ML17254B036

From kanterella
Revision as of 14:01, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
NUREG-0737,Suppl 1,SPDS Safety Analysis.
ML17254B036
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/30/1984
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17254B035 List:
References
RTR-NUREG-0737, RTR-NUREG-737 NUDOCS 8412050053
Download: ML17254B036 (38)


Text

NUREG-0737 Supplement 1SafetyParameter DisplaySystemSafetyAnalysisRochester Gas&ElectricCorporation R.E.GinnaNuclearPowerPlantDocket50-244@~801iSoBgg2O50OOGOQO2popAgoGKPggFNovember1984 J11IICt SAFETYPARAMETER DISPLAYSYSTEMIntroduction NUREG-0696 statesthatthepurposeofthesafetyparameter displaysystem(SPDS)istoassist,controlroompersonnel inevaluating thesafetystatusoftheplant,.TheSPDSistoprovideacontinuous indication ofplantparameters orderivedvariables representative ofthesafetystatusoftheplant.TheprimaryfunctionoftheSPDSistoaidtheoperatorintherapiddetection ofabnormaloperating conditions.

TheSPDSdisplaystotheoperatoraminimumsetofparameters fromwhichtheplantsafetystatuscanbeassessed.

Theselection ofparameters andthedisplayformatenhancetheoperator's capability'o assessplantstatusinatimelymannerwithoutsurveying theentirecontrolroom.TheSPDSdisplaycompliments theoperator's normalsurveyofconventional controlroomindicators.

Thedisplaywillberesponsive totransient andaccidentsequences andwz,llbesufficient to'indicate" thestatusofcriticalplantparameters.

1AsrequiredbyNUREG-0737, Supplement 1,theminimuminformation tobeprovidedshallbesufficient.

toprovideinformation toplant"operators about:(i)Reactivity control(ii)Reactorcorecoolingandheatremovalfromtheprimarysystem(iii)Reactorcoolantsystemintegrity (iv)Radioactivity control(v)Containment.

conditions Thespecificparameters tobedisplayed aretobedetermined bythelicensee.

Following selection ofthespecificparameters licensees shallprepareawrittensafetyanalysisdescribing thebasisonwhichtheselectedparameters aresufficient toassessthesafetystatusofeachid'entified functionforawiderangeofevents,whichincludesymptomsofsevereaccidents.

Thepurposeofthisreportistofulfilltherequirement forawrittensafetyanalysisforthebasisofselection ofparameters.

klf~vQ~VI~a

~j~/~GinnaSPDSDevelomentTheGinnaSPDSisasubsystem ofthelargerSafetyAssessment System(SAS).TheSASisdesignedtoprovideeasilyunderstandable information fromacomputer-based dataacquisition systemusinghighresolution multiple-color CRTgraphical displays.

MajorfeaturesofSASwillbe:0o.Top-level displaysofkeyparameters usedtoassessthesafetystatusoftheplant(SPDS);oTrendgraphsofgroupsofrelatedparameters; oAnAccidentIdentification andDisplaySystem(AIDS)thatgraphically informstheoperatoroftherelativelikelihood thateachofthreemajorPWRaccidents maybeoccurring:

LossofCoolant.Accident(LOCA),SteamGenerator TubeRupture(SGTR)andLossofSecondary Coolant(LOSC).ACriticalSafetyFunction(CSFM)Monitorwhichdefinesconditions toassessthestatusofsixcriticalsafetyfunctions; andoAmessageareawhichindicates theplantoperating modeselectei, date,time,andthecurrentvalueofsomekeyparameters, andnotifiestheoperatorofcertainoff-normal conditions.

'\TwoCRTs,aprimary<<and'secondary,"

presentmultipledisplaystotheoperatorusingahierarchical'i'splay concept."The'rimary CRTisnormallydedicated toa"topleve'1"displayandfulfillstheSPDSrequirement.

Thepurposeofthesecondary CRT,.istoprovidemoredetailedinformation:"by displaying thereadiness and'performance ofselectedplantsystems,criticalsafetyfunctions "andchannelmalfunctions.

Arelatively largedatabaseisusedtosupporttheoperation oftheSAS.Fromthisdatabaseareducedsetofparameters areselectedforcontinuous displaytotheoperatorduringplantoperation togiveanoverviewofplantsafetystatus.Some"conditioning" ofdataisperformed usingSASalgorithms toreducethenumberofdisplaysthatarerequiredwithout,losingfunctions thatmayprovidekeyindication ofsafetystatus.Figure1showsthetoplevelSAS,orSPDSdisplay.Theselection of"parameters fordisplayonSPDSisbasedupontheWestinghouse OwnersGroup(WOG)Emergency ResponseGuidelines (ERGs).Adetailedequipment, specification developed byagroupofutilities including RGEandwhichdescribes, amongotherthings,thefunctional andtechnical requirements forSAShasbeensubmitted.

Thisadditional information wassubmitted withaletterfromJohnE.MaiertoDennisM.Crutchfield datedJune8,1981.

L.'ij1ipJ4l"'q,Jl' WestinhouseOwnersGrouEmerencResonseGuidelines TheWestinghouse OwnersGrouphasanalyzedabroadspectrumofeventsequences todetermine significant'isk contributors.

Emergency ResponseGuidelines werethendeveloped toprovidefullprocedural coverageforatleastallthosesequences withcolinedfunctional failureprobabilities equaltoorgreaterthan10perreactoryear(i;ncluding theinitiating event).Justification fortheselection ofthiscutoffvaluewasarelativeriskevaluation whichwasprovidedtotheNRCwithaWOGletterOG-61fromR.W.Jurgensen toStephenH.HanauerdatedJuly7,1981.TheERGsprovideprioritized operatorguidanceforrecovering theplantfromanemergency transient whileat.thesametimeensuringthattheplantsafetystateisexplicitly monitored andmaintained duringrecovery.

TheERGsarecomposedoftwodistincttypesofprocedures:

oOptimalRecoveryGuidelines, andoCriticalSafetyFunctionRestoration Guidelines andStatusTreesTheOptimalRecoveryGuidelines provideguidancefortheoperatortorecovertheplantfromnominaldesignbasisfaultedandupsetconditions.

TheCriticalSafetyFunctionrestoration Guidelines, whenusedwiththeaccompanying CriticalSafetyFunctionStatusTrees,provideasystematic meansforaddressing anychallenge toplant.CriticalSafetyFunctions, whichisentirelyin'dependent ofinitiating event.Theavailability ofbothtypesofprocedural guidancepermitstheoperatortorespondtovirtually anyplantupsetcondition, including multiplefailureconditions, and'failures subsequent toinitialdiagnosis whichcouldrequireadditional operatoractionbeyondthatspecified intheOptimalRecoveryGuidelines fortheeventswhichtheycover.Duringrecoveryfromanevent,theoperatorcontinually monitorstheCriticalSafetyFunctions toassurecontinued

'plantsafety.Ifachallenge toaCriticalSafetyFunctionoccurs,theoperatorisdirectedbyuseofStatusTreestospecificFunctionRestoration Procedures'esigned torestorethechallenged safetyfunction(s) tosafeconditions.

Uponrestoration ofallCriticalSafetyFunctions, appropriate optimalrecoveryactionsarecontinued.

Thestatustreesprovidetheoperatorwithasystematc andexplicitmeansfordetermining thesafetystatusoftheplantforanyemergency situation.

Useofthestatustreesprovidesindependent verification" oftheattainment andmaintenance of'safeplantconditions throughout therecovery.

Concurrent useofstatustreesandtheappropriate OptimalRecoveryGuidelines alsoprovidesamethodforidentifying themodeofCriticalSafetyFunctus:on challenge independent ofspecificeventdiagnoses andnominalprescribed recoveryactions.Therefore, useofthestatustreesinconjunction withtheOptimalRecoveryGuidelines providesasystematic wayofidentifying andcopingwithsubsequent/multiple failuresituations.

'I CriticalSafetyFunctionRestoration Guidelines describeoperatoractionswhichcouldbeeffective inresponding tochallenges totheplantcriticalsafetyfunctions.

TheseCriticalSafetyFunctionRestoration Guidelines provideguidanceformaintaining theplantinasafestatewithout.regardtoinitiating eventorcomb'inations ofsubsequent orconsequential failures'aftereventdiagnosis.

TheCriticalSafetyFunctionRestoration Guidelines areidentified bynotingthespecificmodeoffailureindicated attheterminusofeachCriticalSafetyFunctionStatusTree.Theseterminalfailuremodesareaddressed throughthecreationofappropriate functionrestoration guidelines whichcollect,ineachguideline fortheoperator's use,thepotential methodsforresponsetoidentified failuremodes.CriticalSafetyFunctionRestoration Guidelines havebeendeveloped baseduponthe'ollowing CriticalSafetyFunctions.

Maintenance ofSUBCRITICALITY Maintenance ofCORECOOLINGMaintenance ofaHEATSINKMaintenance ofReactorCoolantSystemINTEGRITY Maintenance ofCONTAINMENT Integrity ControlofReactorCoolantINVENTORY TheconceptofCriticalSafetyFunctionRestoration isbasedonthepremisethatradiation releasetotheenvironment.

canbeminimized ifthebarrierstoradiation releaseareprotected.

Restoration impliesreturning theplantstatetoasafestatusinwhichtheCriticalSafetyFunctions aresatisfied.

Guidancefordiagnosis oftheplantsafetystateindependent ofeventsequenceiscontained intheCritical'afety FunctionStatusTrees.AStatusTreeexistsforeachofthesixCriticalSafetyFunctions which,asaset,definetheplantsafetystate.Theplantparameters thatdefinethestateof'achCriti'cal SafetyFunctionareidentified ontheassociated StatusTree..Typically, onlyafewparameters arerequiredtoidentifythestatusofaCriticalSafetyFunction.

TheSubcriticality StatusTreeisreproduced inFigure2asanexampleofthesest'atustrees.KePlant,Instrumentation Following development oftheERGs,instrumentation wasidentified th'atmonitorstheplantvariables whichprovidetheprimaryinformation requiredtopermittheControl'RoomOperating

'Staffto:a)Performtheeventdiagnosis specified intheERG's.

014 b)Takethespecified preplanned manuallycontrolled actions,forwhichnoautomatic controlisprovided, thatarerequiredforsafetysystemstoaccomplish theirsafetyfunctionformitigation ofthedesignbaseaccident; andc)Reachandmaintainasafeshutdowncondition.

Theinstrumentation wasidentified whichmonitored thoseplantvariables thatprovideinformation toassesstheprocessofaccomplishing ormaintaining theplantcriticalsafetyfunctions, i.e.,reactivity control,reactorcorecooling,heatsinkmaintenance, reactorcoolantsystemintegrity, reactorcontainment integrity andreactorcoolantsystemi.nventory control.Alistingofthisinstrumentation isgiveninTable1.SPDSParameters Thelistofinstrumentation developed fromtheERGsincludesalltheparameters thatarenecessary togiveearlyindications ofpotentially adversesafetyconditions andincludesparameters necessary tomonitorproperfunctioning ofmitigating equipment aftertheresponsetoatransient hasbeeniniti.ated orto"assistinlongtermoperatorresponse."

Thelattergroup'includes auxiliary feedwater flow,refueling waterstoragetanklevel'andcondensate storagetanklevel.Thus,therelatively smalllistofinstrumentation necessary toimplement theERGscanbefurtherlimited.Theremaining essential instruments thatare"earlyindicators" arecandidates forinclusion ontheSPDS.Allareeitherdirectlydisplayed, arecombined(grouped) throughanalgorithm togiv'eacommonindication forsimi.larparameters orarenarrowrangeinstruments usedtoinitiateautomatic actionandwhichcanbemonitored byanotherwiderangeinstrument,.

Anexampleofgroupingisthecombo.nation ofcontainment pressureandcontainment waterleveltoproduceabistableindication ofcontainment environment.

Anexampleofanarrowrangeinstrument whichinitiates actionbutwhi'chcanbemonitored" byanotherinstrument ispressurizer pressure(1700-2500 psig)whichisoverlapped byRCSpressure(0-3000psig).Adiscussion ofeachoftheERGrequiredinstruments shownonTable1andtheGinnaSPDSparameters isgivenbelow.Specificanalogpointparameters usedtogeneratetheSPDSdisplayaregiven"onTable2.BecausetheSPDSisnot.yetinstal1ed, someofthepointparameter IDsmaychangealthough" thefunctionbeingmonO=ored willberetainedonthedisplay.Figure1isanillustration oftheSPDSdisplay.TheAIDSsection"givestheoperatoragraphical indication oftherelativelikelihood ofthreemajoracct.dents.

Amessageareaisreservedtopresentinformation onseveralparameters asshownonTable2.Theremaining portionsofthedisplayareagiveanalogand/ordigitalindications ofselectedparameters, orforsecondary radiation andcontainment, environment, presentbistablealarmindicators.

RCSPressureERGAssumption Thereactorcoolantsystem(RCS)isassumedtohaveatleasttwowiderangepressuretransmitters connected totheresidualheatremoval(RHR)hotlegsuctionlines.Therangeofthesechannelsistypically 0t'o3000psig.Thisinstrumentation isassumedtobe"subjecttoadversecontainment conditions.

GinnaInstrument Thereactorcoolantsystemhastwowiderangepressuretransmitters, PT420andPT420A.PT420isconnected totheRHRhotlegsuctionandPT420Aisconnected toanuppertaponthepressurizer.

Bothofthesewiderangepressureindications areincludedintheSPDSshownonTable2.TheyareaveragedtoprovidetheSPDSRCSpressureindication shownonFigure1.RCSHotandColdLeTemeraturesERGAssumption EachRCShotandcoldlegisassumedtohaveadeepwellmountedRTDtomonitorwiderangeRCStemperature.

Therangeofthesechannelsistypically 0to700'F.Trendingoftemperatures isnecessary formonitoring RCSnaturalcirculate.on andcooldownrates.GinnaInstrumentation HotlegRTDs409A-1and'410A-1andcoldle'gRTDs409B-1and410B-1willbedirectimmersion typeRTDsandwillprovideinputtotheSPDSasshownonTable2".TherangeoftheRTDsis0to700F.ReactorVesselLevelERGAssumption ForthoseplantsthathaveaReactorVesselLiquidInventory System(RVLIS),theinstrument isusedtomeasurevessellevel.TheRVLISsystemisassumedtohavedesignfeaturestypicalofaWestinghouse-designed RVLIS.AWestinghouse designedsystem.includes threerangestoprovideindication fromthebottomtothetopofthevesselwithanycombination ofreactorcoolantpumpsoperating.

ForthoseplantswithoutaRVLIS,ERGshavebeenwrittentoprovideappropriate responses withoutlevelindication.

Insomecasesalternative indications areusedtodirectanappropriate responseandinothercasesamoreconservative actionistakenbydeletingtheRVLISindication altogether.

III8 GinnaInstrumentation Areactorvessellevelinstrument doesnotcurrently existatGinna,however,RGEhascommitted toinstalladifferential pressuretypeinstrument bytheendofthe1986refueling outage.Theinstrument willprovideanindication fromthebottomtothetopof'thevessel.'Adescription'f theproposedinstrument wasprovidedinanRGEletterdatedAugust7,1984.Thisinstrument "isnotcurrently scheduled tobeabidedtotheSPDS.Rochester GasandElectrichaspreviously stateditspositioninlettersdatedJuly2,1980,December15,1'980,December30,1980,January19,1982,andAugust7,1984thataninstrument toaccurately measurereactorvesselwaterlevelcouldserveausefulpurpose,butthatsuchadeviceisnotnecessary forproperresponsetoemergency situations.

RG&Ealsoisno'tconvinced thatreactorvesselwaterlevel(inventory trend)instruments provideaclear,unambiguous indication ofinadequate corecooling,althoughtheymayindicatecoolantvoidformation inthelimitedspanabovethevesselpipingpenetrations.

Oneconsultant withsignificant experience anddirectparticipation withtheWestinghouse OwnersGroupstudiedinadequate corecoolingsituations forRGE(seeRG&EletterdatedNovember29,1983)andconcluded that"existing plantinstrumentation andprocedures areadequatetoadviseoperators ofhowtorespondtovoidsinthereactorvesselheador'distributed throughthereactorcoolantsystem".Hisfindingconfirmsthat,theERGsdeveloped forplantswithoutaRVLISareviable.Themajorreasonthat,RGEobjectedtoinstalling andusingtheRVZISisthat,severalinstances havebeenidentified (seetheWestinghouse ERGbackground documents) whentheRVZISmaygiveanambiguous indication.

Theseinclude:1)abreakintheupperhead,2)periodsofreactorvesselupperplenuminjection, 3)periodsofaccumulator injection intoahighlyvoideddowncomer, 4)periodswhenthereactorvesselupperhead=behaves likeapressurizer, and5)periodsofvoidredistribution intheRCS.Severaladditional instances havebeenidentified whichmayresultinbiasedRVLISindications.

Theseinclude:1)reverseflowsinthereactorvessel,and2)coreblockage.

Atothertimeswhentheoperatorcandetermine thattheseconditions donotexisttheinstrument, shouldgivereasonable results.TherangeofbreaksizesoverwhichtheRVZISwillprovideusefulinformation isfromsmallleakstobreaksinthe'limiting smallbreakrange.Thesystemconditions willchangeataslow"enoughrateforbreaksinthisrangesothat.theRVZISindication willaccurately trendwithRCSinventory.

Forlargerbreaks,theresponseoftheRVZISmaybeerratic,duetorapidpressurechangesinthevesselintheearlyportionoftheb1owdown.

TheRVLISreading,however,forlargebreaks,willbeusefulformonitoring accidentrecovery"whenothercorroborative indications canalsobeobserved".

TABIE2SPDSPARAMETERS AngloParameters PointIDsFormofReactorCoolant,LoopPressurePressurizer I,evelCoreExitThermocouples Containment PressureContainment SumpALevelContainment Radiation AirEjectorRadiation SteamGenerator BlowdownRadiation SteamGenerator ASteamFlowSteamGenerator BSteamFlowSteamGenerator ALevelSteamGenerator BLevelSteamGenerator APressureSteamGenerator BPressureSteamGenerator AFeedFlowSteamGenerator BFeedFlowPowerRangePowerLevelHotLegTemperature LoopAHotLegTemperature LoopBColdLegTemperature LoopAColdLegTemperature LoopBSourceRangeDetectorIntermediate RangePowerLevelDiitalParameters P0420,P0420AL04267L0427,L0428TCA07-TCL10(TotalP0945,P0947,P0949L2039,L2044R02R15R19F0464,F0465F0474,F0475I,0460L0470P0468,P0469,P0482P0478;P0479,P0483F0466,F0467F0476;F0477N41,N42,N43,N44T0409A-1T0410A-1T0409B-1T0410B-1N31,N32N35,N36PointIDsof39TCs)AAAATCABABDSBSBAAIIAAAAMIIIIMMPressurizer PORVPositionReactorTripSignalMainSteamkineIsolation SignalSafetyInjection Actuation SignalFeedwater Isolation Actuation

'SignalCirculating WaterPumpStatusReactorCoolantPumpStatusSourceRangeHighVoltageStatusV0430,V0431RXTAl,RXTBlMSISIGA,MSISIGBSISIGA,SISIGBFWSIGA,FWSIGB,'KR051,BKR052RXT16,RXT17BLOCK1,BLOCK2tkRMBMBMB"MB:MB'BMBNotesATheseparameters areaveragedtogiveasingleindication.

AATheseparameters areaveragedtogiveasingleindication andarealsousedasinputtothesubcooling indicators.

ABTheseparameters areaveragedandusedasoneinputtothecontainment environment bistableindicator.

DThisparameter isadirectinput.tothecontainment environment bistableindicator.

SBTheseparameters areusedasinputstoasinglebistableindicator.

IThisparameter feedsananalogindicator.

MTheseparameters areaveragedtoprintamessageinthemessageblock.MBThesebistableindicators producemessagesinthemessageblock.ATCCoreexitthermocouples areaveragedfordisplayontheSPDSandprovideinputtothesubcooling calculation.

Upperheadthermocouples areaveragedandprovideinputtothetopofheadsubcooling calculation.

18

'Ihfg1lfI'II, Thus,becauseERGshavebeenwrittensothatthestatusofalltheCriticalSafetyFunctions canbeassessedandalloperatoractionsnecessary todx.agnose eventsandbringtheplanttoasafeshutdowncondition canbeperformed withoutRVKISindication, thevessellevelparameter neednotbeaddedtotheSPDSindication.

SteamGenerator NarrowRaneWaterLevelERGAssumption Eachsteamgenerator isassumedtohaveatleastthreechannelsofanarrowrangedeltaPmeasurement system.Therangeofthenarrowrangemeasurement channelsis0to100percentofspan.Thenarrowrangeinstruments arehotcalibrated andprovidelevelindications inthesteamgenerators betweentheU.-tubsandthesecondary moistureseparatois.

GinnaInstrumentation Eachsteamgenerator hasthreenarrowrangedeltaPmeasurement systems.Therangeofthenarrowrangemeasurement channelsis0to100percentofspan.Thenarrowrangeinstruments arehotcalibrated andprovidelevelindications inthesteamgenerators betweentheU-tubesandthesecondary moistureseparators.

S/GAlevelisprovidedbyLT461,462,463S/GBlevelisprovidedbyLT471,472,473.Becausethewiderangesteamgenerator levelindication includestherangeofthenarrowrangeinstruments, widerangelevelisadequateforSPDSdisplayandearlyindication ofpotentially adversesafetyconditions.

SteamGenerator WideRaneWaterLevelERGAssumption Eachsteamgenerator isassumedtohaveatleastonewiderangedeltaPmeasurement system.Thewiderangeinstruments aregenerally coldcalibrated (ambientcontainment conditions, depressurized steamgenerator andsecondary inventory atcontainment temperature conditions) andareusedprimarily forperforming steamgenerator "wetlayup"following plantshutdown.

Theinstrument provideslevelindications inthesteamgenerator betweenthetubesheet andthesecondary moistureseparators.

GinnaInstrumentation IvEachsteam'enerator hasonewiderangedeltaPmeasurement system.Thewiderangeinstruments arecoldc'alibrated (ambientcontainment conditions, depressurized steamgenerator andsecondary inventory atcontainment.

temperature conditions).

Theinstrument, provideslevelindications inthesteamgenerator betweenthetubesheet andthesecondary moistureseparators.

S/GAwiderangelevel:LT460S/GBwiderangelevel:LT470Bothwiderangelevelindications areprovidedintheformofananalogreadoutontheSPDSasshownonTable2andFigure1.Eventhoughthe,widerangeleveltransmitters arecoldcalibrated, adequateindication accuracy'xists toprovideanearlyindication

,ofpotentially adversesafetyconditions a'ndtoassureacceptable "operator responserequiredbytheERGs.'etpoints intheERGswhichtriggeroperatorresponseorestablish thatcriticalsafetyfunctions-arebeingmetwillbeadjustedtoaccountforthecoldcalibration andreference legprocesserrors.Inaddition, duringnormaloperation theoperatorisusedtoseeingaparticular widerangelevelthatcorresponds totheacceptable narrowrangelevelandwillbealerttoanychangesinthisnormallevel.Pressurizer PressureERGAssumption Itisassumedthatatleastthreepressuretransmitters areconnected tothepressurizer.

Therangeofthechannelsistypically 1700to2500psig.GinnaInstrumentation Therearefourpressuretransmitters connected tothepressurizer:

PT429,430,431,449.Therangeofthechannelsis1700to2500psig.AllofthesepressurechannelsareincludedintheSASinputsbutarenot,displayed ontheSPDS.WiderangeRCSpressureprovidesthesamemonitoring capability andisdisplayed ontheSPDS.Pressurizer LevelERGAssumption Thepressurizer isassumedtohaveatleastthreechannelsofadeltaPlevelmeasurement system.Theinstruments providelevelindications forapproximately thetotalheightofthepressurizer.

Therangeofthemeasurement systemis0to100percentofspan.

hPaweI"0 GinnaInstrumentation Thepressurizer hasfourchannelsofadeltaPlevelmeasurement system.LT426,427Sc428arehotcalibrated andprovidelevelindications forapproximately thetotalheightof'thepressurizer.

LT433isacoldcalibrated transmitter usersprimarily duringplantsutdown.Therangeofthemeasurement systemis0to100percentofspan.AsshownonTable2,threechannels, LT426,427and428,areprovidedontheSPDS.SteamGenerator PressureERGAssumption Eachsteamgenerator isassumedtohaveatleastthreepressuretransmitters locatedinitsmainsteamline upstreamof'themainsteamline isolation valve.Thisinstrumentation isnotassumedtobesubjecttoadversecontainment conditions.

Typically, thesepressuretransmitters arelocatedoutsidecontainment intheauxiliary buildingorsteamtunnelarea.Therangeoftheseinstruments xstypically 0to1300psig.GinnaInstrumentation Eachsteamline hasthreechannelsofpressuremeasurement, upstreamofthemainsteamline isolation valve.Thesepressuretransmitters arelocatedoutsidecontainment intheintermediate building.

SteamGenerator Apressureisindicated byPT468,469and482:SteamGenerator Bpressureisindicated byPT478,479,and483.Therangeof,theseinstruments is0to1400,psig.IAllofthesesteamline pressurechannelsareincludedon"theSPDSasshownonTable2.CoreExitTemeratureERGAssumption Coreexitthermocouple (CET)temperatures arenecessary forproviding anindication "ofinadequate corecoolingandaninput.inthedetermination ofRCSsubcooling.

Severalofthethermocouples shouldbelocatedtomonitorthemost'robable highest,temperature areaofthecore.Also,severalofthecoreexitthermocouples shouldbelocatedinthevicinityofthevesselhotlegnozzleoutlets.Therangeofthecoreexitthermocouple temperature readoutshouldbefromplantcoldshutdownconditions tothemaximumcoretemperature following adesignbasisLOCA.Atypicalreadout.rangeis100to2200'F.10 IIhIIt(1 GinnaInstrumentation TheCETsystemhas36thermocouples positioned tomeasurefuelassembly'outletcoolant.temperatures at.preselected corelocations including probablehighesttemperature areasandthevicinities ofthehotlegnozzles.Threethermocouples arealsoprovidedtomeasuretemperatures inthereactorvesselheadarea.TherangeoftheCETtemperature readoutwillbe0to2300'Ffollowing completion ofamodification scheduled for1985.AllCETswillprovideinputtotheSPDSasshownonTable2.RCSSubcoolin ERGAssumption RCSsubcooling caneitherbecomputedmanuallyusingasteamtableorusingacomputerbasedalgorithm.

ThepressureinputcanbesuppliedbyRCSwiderangepressureandpressurizer pressure.

Generally','he pr'essure valueusedfordetermining thesystemsaturation temperature isanauctioneered lowvalueofthoseinputs.Thetemperature inputsthatcanbeusedinthecomputation areRCShotlegtemperatures, RCScoldlegtemperatures, andcoreexit,thermocouple temperatures.

Thetemperature valueusedintheERGstodetermine RCSsubcooling istypically thecoreexitthermocouple temperatures.

GinnaInstrumentation Twocalculations areperformed bytheSAScomputerforSPDSsubcooling.

Coresubcoolimg iscalculated byaveraging thetenhottestcoreexitTCsandcomparing thistemperature toasaturation temperature thatisdetermined usingRCSpressureandsteamtablealgorithms.

TopofHeadSubcooling iscalculated byaveraging thethreet'op-of-head TCsandcomparing thistemperature tothes'arnesaturation temperature.

Bothofthesesubcooling temperatures aredisplayed'n SPDSasshownonFigure1.AuxiliarFeedwater FlowERGAssumption Theauxiliary feedwater (AFW)supplylinestoeachsteamgenerator haveatleastoneauxiliary feedwater flowmeasurement indicated inthecontrolroom.Ifeachsteamgenerator issuppliedwithauxiliary feedwater flowfrommorethanoneauxiliary feedwater pump,theflowmeasuring deviceindicates totalflowtoe'ach'steamgenerator.

Totalauxiliary feedwater flowtoallsteamgenerators isdetermined byaddingtheauxiliary flowtoeachofthesteamgenerators.

tIIIt GinnaInstrumentation AFWflowtoeachsteamgenerator canbeprovidedbyamainmotordrivenauxiliary feedwater pump(MAFWP),astandbymotordrivenauxiliary feedwater pump(SAFE)oracommonturbinedrivenauxiliary feedwater pump(TAFWP).AFWflowtosteamgenerator Aisprovidedbyredundant transmitters FT2013andFT2001fromtheIQFWP,FT2006fromtheTAFWPandFT4084fromtheSAFWP.AFWflowtosteamgenerator Bisprovidedbyredundant transmitters FT2014andFT2002fromtheMAFWP,FT2007fromtheTAFWPandFT4085fromtheSAFWP.AlthoughAFWflowtothesteamgenerators isusedelsewhere inSAS,itisnotanearlyindication ofpotentially adversesafetyconditions (suchassteamgenerator level)andisnotdisplayed onSPDS.AFWflowismonitored bySAStoassuretheproperoperation ofmitigating equipment;.

RWSTLevelERGAssumption AtleasttwochannelsofadeltaPmeasurement systemareavailable tomonitortherefueling waterstoragetank"(RWST)level.Theinstruments providelevelindications foratleasttheminimumrequiredwatersupplytotheSIpumpsfollowing aLOCAandkeytheswitchover fromtheinjection tothecoldlegrecirculation mode.Therangeofthemeasurement, systemis0"to100percentofspan.GinnaInstrumentation TwochannelsofadeltaPmeasurement systemareavailable tomonitortheRWSTlevel.LT920andLT921providelevelindications for0-100%span.BothoftheselevelchannelsprovideinputtoSASbutarenotanearlyindication ofpotentially adversesafetyconditions andarenotdisplayed onSPD'S.Theycanbemonitored onlowerleveldisplaystoassureadequateSIpumpwatersupplyandtomonitortheswitchover fromtheinjection totherecirculation mode.CSTLevelERGAssumption AtleasttwochannelsofadeltaPmeasurement systemareavailable tomonitorthelevelineachcondensate storagetank(CST)thatprovidestheprimarywatersourcetotheauxiliary feedwater pumps.Theinstruments shouldprovidelevelindications foratleasttheminimumrequiredwatersupplyfortheauxiliary feedwater system.Therangeofthemeasurement systemis0to100percentofspan.12 GinnaInstrumentation TwochannelsofadeltaPmeasurement systemareavailable tomonitorthelevelinthecondensate storagetanksthatprovidetheprimarywatersourcetotheauxiliary feedwater pumpsthroughacommonsupplyline.Theinstruments, LT2022Aand202'2B,provi.delevelindications for0-100%ofspan(0-24ft)foreachtank.Condensate storagetanklevelisnotaparameter whichgivesdirectindication ofsafetystatusorimpending adversesafetyconditions.

Itisaparameter usedduringrecoveryfromaplanttransient.

CSTlevel"ismonitored onlowerlevelSASdisplaysbutisnotdisplayed onSPDS.Containment.

PressureERGAssumption At,leasttwochannelsofcontainment pressureareavailable tomonitorthecontainment.

Theinstruments mustextendovertherangefromnormalcondition containment pressuretocontainment desi.gnpressure.

Foradrycontainment,"

thisrangeistypically 0to65psig.GinnaInstrumentation Sixchannelsofcontainment'pressure areavailable tomonitorthecontainment.

Theinstruments" extendover'the'ange fromnormalcondition containment pressuretothreetimescontainment designpressure.

PT945,947,949measure0-60psig.PT946,948,950measure10-200psia.ThreepressurechannelsprovideinputtotheSPDSContainment Environment bistableindicator togiveearlywarningofpotentially adversesafetyconditions asshownonTable2.Containment WaterLevelERGAssumption Atleasttwochannelsofalevelmeasurement systemareavailable tomonitorthewaterlevelinthecontainment building,.

Thebottomtapofthemeasurement, systemshouldbelocatedinthecavitiesorsumpsinwhichwaterresulting fromalossofreactororsecondary coolantwouldinitially collect.Thetoptapshouldbeatthemaximumexpectedfloodlevelinthecontainment building.

Insomeinstances, duetothelargespanoftherequiredlevelmeasurement, twochannelsofnarrowrangeareimplemented whichonlyprovideanindication ofwaterlevelinthereactorcavityorsump.Twochannelsofawiderangelevelsystemarethenutilizedfordetermining containment floodlevel.Therangeofthemeasurements systemsis0to100percentofspan.13 Vil44 GinnaInstrumentation Containment waterlevelismeasuredbyredundant.

narrowrangeandwiderangelevelinstruments.

Containment narrowrangelevelisprovidedbyLT2039andLT2044witharangeof0-30ft.NarrowrangelevelzsSumpAwherewaterwouldinitially collect.Widerange"containment levelisSumpBandismeasuredhyLT942andLT943,eachofwhichisaseriesofqualified float,switches.

Thetopswitchisatthemaximumexpectedwaterlevel.LT2039andLT2044areincludedontheSPDS,asshownonTable2,toprovideearlyindication ofpotentially adversesafetystatus.WiderangeSumpBlevelindication ispartoftheSASCriticalSafetyFunctionstatusdisplaysthatcanbeusedduringrecoveryfromtheplanttransient.

Containment Radiation LevelERGAssumption Atleasttwochannelsofradiation detectors areassumedtobeavailable forcontainment radiation monitoring.

Theradiation monitoriscapableofproviding anindication ofradiation levelsfrombackgrond levelstoapostulated totalintegrated doserelease."Asinthecaseofthecontainment waterlevelsystem,anarrowandwiderangemonitoring systemmaybeinstalled

'toincreasethesensitivity atthelowerradiation levels.GinnaInstrumentation Twochannelsofradiation detectors areavailable forcontainment arearadiation monitoring.

Theradiation monitorsarecapableofproviding anindication ofradiation levelsfrombackground

'levelstoypostulated TIDrelease.RM29andRM30havearangeof1to10R/hr.RM,'2'sa.lowrange"radiation monitorwhichprovidesinputtotheSPDSContainment

'Environment bistableindicator togiveearlywarningofpotentially adversesafetyconditions.

RM29andRM30provideinputtolowerlevelSASdisplaysforaccidentmonitoring.

SecondarRadiation LevelERGAssumption Atleasttwochannelsofameasurement, systemfordetecting secondary radiation areassumedtobeavailab1e totheoperator.

Severalmeansofimplementing thismonitoring functionareavailable.

Thesemayincludededicated steamline radiation

monitors, condenser airejec'torradiation monitorsandsteamgenerator blowdownradiation monitors.

Factorsthatimpacttheultimatedecisionfordetermining theplant-specific meansofmonitoring secondary radiation includelocationofmonitoring instrumentation, qualification ofinstalled instrumentation andalternate usesofinstalled instrumentation (e.g.,calculation ofeffluentrelease).

The A.4tl$1vI!A' hradiation monitoring systemadoptedmust,becapableofproviding anindication ofraBiation leve1sfromthoselevelsexistinginthesecondary sideduringnormaloperation withmaximumTechnical Specification leakagetothelevelexpected'following adesignbasissteamgenerator tuberupture.GinnaInstrumentation Severalchannelsofameasurement systemfordetecting secondary radiation areavailable totheoperator.

Thyrsei.nc)udededicated steamline radiation monitorsRM31S32(10to10uCiggc),condenser airejectgrradiation monitors(RM15&15A(10to10uCi/ccand10to10uCi/ccrespectively),

andasteamgenerator blowdownradiation monitorRl9(10to10CPM).R15andR19,themonitorsexpectedtogivethefirstindication ofpotentially adversesafetyconditions, provideinputtotheSPDSSecondary Radiation bistableindicator asshownonTable2.NeutronFluxERGAssumption At,leasttwochannelsofinstrumentation areassumedtobeavailable tomonitorcoreneutronflux.Theinstrumentation iscapableofmonitoring neutronfluxfromsourcerangelevelstothemaximumexpectedcorereturntopowerlevelsduetoexcessive RCScooldown.

Severalinstalled instruments arecapableofmonitoring therequiredrange.Theseincludethesource,intermediate andpowerrangedetectors.

GinnaInstrumentation Neutronfluxinstrumentatjon consistsof2SourceRangechannels, N31ang1N32(1$o10CPS),2Intermediate Rangechannels, N35andN36(10to10AMPS)and4PowerRangechannels, N41,42,43and44(0to120%).AlloftheseneutronfluxchannelsareincludedontheSPDSdisplayasshownonTable2.15 IIIh4f~gII*Ilf Conclusion Theminimumsetofparameters fromwhichthesafetystatusoftheplantcanbeassessedhasbeenprovidedontheGonnaSPDS.Important plantfunctions encompassed bytheSPDSparameters includereactivity control,reactorcorecoolingandheatremovalfromtheprimarysystem,reactorcoolantsystemintegrity, radioactivity controlandcontainment conditions.

Theparameters selectedprovidethecontrolroomoperatorwithameansofrapidlydetecting abnormalconditions andevaluating thesafetystatusoftheplant.Theparameter selection isbasedupontheWOGERGlistofnecessary instrumentation andtherefore providestherequiredindication forabroadspectrumofeventsequences.

SPDSImlementation PlanRGEhaspreviously scheduled installation andoperation oftheSPDSandthemotherSAStobecompletein1987andinformedtheNRCStaffinaletterdatedApril"6,1984.Subsequent tothatletter,thevendor,Electronic Associates Inc.defaulted onthecontracttodelivertheSAS.RGEiscurrently negotiating withseveralothervendorstocompletethisworkandexpectstoselectanewcontractor shortly.RGEhasbeenencouraged that,theremaynot,besignificant, delaysresulting fromEAI"sdefault.However,RGEcannotmakeafirmcommitment ontheSPDScompletion dateuntilcontractnegotiations withanewvendorarecomplete.

RGEisinreceiptofanNRCorderdatedJune12,1984andwilltake*appropriate actionifanextension oftimeisrequired.

16 tIIltEP TABLE1EMERGENCY RESPONSEGUIDELINE INSTRUMENTATION INSTRUMENT RANGE1.RCSPressure2.RCSHotandColdLegTemp.3.ReactorVesselLevel*4.SteamGenerator NarrowRangeLevel0-3000psig0-700F0-100%0-100%5.SteamGenerator WideRangeLevel6.Pressurizer Pressure7.Pressurizer Level8.Steamline Pressure9.CoreExitTemp.10.RCSSubcooling 11.Auxiliary FeedFlow**12.RWSTLevel**13.CSTLevel**14.Containment Pressure15.Containment WaterLevelfN1700-2500 psig0-100%0-1300psig100-2200F0-100%'0-100/0-65psigBottomofsumptomaximumfloodlevel16.Containment Radiation Level17.Secondary Radiation LevelI18.NeutronFlux*OptionalInstrumentation.

Emergency ResponseGuidelines havebeenpreparedbothwithandwithoutreactorvessellevel.**Theseparameters arenotrequiredtogiveanearlyindication ofpotentially adversesafefyconditions but,areusedtomonitortheproperfunctioning ofmitigating equipment ortoassistinlong'termoperatorresponse.

'~,'J!~fMC AIDSABLOCASGTRLOSCCIClC32235PSIG49%RCSPFESSmEPRZRLEVELAA595F54$'FTHOTTCOLDAA595'F54$'FTHOTTCOLD19FEB8412:99:89AROWMODENCRiWOPERAGF44STATIONBFLOWS/GAS/GBTH!8AREAUSEDTODISPLAYIAESSASEs INDI.UDINe NEUTRONPLUxANDTHEDIOITAI.PARAITIETER8 ONTA8LER.LBS/HRLBS/HRAAAA3.$E63.$E63.$E63.$E6TEAMFEEDSTEAMFEEDAA76$PS652%PRESSLEVELV6$PS!G5$%PRESSLEVELNotesFIGURESECONDARY CONTAM4M{XNTAIQ/EM TOPOFHEADRADIATIDN AAWRNENTRIDIATKNAIDOOOAIINO CORESUBCOOLINGCOREEXITTEMPERATURE 2.3.4.Theparameter valuesshownonthisFigureareforillustration onlyandmaynotberepresentative ofanygivenplantcondition.

Thehorizontal markersarenormaloperating rangesfortheparameters andareSPDSalarmpoints.Parameter rangesrepresented ontheanalogindicators arediscussed inthereporttext.Arrows{hY)indicatewhetheraparameter isincreasing ordecreasing.

r 015202535"40~-.45505560657080'.840CRILIRC6IEAECCRCSINVEENTNTORY-100RECTOFR--20015REACT0TNOR.RNG.FR--250RETRCTPPETR.R.ES6THRNTHANG.ANNNTEOS.NTEEITARSTUPNQRTRAUPRATEERC.RNe.RIZNNTERATTER.AT0.DPRNPRNe.ATEG.ATEFR-FR-CSFSATFR-350-450-500e.STARTUPRATERE~~~ACTTC0ALLEF~g~,IsNRIZARTRNG.PRATCSFSATCSFSAT-600-650~~~~I-7504lI~,'~IIt~O~~e.I1'50'00250300350400'50530550650650700750'600.5~0900950')FT.GURE-,2..~uv.21/20/S4Setraints onthisFioureareforillustration onlyandmaychangaonthefinalCriticalSafetyFunctionStatusTreeI1000

,fI