ML17258A562

From kanterella
Revision as of 13:39, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Containment Vessel Evaluation.
ML17258A562
Person / Time
Site: Ginna Constellation icon.png
Issue date: 02/01/1982
From: FULTON J F, HSIEH S
GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT
To:
Shared Package
ML17258A561 List:
References
NUDOCS 8202240085
Download: ML17258A562 (58)


Text

February1,1982ROBERTE.GINNANUCLEARPOWERPLANTCONTAINMENT VESSELEVALUATION byJ.F.FultonS.S.HsiehPREPAREDFORROCHESTER GASANDELECTRICCORPORATION PREPAREDBYGILBERT/COMMONWEALTH READING,PENNSYLVANIA QberC/Commonwealth 8202240085 8202i8PDR-ADOCK05000244,P;,;.";*

.PDR,'.'"

0~~'$

TABLEOFCONTENTSSECTIONTITLEPAGEIVVIINTRODUCTION OBJECTIVES LINERANDCONCRETESTRESSESSTUDANALYSISCONCLUSIONS

DECEMBER, 1981SMAREPORTREFERENCES TABLESFIGURES1012151618QbertICommonweatth LISTOFTABLESTABLETITLEPAGEComparison ofLinerandConcreteStressesfromG/CandSMAAnalyses16MaximumStudForceandStudDisplacement 17LISTOFFIGURESFIGURETITLEGinnaContainment Structure PAGE18AccidentPressureLoadTransient intheContainment 19AccidentTemperature Transient intheContainment 20AccidentTemperature Distribution intheSteelLiner21Meridional StressesinLinerforTaCircumferential StressesinLinerforTa2223Meridional StressesatInnerSurfaceofConcreteforTa24Circumferential StressesatInnerSurfaceofConcreteforTa2510Meridional StressesinLinerforPaCircumferential StressesinLinerforPa2627Meridional StressesinLinerforPa+Ta2812Circumferential StressesinLinerforPa+Ta2913TheModelandResultsofStudAnalysis3014StudForce-Displacement Relationship 31Gilbert/Comeewealth

I.INTRODUCTION AspartoftheSystematic Evaluation Program(SEP),Structural Mechanics Associates, Inc.(SMA)insupportofLawrenceLivermore NationalLaboratory (LLNL)performed anevaluation todetermine thecapacityoftheQianaContainment towithstand combinedseismicandLOCAloadconditions.

Thisevaluation isreportedinReference l.Inthiswork,concernswereexpressed regarding thelinerandconcretestressesintheregionofthedomewherelinerinsulation terminates (seecontainment configuration inFigure1).Analysisresultsfromthereportindicatethataccidenttemperatures woulddevelophighlinercompressive stressesintheuninsulated domeregionandrelatively lowlinerstressesbehindtheinsulation.

Sincethelinerinthedomeisanchoredtoconcretebyheadedanchors(studs),thisdifference inlinercompressive stresseswouldproduceashearforceinthestudsattheinsulation termination interface.

Themainconcernexpressed inReference 1concentrated onwhetherthesestudsareabletowithstand thisinducedshearforce.InReference 1(page18)thefollowing wasconcluded:

."Basedonashearcapacityperstudofapproximately, 16.5ksi,theforcedeveloped inthebuckledlinerexceedsthecapacityofshearstuds."Gilbert/Commonwealth (G/C)wasrequested byRochester GasandElectricCorporation (RG&E)toreviewandevaluateReference 1.Theresulting preliminary G/Cevaluation appearsinReference 2.Partofthisevaluation addressed thedifferences betweentheaccidentpressureandtemperature curvesoftheSMAreportversusthosefromtheGinnaFSAR.Thesedifferences aresummarized below:1.TheaccidentpressurecurveusedinSMAreportisdifferent fromthatpresented intheFSAR.AttachedFigure2showsacomparison betweentheSMAreportpressurecurveandtheDoubleEnded(D.E.)breakpressurecurveappearing inFSARFigure14.3.4.2.

Thepeakvaluesfrombothcurvesareaboutthesame:68.5psia(53.8psig)fromSMAand67.2psia(52.5psig)fromtheFSAR.TheFSARcurveEQbertICommonwealth 1*TI decaysmorerapidlythantheSMAcurve.Asanexample,at5minutesintotheaccidenttheFSARvalueisabout56.5psia(41.8psig)comparedwiththeSMAvalueof65psia(50.3psig).Thepeakpressures fromboththe'MAcurveandtheFSARcurvearelessthantheGinnaDesignPressureof60psig.Theeffectonlinerstresses(basedonanuncracked concretemodel)ofdifferences betweentheSMAandFSARpressurecurvesisnotverysignificant.

Reference 1givesavalueofdomelinerstressof4ksitensionresulting fromthe53.8psigpeakaccidentpressure.

Thisissmallrelativetothe56ksilinercompressive stresswhichisproducedbythepeakaccidenttemperature of285oF,asreportedbySMA.2.TheSMAaccidenttemperature curveisdifferent fromthetemperatures whichwouldbeassociated withtheFSARD.E.breakpressures.

Thislattertemperature curvewascalculated byG/Candisbasedonthesaturated steamtemperature fortheD.E.breakpressure, assumingthatthecontainment pressureisequaltothesumofthevaporpressureandtheairpressure.

Acomparison ofthetwocurvesisshowninFigure3.Similartothepressurecase,bothcurvesexhibitaboutthesamepeakvalues:280oF(FSAR)and285oF(SMA).However,theFSARcurve,decaysmorerapidly.Intheheattransferanalysisperformed bySMA,thefilmcoefficient wasnotused.Thisisexpectedtoproduceconservatively hightemperature andcorrespondingly highcompressive stressesintheliner.G/Cperformed aheattransferanalysis(Reference 4)incorporating afilmcoefficient andtheresulting maximumlinertemperature was.250oFatapproximately 5minutesafteraLOCA.TheSMAanalysisincorporated atemperature inthelinerof285F.GilbetIComeoawealth I4l.ilLe',CI"~4 Reference 2alsoaddressed theconclusions intheSMAreport(Reference 1)regarding theintegrity ofthestuds.First,thestudcapacityof16.5ksigiveninthereportdidnotappearinthereference quoted*.Thisreference (Table15)givesashearcapacityof16.56kipsfora5/8inchdiameterstudand23.86kipsfora3/4inchdiameterstud.TheremayhavebeenanerrorintheSMAreportinthatthevaluewasintendedtobe16.5~kis.However,thisvalueappliesto5/8inchdiameterstuds,but3/4.inchdiameterstudswereusedforthedomelinerbasedontheavailable information.

Also,thereportdidnotindicatewhetheraliner-stud interaction analysiswasperformed.

Theconclusions intheSMAreportareapparently basedontheconservative assumption thatasinglestudwouldcarryal1oftheunbalanced linerforcegenerated attheinsulation termination interface.

Inreality,Reference 2pointsout,aseriesofstudswoulddeforminresponsetotheunbalanced forcewhichwouldredistribute thelinerstressesandresultsinamuchreducedvalueforthemaximumstudforce.Becauseofthedifferences intheloadsdiscussed initems1and2aboveandduetothequestions regarding thestudintegrity, G/Cperformed theanalysesoutlinedinSectionII.Theresultsandconclusions oftheseanalysesarepresented inSectionsIII,IV,andV.Comparisons aremadewiththeSMAresultsinReference 1~Subsequent tothiswork,onJanuary15,1982G/Creceivedforevaluation aseconddraftoftheSMAreport(Reference 9).Therearesignificant differences betweenthetwoSMAreportdraftsregarding themagnitudes oftheaccidentpressureandtemperature loads.Alsothepossiblelinerandstudintegrity problemsidentified inthefirstdraft(Reference 1)weresustained.

SectionVIaddresses theseitems.*"Embedment Properties ofHeadedStuds",TRWNelsonStudDivision, 1977.

~'t II.OBJECTIVES AtRG6E'Srequest,G/Cperformed anindependent analysisincluding thefollowing items:A.Obtainlinerandconcretestressesforaccidenttemperature andaccidentpressureconditions usingtheinformation presented intheFSAR.Comparetheresultswi:ththeSMAanalysisresultsinReference l.B.Conductaliner-stud interaction analysistoevaluatethestudintegrity.

ThisanalysiswillusetheSMAbucklingandpostbucklinglinercapacities inconjunction withbothSMAandG/Clinerstresses.

QbertICommonwealth 0A III.LINERANDCONCRETESTRESSESThestressesinthelinerandconcretewerecalculated bythecomputerprogramKSHELl(Reference 3),whichisbasedonsmalldeformation, elasticthinshelltheory.B.ModelInthestressanalysis, thecontainment wasmodeledasanaxisymmetric shellofrevolution withawallthickness of42.375inchesinthecylinderand30.375inchesinthedome(seeFigurel).Athree-layer modelwasused.Theinnerlayerrepresents the0.375inchsteelliner.Themiddleandoutsidelayerscomprisetheconcrete.

Themodelwassetupsothatthenon-linear accidenttemperature distribution throughtheshellthickness couldbeapproximated byspecifying theappropriate thermalconductivities ineachlayer.Theboundaryconditions atthebaseofthecylinderweretakenasspringsupported intheradialdirection withnomeridional momentresistance.

Nomovementwasallowedintheverticaldirection attheshellbase.Theradialstiffness oftensionrodswhichattachthecylindertothebaseslabwascalculated tobe48.33kips/in./in.

C.Loadsl.AccidentTemeratureInordertodetermine themostseveretemperature distribution intheshellwall,G/Cconducted aheattransferanalysis(Reference 4)considering thefilmcoefficient effect.Figure4showspartoftheanalysisresults.Itindicates thattheuninsulated steellinerwouldreachapeakQbertICommonwealth

~i~temperature of250oFatabout5minutesintotheaccident.

Accordingly, theassociated temperature distribution inthewallatthistimewasusedinthestressanalysis.

2.AccidentPressureThepeakpressuredoesnotoccurconcurrently withthepeakaccide'nt temperature.

Sincethelinerstressistensileforpressureloadsandcompressive fortemperature loads,considering peakvaluesconcurrently doesnotproducethemostseverelinerstressforthecombinedaccidentpressureandaccidenttemperature case.Therefore, thepressurevaluecorresponding tothemaximumtemperature (5minutesintotheaccident) isdetermined tobe56.5psia(41.8psig)fromtheD.E.breakpressurecurveprovidedinFSARFigure14.3.4.2, andthiswasusedinthelinerstressanalysis.

D.ResultsFigures5to12providethecurveswhichcompareG/CandSMAresultsforlinerandconcretestresses.

Itisseenthatthetrendsoftheresultsareverysimilartoeachother.However,therearedifferences invalues.Generally, G/Cobtainedcomparatively lowerstresses.

Thisisexpectedsincethepressureandtemperature valuesusedintheG/CanalysisarelessthanthoseusedintheSMAanalysis.

Table1liststhevaluesofthemeridional andcircumferential (hoop)stressesfordifferent locations andloadingcases.,Fromthetable,thecompressive stressintheuninsulated domelinerforcombinedaccidenttemperature andaccidentpressureloadsis42.7ksiwhichisabout20XlessthantheSMAvalueof52.1ksi.Themaximumconcretestressis4.2ksicompression fromtheG/Canalysisversus6.0ksicompression fromtheSMAanalysis.

GlbertICommonweate

~~

IV.STUDANALYSISInthecontainment stressanalysis, therearetwoassumptions involvedwhichresultinconservatively highvaluesforthelinercompressive stress.First,theconcreteisassumedtoremainuncracked duringaccidentloading.Inreality,domeconcretecrackingoccurredundertheSITpressureof69psig,andadditional domecrackingisexpectedtooccurundertheaccidentloadcombination.

Thisgivesaneffective stiffness ofthereinforced concretewhichissomewhatlessthanitsuncracked value.This,inturn,produceslessrestraint ontheliner,whichSresultsinlowercompressive stressinthelinerundertheaccidenttemperature condition.

Also,ithasbeencalculated thatalinerpanelbucklesataround25.5ksi(Reference 1,p.18)andthendevelopsamaximumpost-buckling stressof29ksi.Hence,thelinerstressislimitedbythisvalue.FromtheG/CresultsinFigures5and6,theminimumcompressive stressinthelinerbehindtheinsulation fortheaccidenttemperature condition is1.6ksicompression.

Theunbalanced linerstressintheregionis29-1.6=27.4ksi,andthisdevelopsasignificant shearforceactingattheinsulation termination interface.

Theunbalanced forceistransmitted tothelinerandstudsbehindtheinsulation.

Theshearforceanddisplacement developed inthestudslargelydependonthevalueofunbalanced linerstresses, thematerialproperties oflinerandthecharacteristics ofstudforce-displacement relationship.

Basedontheequilibrium andcompatibility relations ateachstud,asetofsimultaneous equations arederived,fromwhichthestuddisplacements andforcesaresolvedbyiteration onthestuddisplacements (Reference 5).SttcrtICommonwealth I~qtI~+5I'l B.ModelThestud-liner structure isrepresented byasimplified onedimensional systemasshowninFigure13.Thewidthofthelinerpanelistakentobe24inches,whichisthestudspacing.Oneendofthelinerisfixedapproximately 16feetfromthebuckledpanel,whichisthelocation.

ofembeddedchannelsattheshellspringline (seeFigure1).Attheotherendaforceexistswhichcorresponds tothepost-buckling stress29ksi.Thiscondition resultsinmovementofthestudsintheadjacentpanelswiththelargestdisplacement occurring adjacenttothepanelwherepost-buckled stressisapplied(Studf11).Thesteellinerisrepresented asalinearelasticmaterialwithYoung'smodulusE~29,000ksi.Theforce-displacement relationship forthestudsisobtainedfromtheexperimental resultsprovidedinReference 6.Fromthisreference, theforce-displacement relationship canberepresented bytheempirical equationQ=Qu(1-e18A)2/>(seeFigure14)~InthisequationAisthestuddisplacement; Qisthecorresponding studforce;andQuistheultimatestudcapacitywhichiscalculated tobe31.1kipsfromEquation(3)ofReference 6fora3/4inchdiameterheadedstud.C.LoadsUsingthepost-buckling stressof29ksifromtheSMAreport,threedifferent initialstresscasesfortheinsulated linerportionareinvestigated:

(1)8ksi,whichisthevalueusedintheSMAreportfortheaccidenttemperature condition, (2)1.6ksi,whichistheG/Cresultfortheaccidenttemperature condition, and(3)avaryinglinerpanelstressforthePa+Tacondition (G/Cresults)whichrepresents thecalculated variation

'inpanelstressstartingattheendoftheinsulation andextending towardthespringline.

Qberc/Commonwealth

~~k-r D.ResultsFigure13presentsthecomparison ofthestudanalysisresultscorresponding tothreeinitialstresscases.Themaximumstudforceandstuddisplacement foreachcasearelistedinTable2alongwiththeultimatestudcapacityandtheallowable studdisplacement.

Theallowable displacement ofastudislimitedbyTableCC-3730-1 oftheASMECode(Reference 7)to50Xofitsultimatedisplacement fordisplacement limitedloads.Theloadonthestudsunderconsideration areclassified asdisplacement limitedloadssincetheyareprimarily duetotheaccidenttemperature condition.

Avalueof0.30incheswasusedfortheultimatedisplacement ofthe3/4inchdiameterby3inchlongstudsspecified forthedomeliner.Thisvalueisbasedonthetestresultspresented inReference 8.Therefore, anallowable displacement of0.15inchesappearsinTable2.Itisnotedthatthemaximumstuddisplacements forallthreecasesarewithintheCodeallowable.

Amongthem,thecaseof1.6ksiinitiallinerstresshasthegreatestvaluesforstuddisplacement (0.098inches)andforce(28.9kips).Qbert/Commonwealth I./tit V.CONCLUSIONS A.Forthelinerandconcretestesses,thetrendoftheresultsfromtheG/CandtheSMAanalysesissimilar;however,themagnitude ofthestressesfromtheG/Canalysisislower.TheG/Canalysisusedanaccidentpressure-time historyfromtheFSARalongwiththeassociated accidenttemperature-time history.IntheSMAreportnew-timehistories appearforthesetwoconditions.

Thereissomedifference betweentheG/CandSMApressureandtemperature profiles.

However,thesignificant differences inthelinerstressesoccursprimarily becauseafilmcoefficient wasusedintheG/Cheattransferanalysis, butitwasnotincludedintheSMAanalysis.

Thus,eventhoughthepeakairtemperature underaccidentcondition isapproximately thesamefromboththeG/C(280oF)andtheSMA(285F)analyses, alowerlinerandconcretetemperatures resultedfromtheG/Canalysis.

TheeffectofthatisG/Cobtainedamaximumlinerstressofapproximately 48ksicompression versustheSMAvalueofapproximately 58ksi(Figure6).Alsoamaximumcompressive concretestressofapproximately 4900psiresultedfromtheG/Canalysisversus6800psifromSMA(Figure8)~Thedifference of10ksiinlinerstressisnotsignificant becausethisstressislimitedbythebucklingstrengthofapproximately 26ksi.TheG/Cconcretestressislessthanthe5000psidesignstrength.

TheSMAvalueof6800psiisconservatively highduetotheabsenceofafilmcoefficient intheheattransferanalysis.

B.Theconclusions oftheSMAreportregarding thestructural integrity ofthestudsandthelinerarenotvalidbecausetheanalysisneglectstheinteraction ofthestudsandthelinerintransmitting theforceinthebuckledpanel.Themorerealistic studanalysisperformed byG/Cindicates thatthestuddisplacements andforcesarewithinacceptable limitsusingeitherG/CorSMAlinerstresses.

Themaximumstudforceof28.9kipsislessthanitsultimatecapacityof31.1kips,andthemaximumstudQberticommonwealth 10 I

displacement is0.098incheswhichiswithintheASMEallowable of0.15inches.Therefore, itisconcluded thatstudintegrity ismaintained underaccidenttemperature andaccidentpressureconditions.

QberLICommonwealth I)'Cwt

~)VI.DECEMBER1981SMAREPORTTheaccidentpressure'nd temperature-time histories intheDecember, 1981draftoftheSMAreport(Reference 9)aresignificantly different fromthoseappearing inthepreviousdraftdatedAugust,1981(Reference 1).ThepeakvaluesarecomparedbelowalongwiththeG/Cvaluesreportedherein.~RecrtPeakPaPeakAirTaPaMax.LinerTaPa(lMax.LinerTaTaTime(psia)TimeTaTime(psia)(cF)(Secs)~(si)(Secs)(cF)(Secs)~(si)SMADecember, 1981(Ref.9)4173586.294267380(71.5)69(54.3)SMAAugust,1981(Ref.1)G/C28560-15068.5120(53.8)2806-10067.210(52.5)Used120285oF25030068.5(53.8)56.5(41.8)IThepeak-airtemperature reportedinReference 9hasincreased to417Fversus285FfromReference 1and280oFcalculated byG/C.However,thenewmaximumlinertemperature of267oFisintheneighborhood ofthe285oFand250Fvaluesusedintheanalysesdiscussed herein.Thepeakaccidentpressureof71.5,psigfromReference 9issignificantly greaterthanboththe53.8psigvaluefrompreviousSMA'reportdraftandthepeakvalueof52.5psigfromFigure14.3.4-2intheFSAR.The71.5psigpressureexceedstheDesignBasisAccidentPressureof60psig.However,thecontainment structure isdesignedfor90psiginternalpressuresimultaneous withaccidenttemperature asspecified byloadcombination (a)appearing inSection5.1.2.3oftheFSAR.Gilbeet/Commonwealth 12 Theeffectoncontainment integrity oftheincreased accidentpressure, temperature, andseismicloadsisevaluated forFSARloadcombination (c)inReference 9.Theconclusion oftheevaluation arethatinthecylinderanddomeportionsofthecontainment, thelinerandconcretestressesareacceptable.

Inthebaseknuckleregionofthecylinderamaximumshearstressof21ksiisreported,,which exceedslocallyacode(unspecified) allowable of19.2ksiforthe32ksiminimumyieldstrengthlinerusedforGinna.The,'SMA'report concludes that"yielding ofthelinerintheknucklemaypossiblyoccurinaverylocalized area".However,thisconclusion doesnotseemtofollowfromtheresultsinlightofthefact19.2ksirepresents theallowable shearstressandnotthevaluecorresponding totheonsetofyield.Nevertheless, the32ksiyieldstrengthisaminimumspecified value,andtheactualvaluesforlinerplatemaaterial arehistorically muchgreater.Thereportconcludes thatthesafetyfactoris1.0againstseismicoverturning (ofthecontainment shell)~Actually, Figure5-7inthereportshowsthatunderD+SSE+Pathecompressive stressatthebaseofthewallisnearlyzero.However,thereisadditional resistance tooverturning providedbythetendons,whichshouldbeconsidered inthestability analysis.

Theconcernexpressed inthepreviousdra'ftoftheSMAreportregarding linerandstudintegrity attheinsulation termination interface inthedomestillexists.However,thisconcernisnotwarranted forthesamereasondiscussed inSectionIVherein;namely,theunbalanced linerforcecausedbypanelbucklingmustbeconsidered inaliner-stud interaction analysis.

Itisextremely conservative toassumethattheunbalanced forceisentirelyresistedbyonestudoracircumferential lineofstudslocatedatthisinterface.

Theinteraction analysisperformed byG/Cisdiscussed intheprevioussections.

Thereitisconcluded thatusingeitherthelinerstressesfromtheSMAanalysis(Ref.1)orthoseobtainedbyG/C,thestuddisplacements arewithintheASMECodeacceptance limits.Themaximumstuddisplacement from theinteraction analysiswas0.098incheswhichiswithinitsallowable valueof0.15inches.Thisvalueofstuddisplacement camefromaninitialstressof1.6ksicompression forallthepanelsbehindtheinsulation andforastressinthebuckledpanelof29ksicompression.

ThesevaluescanbecomparedwiththosenowreportedbySMAinReference 9whichare5.8ksicompression fortheinsulated panelsadjacenttothebuckledpaneland25.6ksicompression forthebuckledpanel.-Fromthiscomparison itisseen'thataninitialunbalanced panelstressof27.4ksiexistsfortheinteraction analysisperformed previously versus19.8ksifromReference 9.Thisimbalance canbeusedasacomparative measureoftheresulting studdisplacements, i.e.agreaterstuddisplacement willbeproducedbythecondition withthegreaterinitialstressimbalance.

Therefore, byinspection, thepanelstressesresulting fromtherevisedSMAreport(Reference 9)willproducestuddisplacements lessthanthoseobtainedpreviously fromtheinteraction

analysis, whichwereacceptable.

Gtbert/Commonwealth 14 REFERENCES 1."Systematic Evaluation ProgramforRobert'E.GinnaNuclearPowerPlantCombinedLoadsEvaluation",

preparedforLawrenceLivermore NationalLaboratory byStructural Mechanics Associates, August,1981.2."ReviewofCombinedLoadsEvaluation Report"byGilbert/Commonwealth le'tter13N1-GR-T3387,

November, 1981.3."Computer ProgramfortheStressAnalysisofAxisymmetric Thin,ElasticShells"byArtursKalnins,1976.4."HEATING5-AnIBM360HeatConduction Program",

CodeDocumentation, W.D.Turner,D.C.Elrod,andI.I.Siman-Tov, UnionCarbideCorp.,NuclearDivision.

5."SomeStructural Considerations intheDesignofNuclearContainment Liners"byJ.M.Doyle,NuclearEnineerinandDesin,Volume16(1971),pp.294-300,1971.6."ShearStrengthofStudConnections inLightweight andNormalWeightConcrete" byJ.G.Ollgaard, R.G.SlutterandJ.W.Fisher,AISCEnineerinJournal,pp.55-64,April,1971.7.ASMEBoilerandPressureVesselCodeSectionIII-Division2,"CodeforConcreteReactorVesselsandContainments",

1980Edition.8."DesignData-NelsonConcreteAnchor",TRWreport.9."Systematic Evaluation ProgramforRobertE.GinnaNuclearPowerPlantCombinedLoadsEvaluation",

preparedforLawrenceLivermore NationalLaboratory byStructural Mechanics Associates,

December, 1981.SlbertICommonwea!

th15

)

~~~1TABLE1COMPARISON OFLINERANDCONCRETESTRESSESFROMG/CANDSMAANALYSESLocationLoadCaseMeridional (ksi)~Hoo(ksi)G/CMeridional (ksi)~Hoo(ksi)CylinderConcrete:

InnerSurface(SectionA-A)Pressure(Pa)*Temperature (Ta)Pa+Ta+0.4-0.9-0.5+0.8-0.9-0.1+0.3-0.6-0.3+0.6-0.6-0.0DomeConcrete:

InnerSurface(SectionB-B)Pressure(Pa)*Temperature (Ta)Pa+Ta+0.5-6.5-6.0+0.5-6.4-5.9+0.4-4.6-4.2+0.4-4.6-4.2CylinderSteelLiner(SectionA-A)Pressure(Pa)Temperature (Ta)Pa+Ta+2.4-8.0-5.6+5.2-8.0-2.8+2.1-4.0-1.9+4'-4.30.2DomeSteelLiner(SectionB-B)Pressure(Pa)Temperature (Ta)Pa+Ta+3.9-56.0-52.1+4.0-56.0-52.0+3'-46.0-42.7+3.3-46.0-42.7*NotshownonfiguresSignConvention:

-Compressive stresses+TensilestressesQbertICemmonwealth 16 TABLE2MAXIMUMSTUDFORCEANDSTUDDISPLACEMENT BUCKLEDPANELSTRESS=29ksiINITIALSTRESSINLINERBEHINDINSULATION 8ksiforTa(SMA)1.6ksiforTa(G/c)VaryingLinerStressforTa+Pa(Glc)Max.StudForceUltimateStudCapacityMax.StudDisplacement Allowable StudDisplacement 26.8kips31.1kips0.065in.0.15in.28.9kips31.1kips0.098in.0.15in.28.4kips31.1kips0.088in.0.15in.QbertICommonwcatth 17

~0 GilbertAssociates, Inc.Reading,PnnnaylitsninANALYSIS/CALCULATION SUBJECQimmeLi~EA.REVa0MICROFILMED ORIGINATOR g5Q/gDATEfgf/$CI6IPAGE3OFPAGES4$QyunACO<Vpi~HEu75rR<<7O~EiIa~taaila4IC5'feel,,LineraIP0'aIa'aaaWIp~o'-..aaEtHO.al0IiI~SprijLi'ne~'IPYCZnSVICL*iorI'aiIatItt1~aIl630bCOD.04CatIH-/8-PROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.FORINTERNALUSEONLYGAI446II78 t(~)/'/a'~:/I~IA/~g///////)c/s/D:I:5/P.cCjap4K.70.$g-;ps88p>>ci67-2ps~a=;pg.gp>>Cr60I'16gps,'g($'03P&l))SMARepave'=l0 3-256..gps/a(y.g.8 ps,~)I,50II!7~/IR40;IIIII(!30.201000.110100oo100010,000100,000TIME(SECONDS)

FIGURE2..ACCIDENTPRESSURELOADTRANSIENT INTHECONTAINMENT

't1$lhy3k'gllw@w.W NO.34O.LSI0DIETKGENGRAPHPAPERSEMILOGARITHMIC SCYCLESXIODIVISIONS PERINCHIil'4>>i'"IIII'l1,4il~It'llltI/on-7ir-/F/~O/ICCIPEA7'ill.iIIII'14EUGENEDICTZGCNCD.MAOCINU.N.AllII!IIII1li4!iI,I'ili>>Iioooi!tit'4"'I'ti'I~1'.ii4>>!!Itti11>>IIr4illIr,I>>inoonittttt'0O4OCtoli>>,t,iI!"ii44:4'I'i-"ll4I,lit')4!.4'oooon QCCIPgh/TTEMPERA+'.EPl>>RI8<Tlo</u+88STEeL.L/4ER.c/siD:/:>IP~>432ZII2.0II4./a~'ZI-/6-,IIIIIIIII'me=0I(STeaJySAaka~IIIIIIT;~q=iH.!!I+Time=30Ql<I7iet/=QQl~.lQQNI-/z-/04I-20/OO/5'07E<<P'ERAL u/lE('F)zoo--2I-z5ogoO

~

GilbertAssociates, Inc.Rending,Penneylvenl

~AHALYSI5/CALCULATION SUOJEREVoMICROFILMED ORIGINATOR55P5/+IIIIGATEi8CIS/:sfPAGE16OFPAGES437IO;5:MERIDOURLY57'gES5g5I4/(AIER.POQ7a,\II-P.oMAll-'8.plIICT/C.0IIw)--5M8(PI&j;6.gICNII7vIiyIPchIIIIIgIII-IIIIId(I0jp-wj7-p6.o-s6.ogooC~l;nJ4VCl300+ngologcel l>00VaIOSvlak4J'gloo ge~E2eue2&e(y~PROPRIETARY INFORMATION OFGILBERTASSOCIATES, INCo-FORINTERNALUSEONLYGAI446II~78 GilbertAssociates, Inc.Rending,PennsylvnninANALYSIS/CALCULATION SUBJECC7/eP/9REV0MICROFILMEO L./u6'CORIGINATOR Qg+ee/PQDATEIQgQCISI4/=W/PAGEOFPAGES45-0P/P.6:G/RCurtREREADV'IAIII(I57/(',E-SS ES/4/L/nlFRF'R7gI4/6~IO.3e(I4*4'70.I~iL(eI1il43g.'fiIQIIII(II~(4TIIri((j44.(*I(~(III=---~-//oI/I4~Il~4I-50W(J"II---.=So44OOCYI-IAJDBRado-5gSX'nsui(ig4.d

/20O-23--56.otSu:elrlexee/6'OOPOI-IE4%doo2(((OoPROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.-FORINTERNALUSEONLYGAI4461178 0tIagIhl'k GilbertAssociates, Inc.Reading,Pennsylvania ANALYSIS/CALCULATION SUBJECT~cg/%pREV0MICROFILMEDl/NEkORIGINATOR QQf/5/KHDATEI88cKPAGE43OFPAGESd3P/g.7:/-IEg/9OAJ/ciaS7'R.ESSES l7ZunlE51JR.PPC.E OPCOAJGR.ETE Fog,0-c---o.~g7-'-coP..III-IIllIc3cI1I.s-Iccl-S5.--cclnsvloIke JUninsuI+TedcgooPoo/zoo//so>goo>IcSOOCplin'.4vPomePROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.-FORINTERNALUSEONLYGAI446'1178 00L'J GilbortAssociates, Inc.Reading.Pennaylvenia ANALYSIS/CALCULATION SUBJECCvI~eAueREV0MICROFILMED ORIGINATOR 5,g+5iigDATEI48~PAGEOFPAGES+3pfy8CICOWZEQLS255'ES5uAACECICbmC2WEIo-s.-r1/iiI~IIliA~IIIIIiIIIII4I~----3iIII"II,5M+CTi'Cp.6.-MP...Iiw-v;64MIyql4I'III+nSuing-E4I-60---~---1QVnnsvl~i<d'ao8oo/2ug/6unRDOOKQouCIh/CP'tihdEVPorc-2.5PROPRIETARY INFORMATION OFGILBERTASSOCIATES, INCo-FORINTERNALUSEONLYGAI446II78 I~iI~

II~GilbertAssociates, Inc.cRending.Penneylvenie ANALYSIS/CALCULATION SUBJECT~Cr((IWL/AIE'RREV0MICROFILMEO ORIGINATOR

+Q5/gDATE/Q/gQCISID~PAGEz2OFPAGESCQgSI.~/P.g:HB/I.lDOA/rIIS7JESSESIndC-/h/EfCgoaPo,hIf'-~yC.------(-/=//(.g-3yIIIIII-----q--+IIlgIIrI"'CtvNI~II('%III'i~IIIIII'I'IIIIs~~III-IgooQOO/2no.,/6oog,ohio2Mocill;n~Do~ePROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.FORINTERNALUSEONLYGAI446II78 0~5>l4Iq

~11GilbertAssociates, Inc.RnndinII.

Pnnnsylvnnin ANALYSIS/CALCULATION SUBJECL./A/F~REVe0MICR0FILME0ORIGINATOR QSQS/EHOATE5/gttOFPAGESQK%I)7-/Cg/O'.

R,CuEgEA/,g~IL5RES>E5IAI//AjERoil7--tgg-I1I71~7I~II,fyMI+33=-M1~I'g1III1'II111goo/?,OO(600%000ZVoO//IJDome-07-PROPRIETARY INFORMATION OFGILBERTASSOCIATES, INCM-FORINTERNALUSEONLYGAI44611~78 hh GilbertAssociates, Inc.llhhdlhg,PhhhSPIVhhlh ANALYSIS/CALCULATION SUBJECTC~(wmALl~<R.REVe0MICROFILMEDORIGINATOR Q5f/5'/PHDATECISID~PAGEPAGES437=/y/g;.NER0L5IZESSF~/A/I\IIItj~l~I?:0Ia4III-Qg3-535-bc-gooC/gfldergooTngulqgdd Llninsulated I/?oo/Qo42.ood24o4PROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.-FORINTERNALUSEONLYGAI446II~78 I4tttt GilbortAssociatos, Inc.Reading,Pennsylvania ANALYSIS/CALCULATION SUDJECL/A/ER.REVo0MICR0FILMEDORIGINATOR 5XHr/F6DATEI/8/OFPAGESf3FIC.12-'(RCOMFEA.EA/7lgL STRE@ESRIA/LIAJPRFogPCt7cI-2:8IjoAlIIIlII[~I~J-9aI'IIII-I-Iq,g3'-<<--5'0IIIII-"r'0'D~~weZnSulct~d

-$5;0Un'>nsuIaged9008aa/?.00/boograf~2use2I.enPROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.FORINTERNALUSEONLYGAI446II>>78

~tÃf'"g~r'~e,tW GilbertAssociates, Inc.Reading,Penneylvania SUDJECr/~A/1REVeMICR0FILMED6/nrem.CISIPAGE~SOFIAGESP3CALCULATION 0RIGINAT0R5,5iL/5/EflDATE/>'Pg7=/Cv'-~ODYL.AA/yRESI/LT~OF5~MD8A/8L'fSJSI'tIh/pe=xft<eIea4Ill~//rhieaI/~Inea>8p/III5'ngCine304IIII~I'IIwlII'vwwXh4.,~~-YO.~hTi/$h/4nGgIh,'Ov/0.r---a:e&

IVpva7eeeWF4.o:ozI/erin'I LinerStretej,ISI$,<s,'wIhI,Io.oQae03Oeahy,I!a-o/.5plPROPRIETARY INFORMATION OFGILBERTASSOCIATES, INCe-FORINTERNALUSEONLYGAI44612/81 Prvv GilbertAssociates, Inc.Reading,Penneylvenie ANALYSIS/CA LCULATIOHSUDJECL,(WA/2g,REVe0MICROFILMED ORIGINATOR 5II/Cf/g/p'g DATE/PAGE4oOFPAGES437=I~gy.5OJ7=Oy'M-S'iSI.'rl~c~~e~Re.'la*iodklrI+'II'IlviI.5'.h.ea.rr S>re~.of...Sf~d'0/rlcckorS

.InL~,~d,AfMvIIv~IC,sreAe~y'<lhvvr.d, S/,~'dT'Vt"vve/~jlSC vvr'r~l/I>>hI~I~Q=Ge(-I-/84)I/+l-eII'IIIIIIjIIIifI20IIIevvllliIIIhIIIvIIIvIIIIIIJII'IIIIIII~IeIII0O./Oo-/5r/~20IIO,a5IIOe30szoPgOupC.WCZHEA T,(.~J>.evIvPROPRIETARY INFORMATION OFGILBERTASSOCIATES, INC.FORINTERNALUSEONLYGAI446II78