinTable8.3-10ForidentificationofracevaysandCl.assIEcablesrefertoSection3.12.DesigndravingsprovidedistinctidentificationofClassIEequipment.Theapplicableseparationgrouporloadgroupdesignationisalsoidentified.FlectricalcomponentidentificationisdiscussedinSubsection18.6Rev15,4/80 SSES-PSARQeg~e~lI~ndeendenceofge~dnndn~tsstems~Se~a~aionCg~t~eriThissubsectionestablishesthecriteriaandthebasesforpreservinqtheindependenceof.redundantClassIEpowersystems.(ForPGCCseeSection3.12)raceway'ndCableRoutingWhereverpossible,cabletraysarearrangedfromtoptobottom,withtrayscontainingthehighestvoltagecablesatthetop.Aracewaydesignatedforonevo1tagecateqoryofcablescontainsonlythosecables.Voltagecateqoriesare:a)480Vac,120Vac,125Vdcand250Vdcpowerb)120Vac,125Vdc,and250Vdccontrolanddigitalsignalc)Lowlevelsignal.The480VACpower,l20VACcontrol,anddigitalalarmsiqnalcablesoriginatedfromthesame480VACmotorcontrolcenter(MCC)areroutedthroughacommonshuttletrayandriserabovetheNCC.TheshuttletraycoversthelengthoftheMCC,anditisusedtoconnecttheMCCtothemainracewaysystemviaverticaltrayrisers.Thecablesareroutedinaccordancewiththeaboveracewaycategoriesoncetheyleavetheshuttletrayandverticaltrayrisers.15kVand5kVclasscablesareroutedinconduitsonly.Cablescorrespondingwitheachseparationqroup,asdefinedinSubsection8.3.1.3,areruninseparateconduits,cabletrays,ducts,andpenetrations.RefertoSubsection3.12.3.4.2fordescriptionofphysicalseparationofracewayandcablerouting.8.3.1.11.5AdministrativeResponsibilitiesandControlsforEnsuring~Sea~tion~Cite~r'mTheseparationgroupidentificationdescribedinSubsection8.3.1.11.3facilitatesandensuresthemaintenanceofseparationintheroutingofcablesandtheconnections.Atthetimeofthecableroutingassignmentduringdesign,thosepersonsresponsibleRev.22,4/8183-39 SSES-FSARforcableandracewayschedulingensurethattheseparationgroupdesiqnaticnontheschemetoberoutediscompatiblewithasingle-line-diagramloadgroupdesiqnationandotherschemespreviouslyrouted.Extensiveuseofcomputerfacilitiesassistsinensuringseparationcorrectness.Eachcableandracewayisidentifiedinthecomputerprogram,andtheidentificationincludestheapplicableseparationgroupdesignation.Auxiliaryprogramsaremadeavailablespecificallytoensurethatcablesofaparticularseparationgroupareroutedthroughtheappropriateraceways.Theroutingisalsoconfirmedbyqualitycontrolpersonnelduringinstallationtobeconsistentwiththedesigndocument.Coloridentificationofequipmentandcablinq(discussedinSubsection8.3.1.11.3andSection3.12)assistsfieldpersonnelinthiseffort.832DCPOQQRSYSTQNSThedcpowersystemsaredividedintoClassIEandnon-ClassIEsystems.832.1.1~C1egIgdcPoee~d~tee1TheClassIEdc'systemisshownonFigures8.3-5and8.3-6.Thedcsystemforeachgeneratingunitconsistsoffour125Vdcubsystems,two250Vdcsubsystems,andtwo124Vdcsubsystems.83~.1.1.1125VdcSub~sstemsFourClassIE125Vdcpowersubsystemsprovidedforeachunitarelocatedinseparateroomsinthecontrolstructure.ThesefoursubsystemsareidentifiedaschannelsA,B,C,andD.EachsubsystemprovidesthecontrolpowerforitsassociatedClassIEacpowerloadgroupchannel.4.16kVswitchgear,480Vloadcenters,andstandbydieselgeneratorasdicussedinSubsection8.3.1.Alsothesedcsubsystemsprovidedcpowertotheengineeredsafetyfeaturevalveactuation,dieselgeneratorauxiliaries,plantalarmandindicationcircuits,andemerqencyliqhtinqsystem.Each125Vdcsubsystemconsistsofoneloadcenter,oneClassIEandonenon-ClassIEdistributionpanels,one125Vbatterybank,andonebatterycharqer.Thenon-ClassIEdistributionpanelisconnectedtotheClassIEdcpowersupplythroughanisolationRev.19,1/8183-40 SSES-PSARsystem.TheisolationsystemisdefinedinSubsection.8.3.6.$.,Thebatterychargerofeach'ystemissuppliedwith480VClassIEacpowerfromthemotorcontrolcenterassociatedwiththesameloadgroupchannel.Onespare125Vbatterychargerisprovidedforbothqeneratingunits.Thechargeroutputvoltagecanberegulate'dattwodifferentcontrolpoints.Oneisavariableresistorlocatedinsidethecabinetandisusedforroughvoltagesettings.Theotherisascrewdriveradjustedpotentiometerlocatedonthefrontofthecabinet,andisusedforfineadjustments.Bysettingboth12Rev.19,1/818.3-40a SSES-FSARThispagehasbeenintentionallyleftblankRev.19,1/818.3-40b SSES-FSARcontrolsattheirmaximumpositions,thechargeroutputvoltagewouldbe145.2volts.Allequipmentordevicesconnectedtothel25VDCsupplyarerated105Vto144VDC.Maximumoutputvoltageresultingfromafailureofchargervoltagecontrolcircuitisnotavailableatthepresenttime.Therearenoovervoltageprotectiondevicesprovidedforthe125vdcsubsystem.The125Vdcpowerisdistributedthroughcircuit.breakertypedistributionpanels.The125VdcloadsareshowninTable8.3-6.Thefailuremodeandeffectanalysisforthe125VdcsusbystemisshowninTable.8.3-21.8.3.2.1.1.2250VdcSubsystemsTwoClassIE250VdcsubsystemsareprovidedforeachunitandidentifiedasDivisionsIandIZasshownonFigure8.3-5.The250Udcsubsystemsarelocatedinseparateroomsinthecontrolstructure.Thetwo.subsystemssupplythedcpowerrequiredforlargerloadssuchasdcmotordrivenpumpsandvalves,invertersforplantcomputerandvital120Vacpowersupplies.The250VdcloadsareshowninTable8.3-7.A2,000ampfuseisprovidedateachpoleofthe250Vdcbatteryoutputforshortcircuitprotection.Thesefusesarealsousedtodisconnecttheloadcenterfromthebatteryduringbatterydischargeandservicetests.TheDivisionI250Vdcsubsystemisprovidedwithone250Vbatterybank,oneloadcenter,twoequalcapacitychargers,andmotorcontrolcenters.TheDivisionII250Vdcsubsystemisprovidedwithone.250V.batterybank,onedistributionloadcenter,onebatterycharger,andmotorcontrolcenters.The250Vdcbatterycharqersaresuppliedby480UClassIEacmotorcontrolcenters.Onespare250Vbatterychargerisprovidedforbothgeneratingunits.Thereisnoloadsheddingprovidedforanyofthesenon-ClasslEloads.All250Vdcmotorcontrolcenters(MCC),includingnon-Class1E,areseismicallyqualified.However,theClasslENCC'sarelocatedinaseismicCategoryIstructurewhilethenon-Class1EBC'areI.ocatedinanon-seismicCategoryIstructure(TurbineBuilding).Rev.15,4/808.3-41 SSES-FSABThechargeroutputvoltagecanberegulatedattwodifferentcontrolpoints.Oneisavariableresistorlocatedinsidethecabinetandisusedforroughvoltagesettings.Theotherisascrewdriveradjustedpotentiometerlocatedonthefrontofthecabinet,andisusedforfineadjustments.Bysettingbothcontrolsattheirmaximumpositions,thechargeroutputvoltagewouldbe290.4volts.Allequipmentordevicesconnectedtothe250VDCsupplyarerated210Vto288VDC.Maximumoutputvoltageresultingfromafailureofchargervoltagecontrolcircuitisnotavailableatthepresenttime.Therearenoovervoltageprotectivedevicesprovidedforthe250VDCsubsystem.The250Vdcpowerisdistributedthroughdcmotorcontrolcentersexcepttheinverters,whicharefeddirectlyfromthedistributionloadcenters.Thenon-,ClassIE250Vdcloadsaresuppliedbyanon-ClassIEdcmotorcontrolcenter.Thenon-ClassIF.dcmotorcontrolcenterisconnectedtot.heClassIRdcdistributionloadcenterthroughanisolationsystemasdefinedinSubsection8.1.6.1(n).Thenon-ClassIE250Vdcloadsconsistmainlyofemergencyturbinegeneratorauxiliaries.Thefailuremodeandeffectanalysisforthe.250VdcsubsystemisshowninTable8.3-22.8.3.2.1.1.3124V.dcSubsystemsTwo+24Vdcsubsystemsareprovidedforeachunitforradiationmonitoringcir"uits.ThesetwosubsystemsarelocatedinseparateroomsinthecontrolstructureandareidentifiedasDivisionsIand,II.Each+24Vdcsubsystemconsistsoftwo24'batterybanks,twochargers,andacircuitbreakertypedistributionpanel.The24Vdcchargers'aresuppliedby120V.ClassIEinstrumentacpowerpanels..he+24Vdcloadsareshowni'nTable8.,3-,8.Onespare24Vdcbatterychargerisprovidedforbothgenerat'ingunits.The24vdcsubsystemisequippedwithunder/overvoltagerelaysfortrippingofthechargersandannunciat.ion.All24VdcequipmentanddevicesinSusquehannaSESareratedfor20to28vdc~8.3-42 SSES-PSAR8.3.2.1.1.4ClassIEStationBatteriesandBatteryChargersRefertoSubse"tion8.3.2.1.1.5forallClassIEdcsystemequipmentratings.Thebatterychargersarefullwave,siliconcontrolledrectifiers.Thehousingsarefreestanding,NENATypeI,andare.ventilated.Thechargersaresuitableforequalizingthebatteries.ThechargersareincompliancewithallapplicableNEMAandANSIstandards.Thecapacityofeachbatterycharger,orthecombinedcapacityofbothchargersinthecaseof.DivisionI250Vdcsubsystem,isbasedonthelargestcombineddemandofallthesteady-stateloadsandthechargercurrentrequiredtorestorethebatteryfromthedesignminimumcharqedstatetothefullychargedstatewithin12hr.Thebatterychargersareconstantvoltagetypewithcapabilityofoperatingasbatteryeliminators,andwouldfunctionproperlywithbatterydisconnectionboinganoxmalcondition.Thebatteryeliminatorfeatureisincorporatedasaprecautionalmeasuretoprotectagainst.inadvertantdisconnectionofthebattery.Thereisnoplannedmodesofoperationwhichwouldrequirebatt.erydisconnection.Variationofthechargeroutputvoltagehasbeendeterminedbytestingtobelessthan1'%ithorwithoutthebatteryconnecteR.Maximumoutputrippleforthe24Vand125Vdcchargersis30millivo1tsRNSwithoxwithoutthebattery,and200millivoltsforthe250Vchargers.Thefailuremodeandeffectanalysisforthe+24VdcsubsystemisshowninTable8.3-23.Each125V,250V,and+24Vbatterybankhassufficientcapacitywithoutitschargertoindependentlysupplytherequiredloadsfor4hrasshowninTables8.3-6,8.3-7,and8;3-8respectively.InaccordancewithIEEE450-1972initialratedbatterycapacityis25percentgreaterthanrequired.Thismarginallowsreplacementofthe.batterytohemadewhenitscapacityhasdecreased.to80percentofit."ratedcapacity(100percentofdesignload).832.1.1.5Class1EDCSystemFguipmentRatingsa)125VdcSubsystemsBattery60lead-calciumcells720amp-hr(8hxstoRev.15,4/808.3-43 SSFS-FSABChargerLoadCenterMainbus(horizontal)1.75Vpercell877<F}acinput-480V,3p'coutput-100Acontinuousrating1600Acontinuousrating,25,000AshortcircuitbracingVerticalbusBreakers1200Acontinuousrating,25,000Ash'ortcircuitbracing600Aframesize,2poles*25,000Aint.errnptingratingDistributionPanelMainbusBreakers(moldedcase)b)250VdcSubsystemsBatteryChargersLoadCentexMaintins(horizontal)VerticalbusBreakersCont.rolCenterMainkins(horizontal)Verticalbns225Acontinuousrating,50,000Ashortcixcuitbxacing100Aframesize,2poles10,000Ainterruptingrating120lead-calciumcells1800amp-hr(8hrsto1.75Vpe"cell977oF)acinput-480V,3pdcoutput-300Acontinuous1600Acontinnousrating25,000A-shortcicuitbracing1,200A"ontinuousrating?5,000Ashortcircuitbracing-600Acontinuousrating25,000Ainterruptingrating600Acontinuousrating10,000Ashortcircuitbracing600Acontinuousrating10,000AshortcircuitbracingRev.15,4/808.3-44 SSHS-FSARBreakers(molherlcase)100A,225Aand600Aframeratingsizes,2poles,10,000Ainterrupting')+24VoltSubystemsBattery2groupsof12lead-calciumcells.75amp-hr(8hrsto1.75Vpercell977oF)Chargersacinput-120V,1P'coutput-25ampcontinuousDistributionPanelsNainhus100Acontinuous5,000AshortcircuitbracingBreakers(moldedcase)100hframesize,2poles,5,000Ainterruptingrating8.32.1.1.6Inspection~maintenance~andTesti~nTestingofthedcpowersystemsareperformedpriortoplantoperationinaccordancewiththerequirementsofChapter14.Tn-servicetestsandinspectionsofthedcpowersystemsincludingbatteries,chargers,andauxiliariesarespecifiedinChapter16.83.2.1.1.7SeparationandVentilationForeachClassIBdcsubsystem,thebatterybank,chargers,anddcswitchgeararelocatedinseparateroomsoftheSeismicCategoryIcontrolstructure.>hebatteryroomsareventilatedbyasystemthat.isdesignedtoprecludethepossihilityofhydrogenaccumulation.Section9.4containsadescriptionofthe,=batteryroomventilationsystem.83.2.1.1.8Non-ClassTF.dcSystemGenerally,non-Class'IEdcloadsareconnectedtoaClassIHdcsystemthroughanon-ClassTKdcdistributionpanel.ThesecasesarediscussedinSubsections8.3.2.1.i.1and8.3.2.1.1.2.Rev.15,4!808.3-45 SSHS-FSABhnon-ClassIF.125Vdcsystemisprovidedfortheremoteriverwaterintakepumphouse4.16kVswitchgearcontrol.This125Vdcsystemconsistsofadistributionpanel,two25Achargers,60lead-calciumcellsandisrated50hhat8hrdischargeratebasedonaterminalvoltageof1.75Vpercellwhendischarged.8.3.22Analysis8.3.2.2.1CompliancewithGeneralDeignCriteria,Regulat~orGuides~andTFFEStandardsThefollowingparagraphsanalyzecomplianceoftheClassIEdcpowersystemswithGeneralDesignCriteria17and18,RegulatoryGuides1.6,1.32,1.41,1.81,and1.93,andIEFF.308-1974anrl450-1972.a)GeneralDesignCritrcion17~ElectricPowerSystemsConsiderationofCriterion17leadstotheinclusionofthefollowingfactorsinthedesignofthedcpowersystems:1)SeparateClassZF.125VdcsuhsystemssupplycontrolpowerforeachoftheClassIF,acloadgroups.2)The.acpowerforthebatterychargersineachofthesedcsuhsystemsissuppliedfromthesameacloadgroupforwhichthedcsubsystemsuppliesthecontrolpower.3)Twoindependent250Vrlcsubsystemsareprovirledtoensuretheavailabilityofthedcpowersystemformaintainingthereactorintegrityduringpostulaterlaccidents.4)TheClassTF,dcsubsystemsincludingbatteries,chargers,dcswitchgear,anddistributionequipmentarephysicallyseoarateandindepenrlent.5)Sufficientcapacity,capability,independence,redundancy,andtestabilityareprovirlerlintheClassXEdcsubsystems,ensuringtheperformanceof.safetyfunctionsassumingasinglefailure.Rev.15,4/808.3-46 SSES-FSARb)GeneralDesignCriterion18,InspectionandTestingofElectricPower~SstemsFachoftheClassIF,subsystemisdesignedtopermit:1)Inspectionandtestingofwiring,insulation~andconnectionsduringequipmentshutdowntoassessthecontinuityofthesubsystemandtheconditionofitscomponents.2)Periodictestingoftheoperabilityandfunctionalperformanceofthecomponentsofthesubsystems5uringnormalplantoperation.TheClassIEdcsubsystemsareperiodicallyinspectedandtestedtoassesstheconditionofthebatterycells,charger,andothercomponentsinaccordancewithChapter16.PreoperationaltestingisdiscussedbelowinassessmentofcompliancewithRegulatoryGuide1.41.c).RegulatoryGuide1.6~1/71)Thedesignofthedcsystem-complieswithRegulatoryGuide1.6.t.SeparateClas."IE125Vdcsubsystemssupplycon+rolpowerforeachofthefourClassIEloadgroups.T,ossofanyoneofthesubsystemsdoesnotpreventtheminimumsafetyfunctionfrombeingperformed.The125Vdcsubsystemchargersaresuppliedfromthesameacloadgroupforwhichthedcsubsystemsuppliesthecontrolpower.Fachofthefour125Vdcsubsystems,includingbatterybank,charger,anddistributionsystem,isindependentofother125Vdcsubsystems.Thus,sufficientindependenceandredundancyexistbetweenthe125Vdcsubsystemstoensureperformanceofminimumsafetyfunctions,assumingasinglefailure.TwoindependentClansIE250Vdcsubsystemsareprovided.Fachsubsystemiindependentoftheother.Sufficient.independenceandredundancyexistinthesesubsystemssothatasinglefailureinthe250Ydcsubsystemsdoesnotprevent'heperformanceofminimumsafetyfunctions.TwoindependentClassIF,x24Vdcsubsystemsareprovided.Eachsubsystemisindependentoftheother.Sufficientindependenceandredundancyexistinthesesubsystemssothatasinglefailureinthe+24Vdcsubsystemsdoesnotpreventtheperformanceofminimumsafetyfunctions.Rev.15,4/80R.3-47 SSES-FSARd)RegulatoryGuide1.32~8g72}ThebatterychargercapacityforeachoftheClassIEdcsubsystemscomplieswiththisRegulatoryGuide.EachClassIF.,batterychargerhassufficientcapacitytosupplythelargestcombineddemandofthevarioussteady-stateloadsandthechargingcurrentrequiredtorestorethebatteryfromthedesignminimumchargestatetothefullychargedstateirrespectiveofthestatusoftheplantduringwhichthesedemandsoccur.e)RegulatoryGuide1.41/3/73}TheClassIEdcsubsystemshavebeendesignedinaccordancewithRegulatoryGuides1.6and1.32andtestingcapabilitiesareprovidedinaccordancewiththeguidanceofRegulatoryGuide,1.41andwillbepreoperationallytestedasdescribedinChapter14.f)RegulatoryGuide1.81$1/75}TherequirementsoftheRegulatoryGuidearemet.Eachgeneratingunitisprovidedwithseparateandindependentonsitedcelectricpowersystemscapableofsupplyingpowertothecontrolsystemsofengineeredsafetyfeaturesloadsandloadssuchasvalves,andactuators,requiredforattainingasafeandorderlycoldshutdownof.theunit,assumingasinglefailure.g)RegulatoryGuide1.93$12/74}ComplianceisdiscussedinSubsection8.1.6.1(q).h)IEEEStandard308-1974TheClassIZdcsystemsprovidepowertoClassIEloadsand.forcontrolandswitchingofClassIF.systems.Physicalseparationandel'ectricalisolationareprovidedtopreventtheoccurrenceof,commonmodefailures.ThedesignoftheClassIEdcsystemsincludesthefollowing:1)The125Vdcystemisseparatedintofoursubsystems2)3)The250Vdcand+24Vdcsystemsareeachseparatedin+otwosubsystemsThesafetyactionbyeachgroupofloadsareindependentofthesafetyactionsprovidedbytheirredundantcounterpartsRev.15,4/8083-48 SSES-FSAR4)EachdcsubsystemincludespowersuppliesthatconsistofonebatterybankandoneortwochargersasrequiredforcapacityasshownonFigures8.3-5and8.3-6.5)Thebatteriesarenotinterconnected.EachClassIEdistributioncircuit,iscapableoftransmittingsufficientenergytostartandoperateallrequiredloadsinthatcircuit.Distributioncircuitstoredundantequipmentareindependentof'eachother.Thedistributionsystemismonitoredtotheextentthatitisshowntobereadytoperformitsintendedfunction.Thedcauxiliarydevicesrequiredtooperateeguipment,ofaspecificacloadgrouparesuppliedfromthesameloadgroup.EachbatterysupplyiscontinuouslyavailableduringnormaloperationsandfollowingthelossofpowerCromtheacsystemtostartandoperateallrequiredloads.The125V-dcand250Vdcsubsystemsareungrounded;thus,asinglegroundfaultdoesnotcauseimmediatelossofthefaultedsystem.Grounddetectionandalarmisprovidedforeachdcsubsystemsothatgroundfaultsranbe'locatedandremoved.The124Vdcsubsystemisgrounded.Equipmentof.theClassIEdcsystemisprotertedandisolatedhyfusesorcircuitbreakersforshortcircuitoroverloadprotection.Thefollowinginstrumentationisprovided.tomonitorthestatusofeachofthedcsubsystems:1)125Vdcand250Vdcsubsystems:SystemundervoltageSystemgroundBatteryavailabilityBatterychargertrouble-acundervoltage;chargerfailure;rhargeroutputbreakertripLoadcenterbreakertrip(250Vdcsubsystemonly)Allabovealarmsareannunciatedasagroupalarminthemaincontrolroom.Rev.15,4/808.3-49 SSES-FSAR2)+24VQcsubsystems:positivebuslowvoltageNegativebuslowvoltagepositivebushighvoltageNegativebushighvoltageBatteryavailabilityBatterychargertrouble-acfailure;chargerfailure;chargeroutputbreakertripAllabovealarmsareannunciatedinthemaincontrolroomas+24Vdcsystemtrouble,agroupalarmforeachbatterybankanditsassociatedsystem.Thebatteriesaremaintainedinafullychargedconditionandhavesufficientstoredenergytooperateallnecessarycircuitbreakersandtoprovideanadequateamountofenergyforallrequiredemergencyloadsforfourhoursafterlossofacpower.Fachbatterychargerhasaninputacandoutputdccircuitbreakerforisolationofthecharger.Pachbatterycharger.powersupplyisdesignedtopreventtheacsupplyfrom.becomingaloadonthebatteryduetoapowerfeedbackastheresultofthelossofacpowertothechargers.Thebatterychargeracsupplybreakercanbeperiodicallyopenedtoverifytheloadcarryingabilityofthebattery.Thebatteries,batterychargers,andothercomponentsofthedcsubsystemsarehousedinthecontrolstructure,whichisaSeismicCategoryI.tructure.TheperiodictestingandsurveillancerequirementsfortheClassIF,batteriesaredetailedinChapter16.i)IEPEStandard450-1972TherecommendedpracticesofIEEH450formaintenance,testing,andreplacementofbatteriesarefollowedfortheClassIEbatteriesandarediscussedinChapter16.Rev.15,4/808.3-50 SSES-FSAR8.3.2.2.2PhysicalIdentificationofSafetyRelatedFguipmentPhysicalidentificationofClassIEequipmentisdiscussedinSubsection8.3.1.3.8.3.2.2.3IndependenceofRedundantSystemsThegeneralconsiderationsfortheindependenceofClassIEdcpoversubsystemsaredescribedinSuhsection8.1.6.1(n).ThephysicalseparationcriterionisdiscussedinSection3.12.833PIREPROTECTIONFORCABLESYSTEMS83.3.1CableDeratingandCableTra~FillThepowerandcontrolcableinsulationisdesignedforaconductortemperatureof.90~CAllowablecurrentcarryingcapacityoF,thecableisbasedonnotexceedingtheinsulationdesigntemperaturevhilethesurroundingairisatanambienttemperatureof65.50Cfortheprimarycontainmentand40~Cforallotherareas.ThedesignoperatingconditionsofallClassIEcablesarediscussedinSection3.11.ThepowercableampacitiesareestablishedinaccordancevithIPCEAPublicationsP-54-440andP-46-426andareshowninTables83-11through8.3-15.Forcontrolcircuits,minimum414AMC'onductorsaregenerallyused.Instrumentationcableisalodesignedforaconductortemperatureof900C.Operatingcurrentsofthesecahlesarelow(usuallymAormV)andwillnotcausethedesigntemperaturetobeexceededatmaximumdesignambienttemperature.Ingeneral,cabletrayfillislimitedto30percentfillbycross-sectionalarea.Incaseswherethelimitationisexceeded,areviewvillbeperformedforeachcasefortheadequacyofthe"design.ConduitfillisincompliancewithTablesIandII,,Chapter9,NationalElectricalCode,1975.Powercables,controlcable,andinstrumentationcablesaredefinedasfollows:Rev.15,4/808.3-51 SSES-FSARPowerCablesPowercablesarethosecablesthatprovideelectricalenergyformotivepowerorheat.ingtoall13.8kVac,4.16kVac,480Vac,120Vac,250Vdc,and125Vdcloads.ControlCablesControlcables,forthepurposeof.derating,aregenerally120Vac,250Vdc,125Vdc,and24Vdccircuitsbetweencomponentsresponsiblefortheautomaticormanualinitiationofauxiliaryelectricalfunctionsandtheelectricalindicationofthestateofauxiliarycomponents.InstrumentationCablesInstrumentationcablesarethosecablesconductinglow-levelinstrumentationandcontrolsignals.Thesesignalscanbeanalogordigital.Typically,thesecablescarrysignalsfromthermocouples,resistancetempe"atue=detectors,transducers,neutronmonitors,etc.8.3.3.2FireDctectionforCableSystemsFiredetectionsystemsarediscussedinSubsection9.5.1.8~3.3.3FireBarriersandSeparationBetweenRedundantTraysElectricalequipmentandcablinghasheenarrangedtominimizethepropagationof.firefromoneseparationqrouptoanother.PhysicalseparationofcablingsystemsisdiscussedinSubsection3122.Wheretheminimumphysicaleparationcannothemetasspecified.inSubsection3.12.2;andafireharrierisselectedasthealternative,a1/4in.HaysiteFTR-FR-Cisinstalled.TheboltsandhardwareusedtosecuretheHaysitepaneltothetraysupportarecoatedafterinstallationwith1/8in.offireproofingmaterialDynatherm'sFlamemastic71Acompound.Rev.15,4/808.3-52 SSES-PSAR83.3.4FireStopsFirestopsandsealsareprovidedforcablepenetrationsinthefloorforverticalrunsofraceways,ateachaccessopeninginceilingsandatfire-ratedwallpenetrations.Thefirestopsarefurnishedtoprovideamethodofsealingoffairspacesaroundcablepenetrations.ThepropertiesofmaterialsandqualificationtestsarediscussedinSubsection9.5.1.8.3-53 Equip-ment8DescritionESFLoadsOperatingDieselGenARatingkWUnit,1Unit2EachhEachBusBusDieselGenCDieselGenBUnit1Unit2Unit1Unit2BusBus.BusBusTABLE8.3-1ASSIGNHENTOFESFANDSELECTEDNON-ESFLOADSTODIESELGENERATORSANDDIESELRATINGSNumberConnectedPageIof7LoadinSeuence(3Note3DieselGenDUnit1-DBAUnit2-ShutdownUnit1Unit2RequiredTimeFromRequiredBusBusNumberDBANumberTimeIP206A,B,C,D,ReactorCoreSpray700555PumpsIP202A,B,C,DRHRPumps200014251P506A,BRHRServiceWater600460Pumps1111"11111111131131120sec10sec110min+130min+31min+IV211A,B,C,DCoreSprayPumpRoom2UnitCoolers1.71111111320secHotorOperatedValves(NoteI)SetSet10secSet10sec1V222A,BEngineeredSafeguards15Switchgear&L.C.RoomUnitCoolersOV116A,B,ControlStructure5BatteryRoomExhaust-Fans.IV210A,B,C,DRHRPumpRoomUnit10Coolers121-111111121111370sec170sec10sec170sec30minIV208A>BRCICPumpRoomUnit1.5Coolers1.2111160sec160sec*HanualInitiationRev.27,10/81

Equip-ment8DescritionOperatingDieselGenARatingkWUnit1Unit2EachhEachBusBusTABLE8.3-1(cont'd)NumberConnectedDieselGenCDieselGenBUnit1Unit2Unit1Unit2BusBusBusBusPage2of7IoadinSeuence3(Note3DieselGenDUnit1-DBAUnit2-ShutdownUnit1Unit2RequiredTimeFromRequiredBusBusNumberDBANumberTime1V209A,B1V613to643OV512A,B,C>DOP514A>B>C>DOV201A>BESFLoads(con't)HPCIPumpRoomUnitCoolersBatteryChargers,125VD.C.DieselGeneratorRoomVentilationSupplyFansDieselGeneratorDieselOilTransferPumpsReactorBuildingRecircFans1.51.225403212.5175601,1111111111113131360sec10sec310sec60minS>beyond10sec10secOP504A,B,C,DEmergencyServiceWaterPumps45036011265secOV109A,BOV115A,B8OV117A,BStandbyGasTreat-mentSystemExhaustFansControlandComputerRoomsAirCond.UnitFans.5040403221110sec70secOK507A>B>C>DDieselGeneratorStartingAirCompressors.1082210secRev.27,10/81

Equip-ment0DescritionESFLoads(con't)OperatingDieselGenARatingkWUnit1Unit2EachhEachBusBusTABLE8.3-1(cont'd)NumberConnectedDieselGenCDieselGenBUnit1Unit2Unit1Unit2BusBusBusBusPage3of7LoadinSeuence3Note3DieselGenDUnit1-DBAUnit2-ShutdownUnit1Unit2RequiredTimeFromRequiredBusBusNumberDBANumber'ime1V216to246OV521A>B>C>D120VInstrumentA.C.Dist.PanelsEngineeredSafeguards5ServiceWaterPumpHouseVentilationFans(ESWP)2511111121110sec365sec10secOP162A,BOV101A,BOK112A,BOE145A,BOV118A,BIE219/IE220ControlStructure30ChilledWaterCirculatingPumpsControlStructure20EmergencyOutsideAirSupplyFansControlStructure351WaterChillerCompressorsControlStructureAirCond.UnitHeatingCoilsStandbyGasTreatment5SystemEquip.RoomExhaust.FansStandbyLiquidCont.TankHeater24116130613040I12min70sec3min70sec10sec55sec155sec.1P208A,BStandbyLiquidCont.40321-1PumpsRev.27,10/81 Equip-ment8DescritionESFLoads(con't)OperatingDieselGenARatingkWUnit1Unit2EachhEachBusBusTABLE8.3-1(cont'd)NumberConnectedDieselGenCDieselGenBUnit1Unit2Unit1Unit2BusBusBusBusPage4of7LoadinSeuence3(Note3DieselGenDUnit1-DBAUnit2-ShutdownUnit1Unit2RequiredTimeFromRequiredBusBusNumberDBANumberTime1D653A,B1D663OV144A,BBatteryChargers-250VD.C.StandbyGasTreatmentSystemEquip.RoomHeatingUnitFans75111110sec110sec13secOV103A,BControlStructureAirCond.UnitFans5040170secOP122A,BOC866A,B,OP171A,BControlStructureChillerCompOilPumpsStandbyGasTreatmentSystemHeatersControlStructureChillerCondenserWaterCircPumps1.5201.21901161111160sec10sec60sec1E440A,B,C,DContainmentHydrogenRecombiners751111111261minOE143A,B1V506A,BControlStructureEmergencyOutsideAirSupplyUnitHeatingCoilsEngineeredSafeguardsServiceWaterPumpHouseVentilationSystem(RHRSWP)301111160sec70sec170sec.Rev.27,10/81

TABLE8.3-10ROUTINGTABLECableSeparationGroupRacewaySeparationGroupCablesPermittedinSelectedRacewaysNon-ClassIE-DivIDivIIChanAChanBChanCChanDNon-ClassIEDivIDivIAssociatedDivIIDiyIIAssociatedChan.AChan.AAssociatedChan.BChan.BAssociatedChan.CChan.CAssociatedChan.DChan.DAssociatedYesNoNoNoNoNoNoNoNoNoNoNoNoNoYesYesNoNoYesYesNoNoNoNoNoNoNoNoNoYesYesNoNoYesYesNoNoNoNoNoYesYesNoNoYesYesNoNoNoNoNoNoNoNoNoYesYesNoNoYesYesNoNoNoNoNoNoNoNoNoNoNoNoNoYesYesNoNoNoNoNoNoNoNoNoNoNoNoNoYesYesRPSAlRPSA2RPSBlRPSB2RPSAlRPSA2RPSBlRPSB2YesNoNoNoNoYesNoNoNoNoYesNoNoNoNoYesNote:Todetermineracewaysinwhichcablemayberouted,readacrossfromselectedcableuntil"yes"appears.Columnheadingisracewayrequired.

SSES-FSARTABLE8-3-11CABLEAMPACITIES-15kVCABLES(ALUMINUM)ConductorSizeAmpsinDuctandEmbeddedConduit40~CAmbient40~CAmbientAmpsinConduitinAir65.5oCAmbient3-1/cS4/0AWG350KCMIL500KCMIL750KCMIL1000KCMIL6-1/c44/0AMG350KCMIL500KCMIL750KCMIL1000KCMIL9-1/c44/0AQG350KCMIL500KCMIL750KCMII1OOOKCMIL1/c1952483013724282/c3534505416667643/c47260172088210061/c2323063804695522/c43657571488210383/c6338351037128015071/c1622142663283862/c3054035006177273/c44358572689610553-1/cindicatessingleconductorperphase,and6-1/cindicatestwoconductorsperphase,etc.

SSES-FSAHTABLE8.3-12CABLEANPACITIES-5kVCABLES(ALUMINUM)ConductorSizeAmpsinDuctandEmbeddedConduit400CAmbient40~CAmbientAmpsinConduitinAir655oCAmbient3-1/c44/0AMG350KCNIL500KCNIL750KCNIL1000KCMIL6-1/c54/0AMG350KCMIL500KCNIL750KCNIL1000KCNIL9-1/c44/0AWG350KCNXL500KCM1L750KCMIL1000KCMIL1942/c3513/c4721/c2262483013734292/c4254495436697683/c61760372889010171/c1582983684735422/c29856069288910193/c4328141005129114801/c2092583313913924846227135707049041036 SSES-FSARTABLE8.3-13CABLEAMPACITIESJNTRAY-600VCABLESMaterialConductorSizeAmpsAmps40oCAmbient65.5~CAmbient1-3/c3-1/c1-3/c3-1/cCopperAluminum¹10AMG8AMG6AHG2AMG¹4/0AMG350KCMIL500KCMIL750KCMIL21365210413243369165274371528152536739172348116192260370CONDUCTOR:6-1/c(2-1/cPerPhase)350KCMIL500KCMIL750KCMIL5487421056384520740CONDUCTOR:9-1/c(3-1/cPerPhase)350KCMIL500KCMIL750KCMIL822111315845767801110 SSES-FSARTABLE8.3-14CABLEAMPACITIESINDUCTOREMBEDDEDCONDUIT600VCABLESMaterialConductorSizeAmps40oCAmbientAmps65.5CAmbientCONDUCTOR:1-3/cor3-1/c(OneConduit)Copper410AMG88AMG46AMG42AMG36506611225354679Aluminum44/0AMG350KCMIL500KCNIL750KCMIL174235287360122165201252CONDUCTOR:350KCMIL500KCMIL,.750KCMIL6-1/c(2-1/cPerPhase)(TwoConduit)430524653301367458CONDUCTOR:350KCMIL500KCMIL750KCMIL9-1/c(3-1/cPerPhase)(ThreeConduits)58671'0880410497616 SSES-FSAHTABLE8.3-15CABLEABPACITIESJNCONDUITINAIR600VCABLESMaterialConductorSizeAmps40~CAmbient1-3/c3-1/cAmps65.5CAmbient1-3/c3-1/cCopperAluminum010AMG$8AMG46AMGk2AWG04/0AMG350KCNIL500KCNIL750KCMIL3652691233652691232002743414322536488625364886140192239302 SSES-FSARCHAPTER9.0AUXILIARYSYSTEMSTABLEOFCONTENTS9.1FUELSTORAGEANDHANDLING9.1.1NewFuelStorage9.1.1.1DesignBases9.1.1.1.1SafetyDesignBases9.1.1.1.1.1SafetyDesignBases-Structural9.1.1.1.1.2SafetyDesignBases-Nuclear9.1.1.1.2PowerGenerationDesignBases9.1.1.2FacilitiesDescription9.1.1.3SafetyEvaluation9.1.1.3.1CriticalityControl9.1.1.3.2FuelRackDesign9.1.2SpentFuelStorage9.1.2.1DesignBases9.1.2.1.1SafetyDesignBases9.1.2.1.1.1SafetyDesignBases-Structural9.1.2.1.1.2SafetyDesignBases-Nuclear9.1.2.1.2PowerGenerationDesignBases9.1.2.1.3StorageCapacityDesignBases9.1.2.2FacilitiesDescription9.1.2.3SafetyEvaluation9.1.2.3.1CriticalityControlP~ae9.1-19.1-19.1-19.1-19.1-19.1-19.1-29.1-29.1-39.1-39.1-39.1-59.1-59.1-59.1-59.1.69.1-69.1-69.1-79.1-99.1-99.1.2.3.1~19.1.2.3.1.29.1.2.3.1.39.1.2.3.1.49.1.2.3.1.59.1.2.3.1.6DescriptionofFuelRacksBasicAssumptionsofCriticalityAnalysisCalculationalModelsReferenceCaseCalculationsAbnormalConfigurationSummaryandConclusions9.1-99.1-109.1-10a9.1-10b9.1-10d9.1-10fRev.19,1/81 SSES-FSAR9.1;2.3.2SpentFuelStorageRackDesign9.1.2.3.3InserviceInspection9.1.2.3.3.1TestCouponDescriptionandInstallation9.1.2.3.3.2TestCouponInspection9.1.3SpentFuelPoolCoolingandCleanupSystem9.1-10g9.1-10h9.1-10i9.1-10i9.1-10j9.1.3.19.1.3.29.1.3.39.1.3.4DesignBasesSystemDescriptionSafetyEvaluationInspectionandTestingRequirements9.1-10j'9.1-10k9.1"159.1-169.1.4FuelHandlingSystem9.1.4.1DesignBases9.1.4.2SystemDescription9.1.4.2.1SpentFuelCask9.1.4.2.2CaskCrane9.1.4.2.3FuelServicingEquipment9.1-16a9.1-16a9.1-189.1-189.1-199.1-199.1.4.2.3.19.1.4.2.3.29.1.4.2.3.39.1.4.2.3.49.1.4.2.3.59.1.4.2.3.69.1.4.2.3.79.1.4.2.3.89.1.4.2.3.9FuelPrepMachineNewFuelInspectionStandChannelBoltWrenchChannelHandlingToolFuelPoolSipperFuelInspectionFixtureChannelGaugingFixtureGeneralPurposeGrappleFuelGrapple9;1-199.1-199.1-209.1-209.1-209.1-209.1-219.1-219.1-219.1.4.2.4ServicingAids9.1.4.2.5ReactorVesselServicingEquipment9.1-229.1-229.1.4.2.5.19.1.4.2.5.29.1.4.2.5.39.1.4.2.5.49.1.4.2.5.59.1.4.2.5.69.1.4.2.5.79.1.4.2.5.89.1.4.2.5.99.1.4.2.5.109.1.4.2.5.11ReactorVesselServiceToolsSteamLinePlugShroudHeadBoltWrenchHeadHoldingPedestalHeadNutandWasherRackHeadStudRackDryerandSeparatorSlingHeadStrongbackServicePlatformServicePlatformSupportSteamLinePlugInstallationTool9.1-239.1-239.1-239.1-249.1-249.1-249.1-249.1-259.1-259.1-269.1-269.1.4.2.6In-vesselServicingEquipment9.1.4.2.7RefuelingEquipment9.1-269.1-27Rev.19,1/819~i SSES-FSAR9.1.4.2.7.1RefuelingPlatform9.1.4.2.8StorageEquipment9.1.4.2.9UnderReactorVesselServicingEquipment9.1.4.2.10FuelTransferDescription9.1.4.2.10.1ArrivalofFuelonSite9.1.4.2.10.2'efuelingProcedure9.1.4.2.10.2.1NewFuelPreparation9.1.4.2.10.2.1.1ReceiptandInspectionofNewFuel9.1.4.2.10.2.1.2ChannelingNewFuel9.1-279.1-289.1-289.1-299.1-299.1-299.1-319.1-319.1"32Rev.19,1/819-iia SSES-FSARThispagehasintentionallybeenleftblankRev.19,1/819-iib SSES-FSAR9.1.4'.7.1RefuelingPlatform9.1.4.2.8StorageEquipment9.1.4.2.9UnderReactorVesselServicingEquipment9.1.4.2.10FuelTransferDescription9.1.4.2.10.1ArrivalofFuelonSite9.1.4.2.10.2RefuelingProcedure9.1.4.2.10.2.1NewFuelPreparation9.1.4.2.10.2.1.1ReceiptandInspectionofNewFuel9.1.4.2.10.2.1.2ChannelingNewFuel9.1.4.2.10.2.1.3EquipmentPreparation9.1.4.2.10.2.2ReactorShutdown9.1.4.2.10.2.2.1DrywellHeadRemoval9.1.4.2.10.2.2.2ReactorWellServicing9.1.4.2.10.2.3,ReactorVesselOpening9.1.4.2.10.2.3.1VesselHeadRemoval9.1.4.2.10.2.3.2DryerRemoval9.1.4.2.10.2.3.3SeparatorRemoval9.1.4.2.10.2.3.4FuelBundleSampling9.1.4.2.10.2.4RefuelingandReactorServicing9.1.4.2.10.2.4.1Refueling9.1.4.2.10.2.5VesselClosure9.1.4.2.10.3DepartureofSpentFuelfromSite9.1.4.3SafetyEvaluation9.1-279.1-289.1-289.1-299.1-299.1-299.1-319.1-319.1-329.1-329.1-339.1-.339.1-339.1-349.1-349.1-349.1-349.1-359.1-359.1-359.1"369.1"379.1-389.1.4.3.19.1.4.3.29.1.4.3.39.1.4.3.49.1.4.3.59.1.4.3.69.1.4.3.79.1.4.3.89.1.4.3.9SpentFuelCaskReactorBuildingCraneFuelServicingEquipmentServicingAidsReactorVesselServicingEquipmentIn-VesselServicingEquipmentRefuelingEquipmentStorageEquipmentUnderReactorVesselServicingEquipment9,1-389.1"389.1-389.1-389.1-389.1-399.1-399.1-409.1-409.1.4.4InspectionandTestingRequirements9.1.4.4.1Inspection9.1.4.4.2Testing9.1-409.1-409.1"41Rev.26,9/819iii SSES-FSAR9.1.4.5InstrumentationRequirements9.1-429.1.4.5.19.1.4.5.29.1.4.5.39.1.4.5.4RefuelingPlatformFuelSupportGrappleOtherRadiationMonitoring9.1-429.1-429.1"439.1-439.1,5ReactorBuildingCranes9.1-439.1.5.19.1.5.29.1.5.39.1.5.49.1.5.5DesignBasesEquipmentDesignSafetyEvaluationInspectionandTestingRequirementsInstrumentationRequirements9.1-439.1-459.1-469.1-489.1-499.1.6References9.2WATERSYSTEMS9.2.1ServiceWaterSystem9.1-499.2-19.2-19.2.1.19.2.1.29.2.1.39.2.1.49.2.1.5DesignBasesSystemDescriptionSafetyEvaluationTestsandInspectionsInstrumentationApplications9.2-19.2-19.2-39.2-39.2-39.2.2ReactorBuildingClosedCoolingWaterSystem9.2-49.2.2.19.2.2.29.2.2.39.2.2.49.2.2.5DesignBasisSystemDescriptionlSafetyEvaluationTestingandInspectionRequirementsInstrumentationRequirements,9.2-4..9.2-49.2-6a9.2-79.2-79.2.3TurbineBuildingClosedCoolingWaterSystem9.2-89.2.3.19.2.3.29.2.3.39.2.3.49.2.3.5DesignBasisSystemDescriptionSafetyEvaluationTestingandInspectionRequirementsInstrumentationRequirements9.2-89.2-89.2-99.2-99.2-109.2.4GaseousRadwasteRecombinerClosedCoolingWaterSystem9.2-109.2.4.19.2.4.29.2'.39.2.4.49.2.4.5DesignBasisSystemDescriptionSafetyEvaluationTestingandInspectionRequirementsIn'strumentationRequirements9,2-109.2-109.2-119.2-119.2-12Rev.26,9/819-iv SSES-FSAR91FUELSTORAGEANDHANDLING911NEHFUELSTORAGE9.1.1.1~DesianBases9.1.1.1.1.1SafeteDesignBases-Structurala)Thenewfuelstoraqerackscontaininqafullcomplementof,fuelassembliesaredesignedtowithstandallcrediblestaticanddynamicloadingstopreventdamagetothestructureoftheracks,andthereforethecontainedfuel,andtominimizedistortionoftheracksarrangement.(SeeTable3.9-2(s)).b)Theracksaredesignedtoprotectthefuelassembliesfromexcessivephysicaldamaqewhichmaycausethereleaseofradioactivematerialsinexcessof10CFR20requirementsundernormalconditions.c)Theracksareconstructedinaccordancewith,theQualityAssuranceRequirementsof10CFR50,AppendixB.ThenewfuelstorageracksarecateqorizedasSafetyClass2andSeismicCategoryI.9.1.1.1.1.2SafetvDesianBases-*Nucleara)Thenewfuelstorageracksaredesiqnedandmaintainedwithsufficientspacingbetweenthenewfuelassembliestoassurethatthearray,whenracksarefullyloaded,shallbesubcritical,byatleast5%4Kincludingallowanceforcalculationalbiasesanduncertainties.Inthecalculationsperformedtoassurethatkeff(0.95,thestandardlatticemethods(Ref9.1-1)usedatGeneralElectricareemployed.UnderconditionswhereDiffusiontheoryisvalid,itisusedincalculations(ie.,conditionswherethefuelisfloodedwithwateratadensityofbetween0.7and1.0q/cc).Thenewfuelstoragevaultiscov'eredbyleaktight,metal,removablecovers.Themovementofthesecovers23Rev.23,5J'8191-1 SSES-PSAR23willbeadministrativelycontrolledbyapprovedplantprocedures.ItisassumedthatthestoragearrayisinfiniteinalldirectionsSincenocreditistakenforleakage,thevaluesreportedaseffectiveneutronmultiplicationfactorsareinrealityinfiniteneutronmultiplicationfactors.Thebiasesbetweenthecalculatedresultsandexperimentalresultsaswellastheuncertaintyinvolvedinthecalculationsaretakenintoaccountaspartofthecalculationalproceduretoassurethatthespecifiedkefflimitsaremet.a)Newfuelstorageracksaresuppliedfor30%ofthefullcorefuelloadineachunit.Hewfuelstoraqeracksaredesignedandarrangedsothatthefuelassembliescanbehandledefficientlydurinqrefuelinqoperations.9112PacilitiesDescriptionThelocationofthenewfuelstoraqefacilitywithinthestationcomplexisshowninSection1.2.Eachnewfuelstoragerack'Piqure9.1-1)holdsupto10channeledorunchanneledassembliesinarow.Puelspacing{7inchesnominalcenter-to-centerwithinarack,12inchesnominalcenter-to-centerbetweenadjacentracks)withintherackandfromrack-to-rackwilllimittheeffectivemultiplicationfactorofthearray(keff)tonotmorethan0.95.Thefuelassembliesareloadedintotherackthroughthetop.Bachholeforafuelassemblyhasadequateclearanceforinsertinqorwithdrawingtheassemblychanneledorunchanneled.Sufficientguidanceisprovidedtoprecludedamagetothefuelassemblies.Theuppertieplateofthefuelelementrestsagainsttheracktoprovidelateralsupport.Thedesignoftherackspreventsaccidentalinsertionofthefuelassemblyinapositionnotintendedforthefuel.Thisisachievedbyabuttingthesidesofeachcastingtotheadjacentlyinstalledcasting.Inthisway,theonlyspacesinthenewfuelracksarethoseintowhichitisintendedtoinsertfuel.Theweightofthefue1assemblyissupportedbythelowertieplatewhichisseatedinachamferedholeinthebasecastinq.Rev.23'/8190-2 SSES-II'SARThefloorofthenewfuelstoragevaultisslopedtoadrainlocatedatthelowpoint.Thisdrainremovesanywaterthatmaybeaccidentallyandunknowinglyintroducedintothevault;Thedrainispartoftheliquidradwastecollectionsystem.TheradiationmonitoringequipmentforthenewfuelstorageareaisdescribedinSubsection12.3.4.9.1.1.3SafetyFvaluation9.1.1.3.~1CriticalitvControlThecalculationsofkeffarebaseduponaninfinitegeometricalarranqementofthefuelarray.Thearrangementoffuelassembliesinthefuelstorageracksresultsinkeffbelow0.95inadryconditionorcompletelyfloodedwithwaterwhichhasadensityoflqpercc.GeneralDesignCriterion62requirements(PreventionofCriticalityinFuelStorageandHandlinq)~aremetiffuelisstoredinthedryconditionoriftheabnormalconditionoffloodinq(waterwithadensityoflg/cc)occurs.Newfuelstoragevaultcoverspreventoptimummoderationinthe.newfuelvault.2391.1.3.gNewFuelRackDesignThenewfuelstoragevaultcontains23setsofcastingseachofwhichmaycontainupto10fuelassemblies;thereforeamaximumof230fuelassembliesmaybestoredinthefuelvault.23b)Therearethreetiersofcastingswhicharepositioned.byfixedboxbeams.Thisholdsthefuelassembliesinaverticalpositionandsupportedattheloweranduppertieplatewithadditionallateralsupportatthecenterofgravityofthefuelassembly.c)Thelowercastinqsupportstheweiqhtofthefuelassemblyandrestrictsthelateralmovement;thecenterandtopcastingrestrictslateralmovementonlyofthefuelassembly.-d)Thenewfuelstorageracksaremadefromaluminum.MaterialsusedforconstructionarespecifiedinaccordancewithASTNspecificationsineffectin1970.Thematerialchoiceisbasedonaconsiderationofthesusceptibilityofvariousmetalcombinationstoelectrochemicalreaction.HhenconsideringtheRev.23,5/8191-3 SSES-PSAR23susceptibilityofmetalstogalvaniccorrosion,aluminumandstainlesssteelarerelativelyclosetogetherinsofarastheircoupledpotentialisconcerned.Theuseofstainlesssteelfastenersinaluminumtoavoiddetrimentalgalvaniccorrosioninapredominantlyairenvironment,isarecommendedpracticeandhasbeenusedsuccessfullyformanyyearsbythealuminumindustry.Theminimumcenter-to-centerspacingforthefuelassemblybetweenrowsis11.875inches.Theminimumcenter-to-centerspacingwithintherowsis6.535inches.PuelassemblyplacementbetweenrowsisnotpossibleLead-inandlead-outofthecasting,intherack,providesquidanceofthefuelassemblydurinqinsertionorwithdrawal.Therackisdesignedtowithstandtheimpactforceof.4000ftlbswhilemaintainingthesafetydesignbasis.Thisimpactforcecouldbegeneratedbytheverticalfreefallofafuelassemblyfromtheheiqhtof53feet23h)Thestoragerackisdesignedtowithstandthepull-upforceof4000lbs.andahorizontalforceof1000lbs.Therearenoreadilyavailableforcesinexcessof1000lbsThestoraqerackisdesignedtowithstandhorizontalcombinedloadsupto222,000lbs,wellinexcessofexpected1oads.23Themaximumstressinthefullyloadedrackinafaultedconditionis26Kips.(SeeTable3.9-2(s)).Thisislowerthantheallowablestressk)Thefuelstoraqerackisdesignedtohandlenon-irradiated,lowemissionradioactivefuelassemblies.Theexpectedradiation.levelsarewellbelowthedesignlevels.23Thefuelstoragerackisdesignedusingnon-combustiblematerials.'lantproceduresandinspectionsassurethatcombustiblematerialsarerestrictedfromthisarea.Pirepreventionbyeliminationofcombustiblematerialsandfluidsisreqardedastheprudentapproachratherthanfireaccomodationandtheneedforfiresuppressantmaterialswhichcouldnegatecriticalitycontrolassurances.Therefore,fireaccommodationisnotconsiderednecessary.Rev.23,5/8191-4 SSES-PSARm)Thenewfuelvaultcovers,shicharecarbonsteel,areillustratedinPigure9.l-laThecoversoverlapthecurbandhaveaprotectivelipthatpreventsdirectimpinqmentofwaterintothevault.ThemodifiedI-beamsthatspanthevaultprovidemechanicalsupportanddirectwaterrun-offfromthecovers.23912~SPENTFUELSTORAGE912.1Desian-Bases~tI9~121.1~SfeggDesj,gnBgses9.1Q.1.1.1SafetypesignBases-S~tuctugala)Thehighdensityspentfuelstoragerackscontainingastoragespacesufficientforapproximately372%ofonefullcoreoffuelassembliesaredesignedtowithstandallcrediblest'aticanddynamicloadinqstopreventexcessivedamagetothestructureoftheracks,andthereforethecontainedfuel.{SeeTable3.9-2(s)).b)TheracksaredesignedtoprotectthefuelassembliesfromexcessivephysicaldamagewhichmaycausethereleaseofradioactivematerialsinexcessoflOCFR20reguirementsundernormalorabnormalconditions.c)TheracksareconstructedinaccordancewiththeQualityAssuranceRequirementsof10CPR50,AppendixB.d)ThespentfuelstorageracksarecategorizedasSafetyClass2andSeismicCategoryI.e)ThespentfuelpoolstructureandtheanchoraqesystemtothefuelstorageracksarecategorizedasSeismicCateqoryI.Rev.23,5/819.1-5 SSES-PSAR9.g.2./~1gSafety~ej.gnBosey-g~u23Theeffectiveneutronmultiplicationfactor{Keff)of'thefuelarrayinanycombinationofanystoredpositionsuptoandincludingthefullyloadedcondition,islessthan0.95.Thepositioningoftheneutronpojsoningmaterial{boral}betweeneachadjoiningfuelassembliesassuressubcriticallitybyatleast5%4Kunderallnormalandabnormalconditions.Considerationhasbeengiventothegeometryoftheracks,possibleabnormalloading,andthedensityofthecoolant/moderator.91-.12PowerGenerationDesianBasesThesPentfuelstoragepoolandfuelstorageracksaredesignedtoassure:a)subcriticality,byatleast.5%4Kbc)decayheatfromfuelassemblies/bundlesvillnotadverselyaffectthefuel,racks,orpoolvalls.radiationlevelsvillbe"AsLowAsReasonablyAchieveable".9.1.2.1.3-StoraaeCaoacity-DesianBasesEachreactorunithasaspentfuelpoolvhichhashiqhdensityfuelstorageracksprovidinqamaximumstoragecapacityof2840fuelassemblies.ThesefuellocationsalsoProvidestorageofusedfuelchannels,ifneeded.Inaddition,thefuelstoragerackdesiqnprovidesstorageof10variousreactorinternalcomponents,suchas:23b.codacontrolrodscontrolrodguidetubesdefectivefuelstoragecontainers"out-of-core"shippingcontainersThiscapacityprovideseachreactorunitstoragespaceforoffloadinqone-quarter{1/4)ofacoreforapproximatelyten{10)years,plusonecompletecoreloadoffuel.23Eachreactorunit'sspentfuelpoolisinterconnected,viaatransfercanal.Spentfuelmaybetransferredsafely,throughthistransfercanal,totheotherpool.Thiscapabilityprovidesgreaterflexibilityforthestationsstorageofspentfuel,iftheneedeverarisesRev.23,5/8191-6 SSES-FSAREachreactorunit'sspentfuelpoolwallsalsohavestoragehanqersforonehundredandthirtycontrolrods.Thesehangers,emptyorfullofcontrolrods,donotinterferewiththestorageoffuelortheothermentionedreactorinternalcomponentsinthissection.239.1.g.gFacilitiesDescj.j,ption=ThelocationofthespentfuelstoragefacilitywithinthestationcomplexisshovninFigure1.2-23and1.2-33.Theracksareconnectedtowallembedmentsonthepool-wallsandshowninFigure9.1-2b.Eachpoolhas24racksforastoragecapacityof2840fuelassembliesplus10multipurposecavitiesforstorageofcontrolrods,controlrodguidetubes,anddefectivefuelcontainers.Thespentfuellinerplateis-notastructuralelement{i.e.itisnotloadbearing).Thefuelracksareattachedtothepoolwallsbyembedsandanchors,whicharedesignedforallcredibleloads{SeeTable9.1-7a).Thelinerplateisweldedtotheseembeds.Inaddition,thelinerplateisattachedtothepoolwallsbyasystemofstiffenersandanchors.Theracks,embedsandfuelpoolwallsandlinerplate(includinganchorsystem)aredesignedforallcredibleloads.Aleakdetectionsystemisprovidedforthecollectionofpossibleleakaqethroughthepools'inerplate.Thelinerleakagedetectionsystemissegregatedintosectionsthatcollectleakageatindependentlocationsbelowthepools.'rainagepathsareformedbyweldedchannelsbehindthelinerveldjointsandaredesiqnedtopermitfreegravityflowtomanualtelltalevalves.Thissystemisprovidedto:a)Preventpressurebuildup.behindthelinerplateb)Preventtheuncontrolledlossofcontaminatedpoolwatertoothercleanerlocationswithinthesecondarycontainment,andc)Provideexpedientlinerleakdetectionandmeasurement.BothUnits1and2shareacommoncaskpitthatacceptsthespentfuelshippinqcaskandaccommodatesundervaterfueltransfertothecaskfromeitherunitthroughitsrespectivetransfercanals.MovementsofthecaskontherefuelingfloorarerestrictedasshovnonFigures9.1-16Aand9.1-16BRev.23,5/819.1-7 SSES-FSARTheevaluationsoftheconsequencesofapostulatedaccidentaldropofaspentfuelassemblyandtheshippingcaskarediscussedinChapter15.ThecapabilityofthespentfuelpoolstoragefacilitytopreventmissilesgeneratedbyhighwindsfromcontactingthefuelisdiscussedinSubsection3.5.2.Therackarranqementisdesignedtopreventaccidentalinsertionoffuelbundlesbetweenadjacentracks.Thesix(6)footthickspentfuelpoolwallsprovideradiationshieldingto,25MRem/Hr,measuredontheoutsideofthespentfuelpoolwalls.Normalwatershieldingoverthestoredfuelintheracksisapproximately23feetandissufficienttoprovideshieldingforrequiredbuildingoccupancy.Underthenormalwaterlevelconditions,9~ofwaterisabovetheactivefuelwhenmovedthroughtherefuelingchannel-Thisdepthofwaterprovidesshieldingtoassurelessthan2.5MRem/Hrtotheoperatorsontherefuelingplatform.Accidentaldroppaqeofheavyobjectsintothefuelpoolisprecludedbytheuseofelectricalinterlockstolimitthereactorbuildingcranetraveloverthespentfuelpool,andtheuseofguardrailsandcurbsaroundallpoolsandthereactorwellstopreventfuelhandlingandservicinqequipmentfromfalling'intothepoolsThespentfuelpools,reactorwells,dryer-separatorstoragepools,andcommonshippinqcaskpoolincludingallgatesaredesignedtoSeismicCategoryIrequirements.Allpoolsandwellsarelinedwithstainlesssteeltominimizeleakageandreducecorrosionproductformation.Thespentfuelpoolsarefurtherdesignedsothattheycannotbedrainedtoalevelthatuncoversthetopofthestoredfuel.Thenormalwatershieldingoverthestoredfuelintheracksisapproximately23ftHowever,intheunlikelyeventthatthepoolgatesfailtocontainthepoolwater,thefuelracksandtheircontainedfuelareassuredofmaintaininq.watercoverageatalltimes.CoolinqwatersupplylinesenterthespentfuelpoolfromabovethenormalwaterlevelandareprovidedwithhighpointsiphonbreakingventlinestoQ3preventsiphoningofwaterfromthepools.Thesuperstructureofthereactorbuildingservesasalowleakagebarriertoprovideatmosphericisolationofthespentfuelstoragepoolandassociatedfuelhandlingarea.Thesuperstructureiscomposedofstructuralsteelframing,metalsidinqandmetalroofdeckinq.ThesuperstructureisdesignedtoSeismicCategoryIcriteria.FeaturestolimitpotentialoffsiteexposuresintheeventofsiqnificantreleaseofradioactivityfromthespentfuelhavebeenprovidedBev.23,5/81 SSES-PSABTheseincludeaventilationexhaustsystem,isolationofthesecondarycontainmentonhighradiation,airmixing,andastandbygastreatmentsystemcapableofmaintainingthesecondarycontainmentat1/4-in.watercolumnnegativepressurewithrespecttotheoutsideambientpressure.ThesefeaturesarediscussedinSubsection9.4.2.Theradiologicalco'nsiderationsforthespentfuelstoragearranqementaredescribedinChapter12.9.1.2.3Safety@valuation9,12.3.1CriticalityControl9.1.2.3.l.lDescriptionofFuelRacksThehighdensityfuelstorageracksareamodulardesign.Eachfuelpoolcontains24modules.Twenty-two{22)ofthemodulesprovide120positionsforfuelonarectangular10x12array.Thisarrayismadeupof60squarepoisoncansplacedinacheckerboardpattern.Eachsquarecanisconstructedbyplacingaslabof"Boral"betweenasquaretube-within-a-tube.Thesetubesaresealweldedandanodized.Thenominalwidthofthe<Boral"is5.25inchesandthelengthcontinuessoitoverlapsthefuelpelletstacklengthinthefuelassembliesbyoneinchatboththetopandbottom.23Twoofthe24modulesprovidefuelstoragespacesfor100fuelassembliesina10X10arrayplusfive{5)storagepositionsforothercomponents,each.Thefuelarrayismadeupof50poisoncansplacedinacheckerboardpattern.Thefiveotherstoragepositionsaremadeupof11.5inchID,rightcircularanodizedaluminumtubing.Thetw'enty-four(24)modulesareplacedinthespentfuelstoragepoolinsuchamannertoassurethereisa"Boral"slabbetweeneachadjoiningfuelstorageposition.91.2,3,1.2BasicAssumptionsofC~iticalityAnalysisThegeometryofthespentfuelstoragearrayissuchthatKeffwillbe(0.95.Toensurethatthedesigncriteriaaremet,thefollowinqnormalandabnormalspentfuelstorageconditionswereanalyzed{SeePigure91-3).a)normalpositioninginthespentfuelstoragearray,b)fuelstoredinmulti-purposestoragepositions,23Rev.23,5/8191-9 SSES-PSARc)poolwatertemperatureincreasesto2l20P,d)normalstoragearrayofrupturedfuel,e)abnormalpositioninginthespentfuelstoragearray,f)movingfuelbundleadjacenttostoragearea,g)droppedfuelbundleToensurethattheanalysisfollowedaconservativeapproachandconformedtothegeneralguidelinesofcriticalitysafetyanalysis,thecalculationswereperformedusingthefollowingcriteria:23203~45.6Auniform3.25w/oenrichedU-235distributioninan8x8bundlePreshfuel,naburnablepoisonminorstructuralmembersreplacedbywaterFreshwater9680PTwowaterrodsSupercellcalculationsincludethewatergapandchannelsurroundingtheassembly.CrosssectionsforallothermaterialregionsofthereferencestoragerackcellofPigure2comefromtheappropriteCHEETAH-Bcalculation.a)CORC-BLADE120TwomeshintervalsBorondensityadjusted(densified)toaccommodatearealostincylindricizingboraltopreservethicknessofpoisoncontrolblades.ThefastandthermalfluxspectrageneratedbyperipheralpincellcalculationinCHEETAH-BareinputtoCORC-BLADEwhichinturnyieldstheeffectiveBoroncross-sections.b)PDQ-7Theuseofafourgroupconventionalmodel20Arbitrarymeshselectionsincludetwomeshintervalsperfuelpin,twomeshintervalsforouterwatergapandthreemeshintervalsforhomogenizedAluminumcanandvoidgap.Theuseofinfinitewatercrosssectionsforthepoolwaterinthedroppedassemblyanalysis.Rev.23,5/819.1-10 SSES-PSAR~9~.$~~3Cglc~~aiogygMogelga)TheanalysisoftheSusquehannaspentfuelstoragerackdesiqnusestheCHEETAH-B/COBC-Blade/PDQ-7calculationalmodel.CHEETAH-BistheBSRlatticeversionofNuclearAssociatesInternational's(NAI's)CHEETAHcodewhichisamodifiedversionoftheoriginalLEOPARDcodeandusesamodifiedENDF/B-IIcrosssectionlibrary.CORC-Bladegeneratesdiffusiontheorycross-sectionsforthecontrolpoisoninboilingwaterreactorsandutilizesinitscalculationsaninputneutronspectrumfromthecellcode,CHEETAH-B.ThePDQ-7programisthewell-knownfew-groupspatialdiffusiontheorycode.TheCHEETAH-B/PDQ-7modelwhichisalsoapartoftheIEAHS(LifetimeEvaluationsandAnalysisofHeterogeneousSystems)nuclearanalysisseriesofControlDataCorporation,hasbeenextensivelytestedbymeansofbenchmarkingcalculationsofmeasuredcriticalsaswellascorephysicscalculationsforseveraloperatinqpowerreactors.CHEETAH-Bdeterminesamulti-groupneutronspectrumforagivenhomogeneousmixtureofmaterialsandusesthisspectrumtoweighthecrosssectionsandprovidesaveragefewgroupcross-sections.Thegenerationofmacroscopiceditsoveruserdefinedsub-extraregionsfacilitatespreparationofconstantsfornondepletingregionsoftheassemblyasinputtosubsequentPDQcalcualtions.ThereferencecasestoragerackcellisshowninFigs.9.1-4a64b.Azeroneutroncurrentboundaryconditionisappliedtothefoursidesofthiscelltoproduceaninfinitearrayeffect.ThetwodimensionalPDQ-7referencecasecalculationsaremadeforfourneutronenergygroups,twomeshblocksperfuelpinandazeroaxialbucklingtoaccountfornoaxialleakage.b)TheVerificationModel.TheverificationcalculationemploystheKENO-IV/AMPXmodel.ThebasicneutroncrosssectiondatacomesfromthemasterlibraryofAMPX-a123qroupGAM-THERMOSneutronlibrarypreparedfromENDF/BversionIIdata.TheNITAMLmoduleoftheAMPXprogramisusedtoperformaNordheimintegraltreatmentofthe0-238resonancesaccountingfortheself-.shieldingeffect.TheworkinqlibraryproducedbytheNITAQL/AMPXmoduleretainsthe123groupenergystructureandisuseddirect1ybyKENO-IV.IntheKENO-IVcalculation,eachfuelandwaterrodcellisrepresenteddiscretelyThearrayoptionofKENO-IVisRev.23,5/8191-10a SSES-PSAR23appliedtoarrangetheboxtypesintoamatrixrepresentingthefuelassembly.Thenawaterreflectionregionisaddedtotheoutsideofthismatrixfollowedbythezircaloychannel,water,an'dthealuminumcanister.VoidandBoral"slabregionscompletethereferencecasestoragerackcell.Tosimulatethearrangementoflargenumberofstoragerackunits,andforanon-leakageconditionintheaxialdirections,aspecularreflectiveconditionisappliedtoallsixsidesofthisstoragerackcell.9l.g,3.1~4gefe~enceCaseCalculationsa)23Thereferen'cestoragerackcellis6.625inchessquare(SeePigure9.1-4b).TheAluminumcanisterhasaninsidedimensionof6.156inchesandis0.125inchesthicktoaccommodatean8x8fuelassemblyofdimension5.12inches.Thefuelischanneledin0.120inchthickZircaloy-4.SheetsofBoral,cladwithAluminumhangbetweenadjoiningcanist'ers.-TheBoralsandwichis0.125inchesthickand5.25inchesinwidth.TheBoralCoreisassumedtohaveathicknessof80m'i.lsandaminimumB-10densityof00233g/cm>.BetweentheAluminumCanisterandtheBoralsheetsisavoidspaceof0.047inches.Renal~aot'heReferenceCMeCalculations23ThereferencecaseforthisstudyisaCHEETAH-B/CORC-BLADE/PDQ-7calculationfortheconfigurationatatemperatureof68oPandzerovoids.Thiscalculationresultsinakeffvalueof0.8931.TheKENO-IVresultsgaveanaverageKeffof0.9124+0.0043witha95%confidenceintervalrangingfrom'0.9038to09210c)ChannelEffect23Since"therackmustaccommodatebothchannelandunchanneledfuel,studiesrevealthatthechanneledfuelintherackismore'reactivethantheunchanneledfuel.Takingtheconservativeapproach,thestudyhereinvolveschanneledfuelexceptintheaccidentconditionwhereunchanneledfuelisdropped.Thedecreaseinb,kfromchanneledtounchanneledfuelis0.002inthereferencecaserack.Rev.23,5/819-1-10b SSES-FSAR9.1~,3.l~5SusgughangaSQSBiasCalculations23a)b)Usingthereferencestoraqerackcellgeometry,thetemperatureofthefuelandpoolwatervasvaried.Intermediatestepsat32~P,95P,120~P,150~P,180F,212~Pverestudied,andtheresultsoftheCHEETAH-B/CORC-BLADE/PDQ-7runsshowreactivitydecreasedcontinuouslyastemperatureincreasedfrom320P.VoidEffect23c)Theeffectofboiling(assuminqequalvoidsinsideandoutsidefotherack)isstudiedhyvaryingthevoidsfrom0%to204atatemperatureof2120Pwiththereferencegeometry~andCHEETAH-B/CORC-BLADE/PDQ-7calculations.Thekeffvariationduetovoidsshowsacontinuousdecrease.EnrichmentSensitivity23Thebasicanaly'siswasperformedforanaverageenrichmentof3.25v/oofU-235whichgivesanaverageU-235fuelloadinqof15.7521gramsperaxialcentimeteroftheactivesectionoftheassembly.Forthepurposeofdeterminingtheeffectoffuelloadingchange,theanalysisfoundthat,intherangeofinteresttotheSusquehannaspentfuelpoolfacility,anenrichmentreactivitycoefficientof0.0084k/O.lv/oU-235canbeapplied.d)EffectofBoronTheBoralslabvhichseparatestvoadjacentfuelassemblieshasanominalthicknessof0.125inches,nominalvidthof'5.250inches,andanoveralllengthorheightof12feet8inches.ThenominalBoralcorethicknessis80milsTheminimumB-10loadingintheBoralcoreis'guaranteedbythemanufacturertobeO.OQ3g/cm~whichyieldsaB-10numberdensityof0.006905xl0atoms/cm~(basedon80milsthickness).AlthoughtheanalysisvasbasedonaminimumB-10loading,astudyofborondensityrevealedanincreasein,reactivityof0.0054kiftheborondensitywasloweredfrom70%to65%butonlya0.0034kdecreaseifitvasraisedfrom70%to75%.TheeffectofreducinqtheBoralvidthvasalsoexamined.Ther'esultsyieldareactivityvariationofapproximately0.0034k/0.125inchofBoralinastudyofvidthsfrom5.12inchesto5.455inches.Thechangeduetothe-0.03inchminimumtoleranceonBoralvidthis+0.0014k.Rev.23,5/8191-10c SSES-FSARThecriticalitycalculationsarebasedontheassumptionthatthecoreoftheBoralslabscontainsahomogeneousmixtureoffineBC.andaluminumpowder.Thecomputercodesusedforthesecalculationscontainnoprovisiontotakeintoaccountdirectlytheself-shieldingeffectduetotherandomdistributionofBCgrainsoffinitesizesinthemixture.Basedonahomogeneousmixture,theneutronattenuationfactorforaBoralslabof80milthicknesswith0.0233q/cm~B-10loadingwascalculatedtobe0.969.Neutronattenuation.studiesforBoralslabsidenticaltothosefurnishedontheSusquehannapro]ectweremade.Theyhavedeterminedthatusinganattenuationfactorof0.963minimumassuresaB-10arealdensityof0.0233qm/cm~minimum.~Usinqcalc'ulationaltechniquesutilizingaB-10loadingof0.0233qm/cm~producinqanattentuationfactorof0.963yieldedaBoralcorethicknessof0.055+0.003inches.Analysisshowsthedifferencebetweenanattentuationfactorof0.969(whichwascalculatedfromthereferencecaseBoralcorethicknessof0.080"),and0.963yieldsa4K=0.003fortheSusquehannaspendfue.lstorageracks.Therefore,theBoralacceptancecriteriaiseitheraminimumR-10loadingof0.0233gm/cm~oraminimumneutronattentuationfactorof0963f)ChangeinPitch/~itchsensitivity)23Thereactivityeffectofmechanicaltolerancechangescausedbystructural,fabrication,installation,andseismicconditionscanbeconservativelydeterminedbythepitch.sensitivitystudy.Thecalcualtionswerecarriedoutona0.125.inchincrement.Thepitchreactivity'coefficientwasdeterminedtobeabout+0.0074k/0.125inchpitchreductionintherangefrom6.875inchpitchto6.375inchpitch.Based.onatotaldimensionalaveragepositionaltoleranceof0.256<<,abias4K=-0.014isincludedinthefinalreactivitysummary.qBoralWidthReductionThenominalwidthoftheBoralslabis5.25".Thechangeinreactivityduetothe-0.03ttminimumtoleranceonthiswidthis4K=,-0.001.Rev.23,5/819.1-10d SSES-PSAR6x9-OneBorealSggb/posingTosimulatetheeffectofonemissingBoralslab,a6x9arraywasdescribedinaPDQ-7modelusingreferencegeometryandcrosssections.With1internalboralslabmissingtheKeffwas0.8981oranincreaseof0.005Akfromthereferencecase.OffCenterPositionina-Thereactivityeffectofoff-centerpositioningduetoimproperloadingorsomenaturalphenomenoncanbeconservativelydetermined.Thef'ourassemblyclusterwithassembliesloadedoffcenterintheircavitiesandpreferentiallyleaningtowardthecenteroftheclusterwasanalyzed.Thezeroneutroncurrentboundaryconditionappliedtotheouterboundariesofthis2x2arrayproducestheeffectofaninfinitearrayofthesefouroff-centerassemblyclusters.Withareducedpitchof6.5inchesandmodifiedcrosssectionswhichreflectthechangingspectraleffectofadditionalwaterornowaterad)acenttothechannelthekeffwas0.8897.Anoff-centeredloadingofassembliesdecreasesthereactivitysonoadverseeffectoccurs~RackNoduleJunction/noBoralgAtthe)unctionoffourrackmodules,fourfuelassembliesinthecornerlocationscouldfaceeachotherwithoutbeingseparatedbyBoralslabs,dependingontherackorientation.Thestructuraldesignprovidesaminimumseparationof9.375inchesforthesefourassemblies.Studyshowsthatthisconfigurationwillcausenoadversereactivityeffect.Stora'geofFreshFuelUndergistConditionsThestoraqeoffreshfuelundermistorfoamconditionswasconsidered.AseriesofCHEETAH-B,CORC-BLADE,PDQ-7calculationswasmadeforthebasecasegeometryat680Fbyvaryingvaluesofwaterdensity(.15to.75qm/cm~).TwoKENO-IVverificationrunsweremadeforwaterdensitiesof.15and.25gm/cm~;theresultingKeff'sare05301+0.0023and0.5958+0.0029respectively.Theresultsindicateanegativereactivitycoefficientfordecreasingthewaterdensity.Thusitmaybeconcludedthatfreshfuelmaybestoredunderdryormistconditionswithnofurthersafetyimplications.23'/819.1-10e SSBS-FSARTheconsequencesofdroppinganassembly'outsidetherackandparalleltoanassemblylocatedintheoutermostrowofthestoragearraywereanalyzed.TheassemblydroppedduringhandlinqisassumedtolodgeparalleltoanassemblyinanoutercavitywithnoBoralslabseparatinqthepar'allelassemblies.Theanalysisproducedanincreaseinreactivitylessthan+0.5%Akina4x4arraywith8inchesofpoolwaterintheoutercavity9.1-2-3.17SUMMARYANDCONCLUSIONSXZDiffus'nTheoResultsTheresultsofthecriticalityanalysisoftheproposedstoragerackforSusquehannaSpentFuelaresummarizedbelow:PDOResults:KeffReferenceCaseDimensionalandPositionalTolerance,AKBoronWidth.Effeet,AKTemperatureEffect,AKVariationonBoralAccept.VoidEffect,AKAdjustedKeffforSusquehanna089300140.00100040003gegytive0.915MonteCarloResultsandtheCalculationalBiasTheKENO-IVverificationcalculationforthenominalcaseyieldsaKeffvalueof0.912+0.004with95%confidenceintervalrangingfrom0.904to0.920.TheKFNOmodelhasaslightlynegativebias(AK=-0.001)~deducedfromNAI'sbenchmarkingcalculations.Comparinqtheupperbound95$confidenceintervalresultoftheKENOnominalcaseandthePDQruns,andbasedontheKENObenchmarkinqresults,acalculationalbiasof0026inAKshouldbeappliedtotheadjustedPDQKeff.SummaryofJesuits23Keff(PDQ)adjustedCalculationalbiasFinalKeffDesiqnLimit,KeffCalculationalMarginforSusquehannaSESKeffAKKeffKeffAK09150.02609410.9500009ThefinalKeffvalue(0.941)includesallthedesignspecificationtolerances,modelbias,andthe95$confidenceintervalfromtheK/NOca+culatiogs.However,thenegativeRev.23'/8191-10f SSES-PSARreactivityeffect{-0.5%Ak)duetothepresenceofU-234andtheparasiticstructurematerials(i.e.spacerqrids)ineachassembly,andthepositivereactivityeffectsduetothepossibleabsenceofaBoralplateandanassemblydropaccidentarenotincluded.9.1.2.3.2HighDensi~tPuelStor~aeRackDesiqnSpentfuelstorageracksprovideaplaceinthespentfuelpoolforstoringnewandspentfuel.Thehighdensityspentfuelrackscontainaneutron-absorbingmediumofnaturalboroncarbide(B4C)inanaluminummatrixcorecladwithll00seriesaluminum.ThisneutronabsorberismarketedunderthetradenameofBoral.Boralslabsaremanufacturedunderaproprietaryqualifiedprocess.ThisprocessassuresauniformminimumB-10densityof0.0233qm/cm<intheBoralslabsutilizedintheconstructionoft,heSusquehannaRacks.Benchmarkmeasurementsofthoseslabsyi'eldaneutronattenuationfactorof0.963minimum.23Therackmanufacturer,assuresthatcorrectBorallocationsandquantitiesw'erepresentinaccordancewiththedesignandprocurementdocumentsthrougharigorousqualityassuranceproqramevaluatedandapprovedbytheAE.TheconstructionoftherackassuresthatalladjacentstoragecavitiesareseparatedbyaBoralslab.TheBoralissealedwithintwoconcentricsquare,aluminumtubesreferredtoaspoisoncans.Piqure9.1-2ashowsthestructuraldesign.Eachrackmoduleconsistsofsixbasiccomponents:1)topgridcasting2)bottomgridcasting3)poisoncans4)'ideplates5)cornerangleclips6)adjustablefootassembliesEachcomponentisanodizedseparately.Thetopandbottomgridcastinqaremachinedtomaintainanominalfuelpitch(center-to-centerspacing)of6.625inches.Mithinthesemachinedareas,inacheckerboardpattern,Boralpoisoncansarenested.Thisensuressmoothentryandremovaloffuelassembliesineachfuelcavity.ThisdesignalsoassuresBoralisbetweeneachstoredfuelassembly.TocompletetheRev.23,5/819-1-10g SSES-PSARmodule,thegridsareboltedand/orrivetedtogetherbyfourcorneranglesandfoursideshearpanels.Adjustablefootassembliesarelocatedatthefourcornersofeachmoduletoallowadjustmentforvariationsofthepoolfloorlevelof+0.75inches.Tomaintainaflat,uniformcontactarea,thelevelingscrewbearingpadsarefreetopivotEachmodelislevelwitheachothermoduleatthetop.Thereisnominallyseveninchesofclearancefromthebottomofthemoduletothepoolfloor.Thisassuresadequateclearanceforcoolingwatertoentereachfuelcell,andthroughnaturalconvection,keepeach'fuelassemblycool.Eachmoduleisboltedtoeachother.Theperimetermoduleshaveseismicbracinqtoembedmentsinthepoolwallassuring23structura1inteqritythrougha11anticipateddynamicloads.TheweightofthefuelassemblyissupportedinthechamferedholeinthebottomcastingNominalcenter-to-centerfuelspacingbetweenmodulesis9.375inches.a)Thesquarepoisoncansarepositionedinatopandbottomgridinacheckerboardpattern.Eachpoisoncanispressureandvacuumleaktestedforinteqrity.23b)TheseismicrestraintsfromtherackstothewallembedmentsconsistentirelYofaweldedstainlesssteelconstruction.Toreduceanyqalvaniccorrosion,inconelpinsareusedbetweenthewallseismicrestraintsandracks.Theonlyinterfaceofeachmodulewiththepoolfloorarefourstainlesssteelpadsattachedtotheracklevelinqscrews.A1/4inchABSplasticmaterialisvolumetricallycapturedbetweenthispadandthealuminumlevelingscrewtopreventgalvaniccorrosionwiththepoolfloorstainlesssteellinerplate.c)Allmaterialsusedforconstructionarespecifiedinaccordancewiththe1972issueoftheASTNspecifications,asapplicahie.Traceabilityofmajorrackcomponentstoaheatlotaremaintained.Inaddition,thesuppliers'ualityassurance-qualityarecontrolprogramaudited,bytheAEanduser,ineffecttoensurethattheBoralhastherequiredminimumB4CdensityanduniformB4Cdistributionineachsheet.Boraltraceabilityismaintained.d)Adimensional,visual,andfunctional{includingtestingwithadummyfuelassembly)inspectionoftheracksisperformedpriortoshipmentbytherackmanufacturer.Rev.23,5/819.1-1011 SSES-FSARe)Therackmaterialshavenosignificantdegradationduetothetotalradiationdosesexpectedinthespentfuelpooloverthedesignlife.f)Theminimumfuelspacingwithinarackassemblyis6.500Theminimumfuelspacingbetweenracksis9.125'~.Fuelassemblyplacementbetweenmodules'orcavitiesofamodulearenotpossible.23q)Theracksaredesiqnedtowithstandtheloadingunderthefollowinqloadingconditions:dead,live,jammedfuelassembly,droppedfuelassembly,thermal',OBEandDBEseismic,SRV,andLOCAorChuqqing.h)Theracksareinstalledinthepoolonfourtensionandcompressionquadrantstoeliminatethermalloadsresultingfromconfinedexpansion.i)Aninserviceinspection(ISZ)programwillbeineffectthroughoutthelifeoftherackstoassurequalityofthepoisonedracksismaintained;asdescribedinSection91.2.339.1.2.3.3InsegyiceXnspectionSixteentestcouponsaretoserviceinspectionprogram.andtheothersealed,wouldof1,3,5,10,1520,30/beprovidedforanon-goingin-Twocoupons,oneofwhichisventedberemovedandanalyzedatintervalsand40yearsafterinstallation.9.1.2.3.3.1TestCouponDescriptionandInstallationAtypicaltestcouponisashortenedproduction-typecansimilartothespentfuelrackPoursheetsofBORALneutronpoisonareencapsulatedbetweentheinnerandoutercans.Afterassembly,theentirecouponisanodized.Thesealedcansarepressure-checkedthroughaholeintheoutercanThisholeisthenweldedtopreventwaterfromcontacting23theBORAL.Theunsealedcanswillalsohavea13/64inchholewhichwillnotbewelded.Twotestcoupons,oneventedandtheotherunvented,aretiedtoqetherwithahanger.Thishanqercontainsahandlingeyesothattheycanbehungontheperi.meterofthespentfuelrack.9.1.2.3.3.2TestCouponInspectiona)Thetestcouponassemblywillberemovedfromthespentfuelpool~Rev.23,5/8191-10i SSES-FSARh)ThetestcouponwillbedrainedoftheentrappedwaterfromtheventedcouponintoabeakerandthepHdetermined.c)Theventedcouponwillbedisassembledsufficientlysothattheneutronabsorbercanbeextracted.d)Upondisassembly,notewheth'erthereiswaterinthesealedcoupon.Ifso,performstep¹Babove.e)Visualinspectionoftheneutronabsorberplateswillbenotedandanydiscoloration,corrosiondamageorphysicaldamagewillberecorded.Ifcorrosionorphysicaldamageisnoted,recorddepthandextentofdamage.f)Theplateswillbe'ashedinamildabrasiveanddetergentsolution,thenrinsedincleanwaterandalcohol.Theplateswillbedriedina250'ovenfor3.hours,followedby3hoursina600<Foven.q)Eachplatewillbeweighedanddetermineweightchange.h)Reperformstep¹e.i)Alldatawillberecorded,includingpHvalues,forfuturecomparison.913SPENTFUELPOOLCOOLINGANDCLEANUPSYSTEM9.1.3.1DesianBasesTheFuelPoolCoolinqandCleanupSystem(FPCCS)isdesiqnedwiththefollowingconsiderations:a)Maintainingthefuelpoolwatertemperaturebelow125oFTheheatloadisbaseduponfillingthepoolwith2840fuelassembliesfromnormalrefuelingdischargesandtransferredtothefuelpoolwithin160hoursaftershutdown.Tables9.1-2aand9.1-2bshowonedischargescheduleandheatloadforthiscondition.23b)Duringanemergency,heatload(EHL)condition,oneRHRpumpandheatexchangerareavailableforfuelpoolcoolinq.TheEHLconditionoccurswhenthespentfuelrackscontain2840fuelassembliesincludingafullcoredischargedtothepoolwithin250hoursaftershutdown(controlrodsinserted).Tables9.1-2cand9.1-2dshowthedischargescheduleandheatloadforthisconditionforUnits1and2.TheRHRcoolingsystemwillmaintainthefuelpoolwatertemperature,Rev.23,5/819.1-103 SSES-PSAR'(withtheheatloadof3.26x10'BTU/hr)atorbelow125~FwithorvithoutassistancefromthePPCCS.MhenthedecayheatloadofthespentfueldropstothelevelforwhichthePPCCSisdesigned,theRHRsystemmaybedisengaged.If,underEHLconditions,theRHRcoolingsystemandthePPCCSarenotavailableforcooling,thewaterinthefuelpoolvillbegintoboilinabouteight(8)hours.23c)RedundantSeismicCategoryIEmergencyServiceMaterconnectiontoeachpoolareprovidedtoallowformakeupofevaporative.lossesintheeventoffailureofthePPCCS.ThiseventisdiscussedindetailinAppendix9-A.Thepoolvillbegintoboil25hoursafterlossofcooling.Themakeuplineprovidessufficientflowtomaintainthefuelpoolwaterlevelapproximately23feetabovethetopofthefuelstorageracks.Tomaintainthewaterclarityandqualityinthepoolsasfollowstofacilitateunderwaterhandlinqoffuelassembliesandtominimizefissionandcorrosionproductbuildupthatposearadiologicalhazardtooperatinqpersonnel:Conductivity<3mircromho/cmat25OCpHChloride(asCl)Heavyelements(Fe,Cu,Hq,Ni)5.3-7.5at250C<0.5ppm<0.1ppm23Totalinsolubles<1ppm91,32~SstemDescriptionEachreactorunitisprovidedwithitsownPPCCSasshownonFiqures9.1-5and9.1-6.Thesystemcoolsthefuelstoragepoolwaterbytransferringthedecayheatoftheirradiatedfuelthroughheatexchangerstotheservicewatersystem.Materclarityandqualityinthefuelstoragepools,transfercanals,reactorwells,dryer-separatorpools,andshippingcaskpitismaintainedbyfilteringanddemineralizing.Rev.23,5/819.1-10k SSES-FSARTheFPCCSconsistsoffuelpoolcoolingpumps,heatexchangers,skimmersurgetanks,filterdemineralizers,associatedpiping,valves,andinstrumentation.Rev.23,5/819.1-101 SSES-FSAR~EuimentDemcr~itionTable9.1-1showsthedesiqnparametersoftheFPCCSequipment.TheseismicandqualitygroupclassificationsoftheFPCCScomponentsarelistedinSection3.2.Dneskimmersurgetankforeachunitcollectsoverflovvaterfromskimmerdrainopeninqswithadjustableveirsatthewatersurfaceelevationofeachpoo1andwell.Thecommonshippingcaskpitwateroverflowstobothunits,'kimmersurgetanks.Wavesuppressionscuppersalongtheworking.sideofthefuelpoolsalsodraintotheskimmersurgetanks.Theskimmeropeningsinthepoollinersareprotectedwithaviremeshscreentopreventfloatingobjectssuchasthesurfacebreakerviewingaidsfromenteringthesurgetanks.Theadjustableweirplatesaresetaccordinqtotherequiredcoolingflow,desiredflowpattern,andwatershieldingneeds.TheskimmersurgetankprovidesasuctionheadforthefuelpoolcoolinqpumpsandtheRHRpumps,andabuffervolumeduringtransientflowsinthenormallyclosedloopFPCCS.Xtprovidessufficientlivecapacityforthreedays'ormalevaporativelossfromthefuelpoolvithoutmakeupfromthedemineralizedvatersystem.kremovableobjectretent'ionscreeninthetankisaccessiblethroughtheflanqedtanktop.Tanklevelindicationandalarmsonacontrolpanelontherefuelingfloorand/orthevicinityofthefuelpoolcoolingpumpsannouncewhentheremotemanualmakeupvalvesmustbeopenedorvaterdrainedfromthesystem.Thefuelpoolcoolingpumpsarestoppeduponalowtanklevelsiqna1.Threefuelpoolheatexchangerspipedinparallelarelocatedinthereactorbuildingbelowthesurgetankbottomelevation.Theshellsideissubjectedtothestaticheadoftheskimmersurgetanklevelonly.Thisisaminimumof5psilowerthanthetubesideservicewaterpressure,thusminimizingthepossibilityofradioactivecontaminationoftheservicewatersystem(seeSubsection9.2.1)fromatubeleak.Thenumberofheatexchangersinservicedependsonthedecayheatloadfromirradiatedfuelinthespentfuelpool.Thecommoninletandeachheatexchangeroutlettemperatureisrecordedandhightemperaturealarmedonalocalcontrolpanel.ThreefuelpoolcoolinqpumpspipedinparallelareplacedinserviceinconjunctionwiththeheatexchangersTheytakesuctionfromtheheatexchanqersanddevelopsufficient,headtoprocessapartialsystemflovthroughthefilterdemineralizers9.1-11 SSES-FSARandtransferitcombinedwiththebypassflowtothediffuserpipesatthebottomofthepools.Thepumpcontrols,.dischargepressureindicators,flowindicator,andalarmsforlowflowandlowdischargepressureareprovidedonalocalcontrolpanel.ThepumpstripindividuallyuponlowNPSH.Threefuelpoolfilterdemineralizersarepipedinparallel.OnefuelpoolfilterdemineralizerisnormallyassociatedwitheachFPCCSwiththethirdoneinstandby.Thedesignflowperfilterdemineralizerislessthanthetotalsystemflow.Partofthecooledwateristhereforebypassingatamanuallyadjustablerate.Iftheinlettemperatureshouldexceed150~F,thefilterdemineralizermustbemanuallybypassedtopreventdegradationoftheionexchangeresin.Thefilterdemineralizerunitsaredesignedtooperatewithwaterflowingatnominal2gpm/sqftfilterarea.Powderedion-exchanqeresinorresinmixedwi.thSolka-Floeisusedasafiltermedium.Thefilterelementsarestainlesssteel-mesh,mountedverticallyinatubesheetandreplaceableasaunit.Ventingispossibj.efromtheupperheadofthefiltervesseltothereactorbuildingventilationsystem.Theupperheadisremovableforinstalla'tionandreplacementofthefilterelements.Thefilterdemineralizerunitsarelocatedseparatelyinshieldedcells.Sufficientclearanceisprovidedtopermitremovalofthefilterelementsfromthevessels.Eachcellcontainsonlythefilterdemineralizerandconnectinqpiping.Allinlet,outlet,recycle,vent,drainvalves,andtheholdingpumpsarelocatedinaseparateshieldedroom,toqetherwithnecessarypipinqandheaders,instrumentelements,andcontrols.Penetrationsthroughshieldinqwallsarelocatedsothatshieldingrequirementsarenotcompromised.Apost-strainerisprovidedintheeffluentstreamofeachfilterdemineralizertolimitthemigrationofthefiltermaterial.Thepost-strainerelementiscapableofwithstandingadifferentialpressuregreaterthantheshut-offheadforthesystem.Theionexchanqeresinisamixtureoffinelyground,300meshorless,cationandanionresinsinproportionsdeterminedbyservice.Thecationresinisastronglyacidicpolystyrene'withadivinylbenzenecross-linkage.TheresinissuppliedinfullyregeneratedhydrogenformTheanionresinisastronglybasic,TypeI,quaternaryammoniumpolystyrenewithadivinylbenzenecross-linkage.Theresinissuppliedinafullyregeneratedhydroxideform9.1-12 SSES-FSARTheresinisreplacedwhen+hepressuredropisexcessiveortheionexchangeresin'sexhausted.Backwashingandprecoatingoperationsarecontrolledfromalocalcontrolpanelinthereactorbuildinq.Thespentfiltermediumisbackwashedfromtheelementswithinstrumentairandcondensateandtransferredviaareceivinqtanktothewastesludgephaseseparatorinthe.radwastebuilding.Newionexchangeresinismixedinaresintankandtransferredasaslurrybyaprecoatpumptothefilterwhereitisdepositedonthefilterelements.AseparateprecoattankisprovidedtoallowprecoatingofthefilterelementswithSolka-Floeonlyorpriortodepositinqionexchangeresins.Bothtanksarefur'nishedwithanagitatorfor'ixingthefiltermediumslurries.TheprecoatsubsystemiscommontobothFPCSandmayalsobeusedforchemicalcleaningofthefilterdemineralizers.Theholdingpumpassociatedwitheachfilterdemineralizermaintainscirculationthroughthefilterintheintervalbetweentheprecoatinqoperationandthereturntonormalsystemoperation,orupondecreaseinprocessflowbelowapointwheretheprecoatingmayfalloffthefilterelements.ThefilterdemineralizersarecontrolledfromapanelinthereactorbuildingofUnit1.Differentialpressureandinletandoutletpressureinstrumenta+ionareprovidedforeachfilterdemineralizerunittoindicatewhenbackwashisrequired.Suitablealarms,differentialpressureindicators,andflowindicatinqcontrollersareprovidedtomonitortheconditionofthefilterdemineralizerandtheposteffluentstrainers.Thebackwashandprecoatoperationsarepush-buttoninitiated,automaticallysequencedoperations.Thefilterdemineralizerinletandoutlet.conductivityisrecordedand0.1micromho/cmintheoutletisalarmedonthereactorbuildingsamplestationcabinet.Fuelpoolhiqhandlowlevelalarmswithadjustablesetpointsovertheskimmerweirrangeandtemperatureindicationandhighalarmsareprovidedonarefuelinqfloorcontrolpanel.Ahighrateofleakaqethroughtherefuelingbellowsassemblies,drywelltoreacto-wellseals,orthefuelpoolandshippingcaskpitdoublegatesisalarmedonarefuelingfloorcontrolpanel.Alllocalalarmsareduplicatedindividuallyorasgroupalarmsinthemaincontrolroom.9.1-13 SSES-FSAR~0evationalDeac~ritionNDuringnormalplantoperation,thefuelpoolsareisolatedfromthereactorwellsandthecommonshippingcaskpit.Thefuelpoolcoolingpumpscirculatethepoolwaterinaclosedloop,takinqsuctionfromtheskimmersurgetankthroughtheheatexchanqersanddischarqinqapartialflowthroughthefilterdemineralizer,thebalancethroughabypasslinebacktothefuelpooldiffusers.Afterthereactorhasbeen'shutdown,thevesselheadandonerefuelinggateisremoved.Tworefuelingwaterpumps(seeSubsection9.2.10)transfe-condensatefromtherefuelingwaterstoragetankthroughdiffusersintothereactorwellanddryer-separatorpool.ThewaterlevelrisesfromtheBPVflangeelevationtothefuelpoolwaterlevelinapproximately4hr.Thesecondrefuelingqateisthenremovedandrefuelingoperationscontinued.Astheheatloadincreaseswithadditionalspentfuelelementsbeingtransferredfromthereactorcoretothespentfuelpool,additionalpumpsandheatexchangersoftheZPCCSareputintoservicetomeetthedesignobjectives.Partofthecooledwatercanbe'ivertedtothereactorwellthroughthefillingdiffusersassistingtheRHRsysteminremovingdecayheatrisingfromthecoretothewatersurface.At,thistimetwofuelpoolfilterdemineralizersmaybeusedinconjunctionwiththereactorwatercleanupsystemtomaintainrequiredwaterqualityinthereactor,reactorwell,dryer-separatorpool,andfuelpool.Afterrefuelinghasbeencompleted,therefuelingwaterpumpstransferthewaterfromthereactorwellanddryer-separatorpoolthroughacondensatedemineralizerbacktotherefuelingwaterstoragetank.Thisisaccomplishedinapproximately4hrGravitydrainingoftherefuelinqwatertotherefuelingwaterstoragetankispossibleatalowerflowrate.Asthedecayheatfromthespentfueldecreaseswithtime,thenumberofoperatinqpumpsandheatexchangersmaybereducedtokeepthe,fuelpoolbelowthemaximumnormaldesigntemperature..Theshippingcaskstoragepitisfilledanddrainedinthesamemannerasthereactorwellwithinapproximatelyonehourwithonerefuelinqwatertransferpump.Theshippingcaskstoragepitisinterconnectedwiththefuelpoolduringcaskloadingoperationsofspentfuelforoffsitedisposal.Asmallstreamoffuelpoolcoolinqwatermaybedivertedfromthefuelpoolcoolingpumpstothefillingdiffuseroftheshippinqcaskpittoremovedecayheatandwaterimpuritiesduringcaskloadingoperations.Thiswaterreturnsoveraskimmerweirtotheskimmersurgetanks.DurinqperiodsofhigherthanMNHLgenerationinthefuelpool,eq,storingofafullcoreofirradiatedfuelshortlyafter9.1-14 SSES-FSARshutdown,theRHRsystemisusedtoassisttheFPCCSindissipatingthedecayheat.OneRHBpumptakessuctionfromanintertielinetotheskimmersurgetankanddischargesthroughoneRHRheatexchangertotwoindependentdiffusersatthefuelpoolbottom.Makeupwaterto".eplenishevaporativeandsmallleakagelossesfromthepoolsisprovidedfromthedemineralizedwaterstoragetankintotheskimmersurgetankbyopeningaremotemanualvalve.ASeismicCategoryIlinefromeachofthetwoemergencyservicewaterloopsisconnectedtotheRHRintertiediffuserlinesofeachfuelpool,allowingforemergencymakeupduringhoilingofthepoolvater.Themanualsupplyvalves.intheseemergencymakeuplinesareaccessibleapartfromtherefuelingfloor.9.1.3.3SafetyEvaluationTheFPCCSisdesignedtomaintainthefuelpoolwaterat1250Fundernormalrefuelingconditions(dischargescheduleTable9.1-2a)withallthreeheatexchangersandpumpsinoperation.Underthisconditionananalysiswasmadeofthenaturalcirculationcoolingofamaximumpowespentfuelassemblyinthemostrestrictivenaturalcirculationflowloopinthepentfuelpool.Themaximumcoolanttemperatureattheoutletofthefuelassemblywacalculatedtobe1690Fwhilethemaximumcladtemperaturewascalculatedtohe1880F.E!ndertheeconditionsthereisnoboilinginanyfuelassembly.Underfullcoreunloadconditions,(dischargescheduleTable9.1-2c)thehulkwatertemperaturecannotbomaintainedbelowthedesiredmaximumvalueof125~Fhythespentfuelpoolcoolingsystemalone.ItisthereforenecessarytoconnecttheRHRsystemtothespentfuelpool.Whenthisisdonethepooltemperaturecanbemaintainedwellhelow1250F.AllpipingandequipmentsharedwithorconnectingtotheHHRintertieloopareSeismicCategoryI,QualityGroupC,andcanbeisolatedfromanypipingassociatedwiththenon-SeismicCategoryIQualityGroupCfuelpoolcoolingsystem.ProvisionstominimizeandmonitorleakagefromthefulpoolaredescribedinSubsection9.1.2.3.Makeup.orevaporativeandsmallleakagelossesfromthefuelpoolisnormallysuppliedfromthedemineralizedwatersystemtotheskimmersurgetanksofeachunit.Theintermittentflowrateisapproximately50qpmtoeachsurgetank.Rev.19,1/819.1-15 SSES-FSABIASeismicCategoryImakeupof30qpmisprovidedhya2in.linefromeachemergencyservicewater(ESM)looptotheRHRfu<.1pooldiffusers,thusprovidingredundantflowpathsfromareliablesourceofwater.ThedesignmakeupratefromeachESAloopisbasedonreplenishingtheboil-offfromtheNNHLineachfuelpoolfor30daysfollowingthelossoftheFPCCScapacity.Thetimerequiredtoreachboilingafterlossofloadingisapproximately25hours.Thewaterlevelinthespentfuelstoragepoolismaintainedataheightwhichissufficienttoprovidehieldingfor.requiredbuildingoccupancyRadioactiveparticulatesremovedfromthe.fuelpoolarecollectedinfilterdemine-alizerunitinshieldedcells.Forthesereasons,theexposureof.stationpersonneltoradiationfromthespentfuelpoolcoolingandcleanupsystemisnormallyminimal.Furtherdetailsofradiologicalcon.idcrationsaredescribedinChapter12.AnevaluationoftheradiologicaleffectofaboilingfuelpoolispresentedinAppendix9A.91.34InspectionandTestingRequirementsNospecialtestsarerequiredbecausea+leastonepump,heatexchanger,andfilterdemineralizerarocontinuouslyinoperationwhilefuelisstoredinthepool.Theremainingcomponentsareperiodicallyoperatedtohandleincreasedheatloadsduringrefueling.Thepoollinerleakdetectiondrainvalvesareperiodicallyopenedandtheleakrateestimatedbythevolumetricmethod.ordyepressuretestingfromhehindthelinerplatemayheperformedtolocatealinerplateleak.GasRoutinevisualinspectionofthesystemcomponents,instrumentation,andtroublealarmsisprovided'toverifysystemoperability.ComponentsandpipingotheFPCCSdesignedperASNEDoilerandPressureVesselCode,SectionIII,Class3arein-servicei>>spectedasdescribedinSection6.6.Thesystemwillbepreoperationally+etedinaccordancewiththerequirement.ofChapter14.Rev.19,1/81 SSESFSAR9.1.4.1DesiqnBasesThefuel-handlingsystemisdesignedtoprovideasafeandeffectivemeansfortransportingandhandlingfuelfromthetimeitreachestheplantuntilitleavestheplantafterpost-irradiationcooling.Safehandlingoffuelincludesdesignconsiderationsformaintainingoccupationalradiationexposuresaslowaspracticableduringtransportationandhandling.DesigncriteriaformajorfuelhandlingsystemequipmentisprovidedinTables9.1-2through9.1-4whichlistthesafetyclass,qua.litygroup,andseismiccategory.%hereapplicable,theappropriateASME,ANSI,IndustrialandElectricalCodesareidentified.AdditionaldesigncriteriaisshownbelowandexpandedfurtherinSubsection9.1~4.2. ThisPageHasBeenIntentionallyLeftBlankRev.95/7g91-16b SSES-FSARThetransferofnewfuelassembliesbetweentheuncratingareaandthenewfuelinspectionstandand/orthenewfuelstoragevaultisaccomplishedusingthereactorbuildingcraneortherefuelingfloorjibcranesequippedwithageneralpurposegrapple.Thereactorbuildingcraneauxiliaryhoistorarefuelingfloorjibcraneisusedwithageneralpurposegrappletotransfernewfuelfromthefuelinspectionstandorthenewfuelvaulttothefuelstoragepool.Fromthispointon,thefuelwillbehandledbythetelescopinggrappleontherefuelingplatform.Therefuelingplatformincludingrefuelingplatformrails,clamps,andclipsareSafetyClass2'andSeismicClass1fromastructuralstandpointinaccordancewith10CFR50,AppendixAandB.Allowablestressduetosafeshutdownearthquakeloadingis120percentofyieldor70percentofultimate,whicheverisleast.AdynamicanalysisisperformedonthestructuresusingtheresponsespectrummethodwithloadcontributionsresultingfromeachofthreeearthquakesbeingcombinedbytheRMSprocedure.Workingloadsofthe'platformstructuresareinaccordancewiththeAISCManualofSteelConstruction.Allpartsofthehoistsystemsaredesignedtohaveasafetyfactoroffivebasedontheultimatestrengthofthematerial.Aredundantloadpathisincorporatedinthefuelhoistssothatnosinglecomponentfailurecouldresultinafuelbundledrop.Maximumdeflectionlimitationsareimposedonthemainstructuresto,maintainrelativestiffnessoftheplatform.WeldingoftheplatformisinaccordancewithAWSD14-1orASMEBoilerandPressureVesselCodeSection9.GearsandbearingsmeetAGMAGearClassificationManualandANSIB3.5.MaterialsusedinconstructionofloadbearingmembersaretoASTMspecifications.Forpersonnelsafety,OSHAPart1910-179isapplied.ElectricalequipmentandcontrolsmeetANSICI,NationalElectricCode,andNEMAPublicationNo.ICl,MGl.Thegeneralpurposegrappleandthemaintelescopingfuelgrapplehaveredundanthooks.Thefuelgrapplehasanindicatorwhichconfirmspositivegrappleengagement.Thefuelgrappleisusedforliftingandtransportingfuelbundles.Itisdesignedasatelescopinggrapplethatcanextend,totheproperworklevelandinitsfullyr'etractedstatestillmaintainsadequateshieldingoverfuel.Toprecludethepossibilityofraisingradioactivematerialoutofthewater,thecablesontheauxiliaryhoistsincorporateanadjustable,removalstopthatwilljamthehoistcableagainstsomepartoftheplatformstructuretopreventhoistingwhenthefreeendofthecableisatapresetdistancebelowwaterlevel.Rev.27,10/Sl9.1-17 SSES-FSARInaddition,redundantelectricalinterlocksareapartoftheqrapple.Provisionofaseparatecaskloadingpool,capableofbeingisolated.fromthefuelstoraqepool,willeliminatethepotentialaccidentofdroppingthecaskandrupturingthefuelstoragepool.RefertoChapter15foraccidentconsiderations.914.gSystemDescr~itionTable9.1-5isalistingoftypicaltoolsandservicingequipmentsuppliedwiththenuclearsystem.Thefollowingparagraphsdescribetheuseofsomeofthemad'ortoolsandservicingequipmentandaddresssafetyaspectsofthedesignwhereapplicable.9.1.4.2.1SoentFuelCaskThespentfuelcaskisusedtotransferspentrqactorfuelassembliesfromthespentfuelpoolviathecaskpittoafuelstorageorfuelreprocessingfacility.Thecaskmayalsobeusedforoffsiteshipmentofirradiatedreactorcomponentssuchascontrolrodblades,in-coremonitors,etc.Themaximumloadedweightand,hence,thecapacityofthecaskisdeterminedbythe125tonsliftinqcapacityofareactorbuildingcrane.Themaximumloadingheight,ie,heightof.theopencaskinthestoragepit,isdeterminedbythedepthoftheshippingcaskpitfromtheqatebottom.Thisallowsforaconstantwaterdepthoverthefuelintransitfromthereactortothefuelpoolandintotheshippinqcask.Thecaskisdesignedtodissipatethemaximumallow'ableheatloadfromcontainedirradiatedfuelbynaturalcon'vectionatleastfromthetimethecaskpitisdraineduntilthecoolingsystemonthetransportvehicleisconnected.Itfurtherallowsunderwaterreplacementofthelidandotheroperationsthatmayposeunacceptableradiationhazardstopersonnel.Considerationsfacilitatingdecontaminationofthecaskaregiveninthedesign.ThedesignofthecaskmeetsallapplicableregulationsoftheDepartmentofTransportationand10CFR71withrespecttoshippinqoflargequantitiesoffissilematerials.Atpresent,nospecifictypeofcaskhasbeenchosen.Overthelifetimeoftheplant,severaldifferentsizesandmodelsmaybeusedwhichthefuelhandlinqfacilitiescanaccommodate.Rev.17,9/8091-18 SSES-FSAR91.4.2.2CaskCraneSeeSubsection9.1.5fordiscussionofreactorbuildingcranes.9.1.4.23FuelServicingEguigmentThefuelservicingequipmentdescribedbelowhasbeendesignedinaccordancewiththecriterialistedinTable91-2.9.14.2.3.1FuelPr~emachineThefuelpreparationmachine,Figure9.1-7,ismountedonthewallofthefuelstoragepool,.andisusedforstrippingresuablechannelsfromthespentfuelandforrechannelingofthenewfuel.Themachineisalsousedwiththefuelinspectionfixturetoprovideanunderwaterinspectioncapability,andwiththedefectivefuelstoragecontainertocontainadefectivefuelassemblyforstrippingofthechannel.Thefuelpreparationmachineconsistsofaworkplatform,aframe,andamoveablecarriage.Theframeandmoveablecarriagearelocatedbelowthenormalwaterlevelinthefuelstoragepool,thusprovidingawatershieldforthefuelassembliesbeinghandled.Thefuelpreparationmachinecarriagehasapermanentlyinstalledup-travel-stoptopreventraisingfuelabovethesafewatershieldlevel.Themoveablecarriageisoperatedbyafootpedalcontrolledairhoist.9.1.4.2.3.2NewFuelInspectionStandThenewfuelinspectionstand,Figure9.1-8,servesasasupportforthenewfuelbundlesunderqoingreceivinginspectionandprovidesaworkingplatformfortechniciansengagedinperformingtheinspection.Thenewfuelinspectionstandconsistsofaverticalguidecolumn,aliftunittopositiontheworkplatformatanydesiredlevel,bearinqseatsandupperclampstoholdthefuelbundlesinposition.9.1-19 SSES-FSAR9.14.233ChannelBoltWrenchThechannelboltwrench,Figure9.1-9,isamanuallyoperateddeviceapproximately12feet'inoveralllength.Thewrenchisusedforremovinqandinstallingthechannelfastenerassemblywhilethefuelassemblyisheldinthefuelpreparationmachine.Thechannelboltwrenchhasasocketwhichmatesandcapturesthechannelfastenercapscrew.91.4.2.34ChannelHandlincnToolThechannelhandlingtool,Figure9.1-10,isusedinconjunctionwiththefuelpreparationmachinetoremove,install,andtransportfuelchannelsinthefuelstoragepool.Thetooliscomposedofahandlinqbail,alock/releaseknob,extensionshaft,angleguides,andclamparmswhichengagethefuelchannel.Theclampsareactuated(extendedorretracted)bymanuallyrotatinglock/releaseknob.Thechannelhandlingtoolissuspendedbyitsbailfromaspringbalanceronthechannelhandlingboomlocatedonthefuelpoolperiphery9.1.4.2.3.5FuelPoolSipgerThefuelpcolsipper,Figure9.1-11,providesameansofisolatinqafuelassemblyindemineralizedwaterinordertoconcentratefissionproductsinrelationtoacontrolledbackqround.Thefuelpoolsipperconsistsofacontrolpanelassemblyandasippingcontainercovertothetank.9.1.4.2.3.6guel~ZnsectionfixtureThefuelinspectionfixture,Figure9.1-12,isusedinconjunctionwiththefuelpreparationmachinetopermitremoteinspectionoffuelelements.Thefixtureconsistsoftwoparts:(1)alowerbearingassembly,and(2)aguideassemblyattheupperendofthecarriage.Thefuelinspectionfixturepermitstherotationofthefuelassemblyin=thecarriage,and,inconjunctionwiththeverticalmovementofthecarriage,providescompleteaccessforinspection.91-20 SSES-FSAR9.l.4.2.3..7ChannelGaugingFixture1Thechannelgaugingfixture,Figure9.1-13,isago/no-gogaugeusedtoevaluatethe'conditionofafuelchannel,priortorechannelinqorwhenoneisdifficulttoinstall.Thechannelqauqinqfixtureconsistsbasicallyofaframe,qauginqplateandqauginqblock.Thegaugingplateisshimmedtocorrespondtotheoutsidedimensionofausablefuelchannel.Theqauqinqblockconformstotheinsidedimensionoflowerendofausablefuelchannel.Thechannelqauqinqfixtureisinstalledintheverticalposition,betweenthetwo.uelpreparationmachinesandhangsfromthefuelstoragepoolcurb.9142.3.8GeneralPurposeGrappleThegeneralpurposegrapple,Figure9.1-14,isahandlingtoolusedgenerallywiththefuel.Thegrapplecanbeattachedtothereactorbuildinqauxiliaryhoist,jibcrane,andtheauxiliaryhoistsontherefuelinqplatforms.Thegeneralpurposegrappleisusedtoremovenewfuelfromthevault,placeitintheinspectionstand,andtransferittothe.fuelpoolItcanbeusedtohandlefueldurinqchanneling.9.14.2.3.9FuelGrappleThefuelgrappleisatelescopingmastwithadoublehookgrappleheadusedtoliftandorientfuelbundlesforcoreandstoragerackplacement.Itisatriangular,opensectionedmastconstructedoftubularstainlesssteel.Mastsection-to-sectionguidanceisprovidedbynylonbearingpads.Verticalmotionissuppliedbyadualwireropecablehoist,whichprovidesaredundantloadpath,andismountedonthe.RefuelinqPlatformMainTrolley.Hoistcableattachmenttotheinner-mostgrapplesectionisachievedth"ougharockerarm/clevisassemblywhichallowsforloadeguilizationinthehoistwireropes.Aredundanthookgrappleheadfeaturingindividualhookengageswitchesandaircylindersconsistsofengageswitcheswiredinseriesandinterlockedinamannertopreventraisinaafuelbundlewitheitherhookdisengaged.Figure9..1-20outlinesthemainfuelgrapple.9.1-21 SSES-FSAR9.14.2.4ServicingAidsGeneralareaundervaterliqhtsareprovidedvithasuitablereflectorforillumination.Suitablelightsupportbracketsarefurnishedtosupport.thelightsinthereactorvesseltoallowtheliqhttobepositionedovertheareabeingservicedindependentoftheplatform.T.ocalareaunderwaterlightsaresmalldiameterlightsforadditionalillumination.Droplightsareusedforilluminationvhereneeded.Aradiationhardeneddesignedportableundervaterclosedcircuittelevisioncameraisprovided.Thecameramaybeloveredintothereactorvesseland/orfuelstoragepooltoassistintheinspectionand/ormaintenanceoftheseareas.Thecameraiscapableofpitchinqninetydegreeswhichallowsinfinitescanningofthreehundredandsixtydegrees,solidangleAgeneralpurpose,plasticvievingaidisprovidedtofloatonthewatersurfacetoprovidebettervisibility.Thesidesofthevievinqaidarebrightlycoloredtoallowtheoperatortoobserveitintheevent.offillingwithwaterandsinking.Aportable,submersibletype,underwatervacuumcleanerisprovidedtoassistinremovingcrudandmiscellaneousparticulatematterfromthepcolfloors,orthereactorvessel.Thepumpandthefilterunitarecompletelysubmersibleforextendedperiods.Thefilter<<packaqe<<iscapableofbeingremotelychanged,andthefiltersvillfitintoastandardshippingcontainerforoff-siteburial.Fuelpooltoolaccessoriesarealsoprovidedtomeetservicing-requirements.Afuelsioperisprovided.Thisistobeusedtodetectdefectivefuelassembliesduringopenvesselperiodswhilethefuelisinthecore.Thefuelsipperheadisolatesindividualfuelassembliesbysealingthetopofthefuelchannel=andpumpinqwaterfromthebottomofthefuelassembly,throughthefuelchannel,toasamplingstation,andreturntotheprimarycoolantsystem.Aftera>>soaking>>periodawatersampleisobtainedandisradio-chemicallyanalyzed.9.14.2.5ReactorVesselServicing~EuipmentTheessentialityandsafetyclassifications,.thequalitygroup,andtheseismiccategoryforthisequipmentarelistedinTable9.1-3.Pollowinqisadescriptionoftheequipmentdesignsinreferencetothattable.9.1-22 SSES-FSAR9.1.4.2.5.1ReactorVesselServiceToolsThesetoolsareusedwhenthereactorisshutdownandthereactorvesselheadisbeingremovedorreinstalled.Toolsinthisqroupare:StudHandlingToolStudWrenchNutRunnerStudThreadProtectorThreadProtectorNandrelBushingWrenchSealSurfaceProtectorStudElongationiieasurinqRodDialIndicatorElongationNeasurinqDeviceHeatGuideCapThesetoolsaredesignedfora40yearlifeinthespecifiedenvironment.Liftingtoolsaredesignedforasafetyfactorof5orbetterwithrespecttotheultimatestrengthofthematerialused.Whencarbonsteelisused,itiseitherhardchromeplated,parkerized,orcoatedwithanacceptablepaint.9.1.4.2.5.2SteamLinePlugThesteamlineplugsareusedduringreactorrefuelingorservicinq;theyareinsertedinthesteamoutletnozzlesfrominsideofthereactorvesseltopreventaflowofwaterfromthereactorwellintothemainsteamlinesduringservicingofsafetyreliefvalves,mainisolationvalves,orothercomponentsofthemainsteamlines,whilethereactorwaterlevelisraisedtotherefuelinqlevel.ThesteamlineplugdesignprovidestwosealsofdifferenttypesEachoneisindependentlycapableofholdingfullheadpressure.Theequipmentisconstructedofnon-corrosivematerials.Allcalculatedsafetyfactorsare5orgreater.Theplugbodyisdesiqnedinaccordancewiththe"AluminumConstructionManual"bytheAluminumAssociation.9.1.4.2.5.3ShroudHeadBoltWrenchThisisahandheldtoolforoperationofshroudheadbolts.Itisdeisqnedfora40yearlife,itismadeofaluminumtobeeasytohandleandtoresistcorrosion.Testinghasbeenperformedtoconfirmthedesign.9.1-23 SSES-FSAR91.4.2.5.4HeadHoldingPedestalThreepedestalsareprovidedformountingontherefuelingfloorforsuppcrtinqthereactorvesselhead.The,pedestalshavestudswhichengagethreeevenlyspacedstudholesintheheadflange.Theflanqesurfacerestsonreplaceablewearpadsmadeofaluminum.Whenrestingonthepedestals,theheadflangeisapproximately3feetabovethefloortoallowaccesstothesealsurfaceforinspectionandO-ringreplacement.Thepedestalstructureisacarbonsteelweldment,coatedwithanapprovedpaint.IthasabasewithboltholesformountingittotheconcretefloorThestructureisdesignedinaccordancewith"TheManualofSteelConstruction"byAISC.9.1.4.2.5.5HeadNutandWasherRackTheRPVheadnutandwasherrackisusedfortransportingandstorinqupto6nutsandwashers.Therackisa,boxshapedaluminumstructurewithdividerstoprovideindividualcompartmentsforeachnutandwasher.Eachcornerhasalugandshackleforattachinga4-legliftingsling.Therackisdesignedinaccordancewiththei~AluminumConstructionManual"bytheAluminumAssociation,andforasafetyfactorof5.9.142.5.6HeadStudRackTheheadstudrackisusedfortransportingandstorageof8reactorpressurevesselstuds.Itissuspendedfromtheauxiliarybuildingcranehookwhenliftingstudsfromthereactorwelltotheoperatingfloor.Therackismadeofaluminumtoresistcorrosion.91.4.25.7~DrerandS~earatorSl~inThedryerandseparatorslingisaliftingdeviceusedfortransportinqthesteamdryerortheshroudheadwiththesteamseparatorsbetweenthereactorvesselandthestoragepools.Theslingconsistsofacruciformshapedstructurewhichissuspendedfromahookboxwithfourwireropesandturnbuckles.Thehookbox,withtwohookpins,engagesthereactorbuildingcranesisterhook.Ontheendofeacharmofthecruciformisasocket9.1-24 SSES-FSARwithapneumaticallyoperatedpinforengagingthefourlifteyesonthesteamdryerorshroudhead.Theslinqhasbeendesignedsuchthatonehookpinandonemainbeamofthecruciformiscapableofcarryingthetotalloadandsothatnosinglecomponentfailurewillcausetheload,todroporswinguncontrollablyoutofanessentiallylevelattitude.Thesafetyfactorofllliftinqmembersis5orbetterinreferencetotheultimatebreakingstrengthofthematerial.Thestructureisdesiqnedinaccordancewith"TheManualofSteelConstruction<<byA.ISC.Thecompletedassemblyisprooftestedat125percentorgreaterofratedloadandallstrucutralweldsaremaqneticparticleinspectedafterloadtest.TheRPVheadstronqbackisusedforliftingthepressurevesselhead.ItisacruciformshapewithfourequallyspacedliftingpointsontheendsofthearmsInthecenterithasahookboxwhichenqaqeswithtwopinstothereactorbuildingcranesisterhook.ThestronqbackisdesiqnedsuchthatonelegofthecruciformwillsupporttheratedloadandsuchthatnosinglecomponentfailurewillcausetheloadtodroporswinguncontrollablyoutofanessentiallylevelattitudeThestrucutreisdesignedinaccordancewith<<TheManualofSteelConstruction"byAISCAllweldinqisinaccordancewiththeASMEBoilerandP'ressureVesselCodeSectionIX.Asafetyfactorof.5orgreaterinreferencetotheultimatematerialstrengthisusedforthedesign.Thecompletedassemblyisprooftestedat125percentratedload.Aftertheloadtest,allstructuralweldsaremagneticparticleinspected.91.0.25.9ServicePlatformTheserviceplatformisprovidedtofacilitatemaintenanceworkonreactorinternals.Itprovidesaworkingplatformforpeopleandhandguidedtools,anditalsohasprovisionforsupportingajibcrane.Theserviceplatformissupportedbyfourwheelswhichrunonacirculartrackrestingonthevesselflangeandconfinedbythevesselclosurestuds.Theserviceplatformisnon-SeismicClassIequipment,andithasbeendesignedfor0.75qhorizontaland0.00gvertical.Thephysicalsizeofthedeviceissuchthatitcannotenterthereactorpressurevessel.9.1-25 SSES-FSARThestructuredesignisinaccordancewith"TheManualofSteelConstruction"byAISC.MaterialsareinaccordancewithASTMStandards.fieldingisinaccordancewithASMESectionIXorAMSDl.1structura1welding.TheelectricalsystemisinaccordancewithANSI-ANSClNationalElectricalCode,andNEMAPublicationsNo.IC1andMGl.PaintingandsurfacepreparationisinconformancewithSSPCandincompliancewithReg.Guide1.54.9.1.4.25.10ServicePlatformSuortTheserviceplatformsupportservesasasealingsurfaceprotectorforthereactorvesselflange,andasatrackfortheserviceplatformIthascontinuousverticalsupportonthevesselflange,andhorizontallyitisconfinedbythevesselstudsbystrappingtotheouteredgeoftheflange.TheserviceplatformsupportismadefromaluminumandallweldingisdoneinaccordancewithARSCodeD1.0.ThesteamlinepluginstallationtoolissuspendedfromthebuildingcraneauxiliaryhookfortranspoztingandinstallingthesteamlineplugsinthesteamlinenozzlesofthereactorvesselThistoolismadeofaluminum,itisdesignedforasafetyfactorof5,andinaccordancewith"AluminumConstructionManual"bytheAluminumAssociation.TheinstrumentstrongbackattachedtotheReactorBuildingcraneauxiliaryhoistisusedforservicingneutronmonitordzytubesshouldtheyrequirereplacement.Thestrongbacksupportsthedrytubeduringtransfertothevessel.Thein-coredrytubeisthendecoupledfromthestrongbackandisguidedintoplacewhilebeingsupported.bytheInstrumentHandlingTool.Finalin-coreinsertionisaccomplishedfrombelowthereactorvessel.Theinstrumenthandlingtoolisattachedtotherefuelingplatformauxiliaryhoistandisusedfozremovingandinstallingfixedin-coredrytubesaswellashandlingneutronssourceholdersandtheSourceRangeMonitor/IntermediateRangeMonitcrdzytubes.Eachin-cozein'strumentationguidetubeissealedbyan0-ringon.-theflangeandintheeventthatthesealneedsreplacing,anin-9.1-26 coreguidetubesealingtoolisprovided.Thetoolisinsertedintoanemptyguidetubeandsitsonthebeveledguidetubeentryinthevessel.MhenthedrainontheMaterSealCapisopened,hydrostaticpressureseatsthetool.Theflangecanthenberemovedforsealreplacement.Theauxiliaryhoistontherefuelingplatformisusedwithappropriategrapplestohandlecontrolrods,fluxmonitordrytubes,sources,andotherinternalsofthereactor.Interlocksonboththegrapplehoistsandauxiliaryhoistareprovidedforsafetypurposes;therefuelinginterlocksaredescribedandevaluatedinSection7.6.9.1.4.2.7Refueling~Eu~imentFuelmovementandreactorservicingoperationsareperformedfromaplatformwhichspanstherefueling,servicing,andstoragecavities.9.1.4.2.7.1RefuelingPlatformTherefuelingplatformisagantrycranewhichisusedtotransportfuelandreactorcomponentstoandfrompoolstorageandthereactorvessel.Theplatformspansthefuelstorageandvesselpoolsonrailsbeddedintherefuelingfloor.Atelescopingmastandgzapplesuspendedfromatrolleysystemi"usedtotransportandorien+fuelbundles,fozcore,storagerack,orshippingcaskplacement.Controloftheplatfcrmisfromanoperatorstationonthemaintrolleywithapositionindicatingsystemprovidedtopositionthegrappleovercorelocations."Theplatformcontrolsystemincludesinterlockstoverifyhookengagementandgrappleload,preventunsafeoperationoverthevesselduringcontrolrodmovements,"andlimitverticaltravelofthegrapple.Two1000poundcapacityauxiliaryhoists,onemaintrolley'moun+edandoneauxiliarytrolleymounted,areprovidedforservicingsuchasX.PRNreplacement,fuelsupportreplacement,jetpumpservicing,andcontrolrodreplacement.Thegrappleinitsfullyretractedpositionprovides8feet6inchesminimumwatershieldingovertheactivefuelduringtransit.9.3-27 SSES-FSAR9.1.4.2.8StoraeEuimentSpeciallydesignedequipmentstorageracksareprovided.AdditionalstorageequipmentislistedonTable9.1-5.Forfuelstorageracksdescriptionandfuelarrangement,seeSubsections9.1.1and9.1.2.Defectivefuelassembliesareplacedindefectivefuelstoragecontainers,asnecessary.Thesecontainersarestoredinthemulti-purposestoragecontainerwhichisapartofthehighdensityspentfuelracks.Thesemaybeusedtoisolateleakingordefectivefuelwhileinthefuelpoolandduringshipping.Defectivefuelstoragecontainerscanbepickedupandmovedwithafuelbundleinthem.Channelscanalsoberemovedfromthefuelbundlewhileinadefectivefuelstoragecontainer.TheFuelPoolSippermaybeusedforout-of-corewetsippingatanytime.Theyareusedtodetectadefectivefuelbundlewhilecirculatingwaterthroughthefuelbundleinaclosedsystem.Thecontainerscannotbeusedfortransportingafuelbundle.Thebailonthecontainerheadisdesignednottofitintothefuelgrapple.9.1.4.2.9UnderReactorVesselServicinEuimentTheprimaryfunctionsoftheunderreactorvesselservicingequipmentareto:(1)removeandinstallcontrolroddrives,(2)servicethermalsleeveandcontrolrodguidetube,(3)installandremovetheneutrondetectors.Table9.1-4liststheequipmentandtoolsrequiredforservicing.Thecontrolroddrivehandlingequipment,whichispoweredelectrically,isusedfortheremovalandinstallationofthecontrolroddrivesfromtheirhousings.ThisequipmentisdesignedinaccordancewiththerequirementsofNationalElectricalManufacturersAssociation(NEMA,MG-l,MotorandGeneratorStandards),AmericanNationalStandardsInstituteStandards(ANSIC-l,NationalElectric.Code),OccupationalSafetyandHealthAct(OSHA-1910.179),AmericanInstituteofSteelConstruction(AISC-ManualofSteelConstruction).Allliftingcomponentsareequippedwithadequatebrakesorgearingtopreventuncontrolledmovementuponlossofpowerorcomponentfailure.Theequipmenthandlingplatformisalsopoweredelectricallyandprovidesaworkingsurfaceforequipmentandpersonnelperformingworkintheundervesselarea.Itisapolarplatformcapableof360rotation.ThisequipmentisdesignedinaccordancewiththeRev.27,10/819.1-28 SSES-FSARapplicablerequirementsofOSHA(Vol.37,No.202,Part191ON),AISC,ANSI-C-l,(NationalElectricCode).Thespringreel.isusedtopullthein-coreguidetubesealorin-coredetectorintothein-coreguidetubeduringin-coreservicing.Thethermalsleeveinstallationtoollocks,unlocks,andlowersthethermalsleevefromthecontrolroddriveguidetube.Thein-coreflangesealtestplugisusedtodeterminethepressureintegrityofthein-coreflange0-ringseal.Itisconstructedofnon-corrosivematerial.Thekeybenderisdesignedtoinstallandremovetheantirotationkeythatisusedonthethermalsleeve.9.1.4.2.10FuelTransferDescrition9.1.4.2.10.1ArrivalofFuelonSiteNewfuelarrivesintherailwaybayofthereactorbuildingUnit1eitherbyrailcarortruck.TheaccessdoorsareclosedtomaintainthesecondarycontainmentasrequiredbyTechnicalSpecifications.Unloadingofthemetalshippingcontainersisdonebytheauxiliaryhoistofthereactorbuildingcrane.9.1.4.2.10.2RefuelinProcedureTheplantrefuelingandservicingsequencediagramisshowninFigure9.1-15.FuelhandlingproceduresaredescribedbelowandshownvisuallyinFigure9.1-16throughFigure9.1-19.TheRefuelingFloorLayoutisshowninFigure9.1-4andcomponentdrawingsoftheprincipalfuelhandlingequipmentareshowninFigures9.1-7through9.1-14andFigure9.1-20.Thefuelhandlingprocesstakesplaceprimarilyontherefuelingfloorabovethereactor.TheprincipallocationsandequipmentareshownonFigure9.1-16.Thereactor,fuelpool,andshippingcaskpoolareconnected-toeachotherbyslots,asshownat(A)and(B).Slot(A)isopenduringreactorrefueling,andslot(B)isopenduringspentfuelshipping.Atothertimestheslotsareclosedbymeansofblocksandgates,whichmakewater-tightbarriers.Thehandlingof-newfuelontherefuelingfloorisillustratedinFigure9.1-17.Thetransferofthebundlesbetweenthecrate(C)Rev.26,9/819.1-29 SSES-FSARandthenewfuelinspectionstand(9)and/orthenewfuelstoragevault(E)isaccomplishedusing5-tonauxiliaryhoistofthe~reactorbuildingcraneorahalf-tonfloormountedrefuelingjibcraneequippedwithageneral-purposegrapple.Thefuelbundlecannotbehandledhorizontallywithoutsupport,sothecrateisplacedinanalmostverticalpositionbeforebeingopened.Thetopandfrontofthecrateareopened,andthebundlesremovedinaverticalposition.Theauxiliaryhoistofthereactorbuildingcraneorthejibcranearealsousedwithageneral-purposegrappletotransfernewfuelfromthenewfuelvaultorinspectionstandtoastoragerackpositioninthefuelpool.Fromthispointon,thefuelishandledbythetelescopinggrappleontherefuelingplatform.Thestorageracksinboththevaultandthefuelpoolholdthefuelbundlesorassembliesvertical,inanarraywhichissubcriticalunderallpossibleconditions'henewfuelinspectionstandholdsoneortwobundlesinverticalposition.TheInspector(s)rideupanddownonaplatform,andthebundlesaremanuallyrotatedontheiraxes.Thustheinspectorscanseeallvisiblesurfacesonthebundles.Thegeneral-purposegrapplesandthefuelgrappleoftherefuelingplatformhaveredundanthooks,andanindicator.which"confirmspositivegrappleengagement.Therefuelingplatformusesagrappleonatelescopingmastforliftingandtransportingfuelbundlesorassemblies.Thetelescopingmastcanextendtotheproperworklevel;and,initsfullyretractedstate,maintainsadequatewatershieldingoverthefuelbeinghandled.ThereactorrefuelingprocedureisshownschematicallyinFigure9.1-18.Therefuelingplatform(G)movesoverthefuelpool,lowersthegrappleonthetelescopingmast(H),andengagesthebailonanewfuelassemblywhichisinthefuelstoragerack.Theassemblyisliftedclearoftherack,andmovedthroughslot(A)andovertheappropriateemptyfuellocationinthecore(J).Themastthenlowerstheassemblyintothelocation,andthegrapplereleasesthebail.Theoperatorthenmovestheplatformuntilthegrappleisoveraspentfuelassemblywhichistobedischargedfromthecore.Theassemblyisgrappled,lifted,andmovedthroughslot(A)tothefuelpool.Here.itisplacedinoneofthefuelprepmachines(K).Anoperator,usingalong-handledwrench,removesthescrewsandspringsfromthetopofthe'channel.Thechannelisthenheld,whileacarriagelowersthefuelbundleoutofthechannel.TheRev.26,9/819.1-30 SSES-FSARchannelisthenmovedaside,andtherefuelingplatformgrapplecarriesthebundleandplacesitinastoragerack.Thechannelhandlingboomhoist,(L),movesthechanneltostorage,ifappropriate.Inactualpractice,channelinganddechannelingmaybeperformedinmanysequences,dependingonwhetheranewchannelistobeused,orausedchannelistobeinstalledonanewbundleandreturnedtothecore.Achannelrackisconvenientlylocatedneartothefuelprepmachines,fortemporarystorageofchannelswhicharetobereused.Toprecludethepossibilityofraisingradioactivematerialoutofthewater,redundantelectricallimitswitchesareincorporatedintheauxiliaryhoistsoftherefuelingplatformandthejibcranehoist,andinterlockedtopreventhoistingabovethepresetlimit.Inaddition,thecablesonthehoistsincorporateadjustablestopsthatwilljamthehoistcableagainstthehoiststructure,whichpreventshoistingifthelimitswitchinterlocksystemshouldfail.Whenspentfuelistobeshipped,itisplacedinacask,asshowninFigure9.1-19.Therefuelingplatformgrapplesafuelbundlefromthestoragerackinthefuelpools,liftsit,carriesitthroughslot(B)intotheshippingcaskpool,andlowersitintothecask,(M).Whenthecaskisloaded,thereactorbuildingcranesetsthecaskcover(N)onthecask.Afterdrainingtheshippingcaskpool,thecaskisdecontaminatedandloweredthroughtheopenhatchways,(P),ontothetruckorrailcarintherailwaybayatgradelevel.Provisionofaseparatecaskloadingpool,capableofbeingisolatedfromthefuelstoragepool,eliminatesthepotentialaccidentofdroppingthecaskandrupturingthefuelstoragepool.Additionaldetailedinformatio'nisprovidedbelow.9.1.4.2.10.2.1NewFuelPrearation9.1,4.2.10.2.1.1ReceitandInsectionofNewFuelTheincomingnewfuelwillbedeliveredtoareceivingstation.Thecratesshouldbeunloadedfromthetransportvehicleandexaminedfordamage'duringshipment.Thecratedimensionsareapproximately32"x32"x18feetlong.Eachcratecontainstwofuelbundlessupportedbyaninnermetalcontainer.Shippingweightofeachunitisapproximately3000pounds.ThereceivingstationincludesaseparateareawherethecratecoverscanbeRev.26,9/81 SSES-FSARremoved.themetalrefuelingreusable.byuseofrefuelingThecratesarethenmovedtothereactorbuildingwhereinnercontainersareremovedandliftedtothefloor.BothinnerandoutershippingcontainersareHandlingduringuncratingistobeaccomplishedthereactorbuildingcraneextendingdownfromthefloorthroughtheequipmenthatch.9.1.4'.10.2.1.2ChannelinNewFuelTheinitialcoreforbothunitswillbechanneledaseachnewfuelbundleisinspectedinthefuelinspectionstand.Thisprocesswillberepeatedwhenevernewfuelchannelsaretobeplacedonnewfuelbundles.Usuallychannelingnewfuelisdoneconcurrentlywithde-channelingspentfuel.Twofuelpreparationmachinesarelocatedinthefuelpool;oneusedforde-channelingspentfuelandtheothertochannelnewfuel.Theprocedureisasfollows:Usingajibcraneandthegeneralpurposegrapple,anewfuelbundleistransportedtoonefuelprepmachineifithadbeenresidinginthefuelstoragevault.Otherwiseitismovedfromaspentfuelpoolstorageracktothefuelpreparationmachineusingtherefuelingbridge.Aspentfuelbundleismovedfromaspentfuelpoolstorageracktotheotherfuelprepmachine.Thechannelisunboltedfromthespentfuelbundleusingthechannelboltwrench.Thechannelhandlingtoolisfastenedtothetopofthechannelandthefuelprepmachinecarriageisloweredremovingthefuelfromthechannel.Thechannelisthenpositionedoveranewfuelbundlelocatedinthefirstfuelprepmachine52andtheprocessreversed.Thechannelednewfuelisthenstoredinthepoolstorageracksreadyforinsertionintothereactor.9.1.4.2.10.2.1.3EuimentPrearationPriortotheplantshutdownforrefueling,allequipmentmustbeplacedinreadiness.Alltools,grapples,slings,strongbacks',studtensioners,etc.shouldbegivenathoroughcheckandanydefective(orwellworn)partsshouldbereplaced.Airhosesongrapplesshouldberoutinelyleaktested.Cranecablesshouldberoutinelyinspected.Allnecessarymaintenanceandinterlockchecksshouldbeperformedtoassurenoextendedoutageduetoequipmentfailure.Thein-corefluxmonitors,intheirshippingcontainer,shouldbeontherefuelingfloor.Thechannelednewfuelandthereplacementcontrolrodsshouldbereadyinthestoragepool.Rev.26,9/819.1-32 SSES-FSAR9.1.4.2.10.2.2ReactorShutdownThereactorisshutdownaccordingtoaprescribedprocedure.Duringcooldownthereactorpressurevesselisventedandfilledtoaboveflangeleveltoequalizecooling.Thedrywellandsuppressionchamberarede-inerted.Theeightreactorwellshieldplugscanberemoved.,Thisisaccomplishedwiththereactorbuildingcraneandthesuppliedslings.Thisoperationcanbeimmediatelyfollowedbyremovalofthethreecanalplugsandthethreeslotplugs.Thus,atotalof14separateplugsmustberemovedandplacedontherefuelingfloor.A"RefuelingEquipmentStorageandCraneClearance"arrangementdrawingisissuedtolocateplacementoftheseplugsontherefuelingfloor.Theouterfuelpoolgateisalsoremovedatthistime.Thegateslingisattachedtothegateliftinglugsandthereactorbuildingcraneliftsthegateandplacesitonthefuelpoolgatestoragelugs.9.1.4.2.10.2.2.1DellHeadRemovalImmediatelyafterremovalofthereactorwellshieldplugs,theworktounboltthedrywellheadcanbegin.Thedrywellheadisattachedbyremovableboltsprotrudingfromthelowerdrywellflange.Thenutsontoparemerelyloosenedandtheboltheadsswingoutward.Theboltsarethenpulledupwardsandsupportedwiththenutsonaslottedlipofthehead.s~fll0II,A)llllls'tThesisterhookofthereactorbuildingcraneisattachedtothehookboxontopoftheunbolteddrywellheadandliftedtoitsappointedstoragespaceontherefuelingfloor.Thedrywellsealsurfaceprotectorisinstalledbeforeanyotheractivityproceedsinthereactorwellarea.9.1.4.2.10.2.2.2ReactorWellServicinWhenthedrywellheadhasbeenremoved,anarrayofpipingisexposedthatmustbeserviced.Variousventpipingpenetrationsthroughthereactorwellmustberemovedandthepenetrationsmadewatertight.Vesselheadpipingandheadinsulationmustberemovedandtransportedtostorageontherefuelingfloor.Waterlevelinthevesselisnowbroughttoflangelevelinpreparationforheadremoval.Rev.26,9/819.1-33 SSES-FSAR9.1.4.210.23ReactorVesselOpen~in9.1.4.2.10.2.3.1VesselHeadRemovalThestudtensioneristransportedbythereactorbuildingcraneandpositionedonthereactorvesselhead.Eachstudistensionedanditsnutloosenedinaseriesof2-3passes.Whenthenutsareloose,theyarebackedoffusinganutrunneruntilonlyafewthreadsengage.Thevesselnuthandlingtoolisenqaqedintheupperpartofthenutandthenutisrctatedfreefromthestud.Thenutsandwashersareplacedintheracksprovidedforthehandtransportedtotherefuelingfloorforstorage.W'iththenutsandwashersremoved,thevesselstudprotectorsandvesselheadguidecapsareinstalled.Theheadstronqback,transportedbythereactorbuildingcrane,isattachedtothevesselheadandtheheadtransportedtotheheadholdingpedestalsontherefuelingfloor.Theheadholdingpedestalskeepthevesselheadelevatedtofacilitateinspectionand"0>>ringreplacement.Thesixstudsinlinewiththefueltransfercanalareremovedfromthevesselflanqeandplacedintherackprovided.Theloadedrackistransportedtotherefuelingfloorforstorage.9.1.4.2.10.2.3.2Dr~RemovalThedryer-separatorslingisloweredbythereactorbuildingcraneandattachedtothedryerliftinglugs.Thedryerisliftedfromthereactorvesselandtransportedtoitsstoragelocationinthedryer-separatorstoragepooladjacenttothereactorwell.Thedryeristransportedinair.However,ifthedryershouldbecomehighlycontaminated,thereactorwellandstoraqepoolcanbefloodedandawettransfereffected.9.14.2.10.2.3.3SeparatorRemovalXnpreparationforseparatorremoval,theserviceplatformandserviceplatformsupportareinstalledonthevesselflange.Promtheserviceplatformworkarea,thefourmainsteamlinesarepluqqedfrominsidethevesselusingthefurnishedplugsforthisduty.Servicingofthesafetyan'dreliefvalvescanthusbeaccomplishedwithoutaddingtothecriticalrefuelingpathtime.Workingfromtheserviceplatform,theseparatorisunboltedusinqtheshroudhead.boltwrenchesfurnished.9.1-34 SSES-FSARMhentheunboltingisaccomplished,theserviceplatformisremovedandstoredontherefuelingfloorTheserviceplatformsupportremainsonthevesselflangeduringtheremainderoftherefuelinqoutageandactsastheflangesealsurfaceprotector.Thedryer-separatorslinqisloweredintothevesselandattachedtotheseparatorliftinglugs.Thewaterinthereactorwellandinthedryer-separatorstorageisraisedtofuelpoolwaterlevelandtheseparatoristransferredunderwatertoitsallottedstorageplaceintheadjacentpool.914.2.102.3.4FuelBundleSamplingDuringreactoroperation,thecoreoff-qasradiationlevelismonitored.Ifariseinoff-qasactivityhasbeennoted,thereactorcorewillbesampledduringshutdowntolocateanyleakinqfuelassemblies.Thefuelsamplerorsipperrestsonthechannelsofafourbundlearrayinthecore.Anairbubbleispumpedintothetopofthe4fuelbundlesandallowedtostayabout10minutes.Thisstopswatercirculationthroughthebundlesandallowsfissionproductstoconcent;rateifabundleisdefective.After10minutes,awatersampleistakenforfissionproductanalysis.Ifadefectivebundleisfound,itistakentothefuelpoolandifrequired,maybestoredinaspecialde'fectivefuelstoragecontainertopreventthespreadofcontaminationinthepool9.14.2.10.2.4RefuelingandReactorServic~inITheremainingqateisolatinqthefuelpoolfromthereactorwellisnowremovedtherebyinterconnectingthefuelpool,thereactorwell,andthedryer-separatorstoragepool.Theactualrefuelingofthereactorcannowbegin.9.1.4.2.10.2.4.1RefuelingDuringanormalequilibriumoutage,approximately25%ofthefuelisremovedfromthereactorvessel,25%ofthe.fuelisshuffledinthecore(generallyfromperipherialtocenterlocations)and25%newfuelisinstalled.Theactualfuelhandlingisdonewiththefuelqrapplewhichisanintegralpartoftherefuelingplatform.Theplatformrunsonrailsoverthe.fuelpoolandthereactorwell.1nadditiontothefuelgrapple,therefuelingplatformisequippedwithtwoauxiliaryhoistswhichcanbeusedwithvariousqrapplestoserviceotherreactorinternals.9.1-35 SSKS-FSARTomovefuel,thefuelgrappleisalignedoverthefuelassembly,loweredandattachedtothefuelbundlebail.Thefuelbundleisraisedoutofthecore,movedthroughtherefuelingslottothefuelpool,positionedoverthestoragerackand1oweredtostorage.Fuelisshuffledandnewfuelismovedfromthestoragepooltothereactorvesseli.nthesamemanner.9.1.4.2.10.2.5VesselClosureThefollowingsteps,whenperformed,willreturnthereactortooperatingcondition.Theproceduresarethereverseofthosedescribedintheproceedingsections:Manystepsareperformedinparallelandnotaslisted.a)Installinnerfuelpoolgate.b)Coreverification.Thecorepositionofeachfuelassemblymustbeverifiedtoassurethedesiredcoreconfigurationhasbeenattained.c)Controlroddrivetests.Thecontrolroddrivetiming,frictionandscramtestsareperformed.d)Replaceseparator.e)Draindryer-separatorstoragepoolandreactorwell.f)Decontaminatereactorwell.g)Installserviceplatform,boltseparator,andremovethefoursteam1ineplugs.Returntheserviceplatformandplatformsupporttostorageonrefuelingfloor.h)Removedrywellsealsurfacecovering.i)Opendrywellvents,installventpiping.j)Replacefuelpooloutergate.k)Replacesteam'ryer.1)Decontaminatedryer-separatorstoragepool.m)Replacevesselstuds.n)Replaceslotplugs.o)Installreactorvesselhead.p)Installvesselheadpipingandinsulation9.1-36 SSES-FSARq)Replacedryer-separatorcanalplugs.r)Hydro-testvessel,ifnecessary.s)Installdrywellhead.t)Inertreactordrywellandsuppressionchamber.u)Installreactorwellshieldplugs.v)Startuptests.Thereactorisreturnedtofullpoweroperation.Powerisincreasedgraduallyinaseriesofstepsuntilthereactorisoperatingatratedpower.Atspecificstepsduringtheapproachtopower,thein-corefluxmonitorsarecalibrated.ThespentfuelshippingcaskarrivesbyrailcarortruckintherailwaybayofthereactorbuildingUnit1.Itisliftedfromtherebythe125tonhookofareactorbuildingcranethroughthefloorhatchestotherefuelingfloorandplacedintotheemptyshippingcaskpitbetweenthefuelpoolsofUnits1and2.Thecaskoutsideisdecontaminatedfromroaddirtandthelidremovedbythereactorbuildingcrane.Oneoftheinnergatesoftheshippingcaskpitisremoved.Afterfillingoftheshippingcaskpool,thesecondqatetooneofthefuelpoolsisremovedandloadingofthecaskwithirradiatedfuelcommences.Therefuelingplatformisusedtotransferfuelbundlesofsufficientlylowdecayheatlevelfromthespentfuelstorageracksunderwaterintotheshippingcask.Followingreplacementofthecasklid,thegatestothefuelpoolareinserted,theshippingcaskpitdrainedandthecaskoutsidedecontaminated.Thereactorbuildingcranethentransfersthecaskfromthestoraqepitontotheshippingvehiclewhereacoolingsystemdissipatestheremainingdecayheatofthefuelduringtransport.9.1-37 SSES-FSAR914.3Safet.Evaluation9.1.4.3.1SentFuelCaskThespentfuelcaskisequippedwithdualsetsofliftinglugsandyokescompatiblewiththereactorbuildingcranemainhook,thuspreventingacaskdropduetoasinglefailure.Ananalysisofthespentfuelcaskdropisthereforenotrequired.9.1-4.3.2ReactorBuildinCraneSeeSubsection9.1.5.3forthereactorbuildingcranesafetyevaluation.9.1.43.3FuelServicinEuimentFailureofanyfuelservicingequipmentlistedinTable9.1-2posesnohazardbeyondtheeffectoftherefuelingaccidentanalyzedinChapter15.Safetyaspects(eval'uation)ofthefuelservicingeguipmentarediscussedinSubsection9.1.4.2.3.ThesmallmanualdeviceslistedinTable9.1-5facilitateunderwaterviewingandhandlingoffuel.Failureofanyservicingaiddoesnotposeanyhazardbeyondtheeffectoftherefuelingaccident.Thedryer-separatorslingandthereactorvesselheadstrongbackarebothofacruciformdesignprovidingtworedundantsetsofliftingpointscompatiblewiththesinglefailureproofreactorbuildingcranemainhoistandhook.Thereforeaccidentanalysisisnotrequired.9.1-38 SSES-PSAR9.1.4.3.6In-VesselServicing~EquimentPailureofanyin-vesselservicingequipmentlistedinTable9.1-5posesnohazardbeyondtheeffectoftherefuelingaccidentanalyzedinChapter15.9.1.4.3.7Refue~linEgu~imentThemostseverefailureoftherefuelingplat.formandassociatedgrappleandhoistsresultsinthedroppingofafuelassemblyontothereactorcore.ThisrefuelingaccidentisanalyzedinChapter15.SafetyaspectsoftherefuelinqequipmentarediscussedinSubsection9.1.4.2.7.Adescriptionoffueltransfer,includingappropriatesafetyfeatures,isprovidedin'Subsection9.1.4.2.l0.Znaddition,thefollowingsummarysafetyevaluationofthefuelhandlingsystemisprovidedbelow.Thefuelprepmachineremovesandinstallschannelswithallpartsremainingunderwater.Mechanicalstopspreventthecarriagefromliftinqthefuelbundleorassemblytoaheightwherewatershieldinqislessthan8feet.Irradiatedchannels,aswellassmallpartssuchasboltsandsprings,arestoredunderwater.Thespacesinthechannelstoragerackhavecenterpostswhichpreventtheloadingoffuelbundlesintothisrack.Therearenonuclearsafetyproblemsassociatedwiththehandlingofnewfuelbundles,singlyorinpairs.Equipmentandprocedurespreventanaccumulationofmorethantwobundlesinanylocation.TherefuelingplatformisdesignedtopreventitfromtopplingintothepoolsduringaSSE.Redundantsafetyinterlocksareprovidedaswellaslimitswitchestopreventaccidentallyrunninqthegrappleintothepoolwalls.ThegrappleutilizedforfuelmovementisontheendofatelescopingmastAtfullretractionofthemast,thegrappleiseightfeetbelowwatersurface,sothereisnochanceofraisinga.fuelassemblytothepointwhereitisinadequatelyshieldedbywater.Thegrappleishoistedbyredundantcablesinsideofthemast;andisloweredbygravity.Adigitalreadoutisdisplayedtotheoperator,showinghimtheexactcoordinatesoftheqrappleoverthecore.Themastissuspendedandgimbaledfromthetrolley,nearitstop,sothatthemastcanbeswungabouttheaxisofplatformtravelinordertoremovethegrapplefromthewaterforservicinqandforstorage.9.1-39 SSES-FSARThegrapplehastwoindependenthookseachoperatedbyanaircylinder.Engagementisindicatedtotheoperator.Interlockspreventgrappledisengagementuntila"slackcable"signalfromtheliftingcablesindicatesthatthefuelassemblyisseated.Inadditiontothemainhoistonthetrolley,thereisanauxiliaryhoistonthetrolley,andanotherhoistonitsownmonorail.Thesethreehoistsareprecludedfromoperatingsimultaneously,becausecontrolpowerisavailabletoonlyoneofthematatime.Thetwoauxiliaryhoistshaveloadcellswithinterlockswhichpreventthehoistsfrommovinganythingasheavyasafuelbundle.Thetwoauxiliaryhoistshaveelectricalinterlockswhichpreventtheliftingoftheirloadshigherthan8feetunderwater.Adjustablemechanicaljam-stopsonthecablesbackuptheseinterlocks.Insummary,thefuelhandlingsystemcomplieswithRegulatoryGuidel.13(3/71),GeneralDesignCriteria2,3,4,5,61,62,and63,andapplicableportionsof10CPR50.Asystem-level,qualitative-typefailuremodeandeffectsanalyisrelativetothissystemisdiscussedinSubsection15A.6.5.19.1-4.3-8S~toraeRR~uimentThesafetyevaluationofthenewandspentfuelstorageispresentedinSubsections9.1.1.3and9.1.2.3.9.1439UnderReactorVesselServicinEui~mentFailureofany'nderreactorvesselservicingequipmentposesnohazardinexcessoftheeffectsofaccidentsanalyzedinChapter15.91.44InsectionandTestingsReduirements9.1.4.4.1InsectionRefuelingandservicingequipmentprovidedbytheNSSSsupplierissubjecttothestrictcontrolsofqualityassurance,incorporatingtherequirementsoffederalregulation10CFRSO,AppendixB.Componentsdefinedasessentialtosafety,suchasthefuelstorageracksandrefuelingplatformhaveanadditional9.1-40 SSES-FSARsetofengineeringspecified,"qualityrequirements>>thatidentifysafety-related'featureswhichrequirespecificQAverificationofcompliancetodrawinqrequirements.ForcomponentsclassifiedasAmericanSocietyofMechanicalEnqineers(ASME)SectionIII,theshopoperationmustsecureandmaintainanASME>>N<<stamp,whichrequiresthesubmittalofanacceptableASMEqualityplanandacorrespondingproceduralmanual.Additionally,theshopoperationmustsubmittofreguentASMEauditsandcomponentinspectionsbyresidentstatecodeinspectors.Priortoshipment,everycomponentinspectionitemisreviewedbyQAsupervisorypersonnelandcombinedintoasummaryproductqualitychecklist(PQL).ByissuanceofthePQL,verificationismadethatallqualityrequirementshavebeenconfirmedandareonrecordintheproduct'shistoricalfile.9.1.4.4.2TestincnPriortomulti-unitfabrication,majorpiecesofrefuelingorservicinqequipmentarefabricatedandtestedasprototypeunits.TheseunitsaretestedtospecificationsdefinedbytheresponsibledesiqnengineerandimplementedbyatestengineeringorganizationInmanycases,afulldesignreviewoftheproductisconductedbeforeandafterthetestingcycle.Anydesignchangesaffectingfunction,thataremadeafterthedesignreviewofthequalificationtestinghasbeencompleted,arereverifiedbytestorcalculation.Shentheunitisreceivedatthesite,itisinspectedbyqualityassurancepersonneltoensurethatnodamagehasoccurredduringtransitorstoraqe.Priortositeoperation,therefuelingorservicingequipmentmustundergoasequenceofpreoperationalfunctionaltests,asdefinedbyasitepreoperationaltestspecification.Thereisanoperationandmaintenanceinstructionmanualforeachtool,thatadditionallyrequiresaseriesoffunctionalcheckseachtimetheunitisoperatedforreactorrefuelingorservicinq.FuelhandlingandvesselservicingequipmentispreoperationallytestedinaccordancewithChapter14.9.1.-41 SSES-FSARToolsandservicingequipmentusedforrefuelingareinspectedandpreoperationallyperformancetestedpriortotheplantoutage.a9.14.5InstrumentationReuirementsThemajorityoftherefuelingandservicingequipmentismanuallyoperatedandcontrolledbytheoperatorfsvisualobservations.Thistypeofoperationdoesnotnecessitatetheneedforadynamicinstrumentationsystem.However,thereareseveralcomponentsthatareessentialtoprudentoperationthatdohaveinstrumentationandcontrolsystems9.1.4.51Refueli~uPlatfoteTherefuelingplatformhasanon-safetyrelatedX-Y-Zpositionindicatorsystemthatinformstheoperatorwhichcorefuelcellthefuelgrappleisaccessing.Interlocksandcontrolroommonitorareprovidedtopreventthefuelgrapplefromoperatinginafuelcellwherethecontrolrodisnotintheproperorientationforrefueling.RefertoSubsection7.6.1.1fordiscussionofrefuelinginterlocks.Additionally,thereareaseriesofmechanicallyactivatedswitchesandrelays-thatprovidemonitorindicationsontheoperatorsconsoleforgrapplelimits,hoistandcableloadconditions,andconfirmation'hatthegrapple9shookiseitherengagedorreleased.Aseriesofloadcellsareinstalledtoprovideautomaticshutdownwheneverthresholdlimitsareexceededoneitherthefuelgrappleortheauxiliaryhoistunits.9.14.5.2FuelSuortGraleAlthoughtheFuelSupportGrappleisnotessentialtosafety,ithasaninstrumentationsystemconsistingofmechanicalswitchesandindicatorlights.Thissystemprovidestheoperatorwithapositiveindicationthatthegrappleisproperlyalignedandorientedandthatthegrappli'ngmechanismiseitherextendedorretracted.91-42 SSES-PSAR9.14.5ahRefertoTable9.1-5foradditionalrefuelingandservicingequipmentnotreguiringinstrumentation9-1Thearearadiationmonitoringequipmentfortherefuelingareaisdescribed,inSubsection12.34.TworeactorbuildingcranesareprovidedforthySusquehannaSES.Unit1craneisasinglefailure-proofcraneandisdesignedtohandlethespentfuelcask.TheUnit2craneisnotsinglefailure-proofandisdesignedtohandleconstructionloadsandallnormalplantoperationloadsexceptthespentfuelcaskTheUnit2reactorbuildingcrane,rated125tons(mainhoist),5tons(auxiliaryhoist),ispotentiallycapableofcarryinganyloadswithinitsratedcapacity,butnotoverorwithinrestrictedareasoftherefuelingfloor.L.imitsoftherestrictedareasareshownonFigures91-16A8B.Administrativecontrolsareusedtopreclude'heUnit2reactorbuildingcranefrombingusedforhandlingthespendfuelcaskwhenstoredinthespentfuelshippingcaskstoragepitThefollowingdescriptionwilladdresstheUnit1craneonly,whichwillbereferredtoasthereactorbuildingcraneorthecrane~91.51Des~inBasesThemainpurposeofthereactorbuildingcraneistohandlethespentfuelcaskbetweenthecasktransportvehiclethecaskstoragepit,andthewash-downareainthereactorbuilding.Secondarypurposesofthereactorbuildingcraneinclude:a)HandlingloadsrelatedtomaintenanceandreplacementofequipmentfromthereactorbuildingwhicharereceivedorshippedthroughtherailroadaccessdoorsREV.18/789-1-43 SSES-PSARb)Handlingofshieldplugs,reactorvessel,anddrywellheads,steamdryerandseparator,etc,duringrefuelingoperations.Thereactorbuildingcraneisdesignedforthefollowingratings:Hainhoistcapacity125tonsAuxiliaryhoistcapacity5tonsSpeedofmainhoist(atratedload)5fpm(seeNote1)Speedofauxiliaryhoist{atratedload)Speedoftrolley(usingmainhoist)Speedof,trolley(usingauxhoist)SpeedofbridgeLiftofmainhook(seeNote2)LiftofauxiliaryhookCranespan20fpm(seeNote1)1'0fpm.50fpm50fpm173ft173ft130Lengthofrunway(betweenstops)323ftUncontrolleddrop0.5in.(max.)8.55in.{max.)HainhoistAuxiliaryhoistNote1:,Hinimumspeedatratedloadislessthan2percentofratedspeedNote2:Unit2reactorbuildingcraneratingsareidenticaltothoseoftheUnit1crane,exceptforthemainhooklift,whichis68ft..This,inadditiontoadministrativecontrols,precludesinadvertentuseoftheUnit2craneforspentfuelcaskhandling,sincethemainhookdoesnotreachthespentfuelcaskplantentrylevel.Theuseofthecranemainhoistisrestrictedoverthereactorwellsandpreventedoverthespentfuelpools.Theauxiliaryhooksofbothcranesaredesignedforuseunderwater,upto50ftdepth.Rev.18/789144 SSES-PSAR~9152~Eu~mentDes~ina)~GeneagThereactorbuildingcraneisdesigned,fabricated,installed,andtestedinaccordancewithANSIB30.2.0,CHHA-70,andOSHhregulations.b)Thestructuralportionsofthecranebridgeandtrolleyaredesignedfor(1)deadloadplusratedliftloadplusimpactloadof15percentofthetotaldeadplusratedliveloads,nottoexceedallowablestresses;(2)deadloadplusratedliftloadplusalateralloadof10percentofthetotaldeadplusratedliveloads,nottoexceedallowablestresses;(3)theoperatingbasisearthquake(OBE)whileliftingtheratedload,theworkingstressesnottoexceed125percentoftheallowablestress;(4)thedesignbasisearthquake(DBE)whileliftingtheratedload,theallowablestressestobelessthan90percentinbending,85percentinaxialtension,and50percentinshearofthematerialminimumyieldstresses;(5)atornadoloadingof300psf,withoutliveload,theallowablestressestobethesameasfor(4)above.Thestructureofthecranebridgeconsistsofweldedboxtypegirderswithtrucksaddlesandtruckframesofweldedsteelconstruction.Thetrolleysideframes,sheaveframes,andtruckframesareofstructuralsteelweldedconstructionc)MechanicalThecraneisofasingletrolleytoprunningelectricoverheadtravellingbridgedesign.ThegeneralarrangementofthecraneinthereactorbuildingisshownonFigure9.1-4.Themainhoistisprovidedwiththefollowingdualcomponentspreventingasinglefailuretoresultinadropofthespentfuelshippingcask:1)Dualsisterhook(hookwithinahook)2)Dualreevingsystemscompletewithredundantwireropes,'pper,lower,andequalizingsheaves3)Dualmainhoistgearboxeswithindividualbrakingsystems.Rev.18/7891-45 SSBS-PSAREachwireropehasasafetyfactoroffiveagainstbreakingwhileliftingtheratedcapacity.lncaseoffailureofoneofthetvoreevingsystem's,thedynamicloadtransfertotheothersystemvillnotcausetheropeloadtoexceedone-thirdoftheropebreakingstrength.Thefollowingholdingbrakesareprovided:HainhoistThree,ratedfor150percentofthemotortorque,withprovisionformanualoperationtoallowloweringoftheloadafteraposerfailureTrolleyBridgeTwo,ratedfor50percentofmotortorqueOne,.ratedfor100percentofmotortorque.Allholdingbrakesareacmagnetoperated.'Inaddition,thebridgeisprovidedwithahydraulicfootoperatedbrake.dControls)BridgeandtrolleyacstaticsteplessspeedcontrolvithreversingpluggingcontrolHoistsdcstaticreversingsteplessspeedcontrolincludingregenerativebraking,withaminimumspeedoflessthan2percentoftheratedspeed.Operationofthecraneisfromthebridgemountedcaborfloor.Theflooroperationisbypendantorradiocontrol.Controlatanyonetimeisfromonepointonly.9~1.5.3Safe~tEva~uationAsdescribedinSubsection9.1.5.2,themainhoistisprovidedwithdualmainhoistcomponentscapableofholdingtheloadintheeventofasinglefailure.Thereactorbuildingcraneisprovidedwithlimitswitchestopreventovertravelofthebridgeandtrolleyandstopthemainandauxiliaryhooksintheirhighestandlowestsafepositions.Rev.18/789.1-46 SSZS-FSARTvolimitswitches,eachof,differentdesign,areprovidedtolimittheupwardmovementofthemainandauxiliaryhoist.Twogearedlimitswitchesareprovidedforthemainhoist,andonefortheauxiliaryhoisttolimitthedownwardmovementoftherespectivehoists.Mhenthe125-tonhookisloadedorunloadedbutnotinparkedupperposition,movementofthecranebridgeand/ortrolleyvillbestoppedwhenenteringtherestrictedareasshownonFigures9.1-16A6B.Thefollowingmeansareprovidedtoaccomplishtheabove:a)Aseriesofproximityswitchesmountedonthecrane,adjacenttothecraneandtrolleyrunways.b)Aseriesoftripbarsmountedonthebridgeandtrolleyrunvaysarepositionedtotriprespectiveproximityswitches.c)Relaysandlogicsystemstotrippoversuppliestoaffecteddrivemotors,whenaproximitysvitchistripped.Thiswillresultinthesettingofrespectiveholdingbrakesandcessationofbridgeortrolleymovement.>>Hemorylogic>>villthenallowthebridgeortrolleytomoveintheoppositedirectionavayfromtherestrictedarea.Thecranecannotentertheareaabovethespentfuelpoolswithanyloadonthemainhoist.AkeylockedbypassswitchisprovidedinthecabtoallowtheuseofthemainhoistovertheRPVareaforhandlingshieldplugs,RPVanddryvellheads,steamdryer/separatoretc.Craneoverloadprotectionisprovidedbyanelectricalcut-outonthehoistdrivemotor.Inaddition,tvovaneswitchesareprovidedontheequalizertopreventthecranefromliftingloadsinexcessofitsratedcapacity.AnoverspeedswitchactivatingallspringsetmotorbrakesintheloweringdirectionholdstheloadinsuspensionSeeSection3.13fordiscussionofcompliancewithRegulatoryGuide1.104.SeeAppendix9BforadiscussionofcompliancewithBTPASB9-1.TheresultsofafailuremodeandeffectanalysisarepresentedinTable9.1-6.1Rev.18/789.1-47 Thecraneissafetyrelatedandaqualityassuranceprogramhasbeenestablishedandiaplementedinthedesign,fabrication,erection,andtestingThecraneisdesignedtoremainontherunwayinaparkedandrestrainedposition(bytornadolocks)withnoloadattachedunderthefollowingtornadowindloadings:a)300psfonthewindwardcranegirderb)1200psfontheleewardcranegirderThecranemechanicalandstructuralcomponentsarequalifiedtoSeismicCategoryIrequirements.Thecrane,however,maybecomeandremaininoperationalaftertheoperatingbasisearthguake,butnopartsortheloadwilldislodgeorfallmanualtoweringofthemainhoistloadisprovided915.4ZnsectionandTestinc[~aenirenentsCranecomponentstestsareperformed'duringthecranefabricationasfollows:a)Eachhook:lJltrasonictests200percentloadtestfollowedbydimensionalcheckDrypowdermagneticparticletestb)Sirerope=Ropesampledestructivebreakingtestc)Gears,gearpinions,,swivels,loadblockframes,hooktrunnions;seismicrestraints,andtornadolocks:MagneticparticletestsMajorstructuralwelds:100percentmagneticparticletesting.Thecranehoists,trolley,andbridgedrivesareoperatedintheshoptodemonstratetheiroperabilityandthetrolleytrackingAfterthecraneiserected,itisthoroughlytested,includingthecraneratingtestinaccordancewithANSIB30.2.091-48 SSES-FSARThecraneperiodicoperationaltestsareinaccordancewithapplicableOSHAregulations,localcodes,andANSIB30.2.0.9.1.5.5InstrumentationReuirementsThecraneisfurnishedwithdualdevicesandcontrols,asdescribedinSubsection9.1.5.3,topreventordetectasinglecranefailureandthusprecludedroppingofthespentfuelcask.9.

1.6REFERENCES

9.1-2"CHEETAH-BManual,LEAHSNuclearFuelManagementandAnalysisPackage,"ControlDataCorporation,PublicationNumber84006200,Minneapolis,Minnesota,(1974).9.1-3R.F.Barry,"LEOPARD-ASpectrumDependentNon-SpatialDepletionCodefortheIBM-7094,"WCAP-3741,WestinghouseElectricCorporation(1963).9.1-4"CORC-BLADEManual,LEAHSNuclearFuelManagementandAnalysisPackage,"ControlDataCorporation,PublicationNumber84005400,Minneapolis,Minnesota(1974).9.1-5W.R.Cadwell,"PDg-7ReferenceManual",WAPD-TM-678,January,1967.9.1-6L.M.PetrieandN.F.Cross,"KENO-IV-AnImprovedMonteCarloCriticalityProgram,"ORNL-4938,November,1975.9.1-7N.M.Greene,J.L.Lucius,W.E.Ford,III,J.E.White,R.(}.Wright;andL.M.Petrie,"AMPX-AModularCodeSystemforGeneratingCoupledMultigroupNeutron-GammaLibrariesfromENDF/B",ORNL-TM-3706i1974.9.1-8DesignandFabricationCriteriaforSusquehannaFSAR.9.1-.99.1-10PARSP/3157,P.7-1andAppendixI.SummaryReport,NuclearCriticalityAnalysisfortheSpentFuelRacksoftheSusquehannaPowerPlant;NuclearAssociatesInternational,DR-3157-3,ReportNAI78-15,May15,1979.Rev.19~1/819.1-49 SSES-FSARTABLE9.1-1SPENTFUELPOOLCOOLINGANDCLEANUPSYSTEMCOMPONENTDESCRIPTIONCOMPONENTEQUIPMENTNOS.TYPEQUAN-SIZE,TITYEACHFLOWMATERIALEACHTDHFTPUMPPOWERHXCAPACITYEACHDESIGNPRESSURE/TEMP.PSIG/FFuelPoolCoolingPumpsFuelPoolCoolingPumpsFuelPoolF/DHoldingPump1P-211A,B,CHoriz.Centr.32P-211A,B,CHoriz.Centr.3OP,1P,2P-205Horiz.Centr.3SSSSSS600gpm600gpm160gpm2002004560hp60hp5hp150/155150/155150/200FuelPoolF/DPrecoatPumpFuelPoolSkimmerSurgeTankFuelPoolSkimmerSurgeTankFuelPoolF/DResinFeedTankOP-2011T-2082T-208OT-202Horiz.Centr.1Vert.Cyl.1Vert.Cyl.1Vert.Cyl.1SS7850/5050galSS7850/5050galSS235/188galSS475gpm15hp150/20015/20015/200Atm/150FuelPoolF/DPrecoatTankOT-201Vert.Cyl.1500/360galSSAtm/150FuelPoolFilterDemineralizerFuelPoolHeatExch.FuelPoolHeatExch.OF,lF,2F-2021E-202A,B,C2E-202A,B,CVert.Cyl.PressurePrecoatShellandStraightTubes,FixedTubeSheets,CounterFlow325ft1310ft1310ftSSShell&channels:CSTubes&Tube-Sheets:SS650gpmShell:296000lb/hrTubes:496000lb/hr150/2004.4x10Btu/hr150/2206at125/110'FShell150/20095/104'FTubes DRIVESOCKETSHAFTHOUSINGSHAFTSOCKETWRENCHCABLEGUIDEDETENTLEAFSPRINGSSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCHANNELBOLTWRENCHFIGUREgyg SSES-FSARAPPENDIX9A~HlNLYSZSFOENONSEZSNZCSPENTFUELPOOLCOOLZNGSYSTEIISAsdescribedinSubsection9.1.3theSpentFuelPool(SFP)CoolinqSystemsaredesignedasnon-seismicCategoryI,QualityGroupCsystems.ThefollowinganalysisexaminestheconsequencesofalossofSPPcoolingSincethecoolingsystemsforbothunitsarecross-connectedandincloseproximityitwasassumedthataseismiceventcausesthelossofcoolingtobothspentfuelpools.Inaddition,inordertomaximizeboththeheatloadsandtheiodineinventoriesinthepools,sequentialrefuelinqswerepostulated.Thelossofcoolinqwasassumedduringthesecondrefueling,justaftertherefuelinqcavitywaterlevelwasloweredandtheseismicallyqualifiedRHRsystemwouldnotbeavailableforcoolingthecavityandSFP.Theanalysisinvolvedanevaluationofthetimetopoolboilinq,thecapabilitytoaddmakeupwaterifthepoolboils,andthethyroiddoseconsequencesattheLPZboundaryduetoiodine=releasesfromtheboilingpools.Theassumptionsusedinthisanalysiswereconsistentlychosentobethe'iworstcaseiYdesignbasisassumptions,similartothoseinRegulatoryGuidesfordesignbasisaccidents(e.g.RG1.3,1.25,etc.).Thecombinationofallofthesedesignbasisassumptionsoccurringatthesametimewouldbeextremelyunlikely,makingthisaccidentasanalyzed,oneofverylowprobability.Manyoftheassumptionsareconsideredtobeoverlyconservative.Forexample,operatihqexperiencewithpresentBMRfuels(Reference9A-l)indicatesthattheassumptionof1%ofthefuelwithcladdingfailuresisatleastafactorof100tooconservativefor8X8fuelbundles.SpikingfactorsareyettobeobservedforatemperatureriseinS.F.P.s.Theassumptionof10%oftheactivityinthefuelgapsisatleast30timestheexpectedgapactivityasdiscussedinChapter15,and5timesthegapactivityvaluesusedintheRasmussenReport(Mash1400).Amorerealisticevaluationofthisaccidentwouldresultinreleasesofradioactivity,ifany,manyordersofmagnetudebelowthe~calculatedvalues.TherealisticreleaseswouldbewellbelowtheAppendixItechnicalspecifications,indicatingthatsuchanincidentisoflittleornoconsequence.Theconservativeresultsshowedthatthepoolswouldnotboiluntilatleast25hoursafterthelossofcooling.Ifcoolingisnotrestoredbeforethepoolboils,thenmakeupwaterfromtheCateqoryIEmergencyServiceMaterSystemcanbeaddedtothepooltokeepthefuelcoveredatalltimesREV3,11/78 SSBS-FSARAsshovninTable9A-1thethyroiddoseconsequencesoftheboilingpoolarewellbelovtheguidelinevaluesof10CFR100andthe1.5RBNthyroidguidelineofRequlatoryGuide1.29Thefollovingassumptionsvereusedtocalculatetheheatgenerationandboilingratesinthetvospentfuelpools.Eachpoolcontainsthemaximumfuelinventoryof15quartercores.Fourteenofthequartercoresvereunloadedyearlyfrom1to14yearsearlier.Thelastquartercoresarefromthegustcompletedsequentialrefuelinqs.ForUnit1thefuelhasdecayedfor10.5days,thelengthoftimefromshutdownuntilthewaterlevelintherefuelingpool.,hasbeenloweredandtheRHBsystemwouldnotbeabletocooltherefuelingandspentfuelpools.ForUnit2thedecaytimeis13.5+105=24days.The13.5daysistheminimumtimetocompleteafuelunloadingandloading.ActualrefuelingsindicatethatbothofthesetimesvillresultinthemaximumheatgenerationratesandmaximumevaporationratesattimeswhentheRHRvillnotbeavailable.20ThedecayheatwascalculatedusingthedecayheatcurvesfromtheproposedstandardANS-5.1(10/73),correctedforafiniteoperatinqtime.Anuncertaintyfactorof25%vasappliedtothecalculateddecayheatforalltimes)10~sec,and10%for10~<t<10~sec.TheSBP9.2.5methodologyofappi.yingtheuncertaintyfactoronlytothefirsttermofthefissionproductdecayequations(SPBEq.2)wasnotextrapolatedtodecaytimesbeyond10~secbecauseitgivesunrealisticresults.Forexample,theSPBequationsaysthat14yroldspentfuelgeneratesover50%ofthedecayheatthat1yroldfuelgenerates,whereasusingnouncertaintyfactorresults'inthe14yroldfuelgeneratingabout5%.Thusthe25%uncertainityfactorresultsinafactorof10conservatism.Thedecayheatgenerationrateforeachpoolisgiven,inTable9A-2forvarioustimesafterthepostulatedlossofcoolinq.30Allheatgeneratedbythefuelisassumedtobeabsorbedbythewaterinordertominimizethetimetoboiling.Noheatislosttothesurroundinqsbyconductionthroughtheconcreteandsteel,orbyevaporationThetemperaturegradientsfromthefuelatthebottomofthepooltothecoolerwateratthetopvillcreateconvectivevaterandheatcurrentswhichshouldthoroughlymixthewater,andpromoteanevendistributionofheatrather'thanlocalizedpointsofsurfaceboiling.REV3,11/789A-2 SSZS-PSABThefollowingassumptionsvereusedtocalculatetheoffsite~~~dosesforthelossofcoolingtothespentfuelpools.aThesaturationinventoryofI-131inthe3440MMtcoreis8.66X10>Ci.Duringrefuelinq.184'uelelements(approximately1/4core}areremovedandtransferredtotheSPP.Iodineinfuelfrompastrefuelingswillbenegligibleduetothelongdecaytimes.coItisassumedthat1%ofthefuelrodsint'ecorearedefectiveandthatthislgisinthe1/4coretransferredtotheSPP.TheiodineactivityintheSPPwaterattheinitiationofboilingisassumedtobenegligiblecomparedtotheactivityreleasedfromthefuelduringpoolboiling.ActivityinthecorecoolantorfromashutdownspikewouldhavebeencleaneduptoacceptablylowlevelsbytheBHCUandSFPCleanupSystemsbeforefueltransferbegane.TheSPPcoolingsystemsareassumedtofail24daysaftershutdownfromthefirstreactorand10.5daysaftershutdownforthesecond.The10.5daysisthetimeafteracompletefueltransferwhenthewaterlevelintherefuelingpoolvillbelowered,andtheRHRsystemwouldnotbeabletocooltherefuelingandspentfuelpoolsincaseofanaccident.Theqapactivity,or10%oftherodactivityisavailableforleakagefromthedefective1%oftherodsTheleakageratewasassumedtobe8.1xl0~Ci/sec,whichcorrespondstoareleaserateof700Ci/secforI-131Thisisthefullpowerdesiqnfuelleakrate.Itshouldbenotedthattheavailableactivityinthegapsofthedefectivefuelrodsmayhavealreadybeensignificantlydepletedbytheshutdownspike.geAconstantspikefactorofvariousmagnitudesupto100vasappliedtotheI-131leakageratefromthefueltoaccountforthepotentialspikingeffectsduringthetemperaturetransient.Theleakaqeratereturnstothenormalfullpovezunspikedrateof8.lxl0Ci/secwhenboilingbegins,sincethefuelshouldnowbeclosetoitsnevsteadystatetemperature.REV3,ll/789A-3 SSBS-PSARAcomparisonvithReference9A-2shovsthatthemeasuredI-131releaserateat9daysaftershutdownisapproximately.2to.3oftheatpowerreleaserate.Sincethetemperatureofthefuelluringboilingisexpectedtobewellbelovreactoroperatingtemperature,theuseofthe"atpower'~leakagerateisconsideredtobeextremelyconservative.h.Theactivityreleasedfromthefuelisassumedtobeuniformilymixedinthe45,300ft~{2.83xl0~lbmass)ofwaterineachSPP.Theactivityreleaseratefromthepooldependsontheevaporation{boiling)rate.Noevaporationwasassumedduringtheheatupperioduntilthepoolwaterreaches2120F.Allheatgeneratedbythefuelvasassumedtobeabsorbedbythewateranlnolossesvereassumedthroughtheconcreteandsteel.Thisresultsintheshortesttimetoboiling.TheheatgenerationandevaporationratesafterboilingbeginsaregivenasafunctionoftimeinTable9A-2Theiodinepartitionfactoratthepoolsurfacevasvariedbetween.1and.01.k.Nocreditvastakenforiodineplateoutonwallsandequipmentorvashoutbycondensingwatervaporintherefuelingarea1.TheatmosphericdispersionfactorsfordilutionoftheradioactivereleasesarethesameasthoseusedintheChapter15accidentanalysis.These5thpercentilegroundlevelx/Q'aregivenbelowfortheLPZboundarydistance.Thetimezeroisassumedtobethestartoftheaccidentvhenpoolcoolingislost.Time0-8hrs8-24hrs1-4days4-30daysX/Q{Sec/N~)22X1028X10"<143X10108X10REV3,11/789A SSES-FSARm.ThethyroiddosemodelsandbreathingratesgiveninRegulatoryGuide1.3vereused.ThefollowingmodelvasusedtocalculatetheoffsitethyroiddosesfromthereleaseofX-131fromthefuel1Theactivityinthefuelavailableforleakageatthelossofcooling,S(o)vascalculatedusingthereactorinventoryeguationfromT1D-14844viththeappropriatedecayfromshutdownuntilthelossofcooling,andthefractionsofiodineavailableforreleaseDuringthepoolheatupandboilingphasestheactivityinthefuelgapsavailableforleakage,S(t),vasadjustedfordecayandlossesbyleakagetothepool.S(t)+S(o)e-("d'e)(Eq.9A-1)@hereDecayRambda(1/sec)dLeakageratefromthefuel(1/sec)et=Time(sec)2.TheactivityintheSPPasafunctionoftime,A(t),isgivenbythesolutiontothefollowingdifferentialequationS(t)-(X<+X)A(t)(Ci/Sec)(Eq.9A-2)EvaporationLambdafromthepool(1/sec)eveSinceSFPmakeupvaterwillbeavailable,theevaporationlambdaisfoundbydividingtheevaporationrate(lb/sec)bytheconstantpoolvatermass(lb)3.Theactivityreleasedtotheatmosphereoveratimeintervaltot2<R{tqt2),vasfoundbythesolutiontothefollovingeguaRion.R(titR)=(PF)JXA{t)(Ci)(Eq.9A-3)1Where:PF=IodinepartitionfactoratthepoolsurfaceForanytimeintervalvherealltheparametersarekeptconstantthereleaseincuriesisgivenby:REV3,11/I'78 SSES-PSABR(tt)~--~eev1-(1/PFiXXS(t)12Xd+XXd+0-(Xd+X)(t-t)-()<<+x)(t-t)dev21(Eq.9A-4)1-e-1-e(A,d+A,de"d'".dev0ThethyroiddoseattheLPZiscalculatedusingtheequationsandmodelsfromRegulatoryGuide13.REV3ell/789A-;6. SS.ES-PSAR103HAINSTEAHSUPPLYSYSTENThemainsteamsupplysystemforthisBMRcycleextendsfromtheoutermostcontainmentisolationvalveuptobutnotincludingtheturbinestopvalvesandincludesconnectedpipingof21/2inchesnominaldiameterorlarqeruptoandincludingthefirstvalvethatiseithernormallyclosedoriscapableofautomaticclosuredurinqallmodesofreactoroperation.1031DESIGNBASESThemainsteamsupplysystemhasnosafety-relatedfunctionandisdesiqnedto:1)Delivertherequiredsteamflowfromthereactortotheturbinegenerator,atratedtemperatureandpressure,overthefullrangeofoperationfromturbinewarmuptovalveswideopen(VMO}.2)Providemotivesteamtothe.steamjet'airejectors.3)Providesteamforthesteamsealevaporatoranddrivingsteamforreactorfeedpumpturbines.4)Providesteamfortheoffgasrecombiner.5)Bypassreactorsteamtothecondensersduringstartupandanytimethequantityofsteamproducedbythereactorismorethanisrequiredbytheturbinegenerator.1032DESCRIPTIONThedesignpressure/temperatureratingofthemainsteampipingis'1230psiqat585degreesF.ThepipingisdesignedandtestedaccordinqtoASMESectionIII,Class2,anditisfabricatedofseamlesscarbonsteel(the24i.nchlinesareSA106GradeC,allothersizesareSA106GradeB).Therearefour24inchnominalmainsteamlinessupplyingsteamtotheturbinegenerator.Eachlineisprovidedwithadraindownstreamoftheoutermostcontainmentisolationvalve.Thedrainsareroutedtothecondenserthroughacommon3inchheaderThesedrainsandconnectionstoeachmainsteamlinebetweemtheinboardandoutboardisolationvalvesalsotieintothemainsteamisolationvalveleaicagecontrolsystem(see.Section6.7).Eachmainsteamlineisalsoprovidedwithlowpoint103-1' SSZS-FSARdra'i'nsconsistingofadripleqwhich,undernormaloperation,collectsmoistureanddrainsittothecondenserthrougha=-norma).lyopenvalveandarestrictingorifice.Eachdrippotisprovidedwithhiqhand.lowlevelswitcheswhichoperateanothermotorizeddrainvalve.thatisnorma,llyclosedandisinstalledinparalleltothenormallyopenvalvedescribedaboveOnhighlevelthe..levelwitchopensthemotorizedvalveanddrainsthemoisturedi"ectlytothecondenser..WhentheLevelinthedripleqhasbeenloweredsufficiently.thelowlevelswitchclosesthevalve.pressuzeequalizinglines,24inchnominalsize,branchfromeachmainsteamlineandconnecttoa24inchnominalheaderwhichtiesintothebypassvalvechestthrouqhtwo18inchnominallines.The24inchheaderisprovidedwithadrippotsimilartothatdescribedforthemainsteamlines.Themainsteamsupplytothereactorfeedpumpturbinesoriginatesfromthis24inchheader.SeeFigure10.4-1fordetailsoftheabovedescription.Fordetailsofpipinqdownstreamof~theturbinestopandcontrolvalvesseeSection10.2.DuringnormalplantoperationtheturbinecontrolvalvesandbypassvalvesarecontrolledbythetwopressureregulatorfurnishedbytheturoinevendorThesetwo,regulatorsareessentiallyidenticalandareinstalledinoneofthefourmainsteamlinesinaccordancewiththeturbinevendor'sinstructions.Theregulatorwiththelowestsetpointwillbethecontrollingregulatoruntilitfails,thentheotherregulatorwhichisbiasedapproximately10psihigherwilltakeover.Apressuretransmitterisinstalledinoneof-themainsteamlines,the~readingsfromwhicharerecorded,inthecontrolroom.10.33HVALUAT'IONaThemainsteamlines(MSL)fromtheouterisolationvalvesuptoandincludinq,theturbinestop,valvesandallbranchlines2-1/2inchesindiameter,andlarger,uptoandincludingthefirstvalve(includinqtheirrestraints)aredesignedbytheuseofanappropriatedynamic,seismic-systemanalysistowithstandtheOperatinqBasesEarthquake(OBE)andSafeShutdownEarthquake(SSE)desiqnloadsincombinationwithotherappzopriateloads,withinthe.limitsspecifiedforClass2pipeintheASMESection1IIThomathematicalmodelforthedynamicseismicanalysesoftheMSLandbranchlinepipinqincludestheturbinestopvalvesandpipinqoeyondthestopvalvesincludinqthepipingtotheturbinecasinq.TheDynamicinputloadsfordesignofthemainsteamlinesarederivedfromatimehistorymodelanalysisoranequivalentmethod,asdescribedinSection3.9,oftheContainment,ReactorBuilding,TurbineBuildingandturbine10.3-2 SSES-.PSABpedestal.TheTurbineBuilding,housingthenaiasteamlines~mayundergosomeplasticdeformationundertheSSE,however,~theplasticdeformationislimitedtoaductilityfactorof2andanelasticmulti-degree-of-freedomsystemanalysisisusedtodeterminetheinputtothemainsteamlines.ThestressallowableandassociateddeformationlimitsforpipingareinaccordancewithASIDESectionIIXClass2reguirementsfoxtheOBEandSSEloading-combinations.Themainsteamlinesupportingstructures(thoseportionsoftheTurbineBuilding)aresuch.thatthemainsteamlinesandtheirsupportscanmaintaintheirintegritywithintheASIDESectionIII,Class2reguireaentsundertheSeismicCategoryIloadingconditions.ThepipesupportsforthenainstreamlinemeettherequirementsofASHESectionIII1971Editionthruwinter1972Addenda,formaterials,fabricationandinspection.BetweentheoutermostisolationvalvesandtheturbinestopvalvesthefourmainsteamlinesareroutedwithintheconfinesofatunnelTemperatureelementsarelocatedateachendofthistunnelandthereadingsfromthesearefedintoatemperaturedifferentialsvitch.Thepurposeofthesetenperatureelementsistodetectafailureofanyofthemainsteanlines.Thiswouldbej.ndicatedbyanincreaseinthetemperaturedifferentialwhichwouldbesensedandanalarminitiated.fPordetailsoftheanalysisofpostulatedhighenergylinesfailurerefertoSecti'on3.6.BKQ*2"-Themainsteamlinesarefabricated,examinedandtestedinaccordancewiththeASHEBoilerand.PressureVesselCode,SectionIII,Class2.Duringnormaloperationeachturbinestopvalveistesteddailytoverifythatitfunctionscorrectly.Similarlyeachbypassvalveistestedweekly.ThepreoperationalandinserviceinspectionofthemainsteamlinesisdescribedinSection6.6.ThepreoperationalandinserviceinspectionofthesteanlineisolationvalvesisdescribedinSubsection5.2.4.ThesystemwillbepreoperationallytestedinaccordancewiththerequirementsofChapter10$5MATERCHBHISTRYQPS~BNotapplicableRev.17,9/8010.3-3 SSES-PSAR'103-Q-STERE~IIMDFElLDMMTERSYSTEMMATER?MLS10361--FractureTouchinessThemainsteamandfeedwaterpipingarenotimpacttested.Thepenetrationsoftheselinesthroughtheprimarycontainment,fromtheisolationvalvesoutsidethecontainment,arecharpy,V-notch,ordropweighttested(SeeSubsection3.1.2.5.4).1036~/materialSelectionandPab~icatjon1)Materialsusedinthemainsteamandfeedwatersystems,SA-155KC70andSA-106,GradeC,arelistedinAppendixItoSectionIIIoftheASMECode.2)Therearenoausteniticstainlesssteelcomponentsinthesesystems.3)ThecleaningandhandlingClass2and3componentswillbeperformedinaccordancewithcleanlinessSpecification(8850-M-167whichcomplieswiththerequirementso'5RegulatoryGuide1.37,March3.6,1973andANSIN45.2.1-73.4)Thereisnolowalloysteelinthesesystems.5)ExceptionstoRegulatoryGuide1.71aredescribedinSection3.13103-4 SSES-FSAR11.1SOURCETERMSGeneralElectrichasevaluatedradioactivematerialsources(activationproductsandfissionproductreleasefromfuel)inoperatingboilingwaterreactors(BRRs)overthepastdecade.Thesesourcetermsarereviewedandperiodicallyrevisedtoincorporateup-to-dateinformation..ReleaseofradioactivematerialfromoperatingBMRshasgenerallyresultedindosestooffsitepersonswhichhavebeenonlyasmallfractionofpermissibledoses,orof-naturalbackgrounddose.UTheinformationprovidedinthissectiondefinesthedesignbasisradioactivemateriallevelsinthereactorwater,steamandoff-gasThevariousradioisotopeslistedhavebeengroupedascoolantactivationproducts,non-coolantactivationproducts,andfissionproducts.ThefissionproductlevelsarebasedonmeasurementsofBMRreactorwaterandoff-gasatseveralstationsthroughmid-1971.EmphasiswasplacedonobservationsmadeatKRBandDresden2.Thedesignbasisradioactivemateriallevelsdonotnecessarilyincludealltheradioisotopesobservedorpredictedtheoreticallytobepresent.Theradioisotopesincludedareconsideredsignificanttooneormoreofthefollowingcriteria:(1)plantequipmentdesign,(2)shieldingdesign,(3)understandingsystemoperationandperformance,(4)measurementpracticability,and(5)evaluatingradioactivematerialreleasestotheenvironment.Forhalogens,radioisotopeswithhalf-liveslessthan3minuteswereomitted.Forotherfissionproductradioisotopesinreactorwater,radioisotopeswithhalf-liveslessthan10min.were.not~considered.1111FISSIONPRODUCTSll.1.1.1NobleRa~dioasFissionProductsThenobleradiogasfissionproductsourcetermsobservedinoperatingBMRsaregenerallycomplexmixtureswhosesourcesvaryfromminisculedefectsincladdingto"tramp"uraniumonexternalcladdingsurfaces.Therelativeconcentrationsocamountsofnobleradiogasisotopescanbedescribedasfollows:11.1-1 SSES-FSAREquilibrium:R>K>Yg(11.1-1)Recoil:RwK2YX(11.1-2)ThenomenclatureinSubsect'ion11.1.1.4definesthetermsintheseandsucceedingequations.Theconstantsk>'ndkdescribethefractionsofthetotalfissionsthatareinvolvedineachofthereleases.Theequilibriumandrecoilmixturesarethetwoextremesofthemixturespectrumthatarephysicallypossible.Whenasufficienttimedelayoccursbetweenthefissioneventandthetimeofreleaseoftheradiogasesfromthefueltothecoolant,theradiogasesapproachequilibriumlevelsinthefuelandtheequilibriummixtureresults.When'thereisnodelayorimpedancebetweenthefissioneventandthereleaseoftheradiogases,therecoilmixtureisobserved.PriortoVallecitosBoilingWaterReactor(VBWR)andDresden1experience,itwasassumedthatnobleradiogasleakagefromthefuelwouldbetheequilibriummixtureofthenobleradiogasespresentinthefuel.VBWRandearlyDresden1experienceindicatedthattheactualmixturemostoftenobservedapproachedadistributionwhichwasintermediateincharactertothetwoextremes(Reference11;1-1).Thisintermediatedecaymixturewastermedthe"diffusion~~mixture.Xtmustbeemphasizedthatthis"diffusion"mixtureismerelyonepossiblepointonthemixturespectrumrangingfromtheequilibriumtotherecoilmixtureanddoesnothavetheabsolutemathematicalandmechanisticbasisforthecalculationalmethodspossibleXo'requilibriumandrecoilmixtures.However,the"diffusion'~distributionpatternwhichhasbeendescribedisasfollows:0,5Diffusion:R~K3YX(11.1-3)Theconstantkdescribesthefractionoftotalfissionsthatareinvolvedinth5release.Thevalueoftheexponentofthedecayconstant,X,ismidwaybetweenthevaluesforequilibrium,0,andrecoil,1.The"diffusion"patternvalueof0.5wasoriginallyderivedfromdiffusiontheory.Althoughthepreviouslydescribed~'diffusion<~mixturewasusedbyGEasabasisfordesignsince1963,thedesignbasisrelease'agnitudeusedhasvariedfrom0.5Ci/secto0.1Ci/secasmeasuredafter30-mindecay(t=30min).Thenobleradiogassource-termrateafter30-mindecayhasbeenusedasaconventionalmeasureofthedesignbasisfuelleakageratesinceitisconvenientlymeasurableandwasconsistentwiththenominaldesignbasis30-minoff-gasholdupsystemusedonanumberofplants.Sinceabout1967,thedesignbasisreleasemagnitudeused(includingthe1971sourceterms)wasestablishedatanannualaverageofO.lCi/sec(t=30min)Thisdesignbasisis11.1-2 SSES-FSARconsideredasanannualaveragewithsometimeaboveandsometimebelowthisvalue.Thisdesignvaluewasselectedonthebasisofoperatingexperienceratherthanpredictive'assumptions.Severaljudgmentfactors,includingthesignificanceofenvironmentalrelease,reactorwaterradioisotopeconcentrations,liquidwastehandlingandeffluentdisposalcriteria,building,~aircontamination,shieldingdesign,andturbineandothercomponentcontaminationaffectingmaintenance,havebeenconsideredinestablishingthislevel.NobleradiogassourcetermsfromfuelaboveO.lCi/sec(t=30min)canbe.toleratedforreasonableperiodsoftime.ContinualassessmentofthesevaluesismadeonthebasisofactualoperatingexperienceinBWRs(References11.1-2and11.1-3).Whilethenobleradiogassource-termmagnitudewasestablishedat0.1Ci/sec.(t=30min),itwasrecognizedthattheremayheamorestatisticallyapplicabledistributionforthenobleradiogasmixture.SufficientdatawereavailablefromKRBoperationsfrom1967tomid-1971alongwithDresden2datafromoperationin1970andseveralmonthsin1971tomoreaccurately-.-characterizethenobleradiogasmixturepatternforanoperatingBWRThebasicequationforeachradioisotopeusedtoanalyzethecollecteddatais:-M'XtR=KYP(1-e)(e)(111-4)ggWiththeexceptionofKr-85withahalf-lifeof10.74yr,thenobleradiogasfissionproductsinthefuelareessentiallyatanequilibriumconditionafteranirradiationperiod-ofseveralmonths(rateofformationisequaltotherate,ofdecay).Soforpracticalpurposestheterm(1-e-T)approaches1andcanbeneglectedwhenthereactorhasbeenoperatingatsteady-stateforlongperiodsoftime.Theterm(e-T)isusedtoadjustthereleasesfromthefuel(t=')tothedecaytimeforwhichvaluesareneeded.Historicallyt=30minhasbeenused.Whendiscussinglongsteady-stateoperationandleakagefromthefuel(t=0),thefollowingsimplifiedformofEquation11.1-4canbeusedtodescribetheleakageofeachnoble-radiogas:R=KYX(11.1-5)gTheconstant,Kg,describesthemagnitudeofleakage.Therelativeratesofleakageofthedifferentnobleradiogasisotopesisaccountedforbythevariable,m,theexponentofthedecayconstant,XDividingbothsidesof.Equation11.1-5byy,thefissionyield,andtakingthelogarithmofboth'idesresultsinthefollowingequation: SSES-FSARlog(R/Y)=mlog(A)+log(K)(ll1-6)Equationll1-6representsastraightlinewhenlogR~/yisplottedversuslog(X);mistheslopeoftheline.Thisstraightlineisobtainedbyplotting(R/y)ve'rsus(y)onlogarithmicgraphpaperByfittingactualdatafromKRBandDresden2(usingleastsquarestechniques)totheequationtheslope,m,canbeobtained.Thiscanbeestimatedonthe'plottedgraph.WithradiogasleakageatKRBoverthenearly5-yrperiodvaryingfrom0.001to0.056Ci/sec(t=30min)andwithradiogasleakageatDresen2varyingfrom0.001to0.169Ci/sec(t=30min),theaveragevalueofmwasdetermined.Thevalueformis0.4withastandarddeviationof+0.07.ThisisillustratedinFigurell.1-1asafrequencyhistogram.Ascanbeseenfromthisfigure,variationsinmwereobservedintherangem=O.ltom=06.Afterestablishingthe'alueofm=0.4,thevalueofKgcanbecalculatedbyselectingavalueforR,orashasbeendonehistonically,thedesignbasi.sissetbfthetotaldesignbasissource-termmagnitudeatt=30min.WithRgat30min=100,000Ci/sec,Kcanbecalculatedasbeing2.6x10~andEquation11.1-4be@mes:R=26X10YX'le)(e)(11.1-7)Thisupdatednobleradiogassource-termmixturehasbeentermedthe>>1971Mixture"todifferentiateitfromthe>>diffusionmixture.<>ThenoblegassourcetermforeachradioisotopecanbecalculatedfromEquation11.1-7.TheresultantsourcetermsarepresentedinTablell.l-lasleakagefromfuel(t=0)andafter30mindecay.WhileKr-85canbecalculatedusingEquation11.1-7,thenumberofconfirmingexperimentalobservationswaslimitedbythedifficultyofmeasuringverylowreleaseratesofthisisotopeTherefore,thetableprovidesanestimatedrangeforKr-85basedonafewactualmeasurements.1111.2Radiohalo~enPissionProductsHistorically,theradiohalogendesignbasissourcetermwasestablishedbythesameequationasthatusedfornobleradiogases.Inafashionsimilartothatusedwithgases,asimplifiedequationcanbeshowntodescribethereleaseofeachhalogenradioisotope:Rh=KYX(ll1-8)Theconstant,KI,,describesthemagnitudeofleakagefromfuelTherelativeraEesofhalogenradioisotopeleakageisexpressedintermsofn,theexponentofthedecay,constant,XAswasdonewiththenobleradiogases,theaveragevaluewasdeterminedforn.Thevaluefornis0.5withastandarddeviationof+019.ThisisillustratedinFigure11.1-2asafrequency111-4 SSES-FSARhistogram.Ascanbeseenfromthisfigure,variationsinnwereobservedintheangeofn=0.1ton=0.9.Itappearedthattheuseofthepreviousmethodofcalculatingradio-halogenleakagefromfuelvasoverlyconservative.Figurell.1-3relatesKRBandDresden2nobleradiogasversusI-131leakageWhileitcanbeseenfromDresden2dataduringtheperiodAugust1970toJanuary1971thatthereisarelationshipbetweennobleradiogasandI-131leakageunder'one.fuelcondition,therevasnosimplerelationshipforallfuelconditionsexperienced.Also,itcanbeseenthatduringthisperiod,highradiogasleakageswerenotaccompaniedbyhighradioiodineleakagefromthefuel.ExceptforoneKHBdatumpoint,allsteady-stateI-131leakagesobservedatKHBorDresden2wereequaltoorlessthan505~Ci/sec.EvenatDresden1inMarch1965,whenseveredefectswereexperiencedinstainless-steel-cladfuel,I-131leakagesgreaterthan500pCi/secI-131,werenotexperienced.Figure11.1-3showsthatthesehigherradioiodineleakagesfromthefuelvererelatedtonobleradiogassourcetermsoflessthanthedesignbasisvalueof0.1Ci/sec(t=30min).Thismaybepartiallyexplainedbyinherentlimitationsduetointernalplantoperationalproblemsthatcausedplantderating.Ingeneral,itwouldnotbeanticipatedthatoperationatfullpowerwouldcontinueforanysignificanttimeperiodwithfuelcladdingdefectsvhichwouldbeindicatedbyI-131leakagefromthefuelinexcessof700'i/sec.Whenhighradiohalogenleakagesareobserved,otherfissionproductsvillbepresentingreateramounts.Thismayincreasepotential-radiationexposuretooperatingandmaintenancepersonnelduringplantoutagesfollovingsuchoperation,Usingthesejudgmentfactorsandexperiencetodate,the,designbasisradiohalogensourcetermsfromfuelwereestablishedbasedonI-131leakageof700pCi/sec.Thisvalue,asseeninFigure11.1-3,accommodatestheexperiencedataandthedesignbasisnobleradiogassourcetermofO.lCi/sec(t=30min).WiththeI-131designbasissourcetermestablished,Khcanbecalculatedasbeing,2.4x107andhalogenradioisotopereleasecanbeexpressedbythe,followingequation:ER=2.4X10YX'1-e)(e)(11.1-9)Concentrationsofradiohalogensinreactorwatercanbecalculatedusingthefollowingequation:Ch(X+B+V)M(11.1-10)11.1-5 SSES-PSARAlthoughcarryoverofmostsolubleradioisotopesfromreactorwatertosteamisobservedtobe0.1%(0.001fraction),theobserved"carryover"forradiohalogenshasvariedfromO.liitoabout2%onnewerplants.Theaverageofobservedradiohalogen'arryovermeasurementshasbeenl.2%byweightofreactorwaterinsteamwithastandarddeviationof+0.9.Inthepresentsource-termdefinition,aradiohalogencarryoverof2X(0.02fraction)wasused.ThehalogenreleaseratefromthefuelcanbecalculatedfromEquation11.1-9.ConcentrationsinreactorwatercanbecalculatedfromPquationll1-10.TheresultantconcentrationsarepresentedinTable.11.1-2.ll.1.1.3OtherPissionProductsstTheobservationsofotherXissionproducts(andtransuranicnuclides,includingNp-239)inoperatingBWRsarenotadequatelycorrelatedbysimpleequations.Portheseradioisotopes,designbasisconcentrationsinreactorwaterhavebeenestimatedconservativelyfromexperiencedataandarepresentedinTable11.1-3.Carryoveroftheseradio-isotopesfromthereactorwatertothesteamis'estimatedtobe<0.1%(<0001fraction).Inadditiontocarryover,however,decayofnobleradiogasesinthesteamleavingthereactorwillresultinproductionofnoblegasdaughterradioisotopesinthesteamandcondensatesystems.Somedaughterradioisotopes(e.g.,yttriumandlanthanum),werenotlistedasbeinginreactorwater.'Theirindependentleakagetothecoolantisnegligible;however,theseradioisotopesma'ybeobservedinsomesamplesinequilibriumorapproachingequilibriumwith'heparentradioisotope.ExceptforNp-239,traceconcentrationsoftransuranicisotopeshavebeenobservedinonlyafewsampleswhereextensiveandcomplexanalyseswerecarriedout.ThepredominantalphaemitterpresentinreactorwaterisCm-242atanestimated,concentrationof10-~pCi/gorless,whichisbelowthemaximumpermissibleconcentrationindrinkingwaterapplicabletocontinuoususebythegeneralpublic.Theconcentrationofalpha-emittingplutoniumradioisotopesismorethanoneorderofmagnitudeloverthanthatofCm-242.Pt.utonium-241(abetaemitter)mayalsobepresentinconcentrationscomparabletotheCm-242level.11.1-6 SSES-FSARll.l.l.4NomenclatureThefollowinglist,ofnomenclaturedefinesthetermsusedinequationsfor,source-termcalculations:RYTtKhMhleakagerateofanoblegasradioisotope(pCi/sec)leakagerateofahalogenradioisotope(pCi/sec)fissionyieldofaradioisotope,(atoms/fission)decayconstantofaradioisotope(sec-~)fuelirradiationtime(sec)decaytimefollowingleakagefromfuel(sec)nobleradiogasdecayconstantexponent(dimensionless)radiohalogendecayconstantexponent(dimensionless)aconstantestablishingthelevelofnobleradiogasleakagefromfuelaconstantestablishingthelevelofradiohalogenleakagefromfuelconcentrationofahalogenradioisotopeinreactorwater{pCi/g)massofwaterintheoperatingreactor(g)cleanupsystemremovalconstant(sec~)gramsmasscleanupsystemflowrate/~sec)N=halogensteamcarryoverremovalconstant(sec-~),y=concentrationofhalogenradioisoto~einsteamggCi~SflChSteamflowNll12ACTIVATIONPRODUCTSll.12.1CoolantActivationProductsThecoolantactivationproductsarenotadequatelycorrelatedbysimpleequations.DesignbasisconcentrationsinreactorwaterandsteamhavebeenestimatedconservativelyfromexperiencedataTheresultantconcentrationsarepresentedinTable11.1-4 SSES-FSAR11.12.2NoncoolantActivationProductsTheactivationproductsformedbyactivationofimpuritiesinthecoolantorbycorrosionofirradiatedsystem'materialsarenotadequatelycorrelatedbysimpleequations.Thedesignbasissourcetermsofnoncoolantactivationproductshavebeenestimatedconservativelyfromexperiencedata.TheresultantconcentrationsarepresentedinTable11.1-5.Carryoveroftheseisotopesfromthereactorwatertothesteamisestimatedtobe(0.1'(0.001fraction).11-1-3TRITONInaBMR,tritiumisproducedbythreeprincipalmethods:(1)'ctivationofnaturallyoccurringdeuteriumintheprimarycoolant,(2)nuclearfissionofU02fuel,and(3)neutronreactionswithboronusedinreactivitycontrolrods~Thetritium,formedincontrolrods,whichmaybereleasedfromaBMRinliquidorgaseouseffluents,isbelievedtobenegligible.AprimesourceoftritiumavailableforreleasefromaBMRisthatproducedfromactivationofdeuteriumintheprimarycoolant.Somefissionproducttritiummayalsotransferfromfueltoprimarycoolant.ThisdiscussionislimitedtotheuncertaintiesassociatedwithestimatingtheamountsoftritiumgeneratedinaBMRwhichareavailableforrelease.Allofthetritiumproducedbyactivationofdeuteriumintheprimarycoolantisavailableforreleaseinliquidorgaseouseffluents.ThetritiumformedinaBMRcanbecalculatedusingtheequation:R=E$VX3.7X10P(11.1-11)whereRactEVPtritiumformationratebydeuteriumactivation(pCi/sec/tlMt)macroscopicthermalneutroncrosssection(cm-i)thermalneutronflux(neutrons/(cm~)(sec))coolantvolumeincore(cm~)tritiumradioactivedecayconstant(1.78x10-~sec-i)reactorpowerlevel(MMt)111-8 SSES-FSARForrecentBWRdesigns,Riscalculatedtobe.1.3a0.4x10~pCi/sec/NMt.Theuncertainty'indicatedisderivedfromtheestimatederrorsinselectingvaluesforthecoolantvolumeinthecore,coolantdensityinthecore,abundanceofdeuteriuminlig'htwater(someadditionaldeuteriumvillbepresentbecauseoftheH(n,y)Dreaction,thermalneutronflux,andmicroscopiccrosssectionfordeuterium).Thefractionoftritiumproducedbyfissionvhichmaytransferfromfueltothecoolant-(whichwillthenbeavailableforreleaseinliquidandgaseouseffluents)ismuchmoredifficulttoestimateHovever,"sincezircaloy-cladfuelrodsareusedinBQRs,essentiallyall"fissionproducttritiumwillremaininthefuelrodsunlessdefectsarepr'esentinthecladdingmaterial(Reference11.1-4).ThestudymadeatDresden1in1968bytheU.S.PublicHealthServicesuggeststhatessentiallyallofthetritiumreleasedfromtheplantcouldbeaccountedforbythe'euteriumactivationsource(Reference11.1-3).Forpurposesofestimatingtheleakageoftritiumfromdefectedfuel,itcanbeassumedthatitleaksinamanner'similartotheleakageofnobleradiogases.Thus,usecanbemadeoftheempiricalrelationshipdescribedasthe"diffusionmixture>>used.forpredictingthesourcetermofindividualnoblegasradioisotopesasafunction'fthetotalnoblegassourceterm.Theequationwhichdescribesthisrelationshipis:Rd.f=Kyk(11.1-12)where,Rd.f=leakagerateoftritiumfromfuel(pCi/sec)dify=fissionyieldfraction(atoms/fission)radioactivedecayconstant(sec~)K=aconstantrelatedtototaltri,tiumleakagera'teIfthetotalnobleradiogassourcetermis10~pCi/secafter30-mindecay,leakagefromfuelcanbecalculatedtobeabout0.24pCi/secoftritium.To'lacethisvalueinperspectiveintheUSPHSstudy,theobs'ervedrateofKr-85(whichhasahalf-lifesimilartothatoftritium)vas0.06to0.4timesthatcalculatedusingthe"diffusionmixture<<relationship.Thiswouldsuggestthattheactual'tritiumleakageratemightrangefrom'015to010pCi/sec.SincetheannualaveragenobleradiogasleakagefromaBWRisexpectedtobelessthan'0.1Ci/sec(t=30min),111-9 SSES-FSARtheannualaveragetritiumreleaseratefromthefissionsourcecanbeconservatively,estimatedat0.12+0.12NCi/sec,or0.0to0.24pCi/sec.Forthisreactor,theestimatedtotaltritiumappearancerateinreactorcoolantandreleaserateintheeffluentisabout19Ci/yr.tTritiumformedinthereactorisgenerallypresentastritiatedoxide(HTO)andtoalesserdegreeast"itiatedgas(HT).Tritiumconcentrationinthesteamformedinthereactorwillbethesame,a.inthereactorwateratanygiventime.Thistritiumconcentrationvillalsobepresentincondensateandfeedwater.Sinceradioactiveeffluentsgenerallyoriginatefromthereactorandpovercycleequipment,radioactiveeffluentswillalsohavethistritiumconcentration.Condensatestoragereceivestreatedwaterfromtheradioactivewastesystemandrejectwaterfromthecondensatesystem...Thus,allplantprocess,watervillhaveacommon,tritiumconcentration.Off-gasesreleasedfromtheplantwillcontaintritium,whichispresent.astritiatedgas(HT)resultingfromreactorwaterradiolysisaswellastritiatedwatervapor(HTO).Inaddition,watervapo"fromtheturbineglandsealsteampackingexhausterandalesseramountpresentinventilationairduetoprocesssteamleaksorevaporationfromsumps,tanks,andspillsonfloorswillalsocontaintritium.Theremainderofthetritiumwillleavetheplantinliquideffluentso"withsolidwastesRecombinationofradiolysisgasesintheairejectoroff-gassystemwillformwater,whichiscondensedandreturnedtothemaincondenser.Thistendstoreducetheamountoftritiumleavingingaseouseffluents.Reducingthegaseoustritiumreleasewillresultina'slightlyhighertritiumconcentrationintheplantprocesswater.Reducingtheamountofliquideffluentdischargedwillalsoresultinahigherprocesscoolantequilibriumtritiumconcentration.Essentially,alltritiumenteringtheprimarycoolantwilleventuallybereleasedtotheenvirons,eitheraswatervaporandgastotheatmosphere,orasliquideffluenttotheplantdischargeorassolidwaste.Reductionduetoradioactivedecayisnegligibleduetothel2-yr.half-lifeoftritium.TheUSPHSstudyatDresden1estimatedthatapproximately904ofthetritiumreleasewasobservedinliquideffluent,withtheremaining10%leavingasgaseouseffluent(Reference11.1-5).Effortstoreducethevolumeofliquideffluentdischargesmaychangethisdistributionothatagreateramountoftritiumwillleaveasgaseouseffluent.Promapracticalstandpoint,thefractionoftritiumleavingasliquideffluentmayvarybetween60and90%withtheremainderleavingingaseouseffluent. SSES-FSAR11.14FUELFISSIONPRODUCTIONINVENTORYANDFUELEXPERTENCEll.l.4.1FuelFissionProductInventoryFuelfissionproductinventoryinformationisusedinestablishingfissionproductsourcetermsforaccidentanalysisandis,therefore,discussedinChapter15.11.1.4.2FuelExperienceAdiscussionoffuelexperiencegainedforBWRfuelincludingfailureexperience,burnupexperience,andthermalconditionsunderwhichtheexperiencewasgainedisavailableinthreeGEtopicalreports(References11.1-2,11.1-3and11.1-6)ll1.5PROCESSLEAKAGESOURCESProcessleakageresultsinpotentialreleasepathsfornoblegasesandothervolatilefissionproductsviaventilationsystems.Liquidfromprocessleaksarecollectedandroutedtotheliquid-solidradwastesystem.Radionuclidereleasesviaventilationpathsareatextremely.lowlevelsandhavebeen"insignificantcomparedtoprocessoff-gasfromoperatingBWRplants.However,becausetheimplementationofimprovedprocessoff-gastreatmentsystemsmaketheventilationreleaserelativelysignificant,GeneralFlectrichasconducted.measurementstoidentifyandqualifytheselow-levelreleasepaths.GeneralElectrichasmaintainedanawarenessofothermeasurementsbytheElectricPowerResearchInstituteandotherorganizations;androutinemeasurementsbyutilitieswithoperatingBWRs.Leakageoffluidsfromtheprocessystemwillresultinthereleaseofradionuclidesintoplantbuildings.Ingeneral,thenobleradiogase"villremainairborneandwill'bereleasedtotheatmospherewithlittledelayviathebuildingventilationexhaustducts.Theradionuclideswillpartitionbetweenairandwater,andairborneradioiodinesmay"plateout'~onmetalsurfaces,concrete,andpaint.Asignificantamountofradioiodineremainsinairorisdesorbedfromsurfaces.Radioiodinesarefoundinventilationairasmethyliodideandasinorganiciodinewhichisheredefinedasparticulate,,elemental,andhypoiodousacidforms,ofiodine.Particulateswillalsobepresentinthe,ventilationexhaustair.ExperiencewiththeairborneradiologicalreleasesfromBWRbuildingheating,ventilating,andairconditioningandthemaincondensermechanicalvacuumpumphavebeencompiledandevaluatedinNEDO-21159,"AirborneReleasesfromBWRsforEnvironmentalImpactFvaluations<<,March1976,LicensingTopicalReport SSES-FSAR{Reference11.1-7).Thisreportisperiodicallyupdatedtoincorporatethemostrecentdataonairborneemission.Theresultsoftheseevaluationsarebasedondataobtainedbyutilitypersonnelandspecialin-plantstudiesofoperatingBMRplantsbyindependentorganizationsandtheGeneralElectricCompany.Anevaluationoftheradioactivereleasesfromventilationsystems,forcompliancewithAppendixIto10CFR50,isgiveninSection11..3.AnevaluationofimportantexposuretoairborneactivityisgiveninSubsection12.2.2.111.6OTHERRELEASESAllotherreleasesarecoveredin'Section11.3.1117REFERENCES111-1Brutschy,F.J.,>>AComparisonofFisionProductReleaseStudiesinLoopsandVBMR,"PaperpresentedattheTripartite"ConferenceonTransportofMaterialsinWaterSystems,ChalkRiver,Canada(February1961).111-211w13111-4Williamson,H.E.,Ditmore,D.C.,"ExperiencewithBMRFuelThroughSeptember1971>>NED0-10505,May1972.(Update)Elkins,R.B.,"ExperiencewithBMRFuelThroughSeptember1970,>>NED0-20922,June1975.Ray,J.M.,"TritiuminPowerReactors,>>ReactorandFuelProcessingTechnology,12(1),pp.19-'6,Minter1968-1969111-5KahnyBgetal,"RadiologicalSurveillanceStudiesataBoilingMaterNuclearPowerReactor,>>BRH/DER70-1,March,1970.111-6Williamson,H.E.,Ditmore,D.C.,"CurrentStateofKnowledgeofHighPerformanceBMRZircaloy'CladU02'Fuel,"NED0-10173,May1970.11.1-7Marrero,T.R.,"AirborneReleasesFromBMRsforEnvironmentalImpactEvaluations,"NEDO-21159,March1976. SSES-FSARCHAPTER12RADIATIONPROTECTIONTABLEOFCONTENTS12~1ENSURINGTHATOCCUPATIONALRAD1ATIONEXPOSURESAREASLOWASREASONABLYACHIEVEABLE(ALARA)12.l.1PolicyConsiderations12.1.1.1ManagementPolicy12.1.1.2managementResponsibilities12.1.1.3PolicyImplementation12.1.2DesignConsiderationspage12.1-112&1112.1-112.1-112%1312.1-41212.1121221212.312.1.2.4GeneralDesignConsiderationsforALARAExposuresEquipmentGeneralDesignConsiderationsforALARAFacilityLayoutGeneralDesignConsider-ationsforALARAALARADesignReview12.1-512.1-5121-62&1712.1.3OperationalConsiderations12.1.3.1ProcedureDevelopment'2.1-912.1-912.131.112.1.3.1.2ALARAProceduresStationProcedures12.1-9121-1012.1.3.2StationOrganization12.1.3.3OperatingExperience12.1.3.4ExposureReduction12.1.4References122RADIATIONSOURCES12.2.1.ContainedSources12.2.1.1Drywell12.2.1.1.1ReactorCore12.2.1.1.2ReactorCoolantSystem12.2.1.1.3PrimarySteamSystem12.2.1.2ReactorBuilding12.1-1012.1-1012.1-11121-1212.2-1122-112.2-212.2-212.2-212.2-212&23REV12,9/1912-3. 12.2,1.2.11221.2.212.2.l.2.3.122.12.412.2.1.2.51221.2.6SSES-FSARReactorMaterCleanupSystemSpentFuelHandlingandTransferResidualHeatRemovalSystemReactorCoreIsolationCoolingSystemHighPressureCoolantInjectionSystemCoreSpraySystems12%2312.2-312&2312.2-412.2-412.2-412.2.1.3RefuelingFacilities12.2.1.3.112.213212.2.1.4TurbineBuildingSpentFuelStorageandTransferSpentFuelPoolCoolingAndCleanupSystem12.2-412.2-412.2-512.2-512.2.1.4112.2.1.4.212.2.1.4.3PrimarySteamandPoverConversionSystemsCondensateSystemOffgasSystemRecombiner12.2-5122-512.2-612.2.1.5RadwasteBuilding12.2-612.2.1.5.112.2.1.5.212215.3LiquidRadmasteSystemsSolidRadwasteSystemAmbientCharcoalOffgasTreatmentSystem12.2-612&2712&271221612.2.1.712.21812.2.1.9122.2SourcesResultingfromDesignBasisAccidentsSiteBoundaryN-16ShineDoseStoredRadioactivitySpecialSourcesAirborneRadioactiveMaterialSources12.2-7a12.2-812.2-812.2-912.2-912.312.2.21122.2.212.2.2.312.2.2.412.2.2.512.2.2612.2.2.71222.812.22.9RADIATIONSourcesofAirborneRadioactivityProductionofAirborneMaterialsLocationsofSourcesofAirborneRadioactivityControlofAirborneRadioactivityMethodologyforEstimatingtheExpectedConcentrationofAirborneRadioactiveMaterialMithinthePlantEstimationofTotalAirborneReleasesMithinthePlantDistributionofAirborneReleasesMithinthePlantEstimatedAirborneRadioactiveMaterialConcentrationsMithinthePlantChangestoSourceDataSincePSARPROTECTIONDESIGNFEATURES12.2-912.2-912.2-1012.2-1012.2-1012.2-1112.2-1112.2-1212.2-1212.3-1REV12,9/79123i SSES-FSAR12.3.1FacilityDesiqnFeatures12&3112.3.1.112.3.1.212.3.1.312.3.l.412&31CommonEquipmentandComponentDesignsforALARACommonFacilityandLayoutDesignsforALARA.12.3-4RadiationZoningandAccessControl12%37ControlofActivatedCorrosionProducts12.3-712.3.2Shielding12.3.2.1DesignObjectives12.3.2.2GeneralShieldingDesign12.3-7b12.3-7b12.3-812.3.2.2.1123.2.2212.3.2.2.31232.2.412.3.2.2.512.3.2.2.612.3.2.2.712.3.2.2.8ReactorBuildingShieldingDesignReactorBuildinqInteriorShieldingDesignRadwasteBuildingShieldingDesignTurbineBuildingShieldingDesignControlRoomShieldingDesignDieselGeneratorBuildingShieldingDesignMiscellaneousPlantAreasandPlantAreasCountingRoomShielding12.3-912-Yard12.12~3-133-133-1412.3-912.3-1112%31212.3-1312.3.2.3ShieldingCalculational.Methods12.3.3Ventilation12.3.3.1DesignOblectives12.3.3.2DesignCriteria12.3.3.3DesignGuidelines12.3-1412.3-1512.3-1512.3-1512.3-1612.3.3.3.112.3.3.3.212.333.312.3-16GuidelinestoMinimizeAirborneRadioactivityGuidelinestoControlAirborneRadioactivity12w317GuidelinestoMinimizePersonnelExposurefromHVACEquipment12.3-1812.341.112341212.3.4.1.312.3.4.1.4CriteriaforAreaMonitorSelectionCriteriaforLocationofAreaMonitorsSystemDescription(AreaRadiationMonitoring)AreaRadiationMonitoringXnstrumentatio12.3.3.4DesignDescription12.3.4AreaRadiationandAirborneRadioactivityMonitoringInstrumentation12.3.4.1AreaRadiationMonitoring12.3-2012-3-2012.3-2012.3-2112w3222A322n12.3-2$lnREV12'/7912-iii 12..3.4.1.512.34.1.6SSES-FSARSafetyEvaluationCalibrationMethodandTestability124DOSEASSESSMENT12.3.4.2AirborneRadioactivityMonitoring12.3.5References12.3-2412.3-2412.3-2412.3-2512.4-112.4.1DirectRadiationDoseEstimatesforExposuresWithinthePlant12.4-112.4.1.112.4.1.212.4.13DefinitionofCategoriesUsedinExposureEstimatesExposureEstimateMethodologyResults'ofAnnualDirectRadiationDoseEstimates12.4-112.4.-212.4-312.4.1.3.1124.1.3.212.4-1.3312.4.1.3.412.41.3512.4.1.3.612.41.3.712.4.1.3.8RoutineOperationsDoseEstimateRoutineMaintenanceDoseEstimateIn-ServiceInspectionDoseEstimateSpecialMaintenanceDoseEstimateWasteProcessingDoseEstimateRefuelingDoseEstimateHealthPhysicsDoseEstimateSummaryofDirectRadiationDoseEstimatesMethodsforEstimatingDoses12.4.1.3.912.4.212.4.3AirborneRadioactivityDoseEstimatesforExposuresWithinthePlantExposuresatLocationsOutsidePlantStructures12.4-412.4-512.4-612.4-612.4-612.4-6a12.4-712.4-712.4-7124-912.4-10DirectRadiationDoseEstimatesOutsideStructures2AirborneRadioactivityDoseEstimatesOutsideStructures12.43.12.43.12.4.4ExposurestoConstructionWorkers12.4-1012.4-1112.4-1112.5HEALTH12.5.1PHYSICSPROGRAMIOrganization12.5.1.1Introduction12.5.1.2Responsibilities12.4.4.1DirectRadiationandDoseEstimates12.4.4.2ExposuresDuetoAirborneRadioactivity12.4.5References124-1112.4-1312.4-1312.5-112.5-112.5-112.5-1REV12,9/7912-iv SSES-FSAR12.5.1.3Authority12.5.1.4ExperienceandQualification12.5.2Facilities,Equipment,6Instrumentation12.5.2.1ControlStructureFacilities12.5-212&5312.5-412.5-412.5.2.1.112.5.21.212.3.2.1.3HealthPhysicsFacilitiesRadiochemistryFacilitiesChemistryLaboratory12.5-412.5-612.5-712.5.2.2RadwasteBuildingFacilities12.5-712.5.2.2.112.5.2.2.212.5.2.2.3RadwasteBuildingElevation646'0"RadwasteBuildingElevation676'0"RadwasteBuildingElevation691'6"12.5-712.5-812.5-912.5.2.312.5.2.412.5.2.512.5.2.6ReactorBuildingFacilitiesTurbineBuildingFacilityGuardHouseBuildingHealthPhysicsEguipment12.5-1012.5-1012.5-1012.5-1112.5.2.6.1ProtectiveClothing12.5.2.6.2RespiratoryProtectiveEquipment12.5.2.6.3AirSamplingEquipment12.5-1112.5-1112.5-1212.5.2.6.12.5.2.6.12.5.2.6.12.5.2.6.12.5.2.6.3.13.23.33.43.5ContinuousAirMonitorsPortableAirSamplersBreathingZoneSamplersSamplingMediaSpecialAir'Sampling12.5-1212.5-1312.5-1312.5-1312.5-1412.5.2.7HealthPhysicsInStrumentation12.5.2.7.112.5.2.7.212.5.2.7.312.5.2.7.412.5.2.7.5CountingRoomInstrumentationHealthPhysicsOfficeandWorkroomInstrumentationHealthPhysicsRadwasteBuildingInstrumentationPersonnelContaminationMonitoringInstrumentationMiscellaneousHealthPhysicsInstrumentation12.5.3Procedures12.5.2.6.4PersonnelDosimetry12.5.2.6.5,Miscellaneous,Equipment12.5-1412.5-1512.S-1612.5-1612.5-1712.5-1812.5-1912.5-1912.5-2012.5.3.1ControlofAccessandStayTimeinRadiationAreas12.5-20REV12,9/7912-v 12.5.3.12.5.3.12.5.3.12.5.3.12.5.3.SSES-FSARPhysicalControls1.1.1SecurityCheckPoint1.1.2SecurityDoors1.1.3PostingandLocking1.1.4Surveillance125-2012.5-20125-2012.5-2112.5-2212.5.3.1.2AdministrativeControls12.5-2212.5.3.12.5.3.12.5.3.12.5.3.12.5.3.1.2.112-21.2.31.2.41.2.5TrainingRadiationWorkPermitReportingReguirementIndependentReviewProcedureReview12.5-2212.5-2212.5-2312.5-2312.5-2312.5.3.2AssuringthatOccupationalRadiationExposure(ORE}WillHeAsLowAsReasonablyAchievable(ALARA)12.5-2412.5.3.2.1ALARAProceduresCommontoExternalandInternalExposure12.5-2412.5.3.2.1.112.5.3.2.1.212.5.3.2.1.312.5.3.2.1.412.5.3.2.1.512.53.2.1.612.5.3.2.1.712.5.3.2.1.812.5.3.2.2125.3.2.2.112.5.3.2.2.212.5.3.2.2.312.5.32.2.4'12.5.3.2.2.512.5.3.2.2.612.5.3.2.2.7125.3.2.2.812.5.3.2.312.5.3.23112.5.32.3.212.5.3.2.3.312.5.3.2.3.412.5.3.2.3.512.5.3.2.3.612.5.3.2.3.712.53.2.3.8TrainingRadiationMorkPermitWorkSchedulingReportingRequirementsInternalProgramReviewsExposureGoalsJobPre-PlanningMorker'sRecommendationsExternalALARADosimeterEvaluationsCategorizationofExposuresWorkTimeEvaluationSpecialAlarmsandInstrumentsTemporaryShieldingSpecialToolsandApparatusNon-RMPWorkReviewAdministrativeLimitsInternalALARAEngineeringControlsRespiratoryProtectionPreWorkAirSurveysSpecialAirSamplingRoutineAirSamplingControlofAbsorptionandIngestionControlofAreaandEquipmentContaminationLevelsAirborneExposureEvaluation12.5-2412.5-2412.5-2612.5-2612.5-26125-2612.5-2712.5-2712.5-2712.5-2712.5-2812.5-2812.5-2812.5-2912.5-2912.5-2912.5-2912.5-3012.5-3012.5-3012.5-3012.5-3012.5-3112.5-3112.5-3112.5-32REV12,9/7912-vi SSES-FSAR12.5.3.2.3.9AdministrativeLimits12.5.3.3RadiationSurveys12.5.3.3.1RadiationSurveyProgram'Controls12.5-3212.5-3212.5-3212-5.3.3.1.112.5.3.3.1.212.5.3.3.1.312.5.3.3.1.412.5.3.3.1.512.5.3.3.212.5.3.3.2.112.53.3.2.212.5.3.3.2.312.5.3.3.-2.412.5.3.3.2.512.5.3.3.2.612.533.2.712.5.3.3.2.8RecordReviewIndependentReviewsSurveyorDoseEvaluationSurveyorWorkRotationTrainingRadiationSurveyProgramInstrumentSelectionRoutineRadiationAreaSurveysHighRadiationAreaSurveysNon-RadiationAreaSurveysRadiationWorkPermitSurveysSpecialRadiationSurveysUnit2Constx;uctionSurveysRadiationSurveyRecords12.5-3212.5-3312.5-3312.5-3312.5-3412.5-3412.5-3412.5-3512.5-3512.5-3612.5-3612.5-3612.5-3712.5-3712.5.3.4.PersonnelContaminationSurveys12.5.3.4ContaminationSurveyProcedures12.5-3712.5-3812.5.3412.5.3.4.12.5.3.4.12.5.3.4.12.5.3.4.12.53.4.12.5.3.4.12.53.4.12.5.3.4.12.5.3.4.12.5.34.12.5.3.4.1121.3142122232.42.52.6FriskerSurveyNasalSwabIngestionProceduresWound,Cut,AbrasionSurveysEquipmentContaiminationSurveysContaminationZoneEquipmentSurveysPersonalItemSurveysProtectiveClothingSurveysRespiratoryProtectionDeviceSurveysFixedEquipmentSurveysSurveysInvolvingReceipt/ShipmentofRadioactiveMaterialSurfaceContaminationSurveys12.5-3812-5-3812.5-3912.5-39125-40.12.5-4012.5-4012.5-4012.5-4112.5-4112.5-4212.5-4312~5.3-4.12.5.3.4.12.5.3.4.12.5.3.4.12.5.3.512.53.5.3.13.2333.4Controlled,AccessAreasNon-ControlledZoneAreasSpecialAreaSurveysImplementation,Review,andReportingPracticesAirborneRadioactiveMaterial1PhysicalControls12.5-4312.5-4312.5-4312.5-44125-4512.5-45REV12<9/7912-vii SSES-FSAR12.5.3.5.1.112.5.3.5.1.212.53.5.1.312.5.3.5.1.412.5.3.5.212.5.3.5.2.112.5.3.5.2.212.5.3.5.2.3AirFlowPatternsContaminationConfinementAirExhaustPostingandLockingAdministrativeControlsHealthPhysicsReviewHealthPhysicsInvestigationRMPProcedures12.5-4512.5-4512.5-4612.5-46125-4612.5-46125-4612.5-4712.5.3.5.312.5.3.5.412.5.3.5.4.112.5.3.5.4.212.5.3.5.512.5.3.5.5.I12.5.3.5.5.212.53.5.5312.5.3.5.612.5.12.5.12.5.12.5.12.5.12.5.3.5.6.13.5.6.23.5.6.33.5.6.43.5.653.5.6612.5.3.5.6.712.53.5-6-812.5.3.56.912.5.35.6.1012535.712.5.3.5.7.112.5.3.5.7.2AirSamplingEquipmentAirborneConcentrationSamplingRoutineSamplingSpecialAirSamplingAirSampleEvaluationParticulateInitialEvaluationSubsequentParticulateEvaluationsGaseousEvaluationsRespiratoryProtectionTrainingandFittingMrittenProceduresSelectionofEguipmentIssueandUseContaminationSurveysCleaning,Decontamination,Inspection,Maintenance,Disinfection,andStorageQualityControlsSurveillanceofMorkAreaConditionsEvaluationofProgramEffectivenessMedicalSurveillanceHandlingofRadioactiveMaterialUnsealedMaterialSealedMaterials12.5-4712.5-4712.5-47125-4812.5-4812.5-4812.5-4812.5-49125-49125-5012.5-50125-5012.5-5012.5-5112.5-5112.5-5112.5-5212.5-5212.5-5312.5-5312.5-5312.5-5412.5.3.6.1ExternalPersonnelMonitoring12.5.3.6PersonnelMonitoring12.S-5412.5-5412.5.3.6.1.112.5.3.6.1.212.5.3.6.1.312.5.3.6.2PersonnelDosimetryEvaluationAdministrativeExposureControlMethodsofRecordingandReportingInternalRadiationExposureAssessment12.5-5412.5-56125-5612.5-58REV12,9/7912-viii 12.53.62112.5.3.6.2.212.5.3.6.2312.5.3.6.2.4SSES-PSARBioassayMethodsAdministrativeControlsCriteriaforParticipationorSelectionEvaluationandReporting12.5-5812.5-5912.5-5912.5-6012.5.3.7.1ProgramControls12.5.3.7HealthPhysicsTrainingPrograms12.5-6l12.5-6112.5.3.7.212.5.3.12.5.3.12.5.3...12.5.3.12.5.3.12.5.3.7.2.17.2.27-.2-37.2.47.2.572.612.5.3.7.2.712.5.3.7..11125.37.1.212.5.3.7.1.312.5.3.7.1.4ManagementReviewHealthPhysicsTrainingProgramReviewAccessControlRetraining/ReplacementTrainingTrainingProgramsLevelITrainingLevelIITrainingLevelIIITrainingLevelIVTrainingBespiratoryProtectionTrainingProgramHealthPhysicsMonitorInitialTrainingProgramHealthPhysicsMonitorRetrainingProgram12.5-6112.5-6112.5-6112.5-62125-6212.5-6212.5-6312.5-6312.5-6412.5-6412.5-6512.5-66BEV12g9/7912-ix SSES-FSARCHAPTER12TABLESTABLENUMBERTITLE12.2-12&22BasicReactorDataCoreRegionDescriptionUsedinCalculationstoDetermineRadialFluxDistributionatReactorCoreMid,plane12w23MaterialCompositiontoDetermineRadialFluxDistributionsatReactorCoreMidplane12.2-4CalculatedGammaRayandNeutronFluxesatOutsideSurfaceofRPV12.2-5CalculatedGammaRayandNeutronFluxesatOutsideSurfaceofPrimaryShield12.2-6ReactorWaterCleanupSystemN-16ShieldingSourceTerms12w2712.2-8ReactorMaterCleanupFilterDemineralizerShieldingSourceTerms.ReactorMaterCleanupBackwashReceivingTankShieldingSourceTerms12.2-912.2-10SpentFuelAssemblyShieldingSourceTermsResidualHeatRemovalSystemShieldingSourceTerms12.2-11SteamN-16ShieldingSourceTermsforTurbineandReactorBuildingEquipment122-12FuelPoolSystemShieldingSourceTerms12&213FuelPoolFilterDemineralizerShieldingSourceTerms12.2-10FuelPoolMaterCleanupBackwashReceivingTankShieldingSourceTerms12.2-1512.2-1612&217CondensateShieldingSourceTermsCondensateDemineralizerShieldingSourceTermsOff-gasLinefromSJAEtoRecombinerShieldingSourceTermsREV12'/7912-x SSES-tFSAQ121ENSURINGTHATOCCUPATIONALRADIATIONEXPOSURESARE~12POICYCOHSIA~IOItisthepolicyofPP6LtomaintainoccupationalradiationexposureAsLowAsBeasonablyAchievable(ALARA)attheSusquehannaSES.ThisincludesmaintainingtheannualdosetoindividualsworkingatthestationALARA,andkeepingtheannualintegrateddosetostationpersonnelALARA.ThemanagementofthisCompanyisfirmlycommittedtoperformingallreasonableactionstoensurethatradiationexposuresaremaintainedALARA.(Subsection12.1.2andSection12.3discusstheALARAconsiderationsthathavebeenincorporatedintothedesignoftheSusquehannaSES.TheSusquehannaSESwillbeoperatedandmaintainedinsuchamannerastoensureoccupationalradiationexposures{ORE)areALARA.TheoperationalALABAprogramisdescribedinSection125.TrainingprogramswillbeestablishedtoassurepersonnelunderstandbothwhyandhowoccupationalradiationexposureswillbemaintainedALARAAcorporateALARAReviewCommitteehasbeenestablishedtoensureimplementationofALARApolicybyvariousprogramreviews.Figures172-2and13.1-1exhibitthemanagementorganizationalstructurefortheSusquehannaSES.TheVicePresident-SystemPowerandEngineeringhasthecorporateresponsibilityfortheALARAProgram.The'responsibilityforcoordinationandadministrationoftheALARAProgramisassignedthroughtheHanager-PowerProductontotheHanager-NuclearSupportThisindividualisresponsibletodeterminethatthepoliciesandcommitmentscontainedinthePPSLALARAProgramarebeingproperlyimplemented.Duringthedesignandconstructionphase,theSusquehannaSESProjectHanagerisresponsibletoensurethatthedesignandconstructionofthefacilityissuchthatoccupationalexposureswillbeALARAThiswillincludeensuringthat,totheextentpracticable:REV.18/78121-1 SSSS-PSARDesignconceptsandstationfeaturesreflectconsiderationoftheactivitiesofstationpersonnelthatmightbeanticipatedandthatmightleadtopersonnelexposuretosubstantialsourcesofradiationandthatstationdesignfeatureshavebeenprovidedtoreducetheanticipatedexposuresofstationpersonneltothesesourcesofradiationbSpecificationsforequipmentreflecttheobgectivesofALARA,includingamongothers,considerationsofreliability,serviceabilityandlimitationsofinternalaccumulationsofradioactivematerial.Duringthestartupandoperationphase,theSuperintendentofPlantisresponsibleforcontrollingradiationexposureinamannerconsistentwithALARArequirementsandisspecificallyresponsiblefortheonsiteradiationprotectionprogram.HisresponsibilitieswithrespecttotheALARAPrograminclude:ensuringsupportfromallstationpersonnel,participatingintheselectionofspecificgoalsandobjectivesforthestation,supportingtheHealthPhysicsSupervisorinformulatingandimplementingthestationALARAProgram,andexpeditingthecollectionanddisseminationofdataandinformationconcerningtheprogramtothecorporatemanagement.TheALARAresponsibilitiesoftheSuperintendentofPlantareimplementedthroughtheHealthPhysicsSupervisorwho,inaccordancewithALARAprinciples,developstheHealthPhysicsProgramandProcedures,reviewsotherapplicablestationprocedures,andestimatesandmonitorspersonnelexposures.MajorALARAresponsibilitiesoftheHealthPhysicsSupervisorincludethefollowing:a.Participatinginreviewsofdesignchangesforfacilitiesandequipmentthatcanaffectpotentialradiationexposures;b.Identifyinglocations,operations,andconditions,thathavethepotentialforcausingsignificantexposurestoradiation;coInitiatingandimplementingandexposurecontrolprogramwhichincludestheestablishmentofmanremgoals,Developingplans,procedures,andmethodsforkeepingradiationexposuresofstationpersonnelALARA:eReviewing,commentingon,andrecommendingchangesinapplicableprocedurestomaintainexposuresALARA;121-2 SSES-FSABfDevelopingorparticipatinginthedevelopmentofappropriateHealthPhysicstrainingprogramsrelatedtoworkinradiationareasorinvolvingradioactivematerial;qSupervisingtheradiationsurveillanceprogramtomaintaindataonexposuresofanddosestostationpersonnelbyspecific5obfunctionsandtypeofwork;h.Supervisingthecollection,analysis,andevaluationofdataandinformationattainedfromradiologicalsurveysandmonitoringactivities;i.Supervising,training,andqualifyingtheradiationprotectionstaffofthestation;andEnsuringthatadequateradiationprotectioncoverageisprovidedforstationpersonnelduringallworkinghours.Chapter13providesadditionalinformationconcerningresponsibilitiesandreportingrelationshipsattheSusquehannaSES12.113PolicyImplementationThemanagementALARApolicyisimplementedattheSusquehannaSESbytheHealthPhysicsStaffunderthedirectionoftheSuperintendentofPlantandHealthPhysicsSupervisor.ThepolicyimplementationisformalizedbytheincorporationofALARAphilosophyandconsiderationsintopermanentplantproceduresdealingspecificallywithALABAconcerns.TheoperationalALARAconsiderationsidentifiedinsubsections12.1.3and12.5.3.2areimplementedbytheseprocedures.Subsection12.5.3.7describesthetrainingprogramestablishedtogiveappropriatestationpersonnelthenecessaryknowledgetounderstandwhyandhowtheyshouldmaintaintheirOBEALARATheALABAReviewCommitteehasbeenestablishedtoreviewtheimplementationoftheCompanyALARAProgramSpecificresponsibilitiesoftheALABAreviewCommitteeinclude:a.EnsuringthatthecorporateALARAprogramintegratesmanagementphilosophyandregulatoryreguiremetnsandismaintainedwithspecificgoalsandobjectivesforimplementation;bEnsuringthataneffectivemeasurementsystemisestablishedandusedtodeterminethedegreeofsuccessachievedbyREV.18/78121-3 SSBS-PSARstationoperationswithregardtotheALARAgoalsandspecificobjectives;cBnsuringthatthemeasurementsystemresults:arereviewedonaperiodicbasisandthatcorrectiveactionistakenwhenattainmentofthespecificobjectivesappearstobe)eopardized;Ensuringthattheauthorityforprovidingproceduresandpracticesbywhichthespecificgoalsandobjectiveswillbeachievedisdelegated;e.EnsuringthattheresourcesneededtoachieveALABAgoalsandob]ectivesaremadeavailable;andfPeriodicallyreviewasamplingofpermanentplantproceduresconcerningALARA12>>1>>22ESZGNCONSIDERATIONSThissubsectiondiscussesthemethodsandfeaturesbywhichthepolicyconsiderationsofSubsection12.11areappliedProvisionsanddesignsformaintainingpersonnelexposuresaslowasreasonablyachievablearepresentedinSubsections12.3.1,12.3.2and12.5.3.Experiencesanddatafromoperatingplantsareevaluatedtodecideifandhowequipmentorfacility,designscouldbeimprovedtoreduceoverallplantpersonnelexposures.Duringplantdesign,operatingreportsanddatasuchasthatgiveninMASH1311,NUBEG-75/032,NUREG-109andCompilationandAnalysisofDataonoccupationalRadiationExposureExperiencedatoperatingNuclearPowerPlantsiAIP,Septem.ber1974,References121-1,thru121-4respectively,arereviewedtodeterminewhichoperations,proceduresortypesofequipmentweremostsignificantinproducingpersonnelexposures.MethodstomitigatesuchexposuresareimplementedwhereverpossibleandpracticableREV.18/78121-4 SSES-PSAR1~2~12,1Gene~alDes~inCon~sideationsforALARARRRosnresGeneraldesignconsiderationsandmethodsemployedtokeepin-plantradiationexposuresALARAhavetwoobjectives:a)minimizingthenecessity.forandamountofpersonneltimespentinradiationareas;andb)MinimizingradiationlevelsinroutinelyoccupiedplantareasandinthevicinityofplantequipmentexpectedtorequirepersonnelattentionBothequipmentandfacilitydesignsareconsideredinkeepingexposuresALARAduringplantoperationsincludingnormaloperation,maintenanceandrepairs,'efuelingoperationsandfuelstorage,in-serviceinspectionandcalibrations,radioactivewastehandlinganddisposal,andothereventscfmoderatefrequencyTheactualdesignfeaturesusedaredescribedinSubsection12.31Thefollowingequipmentgeneraldesignconsiderationstominimizethenecessityforandamountofpersonneltimespentinaradiationareainclude,wherepracticable:a)Reliability,durability,construction,anddesignfeaturesofeguipmeat,components,andmaterialstoreduceoreliminatetheneedforrepairorpreventivemaintenance;b)c)Servicingconvenienceincludingeaseofdisassemblyandmodularizationofcomponentsforreplacementorremovaltoaloverradiationareaforrepair;Provisions,wherepracticable,toremotelyormechanicallyoperate,repair,service,monitor,orinspectequipment;andd)Redundancyofequipmentorcomponentstoreducetheneedforimmediaterepairwhenradiationlevelsmaybehighandwhennofeasiblemethodi.savailabletoreduceradiationlevels.Thefollowingequipmentgeneraldesignconsiderationsdirectedtowardminimizingradiationlevelsproximatetoequipmentorcomponentsrequiringpersonnelattentioninclude,wherepracticable:REV.l8/78121-5 SSES-PSARa)Provisionfordraining,flushing,or,ifnecessary,remotecleaningofequipmentcontainingradioactivematerial;b).Designofequipment,tominimizethebuildupofradioactivematerialandtofacilitateflushingofcrudtraps;c)Utilizationofhighqualityvalves,valvepackings,andgasketstominimizeleakageandspillageofradioactivematerials;d)e)Provisionsforminimizingthespreadofcontaminationintoequipmentserviceareas;and.Provisionsforisolatingequipmentfromradioactiveprocessfluids.12.123PacilityLayoutGeneralDesignConsiderationsforALARMThefo1.lowinqfacilitygeneraldesignconsiderationstominimizetheamountofpersonneltimespentinaradiationareaincludewherepracticable:a)Locatingequipmentandinstruments,whichwillrequireroutinemaintenance,calibration,orinspectionforeaseofaccessandaminimumofrequiredoccupancytimeinradiationfields;b)Arrangingplantareastoallowremoteormechanicaloperation,service,monitoring,orinspectionof-highlyradioactiveequipment;andc)Providing,fortransportationofequipmentorcomponentsrequiringservicetoalowerradiationarea.Facilitygeneraldesignconsiderationsdirected,towardminimizingradiationlevelsinplantaccessareasandinthevicinityofequipmentrequiringpersonnelattentionincludewherepracticable:a)Separa'tingradiationsourcesandoccupiedareas(eg,pipescontainingpotentiallyhighlyradioactivefluidsdonotpassthroughnormallyoccupiedareas);b)Providingadequateshieldingbetweenradiationsourcesandaccessandserviceareas;REV.l8/78121-6 SSES-PSARc)Locatingappropriateequipment,instruments,andsamplingsitesinthelowest,practicableradiationzone;d)Providingmeansandadequatespaceforusingmovableshieldingforsourceswithintheserviceareawhenrequired;ande)-Providingmeans(eg.curbing,drainsandflush)tocontrolcontaminationandtofacilitatedecontaminationofpotentiallycontaminatedareas.BechtelPowerCorporationasagentsforPPCLhavebeengiventhebasicresponsibilityfortheperformanceoftheALARAdesignreview.PPCLprovidesoverallcoordinationandinputasdescribedbelow.TheALARADesignReviewisconductedinaccordancewiththeSusquehannaSESprocedureforALARAspecificreview.Thisproject-uniqueproceduredefinesthepurposeofthereview,establishestheprojectALARAreviewteam,describesthedisciplineALARAreviewprocess,theextentandformatofALARAreviewmeetingsandthemethodofnotingandresolvingALARAdesignchanges.TheBechtelReactor-Plant(Nuclear)GroupisresponsiblefortheoverallcoordinationoftheprojectALARAreviewandinterfacingbetweenthevariousBechtelprojectdisciplines,theBechtel~RadiationProtectionStaffandPPCL.OneengineerfromtheBechtelNuclearGroupservesastheprojectALARAcoordinatorAnengineerisassignedfromeachBechteldisciplinetoserveasthatdisciplinesALARAcoordinator.ThedisciplineALARAcoordinatorsinterfacewiththeprojectALARAcoordinator.Eachdisciplinecoordinatorensuresthatcognizantdisciplineengineersforeachsystemarefamiliarwiththeavailablequidelinesprovidedbyhisdisciplinechief.GuidelinescoverALARAitemssuchasvalveactuatorsand,activatingdevices,radioactivepipeclassificationsystems,designofspentresinhandlinqsystemsandradioactivesystemcomponentequipmentspecifications.OtherrelateddisciplinedocumentsareprovidedbytheBechtelprojectALARAcoordinator,includingdesignstandards,datalettersandinformationbulletins.TheBechtelprojectALARACoordinatorobtainsinputandexpertisefromotherBechtelprojectgroupssuchasCivil,CostEngineering,andConstructionandfromtheStaffRadiationProtectionandShieldinggroupsasrequired.REV.18/78121-7 SSES-FSARTheprojectALABAcoordinatorinformsthedisciplineALABAcoordinatorsofthesystemorareatobereviewydandthereviewscheduleZnpreparationforthereviewteammeetingtheIdisciplineALABAcoordinatorhasthecognizantengineersofhisgroupreviewthearea/systemforALARAdesigncoordinationsforthisdisciplineandcompleteaformdocumentingthereview.AttheBechtelALABAreviewmeeting,whichisattendedbyalldisciplineALABAcoordinators,allpotentialproblemareasarediscussedandaresolutionproposed.Ifnecessaryadoseassessmentismade.Resolutionscantaketheformofajustificationofthecurrentdesign.TheprojectALABAcoordinatorisresponsibleforexpeditingcloseout'ofallitemsanddocumentingthereviewmeetingMhereresolutionofanyconsiderationcannotbereasonablyachievedwithinthepresentplantlayout,schedule,andscopeofwork,PPSLisnotifiedwitharecommendedcourseofaction.AlldisciplineALARAcoordinatorsreviewdesigndocumentsonacontinuingbasisandinformtheprojectALARAcoordinatorofanynewcriteria,operatingexperience,ordirectionreceivedfromthedisciplinechief.Zncoordinationwiththedesignreviews,theprojectALABAcoordinatorschedulesandleadssitevisitsaccompaniedbycognizantengineers.Thesitevisitsservetoconfirmthe.findingsofthedesignreviewandidentifyproblemsthatmaynothavebeenapparentonthedrawings.ThemajortoolusedinthedesignreviewistheSSESALABA-SpecificReviewConsiderationsMatrixandCheckMatrixwhichidentifydesignfeatureswhichhavebeenjudgedtobecosteffectivewithrespecttomaintaining(OccupationalRadiationExposures)OBE-ALARAinmostapplications.Thereviewconsiderationmatrixidentifiesthediscipline(s)responsiblefortheALABAconsiderationandthecheckmatrixdocumentsreviewofthedesignbytheresponsiblediscipline{s).AtthetimewhentheSSESdesignwasformulated,insufficientdatasuchasradiationlevels,exposurefreguencyanddurationwasavailabletoutilizeadoseassessmentasaprimarydesigntoolTheinconsistentnatureoftheavailabledataalsolimitedtheuseofdoseassessmentsasadesigntool.ThedoseassessmentisapartoftheALABAreviewinthatthecomponentsofthedosecalculation(radiationlevel,exposuretime,exposurefrequency)areconsideredindevelopingtheSusguehannaSESALARASpecificBeviesConsiderationsMatrixandintheactualreviewitselfAformalquantificationofanypotentialdosereductionanditscosteffectivenessisnotperformedaspartofthereviewduetothelatestageofdesignandconstruction,thelargeREV.18/78120-8 SSES-CESARvariationinthebenefitofanypotentialdosereduction,andinadequatequantitativedataonthedosereductioneffectivenessofselecteddesiqnfeatures.ALARADesignReviewstodatehaveresultedinthefollowingsignificantdesignmodifications:{l)Theradwasteevaporatorcompactskidhasbeenmodifiedtoallowthehighlyradioactiveevaporatorbottoms,concentratepumpandassociatedpipingtobeshieldedfromtheremainingcomponents.(2)Rackmountingsolenoidvalves,pressureregulatorsandfiltersassociatedwithvalveslocatedinphaseseparatortankcellsoutsideinalowradiationzoneandremovingresininletandflushvalvesfromthetankareas.Znadditiontointensivesystem/areaALARAdesignreview,fieldroutedsmallpipingdrawingsarecontinuallyreviewed,oftenresultinginchangesinrouting,valveandoperatortypes,andconnectionpoints.1213OPERATIONALCONSIDERATIONSToassurethatoccupationalradiationexposuresaremaintainedaslowasreasonablyachieveable(ALARA)duringtheoperationofSusquehannaSESspecificactivitieswillbeimplemented.12.1.3.1ProcedureDeve~logentStationprocedureswillbeprepared,reviewed,andappovedinaccordancewithSection13.5.12.1.3.11ALARAProceduresToassureadequateemphasisonthenecessitytominimizepersonnelexposures,ALABAprocedureswillbepreparedasasubcategoryofHealthPhysicsproceduresTheseproceduresimplementconsiderationsofsuchtopicsasALARATraining,ALARAreviewofapplicableRadiationWorkPermits(RAP),workerfeedback,specialtasktrainingandevaluationofproposedchangesinapplicablefacilitiesorequipment.ALARAprocedureswillprovidethenecessarybasisforinstructionofstationREV.l8/78121-9 SSES-PSARpersonnelinthemechanismsavailabletominimizepersonnelexposures.1~21.3.12StationProceduresIAdministrativerequirementswillbeimplementedtoassurethatapplicableproceduresdevelopedbyotherplantdisciplineshaveadequatelyincorporatedtheprincipleofminimizingpersonnelexposure.StationadministrativedocumentswilldescribethecriteriaofselectionofthoseproceduresandrevisionsthatwillbereviewedbyHealthPhysics.RecommendationsmadebyHealthPhysicswillnormallyberesolvedwiththeappropriateplantdisciplinepriortosubmissionforfinalreviewandapproval.12.132StationonSaninationAsdescribedinSubsection12.5.1,theStationorganizationprovidestheHealthPhysicsSupervisordirectaccesstotheSuperintendentofPlanttoassureuniformsupportofHealthPhysicsandALARArequirements.ThisorganizationwillallowtheSuperintendentofPlantdirectinvolvementinthereviewandapprovalofspecificALARAgoalsandobjectivesaswellasreviewofdataanddisseminationofinformationrelatedtotheALARAprogramTheorganizationalsoprovidesaHealthPhysicsEngineerwhoisnormallyfreefromroutineHealthPhysics'activitiestoimplementtheStationALARAprogram.ThisindividualisprimarilyresponsibleforcoordinationofStationALARAactivitiesandwillroutinelyinterfacewithfirstlinesupervisioninradiationworkplanningandpostjobreview121.3.3Operat~inExperienceTheRadiationWorkPermitprocessdescribedinSubsection12.5.3.2willprovideamechanismforcollectionandevaluationofdatarelatingtopersonnelexposure.Informationcollatedbysystemsand/orcomponentsandjobfunctionwillassistinevaluatingdesignorprocedurechangesintendedtominimizefutureradiaitonexposures.REV.18/78121-,10 SSES-'FSAR12.13nnnoeuneReductionSpecificexposurereductiontechniquesthatvillbeemployedatSusquehannaSESaredescribedinSubsection12-5-3.2Procedureswillassurethatapplicablestationactivitiesarecompletedwithadequatepreparationandplanning;workisperformedwithappropriateHealthPhysicsrecommendationsandsupport;andresultsofpostgobdataevaluationareappliedtoimplementimprovements.Inaddition,theHealthPhysicsstaff,willatalltimesbevigilantforwaystoreduceexposuresbysolicitingemployeesuggestions,evaluatingorginsofplantexposures,investigatingunusualexposures,andassuringthatadequatesuppliesandinstrumentationareavailablePPSLmanagementvillperformperiodicrevievsofstationprogramstoassureworkersarereceivingadequateinstructioninALAHAandHealthPhysicsrequirements.ImplementationoftheHealthPhysicsprogram,selectedprocedures,andpastexposurerecordsvillalsobereviewed.,ManagementvillperformformalreviewsoftheSusquehannaSESHealthPhysicsprogramat.leastonceeverythreeyearsandresultswillbeforwardedtotheSuperintendentofPlant,ALARAReviewCommitteeandappropriatemembersofcorporatemanagementTheresultsofmanagementreviewsmayalsoincluderecommendationsonmechanismswhichmayreducepersonnelexposure.TheSuperintendentofPlantvillrespondtonotedrecommendationsordeficienciesandcorrectiveactionorimprovementswillbeverifiedduringsubsequentreviews.REV.18/78121-11 SSES-FSAR~124REPERENCES121-1121-2TDMurphy,MASH-1331,UC-78,ACo~milationofoccupationalRadiationExposurefrouLiciht'WatercooledNuclearPowerPlants1969-1973USNRCRadiologicalAssessmentBranch,Nay1974.T9Murphy,et.al.,NUREG-75/032,OccupationalRadiationE~xosureatLightWaterCooledPowerReactors1969-197~4USNRCRadiologicalAssessmentBranch,June1975121-3121-4TD.Nurphy,etal,NVREG-0109,OccupationalRadiationExosureatLihtMaterCooledPowerReactors1969-P1975~VSNRCRadiologicalAssessmentBranch,August1976.CA.Pelletier,et.al,NationalEnvironmentalStudiesProject,~ComilationandAn~alsisofDataonOccupationalRadiationExposureExperiencedatOperationNuclearPowerPlants~AtomicIndustrialForum,September1974REV.18/78121-12 SSESFSAH12.2RADIATIONSOUHCFSInthissectionthesourceofradiationthatfocmthebasisforshielddesigncalcul.ationsandthesourcesofairborneradioactivityrequiredforthedesignofpersonnelprotectivemeasuresaridfordoseassessmentarediscussedandidentified.122.1CONTAINEDSOURCESTheshieldi>>gdesignsourcetermsarebasedonanoblegasfissionproductreleaserateof0.1Ci/sec{after30minutesdecay)and.thecorrespondingfission,activation,andcorrosionproduct.concentrationsintheprimarycoolant.~ThesourcesinthepcimarycoolantarediscussedinSection11.1andlistedinTables11.1-1thcough11.1-5.Thcoughoutmostoftheprimarycoolantsystem,activationproducts,principallynitrogen-16,aretheprimarycadiationsourcesforshieldingdesign.Forallystemstransportingradioactivemarerials,conservativeallo<<anceismadefoctransit<lecay,whileatthesametimeprovidingfordaughtecproduct.formation.Basicreactordataandcoreregion<lescciptionus<dforthis.",ectionarelistedinTables12.2-1through12.2-5.Inthissubsectionthe$esignsourcesarepresented"bybuildinglocationandsystem.Generallocationsoftheequipmentdiscussedinthissect.ionaresho~nontheshieldingandzoningdrawings,Figure.-12.3-8through12.3-27.Detaile'ddataon..ource!Aescciotionsforeachshi<.ldo.dplant.aceaarepresentedinTables12.2-38through12.2-40.Shieldingsoucceterms@resentedinthissectionandassociatedtablesarebasedonconservativea-sumptionsregardingsystemandequipmentoperationsandcharacteristicstoprovi<lereasonaolyconservativeradioactivityconce>>trationsforshieldingdesiq>>..Therefore,theshieldingsourcetermsarenotintendedtoa'pproximatetheactualsystemdesignradioactivityconcentrations.REV.18/7812.2-1 SSES-,FSAR12.2.1.1Drvwell12.2.1.1.1ReactorCoreTheprimaryradiationswithinthedrywellduringfullpoweroperationareneutronandgammaradiationresultingfromthefis.ionprocessinthecore.Tables12.2-4and12.2-5listthemultigroupneutronandgammarayfluxesattheoutsidesurfacesofthereactorpressurevesselandtheprimaryshieldatthecoremidplane.Thegammafluxesincludethoseresultingfromcaptureorinelasticscatteringofneutronswithinthereactorpressurevesselandcoreshroudandthegammaradiationresultingfrompromptfissionandfissionproductdecay.Thelargestradiationsourcesafterreactorshutdownarethedecayingfissionproductsinthefuel.Table12.2-9liststhecoregammasourcesasafunctionofshutdowntime.SecondarysourcesarethestructuralmaterialactivationoftheRPU,itsinternals,andthepipingand.equipmentlocatedintheprimarycontainmentand'alsotheactivatedcorrosionproductsaccumulatedordepositedintheinternalsoftheRPV,the'primarycoolantpiping,andotherprocesssystempipingintheprimarycontainment.12.2.1.1.2ReactorCoolantSystem15(Sourcesofradiationinthereactorcoolantsystemarefissionproductsestimatedtohereleasedfromfuelandactivationandcorrosionproducts'hatarecirculatedinthereactorcoolant.ThesesourcesarelistedinTables11.1-1thru11.1-5andtneirbasesarediscussedinSection11'.Thenitrogen-16concentrationinthereactorcoolantisassumedtohe61'i/gmofcoolantatthereactorrecirculationoutletnozzle.12.2.1-1-2~Pimam2Ste~amSmtemThenitrogen-16concentrationinthemain"teamisassumedtobe100'i/gmofsteamleavingthereactorvesselatthemainsteamoutletnozzle.Fissionproductactivitycorrespondstoanoffgasreleaserateof100,000'i/secat30minutesdelayfromthe'Radiationsourcesintheprimarysteamsystempipingincludeactivationgases,principallynitrogen-16,andthecorrosionandfissionproductscarriedovertothesteamsystem.zlRev.15,4/8012.2-Z SSES-PSARreactorsteamnozzle.PartitionfractionsforactivityintotheIsteamsystemare100percentforREV.18/7812.2-2a SSES-FSARThispagehasbeenintentionallyleftblank.12.2-2b SSES-FSARgases,2percentby'eightforhalogens,and0.1percentbyweightforparticulates.ThesepartitionfactorsareappliedtothereactorwaterconcentrationsasgiveninTable11.1-2through11.1-512.2.1.2ReactorBuilding122.1.2.1ReactorMaterCleansSystemRadiationsourcesintheRWCUsystemconsistofthoseradioisotopescarriedinthereactorwater.1Vitrogen-16isthepredominantradiationsourceintheregenerativeandnonreqenerativeheatexchanqersandRWCUpumpsandpiping.TheinventoryofN-16isbaseduponcomponenttransittimes,asshowninTable12.2-6.ThemainsourcesfortheRMCUfilterdemineralizers,holdingpumps,andtheRMCUbackwashreceivingtankaretheaccumulatedcorrosionandfissionproducts,basedontheinletreactorwaterconcentrationsgiveninSection11.1.Table12.2-7providestheinventoryoftheaccumulatedisotopesinthefilterdemineralizer,andTable12.2-8providestheinventoryofisotopesintheRWCUbackwashreceivingtank.12.2.1.22SpentFuelHand~linandTransferThespentfuelassembliesarethepredominantsourceofradiationinthecontainmentafterplantshutdownforrefuelinq.Areactoroperatingtimenecessarytoestablishnearfissionproductbuildupequilibriumforthereactoratratedpowerisusedindeterminingthesourcestrength.Shieldingrequirementsforspentfueltransferarebasedonthefissionproductactivitypresent72hoursaftershutdowntoconservativelytakecreditforthetimeelapsedpriortotheinitiationofrefuelingoperations.Source.termsforspentfuelarediscussedinSubsection12.2.1.3.1andarelistedinTable12.2-9.12.2.123ResidualHeatRemovalSystemThepumps,heatexchanqers,andassociatedpipingoftheResidualHeatRemoval(RHR)Systemarepotentialcarriersofradioactivematerials.Forplantshutdown,theRHRpumpsandheatexchangersourcesresultfromtheradioactiveisotopescarriedinthereactorcoolant,discussedinSubsection12.2.1.1.2,after0hoursofdecay.followinqshutdown.TheradioactiveisotopicconcentrationsarelistedinTable122-10.12e23 SSES-FSAR12.212.4ReactorCoreIsolationCoolingSystemComponentsoftheReactorCoreIsolationCooling(RCIC)SystemthatarepotentialradiationsourcesaretheRCICturbineandsteaminletandexhaustpiping.Radioactivityintheturbineandpipingisthatpresentinthedrivingsteamthathasbeenextractedfromthemainsteamsystem.ThesteamactivityasdiscussedinSubsection12.2.11.3,decayedfortheappropriatetransittimetotheRCICturbine,isusedfortheshieldingcalculationsforthissystem,andislistedinTable122-11.122.125HihPressueCoolantInjectionSystemTheradiationsourcesfortheHighPressureCoolantInjectionSystemaretheHPCIturbineandthesteaminletandexhaustpiping..Thesteamactivity,asdiscussedinSubsections12.2.1.1.3,decayedfortheappropriatetransittimesisusedfortheshieldingofthissystemasshovninTable122-11.12.2.1-2.6Car~emr~aS2stemsBecausethecorespray,whentesting,'usescondensatefromthecondensatestoragetankwithverylowradioactivityconcentrations,noshieldingisreguired.1221.3RefuelingFacilities12+2.1.31~SentFuelStoracCeandTransferIThepredominantradiationsourcesinthespentfuelstorageandtransferareasarethespentfuelassemblies.SpentfuelassemblysourcesarediscussedinSubsection12.2.1.2.2Forshieldingdesign,thespentfuelpoolisassumedtocontainthedesignmaximumof2472fuelassemblies(Section9.1).Ofthese,764spentfuelassembliesareassumedtobefromunloadinganentirecorewith72hoursdecay;184assembliesareassumedtobefrompreviousrefuelingoperationswith360daysdecay:theremaining1524assembliesareassumed.tobefrompreviousrefuelingswith720daysdecay.FissionproductgammasourcestrengthsforthesedecayperiodsareshovninTable12.2-'9.122-4 SSES-FSAR12.2.1.3.2SpentFuelPoolCoolingandCleanu~SystemSourcesintheSpentFuelPoolCoolingandCleanup{SFPCC)Systemareprimarilyaresultoftransferofradioactiveisotopesfromthereactorcoolantintothespentfuelpoolduringrefuelingoperations.Thereactorcoolantactivitiesforfission,,corrosion,andactivationproducts{Tables11.1-1through11.1-5)aredecayedfortheamountoftimerequiredtoremovethereactorvesselheadfollowingshutdown,arereducedbyoperationoftheHWCUsystemfilterdemineralizersfollowingshutdown,andaredilutedbythetotalvolumesofthewaterinthereactorvessel,refuelingpool,andspentfuelpool{seeTable12.2-12).ThisactivitythenundergoessubsequentdecayandaccumulationontheSFPCCfilterdemineralizers{seeTable12.2-13).TheSFPCCfilterdemineralizerresins,arebackwashedperiodicallyintoabackwashreceivingtank.ShieldingsourcetermsforthebackwashreceivingtankareshowninTable12.2-14.12'2.1.4TurbineBuilding12.2.1.4.1PrimerSteamandPowerConversionSystemsRadiationsourcesforpipingandequipmentwhichcontainprimarysteamarebasedontheradioactivitycarriedoverintothesteamfromthereactorcoolantandincludefissionproductgasesand'alogens,corrosionandfissionproducts,andgaseousactivationproductsasdiscussedinSubsection12.2.11.3.Steamdensityvariationsandthesteamtransittimesthroughequipmentandpipesarefactoredintothesourcetermevaluationtoaccountforvolumetricdilutioneffects,radiologicaldecay,anddaughterproductgeneration.12.2.1.4.2Condensate~SstemThesourcesinthecondensatesystemarebasedondecayedmainsteamactivities(Subsection12.2.1.1.3).KiqhtypercentoftheN-16and100percentofthenoblegasesareassumedtoberemovedfromthecondensatesystembythemaincondenserevacuationsystem.Thegaseousactivitiesareminorinthehotwellandnegligibleintheremainderofthecondensatesystem.ThehotwellisdesignedforatwominuteholdingofcondensateandthereforeN-16activityatthecondenseroutletisnegligible.Fissionproducts,activatedcorrosionproducts,andthedaughterproductsfromthedecayoffissionproductgasesintransitthroughtheturbinearetheinletsourcestothe12.2-5 SSES-FSARcondensatesystem.Thesesources,asshowninTable12.2-15,arepresentinthecondensatepumpsandpipingandaccumulateonthecondensatefilterdemineralizers.Table12.2-16providestheisotopicinventoryforthecondensatedemineralizer.12.2.1.03OffgasSystemRecombinerRadioactivesourcesinthegastreatmentsystemoriginatewiththenoblegasesandnoncondensiblegasesremovedfromthemaincondenser,andtheactivityenteringwiththeextractiondrivingsteamtothemaincondenserevacuationsystem.TheactivityremovedfromthemaincondenserisbasedontheprimarysteamactivityasdescribedinSubsection12.2.1.1.3,decayedforthetotaltransittimetothesteamjetairejector.EightypercentoftheN-16a'nd100percentofthenoblegasesareassumedtoberemoved"bytheairejector.Activityintheextractiondrivingsteam.totheairejectoristheprimarysteamactivityasdescribedinSubsection12;2.1.1.3,decayedbythetransittimetotheairejector.ThetotalquantityofactivityintheoffgaspipeandrecombinerandsourcetermassumptionsaresnovninTables12.2-17and12.2-18.12.2.1.5RadvasteBuildinq12.2.1.5.1LiquidRadvasteSystemsTheradwastesystemsourcesareradioisotopes,includingfissionandactivationproducts,presentinthereactorcoolant.ThecomponentsoftheradvastesystemscontainvaryingdegreesofactivitydependingonthedetailedsystemandequipmentdesignTheconcentrationsofradionuclidespresentintheprocessfluidsatvariouslocationsintheradwastesystemssuchaspipes,tanks,filters,demineralizers,andevaporatorsarediscussedinSection11.2andarelistedinTables11.2-5through11.2-7.Thesenuclideconcentrationsvereusedinthefinalshieldingdesign.ShieldingforeachcomponentoftheradvastesystemsisbasedondesignactivityconditionsasaregiveninSections11.1and11.2.Rev.15,4/8012.2-6 SSBS-PSMTheliquidandsolid.radwastesarecollected,treated,andstoredinthesolidradwastefacilitiesasdiscussedinSection11-4-Theradwastevolumesaaybetreatedbyevaporation,filtration,decanting,andion-exchamgetreatment.Theresultantvolunereducedproducts{e.gevaporatorbottons,filtercmhes,depletedresins)aresolidified,normallywithconcrete,forstorageandoffsiteshipment.Liquidproducts(egevaporatordistillate)maybeanalyzedforreuseascondensatemaho-up,processedasradioactivewaste,ordilutedanddischargedTheradwasteissolidifiediaeither50cuftcylindricalcontainersor200cuftcubicalcontainers,thenwashedtominimizeexternalsurfacecontaainants,andshippedorstoredinconcreteshieldedcoapartments.Theaforementionedoperationsmaybeaccomplishedutilizingrenotecontainerloading,transfer,cappingfacilities,andanoverheadcrane.ShieldiagofthesolidradwasteareasbasedoathemaximumactivitysourcesatzerodecaydescribedinTable112-6and114>>6.Ballaadslabshieldingrequiremeatsiathesolidradwasteareaarebasedonradwastecontainerswithoutanyexternalcontainershieldingcredit.15AmbietChacoaOffasTemetStmThecharcoaloffgassystemasdescribedinSection113islocatedintheradwastebuildingaadprimarilyadsorbsthenoblegasesanddaughterproductsremaininginthenoncondensiblegasesremovedfromthemaincondenseraftertreatmentintherecombineroffgassystem.TheshieldingofthecomponentsisbasedonthetransittimesforformationandaccuaulationofnoblegasdaughterproductscollectedontheparticulatefiltersandtheremainingxenonandkryptongasesonthecarbonbedsThegases,aftercharcoaltreatment,passthroughapostHBPAfilterwhereremainingparticulatesaretrapped.priortoexhaustingTheconcentrationoftheactivityonthepiping,equipment,andparticulateandcharcoalfiltersforshielddesignisshowniaTables12.2-19through12.2-24.REV.18/78122-7 SSES-PSDR~16SoceTheradiati~nsourcesfromdesignbasisaccidentsarediscussedandevaluatedinSection157Controlroonshieldingconsidersradiationsourcesfromtwolocationsinsidethereactorbuilding(theprimarycontainment,andthesecondarycontainaent)andtheREV.18/78l22-7a Thispagehaabeenintentionallylefthkaak.12.27b SSES-PSARSGTSfilters.PostLOCAsourcesforthoseareasare-giveainTables12.2-25through122-27.~g/~7sjt,eJoug~d~~N-~6sh'ego~e~VS~~oXeTheH-16presentinthereactorsteamintheprimarysteamlines,turbines,andmoistureseparatorcancontributetothesiteboundarydoseasaresultofhighenergygammaemission.Theturbineshieldingwasdesignedtominimizeshinedose.TheN-16shinedoserateatthesiteboundarywascalculatedbasedonthefinalturbineshieldingdesign.TheturbineoperatingfloorcomponentN-16inventoriesare'istedinTable122-28.IKit*Normallytheonlysourcesofactivitynotstoredinsidetheplantstructuresaretherefueliagwaterstoragetank(RMST)andthecondensatestoragetank(CST)..'ndernormalconditionsthecondensatestoragetankcontainsconcentrationsofradionuclidesthatyieldasurfaceexposurerateoflessthan0.5mr/hr.Thecoadensatestoragetankisotopi'cinventoryisshowninTable122-29hITherefuelingwaterstoragetankisalsoexpected-tohaveamaximumcontactexposurerate'oflessthan0.5mr/hrwhenwaterisreturnedfromtherefuelingpool.MaximumactivityisbasedonTable12.2-12isotopicinventoriesreducedbyafactorofapproximately10-<<asaresultofcontinuedcleanupduringrefuelingoperations.~I:Provisionshavebeenmadetorecyclethewaterfromboththecondensateandrefuelingwaterstoragetankstothecondensatedemineralizer.Nootherradioactivewastesarenormallystoredoutsidetheplantstructures.Allspentfuelisstoredinthespentfuelpooluatilitisplacedinthespentfuelshippingcaskforoffsitetransport.StoragespaceisprovidedintheradwasteforstoragesolidifiedmaterialshieldiagforRadioactivewastesstoredinsidetheplantstructuresisdesignedsuchthatthereisnormallyZoneXaccessoutsidethestructure.)~~~~4~~~tImI.122-8 SSES-FSABSpecialmaterialsusedintheradiochemistrylaboratoryandsealedsourcesusedforcalibrationpurposesareofthelowactivitylevelandarehandledinaccordancewithstationhealthphysicsprocedures.',UnsealedsourcesandradiochemistrysanplesarehandledinhoodsthatexhausttotheventilationsystemTheradiationsourcefortheTransverseXncorePxobeSystem(TIP)isprovidedinTables122-41through.12o2-OC.Theradiationsourceisbaseduponlocationwithin.thecoreandresidencetine.Asindicatedinthetables,theTIPsystemconsistsofthreecomponentsforshieldingcalculations,thefissionablematerial,nonfissionablematerial,andthecable.Souxcesaxeprovidedforeachcomponent.asafunctionofirradiationanddecaytines.The,reactorstartupsourceisshippedtothesiteinaspecialcaskdesignedforshieldingThesourceistransferredunderwaterwhileinthecaskandloadedintoBerylliumcontainers.Thisisthenloadedintothereactorwhileremainingunderwater.Thesourceremainswithinthereactorforitslifetiae.Thus,nouniqueshieldingrequirementsafterreactoropexationarerequired.~12hIRBOBBBh2hCRXVEhTEBIhhSOURCESI2.2.2.1SouceofAboneRadioactvitThesourcesofairborneradioactivityarefoundinthevariousconfinedareasoftheplantfacilityandareprimarilyfromtheprocessleakageofthesystenscarryingradioactivegasessteam,andliquids.Dependingonthetypeofthesystemanditsphysicalcondition,suchassystempressuresandtemperatures,theleakagewillbeasagas,steam,liquid~oramixtureofthese.Radioactivematerialsbecomeairbornethroughanumberofmechanisms.Theprimaryproductionmechanismsarespraying,splashing,flashing,evapoxation,anddiffusion.REV.'18/7812.2-9 SSSS-PSSTTheprinarysourcesoCeiahornoradioactivi'tyarefoundiathereactor,turbine,and'radeaate.buildings>>;Bithinthesestructuros,theradioactivity.anybe..releasedineguipnentcubicles,systen.ceapi~aentcr~valveaadpipinggalleriessaaplinqstations,radeosto,handliqgercesocleahieganddecontaninutionarenaandrepairshopsVentilationis'aneffectiveneamsofcontrolling'airborneradioactivenaterials.Ventilationfloe.pathsiredesignedsuchthatairfroal.owpotentialairborneareasfloestowardthehigherpotentialairborneareas,Thisf2oupatternwill'ensurethatactivityreleasedintheaboveaontionedsourcelocationswhichusuallyhavelow.personnelaccessrequirements,sillhavelittlechancetoescapetoareaswithahighpersonnoloccupancysuchascorr'idors,uorkingaislesandoperatingfloors..12.225HethodologyForEstiaatingtheExpectedConcentrationehePntXnordertoestiaatetheexpectedairborneradioactivenaterialconcentrationsatlocationsctithintheplant,thefollowingnethodologywasused:(1)-Zstinatethetotalairbornereleases{inCuriesperyear)foreachofthebuildingsoftheplant;(2)Estimateadistributionforthesereleasesanongthevariouseguipaeitareasofeachbuildingbasedonoperatingdataandengineering.,)udghnent;(3)Qeterninetheannualexhaustf1oefroaeacheguipnentarea;(0)Calculatetheresultantairborneradionuclideconcentration(uCi/cc)ineachequipsentareabasedonthereleasedistribution{Ci/yr)andexhaustflowrate(cc/yr).REV.1,8(7812>>2-10". SSES-FSARThefollowingsubsectionsdiscusseachstepin.theaboveprocedurein"moredetail.12.2.2.6EstimationofTotalAirborneReleasesMithinthePlantTheestimatedquantitiesofairborneradioactivematerialproducedinthebuildingsoftheplantaregiveninTable12.2-30.ThesereleasesverebaseduponNUREG-0016,"CalculationofRadioactiveMaterialsinGaseousandLiquidEffluentsfromBoilingMaterReactors<<.ThequantitiesinTable12.2-30veregeneratedfromNUREG-0016asfollows:-AllturbinebuildingreleasesinNUREG-0016werereducedbyafactoroffivetotakecreditfortheleakagecollectionsysteminstalledforvalvesinlines21/2"andlarger(seeSubsection11.3.2.4.3).(NOTE:Releasesassignedtotheturbinebuildingareassumedtoincludeanycontrolstructur'ereleases).-TheSusquehannareactorbuildingreleasesweretakentobethesumofthereleaseslistedinNUREG-,0016fortheauxiliarybuildingandcontainmentbuilding.-TheradvastebuildingreleasesinNUREG-0016are"perreactor"andconsequentlyveredoubledforSusquehannaSES.-Tritiumreleasesveredividedequallybetveenthereactorbuildingandtheturbinebuilding.12.2.2.7DistributionofAirborneReleasesMithinthePlantTheapproachtakentodeterminetheanticipateddistributionofgaseouseffluentsassumedthatallairborne=radioactivematerialoriginatesonlywithintheequipmentareasoftheplant.Itwasfurtherassumedthatamajorpercentageofthereleaseisgeneratedwithinafevspecificareasofeachbuildingwiththeremaindercomingfromallotherequipmentareas.For.thepurposesoftheestimate,80percentofeachbuilding'sreleasewasdistributedasdescribedbelow'mongthemajorcontributing,areasand20percentwasassignedtothe>>allotherequipmentareas>>category.Releasesvereassumedtobegeneratedcontinuouslythroughouttheyearexceptforthedrywellwherea30dayreleaseperiodwasused.REV.1117/79122-11 SSES-FSARThebasisfortheselectionandrelativecontributionsofthemajorareaswasaninterimreportforElectricPowerResearchInstituteResearchProject274-1entitled>>SourcesofRadioiodineatBoilingWaterReactors>>.ThisreportprovideddataontheimportantsourcesofIodine-131atoperatingBWR'sandusedmeasureddatatodeterminetherelativereleaseratefromeachIsource.TherelativereleaseratesforallairborneradionuclidesexceptforreactorbuildingtritiumwerethenassumedtobedirectlyproportionaltotheIodine-131releaserates.Sincethespentfuelpoolandthereactorvessel{whenitisopenduringrefueling)arethemajorsourcesofairbornetritiuminthereactorbuilding,tritiumreleasesforthatbuidlingwereassignedentirelytotherefuelingarea.Table12.2-31liststhemajorairbornecontributorsineachbuildingandthepercentageofthetotalbuildingreleaseassignedtoeach.Tables12.2-32through12.2-34providethespecificequipmentareasoftheplantassociatedwiththemajorcontributorsandtheapplicableexhaustairflowrates.Notethatonlythoseequipmentareaswhichhaveasignificantpotentialforairborneradioactivematerialreleaseswereincludedinthe"otherequipmentareas>category.12.2.2.8EstimatedAirborneRadioactiveMaterialConcentrationsWithinthePlantTheairborneradionuclideconcentrationsforeachequipmentareawascalcualtedusingthefollowingmethodology.Foraspecificarea,theappropriate.buildingrelease{Table12.2-30)wasmultipliedbytheapplicablereleasepercentageforthearea{Table12.2-31)anddividedbytheareaannualexhaustflow{Table12.2-32,12.2-33,or12.2-34).TheresultantconcentrationsarepresentedinTables12.2-35through12.2-37whichalsoincludethefractionsofthemaximumpermissibleconcentrationsinairasdefinedin10CFR20AppendixB,TableI.12.2.2.9Cha~nestoSourceDataSincePSARAirborneradioactivematerialsourceswerenotspecifiedintheSusquehannaSESPSAR.Subsection12.2.2hasbeenaddedincompliancewiththe>>StandardFormatandContentofSafetyAnalysisReportforNuclearPowerPlants>>,RegulatoryGuide1.70.REV.11$7/7932.2-12 SSES-PSAHTABLE122-30ESTIl".ATEDAIRBORNERADIOACTZVERELEASES(CURIES/YEAR)<<iHuclideTurbine~>>BuildingReleases(perUnit)ReactorBuildingReleases(perUnit)RadwasteBuildingReleases(perPlant)H-3Kr-83mKr-85mKr-8SKr-87Kr-88Kr-89Xe-l.31mXe-l33mXe-l33Xe-135mXe-135Xe-137Xe-138I-1315-133Co-6OCo-58Cr-51Nn-54Pe-59Zn-65Zr-95Sr-89Sr-90Sb-124Cs-134Cs-136Cs-13'1Ba-140Ce-14180+04+1C3>26+14.6+1S.0+113+21.3+22.9+23.8-215-140-412-42.6-3l.2-410-44.0-52.o-51~2-30-66~0-56.o->l.0-512-422-312-40+]c3)6.0+06.0+060+013+29.2+16.8+11.4+134-114+02.0-21.2-360-460-38.0-44.0-380-41.8-41.0-540-48.0-36~0-41~128.0-42.0-42.0+19.0+11.0-']3.6-118-19.0-318-26.0-230-2,3-0-310-490-460-41.0-49~0-39.0-41.8-22.0-423BasedonNUREG-00164>>Includescontrol=structurerelease4.0+1=4.0x10>REV.ll,7/79 SSES-FSARTABLE12.2-35ESTIMATEDAIRBORNECONCENTRATIONSIN'THETURBINEBUILDINGNUCLIDEMPCpCi/ccCONDENSERAREAS*A%**AiC4**'r%*'AA*Concen.Fract.pci/ccofMPCConcen.pCi/ccFract.ofMPCSJAEAREASAx*****x*4**k*xMECH.VACUUMPUMPAREAS*4*A*x*%***A***Concen.Fract.pCi/ccofMPCTURBINEHALLAREASco'cA*x**********Concen.Fract.pCi/ccofMPCOTHEREQUIP-MENTAREAS****ic**A*******Concen.Fract.pCi/ccofMPCkl-3Kr-83mKr-85m.Kr-85Kr-87Kr-88Kr-89Xe-131mXe-133m.Xe-133Xe-135mXe-135Xe-137Xe-138I-131I-133Co-60Co-58Cr-51Mn-54Fe-59~Rn-65Br-95Sr-89Sr-90Sb-124Cs-134Cs-136Cs-137Ba-140Ce-141Rev.11,7/795.0-61.0-66.0-61.0-51.0-6-1.0-61.0-62.0-51.0-51.0-51.9-64.0-6l.0-61.0-69.0-93.0-89.0-95.0-82.0-64.0-85.0-86.0-83.0-83.0-81.0-92.0-81.0-82.0-71.0-84.0-82.0-72.2-84.0-87.5-81.3-71.4-73~773.7-78.3-71.1-104.3-101.1-123.4-137.5-123.4-132.9-131.1-135.7-143.4-121.1-141.7-131.7-132.9-143,4-136.3-123.4-134.4-36.7-37.5-21.3-1l.4-23.7-19.3-28.3-1l.2-21.4-21.3-46.9-63.7-68.6-65.7-6l.9-61.9-6l.1-41.1-5,8.6-61~7-5l.4-73.4-5l.6-4l.7-62.4-84.3-87.9-8l.4-71.5-74.0-74.0-78.8-71.2-104.6-10l.2-123.7-137.9-123.7-133.0-131.2-136.1-143~7121.2-141.8-131.8-133.0-143.7-136.7-123.7-134.8-37~137.9-2l.4-11.5-24.0-19.9-28.8-1l.3-21.5-21.4-47.3-64.0-69.1-66.1-62.0-62.0-6l.2-4l.2-59.1-61.8-51~573~75l.7-41.8-69.6-91.7-83.1-85.6-86.0-81.6-71.6-73.5-74.6-111.8-104.8-131.4-133.1-121.4-131.2-134.8-142.4-141.4-124.8-157.2-147.2-141.2-141.4-132.7-121.4-131.9-32.8-33.1-25.6-26.0-3l.6-'13.9-23.5-15~136.0-35.4-52.9-61.6-63.6-62.4-68.0-78.0-74.8-54.8-6'.6-67.2-66.0-81.4-56.6-57~276.6-101.2-92.2-93.8-94.2-91.1-81.1-82.4-83.2-121.3-113.3-141.0-142~2131.0-148.4-153.3-151.7-151.0-133.3-165.0-155.0-158.4-161.0-141.8-131.0-14l.3-42.0-42~233.8-34.2-41.1-2207-32.4-23.5-44.2-43.7-62.0-71.1-72~571.7-75.6-85.6-83.3-63.3-72.5-75.0-74.2-91.0-64.6-65.0-8l.9-93.3-96.0-91.1-81.2-83.0-83.0-86.7-88.8-123.5-119.3-142.8-146.0-132.8-142.3-149,3-154.7-152.8-139.3-161.4-141.4-142.3-152.8-145.1-132.8-143.7-45.4-46.0-31.1-21.2-33.0-27.6-36.7-29.8-41.2-31.0-55.6-73:0-77.0-74.7-71.6-71.6-79.3-69.3-77.0-71.4-61.2-82.8-61~351.4-7

SSES-PSALM,Thissectiondiscussestheestimatedradiationexposuresbothxn-plantandatlocationsoutsidetheplantstructures.Subsections12.4.1and12.4.2discussdirectradiationandairborneradiationexposureswithintheplant;Subsection12.4.3isconcernedwithexposuresoutsidetheplantstructures;andSubsection12.4.4estimatestheexposuretoUnit2constructionworkersfromtheoperationofUnit1.1241DIRECTRADIATIONDOSEESTlHATESFOBEXr'OSURESWITHINTHEPLANTToestimatethetotalannualman-remdosefromdirectradiationtopersonnelwithinthe.plant,sevenbroadcategoriesorjobfunctionsveredefinedandtheannualman-remdoseforeachcategoryvasevaluated.Hherethefunctionsandexpectedradiationlevelsverepredictableorclearlydefined,analyticalmethodssereemployed.fortheman-remestimates.Inothercases,theestimatebasisvashistoricalexposuredatafromoperatingBQBpowerplants.Subsection.12.4.1.1providesthedefinitionsandcomponentsofeachofthesevenbroadcategorieswhileSubsection12.4.1.2describesbrieflytheestimationtechniquesused.TheresultantdoseestimatesarecontainedinSubsection12.4.1.3~alongwithfurtherdiscussionofthefactorsinvolvedandthemethodologyusedforeachcategoryanditsrelatedconponents.~24.1~1Defirisation~oCgt~eo~iegUsedj,nExposureEstimatesSevenbroadcategoriesvereusedinestimatingthetotalannualman-remdose.Thesecategoriesare:Jl"orsubcategories.a)Routinepatrolsandsurveillancesofthereactorbuilding,turbinebuildingandcontrolstructure,andradvastebuildingb)Periodictestsandchecksinthereactorbuilding,turbinebuildingandcontrolstructure,andradwaste.building124-1 SSES-PSARc)Controlroomoperations,specifically,thedosereceivedbyoperatorsinthemainandradvastecontrolrooms.doesnotinplythataparticulardatehasbeenestablished,butratherthatthemaintenanceisplannedandvillcccuzat'leastannuallyThiscategory.also,.includesthepreventative"maintenance~perfor'med,in>~the-radiationareasoftheturbine,reacctor,jandpradrv'a'stebuildings.CIn-service.Isections:Theseareinspecti.onsnormally-performedb'yqu'ality,y.assurance,.NDTpersonnel,andoutsidecontractors.'Suchinspections'hnormallyoccur,.during'outagesonpipingandsjstems;that,-.cannot'echeckedtwhileatpower.~ScialHainten'anc'e'llmaintenancethathasnotbeenscheduled.Thismaintenancevillnot.havebeenplannedinadvanceandnormallycannot.,:be=predicted.lY"-'-~-"-';~>>t,i~>>ahh"hWhasteProcessincC:"'I'ncludes,anyworkwithsolidorliquidr'a'dvaste:,,>,,movement-of'asksandliners;radwaste,condensatesystem,orfuelpoolfilter,changes;resinmoving;compactingoflowPevelrad*vaste..',Na'intenanceofradwasteequipment'iscoveredbythemaintenan'ce"'caategoriesandisnotincludedin,thisjobfunctionRefueling:Allworkvith'fuel,"or'eactorcomponentsperformedinther'eactorandpoolarea.Healthp~hsics:..Thiscoversallhealthphysicsactivities.4'hhhhCho.~,'12.412ExosureEstimateMethodology124-2Theanalyticalmethodsusedfor,man-remestimationisbasedupontheproductof'estimated'expo'sur'e"timeandestimatedambientdoserate.Initially,areviewofequipmentinplantradiationareasisperformed.,Estimatesoftheoccupancytimerequirementsforoperationsassoci.ated,vi.'th,that'equipment-{e.g.,maintenancetimeorsurveillancetime)are',develo'ped.'An"applicablefrequencyofoccurrenceisthenfactored"xntoprovide"theexposuretimeforthat,operation,.-:;-For,areeaswithno'si9ni.fican'tradiationsources,anestimateddose,-rateof0.25.'mBem/hrisused.Whereradiationsources,are*present,2.5mRemjhr's'ssumedforZoneIIand<15.0@Rem/hr.formost,Zo'neIXI,areas.Allotherestimateddoseratesarebasedoneithercalculations'cr"a'ctualradiationlevelsencounteredat.operatingpl'antsheTheanalyticalmethodwasusedindeterminingthe'exposur'eestimatesfortheroutinemaintenanceand"routine,operations',catejories.'ahJ'.REV.18/78 SSES-FSARInthehistoricalmethod,theannualman-remisestimatedfromtheexposuresreceivedatoperatingBMRpowerplants.Thismethodwasusedforallothercategories(specialmaintenance,inserviceinspection,wasteprocessing,refuelinq,healthphysics).Thedatasourcesarethe-annualandsemi-annualBHRoperatinqreportsandplantcorrespondencewithregulatoryagencies.Includedareatotalofsixty-one(61)reactoryearsofoperationforsixteen(16)nuclearunits.Theaveragelicensedpowerleveloftheseunitsis747MMewiththesmallestratedat514,t1We,seeTable12.4-1.Thedatawascollectedandassembledusinqthefollowingguidelines:a)Nodatabeforethefirstcalendaryearwhichcontainedlessthannine(9)monthsofcommercialoperationwasused.b)c)Inmultipleunitplants,eachunitwasassumedtocontributeequallytotheannualexposures.Zfexposurecontributionsfromtwoormore.jobfunctionscouldnotbeseparated,aconservativeapproachwastakenbyassigningalltheexposuretoonefunctionandhavingnoentryinthedatabasefortheother.Table12.4-2containstheresultsofthehistoricaldatacompilationandincludesboththenumberofreactoryeazscontzibutinqandthestandarddeviationsassociatedwitheachjobfunction."Thelargestandarddeviations,whichrangefromabout60to160.'percentofthemeanvalues,areindicativeofthewidespreadofdatathathasbeenreportedwithineach,exposurecategory.12-413ResultsofllnnualDinEctRadiationDoseEstimatesITheannualman-remestimatesforeachcategoryandsubcategoryaredetailedbelowinSubsections12.4.1.3.1through12.4.1.3.7.Themethodsusedintheirdetermination'zeas~describedpreviously,withanyadditionalassumptionsorinformationincludedbelowwhererequired.Ineachofthefollowingsubsections,theannualexposureestimatesarereportedfortwoplantconfigurations:singleunitoperationalandtwounitsoperational.Xngeneral,the<<two-unitdose>>istwicethe"single-unitdose<<;however,theexposuresassociatedwith'certainjobfunctionsareassumedtobeindependentofthenumberofunitsinoperationsincethefunctionswillbeperformedregardlessofwhetheroneortwounitsareoperational.Thesespecificjobfunctionsare:m12.4-3 SSES-FSARHainControlRoomoperationsRadwasteControlRoomoperationsRadwastebuildingroutinesurveillancesRadwaste.buildingperiodictestingRadvastebuildingroutinemaintenance-Fortheseestimates,thesingle-unitdosesareconservativelyassumedtobethesameasthetwo-unitdose.AsummaryofthedirectradiationdoseestimatesisgiveninSubsection124.1.3.8andinTable12.4-9.IIJg.4.1~,1Re~tineEetationsDoseEstimateDurinqnormaloperations,routinepatrolsandsurveillancesareperformedby'lantoperators.Themajorityofitemscheckedarerotatingeguipment{pumps,fans,etc),andeachisvievedtoverifytheabsenceofleaks,excessivevibrations,orotherabnormalconditions.Fortheman-remexposureestimation,thefollowinqassumptionsveremade:a)DoserateswereestimatedasoutlinedinSubsection12.4.1.2..Additionally,becauseof.thehighpotentialdoseratesassociatedwithcertainequipment,routinesurveillancesofsuchequipmentvillbeperformedfromaremotelocation{suchasthecelldoorway)andcreditvastakenforthe.lowerambientradiationlevelatthatpoint.b)c)Exposurereceivedduringvalkingofpatrolareasisbaseduponavalkingspeedof200ftperminute.PatrolfreguencyforZoneIIareaswillbetwicepershift,threeshiftsperday.d)PatrolfrequencyforZone.IIIareaswillbeoncepershift,threeshiftsperday.e)SurveillanceofeguipmentinZonesIVandVwillnotbeperformedregularlybutonlyasrequired.Apatrolfrequencyofoncepermonthwasusedfortheestimate.f)Eachpatrolconsistsofonlyoneman.TheresultsoftheroutinepatrolexposureestimatearecontainedinTables12.4-3through12.4-5.Similarly,thedetailsandresultsoftheexposureestimatefortheperiodictestingsubcateqoryarealsocontainedin12.4-4 SSES-FSARTables12.4-3through12.4-5.Theestimateddoseratesusedaregenerallythesameasfortheroutinepatrolestimate.However,sinceperiodictestingisassumedtooccurduringequipmentshutdown,theestimatedshutdowndoserateisusedifitisdifferentfromtheoperatingdoserate.Theremainingsubcategoryiscontrolroomoperationsexposures.Thishasbeenestimatedfromtheestimatedcontrolroomradiationlevelsandthestaffingrequirementsforthemainandradwastecontrolrooms.Itisassumedthatthestaffinglevelsofbothcontrolroomswillbeidenticalforeitheroneortwounitsoperational.Table12.4-6containsthedetailsofthecontrolroomoperationsexposureestimate.Thetotalannualexposureestimatefortheroutineoperationscategoryisthenthesumofthethreesubcategoryannualexposures,seeTable12.4-7.AnnualExposureEstimate:RoutineOperations113.1man-rem[singleunitoperational)163.8man-rem(twounitsoperational)12-4.1.3.2RoutineNaintenanceDoseEstimateTheestimatedexposuretobereceivedinthiscategorywasdeterminedfromacompilationoftheestimatedannualman-hoursrequiredforcomponentmaintenanceandtheestimateddoseratetowhichthemaintenancepersonnelwillbesubjected.Aswithperiodictesting,theestimatedshutdowndoseratewasusedifapplicable.Thefirststepinthisestimateconsistedofadetailedreviewofplantradiationareastoproducealistingofthetypesandquantitiesofselectedequipmentpresentineacharea.Next,totalannualmaintenancemanhourswereestimatedforeachequipmenttypeidentifiedbasedonacombinationofoperatingexperienceandengineeringjudgement.ThesetotalestimatedmanhoursareshowninTable12.4-8andareintendedtoincludeallexpectedroutineactivitiesforeachequipmenttypesuchasvalverepacking,valverelapping,pumpsealreplacement,fanoverhaul,etc.Inanyarea,thetotalannualmanhoursforroutinemaintenancewasthenthesummationofthequantity-manhourproductsforallequipmenttypesfoundinthearea.Multiplyingtheareaannualmaintenancemanhoursbytheanticipatedareadoserateproducedtheestimatedman-rembyarea.ThesewerethensummedtoyieldRev.95/7912.4-5 SSES-FSARtheroutinemaintenanceman-rembybuildingandfortheplant.Tables12.4-3throughl2.4-5containthedetailsandresultsoftheroutinemaintenanceexposureestimate.A"totalannual"maintenanceapproachwasusedforeachcomponentsincecurrentlyavailabledatagenerallydoesnotcontainsufficientinformationtoprovideabasisformanhourbreakdownsbymaintenanceactivity.Inaddition,thearea-by-areamethodologyemployedmakesestimatecompilationsbysystemunnecessarysincelocationswerehighman-remexpendituresareexpectedareclearlyindicated.AnnualExposureEstimate:RoutineMaintenance237.7man-rem(singleunitoperational)395.0man-rem(twounitsoperational)124.1.3.3In-serviceInspectionDoseEstimateTheannualexposureestimateforin-serviceinspectionisbaseduponthedatafromoperatingBWRsgiveninTable12.4-2.AnnualExposureEstimate:In-ServiceInspection27.5man-rem(singleunitoperational)55.0man-rem(twounitsoperational)12.4.1.3.4SpecialMaintenanceDoseEstimateTheannualexposureestimateforspecialmaintenanceisbaseduponthedatafromoperatingBMRsgiveninTable12.4-2.AnnualExposureEstimate.SpecialMaintenance273.1man-rem(singleunitoperational)546.2man-rem(twounitsoperational)12.4.1.3.5PasteProcessinqDoseEstimateMostoftheoperationsintheplantassociatedwiththewasteprocessingcategoryareperformedremotelyandarethereforenotsuitableforevaluationbytheanalyticalestimationtechnique.Rev.95/7912.4-6 SSES-FSARConsequently,theannualman-remestimateforwasteprocessingismoreproperlytakenfromthehistoricalBWRoperatingdataofTable12.4-2sincethiswillprovideaconservativeestimateoftheanticipatedexposure.AnnualExposureEstimate:HasteProcession37.0man-rem(singleunitoperational)740man-rem(twounitsoperational)12.41.3.6RefuelingDoseEstimateTheannualexposureestimateforrefuelingisbaseduponthedatafromoperatingBMRsgiveninTable12.4-2.Rev.95/79 SSES-FSARTHISPAGEHASBEENINTENTIONALLYLEFTBLANK.Rev,95/7912.4-6b SSZS-PSAR192man-rem(singleunitoperational)38.4man-rem{tvounitsoperational)TheannualexposureestimateforhealthphysicsmonitoringisbaseduponthedatafromoperatingBMRsgiveninTable12.4-2.annu~alx~osurenstiaateHealth.Physics29.3man-rem{singleunitoperational)58.6man-rem(tvounitsoperational)]2.4.1.38Summar~of~D'rectRadiationDoseEstimatesTheannualdoseestimatesintheprecedingsevensubsections,aresummarizedandtotaledinTable12.4-9.Asshovninthistable,theestimateoftotalannualin-plantexposurefromdirectradiationis:Annual~ExosureEstimate:Total736.9man-rem,(singleunitoperational)1331.0man-rem(tvounitsoperational)ThecontributiontotheestimatedcumulativestationexposurefromRoutineOperations(RO)andRoutineMaintenance(RM)inareas'hereradiationzonemaximumdesigndoseratesvereusedintheestimatearesummarizedbelov:,REV.18/78124-7 SSES-PSaaCalculatedNanremBldO0tetROno~Unito~cationBNBOTurbineReactorRadvaste3872ll217191776141443811237Total222i4333269Itcanbeseenthatthecalculatedmanreminthoseareaswhereradiationxonemaximumdesigndoseratesvereusedintheestimatecomprise3.6percentand3.0percentofthetotalestimatedmanremforoneunitandtwounitoperations,respectivelySincetheexpectedradiationlevelswouldbelessthanthemaximumdesigndoserates,theimpactofusingexpectedradiationlevelsonthetotalesimatedstationmanremvouldnotbesignificantduetothelowcontributiontothetotalfromtheexposurecategoriesdiscussed.DoseestimatesforInserviceInspection,HasteProcess'ing,SpecialHaintenance,andRefuelingverebasedonhistoricaldatafromoperatingfacilities.Anyfurtherbreakdovnofthedoseestimatebyindividualtask(suchasvasmadeforRoutineOperationsandRoutine5aintenance)wouldrelyprimarilyonhistoricalinformationavailable.Theresultantdoseestimatevouldnotbeanymoreprecisethanwouldbeanestimatebasedsolelyonreportedradiationexposures.Znallfourareaswherehistoricaldatavasusedinthedoseestimate,theSSESdesignincludesdesignfeatureswhichvillreduceactualexposuresreceivedbyplantpersonnel.DuetothelackofsufficientlydetailedinformationtoallovtheprecisequantificationofthedosereductionthecalculationofthereductioncannotbeperformedForexample,thefollovigdesignfeatureshavebeenincorporatedtofacilitateInserviceInspection:a)Quickremovalinsulationaroundthereactorvesselnozzles.b)Accesspanelsintheshieldvalitothebottomheadwelds.c)Sideaccesspanelsintheshieldwalltothecoreregionofthereactorvessel.d)Theuseofaremote,tracklessvehicleforvesselveldinspection.e)TheuseofremoteautomaticveldinspectionofthevesselnozzleveldsREV.18/78124-8 SSES-FSARf)Duringthepre-serviceinspectionaccesswillbethoroughlyevaluated.Inviewoftheattendantuncertaintiesintheavailabledata,precisequantificationofthedosereductionbenefitofthesedesignfeaturesisnotpossibleThereforethemethodologyemployedinSection12.4givesareasonableandconservativeestimateofexposuresfromallactivities.124.2AIRBORNERADIOACTIVITYDOSEESTIMATESFOREXPOSURESHZTHINTHEPLANTTheestimatedexposurestoplantpersonnelfromairborneradioactivityarebaseduponthesourcedistributionsandradionuclideconcentrationspresentedinSubsection12.2.2andTables12.2-30through12.2-37.Becauseofthelimitedgeometryaffordedbythefiniteroomsizeswithintheplant,personnelexposuresduetonoblegasimmersionareexpectedtobeinsignificantwhencomparedtoinhalationexposuresandhavethereforenotbeenestimated.Inordertodeterminewhetherexposurecontributionsfromairborneradioactiveparticulatesaresignificant,anevaluationwasmadeineachareaoftheratiooftotalparticulateNPCfractionstototalradioiodineNPCfractions(whichisequivalenttotheratioofparticulateNPC-HOURStoiodineMPC-HOURS).Portheturbinebuildingareasandthereactorbuildingareas,theparticulate-to-iodineratiosvereapproximately.0.02and0.05,respectively,indicatingthattheparticulateinhalationexposuresarenotsignificantinthoseareas.Intheradwastebuildingareas,however,theparticulate-to-iodineratiowasapproximatelyl.ll.Sinceov'er75percentofthetotalparticulateNPCfractionwasattributabletoCobalt-60,boththethyroidinhalationdoseduetoradioiodinesandthelunginhalationdoseduetoCobalt-60wereestimatedfortheradwastebuildingtthethyroidandthe,lungarethecriticalorgansforiodinesandCobalt-60,respectively).Tables12.4-10through12.4-12arethecompilationsoftheestimatedannualoccupancytimesandtheestimatedannualexposuresforeachoftheareasidentifiedinSubsection12.2.2asbeingpotentialsourcesofairborneradioactivity.TheoccupancytimesarebasedupondetailedreviewsofeachareaandthedeterminationoftheoperationswhichmightoccurinthoseareasTheexposuresarebasedupontheestimatedconcentrationsinTables12.2-35through12.2-37,dosefactorsfromTableC-1ofREV.18/78124-9 SSES-FSABUSNRCRegulatoryGuidel.l09,andanassumedbreathingrateof1)3.47x10-~cubicmeters'ersecond.1243EXPOSURESATLOCATIONSOUTSIDEPLANTSTRUCTURESTheradiationexposuresatlocationsoutsidetheplantstructureswereestimatedfortwoareas:thesiteboundaryandthevisitor'scenterSubsection12.4.3.1discussesdirectradiationexposureattheselocationswhile-Subsection12.4.3.2dealswithairborneexposures.12.4.3.1DirectRadiation.DoseEstimatesOutsideStructuresAtlocationsoutsideplantstructures,thedirectradiationexposurehastwoprincipalcomponents:a)Sourcesofactivitystoredoutsidethestructures,specifically,therefuelingwaterstoragetanks{BNST)andthecondensatestoragetank{CST).b)TurbineshineduetotheN-16presentinthereactorsteam.BasedonthecalculatedsurfacedoseratesfortheRMSTandCSTgiveninSubsection12.2.1.8,thedosecontributionatlocationsoutsidetheplantstructuresduetothesetanksisconsiderednegligible.TheN-16presentinthereactorsteamintheprimarysteamlines,turbines,andmoisturesepa'rators'providesadosecontributiontolocationsoutsidetheplant,structureasaresultofthehighenergygammarayswhichitemitsasitdecays.Toreducetheturbineshinedoses,radiation"shieldingwasprovidedaroundeachturbinetrainandaroof.slabwasconstructedovereachmoistureseparator.j.5ITheresultantannualexposureduetoturbineshinewascalculatedwiththeSKYSHINE(Section12.3,Ref12.4-1)computerprogram.Point'ourceswereusedtorepresentthecomponentsontheturbinedeckandthesourcestrengthsaregiveninTable12.2-28.Hithanassumed100percentoccupancyfactorand,an80percentcapacityfactor,themaximumcalculateddoserateoccursatthesouthsiteboundary{seeFigure12.4-1)andis5.6mRem/year.Rev.15,4/80 SSES-FSAR'hedoserateinthevisitor~scenterwascalculatedbytheSKYSHINEprogramtobe3.50x10-~mRem/hr.Assumingavisitorwillvisittheplantonedayayearforeighthours,theestimateddoseforthevisitoris2.80x10-~mRem/year.12.4.3.2AirborneRadioactivityDoseEstimatesOutsideStructuresDosesatthesiteboundaryduetoreleasedactivityaregiveninSubsection11.3.3.Atthevisitor'scenter,thetotalbody.gammaandbetaskindosesforanassumedannualoccupancyof8hoursarealsogiveninSubsection11.3.3.124.4EXPOSURESTOCONSTRUCTXONWORKERS12.4.41DirectRadiationandDoseEstimatesTheestimateddoseratesfromdirectradiationandturbineshinereceivedbyconstructionworkersonUnit2duetotheoperationofUnit1arewellwithinthelimitsof10CFR20forexposuretoindividualsinunrestrictedareas.TheestimateddoseratesarethesumofthedirectradiationfromtheUnit"1reactorbuilding,turbinebuilding,andradwastebuildingandtheturbineshinedosesresultingfromthedecayofN-16inthesteamlinesandturbineequipmentofUnit1.As'iscussedinSubsection12.4.3.1,dosecontributionsfromoutsidestoragetanksareconsiderednegligibleandwerenotincludedintheexposureestimate.TheannualdosetotheconstructionworkersemployedinUnit2vhileUnit1isinoperationhasbeenestimated,forvariouspointsintheUnit2constructionarea.TheresultsofthisestimateandtheircorrespondingpointsareshownonFigure12.4-1Thedo'sesfromturbineshinewerecalculatedwiththeSKYSHINEcomputerprograminthemannerdescribedinSection12.4.31.Theresultantdoseincludesthedirectaswellasair'catteredcontribution.NocreditwastakenfortheshieldingwhichwillbeaffordedbvthepartiallyerectedUnit2structures.Theradioactivewasteswillbeprocessedandstoredintheradwastebuildingwhereshieldingisprovidedtoensurethatthedoseoutsidethebuildingwillbeminimized.MithanallowanceforREV.l8/7812.4-ll SSES-FSARdistancebetweentheradwaste,buildingandtheUnit2constructionarea,theestimateddirectshinedosewillbelessthan0.01mRem/hrundernormalconditions.TheexposureforUnit2constructionworkershasbeenestimated.basedonthefollowingassumptions:a)Thecurrentschedulewillbemet.b)c)DosestopersonnelintheUnit2structuresarenegligibleoncetheexteriorwalls'ndslabshavebeenfullyerected.Manuallaborersspend80percentoftheirtimeintheUnit2structures.a'nd20percentintheyard.Non-manualworkersspend10percentoftheirtimeintheUnit2reactorbuilding,10percentintheUnit2turbinebuilding,and80percentinthefieldoffice.LaborersassignedtothecontrolstructureorUn'it2turbinebuildingareassumedto,.workinthe'urbinebuildingonly.Laborersas"ignedtotheUnit2reactorbuildingordrywellareassumedtoworkinthereactorbuildingonly.10percentofthetimespentintheUnit2turbine,buildingwillheonorabovetheturbineoperatingde'ck.10percentofthetimespentintheUnit2'reactorbuildingwillbeontherefuelingfloor.d)')Theaveragedoserateintheyardareasistheaverageofthedoseratesatpoints1through7ofFigure12.4-1,0.025mRem/hr.Theaveragedose'rateinthefieldofficeis0.020mRem/hr.Eachofthesedoseratesincludeadirectshinecontributionof0.01mBem/hr.Theavailabi.lityfactorforUnit1is80percent.f)40hoursperweekperpersonattheworksite,50weeksper'ear.ExposuretopersonnelinvariouscategoriesandlocationsissummarizedinTable12.4-13,whichgivesthetotalestimatedexposuretoUnit2constructionworkersas30.7man-rem.Section20.202of10CFR20specifiesthatpersonnelmonitoringequipmentwouldberequiredifthemaximumexpectedwholebodydosepercalendar-quarterforworkersinanareawouldexceed300mRem.Ztwasdeterjminedthat,eveninareaswiththehighest~radiationlevels(theturbinedeck),noconstructionworkerwouldreceiveadosegreaterthanthis,sopersonnelmonitoring124-12Rev.15,4/80 SSES-FSARequipmentwillnotbenecessary.However,periodicradiationsurveys'illbemadebythe.healthphysicsstaff.Personneldosimetrydeviceswillbelocatedinareaswhereconstructionpersonnelarew'orkingtoverifythatnopersonwillreceiveadosegreaterthan500mRem/yr.I12.4.4.2E~xosuresDuetoAirborneRadioactivitgDosestoAdultMorkersresultingfromatmosphericreleasesofgaseousandparticulateeffluentswerecalculatedbasedonanoccupancyfactorof2000hoursperyear(40hoursperweek,50weeksperyear).Atthecriticallocation0.06milesfromtheventsintheESEDirectiondosesofl6.6,31.3and3.77mRem/yrwerecalculatedforthetotalbodyandskinduetosubmersionand,thethyroidduetoinhalation,respectively.ThesedoseswerecalculatedusingtheappropriateequationsfromRegulatoryGuide1.109withslightmodifications.Inallcasestheshieldingfactorforresidentialstructureswasremovedfromtheequationsand'allresultsweremultipliedby2000/8766to'orrectfortheloweroccupancyfactor.t1245REFERENCES124-1~M.G.,Wells,D.G.'ollins,R.B.SmallandJ.M.Newell,SKYSHINE,acomputerprocedureforevaluationseffectoftheStructureDesignonN-16GammaRayDOse'Rates,RRA-T7209,(Novemberl,l972).1Rev.15,4/8012.4-13 Page4TABLE12.4-3(Continued)Routine(1)MaintenanceRoutineSurveillancesPeriodic(1)TestinRoomorAreaNo.EstimatedDoseRate(mRem/hr)EstimatedAnnual(5)Man-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEl806'"C-900,C-912C-900A,C-912AC-901t(3)-911Transit2.52.50.250.565(2)25(2)360(2)0.0130.0630.0909(2)15(2)33(2)0.0230.0040.0183(2)14(2)2020.0080.0350.051Totals33,91948'601,2670.9403,8659.569Allvaluesareonaper-unitbasis.(1)(2)Entriesreferencingthisnoteareforcommonfacilitiesorequipmentandtheman-hoursareshownason"halfquantityfortheroomorareatoreflecttheper-unitbasisofthetable.The"transit"entriesaccountfortheestimatedtimespentanddosereceivedwhilewalkingthepatrolareas(3)surveillances.Forelevationswhichentailexposurestomultipleradiationlevels,theestimateddoserateweightedaverageofthedoseratesencountered.Alltransittimesarebasedonanassumedwalkingspeedofminute.theestimatedduringroutineisthedistance200feetper(4)Fromsurveillancesperformedoncepermonth.(5)Theestimatesexposuresinthistableassumeallman-hoursareexpendedintheareainwhichtheyappear.Portionsoftheseman-hoursmayactuallybespentatlowerradiationlevelswithinthearea.Componentsmayalsoberemovedtoalowerback-groundareaformaintenance.Rev.18/78 Page2TABLE12.4-4(Continued)RoutineMaintenanceRoutineSurveillancesPeriodical)TestinRoomorAreaNo.EstimatedDoseRate(mRem/hr)EstimatedAnnual(8)Man-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEl719'"412401401A472402413406471407410430Transit()El749)]"507,510514514516513512517515519500502)503502,5035015040.250.252.52.50.250.250.25150.250..25131.640.251625(6)0.250.250.250.252.52000.25"(6)282828843,648600957010360100420120720576457315241663906840426491580.0210:9121.5000.2380'180.0030.0901.5000.1050.0300.1809.2160.0110.1830.1310.0420.97513.6000.1017.3922.5481.624183718591390.032102690.100.0050.0930.0450.0750.0020.2280.0010.0530.0070.0020.00327432712162106224222124573387241253059142840180.0010'190.8180.0030.0010.0010.0160.1500.0160.0062.8860.0310.9120.0080.0220.0060.0310.07511.8000.0360.2241.1200.504Rev.18/78 PagelTABLE12.4-5EXPOSUREESTIMATESFORTHERADWASTEBUILDINGRoutine(1)MaintenanceRoutineSurveillancesPeriodical)TestinRoomorAreaNo.EstimatedDoseRate(mRem/hr)EstimatedAnnualMan-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEl646'"R-38R-2R-36R-3R-4R-5R-9R-6R-7R-8R-50R-50R-10~R-34R-20R-17,R-14R-13R-15}R-12R-11R-22R-31,R-30R-29R-29R-21R-18,R-19R-16R-32152.52.5132.5202.52.52.520202.50.257342313422.54Q.25300100102.5(4)176'501222376124674641861218746521885610430028272921,58479271702.6401.1250.0300.2860.9402.4801.6850.1600.4650.2400.3600.1870.3640.5642.3520.3123.9001.1760.6800.3680.39623.7002.7001.700383003(3)183550.12(3)0.0280.0080.0200.0080.0010.0050.0210.0150.0150.0080.001704223606422226961830168242906042340.1750.0520.0550.9000.1600.0550.4400.0020.2880.7560.0900.6720.2050.1680.02318.0004.2000.340hs(I)15Rev.15,4/80 Page2TABLE12.4-5(Continued)Routine(1)MaintenanceRoutineSurveillancesPeriodical)TestinRoomorAreaNo.EstimatedDoseRate(mRem/hr)EstimatedAnnual(5)Man-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remR-60R-28R-35R-27R-26R-25R-24R"37Transit()El660'"R-105R-106,R-107R-106,R-107R-.101R"110R"103Transit()El676'"R-201,R-229R-207R-206R-226R-220R-225,R-2272.55002.52.52.52.52.52.50.830.252.550150.250.252.52.5'.250.250.2545104012129034270521023242362761421)6504209721141.27520.0000.0300:0300.2250.0850.0050.1750.0133.0601.6000.6300.0090.6900.3550.4130.1050.2430.456128llpp9(3)221850.1060.0030.0010.0060.0050.0013640184782411,680164818.0000.0100.5400.2000.0200.0602.9200.0040.012Rev.18/78 Page3TABLE12.4-5(Continued)Routine(1)MaintenanceRoutineSurveillancesPeriodical)TestinRoomorAreaNo.EstimatedDoseRate(mRem/hr)EstimatedAnnualMan-hours()EstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remEstimatedAnnualMan-hoursEstimatedAnnualMan-remR-250Off-gasQeatmentTransit(2)-(Walk-upEl691'"4(later)0.250.25280(later)1.120(later)(later)53137(later)0.0130.034104(later)0.416(later)R-310>R-313R-311,R-312R-301R-305R-308R-309Transit0.2570.250.250.250.251.771,856681280404860.4640.4760.0030.0200.0100.12233570.0080.1012700.068Totals13,24280.4245230.40813,39848.831(1)The"transit"entriesaccountfortheestimatedtimespentanddosereceivedwhilewalkingthepatrolareassurveillances.Forelevationswhichentailexposurestomultipleradiationlevels,theestimateddoserateweightedaverageofthedoseratesencountered.Alltransittimesarebasedonanassumedwalkingspeedofminute.duringroutineisthedistance200feetper(2)ThisentryaccountsforthetransitbetweenaccesscontrolandtheradwastebuildingalongturbinebuildingEL676'"beforeandaftereachsurveillancepatrol.Rev.18/78 SSES-FSARTABLE12.4-6ESTIMATEDEXPOSUREFOROPERATORSINRESIDENCEINCONTROLROOMSOperatorDesignationEstimatedAssumed(1)Number(2)Manhours(3)RadiationLevelLocationPerShiftPerYear(mRem/hr)Estimated(2)AnnualMan-remShiftSupervisorMCRPlantControlMCRNuclearAuxiliaryRWCRAsst.ShiftSupv.MCR8,7608,76026i2808,7600.250.250.250.252.22.26.62.2TOTALS:52,56013.2(1)MCR=MainControlRoomRWCR=RadwasteControlRoom(2)Assumedtobeindependentofthenumberofoperatingunits(3)Basedon8man-hourspershift,1095shiftsperyear

SSES-FSARTABLE124-7SUMMARYOFROUTINEOPERATIONSEXPOSUREESTIMATEAnnualEstimatedMan-remRoutineSurveillances:Turbinehldq/controlstructureReactorbuildingRadwastebuildinqSingleUnit0911042.4TwoUnits1.8220.444PeriodicTests:Turbinebldg/controlstructureReactorbuildinqRadwastebuilding9.639.148.897519278.248.8146.2ControlBoomOperations:NainControlroomRadwastecontrolroom11.02=21321102=213.2Total11311638 SSES-FSARTABLE12.4-9SUMMARYOFIN-PLANTDIRECTRADIATIONEXPOSUREESTIMATESAnnualEstimatedMan-remCateraorrRoutine-OperationsRoutineMaintenanceIn-ServiceInspectionSpecialMaintenanceHasteProcessingRefuelingHealthPhysicsTOTALSinaleUnit113.1237.727.5273.137019.229.37369TwoUnits1638395055~0546.274038.458.61i3310 TABLE1~2a-10continne~dPage.2of2OtherEguipneatAreasAA~ainenaneeSg~rvellanceEstimatedAnnualMan-HoursTestinaTotalEstimatedThyroidDoseEstimatedTritiumDose3342i42A43r15lr152110114~115,11611712lrl230124125212~214~215300'530531i532C-10C-11C-130C-900AC-912C-900A0C-912A164860665101~5188121261E16628201721063933105251011000000155052002038144201443815480072095803142121~005695101,6628501411,646282i39910786451085968-33\222e23l.6-253-22e725-353-2ge0-47e723.2-42.5-2l.4-332-42.6-41.9-366-53.2-42.2-51.6-452-426-44.4-65.2-48.8-674-432-62.4-414-53.2-62.4-61.8-5TURBINEBUILDIHGTOTALS18~9984712E766~22~23527+02.6-2(1)Allvaluesinthetableareonaper-unitbasis.Occupancytimesforcommonareaswithinthebuildingareshovnasone-halftheestimatedvaluetoagreeviththeper-unitbasisofthetable.(2)Surveillanceman-hoursincludetransittimespentbyoperatorsvalking'nthearea.(3)58-1=5BZ10(4)Thyroiddoseattributableonlytoinhalationofradioiodines.(5)Uniformdosetothetotalbodyfromuptakeoftritium.REV.11,7/79

TABLE12.4-11(Continued)Estimated'AnnualMan-HoursMaintenanceSurveillanceT~estinTotalPage2EstimatedEstimated(7)-(8)ThyroidDoseTritiumDose206,206A207400490516607OtherEquipmentAreas1515A401401A403,471411,515,710480506511514620621700702703704,712802,C-801REACTORBUILDINGTOTALS1704542232744715967415583,64860010039004518576461210262650818(4)017,53029080921000001127009130.054747003061644767120743271030222330576340001203,1441,515422633611206134456583,8021,0191204202227818634479251'62659960021,2214.5+11.3+11.9+11.8+16.2+04.0+02.9-13.7-22.4+06.4-17.6-22.6-11.4-14.9-21.1-24.0-13.0-11.6-11.6-21.6-23.7-26.0-10.0+01.2+22.8-2REV.ll,7/79 Ai SSES-FSARTABLE12.4-12(Continued)(1)Allvaluesareonaper-plantbasis.(2)Surveillanceman-hoursincludetransittimespentbyoperatorswalkinginthearea.(3)4.6-4=4.6x10(4)Solidradwasteprocessing,containerhandling,andradwasteshipping SSES-PSARTABLE124-13ESTIMATEDEXPOSURETOUNIT2CONSTRUCTIONWORKERSPersonnelAssumedLocationEstimated.Occupancy(~)(Man-.hr)AverageEstimate/DoseRateExposure()(mRem/hr)(Man-rem)ManualManualManualManualManualNon-Man.Non-Man.Non-Man.Non-Man.YardAreaUnit2ReactorBldgBelowRefuelingPloorOnRefuelingPloorUnit2TurbineBldgBelowTurbineDeckOnandAboveTurbineDeckFieldOfficeUnit2ReactorBldgBelowRefuelingFloorOnRefuelingFloorUnit2TurbineBldgBelowTurbineDeck154r000373r00041,40018200020,000486~00054,7006r080547000.0250.0100.24001003200200.0100.2400103.082987.951.455.17777044170.44Non-Man.onTunbineDeck608000580.28TOTAL1,378r1603073(>)ForremainderofUnit2construction.(2)Basedonanassumedavailabilityof80percentforUnitl. SSES-FSAR12'~-HEALTHPHYSICSPROGRAN125.1OR~ANIZATlON12.5.l.1-IntroductionTheHealthPhysicsprogramat-SusquehannaSESisdevelopedandimnlementedtoevaluateanddocumentplantradiologicalconditionsandassurethateveryreasonableeffortisexpendedtomaintainpersonnelexposure'slowasreasonablyachievable(ALARA).TheHealthPhysicsOrganizationisdisplayedonFigure12.5-1.12.5.1.2ResponsibilitiesTheHealthPhysicsSupervisorisresponsibletotheSuprintendentofPlant.TheHealthPhysicsSupervisorischargedwiththeresponsibilityofprovidingtheSuperintendentofPlantwiththeinformationnecessarytoestablishcompliancewithregulationspertainingtoradiationsafety,uniformenforcementofStationHealthPhysicsreguirements,andchateveryreasonableefforttominimizepersonnelexposureshasbeenmade.Znaddition,theHealthPhysicsSupervisorisresponsibleforassuringthestaffwhoimplementtheHealthPhysicsprogramistrainedandretrainedinoperationalHealthPhysicsprinciplesapplicabletoSusquehannaSES.TheHealthPhysicsEngineerisremovedfromthelinefunctionofdaytodayHealthPhysicsactivitiestoprovidethelatitudeandtimetodevelopandimplementastationALARAprogramthatisresponsivetoplantstatus.TheHealthPhysicsEngineer'smajorresponsibilityistoprovidetheHealthPhysicsSupervisortheinformationnecessarytoestablishthateveryreasonableefforthasbeenmadetominimizepersonnelexposures.TheHealthPhysicsSpecia'listsassure*implementationoftheStationHealthPhysicsprogrambysupervisionofroutineandspecialsurveyandevaluationproqramsrequiredbyapplicablerequlationsandprocedures.TheHealthPhysicsSpecialists'a]orresponsibilityistoprovidetheHealthPhysicsSupervisortheinformationnecessarytoestablishthatsurveyandrecordkeepinqrequirementsareproperlymetandthatplantactivitiesreceiveappropriateHealthPhysicsattention.12.5-1 SSES-FSARTheHealthPhysicsMonitorsimplementtheHealthPhysicsProgrambyperforminqroutineandspecialsurveysandprovidingHealthPhysicssurveillanceinaccordancewithStationHealthPhysicsProcedures.12.5.1.3AuthorityTheSuperintendentofPlant,ultimatelyresponsibleforallstationactivitiesincludingradiationsafety,receivesdirectreportsfromtheHealthPhysicsSupervisorconcerningthestatusoftheHealthPhysicsprogram.ToassureuniformenforcementofHealthPhysicsrequirements,theSuperintendentofPlantdeleqateshisauthoritywithrespecttoradiationsafetytotheHealthPhysicsSupervisor.TheHealthPhysicsSupervisorhastheauthoritytoceaseanyworkactivitywhen,inhisprofessionaljudqment,workersafetyisjeopardized,orunnecessarypersonnelexposuresareoccurring.TheHealthPhysicsEngineerhastheindependenceandauthoritytoassurethatjobsareaccomplishedwithminimalexposures.IndependencefromroutineHealthPhysicsactivitiesallowstheobjectivitynecessaryforselectivereviewandrecommendationofworkplanningpackagessuchasRadiationWorkPermits(RWP),workrequests,andspecialmaintenanceprocedures,inaccordancewithstationprocedures.TheHealthPhysicsSupervisordelegatesauthoritytotheHealthPhysicsEngineertoceaseanyworkactivitywhichisnotbeingperformedinaccordancewithAsLowAsReasonablyAchievable(ALABA)procedures.TheHealthPhysicsEnqineerhastheauthoritytoconductinformaltrainingand/ordiscussionswithworkersandsupervisorsregardingobservedpracticesandALARArecommendations.TheHealth,.PhysicsSpecialisthastheauthoritytoassurethatjobsareconductedinaccordancewithHealthPhysicsproceduresandRWPrequirements.TheHealthPhysicsSupervisordelegatestheauthoritytotheHealthPhysicsSpecialisttoceaseanyworkactivitywhichisnotbeingperformedinaccordancewithRWPrequirements.ZntheabsenceofHealthPhysicsSupervision,theauthoritiesoftheabovepositionsmaybedelegatedinaccordancewithStationHealthPhysicsprocedurestoshiftsupervisorsorassistantshiftsupervisorswhohavesuccessfullycompletedLevelIVtrainingasdescribedinSubsection12.5.3.7.AmemberofHealthPhysicsSupervision,oranindividualmeetingtheminimumexperienceandqualificationrequirementsofoneormoreofthesepositions,willbeavailableforconsultationreqardinqHealthPhysicsandALARAconcerns.12.5-2 SSBS-PSARTheHealthPhysicsHonitorsiaplementHealthPhysicsandBBPrequirementsunderthedirectionofqualifiedsupervision.12.5.1.4~ExeclenceandnallflcalnTheHealthPhysicsstaff,responsiblefortheHealthPhysicsprogramatSusquehanna,willmeetninimunexperienceandqualificationrequirements.TheHealthPhysicsSupervisorwillbeanexperiencedprofessionalinappliedradiationprotectionatnuclearpowerplantsornuclearfacilitiesdealingwithradiationprotectionproblemssimilartothoseatnuclearpowerstations;faniliarwiththedesignfeaturesofnuclearpowerstationsthataffectthepotentialforexposuresofpersonstoradiation;inpossessionoftechnicalcompetencetoestablishradiationprotectionprogramsandsupervisorycapabilitytodirecttheworkofprofessionals,techniciansandJourneymanrequiredtoimplementsuchprograms.TheHealthPhysicsSupervisorwillhaveaminimumofnineyearsofexperienceinappliedradiationprotectionwhichistoincludefiveyearsofprofessionalexperience.Pouryearsoftheexperiencerequirementmaybefulfilledbyabachelor'sdegreeinascienceorengineeringsubject.Threeyearsoftheprofessionalexperiencewillbeinanuclearpowerplantornuclearfacilitydealingwithradiologicalproblemssimilartothoseencounteredinnuclearpowerstations.Oneyearofprofessionalexperiencemaybefulfilledbyamaster'sdegreeandtwoyearsmaybefulfilledbyadoctor'sdegreewherecourseworkrelatedtoradiationprotectionisinvolved.TheHealthPhysicsEngineerwillhaveaminimumoffiveyearsofexperienceinappliedradiationprotectioninanuclearpowerplantoranuclearfacilitydealingwithradiologicalproblemssimilartothoseencounteredinnuclearpowerstations.Upto,fouryearsoftheexperiencerequirementmaybefulfilledbyrelatedtechnicaltrainingoracademictraininginascienceorengineeringsubject.TheHealthPhysicsSpecialistwillhaveaminimumoffouryearsofexperienceinappliedradiationprotectiontoincludetwoREV.18/78125-3 SSBS-PSARyearsofexperienceinanuclearpowerplantoranuclearfacilitydealingwithradiologicalprobleassinilartothoseencounteredinnuclearpowerstations.Anaximumoftwoyearsoftheexperiencerequirementnaybefulfilledbyrelatedtechnicaltraininqoracadenictraininginascienceorengineeringsubject.ToatalltinesassureadequatemanpowerforHealthPhysicssupervisoryfunctions,theexperienceandqualificationrequirenentsoftheHealthPhysicsEngineerandHealthPhysicsSpecialistpositionsmaybereducedonatemporarybasis.TheSuperintendentofPlantwillapproveordisapprovesuchactionfollowingreviewoftheHealthPhysicsSupervisor'srecommendationsandjustification.TheHealthPhysicsMonitorUillneetthequalificationrequirementsofSubsection12.5.3.7.12,5./~1Cogt~o~Stgugtu~egaci~ifiesThefacilities,showninPigure12.5-2~arelocatedatthecentralaccesstotheControlledZone,elevation676~,forefficiencyofoperation.Self-surveypersonnelmonitoringequipment,suchashandandfoot,portal,orGeiger-Mueller(G-M)typefriskers,willbelocatedattheexitfromthecentralaccesscontrolarea.Self-surveyrequirementswillbeadministrativelyimposedpriortoexitingtheControlledZone.12,5,2,1.1HealthPhggic~sacilitiesTheHealthPhysicsofficeandworkroomarelocatedalongtheCentralCorridor.JobplanningandRadiationWorkPermitcoordination.maybeconductedthroughthepass-thruwindowoftheworkroom.Portableradiationsurveyinstrumentationaswellasairmonitorinqandsamplingequipment,self-readingdosimeters,andmiscellaneousHealthPhysicssupplieswillbestoredintheHealthPhysicsOfficeandWorkroomarea.HealthPhysicsequipmentusedforroutinecountingofsmearsandairsamplessuchasendwindowG-Mcounters,alphaandbetascintillationdetectors,and/orgasflowproportionalcounterswillbelocatedintheHealthPhysicsOfficetopreventcrosscontaminationofchemistrysamplesandminimizecountingroombackgroundvariations.HealthPhysicssamplesrequiringgammaisotopic12.5-4 SSES-FSARanalysisand/orlowlevelcountingmaybeanalyzedintheCountinqRoom.HealthPhysicsuseoftheCountingRoomwillbecoordinatedwiththeChemistryGroup.TheHealthPhysicsofficewillbeequippedwithfilingcabinetsandbenchtopsforsurveyrecordkeepingandRWPpreparation.Decontaminationfacilitiesatthecentralaccesscontrolareaconsistofamainpersonneldecontaminationareaandauxiliarydecontaminationarea.Auxiliarytoiletsandlockerroomarealsoprovided.Thepersonneldecontaminationareascontainshowers,sinks,anddecontaminationagents.Decontaminationareaventilationisfilteredthroughprefilter,HighEfficiencyParticulateAir(H.E.P.A.),andcharcoalfilterspriortoexhaustthrouqhtheTurbineBuildingvent.SinksandshowersdraintothechemicaldraintanksforprocessingthroughtheLiquidRadioactiveWasteSystem.G-Htypefriskerswillbelocatedattheseareasforpersonnelcontaminationmonitoring.Portableradiationsurveyinstrumentsandself-readingdosimeterswillnormallybecalibratedintheinstrumentcalibrationroomusingacalibrationapparatusorappropriateneutron,betaandqammasources,traceabletotheNationalBureauofStandards(N.B.S.).Sourceswillbestoredinlockedsourcecontainersandstoraqeareaswillbelockedwhennotinuse.Portablesourcesusedtocalibratethearea,process,andeffluentradiationmonitorinqsystemaswellassmallsolidandliquidsourcesusedtocalibratethecountinqroominstrumentsmaybestoredhere.Thecalibrationapparatuswillutilizesourcesofvaryingstrenqthandenergyand/orvaryingthicknessesofshieldingtoprovidearadiationfieldofknownstrengthforuseincalibratingportableradiationsurveyinstruments.Provisionswillbeavailableforcalibratinqinstrumentsinreproducibleqeometries.AnN.B.S.calibratedcondenserR-meterwillbeusedtoaccuratelymeasureradiationlevelstodeterminesourcetodetectordistancesfordesiredinstrumentcalibrationradiationlevels.RecordofcalibrationandrepairforPortableradiationdetectioninstrumentswillbemaintainedonfile.Instrumentcalibrationmaybeperformedbyaqualifiedvendor.Recordsofsuchcalibrationswillbemaintained.Thelaundryroomwillbeequippedwithawasherandexhausteddryertolaundercontaminatedprotectiveclothing/equipment.Pacilitiesincludeatransfertableandstainlesssteelsortingtablewithexhausthood.Protectiveclothinq,launderedonsite,willbeselectivelymonitoredforcontamination,sortedandstoredintheProtectiveClothingareaorLaundryStorageRoom.Laundrydetergentsforprotectiveclothinglaundering,andotherappropriatesupplieswillbestoredinthisarea.Thelaundrytableanddryer,exhaustisdischargedtothe'TurbineBuildingvent,.LiquidlaundryeffluentwillbecollectedintheLaundry12.5-5 SSES-PSARDrainTanksforsamplingandanalysispriortoprocessingthroughthe~LiquidRadioactiveWasteSystem.Thefirstaidroomwillcontainamedicalservicecenterandtoilet.Adequatesupplieswillbemaintainedtoadministerfirstaidforinjuriesrequiringimmediateattention.An-inventoryoffirstaidsupplieswillbeperformedatafrequencyspecifiedinstationprocedurestoassureanadequatestockismaintained.IndividualsrequiringfirstaidvillbecheckedbyHealthPhysicspersonnel'forwoundcontaminationpriortoadministeringfirstaid,whenapplicable.Thelockerroomcontainsapproximately100lockers.Controlledzonevorkersmaychangefromstreetclothingintoplantclothinginthelockerroom.PersonnelscheduledtoworkonRadiationworkPermitjobsmayalsochangeinto,cleanprotectiveclothinginthelockerroom.Adjacenttothelockerroomisatoiletandwashroom,shoverroomanddryingroom.Frequentlyoccupiedcontaminatedareasvillhavelocalchangefacilitieswithappropriateprotectiveclothinqsuppliestominimizethespreadofcontaminationfromworkareas.StoragefacilitiesvillbelocatedintheCentral.AccessControlAreaforstorageofanti-contaminationequipment,respiratoryprotectiveequipment,andmiscellaneousHealthPhysicssupplies.TheEmerqencyEquipmentandLaundryStorageRoomvillbeusedforstorageofprotectiveclothingandemergencyequipment.12,5,2,1,2padiochemist~rPacilitiesRadiochemistryfacilitiesconsistofasampleroom,radiochemistrylaboratory,andcountingroom.Thesampleroomisshieldedwithl'6"concretevallsand,containscabinetswithworktops,sink,wallmountedstoragecabinetsand'afumehoodassemblyexhaustedthroughprefilter,H.E.P.A.andcharcoalfilterstotheTurbineBuildingvent.Theradiochemistrylaboratorywillbeutilizedforsamplepreparationandcontainsfilteredfumehoodswithserviceairconnection,refrigerator,utilitytables,sinks,cabinets,anddrawers.Theconcretewallsrangeinthicknessfrom1'o3'2~t.Pumehoodsareexhaustedthrouqhprefilter,H.E.PA.,andcharcoalfilterstothe'TurbineBuildingventandthesinksdraintothe.ChemicalDrainTanksforprocessing'throughtheLiquid12.5-6 SSES-FSARRadioactiveMasteSsystem.Anemergencyshower.isaccessiblefromboththeradiochemistryandchemistrylaboratories.TheCountinqRoomisconstructedwith-1'6>>concretewallstoprovidealowbackgroundenvironmentforanalysisofradiochemistrysamplesofstationeffluentsandZnstrumentatioensanprocessstreams.mntation,suchasagasflowproportionalcounter,liquid'ndwindowG-Mscintillationcounter,alphaandbetascintilltiaorsorcrystals,SodiumIodideNaIs'inganorandGermanium,LithiumdriftedGe(Li)d/(),systemswillbeutilizedforcountingand/oranalysisofradiochemistrysamples.125,2,1,3ChemistryLaboratoryservicea'hechemistrylaboratorycontainsanexhauthdausooassemblywitheairconnection,drawers,worktop'inksandlaboratorequipmentnecessaryforperforminqchemicalanalplantmaterials.Stationchemistryprocedureswillprovideadministrativecontroltoassurethatudconditionsonl'a,unernormalon'ynon-radioactivematerialsareanalyzedintheChemistryLaboratory.ThelaboratoryexhausthooddischargestothTb'eurineBuildingnanthesinksdraintotheneutralizationtankforprocessinqthroughtheLiquidRadioactiveMasteSystemdwasteBuildingFacilities12522.adITheRadwasteBuildingelevation646',676'nd691'6>>facilitiesarelocatedasshownonFiqures12.5-312.5.-respectivel.-4,and1255,H.E.P.A.filtersy.Ventilationisfilteredthr'oughprefltpriortoexhausttotheTurbine=Buildingvent.ieranTankforrocesDrainsdischargetotheChemicalDrainTankandLaprocessingthroughtheLiquidRadioactiveMasteSystem.12.5.2.g.1RadwasteBuildingelevation646'0<<Thefacilitiesconsistofasolidwastepackdecontamination,andmonitorinpacaging,ringarea,personneldecontaminationaciityandpersonneldecontaminationfacilityadjacenttothelaundrydrainsampletank.,Thesolidwastepackaing'areacontainsanapparatusforremotecappinqoperations,waterspraynozzlesforcontainer12.5-7 SSES-PSARdecontamination,andaremotesmearingdeviceformonitoringpackaqesurfacecontamination.Thetwo(2)personneldecontaminationfacilitiescontainshovers,sinksandappropriatedecontaminationagents.1'2.5.2.2.2BadvaateBuildingElevation676'0~Thefacilitiesconsistofaninstrumentrepairshop,sampleroom,repairareaincludingaveldingarea,personneldecontaminationroom,controlledzoneshopincludingawashdownarea,monitoringandfinaldecontaminationarea,andstoragearea.TheInstrumentRepairShopwillbeequippedvithanassortmentoftoolsandequipmentnecessaryforworkoncontaminatedinstruments.ThesampleroomprovidesacentrallocationforsamplingvariousRadvasteSystems.SamplesvillbeanalyzedbytheChemistryqrouptodeterminethefinaldispositionoftheeffluentsbeingprocessed.'heRepairAreawillbeusedformaintenanceandveldingofcontaminatedequipment.Appropriatetoolsandequipment,includingweldinqequipment,villbestoredinthisarea.Thepersonneldecontaminationroomwillbeequippedasthosedescribedatthecentralaccesscontrolarea..Itisconvenientlylocatedtofacilitatetherapidremovalofcontaminationfrompersonnelvorkinqintheinstrumentrepairshops,samp'leroom,repairarea,orcontrolledzoneshop.14Thecontrolledzoneshopvill,beequippedsimilartothestationmachineshop.Repairofcontaminatedcomponentsvillbeperformedinthisarea..Theadjoiningwashdownareawillbeusedfordecontaminationofcomponentsandequipmenttobeworkedoninthecontrolledzoneshopandisconstructedwitha6<<curbing.Themonitoringandfinaldecontaminationareawillbeusedforsurveyinganddecontamination,ifnecessary,ofradwastecontainerspriortostorage.Astoraqeareaisavailableonthe676'0"elevationforstorageofanti-contaminationequipment,respiratoryprotectiveequipment,andmiscellaneousHealthPhysicssupplies.12.5-8 SSES-PSAR12.S.2.2.3=IadwggteBgjld~n]gevation691~6uTheHealthPhysicsfacilitiesconsistofacontaminatedlaundryandstoragearea,cleanlaundryandstoragearea,personneldecontaminationarea,HealthPhysicsarea,andjanitor'scloset.Thecontaminatedlaundryareacontainstwo(2)washersandtwo(2)exhausteddryers,anexhausthoodandsink,miscellaneoustablesandcarts,andastorageareaforlaundrydetergentsusedinprotectiveclothinglaundering,disinfectingagentsforcleaningofrespiratoryprotectiveequipment,andothersupplies.Onewasherwillbelabeledandadministrativelycontrolledbystationprocedureforuseincleaningofrespiratoryprotectiveequipmentonly.Contaminationlimitswillbespecifiedbystationprocedurefortherespiratoryprotectiveequipmentwasher.Aseparateareawithinthelaundryfacilitieswillbeusedformaintenanceandrepairofpersonnelrespiratoryprotectiveequipment.Equipmentwillbecleanedinthedesiqnatedwasher,dried,inspectedanddisinfected,wrappedinplasticorpaperbaqs,andstoredintheEmergencyEquipmentandLaundryStorageRoom,RadwasteBuildingHealthPhysicsArea,orotherdesiqnatedarea.Thelaundryeffluentwillbedischargedtothelaundrywastestoragetanksforsamplingpriortoprocessingthrouqhtheliquidradioactivewastesystem.Thecleanlaundryareacontainstwo(2)washersandtwo(2)exhausteddryers,asink,andmiscellaneoustablesandcarts.Thefacilitywillnormallybeusedforlaunderingofstationclothinqnotusedasanti-contaminationclothing.LaundrydrainagewillbecollectedinthelaundrydraintanksforsamplinqpriortoprocessingthroughtheLiquidRadioactiveMaste-System.Thepersonneldecontaminationareawillbeequippedasthoseatthecentralaccesscontrolarea.TheHealthPhysicsareawillserveasanofficeforHealthPhysicspersonnelandstorageareaforHealthPhysicssuppliesandequipmentinsupportofRadwasteactivities.Equipmentandinstrumentationwillincludeportablesurveyinstruments,airsamplers,countinqequipment,respiratoryprotectionequipment,contaminationcontrolsuppliesandotherrelatedHealthPhysicssupplies.12.5-9 SSBS-FSAR12.5.~23=-ReactorBuildinaciltiesTheReactorBuildingelevation719'<facilitiesarelocatedasshowninFigure12.5-6Eachunithastwo(2)emergencypersonneldecontaminationstationsandavashdovnarea.Thetvo(2)emergencypersonneldecontaminationstationscontainshoversandsinks,amonitoringstationvithfriskerandprotectiveclothing,andappropriatedecontaminationagents.Thewashdovnareavillbeusedforequipmentdecontaminationpriortomaintenanceandisconstructedwithasix(6)inchcurb.Ventilationfromtheseareasisfilteredthroughprefilter,H.EP.A.,andcharcoalfilterspriortoexhaustthroughtheReactorBuildingvent.DrainsdischargetotheReactorBuildingSump,ChemicalDrainTank,andLaundryDrainTankforprocessingthroughtheLiquidRadioactiveMasteSystem.The729~elevationoftheTurbineBuildingcontainsawashdovnarea,with6<curbingforturbinebladingandcomponentdecontaminationpriortomaintenance.Ventilationfromthisareaisfilteredthroughprefilter,upstreamH.E.P.A,charcoal,anddownstreamH.E.P.A.filterspriortoexhausttotheTurbineBuildingvent.DrainsdischargetotheTurbineBuildingChemicalRadvasteSumpforprocessingthroughtheLiquidRadioactiveWasteSystem.12.5~25GuardHouseBuil~dngTheGuardHousebuildingservesprimarilyastheaccesscontroltotherestrictedareaoftheplant.Personneldosimetrywillnormallybeissuedandstoredatthisarea.Aportalmonitorand/orG-MtypefriskervillnormallybemaintainedatthislocationasthefinalmonitoringareapriortoleavingSSESREV.18/78125-1'0 SSES-FSAR125.2.6HealthPhysics~Euament12-5g.6.-1ProtectiveClothingProtectiveclothingwillbewornincontaminatedareastopreventpersonnelcontaminationandaidincontrollingthespreadofsurfacecontamination.ProtectiveclothinqavailableatSusquehannaSESwillinclude:reusablecoverallsandlabcoats,disposablecoverallsandlabcoats,plasticsuits,surgeonscaps,clothhoods,plastichoods,splashshields,cottongloveliners,clothgloves,rubbergloves,disposablegloves,gauntletgloves,.rubbershoecovers,rubberboots,anddisposableshoecovers.'rotectiveclothinqwillbestoredattheProtectiveClothingArea,EmerqencyEquipmentandLaundryStorageRoom(Figure12.5-2)~plantlaundries(Figure12.5-6),andselectedlocalchangeareas.Afteruse,protectiveclothingwillbelaunderedandmonitored,orsurveyed,packagedandshippedtoanoff-sitevendorforllaundering,ordiscardedasradwaste.12.5.2.62RespiratoryProtectiveEquipmentRespiratoryprotectiveequipmentwillbeusedtominimizetheintakeofradioactivematerialwhenengineeringcontrolsarenotpracticable.TheRespiratoryProtectionProgramisdescribedinSubsection12.5.3.5.RespiratoryProtective,EquipmentutilizedatSusquehannaSESwillconsistofNationalInstituteofOccupationalSafetyandHealth/NineEquipmentSafetyAdministration,(N.I.O.S.H./N.E.S.A.)approvedairpurifyingrespirators,self-containedbreathinqapparatus(pressuredemand),pressuredemandairlinerespirators,constantflowairlinerespirators,andconstantflowairlinehoods,weldingmasksandplasticsuits.'Avarietyofrespiratorydeviceswillbeavailabletoassureproperfitofthedifferingfacialcontoursof,personnelrequiringrespiratoryprotection.Sufficientquantitiesofrespiratoryprotectiveequipmentwillbeavail'abletoallowfortheuse,decontamination,maintenance,andrepairofequipment.RespiratoryProtectiveEquipmentwillbeavailableattheEmergencyEquipment'andLaundryStorageRoom(Figure12.5-2),andRadwasteBuildingHealthPhysicsArea(Figure12.5-3,12.5-4and12.5-5).RespiratoryProtectiveEquipmentwillbeavailableforemerqencyuseattheEmergencyControlCenterandControlRoom.N.I.O.S.H./N.E.S.A.approvedemergencyescapedeviceswillbe SSES-FSARplacedatlocationswherethepotentialexistsforanunexpectedincreaseinradioactiveorchemicalairborneconcentrations(suchasthewatertreatmentbuildingandradwastesystem).Fifteen(15)escapedeviceswillalsobelocatedinthecontrolroom.Ifapplicable,respiratoryprotectivefacepieceswillbewrappedinplasticbagsandstoredindividuallytoprohibitplasticdeformation.12.5.2.6.3.AirSamplinqEgu~imentAirsamplingequipmentwillbeavailableattheHealthPhysicsoffice(CentralAccessControlArea,Figure12.5-2)andtheHealthPhysicsStation(RadwasteBuilding,Figure12.5-3).Airborneactivitylevelswillbedeterminedbytheuseofcontinuousairbornemonitors(CAMS),highandlowvolumeportableairsamplers,andbreathinqzoneairsamplers.Five(5)CAMs,five(5)highvolume-airsamplers,five(5)lowvolumeairsamplers,andtwo(2)impactorattachmentswillbeavailableforuseatSusquehannaSES.TheCAN(s)canbeusedtomeasureparticulateandgaseousactivity.Theairsamplerscanbeusedtomeasureparticulateandiodineactivityusingtheappropriatefilteringmedium.Particulateactivityandparticlesizedistributioncanbedeterminedusinqanimpactorattachment.VolumesnecessaryforrepresentativesampleswillbespecifiedinStationHealthPhysicsprocedures.FiltermediasuchasH.E.P.A.filtersandcharcoalcartridqeswillbestoredattheHealthPhysicsofficeandWorkroomArea.12.5.2.6.3.1ContinuousAirMonitorsCANSwillnormallybeusedtosampleselectedareasofpotentialairborneconcentrations.CAllsamplingrateswillbecheckedagainst.calibratedrotometersorwettestmetersonaguarterlybasisandafterpumpreplacementor,repair..IfCAM'sareequipped,withstripchartrecordersorlocalreadout,abaselinesamplingproqramwillbecompletedpriortoUnitlfuelloadtoallowestimationofnaturallyoccurringisotopes'ontributiontoairbornebackground.CANdetectorresponsetoanappropriatechecksourcewillbeperformedonaquarterlybasis.Manufacturer'srecommendedcalibrationorvoltaqeplateauprocedureswillbeperformedonaquarterlybasis.,Ifapplicable,operationoflocalalarms.willbeverifiedona12.5-12 SSES-PSARquarterlybasis.12.52.6.3.gPortablelSanlersShenpossible,eachportableairsamplerwillbemonitoredforflowrateasabove.Devicesutilizingflowmetersvillbecheckedagainstcalibratedrotometersorwet,testneterswhenpracticable.Hanufacturerslcertificationofflowratevillbe4tilizedwhenphysicalflowmeasurementsarenotpossibleduetoequipmentdesign.12.5.26.3.3B~reathinZoneSan'lersTen(10)batterypoweredbreathingzonesamplersvillbeava.ilableforuseinevaluatingairconcentrationsthatradiationworkersmayencounter.Personnelbreathingzonesamplerswillbecheckedforflowratesasaboveifpracticable.Ifdesignpreventsphysicalflowmeasurement,manufacturer'scertificationofratedfloworaccuracyofflowmetervillbeutilized.12.5.2.6.3.4SanSlin~sediaParticulateairconcentrationswillbesampledwithH.E.P.A.samplingmediaorimpactorattachments.Manufacturer'scertificationofcollectionefficiencyvillbeutilizedincalculationsofairborneconcentrations.Surveysforradioiodineconcentrationsvillnormallyutilizecharcoalinareproduciblegeometrysuchasacartridge.Ifstudiestodeterminevariousformsofradioiodinearerequired,reproduciblegeometriesofmaterialssuchascadmiumiodide,4-iodophenol,andsilverzeolitemaybeusedwithcharcoalinvariousconfigurations.Ifcharcoalimpregnatedfilterpaperisutilized'inequipmentsuchasbreathingzonemonitors,manufacturersrecommendedsamplingratesandtimesvillbefollowedwheneverpracticable.REV.18/78125-13 SSBS-FSX.RRaterbubblers,dessicantcolumns,orcoldtrapswillbeavailablefortritiumairsampling,andgassamplecontainers(suchasNarinellicontainers)willbeavailableforspecialqaseousairsampling.12~5~/~6~4-Pegsongeg.]}o~s~tThePersonnelDosimetryprogramisdescribedinSubsection12.5.3.6.Self-readingdosimetersoffivedifferentrangesforuseatSusquehannaSESareasfollows:I--MEt-0-200LowDoseAccumulatingMork4000-500IntermediateDoseAccumulating75Rork0-10000-500000-100,000HighDoseAccumulatingMorkRadiationEmergencyPlanUseRadiationEmergencyPlanUse502525Atotaloffive(5)dosimeterchargerswillbeavailableattheCentralAccessControlAreaHealthPhysicsOfficeandtheRadwasteBuildinqHealthPhysicsStation.Self-BeadingDosimeterswillalsobeavailableattheselocations.Dosimeterswillbetestedforcalibrationresponsechargingdrift,andleakagepriortoinitialuse,andonasixmonthfrequencythereafter.Xfvendorserviceisnotutilized,approximately1500"thermoluminescentdosimeters(TLD)willbeavailableforuseasthedosimetryofrecord.TLD(s)villbeusedforneutron,beta,andqammaexposureandwillnormallybeevaluatedonsite.Approximatelyonehundred(100)extremityTLDdeviceswillbeavailableforissuewhenauthorizedbyHealthPhysicspersonnel.Zfapplicable,aTLDreaderwillbeinstalledandcalibratedinaccordancewithvendor'sinstructions.Operationwillbeconductedbyqualifiedindividualsinaccordancewithapprovedstationprocedures.AperformancetestingprogramwillbeimplementedtoassuretheTLDreaderisproperlycalibratedandexposureinformationisaccurate.12.5-14 SSES-FSARInternallydepositedradioactivematerialwillbeevaluatedwithawholebodycountersufficientlysensitivetodetectinthethyroid,1unqs,orwholebodyafractionofthepermissiblebody/orqanburdenforgammaemittingradionuclidesofinterest.Thewho'lebodycounterwillbecalibratedonaquarterlybasisusingphantomsandstandardsolutionsofvariousradionuclidessuchasCo-60,Ce-137,andBa-133.Thedetectorswillbeusedinconjunctionwithamulti-channelanalyzerandassociatedreadouttoobtainapermanentrecord.Avendor,wholebodycountingsystemonoroffsitemaybeusedasanalternativeorsupplementtoaPPGLwholebodycounter.Ten(10)batterypoweredpersonnelalarmdosimeterswillbeavailableforusewhenanaudioalarmatapresetaccumulatedexposureorexposureratemaybeadvantageous.Personnelalarmdosimeterswillbecheckedforaccuracyonaguarterlybasisandfollowinganyrepairaffectingcalibration.12.5.2.6.5Miscellaneous~E~uimentThefollowinqmiscellaneousHealthPhysicsequipmentwillbestoredatvariouslocationsintheplant:Contaminationcontrolsuppliessuchasglovebags,contaminenttents.absorbentvipers,absorbentpaper,rags,step-offpads,rope,plasticsheets,plasticbags,tape,contaminationareasiqns,andprotectiveclothinq.Appropriatesuppliesmaybeassembledintokitsandlocatedthroughouttheplanttoaidinthecontrolofacontaminatedspill.Temporaryshielding,suchasleadbricks,leadsheets,andleadwoolblankets,willbeavailabletoreduceradiationlevels.Atrashcompactorlocatedonthe676'levationoftheRadwasteBuildinqasshowninFigure12.5-4.ThislocationwillprovideadequatestorageandaccessforloadinqatthereartruckaccessdooroftheRadwasteBuilding.Thecompactorandroomwillbeventedthroughprefilter,H.E.P.A.,andcharcoalfilterspriortoexhausttotheTurbineBuildingvent.AfittinqapparatusforquantitativetestfittingofindividualinvolvedintheRespiratoryProtectionProgram.Theapparatus'illbeasodiumchloride(NaCl)aerosolqeneratorwithflamephotometer,orequivalentsystem,tomeasureairborneconcentrations.Irritantsmokeand/orisoamylacetatewillalsobeavailabletoqualitativelytestrespiratorfit.12.5-15 SSES-FSAR12.5.2.7HealthPhysicsInstrumentationInstrumentsfordetectingandmeasurinqalpha,beta,gammaandneutronradiationwillconsistofcountingroom,andportableradiationsurvey/monitorinqinstruments.Allinstrumentswillbesubjectedtooperationalchecks.andcalibrationtoasuretheaccuracyofmeasurementsofradioactivityandradiationlevels.Primaryandreferencestandards(utilizinq,orpreparedfrom,standardsofSr-90,Am-241,Cs-137,Co-60,H-3,andothers,traceabletotheNationalBureauofStandards)willbeusedtomaintainrequiredaccuraciesofmeasuremenc.BackgroundandefficiencychecksofroutinelyusedHealthPhysicscountingequipmentwillbeperformeddailyandtheseinstrumentswillberecalibratedwhenevertheiroperationappearsstatisticallytobeoutoflimitsspecifiedinStationprocedures.Routinecalibrationswillbeperformedoncountingroominstrumentationandradiationsurvey/monitoringinstrumentsonaquarterlybasisandafterrepairsaffectingcalibration.Efficiencycurvesformulti-channelanalyzersystemswillbedeterminedonasemiannualbasisusinqN.B.S.traceablesourcesforvariousreproduciblegeometries.Sufficientquantitiesofinstrumentationwillbeavailabletoallowforuse,,calibration,maintenance,andrepair.TheinstrumentationdescribedintheseSubsectionsmaybereplacedbyequipmentprovidingsimilarorimprovedcapaoilities.12.5.27.1CountingRoomInstrumentationCountinqRoominstrumentsforradioactivitymeasurementswillincludethefoliowinq:A4096channelanalyzer,usinga3>>x3>>,7/.resolutionNaIcrystal.anda5Kevresolution(at1i1evenergyfullwidthhalfmaximumpeak)GE(Li)detector,foridentificationandmeasuremer>tofqammaemittingradionuclidesinsamplesofreactorprimarycoolant,processstreams,liquidandgaseouseffluents,airborneandsurfacecontaminants.Onecomputerwhichcanbeinterfacedwithapulseheightanalyzer;equippedwithateletypemachineforenteringinstructionsandprintinqresults,atapedeckforenteringprogramsand,storingdata,andanX-Yplotterformakinggraphs.Alowbackqroundqasflowproportionalcounterusedforgrossalphaandqrossbetameasurementsofpreparedsamples.12.5-16 SSES-PSARAliquidscintillationbetacounterusedformeasurementoftritiuminreactorprimarycoolant,liguidandgaseouswastes,andqrossbetaactivityotherthantritium.ANaXwellcrystalwithcounter-sealerorpulseheightanalyzerusedforgammaanalysis.ofvariousradionuclidesinsamplesofreactorprimarycoolant,liquidandgaseouswastes,orpreparedsamples.Onebeta-gammacounter-sealer,thinendvindow(2mg/sg.cm,2-inchdiameterG-M)usedfor.grossbeta-gammameasurementsofreactorprimarycoolantorpreparedsamples.Onealphascintillatororsemiconductorcrystalusedforgrossalphameasurementsofreactorprimarycoolantandpreparedsamples.Onebetascintillationcounter-sealerusedforgrossbetameasurementsofreactorprimarycoolantandpreparedsamples.12,5,2,7,2HealthPhysicsofficeandWorkroomInstrumentationHealthPhysicsinstrumentationnormallylocatedintheHealthPhysicsOfficeandWorkroomwillincludethefollowinginstruments,orequivalent:One(1)automaticandone(1)manualbeta-gammacounter-sealer,thinendwindow(2mq/sq.cm),2inchdiameterG-M,usedforgrossbeta-qammameasurementsofremovablecontamination,airsamplesandnasalsvabs.Analphascintillationorsemiconductorcounter-sealerusedforevaluationofremovablecontamination,air'amplesandnasalswabs.Alowbackgroundqasflowproportionalcounterusedforgrossalphaand/orbetameasurementsofremovablecontamination,airsamplesandnasalswabs.Ten(10)G-Mbeta-gammasurveymeters(mostsensitiverange0-.2mR/hr.,maximumrange0-2R/hr.,withinternalprobe)usedfordetectionofradioactivecontaminationonsurfacesandforlovlevelexposureratemeasurements.Ten(10)ionizationchamberbeta-gammasurveymeters0-5rem/hr.(0-5mrem/hr.mostsensitiveranqe)usedtocoverthegeneralrangeofdoseratemeasurementsnecessaryforradiationprotectionevaluations.12.5-17 SSES-FSARFive(5)widerangeionizationchamberbeta-gammasurveymeters(0-5mR/hr.mostsensitiverange,maximumrange0-50R/hr.)usedforexposureratemeasurements.Four(4)remotemonitorinq(telescopingprobe)G-Htubebeta,gammasurveymeters,0-1000R/hr,0-2mR/hrmostsensitiverangeusedforexposureratemeasurements.One(1)cadmiumloadedpolyethylenesphere,BF~tube,neutronRemCounters.0-5rem/hr(0-5mrem/hrmostsensitiverange).Theinstrumentisusedtomeasurethe.doseequivalentrateduetothermal.intermediate,andfastneutronfluxes.Two(2)-alphascintillationsurveymeters,0-2."lcpm(0-2Kcpmmostsensitiverange)30%efficiencyusedformeasurementofalphasurfacecontamination.One(1)thermalandfastBF,tube,paraffinmoderated,neutrondetectors,.("Lin-Loq"decadesof0-500,-500-5,000,0-50,000and50,000-500,000cpmwhichisequivalentto0-10,000n/sq.cm/sec.for1Nevneutrons).Designedtodetectthermalneutronswithdetectorremovedfrommoderatorandfastneutrons'withdetectorinsertedinmoderator.Anindicationonthemetercanbecorrelatedwithaknownneutronfluxandaknownenergytoobtaincpm/n/sq.cm-sec(flux)whichinturncanbeconvertedtomrem/hr.12.5.2.7.3HealthphysicsRadwasteBuildingInstr'umentationHealthPhysicsInstrumentationnormallylocatedattheHealthPhyicsStationintheRadwasteBuildingwillincludethefollowinq:One(1)thinwindow(2mg/sq.cm)G-5detectorwithcounter-sealerforqrossbeta-gammameasurementsonsmearsandpreparedsamples.iFive(5)Ionizationchamberbeta-gammasurveymeters0-5rem/hr.,'0-5mrem/hr.mostsensitiverange)usedforgeneralsurveywork.Two(2)G-N,beta-gammasurveymeters(mostsensitiverange0-.2mR/hr.,maximumrange0-2R/hr.,withinternalprobe)usedfordetectionofradioactivecontaminationonsurfacesandforlowlevelexposureratemeasurements.One(1)remotemonitoring(telescopingPrope):G-5tubeBeta,Gammasurveymeter0-1000R/hr.,0-2mR/hr.mostsensitiverange'sedforexposureratemeasurements.12.5-18 SSES-FSAR12.5.27.4PersonnelContaminationlionito~rinInstrumentationPersonnelmonitoringinstrumentsconsistingof'riskers,portalmonitorsandahandandfootmonitordescribedbelow,willbeusedatthelocationsspecifiedinSubsection12.5.2.1:Twenty-five(25)beta-gammageigercountrat'emeters,2mg/sq.cmwindow,0-50F000cpmrange,adjustableaudioand/orvisualalarms.GammasensitivityforCo-60is3,500cpm/mR/hr.Betasensitivit.y(l"diametersource,2pi):Sr-90/Yr-90(Emax.0.54-2.2Mev)=45'5C-14(Bmax.0.15Nev)=10%Usedtodetectcontaminationonpersonnel,materials,protectiveclothing,andequipment.Two(2)portalmonitorsconsistingofeightaudioand/orvisualalarmedG-IIdetectorstoprovideheadtofootbeta-gammadetectioncapability.Countratealarmadjustablefrom160-7000cpm;countingtimeadjustablefrom1to10seconds.One(1)audioand/orvisualalarmedhandandfootmonitorwithportsmonitoredbyG-Hdetectorsforthehandsandfeetandanexternalprobeforfriskingthebody.Personnelcontaminationmonitoringinstrumentationwillbecalibratedonaquarterlybasisorfollowingrepair,inadditiontomonthlysourcechecks,todetermineproperresponseandalarmoperability.125.2.7.5NiscellaneousHealthphysicsInstrumentationOne(1)CondensorR-meterusedtoaccuratelymeasureradiationlevelsconsistingofone(1)lowenergychamber(0.025R)andthree(3)highenergychambers(0.25R,2.58and25R),whichhavebeenN.B.S.calibrated.OtherequipmentusedforHealthPhysicsrelatedfunctionswillbemaintainedandcontrolledinaccordancewithstationprocedures.Suchewuipmentmayinclude:One(1)pulsegeneratorforcalibraingpulsecountinginstruments.One(1)wettestmeter,one(l)calibratedflowmeter,one(l)velometer,andone(l)magnehelicpressuredifferentialgaugeREV.l8/78125-19 SSES-FSARThelocationofthearea,process,andeffluentradiationmonitoringsystemsaredescribedinSections11.5and12.31253PROCEDURESTheHealthPhysicsProcedureProgram,asdescribedinthissection,villbeimplementedbySusquehannaSESHealthPhysicsTechnical,Operating,andAsLovAsReasonablyAchievable(ALARA).proceduresinaccordancewithSection13.5Physicalandadministrativecontrolsvillbeinstitutedtoassurethephilosophyofmaintainingpersonnelexposuresaslovasreasonablyachievable(ALARA),asspecifiedinSection12.1,isimplemented.12.53.1.1PhysicalControls12.5.31.11Securi~tCheckPointThesecuritycheckpointatthefencelineperimeterwillbe-acontinuouslymannedphysicalcontrol.Assignedpersonneldosimetrydevicesandidentificationbadgesvillbestoredatthislocationwhennotinuse.ThesecurityforcewillassurethatallpersonnelvhoenterthestationareissuedappropriatebadgesanddosimetryinaccordancevithstationproceduresArestrictedareaaccesslistvillbemaintainedatthesecurityentrance.Anyindividualnotontheaccesslistmustbeaccompaniedbyapersonwhoisauthorizedunescortedrestrictedareaaccess.Thetraining,retrainingandtestingrequirementsforunescortedaccessaredescribedintheSusquehannaSESSecurityPlan.12.531.1.2Secur~itDoorsAlthoughnotprimarilyintendedtocontrolaccesstoradiationareas,thesecurityinterlockeddoorsystemwillassureonlyspecificallytrainedandauthorizedindividualsareabletoopensecurityentrancestothereactor,turbine,radvasteand,dieselgeneratorbuildings.SecurityentranceswillbelockedorREV.18/78125-20 SSES-FSARprovidedwithcontinualsurveillance.DetailsofsecurityaccesscontrolarecontainedintheSusquehannaSESSecurityPlan.1253113PostingandLock~inAthirdphysicalcontrolwillbethepostingandlocking,asappropriate,ofradiationandhighradiationareas.Radiationareas,asdefinedin10CFR20202(b),willbepostedinaccordancewith10CFB20.203(b).Plantareasthatareroutinelyaccessiblevillbesurveyedinaccordancewithstationprocedurestodetermineradiationlevels.Inadditiontorecordingtheresultsofthesesurveysinaccordancewith10CFR20.401(b),theradiationareasignswillbeupdatedbysurveyorstoreflectcurrentconditions.Everyreasonableeffortvillbeerpendedtoerectropeorotherphysicalbarrierstominimizeinadvertententryinradiationareas.Highradiationareas,asdefinedin10CFR20.202(b),willbepostedinaccordancewith10CFR20.203(c).Thesesignswillberoutinelyupdatedtoreflectcurrentconditions.Surveysofhighradiationareaswillbeperformedandresultsrecordedasabove.Eachentrancetoahighradiationareavillbeequippedwithaudibleand/orvisiblealarmsinaccordancewith10CFR20203(c)(2)(ii)orcontrolledinaccordancewith10CFR20.203(c)(2)(i)or(iii).Xnlieuoftheabovecontrols,highradiationareasinwhichtheintensityofradiationisgreaterthan100mrem/hr.butlessthan1000mrem/hrmaybebarricadedandconspicuouslypostedashighradiationareasandentriescontrolledbyissuanceofaRadiationWorkPermit.Inaddition,areasinwhichtheintensityofradiationisgreaterthan1000mrem/hr.'illbeprovidedwithlockeddoorsundertheadministrativecontroloftheShiftSupervisor.ControlsutilizedatentranceswillatalltimespermitegressfromhighradiationareasAnyindividualorgroupofindividualspermittedtoentersuchareasshallbeprovidedwithoraccompaniedbyoneormoreofthefollowing:Aradiationmonitoringdevicevhichcontinuouslyindicatestheradiationdoserateinthearea.Aradiationmonitoringdevicewhichcontinuouslyintegratestheradiationdoserateintheareaandalarmsvhenapresentintegrateddoseisreceived.Entryintosuchareaswiththismonitoringdevicemaybemadeafterthedoseratelevelsintheareahavebeenestablishedandpersonne1havebeenmadeknowledgeableofthem.Anindividualqualifiedinradiationprotectionprocedureswhoisequippedvitharadiationdoseratemonitoringdevice.ThisindividualshallberesponsibleforprovidingpositivecontrolREV.18/78125-21 SSES-PSARovertheactivitieswithintheareaandshallperformperiodicradiologicalsurveillanceatthefrequencyspecifiedbyHealthPhysicsSupervisionontheRadiationworkpermit.EntrancestoradiationareasandhighradiationareaswillbepostedtoreflecttherequirementofaRadiationWorkPermit(RWP)inaccordancewithlimitsspecifiedinstationprocedures.REV.18/78125-2la SSES-FSARThispagehasbeenintentiallyleftblank.REV.18/7812.5-21b SSES-PSAR12.5311.4'urveillanceWhenappropriate,surveillanceofworkactivitieswillbeprovidedtoassureapositivecontrolofaccessandstaytimeinradiationareas.Surveillancewillbeutiliz'edwhenitisnecessarytoassureaccuraterecordofworkingtimeasanassistancetotheworkgroup.Inaddition,itmaybeutilizedfortasksinvolvinqlargenumbersofworkerstoassurecontrolatthestaqinqorentrypoint.Surveillancemayalsobeprovidedfortasksinareaswhereconditionsareunstabletoassurethattimelyinstructionstoworkersareissued.12.53.1.2.1Training-AsspecifiedinSubsection12.5.3.7personnelallowedunescortedrestrictedareaaccesswillreceiveHealthPhysicsandrelatedtraininqinaccordancewith10CPR19.12.Duringthistraining,theindividualresponsibilityofutilizingproperHealthPhysicsproceduresinradiationareaswillbeemphasized.ThemethodsutilizedatSusquehannaSEStocontrolaccessphysicallyandadministrativelywillbereviewed.SupervisoryorotherpersonnelresponsibleforthedirectionofworkersmayreceiveadditionalHealthPhysicstrainingthatwillincludeguidanceonworkplanning,controllingaccess,utilizingshieldinganddistance,andminimizingstaytimeinradiationareas.12,5,3,1.2gRadiationWorkPermitTheRadiationWorkPermit(RMP)systemdescribedinSubsection12.5.3.2willbeimplementedtoadministrativelycontrolaccessandstaytimeinradiationareas.Workinradiationcontaminationorairbornelevelsgreaterthanlimitsspecifiedbystationprocedurewill,requirethecompletionandapprovalofaRWP.Forpersonnelorgroupswhomustroutinelyenterspecificareasasanecessarypartofworkduties,aStandingRadiationWorkPermit(SRMPjmaybeissuedinaccordancewithstationprocedures.ApplicationfortheSRMPwillspecifytheneedforroutineentry,.andexpectedoccupancyperday,weekormonth.TheSRMPapplicationwillreceiveasurvey,reviewandapprovalprocesssimilartothatdescribedinSubsection12.5.3.2.ApprovedSRMP'swillspecifyaccessandrecordkeepingrequirementsaswellasspecialinstructionsandmaximumstay125-22 SSES-FSARtime.AnapprovedSRMPwillbeconsideredineffectuntilconditionswarrantachangeandwillbesubjecttoimmediatecancellationbytheHealthPhysicsSupervisorordesignatedalternate.EachSBMPwillbereviewedonamonthlybasisbyaHealthPhysicsrepresentative.125.31.2.3R~eorrinRRequirementTheindividualresponsibilitytoreport,throughproperchainofcommand,anyviolationofFederalRegulationsorStationprocedureswillbeemphasizedduringtrainingsessions.ViolationinvolvingpotentialexposureofpersonneltoradiationorradioactivematerialwillbereportedthroughappropriatechannelstotheSuperintendentofPlantordesignatedalternate.Appropriateactionwillbetakentopreventrecurrence.Anyindividualwhoviolatesstationprocedureswillbesubjecttodisciplinaryaction.12,5.3.1,2,4IndependentreviewAmemberofHealthPhysicsSupervisionwillperiodicallyobserveactivitiesinRMPareastoreviewtheeffectivenessofspecifiedprecautions.Xnaddition,amemberofHealthPhysicssupervisionmayperformindependentmeasurementsofradiationlevelstoassurethatareasareproperlypostedtoindicateaccuratereadings.Durinqthesesurveys,thereviewerwillassurethateveryreasonableefforthasbeenexpendedtominimizeinadvertententryinradiationareas.12.5.3.1.2.5ProcedureReviewHealthPhysicsproceduresrelatedtocontrolofaccessandstaytimeinradiationareaswillatalltimesbesubjecttoreviewtoassureeveryreasonableadministrativeefforthasbeenexpendedtominimizepersonnelexposure.Recommendedchangeswillbeevaluatedand,ifnecessary,aproposedchangewillbeforwardedthroughappropriatereviewandapprovalchannels.ApprovedchanqesrequiringretraininqwillbeforwardedtotheTrainingSupervisorforschedulinqandimplementation.HealthPhysicsprocedureswillbereviewedannually.12.5-23 SSES-FSAR12.5.3.2AssuringthatOccupationalRadiationExposure(ORF)WillBeAsLowAsReasonaolgAchievablegALARA)ToeffectivelyimplementthecorporateALARAcommitmentasstatedinSection12.1,astationALARAproqramwillbeutilizedtoassurethatactivitiesareperformedwiththelowestpracticablepersonnelexposure.PPGLconsidersitnecessarytoapplythebasicconceptsofALARAtointernalandexternalexposuretoassureproperemphasisonbothmodesofpotentialexposure.ProceduresemployedtoimplementtheprogramdescribedinthissectionwillbesubjecttoreviewandrevisiontoassuretheALARAprogramisresponsivetoplantconditions12.5.3.2.1ALARAProceduresCommontoExternalandInternalExposure12.5.3.2.1.1Trai.ningIndividualsallowedunescortedrest"ictedareaaccesswillreceiveHealthPhysicstrainingasdescribedinSubsection12.5.3.7.TheindividualresponsibilityofassuringthatunnecessaryexposureistobeavoidedwillbeemphasizedduringHealthPhysicsTraininqsessions.Asappropriate,individualsinvolvedinpotentiallyhighdoseaccumulatinqjobswillreceivepre-jobtraininginexposurereductiontechniquesandcontrolsapplicable'tothespecificjob.12.5.3.2.1.2RadiationWorkPermitWhereradiationdoserates,=anticipatedaccumulatedexposures,airborneconcentrations,orcontaminationlevelsexceedlimitsspecifiedbystationprocedures,aRadiationWorkPermit(RWP)willbeinitiated,completedandapprovedpriortocommencementofscheduledwork.Asaminimum,stationprocedureswillspecifythatscheduledworkinZoneIVorhigher(greaterthan15mRem/hr.)willrequirecompletionofaRWP.~tHealthPhysicswillevaluatetheradiologicalconditionsassociatedwiththeworktobeperformed.Baseduponevaluationofproposedworkandsurveys,HealthPhysicswillspecifytheappropriateprotectiveclothinq/devices,respiratoryprotective SSES-FSA'Requipment,dosimetry,specialsamples,surveys,procedures,precautionstobetaken,andexpirationdateTheRWPwillbeevaluatedtoassuretheworkwillbeperformedfromanALARAapproach.Asappropriate,theevaluationwillincludereviewofproposedspecialtools,remotehandlingdevices,accessandcommunicationsneeds,minimummanpowerrequirements,andworkwhichmaybeperformedoutsideoftheRMPareatoincreasejobefficiencyandreducepersonnelexposures.Potentialincidentssuchasfires,spills,andequipmentfailurewillbeevaluatedandproperresponseactiondiscussedwithradiationworkers,whenapplicable.Forhighdoseaccumulatingwork,jobpreplanninqwillincludeNan-Remestimates,comparisonwithsimilarjobs,establishingexposuregoals,andsimulateddryrun,asappropriate,toincreasejobefficiency.Radioloqicalenqineerinqcontrolswillbeused,whenapplicable,tominimizepersonnelexposuresandpreventthespreadofcontaminationand/orinhalation/injestionofradioactivematerial.Controlssuchasflushingoftanksandlines,useoftemporaryshielding,useofproperventilationandpurging,andproperlyfilteredtemporaryexhaustwillbeconsidered.Inaddition,othereffectivemethodsofreducinqman-remexposuresandpotentialintakeofradioactivematerialvillbeconsidered.Whenairborneconcentrationscannotbereducedbelowstation.limits,theuse,ofrespiratoryprotectivedeviceswillbeconsidered.TheRMPwillbeapprovedandsignedbytheHealthPhysicsSupervisorordesiqnatedalternatepriortocommencementofwork.RWPimplementingprocesswillbedetailedinStationprocedures.AmemberofHealthPhysicssupervisionwillselectivelyreviewcompletedandreturnedRWP's.Selection,onavarietyofbases,ofthoseRMP~swhichshouldreceiveapostoperationevaluationwillbemade.Arranqementswillbemade,whennecessary,toholdade-briefinqsessionwiththeresponsiblesupervisorand/orworkers.De-briefinqandRMPreviewwillbeconductedwhenunexpectedairborneconcentrations,hiqhman-remexposuresorhighindividualexposuresareencountered.De-briefingwillemphasizeandanalyzeproblemsordifficultiesencounteredduringperformanceofwork.Alternativeworkmethodswillbediscussedandifimprovementsarepracticable,theresponsiblesupervisorwillinitiatethereview,approvalandimplementationprocess.12.5-25 SSES-FSAR12.53.2.1.3MorkSchedulingUseoftheRadiationMorkPermitsystemdescribedintheprevioussectionwillestablishadatabasefromwhichsupervisorystaffwillbeabletoefficientlyscheduleworkers.HealthPhysicswillprovidereportstosupervisorsthatwillindicatecur-entindividualexposurestatustoassistinworkschedulingandassureindividualexposuresareminimized.12,5.32.1.4ReportingReguirementsActivitiesperformedunder,an.approved==RadiationMork.PermitmustbecarriedoutinaccordancewiththeprovisionsoftheBMP.ViolationofRMPrequirementswillbereportedtoHealthPhysic'ndappropriatesuper,vision.RMPviolationsthatcauseorthreatentocauseunnecessarypersonnelexposuremayresultin--'sciplinarymeasures.12,5,3.2.15InternalProgramReviewsInanefforttoprovidemoreefficientmethodsofcontrol,evaluationandreporting,amemberofHealthPhysicssupervisionwillconductreviewsoftheRMPprogramandproceduresutilizedtominimizepersonnelexposure.ResultsofinternalreviewswillbereportedtoappropriatelevelsofstationmanagementandtheALARAReviewCommittee.Znaddition,theHealthPhysicsgroupwillperformspecialreviewsorstudiesrequestedbycorporatecommitteestoassistmanagementinassuringthatallaspectsoftheALARAprogramareimplemented.12.5.32.1.6ExposureGoalsOnmajordoseaccumulatingjobfunctions,totalman-remand/orman-HPC-hours(man-hoursxratioofmeasuredairborneconcentrationtoMaximumPermissibleConcentration},exposureqoalsmaybeestablishedpriortocommencementofscheduledwork.Aqeneralqoalwillbebasedonthelowestdosecommitmentrecordedonjobsofsimilarnature.Ageneralgoalofequalingorbetteringthelowesttotalworktimeexpendedonjobsofsimilarnaturemaybeutilizedwhenairborneconcentrationsordoseratesareunpredictableorsubjecttovariations.Theseqeneralqoalsmaybemodifiedifworktasksare<<otidenticalorestimatedifthereisnoavailablehistoricaldata.Significant12.5-26 SSES-PSAR'reas.Thedata.fromanalysesoftheseairsamplesvillbeusedtoassistinfuturejobplanninganddemonstratethatexposurestoairbornematerialareaslowasreasonablyachievable.WhenportableBZsamplersarenotpracticable,temporaryairsamplerslocatedclosetothebreathingzoneofworkersmaybeutilized.12.5.3.2.3.5RoutineAirSamplingContinuousairmonitorswillbeplacedinrepresentativeareastosamplethoselocationswhereairborneconcentrationsmaybe.qenerated.Thesesamplerswillbeperiodicallycheckedtoverifyproperfunctionandassurethatunexpectedairborneconcentrationsaredetectedattheearliestpossibletime.TheairsamplinqprogramisdescribedinSubsection12.5.3.5.12.5.3.2.3.6ControlofAbsorptionandI'ngestionMhenworkisscheduledonequipmentorsystemsthatcontainedormaycontainradioactiveliquids,everyreasonableefforttopreventskincontactvithradioactivesolutionsvillbeexpended.Itemssuchasplasticsuits,rubberglovesand/orgauntlets,h'ighrubberboots,faceshieldsandhoodsmaybeutilizedasappropriatetothetasktobecompleted.Inqestionofradioactivematerialswillbeminimizedbyassuringthatadequateprotectiveequipmentisproperlyworn,removed,stored,launderedandsurveyed.Thesephysicalcontrolsinconjunctionwithadministrativerequirementsandtrainingintheareasofself-survey,prohibitionofeatinqandsmokingincontaminatedareasand,decontaminationtechniqueswillassurethatpotentialinqestionofradioactivematerialisminimized.12.5.3.2.3.7ControlofAreaandEguipmentContaminationLevelsContaminatedareasandequipmentvillbedecontaminatedtoaslovalevel,aspracticable.Specialemphasiswillbeplacedonitemsthatmaybeinadvertentlytouchedbypersonnelandareassufficientlycontaminatedsoastoposethepotentialforanairborneconcentration.Supervisorystaffwillberesponsiblefo"assurinq-,thatworkareasaremaintainedina-neatand'-"orderlymanner.Thehousekeepinqpracticesemployedvillfacilitateclean-upanddecontaminationeffortsandthu'sminimizepersonnelstaytimeinradiation/contaminationareas.12.5-31 SSESFSAR12.5,3.2.3.8AirborneExposureEvaluationExposurestoairborneradioactivematerialwillbetabulatedtoaidinworkplanninganddemonstratetheeffectivenessoftheinternalALARAprogram.Airsampleresultsintermsofafractionormultipleofthemaximumpermissibleconcentration(tlPC).foridentifiedorunidentifiedisotopesmultipliedbytheworktimeswillpermitarunningtabulationofindividualandgroupHPC-hourexposures.Shenrespiratoryprotectionisemployed,appropriatereductionsofintakewillbebasedonrecommendedprotectionfactors.Subsection12.5.3.5describestherespiratoryprotectionprogram.12,5,3,2,3,9AdministrativeLimitsTominimizepotentialintakeofradioactivematerialinexcessofFederallimits,stationlimitswillbeestablished.Airborneexposureorintakeinexcessoftheselimitsmayrequireworkrestriction,useofrespiratoryprotection,orspecialin-vivoorbioassaystudies.12.5,3,3RadiationSurveysTheHealthPhysicsprogramwillutilizeacomprehensivesystemofradiationsurveystodocumentplantradiologicalconditionsandidentifysourcesofradiationthatcontributetooccupationalradiationexposure.TheradiationsurveyprogramwillbesubjecttoevaluationbyHealthPhysicssupervisiontoassurethatnecessarydata.iscollectedwhileexposurestosurveyorsareaslowasreasonablyachievable.12,5,3.3,1RadiationSurveyProgramControls12.S.3.3.1.1RecordReviewAmemberofHealthPhysicssupervisionwillreviewradiationsurveyrecordstoassurethatadequatereadingsaretakenandproperlyrecorded.Ifaneedforadditionaldataisnoted,supervisionwillassurethatsuchreadingsorsupplementalsurveysaretakenandrecorded.Inaddition,supervisionwillreviewdatatoassure'thatunwarrantedreadingsthatcontributetotimespentinradiationareasarenottaken.Ifappropriate, SSES-PSARdeviationsaboveestablishedqoalswillbeinvestigatedbyHealthPhysicsand/ortheresponsiblesupervisor.Methodstoimproveperformanceonfuturejobswillbeinvestigatedandimplemented,ifappropriate.12.5.3.2.1.7JobPre-planningWhenapplicable,taskstobeperformedundertheprovisionsofaRadiationWorkPermitwillbepre-planned.Theresponsiblesupervisorwillassurethatindividualsselectedtoperformthetaskarefamiliarwiththeappropriateprocedurestobeemployed.Supervisionwillalsoassurethat,whenapplicable,atoollisttoincludespecial.toolsthatwillreduceexposuresiscompletedandreviewed.Whenpracticable,theresponsiblesupervisorwillobservedry-runprocedureperformance..ThistrainingmaybeobservedbyaHealthPhysicsrepresentativetomaketimestudyrecordsasanaidinestimationofexposureorworktimegoals.Specialemphasiswillbeplacedonjobpre-planningforworkinhiqhradiationareastomaximizetheuseoftemporaryshieldinganddistanceandminimizetheworktime.125,3,218Worker'sRecommendationsAninformalmechanismofsolicitingworker'srecommendationsforimprovementofjobefficiencywillbeutilizedtoevaluatealternativeworkmethods.Supervisorswillencourageworkerstopresentalternativesthatwillreduceworktimeinradiationareasandairborneconcentrations.ResponsiblesupervisorsmayconsultwithHealthPhysicsduringorfollowingevaluationofarecommendedchangetoassurethatindividualandgroupexposureswillnotbeadverselyaffected.Changesinmethodsorequipmentthatareanticipatedtoimproveefficiencyandreduceexposurewillbereviewed,approvedandimplementedinaccordancewithstation.procedures.125,3,2,2ExternalALARA12,5,3,22.1DosimeterEvaluationsEachRWPissuedtopermitworkorentryinaradiationfieldwillrequireeachworkertowearatleastonepocketdosimeter.TimeandexposurerecordlogsheetswillbepostedwiththeRadiationWorkPermitneartheqeneralworklocation.Thedosimeterlog12.5-27 SSES-PSARsheetswillbereviewedandrunning.totalswillbeupdated.TheresponsibleindividualwillassurerequireddataisproperlyrecordedandwillforwardthefinaldosimeterlogsheetsandthecompletedRWPtoHealthPhysics,followingworkcompletion.12,5.3.2.2.2CateorizationofExoosuresExposuresincurredonRIPtasksvillbecategorizedbytypeofworker(s),workgroup,andgobfunction.Tofacilitatecollationofdata.scheduledworkfunctionswillbe.codedandenteredontheRadiationWorkPermit,whenapplicable.Inaddition,plantsystemcodesvillbedevelopedforRWPuse.Wheneverapplicable,theequipmentcomponentnumberwillalsoberecordedontheRWPThissystemvillallowanexposurehistorydatabasetobecollectedbyequipment,system,andworkfunction,andthuspermitsupervisorsandHealthPhysicspersonnel.accesstodefinitiverecordswhenplanninqRWPtasks.12.5.3.2.23.WorkTimeEvaluationRecordingentryandexittimesvillallowtotalmanhoursspentonparticulartaskstobetabulated.Underfavorableconditions,acomparisonofexposureratemultipliedbymanhoursexpendedandmeasureddosimeterindividualorgrouptotalsmaybemadetoassureproperdataentryandverifythatnosignificantexposureratechangesoccurred.Themanhoursexpendedwillalsobeusedasadatabasetoassistsupervisorystaffinplanningvorkofsimilarnature.12.5.32.2.0SpecialAlarmsandInstrumentsTheuseofspecialalarmsandinstrumentswillbeevaluated.Alarmedtimersmaybeusedtowarnworkerstheyareapproachingthemaximumallowableworktime.Remoteradiationmonitorsmaybeinstalledinthegeneralworkareatoallowreadoutsinloverradiationareas.Portablesurveyinstrumentsmaybeplacedintheworkareatoallowworkerstomonitorchangesinexposurerate.Radiationratemetersandintegratingdeviceswithaudiblepre-setalarmsmaybeusedtovarnworkersofunexpectedradiationlevelsordoseaccumulation.125-28 SSES-FSAR12.5.3.2.2.5TemporaryShieldingDuringtheplanningphaseofRMPwork,supervisionwillevaluate~theuseoftemporaryshielding.Carewillbetakentoassurethatinstallationandremovalofshielding'illnotcauselargerman-remtotal'xposuresthanexpectedwithoutitsuse.Everyreasonableeffortwillbemadetoutilizetemporaryshielding,suchasleadblankets,thatcanbeguicklyinstalledoninitial"entryandeasilyremoveduponexit.12.5.3.22.6SpecialToolsandApparatusEveryreasonableeffortwillbeexpendedtoassurespecialormodifiedtoolsareavailableforspecifictasks.Availabletoolsthatwillsignificantlyreducestaytimeinradiationareasandmaximizedistancefromradioactivesourceswillbeincludedonjobproceduretoollists.Appropriatesuperviso"swillreviewtasksto.identifyproceduresthatmaybeimprovedbymodificationsorreplacementoftoolsand/orapparatus.12.5.3.2.2.7Non-RMPMorkReviewHealthPhysicspersonnelwillreviewradiationsurveystoidentifyareasnotnormallymeetingRMPcriteria.These.areaswillbestudiedtolocatethoseofthehighestoccupancyfrequencyand/ordurationofstaytime.HealthPhysicsmaymakerecommendationspertainingtoshieldingoroccupancylimits.Theserecommendationswillbeimplementedwheneverpracticabletoassurethattheexposuresincurredinlowdoserateareasareaslowasreasonablyachievable.12.5,32,2.8AdministrativeLimitsAdministrativelimitswillbeimplementedbystationprocedurestomaintainpersonnelexposuresALARAwithrespecttoFederalLimits.StationexposurelimitsmaybeexceededonlyafterapprovaloftheHealthPhysicsSupervisor,ordesignatedalternate.UnapprovedexposureexceedingstationlimitswillbeinvestigatedbyHealthPhysicstoidentifycausesandestablishmethodstopreventrecurrence.12.5-29 SSES-FSAR12.5.3.2.3InternalALARA12.5.32.3.1engineeringControlsMinimizingairborneconcentrationsbyutilizingpracticableenqineerinqorphysicalcontrolswillassurethatoccupationalexposuresareaslowasreasonablyachievable.Airborneconcentrationswillbeminimizedbyappropriateuseofcontainmenttechniques,temporaryexhaustmechani'sms,andreviewofairflowpatternsandvelocities.ControlandevaluationofairborneradioactivityisdescribedinSubsectionl2.5.3.5.12.53.2.3.2RespiratorvProtectionWhenenqineerinqcontrolsarenotpracticable,the.useofrespiratoryprotectionvillbeevaluated.Respiratoryprotectionmaybeutilizedtominimizetheintakeofradioactivematerial.=TherespiratoryprotectionfittingandtraininqprogramisdescribedinSubsection12.5.3.5.12.5.3.23.3PreWorkAirSurveysWhenRMPrequestsindicatethatvorkisrequiredinairborneradioactivematerialconcentrations,appropriateairsampleswillbetaken.Thesesamplesvillnormallybeofshort-term,highvolumenatureinordertoobtainrepresentativedataintheshortestperiodoftime.AnyareathatispostedasanAirborneRadioactivityAreawillbesampledandanalyzedpriortocommencementofscheduledwork.'Mheneverpracticable,surveyorsvillutilizerespiratoryprotectionand/orremoteairsamplerstominimizetheirexposures.Whenexistingairborneradioactivematerialsarenotspecificallyidentified,theMPC(MaximumPermissibleConcentration)forunidentifiedalphaand/orbeta-qammamaterialswillbeusedforscheduling,criteriaforrespiratoryprotection,andcalculationsofanticipatedMPC-hoursofexposure.12.5.3.2.34~SecialAirSa~mlingWhenapplicable,airsampleswillbetakenvithportablebreathinqzone(BZ)airsamplersequippedvithappropriatefilter-mediaduringworkinactualorpotentialairborneradioactivity12.5-30 SSES-FSARHealthPhysicssupervisionwillassurethatpropercorrectivemeasuresaretaken.12.5.3.3.1.2IndependentReviewsToassureproperperformanceofjobdutiesbysurveyors,amemberofHealthPhysicssupervisionwillperformindependentreviewswhichmayincludephysicalmeasurementofradiationlevelsinareaspreviouslysurveyed.Reviewdatawillbecomparedwithsurveyrecordsandpostingofwarningsigns.Thereviewermayaccompanysurveyorstoobserveandverifypropersurveytechniques.DeviationsfromapprovedHealthPhysicsProceduresordiscrepanciesinradiationmeasurementswillbeinvestigatedandresultsreportedtotheHealthPhysicsSupervisorordesiqnatedalternate.Appropriatecorrectivemeasureswillbetakentopreventrecurrence.125.3.3.1.3SurveyorDoseEvaluationEveryreasonableeffortwillbeexpendedtoassurethatoccupationalradiationexposuretosurveyorsismaintainedaslowasreasonablyachievableconsistentwithprovidingsufficientsurveydatarequiredforminimizingtotalplantexposures.Surveyors'adiationexposurewillbetabulatedinaccordancewiththeALARAprogramdescribedinSubsection12.5.3.2.HealthPhysicspersonnelwillbeissuedappropriatedosimetrytobewornduringradiationsurveywork.Beqinninqandendingdosimeterreadingswillberecorded.Individualexposuresincurredduringthesurveymaybereviewedandcomparedwithprevioussurveyorexposures.Thisdosimeterdatawillbeupdatedtoreflect,groupman-remexposuresincurredduringradiationsurveywork.Analysesofexposuresincurredduringsurveyworkwillallowinvestiqationandimplementationofmethodstocontrolandminimizeradiationexposureofsurveyorpersonnel.12.5.3.3.1.4'urvevorWorkRotationEveryreasonableeffortwillbemadetoassurethatsurveyorexposureisevenlydistributedbyworkassignmentschedulingandrotationofHealthPhysicspersonnel.Thisrotationwillallowcomparisonofsurveyorperformance,minimizeindividualexposures,andassuremaintenanceoffamiliaritywithallareasofthep'lant.12.5-33 SSPS-PSAR12.5.3.3.1.5TrainingTraininqofradiationworkerswillaidinthereductionofman-hoursexpendedinradiationfields.Allstation'personnelrequiringLevelIIHealthPhysicstrainingasdescribedinSubsection12.5.3.7willreceivetraininginthetypesofradiationandmethodsofdetection,self-surveyandradiationratesurvey.Thistraininqwillincludehighradiationareasurveytechniques,dataevaluationandspecialinstrumentoperation.RetrainingofstationpersonnelrequiringLevelIIHealthPhysicstrainingwillincludetheareasofradiationsurveytechniquesandprocedures.7HealthPhysicspersonnelwillreceiveformalandon-the-jobtraininqinsurveytechniquespriortofuelloadatSusquehannaSES.SpecialemphasiswillbedirectedtowardassuringthatefficienthighradiationareasurveytechniquesareexercisedbyHealthPhysicspersonnel.Impromptutrainingsessionswillbeheldasneededtoassurestate-of-the-artunderstandingorimprovedperformanceinareaswherereviewshaveindicatedtheneedforadditionaltraininq.hTrainingsessionswillemphasize,theimportanceofcollectingnecessarydatawhileexercisingthefactorsoftime,distanceandshieldingtominimizeoccupationalexposures.12.5.33.2RadiationSurvevProgram12.5.3.3.2.1InstrumentSelectionHealthPhysicsprocedureswilldescribetheinstrumenttype(s)tobeutilizedduringradiationsurveywork.Thesurveyorwillberequiredtoenterinstrumentdescription(s)andidentificationnumber(s)onsurveyforms.Priortoperforminqaradiationsurvey,thesurveyorwillcheckthecalibrationstatusoftheportableinstrument(s)selectedforusetoassurenotmorethanthreemonthshaveelapsedsincethelastcalibration.Theinstrumentselectedwillbecheckedforbatterystrength,ifapplicable,and,inareproduciblegeometry,atleastonescale'sresponsetoknownchecksource(s)willbeverified.,Instrumentsoverdueforcalibrationwillnotbeusedforradiationsurveywork.Personnelwillbeinst"uctedtoreportinstrumentationsuspectedtobemalfunctioning.Aproperlycheckedreplacementorequivalentsurveyinstrumentwillbeutilized. 'SES-PSAR12.53.3.2.2RoutineRadiationAreaSurveysEachareaonsitefoundtoproducearadiationdoseratesuchthatanindividualcouldreceive5mreminanyonehouror100mreminanyfiveconsecutivedayswillbeconspicuouslypostedasaRadiationAreainaccordancewith10CPR20.203.Everyreasonableeffortwillbemadetominimizeinadvertententriesinsuchareas.The"CautionRadiationArea~~signspostedattheboundarieswillbeupdatedtoreflectthedateofthelatestsurvey.Mheneverpracticable,thesignswillalsoreflectthegeneralandmaximumradiationlevelswithintheareaandanyspecialconditionsrequiredforentry.Routinesurveysofradiationareaswillnormallybetakentoassurethateachareaissurveyedonceperweek.Areassubjecttovariationsinradiationlevelsorincreasedtimeofoccupancymaybesurveyedonamorefrequentbasis,asappropriate.Mhen'reactorconditionsareoperationallystable,surveyfrequencyinradiationareasmaybereducedtospotchecksattheboundariestominimizeHealthPhysicspersonnelexposures.12.5,3,3.2.3HighRadiationAreaSurvivesEachareaonsitefoundtoproducearadiationdoserateequaltoorgreaterthan100mrem/hr.willbepostedasaHighRadiationAreaandaccesswillbecontrolledinaccordancewithSubsection12.5.3.1.Routinesurveyswithinsuchareaswillnotnormallybeperformed,withconventionalportablesurveyinstruments.EveryreasonableeffortwillbemadetoutilizereadingsfromtheAreaRadiationMonitoring(ARM)Systemtoidentifycnangesofradiationlevels.Analysesofmaximumandgeneralradiationlevelswithinhighradiationareaswillnormallybeperformedwithremoteprobesurveyinstruments,longreachsurveyinstruments,retrievableTLD'sordosimeters.ilhenpracticable,findinqsfromthesesurveyswillbecorrelatedtotheappropriateARMreadingsandreactoroperatinqconditions.Correlationreadingsand/orperimeterreadingswillbetakentoassureeachhiqhradiationareaissurveyedonceperweek.Inaddition,radiationsurveyswillbetakenattheentrancestohighradiationareasonafrequencydependentuponoccupancyinthevicinityandvariationinradiationlevels.Signswillbeupdatedtoreflectthelatestreadings.XfsurveysatentrancesorARMreadingsshowsignificantchange,additionalsurveysmaybeperformedtoupdatethereadingswithinthearea.Inordertominimizeoccupationalexposureofsurveyors,highradiationareasurveyfrequencymaybereducedwhenoperatinqconditionsarestable.12.5-35 SSES-FSAR12.5.3.3.2.4Non-RadiationAreaSurveysAreasinandaroundtheControlledZonenotconsideredpotentialradiationareaswillbeselectivelysurveyedtoestablishthateveryreasonableefforthasbeenmadetokeepmeasurableradiationlevelsaslowasreasonablyachievable.Portableinstrumentsurveyswillbeperformedsoastoassurearepresentativenumberofnon-radiationareasaresurveyedoncepermonth.Areassubjecttosiqnificantchangeorvariation"willbesurveyedonamorefrequentbasisasappropriate.Anyarea,notpreviouslynoted,thatisfoundtobearadiationareawillbepromptlypostedwitha>>CautionRadiationArea>>signandreportedtoHealthPhysicssupervision.;Xftheradiation.doseratecannot,beeliminated,everyreasonableeffortwillbemadetominimizethedoserateandinadvertententry.Theareawillbeplacedontheradiationareasurveyroutine.AceaswithinSusquehannaSESsecurityfencenotcoveredbyportableinstrumentsurveyproqramswillbeselectivelymonitoredbyareaTLD'stodocumentinteqratedexposures.AreaTLD'swillnormallybechangedandevaluatedonamonthlybasis.RWPsurveyorswillwearself-readingdosimeters.ThesurveyorwillentertheexposureincurredontheRWPrequesttoassurethisexposurecateqoryisincludedintheRWPjobfunctionaswellasthesystemand/'orequipmentexposuretotalsAmemberofHealthPhysicssupervisionwillscreenincomingRMPcequeststoassureinclusionofspecialmeasurementsorconsiderations.Specialinstructionsmaybedevelopedorimpromptutrainingperformedtoassurethatnecessarydataiscollectedintheminimumoftime.12~5.3.3.2.6SyecialradiationSurveysSpecialradiationsurveyswillbeperformedasreguestedbyoperatinqqroups,regulatoryaqencies,orcorporatecommittees.ThesesurveyrequestswillbecoordinatedbyHealthPhysicssupervisiontoassuretheneedforthesurveyjustifiesoccupationalexposureofsurveyors.AmemberofHealthphysicssupervisionmaydraftspecialinstructionsfocperformanceoftnesurveyand/ocperformimpromptutraininqsessionswithsurveyors.Emphasiswillbeplacedonassuringthatnecessarydatais SSES-FSARcollectedintheminimumoftime.Individualandman-remexposureincurreddurinqspecialsurveyswillbeloggedbyjobfun"tionequipment'nd/orsystem.12.53.3.2.7Unit2ConstructionSurveysDurinqthestart-up/operationphaseofUnit1andtheconstructionphaseofUnit2,routinelyoccupiedareasintheproximityofUnit1willbesurveyedonaweeklybasiswithportableinstrumentation.Anyareafoundtocontainadoseratesuchthatifanindividualwerecontinuouslypresenthewouldreceiveadoseinexcessof100mreminanysevenconsecutivedaysduetotheoperationofUnit1willbereportedtoHealthPhysicssupervision.Specialshielding,barricadingoraccesscontrolmaybeemployedtoeliminateorminimizethepotentialforpersonnelexposure.Ifsuchareasareidentified,portableinstrumentsurveyfrequencymaybeincreaseddependingonpotentialforoccupancyanddegreeofaccesscontrolexercised.InadditiontoportableinstrumentsurveysaprogramofareaTLDmonitorswillbeusedtosupplementandverifyinstrumentfindinqs.TheseTLD'swillbeplacedinrepresentativelocationsofroutinelyoccupiedareasnearUnit1andwillnormallybechangedonaweeklybasis.Aninvestigationwillbeperformedif,afternaturalbackgroundsubtraction,administrativelimitshavebeenexceeded.HealthPhysicssupervisionwillassurethatareasmonitoredarerepresentativeofconstructionactivitiesinprogress.12.5.3.3.2.5Radiatioase~rveRecordeRadiationsurveysperformedatSusquehannaSESwillbedocumentedinaccordancewithapprovedstationprocedures.AmemberofHealthPhysicssupervisionwillreviewtherecord(s)completedbysurveyorstoassureproperdataentry.Thereviewerwillinitialanddatetherecordandforwarditforpermanentfiling.12.5.34Contamination=SurveyProceduresvAsystemofcontaminationevaluationwillbeutilizedtominimizethespreadofradioactivematerial.Evaluationofpersonnel,equipmentandsurfacecontaminationwillal'sobemadetodemonstratetheefficiencyofengineeringandproceduralcontrols.Znaddition,thecontaminationsurveyprogramswillbe12.5-37 SSES-FSARevaluatedtoassurethatsurveyorexposuresareaslowasreasonablyachievable.12.5.3.4.1Pe~sonnelContaminationSurveysEvaluationofexposuresduetopersonnelcontaminationwillbeconductedinaccordancewithSubsection12.5.3.6.12.5.3.4.1.1FrigkerSurv~e0-Hpersonnelfriskerswillbeplacedinstrategiclocationswithinthecontrolledzone.Everyeffortwillbemadetolocatetheseinstrumentsinaslowaradiationbackgroundareaaspossibleinordertomaximizesensitivity.Personnelwillbetrainedintheuseoftheinstrument(s)andinterpretationofthereadings.Intheeventoffriskermalfunction,personnelwillberequiredtonotifyHealthPhysics.Audibleorvisiblealarmswillbepre-setatasuitablepointabovebackgroundtominimizespuriousalarmsandmaximizesensitivity.Limitswillheconspicuouslypostedforinstrumentswithoutautomaticalarms.PersonnelcontaminationcausingfriskeralarmwillrequirenotificationofHealthPhysics.HealthPhysicswilltakeappropriateactionstominimizefurtherspreadofcontamination,anddirectappropriatedecontaminationofaffectedareasandpersonnel.1Mhenpersonnelcontaminationisnoted,aHealthPhysicsinvestigationappropriatetotheincidentwillbeperformed.Acontaminationincidentfoundtohavecausedanintakeofradioactivematerialwillbepromptlyreportedtoappropriatesupervision.Whenapplicable,recommendedmethodstopreventrecurrencewillbeforwardedto-,theSuperint'endentofPlantforconcurrenceandimplementationbyhisdirective.12.5-3.41.2-NasalSwabNasalswabbingprocedureswillbeimplementedasrequestedbyHealthPhysicsorwhencontaminationexceedingstationlimitsisdetectedonfacialareastoqualitativelydetermineifinhalationofradioactivematerialoccurred.HealthPhysicspersonnelwillevaluatetheswabassoonaspracticableFindingsinexcessof12.5-38 stationlimitswillrequirenasalclearance,showerandscrub-down,awholebodycountand/orbioassay,andadocunentedinvestigationandevaluation.Ifcontaminationisdetectedinoronthemouth,ashowerandscrubdownandawholebodycountwillbeperformed.Fecaland/orurinecollectionmaybeinitiatedtomoreaccuratelydetermineingestedamounts.Allcasesofingestionwillbeinvestigated,evaluated,documentedandreportedtoappropriatesupervisionandtheSuperintendentofPlant,andappropriatecorrectivemeasureswillbetakenTocontrolinadvertententryofradioactivematerialinwounds,cutsorabrasions,individualswillberesponsibleforbringingsuchmatterstotheattentionofsupervisorsand/orHealth.Physicspriortoworkcommencement.SupervisorypersonnelwillassurethatreportedskinbreaksarebroughttotheattentionoftheHealthPhysicsgroupduringjobplanningorRWPrequest.HealthPhysicswillberesponsibleforassuringthatskinbreaksareproperlyprotectedpriortoworkcommencement.Openwoundsthatcannotbeadequatelysealedwillbesufficientgroundstorestricttheworkerfrom-contaminationwork.Anyinjurythatmayhavecausedcontaminationofawoundwillrequiretheworkertoimmediatelyexittheworkareaandreport-theincidenttoHealthPhysicsandappropriatesupervision.Thewoundwillbeflushedandsurveyedwithportableinstrumentation.Ifcontaminationisdetectedinthewound,theShiftSupervisormayinitiatetheSusquehannaSESEmergencyPlaninaccordancewithwrittenEmergencyPlanImplementingProcedures.Ifinjuryissufficienttopreventtheworkerfrommovingorexitingthearea,theShiftSupervisorwillbeimmediatelynotifiedandtheEmergencyPlanwillbeinitiated,ifappropriate.Appropriatewholebodycountsand/orbioassayswillbetaken'followinganyneededmedicaltreatment.REV.18/78125-39 SSBS-PSABo.~suvers.R=eeRBeh-li~12~5e/~/~~3QoOkfyamen~MovementofequipaentfromacontaminationzonewillrequirenotificationofHealthPhysicspersonnel.Fixedandremovablecontaminationlevelswillbeevaluatedasappropriateandaclearanceforremovalwillbeissuedinaccordancewithstationprocedures.Routinelyusedtoolsmaybepermanentlymarkedtoindicatetheyarecontaminatedandwillnormallybestoredinsidewellmarked-contaminationareas.BepairoruseoutsidecontaminationzoneswillrequireHealthPhysicsapproval.PermanentlymarkedtoolswillbesurveyedbyHealthPhysicspersonnelasnecessaryandattherequestoftheappropriatesupervisor.Contaminateditemsthatcannotpracticablybedecontaminatedwillbecoveredwithplasticorothermaterialandappropriatelyposted.oaChange-outprocedureswillrequirethatindividualsleavingacontaminationzoneperformsurveysofpersonalitemsthatmayhavebecomecontaminatedduringwork.Itemssuchasdosimeters,TLDorbadgeholders,pensandpencils,willbescannedwithaG-Mfrisker.ContaminationnotedonsuchitemswillbereportedtoHealthPhysicspersonnel.Additionalsurveyswillbeperformedandtheitemsdecontaminatedordiscardedasradioactivewasteasappropriate.12.5,3,4.2.Qgr'otecgjve~c1oth'ngsu~vgSReusabl'eprotectiveclothinqandshoecoversusedincontaminationzoneswillbecollectedinrecepticlesatstep-offareasandsentforLaundering/decontamination.IfclothingiscleanedatStationlaundryfacilitiesitwillberemovedfromcontainers,sortedinanexhaustedareaofthelaundryandscannedwithaG-Idetectortolocatehighlycontaminateditemsthatmayrequireseparatedecontaminationordisposal.Followingwashinganddrying,clothingwillbere-surveyedtoassurethatitemsarewithinstationlimits.Recordsoftherangeofsurveyresultsbeforeandafterlaunderingwillbemaintained.EveryreasonableeffortwillbeexpendedtoassurethatclothingismaintainedatasLowacontaminationlevelaspracticable.12.5-40 SSES-PSARIProtectiveclothingthatisshippedoffsiteforlaunderingwillbepreparedforshipmentandlabeledinaccordance'ithapplicableU.S.DepartmentofTransportation(USDOT)regulations.Itemsreturnedfromvendorswillbespotcheckedwithsurveyinstrumentstoassurethatresidualcontaminationlevelsarelessthanapplicablestationlimits.Recordsofsurveyresultswillbemaintainedforeachshipment.12.5.3~4..4ResiratorProtectioDeviceSvesRespiratoryprotectivemaskswillbecheckedforcontaminationpriortocleaninganddisinfection.Followingdecontaminationandcleaning,maskswillbecheckedforremovableandfixedcontaminationlevelspriortodisinfection,storageand/orreissue.Surveyresultswillberecorded.Bxteriorsurfacesofotherprotectivedevices,suchassuppliedairhoodsandsuits,selfcontainedbreathingapparatusandhoses,willbecheckedforcontaminationlevelsfollowingjobcompletion.Itemsotherthanfacepiecesthatwillroutinelybereusedincontaminationzonesmaybebaggedandlabeledtoreflectthelatestsurveyfindings.12.5.3.42.5Fix~ed5u~ieeutSurve~sRoutinelyaccessibleplantequipmentthatmaybecomeinadvertentlycontaminatedwillbespotcheckedtoassureitemsarelessthanappropriatestationlimits.Fixedequipmentofthiscategoryfoundtoexceedremovablecontaminationlimitswillbewipeddownandresurveyed.Ifdecontamination,effortsarenotsuccessfulorifthe.itemispronetorecurrentcontaminationitwillbepostedas>>Contaminated>>.Anequipmentcontaminationlistwillbetabulatedtoassureitemsinthiscategoryareresurveyed.Ifanitemisfoundnottobearecurrentcontaminationproblemitwillberemovedfromthesurveylist.Arepresentativenumberofsmearswillbetakenonitemssuchasdoorknobsandstairrailings,to.assurethatothercontrolsexercisedareminimizingthespreadofcontamination.REV.18/7812.5-41 SSES-PSAR12.5.342.6SurveysInvolvingReceipt/ShipmentofRadioactiveHaterialThesecuritystaffwillbeinstructedtonotifytheHealthPhysicsSupervisorordesignatedalternateuponarrivalofshipmentsin'excessof<TypeA<quantitiesatthesiteShippingcontainerswillbemonitoredforradiationand/orcontaminationinaccordancewith10CFR20.205.Wheneverpracticable,thecontainerwillbemonitoredpriortoremovalfromthevehicle.Ifremovablecontaminationorradiationlevelsarefoundtoexceedthelimitsof10CPR20.205,theSuperintendentofPlantordesignatedalternatewillnotifythefinaldeliveringcarrierandtheNuclearRegulatoryCommission(NRC)InspectionandEnforcementRegionalOffice.Whenapplicable,HealthPhysicsSupervisionwillassurethat,priortoleavingthesite,exclusiveusetransportvehiclesurfacecontaminationandradiationlevelsarewithin.limitsspecifiedin49CFR173.Stationprocedureswillspecifyspecialproceduresandprecautionstobetakenwhenopeningpackagescontaininglicensedmaterial,includinginstructionspertainingtospecifictypesofshipmentsnormallyreceivedatSusquehannaSES.Radioactivematerialwi11beshippedinaccordancewithUSDOTandNRCregulations.Stationprocedureswillimplementtheapplicableregulationswithregardtoproperpackagingandlabelingrequirements.Appropriateremovablecontaminationanddoseratesurveyswillbetaken,recordscompleted,andshipmentslabeledaccordingly.REV.l8/78125-42 SSES-FSAR12.5~/.4.3SurfaceContaminationSurveys125.34.3.1-ControlledAccessAreasAsmearsurveyproqramwillbedevelopedandimplementedtoassurethatarepresentativenumberofroutinelyaccessiblesurfaceareaswithinthecontrolledzonearecheckedforremovablecontamination.Specialemphasiswillbeplacedonsurveyofthecleansideofestablishedcontaminationzonestep-offareas.Smearswill'beanalyzedonappropriatecountingequipmentandrecordsofresultswillbemaintainedindisinteqrationsperminute(dpm)per100sq.cm.Ifresultsindicateremovablecontaminationexceedsstationlimits,theareawillbepostedasacontaminationzone.Theareawillbedecontaminatedandresurveyedassoonaspracticable.'Areasignsandbarrierswillberemovedwhensurveysindicatethatremovablecontaminationisbelowstationlimits.Inrepresentativeareaswheregammabackqroundpermits,surveyswillbeperformedwithportabledetectorstoestablishtheleveloffixedcontaminationonnormallyoccupiedcontrolledzonesurfaces.Afixedcontaminationsurveywillbeperformedpriortoanysandinq,chipping,welding,grindingandsawing,ofpotentiallycontaminatedControlledZonesurfaces.12~5,3,4.3,2Non-ControlledZoneAreasOccupiedplantareasoutsidethecontrolledzonewillbesurveyedtoassurethatarepresentativenumberoffloorsurfacesarecheckedforremovablecontamination.Theexitareasfromthecontrolledzonewillreceivespecialemphasistominimizethespreadofcontamination.Smearsurvey,analysesandrecordkeepinqtechniqueswillbeasdescribedabove.Non-controlledzoneareasfoundtohaveremovablecontaminationlevelsexceedingstationlimitswillbedecontaminatedandresurveyed.12.5.3.4.3.3SpecialAreaSurveysLunchroomfacilitiesandvendingmachineareas'requentedbycontrolledzoneworkerswillbecheckedforremovablecontamination.Stoves,benches,tabletops,andfloorsurfaceswillberepresentativelysmearedtoassureminimalcontaminationineatinqareas.Removablecontaminationinexcessofnon-controlledzonelimitswillbereportedtoHealthPhysicsor12.5-43 SSES-PSARShiftSupervisionandtheareawillberestrictedfromfurtheruseuntildecontaminated.Specialemphasiswillbeplacedoneatinqorcookinqsurfacestoassurethattheseitemsareasfarbelownon-controlledzonelimitsasreasonablyachievable.Otherspecificareaswillbecheckedforremovablecontaminationtodemonstratetheeffectivenessofthecontaminationcontrolsexercisedwithincontrolledzoneareas.Theseareasinclude:(1)EntrancestothecontrolroomandtheControlStructure.(2)TheGuardHouseat,thesiteperimeter.(3)Generalfloorareasofshowerandlockerroomfacilities.Floorsurfacesinareasthatofferarepeatedpotentialforcontaminationmaybemaintainedascontaminationzonestoassurepositivecontaminationcontrol.Inadditiontotheroutinecheckoutsidestep-o'ffareas,ageneralsurveyofcontaminationlevelsinsidetheareaswillbeperformedwheneverpracticable.Doserateswithintheareas,frequencyofoccupancy,pastsurveyresults,andactualneedforsuchsurveyswillbeevaluatedbyHealthPhysicssupervisionwhenselectingestablishedcontaminationzonestobesurveyed.Whenareadoseratespermit,everyreasonableeffortwillbeexpendedtominimizecontaminationlevels.12.5.3.4.3.4Im~lementation~Review~andReportingPracticesContaminationlimits,generalsurveylocationsandsurveyfrequencieswillbespecifiedinstationHealthPhysicsProcedures.ProcedureswillbesubjecttoreviewbyHealthPhysicsSupervisiontoassurecontaminationsurveyimplementationisresponsivetoplantstatus.AmemberofHealthPhysicssupervisionwillreviewrecordsofcontaminationsurveyresultstoassurepropercompletionandadequatesurvey.Intheeventofcontaminationinexcessofstationlimits,amemberofHealthPhysicsSupervisionwillberesponsibleforassuringthatcorrectivemeasuresareimplementedandthatfurtherreportsthroughappropriatechannelsareinitiatedifrequired.12.5-44 SSES-FSAR12.5.35RicheaeRadioact'ae5'alEveryreasonableeffortwillbeexpendedtoassurethatmaterialreleasedasairborneconcentrationswithintheplantisminimized.Asamplingandanalysisprogramwillbeutilizedtodetermineairborneconcentrationsinrepresentativenumbersofroutinelyoccupiedareas.Theseroutinemeasurementsaswellasspecialsurveys,respiratoryprotectionproceduresandadministrativeprocedureswillbeimplementedtominimizeairbornecontaminationandthepotentialintakeofradioactivematerial.12.5.3.5.1PhysicalControls12.5.3.5.11AirPlowPatternsAsurveyprogramfordeterminingairflowpatternswithinthecontrolledzonewillbeimplementedpriortoUnitlfuelload.AfterUnit1fuelloadthesesurveyswillbeperiodicallyperformedtodemonstratethatairflowpatternsaretowardareasofhigheractual,orexpected,airborneconcentrations.Affectedareaswillbere-surveyedfollowingventilationmodificationstoassureproperairmovement.Appropriatemeasureswillbetakenifflowpatternsare.foundtobeunacceptable.12.5.35.12ContaminationConfinementContaminateditemswillbeproperlyconfinedtopreventinadvertentairbornecontamination.Suchitemswillbesealedinappropriatematerialorstoredinventilatedareaswheneverpracticable.Qhennecessary,alternativessuchastemporarytentsorenclosures,storageinroomsorareaswhereairmovementisawayfromoccupiedareas,orwettingoftheitemmaybeutilizedtominimizeairborneconcentrations.Contaminatedtrashwillbesealedinplasticpriortodisposalwheneverpracticable.Everyreasonableeffortwillbemadetoassurethatcontaminatedtrashrecepticalsareclosedwhennotinuse.REV.18/78125-45 SSES-FSlLR12..53.513AirExhaustExhaustofareasoritemswhereairborneconcentrationsmaybegeneratedwillbeemployedwheneverpracticable.Contaminatedlaundrysortingareas,trashcompactors,fumehoods,andsamplingstationsaretypicallocationswhereairexhaustwillbeutilized.Exhaustflowratesorfacevelocitiesonsuchequipmentwillbeverifiedperiodicallyandafterventilationmodificationstoassureproperfunction.Itemsthatmaycontainhighlycontaminatedmaterialssuchastrashcompactorsorhighlevelfumehoodswillbeeguippedwithavisualindicatororalarmtowarnindividualsuponlossofexhaustflow.Portableexhaustfanswillbedirectlydischargedtobuildingexhaust.wheneverpracticable.Shendischargetobuildingexhaustisnotpracticabletheportableexhaustfanwillbefilteredtominimizeairborneconcentrations.12.5.35.1.4Post,inandT.ocknAccessibleareascontainingairborneconcentrationsexceedingthelimitsspecifiedin10CPB20.203willbepostedwitha'~Caution-AirborneRadioactivityArea"sign.Wheneverpracticable,accesspointstosuchareaswillbelockedorbarricadedtoreducetheriskofinadvertententry.12.5.35.2AdministrativeControls12.5.3.52.1HealthPhsicsBeviesAllpostedairborneradioactivityareaswillbereviewedbyamemberHealthPhysicssupervisiononaquarterlybasis.methodstoreduceexistingairborneconcentrationswillbeforwardedthroughappropriatechannelsforreview,approval,andimplementation.Duringthereview,HealthPhysicsSupervisionwillassurethateveryreasonableefforthasbeenexpendedtoreducetherisk"ofinadvertententryinairborneradioactivityareas.12.5.3.5.2.2HealthPhysicsInvesticiationMhenanoccurrenceproducesunusuallyhighairborneconcentrationsinoccupiedareas,HealthPhysicsSupervisionwillassurethataninvestigationappropriatetotheincidentis125-46 SSES-FSARcompleted.Thefirstprioritywillbeevaluationandfollow-upofpersonnelintakeofradioactivematerialifapplicable.Thesecondportionofinvestigationwillemphasizedeterminationoftheeventsleadingtotherelease.Recommendationstopreventrecurrencewillbeforwardedthroughappropriatechannelsforimplementation.12.5.3.5.2.3RMPProceduresRadiationMorkPermitprocedures,asdescribedinSubsection12.5.3.2,willbeaprimaryadministrativecontrolofexposuretoairborneradioactivematerial.HealthPhysicsreviewpriortoapprovalwillassurethateveryreasonableeffortisexpendedtominimizetheproductionof,orreduceexisting,airborneconcentrationsbeforeworkcommencement.12.5.3.5.3AirSamolinaEauipmentAdescriptionoftheuse,calibrationmethodsandfrequenciesofspecificairsamplingequipmentutilizedatSusquehannaSESiscontainedinSubsection12.5.2.125.3.5.4AirborneConcentrationS~amling12.5.$.5.4.1RoutineSa~mlingRoutinesamplinqinselectedareasofpotentialairborneconcentrationswillbeaccomplishedwithcontinuousairmonitors(CAM)orportableairmonitors.CAMsamplingmediaanddetectorwillbeselectedasappropriatetotheintendeduseofthedevice.CAM~swillberoutinelycheckedforproperoperation.Abnormalreadingsorequipmentmalfunctionwillbereportedthroughappropriatechannelsforinvestigationand/orrepair.Alarms,ifapplicable,will=becheckedforoperabilityduringsourcecheckandcalibrationprocedures.FixedfilterdeviceswillbechanqedonafrequencyspecifiedbyHealthPhysicsprocedurestoassureoptimumsamplinqtime,meaningfulresults,'ndproperequipmentoperation.12.5-47 SSES-FSAR12.5.3.5.42.-SpecialAirSa~mlingRecordswillbemaintainedtoreflectthereasonforthespecialsurveys,device(s)andsamplinq"mediausedandfinalresults.ThemajorityofspecialairsampleswillbetakenasresultofRadiationMorkPermitrequestsandpertinentresultswillberecordedthereon.12.5.3.55Ai'rSampleEvaluation12.5.3.5.5.1ParticulateInitialEvaluationAdatasheetwillbecompletedtoreflectsamplelocation,date,startingflowrate,startingtime,samplerandcollectionmediaused,andcollectionefficiency.Atcompletionofsampling,thedate,time,andendinqflowratewillberecorded.Airsamplefilterswillbecountedassoonaspracticablefollowingcollection.Resultswillberecordedonananalysisformtoreflectcounterused,efficiency,countingtime,backgroundcountrate~qrosssamplecountrate,netsamplecountrate,andsampledisinteqrationsperminutebeta,and/orbeta-gamma,and/oralpha.Sampledisinteqrationsperminutedividedbycollectionefficiencyofthemedia,thenumberofdisintegrationsperminutepermicrocurieandthetotalvolumeofairsampledwillyieldtheinitialestimateofairborneconcentration.PriortoUnit1fuelloadanairsamplingprogramwillbeimplementedtoobtainabaselineofinformationconcerningnaturallyoccurringradioactiveconcentrations.Thisdatawillenabledevelopmentofanaveraqebetatoalpharatioofnaturallyoccurrinqairborneemitters.This"FirstCountFactor"maybeutilizedasaninitialevaluationtechniqueforlowlevelparticulateairsamples.12.5.35.5.2SubsequentParticulateEvaluationsEveryeffortwillbemadetoinitiallyevaluateairsamplesassoonaspracticablefollowingcollection.Ininstanceswheretimedelaybeforeanalysisinconjunctionwithsuspectedshortlivedisotopesissignificant,repeatedcountsmaybeperformedtoobtainadecaycurve.Extrapolationandsubtractiontechniquesmaybeusedtodetermineinitialamountsandhalflivesofcomponentisotopes.125-48 SSES-FSARWhenstatisticallypossible,fixedfiltersamplesmaybegammascannedwithaNalorGe(Li)detectortoidentifygammaemittingisotopes.Whenthisorotherspecificanalysesarenotpracticable,theNPCforunidentifiedbeta-gammaemitterswillbeusedforexposureevaluation,andproceduralcontrols.Otherevaluationsthatmaybeutilizedarebetaabsorptioncountinq,radiochemicalseparationsandanalysis,andliquidscintillationcountinq.12.5.3.5.5.3GaseousEvaluationsAirborneradioiodinesampleswillnormally'becollectedoncharcoalcanisterorca"tridqes,andanalyzedonaNaIorGe(Li)detector.Appropriatestandardsourcesinreproducibleqeometrieswillbeusedtoobtainefficiencycurvesforanalysisequipment.Photopeakareas,countinqefficiencyandbranchingratiosfortheidentifiedisotopewillbeutilizedtocalculatetheamountofdeposit.Collectionefficiencyandtotalvolumeofsampledairwillbeincorporatedtocalculateairborneconcentrations.Airbornetritiumsampleswillnormallybecollectedinwaterbubblcrsordessicantcolumns.Collectionandcountingefficienciesandtotalairvolumewillbeverifiedandusedtocalculateairborneconcentrations.Xfanalysesofrestrictedareaairfornoblegasearereguired,samplechambersmaybeanalyzedwithNaIorGe(Li)detectorstoidentifyisotopes.12,5.3,5.6Res2iratorgProtectionTherespiratoryprotectionprogramwillassurethatpersonnelintakeofradioactivematerialisminimized.Therespiratoryprotectionprogramwillnotbeusedinplaceofpracticableenqineerinqcontrolsandprudentradiationsafetypractices.Everyreasonableeffortwillbeexpendedtopreventpotential,andminimizeexistinq,airborneconcentrations.Whencontrolsarenotpracticable,orconditionsunpredictaole,respiratoryprotectivedevicesmaybeutilizedtominimizepotentialintakeofairborneradioactivematerial.TheSusquehannaSESRespiratoryProtectionProgramwillensurethatthefollowinqminimumcriteriaaremet:writtenstandardoperatinqprocedures;properselectionofequipment,basedonthe SSES-FSARhazard;propertrainingandinstructionofusers;properfitting,use,cleaninq,storage,inspection,qualityassurance,andmaintenanceofequipment;appropriatesurveillanceofworkareaconlitions,considerationofthedegreeofemployeeexposuretostress;reqularinspectionandevaluationtodeterminethecontinued,programeffectiveness;programresponsibilityvestedinonequalifiedindividualandanadequatemedicalsurveillanceprogramforrespiratorusers.12.5.3.5.6.1TrainingandFittingThetrainingandfittinqprogramisdescribedinSubsection12.5.3.7.12.5.3.5.6.2WrittenProceduresTheRespirato"yProtectionProgramandprogramresponsibilit'ywillbeimplementedbyHealthPhysicsprocedures.ApplicableHealthPhysicsProcedureswillincludeasaminimum:descriptionofequipment;information'regardingissuance,maintenance,selection,use,andreturnofequipment;andtrainingtechniques.Informationregardingairsamplinqandbioassay.programswillbereferenced.12,5,3,5.6.3SelectionofEquipmentTheneedforrespiratoryprotectionwillbedeterminedbyHealthPhysicspersonnelafterevaluationofappropriateengineering'controls.Airborneconcentrationswillbedeterminedbyairsamplinqmethodsdescribedinthissection.ThehazarDwillbeevaluatedandapplicablerespiratoryprotectionprescribedinaccordancewiththeRMPevaluation,review,approvalandimplementationprocessasdescribedinSubsection12.5.3.2.12.5.356.4IssueandUseFornormalworksituations,respiratorswilloeissuedafterapprovalofaRadiationWorkPermit.Individuals'.D.cardsorqualificationlistwillbeutilizedtoassu"eonlythespecificmodelsapprovedfortheworkerareissued.Afterissuance,theworkerwillberesponsibleforpoperuseandstorageoft.hedevice.ApprovedHealthPhysicsproceduresforuse,storageand12.5-50 SSES-FSARreturnofrespiratorswillbereviewedduringqualificationtraininqsessions.12.5.35.6.5ContaminationSurvey~Wheneverpracticable,respiratorswillbescannedwithaG-lcdetectorduringfinalchange-outproceduresuponcompletionofassignedwork.DetectableradiationlevelsoninsidesurfaceofthedevicewillrequirenotificationofHealthPhysics.Theinsidesurfaceswillthenbemonitoredforremovablecontaminationand/oranasalswabwillbetaken.Baseduponfindingsandsuspectedisotopes,furtherevaluationsmayberequiredinaccordancewithSubsection12.5.3.6.12.5.3.5.6.6Cleaninq,Decontamination,Inspection,lfaintenance,DisinfectionandStorageStationprocedureswillspecifycleaning,decontamination,survey,inspection,maintenance,disinfectionandstorage"equirements.Respiratorswillnormallybeusednomorethanoneday(shift)priortoreturnforcleaningsurvey,inspection,maintenanceifneeded,anddisinfection.Innocasewillarespiratorbeissuedtoanotherindividualpriortocleaningsurvey,inspectionanddisinfection.Respiratoryfacepieceswillbewashed,dried,surveyedforremovableandfixedcontaminationlevels,inspected,disinfectedandstoredinaccordancewithapprovedHealthPhysicsprocedures.Inspectionofmaskswillemphasizedefectsatcriticalpoints,properfunctionofattachedfittingsandvalves,andpropershapeofface-piece.Simplemaintenanceandrepairwillbeperformedasnecessary..maintenanceandrepairofregulatorswillbeperformedonlybyspeciallytrainedandqualifiedindividualflasksreadyforreissuewillbestoredinplasticorpaperbagsincaoinetsorcontainers.Everyeffortwillbemadetoassureproperstoraqeofmaskstopreventdeformationoffacepieceparts.12.5.,3.5.6.7OualityControlsInspectionandtestinqofnewequipmentwillbeimplementedbywrittnstationprocedurestodetectinstancesofhumanerrorordefectivematerialsinthemanufactureandassemblyofthedevices.Procedureswillspecifythecomponentsofeachdevicetobeinspectedandtheacceptancecriteriawhenapplicable.12.5-51 SSES-PSARRespiratoryprotectiondeviceswillberoutinelyinspectedandtestedaftercleaninqandmaintenance.Theinspectionwillbeperformedtodetectanydamageordefectscausedbycleaningorwear.Testingwill'ormallyconsistofapositiveornegativepressureleakdetectiontestorexposuretoachallengeatmosphere.Znaccordancewithstationproceduresperiodicchecksofitemsinstoraqewillbeperformedtoensurethatthefacepiecerubberisnottakinqaset,rubberpartsarenothardeningordeterioratinq,sorbentcanistershavenotexceededtheirshelflife,andbreathinqairoroxygencylinderscontainsufficientpressure.12.5.3.5.6.8SurveillanceofWorkAreaConditionsForworkconditionsinvolvinqrespiratoryprotection,airsamplinqsurveillancewillprovideanestimateofthepotentialintakeofairborneradioactivematerialsandresultingexposureoftheindividualworker,indicatethecontinuingeffectivenessofexistinqcontrols,andwarnofthedeteriorationofcontrolequipmentoroperatinqprocedures.Theperiodsoftimerespiratorsareworncontinuouslyandtneoveralldurationsofusewillbekepttoaminimumbyproceduralcontrolsandworksurveillance.Workerswillbeinstructedofprovisionstoleaveareaswhererespiratoruseisrequiredfor.reliefincaseofequipmentmalfunction,unduephysicalorpsychologicaldistress,proceduralorcommunicationfailure,siqnificantdeteriorationofoperationalconditions,oranyotherconditionthatmightrequiresuchrelief.12.5.3.5.6.9EvaluationofProgramEffectivenessRespiratorfailures,evidenceofrespiratorleakage,andequipment,problemsencounteredwillbeinvestigatedbyHealthPhysics.Problemswillbesolicitedfromrespiratorusersduringactivitiessuchasplantsafety-meetingsandtrainingsesions.Propoedchangestopreventrecurrenceorimproveefficiencyoftheproqramwillbeforwardedthroughappropriatechannelsforreview,approvalandimplementation.Respiratoryprotectionwillbeevaluazedbybioassayresult-correlatedwithairsamplingresultsasdescribedinSubsection12.5.3.6.Evidenceofariseinexposurelevelsattributabletoinhalationwillbeinvestigated.12.5-52 SSZS-FSAR12a5a3a5.6.10Hedica},HuyveiliancePriortoparticipationintheSusquehannaSBSRespiratoryProtectionProgram,individualswillbeevaluatedbycompetentmedicalpersonneltoensuretheyarephysicallyandmentallyabletowearrespiratorsunderanticipatedworkinqconditions.Individualsinvolvedintherespiratoryprotectionprogramwillalsobere-evaluatedaspartoftheirroutinecompanyphysicalwithrespecttophysiologicalandpsychologicalfactorsaffectingrespiratoruse.DetailsofthemedicalsurveillanceprogramwillbespecifiedinStationHealthPhysicsProcedures.12,5,3,5,7Haddl~inofRa~dioctiye~ateyidl12.5.35.7.1.Unsealed-NaterialRadioactivematerialinliquidformwillbestoredinsealedorvented/exhaustedcontainerswheneverpracticable.Whencontainersareopenedtoatmosphereandgenerationofairborneconcentrationsispossible,theywillbeopenedinfumehoods,exhaustedareas,orinlocationswhereairmovementisawayfromworkersdbreathingzones.Wheneverpracticable,liquidradioactivematerialwillbetransportedinunbreakablecontainersorinasecondarycontainertocollectmaterialincaseofbreakage.Gaseousradioactivematerialwillbesimilarlystoredandopened.Transportofgaseoussampleswillbedoneinsealed,qastightcontainers.Solidarticlesthataresufficientlycontaminatedwithparticulateand/orvolatilematerialsoastoposeapotentialairbornehazardwillbehandledandstoredasdescribedinSubsection12.5.3.5.1.2.Protectiveclothing,respiratoryprotection,andspecialprecautionswillbespecifiedbyHealthPhysicsproceduresand/orRadiationWorkPermitforhandlingunsealedmaterial.12.5-53 SSESTSAR~1253.5e72SealedMaterialsSourceswillbe.storedinappropriateshieldedcontainerswhennotinuse.Containersandstoragelocationswillbepostedtoreflectcontentsandradiationlevels.Sourceswillbelockedinsidecontainersorcontainerswillbelockedinastoragelocationwhennotinuse.Shensourcesproduceawholebodyorcontactradiationdoserategreaterthanlimitsestablishedbystationprocedure,aRadiationMorkPermitwillbecompletedandapprovedpriortouse.Remotedevicessuchasforceps,tongsormanipulatorswillbeusedwheneverpracticableorrequiredbyRadiationWorkPermit.Licensedsealedsourceswillbemonitoredforleakagetoassurethatstorageoruseisnotcausingthespreadofcontaminationorairborneradioactivematerial.Mhenmonitoringofthesource.capsuleisnotpracticable,removablecontaminationsurveyswillbeperformedatplacesonthecontainerorsourceholderwherecontaminationmightbeexpectedtoaccumulateifthesourcewereleaking.rSampleswillbeanalyzedoncountingequipmentappropriatetothesourcematerialandrecordsofresultsmaintained.F'requency,materialstobetestedandrecordkeepingrequirementsofNRClicenseorTechnicalSpecificationswillbeimplementedbyStationHealthPhysicsProcedures.=Sealedsourcesfoundtobeleakingwill'besealedfromatmospherewheneverpracticable.and/orstoredinventilatedareasuntildisposalorrepair.12.5.36PersonnelMonitoring12.5.361ExternalPersonnelNonitorinPersonnelmonitoringdeviceswillbeusedatSusquehannaSESto-evaluateexternaloccupationalexposuretoradiationsources.Exposureinformationwillbeusedforworkfunctionexposureevaluation,jobplanning,reportingrequirements,incidentanalysis,andanindicationoftheeffectivenessofALARApractices.12.5.3.6.1.1PersonnelDosiu~etrEvaluationRoutinelyusedpersonneldosimetrywillincludeself-readingdosimeters,thermoluminescentdosimeters(TLD),and/orfilmbadges.IndividualsrequiringpersonneldosimetrywillbeIREV.18/78125-54 SSBS-PSQQinstructedih..the..purpose.@mdgm,ofthedevicesstationadministrative'xposurej.initi~andinterpretationofself-.reading'osimeter'eadiaga.appropriatedosiaetrydevicesmillbeissuedin-accordancewith.stationproceduresinplesentinglOCPR20202Dosimetrywillnormallybewornonthefrontofthebodybetweentheneckand.thewaistinaclearlyvisiblelocatiom.Shenappropriate,dosimetrycrillbeissuedandromontheextremities,osinetryanybewrappedinplastictopreventthecontaminationofpersonnelaonitoringdevicesuhenenteringcontaminatedareas.AsdescribedinSubsection12.5.p.2,self-readingdosimeterresultswillbeusedforspecificd.ARK)ohexposureevaluationaswellasto.indicatecurrentindividualexposurestatus.DosimetersofappropriaterangeswillbeavailableforuseduringworkinradiationandhighradiationareasRadiationworkerswillberesponsibleforcheckingtheirdosimeterreadingswhenworkinginBQPareasThefrequencyofdosimetercheckingwilldependuponthenatureofthegobandwholebodydoserates,andwillbediscussedwiththeradiationworkersduringRQPpre-jobplanning.Off-scaleormalfunctioningdosineterswillbereportedtoHealthPhysics.HealthPhysicspersonnelwillevaluatetheoccurrence,issueareplacementdosimeterandtestthesuspectdosimeterforresponseandleakage.Dosiseterswillberenovedfromserviceifthecalibrationresponse,24hourleakage,ozchangingdrifttestresultsexceedacceptancecriteriaspecifiedintheStationHealth.Physicsprocedures.Self-readingdosimeterswillnormallybeusedtomonitorgammaexposureonly.Theymaybeusedtodetermineneutrondoseequivalentina.mixedradiationfieldprovidedtheneutrondoseequivalentrateandgammaexposurerateatthepointofpersonnelexposureareknownfronseparatelysadedeterminations;theneutron-.to-gammaratioisessentiallyconstantduringtheperiodofpersonnelexposure;andthedegreeofresponseofthedosimetertotheneutronflaxdensityisknown.HethodsofevaluationofdosimeterreadingstodeternineneutrondoseequivalentwillbespecifiedinStationHealthPhysicsprocedures.Shenneutrondoseequivalentisdeterminedfromself-readingdosimeters~itwillbeaddedtothewholebodygammadoseequivalent.TLDdeviceswillnornallybeusedasthedosinetryofrecord.PersonnelTLD{s)willnormallybeevaluatedonamonthlybasisormorefrequentlyasdeterminedbyHealth.PhysicsSupervision.ThedataobtainedfromTLD~swi11beevaluatedtodeterminedoseequivalents.GammaTLDchipreadingsindicatethedoseequivalenttobeattributedtowholebodyAppropriate125-55 SSQS-PSMcorrectionandquaM4ty.factorssillbeappliedtoneutronchipreadingstodeterminetheneutronCaseequivalent.Neutronandgannadosessill.nornallybeaddedtogethertoyieldthewholebodydoseequivalent..AppropriatecorrectionfactorssillbeapplieltotheBetaTX.Dchipreadingstodeterminethebetadose.Thebetadosesillnormallybeaddedtothewholebodydoseequivalenttodeterminet'eskinloseequivalentShenappropriate,theskinofwholebodyloseequivalent-sillbeaddedtothegamnadoseequivalent,deterninedbyissuedextremitymonitoringdevices,todeterminetotal,extremities'oseequivalent.Porindividualssholonotutilizeextrenitiesdevicesduringacalendarquarter,theskinofwholeholydoseequivalentsillbeassignedasextrenities4loseequivalent.,Zffilmbadgesareusedasthedosinetryofrecord,theservicewillbepurchaselfrananoutsidevendorandevaluatedbythevendoronamonthlybasisorasspecifiedbyHealthPhysicsSupervision.,Aprogramsillbeimplementedtoverifyfilnbadgeaccuracy.Filmbadgeresultswillbeevaluatedandcategorizedaccordingtowholebody,skinoftheshalebody,anlextrenitydoseequivalent.Filmbadgesmaybeusedtodetermineneutrondoseequivalentwhentheeffectsofimagefading,lossensitivity,andmaskinginhighgammafieldsarenotcriticalPersonnelexposuressillbeaccumulatedandevaluatedagainstapplicablestationanlfederallimitsbyHealthPhysicspersonnel.125361diniteoseoolAdministrativeexposurelimitswillbeestablishedandimplementedbyHealthPhysicsprocedurestoassurethelimitsof10CPR20.101arenotexceedelandpersonneloccupationalexposuresaremaintainedALARA.diadeotnDesignatedsupervisorswillreceivereportsoftheiremployees'ccumulatelexposuresforuseinRHP5obplanningandscheduling.Updatesofexposuretotalssillbecompiledfronself-readingdosimeterreadings.UnapprovedexposuresexceedingstationlimitswillbereportedtotheSuperintendentofPlantandappropriatesupervision,anlinvestigatedbyHealthPhysicstoidentifycausesandestablish.methodstopreventrecurrence.REV.18/78125-56 SSES-FSAROccupationalradiationexposurereceivedduringpreviousemDloyment<<illbeusedi<<preparationofindividuals'ormsNRC-4,orequivalent.Whenanindividual'soccupationalexposurehisto"ycannotbeobtained,thevaluesspecifiedin10CFB20.102(c)(1)willbeused.RecordsusedinpreparingFormNRC-4,ocequivalent,villberetainedandpreserveduntiltheNRCauthorizesdisposition.Recordsoftheradiationexposureofallindividualsissuedpersonneldosimetryinaccordancewith10CFR20.202willbemaintainedonFormNRC-5,orequivalent.Exposuceswillbetabulatedforperiodsnotexceedinqonecalendarquarter.Aseparaterecordwillbecompletedwhenitisnecessarytoenterinformationforexposuretotheextcemitiesorskinoftnewholebody.RecordsofradiationexposurereceivedduringemploymentatSusquehannaSESvillbemaintainedindefinitelyoruntilNRCauthorizesdisposal.Reportsofexposuretoradiationorradioactivematecialsvillbemadetoindividualsasspecifiedin,10CFR19.13.Whenreportsofindividualexposuretoradiationor.radioactivematerialaremadetotheNRC,theindividual(s)concernedvillalsobenotified.Thisnoticewillbeforwardedtotheindividual(s)atatimenolaterthanthetransmittaltotheCommissionandwillcomplywith10CPR19-13-Areportoftheindividual'sexposuretoradiationorradioactivematerial,incurredwhileemployedorvorkingatSusquehannaSESwillbefurnishedtotheNRCinaccordancewith10CFR20.408andtotheindividualupontecminationofemploymentorworkassignmentatSusquehannaSES.Apecsonnelmonitorinqinformationreportwillbesubmitted,inaccordancevithlOCFR20.407,withinthefirstquarterofeachcalendar,year.Aspartofaroutineannualoperatingreport,personnelexposureinfocmationvillbesubmittedwithinthefirstqua"terofeachcalendaryear.Itwillincludeatabulationofthenumberofstation,utility,andotherpersonrrel(includingconractocs)receivingexposuresgreaterthan100mrem/yc.andassociatednran-remexposureaccordinqtovoraandjobfunctions.Itwillalsoincludeforeachoutageorfoccedceductioninpowerofovec20percentofdesiqnpowerlevel,wherethereductiorrextendsforgreaterthanfourhours,arepoctofradiationexposureassociatedwiththeoutagewhichaccountsformo"ethan10percentoftheallowableannualvalues.Intheeventofanexposureinexcessof10CPR20.101limits,HealthPhysicsSupevisionvillinvestigatetheeventanddocumentthedescriptionoftheoccurcence;conditionsundervhichtheexposureoccur:red;namesofpersonnelinvolvedand SSES-FSARamountofexposurereceived;actiontakenattimeofoccurrence;recommendationsfo"correctivemeasuresandmeansofimplementationtopreventasimilaroccurrence.Intheeventofanunauthorizedexposureinexcessofstationadministrativelimits,f/ealthPhysicsSupervisionwillinvestigatetheeventtodeterminethecause(s).Recommendationsforcorrectivemeasureswillbeforwardedforrevie~,approval,andimplementationinaccordancewithstationprocedures.ReportsofoverexposuresatSusquehannaSESwillbesubmittedtotheMRCandtheindividual(s)involved.inaccordancewith10CFR19.13and10CFR20.405.Reportswillalsobeforwardedtoappopriatecommitteesforreviewandrecommendationforfollow-upaction12.5.3.6.2InternalRadiationExposureAssessmentMhenenqineerinqcontrolsareimpracticableandairborneconcentrationsexceedstationlimits,trainedindividualswillbeequippedwithproperlyfittedrespirators.InternalexposureevaluationwillbeutilizedtodeterminetheeffectivenessoftheRespiratoryProtectionProgramandevaluatesuspectedintakeofradioactivematerial.TheRespiratoryProtectionProgramisdescribedinSubsection12.5.3.5.Wholebodycountingand/orbioassaytechniqueswillbeusedtocomparethequantityofradioactivematerialpresentinthebodytothatquantitywhichwouldresultfrominhalationfor40hoursperweekfor13weeksatuniformairborneconcentrationsspecifiedinAppendix.D,Table1,Column1,10CFR20.12.5.3.6.21BioassayNethodsMholebodycountingwillbeusedtoqualitativelyandquantitativelyidentifyradionuclidesdepositedinthebodywhichemitpenetratingradiations.Dependinquponthephysicalconstructionandgeometryofthewholebodycounter,sensitivityofthedetector(s),andbiologicalfactors,concentrationsofradionuclidesmaybedetectedinthewholebody,thyroid,lung,orwounds.Thewholebodycounterwillbesetupandcalibratedand/orutilizedinaccordancewithSubsection12.5.2.Urineanalysismaybeconductedtoidentifythepresenceofpurealphaorbetaemittersinextracellularbodyfluids.Underfavorablecircumstances,withafull24-hoursampleandfurther1d.5-5d SSES-PSARanalyses,theamountofradionuclidesmaybequalitativelyandquantitativelydetermined.Resultsmaybeutilizedtosubstantiateinvivoanalysesfindings.F'ecalanalysiswillnormallybeusedtoevaluateintakeofnon-transportable(i.e.insoluble)materialandprovideevidenceoftheclearanceofsuchmaterialfromthelungs.Whenitissuspectedthatanontransportableradionuclidehasbeeninhaled,thetotalamountexcretedinfecesduringthesucceedingfewdaysmaybeusedtoestimatetheamountinitiallydepositedinthelunqs.StandardlungmodelsrecommendedbyInternationalCommissiononRadiologicalProtection(ICRP)maythenbeusedtoevaluatetheamountinhaled.Dosecommitmentforinternaldepositsmaybeestimatedbycalculatinqtheamountofairborneradioactivematerialinhaled,basedonairborneradioactivematerialmeasurements,exposuretimes,standardlungmodelsandbreathinqrates.12.5.3.6.2.2AdministrativeControlsRecords,approvedstationprocedures,programreviews,andinvestiqationwillassureproperadministrativecontrolovertheinternalpersonnelmonitorinqprogram.ReviewsoftheinternalpersonnelmonitoringprogramandinvestigationsofindividualcasesofsuspectedorknownintakeswillbeperformedanddocumentedbyHealthphysicsSupervisionandreportedtoappropriatecommittees.12.5.3.6.2.3Criteriafor-ParticipationorSelectionSelectionofpersonnelandfrequencyofroutinewholebodycountinqandbioassayanalyseswillbeimplementedbyHealthphysicsprocedures.Thefollovinqisaquidelineforpa-ticipationinspecial~holebodycountinqand/orbioassayanalyses:(1)personnelevaluatedbymeansofanasalswabashavingcontaminationinthenasalpassaqesinexcessofi>mitsspecifiedinHealthPhysicsProcedures.(2)Personnelsuspectedtonaveinqestedadetectablelevelofradioactivematerial,orabsorbedadetectablelevelofradioactivematerialthrouqhawoundorbreakintheskin.12.5-59 SSES-FSAR(3)Personnelphysicallypresentwithoutrespiratoryprotection,orthoseexperiencinqrespiratorfailure,inaconcentrationresultinqingreaterthan40MPC-Hoursexposureinanysevenconsecutivedaysmaybecounted.Anevaluationwillbeperformedinaccordancewith10CFR20.103andwholebody,lung,orthyroidcountingwillbeperformedifcalculationsshowpotentialdepositofgreaterthantheMinimumDetectableActivity{N.D.A.)ofthecounterforlonglivedisotopes.Thefollowinqisaguidelineforselectionofpersonnelforspecial,non-routineurineanalysis:(1)Whenthereissuspicionofanintakeofabetaoralphaemitteronly.(2)Inconjunctionwithnon-routinefecalanalysis.Inadditiontotheabovecriteria,personnelmayberequiredtosubmiturinesamplestoevaluateclearanceratesofradioactivematerialidentifiedbyspecialorroutinewholebodycounts,orasdirectedbyHealthPhysicsSupervision.Fecalsamplinqandanalysiswillnormallybedoneonanon-routineoasisasdesignatedbyHealthPhysicsSupervision.Fecalanalysismaybedoneasafollowuponwholebodyorlungcounts.12.5.36.2.4EvaluationandReportingIdentifiabledepositswillbeevaluatedagainstthecriteriaof10CFR20.103assuminqconservativecondition.andtimeframeswithresoecttothetimeofintake.'Reportswillbegeneratedwheninternaldepositsindicateqreaterthan40MPC-Hoursexposureinanysevenconsecutivedays.ThereportswillbereviewedbyappropriatesupervisionandmaintainedonfilesubjecttoNRCinspection.ReportsofoverexposurewillbecompletedandsubmittedtotheHRCwhenitisdeterminedaquantitygreaterthanspecifiedin10CFR20-103hasbeeninhaled.Wholebodydosecommitmentresultingfrominz,ernaldepositsexceedinqstationlimitswillbecalculatedandincludedontheindividual'sFormNRC-5orequivalent.Specificorgancountinqmaybeperformedifappropriate.OrgancontentmaybeassiqnedusingwholebodymeasurementsandICRP-2recommendedfractionsandclearancetimes,whenorgancountingisnotpossible.Dosecommitmenttobloodformingorgans,gonads,12.5-60 SSES-FSARwholebodyoreyesresultingfromdepositsinotherorgansmaybecalculatedusingMedicalInternalRadiationDoseCommittee.{MIRD)equations.Wholebodydosecommitmentresultingfrominternaldepositsexceedingstationlimitswillbecalculatedandincludedontheindividual'sFormNRC-5.12.53.7Health:PhysicsTrainingPr~oramsHealthPhysicsTraininqProgramswillassurethatpersonnel,whohaveunescortedaccesstotherestrictedarea,possessanadequateunderstandingofradiationprotectiontomaintainoccupationalradiationexposuresaslowasreasonablyachievable.Specialtraining/retrainingwillbeadministereduponrecommendationoftheSuperintendentofPlantorHealthPhysicsSupervisor.RecordkeepinqandtrainingschedulingwillbeperformedbytheTraininqSupervisorordesignatedalternate.12.5.3.7.1ProaramControls12.5.3.7.1.1ManagementReviewManagementwillformallyreviewHealthPhysicsTrainingProgramsonceeverythree(3)years.Considerationwillbegiventoworkers'uqqestionsandinstructors'omments.Managementwillevaluatetheproqram'sinfluenceonmaintainingradiationexposuresaslowasreasonablyachievable.Thereviewwillbedocumentedandcomments/changeswillberecordedandincorporatedintothetraininqproqramwhenapplicable.125.3.7.1.2HealthPhysicsTrainingProgramReviewHealthPhysicsTrainingProgramswillbereviewedbyHealthPhysicsSupervisionandpertinentcommitteestoassureimplementationofALARAphilosophy.Recommendationsforimprovementstotraininqprogramswillbeforwardedthroughappropriatechannelsforreview,approval,andimplementation.12.5.3.7.1.3AccessControlAnaccesscontrollistwillbecompiledandmaintained.Thelistwillspecifypersonnelqualifiedforunescortedaccesstothe12.5-61 SSES-FSARRestrictedArea-byhavingmettherequiiementsofLevelIHealthPhysicsTraininqandappropriateplansandprocedures.Alistingspecifyiri'qindividuals'etrainingda'teswillbemaintained.Acopy-of.theaccesslistwillbemaintainedatthesecurityguardhouse.Duringappropriatetrainingsessions,individualswhosejobdutiesdonotrequireentryinradiation,cont'amination,orRMPareaswillbeinformedofthereasonstheyaredeniedaccesstosuchareas.i12.5.3.7.1.4Retraining/ReplacementTrainingLToassureindividualproficiencyinRadiationProtectionpractices,retestinqwillbeperformedonayearlybasis.Retrainingwillbeperformedeverytwo(2)yearsorasrecommendedbytheSuperintendentofPlant.Scheduling,records,andtestresultswillbemaintainedbytheTrainingSupervisorordesignatedalternate.Individualschangingjobclassificationwillreceivetrainingofthelevelrequiredbytheinewjobclassification.Traininq/retrainingwillbeadministered,underthedirectionoftheTraininqSupervisorordesignatedalternate,tocandidatesforNuclearRegulatoryCommission(MRC)operatinglicensesandthoseholdinqNRClicenses"TheTrainingSupervisorordesiqnatedalternatemayrequesttheHealthPhysicsSupervisortoprovideinstructiononselectedHealthPhysicstopics.125.3.72TrainingPrograms12.5.3.7.2.1LevelITrainingAllpersonsall'owedunescortedaccesstotherestrictedareawill~asaminimum,receiveLevelIHealthPhysicstraining.TobequalifiedinLevelIHealthPhysicsanindividualwilldemonstrateproficiencyinthefollowingareasasevidencedbypassinqawrittenexaminati.'on:Requirementsof10CPR19.12Radiation/Contamination(examplesand.control)ALARA(Corporatecommitments,meaninqandindividualresponsibility)12.5-62 SSES-PSARPersonnelNonitorinqandSelf-SurveyRequirementsRadiologicalControlSignsandPostingRequirementsRadiationExposureControlandLimitsRadiationEmergencyPlanandApplicableProceduresPrenatalRadiationExposure12,5,3,7,2.2LevelIITraini.ngLevelIZHealthPhysicsTraininqwillnormallybeadministeredtoindividualswhohavesuccessfullycompletedLevelIandrequireaccesstoRadiationWorkPermitAreas.TheneedforsuchtraininqwillbeevaluatedandscheduledbytheTrainingSupervisor,ordesignatedalternate.LevelIItrainingwillbeadministeredtoprovideradiationworkerswithanadequateknowledgetoeffectivelycopewithjob'ituationswhilemaintaininqradiationexposuresaslowasreasonablyachievable.Theindividualwilldemonstrateproficiencyinthefollowingareasasevidencedbypassinqawrittenexamination:ALARA(applicableprocedures)ContaminationControlandSelf-SurveyRequirementsPundamentalsofRadioactivityRadiationDoseUnitsandBiologicalEffectsRadiationandHighRadiationAreaSurveyTechniquesPrinciplesofRadiationSafety(Time,DistanceandShielding)RadiationWorkPermits(RWP)Useofprotectiveclothing/devices12.5.3.7.2.3LevelIIITrainingLevelIIItraininqwillemphasizespecialapplicationsofALARApracticesandwillnormallybedirectedatsupervisorsofradiationworkers.ALARAtraininqintheplanningofradiationworkpermitjobswillincludeman-remreviewingtechniques,methodsforreducingpersonnel,,exposures,andotherareas12.5-63 SSES-FSARrecommendedbytheALABAReviewCommitteeandHealthPhysicssupervision.Inaddition,effectivemethodsofimprovingworkefficiency,suchasmock-upsituations,dry-runs,andmaintenanceorientedphotographsforjobplanningwillbediscussed.12.5.3.7.24~Leve1IVTraini~nLevelIVtrainingwillemphasizeALARAandHealthPhysicsaspectsoftheRNPreviewprocessdiscussedinSubsection12.5.3.2.ThetraininqwillbedirectedatgualifyingmembersofShiftSupervisionforRMPreviewandapprovalauthorityintheabsenceofHealthPhysicsSupervision.IIf12.5.3.7..2.5RespiratoryProtectionTrainingProgramIndividualsandtheirsupervisorsrequiringaccess-to'areaswhererespiratoryprotectionwillbeutilizedwillcompletetheRespiratoryProtectionTraininqProgram.Theinstructorwillbeaqualifiedindividualwithathoroughknowledgeandconsiderableexperiencereqardinqtheapplicationanduseofrespiratoryprotectiveequipmentandthehazardsassociatedwithradioactiveairbornecontaminants.Traininqwillincludelectures,'demonstrations,discussionsofpertinentstationprocedures,andactualwearingofrespiratorstobecomefamiliarwiththevariousdevicesutilizedatSusquehannaSES.Theprogramwillincludeasaminimum:discussionoftheairbornecontaminantsagainstwhichtheweareristobeprotected,includinqtheirphysicalproperties,NPC's,physiologicalaction,toxicity,andmeansofdetection;discussionoftheconstruction,operatingprinciples,andlimitationsof'therespirator"andthereasonstherespiratoristhepropertypefortheparticularpurpose;discussionofthereasonsforusinqtherespirators'andanexplanationofwhymorepositivecontrolisnotimmediatelyfeasible,includingrecoqnitionthateveryreasonableeffortisbeingmadetoreduceoreliminatetheneedforrespirators;instructioninproceduresforensurinqthattherespiratorisinproperworkingcondition;instructioninfittingtherespiratorproperlyandcheckingadequacyoffit;instructionintheproperuseandmaintenanceoftherespirator;discussionoftheapplicationofvariouscartridqesandcanistersavailableforair-purifyingrespirators;instructioninemergencyaction-tobetakenintheeventofmalfunctionoftherespiratory'protectivedevices;reviewofradiationandcontaminationhazards,'ncludinqtheuseofotherprotectiveequi'pmentthatmaybeusedwithrespirators;classroom SSES-FSARandfieldtraininqtorecognizeandcopewithemergencysituations;andotherspecialtrainingasneededfor'specialuse.Individualswillberequiredto.donthedevice(s)thatmaybeused.performappropriatepressuretestsforleakdetection,andbeexposedtoachallengeatmosphere.Ifaquantitativetestdeviceisavailable,itwillbeutilizedtoquantitativelymeasureandrecordleakage.Ifleakageexceedsthedevicesratedprotectionfactorandretestsconfirmthis,theindividualwillnotbeapproved'ousethe'device.Ifquantitativetestingisnotpracticableor,unavailable,qualitativetestssuchasirritantsmokeorisoamylacetatemaybeusedasachallengeatmosphere.Detectionofodorwillbeconsideredafittingfailure.Aftersuccessfulcompletionoftrainingandfittingprograms,appropriaterecordswillbemaintainedtoassureindividualsareissuedonlytheapprovedtypeandmodelofprotectivedevice(s).Theserecordswillreflectexpirationdate'".Individualswillreceiveretrainingandreconfirmationofrespiratorfitonanannualbasis.RelatedrecordswillbemaintainedbytheTraininqSupervisorordesignatedalternate.12.S.3.7.2.6HealthPhysicsMonitorInitialTraini~nProgramAHealthPhysicsTraininqProgramwillbeadministeredtoapplicantsforthepositionofHealthPhysicsMonitorunderthedirectionoftheHealthPhysicsSupervisorordesignatedalternate.Thecontentofinstructionwilldependupontheexperienceandqualificationsoftheapplicantwithcoursecontentoutlinedinapprovedstationprocedures.ApplicantswithHealthPhysicsexperiencemaybewaivedfromparticipationinpartoralloftheinitialmonitortrainingprogram.All.applicantsmustdemonstratetheirproficiencybysuccessfullycompletinqtheMonitorQualificationExamination.Theinitialtraininqprogramwillcoveraperiodofapproximatelyone(l)yearfortheapplicantlackinqHealthPhysicsexperience.Theformaltrainingmayincludeinstructionbyoutsideconsultants,andparticipationatoperatingreactorfacilitiesinadditiontoonthejobtraining,in-houseinstructionandexaminations.ThefollowingisanoutlineoftheInitialMonitorTraininqProgram:IntroductiontoHealthPhysics,(Generaltopics:Mathematicalcomputations,BasicAtomicandNuclearPhysics,RadiationandRadioactiveDecay,Isotopeproductionanddisposal,ReactorPundamentals).12.5-65 SSES-FSARHealthPhysicsCourse(Generaltopics:RadiationandContaminationSurveysandControl,PostingRequirements,ALARAApplications,RespiratoryProtection,ProtectiveClothinq,HealthPhysicsProcedures,DecontaminationofPersonnelandEquipment.,AirMonitorOperationandResultsInterpretation,HealthPhysicsRecordKeeping,AppropriateStationPlansandProcedures,ApplicableRegulationsandLimits.RadiologicalEmergencyMonitoringProgram,RadiationWorkPermits(RWP),HealthPhysicsJobCoverage,PersonnelMonitorinq)BWRHealthPhysics(GeneralTopics:-'BWRSystems,BWROutage/Refueling,BWROperationalHealth'hysics)ReviewandMon'itorQualifyingExaminationHealthPhysicsSupervisionwillreviewtheapplicant'sproficiencyasdisplayedduringthetrainingprograms,examinationsandthemonitorqualificationexamination.ThesuccessfulcandidatewillbeassignedtheresponsibilitiesofHealthPhysicsMonitor.12.5.3.7.3.7HealthPhysicsMonitorRetrainingProgramAllHealthPhysicsMonitorswillreceivearetrainingreviewonanannualbasis.Thepurposeofthereviewwillbetostrengthenthemonitor'sunderstandingofHealthPhysicsapplicationsandstateoftheart'HealthPhysicstechnology.Reviewwillconsistofformaland/orinformaltrainingsessionsthatwillincludetopicssimilartothose-describedintheHealthPhysicscourseabove.Onemetho'd'fevaluatingthemonitor'scompetenceinseveralareasmaybethe'resentationofa'hypotheticalworksituationproblem'requirinqdemonstrationof'HealthPhysicsknowledqeinaloqicalprogression.Areasnotcoveredbytheproblemsolvinqprocesswillbeevaluatedbymeansofwrittenand/ororalexaminations.Recordsoftraininqsessionsandexaminations,willbeforwardedtotheTraininqSupervisor.An'evaluationwillbeperformedtoidentifyareaswheresupplementaryretrainingmaybenecessary.InformalsessionswillbeheldwiththemonitorbyamemberofHealthPhysicsSupervisiontodiscussareasofindividualconcernandadditionalretrainingneeds.F'4HealthPhysicsMonitorswillbesubjecttoalloranyportionoftheretrainingprocesswhendeemednecessarybytheHealthPhysicsSupervisorordesignatedalternatebasedonjobperformance.Monitors'mayalsorequestadditionaltrainingin12.5-66 SSES-FSA8areasofindividualinterest.AmemberofHealthPhysicsSupervisionwillevaluatesuchrequestsand,ifappropriate,administerspecializedinformaltrainingtosuit.individualneeds.Znthiscase,themonitor'sperformancewillnotbesubjecttoformal,documentedevaluation.12.5-67 SSFS-FSAR15.2.1l.115.21.1.215212FrequencyClassification(Identification.ofCausesFrequencyClassificationSequenceofEventsandSystemOperation15.2-115.2-115.2-115.2.1.2.1SequenceofF.vents15.2.1.2.1.1IdentificationofOperatorActions15+2115.2-215.2.1.2.2SystemsOpeation15.2.1.2.3TheEffectofSingleFailuresandOperatorErrors15.2.1.3CoreandSystemPerformanre15.2-215.2-215.2-215'.13115.2.1.3215.2.1.3.315.2.1.3.4MathematiralModelInputParametersandInitialConditionsResultsConsiderationofUncertainties15.2-215.2-215.2-315.2-3BarrierPerformanceRadiologica1Consequence:eneratorLoadRejection152.1.415.2.1.5152.2G152.2.1IdentificationofCausesandFrequencyClassifirationIdentificationofCausesFrequenryClassification15.2.2.1.1152.21215-2.2.1.2.1GeneratorLoadHejoetion15.2.2.2SequenceofEventsandSystemOperation15.2.2.2.1SequenceofEvents15.2.2.2.1522.2,15.2.22.15.2.2.2.1.1Generato"LoadRejection-TurhineControlValveFastClosu:e1.2GeneratorLoadRejectionwithFailureofBypass1.3IdentificationofOperatorActions2SystemOperation15.2.2.2.2.1GeneratorLoadRejectionwith15.2-315m2315.2-415.2-415.2-415.2-415.2-415.2-415.2-4152415.2-415.2-515.2-515.2-5Rev.26,9/8115-v SSES-FS'AR152.152.Bypass2.22.2GeneratorLoadReject.ionwi:thFailureofBypassk2.2.3TheEffectofSingleFailuresandOperatorErrors15.2-515.2-615.2.2.3CoreandSystem'Performance1'52-615.22.3.115223.2152.2.3.3152233.115.2.23.32MathematicalHodelInputParametersand?nit'ialConditionsResultsGenerator'LoadRejectionwithBypassGeneratorLoadRejectionwithFailureof.Bypass'15.2-6'15.2-615.2-7'15.2-715.2-715.2.2.3.4Considerationoftlncertainties15.2.2.4BarrierPerformance'15.2-715.2-8152.2.4.115.2.2.4.2GeneratorLoadRejectionGeneratorLoadRejectionwithFai:lureofBypass'15.2-81'5.2-815.2.2.5RadiologicalConsequence"15.2.3TurbineTrip'15..2-815.2-815.2.3.1152.3115m2m3~1~IdentificationofCausesandFrequencyClassification1Identificat.ionofCauses2FrequencyClassification15.2-815.2-815.2-915.2.3.1.2.1TurbineTrip'15..2-915.2.3.2SequenceofEventsandSystemsOperation'15.2-915.2.3.2.1SequenceofEvents1.1TurbineTrip1.2TurbineTriwith15.2.3.2.15.2.3.2.1523213pFailureoftheBypassIdentificationofOperatorAct.ions'15.2-915.2-9'152-9'15.2-915.2.3.2.2SystemsOperation"15.2-1'0Rev.26,9/8115-vi SSES-FSAH152.3.2.2.11523.2.2.21523223TurbineTripTurbineTripwithFailureof.theBypassTurbineTripatLowPowerwithFailureoftheBypass15.2-1015.2-1015.2-1115.2.3.2.3TheEffectofSingleFailuresandOperatorsErrors15.2-1115.23-2~3-11523232TurbineTripsatPowerLevelsGreaterThan674TurbineTripsatPowerLevelsLessThan304NBA15.2-1115.2-1115.2.3.3CoreandSystemPerformance152-1115.2.3.3.11523.32152.33.3MathematicalModel.'nputParametersandInitialConditionsResults15.2-11152-1215.2-1215.2.3.3.3.1152333215.2.3.3.3.3TurbineTripTurhineTripwithFailureofBypassTurbineTripwithBypassValveFailure,LowPower15.2-1215.2-1215.2-1215.2.3.3.4ConsiderationsofUncertainties15.2.3.4BarrierPerformance15.2-1315.2-1315.2.3.4.1152.342TurbineTripTurbineTripwithFailureoftheBypass15.2-'l315.2-1415.2.3.4.2.1TurbineTripwithFailureofBypassatLowPowe15.2.3.5RadiologicalConsequence=15.2.4NSIVClosures15.2.4.1IdentificationofCausesandFrequencyClassification152-1415.2-1515.2-1515.2-1515.2.4.115.2.4.1.2IdentificationofCausesFrequencyClassification15.2-1515.2-151524.1.2.115.2.41.2.2ClosureofAll'fain.SteamIsolationValvesClosureofOneHainSteamIsolationValve15.2-1515;2-16Rev.26,9/8115-vii SSES-FSAR15.2.'.2SequenceofEventsandSystemsOperation15.2.4.2.1SequenceofEvents152.4.2.1.1Identificationof'OperatorActions15.2-1615.2-1615~2-1615.2.4.2.2SystemsOperation15.2.'4.2.2.1ClosureofAllMainSteamIsolationValves15.2.4.2.2.2,ClosureofOneMainSteamIsolationValve152-1715.2-1715.2-1715.24.3115.243.2152.4.33MathematicalModelInputParametersandInitialConditionsResults15.2.4.3.3.1ClosureofAll"lainSteamIsolationValves15.2.4.2.3TheEffectofSingleFailuresandOperatorErrors15.2.4.3CoreandSystemPerfo"mance15.2-1815.2-1815.2-1815.2-1815.2-1915.2-1915.2.4.33.2ClosureofOneMainSteamIsolationValve152441152.44.2ClosureofA11MainSteamIsolationValvesClosureofOne'MainSteamIsloationValve15.2.4.3.4ConsiderationsofUncertainties15.2.4.4BarrierPerformance15.2-1915.2-1915.2-2015.2-20152-2015.2.4.5RadiologicalConsequences15.2.5LossofCondenserVacuum15.2.5.1Iden+ificationofCausesandFrequencyClassification15.2-2015.2-2115.2-2115.2.51.1152.512IdentificationofCausesFrequencyClassification15.2-2115.2-2115.2.5.2SequenceofFventsandSystems15.2-21Rev.26,9/8115-viii SSES-FSAROperation15.2.5.2.1SequenceofEvents15.2.5.2.1.1IdentificationofOperatorActions15.2.5.2.2SystemsOperation15.2.-5.2.3TheEffectofSingleFailuresandOperatorErrors15.2.5.3CoreandSystemPerformance152-2115.2-2115.2-2215.2-2215.2-2215;2.5.3.11525.3-215.2.5.3.3152534MathematicalModelInputParametersandInitialConditionsResultsConsiderationsofUncertainties15.2-2215.2-2.315.2-2315.2-2315.2.5.4BarrierPerformance15.2.55RadiologicalCon..equ..nces15.2.6LossofACPower15.2.6.1IdentificationofCause.andFrequencyClas-ification15.26.1.1IdentificationofCauses15.2.6.1.1.1LossofAuxiliaryPowerTransformer15.2.6.1.1.2LossofAllGridConnections15.2-2415.2-2415.2-2515.2-2515.2-2515.2-2515.2-251526.2SequenceofFventsandSystemsOperation15.2.6.2.1SequenceofEvents15.2.6.2.1.1LossofAuxilia=yPowerTransformer15.2.6.21.2LossofAllG"idConnections15.2.6.2.1.3IdentificationofOperatorActions15.2.61.2FrequencyClassificaion15.2.6.1.2.1LossofAuxiliaryPowerT"ansformer15.2.6.1.2.2LossofAllGridConnection15.2-2515.2-2515.2-2615.2-2615.2-2615.2-2615.2-2615.2-26152.6215.26.215.26.22SystemsOperation2.1LossofAuxiliayPowerTran.former2.2LossofAllGridConnections15.2-2715.2-2715.2-27Rev.26,9/8115-ix SSES-PSARjl15.2.6.2.3TheEffectofSingleFailuresandOperatorErrors15.2.6.3CoreandSystemPerformancet15.2.6.3.1MathematicalModel15.2.6.3.2InputParametersandInitialConditions152-28152-2815.2-2815.2-2815263211526322LossofAuxiliaryPowerTransformerTossofAllGridConnections152-2815.2-2815.2.6.3.3Results15.2-2915.2.6.3.3.1LossofAuxiliarypowerTransformer15.2.6.3.3.2LossofAllGridConnections'15.2-29152-2915.2.15.2.6.3.4ConsiderationofUncertaint.ies6.4BarrierPerformance15.2-29152-3015.2.6.4.115.2.6.4.2LossofAuxiliaryPowerTranformerLossofAllGridConnections15.2-3015.2-3015.2.6.5RadiologicalConsequences15.2.7LossofFeedwaterFlow15.?7.1IdentificationofCausesandFrequencyClassification15.2-30152-3115.2-3115.2.7.1.1IdentificationofCauses15.2.7.1.2FrequencyClassification15.2-3115.2-31152.7.2SequenceofEventsandSystemsOperation15.2-31152.7.2.1SequenceofEvents15.2.7.2.1.1IdentificationofOperatorActions15.2.7.2.2SystemsOperation15.2.7.2.3TheEffectofSingleFailureandOperatorErrors15.2.7.3CoreandSystemPerformance15.2-3115.2-3115.2-3215.2-3215.2-331527.3.115.2.7.3.215.2.73.3152734MathematicalModelInputParametersandIni"ialConditionsResultsConsiderationsofUncertaint.ies15.2-3315.2-3315.2-33'5.2-33Rev.26,9/8115-x SSES-FSAR'5.2.7.4BarrierPerformance15.2.7.5RadiologicalConsequences15.2.8FeedwaterLineBreak15.2..9FailureofRHRShutdownCooling15.2.9.1IdentificationofCausesandFrequencyClassification15.2.152.15.29.1.1IdentificationofCauses9.1.2FrequencyClassification9.2SequenceofFventsandSystemOperation15.2.9.2.1SequenceofEvents15.2.9.2.1.1IdentificationofOperatorActions152-3415.2-3415.2-3415.2-3415.2-3515.2-3515.2-3515.2-3615.2-3615.2-36152.9.2.215.2.92.3SystemOperationTheEffectofSingleFailuresandOperatorFrrors15.2-3615.2-3715.2.9.3CoreandSystemPerformance1D~23715.2.9.3.115.29.32Nethods,Assumptions,andConditionsResults15.2-3715.2-37152.932.115.2.93.2.2FullPower.toApproximately100psigApproximately100psigtoColdShutdown15.2-3815.2-3915.2.9.4BarrierPerformance15.2.9.5RadiologicalConsequences15.2.10References153DECREASEINREACTORCOOLANTSYSTE."l.LO'8RATE15.3.1RecirculationPumpTrip15.3.1.1IdentificationofCausesandFrequencyClassification15.2-4015.2-4115.2-4115.3-115.3-115.3-115.3.11.115.3.11.2IdentificationoF.CausesFrequencyClassification15.3-115.3.1.1.2.1TripofOneRecirculationPump15.3.1.1.2.2TripofTwoRecirculationPumps15.3.1.2SequenceofFventsandSystems153115.3-215.3-2Rev.26,9/8115-xi SSES-FSAROperation15.3.1.2.1SequenceofEvents15.'3-215.3.1.2.1.1TripofOneRecirculationPump15.3.1.2.1.2Tripof.TwoRecirculationPumps15.3.1.2.1.3IdentificationofOperator.Actions153-215.3-21'5.3--215.3.1.2.1.3.1TripofOneRecirrulationPump15.3.1.2.1.3.2TripofTwo,RecirculationPumps15.31.2.2SystemsOperation1'5'.3-215M3215,3-315315.3.15.3.1.2.2.1,Tripof.OneRecirculationPump1.2.2.2Tripof.TwoRecirculationPumps1.2.3TheEffectofSingleFailuresandOperatorErrors15.3-315.3--3'53-3153.1.2.3115.31.2.3.2TripofOneRecirculationPumpTripof,TwoRecirculationPumps15.3-3153315.3.1.3CoreandSystemPerformance15.,3-4-'5.3.153.15.3.1.3.1MathematicalMode11.3.2InputParametersandInitialConditions1.3.3Results15.3-4'.15.3-415.3-415.3.1.3.3.1Tripof.OneRecirculationPump15.3.1.3.3.2TripofTwoRecirculationPumps153.1.3.4Considerationof.Uncertainties15.3.1.4BarrierPerformance1'5;:3-'415.3-)15..3-515:3-515.3.1.4.1TripofOneRecirculationPump15.3.1.4.2TripofTwoRecirculationPumps15.3-515.3-515.3.1.5RadiologicalConsequences153.1.5RadiologicalConsequences15.3-615.3-'615.3.2RecirculationFlow.ControlFailure--DecreasingFlow1T>.3-'615.3.2.1IdentificationofCausesandFrequencyClassification15.3-615.3.2.1.1Identification.ofCause'5.3.2.1.2FrequencyClassificat.ion15;,3-'615.3-6Rev.26,9/8115-x.ii, SSES-FSAR15.3.2.2SequenceofEventsandSystemsOperation15.3.2.2.1SequenceofEvents15.3.2.2.1.1FailureofOneController-Closed15.3.2.2.1.2MasterControllerFailure-Closed15.3.2.2.1.3XdentificationofOperatorActions15.3.2.2.2Syst.emsOperation15.3.2.2.3TheEffeetofSingleFailuresandOperatorErrors15.3.2.3CoreandSystemPerformance15.3-7153-715.3-715.3-715.3-715.3-715.3-715.3-815.3.2.3115.3.2.3.2153.2.3.315.3.2.3.4MathematicalModelInputParametersandInitialConditionsResultsConsiderationofUncertainties153-815.3-815.3-815.3-815.3.2.4BarrierPerformance15.3.2.5RadiologicalConsequences15.3.3RecirculationPumpSeizure15.3.3.1Ident.ificationof,CausesandFrequencyCla.sification15.3.3.1.1IdentificationofCauses15.3.3.1.2FrequencyClassification15.3-915.3-915.3-915.3-915.3-1015.3-1015.3,3.2SequenceofEvent.sandSystemsOperations15.3-1015.3.3.2.1Sequenceof.Events15.3.3.2.1.1IdentificationofOperatorActions15.3.3.2.2System,Operation15.3.3.2.3TheEffectofSingleFailure..andOpeatorErrors15.3.3.3CoreandSystemPerformance15.3-1015.3-1015.3-1015.3-1115.3-1115.3.3.3.15.3.3.3.15.3.3.3.15.3.3.3.1MathematicalModel2InputParametersandInitialConditions3Results4ConsiderationsofUncertainties15.3-1115.3-1115.3-1115e31215.3.3.4BarrierPerformance15.3-12Rev.26,9/8115-xiii SSFS-FSAR15.3.3.5RadiologicalConsequences15.3.4RecirculationPumpShaftBreak15.3.4.1IdentificationofCausesandFrequencyClassification15.3-1215.3-1315.3-1315.3.4.1.115.3.4.1.2IdentificationofCausesFrequencyClassification153-1315.3-1315.3.4.2SequenceofEventsandSystemsOperations15.3.4.2.1SequenceofFvents15.3'.4.2.1.1IdentificationofOperatorActions15.3-1415.3-1415.3-1415.34.2.215.3.4.2.3SystemsOperationTheEffectofSingleFailuresandOperatorErrors15.3-1415.3-1415.3.4.3CoreandSystemPerformance15.3.4.3.1QualitativeResults15.3.4.4BarrierPerformance15.3.4.5RadiologicalConsequences15.4REACTIvITyANDPOMFRnISTRIBUTIONANONALIFS15.4.1RodMithdrawalFrror-LowPower15.4.1.1Contro1RodRemovalFrrorDuringRcfueling15.3-1515.3-1515.3-16153-1615.4-115.4-115.4-115.4.11.115.4.1.1.2IdentificationofCausesandFrequencyClassificationSequenceofEventsandSystemsOperation15.4-1154-115.4.11.2.115.4.1.1.2.215.4.1.1.2.315.4.1.1.2.415.4.1.1.2.515.4.1.1315.4.1.1.415.4.1.1.5InitialControlRodRemovalFuelHovementVithControlRodRemovedControlRodRemoval'lithoutFuelRemovalIdentificationofOperatorActionsFffectofSingleFailureandOperatorFrrorsCoreandSystemPerformancesBarrierPerformanceRadiologicalConsequences15.4-11S.4-115.4-215.4-215.4-.215.4-215.4-315.4-3Rev.26,9/8115-xiv SSES-FSAR15.3.2.).1~IdentificationofCauses15.3.2.1.2FreguencyClassification15.3.2.'2SeguenceofEventsandSysteasOperation15'.3.2.2.1SeguenceofEvents15.3.2.2.1.1FailureofOneController-Closed15.3.2.2.1.2.BasterControllerFailure-Closed15.3.2.2.1.3,IdentificationofOperatorActions15.3-615.3-615.3-715.3-715.3-7153-715.3-7153222153223SystemsOperationTheEffectofSingleFailuresandOperatorErrors15.3-715.3-715.3.2.3CoreandSystemPerformance15.3-815.323.115.3.2.3.215.3.23315'2-34HathematicalHodelInputParametersandInitialConditionsResults'JConsiderationofUncertainties15.3-8153-8153-8153-815.3.2.4BarrierPerformance15.3.2.5RadiologicalConseguences15.3.3RecirculationPumpSeizure15.3.3.1IdentificationofCausesandFrequencyClassification15.3-9153-9153-915.3-915.33.11'l533.1-2IdentificationofCausesFrequencyClassification153-10153-1015.3.3.2SeguenceofEventsandSystemsOperations15.3.3.2.1SequenceofEvents15.3.3.2.1.1IdentificationofOperatorActions15.3.3.2.2SystemsOperation15.3.3.2.3TheEffectofSingleFailuresandOperatorErrors-15.3.3.3CoreandSystemPerformance153-1015.3-10153-1015.3-1015.3-1115.3-111533.31533.3.2MathematicalModelInputParametersandInitialConditions15.3-1115.3-11Rev.16,7/8015-xiii SSES-PSAR153.3.3.3Results15;3.3.3.4ConsiderationsofUncertainties153-1115'-1215.3.3.0BarrierPerformance15.3.3.5RadiologicalConsequences15.3.0RecirculationPumpShaftBreak15.3.4.1IdentificationofCausesandFreguencyClassificationIdentificationofCausesPreguencyClassification15301.115341215.3.4.2Sequence"ofEventsandSystemsOperations'I15.3.4.2.1SequenceofEvents15.3.0.2.1.1IdentificationofOperatorActions15.3.4.2.2SystemsOperation15..3.4.2.3TheEffectofSingleFailuresandOperatorErrors15.3.4.3CoreandSystemPerformance15.3.0.3.1{}ualitativeResults15.4.1RodWithdrawalError-LowPower15.4.1.1ControlRodRemovalErrorDuringRefueling15.3.4.0BarrierPerformance15.3.0.5RadiologicalConseguences154REACTIVITYANDPOWERDISTRIBUTIONANOMALIES15.3-1215.3-1215.3-1315.3-1315.3-13153-1315-3-1415.3-1415.3-10153-1015.3-14153-15153-1515.3-1615.3-1615.4-115.4-115.4-115415.01.1.1IdentificationofCausesandPrequencyClassification1.1.2,Sequence.ofEventsandSystemsOp~ration154-115.4-115411.2115.41.1.2.215.4112315.0.1..1.2.0150.11-25InitialControlBodRemovalFuelHovementWithControlRodRemovedControlBodRemovalWithoutFuelRemovalIdentification-ofOperatorActionsEffectofSingleFailureandOperatorErrors154-1154-115.4-2154-2154-2Rev.l6,7/8015-xiv SSES-FSAR15.4.1.2ContinuousRodWithdrawalDuringReactorStartup154-315.4.1.2.115.4.1.2215.4.1.22.115.4.1.2.2.215.4.122.315.4.12.315412.415.4.1.2.5IdentificationofCausesandFrequencyClassifica.ionSequenceofEventsandSystemsOperationSequenceofFventsIdentificationofOpe'ratorActionsEffectsofSingleFailureandOperatorErrorsCoreandSystemPerformanceBarrierPerformanceRadiologicalConsequences15.4-3154-315.4-315.4-415.4-415.4-415.4-415.4-515.4.2RodWithdrawalFrror-atPower15.4-515.4.2.1IdentificationofCausesandFrequencyClassification-15.4-515.4.2.1.1IdentificationofCauses15.4.2.1.2FrequencyClassification15.4.2.2SequenceofFventsandSystemsOperation15.4-515.4-515.4-515.4.2.2.115.4.2.2.215.4.2.2.3Sequenceof";,ventsSystemOperationsEffectofSingleFailureandOperatorErrors15.4-515.4-615.4-615.4.2.3.115.4.2.3.2MathematicalModelInputParametersand'InitialConditions15.4.2.3.2.1REMSystemOperation15.4.2.3CoreandSystemPerformance15.4-715.4-715.4-715.4-815.4.2.3.315.4.2.3.4ResultsConsiderationsofUncertainties15.4-915.4-915.4.2.4BarrierPerformance15.4.2.5RadiologicalConsequences15.4-915.4-915.4.15.4.3ControlRodMaloperation(SystemMalfunctionorOperatorError)4AhnormalStartupofIdleRecirculationPump15-4-1015.4-10Rev.26,9/8115-xv SSES-FSAR15.4.4.1IdentificationofCausesandFrequencyClassification15.4-1015.4.4.1.1IdentificationofCauses15.4.4.1.1.115.4.4.11.2NormalRestartofRecirculationPumpatPowerAbnormalStartupofIdleRecirculationPump154.4.215.4.42.SequenceofEventsandSystemsOperation1SequenceofFvents15.4.4.2.1.1OperatorActions15.4.4.2.2SystemsOperation15.4.4.2.3TheEffectofSingleFailuresandOperat.orF.rrors15.44.3CoreandSystemPerformance15.4-1015.4-1015.4-10154-1015.4-10154-1015.4-1115.4-1115.4-12154.4.3.115.4.4.3.215.4.4.3.315.443.4MathematicalModelInputParametersand.InitialConditionsResultsConsiderat.ionofUncertainties154-1215.4-1215.4-1215.4-1315.4.4.4BarrierPe"formance15.4.4.5RadiologicalConsequences15.4.5RecirculationFlowControlFailurewithIncreasingFlow15.4-1315.4-13154-1415.4.51IdentificationofCausesandFrequency'lassification15.4-1415.4.5.1.1IdentificationofCause=15.4.5.1.2'FrequencyClassification15.4-1415.4-1415.4.5.2SequenceofFvent.sandSystemsOperation15.4-1415.4.5.2.1SequenceofFvents154.5.2.15.4.5.2.15.4.5.2.1.1IdentificationofOperatorActions2SystemOperation3TheEffectofSingleFailuresandOperatorFrrors15.4-1415.4-14154-1515.4-15Rev.26,9/8115-xvi SSES-FSAR15.4.5.3CoreandSystemPerformance15.4-1615.4.5.3.115.4.5.3.2154.5.3.315.4.5.3.4NathematicalNodelInputParametersandInitialConditionsResultsConsiderationsofUncertainties15.4-16154-16154-1615.4-1615.4.5.4BarrierPerformance15.4.5.5RadiologicalConsequences15.4.15.4.6ChemicalandVolumeControlSystemNalfunctions7NisplacedBundleAccident15.47.1IdentificationofCausesandFrequencyClassificat.ion15.4-1715.4-1715.4-1715.4-1715.4-1715.4.15.4.15.4.7.1.1IdentificationofCauses7.1.2FrequencyofOccurrence7-2SequenceofFventsandSystemsOperation154-1715.4-1715.4-1815.4.7.2.1EffectofSingleFailureandOperatorErrors15.4.7.3CoreandSystemPerformance154-1815.4-1815.47.3.115.4.7.3.215.47.33154~7.34NathematicalNodelInput.ParametersandInitialConditionsResultsConsiderationsofUncertainties15.4-1815.4-181541915.4-1915.4.7.4BarrierPerformance15.4.7.5RadiologicalConsequence.15.4.8SpectrumofRodEjectionAssemblies15.4.9ControlRodDropAccident(CRDA)15.4.9.1IdentificationofCause~andFrequencyClassification15.4-2015.4-"g015.4-2015.4-2015.4-2015.4.9.1.1IdentificationofCauses15.4.9.1.2FrequencyofClassification15.4.9.2SequenceofFventsandSystemOperation15.4-2015.4-21154-21Rev.26,9/8115-xvii SSFS-FSAR15.4.9.2.1SequenceofEvents154-21154.9.2.215.4.92.3SystemsOperationFffeetoXSingleFailuresandOperatorErrors154154-2215.4.9.3CoreandSystemPerformance15.4-2215493115.4.9.3-2154933MathematicalModelInputParametersandInitialConditionsResults15.4-2215.4-2215.4-2315.4.9.4BarrierPerformance15.4.9.5RadiologicalConsequences154-2315423154.9.5.115.4.9.5.2DesignBasisAnalysisRealisticAnalysis15.4-24154-2415.4.10References155INCREASEINREACTORCOOLANTINVENTORY15.5.1InadvertentHPCIStartup154-26155-1155-115.5.l.1IdentificationofCaus>sandFrequencyClassification15.5-115.5.1.1.1IdentificationofCauses15.5.1.1.2FrequencyClassification15.5-115.5-115.5.1.2SequenceofFventsandSystemsOperation15.5-115.5.1.2.1SequenceofEvents15.5.1.2.1.1IdentificationofOperatorActions15.5-115.5-115.5.1.2.15.5.1.2.15.5.1.32SystemOperation3TheEffectofSingleFailuresandOperatorErrorsCoreandSystemPerformance15.5-215.5-215.5-215.5.1.3.115.5.1.3.215.5.1.3.315.5.1.3.4MathematicalModelInputParameterandXnitialConditionsResultsConsiderationofUncertainties15.5-215.5-215.5-315.5-315.5.1.4BarrierPerformance15.5-3Rev.26,9/8115-xviii SSES-PSAR150ACCIDENTANALYSESInthischaptertheeffectsofanticipatedprocessdisturbancesandpostulatedcomponentfailuresareexaminedtodeterminetheirconsequencesandtoevaluatethecapabilitybuiltintotheplanttocontrolor'accommodatesuchfailuresandevents.Thescopeofthesituationsanalyzedincludesanticipated{expected)operationaloccurrences(e.g.,lossofelectricalload),abnormal(unexpected)transientsthatinducesystemoperationsconditiondisturbances,,postulatedaccidentsoflowprobability(eq.,thesuddenlossofintegrityofamajorcomponent),andfinallyhypotheticaleventsofextremelylowprobability(e.g.,ananticipatedtransientwithouttheoperationoftheentirecontrolroddrivesystem).1501ANALYTICALOBJECTIVEThespectrumofpostulatedinitiatingeventsisdividedintocategoriesbaseduponthetypeofdisturbanceandtheexpectedfrequencyoftheinitiatinqoccurrence;thelimitingeventsineachcombinationofcategoryandfrequencyarequantitativelyanalyzed.Theplantsafetyanalysisevaluatestheabilityoftheplanttooperatewithinregulatoryguidelines,withoutunduerisktothepublichealthandsafety.1502ANALYTICALCATEGORIESTransientandaccidenteventscontainedinthisreportarediscussedinindividualcategoriesasrequiredbyReference15.0-1.TheresultsoftheeventsaresummarizedinTable150-1Eacheventisassiqnedtooneofthefollowingapplicablecategories:lDecreaseinCoreCoolantTemerature:Reactorvesselwater(moderator)temperaturereductionresultsinanincreaseincorereactivity.Thiscouldlead.tofuel-claddingdamage.2IncreaseinReactorPressure:Nuclearsystempressureincreasesthreatentorupturethereactorcoolantpressureboundary(BCPB).Increasingpressurealsocollapsesthevoidsinthecore-moderatortherebyincreasingcorereactivityandpowerlevelwhichthreatenfuelcladdingduetooverheating150-1 SSES-FSAR3.DecreaseinReactorCoreCoolantFlowRate:Areductioninthecorecoolantflowratethreatenstooverheatthecladdingasthecoolantbecomesunabletoadequatelyremovetheheatgeneratedbythefuel.4.Reactiv~itandPoverDistributionAnomalies:Transienteventsincludedinthiscategoryarethosewhichcauserapidincreasesinpowerwhichareduetoincreasedcoreflowdisturbanceevents.Increasedcoreflowreducesthevoidcontentofthemoderatorincreasingcorereactivityandpowerleve1.Increasingcoolantinventorycouldresultinexcessivemoisturecarryovertothemainturbine,feedwaterturbines,-etc.6.DecreaseinReactorCoolantla~venterReductionsincoolantinventorycouldthreatenthefuelasthecoolantbecomeslessabletoremovetheheatgeneratedinthecore.7.radioactiveReleasefromaSubsstemorComponent:Lossofintegrityofaradioactivecontainmentcomponentispostulated.8-~AnticiatedTransientsRithoutScram:Znordertodeterminethecapabilityofplantdesigntoaccommodateanextremelylowprobabilityevent,amulti-systemmaloperationplusmulti-singleactivecomponentfailures{SACF)situationispostulated.1503EVENTEVALDATION15-0.3.1IdentificationofCausesandPreuencyClassificationSituationsandcauseswhichleadtotheinitiatingeventanalyzedaredescribedwithinthecategoriesdesignatedabove.Thefrequencyofoccurrenceofeacheventissummarizedbaseduponcurrentlyavailableoperatingplanthistoryforthetransientevent.Eventsforwhichinconclusivedataexistsarediscussedseparatelywithineacheventsection15.0-2 SSES-FSAREachinitiatingeventwithinthemajorgroupsisassignedtooneofthefollowingfrequencyqroups:-l.Incidentsofmoderatefrequency-theseareincidentsthatmayoccurdurinqacalendaryeartoonceper20yearsforaparticularplant.Thiseventisreferredtoasan"anticipated(expected)operationaltransient."2.Infrequentincidents-theseareincidentsthatmayoccurduringthelifeoftheparticularplant{spanningoncein20yearstooncein100years).Thiseventisreferredtoasan<<abnormal(unexpected)operationaltransient."3.Limitingfaults-theseareoccurrencesthatarenotexpectedtooccurbutarepostulatedbecausetheirconsequencesmayresultinthereleaseofsignificantamountsofradioactivematerial.Thiseventisreferredtoasa"designbasis(postulated)accident.<<4.Normaloperation-operationsofhighfrequencyarenotdiscussedherebutareexaminedalongwith(1),(2),and(3)inthenuclearsystemsoperationalanalysesinAppendix15A.15.0.3.1.1UnacceptableResultsforIncidentsofModerateFrequencynnticiateddxected0erationalTransientsThefollowingareconsideredtobeunacceptablesafetyresultsforincidentsofmoderatefrequency(anticipatedoperationaltransients):1.Areleaseofradioactivematerialtotheenvironsthatexceedsthelimitsof10CFR20.2.Reactoroperationinducedfuelcladdingfailure.3.Nuclearsystemstressesinexcessofthatallowedforthetransientclassificationbyapplicableindustrycodes.4.Containmentstressesinexcessofthatallowedforthetransientclassificationbyapplicableindustrycodes.15.0.3.1.2UnacceptableResultsforInfrequentIncidents{Abnormal~Une~xected0erationalTransientsThefollowingareconsideredtobeunacceptablesafetyresultsforinfrequentincidents(abnormaloperationaltransients);150-3 SSES-FSAH1.Releaseofradioactivitywhichresultsindoseconsequencesthatexceedasmallfractionof10CPR100.2.Fueldamagethatwouldprecluderesumptionofnormaloperation'fteranormalrestart.b3.Generationofaconditionthatresultsinconsequentiallossoffunctionofthereactorcoolantsystem.4.Generationofaconditionthatresultsinaconsequentiallossoffunctionofanecessarycontainmentbarrier.15.0.3.1.3UnacceptableResults,forLimitingFaults(DesignBasisThefollowingareconsideredtobeunacceptablesafetyresultsforlimitinq.faults(designbasisaccidents):1.Radioactivematerialreleasewhichresultsindoseconsequencesthatexceedtheguidelinevaluesof10CFR100.2.Failureoffuelcladdingwhichwouldcausechangesincoreqeometrysuchthatcorecoolingwouldbeinhibited.3.Huclearsystemstressesinexcessofthoseallowedfortheaccidentclassificationbyapplicableindustrycodes.4Containmentstressesinexcessof-thoseallowedfortheaccidentclassificationbyapplicableindustrycodeswhencontainmentisreguired.5.Radiationexposuretoplantoperationspersonnelinthemaincontrolroominexcessof5Remwholebody,30Reminhalation,and75Remskin.15.0.32S~enenceofEventsand~ns~tems0enationsEachtransientoraccidentisdiscussedandevaluatedintermsof:l.Astep-by-stepsequenceofeventsfrominitiationtofinalstabilizedcondition.2e3eTheextenttowhichnormallyoperatingplantinstrumentationandcontrolsareassumedtofunction.TheextenttowhichplantandreactorProtectionsystemsarerequired.tofunction.150-4 SSES-FSAR4.Thecredittakenforthefunctioningofnormallyoperatingplantsystems.5.Theoperationofengineeredsafetysystemsthatisrequired.6.Theeffectofasinglefailureoranoperatorerrorontheevent.15.0.3.2.1SinleFailuresor0eratorErrors15.0.3.2.1.1GeneralThisparagraphdiscussesaveryimportantconceptpertainingtotheapplicationofsinglefailuresandoperatorerrorstoanalysesofthepostulatedevents.Singleactivecomponentfailure(SACF)criteriahavebeenrequiredandsuccessfullyappliedonpastNRCapproveddocketapplicationstodesignbasisaccidentcategories~onl.Reference15.0-1infersthata"singlefailuresandOperatorerrors"requirementshouldbeappliedtotransientevents(bothhigh,moderate,andlowprobabilityoccurrences)aswellasaccident(verylowprobability)situations.Transientevaluationshavebeenjudgedagainstacriteriaofonesingleequipmentfailure"or"onesingleoperatorerrorastheinitiatingeventwithnoadditionalsinglefailureassumptionstotheprotectivesequencesalthoughagreatma)orityoftheseprotectivesequencesutilizedsafetysystemswhichcanaccommodateSACFaspects.Evenunderthesepostulatedevents,theplantdamageallowancesorlimitswereverymuchthesameasthosefornormaloperation.1)anequipmentfailureoranoperatorerror,andReference15.0-1suggeststhatthetransientandaccidentscenariosshouldnowinclude"and"(multi-failure)'eventsequences.Theformatrequestfollows:ForinitiatinoccurrenceForsinleeuimentfailureoroeratorerroranalsi.s2)anotherequipmentfailureorfailuresand/oranotheroperatorerrororerrors'hisisconsideredanewrequirementandtheimpactwillneedtobecompletelyevaluated.WhilethisisunderconsiderationGEhasevaluatedandpresentedthetransi.entsandaccidentsinthischapterintheabovenewrequirementmanner.Rev.26,9/8115.0-5 SSES-FSAREventcategorizationrelativetotransientandaccidentanalysisisdiscussedhere.Iftheevaluationisdoneperthenewmulti-failuremethods,theeventfrequencycategoriesshouldbemodified.Theoriginalcategorizationofeventswasbasedonfrequencyoftheinitiatingeventaloneandthustheallowanceorlimitwasaccordinglyestablishedbasedonthathighfrequencylevel.Withtheintroductionofadditionalassumptionsandconditions(initialeventandSCFand/orSOE),thetotaleventwouldnotfallintoalowerfrequency/probabilitycategory.Thus,lessrestrictivelimitsorallowancesshouldbeappliedintheanalysisoftransientsandaccidents.Thisneedstobeconsideredandevaluated.GEhasevaluatedandpresentedthetransientsandaccidentsinthischapterbythemorerestrictiveoldallowancesandlimitsoftheeventcategorizationpresentlyineffect.Mosteventspostulatedforconsiderationarealreadytheresultsofsingleequipmentfailuresorsingleoperatorerrorsthathavebeenpostulatedduringanynormalorplannedmodeofplantoperations.Thetypesofoperationalsinglefailuresandoperatorserrorsconsideredasinitiatingeventsandsubsequentprotectivesequencechallengesareidentifiedinthefollowingparagraphs:15.0.3.2.1.2InitiatinEventAnalsis1.Theundesiredopeningorclosingofanysinglevalve(acheckvalveisnotassumedtocloseagainstnormalflow)or2.Theundesiredstartingorstoppingofanysinglecomponentor3.Themalfunctionormaloperationofanysinglecontroldeviceor4.Anysingleelectricalcomponentfailureor5.Anysingleoperatorerror.Rev.26,9/8115.0-6 SSES-FSAR\'Operatorerrorisdefinedasanactivedeviationfrom~ittenoperatingproceduresornuclearplantstandardoperatingpractices.Asingleoperatorerroristhesetofactionsthatisadirectconsequenceofasingleerroneousdecision.Thesot.ofactionsislimitedasfollows:1.Thoseactionsthatcouldbeperformedbyoneperson.2.Thoseactionsthatwouldhaveconstitutedacorrectprocedurehadtheinitialdecisionbeencorrect.3.Thoseactionsthataresubsequenttotheinitialoperatorerrorandhaveaneffectonthedesignedoperationoftheplant,butarenotnecessarilydirectlyrelatedtotheoperatorerror.Examplesofsingleoperatorerrorsareasfollows:l.Anincreaseinpowerabovetheestablishedflowcontrolpowerlimitsbycontrolrodwithdrawalinthespecifiedsequences.2.Theselectionandcompletewithdrawalofasinglecontrol-.rodoutofsequence.3.Anincorrectcalibrationofanaveragepowerrangemonitor.4.Manualisolationofthemainsteamlinesasaresultofoperatormisinterpretationofanalarmorindication.15.0.3.2.1.3SingleActiveComponentFailureorSingleOperatorFailureAnalsis1.Theundesiredactionormaloperationofasingleactivecomponentor2,AnysingleoperatorerrorwhereoperatorerrorsaredefipedasinSubsection15.0.3.2.1.2.15.0.3.3CoreandSstemPerformance15.0.3.3.1IntroductionSection4.4describesthevariousfuelfailuremechanisms.Avoidanceofunacceptablesafetylimits1and2(SubsectionRev.26,9/8115.0-7 SSES-FSAR4.4.1.4)forincidentsofmoderatefrequencyisverifiedstatisticallywithconsiderationgiventodate,calculation,manufacturing,andoperatinguncertainties.Anacceptablecriterionwasdeterminedtobethat99.9%ofthefuelrodsinthecorewouldnotbeexpectedtoexperienceboilingtransition(seeReference15.0-2).Thiscriterionismetbydemonstratingthattransientsdonotresultinaminimumcriticalpowerratio(MCPR)lessthan1.06.ThereactorsteadystateCPRoperatinglimitisderivedbydeterminingthedecreaseinMCPRforthemostlimitingevent.AllothereventresultinsmallerMCPRdecreasesandarenotreviewedindepthinthischapter.TheMCPRduringsignificantabnormaleventsiscalculatedusingatransientcoreheattransferanalysiscomputerprogram.Thecomputerprogramisbasedonamultinode,singlechannelthermalhydraulicmodelwhichrequiressimultaneoussolutionofthepartialdifferentialequationsfortheconservationofmass,energy,andmomentuminthebundle,andwhichaccountsforaxialvariationinpowergeneration.Theprimaryinputstothemodelincludeaphysicaldescriptionofthebundle,andchannelinletflowandenthalpy,pressureandpowergenerationasfunctionsoftime.AdetaileddescriptionoftheanalyticalmodelmaybefoundinAppendixCofReference15.0-2.Determinationofthesteady-stateoperatinglimitisaccomplishedasfollows:1.Thechangeincriticalpowerratio(QCPR)whichwouldresultinthesafetylimitCPR(1.06)beingreached,iscalculatedforeachevent.ThesevaluesareshowninTable15.0-1.2.The<CPRvalueisthenaddedtothesafetylimitCPRvalue(1.06)toresultintheeventbasedMCPRexceptforeventswhoseACPRiscalculatedusingODYN.3.ForeventswhoseLCPRisdeterminedbyODYN(allrapidpressurzationevents)theeventbasedMCPRisdeterminedinconjunctionwithcorrectionfactors,theACPRandthesafetylimitCPR.Thesecorrectionfactorsareexplained'ndetailinSection3/4.2.3oftheTechnicalSpecifications.TheseresultsaregiveninTable15.0-5andFigure15.0-3forthelimitingtransients.TheoperatinglimitMCPRisthemaximumvalueoftheeventMCPRscalculatedfromthetransientanalysis.ThemaximumcalculatedtransientMCPRisdepictedbythesolidlineinFigure15.0-3.MaintainingtheCPRoperatinglimitatorabovethisoperatinglimitassuresthatthesafetylimitCPRof1.06isneverviolated.Forsituationsinwhichfueldamageissustained,theeventofdamageisdeterminedbycorrelatingfuelenergycontent,claddingRev.26,.9/8115.0-8 SSES-FSARtemperature,fuelrodinternalpressure,andcladdingmechanicalcharacteristics.ThesecorrelationsaresubstantiatedbyfuelrodfailuretestsandarediscussedinSection4.4andSection6.3.15.0.3.3.2InputParametersandInitialConditionsforAnalyzedEventsIngeneraltheeventsanalyzedwithinthissectionhavevaluesforinputparametersandinitialconditionsasspecifiedinTable15.0-2.Analyseswhichassumedatainputsdifferentthanthesevaluesaredesignatedaccordinglyintheappropriateeventdiscussion.15.0.3.3.3InitialPower/Flow0eratinConstraintsTheanalysisbasisformostofthetransientsafetyanalysesisthethermalpoweratratedcoreflow(100%)correspondingto105%NuclearBoilerRatedsteamflow.Thisoperatingpointistheapexofaboundedoperatingpower/flowmapwhich,inresponsetoanyclassifiedabnormaloperationaltransients,willyieldtheminimumpressureandthermalmarginsofanyoperatingpointwithintheboundedmap.ReferringtoFigure15.0-1,theapexoftheboundedpower/flowmapispointA,theupperboundisthedesignflowcontrolline(105%,rodlineA-D'),thelowerboundisthezeropowerlineH'-J',therightboundistheratedpumpspeedlineA-H',andtheleftboundiseithertheminimumpumpspeedlineD-JorthenaturalcirculationlineD'-J'.Thepower/flowmap,A-D'-J'-H-A,representstheacceptableoperationalconstraintsforabnormaloperationaltransientevaluations.Anyotherconstraintwhichmaytruncatetheboundedpower/flowmapmustbeobserved,suchastherecirculationvalveandpumpcavitationregions,thelicensedpowerlimitandotherrestrictionsbasedonpressureandthermalmargincriteria.Forinstance,ifthelicensedpoweris100%nuclearpowerrated(NBR),thepower/flowmapistruncatedbythelineB-CandreactoroperationmustbeconfinedwithintheboundaryB-C-D'-J'-J-L-K-B.Ifthemaximumoperatingpowerlevelhastobelimited,suchaspointF,tosatisfypressuremargincriteria,theupperconstraintonpower/flowiscorrespondinglyreducedtotherodline,suchaslineFG',whichintersectsthepower/flowcoordinateofthenewoperatingbasis.Inthiscase,theoperatingboundswouldbeF-G'-J'-J'-J-L-K-F.OperationwouldnotbeallowedatanypointalonglineF-H,removedfrompointF,Rev.26,9/Sl15.0-9 SSES-FSARatthederatedpowerbutatreducedflow.If,however,operatinglimitationsareimposedbyGETABderivedfromtransientdatawithanoperatingbasisatpointA,thepower/flowboundaryfor100%NBRlicensedpowerwouldbeB-C-D'-O'-J-L-K-B.Thispower/flowboundarywouldbetruncatedbytheMCPRoperatinglimitforwhichthereisnodirectcorrelationtoalineonthepower/flowboundaryandwithintheconstraintsimposedbyGETAB.IfoperationisrestrictedtopointFbytheMCPRoperatinglimit,operationatpointMwouldbeallowedprovidedtheMCPRlimitisnotviolated.Consequently,theupperoperatingpower/flowlimitofareactorispredicatedontheoperatingbasisoftheanalysisandthecorrespondingconstantrodpatternline.ThisboundarymaybetruncatedbythelicensedpowerandtheGETABoperatinglimit.Certainlocalizedeventsareevaluatedatotherthantheabovementionedconditions.Theseconditionsarediscussedpertinenttotheappropriateevent.15.0.3.3.4ResultsTheresultsofanalyticalevaluationsareprovidedforeachevent.InadditioncriticalparametersareshowninTable15.0-1.FromthedatainTable15.0-1anevaluationofthelimitingeventforthatparticularcategoryandparametercanbemade.InTable15.0-1Aasummaryofapplicableaccidentsisprovided.ThistablecomparestheGEcalculatedamountoffailedfueltothatusedinworstcaseRadiologicalCalculations.15.0.3.5BarrierPerformanceThissectionprimarilyevaluatestheperformanceoftheReactorCoolantPressureBoundary(RCPB)andtheContainmentSystemduringtransientsandaccidents.DuringtransientsthatoccurwithnoreleaseofcoolanttothecontainmentonlyRCPBperformanceisconsidered.Ifreleasetothecontainmentoccursasinthecaseoflimitingfaults,thenchallengestothecontainmentareevaluatedaswell.Containmentintegrityismaintainedsolongasinternalpressuresremainbelowthemaximumallowablevalues.Thedesigninternalpressuresareasfollows:Drywell(primarycontainment)53psigSuppressionChamber(primarycontainment53psigRev.26,9/8115.0-10,' SSES-FSARSecondaryContainment7in.H20Damagetoanyoftheradioactivematerialbarriersasaresultofaccident-initiatedfluidimpingementandgetforcesisconsideredintheotherportionsoftheFSARwherethemechanicaldesignfeaturesofsystemsandcomponentsaredescribed.Designbasisaccidentsareusedindeterminingthesizingandstrengthrequirementsoftheessentialnuclearsystemcomponents.Acomparisonoftheaccidentsconsideredinthissectionwiththoseusedinthemechanicaldesignofequipmentrevealseitherthattheapplicableaccidentsarethesameorthattheaccidentinthissectionresultsinlessseverestressesthanthoseassumedformechanicaldesign.15.0.3.6RadioloicalConseuencesInthischapter,theconsequencesofradioactiveityreleasedduringthethreetypesofevents:a)incidentsofmoderatefrequency(anticipatedoperationaltransients),(b)infrequentincidents(abnormaloperationaltransients),andc)limitingfaults(designbasisaccidents)areconsidered.Foralleventswhoseconsequencesarelimitingadetailedquantitativeevaluationispresented.Fornon-limitingeventsaqualitativeevaluationispresentedorresultsarereferencedfromamorelimitingorenvelopingcaseorevent.Forlimitingfaults(designbasisaccidents)twoquantitativeanalysesareconsidered:1.ThefirstisbasedonconservativeassumptionsconsideredtobeacceptabletotheNRCforthepurposesofboundingtheeventanddeterminingtheadequacyoftheplantdesigntomeet10CFRPart100guidelines.Thisanalysesisreferredtoasthe"designbasisanalysis."2.Thesecondisbasedonrealisticassumptionsconsideredtoreflectexpectedradiologicalconsequences.Thisanalysisisreferredtoasthe"realisticanalysis."ResultsforbothareshowntobewithinNRCguidelines.AtmoshericDisersionParametersShort-termsite-specificX/Q'swerecalculatedasdescribedinSection2.3.Fortheconservativecase,the5percentprobabilitylevelX/Q'swereusedinthedosecalculations.Theresultantoffsitedosesareconservative.Fortherealisticcase,50percentprobabilitylevelX/Q'swereused.The5and50 SSES-FSARpercentlevelX/Q'saregiveninTables15.0-3and15.0-4,respectively.15.0.4NuclearSafet0erationalAnalsisNSARelationshiAppendix15Aisacomprehensivesystem-level,qualitativeFMEA,relativetoalltheeventsconsidered,theprotectivesequencesutilizedtoaccommodatetheeventsandtheireffects,andthesystemsinvolvedintheprotectiveactions.Interdependencyofanalysisandcross-referralofprotectiveactionsisanintegralpartofthischapterandtheappendix.ContainedinAppendix15Aisasummarytablewhichclassifieseventsbyfrequencyonly(i.e.,notjustwithinagivencategorysuchasDecreaseinCoreCoolantTemperature).15.

0.5REFERENCES

15.0-1UnitedStatesNuclearRegulatoryCommissionRegulationGuide1.70Revision2(Preliminary),September1975,"StandardFormatandContentofSafetyAnalysisReportforNuclearPowerPlants,LightWaterReactorEdition."15.0-2"GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication,"November1973,(NEDO-10959andNEDE-10958).Rev.26,9/8115.0-12 TABLE15.0-1(cont'd)Page2of3SubsectionI.D.Figurein~DascxizionMaximumNeutronFluxNBRMaximumDomePressure~dMaximumVesselPressure~atMaximumSteamLinePressure~atMaximumCoreAverageSurfaceHeatFluxZofInitialDuration-ofBlowdownsecDurationofBlowdownNo.ofValves1stFrequencyBlow-~tatatadmm15.2.515.2.615.2.615.2.715.2.815.2.915'15.2-6LossofCondenserVacuum15.2-7LossofAuxiliaryPowerTransformer167.51140104.5114515.2-9LossofAllFeedwaterPlowPeedwaterPipingBreakPailureofRHRShutdownCoolingDECREASEINREACTORCOOLANTSYSTEMFLOWRATE103.81094See15.6.6SeeText15.2-8LossofAllGridConnections107.2114011651131116011401161.113011051094101.3100.1100.1100.1<0.09~0(1)~pp(1)~pp(1)16161320161715.3.115.3-1TripofOneRecirculationPumpMotor103.610151053998100.0'40.015.3.115.3.215.3.315.3.415.3-215.3-3TripofBothRecirculationPumpMotorsRecirculationFlowControlFailureDecreasingFlowSeizureofOneRecirculationPumpRecirc.PumpShaftBreak103.51113See15.3.1103.21126See15.3.311271109100.1~0.011371120100.4~0.0a10c132815.4REACTIVITYANDPOWERDISTRIBUTIONANOMALIES15.4.1.1RWE-RefuelingSeeTextRev.26,9/81 TABLE15.0-1(cont'd)Page3of3SubsectionI.D.FigureI.D.~DeetitiMaximumNeutronFluxNBRMaximumDomePressure~edMaximumMaximumSteamVesselLinePressurePressure~et~eiMaximumCoreAverageSurfaceHeatFluxZofInitialDuration-ofBlowdownsecDurationofBlowdownNo.ofValves1stFrequencyBlow-~teteet*deell15.4.1.215.4.215.4.315.4.4RWE-StartupRWE-AtPowerSeeTextSeeText15.4-6StartupofIdleRecirculation323.4973Loop988967ControlRodMisoperationSeeSubsections15.4.1and15.4.2134.9(3)15.4.515.4-7RecirculationFlowControl264.6982Failure-IncreasingFlow1008973130.3(3)15.4.715.5MisplacedBundleAccidentINCREASEDINREACTORCOOLANTINVENTORYSeeText15.5.115.5-1InadvertentHPCIPumpStart118.210231061100411.40.1115.5.3BWRTransientsSeeappropriateEventsinSections15.1and15.2*a-incidentsofmoderatefrequencyb-infrequentincidentsc-limitingfaults**ACPRbasedonaninitialCPRwhichyieldsanMCPR1.06(1)estimatedvalues(2)ODYNresultswithoutad5ustmentfactors(3)Theseeventsareinitiatedfromlowpowerlevels-MCPR>1.06Rev.26,9/81 SSES-FSARTable15.0-2(Continued)18.CoreAverageRatedVoid*+Fraction,19.ScramReactivity,$DkAnalysisData20.ControlRodDriveSpeed,Positionversustime21.JetPumpRatio,N22.Safety/ReliefValveCapacity,5NUBni1091psigmanufacturerQuantityInstalled23.ReliefFunctionDelay,seconds24.BeliefFunctionResponse,seconds25.SetPointsforSafety/Relief.Valves,psig26.NumberofValveGroupingsSimulated27.FlighFluxTrip,AHBRAnalysissetpoint(120x1.044),7oNBR28.1iighPressureScramSetPoint,psig29.VesselLevelTrips,Inche..Above(+),Below(-)SeparatorSkirtBoi.tomLevel8-(LR),inchesLevel4-(L4),inchesLevel3-(L3),inchesLevel2-(L2),inches.30APRHYhermalTripSetPcint,XNBB31.RecirculationPumpTripDelay,Seconds32.Becircula+ionPumpTripInertiaforAnalysis,seconds*40~74Figure15.0-2Figure15.0-21.8499.0CROSBY160~40.151110,1120,1130,1140,1150125.31071+54+30+12.5-38125.00.17545+Theinertiatimeconstantisdefinedbytheexpression:Rev.26,9/81

SSFS-FSARTable15.0-2(Continued)2+Jn0gTwheret,=inertiatimeconstant(Sec).J=pumpmotorinertia(1b-ft~)no=ratedpumpspeed(rps)g=gravitationalconstant(ft/sec~)T=pumpshafttorque(lb-ft)0'4ParametersusedinREDYonly.ODYLvaluesarecalculatedwithinthecodeforeguilibriumcycleconditions.Rev.26,9/81 150.INEUTRf)N2PERKFUE3RVESISF4FEEUHHIL5VESSEI.SLUXCENTERTEHPEHEAlF)UXFLf)HEAHFL0)tIVESSELPSTHLINE1URBINELOBEHfI.COffFAVErTUfft)INEESRISE(PSI)PflECR)SFIPSI)RLSRISI.IPSI)1UUfHTU/LQ)v010FRf)CP&fIEAHFLUHIV)o)00.4JIf)I50.0.0.5.10.15.TIHEISEC)20.2500.5.10.IS,T'tHEtSEC)'-fPCHMCCgh3MQ%U+DeAtesHmRD0Q4F360C'DCZmXCcnZZ'TlZCO++mCOZZm<DmhlOCOmoOZA8~150.0.'.ILEVELII2HRSENS3NRSJNS.II)Ll5DRIVEFL!0.15.fit'E15EC)20.REF-SEP-SKIRT0LEVEL(INCHES)0LEVELIINCHES)~f~eIIt%l-2.0.510.TIKEISEC)IV010RETIVITT2DOFF'LEREACTIVITT3SCRAHRECTIVITY SSES-PSAR15..2INCREASEINREACTORPRESSURE152.1PRESSUREREGULATORFAILURE-CLOSED15.2.1.1IdentificationofCausesandfrequencyClassification15.2.1.1.1IdentificationofCausesTwoidenticalpressureregulatorsareprovidedtomaintainprimarysystempressurecontrol.Theyindependentlysensepressuregustupstreamofthemainturbinestopvalvesandcompareittotwoseparatesetpointstocreateproportionalerrorsiqnalsthatproduceeachregulatoroutput.Theoutputofbothregulatorsfeedsinahighgatevalue.Theregulatorwiththehiqhestoutputcontrolsthemainturbinecontrolvalves.Thelowestpressuresetpointgivesthelargestpressureerrorandtherebylargestregulatoroutput.Thebackupregulatorisset5psihiqhergivingasliqhtlysmallererrorandaslightlysmallereffectiveoutputofthecontroller.Itisassumedfor.purposesofthistransientanalysisthatasinqlefailureoccurswhicherroneouslycausesthecontrollingregulatortoclosethemainturbinecontrolvalvesandtherebyincreasesreactorpressure.Ifthisoccurs,thebackupregulatorisreadytotakecontrol.15.2.1.1.2FtegnencyClassificationThiseventistreatedasamoderatefrequencyevent.15.2.1.21SequenceofEventsPostulatingafailureoftheprimaryorcontrollingpressureregulatorintheclosedmodeasdiscussedinSubsection15.2.1.1.1willcausethevalvestoclosemomentarily.Thepressurewillincrease,becausethereactorisstillqeneratingtheinitialsteamflow.Thebackupregulatorwillreopenthevalvesandre-establishsteady-stateoperationabovetheinitialpressureequaltothesetpointdifferenceof5psi.1"2-1 SSES-FSAR15.2.1.2.1.1Identificationof0eratorActionsTheoperatorwillverifythatthebackupregulatorassumespropercontrol.However,thisactionisnotrequiredasdiscussedbelowinSubsection15.2.12.3.15.2.1.22~Sstem~s0erationNormalplantinstrumentationand.'ontrolisassumedtofunction.Thiseventrequiresnoprotectionsystemorsafeguardsystemsoperation.15.2.1.2.3TheEffectofSinlefailuresand~peratorErrorsThenatureofthefirstassumedfailureproducesaslightpressureincreaseinthereactoruntilthebackupregulatorgainscontrol.Ifwefailthebackupregulatoratthistime(thesecondassumedfailure),thecontrolvalveswouldstarttoclose,raisingthereactorpressuretothepointwhereafluxorpressurescramtripwouldbeinitiatedtoshutdownthereactor.Thiseventislessseverethantheturbinetripwherestopvalveclosureoccurs(Subsection15.2.3).15.2.13Coreand~SstemPerformanceThedisturbanceismild,similar,toapressuresetpointchangeandnosignificantreductionsinfuelthermalmarginsoccur.ThistransientismuchlessseverethanthegeneratorandturbinetriptransientsdescribedinSubsections15.2.2and15.2.3.15.2.1.3.1mathematicalNodelOnlyqualitativeevaluationisprovided.15.2.1.32Z~nutParametersandInitialConditionsOnlyqualitativeevaluationisprovided.15.2-2 SSES-FSAR15.2.1.3.3ResultsResponseofthereactorduringthisregulatorfailureissuchthatpressureattheturbineinletincreasesquickly,lessthan2secondsorso,duetothesharpclosinqactionoftheturbinecontrolvalveswhichreopenwhenthebackupregulatorgainscontrol.Thispressuredisturbanceinthevesselisnotexpectedtoexceedfluxorpressurescramtripsetpoints.15.2.1.34ConsiderationofUncertaintiesAllsystemsutilizedforprotectioninthiseventwereassumedtohavethepoorestallowableresponse(e.g.,reliefsetpoints,scramstroketime,andworkcharacteristics).Plantbehavioris,therefore,expectedtoreducetheactualseverityofthetransient.15.2.1.4BarrierPerf~omanceAsnotedabove,theconsequencesofthiseventdonotresultinanytemperatureorpressuretransientinexcessofthecriteriaforwhichthefuel,pr'essurevesselorcontainmentaredesigned;therefore,thesebarriersmaintaintheirintegrityandfunctionasdesigned.15.2.1.5RadiologicalConsequencesSincethiseventdoesnotresultinanyadditionalfuelfailuresoranyreleaseofprimarycoolanttoeitherthesecondarycontainmentortotheenvironment,therearenoradiologicalconsequencesassociatedwiththisevent.15.2-3 SSES-FSAH15.2.2GeneratorLoadRejection15.2.2.1IdentificationofCausesandFrequencyClassification152.2.1.1IdentificationofCausesFastclosureoftheturbinecontrolvalves(TCV)isinitiatedwheneverelectricalgriddisturbancesocc>>rwhichres>>ltinsignificantlossofelectricalloadonthegenerator.Theturbinecontrolvalvesarerequiredtocloseasrapidlyaspossibletopzeventexcessiveoverspeedoftheturbine-generato"(T-G)rotor.Closureofthemainturbinecontrolvalveswillcauseasuddenreductioninsteamflowwhichre.ultsinanincreaseinsystempressureandrea'ctorshutdown.15.2.2.1.2Freauenc~Classification15.2.2.1.2.1GenoratorLoadRejectionWithorwithoutBypassThiseventiscategorizedasanincidentofmoderatefrequency.$52.2.2SeruenceofEvents<<ndSystemApe"at.ion15.2.2.2.1SequenceofFvents152.2.2.1.1GeneratorLoadRejection-Tu".bineControlValveFatClosureAlossofgeneratorelertzicalloadfromhig'hpowercondit'onsproducesthe.,equenceofeventslistedinTable15.2-1.15.2.2.2.1..2GeneratorLoadRejectionwithFail>>reofBgl>assAlossofgeneratorelectricalloadathighpowerwithbypassfail>>reprod>>resthesequenceofeventslistedinTable15.2-2.Rev.26,9/8115.2-4 SSES-FSAR1522.2.1.31dentificationofOperatorActions{1)Verifyproperbypassvalveperformance.{2)Observethatthefeedwater/levelcontrolshavemaintainedthereactorwaterlevelatasatisfactoryvalue.(3)Observethatthepressureregula'.oriscontrollingreactorpressureatthedesiredvalue.(4)Recordpeakpowerandpressure.(5)Verifyreliefvalveoperation.15.2.22.2SystemOperation15.22.2.2.14eneratorLoadRejectionwithBypassInordertoproperlysimulatetheexpectedsecguenceofev.nts,theanalysisofthiseventassumesnormalfunctioningofplan+instrumentationandcontrols,plantpotectionandreactorprotectionsystems.Turbinecontrolvalve(TCV)fastclosureinitiatesascramtripsignalforpowerlevelsgreaterthan,30KMBrated.Inaddition,recirculationpumptripisinitiated.Bothoftheset.ripsignalssatisfysinglefailurecriterionandcreditistakenfortheseprotectionfeatures.Thepressurereliefsystemwhichoperatethereliefvalvesindependentlywhensystempre.sureexceedsreliefvalveinstrumentationsetpointsisassumedtofunctionnormallyduringthet.imeperiodanalyzed.Allplantcont.rolsystemsmaintainnormaloperationunle.~specificallydesignatedtothecontrary.15.2.2.2.2.2GeneratorLoadBegectionwithFailureofBypas.,SameasSub..ection15.2.2.2.2.1exceptthatfailureof+hemainturbinebypassvalvesisassumedfor+heentiretransient.Rev.26,9/8115.2-5 SSES-FSAR15.2.2.2.3TheFffectofSingleFailuresandOperatorErrorsNitigationofpressureincreaseisaccomplishedbythereactorprotectionsystemfunctions.TurbinecontrolvalvetripscramandBPTaredesignedtosatisfythesinglefailurecriterion.Anevaluationofthemostlimitingsinglefailure(i.e.,failureofthebypasssystem)wasconsideredinthisevent.DetailsofsinglefailureanalysiscanbefoundinAppendix15A.15.2.2.3CoreandSystemPerformance15.2.2.3.1NathematicalNodelThecomputermodeldescribedinSubsection15.1.2.3.1wasusedtosimulatethisevent.15.2.2.3.2InputParametersandInitialConditionsTheseanalyseshavebeenperformed,unlessotherwisenoted,withtheplantconditionstabulatedinTable15.0-2.Theturbineelectrohydrauliccontrolsystem(HHC)powerJ'loadimbalancedevicedetectsloadrejectionbeforeameasurablespeedchangetakesplace.Theclosurecharacteristicsoftheturbinecontrolvalvesareassumedsuchthatthevalvesoperateinthefullarc(FA)modeandhaveafullstrokeclosuretime,f'romfullyopentofullyclosedof0.15seconds.Auxiliarygeneratorfrequencysuppliesnanalysis,themainqoverspeed(BPT)powerwouldnormallybeindependentofanyturbine-ov..rspeedeffectsandcontinuouslysuppliedatratedsinceautomaticfasttransfertoauxiliarypowerormallyoccurs.Forthepurpo.esofwcrstcasetherecirculationpumpsareassumedtoremaintiedt.oeneratorandthusincreaseinspeedwiththeT-GuntiltrippedbytheBecirc>>lationPumpTripsystemThereactorisopera+inqinthemanualflow-controlmodewhenloadrejectionoccurs.Hesultsdonotsignificantlydifferiftheplanthadbeenoperatingintheautomaticflow-controlmode.Thebypassvalveopeningcharacterisicsaresimulatedusingthespecifieddelaytogetherwiththespecifiedopeningcharacteristicrequiredforbypasssy..ternoperation.Rev.26,9/8115.2-6 SSES-FSARAlthoughtheclosureofmainsteamisolationvalvesascausedbylowwaterleveltrip(L2)isincludedinthesimulation,theflowsfrominitiationofRCXCandHPCIcorecoolingsys+emfunctionsarenotincluded.Xftheseeventsoccur,theywillfollowsometimeaftertheprimaryconcernsoffuelmarginandoverpressureeffectshavepassedandareexpectedtoresultineffectslessseverethanthosealreadyexperiencedbythereactorsystem.15.2.2.3.3Results15.2.2.3.3.1GeneratorLoadRegectionwithBypassPigure15.2-1showstheresultsofthegeneratortripfromratedpower.Peakneutronfluxrises282%oftheratedvalue.Theaveragesurfaceheatfluxpeaksat110i>>ofitsinitialvalueandMCPRRossnotsignificantlydecreasebelowitsinitialvalue.15.2.2.3.3.2GeneratorLoadRejectionwithFailureofBypassFigure15.2-2showsthat,forthecaseofBypassfailure,peakneutronfluxreachesabout466%ofrated,averagesurfaceheatfluxreache.1187>>ofitsinitialvalue.15.2.2.3.4ConsiderationofHncertaintiesThefullstrokeclosurerateoftheturbinecontrolvalveof0.15secondsiscon,ervative.Typically,theactualclosurerateismorelike0.2seconds.Clear]ythelesstimeittakestoclose,themoreseverethepressurizationeffect.Allsystemsutilizedforprotectioninthiseventwereassumedtohavethepoorestallowableresponse{e.g.,reliefsetpoints,scramstroketimeandworkcharac+eristics).Plantbehavioris,therefore,expectedtoreducetheactualseverityoft.hetransient.Rev.26,9/8115.2-7 SSES-FSAR15.2.2.4HarrierPerformance15.2.2.4.1GeneratorLoadRegectionPeakpressureremainswithinnormalsafetyrangeandnothreattothebarrierexists.15.22.4.2'eneratorLoadRegectionwithFailureofBypassPeakpressureattheva1vesreaches1189psig.Thepeaknuclearsystempressurereaches1218psigatthebottomofthevessel,wellbelowthenuclearbarriertransientpressurelimitof1375pslgo15.2.2.5RadiologicalConsequencesWhiletheconsequenceofthiseventdoesnot,resultinfuelfailures,itdoesresultinthedischa"geofnomalcoolantactivitytothesuppressionpoo1viaSRVoperation.Sincethisactivityiscontainedintheprimarycontainment,therevillbenoexposuretooperatingpersonnel.Sincethiseventdoesnotresultinanuncontrolledreleaetotheenvironment,theplantoperatorcanchoo.,etoleavetheactivitybottledupinthecontainmentordischargeittotheenvironmentundercontoiledreleaseconditionsIfpurgingofthecontainmentischosen,thereleasewillhavetobeinaccordancewithestab1ishedtechnicalspecifications;therefore,thisevent,attheworst,wouldonlyresultinasmallincreaseintheyearlyintegratedexpos>>relevel.1523TORBIHETRIP152.3.1IdentificationofCause.andFreq>>encyClassification15.2.3.1.1IdentificationofCausesAvarietyofturbineornuclearsystemmalfunctionswillinitiateaturbinetrip.Someexamplesaremoistureseparatorandheaterdraintankhighlevels,largevibration,operatorlockout,lossofcontrolfluidpressure,lowconden=ervacuumandreactorhighwaterlevel.Rev.26,9/8115.2-8 SSES-FSAR15.2.31.2FrequencyClassification15.2.3.1.2.1TurbineTripThistransien+iscategorizedasanincidentofmoderatefrequency.Indefiningthefrequencyofthisevent.,turbinetripswhichoccurasabyproductofot.hertransientssuchaslossofcondenservacuumorreactorhighleveltripeventsarenotincluded.However,spuriouslowvacu>>morhighleveltripsignalswhichcauseanunnecessaryturbinetripareincludedindefiningthefreq>>ency.Inordertogetanaccurateeventby-eventfrequencybreakdown,thistypeofdivisionofinitiatingcausesisrequired.15.2.3.2SequenceofEventsandSystemsOperation152.3.2.1Seg>>enceofFvents15.2.3.21.1TurbineTripTurbinetripat.highpowerproducesthesequenceofeventslistedinTable15.2-3..15.2.3.2.1.2TurbineTripwithFailureoftheBypassTurbinetripathighpowerwithbypassfailureproducesthesequenceofeventslistedinTab3e15.'2-4.152.3.2.1.3IdentificationofOperatorAc+ionsTheoperatormust:(1)Verifyautotransferofbusessuppliedbygenerato"toincomingpower;ifautomatictransferdoesnotoccur,manualtranfermusthemade.(2)monitorandmaintainreactorwate"levelatrequiredlevel.(3)Checkt.>>rbineforproperoperationofallauxiliariesduringcoastdown.Rev.26,9/8115.2-9 (4)Dependingonconditions,initiatenormaloperatingproceduresforcool-down,ormaintainpressureforrestartpurposes.(5)Putthemodeswitchinthestartuppositionbeforethereactorpressuredecays+o(850psig.{6)SecuretheRCZCoperationifautoinitiationoccurredduetolowwaterlevel.(7)NonitorcontrolroddrivepositionsandinsertboththeIRNsandSRNs.(8)Investigatethecauseofthetrip,makerepairsasnecessary,andcompletethescramreport.(9)Cooldownthereactorperstandardprocedureif.arestartisnotintended.152.3.2.2SystemsOperation15.2.3.2.2.1TurbineTripAllplantcontrolsystemsmaintainnormaloperationunlessspecificallydesignatedtothecontrary.Turbinestopvalveclosureinitiatesareactorscramtripviaposit.ionsignalstotheprotectionsystem.Creditistakenforsuccessful.operationofthereactorprotectionsystem.Turbinestopvalveclosureinitiatesrecirculationpumptrip(BPT)therebyterminatingthejetpumpdriveflow.Thepressurereliefsystemwhichoperatesthereliefvalvesindependentlywhensystempressureexceedsreliefvalveinstrumentationsetpointsisassumedtofuncticnnormallyduringthetimeperiodanalyzed.152.3.2.2.2TurbineTripwithFailureoftheBg2assSameasSubsection15.2.3.2.2.1exceptthatfailureofthemainturbinebypasssystemisassumedfortheentiretransienttimeperiodanalyzed.Rev.26,9/8115.2-10 SSES-FSAR15.2.3.2.2.3TurbineTripatLowPowerwithFailureoftheBypassSameasSubsection15.2.3.2.2.1exceptthatfailureofthemainturbinebypasssystemisassumed.Itshouldbenotedthatbelow30%NBratedpowerlevel,amainstopvalvescramtripinhibitsignalderivedfromthefirststagepressureoftheturbineisactivated.Thisisdonetoeliminatethestopvalvecramtripsignalfromscrammingthereactorprovidedt.hebypasssystemfunctionsproperly.Inotherwords,thebypasswouldbesufficientatthislowpowertoaccommodateaturbinetripwithouttheneressityofshuttingdownthereactor.Allotherprotectionsyternfunctionsremainfunctionalasbeforeandcreditistakenforthoseprotectionsystemtrips.15.2.3.2.3TheFffectofSingleFailuresandOperatorErrors15.2.3.2.31TurbineTripsatPowe"Level"GreaterThan30KNBRHitigationofpressureincreaseisaccomplishedbythereactorprotectionsystemfunctions.Hainstopva1veclosurescramtripandRPTaredesignedtosatisfysinglefailurecriterion.1523.2.3.2TurbineTripsatPowerLevelLe-sThan30KVBRSameasSubsection15.2.3.2.3.1except.RPTandstopvalveclosurescramtripisnormallyinoperative.Sinreprotec,.ionisstillprovidedbyhighflux,highpressure,etc.,thesewillalsorontinuetofunrtionandscramthe.rearto"shouldasinglefailureoccur.15.2.3.3CoreandSystemPerformance15.2.3.3.1liat.homaticalModelThecomputermodeldescribedinSuhsection15.1.1.3.1wasusedtosimulatetheturbinetripwithbypassevent,andoneinSubsection15.1.2.3.1wasusedfortheturbinetripwithFailureofbypassevent.Rev.26,9/8115.2-11 SSES-FSAB15.2.3.3.2InputParametersandInit.ialConditionsTheseanalyseshave.beenperformed,unlessotherwisenoted,withplantconditionstabulatedinTable15.0-2.Turbinest,opvalvesfullstrokeclosuretimeis0.1second.Areactorscramisinitiatedbypositionswitchesonvalveswhentheva1vesarelessthan90%open.Thisscramtripsignalisautomaticallybypassedwhenthebelow307NBratedpowerlevel..thestopstopvalvereactorisReductionincorerecirculationflowi'nitiatedhypositionswitchesonthemainstopvalve.whichactuatetripcircuitrywhichtripstherecirculationpumps.1523.3.3Results15.23.33.1TurbineTriIiAturbinetripwiththebypasssystemoperatingnormallyissimulateda+105KNBratedsteamflowconditionsinFigure15.2-3.Neutronfluxincreasesrapidlyherauseofthevoidreductioncausedhythepressureincrease.However,thefluxincreaseislimit~dto167%ofratedbythestopvalve,cramandtheBPTsystem-Peakfuelsurfaceheatfluxdoesnotexceed101%ofit..;initialvalue.15.2.3.3.32TurbineTrig)withFailureofBypassAturbinetripwithfailureofthebypasssy.ternissimulatedat105%NB"atedsteamflowconditionsinFigu"e15.2-4.Peakneutronfluxreaches447'4ofitsratedvalue,andthepeaksurfaceheatfluxreaches116%ofitsinitialvalue.15.2.3.3.3.3TurbineTripwithBypassValveFailure,TowPnwerThistransientisless-everethanasimilaroneat.highpower.Below30'7ofratedpower,theturbinestopvalveclosureandturbinecontrolvalveclosurescramsareautomaticallybypased.Rev.26,9/8115.2-12 SSHS-FSARAttheselowerpowerlevels,turbinefirststagepressureisusedtoinitiatethescramlogicbypass.Thescramwhichterminatesthetransientisinitiatedbyhighvesselpressure.Thebypassvalvesareassumedtofail;therefore,systempressurewillincreaseuntilthepressurerelief.setpointsarereached.Atthistime,becauseoftherelativelylowpowerofthistransientevent,relativelyfewreliefvalveswillopentolimitreactorpressure.PeakpressuresarenotexpectedtogreatlyexceedthopressurereliefvalvesetpointsandvillbesignificantlybelowtheRCPBtransientlimitof1.375psig.PeaksurfaceheatfluxandpeakfuelcentertemperatureremainatrelativelylowvaluesandMCPRisexpectedtoremainwellabovetheGETABsafetylimit.152.33.4ConsiderationsofUncertaintiesaUncertaintiesintheseanalyesinvolveprotectionsystemsettings,systemcapacities,andsystemresponsecharacteristics.Inallcases,themostconservativevaluesareusedintheanalyses.Forexample:(1)Slowestallowablecontrolrodscrammotionisassumed.(2)Scramworthshapeforall-rod-outcon.litionsisassumed.(3)Minimumspecifiedvalvecapacitiesareutilizedforover-pressureprotection.(4)Setpointsofthesafety/reliefvalvesincludeerrors(high)f.orallvalves.15.2.3.4BarrierPerformance15.2.3.4.1TurbineTripPeakpressureinthebottomoftheve=selroaches1167psL9,whichisbelowtheASMF;codelimitof1375psigforthereactorcoolingpressureboundary.VesselRomeDressuredoesnotexceeR1143psig.TheseverityofturbinetripsfromloverinitialpowerlevelsdecreasestothepointwhereascramcanbeavoidediXauxiliarypowerisavailablefromanexternalsourceandthepowerleveliswithinthebypasscapability.Rev.26,9/8152-13 SSES-FSAR15.23.4.2TurbineTripwithFailureoftheBypassThesafetygreliefvalvesareopenandclosesequentiallyasthestoredenergyisdissipatedandthepressurefallsbelowthesetpointsof:thevalves.Peaknuclearsystempressurereaches1215psigatthevesselbottom,therefore,theoverpressuretransientisclearlybelowthereactorcoolantpressureboundarytransientpressurelimitof1375psig.Peakdomepresuredoesnotexceed1185psig.15.2.3.4.2.1TurbineTripwithFailureofBypassatLowPowerQualitativedisrussionisprovidedinSubsection15.2.3.3.3.3.Rev.26,9/8115.2-14 SSKS-FSAR15.235RadiologicalConsequencesWhiletheconsequenceofthiseventdoesnot,resultinfuelfailureitdoesresultinthedischargeofnormalcoolantactivitytothesuppressionpoolviaSRVoperation.Sincethisactivityiscontainedintheprimarycontainment,therewillbenoexposuretooperatingpersonnel.Sincethiseventdoesnotresultinanuncontrolledreleasetotheenvironment,theplantoperatorcanchoosetoleavetheactivitybottledupinthecontainmentordischarqeittotheenvironmentundercontrolledreleasecondition.Ifpurgingofthecontainmentischosen,thereleasevillhavetobeinaccordancewithestablishedtechnicalspecifications;thereforethisevent,attheworst,wouldonlyresultinasmallincreaseintheyearlyintegratedexposurelevel.1524MSIVCLOSURES15.2.4.1IdentificationofCausesandFrequencyClassification15.2.4.1.1IdentificationofCausesVarioussteamlineandnuclearsystemmalfunctions,oroperatoractions,caninitiatemainsteamisolationvalve(MSIV)closure.Examplesarelowsteamlinepressure,highsteamlineflow,highsteamlineradiation,lowwaterlevelormanualaction.15.2.4.12.1ClosureofAllgainSteamIsolationValvesThiseventiscategorized,asanincidentofmoderatefrequency.Todefinethefrequencycfthiseventasaninitiatingeventandnotthebyproductofanothertransient,onlythefollowingcontributetothefrequency:manualaction(purposelyorinadvertent);spurioussignalssuchaslowpressure,lowreactorwaterlevel,lowcondenservacuum,etc.;andfinally,equipmentmalfunctionssuchasfaultyvalvesoroperatingmechanisms.AclosureofoneMSXVmaycauseanimmediateclosureofalltheotherNSIVsdependinqonreactorconditions.Ifthisoccurs,itisalsoincludedinthiscategory.Duringthemainsteamisolationvalveclosure,positionswitchesonthevalvesprovideareactorscramifthevalvesinthreeormoremainsteamlines15.2-15 SSES-PSARarelessthan90%open(exceptforinterlockswhichpermitproperplantstartup.).Protectionsystemlogic,however,permitsthetestclosureofonevalvewithoutinitiatingscramfromthepositionswitches.15.2.4.1.2.2Closureof~OeMainSteamIsolationValveThiseventiscategorizedasanincidentofmoderatefrequency.OneMSIVmaybecl'osedatatimefortestingpurposes;thisisdonemanually.OperatorerrororequipmentmalfunctionmaycauseasinqleNSIVtobeclosedinadvertently.Ifreactorpowerisgreaterthanabout80%whenthisoccurs,ahighfluxorhighsteamlineflowscrammayresult,(ifallNSIVscloseasaresultofthesinqleclosure,theeventisconsideredasaclosureofallMSIVs).15.2,4,2S~euencgofEventsandSystemsOperation15.2.42.1SecCuenceofEventsTable15.2-5liststhesequenceofeventsforPigure15.2-5.15.2.4.2.1.1Identidicat~ioof0~cratonActionsThefollowingisthesequenceofoperatoractionsexpectedduringthecourseoftheeventassumingnorestartofthereactor.Theoperatorshould(1)Observethatallrodshaveinserted.(2)Observethatthereliefvalveshaveopenedforreactorpressurecontrol.(3)CheckthatRCICautostartsontheimpendinglowreactorwaterlevelcondition.(4)Switchthefeedwatercontrollertothemanualposition.(5)InitiateoperationoftheBHRsysteminthesteamcondensinqmodeonly.(6)Whenthereactorvessellevelhasrecoveredtoasatisfactorylevel,s~itchBCICcontrollertomanualandsecurewhenlevel'isundercontrol.15.2-16 {7)ShenthereactorhascooledsufficientlyforRHRoperation,putitintoserviceperprocedure.(8)BeforeresettingtheHSIVisolation,deterninethecauseofvalveclosure.(9)Observeturbinecoastdownandbreakvacuumbeforethelossofsealingsteam.CheckT-Gauxiliariesforproperoperation.(10)NotresetandopenHSIVsunlessconditionswarrantand.besurethepressureregulatorsetpointisabovevesselpressure.(11)Surveymaintenancerequirementsandcompletethescramreport.152a2.2~nsten0aration~15~4.:L2.1ClosureofAllHanSteamIsolaticnValvesHSIVclosuresinitiateareactorscramtripviapositionsignalstotheprotectionsystemCreditistakenforsuccessfuloperationoftheprotectionsystem.Thepressurereliefsystemwhichinitiatesopeningofthereliefvalveswhensystempressureexceedsreliefvalveinstrumentationsetpointsisassumedtofunctionnormallyduringthetimeperiodanalyzed.AllplantcontrolsystemsmaintainnormaloperationunlessspecificallydesignatedtothecontraryAclosureofasingleHSIVatanygiventimewillnotinitiateareactorscram.Thisisbecausethevalvepositionscramtriplogicisdesignedtoaccommodatesinglevalveoperationandtestabilityduringnormalreactoroperationatlimitedpowerlevels.Credit'stakenfortheoperationofthepressureand'luxsignalstoinitiateareactorscran.Allplantcontrolsystemsmaintain,normaloperationunlessspecificallydesignatedtothecontrary. SSES-PS'KS~MitigationofpressureincreaseisaccomplishedbyinitiationofthereactorscramviaHSIVpositionswitchesandtheprotectionsystem.Reliefvalvesalsooperatetolimitsystempressure.AlloftheseaspectsaredesignedtosinglefailurecriterionandadditionalsinglefailureswouldnotaltertheresultsofthisanalysisClosureofoneNSIVplusasingleactivecomponentfailure{thesecond5SIV)resultsinasituationnoworsethantheanalysisofthefour'closedNSIVs.Pailureofasinglereliefvalvetoopenisnotexpectedtohaveany'ignificanteffect.Suchafailureisexpectedtoresultinlessthana.20psiincreaseinthemaximumvesselpressurerise.Thepeakpressurewillstillremainconsiderablybelow1375psig.ThedesignbasisandperformanceofthepressurereliefsystemisdiscussedinChapter515.243CoreandSstemPerformance15.2.43.1MathematicalHodelThecomputermodeldescribedinSubsection15.1.1.3.1wasusedtosimulatethesetransientevents.152.432InputpatametegsandInitialConditionsTheseanalyseshavebeenperformed,unlessotherwisenotedwithplantconditionstabulatedinTable15.0-2.Themainsteamisolationvalvesclosein3to5seconds.Theworstcase,the3-secondclosuretime,isassumedinthisanalysis.Positionswitchesonthevalvesinitiateareactorscramwhenthevalvesarelessthan90%open.Closureofthesevalvesinhibitssteamflowtothefeedwaterturbinesterminatingfeedwaterflow.Valveclosureindirectlycausesatripofthemainturbineandgenerator.Becauseofthelossoffeedwaterflowwaterlevelwithinthevesseldecreasessufficientlytoinitiatetripoftherecirculationpumpandinitiatethe.HPCIandRCICsystems.Rev.17,9/8015-2-18 SSES-FSARFigur'es15.2-5showsthechangesinimportantnuclearsyst'mvariablesforthesimultaneousisolationofallmainsteamlineswhilethereactorisoperatingat105%ofNBratedsteanflow.Peakneutronfluxreaches164%ofratedafterapproximately2.4seconds.Atthistime,thenonlinearvalveclosurebeconesastrongeffectandtheconservativescramcharacteristicassumptionhasnotyetallowedcreditforthefullshutdownofthereactor.15~24.3~3~2-ClosureofOge-gainSteamIsolationValveOnlyoneisolationvalveispermittedtobeclosedatatimefortestingpurposestopreventscram.Normaltestprocedurereguiresaninitialpowerreductiontoapproximately80to90%ofdesignconditionsidordertoavoidhighfluxscram,highpressurescram,orfullisolationfromhighsteamflowinthe"live>>lines.Mitha3-secondclosureofonemainsteam-isolationvalveduring105$ratedpowerconditions,thesteamflowdisturbanceraisesvesselpressureandreactorpow'erenoughtoinitiateahighneutronfluxscram.Thistransientisconsiderablymilderthanthefullpowercase.Noquantitativeanalysisisfurnishedforthisevent.However,nosignificantchangeinthermalmarginsisexperiencedandnofueldamageoccurs'.PeakpressureremainsbelowSRVsetpoints.inadvertentclosureofoneoralloftheisolationvalveswhilethereactorisshutdown(suchasoperatingstateC,asdefinedinAppendix15A)willproducenosignificanttransientClosuresduringplantheatup(operatingstateD)willbelessseverethanthemaximumpowercases(maximumstoredanddecayheat)discussedinSubsection15.2.4.3.3.1.],5.2.434Cogsj,depgtjogggf~cegta~tiesUncertaintiesintheseanalysesinvolveprotectionsystemsettings.systemcapacities,andsystemresponsecharacteristics.Xnallcases,themostconservativevaluesareusedintheanalyses.Forexamples:0.(1)Slowestallowablecontrolrodscrammotionisassumed.(2)Scramworthshapeforall-rod-outconditionsisassumed. SSES-PSXR(3)Hinimumspecifiedvalvecapacitiesareutilizedforover-pressureprotection.(4)Setpointsofthesafety/reliefvalvesareassumedtobe1%higherthanthevalve'snominalsetpoint15~4~4Bgpr~egpe~o~m~nce15.2.4.41ClosureofAllHainSteamIsolationValvesThenuclearsystemreliefvalvesbegintoopenatapproximately2.7secondsafterthestartofisolation.TheSRVsclosesequentiallyasthestoredheatisdissipatedbutcontinuetodischargethedecayheatintermittently.Peakpressureatthevesselbottomreaches1187psig,clearlybelowthepressurelimitsofthereactorcoolantpressureboundary.Peakpressureinthemainsteamlineis1146psig.$52.4~4.2Closureof-OgeHainSteamIsolationVygveIfclosureofthevalveoccursatanunacceptablyhighoperatingpowerlevel,afluxor,pressurescramsillresult;therefore,nosignificanteffectisimposedontheRCPB.Themainturbinebypasssystemwillcontinuetoregulatesystempressureviatheotherthree"live"steamlines.15,2~4~5-Rydiol~icglConsequencesWhiletheconsequenceofthiseventdoesnotresultinfuelfailureitdoesresultinthedischargeofnormalcoolantactivitytothesuppressionpoolviaSRVoperation.Sincethisactivi:tyiscontainedintheprimarycontainment,therewillbenoexposuretooperatingpersonnel'.Sincethiseventdoesnotresultinanuncontrolledreleasetotheenvironment,theplantoperatorcanchoosetoleavetheactivitybottledupinthecontainmentordischargeittotheenvironmentundercontrolledreleasecondition.,Ifpurgingofthecontainmentischosen,thereleasewillhave,tobeinaccordancewithestablishedtechnicalspecifications;thereforethisevent,attheworst,wouldonlyresultinasmallincreaseintheyearlyintegratedexposurelevel.Theactivityreleasedtothesuppressionchambercanbecontainedforsomeperiodoftime.Itis,therefore,assumedthattheactivityairborneabovethesuppressionpoolvillbereleasedRev.16,7/80152-20 undercontrolledconditions..Theoperatorcanchoosetoreleasetheactivityafterdecayhas"reducedtheamountofactivitytolevelswheretheoffsitedoseconsequenceisminimal.Porexample,considerthecasewhentheactivityfsreleasedthroughthecontainmentpurgeatan-assumed.timeof4hoursaftertheblowdowniscomplete'8hoursafterthetransientbegins).ThecontainmentairborneactivityisdischargedviatheSGTS,whichhasafilterefficiencyof99percent,fortheiodineactivity.Forthisexample,theairborneactivitiesabovethesuppressionpoolandtheactivityreleasedtotheenvironsarelistedinTables15.2-6and15.2-7respectivelyTheoffsiteradiologicaldosesarepresentedinTable15.2-8.Rev.16,7/80152-20a SSES-FSAR(THISPAGEINTENTIONALLYLEFTBLANK)Rev.16,7/8015.2-20b SSES-FSAR152.5LOSSOPCONDENSERVACUUM15.2.5.1'IdentificationofCausesandFrequencyClassification15.2.5.11IdentificationofCausesVarioussystemmalfunctionswhichcancausealossofcondenservacuumduetosomesinqleequipmentfailurearedesignatedinTable15.2-9.15.2.5.1.2FrequencyClassificationThiseventiscategorizedasanincidentofmoderatefrequency.15.2.5.2S~euenceofEven~tandSystemsOperation15.25.2.1SequenceofEventsTable15.2-10liststhesequenceofeventsforFiqure15.2-6.15.25.21.1IderitificationofOperatorActionsTheoperatormust:(1)Verifyautotransferofbusessuppliedtygeneratortoincominqpower-ifautomatictransferdoesnotoccur,manualtransfermustbemade.(2)Monitorandmaintainreactorwater1evelatrequiredlevel.(3)Checkturbineforproperoperationofallauxiliariesdurinqcoastdown.(4)Dependinqonconditions,initiatenormaloperatingproceduresforcooldown,ormaintainpressureforrestartpurposes.(5)Putthemodeswitchinthe"STARTUP"positionbeforethereactorpressuredecaysto(850psiq.15.2-21 SSES-CESAR(6)SecuretheRCICoperationifautoinitiationoccurredduetolowwaterlevel.{7)MonitorcontrolroddrivepositionsandinsertboththeIRMsandSRMs.(8)Investigatethecauseofthetrip,makerepairsasnecessary,andcompletethescramreport.{9)Cooldownthereactorperstandardprocedureifarestartisnotintended.15.2,5.2.2System~soerationInestablishinqtheexpectedsequenceofeventsandsimulatingtheplantperformance,itwasassumedthatnormalfunctioningoccurredintheplantinstrumentationandcontrols,plantprotectionandreactorprotectionsystems.TrippingfunctionsincurredbysensingmainturbinecondenservacuumpressurearedesignatedinTable15.2-11.15.2.~5.,3TheEffectof.-SingleFailuresandOperatorErrorsThiseventdoesnotleadtoageneralincreasein,reactorpowerlevel.Mitigationofpowerincreaseisaccomplishedbytheprotectionsysteminitiationofscram.FailureoftheintegrityofthecondenserunititselfisconsideredtobeanaccidentsituationandisdescribedinSubsection15.7.1.Singlefailureswillnoteffectthevacuummonitoringandturbinetripdeviceswhichareredundant.Theprotectivesequencesoftheanticipatedoperationaltransientareshowntobesinglefailureproof.SeeAppendix15Afordetails.15.25.3CoreanB525temPerformance15.2.53.1MathematicalModelThecomputermodeldescribedinSubsection15.1.1.3.1wasusedtosimulatethistransientevent.15.2-22 SSBS-PSARThisanalysisstasperformedwithplantconditionstabulatedinTable15.0-2unlessotherwisenoted.Turbinestopvalvesfullstrokeclosuretimeis0.1second.Areactorscramisinitiatedbypositionswitchesonthestopvalveswhenthevalvesare.lessthan90%open.Thisstopvalvescramtripsignalisautomaticallybypassedwhenthereactorisbelow30%NBratedpowerlevel.Theanalysispresentedhereisahypotheticalcasewithaconservative.8inchesHgpersecondvacuumdecayrate.Thus,thebypasssystemisavailableforseveralsecondssincethebypassissignaledtocloseatavacuumlevelofabout10inchesHglessthanthestopvalveclosure.Underthishypothetical8inchesHgpersecondvacuumdecayIcondition,theturbinebypassvalveandmainsteamisclationvalveclosurewouldfollowmainturbineandfeedwaterturbinetripsabout12secondsaftertheyinitiatethetransient.Thistransient,therefore,issimilartoanormalturbinetripwithbypass.Theeffectofmainsteamisolationvalveclosuretendstobeminimalsincetheclosureofmainturbinestopvalvesandsubsequentlythebypassvalveshavealreadyshutoffthemainsteamlineflow.-Pigur'e152-6showsthetransientexpectedforthisevent.Itisassumedthat.theplantisinitiallyoperatingat105%ofNuclearBoilerratedsteamflowconditions.Peakneutronfluxreaches168%ofNBratedpowerwhileaveragefuelsurfaceheatfluxreaches105%ofratedvalue.Safety/reliefvalvesopentolimitthepressurerise,thensequentiallyrecloseasthestoredenergyisdissipated.g525.3.4ConsiderationsofUncertaintiesThereductionorlossofvacuuminthemainturhinecondenserwillsequentiallytripthemainandfeedwaterturbinesandclosethemainsteamlineisolationvalvesandbypassvalves.Mhilethesearethemajoreventsoccurring,otherresultantactionswillincludescram(fromstopvalveclosure)andbypassopeningwiththemain'turbinetrip.Becausetheprotectiveactionsareactuated'atvariouslevelsofcondenservacuum,theseverityoftheresultingtransientisdirectlydependentupontherateatwhichthevacuumpressureislost."Normallossofvacuumduetolossofcoolingwaterpumpsozsteam'etairejectorproblemRev.179/8015.2-23 SSES-FSAR'roducesaveryslow.rateoflossofvacuun(minutes,notseconds).SeeTable15.2-9.Xfcorrectiveactionsbythereactoroperatorsarenotsuccessful,thensinultaneoustripsofthemainandfeedwaterturbines,andultimatelyconpleteisolationbyclosingthebypassvalves{openedwiththemainturbinetrip)andtheHSIVs,willoccurAfasterrateoflossofthecondenservacuumwouldreducetheanticipatoryactionofthe,scramandtheoveralleffectivenessofthebypassvalvessincetheywouldbeclosedmorequickly.Otheruncertaintiesintheseanalysesinvolveprotectionsystem~settings,systemcapacities,andsystemresponsecharacteristics.Inallcases,themostconservativevaluesareusedintheanalyses.Forexample:{1)Slowestallowablecontrolrodscrammotionisassumed{2)Scramworthshapeforall-rod-outcond,itionsisassumed{3)Minimumspecifiedvalvecapacitiesareutilizedforoverpressureprotection.(4)Setpointsofthesafety/reliefvalvesareassumedtobeattheupperlimitofTechnicalSpecificationsforallvalves.15.2.5.4BarrierPerformancePeaknuclearsystempressureis1165psigatthevesselbottom.Clearly,theoverpressuretransientisbelowthereactorcoolantpressureboundarytransientpressurelimitof1375psig.Vesseldomepressuredoesnotexceed1140psig.AcomparisonofthesevaluestothoseforTurbineTripwithBypassFailure,athighpowershowsthesimilaritiesbetweenthesetwotransients.Theprimedifferencesarethelossoffeedwaterandmainsteamlineisolation,andtheresultinglowwaterleveltrips.MhiletheconsequenceofthiseventdoesnotresultinfuelfailureitdoesresultinthedischargeofnormalcoolantactivitytothesuppressionpoolviaSRVoperation.Sincethisactivityiscontainedintheprimarycontainment,therewillbenoexposuretooperatingpersonnel.Sincethiseventdoesnotresultinanuncontrolledreleasetotheenvironment,theplantoperatorcanchoosetoleavetheactivitybottledupinthecontainmentordischarge.ittothe.environmentundercontrolled152-24 SSES-FSARreleaseconditions.Ifpurginqofthecontainmentischosen,thereleasewillhavetobeinaccordancewithestablishedtechnicalspecifications;thereforethisevent,attheworst,wouldonlyresultinasmallincreaseintheyearlyintegratedexposurelevel.152.6LOSSOFACPOWER15.2.6.1IdentificationofCausesandFrequencyClassification15.2.6.1.1IdentificationofCauses15.2.6.1.11LossofAuxilia~rPowerTransformerCausesforinterruptionorlossoftheauxiliarypowertransformerpowercanarisefromnormaloperationormalfunctioningoftransformerprotectioncircuitry.Thesecanincludehiqhtransformeroiltemperature,reverseorhighcurrentoperationaswellasoperatorerrorwhichtripsthetransformerbreakers.15.2.6.1.1.2LossofAllGridConnectionsLossofallgridconnectionscanresultfrommajorshiftsinelectricalloads,lossofloads,lightning,storms,wind,etc.,'hichcontributetoelectricalgridinstabilities.Theseinstabilitieswillcauseequipmentdamageifunchecked.Protectiverelayschemesautomaticallydisc'onnectelectricalsourcesandloadstomitigatedamageandregainelectricalgridstability.15.2.6.12Fr~euen~cClassification15.26.1.2.1LossofAuxiliar~powerTransformerThistransientdisturbanceiscategorizedasanincidentofmoderatefrequency.15.2-25 SSES-FSAR15.2.61.2.2LossofAllGridConnectionsThistransientdisturbanceiscategorizedasanincidentofmoderatefrequency.15.2.6.2~SeuenceofEventsan6Sstem~s0eration15.2.62.1S~euenceofEvents152.6~2.1.1LossofnuxiliarEpovevTransformerTable15.2-12liststhesequenceofeventsforFigure15.2-7.15.2.62.1.2LossofAllGridConnectionsTable15.2-13liststhesequenceofeventsforFigure15.2-8.15.2.6,2.1.3Identificationof~0eratorActionsTheoperatorshouldmaintainthereactorwaterlevelbyuseoftheRCICorHPCIsystem,controlreactorpressurebyuseofthereliefvalvesandsteamcondensinqmodeoftheBHRandverifythattheturbined-coilpumpisoperatingsatisfactorilytopreventturbinebearingdamage.Also,heshouldverifyproperswitchingandloadingoftheemergencydieselgenerators.Thefollowingisthesequenceofoperatoractionsexpectedduringthecourseoftheeventswhennoimmediaterestartisassumed.Thcoperatorshould:(1)Pollowinqthescram,verifyallrodsin.(2)Checkthatdieselgeneratorsstartandcarrythevitalloads.(3).Checkthatrelaysonthereactorprotectionsystem(BPS)dropout.(4)CheckthatbothRCICandHPCIstartwhenreactorvesselleveldropstotheinitiationpointafterthereliefopens.(5)Breakvacuumbeforethelossofsealingsteamcccurs.15.2-26 SSES-PSAR(6)CheckT-Gauxiliariesduringcoastdown.(8)Shenboth,thereactorpressureandlevelazeundercontrolsecurebothHPCIandRCICasnecessary.FContinuecooldownperthenoraalprocedure{9)Completethescramreportandsurveythemaintenancerequirements.K$2S'Thisevent,unlessotherwisestated,assumesandtakescreditfornormalfunctioningofplantinstrumentationandcontrols,plantprotectionandreactozprotectionsystems.Thereactorissubjectedtoacomplexsequenceofeventswhentheplantlosesallauxiliarypower.Estimatesoftheresponsesofthevariousreactorsystems(assuminglossoftheauxiliarytransformer)providethefollowingsimulationsequence:{2)Therecirculationpumpsaretrippedatareferencetime,t=O,withnormalcoastdowntimes.Atapproximately2seconds,independentHSIVclosureandscramareinitiatedduetolossofpowertoHSIVlogicandactuatorsolenoids.{3)Atapproximately4seconds,feedwaterpumptripsareinitiated.OperationoftheHPCIandRCICsystemfunctionsazenotsimulated.inthisanalysis.Theiroperationoccursatsometimebeyondtheprimaryconcernsoffuelthermalmarginandovezpressureeffectsofthisanalysis.~15..62.2.2Lo~sofillGrinconnectionsSameasSubsection15.2.62.21withthefollowingadditionalconcern.Theloss'ofallgridconnectionsisanotherfeasible,althoughimprobablewaytoloseallauxiliarypower.Thiseventwouldaddageneratorloadrejectiontotheabovesequenceattime,t=OTheloadrejection.immediately'orcestheturbinecontrolRev.15,4/80152-'27 SSBS-PSARvalvesclosed,causesascramandinitiatesrecirculationpumptrip(RPT)(alreadytrippedatreferencetimet=0)hlL-~linkasC-I,ossoftheauxiliarypowertransformeringeneralleadstoareductioninpowerlevelduetorapidpumpcoastdownwithpressurizationeffectsduetoturbinetripoccurringafterthereactorscramhasoccurred.Additionalfailuresoftheothersystemsassumedtoprotectthereactorwouldnotresultinaneffectdifferentfromthosereported.Pailuresoftheprotectionsystemshavebeenconsideredandsatisfysinglefailurecriteriaandassuchnochangeinanalyzedconsequencesisexpected.SeeAppendix15Afordetailsonsinglefailureanalysis.~5~631ThecomputermodeldescribedinSubsection15.1.1.3.1wasusedtosimulatethis.event.OperationoftheRCICorHPCIsystemsisnotincludedinthesimulationofthistransient,sincestartupofthesepumpsdoesnotpermitflowinthetimeperiodofthissimulation.I'5-2632~lnntParametersandInitialConditionsTheseanalyseshavebeenperformed,unlessotherwisenoted,withplantconditionstabulatedinTable150-2andundertheassumedsystemsconstraintsdescribedinSubsection15.2.6.2.2.152.63.22LossofAllGridConnectionsSameasSubsection15.2.6.3.2.1Rev.17,9/8015.2-28 SSES-FSAR15.2.6.3.3Results15.2.6.3.3.lLossofAuxiliaryPowerTransformerFigure15.2-7showsgraphicallythesimulatedtransient.Theinitialportionofthetransientissimilartotheloss-of-feedwatertransient.At2secondsMSIV'starttocloseandthereactorisscrammed.The'eedwaterturbinestripoffatabout4seconds.TheRllRS,intheshutdowncoolingmode,xsinitiatedtodissipate'heheat.SensedleveldropstotheRCICandHPCIinitiationsetpointatapproximately32secafterlossofauxiliarypower.Thereisnosignificantinc"easeintueltemperatureordecreaeintheoperatingMCPRvalue,fuelthermalmargins.arenotthreatenedandthede"xgnbasisissatistied.lb.2.6.9.3.2LossofAllGridConnectionsLossofallgridconnectionsisamoregeneralformoflossofauxiliarypower.Itessentiallytakesonthecharacteristicresponseofthestandardfullloadrejectj.ondiscussedinSubsection15.2.2.Figure15.2-8showsgraphicallythesimulatedevent.~Peakneutronfluxreaches107kofNBratedpowerwhilefuelsurfaceheatfluxpeaksat100%ofinitialvalue.Thereisnosignificantincreaseinfueltemperature.lb.2.6.3.4ConsiderationofUncertaintiesThemostconservativecharacteristicsofprotectionfeaturesareassumed.Anyactualdeviations,inplantperformanceareexpectedtomaketheresultsofthiseventlesssevere.OperationoftheRCICorHPCIsystemsisnotincludedinthesimulationofthefirst50secondsofthistransient.Startupofthesepumpsoccursinthelatterpartofthistimeperiodbutthesesystemshavenosignificanteffectontheresultsofthistransicnt.FollowingmainsteamlaneisolationandRHRinitiationthereactorpressureisexpectedtoincreaseuntilthesafety/reliefvalvesetpoint(s)(5)arereached.Atthistimethevalvesoperateinacyclicmannertodischargethedecayheattothesuppress1.onpoolRev.15,4/8015.2-29 SSES-FSARL5.2.6.uBarrierPerformanceClb.2.6.Q.1LossotAuxxlxargPowerTransformerTheconsequencesofthi"eventdonotresultinanysignificant.temperatureorpressuretransientinexcessofthecriteriaforwhichthefuel,pressurevesselorcontainmentaredesigned;therefore,thesebarriers.maintaintheirintegrityandfunctionasdesiqned..15.2.6.0.2LossotAllGridConnectionsSafety/reliefvalvesopeninthepressurereliefmodeofIoperationasthepressure'increasesbeyondtheirsetpoints.Thepressureinthedomeislimitedtoamaximumvalueof1100psig,wellbelowthevesselpressurelimitof1375psig.1b.2.6.5RadiologicalConsequencesWhiletheconsequenceofthiseventdoesnotresul.infuelfailure,xtdoesresultinthedischargeofnormalcoolantactivitytothesuppressionpoolviaSRVoperation.Sincethisactivityascontainedintheprimarycontainment,therewillbenoexposuretooperatingpersonnel.Sincethiseventdoesnotresultinanuncontrolledreleasetotheenvironment,theplantoperatorcanchoosetoleavetheactivitybottledupinthecontaxnm~ntordischargeittotheenvironmentundercontrolledreleaseconditions.Tfpurginqofthecontainmentischosen,therelents~willhavetobeinaccordancewithestablishedtechnicalspeci.fications;therefore,thisevent,attheworst,wouldonlyresultinasmallincreaseintheyearlyintegratedexposurelevol.Rev.15,4/80-1b.2-30 SSES-FSAR1527LOSSOFFEEDMATZRFLOM15.27.1IdentificationofCausesandFrequencyClassification15.2.7.1.1IdentificationofCausesAlossoffeedwaterflowcouldoccurfrompumpfailures,feedwatercontrollerfailures,operatorerrors,orreactorsystemvariablessuchashighvesselwaterleve1(LB)tripsignal.15.2.7.1.2Freguenc~ClassificationThistransientdisturbanceiscategorizedasanincidentofmoderatefrequency.15.2.72SequenceofEventsand~Sgtems~O~eation15.2,7.2.1SeguenceofEventsTable15.2-14liststhesequenceofeventsforFigure3.5.2-9.15.2.7.21.1IdentificationofOperatorActionsTheoperatorshouldverifyNSIVclosure,andensureRCICandHPCIactuationsothatwaterinventoryismaintainedinthereactorvessel.InitiatethesteamcondensingmodeoftheRHRsystemtocomplementtheRCICsystem.Nonitorreactorwaterlevelandpressurecontrol,andT-Gauxiliariesduringshutdown.Thefollowingisthesequenceofoperatoractionsexpectedduringthecourseoftheeventwhennoimmediaterestartisassumed.Theoperatorshould:(1)Verifyallrodsin,followingthescram.S(2)VerifyHPCIandRCICinitiation.(3)VerifyNSIVclosure.(4)Verifythatthereliefvalvesopenonreactorhighpressure.15.2-31, SSES-PSAR(5)Verifythattherecirculationpumpstriponreactorlow-lowlevel.SecureHPCIwhenreactorlevelandpressureareundercontrol.-,ContinueoperationoftheRCICuntildecayheatdiminishestoapointwheretheBHRsystemcanbeputintoservice.Monitortheturbinecoast'down,breakvacuumasnecessary.Completethescramreportaridsurveythemaintenancerequirements.15.2.7.22Systems~OegationLossoffeedwaterflowresultsinaproportionalreductionofvesselinventorycausingthevesselwaterleveltodrop.Thefirstcorrectiveactionisthelowlevel(L3)scramtripactuation.Reactorprotectionsystemrespondswithin1secondafterthistriptoscramthereactor.Thelowlevel(L3)scramtripfunctionmeetssinglefailurecriterion.Containmentisolation,whenitoccurs,wouldalsoinitiateamainsteamlineisolationvalvepositionscramtripsignalaspartofthenormalisolationevent.Thereactor,however,isalreadyscrammedandshutdownbythistime.Creditistakenforoperationofthesafetyreliefvalve(lowsetpoint)toremovedecayheatsincethebypassbecomesineffectiveduetomainsteamlineisolation.g5.2.7.23~T~~Egeg~og~Sigleg~i~lg~en~dyeratorErrorsThenatureofthisevent,asexplainedabove,resultsinaloweringofvesselwaterlevel.Keycorrectiveeffortstoshutdownthereactorareautomaticanddesignedtosatisfysinglefailurecriterion;therefore,anyadditionalfailureintheseshutdownmethodswouldnotaggravateorchangethesimulatedtransient.SeeAppendix15Afordetails.Thepotentialexistsforasinglereliefvalvefailingtocloseonceitisopened.Thiswouldresultinacompletedepressurizationofthereactor.ThisisdiscussedinSubsection15.1.4.EithertheHPCIorRCICsystemiscapableofmaintaining15.2-32 SSES-PSABadequatecorecoverageandwillprovidelong-terminventorycontrol.$~5.7.3Coeaus53steR~Re~fousuceThecomputermodeldescribedinSubsection15.1.l31wasusedtosimulatethisevent..152.~73gInutParametersand'~ntialConditionsTheseanalyseshavebeenperformed,unlessotherwisenoted,withplantconditionstabulatedinTable15.0-2.1~5-.7-~3.ResultsTheresultsofthistransientsimulationareshowninPigure15.2-9Peedwaterflowterminatesatapproximately5seconds.Subcoolingdecreasescausingareductionincorepowerlevelandpressure.Aspowerlevelislowered,theturbinesteamflowstartstodropoffbecausethepressureregulatorisattemptingtomaintainpressureforthefirst8secondsorso.Haterlevelcontinuestodropuntilthevessellevel(L3)scramtripsetpointisreachedwhereuponthereactorisshutdown.Hain,steamlineisolationoccursat13secondsduetovesselwaterdroppingtotheT.2trip.AlsoatthistimetherecirculationsystemistrippedandHPCIandBCICoperationisinitiated.MCPRremainsconsiderablyabovethesafetylimitsinceincreasesinheatfluxarenotexperienced.152734ConsiderationsofUncertaintiesEnd-of-cyclescramcharacteristicsareassumed.Thistransientismostseverefromhighpowerconditions,because'herateofleveldecreaseisgreatestandtheamountofstoredanddecayheattobedissipatedarehighest.OperationoftheRCICorHPCIsystemsisnotincludedinthesimulationofthefirst50secondsofthistransientsincestartupofthesepumpsoccursinthelatterpartofthistimeperiodandthereforethesesystems,havenosignificanteffectsonRev.17,9/80152-33 SSBS-FSARtheresultsofthistransientexceptperhapsasdiscussedinSubsection15.2.7.2.3.$57oancePeakpressureinthebottomofthevesselreaches1105psig,whichisbelowtheASHBCodelimitof1375psigfortheRCPB.Vesseldomepressuredoesnotexceed1094psig.Theconsequencesofthiseventdonotresultinanytemperatureorpressuretransientinexcessofthecriteriaforwhichthefuel,pressurevesselorcontainmentaredesigned;therefore,thesebarriersmaintaintheirintegrityandfunctionasdesigned.t9"Whiletheconsequenceofthiseventdoesnotresultinfuelfailure,itdoesresultinthedischargeofnormalcoolantactivitytothesuppressionpoolvia'SRVoperationSincethisactivityiscontainedintheprimarycontainment,therewill.benoexposuretooperatingpersonnel..Sincethiseventdoesnotresultinanuncontrolledreleasetotheenvironment,theplantoperatorcanchoosetoleavetheactivitybottledupinthecontainmentordischargeittotheenvironaentundercontrolledreleaseconditions.Ifpurgingofthecontainmentischosenthereleasewillhavetobeinaccordancewithestablishedtechnicalspecifications;thereforethisevent,attheworst,wouldonlyresultinasmallincreaseintheyearlyintegratedexposurelevel.(RefertoSubsection15.6.6)152~9AILURgOFRRR~NUNDONNCOOLINGNormally,inevaluatingcomponentfailureconsiderationsassociatedwiththeRHRS-ShutdownCoolingmodeoperation,activepumpsorinstrumentation(allofwhichareredundantforsafetysystemportionsoftheRHRSaspects)wouldbeassumedto*bethelikely'failedequipment.Forpurposesofworstcaseanalysis,'hesinglerecirculationloopsuctionvalvetotheredundantRHRSloopsisassumedtofail.Thisfailurewould,ofcourse,stillleavetwocompleteRHRSloops.forLPCI,suppressionpool,andcontainmentcoolingminusthenormalRHRS-Shutdown152-34 SSES-FSARCoolingloopconnection.Althoughthesuctionvalvecouldbemanuallymanipulatedopen,itisassunedfailedindefinitely.IfitisnowassumedthattheSACPcriteriaisapplied,theplantoperatorhasonecompleteRHRSloopavailablewith'hefurtherselectiveworstcaseassumptionthattheotherRHRSloopislost.Recentanalyticalevaluationsofthiseventhaverequiredadditionalworstcaseassumptiops.Theseincluded:(1)lossofalloffsiteacpower(2)utilizationofsafetyshutdownequipmentonly(3)operatorinvolvementnoearlierthan10minutesaftercoincidentassumptions.Theseaccident-typeassumptionswouldchangetheinitialincident(malfunctionofRHRSsuctionvalve)fromamoderatefrequencyincidenttoaclassificationinthedesignbasisaccidentstatus.However,theeventisevaluatedasamoderatefrequencyeventwithitssubsequentlimits.15.2.9.1Identification=ofCausesandFrequencyClassification15.2.9.1.1IdentificationofCausesTheplantisoperatingat105%NBRratedsteamflowwhenalong-termlossofoffsitepoweroccurs,causingmultiplesafety-reliefvalveactuation(seeSubsection15.2.6)andsubsequentheatupofthesuppressionpool.Reactorvesseldepressurizationisinitiatedtobringthereactorpressuretoapproximately100psig.Concurrentwiththelossofoffsitepower,anadditional(divisional)singlefailureoccurswhichpreventstheoperatorfromestablishingthenormalshutdowncoolingpaththroughtheRHRshutdowncoolinglines.HethenestablishesashutdowncoolingpathforthevesselthroughtheADSvalves.15.2.9.1.2Pregue~ncClassificationThiseventisevaluatedasamoderatefrequencyevent.However,forthefollowingreasonsitcouldbeconsideredaninfrequentincident:(1)NoRHRvalveshavefailedintheshutdowncoolingmodeinBMRtotaloperatingexperience. SSES-FSAB(2)Thesetofconditionsevaluatedisformultiplefailureasdescribedaboveandisonlypostulated{notexpected)tooccur.Thesequenceofevents'forthiseventisshowninTable15.2-15.15.2.9.2.1.1Identificationof0eratoActionsFortheearlypartofthetransient,theoperatoractionsareidenticaltothosedescribedinSubsection15.2.6resultinginanisolation.Theoperatorthen.proceedstodothefollowing:(1)qtapproximately10,minutes'intothetransient,initiateRPVshutdowndepressurizationat~1004F/hrbymanualactuationofthesafety/reliefvalves:(2)atapproximately15.minutesintothetransient,initiatesuppressionpoolcooling(againforpurposesofthisanalysis,>>worstcase,"itisassumedthatonlyoneRHRheatexchangerisavailable);(3)whenthereactorpressurevesselisdepressurizedtoapproximately100psig.,openstheRHRshutdowncoolingsystemisolationvalves.However,itisassumedthat'failureoccursandtheoperatorcannotopenoneoftheisolationvalvesontheRHRsuctionlineandthenormalRHRshutdowncoolingpathisnotestablished;(4)selectivelyopenssafety/reliefvalves(ADS)tocompleteblowdownandfloodsthevesselupthroughthesafety/reliefvalvestherebyestablishingaclosedcoolingpathasdescribedinthenotesforFigure15.2-11.15.2.9.2.2System0erationPlantinstrumentationandcontrolisassumedtobefunctioningnormallyexceptasnoted.Inthisevaluationcreditistakenfortheplantandreactorprotectionsystemsand/ortheESFutilized.REV.18/7815.2-36 SSES-FSAR15.2.9.2.3TheEffectofSinleFailuresand0eratorErrorsTheworstcasesinglefailure(LossofDivisionPower)hasalreadybeenanalyzedinthisevent.Therefore,nosinglefailureoroperatorerrorcanmaketheconsequencesofthiseventanyworse.SeeAppendix15Aforfurtherdiscussion.15.2.9.3CoreandSstemPerformance15.2.9.3.1MethodsAssumtionsandConditionsAneventthatcandirectlycausereactorvesselwatertemperatureincreaseisoneinwhichtheenergyremovalrateislessthanthedecayheatrate.TheapplicableeventislossofRHRshutdowncooling.Thiseventcanoccuronlyduringthelowpressureportionofanormalreactorshutdownandcooldown,whentheRHRsystemisoperatingintheshutdowncoolingmode.DuringthistimeMCPRremainshighandnucleateboilingheattransferisnotexceededatanytime.Therefore,thecorethermalsafetymarginremainsessentiallyunchanged.The10-minutetimeperiodassumedforoperatoractionisanestimateofhowlongitwouldtaketheoperatortoinitiatethenecessaryactions;itisnotatimebywhichhemustinitiateaction.15.2.9.3.2ResultsFormostsinglefailuresthatcouldresultinlossofshutdowncooling,nouniquesafetyactionsarerequired.Inthesecases,shutdowncoolingissimplyre-establishedusingother,normalshutdowncoolingequipment.IncaseswherebothoftheRHRSshutdowncoolingsuctionvalvescannotbeopened,alternatepathsareavailabletoaccomplishtheshutdowncoolingfunction(Figure15.2-10).AnevaluationhasbeenperformedassumingtheworstsinglefailurethatcoulddisabletheRHRSshutdowncoolingvalves.Thisevaluationdemonstratesthecapabilitytosafelytransferfissionproductdecayheatandotherresidualheatfromthereactorcoreataratesuchthatspecifiedacceptablefueldesignlimitsandthedesignconditionsofthereactorcoolantpressureboundaryarenotexceeded.Theevaluationassuresthat,forRev.19,1/8115.2-37 SSES-FSARonsiteelectricpowersystemoperation(assumingoffsitepowerisnotavailable)andforoffsiteelectricpowersystemoperation(assumingonsitepowerisnotavailable),thesafetyfunctioncanbeaccomplished,assumingaworst-casesinglefailure.ThealternatecooldownpathchosentoaccomplishtheshutdowncoolingfunctionutilizestheRHRandADSornormalreliefvalvesystems(seeReference15.2-1andFigure15.2-11).Thealternateshutdownsystemsarecapableofperformingthefunctionoftransferringheatfromthereactortotheenvironmentusingonlysafetygradesystems.EvenifitisadditionallypostulatedthatalloftheADSorreliefvalvedischargepipingalsofails,theshutdowncoolingfunctionwouldeventuallybeaccomplishedasthecoolingwaterwouldrundirectlyoutoftheADSorsafety/reliefvalves,floodingintothedrywell.Thesystemshavesuitableredundancyincomponentssuchthat,foronsiteelectricalpoweroperation(assumingoffsitepowerisnot.available)andforoffsiteelectricalpoweroperation(assumingonsitepowerisalsonotavailable),thesystems'afetyfunctioncanbeaccomplishedassuminganadditionalsinglefailure.Thesystemscanbefullyoperatedfromthemaincontrolroom.Thedesignevaluationisdividedintotwophases:(1)fullpoweroperationtoapproximately100psigvesselpressure,and(2)approximately100psigvesselpressuretocoldshutdown(14.7psia,200~F)conditions.15.2.9.3.2.1FullPowertoAroximatel100siIndependentoftheeventthatinitiatedplantshutdown(whetheritbeanormalplantshutdownoraforcedplantshutdown),thereactorisnormallybroughttoapproximately100psigusingeitherthemaincondenseror,inthecasewherethemaincondenserisunavailable,theRCIC/HPCIsystems,togetherwiththenuclearboilerpressurereliefsystem.Forevaluationpurposes,however,itisassumedthatplantshutdownisinitiatedbytransientevent15.2.6,whichresultsinreliefvalveactuationandsubsequentsuppressionpoolheatup.Forthispostulatedcondition,thereactorisshutdownandthereactorvesselpressureandtemperaturearereducedtoandmaintainedatsaturatedconditionsatapproximately100psig.Thereactorvesselisdepressurizedbymanuallyopeningselectedsafety/reliefvalves.ReactorvesselmakeupwaterisautomaticallyprovidedRev.19,1/8115.2-38 SSES-FSARviatheRCIC/HPCIsystems.Whileinthiscondition,theRHRsystem(suppressionpoolcoolingmode)isusedtomaintainthesuppressionpooltemperaturewithinshutdownlimits.Thesesystemsaredesignedtoroutinelyperformtheirfunctionsforbothnormalandforcedplantshutdown.SincetheRCIC,HPCIandRHRsystemsaredivisionallyseparated,nosinglefailure,togetherwiththelossofoffsitepower,iscapableofpreventingreachingthe100psiglevel.15.2.9.3.2.2Aroximatel100sitoColdShutdownThefollowingassumptionsareusedfortheanalysesoftheproceduresforattainingcoldshutdownfromapressureofapproximately100psig:(1)thevesselisat100psigandsaturatedconditions;(2)aworst-casesinglefailureisassumedtooccur(i.e.,lossofadivisionofemergencypower);and(3)thereisnooffsitepoweravailable.IntheeventthattheRHRshutdownsuet>.onlz.neisnotavailablebecauseofsinglefailure,thefirstactiontobetakenwillbe'orpersonneltogainaccessandeffectrepairs.Forexample,ifasingleelectricalfailurecausedasuctionvalvetofailintheclosedposition,ahandwheelisprovidedonthevalvetoallowmanualoperation.Ifforsomereasonthenormalshutdowncoolingsuctionlinecannotberepaired,thecapabilitiesdescribedbelowwillsatisfythenormalshutdowncoolingrequirementsandthusfullycomplywithGDC34.TheRHRshutdowncoolinglinevalvesareintwodivisions(Division1=theoutboardvalve,andDivision2=theinboardvalve)tosatisfycontainmentisolationcriteria.Forevaluationpurposes,theworst-casefailureisassumedtobethelossofadivisionofemergencypower,sincethisalsopreventsactuationofoneshutdowncoolinglinevalve.Engineeredsafetyfeatureequipmentavailableforaccomplishingtheshutdowncoolingfunctionincludes(fortheselectedpath):ADS(DCDivision1andDCDivision2)RHRLoopA(Division1)RHRI,oopB(Division2)HPCI(DCDivision2)Rev.19,1/8115.2-39 SSES-FSARRCIC(DCDivision1)CoreSprayA(Division1)CoreSprayB(Division2)ForfailuresofDivision1or2,thefollowingsystemsareassumedfunctional:(1)Division1Fails,Division2Functional:RHRPumpsA6CCSLoopARCICFunctionalSstemsHPCIADSRHRLoopBCSLoopBRHRPumpsB6D(2)Division2Fails,Division1Functional:FailedSystemsRHRPumpsBCDCSLoopBHPCIFuncticnal~sstemsCSLoopARCICRHRLoopAADSRHRPumpsA.CCAssumingthesinglefailureisthefailureofDivision2,thesafetyfunction.isaccomplishedbyestablishingoneofthecoolingloopsdescribedinActivity'C2ofFigure15.2-11.IftheassumedsinglefailureisDivision1,thesafetyfunctionisaccomplishedbyestablishingoneofthecoolingloopsdescribedasActivityClofFigure15.2-11.UsingtheaboveassumptionsandfollowingthedepressurizationtransientshowninFigure15.2-12,thesuppressionpooltemperatureisshowninFigure15.2-13.15.2.9.4BarrierPerformanceAsnotedabove,theconsequencesofthiseventdonotresultinanytemperatureorpressuretransientinexcessofthecriteriaforwhichthefuel,pressurevessel,orcontainmentaredesigned.ReleaseofcoolanttothecontainmentoccursviaSRVactuation.Releaseofradiationtotheenvironmentisdescribedbelow.REV.18/7815.2-40 SSES-PSARMhilethiseventdoesnotresultinfuelfailure,itdoesresultinthedischargeofnormalcoolantactivitytothesuppressionpoolviaSBVoperation.Sincethisactivityiscontainedintheprimarycontainment,therewillbenoexposuresto'peratingpersonnel.Sincethiseventdoesnotresultinanuncontrolledreleasetotheenvironment,theplant-operatorcanchoosetoleavetheactivitybottledupinthecontainmentordischargeittotheenvironmentundercontrolledreleaseconditions.Xfpurgingofthecontainmentischosen,thereleasewill.havetobeinaccordancewithestablished,technicalspecifications;therefore,thisevent,attheworst,wouldonlyresultinasmallincreaseinthe.yearlyintegratedexposurelevel.15.2.10REPERENCES15.2-1Letter-R.S..BoydtoI.P.Stuart;datedNovember12/1975,

Subject:

RequirementsDelineatedforBHBS-ShutdownCoolingSystem-SingleFailureAnalysis.15.2-2Pukushima,T.Y,>>Hex01UserHanual>>,NEDE-23014,July1976.15.2-3'rutschy,P.G.,etal,"BehaviorofXodineinReactorMaterDuringPlantShutdownandStartup".15.2-4Nquyen,D.,>>RealisticAccidentAnalysisforGeneralElectricBoilingMaterReactor-TheBELAPCodeandUser'sGuide,"NEDO-21142,tobeissuedtDecember1977).REV.18/7815.2-41 SSES-PSXBTABLE15.2-10gj.l~e-geeEvent-0.0(est)0.0{est)Initiatesimulatedlossofcondenservacuumat2inchesofHgpersecond.Lowcondenservacuummainturbinetripactuated.0.0(est)Lowcondenservacuumfeedwatertripactuated.0.Ol(est)0.Ol(est).1(est)Hainturbinetripinitiatesreactorscram.Hainturbinetripinitiatesrecirculationpumptrip(RPT)Turbinestopvalvecloses1.72.2Group1reliefvalvessetpointsactuated.Group2reliefvalvessetpointsactuated.Group3reliefvalvessetpointsactuated.24Group4reliefvalvessetpointsactuated.26Group5reliefvalvessetpointsactuated.12.1Lowcondenservacuuminitiatesmainsteamlineisolationvalveclosure.121Lowcondenservacuuminitiatesbypassvalveclosure.21.523553(est)Group1reliefvalvesclose.L2Vessellevel"set.pointisolation.HPCI/RCICsystemflowentersvessel{notincludedinsimulation).90+Beliefvalvescycleasrequiredonpressure.Rev.16,7/80 SSES-PSAR154-EACTZVITYAHOHDXSXUOQ@SOHOBS*~1154~~1ConsolBod~enovalEroDuneuelin154.11.1IdentificationofCausesandPrequencyTheeventconsideredhereisinadvertentcriticalityduetothecompletewithdrawalorremovalofthemostreactiverodduringrefueling.Theprobabilityoftheinitialcausesaloneisconsideredlowenoughtowarrantitsbeingcategorizedasaninfrequentincident,sincethereisnopostulatedsetofcircumstanceswhichresultsinaninadvertentBUEwhileintheREFUELmode15.4.112EeduenceofEventsandEXstem~soeration~154l1~21InitialControlRodRemovalDuringrefuelingoperationssafetysysteminterlocksprovideassurancethatinadvertantcriticalitydoesnotoccurbecauseacontrolrodhasbeenremovedoriswithdrawnincoincidencewithanothercontrolrod.154.l~l..2FuelEoveuentBittControlodEemovedFuelmovementandothercorealterationswithcontrolrodsremovedwillbecontrolledbysection3/4.9oftheTechnicalSpecifications.Theserequirementsalongwiththeassociatedrefuelinginterlockssufficientlyminimizethepossibilityofloadingfuelintoacellcontainingnocontrolrod,movingtherefuelingplatformoverthecoreandwithdrawingadditionalcontrolrodswhenthereisuncontrolledfuelinthecore.REV.18/78 SSES-PSAB1~50~ln2n3-~Contoodenon1nttotnelenonnlPinally,thedesignofthecontrolrod,incorporatingthevelocitylimiter,doesnotphysicallypermittheupwardremovalofthecontrolrodwithoutthesimultaneousorpriorremovalofthefouradjacentfuelbundles.Thisprecludesanyhazardouscondition.154.1.1~2.4Identificationof0eatoActionsNooperatoractionsarerequiredtoprecludethiseventsincetheplantdesignasdiscussedabovepreventsitsoccurrence.XfanyoneoftheoperationsinvolvedininitialfailureorerrorisfollowedbyanyotherSEForSOE,thenecessarysafetyactionsaretaken[e.g.,rodblockorscram)automaticallypriortolimitviolation.Be'fertoAppendix15hfordetails.154~/1.3CopeandSystemPerformancesSincetheprobabilityofinadvertentcriticalityduringrefuelingisprecluded,thecoreandsystemperformanceswerenotanalyzedHowever,itiswellknownthatwithdrawalofthehighestworthcontrolrodduringrefuelingresultsinapositivereactivityinsertionbutnotenoughtocausecriticality.Thisisverifiedexperimentallybyperformingshutdownmarginchecks.(SeeSubsection4.3.2foradescriptionofthemethodsandresultsoftheshutdownmarginanalysis.)Additionalreactivityinsertionisprecludedbyinterlocks.(SeeSubsection7.6.la.l)Asaresult,.noradioactivematerialiseverreleasedfromthefuel,makingitunnecessarytoassessanyradiologicalconsequences15.4-2 SSES-FSARNomathematicalmodelsareinvolvedinthisevent.Theneedforinputparametersorinitialconditionsisnotreguiredastherearenoresultstoreport.Considerationofuncertaintiesisnot"appropriate.15.4.1.1.4BarrierPerformanceAnevaluationofthebarrierperformancewasnotmadeforthiseventsinceitisahighlylocalizedeventanddoesnotresultinanychangeinthecorepressureortemperature.15.4.1.1.5Baaiol~oicalConsequencesAnevaluationoftheradiologicalconsequenceswasnotmadeforthiseventsincenoradioactivematerialisreleasedfromthefue1.15.4.1.2ContinuousRodMithdrawalDuringReactorStartug15.4.1.2.1IdentificationofCausesandFrequencyClassificationTheprobabilityofinitialcausesorerrorsofthiseventaloneisconsideredlowenoughtowarrantitsheingcategorizedasaninfrequentincident.Theprobabilityoffurtherdevelopmentofthiseventisextremelylowbecauseitiscontingentuponthesimultaneousfailureoftworedundantsystems,theRSCSandtheRMNsystems,concurrentwithahighworthrod,out-of-sequencerodselectioncontrarytoprocedures,plusoperatorignoranceofcontinuousalarmannunciationspriortosafetysystemactuation.15.4.1.2.2S~euenceofEventsandSystemsOperationg54.l.2.2.1S~euenceofEventsControlrodwithdrawalerrorsarenotconsideredcredibleinthestartupandlowpowerranqes.TheRSCSandRMNpreventtheoperatofromselectinqandwithdrawinganout-of-sequencecontrolrod.ContinuouscontrolrodwithdrawalerrorsduringreactorstartupareprecludedhytheRSCS.TheRSCSpreventsthewithdrawalof1".4-3 SSES-FSARanout-of-sequencecontrolrodinthe100%to75%controlroddensityrangeandlimitsrodmovementtothebankedpositionmodeofrodwithdrawalfromthe75%roddensitytothepresetpowerlevel.Sinceonlyin-sequencecontrolrodscanbewithdrawninthe100%to75$controlroddensityandcontrolrodsarewithdrawninthebankedpositionmodefromthe75%controlroddensitypointtothepresetpowerlevel,thereisnobasis,forthecontinuouscontrolrodwithdrawalerrorinthestartupandlowpowerrange.ThelowpowerrangeisdefinedaszeropowertotheRSCSlowpowersetpoint,i.e.,20%ofratedcorepower.ForRWEabovelowpowersetpointseeSubsection15.4.2.The,hankedpositicnmodeoftheRSCSisdescribedinReference15.4-2.1541.2.22Identification~of0craterActionsHooperatoractionsarerequiredtoprecludethiseventsincetheplantdesignasdiscussedabovepreventsitsoccurrence.15.4.12.2m3EffectsofSingleFailureandaeratorErrorsIfanyoneoftheoperationsinvolvedtheinitialfailureorerrorandisfollowedbyanotherSEForSOE,thenecessarysafetyactionsaretaken{e.g',rodblocks)priortoanylimitviolation.RefertoAppendix15Afordetails.15.4123Coreand~sstemPerformanceTheperformanceoftheRSCSandRMMpreventerroneousselectionandwithdrawalofanout-of-sequencecontrolrod.Thecoreandsystemperformanceisnotaffectedbysuchanoperatorerror.NomathematicalmodelsareinvolvedinthiseventTheneedforinputparametersorinitialconditionsisnotreguiredastherearenoresultstoreport.Considerationofuncertaintiesisnotappropriate.15.4.1.24BarrierPerformanceAnevaluationofthebarrierperformancewasnotmadeforthiseventsincethereisnopostulatedsetofcircumstancesforwhichthiserrorcouldoccur.15.4-4 SSZS-FSAR15.4.1.2.5RadioloRicalConseRuencesAnevaluationoftheradioloqicalconsequencesisnotrequiredforthiseventsincenoradioactivematerialisreleasedfromthefuel.15.4.2RodWith~dalaiRrror-atPower15.4.2.1IdentificationofCausesandFrequencyClassifications15.4.2.11IdentificationofCausesWhileoperatinqinthepowerrangeinanormalmodeofoperationthereactcroperatormakesaproceduralerrorandwithdrawsthemaximumworthcontrolroduntiltheRodBlockmonitor(RBN)Systeminhibitsfurtherwithdrawal.154.212Pr~euencClassificationTheprobabilityofthiseventisconsideredlowenoughtowarrantitsbeinqcateqorizedasaninfrequentincident.However,becauseofthelackofsufficientfrequencydatabase,thistransientdisturbanceisanalyzedasanincidentofmoderatefrequencyuntilthefrequencyofthiseventcanbefurtherevaluatedandjustified.15.4.2.2SequenceofEventsandSystems~0eration15.4.2.2.1SeauenceofEventsThesequenceofeventsforthistransient,ascalculatedwithconservativeassumptions,ispresentedinTable15.4-1.Nooperatoractionsarerequireddurinqthisevent.However,operatoractionsexpectedtooccurareshownintheabovereferencedtable.15.4-5 SSES-FSAR15.42.2.2~SatesO~erations.Thefocalpointofthiseventis,localizedtoasmallportionofthecore.Therefore,althoughreactorcontrolandinstrumentationisassumedtofunctionnormally,creditistakenonlyforRBMsystem.Adiscussionoftheeventfollowsbelow.Whileoperatinginthepowerrangeinanormalmode(exceptasnotedinSubsection15.4.2.3.2)ofoperation,thereactoroperatormakesaproceduralerrorandwithdrawsthemaximumworthcontrolroduntiltheRBMsysteminhibitsfurtherwithdrawal.Undermostnormaloperatingconditionsnooperatoractionirequiredsincethetransientwhichwouldoccurwouldbeverymild.Shouldthepeaklinearpowerdesignlimitsbeexceeded,thenearestlocalpowerrangemonitor(LPRM)woulddetectthisphenomenonandsoundanalarm.Theoperatormustacknowledgethisalarmandtakeappropriateactiontorectifythesituation.Iftherodwithdrawalerrorissevereenough,therodblock'onitor(REM)systemwouldsoundalarms,atwhichtimetheoperatorwouldacknowledgethealarmandtakecorrectiveaction.Evenforextremelysevereconditions(i.e.,forhighlyabnormalcontrolrodpatterns,operatingconditions,andassumingthattheoperatoriqnoresallalarmsandwarninqsandcontinuestowithdrawthecontrolrod),theRBMsystemwillblockfurtherwithdrawalofthecontrolrodbeforethefuelreachesthepointofboilinqtransitionorthe1%plasticstrainlimitimposedontheclad.15.4-2.2.3EffectofSincnlepailureanaOEeratorErrorsTheeffectofoperatorerrorshasbeendiscussedabove.Itwasshownthatoperatorerrors(whichinitiatedthistransient)cannotimpacttheconsequencesofthiseventduetotheRBMsystem.TheRBMsystemisdesignedtobesinglefailureproof,thereforeterminationofthistransientisassured.SeeAppendix15Afordetails.15.4-6 SSES-FSAR15.4.2.3CoreandSystemPerformance15.4.2.3.1MathematicalMadelForthistransientthereactivityinsertionrateisveryslow;therefore,itisadequatetoassumethatthecorehassufficienttimetoequilibriate(ie.,thatboththeneutronfluxandheatfluxareinphase).Makinguseoftheaboveassumptionsthistransientiscalculatedusingasteadystatethree-dimensionalcouplednuclear-thermal-hydraulicscomputerprogram.TheprogramisdescribedindetailinReference4.3-2ofSection4.3.Allspatialeffectsareincludedinthecalculation.Theprimaryoutputfromthiscode,inadditiontothebasicnuclearparameters,is:thevariationofthelinearheatgeneratorrate{LHGR);thevariationoftheminimumcriticalpowerratio{MCPR);thetotalreactorpower;andthevariationofthein-coreinstrumentsduringthetransient.AdetectorresponsecodeusedtheinstrumentresponsestopredicttheRodBlockMonitoractionunderthespecifiedconditionfortheRodWithdrawalError.Theanalyticalmethodsandassumptionswhichareusedinevaluatingtheconsequencesofthisaccidentareconsideredtoprovidearealistic,yetconservativeassessmentoftheconsequences.15.4.2.3.2InputParametersandinitialConditionsThenumberofpossibleRMEtransientsisextremelylarqeduetothenumberofcontrolrodsandthewiderangeofexposuresandpowerlevels.InordertoencompassallofthepossibleRMEswhichcouldconceivablyoccur,alimitinganalysisisdefinedsuchthataconservativeassessmentoftheconsequencesisprovided.Theconservativeassumptionsare:(1)Theassumederrorisacontinuouswithdrawalofthemaximumworthrodatitsmaximumdrivespeed.(2)Thecoreisassumedtobeoperatingatratedconditions.(3)Thereactorispresumedtobeinitsmostreactivestateanddevoidofallxenon.Thisinsuresthattheamountofexcessreactivitywhichmust'econtrolledbythemovablecontrolrodsismaximum.154-7 (4)Furthermore,itisassumedthattheoperatorhasfullyinsertedthemaximumworthrodpriortoitsremovalandselected.theremaininqcontrolrodpatterninsuchawayastoapproachthermallimitsinthefuelbundlesinthevicinityofthezodtobewithdrawn.(SeeFigure15.4-1).Itshouldbeemphasizedthatthiscontrolrodconfiqurationwouldbehighly-abnormalandcouldonlybeachievedbydeliberateoperatoractionorbynumerousoperatorerrors.(5)Theoperatorisassumedtoignoreallwarningsduringthetransient.(6)OfthefourLPRMstringsnearesttothecontrolrodbeingwithdrawn,thetwohighestreadingLPRMsduringthetransientareassumedtohavefailed.(7)Oneofthetwoinstrumentchannelsisassumedtobebypassedandout-of-service.TheAandCLPRMchambersinputtoonechannelwhiletheBandDchambersinputtotheother.Thechannelwiththegreatestrespcnseisassumedtobebypassed.TheconservativeassumptionsindicatedaboveprovidesahighdegreeofassurancethatthetransientasanalyzedboundsallRWEwhichcouldpossiblyoccur.Table15.4-2presentstheotherparametersusedintheanalysisofthisevent.154,2,3,2.1REMSystemOperationTheRBMsystemminimizestheccnsequencesofaRMEbyblockingthemotionofthecontrolrodbeforethesafetylimitsareexceeded.TheRBMhasthreetriplevels(rodwithdrawalpermissiveremoved).Thetriplevelsmaybeadjustedandarenominally84ofreactorpowerapartThehighesttriplevelissetsothatthesafetylimitisnotexceeded.Thelowertwotriplevelsareintendedtoprovideawarninqtotheoperator.Settingsare107%,99%and91%ofinitial,steady-state,operatingpowerat100%flow.Thetriplevelsareautomaticallyvariedwithreactorcoolantflowtoprotectagainstfueldamageatlowerflows.Thevariationissettoassurethatnofueldamagewilloccuratanyindicatedcoolantflow.Theoperatormayencounteranynumber(uptothree)oftrippointsdependingonthestartingpowerofagivencontrolrodwithdrawal.Thelowertwopointsmaybepassedup(reset)bymanualoperationofapushbutton.Theresetpermissiveisactuated(andindicatedbyalight)whenthe8MBreaches2'Apowerlessthanthetrippoint.Theoperatorshould15.4-8 SSES-FSARthenassesshislocalpowerandeitherresetorselectanewrod.Thehiqhest(power)trippointmaynotbereset.15.4.2.3.3ResultsTheconsequencesofthistransientarerelativelymild,andneitherlocalizednorgrossoccurrenceofboilingtransitionorviolationof1%plasticstrainlimitonthecladdingoccur.ThevariationintheMCPRandMLHGR,asafunctionofwithdrawalofthehiqhestworthrod,ispresentedinFigures15.4-2and15.4-3,respectively.ThebundlespresentedinFigures15.4-2and15.4-3representtheenvelopeoftheMCPRandtheMLHGRforeachtwo-footintervalduringthetransient.Variationinthetotalreactorpowerisalsoshowninthesefigures.Alth'oughthesefiquresshowthechangeinthermallimitsfromthefullyinsertedtothefullywithdrawnposition,thecontrolrodisautomaticallyblockedat5.0feet,evenundertheworstsetofassumptions.ThevariationinthesignalresponseofthetwoindependentchannelsisshowninFigures15.4-4and15.4-5.Withasetpointof106%therodisshowntoblockat5.0feetresultinginaMCPRof0.183andMLHGRof14.84kw/ft.15.4.2.3.4ConsiderationsofUncertaintiesTheconservativeassumptionswhichassurethatthiseventhasbeenconservativelyanalyzedhavebeenpreviouslydiscussedinSubsection15.4.2.3.215.4.2.4B~arierPerformanceAnevaluationofthebarrierperformancewasnotmadeforthiseventsincethisisalocalizedeventwithverylittlechangeintheqrosscorechhracteristics.Typically,anincreaseintotalcorepowerislessthan5$andthechangesinpressurearenegliqible.154.2.5RadiologicalConsequencesAnevaluationoftheradiologicalconsequencesisnotrequiredforthiseventsincenoradioactivematerialisreleasedfromthefue1.15.4-9 SSES-FSAR15.43ControlRodNaloperation(SystemMalfunctionozOperatorError/ThiseventiscoveredwithevaluationcitedinSubsections15.4.1and15.4.215.4.4AbnormalStartsofIdleRecirculationPung15.4.4.1IdentificationofCausesandFrequencyClassification15.44.1.1IdentificationofCausesThisactionresultsdirectlyfromtheoperatorsmanualactiontoinitiatepumpoperation.Itassumesthattheremainingloopisalreadyoperatinq.15.441.1.1Norma/RestartofRecirculationPu~matPowerThistransientiscateqorizedasanincidentofmoderatefrequency.15.4.41.1.2AbnormalStartugofIdleRecirculationPu~mThistransientiscateqorizedasanincidentofmoderatefrequency.15.4.4.2SequenceofEventsand~SstemsOperation1S.44.2.1SequenceofEventsTable15.4-3liststhesequenceofeventsforFigure15.4-6.15.4.4.2.1.1OgeratorActionsThenormalsequenceofoperatoractionsexpectedinstaztinqtheidleloopisasfollows.Theoperatorshould:15.4-10 SSBS-PSAB(1)Adjustrodpatternasnecessaryfornewpowerlevelfollowingidleloopstart.(2)Determinethattheidlerecirculationpumpsuctionvalveisopen,thedischargeblockvalvesareclosed,andthecouplerintheidleloopisinthestartingposition,ifnot,placetheminthisconfiguration.(3)Readjustflowoftherunningloopdownwardtolessthanhalfofratedflow.{4)Determinethatthetemperaturedifferencebetweenthetwoloopsisnomorethan50oPapart.(5)Starttheidlelooppumpandadjustflowtomatchtheadjacentloopflow.Monitorreactorpower.(6)Opendischargevalvebyjoggingmanualorautocircuitry.{7)Readjustpower,asnecessary,tosatisfyplantreguirementsperstandardprocedure.Note:Thetimetodoaboveworkisapproximately1/2hour.15.44.22~Sste~aOgerationThiseventassumesandtakescreditfornormalfunctioningofplantinstrumentationandcontrols',plantprotectionandreactorprotectionsystems.Inparticular,creditistakenforhighfluxscramto-terminatethetransient.NoBSFactionoccursasaresultofthe'transient..15.44.2.3TheEffectofsingle~pailnesandogeratorErrorsThistransientleadstoaguickriseinreactorpowerlevel.Correctiveactionfirstoccursinthehighfluxtripandbeing'artofthereactorprotectionsystem,itisdesignedtosinglefailurecriteria.Thereforeshutdownisassured.Operatorerrorsarenotofconcernhere,inviewofthefactthatautomaticshutdownevents'followsoguicklyafterthepostulatedfailure.SeeAppendix15Afordetails.154-11, SSES-PShR1544.3Coe~n~se~>egfo~aynce1~544~~/~thes~~c;Q~odelThenonlineardynamicmodeldescribedbrieflyinSubsection15.1.1.31isusedtosimulatethisevent154.4.3.2I~nutparametersand?nitialCond~ijonsThisanalysishasbeenperformedunlessotherwisenotedwithplantconditionstabulatedinTable15.0-2.Onerecirculationl,oopisidleandfilledwithcoldwater(lOO~P).Normalprocedurewhenstartinganidleloopwithonepumpalreadyrunningrequiresheatingtheidlerecirculationlooptowithin50oPofcoreinlettemperaturepriortoloopstartup~Theactiverecirculationloopisoperatingwithabout50%ofnormalrateddiffuserflowgoingacrosstheactivejetpumps.Thecoreisreceiving38%ofitsnormalratedflowTheremainderofthecoolantflowsinthereversedirectionthroughtheinactive)etpumps.Reactorpoweris55%ofNBRpowerconditions.'ormalproce'duresrequirestartupof'nidleloopatalowerpower.Theidlerecirculationpumpsuctionvalveisopen,but.thepumpdischargevalveisclosed.Theidlepumpfluidcouplerisatasettingwhichapproximates50%generatorspeeddemand.15.443.3JesuitsThetransientresponsetotheincorrectstartupofacold,idlerecirculationloopis,showninPigure15.4-6.Shortlyafterthepumpbeginstomove,asurgeinflowfromthestandardgetpunpdiffuserscausesthecoreinletflowtorisesharply.Ashort-durationneutronfluxpeakreachestheflowreferenced'PRYfluxsetpointat10secondsandreactorsera@isinitiated.Theneutronfluxpeaksat323%ofNBrated.Surfaceheatflux!followstheslowerresponseofthefuelandpeaksat135$ofNBofinitialvalue.NuclearsystempressuresdonotincreasesignificantlyRev.17,9/8015.4-12 SSES-CESARaboveinitial.Thewaterleveldoesnotreachthehighsetpoint.154.434Conside~a5iogofUncertaintiesThisparticulartransientisanalyzedforaninitialpowerlevelthatismuchhigherthanthatexpectedfortheactualevent.Themuchslowerthermalresponseofthefuelmitigatestheeffectsoftherathersharpneutronfluxspikeandeveninthishighrangeofpowernothreattothermallimitsispossible.15.44.4.BarrierPerformanceHoevaluationofbarrierperformanceisrequiredforthiseventsincenosignificantpressureincreasesare'ncurredduringthistransient-SeePigure15.4-6.154.4~5adiolo~ica~conse5uencesAnevaluationoftheradiologicalconseguencesisnotrequiredforthiseventsincenoradioactivematerialisreleasedfromthefuel.Figure154.4-1AbnormalStartupofIdleRecirculationLoopPumpRev.17,9/80154-13 SSES-FSAR~15.4.5RecirculationFlowControlFailurewithIncreasing=Flow15.4.5.1IdentificationofCausesandFrequencyClassifcaton15.4.511Ientifcat'onofCausesFailureofthemasterflowcontrollercancauseaspeedincreaseforbothrecirculationpumps.However,both<ndividualspeedcontrollershaveerrorlimiterssothatthiscaseislessseverethanthefailure(maximumdemand)ofoneofthe8/Gsetspeedcontrollers.Arapidswingofthecouplerissimulatedatitsmaximumrateof25'5/sec.15.4.5.1.2Fe~uenCassfictonThistransientdisturbanceisclassifiedasanincidentofmoderatefrequency.15.45215.~4.5.~1seuenceofEventsTable15.4-4liststhesequenceofeventsforFigure15.4-7.15.452.1.1Identificationof~0equatorActionsInitialactionbytheoperatorwillinclude:{1)Transfersflowcontroltomanualandreducesflowtominimum.{2)IdentifycauseoffailureReactorpressurewillbecontrolledasrequired,dependingonwhetherarestartorcooldownisplanned.Ingeneral,thecorrectiveactionwouldbetoholdreactorpressureandcondenservacuumforrestartafterthemalfunctioningflowcontrollerhasbeenrepaired.Thefollowingisthesequenceofoperatoractionsexpecteddurinqthecourseoftheevent,assumingrestartTheoperatorshould15.4-14 SSES-FSAR(2)observethatallrodsarein.Checkthereactorwaterlevelandmaintainabovelowlevel{L2)triptopreventNSXVsfromisolating..(3)Switchthereactormodeswitchtothe"startup"position.(4)Continuetomaintainvacuumandturbineseals.{5)Transfertherecirculationflowcontzcllertothemanualpositionandreducesetpointtozero.(6)Surveymaintenancerequirementsandcompletethescramreport.(7)Monitortheturbinecoastdownandauxiliarysystems.Establisharestartofthereactorpezthenormalprocedure.NOTE:Timerequiredfromfirsttroublealarmtorestartwouldbeapproximately1hour.15.4-5.2.25~ate~as0eratioaThe.analysisofthistransientassumesandtakescreditfornormalfunctioningofplantinstrumentationandcontrols,andthereactorprotectionsystem.Operationofengineeredsafeguardsisnotexpected.15.4.5g3TheEffec~toSingleF~aluresand0eratozErrorsThistransientleadstoaguickriseinreactorpowerlevel.Correctiveactionfirstoccursinthehighfluxtripandbeingpartofthereactorprotectionsystemitisdesignedtosinglefailurecriteria.Therefore,shutdownisassured.(SeeAppendix15Afordetails.)Operator.errorsarenotofconcernhereinviewofthefactthatautomaticshutdowneventsfollowsoquicklyafterthepostulatedfailure.15.4<5 SSES-PSARg54.53Co~eandSstePerformanceThenonlineardynamicmodeldescribedbrieflyinSubsection15.1.1.3.1isusedtosimulatethisevent.154.5.32InputParanetersandInitialConditionsThisanalysishasbeenperformed,unlessotherwisenoted,withplantconditionstabulatedinTable15.0-2.Forthiseventthemostseveretransientresultswheninitialconditionsareestablishedforoperationatthelowendoftheratedflowcontrolrodline.Specifically,thisis65KNBratedpowerand50%coreflow.Maximumchangeinspeedcontroloccurswithfailureofoneofthemotorgeneratorsetspeedcontrollers.Arapidswingofthecouplerissimulatedatitsmaximumrateof25%persecond.154.533ResultsFigure15.4-7showstheresultsofthetransi'ent.Thechangesinnuclearsystempressurearenotsignificantwithregardtooverpressure.PressuredecreasesovermostofthetransientTherapidincreaseincorecoolantflowcausesanincreaseinneutronflux,whichinitiatesareactorAPRILhighfluxscram.Thepeakneutronfluxrisereaches2l35%ofNBRflux,andtheaccompanyingtransientfuelsurfaceheatfluxreaches130%of!initial.TheNCPRremainsabovethesafetylimitof106,andfuelcentertemperatureincreasesonly407OF.ReactorpressureisdiscussedinSubsection154.5.4.Thereforethedesignbasisissatisfied.154534ConsigegatiogsofUncertaintiesSomeuncertaintiesinvoidreactivitycharacteristics,scramtimeandworthareexpectedtobemoreoptimisticandwillthereforeleadtoreducingtheactualseverityoverthatwhichissimulatedherein.Rev.17,9/80.154-16 SSES-FSAR15.454BarrierPerformanceThistransientresultsinaveryslightincreaseinreactorvesselpressureasshowninFigure15.4-7andthereforerepresentsnothreattotheBCPB.Anevaluationoftheradiologicalconsequencesisnotreguiredforthiseventsincenoradioactivematerialisreleasedfromthefuel.15.4.6chemicalandVolumeControl~SstemmalfunctionNotapplicabletoBQRs.15~4.7Mi~slacedBundleAccident15.4.7.1IdentificationofCausesandFrequencyClassification15.4.7.11IdentificationofCausesTheeventdiscussedinthissectionistheimproperloadingofafuelbundleandsubsequentoperationofthecore.Threeerrorsmustoccurforthiseventtotakeplaceintheinitialcoreloading.First,abundlemustbemisloadedintoawrongpositioninthecore.Second,thebundlewhichwassupposedtobeloadedwherethemislocationoccurredwouldhavetobeoverlookedandalsoputinanincorrectlocation.Third,themisplacedbundleswouldhavetobeoverlookedduringthecoreverificationperformedfollowinginitialcoreloading.15.4.71.2FrequencyofOccurrenceThiseventoccurswhenafuel.bundleisloadedintothe.wronglocationinthecore.Itisassumedthebundleismisplacedtotheworstpossiblelocation,andtheplantisoperatedwiththemislocatedbundle.Thiseventiscategorizedasaninfrequentincidentbasedonthefollowinqdata.15.4-17 SSES-FSARExpectedFrequency:.004events/operatingcycleTheabovenumberisbaseduponpastexperience.Theonlymisloadinqeventsthathaveoccurredin'hepastwereinreloadcoreswhereonlytwoerzorsazenecessary.Therefore,thefreguencyofoccurrenceforinitialcoresisevenlowersincethreeerrorsmustoccur-concurrently.154.72S~euenceofEventsandSystemsOperationThepostulatedsequenceofeventsforthemisplacedbundleaccident(NBA)ispresentedinTable15.4-5.Fuelloadingerrors,undetectedbyin-coreinstrumentationfollowinqfuelingoperations,mayresultinundetectedreductionsinthermalmarginsduringpoweroperations.Nodetectionisassumed,andtherefore,nocorrectiveoperatoractionorautomaticprotectionsystemfunctioningoccurs15~4.72.1EffeetofSinleFailureandOperatorErrorsThisanalysisalreadyrepresentstheworstcase(i.e.,operationofamisplacedbundlewiththreeSEForSOE)andtherearenofurtheroperatorerrorswhichcanmaketheeventresultsanyworse.Itisfeltthatthissectionisnotapplicabletothisevent.RefertoAppendix15Aforfurtherdetails.15.47.3Coreand~SstemPerformance15.4~73.1MathematicalModelAthree-dimensionalBMRsimulatormodelisusedtocalculatethecoreperformanceresultinqfromthisevent.ThismodelisdescribedindetailinReference4.3-2ofSection43.15.4.7~gI~nutParametersandInitialConditionsTheinitialcoreconsistsofbundleswithaverageenrichmentsthatarehigh,medium,orlowwithcorrespondinglydifferentqadolinia-concentrations.Thefuelbundle,loadingerrorwiththemostsevereconsequencesoccursatBOCwhenalow-enrichedbundle(whichshouldbeloadedattheperiphery)isinterchangedwithahigh-enrichedbundlelocatedadjacenttoaLPRMandpredictedto15.4-18 SSES-PSARhavethehighestLHGRand/orlowestCPRinthecore.Aftertheloadingerrorismadeandhasgoneundetected,itisassumedforpurposesofconservatismthattheoperatorusesacontrolpatternwhichplacesthelimitingbundleintheSourbundlearraycontainingthemisplacedbundleondesignthermallimits,asrecordedbyLPRMAsaresultofloadingthelow-enrichedbundleinanimproperlocation,thereadingoftheadjacentLPRMdecreases.Consequently,becausetherearenoinstrumentsinthe3mirrorimagesofthisfour-bundle-array,theoperatorbelievesthesearraysareoperatingatthesamepowerastheinstrumentedone,wheninfacttheyarenot(sincenoloadingerroroccurredinthesequadrants).Asaresultofplacingtheinstrumentedarrayonlimits,the3mirror-imagearraysexceedthedesignlimit.Byreplacingthehigh-enrichedbundlewiththegreatestpowerpeakingbythelow-enrichedbundle,itisassuredthatthedifferenceinpowerpeakingbetweentheinstrumentedandthenon-instrumentedarraysismaximum,orrather,thattheMCPRandMLHGRistheupperboundforthiserror.OtherinputparametersassumedaregiveninTable15.4-6andPigure154-8.154.7.33ResultsResultsofanalyzingtheworstfuelbundleloadingerrorarereportedinTable15.4-7.Ascanbeseen,MCPRremainswellabovethepointwhereboiling,transitionwouldbeexpectedtooccur,andtheMLHGRdoesnotexceedthe1$plasticstrainlimitfortheclad.Therefore,nofueldamageoccursasaresultofthisevent.154.734ConsiderationsofUncertaintiesInordertoassuretheconservatismofthisanalysis,majorinputparametersaretakenasaworstcase,i.e.,thebundleisplaced,inlocationwiththehighestLHGRand/orthelowestCPRinthecoreandthebundleisoperatingondesignthermallimits.Thisassuresthatthe1CPRandthe8LHGRaretheupperboundsfortheerror.15.4-]9 SSZS-PSAR15.4.7.4BarrierPerformanceAnevaluationofthebarrierperformancewasnotmadeforthiseventsinceitisaverymildandhighlylocalizedevent.Noperceptablechangeinthecorepressurewouldbeobserved.15.4.75radiologicalConsequencesAnevaluationoftheradiologicalconsequencesisnotrequiredforthiseventsincenoradioactivematerialisreleasedfromthefue1.15.4.8~SectrumofRodExsectionAssembliesNotapplicabletoEWRs.TheBWRhasprecludedthiseventbyincorporatingintoitsdesignmechanicaleguipmentwhichrestrictsanymovementofthecontrolroddrivesystemassemblies.ThecontrolroddrivehousingsupportassembliesaredescribedinChapter4.15.4.9ControlRodDropAccide~ntCREA15.4.9.1IdentificationofCausesandFrequencyClassification15.4.9.11IdentificationofCausesThecontrolroddropaccidentistheresultofapostulatedeventinwhichahighworthcontrolrodisinsertedout-of-sequenceintothecore.Subsequently,itbecomesdecoupledfromitsdrivemechanism.Themechanismiswithdrawnbutthedecoupledcontrolrodisassumedtobestuckinplace.Atalateroptimummoment,thecontrolrodsuddenlyfallsfreeanddropsoutofthecore.Thisresultsintheremovaloflargenegativereactivityfromthecoreandresultsinalocalizedpowerexcursion.AmoredetaileddiscussionisqiveninReference15.4-1.15.4-20 SSES-PSAR15.4.9.1.2p~teuencfofClassificationTheCRDAiscategorizedasalimitingfaultbecauseitisnotexpectedtooccurduring'thelifetimeoftheplant;but,ifpostulatedtooccur,ithasconsequencesthatincludethepotentialforthereleaseofradioactivematerialfromthefuel.15.4.9.2S~euenceofEventsandSystemOperation15.4.9.2.~1SeuenceofEventsBeforethecontrolroddropaccident(CRDA)ispossible,thesequenceofeventspresentedinTable15.4-8mustoccur.Nooperatoractionsarerequiredtoterminatethistransient.15.4.9.2.2SvstemsOperationTheunlikelysetofcircumstances,referencedabove,makespossibletherapidremovalofacontrolrod.Thedroppingofthezodresultsinhighreactivityinasmallregionofthecore.Porlarge,looselycoupledcores,thiswouldresultinahighlypeakedpcverdistributionandsubsequentoperationofshutdownmechanisms.Siqnificantshiftsinthespatialpowergenerationwouldoccurduringthecourseoftheexcursion.TheRodSequenceControlSystem(RSCS)limitsthevorthofanycontrolrodwhichcouldbedroppedbyregulatingthewithdrawalsequence.Thissystempreventsthemovementofanout-of-sequencerodinthe100to75%roddensityrange,andfromthe75AroddensitypointtothepresetpowerleveltheRSCSvillonlyallowbankedpositionmoderodwithdrawalsorinsertions.ThissystemisdescribedinReference15.4-2foratypicalBMR.TheRSCSisassumedtooperatethroughouttheevent.TheRHNwouldprovidethesameprotectionastheRSCSiftheRSCSwasnotfuncticninqandtheRMHvas.Theterminationofthisexcursionisaccomplishedbyautomaticsafetyfeaturesofinherentshutdownmechanisms.Therefore,nooperatoractionduringtheexcursionisrequired.Althoughothernormalplantinstrumentationandcontrolsareassumedtcfunction,nocreditfortheiroperationistakenintheanalysisofthisevent.154-21 SSES-FSAR1549.2.3Effectofsi~nlefailuresandOperatorErrorsSystemsmitigatingtheconsequencesofthiseventareRSCS(orRWM)andAPRMscram.TheRSCSandRWMaredesignedasaredundantsystemnetworkandthereforetogetherprovidesinglefailureprotection.TheAPRMscramsystemisdesignedtosinglefailurecriteria.Therefore,terminationofthistransientwithinthelimitingresultsdiscussedbelowisassured.Nooperatorerror(inadditiontotheonethatinitiatesthisevent)canresultinamorelimitingcasesincethereactorprotectionsystemwillautomaticallyterminatethetransient.SeeAppendix15Aforfurtherdiscussion.15.4.9.3CoreandSystemPerformance15.4.93.1MathematicalModelTheanalyticalmethods,assumptionsandconditionsforevaluatingtheexcursionaspectsoftheccntrolroddropaccidentaredescribedindetailinReferences15.4-1,15.4-3,and154-4.Theyareconsideredtoprovidearealisticyetconservativeassessmentoftheassociatedconsequences.ThedatapresentedinReference15.4-2showsthattheRSCSBankedPositionmodereducesthecontrolrodworthstothedegreethatthedetailedanalysespresentedinReferences15.4-1,15.4-3,and15.4-4ortheboundinganalysespresentedinReference15.4-5arenotnecessary.Compliancechecksareinsteadmadetoverifythatthemaximumrodworthdoesnotexceed1%hk.Ifthiscriteriaisnotmet,thentheboundinganalysisisperformed.TherodworthsaredeterminedusingtheBWRSimulatorModeldescribedinReference4.3-2ofsection4.3.Detailedevaluations,ifnecessary,aremadeusingthemethodsdescribedinReferences15.4-1to15.4-3.15.4.9.3.2I~nutParametersandInitialConditionsThecoreatthetimeofroddropaccidentisassumedtobeatthepointincyclewhichresultsinthehighestcontrolrodworth,tocontainnoxenon,tobeinahotstartupcondition,andtohavethecontrolrodsinsequenceAat50%roddensity(groups1-4withdrawn).Removingxenon,whichcompeteswellforneutronabsorpticns,increasesthefractionalabsorptions,orworth,ofthecontrolrods.The50%controlroddensity(<<blackandwhite<<rodpattern),whichnominallyoccursatthehot-startup15.4-22 SSES-FSARcondition,ensuresthatwithdrawalonthenextrodresultsinthemaximumincrementofreactivity.Sincethemaximumincrementalrodworthismaintainedatverylowvalues,thepostulatedCRDAcannotresultinpeakenthalpiesinexcessof280caloriespergramforanyplantcondition.ThedatapresentedinSubsection15.4.9.3.3,showthemaximumcontrolrodworth.OtherinputparametersandinitialconditionsaregiveninTable15.4-9.15.4.933ResultsTheradiologicalevaluationsarebasedontheassumedfailureof770fuelrods.Thenumberofrodswhichexceedthedamagethresholdislessthan770forallplantoperatingconditionsorcoreexposureprovidedthepeakenthalpyislessthanthe280cal/qmdesiqnlimit.Theresultsofthecompliance-checkcalculation,asshownintheTable15.4-10,indicatethatthemaximumincrementalrodworthiswellbelowtheworthrequiredtocauseaCRDAwhichwouldresultin280cal/gmpeakfuelenthalpy(seeReference15.4-1).Theconclusionisthatthe280cal/gmdesignlimitisnotexceededandtheassumedfailureof770pinsfortheradiologicalevaluationisconservative.15.4.9.4Barri~ePerformanceAnevaluationofthebarrierperformancewasnotmadeforthisaccidentsincethisisahighlylocalizedeventwithnosignificantchanqeinthegrosscoretemperatureorpressure.~5.4.9.5RadiologicalCopseuencesTwoseparateradiologicalanalysesareprovidedforthisaccident:ThefirstisbasedonconservativeassumptionsconsideredtobeacceptabletotheNRCforthepurposeofdeterminingadequacyoftheplantdesigntomeetlOCFR100quidelines.Thisanalysisisreferredtoasthe"DesiqnBasisAnalysis".(2)Thesecondanalysisisbasedonassumptionsconsideredtoprovidearealisticconservativeestimateof15.4-23 SSES-FSARradiologicalconsequences.Thisanalysisisreferredtoasthe"RealisticAnalysis."AschematicoftheleakagepathisshowninFigure15.4-9.SpecificparametricvalvesusedforthedesignbasisandtherealisticanalysesarepresentedinTable15.4-16.15.4.9.5'.1Des~inBasisAna~lsisThedesiqnbasisanalysisisbasedontheNRC'sStandardReviewPlanl5.4.9(Reference]5.4-6).Thespecificmodels,assumptionsandtheprogramusedforcomputerevaluationaredescribedinReference15.4-7.Itisassumedthat10percentofthehalogensand10percentofthenoblegasescontainedinrodsthatexperiencecladdingdamageazereleasedfromthefuel.Promtherodsthatexceed280cal/g,50percentofthehalogensand100percentofthenoblegasesarereleased.Ofthosefissionproductsreleasedfromthefuel,90percentofthehalogensand0percentofthenoblegasesareabsorbedbythereactorwater.,Theremainingactivityisreleasedtothecondenserpriortoisolationvalveclosure.Assumingapartitionfactorof10inthecondensezforiodines,theactivityairborneintheccndenserispresentedinTable15.4-11.Thefissionproductactivityreleasedtotheenvironmentisdependentupontheactivityairborneinthecondenser,thecondenserleakrate,andtheturbinebuildingleakrate.Forthepurposeofthisanalysisitisassumedthatthecondenserleakrateis1percentperdayandtheturbinebuildingleakrateisinfinite.Basedontheairborneactivitypresentedintheprevioussubsectionsandtheaboveleakagerates,thenoblegasandiodinereleasestotheenvironmentarepresentedinTable15.4-12.15.4.9.5.2RealisticAnalysisTherealisticanalysisisbasedonarealisticbutstillconservativeassessmentofthisaccident.Thespecificmodels,assumptionsandtheprogramusedforcomputerevaluationaredescribedinReference15.4-8.Thefollowingassumptionsareusedincalculatingfissicnproductactivityreleasefromthefuel:15.4-24 SSES-PSARa)Thereactorhasbeenoperatingatdesignpowerfor1000daysuntil30minutespriortotheaccident.Whentranslatedintoactualplantoperation,thisassumptionmeansthatthereactorwasshutdownfromdesignpower,takencritical,andbroughttotheinitialtemperatureconditionswithin30minutesofthedeparturefromdesiqnpower.The30minutetimerepresentsaconservativeestimateoftheshortestperiodinwhichtherequiredplantchangescouldbeaccomplishedanddefinesthedecaytimetobeappliedtothefissionproductinventorycalculations.b)Anaverageof1.8percentofthenoblegasactivityand0.32percentofthehaloqenactivityinafailedfuelrodisassumedtobereleased.Thesepercentagesareconsistentwithactualmeasurementsmadeduringdefectivefuelexperiments(Reference15.4-9).c)Thefractionofsolidfissionproductactivityavailableforreleaseofthefuelisnegligible.Thefissicnproductsproducedduringthenuclearexcursionareneglected.Thefollowingassumptionsareusedincalculatingtheamountoffissionproductactivitytransportedfromthereactorvesseltothemaincondenser:a)Therecirculationflowrateis25percentofrated,andthesteamflowtothecondenseris5percentofrated.The25percentrecirculationflowand5percentsteamflowarethemaximumflowratescompatiblewiththemaximumfueldamage.The5percentsteamflowrateisgreaterthanthatwhichwouldbeineffectatthereactorpowerlevelassumedintheinitialconditionsfortheaccident.Thisassumptionisconservativebecauseitresultsinthetransportofmorefissionproductsthrouqhthesteamlinesthanwouldbeexpected.Becauseoftherelativelylongfuel-to-coolantheattransfertimeconstant,steamflowisnotsignificantlyaffectedbytheincreasedcoreheatgenerationwithinthetimerequiredforthemainsteamlineisolationvalvestoachievefullclosure.b)Themainsteamlineisolationvalvesareassumedtoreceiveanautomaticclosuresignal0.5secondafterdetectionofhighradiationinthemainsteamlinesandtobefullyclosedat5secondsfromthereceiptoftheclosuresignal.Theautomaticclosuresignaloriginatesfromthemainsteamlineradiationmonitors.Thetotaltimerequiredtoisolatethemainsteamlines(5.5seconds)combinedwiththeassumptions,dictatesthe154-25 SSES-FSARtotalamountoffissionproductactivitytransportedtothecondenserbeforethesteamlinesareisolated.c)Allofthenoblegasactivityisassumedtobereleasedtothesteamspaceofthereactorvessel.d)Themassratioofthehalogenconcentrationinsteamtothatofthewaterisassumedtobe2percent.e)Fissionproductplatecutisneglectedinthereactorvessel,mainsteamlines,turbine,andcondenser.Ofthosefissionproductsreleasedfromthefuelandtransferredtothecondenser,itisassumedthat100percentofthenoblegasesareairborneinthecondenser.Theiodineactivityairborneinthecondenserisafunctionofthepartitionfactor,volumeofair,andvolumeofwater.Apartitionfactorof100isassumedincondenserforiodineactivity.Byusingtheaboveconditions,theactivityairborneinthecondenserispresentedinTable15.4-13.Thefollowingassumptionsandconditionsareusedtoevaluatetheactivityreleasedtotheenvironment:a)b)Theleakrateoutofthecondenseris0.5percentperdayofthecombinedcondenserandturbinefreevolume.Theactivityreleasedfromthecondenserbecomesairborneintheturbinebuilding.Theturbinebuildingventilationrateissevenairchangesperday.c)Nofiltrationorplateoutofiodinesoccursinthebuildingpriortoreleasetotheatmosphere.Basedcntheaboveassumptions,the-fissionproductreleasetotheenvironmentispresentedinTable15.4-14.TheoffsiteindividualexposuresfortheconservativeandtherealisticcaseswerepresentedinTable15.4-15forcomparison.15.410References154-1R.C.Stirn,etal.,"RodDropAccidentAnalysisforLargeBWRs",March1976(NEDO-10527).15.4-2C.J.Paone,"BankPositionWithdrawalSequence",September1976(NEDO-21231).15.4-26 SSES-FSARR.C.Stirn,etal.,>>RodDropAccidentAnalysisforLargeSWRs>>,July1972Supplement1(NEDO-10527).R.C.Stirn,etal.,>>RodDropAccidentAnalysisforLargeBWRs>>,January1973Supplement2(NEDO-10527).>>GESWRGenericReloadApplicationforSx8Fuel"(NEDO-20360)USNRCStandardReviewPlan,NUREG-75/037,Washington,D.C.,November24,1975.Stancavage,P.P.andE.J.Morgan,"ConservativeRadiologicalAccidentEvaluation-TheCONACOlCode",NEDO-21142,March1976.Nguyen,D.,>>RealisticAccidentAnalysisforGeneralElectricBoilingHaterReactor>>,TheRELACCodeandUser~sGuide.NEDO-2002.Tobeissued.HortonN.R.,WilliamsW.A.,andHoltzclawK"AnalyticalMethodsforEvaluatingtheRadiologicalAspectsofGeneralElectricSoilingWaterReactors,"APED-5756,March1969.15.4-27 SSES-FSARQUESTION211.112:Sincethereclassificationofthegeneratorandturbinetripwithoutbypasstransientshasnotbeenacceptedbythestaffandisstillundergenericreview,reanalyzetheaboveeventsfordeterminationoftheoperatinglimitHCPRinwhichtheresultswouldnotviolatethesafetylimitMCPRof1.06.Also,itisourpositionthatthelimitingtransientbereanalyzedwiththeODYNcode~RESPONSEThereviewoftheODYN~codehasyettobecompletedbythestaff.Currently,thestaffrevie~hasnotconcludedreviewoftheadequacyofthemargininherentintheproposedODYN1icensingbasis.Additionally,itappearsfurtherreviewmaybenecessaryintheareaofinputparameters.InlightoftheincompletenatureofthereviewitisnotprudenttoreanalyzewiththeODYNcodeatthistime.Inasimilarmanner,zeclassifiedeventsdeterminetheeffecttime,sincetheODYNStaffhasindicatedRfollowingODYNapprovcompleteapprovalofbasisisestablished.itwouldnotbeprudenttoreanalyzetheiththecurrentREDYlicensingbasistooftheseeventsonoperatinglimitsatthismodelisint'efinalreviewstagesandtheEDYbasedlimitswouldnotbeacceptedal.ReanalysesshouldbedeferreduntilODYNisavailableandtheODYNlicensinglJtshouldbenotedthat,althoughthegenericreviewofreclassificationhasnotbeencomplete,thatitremainstheproposedlicensingbasisforthisapplication.Anyevaluationsoftheeffectontheseeventsonoperatinglimitswouldbeforinformationforthestafftojudgethemagnitudeofthechangeinmarginduetoreclassification.NED0-24154,Volume1,2,NEDE24154-PVolume3,nQualificationoftheOne-DimensionalCozeTransient,ModelforBoilingHaterReactors",datedOctober1978.SubmittedtoNRCAttn.:O.D.Parr12/15y78,LettezfromJ.F.Quirk.Rev.12,9/79211.112-1 SSES-FSARQUESTION211.180:Thenarrativeonpage15.4-13discussingthe"abnormalstartupofanidlerecirculationpump"transientstates,"Thewaterleveldoesnotreacheitherthehighorlowlevelsetpoints.."Table15.4.3.indicatesalowleveltripoccurs22.0secondsafterpumpstart.Figure15.4-6indicatesalowleveltripoccursapproximately23.5secondsafterpumpstart.Further:a)Table15.4-6indicatesalowlevelalarm10.5secondsafterpumpstartwhileFigure15.4-6indicatesthisalarmoccursabout11.5secondsafterthepumpstarts.b)Table15.4-6indicatesvessellevelbeginningtostabilize50.0secondsafterthepumpstarts.Figure15.4-6showsnosuchindication.Resolvethesediscrepancies.RESPONSE:ThesequenceinTable15.4-3startsoutwithascramat10secondsfollowingtheimproperpumpstart.Figure15.4-6confirmsthis.At23.5seconds(ratherthan22)levelfallstoL3whichalsoissuesaredundantscramsignaltoasystemwhichhasalreadyscrammed.ItistheintentofTable15.4-3hasbeenmodified.Table15.4-4indicatesL4near11seconds.ThisisverifiedbyFigure15.4-6.b)Table15.4-4indicatesthatvessellevelisbeginningtostabilizeat50seconds,Thisappearstobecorrect.Actually,levelrecoveredfromL3atabout41secondsandfrom30to40secondslevelischangingattherateof2.5in/sec.From50to60secondslevelrateisdefinitelyflatteningoutundernormalfeedwaterlevelcontrol.Rev.224/81211.180-1 Ik$"fQd'kfyl SSES-PSARQUESTION2~1161GEcalculationsperformedfordecreaseinreactorcoolanttemperature(Section15.1)andforreactorpressureincrease(Section15.2)eventsusingtheproposedODYNlicensingbasismodel(NEDO-24154)haveshownthatinsomecasesamorelimitingCPRispredictedthanbythecurrentREDYlicensingbasesmodel(NEDO-10802).BasedonalettertoGlenC.Sherwodddated1/23/80fromRichardP.Denise,thestaff'sODYNlicensingpositionisthatGEcanproceedwithODYNanalysisoftransientsdescribedinChapter15oflicensingapplicationSafetyAnalysisReports.ProvideanODYNanalysisoftheapplicableeventslistedinTables2-1and2-2ofNEDO-24154-P.RESPONSEThefinalresolutionofdetailsfortheapplicati.onfoODYNcalculationsinthetransientlicensingprocesshasnotyetbeenachieved.Genericeffortsareunderwaytodetermineimplementation.Reanalysis(utilizingODYN)forkeypressurizationeventswillnecessarilyfollowthegenericresolution.Nomajorchangeintransientmarginsisanticipated,asindicatedbypreliminary,genericanalyses.Rev.16,7/80211261-1 TABLE423.28-1SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASFireProtectionXV-12248,49XV-02248XV-02215P13Inst.AirRBCCWHV-11315P14Inst.AirRBHVACHD17534A,B,C,D,E,F,HAll*-HD17502A,B;HD17514AjB,All*HD17564A,B;HD17524A,BAllHD17576A,B;HD17586A,BAll*HD17508A,BBoth+HD17651,BDID17603A,BBDID17604A,B;BDID17605A,BBDID17606A,B;BDID17609A,BBDID17652A,B;BDID17653A,BBDID17659A,B;BDID17667A,BBDID17668A,B;BDID17669A,BBDID17670A,B;BDID176IA,BBDID17674A,B;BDID17675A,B.P34.1Inst.AirRev.27,10/81Page2of5 TABLE423.28-1SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASRWCULiquidRadwasteContainmentRecirculationHV-14506A,B;14507A,BHV-14508A,B;14510A,BHV-14511A,B;14512A,BHV-14513A,B;14514A,BHV-14566A,B;14522HV-14523,14528,14516HV-14518,14519,14520HV-14521,G33-1F033HV-16108Al,HV-16116AlHV-16108A2,HV-16116A2Both*HV-17521,23,24,22,25All*HV-15704,05,14All*HV-15703,13P61.1P69.1P73.1Inst.AirInst.AirInst.AirRev.27,10/81Page3of5

TABLE423.28-1SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASControlStructureHVACFeedwaterHDM-07802A,BBoth*HDM-07833A,B;HDM-07824A2,B2HDM-07824A4,B4;HDM-07881A,BHDM-07872A,B;HDM-07873A,BAll*TV-07813A,BTV-08602A,B10604A,B,C10640,1064114107A,B1065010606A,B,C10604A,B,C10663A1,A2,Bl,B2,Cl,C210664A,B,CP30.1P30.2P45.1,2Inst.AirInst.AirRev.27,10/81Page5of5 <<41>>fsaoIe1Icrlssis~~~soeylcsrl~DEA>>\,Ny1'4Icars1(AMNessCoco(Scikyttteels>>ly(seri~oak>>NVKSItok>>acooilk(EU41IDfksrisaaakIIO'ikiiCRIIM44~IisokslkWosMEEINIVAL~Msir-COH)ROLVALVES--VALVES--INSTRUHEHTS-w14Iecc~'NAIIWOKATOCILICKT~esse(kcv>>a>>Is.okrsa11~sSYNSOLTyre(ALPCEa(teriasesrtrssuck>>LyskyfsLIIweOaclD4COGCTE4LVkiyllofv5YNSOLSkll$(LICTID\~IOCEOrts(off(oak)fao>>~ikcfokv>>41(ye(I%alt5(<<CT(0flossA(t(IAA)1A14IARPISGTIONNOTAT>>11"1L4(1CI0%11(0~'IWW)ciola(soa¹a<<vof(1)LillKKINfikitcrseIOTTLGN4)AROf<<A'f(4Dollyayla(OS((aotNM(vcio$11)faa.oflaKivllaanaLYALYCDeer(Ovk'ARTIALLYI~w>>air)I(EATCOPLUGcsivt,IClksiCL011DRlvllEkflaMorok.of(EAT(~~I'IIIIILVVLLVLCll(aIsk(5'cgKNOT~LTIIk>>oflakT(oSrofrcc(cklkiylNoNolaa(LYOKNNCNo~>>LILYC(0SIDSftssc4Loko(D015101110EGIALIYTwk)TTUNOVALVEWITK1~T(111ONACTVkf(OCe((kVALVtSTCNSOLFNIDOPERATEDVALVEWIIere(oewGG.IID~~easy~VVSTOPIINOGCMek(III~~I~IMSsskIreksaswsfaek'Ilavccaway(aGEIIPLSYSTEas>>UNDERDc(00FT)ey(RSUPISY(SPCCML)0saNR(RootcsyakcTORMKWat<<l.'TOROIEILOw8(LECTOR0>gAsca.f(PDIER(LAY(soU)NE8ODSTCR)0'kkrsoWiky)IIYNASSTATKINLEIX(errto(KTIA(f>>AMPUPCtRCOKE(KTTONRCO'VYIRT(R~SCALARQ9SP(cci'oe((coro)Y8wssaskcTOI4>>IOMcAcockovsa>>fvalalaalwkacivi(oiss>>'fssCHccskrs>>wkrtk~14COeolk(kr(0(111Isiss~e11~Wsrkaesssl'flAIN17ra.sk'IMc>>sess(opD(secs(akist(~WGILVIIokorle%ILMelaDESELCGLSfwfsAeecoaarSr(MIWttI>>t>>Of(ITSOSS\I'IL1I,4wvlPsoilllksssicsa11Iw(4Cksosakvcok60losfsaiseoossr(4asvaasssvIalTaoIKA$%4(1Wkal<<$44Noa(TIAKoslfWCTIOs(cs(0El~IGKLNOVIITloNlrkl¹IalIokisa%itNtklva(vatcsa<<~INswcoerce)LksaeeecaepeTckrooseEHissofall(NovNT(oNSTEVN(NTaNksscosrwkcowolccwevrlkR(ONIfarwoafescreecuss((slsceerossa,offrees>>cc\cci~1MNICosrasa(KIcceseva(11oaiwisMsrivfVAII~Svfv5111(NwtrfiloIrorielcIwsfkcr(MescvksccaGlkrwrcauser>>awIOAWIr(WW11CASIOGSAAOWA'sIKOSNKSCSilCkeNky(R~sellAooccsrcrcoceociylctccaccciAIGNJwert'5151(Mw>>OctacresctA1GAN<<'INyokoasssrokkscWllCkswslOCOA>>c1Ms(7ARCARAISSKTCONMONGTOKCKGecykcata(kca4(L(lllVALY(Qps(sar(Tv¹ckoro\Pa($5111Elis(IOEJITVIID'5KOESkf(TVNlkofOEVkcckksa(U(fyyf<<~v(~(saaoawle(<<1(kr111tkOIATS01W(IL~~Os¹rttsICFLCWELCM(KTfOPLOWRCSTRICTOR1VCKTUEGTU~1oaILOWNollitiscklTOectNTossfwlaI(OWN>>(t<<(la>>lariser~%CaIlkaaStfp(y~oalCia%(1ValllICKEICIIO~OETof(1Ne(1Oltsl4%11toopcN.cso%co'%aliaII'1Nst\vwc>>$0<<eo>>4(¹talsl(0WleNSWL(kskk(~sleoa(scrokIs(soso'col%(GKIAIwaskvciska'soci~1wal<<kalsksay(NILassksss(erkrwsIIRCakL(s(MCKTAPERAFUWfs(MCET'rsisCLCMCKTSUSED6Fs>>Lccwwcokscot<<MENT(K(AT(IDWliE(kcrsat(NVkrsoswklklkcroaNIT(~cissofwalc<<aesopsciv(sIawEkistawe%~sc~ICs(CKNfskWESAILIT<<CSGSIIOLEOPOEWIPearkI%Nflaosowy-Peer~Gck4%resoleicos>>cosTAOLsecs~~Is%TOEcoEIssoikrsoacooissaSIC1>>IS(ALLY(K(ELCJ(4Nokale(ALLYDltV(llstlD-ACTUATORS-aaC(aNsl4~cs(ckIAIILO~SclatCICIVCSLCSI.ACMNc<<IkI>>oekiMCINctcoalSskkycecil1Icoons%4ci(ANN0'AcrwtvkkvaIsiDMaIALII(aooikaNsecfsoss~scavOASScvlVALVIwsskfeacwacpvap11157cccA>>N1Asaslfscfsl011~0f'Ic(1WsaCwciti<<Ow1'kkvcokesscwaakkccarckostEra%Tea,acc4(kkawccNAU145(CROISN~Wy>>A)SGOcyslTYPKALLVVIIKplowUMITNIG~SXSTKPSALVkll(wavRIP(NeerNrya>>KK~1eccCNCRG11LDISS>>A8(II(45101aCTVIT(DGOksf)C5.LREr)P(NIce(0scclcDk>>pscless(wewlsIsovcoakasslrlcoiiecIKM~IANOTIGCRP(IDORVSKJORsvoplscopkcrkoasec1>>ooakoVAIIw>>clOK%IS~17ssowsIkowksrl~kwasicw>>IswlT~iscwskytwllscsiowsys>>rsckcrpoaccoacaoVs%sessNotseALLYCLOS(0POETKSIMAILYOftsePOETIxNÃcsovsrrcTTofsesserfss'y1Npsoik(DwsIvsrsevsaa<<xxspiINPUTTOCCISPCstCRlcwtTPONTse(MDPKofSCORN<<OIOaksPSYASOMSrN>>7ksowklrasa.occckycovNc44Lss>>tkovklTCOL%Icy>>1.NessorlokkNEN>>170cAUGCLASSIFILD(TyfaCPccCTULTOR)ODEWCRTTCNk)SC(SKITSDTKESYMDOL)xxx+.OU(fvrFkascasfvfaRG--PDKTKUMD(sisaIAI>>cessossvouacosiISr(else>>crt'1OOKXOf(1114>>17~csscwes(~fvafsulfakcaIwGAL%AssWraTVISCCCI004,AkWDAMwrl4(kcfosoeAcesscowOGAakAMlosscvisslla,\114<<kclcw:I(54a>>a<<AITGE4CYINI(are>>'f*AS%IWii1SITSfko'150TIATacflkloaASS(is%LysiOft%AT(0~IOslCMGTtoiLtaNPIIT(ekk:OPCNKLUSIRIT(oAPPLKDKTlo(coolcwookscVALVNICYLI¹o(RoovoitACTMS0~GEsv(ccooocokPPELIcWskAcfOPIcsorAckscowDuskkse1seersOssaiielserio'1OIAPkaars'cpIa'rTccsc.caIessscS>>74~serfasovk\'ci>>ciocsoascfsossksak>>I1IN1>>40Carvii9GE.AREccsvpiyV(CCOORDP'PLYRTKANGE,APC,O)>>41Nsi.tioclAcafsowDGACEAMMeltI<<1tANIiwfc.'Nccov<<AcscsrockIMescKv(soIocsscaccropcvNAacTcyleaott.Do%i<<AcTa4ASI(NS<<1VIIIOITPILOTAGKPCOWSWIii(OMJSS~AKDACTIITOE(Moial(SATTof,$10(.aaSOTIOSICfACTIAT(D0(VICtASkff<<CklL()tl(CTROKVORASLICTAilcooocKKTSM(AKNraeckAwfosTscVAivlMSOGOLY~1-c~Itfscsooaic.we.Naresov(rase>>c>>E,LIriUi'IccILG(cNAI~1441IVPISCCIJLOCNKcii(O1kciccfsouSCK(1CCNrRcRANT~'OTEI~uVPV(RkSSGOP~VAsfPLOWOckr¹USG0LS,SsfOwr,ic~ccccSet(I'l.FOISGCCPEOTCCIGOKSvra(kl4LCCasaN111icc,s~LeseaswksrcoesiosacaeIowkcw4Askc(1M111))vokkrrwfssscurokIf'SCRACTUATOE(cc(kaf(OA'fTOP,Sof,okSOTTDIOrACTUGT(occvcc>>kpwKAELE)Soilkoso(41$(lDPTIONIL)~o(irsossvncs(5(511EOT($t.a(4)FIRSTLETTERSECONDASUCCEEDINGLETTERStao(CP-----4ctONOAIIMee~~ks~I1%11~%real,IOANa>>SU%>>rare>>k(IUNI~asarkaNSNNIIISHEASUREOVARIASLE~ReasyLike%(UsfeiIIGN>>1lokiisarlo~sseVkiytesse(DISPLAYDEVICES~ALEA~ACE-MLKJ!XRSLLRLr~rLNesea'INSM(M%>>4sorksw,OsssmoCON)ROLLINGDEVICES141CLIN4INT4N'ENSINGDEVICESSsIsecsIKINIIMEIUysa4(I%SUNK(INIaelcslci(Mao)1011asSCCNOTC11IsraiScaI~IssscIC74)yIIOIiyAGGLie(sissscscscscosoocrsvcfrASskiCkicacsIki1171kkakcikriCICDaliDsckykyalca1IIIIINALAN(TtlvICCSIC~LICsrCyCyASPGKUMATCACTUATORIGITKPOSGTIOK(siDiklsrvDID'II~101DyRev.26,9/8>Orsl~GOPALkscISeyIyKD11$ISKCCKyacKvsi(VEICIDklIssaaeoc~IskiweEIEGCecrMd(lSYSRCL~TOPf((kOCTMI.'niLIC'ikiiksIACCLISCLSIieisr<<I~LyLCIyIcySUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT<<ni411(ss~>>MLwsoa1CKLeseisCIkiioseNeiVSK1AL~AIi4%ioyilceasIKKITW(~IsvaossUN14Ws(NnNySTCAMTRAPA5%CSSSLY~I~Ossccakai1151~ISlowDcsnasssMIovclvokrv(arKI~4eosiIk1Ac~kifkeSSGGSIis(4~kscipc%IOIC(OcrOoceo%%PE(OyOsr~Ifa~ICPI~%l~IfvfcrwGsw(oss(~seers~0~I~sr~4~01f4'eIIILSISSWSCCIfo14~%ACPOC~OyPW'.Vles>>ressceases1f(4~s<<~I4~441~ki4ASSkiSANassiac(lkeLscc~I4$IErErr~4RvSaSIC51T~IVIIIEI~IkCcIWIISCro'IlIr~TCVvsTySELF-ACTUATEDDEVICES-Gcsae-TtccftkkrvafRtocsLATORStir~CONTAWtDLealgllA)5(OUNllo(LIIEITE11(KT<<'ItiENVikvolaraLa(CLASS1>>11ICIa(NIL%%>>4TlkslsklTlkss(CIAWAIlaillaILMCSCRVKCNt(ETOSCahOKOIOa(WAIN(a%La(1~)5MWalIOCILNST~Iscl~'IISE~PI<<III(11111(14RNaarat4'toclsvIck(ll"~voos(a>>a(~vas>>lite>>Alesfko(t$$Uat-IIce(ET~41SsostTellsos%I%1(IKNpa5(oa.aoolaat(SILATstOs'5SUPPLINs(LMoasf(4NSTIINIET~fjINSCAATINOKITIoa\NalNIASIN(0akcAIitNT(sakiIaoter(IIMLi(Ms(a%tlaviAIOVITENSTIW(11~EakavLIRI~PI(ISUII'Iaflri(<<CIESCILklc~~Iclfs(SsoE(IllaLTot,Ts(kssococo<<(lao%>>N4>>OPTCOGWVSSSC.ISOGNRO~c)~MIIE(5$1((ENllklotWOI~IlkarllfllltakkLPNSSlttTaP)SCE(ectoCafIOICCiONNCCTGOMI'ISl(ITYVALVISiA5NfP(kfOR>>AN<<TCSTVICIUNR(U(lyklyl-c(TIPKAL)IctNoelIIClo((ODEAIIfcf(kcRNKfuse(i~I~c(USTEDIKSTRIM(KTORDfricLENUovcotaovall((lorkcotCRNK(kwf5)(IPAKS>>k4(>>T(I>>Uk(A($(awf4fo,okf)QD(NEN-D(w(ALt>>ws(1((To(IcoswklrfK(lki>>U(507k(tvs((14(toccf41o(r(kc(KTaaov>>l((UNPS)ac>>vasya(coaaoSNc,caasl¹)~~WSTRUIstNTDIPUCAltoONaLYWAT(aWill(qaisaw¹akaONp(ID(IIAI5>>kWNTNR.1PCKRfCORCKRS)LowaoSiosf(ca%>>4rofo()~ocwwaoSLOPEicarr(RUshkipk(sacRLq$CeekwllDCVKE~ASI(Tlllas(R(SMS<<I)~<FLOATORDCPLACCRLtv(i.DcvscaOkNsTGGAP~UssaseaOkraSall(iSTELN(RSRAUTOMATIC(OSI<<l)~u.~~TW<<AIRRCL(ASGLEVCLDEVICEYSCIPPC%%ADDI(AscotWYCSTRNGSCRTN*WCLOVKCMICCOEOkv((PLOwaC.OWVATwereTetL($1Illrlcclcetclot~PIT(CRALNNatVILVE~~P.R¹4CLASSOWOCINLINC115T,SOCKASIfa~GGAostrccPLDGMfTlkLOCAL/RoykucytccNssspcoscrllck~vrszsseoGNCPsksspkaLXJRc>>OTcCAMpiawiresNoacaccvpioecaacacSAMPICNo(CLC<<FEIT(tacwieoapoNTorIaIIAN(SCCNovaIS0U\TLOUK($(ALLO.Us(EDkalllfllUNCSARC1(GSGIKILLYAIIALV(lo)Rtksorcak>>picLsWITHOUTSAMPLC-PENETRATIONSC<<CSIICTIA(114DsVORT(XFOALCS(RRLaa411OIT(k~fcttilNK(OK1111fIll(~VMLNe(fair>>sck(IllrlCise()Iss(a.k<<0CDOP(ac(See1<<v)Qaskew~DEOE11101~%scars(tsrkwTCO~Is<<a%TI.soka>>aoMMR~IKIIIAT>>s(Mf~~sksrRLGIENTCAPci(ARYRCCNTAIW(NIf(sfP:JICWCLCMCKTflssasarkrara)'a(CTcowEcvcoNailr(IITEATMCrCLOKE~esses>>~II(NONSW(4((4'VCIAOI)T(IPORARYgARTKXGSTRAKRStPkkkrot4YAEOSssteA(t~Mel~~P(ktllklloaLINECOMTINUATSOS(CLAISIWMI~lse>>1fitaoitPIGWAY~coswwoIscecatrccSCAI.CDITAlCNS1CcTTOAKOFROMf(atlakr>>1~oakwckocooka¹A-afts(TEAT(ONN(s,WSOC~ORSO(OfWoo(JSIsewssssawe(awVGSIsv>>s'11111ra%sosisSCilMcI~4$171011ToI~'I44ya'I41IIIIessaesysccNSWIN'Iki1ACItkLkevoceesse'cavsracII%rs~lscIDEC1IC'I~ITfeIIcyyvIyvOIIIIMNG'Mlarl~IerIyP&ID'EGEND&SYMBOLSFIGURE1.8-2a f CorporateLevelCORPORATESUPPORTORGANIZATIONSNUCLEARDEPARTMENTMGR..HUC.SAFETYASSESSMENTSENIORV.P.NUCLEARMANAGER.NQASUSQUEREVIEWMANAGERPROCUREMENTCONSTRUCTIONMANAGERMGR.-NUCLEARADMINISTRATIONV.P.NUCLEAROPERATIONS~if'i+'JLLAUDITINGASST.PROJECtDIRECTOR/(V.P.-E&C-NUCLEAR(PROJ.DIRECTOR)TECII.ASSLTO.PROJ.DIRECTOR.ASST.PROJECTDIRECTOR-SIIIIIlIMGR.-NUCLEARSUPPORTMGR.-NUCLEARTRAININGSUPT.-PLANtMANAGER-NUCI.EARFUELSMANAGERNUCLEARLICENSINGMAHAGER-HPEIIIlPRO).CONSTR.IMANAGERIISGSUPV.PROJ.&CONTRACTSCOORDINATORMAHAGER-POHDIIILLSUPV.NUCLEARPLNG.&CONTROLSCoordination&IntegrationManagarentDirectionRev.18,ll/80SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTNUCLEARDEPARTMENTMANAGEMENTORGANIZATIONJL,FIGURE17.2-2 +k5,l~ i'lESTIMATED(I)(2)(3)TURBINESHINEDOSERATEStub)(bCtsNITe'OINTDESCRIPTIONIGENERALYARDAREA2GENERALYARDAREA3GENERALYARDAREA4GENERALYARDAREA5GENERALYARDAREA6GENERALYARDAREA7TOPOFCOOLINGTOWER8FIELDOFFICE9NORTHSITEBOUNDARY10WESTSITEBOUNDARY11SOUTHSITEBOUNDARY12VISITORS'ENTERREM/YR67.2(4)1.0.128.24321321.2I5.7I88.23.7G354583288J((N(4NY(4(i+07~it@%~QII~SI74)SsU)Pll)POINTS1THROUGH8AREBASEDONCONTINOUOSOCCUPANCY(8760HOURSPERYEAR),ANDA100PERCENTPLANTCAPACITYFACTORWITHUNIT1ONLYINOPERATION.(2)POINTS9THROUGH11AREBASEDONCONTINUOUSOCCUPANCY(8760HOURSPERYEAR),ANDAN80PERCENTPLANTCAPACITYFACI'ORWl'THBOTHUNITSINOPERATION.(3)POINT12ISBASEDON8HOURSPERYEAROCCUPANCY.ANDA100PERCENTPLANTCAPACITYFACTORWITHBOTHUNITSINOPERATION.(4)6.7.2102Qs>>9Qsll)I->>Q44(VVA)Vf(AVPrFROPurP(INC~ZeISUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTESTIMATEDTURBINESHINEDOSERATESFIGURE12.4-1}}