ML17053B130

From kanterella
Jump to navigation Jump to search
Tmrsap Verification Analysis,Ofc of Nuclear Reactor Regulation Benchmark Problems, Books 1 & 2
ML17053B130
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 09/21/1979
From:
TELEDYNE ENGINEERING SERVICES
To:
Shared Package
ML17053B131 List:
References
NUDOCS 7910310290
Download: ML17053B130 (42)


Text

NIAGARA MOHAWK POWER CORPORATION 300 ERIE BOULEVARD WEST SYRACUSE, NY 13201

%Ill"JJ YO PDItlTM WIlIKf FBINII fILh-I iIVM MLI<H ATTACHNENT "TO TES LETTER 3245A-4 BOOK 1 OF 2 "TMRSAP" VERIFICATION ANALYSIS nunn

~ ~

Deartvtuunov Vl t' 'I va ~ ~~

oonni ra~@

tt tt'll\ t t'IV t t I tQ

~

SEPTEMBER 21, 1979

'VtI TELEDYNE ENGNEERIMQ SERVICES 303 BEAR HILL ROAD WALTHAM,MASSACHUSETTS 02154 617-890-3350 V9108X0 ~ f g.

w

P

~0

<< TELEDYNE Attachment to ENGINEERING SERVICES TES Letter 3245A-4 TABLE OF CONTENTS PAGE

1. 0 INTRODUCTION 2.0 BENCHMARK VERIFICATION PROBLEMS -

SUMMARY

OF RESULTS 2.1 No. 1 - Hovgaard Bend ,2 '

Problem

2. 2 Prob 1 em f No. 2 - Cof ee Table

'2.3 Problem No. 3 - Modified Reactor System 11 2.4 Problem No. 323A - Piping System 15

I W TELEDYNE ENGINEERING'ERVICES Attachment to TES Letter 3245A-4

~$ .

1.0 INTRODUCTION

This report addresses the request by the Office of Nuclear Reactor Regulation (ONRR) for the verification of the Tt1RSAP comp~ter code. The information contained in this report satisfies the requirements of the computer code verification program as stated in IE Bulletin 79-07.

Four benchmark problems defined by the ONRR were analyzed for linear elastic behavior. The structural models were subjected to dynamic loading induced by earthquake type excitation (seismic spectra) in three directions.

Dynamic solutions were determined by the modal. superposition and response spectrum method of seismic analysis, based on NRC Regulatory Guide 1.92.

r< TELEDYNE ENGINEERING SERVICES Attachment to TES Letter 3245A-4 2.0 BENCHMARK VERIFICATION PROBLEMS -

SUMMARY

OF RESULTS 2.1 'roblem No. 1 - Hov aard Bend The Hovgaard Bend configuration.was-modified slightly to accom-modate a modeling requirement for the TMRSAP computer code. The following computer generated plot shows the equivalent TMRSAP piping model for the Hovgaard Bend benchmark problem. A short segment of straight pipe was

'dded to the model at the arc center of each bend to accoranodate an elbow-to-elbow connection. This modeling resulted in slightly higher frequencies and corresponding modal participation.

I I

Attachmont to Ss TELEDYNE TES Letter 324'5A-4 ENGINEERING $ ERyICES

~ LUHPED MASS SYSTEM FOR HOVGAARD BEND BEHCHMARI'RQB. NQ. 1 Qio 0/I Pore: ClgC4E'0 A/PIV8'EiPS OZWINE'4&AKEiV7"S.

0

W TELEDYNE ENGINEERING $ ERVICES Attachment to TES Letter 3245A-4 BENCHMARK PROBLEM NO. 1 HOVGAARD BEND FREQUENCIES CPS MODE EPIPE TMRSAP 1 28.53 28.53 2 55.77 55.79

3. 81.50 81.48 4 141.70 141.70 5 162.80 162.8 MAXIMUM DISPLACEMENTS COMPONENT NODE EPIPE TNRSAP X

5 0.00784 0.010797 U. 7 0.00250 0.003453 U 4 0.01745 0.024125

'x 3 0.00018 0.000255 e 7 0.00021 0.000293 0 3 0.00007 0.0000967

I i

e

<< TELEDYNE ENGINEERING SERVICES Attachment to TES Letter 3245A-4 BENCHMARK PROBLEM NO. 1 HOVGAARD BEND MAXIMUM'ELEMENTLOADS COMPONENT ELEMENT EPIPE ELEMENT TMRSAP Px(1) 7 28.1 8 37.0 VY(I) 1 36.4 1 50.2 vz(I) 10 34.8 12 45.7 MY( I) 10 1871.0 12 2561.0 Mz(I) 1 3227.0 1 4458.0 TX( I) 3 629.6 3 868.2 Px(J) 7 26.7 9 33.8

-VY(J) 1 36.4 1 ~

50.3 vz(J) 10 34.8 12 45.7 MV(~l} an J \/

npqa n II JC '356.0 Mz(v) 8 1380.0 10 '909.0 Tx(v) 1 629.6 1 868.2

C r> TELEDYNE ENGIREERIMG SERVlCES Attachment to-TES Letter 3245A-4 BENCHMARK PROBLEM NO. 1 HOVGAARD BEND

~

GENERALIZED MODAL PARTICIPATION DIRECTION FACTORS: X = 1.0, Y = 0.6667, Z = 1.0 E PIPE MODAL PARTICIPATION MODE 'x P P /P,.I D,.

1 0.1752 -0.02593 -0.3308 0.52328 2 0.3628 -0.002074 0.1478 0.51198 3 -0.05397 -0.2582 -0.02793 0.25404 4 0.08361 -0.05268 -0.01174 0.13047 5 -0.07925 0.06605 -0.01115 0.13473 TMRSAP MODAL PARTICIPATION z

MODE 'x P PE xD ~

1 0.1754 -.02596 -.3309 0.52360 2 0.3628 .002035 .1479 ~

0.51205 3 -.05405 -.2582 .02795 0.25414 4 0.08386 -.05280 -.01153 0.13059 5 -.07926 .06634 -.01116 0.13465

>< TELEDYNE ENGINEERING SERVICES Attachment to TES Letter 3245A-4 C

2.2 Problem No. 2 - Coffee Table A computer, generated isometric plot of Benchmark Problem No. 2 is shown on the following page. The configuration for the TNRSAP computer code is the same as the EPIPE model with the exception of the element numbering..The element connectivity was defined differently for ease of input to 'THRSAP. The results between Tt1RSAP and EPIPE are in excellent agreement as shown in the following tables which summarize the frequencies, maximum displacements and maximum element loads.

A TELEDYNE ENGINEERING SERVICES Attachment to

'ES Letter 3245A-4 DYNAMI'C RESPONSE OF A COFFEE TABLE (RESPONSE SPECTRUM ANALYSISi OiB Q7 l3 I2 Qw Qo QI

0 r< TELEDYNE ENGINEERING SERVICES Attachment to TES Letter 3245A-4 BENCHMARK PROBLEM NO. 2 COFFEE TABLE FREQUENCIES ('CPS)

MODE EPIPE TMRSAP 1 8.71 8.71 2 8.81 8.804

-3 17.51 17.50 4 40.37 40.36 5 41.63 41.62 MAXIMUM 0 I SPLACEMENTS COMPONENT NODE EPIPE TRRSAP (j 11 n nr~nn 0.46203 x

U 13 0.00236 0.0023598 U 13 0.4464 0.44691 ex 3 0.00654 0.006546 Oy 14 0.00001 0.0000127 ez 4 0.00672 0.006722

Attachment to ENQINEERIRG SERVICES TES Letter 3245A-4 BENCHMARK PROBLEM NO. 2 COFFEE TABLE MAXIMUM ELEMENT LOAOS COMPONENT ELEMENT EPIPE ELEMENT TMRSAP Px(I) 1 555.4 1 .555.8 VY(I) 3 468.7 3 469.2 Vz(I) 1 109.3 1 109.3 MY(I) 1 5229.0 1 5230.0 Mz( I) 1 5135.0 1 5141.0

'1 TX(I) 1.61 1 1.61 Px(J) 1 555.4 1 555.8 VY(J) 3 468.7 3 469.2 vz(J) 1 109.3 1 109.3 MY(V) 6 5229.0 6 5230.0

-'Mz(v) '6 513>.0 6 5141.0-Tx(v) 1 1.61 1 1.61

l

~e

>< TELEDYNE Attachment to ENGINEERING SERVICES TES Letter 3245A-4 2.3 Problem Ho. 3 - Modified Reactor S stem

. The Modified Reactor System model was modified to accommodate elbow-to-elbow connections from the four corners of the model to the center point, node 8. The following computer generated plot shows the equivalent TMRSAP piping model for the Modified Reactor System. Each of the four outside loops (bend elements) were modeled as an equivalent series of three elements (tangent-bend-tangent). The results between the TMRSAP and EPIPE computer codes are in good agreement as shown in the following tables which summarize the frequencies, maximum displacements, and maximum element loads.

~o J'p

A TELEDYNE

~: Attachment to ENGINEERINQ SERVICES TES Letter 3245A-4 Bl:HHARK j'ROBLEH NO. 3 DYNAMIC RESPONSE OF R NODIFIED RERCTOR SYSTEN IB 0

~e

-S<-TELEDYNE Attachment to ENGINEERING SERVICE$

TES Letter 3245A-4 NRC BENCHMARK PROBLEM NO. 3 FREQUENCIES (CPS)

MODE EP IPE TMRSAP 1 1.806 1.805 2 1.875 1.874 3 3.205 3.204 4 3.480 3.480 5 3.539 3.540 6 3.645 3.645 MAXIMUM. 0 I SPLAC EMENTS TMRSAP COMPONENT NODE EPIPE ~SRSS) 'CLUSTER)

X 13 5.32223 4. 5717, 6. 2988 Vo V%00/ v.Oee5o 0.04908 UZ 13 5.39637 4.7243 6.4084 e

X 13 0.09062 0.07763 0.10689 ey 12 0.00192 0.001866 0.001968 ez 13 0.09036 0.07763 0.10689

~e

-r<-TELEDYNE ENQlMEERlNQ SERV)CES Attachment to TES Letter 3245A-4 4k NRC BENCHMARK PROBLEM NO. 3

. MAXIMUM ELEMENT LOADS ELEMENT EPIPE ELEMENT TMRSAP COMPONENT NO. (CLUSTER) NO. ~SRSS ~CLUSTER PX(I) 1 3243.0 1 3028.0 3574.0 VY(I) 2109.0 2009.0 2155.0 vz(I) 3 635.0 563.0 747.0 TX(I) 14 4110.0 20 3596.0 4592.0 MY(I) 7823.0 7623.0 8181.0 20 971 AA ~ A 32570.0 44140.0 Mz(,I) VPRNV V I

PX(V) 3243. 0 3028.0 3574.0 VY(J) 3 2109.0 3 2009.0 2155.0 vz(J) 16 930.0 25 430.0 590.0 TX(J) 18 3866.0 14 3454.0 4484.0, MY(C) 6 7891.0 6 7611.0 8243.0 Mz(c) 15 14030.0 13 10840.0 12070.0

~o r>-TELEDYNE Attachment to ENGINEERING SERVICES TES Letter 3245A-4 2.4 Problem No. 323A - Pi in System

. The piping system defined in problem 323A was analyzed with the THRSAP computer code for each seismic spectra separately and the results of each response spectrum analysis were combined by taking the square root of the sum of the squares (SRSS) of corresponding maximum values of the spectrum response. The results of the maximum displacements are shown on the following pages arid they are in close agreement with the EPIPE results supplied by the NRC. The NRC supplied data for this benchmark problem did not include element loads; therefore, they are not summarized for this problem.

~e PIPING BENCH MARK PRQBLEM 323A O ID M ID 6 et T

%6 4J et MO Ol I

I6 Pl

~Pl g~

z8 Pl~

Sm Q

V)

Pl C

0Pl 0)

~e Ph TELEDYNE Attachment to ENGlNEERlMQ SERVlcE$

TES Letter 3245A-4 BENCHMARK PROBLEM NO. 323A PIPING SYSTEM FRE UENCIES (CPS)

NODE EP IPE TMRSAP 1 6.39 6.39 2 9.99 9.99 3- 13.27 13.27 4 14.49 14.49 5 15.33 15.33 6 17.50 17.50 7 19.09 19.09 8 19.62 19.63 9 21.44 21.44 10 28.71 28.71 11 29.86 29.87 12 31.48 31.49 13 32.01 32.01

~ e 14 15 16 36.37 nnV ~ no

~

41.37 36.37 41.37 17 47.39 47.40 18 49.77 49.77 19 50.13 50.13 20 52.93 52.94 21 56.90 56.91 22 58.51 58.52 23 67.47 67.47 24 70.46 70.'47 25 75.41 75.42 26 79.18 79.20 27 80.74 80.75 28 86.11 . 86.12 29 88.28 88.33 30 92.74 92.74 31 99.36 99.37

~o r< TELEDYNE Attachment to ENGjNEERlNG SERVlCES TES Letter 3245A-4 o NRC BENCHMARK PROBLEM 323A PIPING SYSTEM TMRSAP MAXIMUM DISPLACEMENTS SRSS CLUSTER u NODE 31 X-SPECTRA .020751 .020785 Y-SPECTRA .0020513 .0020675 Z-SPECTRA .010887 .010943 SRSS = .023523 .0235805 u> NODE 35 X-SPECTRA .051633 .051638 Y-SPECTRA .057385. .057386 Z-SPECTRA .010441 .010448 SRSS = .077897 .077902 u NODE 36 X-SPECTRA .013009 .013101 Y-SPECTRA .0028254 .0028406 Z-SPECTRA .0068936 .0069855 SRSS = .014991 .015116 e NODE 35 X-SPECTRA .00021197 .00021198 Y-SPECTRA .00023513 .00023518 Z-SPECTRA .000043568 .000043607 SRSS = .00031955 .000319604 NODE 35 X-SPECTRA .000084048 .000084152 Y-SPECTRA .000012717 .000013047 Z-SPECTRA .000043608 .000043729 SRSS = .000095565 .000095728

~l T

r< TELEDYNE ENGINEER)NG SERVICES Attachment to TES Letter 3245A-4 NRC BENCHMARK PROBLEM 323A PIPING SYSTEM MAXIMUM D ISPLACEMENTS SRSS CLUSTER eNODE 38 X-SPECTRA .00020599 .00020606 Y-SPECTRA .00022871 .00022872 Z-SPECTRA .000042008 .000042082 SRSS = .00031065 .00031071 n T %PI Al FMFhl ) cl IMMARY COMPONENT NODE EPIPE TNRSAP x

31 0.02354 0.02352 U 35 0.07789 0.07789 UZ 36 0.01500 0.01499 ex 35 0.00032 0.00032 ey 35 0.00010 0.000095 ez 38 0.00031 0.00031 NOTE: ELEMENT LOAD DATA WERE NOT SUPPLIED BY NRC.

I' A I,

~o