ML18017A245

From kanterella
Revision as of 05:54, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards Design Assessment Rept,Revision 2. Proprietary Version Withheld (Ref 10CFR2.790)
ML18017A245
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 06/09/1980
From: CURTIS N W
PENNSYLVANIA POWER & LIGHT CO.
To: YOUNGBLOOD B J
Office of Nuclear Reactor Regulation
Shared Package
ML17138B347 List:
References
PLA-491, NUDOCS 8006110222
Download: ML18017A245 (325)


Text

ARKGULATOYINFORHATION DISTRIBUTION STEM(RIDS)ACCESSION NBR:80064'10292 DOC~DATE!80/06/09NOTARIZED

~NOFACIL:50-387 Susquehanna SteamKlectricStationiUnitli'Pennsylva 50388Susquehanna SteamElectricStationiUnit2iPennsylva AUTH'AMEAUTHORAFFILIATION CURTISrN,H~Pennsylvania Po~er8LightCo..RKCIP,NAMERECIPIENT AFFILIATION YOUNGBLOODiB

~J'I.icensing Branchr"JvDOCKET¹053-030389

SUBJECT:

Forwards"DesignAssessment ReptiRevision 2'Proprietary versionwithheld(ref10CFR2~790)~yP.C7DISTRIBUTION COOK:PBOlSCOPIESRECEIVED:LTR KNCLSIZEiTITLE!Proprietar'yInfoRePSAR/FSAR NOTES'04KW 4CV5Q5R0'tACCAWglf'gRECIPIKNTCOPIKSIDCODE/NAME LTTRENCLACTION:02PM~+~~11'+~BC~~~10INTERNAL:

Ol-I1104QAB~1106STRUCENGBR+1109REACSYSBRM1111COREPERFBR1113CONTHNTSYS4f1115PARSYSBRW1118ACDKNTANL01120RADASHTBR~1123KIRK'NOOD

~Sf11ADPLANTSYS10AD/CORE8CONT10HPA10OKLD10EXTERNAL:

2AACREsr+1gLwR¹3LA'rr/AFF10RKCIPIKNTIDCOOK/NAME ADAO)4A~LA03OPERALIC'R05MECHENGBR07HATL,ENGBR10ANI.BR12AUXSYSBR14ICCSYSBR16ADSITETECH19EFLTTRTSYS21I8EAOFORENGADSITEAAlYSDIRECTORNRR"NRCPORLPDRNSICr"hre~irzIWgrETiverIiEIbriber(LOW,)'re@(L.+0,COPIESLTTRENCL101011W~ig22~W-I<1~l1Mi1Mj4I22eea10100101010<IAAAAStfg7g]9~~@0TOTALNUMBEROFCOPIESRKQUIRKDR-LTTRMENCL e~PPaLTW6NORTHNINTHSTREETALLENTOWNs PA18101PHONEst215)8215151June9,1980Mr.B.J.Youngblood, ChiefLightWaterReactorsBranchNo.3DivisionofProjectManagement U.S.NuclearRegulatory Commission Washington, D.C.20SSSSSESDOCKETNOS.50-387850-388DESIGNASSESSMENT REPORT,REVISION2ER100450FILES172-1,840-2PLA491

DearMr.Youngblood:

Transmitted herewithare40copiesofRevision2totheSusquehanna SESDesignAssessment Report.BothVolume1andtheProprietary Supplement havebeenrevised.Listedbelowarethemajormodifications.

1.RevisionofSection4.2,"LOCALoadDefinition",

toreflectthechangesinloadmethodology requiredtocomplywiththeOctober,1978NUREG-0487, aswellastheadditionofSubsection 4.2.3,"Response toNRCCriteriaforLoadsonSubmexged Structure".

2.UpdateofSection7.0,"DesignAssessment".

3.Preparation ofanon-proprietary andproprietary Section9.0,"SSESLOCASteamCondensation Verification TestGKM-IIM".

4.Completion ofAppendixA,"Containment DesignAssessment",

andAppendixE,"ReactorBuildingStructural DesignAssessment".

S.UpdateofAppendixD,"ProgramVerification",

toincludeverification oftheKWUcomputercodeVELPOT.Lo,6.Rewriteofsubsection 8.8.4,"Thermalperformance ofQuenchers".

pm8,JP<gPq0p5q.PENNSYLVANIA POWER8LIGHTCOMPANY8o06110ggr}

Mr.B.J.Youngblocd June9,1980Page2Inaddition, anumberofeditorial andsyntactical sentencemodifications havebeenincluded.

Pursuantto10CFR2.790andtheaffidavit submitted withourApril14,1978letter(PLA-244),

werequestthatthosepagesmarkedproprietary bewithheldfrompublicdisclosure.

Verytrulyyours,,N.i'.CurtisVicePresident-Engineering 5Construction PAF:JLIPAF128:3 DOCKETEO.SISDATE.'8A'OTETONRCAÃD/ORE,OCAL?UBt'iCDOCENTROOMSfromThefollowing itemsubmitedwithletrdatedisbeingwithheldfromoublicdiscosureinacccrdance withSecton2.790.PROPRIETARY LVEORCATiON K4stribction Serv-ce'B~ch

~p,flRK0((40ss~*<<<<+UNITEDSTATESNUCLEARREGULATORY COMMIS&4WASHINGTON, D.C.20555OBQIDL~iFOR:TERA.Corp.FROM:

SUBJECT:

US%5C/TIDC/Distribution ServicesBranchSpecialDocumentHandlingRequirements O1.Pleaseusethefollowing specialdistribution listfortheattacheddocument.

n2.-Theattached.

documentrequiresthefollowing specialconsiderations:

Donotsendoversi.se enclosure totheHRCPDR.nOnlyoneoversizeenclosure wasreceived-pleasereturnforRegulatory Filestorage.Proprietary information

-sendaff'davit onlytotheHRCPDRQOther:(speciiy) cc:DSBFilesTMC/DSBAuthori"ed Signature PROPRIETARY SECTION4TABLESNuebeuTITLE4-1DesignParameters Affecting SRVLoadingQuencherHole:ieldData4-54-74-9HOGE!fInputDataLineLoadsDuringSRVOpeningLineLoadsDuringSRVClosingLineLoadsDurinqIrregular Condensation TotalQuencherLoadsDuringSRVOpeningTotalQuencherLoadsDuringSRVClosinq'TotalQuencherLoadsDuringIrregular Condensation 4-104-114-1'2QuencherArmLoadsDuingSRVOpeningQuenche.ArmLoadsDuringSRVClosingQuencherArmLoadsDurinqIr"egula-Condensation 4-13measuredParameters RelativetoFigures4-28to4-304-144-15Submerged Structure PressureDiferenceasaFunctionofBodyDimension Submerqed Structure

.'luitipliers 80061102>R 4p-5 i'

PROPRIETARY 4.0LOADDZP'I';AITEO'.t A.VSAPETVRPLI:.PVALVE~SRV!

DISCHARGE LOADDEPINITIOR IThissection'provides aqeneraldiscussion oftheapproachusedfordesiqnoftheSSFSSafetyReliefValvesystem(Subsection 4.1.1)aswellasthemethodsuedtocalculate suppression poolboundaryandsubmerged structu"e loads.Forclaritytheloadingconditions havebeendividedintotwocateqories:

'a~b.SRV'ischa"qe hydrodynamic loads..exerted ontheSRVsystem(pipe,quencher, andsupport)itself(Subsection4.1.2)'SRV'ischarge loadsonthesuppression poolboundaryandsubmerged structures (Subsection 4.1.3).4.1..1GeneralDiscussion o"theSSESA2oroachTheSRVsystemused.forSS"=Shasbeo..n,designed basedonthefollowinq criteria:

a.Redutiontothemaximumextentp"acticableor.ti."'etwellwatersoacedynaicpressu=es associated withSBVdischarge b.Avoidance ofcondensation ins-abilities associated withhighmassfluxSRVsteamdiscna"ges inno'upto2000~)suppression pools.'Tosatisfythesecriteria, quenche=s havebeendeveloped

~,specifically forthePennsylvania PowerandLightComoany(?PGL)byi<raftwerk Union(KMU).ASSZS-unique dynamicloadsDecificationha=-beenpreoa"edbyK~3for-hisdeviceandisdescribed inSubsections 4.1.2and4.1.3.Du"inqanextensive quencherdevelor!ment program(Ref1),AUhasdetermined thedeqreeofinfluence o>>variousSRVsystemdesignparameters onthedynamicPressures whichresultfromSRVdischarqe andhasconcluded thefollowinq:

b.P'oolpressureamplitudes decreasewithdecreasing pooltemperature.

Thisisaconsequence oftherelationship betweenbubblesteamcontentandsaturation conditions.

Poolpressureamplitudes "decrease withincreasing poolfreewaterarea.Theeffectofeccentric SRVdischarge locations onpoolpressureamplitudes isnegligible.

=4P-7 r

PROPRIETARY

.DHIHIT"g"C~Poolpressureamplitudes decreasewithdecreasing quencherexhausta"ea.Fordecreasing exhaus-areas,theenergy'nput totheoscillatinq auoble-water systemisspreadoveralonqertime,withacorresponding decreaseinexcitation ofthe'oscillatinq system.dTheinfluence ofSBVdischarge linelengthovertherangemeasuredbyKMU,9to19m(29.5to62.3ft),isinsignificant foraconstantdischarge lineairmass.(4hentwosetsofunit"(Enqlishandmetric)aregiven,thefirstvalueistheoriqinalone;thesecondisanapproximation providedforconvenience.)

Detailedinformation concerning effectsduetolongdischarg".

lineswithnumerousbendswillbeobtainedduringtheSusquehanna unitcelltestsdescribed inChapter8.Poolpressureamplitudes decreasewithdecreasing expelledairmass,ie,totalenergyinputtothesystem'dec"eases withdecreasing airvolume.However,theai"volumeinthepipeshouldnotbeconsidered asanabsolutequanticyofinfluence, but=atherasarelativeef"ect,highlydeoendent uponthemassofwateroverwhichtheinputenergyisdistributed andtherateatwhicheno.rqyi"addedtothesystem.fhefollowinq pa"amete=s afeetpoo'ressures becauseof.heirin"luenceonS'.?V.ischagelineclearingpressures, butarelessimportant thanthosemen"ioned above:valveopeningtime,steammassflux,SRV0'he.,ai~cnarqlineemperature, andsumerence.

morec"mpletelistingofajorandsomelocalized parameters iscontained inTableQ-l.Theeffectsofdifferences inphysicalparameters betweenSSESandKNUBNRshavebeenaccounted forinthequencherdesignshownonFigureo-1andinTablea-2.~oco"rectprimarily fo;"hereducedsteammassfluxperS?Vandincreased lineairvolumes,theSSESquenchers havebeendesignedwithanoutletareaapproximately 50percentoftharwhichhasbeenusedforGeman3/Rs.Thisassuresthatoptimumusehasbeenmadeofthedischarqe areaeffectonpressu"eamplitude reduction.

Futherdecreases inoutletareaarenotfeasibleduetotheadverseeffeetonSRVbac<pressures andSRVdischarge linedesignpressures.

TheeffectofSRYdischarqe linelength(thelonqestSSESSRVdischarge lineisabouttwiceaslongastnelongestlinepreviously testedbyKWU)onpressu"eamplitude willbestudied;duringtheSSZSuniquetestinqprogram,aswilltheSSBScurved/

PROPRIETARY EXHIBIT"g",'ipe,arranqement withcespecttoinhibiting steam-air mixinqpriortoandduringventclearinq.

4.1.1.1ThermalPerformarice OneofthekeystotheKRUquencherdeviceisitsabilitytocondensestably(withoutlarqepressureamplitudes) thesteamfractioninexhausts"earn-air mixturesaswellaspuresteamdischarges.

Themotrestcictive conditions, whichinvolvehighsteammassfluxesa"..delevatedpooltemperatu es,areofp"imacyimportance.

Disc'narqe hclepattecnsarearrangedtoenableaninfluxofpoolwaterbetweenadjacentrowsunderalloperating conditions.

Thisarranqement.

ensuresthatimmediate contaciisestablished betweenthecoolerpoolwaterandthewarmergas0ischarqed.TheoptimumquencherholepatternverifiedduringtheGKHquencherdevelopment programisusedfortheSSESdesign(Figure4-1andTable4-2).Th10mmdischacqe holesaresDaced15mmoncenters'nd acearrangedinrowswhichareseparated by50mm.The50mmcenter-to-center spacingprovidesthepathwayforsupplyinq waterothes:earn(seePiquce4-2),therebyenablingthepoolobheatedalmos"totheboilingpointwithouta"iseinthepress>reampl;tul.s associated wi:hSHVDischarge.

Verification ofauencher=hermalpe=focmance maybefoundinHef(onPiquce513an.page5-34)4.1.2Loadsor.theSRVSystemduetoSHVAetna"ion Theloadingconditions whichared'esccibed

.nthefollowinq subsections a~plytotheSHVpiping,quencherbodyandarms,andquenchersupport.4.1.2.1SP.VLin.Backoressure LoadThemaxi=urnSHVbacknressure duringstealysta-eblowdownwasinvestigated analytically forthequencherdlscnarqe device.Thelongestlinegeometrywasusedintheanalysis.

Ztwasdetermined thatthemaximumSHVdischarge lineinternalpressureislessthan550psiq.4.1.2.2SHVSystemRaterClearingP=essuce-LoadThissubsection summarizes theanalytical techniques employed.ocalculate internalpressures andverticalloadsactingon"heSHVdischarge pipingasacesultofwatersluqclearing.

Safetyreliefvalvesteamflowwasassumedsatucated forallcalculations.

TheKAU'omputer codeHOGE.'twasusedtocomputethepressure.

riseinanSHVdischarge linethcouqhout thewatecclearingphasewhichfollowstheliftinqofanSHVThecode, tt PROPRIHTAR YDIHIHITdocumented inRef1,hasbeenverifiedwithsubscale(model)and.in-planttestdata.Cl))TheSSES'nique parameteslistedinTable4-3.have.

beenusedas.inputdatatotheHOGEifcomputerproqram.Theflowresistance.

coefficient forquenchers

.whichhad-beenoptimized toparameters uniquetoKNU-designed plantswasfoundtobe=1.5.richencalculatinq theSSES-unique flowresistance

'oefficients, particular

.conside"ation wasgiventotheSSZS-uniquequencher.

Duetodiferentparameters (compared toKRUplants),approximately one-halfthedischarge areaofearlierKdUdesiqnswasrequied.Usinqanareareduction factorof0.6,theeffective discharge areaoftheSusquehanna guen'cher iscalculated as:Aeffq0.5Aqeom=0.522m~(5.617ft~)Sincethecross-sectional aeaofan,SRV-dischaqelineis:0.073m~thearearatiobecomes:A>fcq=072ADTheHOGZIcoderelatesthequencherflowresistance coefficient,

(,tothesquareoftheflowvelocityinsidetheSBVdischarge lino,necessitating thecalculation ofavelocityratiobetweenthequencherdischaqeandthepipeflowvelocities.

An=1=139MDAeffq0.72where:flowvelocityForquenchers typicalofthoseusedinKMUdesignedplants,thisratioisequaltoone.4Asa.significant po"tionofthepressu=ereduction mechanism isrelatedtothequencherdischarge area,anappropriate resistance 49pp (139)~Hence,theSusquehanna quencherflowresistance coefficient is:PBOPBI-TABY Sl'pcoefficient wasusedfortheSusquehanna

quencrer, basedona.valuewhichhadbeenpreviously verifiedforKWUplants.Consistent withtheHOGZNcodemethodology, theSSES-unique valuewascalculated bymultiplying theKWUvaluebythesquareoftheSSESvelocityratio.-M~~1.93orapproximately 2.W~DgSSES=2x1.5=3where"1.5=4forKWVplantsThefollowinq clearinqpressures werecalculated for.thelongestandtheshortest.

SRVdischarqe lines,respectively, basedonthe-KWUHOGEM'analysis:

LencethofBiecl.n~t' line48.3m(158.5ft)349m(1145ft)Calculated clearingpre-suxe22.7bar(314.5psig)=27.1bar(378.3psiq)'TheclearingSubsequerittothesteadystz"essureti"..ehistories aeshownonFigure4-3.waterclearirq, tne'r."erna'ressure changestotessamflowcondition.'or calculatina t'everticalloadimposedonthequencherdue<<othedirectional chanqeinflowvelocity-ithinthequencher(vertical SRVdischarqe,line tohorizonta'l quenc.".er arms),aconserv'tive esis"ancecoefficient, g=0,wasused(=a<<herthanthevalueE=3.0described inthepaagraphsabove).Thefollowina verticalloadsactinqon'anSBVdischarqe lineresultf=omachanqeindirection ofthewaterlegdurinqwatercl'earinq:

T.engthoftheSBVdischarge line483m34.9mVerticalload490kN(110.2kips)620kH(139.4kips)Thetimehistories oftheseverticalloads(with=0)areshownonFiqu=e4-4.4P-11 IL1 PROPRIETARY 4123SRVDisch~a".

eLineLoadsDurinqwatersluqclearing, thedifferentpiperunsof.theSRVlinearesubjected todynamicloadsduetoflowchangeswithinthepipe(pŽessure andmomentumchanges).

Thepipinganalysiscontained inSection5.5includesthese.loads.Figure4-5represents theverticalloadonthelastpipecun(endingwiththequencher)

.Tables4-4,4-5and4-6listthemaximumloadsexperienced byanSRVdischarqe lineduringSRVopening,SRVclosinqandirregular condensation, respectively.

4~1..4quencherBodyLoadsOscillatinq.

bubblesfromSRVdischarge intothesuppression poolproduceexternalloadsonthequenchers.

Anoperating quencherisaffectedbybubblescaused.byitsowndischarge aswellasby'bubblefromadjacentquenchers.

Xthasbeenshownexperimentally (Ref-23)thatthemaximumexternalloadingcondition onanindividual quencheroccursdurinqoperation ofthequencheitself..heoperation ofoneormoreadjacentquenchers doesriotpcoduceincreased loads.">>xternal loadsonquenchers whicharenotopeatinqaceevaluated usingloadingconditions desccired inSubsection 4.1.3'ccording totheiclocationinthepool.Theloadsactingonthequenche:bodya"eshownonFigure4-6.Tables4-7I4-8and4-9listth>>a"imiimloadsexperienced byanSSKSquencherduringSR'1opening,SRVclosingandir=egular condensation,resoectively.

Theloadtimehistocies acereferenced inthesametables.Seven"hous'.nd valveopenings, seventhousandvalveclosingsandonezillionirceqular condensaticn loadcycleshavebeenassumed.4.1.2.5~~uenchec ArmLoads,Theloadsactinqoneacnauencheca=mareshownonFigure4-14.Tables4-10,4-11and4-12listthemaximumloadsexperienced byanSS"-Squenche"armdurinqSRVopeninq',

SRVclosingandirreqular condensation, respectively.

1heloadtimehisto"ies arerefecenced inthesametables.Seventhousandvalveopeninqs, seventhou=andvalveclosingsandone-millionirregular condensaticn loadcycleshavebeenassumed.41.2.6quencherSuyoo"tLoadsThequenchersupportshavebeendesignedforthefollowing loads:Loadsactingonthequenche"duetoSRVdischarge asdiscussed inSubsections 4.1.2.4and4.1.2.5.

t PROPBI"TABBYb.Loadsfrom'heSBVdischarqe

'lineExHIBIT"A"c.Loadsfromflowdeflection withinthed'ischarge lineLoadsduetooscillating discharge bubbles4.12.7quencherFatigueLoadsAlthouqheachclearingeventisfollowedbynearlycontinuous steamflow,steamcondensation doesnotexhibitaunifombehaviorthrouqhout the,entirerangeofsteammassflowratesandwetwellwatertemperatur s.Thevariousregionsofcondensation behaviorareshownonFigure4-22.Thequencherexperiences maximumhydrodynamic andthermalfatigueloadsduring.discontinuous floworirregular condensation (transition region,Fiqure4-22).Theirregular condensation loadsfromTable4-9areusedforfatigueconsiderations.

Onemilliontotalstresscycles(associatedwiththeirreqular condensation areassumedfortheanalysis.

4.1.3LoadsonSuppression PoolSt=uctu"es duetoSBVAct>ationThissubsec-ion d.sc=ibesloadsonwettedpor"ionsothesuppress'on oolboundarvandsubmerged structures.

Subsections 4.1.3.1th=o)gh4.1.3.3aivthecircumferential pressuredistributions onth~suppression poolboundaries "orthevariousSHVactuation cases.Theverticalpressuredistribution ontheboundaries is,discussed inSubsection 4.1.3.4.Subsection 4.1.3.5givesthepressureti".ehistories usedrortheanalysis.

4.1..3.'ymmetric LoadinaCon'it'on+SBV All}Theassumption thatallqasbubblesar'inqfroSRVdischarge oscillate inphasewiththesamesrena:h(hiqhestpossible) leadsto..hewostloadingcaseasi~scribe.l for"henormalized condition onFigure<<-23.Fortheentireregion(vase."at, containment wettedwall,andpedestal.wettedwall),themostrestrictive pressuretimehistories asdescribed inSubsection 4.1.3.5havebeenusedfortheanalysistoensureconservatism.

Inthelowerregiontheamplitude multiplier hasbeenchosentobeconsistent withtheanalysispresented inSubsection 4.1.3.5,whileintheupperregionthesamemultiplier decreases linearlytozeroatthewatersurfaceshownonFiqu"e4-24.4.1.3.2As~mmetric Loadin~Condition

.Themostrestrictive asymmetrical loadingcondition occurswhenaqroupofadjacentvalvesisoperating.

heanalysiswasmadefor,thecasein<<hichthreeadjacentvalvesareoperatinq.

The.normalized pressuredistribution isshownonFigure4-25./

,JIÃ PROPBI""TARKEXHIBIT"P"Thepressuredistribution wasdefinedcircumferentially fora180osegment.Onbothsidesofa90~rangewithaconstantpressurelevelthepressuredecreases linearlytozeroover450.Ontheother180~segmentofthepool,thepressures wereassumedtobezeroTheverticalpressuredistribution wasassumedtobethesameasforthesymmetrical case.Themultiplier described inSubsection 41.31i.salsoappliedtothiscase.4.1331Si~n1eValvaActuation LoadingCondition Asymmetric, loadinqalsooccurswhenasinglevalveactuates.

Thenormalized pressure"distribution forthiscaseisshownonFiqure4--26.Thepressurelevelinthecircumferential di"ectionremainsconstantoverarangeof300and,onbothsidesofthisranqe,decreases linearlyove"47.50to20percentofthemaximumvalue.Outsideofthisreqion,thepressureequals20percentofthemaximuarpressurevalve.Forcomparison, apressuredecreaserelatedtothelaw1/Risshownonthesanefigure.Thepressuredistribution intheradialdirection isalsoincludedinFigure0-264.1.3.3Automatic Depressurization System(ADS)LoadingCondition

'Assuming hat~he,sixADSvalves("o"locat'on, seeFiqu=e1-4)areactinqinphase,thereisnogreatdifference betweenthsym=e"-ic and~'-eADSloadingconditions.

.=.gu=e4-27depictsthenormalized pressuredistribution usedforthiscase.4.1.3.47ertic=lP"essureDi=tribuionOnceth.@asbubbleshavebeenexpelledfro.a=quencher, theycoa'le-.ce and"heresulting bubbleaqqlomeration risesduetobuovancyeffectswhileoscillatinq.

Becauseofthefreesufacepresence, pr-su"esoncontainment an"peestalwallsnearthewatersu.facesarelowerthanthepressures onthebasemat.Zorsuchconfigurations theobservedvertic~velocityco"ponen" isintheorderof2m/sec.However,theoubhl.oscillation isnearlyd'ampe'doutafterapproxiately1secondascanbeseenonFiqures4-.28to4-30.:Therefore, theassundpressuredecreasewithelevation asshownonFIgure4-24-isconservative.

4.1.3.5pressureTimeHistories Thedefinition ofSBVloadsonsuppression poolwetedboundari'es andsub.=erqed internals canbelimitedtaloadsresulting fromqasbubbleoscillation following ventclea=ing, as:heseloadshavebeenshowntobeboundingwhencomparedtothoseassociated withtheotherphasesofSRVdischarge (Ref3).ThissectioncontainsaDiscussion of'ndividual pressuretimehistories aswellasspatialeffects EXHIBIT"4"Immediately followinq theliftingofanSRV,amixtureofsteamandairisdischarqed intothesuppression pool.Thepressuretimehistories experienced bythesuppression poolwettedboundaries andsubmerged structu"es differwithrespecttoamplitude frequency anddampinqforeachactuation event(Ref21).~Toobtainaboundingloadingcondition forSSHScontainment

analysis, conservatism withrespecttofrequency, dampinq,andpressureamplitude isrequired.

Theresulting loadsareappliedtothecontainment inaccordance withthespatialpressure'distributions described inSubsections 4.1.3.1through4.1.3.4.~

Inordertoobtainavalidfrequency spread,measuredtracesfrompreviousK'2Ufullscaletestingprogramswereselectedand,analyzed.

Approximately 200runsfromvariousKraftwerk UnionBWRpowerplantswereavailable.

Fromthese,threetraceswerechosenfromtheBrunsbuttel non-,nuclear hot.functional testingproqramforuseinSSESdesignverification (forconservatism, subsequent actuation caseshavebeenused).Thethreetracesare=showninFiqu=es4-28,4-29,and4-30andthetestconditions aredescribed inReference 21.~amorparaclete sa"elis=edinTable4-13.DuringtheBrunsbut-el

e=tmeasuredatal'1wallcositiDistanceto"'."enearest'ct-1m(3.28f").The.":.eau=eexoectedtoinclu'eall"a"oscillatione6":ects.'ngproqraŽ,alprossu=es wereonadjacenttotheopera"inq quencher.

uatingGuncherarmwasapproxl~'ateiyp"ossu"et"aresa"ethereforeecleai~a/water~et}

andai=bubble'Shet"acesusedwereselectednot.onlyfotheirfrequ'ency variation bu"also"ortheirrelatively largep=essureamplitudes of0.5to0.8bar(7.25to11.6psia).Figure4-28containsthenighestpressurea..plitude evermeasuredduringin-planttestingfolio"inq thewaterslugclearingphaseofaKiUquencherequippedsa".~tyreiefsystem.~i!i'theoscillation showninPiqure4-28isdampedoutrapidly,theothetwotracesexhibitlessdamping.Acomparison betweenFiqures4-29and4-30indicates that,peakpressureamplitudes canbeexperienced atdifferent times.Figures4-31to4-33containpowerspectraldensityfunctions fortheinitial0.6sec.oftnemeasuredpressuretraces.Forpu"posesofcomparison itshoulihementioned thatthetracescontainvariation" inordinatescaling.Inallcasesanair<bubbleoscillaticn frequencybe"ween6and8cpsisdominant.

Althouqthepressureamplitude ofrun435hasthehighestmagnitude (refertoFigure4-28),themaqnitude ofthepowerspectraldensityofthedominant.

bubblef"equency issmall(Ziqure4-31)whencomparedtothetwoothercases(Figures4-324P-15

~'lI'>N' PROPRIETARY IBIT"g"and4-33).rIhentherapiddampingFigure4-28istakenintoaccount,canbepresumedtohaveoccurred.

EXHoftheoscillation asshowninauniquebubbleoscillation InadDitiontothemostimportant firs"0.6secondsofeachtrace,Fiqures4-34to4-36showthepowerspectraldensityfunctions Qurinqlongerperiodsofthesametraces.Thebubble'requency remainsthedominantfrequency eventhoughthepressureamplitudes areinpracticedampedoutbeforetheanaly'zer traceends.This-prevailinq fequencyshowsthatthetracesdonotcontainqeometrical effectssuchaseiqenfrequencies ofthestructure.

Therefore, thepressuretimehistories areusedaspureforcinqfunctions.

Ztshouldbeaddedthatthepressuretransducers usedwerefastenedtoastiffsandwichwall.structure tominimieinteraction effects.Inordertoobtainaconservative frequency content,'thevariation inairmassbetweentheSusquehanna SRVdischarge linsandthoseusedfocBrunsbuttel weretakenintoconsideration.

ThelonqestSS"=Sdischacqe linehasaconservatively estimated enclosedairvolue0<<3.1m~(109.5ft~)(refectoTable1-3)whiletheBcunsbuttel di.-eh~roe.

lineshaveanenclosedaicvolumeof145"~(v1.2f"~)(ceertoRef2)Thera<<ioofthesevolumesis2.14to1.'ssum1.ilg3.Dverse1ascanbsectionainvecselcanbesshapetofrequen"air-voluasoherical ai"bubble,theaicbubblefrequency isyp00ctlcna1t0thec1beroot0f<<heairvolu2era10eseeninRef4.raflatbubblewithaconstanteros"1areaisassumed,theairbubblef"equency willoe/protor<<iona 1tothesquareccoto=thevolumeratioaseeninRef5.Thisanalysisasuncstherealbubblebbetween'esetwolimit.s,anD-theresultinq vsNifttobebe<<ween<<hetwomodels'rediction ofthemeratiopropoctionality.

Inordertoobtainaconsrvatiyefrequency content,thethreetraces(K'iqures 4-28to4-30)whichwereusedasnormalized forcinqfuncti'orls weceexpandedintimebya<<zczocl.8(anexpansion) andreducedintimebyafactor0.9(a-contraction)

.NIthinagivenfre'quency rangeoneofthethreetracesaffectsanindividual locationinthecontainment structure moreadverse'.y thantheothers.TheSusquehanna SZSquenchecs weredesignedtocompensate forthefactthatsomeoftheSusquehanna parameters weedifferent fromtheseoftheBrunsbuttel

-pl.nt.Toadjusto-'love"valuesofsteammassfluxperSRV,androrthe.greater initialerlclosed aicmass,.theexitareaoftheSusquehanna quencne=wasreducedoapproximately onehalfofthatofexistinqKMUpowerplants.Any~furtherreduction inquencnerdischarqe area,regardless ofitsdesirability, isunfeasible duetolimitations imposedonSRV4P-16 5~~+*~4+&

PROPR1FTARY EXHIBIT"A"discharge lineinternalprssuresaswellasSRVbackpcssuces.Basedontheexperience obtainedduringthesu'bscale testinqphaseofKNU'squencherdevelopentprogram(cexertoRef1),itisunlikelythemaximumSS"=Spressureampli-.udes willeverexceedanormalized valueof1.5whenappliedtotheBcunsbuttel pressureamplitudes.

Therefore, thisevaluation isbasedonaconservative normalized valueof1.5;thisvalu.;willbeverifieddurinqt~~unxqtcolltestingprogram..whichisexplaineChapter8,ndhasbeenusedinco,;unction withpressure-t e..(Figures4-28through4->0)forthesuppression p-wall,pedestal, andbasematadequacyassessments.

1.3.7LoadsonSubmerged Structures duetoSRVActuation Thenormalized pressuretimehistories presented onFigures4-28,4-29,and4-30(refertoSubsection 4.l.3.5)arealsousedfortheanalysisofloadsonsubmerqed structures.

Theverticalpressuredistribution ofFigure4-24isadopted.Theloadsarecalculated usinqthepcessuevaluesandthesubmerged sructureprojected area.Thecomputedloadsvereassumedtobeactinginthe:lateraldirection exceptfocthedowncomec bracingandthe'owncomec stiffener ringloads.Thedovnco.".e" b"acingloa'sa"eassumedtobeacinginlateralan"verticaldirections simul:aneously.

.helaeralloadiscalc>lated usinqthereducedpressurevalueaccording toFigure4-24.TheverticalloaDiscalculated usinqtheullpressurevalue.Thedowncomec rinqplateloadsaceassumedtobeactinginthevrticaldi"ection.Thisvecicalloadisalsocalculated usinqthefullpressurevalue.F~~Similarto"heload=onthesuppression poolwettedwalls,a,multipliec wasadoptedwhenapplyingthenoc=alized pressu"etimehistories toaccountfordif<<ecencesbetweenSSFSandBcuns~uttel quenche"s.

Thevalueof-hemultipliec wastakendifferen" lydependinq onthesize(diameter) o=t'submerged stcucuce.Discussicn-pertaining tothechoiceofthismultipliec a=eprovidedbelow.Forthecaseofasinglespherical oscillating gasbubble,thepressureamplitudes relativetothesuc"oundinq wate-pressurecanbecalculated bythesimplerelation:

Pressuredifferential attenuation

=whereRo=bubbleradius4P-17

SectionA-AOETKILXlllsl+4CKsaTI'IarrC-e---o-I-""""-$4-~I4'Iss4WLrsaaCassssaalsasa

~I,IaaiIIIIsa'II4,esCV~)illaia(sasIICss4saaasal

<<TCcsaIII tsFIIIICSIWCraCVSCIdIaIIOITaa74Jl'saalarsaas AgaSrrSCsaA 0ETAILYIllslIC~IIt$5Naaaf5/+CasINCIsaf afaalI~I.ta/o.SiI5~assIrI~II~5J~Ia~ssssssI--~104sa(sa'IMT~MZ-l44IIOaf5II~4*Lrr,sLll.v'Itioll View4aaaaasraaalalfacasrasaf TOTALNO.OFHOLESCa?SIHOLESrIxdlHOI.ES~IlddHOLESlR~0cUmmoc)czmmOQRmgQlCCraDr.mCaaC)ZZ2c+CaaZChIIICalCaaCllAm>IHZZI--I0mC)-C'Clfll0Ch0PlanView

PROPRIETARY EXHIBIT:"A".TABLE4-7TOTAL~U='.)CHER LOADSDURTi'IGSRVOPENING~1>7LoadHaximumValueDirection TimeHisto~rinternaloverpressure27bars(377psiq)SeeFigure4-7ExternalloadhHaterdeflection loadinsidethequencherTorque44kn<2>Simultaneously in(9891lb)thehorizontal andverticalquencherplanes620knVertical(139,376lb)40knmEnhorizontal.

(29,501quencherplaneft-lb)SeeFigure4-8SeeFigure4-5SeeFigure4-9Externalloadduetobubbleoscillation (SeeSubsection4.1.2.4)<1>.Forthecaseofaslidingjointinthedischa"qe lineclosetothequencher(Fiqure4-10),tnepressureinsidethepipeactsasanexternalforce.Thiscasisshownin,Fiqure4.11.,<2>Effectsofasymmetric holearrangement areincluded.

PROPRIETARY TABLE-4-8.EXHIBIT"A"~TOTALURNCHRRLOADSDURINGSRVCLOS1NGLoadMaximumValueDirection TimeHistoryExternalLoadTorqu~4.5kn(1012lb)6knm(4425ft-lb)Simultaneo uslyin-.hehorizontal andverti-calquencherplanesXnhorizontal quencherplaneSeePigure4-12SeeFigure.4-'12

PROPRIETARY TABLE4-9TOTALQUENCHERLOADSDURINGIRREGULAR CONDENSATION EXHIBIT."g".

1LoadMaximumValueDirection TimeHistoryExternalload317.5kn(3934lb)Simultaneously inthehoizontaland,verticalquencherplanesSeeFigure4-13Torque19knmInhorizontal (14,013quencheplane.Ct-lb)SeeFigure4-13 1

PROPRIETARY TABLE4-11~UENCHERARSLOAQSDURINGSRVCLOSINGEXHIBIT"A"'oad-'Haximum ValueDirection TimeHistorvinternaloverpressureExternalloadBendingmomentonmeldingseamatintersection betweenquencnera"mandquencherball22bars(304psiq)4.5Kn{1012lb)3Knm(2213tt-lb)SeeFigure4-18Simultaneously inthehorizontal andvertica1planesSeePigure4-19Simultaneously SeeFigure4-19inthehorizonta1.

andverticalplanesTherma1load-2190C(Internal temper-=(426~-:)atu"-)SeeFigure4-18 f,11 PBOPREETABY TABLE4-12.EXHlHIT"g"QUENCHERARMLOADSDURIMGIRREGULAR COMDENSAIIOM LoadmaximumValueDirect.ion TimeHistoryEnternalpressureExternalload3.0bars(28.8psig)14.5KnSimultaneously (6638inthehorizontal ft-lb)andverticaldirection SeeFigure4-20SeeFigure4-21Bendingmoment,onweldingseamatintersection betweenquenche:armandquencherball9Knm(66380t-lb)Simultaneously inthehorizons.al andverticalplaneSeeFigure4-21Thermalload(Entlnaemuature)1330C(271.4~F)SeFigure4-20

PROPRIETARY CHAPTER8SSESQUENCHERVERIFICATION TESTTABLEOFCONTENTS81INTRODUCTION 8118.1.281.218.12.1.181.21.2812.281.2218.12.2.281.2.2.38.122-48.1-2.25PurposeofTestsTestConceptSingleCellApproachSingleCellTheoryApplication ofSingleCellApproachSimulation ofSSESParameters'rimary SystemPressureSafetyBeliefValve(SBV)Discharge LineVacuumBreakersQuencherBEV1,3r79 82TESTFACILITYANDINSTRUMENTATION 8.2.182.1.18.2.1118.2.1128.2.1138211.48.21.158.21168228.2.21822.282.238.2.231822.328.2.2.48.22.4.182.24282.2.5TestFacilityMechanical Set-UpSteamBoilerSteamAccumulator SteamLineandBufferTankSafety/Relic fValve(SRV)Discharge LineandQuencherTestTankInstrumentation GeneralDescription Instrumentation Identification Operating Instrumentation DisplayonControlConsoleAcquisition byComputerTestInstrumentation Measuring PointsSet-UpofMeasuring Instruments VisualRecording REVli3/798-2 83TESTPARAiiETEHS ANDMATRIX83I83.2VentClearingTestsCondensationTestsREV1,3/798-3 84'ZESTRESULTS84.1841.184128.413VentClearingTestResultsTestParametersBehavioroftheSRVandSystemPress'ures DynamicPressureLoadsonthePoolBoundaries 841.48428.42.18.4.2.2842218.4.221.18.42.2.12842.2.2LoadsontheQuencherandBottomSupportSteamCondensation TestResultsTestParameters Presentation ofTestResultsSurveyofObservedCondensation PhasesBlowdownatLowWaterTemperature BlowdownatHighMaterTemperature Statistical Evaluation oftheDynamicPressureLoadsonthePoolBoundaries 8422.21Dependence ofDynamicBottomandWallPressures onSystemPressureandWaterTemperature 842222842223Occurrence Frequency Distributions oftheDynamicBottomandMallPressures Statistical Characteristics oftheDynamicBottomandMallPressures 84223Temperature Variations intheMaterRegionoftheTestTank8422.4843MaterLevelintheDischarge LineWhenOpeningandAfterClosingtheSRVCheckingandCal.ibrationoftheMeasuring Instrumentation 844845AnalysisofMeasurement ErrorsRepetition TestsandReproducibility oftheResultsREVl,3/798-4 85DATAANALYSISANDVERIFICATION OFLOADSPECIFICATION 8.5.18.5.11Evaluation ofTestTankEffectsonBoundaryPressureMeasurements EffectsofFreeWaterSurfaceandRigidWalls8.5128513851.4MethodofImagesTheTestStandasaSingleCellSpatialDistribution ofPressureintheTestTank8.5.1.58515185152851.5.38515.4Investigation oftheInfluence ofMovableWallsontheMeasurement Results(Fluid-Structure Interaction)

GeneralRemarksExperimental Investigation oftheTank'sNaturalOscillations Experimental Investigation oftheTank'sResponsetoVentclearingLoadsTheoretical Investigations andModelCalculations oftheInfluence ofFSI85.1.5.41851.5428.51543Computation ModelsModelParameters andInputforCalculations WithoutFSI(RigidTank)ModelParameters andInputforCalculations WithFSI85.1.544ResultsoftheFSICalculations 8.5.285.21Verification ofSRVSystemLoadSpecification DuetoSRVActuation Pressures DuringtheVentClearingProcess852118.5212VentClearingPressures fortheLongLineVentClearingPressures fortheShortlineREV.l.3/798-5 8521.3Transposition

-oftheMeasurement ValuestoSSESandComparison withtheDesignSpecification 852.2Pressures DuringtheStationary Condensation ofSteam8522185222LongLineShortLine8.522.3Transposition oftheMeasurement ValuestoSSESandComparison withtheDesignSpecification 8.52.3ExternalLoadsontheQuencherandBottomSupport8.5.2318.5.2.3.1.185231.2852312.185.231.2.2VerticalForceMeasurement oftheVerticalForceMeasuredVerticalForcesLongLineShortLine85231.3Transposition oftheMeasurement ValuestoSSES8523131852.31,.3.28.5.2.313-3852328523218.5.2.3-2.285232.2185232.22852323LongLineShortLineSummaryTorsional MomentMeasurement oftheTorsional MomentMeasuredTorsional MomentslongLineShortLineTransposition oftheMeasurement Valuesto'SSES85-2338.5.2.3.31BendingMomentsattheQuencherArmsMeasurement oftheBendingMomentsREV1,3/798-6 8.5.2-33.28.5.2.3.3.3MeasuredBendingMomentsTransposition oftheMeasurement ResultsIntotheWeld8.5.233.4852.33.58.5-2.3.48523418.5234.28.5.2.3438.523448.5.2358-52-3.6Specified StaticEquivalent LoadsEvaluati.onoftheMeasurementResultsBendingMomentsattheBottomSupportMeasurement oftheBendingMomentsMeasuredBendingMomentsSpecified StaticEquivalent LoadEvaluation oftheMeasurement ResultsForcesontheQuencherInfluence ofanAdjacentQuencher~8-5.237LoadsontheQuencherDuringSteamCondensation852371Manifestion FormsofIntermittent Condensation intheKarlstein Tests8523728.5.237.3Illustration oftheMeasurement ValuesEvaluation oftheMeasurement Resultsforthe.QuencherArm85237.4Evaluation oftheMeasurement ResultsfortheBottomSupport8.5-2.375Evaluation oftheMeasuredTorsional Moments852376Evaluation oftheMeasuredMaximumMomentsattheQuencherArmDuringIntermittent Condensation 85.3Verification ofSuppression PoolBoundaryLoadSpecification DuetoSRVActuation 8531Evaluation oftheLocalEffectsSeenatPressureTransducer P5.58532Veri.ficationoftheSpecifiedPressureAmplitudes andVerticalPressureProfilesafterVentClearingREVl~3/798-7 8532185321.185.3212Overpressures VerticalPressureProfileVerticalPressureProfileIncluding LocalEffectsatP5.58532285322.185.3385.3.3.185331.18.5.33.11.1853311.28.5.3.3.1.1.385.331.14Underpressur esVerticalPressureProfileVerification ofthePressureTimeHistories UsedfortheSSESContainment AnalysisTranposition MethodfortheOscillation Frequency Calculation ofMeasuredOscillation Frequencies PPGLTestsatKarlstein GKMModelQuencherTests'KBHotTestsConclusion fromtheFrequency Calculations 8.5.3.328.5.3.3.38533.3.18.53332Multipliers forConversion oftheBubbleFrequencies FromtheTestStandtoSSESTransposition MethodforthePressureAmplitudes PPGLQuencherTestsatKarlstein KMUQuencherTestsintheModelTestStandinKarlstein 8.53.3.338533.34853348533.41853.34.2Analytical Calculations Influence ofBackpressure onthePressureAmplitudes Verification ofDesignSpecification Frequency AnalysesofSelectedTestsShiftingofthePSD'sintheTransposition FromtheTestStandtoSSESREV.li3/798-8 853.34.2l85.334.228533.4385.3.3.4485334585.33.4.6Frequency ShiftAmplitude Stretching Symmetrical LoadCase(Simultaneous Blowdownofall16SRV's)Unsymmetrical LoadCase(Blowdown ViaOneSRV)Unsymmetrical LoadCase(Blowdown ViaThreeAdjacentSRV')Automatic Depressurization System(ADS)LoadCase853347853.3.58.533.518533.5285.33.53853.354SummaryEvaluation oftheMeasuredPressureOscillations DuringCondensation TheQuencherisClearedContinually TheQuencherisNotClearedContinually Condensation intheBlowdownPipeandThrutheSlidingJointTransportation oftheMeasurement ResultstoSSES854854.18.5.4285.438544PoolMixingDuringSRVActuation andThermalPerformance oftheQuencherIntroduction

'Equation ofMotionoftheRotatingPoolDetermination oftheFlowResistances Determination oftheForceMovingthePool85.4.5WorkingEquations fortheRotatingPoolofSSES854.68.5.4.7854.7185472EstimateoftheHeatingoftheSuppression ChamberWaterExperimental ProofsModelTankTestsKKBTestDuringtheNuclearCommissioning REVl,3/798-9 8.5.4.7-3GKMHalfScaleQuencherCondensation Test8.5488.5.5SummaryVerification oftheSubmerged Structures LoadSpecification DuetoSRVActuation 8.5.5.1855118551285513LoadsontheVentPipeMeasurement oftheLoadsMeasuredBendingMomentsExtrapolation oftheMeasurement ResultsandComparison withtheSpecified Value8.55.2Influence ofExpelledHaterDuringVentClearing8553SummaryREVl,3f'798-10 SECTION8.0FIGURESNumberTitle8-1Mathematical Desscription ofaSingleCellConfiguration withSolidWalls;SolidBottomandFreeWaterSurface8-28-38-48-58-68-7Eguivalence ofaSingleCellConfiguration andaParallelBubbleFieldOscillating inPhaseGeometric SingleCellPartition oftheSuppression PoolTestStandSchematic DiagramLongDischarge LineConfiguration ShortDischarge LineConfiguration Karlstein TestTankPlanVievTypicalVentClearingInstrumentation 8-8Karlstein TestTankC-DVievTypicalVentClearingInstrumentation 8-9Karlstein TestTankA-BVievTypicalVentClearingInstrumentation 8-10Karlstein TestTankPlanVievTypicalCondensation TestInstrumentation 8-11Karlstein TestTankC-DViewTypicalCondensation TestInstrumentation 8-12Karlstein TestTankA-BViewTypicalCondensation TestInstrumentation 8-13T-Quencher ShowingTypicalVentClearingInstrumentation 8-14T-Quencher ShovingTypicalCondensation TestInstrumentation 8-158-168-178-188-19TestMatrigforVentClearingTestLocationofTestGroupNo.1intheOperation FieldLocationofTestGroupNo.2intheOperation FieldLocationofTestGroupNo.3intheOperation FieldLocation'f TestGroupNo.4intheOperation FieldREV1,3/798-11 8-208-218-228-23LocationofTestGroupNo.5intheOperation FieldLocationofTestGroupNo.6intheOperation FieldLocationofCondensation TestsintheOperation FieldValveOpeningTimeVersusAccumulator PressureLongPipeVentClearingTests8-24ValveOpeningTimeVersusAccumulator PressureShortPipeVentClearingTests8-25VentClearingPressureVersusSystemPressureLongLineVentClearingTests8-26VentClearingPressureVersusSystemPressureShortLineVentClearingTests8-27PeakPositiveWallandBottomPressures VersusSystemPressure-Long.Line,CleanConditions, ColdPool8-28PeakPositiveMallandBottomPressures VersusSystemPressure-ShortLineCleanConditions, ColdPool8-29PeakPositiveWallandBottomPressuesVersusSystemPressure-LongLineRealConditions, ColdPool8-30PeakPositiveWallandBottomPressures VersusSystemPressure-ShortLine,RealConditions, ColdPool8-31PeakPositiveMallandBottomPresssures VersusSystemPressure-LongLine,CleanConditions, Heatedpool8-32PeakPositiveWallandBottomPressures VersusSystemPressure-ShortLine,CleanConditions, HeatedPool8-33PeakPositiveWallandBottomPressures VersusSystemPressure-LongLine,RealConditions, HeatedPool8-34PeakPositiveMallandBottomPressures VersusSystemPressure-ShortLine,RealConditions, HeatedPool8-35PeakPositiveMallandBottomPressures VersusValveActuation

-LongPipeTest148-36PeakPositiveWallandBottomPressures VersusValveActuation

-LongPipeTest58-37PeakPositiveMallandBottomPressures VersusValveActuation

-LongPipeTests4and4R8-38PeakPositiveWallandBottomPresuresVersusValveActuation

-LongPipeTests15and15RREV1,3/798-12 8-3'98-408-418-428-438-448-458-468-478-488-498-508-518-528-538-548-558-568-578-588-598-608-618-628-638-648-65PeakPositiveMallandBottomPressureVersusValveActuation

-ShortPipeTests19and19RPeakPositiveMallandBottomPressures VersusValveActuation

-ShortPipeTests20and20RVisicorder TraceP51-P5.10Test41.1.Visicorder TraceP5.1-P5.10 Test4R.l.1Visicorder TraceP5.1-P5.10 Test4.1.6Visicorder TraceP5.1-P5.10 Test11.1Visicorder TraceP5.1-P5.10 Test12.1Visicorder TraceP5.1-P5.10 Test15.1.1Visicorder TraceP5.1-P5.10 Test15.Rl.1Visicorder TraceP5.1-P5.10 Test19.1.1Visicorder TraceP5.1-P5.10 Test19.R2.1Visicorder TraceP5.1-P5.10 Test19.R2.2Visicorder TraceP5.1-P5.10 Test19.R2.3Visicorder TraceP5.1-P5.10 Test19.R2.4Uisicorder TraceP5.1-P5.10Test19.R2.5Visicorder TraceP5.1-P5.10 Test19.R26VisicorderTraceP51-P510Test19.R2.7Visicorder TraceP5.1-P5.10 Test19R2.8Visicorder TraceP5.1-P5.10 Test19.R29Visicorder TraceP5.1-P5.10 Test19.32.10Visicorder TraceP5.1-P5.10 Test20.1.1Visicorder TraceP5.1-P5.10 Test20.Rl.lVisicorder TraceP5.1-P5.10 Test20.R1.10Visicorder TraceP5.1-P5.10 Test21.1Visicorder TraceP5.1-P5.10 Test21.2Visicorder TraceP5.1-P5.10 Test25.1Visicorder TraceP5.1-P5.10 Test25.R2REVlg3/798-13 8-66MaximumResultant BendingMomentatQuencherArm1-,LongPipeVentClearingTests8-67MaximumResultant BendingMomentatQuencherArm2-LongPipeVentClearingTests8-688-69MaximumResultant BendingMomentatQuencherArm1-ShortPipeVentClearingTestsMaximumResultant BendingMomentatQuencherArm2-ShortPipeVentClearingTests8-70MaximumResultant

'BendingMomentattheQuencherSupport-LongPipeVentClearingTests8-718-728-73MaximumResultant BendingMomentattheQuencherSupport-ShortPipeVentClearingTestsObservedCondensation PhasesDuringTestsTypicalVisicorder TraceofStationary Operation ofQuencherTest33.2-10SecondsafterStart8-74TypicalVisicorder TraceofStationary Operation ofQuencherTest35.1-20-SecondsafterStart8-75Visicorder TraceShovingIntermittent Operation oftheQuencher-Test36.1SysemPressure-6.2-1.0barPoolWaterTemp-26~C-300C8-76Visicorder TraceShovingExcerptfromIntermittent Operation ofQuencherTest36.1-280SecondsafterStart8-778-78Visicorder TraceShovingSingleEventOutofIntermittent Condensation Test36.1TypicalVisicorder TraceofStationary Operation ofQuencherTest37.2-13SecondsafterStart8-79TypicalVisicorder TraceofStationary Operation ofQuencherTest39.1-10SecondsafterStart8-80Visicorder TraceShovingIntermittent Operation ofQuencher-Test40.1SystemPressure-2.5barPoolWaterTemp.-89~C-91~C8-81DynamicBottomPressures duringtheBlowdownAlongtheUpperandLoverBoundaryoftheOperation Field'-82DynamicWallPressures DuringtheBlowdownAlongtheUpperandLoverBoundaryoftheOperation FieldREV.1,3/798-14 8-83Occurrence Frequency Distribution PositiveandNegativeDynamicAmplitudes fortheCondensation TestsPoolTemp.22~C-300C 8-84Occurrence Frequency Distribution PositiveandNegativeDynamicAmplitudes fortheCondensation TestsPoolTemp.59~C-91>C8-85Occurrence Frequency Distribution PositiveandNegativePressureAmplitude forCondensation TestsPoolTemp.22C-30C8-86Occurrence Frequency Distribution PositiveandNegativePressureAmplitude forCondensation TestsPoolTemp59C-91C8-878-888-89NeanValuesoftheBottomDynamicPressures DuringtheBlowdowns AlongtheUpperandLowerBoundaryoftheOperation FieldMeanValuesoftheWallDynamicPressures DuringtheBlowdowns AlongtheUpperandLowerBoundaryoftheOperation FieldWaterTemperature TimeHistories OnPoolWallCondensation Test33.28-90WaterTemperature TimeHistories OnPoolWallCondensation Test35.18-91MaterTemperature TimeHistories OnPoolMallCondensation Test37.28-92RaterTemperature TimeCondensation Test39.1Histories OnPoolMall8-93WaterTemperature TimeCondensation Test33.2HistoryOnQuencherArm18-94RaterTemperature TimeHistoryonQuencherArm1Condensation Test35.18-95MaterTemperature TimeHistoryonQuencherArm1Condensation Test3728-96MaterTemperature TimeHistoryon.Quencher Arm1Condensation Test-39.1 8-978-98Calibration ofSensorsandRegistration Instruments Intervals forCalibration ChecksandAdjustments ofInstrumenta tion8-99Calibration SystemREV.1>>3/79 8-100Calibration ResultsDeviations fromNominalValue-P5.1-P5-108-1018-1028-1038-104MaterLevelinDischarge LineTest15.1MaterLevelinDischarge LineTest20.1WaterLevelinDischarge LineTest32EffectsofFreeSurfaceandRigidTankWallsonDynamicFluidPressure8-1058-1068-1078-1088-109MethodofImagesSSESSmallestUnitCellandtheKarlstein TestTankPressureProfilesforDifferent BubbleLocations PressureProfileforaOneandFourBubbleArrangement Comparison ofMeasuredandCalculated Normalized PressureProfiles8-110Comparison ofPressureProfilesCalculatedfortheKarlstein TestTankandtheSSESSuppression Pool8-111Comparison ofCalculated andSpecified PressureProfiles8-1128-113TankArrangement ShowingInstrumentation andExplosive ChargeLocations forMeasuring TankReponseConfiguration ofExplosive Container UsedtoGenerateUnderwater PressureImpulse8-1148-1158-1168-1178-1188-1198-1208-1218-122TypicalTankResponseDuetoPressureImpulseFrequency AnalysisofGageMA2Frequency AnalysisofGageMA7Frequency AnalysisofGageMA8Frequency AnalysisofGageP5.10Displacement Correlations for13Hz-Eigenmode Displacement forthe13HzEigenmode TestTankArrangement forShakedown TestsTankDisplacements and.Pressure TraceDuringShakedown Test08.18-123Frequency AnalysisofGageMA2Shakedown Test08.1REVli3/798-16 8-1248-1258-1268-127Frequency AnalysisofGageWA7Shakedown Test08.1Frequency AnalysisofGageWA8Shakedown Test081Frequency AnalysisofP510Shakedown Test08.1AirNassPlowusedforKOVlBlComputerCodeCalculations 8-128UnitWallDisplacement of13HzNodeUsedinKOVlB1ComputerCodeCalculations 8-129BoundryPressureDistribution Calculated forUnitDisplacement of13HzNode8-1308-1318-1328-133WallPresureCalculation withKOVlB1ComputerCodeEffectsofFSZonBubblePrequency TypicalPressureTraceinSRVDischarge LineTest4.1.4TypicalPressureTraceinSRVDischarge LineTest20.Rl78-134PressureinSteamLinebeforeSRVVersusPressureinBufferTankatValueOpening8-1358-136PressureinDischarge LineVersusReactorPressureatVentClearing-P4.1LongLineTestsPressureinDischarge LineVersusReactorPressureatVentClearing-P44LongLineTests8-137PressureinDischarge LineVersusReactorPressureatVentClearing-P4.1ShortLineTests8-138PressureinDischarge LineVersusReactorPressureatVentClearing-P4.4ShortLineTests8-1398-140VentClearingPressureVersusValveOpeningTimeSteadyStatePressureVersusReactorPressure-P4.1LongLineTests8-141SteadyStatePressureVersusReactorPressure-P4.4LongLineTests8-l42SteadyStatePressureVersusReactorPressure-P4.1ShortLineTests8-143SteadyStatePressureVersusReactorPressure-P4.4ShortLineTests8-144SteadyStatePressures atDifferent Locations AlongtheDischarge LineExtrapolated to88BarReactorPressureREV1,3/798-17 8-1458-146.8-147TypicalTraceforVerticalLoadLongLineTestsVerticalLoadVersusClearingPressureLongLineTestsVerticalLoadVersusVentClearingPressureShortLine-Tests8-1488-149TypicalTraceforTorqueonBottomSupportLongLineTestBottomSupportTorqueVersusVentClearingPressureLongLineTests8-150BottomSupportTorqueVersusVentClearingPressureShortl.ineTests8-151TypicalTraceforBendingMomentsonQuencherArmsLongLineTests8-152Resultant QuencherArmBendingMomentVersusVentClearingPressureShortLineTests8-153Frequency Distribution ofMaximumResultant'Bending MomentonQuencherArmsandatWeldSeam8-154Resultant BottomSupportBendingMomentVersusVentClearingPressureShortLineTests8-155Frequency Distribution ofMaximumResultant BendingMomentonBottomSupportSG4.5-468-156Frequency Distribution ofMaximumResultant BendingMomentsOnQuencherArmsgtStrainGagesIntermittent Condensation 8-157Frequency Distribution ofMaximumResultant BendingMomentatWeldSeamonQuencherArm-Intermittent Condensation 8-158Frequency Distribution ofMaximumResultant BendingMomentsatBottomSupport-Intermittent Condensation-0.5mbelowQuencherCenter8-1598-160PowerSpectralDensities Testll.1-P5.5PowerSpectralDensities Testll1-P528-161PowerSpectralDensitie's Test4.1.6-P5.58-1628-1638-164PowerSpectralDensities Test4.1.6-P5.2PowerSpectralDensities Test20.R1.10-P55PowerSpectralDensities Test20-R1.10-P5.2REV13/798-18 8-165MaximumSpecified VerticalPressureProfileandMeasuredMaximumValues-Overpressures 8-166MaximumSpecified VerticalPressureProfileandMeasuredMaximumValuesConsidering.

LocalEffects8-167MaximumSpecified VerticalPressureProfileandMeasuredMaximumValues-UnderPressures 8-168Karlstein Tests-Comparison ofMeasuredandCalculated BubbleFrequency

-0$Humidity8-169Karlstein Tests-Comparison ofMeasuredandCalculated BubbleFrequency

-100%Humidity8-170GKMTests-Comparison ofMeasuredandCalculated BubbleFrequency 8-171GKMTests-Comparison ofMeasuredandCalculated BubbleFrequency

-Overpressure8-172KKBIn-PlantTests-Comparison ofMeasuredandCalculated BubbleFrequency 8-1738-174SSESCalculated BubbleFrequencies Multipliers forConversion ofBubbleFrequencies theKarlstein TesttoSSES8-175Overpressure Multiplier forConversion ofBubbleFrequencies 8-176Normalized Amplitude SpectrumVersusBubbleFrequency-Karlstein Tests8-177Karlstein ModelTests-Influence ofMaterSurfaceonPressureAmplitude 8-178GKMTests-Influence ofOverpressure onBubblePressure8-1798-1808-1818-1828-1838-1848-185PSDofKarlstein Tests-11.1and12.1-P5.10PSDofKarlstein Tests4.1.1and4.1.6-PS.10PSDofKarlstein Tests21.1and21.2-P5.10PSDofTest20.R110-P5.4PSD'sofTest11.1-P5.2,5.4and5.10PSDComparison

-Test20Rl1andDesignSpecification PDSComparison Test4.1.1andDesignSpecification REVlg3/798-19 8-1868-1878-1888-1898-1908-1918-1928-1938-194PSDComparison Test20.R1.10andDesignSpecification PSDComparison Test211andDesignSpecification PSDComparison Tests21.2and25.R2andDesignSpecification PSDComparison Test0.1.6andDesignSpecification IBADrywellandWetvellPressureHistoryPSDComparison Test11.1andDesignSpecification TypicalCrossSectionofSSESSuppression PoolRevisedQuencherArrangement VelocityofRotatingPoolforOneActuating ValveinOuterRow8-1958-1968-1978-1988-1998-2008-2018-202WaterMotionoftheAcceleratedPoolTestStandforMeasuring ThrustMeasuredTemperature Distribution intheKKBSuppression PoolResultant BendingMomentonDummyVentVersusReactorPressureResultant BendingMomentonDummyVentVersusClearingPressure0~Resultant BendingMomentonDummyVentVersusPressureAmplitude atP5.7'JSpecified PressureDistribution onDummyVentTypicalVisicorder TraceforBendingMomentonDummyVentREVli3/798-20 PROPRIETARY NumberSECTION8TABLESTitle818.28.3TypicalOperating Instrumentation TypicalVentClearingTestInstrumentation TypicalCondensation TestInstrumentation 8.4Parameters atTestStart-LongPipeVentClearingTestSeries85Parameters atTestStart-ShortPipeVentClearingTestSeries8.6Parameters atTestStart-Condensation TestSeries8.7BehavioroftheSRVandSystemPressures

-LongPipeVentClearingTestSeries8.8BehavioroftheSRVandSystemPressures

-ShortPipeVentClearingTestSeries8.9PeakDynamicPressures onthePoolBoundaryDuringVentClearing-LongPipeVentClearingTests8.10PeakDynamicPressures onthePoolBoundaryDuringVentClearing-ShortPipeVentClearingTests8.11Maximum,Strains,MomentsandVerticalLoadsontheQuencherArmsandSupportDuringVentClearing-LongPipeTests8.12MaximumStrains,MomentsandVerticalLoadontheQuencherArmsandSupportDuringVentClearing-ShortPipeTests8.13SystemPressures andPoolWaterTemperatures oftheCondensation Tests810PeakDynamicPressures Amplitudes DuringtheDifferent Condensation Phases8.15Statistical Characteristics oftheBottomDynamicPressures (P5.2)8.16Statistical Characteristics oftheWallDynamicPressures(P5.10)8.178.18REV.1,3/79Repetition Tests-Comparison ofRecordedValvesRepetition Tests-MeanValuesandDeviations 8-21 PROPRIETARY 80SSE~SUENCHER VERIFICATION TEST81INTRODUCTION 8.l.1Pu~roseoftheTestsTheoptimized quencherdesignforSSESandtheloadspecification onthewettedboundaries ofthesuppression pool,onthesubmer'ged structures andonthepressurereliefsystem,arebasedonparametric modelteststudiesandfullscaleinplanttestresultsfromasimilarquencherdesign.Theloadspecifications fortheSSESquencheraredescribed indetailinSection4.1.Inordertoverifytheseloadspecifications andfurtherverifythequencher's steamcondensing characteristics, fullscalesinglecelltestswereconducted attheKraftwerk Unionlaboratories inKarlstein, WestGermany.8.1.2TestConceptTheconceptsusedtodesignandperformthetestswere:1)Useofaconservatively definedsinglecell2)Theclosesimulation ofthemainsafetyreliefvalvesystemparameters 81.2.1UnitCellApproach81.21.1SingleCellTheoryForagasbubbleoscillation inafreewaterspace,thewatermasscoupledtothebubbleisalternately accelerated anddecelerated Duringthisprocesstheoverpressure andunderpressure amplitudes decreasewithincreasing distancefromthebubble.Whenasolidwallisplacedneartheoscillating bubble,thewateracceleration isrestricted inthedirection ofthewallandthedecreaseinpressureamplitude inthedirection ofthewallisless.Thiseffectcanbeexpressed mathematically byreplacing the.bubblebyapotential sourceandaccounting forthewallbythemethodofimages.Theeffectsoftherealsourceandtheimagesourceareaddedforeachpointoftheflowfield.Forthecaseinwhichabubbleisenclosedinanarrowwaterspace,closelysurrounded bysolidwallsandasolidbottomwithafreewatersurfaceatthetop,thewaterspacebelowthebubbleisforallpractical purposesunmoved.Onlythewatervolumeabovethebubbleisfreetooscillate..

Consequently, thepressuregradientinthelowerwaterspaceisnearlyzero,whilethepressureamplitude abovethebubbledecreases withincreasing proximity tothewatersurface.Thepressureamplitudes arezeroatthewatersurfaceandthemethodofimagesapplies.REV.1,3/798-22 PROPRIETARY Analytically, thecaseinwhichaplanarfieldofuniformstrengthbubblesarealloscillating inphaseisthesameasthecaseinwhichsolidwallsexistbetweeneachoftheindividual bubbles.Thesinglecelltestconfiguration usedatKarlstein simulates thisextremely conservative caseofparallelbubblesoscillating inphasewiththesamesourcestrength.

Adescription oftheequivalence ofthesinglecellconfigurations, usingthemethod-ofimages,iscontained inFigures8.1and8.2.Foramoredetailedevaluation oftheKarlstein testtanksinglecell,seeSection8.5.1.81.21.2A~lication ofSingleCell~AroachThesubmergence ofthequencherinthetesttankisequaltothehighestvalueintheplant.Astothewatercross-section areathesinglecelltheorydescribed aboveisusedFigure8.3showsageometrical partition ofwaterspace.Thewatercross-section areasrelatedtothedifferent quenchers arelistedbelow:QuencherAQuencherBQuencherCQuencherDQuencherEQuencherFQuencherGQuencherHQuencherJQuencherKQuencherLQuencherQuencherNQuencherPQuencherRQuencherSAverageWaterSurface3147mz(33862ftz)3147mz31.47mz3147mz31475231~47AI231.47mz31.47mz31.47mz3147mz3147mz3147mz31.47mz31.47mz31.47mz31.47mzRelatedWaterSurface21.4mz(230-26ftz)214mz31.3mz{336.79ftz)42mz(45192ftz)31~3mz31'mz42mz31m3mz31~3mz42mz31~3mz31a3mz214mz21.4mz31~3mz42mzREV1,3/798-23 PROPRIETARYThesmallestwatersurface(approximately 21.4m~)issimulated inthetests.Therefore, thedynamicpressureamplitudes atthewallsandthebottomaremeasuredunderconservative boundaryconditions.8.1.22Simulation ofSSESParameters Thefo'llowing sectionprovidesadescription ofthoseparameters thatweresimulated intheKarlstein testfacilityTheseparameters aretypicalofmostMKIIplants.FormoredetailonthetestfacilityseeSection8.28l.22.1Prima~rSgsternPressureThereactoroperating pressureforSSESisapproximately 1000psig(69bar)whilethehighestpressuresetpointforanySSESSafetyReliefvalveis1205psig(83bar),whichisclosetothehighestprimarypressurethatcanbesimualted intheKarlstein testfacility(82bar).Thisallowedthetestsimulation toverycloselymatchtherangeofinitialprimarysystempressures that.canbeexpectedintheoperating plant.8.1222Safet~Relief Val'vegSRVJ Inordertomatchthecharacteristics oftheSafetyReliefValve,anoriginalCrosbySRV,shippeddirectlyfromtheplantsite,wasinstalled intheteststandandusedinalltests.81223Discharge J.ineInordertocovertherangeofdischarge

'linelengthsandtherefore airvolumesthatexistinSSES,twoventclearingtestserieswererun;onewithadischarge linethatsimulates thelongestSSESdischarge line{48m)andonethatsimulates theshortestSSESdischarge line(35m).Inaddition, thenumberofbendsineachline,thei'nnerdiameterofthemainpartofthe'ine(303.9mm),andtheinnerdiameterofthelastverticalruntothequencher(2889mm)arecloselysimulated tothatwhichexistsintheSSESplant.(schedule 40pipeandschedule80pipe,respectively).

Inadditiona24ft.submergence, corresponding tothehighestwaterlevelinthesuppression pool,wasusedforalltests8.12.24VacuumBreakersInordertocloselysimulatetheeffectsofvacuumbreakeroperation onthetests,twosix-inchdiameterCrosbyvacuumbreakerswereshippedtoGermanyandinstalled intheteststandatthesamerelativelocationasplannedfortheSSFSplant.REVli3/798-24 PROPRIETARY 81.22.5OuencherAfullsizeprototype ofthequencherinstalled intheSSESplantwasinstalled inthetestfacilityandusedforalltests.Figure8.13showsthequencherwithinstrumentation forventclearingtestswhilefigure8.14showsthequencherwithinstrumentation forthecondensation tests.8-2TESTFACILITYANDINSTRUHENTATION 8.21TestFacility8.2.1.1Mechanical Set-upThetestconfiguration asconstructed istypically illustrated diagrammatically inFigure8.4.Theteststandconfiguration canbedividedinto:thesteamboiler,thesteamaccumulator, thesteamlinebeforetheSRVandthebuffertank,theSRV,thedischarge linebetweentheSRVandthewaterpoolwiththequencheraspipetermination, andthelargetankaswaterpool.8.2111SteamboilerThesteamboilerisanoil-fired, once-through, forced-flow boilerwithanoutputofapproximately 20HWatamaximumsteampressureof170bar(2499psig)andamaximumsteamtemperature of520~C(968~F).The.boilerisdesignedforaclosedoperating modeinnormaloperation.

Afractionoftheboiler'soutputisrecovered fromthecondensate viathehigh-pressure cooler.Whenthereisanopenloop{ie.,lostcondensate),

theoutputisreduced.Thesteamflowavailable inthismodeisapproximately 8to9kg/s(17.6to19.8ibm/s).Thelostcondensate resultsinatimelimitation oncontinuous output.Thefeedwater supplyoftheboilerisabout20m3(705ft~).Oncethatamountisusedup,furthersteamsupplyascontinuous outputispossibleonlyuptotheoutputofthefeedwater conditioning system.Thatamountsto5m~/h(176ft3/h).Forlongertestperiodsitisnecessary tointerrupt operation for4hoursinordertorefillthefeedwater storagetank.82.1.1.2SteamAccumulator Asdescribed in8.2.1.1.1 theamountsofsteamsuppliedcontinuously bytheboileraretoosmalltotestanSRV.REV.1,3/798-25 PROPRIETARY Toprovideawaytotestvalvesatflowratesofuptoapproximately 22kg/s(484ibm/s),avalvetestfacilitywasbuiltusingtheboilerplantandapressurevesselconnected toit.Thisvesselischargedwithasteam/water mixturebytheboilerandisusedasasteamaccumulator.

Fromthissteamaccumulator, highersteamflowratescanbedelivered forashortperiodoftimeThedimensions ofthepressurevesselare1.5mdiameterand12mhigh,whichresultsinanaccumulator volumeofapproximately 22m3.Adaptedtotherequiredsteamoutput,theaccumulator isfilledwithsaturated waterandsaturated steamatthespecified ratio.Thesteamisdrawndownwardthroughastandpipe.

Thehighsteam,flowtobeextracted transiently fromtheaccumulator resultsinarapiddecreaseofpressureandtemperature.

Forstrengthreasons,thetemperature difference betweentheinsideandoutsideoftheaccumulator vesselmustnotexceedacertainvalue.Thislimitsthemaximumpressuredropandthustheavailable testtime.82.1.1.3SteamLineandBufferTankTheconnection betweenthesteamaccumulator andthevalveteststandconsistsofanND250pipeline.Thislinecontainsisolating devicesforemergency isolation andameasurement sectionconstructed asaVenturinozzle.Theexistingeguipmeat provideforadirecthorizontal connection ofthevalvebeingstudied.Thiscorresponds tothedesignoftheSRVsusedinGermanBMRplantsandtotheirarrangement attheendofataplinecomingfromthemainsteamline.ThesteamsupplylinewasrebuilttomatchthedesignfeaturesofSSES.Thepreviously described pipelinenowendsinaT-piece.XnordertosimulatetheSSESmainsteamlineandtokeepthesteamsupplyflowtothevalveasuniformaspossible, abuffertankhavingavolumeof5.2m3wasconnected tothesecondhorizontal outletoftheT-piece.Theverticaloutletoftheabove-described T-pieceleadstothevalve.8.2.114Safet~Relief ValveQSRVQTheSRVusedinthetestsistheactualversionbeingusedforSSES.Thesevalvesarearrangedvertically, haveasteaminletfrombelowandanoutlettotheside.Asdescribed in8.211.3,thesteamsupplylinewasrebuiltinsuchawaythatthesamearrangement waspossibleintheteststand.ThevalvewasmountedontheT-piece,usingthesameconnection dimensions asintheactualplants.REV1,3/798-26 PROPRIETARYOperation ofthevalveduringthetestsrequirestheconnection ofpowersupplylines,controllinesandmeasurement lines.Theexistingequipment atthevalvetestfacilitywasusedtosatisfymostofthoserequirements.

Somemodifications becamenecessary inordertoadapttotheconstruction ofthevalve.TheSRVsinGermanBMRplantsareoperatedbyanelectrically actuatedpilotvalvewithitsownoperating medium.Incontrast, theSS'>>Svalveusedinthetestwasopenedpneumatically.

Accordingly, thecompressed-air connection wasrebuiltsothattheopeningconditions intheactualplantcouldbesimulated intheteststand.8.2~11.5Discharge LineandQuencherTheSRVdescribed

.in8.2.1.1.4 discharges ontheexhaust-steam sideintoapipewhichrepresents theSRVdischarge line.ThelengthoftheSRVdischarge lineandthenumberofbendsaredifferent forthe16SRV'sforSSES.Twolinelengthswereusedforthetests,corresponding tothelongestandshortestlengthsoftheSRVdischarge linesintheplant.Isometric drawingsofthetwodischarge linesareshowninFigure8.5(longline)andFigure8.6(shortline).Pipesupportsandvibration dampersweremountedattherequiredplaces.Theseplaceswerenotidentical tothecorresponding onesintheplant,becausethemountingsituations andespecially theconcreteconstruction oftheplantcannotbe-simulated directlyinthetestfacility.

Topreventthebuildupofalargeunderpressure inthepipe,twoactualvacuumbreakerswereinstalled inaverticalpartofthepipeline,asintheplant.Thequencherformsthetermination oftheSRVdischarge line(seeFigure8ll).Thesteamisconducted intothewaterthroughalargenumberofholeshavingadiameterof10mm.Thedesignofthequencherisdescribed indetailinSection4.1.AbottomsupportisprovidedtoholdthequencherinplaceinthetesttankItconnectsthequencherrigidlytothebottomofthetankandisconstructed insuchawayastomakeitpossibletomeasuretheloadsexertedonthequencherduetoventclearingprocesses andsteamcondensation.

Theslidingjointprovidedbetweenthequencherandthedischarge lineintheplantissimulated intheteststandhgdraulicallg byacorresponding annulargap8211.6TestTankForSSES,theexhauststeamfromthereliefvalvesisconducted intothesuppression poolandiscondensed there.Xnthetestfacility, asectionofthatpoolissimulated byastiffened REV-lg3/798-27 PROPRIETARY steeltank(seeFigures8.7,88,89).Intheplant,thesuppression poolcanbesubdi'vided conceptually intosuhspaces, eachofwhichisassociated withasteamsupplyline(seeFigure8.3).Inordertoadapttheconditions inthetesttanktothedimensions ofthesmallestgeometrical singlesell,concreteshapedblockswereinsertedintothetesttank.Theconcreteshapedblocksareclearlyillustrated inFigure8.7.Theexposedcross-sectional areaofthewaterspaceis7.2mx3.15m=22.7m~.Itcorresponds conservatively tothesmallestindividual cellintheplant.Illuminating devicesandviewingportsmadepossiblethedirectobservation andalsophotographic recording oftheunderwater processes.

8.2.2Instrumentation Instrumentation isprovidedforcontrolling thetestprocedure, determining theprescribed measurement quantities, andrecording them.82.21GeneralDescription Theinstrumentation usedintheKarlstein testfacilityconsistsofoperating instrumentation andtestinstrumentation.

Operating instrumentation assuresthecontrolofthetestfacilityanditsenvironment correlation.

Thetestinstrumentation recordstheloaddatawhichisusedtoverifytheconservatism inthedesignloadsasspecified fortheSSESinsection4.1ofthisDesignAssessment Report.Detailsontheoperating instrumentation aregiveninSection8.2.2.3.Adetaileddescription ofthetestinstrumentation canbefoundinSection8.2.248.2.22Instrumentation Identification Foridentification, themeasuring sensorsaredesignated according toasystemoflettersandfigures.Thefirstoneortwocharacters areletterswhichidentifythetypeofinstrument:

PTFLDGSGILPPressureTransducer Temperature Sensor(Thermocouple)

FlowRateMeasurements RaterLevelMeasurements Displacement GageStrainGageElectrical ImpulseSignalLevelProbeREV.l,3/798-28 PROPRIETARYTheselettersarefollowedbyanumberwhichcharacterizes thelocationwithinthetestfacilitywheretheinstrument issituated.

Thefacilitywasdividedintosectionsasfollows:Section1containsthesteamsupply,including theaccumulator

{onlytransducers oftheteststandinstrumentation systemarecontained inthissection).Section2containsthesteamlineuptothesafetyreliefvalveandincludesthebuffertank.Section3containsthesafetyreliefvalve.Section4containsthedischarge lineandquencher.

Section5containsthetesttank.Thesensordesignation iscompleted byaddingadecimalpointandasequential number.Forexample,"P5.6"means:thenumber6pressuretransducer inthetesttank.Additional abbreviations usedareasfollows:DPSCTCDCACFAHT-SGSRVPGRTDDataProcessing SystemCoatedThermocouple DirectCurrentAmplifier CarrierFrequency Amplifier HighTemperature StrainGageSafetyReliefValvePressureGageResistorTemperature Detector82.2.3Operating 1nstrumentation Theoperating instrumentation isprovidedformeasurement ofparameters inrelationtothesteamaccumulator, thesteamlinesandtheSRV'sAtotalof30sensorscanberecordedbyaprocesscomputerwhichispartoftheoperating instrumentation system.ThedataarestoredonamagneticdiskandcanbeprintedoutTherecording frequency oftheprocesscomputerwasadaptedtoalignwiththeinstrumentation chanriels, coveringarangefrom0.5Hz,forthosesensorswhereonlysmalltransients aretobeexpected, uptoabout200Hzforthesensorswherehigherfrequency signalsareexpected(e.g.forpipevibrations)

Theoperating instrumentation comprises themeasuring devicesusedtomonitorandcontrolthesystemandalsothedataacquisition devicesneededforthatpurpose.Typicalmeasuring locations forthetestsareillustrated inFigure8.4andlistedinTable8.1.BEV1,3/798-29 PROPRIETARY According tothetypeofacquisition anddisplay,themeasurement sensorscanbeclassified intotwogroups="DisplayonControlConsole"and"Acquisition byComputer".

82.2.3.1Disp~la'n ControlConsoleToenabletheoperating personnel tocontrolthetestequipment, anumberofquantities whichcharacterize theoperating condition ofthesystemaredisplayed continuously.

Inparticular, theyare:Waterlevelin:Steamaccumulator, steamline,buffertank,discharge line,testtankPressureinSteamaccumulator, buffertank,controlline,discharge lineTemperature in:Steamaccumulator, buffertank,discharge line,testtanka822.3.2A~cuisition

~bComputerMostofthedatasensorscomprising theoperating instrumentation areinterrogated byacomputeratprescribed timeintervals before,duringandafterthete.t.Thevaluesarestoredonadisk.Thedataareprintedoutatprogrammed intervals.

Ataninterrogaticn frequencyof200Hz,thecapacityofthestoragedeviceissufficient forarecording timeof2minutes.Thefollowing measurement valuesareinterrogated:

WaterlevelSteamaccumulator, buffertankdischarge line,testtankPressureSteamaccumulator, buffertank,steamline,controlline,discharge lineTemperature BeforeSRV,afterSRV,surfaceofSRV,discharge line,testtankVibrations ValvetravelSwitching timeSteamlinebeforeSRV,discharge lineSRV,vacuumbreakersElectrical energization ofSRVREV1g3/798-30 PROPRIETARY 822.4Test,Instrumentation Mesurement valuesusedtoverifythetesttasksaredetermined bythetestinstrumentation.

Itisnecessary toincludehereafewtypicalmeasuring pointsthatarealreadyusedformonitoring purposesintheoperating instrumentation onthepipes.andSRV.Sincemostoftheseprocesses areofahigh-frequency nature,thedataisacquiredinanalogformbymeansofcarrier-frequency measuring amplifiers anddcamplifiers onanalogmagnetictape,andtoalargeextentalsoonvisicorders.

Thevisicorder tracesallowaninitialreviewandapre-evaluation ofthetestdata.82.24.1Measuring PointsMeasurements aremadeofthepressureonthesteamlinebeforetheSRV;valveactuation andvalvetravel;pressurevariation inthedischarge lineatfourpointsbetweentheSRVandquencher; temperature inthedischarge lineatthreepointsbetweentheSRVandquencher; waterlevelinthedischarge linebeforethequencherinletatfourpositions forthelonglineandfivepositions fortheshortline;bending,axialandtorsional strainsonthebottomsupport;bendingstrainsonthequencher; bendingstrainonadummyventpipe;temperature distribution inthetesttank;temperature distribution atthequencherforthecondensation test;wallpressures andbottompressures inthetesttank.Typicalmeasurement pointsfortheventclearingtestsareillustrated inFigures8.7,8.8,8.9andlistedinTable8.2.Typicalmeasurement pointsforthecondensation testsareillustrated inFigures8.10,8.11,8.12andlistedinTable8.3.8.2.24.2Set~uofMeasuring Instruments Allinstrumentation ischannelled toonecentralstationsituatedinthecontrolroomofthelaboratory.

Eachinstrumentation channelconsistsoftheindividual sensor,connecting cable,amplifier (carrierfrequency amplifier ordirectcurrentamplifier),

attenuator; andarerecordedonmagnetictapesandvisicorders, mostchannelsbeinginparallelonbothsystems.Threemagnetictaperecorders andthreevisicorders wereusedinthecontrolroom.Eachunitallowstherecording of12channelsand,inaddition, atimereference signalandaphysicalcorrelation trace.REV1,3/798-31 PROPRIETARY Thesensorsareconnected byshieldedcabletotheamplifiers vhicharelocatedneartherecorders inthecontrolroom.Forthestraingages,displacement gagesandpressuretransducers, carrierfrequency amplifiers vereusedwhichallowafrequency resolution ofupto1KHz.Fortemperature measurements, directcurrentamplifiers (10Hz)vereusedtogethervitha10Hzlovpassfilter.82.25Visual-Recording Threehigh-speed camerasvereusedtofilmtheprocesses inthepoolduringtheblowdovnthroughthequencher.

KMUusesa"HYCAM120m~'orthatpurpose.TvoLOCAMcameras(model51-0003)werebeingmadeavailable bytheStandford ResearchInstitute (SRI)Thepositioning ofthecameraswasasfollovs:HYCAMcamerainfrontofonebull'seyeatquencherheight;LOCAMcamera1infrontofonebull'seyeatatankheightofapproximately 4m;LOCAMcamera2ontheserviceplatformabovethetankataheightofapproximately 9m.Acorrelation betweenthemovingpicturesandthedatarecordings ontheVisicorder andmagnetictapevasaccomplished bymeansofatimingmarkonthefi'lms.83TESTPARAMETERS ANDMATRIX8.31VentClearingTestsThetestmatrixfortheventclearingtestsispresented inFigure8.15.Thisfigureshowsthetestnumberandparameter conditions usedforeachtest..Thenumberofbasictestswas25.These25testsweresplitinto5groupsoftestswherebyeachgroupcoveredasetoftestparameters.

Testsnumbered26to32wereadditional testsvhichwerenotrequiredtoverifythequencherdesignbutwhichcouldproveusefulinevaluating theperformance ofthesafetyreliefsystem.Testsnumber27,28,30and31weretoinvestigate shorterthannormalSRVopeningtimes,but,asvalveopeningtimesverefoundtobequitefast,thesetestswerenotaddedtotherequiredtests.Testsnumber26and32,withonelockedvacuumbreaker,wereincludedintothetestmatrix.Theresultsshovedtheeffectofthelockedvacuumbreakertobeminimalsotestnumber29wasnotadded.REV1,3/798-32 PROPRIETARY Theallocation ofeachtestgroupwithintheoperation rangeofthesafetyreliefsystemisshowninFigures8.16to8.21bytestpoints.Baseparameters inGroup1(Figure816)arelongdischarge line'length,normaldischarge lineairtemperature, normalinitialwaterlevelinsidethedischarge lineandnormalvalveopeningtime.Eachofthefollowing groupsvaryoneormoreoftheseGroup1baseparameters; Group2(Figure817)usesalowinitialwaterlevelinsidetheSRVpipe;Group3(Figure8.18)usesahighdischarge linetemperature; Group4(Figure8.19)usesashortdischarge linelengthandGroup5(Figure8.20)usesashortdischarge linelengthandahighdischarge linetemperature.

Eachofthebasic25testswascomprised oftwoormorevalveactuations wherebyonlythefirstactuation ismadeatt,hespecified conditions ofthedischarge line(so-called cleancondition)

.Anyotheractuation wasmadeattheprevailing discharge linetemperature andwaterlevel(so-called RealCondition)

.Inthecaseofonlytwoactuations atatestpointthetimeintervalbetweentheactuations wasapproximately 10minutes.Inthecaseofmultipleactuations atatestpointthetimeintervals betweenactuations werevariedasfollows:Fortestpoints4,5,14,15thetimebetweensuccessive actuations wasl.5/5/15/30/60/120 seconds,accounting forsevenvalveactuations.

Fortestpoints19and20thetimebetweensuccessive actuations was15/5/15/30/60/120/5/15/600 seconds,accounting fortenvalveactuations.

ForventclearingtestswithonlytwoSRVactuations, thehold-opentimefortheSRVwas2secondswhileforthemultiplevalueactuation teststhehold-open timewas1.5seconds.'Fivetestpointswererepeated, theseweretestpoints4,15,19'0and25.Repeattestsatadesignated testpointareindicated withaletterRinthetestnumberi.e.Testnumber20.Rl.listhefirstvalueactuation oftherepeattestattestpoint20.11.Acompilation ofactualparameters atthestartofeachtestistabulated inTable8.4forthelongpipetestseriesandTable85fortheshortpipetestseries.8.32Condensation TestsInordertofurtherverifythesteamcondensation capabilities ofthequencherdeviceandprovidespecificinformation regarding itssteamcondensation capabilities forthesafetyreliefsystemlREV.1,3/798-33 PROPHIETARYoperation rangeaseriesofeightextendedblowdowntestswereperformed.

Thesetestsaredesignated astestnumbers33to40.Eachtestwasperformed withtheshortdischarge lineconfiguration asdescribed insection8.2.1.1.5andwithaninitialdischarge linetemperature ofapproximately 90~C.Thelocationoftheinitialsystemconditions foreachtestpointisplottedonthesafetyreliefsystemoperation rangeinFigure822InordertoinitiateeachtesttheSRVwasactuatedaswasdoneintheventclearingtests.Thevalvethenremainedopen-untilthesystempressurereachedthepredesignated valueforthattest.Atthistimethevalvewasclosedandthetestwascompleted.

Thetotalallowable pressuredropintheaccumulator tankforeachinitialsystempressuredictatedthedurationofeachbiowdown.Acompilation ofactualparameters atthestartofeachtestpointinthecondensation testsmatrixistabulated inTable8.6.84TESTRESULTSThissectionprovidesacompilation ofthetestresultsfortheventclearingandsteamcondensation testsconducted attheKraftwerk Unionlaboratories inKarlstein, WestGermanyinordertoverifytheloadspecification andsteamcondensing characteristics ofthequencherdesignfortheSusquehanna SteamElectricStation.Includedinthissectionisinformation abouttheboundaryconditions atthebeginning ofeachtest,the'esults ofthebehavioroftheSRV,primarysystempressures, dynamicpressureloadsonthepoolboundaries andtheirprimaryfreguency andtheloadsonthequencherandbottomsupportThisinformation isprovidedintheformoftables,figuresandactualvisicorder recordings.

841VentCleari~nTestResultsNineteentestswithatotalof67ventclearingprocesses wereperformed withthelongdischarge lineintheperiodfromMay8,1978toJune7,1978and13testswithatotalof58ventclearingprocesses wereperformed withtheshortdischarge lineintheperiodfromJune27,1978toJuly7,1978.841.1TestParameters Themostimportant oftheparameters beinginvestigated wasdescribed inSection8.3.Adetailedlistoftestparameters foreachvalveactuation isgivenforthelongdischarge linetestsinTable8.4andfortheshortdischarge linetestsinTable8.5.ThisincludesREV.1,3/798-34 PROPRIETARY typeoftestlengthofdischarge lineaccumulator pressurewatertemperature inthetesttankwaterlevelindischarge lineairtemperature indischarge lineTheaccumulator pressureP1.1AandthebuffertankpressureP2.6Aarethedeterminative valuesforthesystempressureatthestartofeachtest.Thevalueswerereadbycomputerjustpriortothestartofthetest.Inadditionthesepressures werestoredcontinuously onmagnetictape.Ifalongperiodpassedbetweenthelastcomputerreadingandtheactualteststartthentheinitialvaluesfortheaccumulator pressureweretakenfromthecorresponding computerplotsTheinitialaccumulator pressures werealsoreadfromthoseplotsforthemultiplevalveactuation tests.Foraccumulator pressures below30bar(435psi),measuring pointP2.5wasusedtodetermine thesystempressure, sincemeasuring pointsPl.1AandP2.6Awereoutsidethemeasuring range.Thewatertemperature atthestartofthetestwastakeneitherfromthecomputerlistingsor,inthemultiplevalveactuation tests,fromthecomputerplotsDuetotheinertiaoftheBartoncell,themeasurement valueforwaterlevelinthedischarge line(measuring pointL4.1)inthemultipleactuation tests,especially forthe2nd,3rdandifapplicable, the8thactuation, mustbedisregarded orconsidered onlyasanindicative value.Thetemperature inthedischarge lineatthestartofeachtestwastakenfromthecomputerlistingsorthecomputerplotsforthemultipleactuation tests841.2BehavioroftheSRVandSystemPressures Toevaluatethevalvebehavior, thevalveopeningtime,t,wasdetermined fromtherecordedvalveliftvariation foralltests.0Thisinvolvesthetimefromthebeginning ofvalveopeninguntilattainment ofthesteadystate lift(seesketchbelow).Theseopeningtimesarelisted,forthelongdischarge linetests,inTable8.7and,fortheshortdischarge linetests,inTable8.8.Theassociated steadystateliftsarealsoindicated.

Aplotofthemeasuredvalveopeningtimesasafunctionofaccumulator pressureatthestartofeachtestisshowninFigure8.23forthelongdischarge linetestsandFigure8.24fortheshortdischarge linetests.Theso-called ventclearingtimestpzarealsogiveninTables8.7and88Thisisthetimefromthebeginning ofvalveREV.1,3/798-.35 PROPRIETARY openinguntiltheinstant'ofmaximumpressureatmeasuring pointP4.4inthedischarge line.(seesketchbelow)tsvalveliftventclearingpressurepressurebeforequencher1'wovaluesareindicated inTables8.7and8.8forsystempressures measuredin:buffertank-P2.6beforetheSRV-P2.5inthedischarge line-P4.1toP4.4Thesetwovaluesarethepressureattheventclearingtime(ventclearingpressure) andthepressureapproximately 1.5secondsafterthestartoftest(steadypressure)

Theinitialparameters ofrelevance fortheclassification of-testsareindicated intherowheadings.

Theventclearingpressureinthedischarge linebeforethequencherinlet(measuring pointP4.4)isplottedversussystempressure(measuring pointP2.6)underCleanConditions inFigure8.25forthelongdischarge linetestsandinFigure8.26fortheshortdischarge linetests.SeeSection8.5.2.1foradiscussion oftheventclearingpressures andtheirdependence onreactorpressure.

84.1.3DynamicPressureLoadsonthePoolBoundaries AsreadofftheVisicorder traces,thepeakpositiveandpeaknegativepressureamplitudes duringventclearingformeasuring pointsP5.1-P5.3(bottompressures) andP5.4-P5.10{wallpressures) arecompiledinTable8.9forthelongdischarge linetestsandinTable8.10fortheshortdischarge linetests.Ina'ddition, approximate valuesforthepredominate frequency ofthepressureoscillations areindicated.

Thesefrequencies werereadfromthevisicorder traces.Figures8.27and8.28showthemeasuredpeakpositivepressureamplitudes atthetankbottomdirectlybeneaththequencher(P5.2)andontheconcretewallatthequencher's mid-height REV1,3/798-36 PROPRIETARY (P5.10)asafunctionofsystempressureforthelongdischarge lineandshortdischarge linetests.ThetestpointsplottedareallCleanCondition testswithcoldwaterinthetesttank{approximately 25~C)anddischarge linecold(approximately 50~C)(Longdischarge linetests1.1,2.1,3.1,4.11,4.81.1and32.1andshortdischarge linetests16.1,171,J.8.1,19.1.1and19.R1.1)Asacomparison Figures8.29and8.30represent corresponding measuring pointsfortestsperformed underRealCondition (Longdischarge linetestsl.2,2.2,3.2,.10.4and32.2andshortdischarge linetets16.2,17.2and18.2).Ascanbeseenthepressureamplitudes areslightlyhigherfortheCleanCondition testsandnosignificant changewithsystempressureisobserved.

Figures8.31and8.32showthemeasuredpeakpositivepressureamplitudes atmeasuring pointsP5.2andP5.10forCleanCondition testswithheatedwater{45C-80~COinthetesttankforthelongdischarge linetestsandshortdischarge linetestsrespectively.

(Longdischarge linetests5.1.1,6.1,71,8.1,9.1,151.1and15.R1.1andshortdischarge linetests20.1.1,20.Rl.l,22.1,23.1,24.1).Again,asacomparison, Figures8.33and8.34represent corresponding measuring pcintsfortestsperformed underRealConditions (Longdischarge linetests6.2,7.2,8.2,92,11.2and12.2andshortdischarge linetests20.R1.7,22.2,23.2and24.2)Incontrasttothetestswithcoldwaterinthetesttank,thepressureamplitudes areslightlyhigherfortheRealCondition tests,butaswiththecoldwatertests,nosignificant changewithsystempressureisobserved.

Figures8.35to8.40showthemeasuredpeakpositivepressureamplitudes atmeasuring pointsP5.2andP5.10foranumberofmultiplevalveactuation testsplottedagainstthecorresponding valveactuation.

Figures8.41to865showthefirstsecondofvisicorder pressures traces(forthepoolboundarypressures, P5.1-P5.10)fromvarioustests.8~414LoadsOnThequencherandBottomSupportThebendingstrainsonthetwoarmsofthequencherandatthebottomsupportwereeachmeasuredintwomutuallyperpendicular directions.

Theresultant bendingstrainsandbendingmomentswerecalculated fromtheseindividual values.Thestrain-versus-timevariationsstoredonmagnetictapewerereadforthemaximumresultant duringventclearing.

Ahigh-pass filterhavingacutofffrequency of2Hzwasinsertedinordertoruleoutanyfalsification oftheevaluation duetoslowdriftingofthezeropointTheupperfrequency limitwasat400Hzduetothemechanica1conditions.REV1~3/798-37 PROPRIETARY Themaximumresultant bendingstrainsdetermined inthismannerandthebendingmomentscalculated fromthemarecompiledinTables8.11and8.12forthelongandshortdischarge linetestsrespectively.

Toclarifythedirection distribution oftheresulting bendingmomentsonthequencherarms,thecomponents ofthemaximumresultant bendingmomentsaredepictedinpolarcoordinates inFigures8.66and8.67forthelongdischarge linetestsandFigures8.68and8.69fortheshortdischarge linetests.Asshowntheresultant bendingmomentsonthequencherarmsoccurprincipally intheverticaldirection Figures870and8.71forthelongandshortdischarge linetestsshowacorresponding distribution ofthemaximumresultant bendingmomentsatthebottomsupport.Tables8.11and8.12alsoindicatethemaximumtorsional strainsandtorsional momentsmeasuredatthebottomsupportandthemaximumverticalstrainsandverticalforcesmeasuredatthebottomsupportduringventclearing.

Thisdataisbasedonasevaluation ofthevisicorder traces.842SteamCondensation TestResultsEightcondensation testswiththeshortdischarge linewereperformed intheperiodfromJuly18,1978toJuly.21,1978.8.4.21TestParameters Themostimportant oftheparameters being-investigated wasdescribed inSection8.3.Adetailedlistoftestparameters isgiveninTable8.6.CompiledinthatTablearetheparameters atthebeginning ofthetests,suchas:typeoftestlengthofdischarge lineaccumulator pressurewatertemperature intesttankwaterlevelindischarge linewaterlevelintesttankairtemperature indischarge lineTheaccumulator pressurePl.lAandbuffertankpressureP2.6Aarethedeterminative valuesforthesystempressureatthestartofeachtest.Thevalueswerereadbycomputerjustpriortothestartofthetest.Inaddition, thesepressures werestoredcontinuously ontapebutonlyupto360secondsafterthestartoftests36.1and40.1.Thiswasdictatedbythelimitedstoragecapacityoftheoperating instrumentation computer's magneticdisk.Thisdatawascontinuously storedonthevisicorder tracesandthetestinstrumentation magnetictapes.REV1i3/798-38 PROPRIETARYForaccumulator pressures below30bar(435psi),measuring pointP2.5was,usedtodetermine thesystempressure, sincemeasuring pointsPl.1AandP2.6Awereoutsidethemeasuring range.Thewatertemperature atthestartofatestwastakenfromthecomputerlistingsandattheendofatestfromthecomputerplotsThevaluesforthewaterlevelsandairtemperatures inthedischarge lineatthestartofatestweretakenfromthecomputerlistings.

Table8.13showstherelationbetweentheteststep,testnumber,andrangesofpressureandwatertemperature astheyactuallyoccurred.

842.2Presentation ofTestResultsFirstwewillpresentasurveyoftheobservedcondensation phases.Thatisfollowedbyapresentation ofthedynamicpressureamplitudes inthewaterregionofthetesttank.Finallythetemperature variations inthewaterregionaredescribed.

8.4.221Surve~ofObservedCondensation PhasesIntheoperation fieldofthequencherasgivenbythetestmatrix,theobservedcondensation phasesareindicated inFigure8.71forblowdowns alongtheupperandlowerboundarylinesoftheoperation field.8422.1.1BlowdownatlowMaterTe~meratureFortheblowdownalongthelowerboundaryline,thefollowing condensation phaseswereobservedforthetestedpressurerange:AbsolutesystemPressureinBarCondensation PhaseTests70-25Stationary 33.2,34.1,35.1,andinitialsectionof36.125-2Intermittent Middlesectionof35.12-1Inthepipe(1)Endsectionof36.1(1)Itshouldbenotedherethatatthebeginning ofthisphaseaportionofthesteamflowhasemergedthroughtheannulargapabovethequencherinlet.AsnotedinSection8.2.1.1.5, REV1,3/798-39 PROPRIETARY thisannulargapsimulates hydraulically theslidingfitofthequencherinstalled atSSES.Figure8.73showsatypicalexampleofthemeasurement tracesobtainedwiththebottomandwallpressuresensorsforstationary operation ofthequencherintheupperpressurerange(test33.2).Figure874showsatypicalexampleofthelowerpressure'ange (test35.1).High-frequency pressureoscillations occurwithverylowamplitude, andwithoutanyfixedfrequency.

Toillustrate theintermittent operation, thevariation ofthebottomandwallpressures andtwopipepressures throughout theentiredurationoftest361isshowninanextremely time-compressed forminFigure8.75.Theintermittent condensation phaseisclearlyrecognizable inthemiddlesectionofthetest.Figure8.76showsamoretime-expanded excerptfromthatphase.Supplementarily, Figure877showsatypicalpowerfulindividual eventinanextremely time-expanded form.Thehigh-frequency pressurepeakssuperimposed onthelow-frequency sinusoidal pressurepulsations areclearlydiscernible inbothFigures875and8.76.Forthephaseofcondensation inthepipe,thetesttracesexhibitnegligibly lowamplitudes, whichareclosetotheresolution limitofthemeasuring chain.Therefore, noexampleofsuchatraceisshown.8.4.2212-Blowdown atHighWaterTe~meratureForblowdownalongtheupperboundaryline,thephasesdescribed in8.4.2.2.1.1 wereobservedinpractically thesamepressureranges.However,theappearance ofthepressureoscillations differstosomeextentfromthatofthepressureoscillations atlowwatertemperature.

First,hereistheobservedrelationbetweenpressurerangeandcondensation phase:AbsolutesystemPressureinBarCondensation phaseTests>70-4.Stationary 372e38ls39leandinitialsectionof4014-2Intermittent Middlesectionof40-12-1Inthepipe<>>Endsectionof40.1REV1,3/798-40 PROPRIETARY (1)Itshouldbenotedherethatatthebeginning ofthisphaseaportionofthesteamflowhasemergedthroughtheannulargapabovethequencherinlet.AsnotedinSection8.2.1.1.5, thisannulargapsimulates hydraulically theslidingfitofthequencherinstalled atSSES.Forstationary operation intheupperrangeofpressure, Figure8.78showsatypicalexamplefortest37.2.1helowerrangeofpressureforthisphaseisrepresented byanexamplefromtest391(Figure8.79).Therearealsohigher-frequencypressureoscillations withlowandverylowamplitude, respectively, andwithoutanyfixedfrequency.

Atypicalexampleofintermitten~to erationisshowninFigure8.80byanexcerptfromtest40.1.Comparedtothisphaseatlowwatertemperature (seeespecially Figure8.76),adistinctattenuation ofthestrengthofthepressurepulsations isobservable athighwatertemperature.

Superimposed high-frequency pressurepeaksdonotoccur.Forthephaseofcondensation intheprie,the.testtracesexhibitnegligibly lowamplitudes evenatextremely highwatertemperature ofmorethan90oC.8.4.2.2.2 Statistical Evaluation ofthe~DnamicPressureLoadsonthePoolBoundaries Asdescribed inSection8.4.22.1,thesteamcondensation doesnothaveanyuniformformthroughout theentirerangeofsystempressureandwatertemperature.

Tonowbeabletoquantifythedistribution ofdynamicpressureamplitudes duringablowdownfrom70bartoapproximately 1bar,therecordings fromarepresentative bottompressuresensorandwallpressuresensorforallthetestswerestatistically evaluated.

Thisalsoallowedustoinvestigate theinfluence ofsystempressureandwatertemperature onthedynamicpressureamplitudes.

B.a2.22.1Dependence of~DnamicBottomandIlailPressures onSystemPressureandMaterTemperature Thepressure-time histories storedonmagnetictapeforpressuresensorsP5.2(bottompressure) andP5.10(wallpressure) wereeachreadformaximumvalueatuniformtimeintervals.

Ahigh-passfilterwithafrequency cutoffof2Hzandalow-passfilterwithafrequency cutoffof500Hzwereinsertedintothecircuit.In'hismanner,afalsification oftheevaluation duetoslowREV1,3/798-41 PROPHIETARYdriftingofthezeropointorduetoelectrical interference waslargelyexcluded.

Portests33.2,34.1,351,37.2,38.1and39.1,.auniformintervalof1secondwaschosenbecauseoftherelatively shorttestdurationofamaximumof64secondsintest39.1.Intests36.1and40.1withtestdurations ofover800seconds,theuniformintervalwas4seconds.Inthesetwotests,thephasesofstationary andintermittent condensation andcondensation inthepipewerecoveredseparately atthesametime.Noerrorwasintroduced intotheevaluation bythedifferent choiceofintervals, sincethemaximumvalueswerecoveredineachcaseTheextremevaluesdetermined forthepositiveandnegativedynamicpressureamplitudes atthebottomandonthewallareplottedversusthetransient variation ofthesystempressureinFigures881and8.82.Duetothelargenumberofextremevalues,aselection wasmadewiththeaimofconsidering onlythehighervalues.ThetophalfoftheFigureshowsthemeasuredmaximumpressureamplitudes fortheblowdownathigherandhighwatertemperature alongtheupperboundarylineoftheoperation field.Thebottomhalfshowsthemfortheblowdownatlowwatertemperature alongthelowerboundaryline.Asimilarillustration forthemeasuredmaximumwallpressureamplitudes isgiveninFigure8.82.Thepeakbottom-pressure andwall-pressure loadsmeasuredduringtheindividual condensation phasesareindicated asafunctionofwatertemperature inTable8.14.Promthesepeakvalues,wecanascertain aslightdecreaseofthepressurelevelwithahotpoolforthestationary andintermittent condensation phases.Porthephaseofcondensation inthepipe,ofcourse,therearepractically nodiffe'rences inthepressurelevelsforcoldandhotpool-84.22.2.2Occurrenc~efre uenceDistributions ofthe~Dnanic BottomandMallPressures Inparallelwiththedetermination ofextremevaluesasdescribed inSection8.4.2.2.2.

1allpositiveandnegativepeakvaluesbetweenthezeropassagesofthepressure-vs.-time variations weredetermined.

ineachtimeintervalandclassified according tomagnitude.

Thiscountingmethod,knownas<<peakcountbetweenzeropassages" or"meancrossingpeakcountmethod>>,avoidstheinclusion andconsequential overassessment ofsmallintermediate oscillations.

Onlytheabsolutemaximabetweentwozeropassages're includedinthecount.REVli3/798-42 PROPRIETARXThecountresultsuppliestheclassoccurrence frequency distribution atonce.Positiveandnegativepeakvaluesweretreatedseparately.

Anyerrorinthecountresultsbythenoiselevelonthemagnetictapeswaslargelyeliminated bymeansofa.prescribed amplitude suppression of10mV=0.015bar.Auniformclassintervalof0.025barwaschosenforthehistograms.

Inthatway,thehistograms oftheindividual testswereabletobecombinedintoanoveralldistribution forblowdowns withcoldandhotpool.Thehistograms ofthepositiveandnegativeamplitudes ofthedynamicbottompressures atmeasuring pointP5.2areillustrated inFigures8.83and884forblowdowns withcoldandhotwater,respectively.

Analogous historgrams forthewallpressures atmeasuring pointP5.10areshowninFigures8.85and886.8.4.2.2.2.3 Statistical Characteristics oftheDynamicBottomandMallPressures Influences oftestparameters canbereadofffromthestatistically determined meanvalues,sincethosevaluesareobviously muchmoretypicalthanthemagnitudes ofindividual andveryraremaximumvalues.Themeanvaluesweredetermined bythegroupvaluemethodsusingthefollowing equation:

PkZn.Pi~1KZn<illwherePG=meanvalue;Fifrequency.

classmeanvalue;n=classThegroupvaluemethodwasindividual histograms ofadistributions.

Thosemeanto8.86alsousedforthecombining oftheblowdowntogetthemutualfreqeuncy valuesareindicated inFigures8.83Ingeneral,thetrendsaresupported bythemaximumvalues.Theunavoidable scatterofthemaximumvaluesisallowedforbyformingtheaveragevalueofthe10highestamplitudes ineachtest.Duetothesmallnumber,theyweredetermined bythesingle-value method:wherePE=NZPi~1NREVli3/798-43 PROPRIETARY PE=meanvalue;P.=singleextremevalue;N=numberofextremevaluesTables815and8.16provideanoverviewoftheabovementioned mostimportant.

statistical characteristics ofthepressure-time histories atthebottomandatthewall,respectively fortests33.2to40.1.Indicated are:maximumvaluerelativetotheentiretest,meanvaluerelativetotheentiretest,-lowerlimitvalueofthe10highestvalues,meanvalueofthe10highestvalues.*Besidethedataconcerning thesystempressures andwatertemperatures, thecondensation phasesarealsolisted.Intests36.1and40.1,thephasesofstationary andintermittent condensation andcondensation inthepipeweretreatedseparately.'igures 8.87and8.88showplotsofthemeanvaluesrelativetotheentiretestortestsectionandthemeanvaluesofthe10highestvalues,asfunctions ofsystempressure.

Themeanvaluesofthebottomandwallpressures areslightlyhigherfortheblowdownwithacoldpool.Thistrend,alreadyalludedtoinSection8.4.2.2.2.1 onthebasisoftheabsoluteextremevalues,istherefore verifiedstatistically.,

Thelevelofthemeanvaluesfromthe10highestvaluesishigherbya-factorofapproximately 3-4thanthelevelofthemeanvaluesrelativetotheentiretestortestsection.8.4223Te~merature Variations intheRaterRegionoftheTestTankFourtestswereselectedtoillustrate thetemperature variations inthewaterregionofthetesttank:test33.2forhighsystempressureandcoldpool,test35.1forlowsystempressureandcoldpool,-test37.2forhighsystempressureandhotpool,test39.1forlowsystempressureandhotpool.Figures8.89to892showtheverticaltemperature distribution obtainedfromthemeasuring pointsT5.5,T5.2,T5.3andT5.4arrangedaboveoneanotherontheconcretewallIneachcase,themeasuredtemperatures arescattered aboutameancurve.Thescatterisgreatestformeasuring pointT52(approximate max.a8oC).Thatmeasuring pointisattheheightofthequencherarmandisimpingedupondirectlybythesidewards directedflowimpulse.Thescatterisleastformeasuring pointT5.4(approximate max.a50C).Thescattercanbeexplained bythehighdegreeofturbulence inthe.pool.REV~1i3/798-44 PROPRIETARYFigures8.93to8.96showthetemperature variations atquencherarm1forthesametests.Atmeasuring pointT5.8locatedinthemiddleoftheholearray(seefigure8.14)adistincttemperature increaseofapproximately 15-200C,ontheaverage,wasrecordedrelativetothepooltemperature.

Incontrast, thetemperatures attheupperedgeoftheholearray(T5.9)andattheupperedgeoftheguencherarm(T5.10)aresomewhatlowerthanthepooltemperature atT5.1duetoasufficient "coldwatersupply".Thisisanindication ofthegoodcirculation ofwaterneartheguencher.

This.confirmed theexpectedcondensation behaviorofthequencherasrelatedtothelayoutoftheholearray.(SeeSection4.1.1.1).84.2.24WaterLevelintheDischarge LineWhenOpeningandAfterClosi~ntheSRVInthetestswiththelongdischarge line,thewaterlevelinthepipewasmeasuredbythe"LevelProbes"LP4.1thruLP4.4atfourpositions, oneaboveanother.Inthetestswiththeshortdischarge line,thisinstrumentaiton wasextendedbythemeasuring pointLP4.5abovethemeasuring pointLP4.4;seeFigure8.8Themeasurement signalsfromtheseLevelProbeswererecordedonvisicorders andmagnetictape.ABartoncell,measuring pointL4.1inFigure8.4,wasusedtosetandmeasurethewaterlevelinthedischargelinebeforeteststart.Thereadingofthatmeasuring pointwasinterrogated bythecomputerbeforeandduringthetestandwasstoredTheindications oftheLevelProbesandalsotheindications oftheBartoncellwereusedtodepictthetimevariation ofthewater.levelinthedischarge line.Itmustbetakenintoconsideration thattheresponsespeedoftheBartoncellistooslowfortherapidchangesofthewaterlevelduringventclearingandaftertheclosingoftheSRV.Themeasuring pointwasusedessentially todetermine thesteady-state.

waterlevelsinthedischarge line.Figures8101and8.102showtwotypicalexamplesofthevariation ofthewaterlevelinthepipefortheintervaltest15.1withthelongdischarge lineand20.1withtheshortdischarge line.Itwasfoundthatintwoinstances inintervaltest15.1(Figure8.101),thewatercolumnbrieflyexceededtheexternalwaterlevel,butfellbackimmediately.

Thesetwotestpointsrepresent themaximumwatercolumnrisemeasuredintheventclearingtests.Intheintervaltest20.1,thewatercolumndidnotreachtheleveloftheexternalwatersurfaceinanyinstanceafterclosingoftheSRV.Themaximumwaterlevelrisewasgenerally found,inalltests,tooccurafterthethirdvalveactuation.

REV1,3/798-45 PROPRIETARY Toevaluatetheeffectofvacuumbreakeroperation onthewatercolumnrefloodfollowing ventclearing; Test32,withonelockedvacuumbreakerandatimeintervalof3secondsbetweentheclosingofthevalveafterthefirstactuation andthenextactuation, wasincluded.

Figure8-105showsthevariation ofthemovementofthewatercolumninTest32.Ascanbeseennoadverseeffectswererecorded.

8.43CheckingandCalibration oftheNeasuring Instrumentation Thecalibration andtheelectrical andphysicalcheckingofallsensorsbefore,duringandafterthetestswereperformed inaccordance withtheTestandCalibration Specifications.

Fig.897showsdiagrammatically thephysicalcalibration ofthesensors,thesettingandcalibration oftheamplifiers andrecording instruments, andthequalityinspection ofthesensors.Pig.8.98showsthetimeintervals stiplated forthechecksandcalibrations intheTestandCalibration Specifications.

Fig.8.99clarifies thechainofthecalibration systemfromthenationalstandards ofthePhysikalisch-Technische Bundesanstalt (PTB)tothemeasuring instruments.

ThepressuresensorsP5.1thruP5.10usedinthetestswerefullyoperableuntiltheendofthetests.Thelowestinsulation resistance of1.2x10~0measuredatP5.1afterthetestscanbeclassified as"good".ThepipepressuresensorP4.1failedon31Nay1978Itwasreplacedbyanewsensorforthesubsequent tests.WiththisnewsensorP4.1~thelowestinsulation resistance forthegroupofpipepressuresensorsafterthetestswas3x10~~,whichwasverygoodTherewerenofailuresforthestraingaugesSG41thruSG4.8,SG5.1andSG5.2Herealso,averygoodinsulation resistance levelwasrecordedwithalowestvalueof3x10~uatSG4.6afterthetests.J.ikewise, noneofthetemperature measuring piontsT5.1thruT5.10failed.Thelowestinsulation resistance of1.3x10~~wassufficiently high.844AnalysisofNeasurement ErrorsBasedoninformation fromthemanufacturers ofthemeasuring instruments, KWUsowninvestigations, andtakingintoconsideration theexperience accumulated insimilartestprojects, themaximummeasurement errorsfortheindividual sensorscanbeindicated asfollows:REV.1,3/798-46 PROPRIETARY PressuresensorsP5.1thruP5.10Linearity errorofthesensor2.5%ofmeasuredvalueinrangeof0to2barError2.5'5Reproduction errorofthesensor0.2%of5barErrorofthemeasuring amplifier Errorofthebalancing unitandrecorder0.01bar05%0.5%Max.totalerrorx[0.01bar+3.5%ofthemeasurement value]PressuresensorsP4.1thruP4.5ErrorLinearity errorofthesensor0.5%ofmeasuredvalueinrangeof0to20bar0.5%Reproduction errorofthesensor0.1%of35bar0.035barErrorofthemeasuring amplifier Errorofthebalancing unitandrecorder05%05%Max.totalerrora[0.035bar+1.5%ofthemeasurement value]PressuresensorsP2.3andP25ErrorLinearity errorofthesensor1%ofmeasuredvalueinrangeof0to40barReproduction errorofthesensor0.1%of140bar.0.14barErrorofthemeasuring amplifier Errorofthebalancing unitandrecorder0.5%05%Max.totalerrora[0.14bar+2%ofthemeasurement value]StraingaugesSG4.1thruSG48~SG5.1~andSG5.2ErrorTolerance oftheguagefactorInfluence oftemperature ontheguagefactorREV1,3/798-47 PROPRIETARYErrorofthemeasuring amplifierErrorofthebalancing unitanrecorder05%0.5%Max.totalerrora5%ofthemeasurement valueTemperature measur~in

~pintsT5.1thruT5.10ErrorofthesensorlocErrorofthemeasuring amplifier Errorofthebalancing unitandrecorder05%0.5SMax.totalerrorx[l~C+1$ofthemeasurement value]AfterthefirsttestsonMay10,1978andafterconclusion ofthetestsonAugust2,1978,additional physicalchecksofthepressuresensorsinthewaterregionwereperformed byincremental loweringofthewaterlevelinthetesttank.Themax.deviations fromthenominalvaluewereapproximately

+0.01and-0.02bar.Fig.8.100illustrates afrequency distribution ofthesedeviations combinedfrombothchecksandforallpresuresensors.ItshowsatypicalGaussiandistribution.

Inordertorecordthehigh-frequency processes correctly infrequency andamplitude, thedatawasacquiredinanalogformonmagnetictape.Porasensoreigenfrequency ofapproximately 30kHz,thedynamicrangewaslimitednotbythesensorsbutratherbythecarrier-frequency measuring amplifiers locatedfurtheroninthecircuit.Thefrequency cutoffofthemeasuring amplifiers wasat1.5kHzandthatofthemagnetictaperecorders wasat2.5kHz.Thefrequency cutoffsofthevisicorders weredetermined bytheutilizedgalvanometers Thesefrequency cutoffsareapproximately 1kHz.Thefrequency responseofeachindividual galvanometer wascheckedpriortothetests.8.45Repetition Testsand~Reroducibility oftheResultsToverifythereproducibility ofthemeasurement results,arepetition of5testswasspecified intheTestMatrix.Basedonapreliminary assessment oftheresultsafterconclusion ofthetestserieswiththelongandshortdischarge lines,thefollowing testswererepeated(asmentioned previously):

Longline:4.1through4.Rl15.1through15.RlIntervaltestsIntervaltestsShortline:REV1,3/798-48 PROPRIETARY 19.1through19.R2201through20.R125.1through25.R2IntervaltestsIntervaltestsSingleActuation testsInadditiontotherelevantinitialconditions, Table8.17alsogivesthemeasuredventclearingpressure(measuring pointP4.4),max.dyn.bottompressures (measuring pointP5.2)imardyn.wallpressures

{measuring pointP5.10)andfrequencies ofthepressureoscillations forthefirstSRVactuation ineachoftherepetition tests(>>CleanConditions tests").Acomparison oftheabove-cited valuesfortherepetition testsassociated witheachotherdemonstrates thegoodreproducibility underCleanConditions.

Themaximumdeviations fromthemeanvalueforeachpairofrepetition testsare(seeTable8.18):fortheventclearingpressureforthebottomandwallpressures 10.75barora6%a0.05barora7Xforthefrequency ofthepressureoscillations 105Hzora7%Themeandeviations fromthemeanvalueofrepetition tests,averagedforall5pairsfortheventclearingpressureforthebottomandwallpressures forthefrequency ofthepressoscillations eachpairofoftests,are:10.37baror13K1002barora6%RO2HzOrX5%Figures8.37and8.38illustrates themax.dynamicpressures inthepoolduringtheventclearingforthemultiplevalveactuation repetition testswiththelongline.Figures8.39and840showsthesamethingforthemultipleactuation repetition testswiththeshortlineIncomparison withthefirstSRVactuations underCleanConditions, somelargerdeviations areexhibited hereinthetestsunderRealConditions (2ndto7thand10thSRVactuations).

Thereasonforthesedeviations isthattheinitialconditions differsignificantly fromeachother.Thevisicorder tracesforeach"cleancondition" actuation atarepetition testpointisprovided:

Tests4.1.1and4.Rl.l-Figures8-41and8-42REV1i3/798-49 PROPRIETARY Tests15.1.1and15Rl1-Figures8-46and8-47Tests19.1.1and19.R2.1-Figures8-48and8-49Tests20.1.1and20.Rl.l-Figures8-59and8-60Tests25.land25R2-Figures8-64and8-65Avisualcomparison ofthetracesfromeachrepitition testalsoshowsgoodreproducibility.

Accordingly, itcanbesaidthat:Iftheinitialconditions ofthetestsaresetinacontrolled manner(CleanConditions),

thenthetestresultsarereproducible.

Iftheinitialconditions correspond totherandomlyprevailing operating states(RealConditions),

thenthemeasurement valueslieinalargerscatterrange.85DATAANALYSISANDVERIFICATION OFLOADSPECIFICATION 8.5.1Evaluation ofTestTankEffectsonBoundaryPressureNeasurements InthisSection,vepresenttheoretical andexperimental investigations whichshowthattheKarlstein testtankrepresents agoodsimulation ofthehydraulic conditions oftheSSESsuppression pool.Meareconcerned primarily withtheeffectsexertedontheprocesses inthevaterbytheexistingboundarysurfacessuchasthewatersurface,tankbottom,movableorimmovable tankwalls.Theresultsoftheinvestigation facilitate theevaluation andtransposition cftheboundaryloadsmeasuredintheteststoSSES.85.1.1EffectsofFreeRaterSurfaceandR~iidWallsTheeffectsofthefreewatersurfaceandtherigidwallsofthetankonthefluidpressurewillbeexplained firstbymeansoftheexamplesillustrated inFigure8-104.ThetophalfoftheFigureshowsthevelocitypotential andflowfieldofaspherical bubblesubjected tooverpressure orunderpressure inaninfinitely

extended, incompressible fluid.Thepotential fieldisdescribed byasimple1/rlaw(Reference 35).If,forexample,thesamebubbleislocatedinacylindrical rigidtankwhichispartially filledwithfluid,thenthepotential fieldandflovfieldhaveavisiblydifferentappearance (Figure8-100,bottom).Thedifferences

.inthenonstationary fluidpressure, whichisproportional tothevelocitypotential forsufficiently lovflowvelocity(pressure field=potential field;seeReference 4forexample),

areclearlyevidentinthepressureprofilesontherightsideoftheFigure8-104.Thefreewatersurfaceconstrains thepressuretozero,vhilethecylindrical wallcausesanincreaseingly morepoverfulpressurerisewithREV1,3/798-50 PROPRIETARY increasing depth.Thenarrowerthetank,thegreateristhepressurerise.Thecalculations relatingtoFigure8-104wereperformed bythefinite-elements method{Reference 34)foratankdiameterof3mandawaterdepthof6m.Thebubblewas2.8mdeepand0.8mindiameter.

Besidesthepressurefield,thereisalsoaneffectonthewatermasswhichiseffectively entrained bythebubbleduringpulsation motions(pressure oscillations) andthusalsotheoscillation frequency.

InthecaseshowninFigure8-104,thebubbleinthetankhasalargercoupledmassthanintheinfinitely extendedmedium.Thisismanifested bythefactthatthepulsation frequency ofthebubbleiscorrespondingly lower(seeSection8.5.3.2).8.512MethodofImagesThemethodofimagesisanimportant aidwhichmakesitpossibletoclearlyunderstand thehydraulic actionsofthewatersurfaceandrigidwallsandtocalculate themquantitatively inasimpleway(Reference 35).Ztisbasedonthefactthattheinfluence ofaplanerigidwallontheflowfieldofahydrodynamic pointsourcecanberepresented byasuperposition oftheflowfieldwithoutthewall(infinitely extendedfluid)andtheflowfieldofanimagesourceofidentical signandidentical strengthlocatedbehindthewall(Fig.8-105).Thesameholdsforaplanefreewatersurface,exceptthattheimagesourcehastheoppositesign.Usingthismethodofimages,theflowfieldofapointsourceinarectangular, vesselisobtainedfinallybyrepeatedapplication ofsuitableimagingoperations (Figure8-105dandFigure8-2).Theimmediate significance ofthemethodofimagesliesinthefactthatapulsatingbubblecanbeconceived ofasahydrodynamic source,thusproviding asimplemethodtocalculate thepressurefield.Ofspecialimportance fortheperformance oftestsistheconsequence derivedbyinversion ofthemethodofimages:Aconfiguration ofbubblesoscillating inparallelcanbesimplified inatestbysurrounding onebubblewithrigidwalls.Thiswillbeclarified furtherinthefollowing.

851.3TheTestStandasaSincCleCellBasedontheabovediscussion, anoscillating bubbleinarectangular vesselisequivalent toaplanefieldofsimultaneously oscillating bubbles{Figure8-2).FromFigure8-2itfollowsfurtherthatvesselswithseveralbubblesarealsoequivalent, sincebetweeneachpairofbubblestheimagingwallsectioncanalsobeomitted.REV1,3f'798-51 PROPR1ETARYApplication ofthemethodofimagestothetransposition ofasystemofvalvesblowingdownsimultaneously inaplanttoateststandwithaquencherleadstothecelldivisionillustrated inFigure8-3..Asdiscussed insection8.1,thewaterspaceoftheteststandwasformedaccording totheinteriorsinglecellsC,F,KandN(Figures8-3and8-108),sincetheyarethenarrowest andwilltherefore exhibitthehighestwallandbottompressures.

Thatcanbeseenbyobserving that,according totheimagingprinciple, theyconservatively'simulate morequenchers lyingclosertogetherthanisactuallythecaseintheSSESsuppression pool8.51.4SpatialDistributions ofPressureintheTestTankTogetmeaningful testresults,pressuresensorshavetobemountedatsuitablepointsinthetesttank.Aseriesoftheoretical investigations wasperformed inordertobetterassesstheirarrangement.

Theyconsisted ofcalculating thespatialdistribution ofpressurealongthetankwallsforvariousbubbleconfigurations underwater.TheKRUcomputercodeVELPOTwasusedforthisinvestigation.

Abubblewassimulated byapoint,sourcenormalized tounitsourcestrength.

Theresultsareillustrated inFigures8-107to8-109.Figure8-107showsthecalculated wallpressuredistribution forabubbleinthreedifferent positions nearthequencher:

Case1Sourceonthetankaxis,0.7mabovethequencheraxisCase2Sourceonthetankaxis,atquencherelevation Case3Sourceatcenterofthequencher(eccentric)

.Theresultsshowthat.,theeccentric arrangement ofthequencherwhichbecamenecessary becauseofspacelimitations inthetank,including thecorresponding positioning ofthepressuresensors(blacksquaresinFigure8-107),results,theoretically, inslightlyhighermeasurement valuesforthepressures.

Thenextcalculation (case4,Figure8-108)servestoanswerthequestionastohowthebubble'sforminfluences thepressuredistribution.

Todothat,thesinglesourcefromcase3,figure8-107,wasreplacedbyfouridentical sourceswiththesametotalsourcestrength.

Figures8-108and8-109showthattherearenomajordifferences.

Notealsothegoodagreement seenbetweenthemeasuredpressures fromshakedown test081andthecalculated valuesi'nFigure8.109.Themodelcases3and4(singlebubbleatcenterofquencherand4-bubblearrangement) arebestadaptedtotheteststandgeometry.

Sincetheassociated pressuredistributions hardlydifferatall{Figure8-109),itisdemonstrated thatanexactREV1,3/798-52 PROPRIETARYknowledge oftheairdistribution underwaterisnotnecessary foracorrectarrangement ofthepressuresensorsInordertodemonstrate theconservative natureofthechosensinglecell,asalreadyexplained inSection8.5.1.3,thepressuredistribution formodelcase4iscomparedtothedistribution calculated fortheSusquehanna plantinFigure8-110.Thepressuredistribution intheteststandenvelopsthepressuredistribution intheSSES.Furthermore, thepressuredistribution intheteststandisenveloped bythespecified distribution{FigureB-ill).8.5.1.5Investigation oftheInfluence ofSavableSalleontheMeasurement Results/Fluid-Structure Interacti~on 8.5.151GeneralRemarksInthepreceding discussion, itwasassumedthatthesinglecellhasrigidandimmovable walls.Theconstruction oftheKarlstein

.testtankissuchthatthetank,despiteaseriesofstiffening ribs(seeFigures8-10to8-12),stillhasaresidualcompliance.

Thetime-varying loadsactingduringtheblowdownofthequenchercantherefore excitethetankintooscillation duetoFluid-Structure Interaction (FSI).Usingexperimental andtheoretical investigations, itwillbeshownthatinfluences oftankoscillations onthemeasuredboundaryloadscanbeneglected.

Theexperimental investigations consisted, firstly,ofmeasuring thetank'sresponsetoashortpressureimpulsewhichwasproducedbyanexplosive chargedetonated nearthequencher(Section8.5.1.5.2).Measurements madeduringthestart-uptestsontheteststandthensuppliedthetank'sresponsetotheloadsoccurring duringventclearing(Section85.1.5.3).Takingintoconsideration theinpulseresponse, itturnsoutthateffectsoftankoscillations attheeigenfrequencies arenegligible.

Thisstatement islaterconfirmed bycalculations andalsoisextendedtoforcedoscillations.85.1.52Ex2erimental Investigation oftheTank'sNaturalOscillations Theexperimental investigation ofthetank'snaturaloscillations wasperformed withimpulsive excitation byanexplosive chargeinthewaterandsimultaneous measurement ofthedisplacements ofthewallandbottomsectionsandofthefluidpressure.

Thearrangement ofthechargeandsensorsinthetankisillustrated inFigure8-112.Thepositionofthechargewaschosensuchthatthespatialloadprofileinthetankmatchestheprofileoftheblowdownloadsaswellaspossible.

Thechargeitselfwasastoichiometric mixtureofhydrogenandoxygenwhichREV1,3/798-53 PROPRIETARYwasignitedinaplastically deformable flatcontainer (Figure8-113).Eightdisplacement transducers (WA1toWA8)wereavailable forthedisplacement measurements.

Theywerepositioned withtheaimofobtaining themostusefulinformation.

Thearrangement ofthepressuremeasuring pointsinthewater(P5.1toP5.10,Figures8-10to8-12)wasthesameasinthelaterblowdowntests.Asfortheevaluation ofthepressuretracesinSection8.5.3,transducer P5.10waschosenasreference pressuretransducer Thechargewaslocatedatdifferent positions nearthequencherasshowninfigure8-112,i.nordertoobtainenveloping loadprofiles.

Atypicalresultisillustrated inFigure8-114,whichshowstherecordings fromdisplacement transducers WAltoMA8andpressuretransducer P5.10fortestno.2(chargeinposition2).Thelowestoccurring frequencies arebelow1Hz,buthavenothingtodowiththetank'sresponse, butratherrepresents ashiftofthezeropointThelowesteigenfrequencyofthetankisatapproximately 13Hzandisseenclearlyintheresponsefromtransducers WA2andWA3oscillating inphase.Bothgagesareseatedonthebox-shaped stiffeningringsasshowninfigure8-112.Atthewallsectionsbetweenthestiffeners(WA4andMA6)andatthebottom(WA8),thefrequencies thatoccuraremainlybetween30and60Hz.Theoscillations oftheflatlowerstiffener rings(WA1andWA5)arelesspronounced.

Thesmallestdisplacements arefoundattheconcretesections(WA7),wheresomeoftheamplitudes aresmallerhyanorderofmagnitude.

ThepressuresignalfromP5..10showsdistinctexcursions onlyduringthefirst100ms.Tobeabletobetterevaluatethetank'sfrequency

response, themeasuredtimevariations wereZourieranalyzedandpowerspectrawereformed.Thespectraassociated withthedisplacement transducers onthesteelwall(MA2),concretewall(MA7)andbottom(WA8)andthepressuretransducer PS10areshowninFigures8-115to8-118.Itturnsoutthatthepreviously mentioned 13Hzoscillation inthelow-frequency rangeisofgreatestimportance.

Theassociated tankdeformation (eigenmode) canbederivedfromthepointcorrelations showninFigure8-119.There,thedisplacements ofthedisplacement transducers WA2,WA3andMA7,filteredbyabandpassfilterat13Hz,areplottedagainsteachotheratthesametimes.Thefitlinethroughthesetofpointshasapositiveslopeinthetopgraphandanegativeslopeinthebottomgraph.Therefore, displacement transducer WA3(steelwallaboveMA2;seeFigure8-106)-oscillates inphasewithWA2,whiledisplacement transducer WA7(concrete wall)oscillates outofphase.Thismeansthatthe13Hzoscillation corresponds toanovalizing motionofthewall(seeFigure8-120).REV1,3/798-54 PROPRIETARY 8.5.1.53Experimental Inves~tiationoftheTank'sRe~sonsetoVentClear~inLoadsTheinvestigations ofthetank'sresponsetoventclearingloadswereperformed duringtheteststandshakedown tests.Tomeasurethetank'sresponse, thechoicewasmadetouseonedi,splacement transducer eachonthesteelwall(WA2),ontheconcretewall(WA7)andonthebottom(WA8).Theinstrumentation isshowninFigure8-121.Test08.1represents atypicalexampleoftheshakedown teststhatwererun.Themeasuredtimehistories ofthewallandbottomdisplacements andofthereference pressureP5.10areshowninFigure8-122.Thezero-point driftmentioned abovewaseliminated byusinga2Hzhigh-pass filter.Itcanbeseenthatboththepressureandthedisplacements oscillate atthesameprincipal frequency of5.1Hz.Thesteelwall(WA2)andbottom(QA8)moveinphase.Theverysmallmovementoftheconcretewall(WA7)isalmostoutofphasecomparedtothepressureP5.10.Inaddition, thedisplacement transducer WA8recordsahigher-frequency oscillation at30Hz.Ithasalreadybegunweaklyatteststart,thendevelopsstronglyataboutthetimeoftheventclearing',

andthendecaysagainabout300mslaterThephysicalinterpretation ofthe5Hzoscillation isobvious.Thepressureoscillation iscausedbythepulsation oftheairbubblewhichiscreatedduringventclearing.

Atthesametime,thetankcarriesoutforcedoscillations atthefrequency oftheforcingforce(5Hzpulsation oftheairbubble).Thesometimes phase-opposed natureofthedisplacements ofthesteelwallandbottom,ontheonehand,andtheconcretewall,ontheotherhand,makesitevidentthattheabove-discussed ovalizing eigenmode playsadominantrole.Theoriginoftherapidlydecaying30Hzoscillation seenatWA-8attheteststartisattributed tolocalforcestransmitted throughthedischarge lineandthequenchersupportduringventclearing.

'Figures8-123todisplacement timeduringshakedown spectraldensityduringshakedown littleinfluence 30HzlocaleffecfromP510showseffects.8-125showthepowerspectraldensities ofthehistories forgagesWA2,WA7andWA8measuredtest081.Figure8-126showsthepowerofthepressuretimehistoryforP5.10measuredtest08l.A,reviewofthesefiguresshowsveryfromthe13Hztankeigenfrequency orfromthetseenatWA8.Figure8-126showingthersultspractically noinfluence fromeitheroftheseREVli3/798-55 PROPRIETAR YPromthisitcanbeconcluded thatforallpractical purposestheKarlstein testtankisrigidandhasnoinfluence onthepoolboundarypressuremeasurements madeduringthetests.8.5.1.54Theoretical Investigations.and ModelCalculations oftheInfluence ofFluid-Structure Interaction 851.5.4.1Computation ModelsTheanalysisdescribed belowtocomputetheFSIonthemeasuredpressures intheKarlstein testtankwasperformed byusingtheKWUcomputercodeKOVIBlAwhichwasdeveloped originally andusedsuccessfully fortheanalysisoffluid'-structure interaction inthewaterpoolofKWU's69ProductLineBWRPlant.Theunderlying-theoryfollowsfromauniformformulation ofthemechanical processes basedonpotential theoryandclassical Lagrangean dynamics.

ItunifiesthedynamicsofthebubbleandtheFSIbyusingtheresultsofmodalanalyses.

Inparticular, thefeedbackeffectsbetweenbubbleandstructure viathefluidareinc1uded.8.5.1542ModelParameters and~InutforCalculations WithoutThemodelparameters andinputquantities forcalculations oftheairbubbleoscillations intherigidtankare:airmassflowintothebubble,watertemperature

(=airtemperature instationary equilibrium),

hydrostatic pressureatbubbleposition, hydrodynamic massparameter ofthebubble,spatialpressuredistribution, initialvalues,(hubbleradius,etc.).Thetotalairmass(integrated airmassflow),watertemperature andstaticpressureatthebubblepositionareobtainedfromthetestdata.Thehydrodynamic massconstantofthebubbleandthespatialpressuredistribution areobtainedfromthecorresponding potential calculations (Figure8-107,case1).Thetimevariation oftheairsupplyintothebubblewasadjustedheuristically bymeansofsystematic trialanderror,inparallelwiththeinitialvalues,insuchawaythatthecalculated andmeasuredtimevariations ofthepressureattransducer P5.10exhibited optimalagreement Thestart-uptest08.1wasusedasreference testforthesecalculations.

Theairmassflowdetermined inthismannerisillustrated inFigure8-127REVli3/79~8-56 PROPRIETARY 8.5.15.43NodelParameters andXnautforCalculations withPdjJustasforthedetermination oftheairsupplyintothewaterpool,asemiempirical methodisusedforthestructural dynamicsdata.Theyaredetermined onthebasisoftheeigenfrequency measurements described previously.

Inputdataforthecalculation are:eigenfrequency, modalmass,modalweight,dynamicpressuredistribution.

Basedontheimpulseresponseofthetank(Figures8-115to8-117),itisplausible toselecttheoscillation modelyingat13Hz.Thatfixesthefrequency.

Themodalmasscannotbetakendirectlyfromtheexperiment, butrathercanbedetermined indirectly viathemeasuredunitdisplacements ofthewall.Theunitwalldisplacement isillustrated inFigure8-128.Itisobtainedfromdisplacements atthedisplacement transducers bybandpassfiltering at13Hzandplottingsimultaneous valuesofdisplacement whicharenormalized to1atthewatersurface.Thedisplacement direction isdefinedaspositiveiftherelevantwallsectionmovesinward.Thehydrodynamic component ofthemodalmass,(coupledwatermass)isthencalculated bymethodsofpotential theory.Themodalweight,whichisequaltotheintegralloadrelativetothemodalmassandaveragedovertheunitdisplacement, isbasedontheloaddistribution calculated forcase1(Figure8-107,centeredbubble).Thedynamicpressuredistribution (seeFigure8-129)isobtainedfromtheunitdisplacement.

bymeansofpotential calculations.

85.1.5.4.4 ResultsoftheFSIcalculations Theresultsofthecalculations concerning theinfluence ofFSIareshowninFigures8-130and8-131.Figure8-130showsthecalculated timevariation ofthepressureatpressuretransducer P5.10,firstintherigidtank(withoutFSI)andthenintheelastictankwiththe13Hzeigenfrequency.

Thereisaveryslightreduction inthepressureamplitudes, butitiscertainly negligible incomparison tothescatterofthemeasurement valuesthemselves.

AsisevidentfromFigure8-131,thefrequency influence ofFSIalsocanbeneglected.

InthatFigure,theoscillation frequencyofthebubbleisplottedagainstthebubblevolume.Thebubblehasaslightlylowerfrequency withFSIeffectsincludedthanwithout.REV1,3/798-57 PROPRIETARY Aphysically clearexplanation oftheveryslightFSIeffectsfoundintheKarlstein TestTankcanbeobtained.bycomparing thevolumesoffluidwhicharemovedbytheoscillating wallandbottomandbythepulsating bubble.Forabubblevolume{longline)of2.2m~andpressurefluctuations ofx0.4bar{seeFigure8-126),thevolumechangeofthebubbleisapproximately 1m~isentropically.Incontrasttothis,fordisplacements likethosefoundinFigures8-124and8-125thewallsandbottomuseuponlyabout0.05m~,whichisonly5%ofthewatervolumecomingfromthebubble.Therefore, duetothecompliance ofthetank,95%ofthewaterflowsupwardinsteadof100%(rigidtank).Thus,theresultoftheexperimental andtheoretical FSIinvestigations isthateffectsofthecompliance oftheKarlstein testtankwallsandbottomonthepressureloadsmeasuredontheboundaries ofthetankduringthetestscanbeneglected.

852Verification ofSHVSystemLoadSpecification DuetoSRVActuation Thepressures insidetheSRVdischarge lineweremeasuredatfourmeasuring points:justbehindtheSRVatmeasuring pointP4.1,inthecenteroftheblowdownpipeatmeasuring pointP4.2(measuring pointP4.5fortheshortdischarge line),justabovethenormalwaterlevelatmeasuring pointP4.3,andjustbeforetheinletofthequencheratmeasuring pointP4.4(seeFigure84).Thelongandshortdischarge linesareillustrated inFigures8-5and8-6.Themeasuredpressures inthedischarge linearedocumented inSection8.4.1.8.5.21Pressures Duri~ntheVentClearincC ProcessTypicalmeasurement tracesofthepressures inthedischarge lineareshowninFigures8-132and8-133.TheventclearingpressureisreadoffatP4.4.Asdiscussed inSection8.41,theventclearingpresureisdefinedasthepressurewhichisreadoffatthefirstpressuremaximumatP4.4.Atypicalfeatureofthispressurevariation isthedynamicovershoot ofthepressureabovethestationary value.This-phenomenon doesnotoccurinsuchapronounced mannerattheotherpressuretransducers alongthedischarge line.Thisdynamiceffectindicates thatthepressurerequiredtoexpelthe~atercolumnisgreaterthan.thepressurenecessary tobringthesteammassflowthroughthequencher.

Theexpulsion ofthewatercolumn,isalsoclearfromthedifferent timevariations atP4.3andP4.4.Thepressureat8EVli3/798-58 PROPRIETARY measuring pointP4.3(abovethevatercolumn)risesmuchmoresteeplythanthepressureatmeasuring pointP4.4(insidethevatercolumn)Thedifference betveenthetvopressuros isthepressurewhichisnecessary fortheacceleration ofthevatercolumn.Atthetimeoftheventclearing, thetwopressures haveapproximately equalvalues.Butaftertheventclearingtheydifferagain,thistimeduetothedifferent pressurelossescausedbyflowresistances inthepipe.8.521.1VentClearingPressures fortheL~onLineThesteammassflowthroughtheSRVisapractically linearfunctionofthestagnation

'pressure (reactorpressure)

.Sincethesteammassflowisoneofthemainparameters forthepressurebuild-upintheairregionofthedischarge lineandthusfortheacceleration ofthewatercolumn,wewillplotthepressures inthedischarge lineasafunctionofreactorpressure.

Thepressureinthebuffertank(P2.6)andnotthepressureinthesteamlinebeforetheSRVisusedasthereactorpressureforthetestssincethepressureinthebuffertankmorecloselysimulates therepresentative stagnation pressureinthereactor.(seeFigure8-134).Todescribethedependence oftheventclearingpressureonthereactorpressure, onlythosetestsforwhichtheinitialconditions weresetandthusknovnexactlywereused.Thosearethetestsvithso-called

<>cleanconditions".

FromFigures8-135and8-136,itcanbeseenthatthemeasurement resultshavegoodreproducibility forthetestswithcleanconditions.

Thepressures inthepipeincreasepractically linearlywithreactorpressure.

Thefollowing trendscanbeobserved:

1)Aloweredwaterlevelinthedischarge lineresultsinloverpressures duringtheventclearing.

2)Ahotpiperesultsinhigherpressures duringtheventclearing.

Thisisduetothesmallerpercentage ofcondensation onthepipewall.3)Thepressure(atthetimeofventclearing) behindtheSBVisalwayshigherthantheventclearingpressureclosetothequencher.

Thedifference isattributable totheflowlossalongtheline.REV1,3/798-59 PROPRXETARY 4)*Thepressure(atthetimeofventclearing) behindtheSRVincreases

-withincreasing reactorpressure{orincreasing steamflowratethroughthereliefvalve).Besidestheclean-condition tests,thereisalargenumberofreal-condition testsandintervaltests.Sincetheinitialconditions inthemwererandomandwerenotvariedinacontrolLed manner,themeasurement valuesarescattered overamuchwiderbandthanintheclean-condition tests.Hence,thesetestsarenotusablefortrendanalyses, butmaybeusedforverification ofmaximumspecification values.Themeasuredmaximumvaluesare:PressurebehindtheSRV(atventclearingtime):19baratareactorpressureof72barVentclearingpressurebeforethequencher:

14.5baratareactorpressureof72bar852.12VentClearingPressures fortheShortLineFigures8-137and8-138showthemeasuredpipepressures plottedagainstreactorpressureforcleancondition testswiththeshortdischarge line.Thesametrendsasseenwiththelonglineareseenhere.'Sincetheshortlinehasasmallerairvolumethanthelongline,whilethewatercolumntobeclearedandotherparameters remainthesame,thepressures intheshortlinearehigherthanthoseinthelongline.Themeasuredmaximumvaluesare:Pressurebehindthereliefvalve{atventclearingtime):22baratareactorpressureof73barVentclearingpressurebeforequencher:

18baratareactorpressureof73bar.85.213Tran~sositionoftheMeasurement ValuestoSSESandComparison withtheDesicCndecificationTheverification testsinKarlstein wererunwiththeactualgeometryofthereliefsystem,theactualSRV,andthehighestwaterlevelinthedischarge

-line(6.2mabovecenterofquencher) thatoccursforSSES.Themeasuredventclearingtimesforthatwaterlevelandahighreactorpressure(69-81bar)wasbetween250and400msREV.1,3/798-60 PROP3IETARYFortheseventclearingtimes,theopeningtimeoftheSRV(measured openingtimes:29-60ms)hasnonoticable effectontheventclearingpressure(seeFigure8-139).Hence,inregardtotheventclearingpressure, theonlyvariablewhosemaximumvalueforSSESwasnotcompletely coveredwasthereactorpressure.

Thefollowing extrapolation appliesforthat:a)PressurebehindthevalveatventclearingtimeTheMeasuredmaximumvalueforthelonglineis19baratareactorpressureof72barASlopeof25%isseeninfigure8-135.Extrapolating to88bar,theresultis:Pox=23barforthelonglineTheMeasuredmaximumvaluefortheshortlineis22baratareactorpresssure of73barSlopeof25%isseeninfigure8-137.Extrapolating to88bar,theresultis:Pax=26barfortheshortlineThedesignvaluegiveninSection4.1.2.1is550psi=37.93bar.TheKarlstein testsdemonstrate thatthedesignvalueisveryconservative fortheventclearingcase.b)Ventcleari~npressureThemeasuredmaximumvalueforthelong.lineis14.5barforreactorpressureof72barASlopeof12.5%isseeninfigure8-136.Extrapolating toareactorpressureof88barresultsinPmax=16.5barforthelongline.Themeasuredmaximumvaluefortheshortlineis18baratareactorpressureof73bar.ASlopeof12.57isseeninfigure8-138.Extrapolating toareactorpressureof88barresultsinPmax=20barfortheshortline.Thespecification valuegiveninSection4.1.1.2isPmax27barTheKarlstein testsdemonstrate thatthespecification valuefortheventclearingpressureisveryconservative.

85.2.2Pressures Duri~ntheStationary Condensation ofSteamAboutonesecondaftertheopeningoftheSRV,theventclearingprocessiscompleted andthephaseofsationary steamcondensation begins.Inthisphase,thepressures inthedischarge linearedetermined bythesteammassflowandtheflowresistance.

SincethesteamREV1,3/798-61 PROPRIETARY mass.flowisproportional tothereactorpressure, hereagainwewillinvestigate thedependence ofthepipepressures tothereactorpressure.

85.221Lo~nLineFigures8-140and8-141showthedependence ofthesteadystatepressureonthereactorpressure.

Meseethattherelationcanberepresented verywellbyastraightline.Asaresultofpipefriction, thestationary pressurebehindtheSRVhashighervaluesthanthepressures justbeforethequencher.

Italsoexhibitsafasterincreasewithreactorpressure.

Themeasuredmaximumvaluesare:17.5baratreactorpressureof72barforthepressurebehindtheSRV(P41)>l0baratreactorpressureof70barforthepressurebeforetheinlettothequencher(P4.4)852.22ShortLineFigures8-142and8-143showthedependence ofthesteadystatepressureonthereactcrpressure.

Thebehaviorofthepressurebeforethequencher(P4.4)ispractically identical fortheshortlineandlongline.Thisisnotsurprising, sincethispressuredependsonlyontheflowresistance ofthequencher.

Thepressures behindtheSRVarelowerthanthoseforthelongline,butdisplaythesameincrease, withreactorpressure.

Thedifferent flowresistances ofthetwodischarge linesaremanifested here.Toclarifythiseffect,thevariation ofthestationary pressureatthemeasuring pointsalongthedischarge lineareplottedinFigure8-144fortheshortandlonglines.Theaveragepressures wereused,i.e.,thepressures werereadofffromtheinterpolation 1'inesat88bar(seeFigures8-190to8-143).Themeasuredmaximumvaluesfortheshortlineare:PressurebehindtheSRV(P4.1)16baratareactorpressureof72bar,and15baratareactorpressureof63barREV1,3/798-62 PROPRIETARY Presurebeforeinlettothequencher(P4.4)9.5baratareactorpressureof71bar,and9.0baratareactorpressureof65bar.85.2.2.3Transposition oftheMeasurement ValuestoSSFSandcomparison withtheDesignSpecificationAswasthecasewiththeventclearingpressure, theonlyvariablewhosemaximumvalueintheSSESwasnotcompletely coveredbytheteststandwasthereactorpressure.

Anextrapolation ofthemeasuredmaximumvaluestoareactorpressureof88baryieldsthefollowing results:a)LongLineThemeasuredmaximumvaluebehindtheSRVis17.5baratareactorpressureof72bar.ASlopeof22%isseeninfigure8-140Extrapolating to88bar,theresultis:Pm~~--21barThemeasuredmaximumvaluebeforequencherinletis10baratareactorpressureof70bar.ASlopeof16%isseeninfigure8-141.Extrapolating to88bar,theresultis:Pmmx=13bar.b)ShortLineThemeasuredm'aximumvaluebehindtheSRVis16baratareactorpressureof72barand15baratareactorpressureof63bar.ASlopeof22%isseeninfigure8-142.Extrapolated to88bartheresultis:Pmax=19.6barand20.5bar,respectively.

Themeasuredmaximumvaluebeforequencherinletis9.5baratareactorpressureof71barand9baratareactorpressureof65bar.ASlopeof16%isseeninfigure8-143.Extrapolated to88bar,theresultis:P=12.5barand13.0bar,respectively.

maxItcanbestatedthatthedesignvalueof550psi=37.93barforthestationary pressurebehindthevalveisveryconservative.85.23ExternalLoadsonthe~uencher andBottomSup2ortInthisSectionweshalldiscussthemeasurement resultswhichprovideinformation abouttheexternalloadsonthequencherandREV1,3/798-63 PROPRIETARYbottomsupport.Themeasuring pointsprovidedforthatpurposeareshowninFigure8-13,andareasfollows:SG41/42SG43/4SG45/46SG47SG48Bendingatquencherarm1Bendingatquencherarm2BendingatthebottomsupportLongitudinal strainatthebottomsupport'orsionatthebottomsupportStrainsweremeasuredatallmeasuring points.Themeasuredstrainswereusedtocalculate theloadswhichproducedthestrains.Theloadsthuscalculated arestaticequivalent loadswhichcontainhydraulic andalsostructural-dynamical effects.85.2.31VerticalForce8.5.23.11Measurement oftheVerticalForceTomeasuretheverticalforce,twostrainconnected insuchawaythattheymeasureverticalforces.Thefollowing relationexistsbetweenthegauges,SG4.7,werestrainsresulting fromloadandstrain:F~A~E~eBF=33~ekNBwhereA~.016m252F~2.06x10N/mmIfweinserteinpm/m,wethengettheverticalforceinkN.Thisequationwasusedtoconvert'he measuredstrainsintoverticalforces.8.5.2.3.1.2 MeasuredVerticalForcesFigure8-145showsatypicalmeasurement tracefortheverticalforceItincreases rapidlyduring'theexpulsion ofthewatercolumnand,afterreachingthemaximumvalue,returnsquicklytozero.8523.1.21Lo~nLineTheverticalforceexhibitsastrongrelationship withventclearingpressureasshowninFigure8-146Thisholdstrueforalltests,eventhosewithrandominitialconditions suchastherealconditions andmultipleactuation test.Asdiscussed inSection8.5.21.3,theventclearingpressureisinturninfluenced bythereactorpressure, initialwatercolumninthe'discharge line,discharge linetemperature, etc.andwasREV13/798-64 PROPRIETARYextrapolated outtoamaximumreactorpressureof88bar.Therefore, themaximumverticalloadwillbeextrapolated tothemaximumventclearingpressurefromSection8.5.2.1.3.

Themeasuredmaximumvaluefortheverticalforceis:149kNata128barventclearingpressure.

8.5.2.3.1.2 2ShortLineFigure8-147illustrates thedependence oftheverticalforceontheventclearingpressure.

Inprinciple, thesamediscussion asinSection8.5.2.3.1.2.1forthelonglineappliesherealso.Themeasuredmaximumvaluefortheverticalforceis:192kNata168barvent-clearing pressure.

Theverticalforcesrelativetotheventclearingpressurearepractically thesame.85.2.3.1.3Transposition oftheMeasurement ValuestoSSESAswasdiscussed previously fortheextrapolation oftheventclearingpressures, themeasurement valuesfortheverticalforcecanalsobetransposed directlytotheplant.Forverification ofextremeconditions intheplant,themeasurement valuesareextrapolated toareactorpressureof88bar.Theextrapolation canbeperformed directlyviatheventclearingpressure.

8.5.23.1.31LongLineThemeasuredmaximumvaluewas:149kNata12.8barvent-clearing pressureSlope=13kN/bar(Figure8-146)According toSection8.5213,theextrapolated vent-clearing pressureforthelonglinewas16barExtrapolation oftheverticalforceto16baryields:Fymax=190kN85.23.1..3.2ShortlineThemeasuredmaximumvaluewas:192kNat168barvent-clearing pressureSlope=13kN/bar(Figure8-147)According toSection8.5.2.1.3 theextrapolated ventclearingpressurefortheshortlinewas20bar.REV1,3/798-65 PROPRIETARY Extrapolation oftheverticalforceto20baryields:FvmxInadditionFigure8-147,showsameasuredvalueof149kNata12barvent-clearing pressure.

Thisleadstoamaximumextrapolated verticalforceof:F~~y=252kN8523.13.3SummaryTheextrapolation ofthemeasurement resultsfortheverticalforceyieldsama'ximumvalueof:F~~~~=,252kN>>InFigure4-11,thespecified verticalforceisgivenas860kN.Dnthebasisofthemeasurement results,thespecification valuecanbeviewedasextremely conservative, bothinthemaximumvalueandalsointheload-versus-time function.

8.5.232'ore'ional Moment8~2~3.2lMeas~nement oftheTorsional MomentTomeasurethetorsional moment,twostraingauges(SG4.8-Figure8-13)wereconnected insuchawaythattheymeasurestrainresulting fromtorsional momentonly.According toReference 41,thereisaverysimplerelationbetweenthetorsionorshearstrainandthemeasuredstrain,whenthestraingaugesaremountedata45oanglerelativetotheprincipal shearstressdirection.

Qehave:YmsshearstrainThereforei sincethestraingaugesSG4.8weremountedata45oinclination totheverticalaxis,vehave:Gz=shearstressGmsshearmodulusY=2.eandr~Da2REV1,3/798-66 PROPBIETAHYIpg=torsional momentI=polarmomentofinertiaPr~outsideradiusofthetwistedcylindrical barYrG'PQethusobtaintherelationbetweentorsional momentandmeasuredstrax.nTheshearmodulusisdefinedasG2(1+p)MithE=2.06x10sN/mm~andDap=poisson's ratioMeget:'p=0~3G~7.9x10'/mmeThepolarmomentofinertiaisdefinedas7f~D(1-D/D)4p32Therefore:

I4.64x10mInserting thevariousnumerical values,weget:0.41',Inserting E.inMm/m,thisequationgivesusthetorsional momentinkN-mHEVlg3/798-67 PROPRIETARY ThisequationwasusedtoconvertthemeasuredstrainsatSG4.8intotorsional moments.Thetorsional momentsobtainedinthismannerrepresent staticequivalent loads.85.232.2MeasuredTorsional MomentsFigure8-148showsatypicalmeasurement traceforthetorsional moments.Aftertheendoftheventclearingprocess,(approximately 1secondafterteststart)theamplitudes ofthemeasuredtorsional momentsareverysmallcomparedtothemaximumamplitude duringtheventclearingprocessThereisafactorof6-7difference betweenthetwoofthem.Themaximumamplitude ofthetorsional momentoccursmuchlaterthantheexpulsion ofthewatercolumn.8.5.2.32.2.1L~onLineThetorsional momentatthebottomsupporthas,itsoriginonlyinunsymmetrical processes atthequencherduringtheventclearingandduringthetransition tostationary condensation.

iFigure8-149showsthedependence ofthetorsional momentontheventclearingpressure.

Sincetheventclearingpressureisadirectinfluencing parameter (seeSection8.5.2.3.1.2.1) wewillcorrelate thetorsional momentwiththatvalue.Thesharplypronounced scatterbandisanindication thatarandomprocessissuperimposed onthatdependence.

Thatisexpressed bythefactthatthetorsional momentisbroughtaboutbyrandomunsymmetry.

Themeasuredmaximumvalueofthetorsional momentis:M=55.8kN-mata14barvent-clearing pressure.

TmaX$.523.2.g2ShortLinePigure8-150againshowsthedependences ofthetorsional momentontheventclearingpressure.

Inprinciple, thesituation isthesameasinthepreceding Sectionfo-thelongline.Themeasuredmaximumvalueofthetorsional momen'tis:39.2kN-mata18barvent-clearing pressure.

8.523.2.3Tran~sositionoftheMeasurement ValuestoSSESShentransposing themeasurement resultstoSSES,weshallconsiderinaconservative mannertheloadcarriedbythedischarge line,whichintheteststandisconnected rigidly(butREVli3/798-68 PROPRIETARY notinaleaktight manner)tothequencherandbottomsupportbymeansofweldbrackets(see Figure8-13and8-14)incontrasttothefreemovingslidingjointatSSES.Todothat,wemaketheassumption thatthedischarge lineisfixedinatorsionresisting manneratthefirstbendabovethequencher.

Thatresultsinthefollowing picture:Discharge LineQuencherBottomsupport////Thetorsional momentN~actsatthequencher.

Thetorsional momentN~~wasmeasured.

atthebottomsupport.Thedischarge linecarriesthetorsional momentM><.Therefore:

+M2Promtheequalityoftherotation, weget:Therefore:

"TVYGIpGTl11G~Ipl="T2'2'2G~Ip2Tl=P1~22T2P211Mehavethefollowing dimensions:

r=0.1775mlar1g0.125m0.45m1r=0.162m2a2g~0.3.445m~11.313m2REV1,3//798-69 PROPRIETARYTherefore:

-444.64.10mZ4.0,.10"m4Therefore:

-26.6Tl4.640.16211.313M240'17750'4526.6TTlŽT2Tl(1+1)26.6M1.0376M1Thus,theloadtransmitted tothedischarge lineislessthan4gofthattransmitted tothebottomsupport.If,withouttakingintoconsideration thedischarge line,wefirstusePigures8-149and8-150asthebasisforanextrapolation ofthemeasuredmaximumvaluestomaximumvent-clearingpressureforthecorresponding discharge line,thenwegetthefollowingmaximumvalues:a)longlineMr,~=598kN-mb)short.lineMr)~ax=43.2kN-mIfwenowconsiderthetorsioncarriedbythedischarge line,thenthisvalueisincreased toamaximumof:"ri~x=62kN-mThetorsional momentspecified in4.1.2.6fortheguenchersupportwas40kN-mtobeappliedasastepfunctionAtorsional momentstepfunctionappliedtoanundampedonemassREVl,3/798-70 PROPRIETARY oscillator (quencher actingasinertialmassandbottomsupportasatorsional spring)corresponds toamaximumresponseof:M<<=2(40)kN-m=80kN-mSincethemaximumtorsional momentderivedfromtheKarlstein testsisM<=62kN-m,thespecification isconservative.

/8-5.2.33Bean~inncnenteattheguenchecAten85.2.33.1Measurement oftheBendingMomentsIntheKarlstein tests,thebendingmomentsveremeasuredinthehorizontal plane(parallel tothetank'sbottom)andalsointheverticalplane,atbothofthequencnerarms.Toaccomplish that,twostraingaugeseachvereconnected insuch.awaythattheymeasuredunsymmetrical strainsresulting fromnormalstresses(unsymmetrical component)

.Thefollowing straingaugesweremountedforthatpurpose(seeFigure8-13:SG4.1)Momentsinverticaldirection SG43)SG4.2)Momentsinhorizontal directonSG44)Thestraingaugesweremountedapproximately 150mmfromtheweldbetweenthequencherarmandthecentralball.Thesectionmodulusofonequencherarmis:3W+D(1--)aQehave:'D~0.4064maD=0.3744ma=cE=M/WM=cEWThisleadstotheequationbetveenquantities:

M=0.38-c8-71 PROPRIETARY ThisgivesthebendingmomentinkN-m,ifcisinsertedinpm/m.Withthisequation, allthemeasuredbendingstrainswereconverted intobendingmoments.Thebendingmomentsthuscalculated arestaticequivalent loads.8.5.23.3.2MeasuredBendingMomentsFigure8-151showsatypicalmeasurement traceofthemeasuredbendingmomentsatthequencherarms.Weseeclearlythatthemaximumvaluesoccurmuchlaterthantheclearingofthequencher.Theevaluation oftheindividual bendingmomentsrelatestothetotalresultant bendingmoment,ie.,thebendingmomentwhichactuallyloadsthe.quencherarm.Theresultant bendingmomentisobtainedbyusingtherelationship:

M~'gM+M2x'esyzThebendingmomentsMgarereadoffatSG4.2and4;4.ThebendingmomentsMzarereadoffatSG4.1and43Theresultant bendingmomentsexhibitnodeterministic dependence ontheventclearingpressure, asshovn.inFigure8-152.Therefore, theresultant bendingmomentsonthequencherarmsmustbeconsidered asstatistical values.Themeasuredmaximumvalueofthereultantbendingmomentis63kN-m.e8.52.33.3Transposition oftheMeasurement ResultsintotheWeldInSection4l.2.5,thebendingmomentsintheweldwerespecified.

IntheKarlstein teststand,thestraingaugesweremountedabout150mmfromtheweldinordernot tomeasurelocalized stressesduetotheweldandtheintersection betweentheballcentralbodyandthequencherarm.Available experience indicates thatthisdistanceissufficient tomeasureastressprofilewhichisindependent ofshapefactors.Fromthespecified forceandmoment(Table4-10),weobtainforthedistancebetweentheweldandtheforceproducing thebendingmoment:lp~~Oo6551929Bytreatingthequencherarmasacantilever beam,weobtainforthemaximumstressandthusforthemaximumbendingmoment:g0.655=Mg(0.655-0.15)

.REV~1>>3/798-72 PROPRIETAR YM=bendingmomentintheveldBmaxM-=measuredbendingmomentBmaxTherefore:

=1.297MBmaxBmeasThus,basedonthemeasuredmaximumresultant bendingmomentof62KN-m(seeSection852.3.3.2),weobtainthefollowing maximumbendingmomentintheweld:'aximumresultant bendingmoment:81kN-m852.33.4~Secified StaticEguivalent LoadsAsalreadynotedabove,themeasuredbendingmomentsaretobeconsidered asstaticeguivalent loadsInSection4.1.2.5Table4-10,two'ontributions werespecified withrespecttothebendingmomentintheweld:a)astepfunctionhavingastepheightof19kN-mb)amaximumdifferential pressurevhich,according toSection4.1.3.7,is08barfromKKBtraceNo.35witha0.5multiplier.

Thisresultsinamaximumdifferential pressureof0.4bar.Thecontribution ofthedifferential pressureistobeviewedstatically, since,according toSection413.5,thefreguency ofthedifferential pressureisapproximately 6Hz.Thebendingeigenfreguency oftheguencherarmisontheorderof100Hz.Thecontribution ofthedifferential pressuretothebendingmomentintheweldisthus:11.4kN-mThecontribution ofthestepfuncionistobevieweddynamically.

Therefore, thesameconsiderations areapplicable asthosemadeforthetorsional momentsinSection8.5.2.3.2.3.Accordingly, wehavethefollowing staticeguivalent loads:Component inoneDirection Contribution fromstepfunction=2X19=38KN-mContribution fromdifferential pressure=11.4KN-mTotal=49.4KN-mREVli3/79'-73 PROPRIETARYResultant MomentContribution fromstepfunction=38x~2=53.7KN-mContribution fromdifferential pressure=11.4KN-mTotal=65.1KN-m8.5.23.3.5Fvaluation oftheMeasurement ResultsAsalreadymentioned inSection8.5.23.3.2,thebendingmo'mentsonthequencherarmaretobetreatedasstatistical values.Figure8-153showsthefrequency distribution ofthemeasuredmaximumbendingmomentsineachtestsandtheresulting frequency disrihution ofthevaluestransposed intotheweld.Thefrequency distributions arebasedonthepeakmaximumvalueofeachindividual test,whichweremeasuredeitheratSG4.1/4.2oratSG4.3/4.4.Thespecified staticequivalent loads(seeSection8.5.2.3.3.4 areintroduced for7000responses ofthereliefvalve.Therefore, theloadsaretobeevaluated inafatigueanalysis.

ItfollowsfromFigure8-153thatthemeanvalueofthemeasuredmaximumvaluestransposed intotheweldis35kN-m.Exceptforthreecases,thespecified resultant bendingmomentsalsocoverthemaximummeasuredvalues.Thequencherisbeingevaluated forthesemeasuredmaximumvalues.Itshouldbenotedthatboththespecified stationary internalquencherpressureof22.0barandtheresulting thermalloadof219~Cwerefoundtobeveryconservative whencomparedtothemaximumextrapolated valuesof13.0barandtheresulting saturated steamtemperature of195~Cmeasuredduringthetests.(Section8.5.2.23).8.5.23.4BendingMomentsattheBottomS~ugort852.3.4.1Measurement oftheBending.MomentsTomeasurethebendingmomentsathebottomsupport,twostraingaugescapableofmeasuring thebendingstrainsweremounted.In,themeasurement arrangement, thebendingstrainscouldbemeasuredintwomutuallyperpendicular directions (seeFigure8-13).Thestrainsformomentsaboutthex-axisweremeasuredwiththestraingaugesSG4.5.Thestrainsformomentsaboutthey-axisweremeasuredwiththestraingaugeSG46.REVlg3/798-74 PHOPRIETARYThesectionmodulusofthebottomsupportis:D4W=-D(1--)332a4aW~1.307x10m-33Wehavea~E~@~M/WThisleadstotheequation:

M~0.27~cThisequationgivesthebendingmomentinkN-m,ifcisinsertedinpm/m.Thisequationwasusedtoconvertallmeasuredbendingstrainsofthebottomsupportintobendingmoments.Thebendingmomentsthuscalculated arestaticequivalent loads.8.52.3.4.2MeasuredBendingMomentsInFigure8-151,thebendingmomentsatthebottomsupportcanbeseenunderthetracesofthebendingmomentsatthequencherarms.Themaximumvaluesoccuratalatertimethantheventclearing.

Buttheyoccuratthesametimeasthemaximumvaluesofthebendingstrainsatthequencherarms.Themaximumstrainresulting fromtorsiondoesnotoccuratthetimeofthemaximumbendingstrain(seeFigure8-151,SG4.8).Theevaluation ofthebendingmomentsrelatestotheresultant bendingmoment,i.e.,thebendingmomentwhichactuallyloadsthebottomsupport.Theresultant bendingmomentisobtainedbyinterconnecting theactualload-versus-time functions oftheindividual components throughtherelation:

ThebendingmomentsMzarereadoffatSG4.5andthebendingmomentsM>atSG4.6Themaximumresultant bendingmomentwas54.5kN-mTheresultant bendingmomentsdisplaynodependence ontheventclearingpresure,asshowninFigure8-154.Hence,thesameconclusions thatweredrawnforthebendingmomentsatthequencherarmsareapplicable here,also.BEV.1,3/798-75 PBOPRIETABY8.5.234.3Specified StaticEquivalent Load.Asalreadymentioned, themeasuredbendingmomentsaretobeviewedasstaticequivalent loads.Thebendingmomentsatthebottomsupportareintroduced throughthequencher.

Section4.12.4andTable4-7specifyatransverse forceof44kNonthequencherwasusedasstepfunction.

Inaddition, amaximumdifferential pressureof0.4baronthequencherwasspecified.

Thecontribution resulting fromthedifferential pressureistobeviewedasastatically actingload.Itamountsto48kN.Note:Thedischarge lineandthebottomsupportwerenotconsidered here.Thepresssure difference wasformulated onlyovertheprojected areaofthequencher.

Thespecificationthenyieldsthefollowing transverse forcesonthequencher:

Contribution fromstepfun'ction

=2x44=88kNContribution fromdifferential pressure=48kNTotal=136kNStraingaugesSG4.5andSG4.6weremountedapproximately 0.5mbelowthecenterofthequencher.

Transposed tothislocation, thespecification yields:68kN-m85.23.44Evaluation oftheMeasurement ResultsFigure8-155showsthefrequency distribution ofthemeasuredmaximumbendingmomentsatthebottomsupport.Themeasuredmaximumvaluesarealsocoveredbythespecification.

Thus,theKarlstein testshavedemonstrated thatthespecified transverse forcesonthequenchercanbeviewedasveryconservative.

85235ForcesontheQuencherIntheKarlstein QuencherTests,onlybendingmomentswereabletobedetermined forthequencheritself.InSection4.1.2,forcesandmomentsonthequencherwerespecified.

Thespecified momentswerecalculated fromtheforces.Themeasuredmomentsarewithinthespecification.Therefore,wecanconcludethattheforcesarealsoverified.

REVli3/798-76 PROPRIETARY 85.23.6Influence ofanAdgacentQuencherDuringtheclearingofthequencher, strongturbulences andeddiesoftheexpelledandambientwaterdeveloparoundthedischarging quencher.

Inparticular, aftertheventclearingthequencherissurrounded byalargenumberofairbubbleswhichrepresent alocallycompressible volumeinthewater.Thisstate,whichformsaroundthedischarging q<<niche>i preventseffectsfromtheblowdownofanadjacentquencherfrompenetrating tothequencherunderconsideration.

Itistherefore understandable that,intheKMUinplanttestswithintheBrunsbuttel andPhilippsburg nuclearpowerplants,noincreaseoftheloadonthequencherandbottomsupportwasfoundfortheresponseofseveralquenchers incomparison totheresponseofonequencher(Reference 6).Aneffectofaloadononequencherduetothefiringofanadjacentquencheristobeobservedonlywhentheadjacentquencherblowsdownalone.Inthatcase,adetailedevaluation wasmadefortheBrunsbuttel blowdowntests(Reference 38).Theresultoftheinvestigation wasthatthemeasuredloadsareenveloped byapressuredifference of0.2barappliedovertheadjacentinternalstructures inthepoolatthequencherlevel,i.e.,alsooverthequencher.

Amaximumpressuredifference of0.4baroverthequencherarmswasspecified forSSES.Theventclearingpressures anddynamicpressures inthewaterpoolobtainedforSSESfromtheKarlstein testsareofthesameorderofmagnitude asthecorresponding measurement resultsinBrunsbuttel.

Therefore, thespecified differential pressureof0.4baroverthequencherarmscanbeviewedasconservatively enveloping.

8.5237LoadsontheQuencherDuringSteamCondensation Themaximummechanical andthermalloadsonthequencherduringthecondensation phaseoccurduringthephaseofintermittent condensation.

InSection4.1.2.7,theloadsresulting fromintermittent condensation weretakenasthebasisforthefatiguedesignofthequencher.

Theevaluation oftheloadsonthequencherduringsteamcondensation intheKarlstein teststherefore relatesprimarily tothephaseofintermittent condensation.

REV1,3/798-77 PROPRIETARY 8.5.2.371Manifestation

/ormsofIntermittent Condensation intheKarlstein TestsAsdiscussed inSection8.1.3,thecondensation testsvereperformed alongthelowerandupperboundarylinesoftheoperation fieldforwatertemperatures

<30~Candalsoforwatertemperatures

>590C.Inbothregions,theintermittent condensation phaseoccursforverylowreactorpressures (approximately between2and4bar).InSection84.2itisshownthatthemaximumvaluesforthedynamicpressures inthevaterregionoccur.duringintermittent condensation incoldvaterThesameistruealsofortheloadsonthequencher.

Foritheevaluation andcomparison withthespecification, weusethemeasurement valuesofthebendingmomentsatthequencherduringtheintermittent condensation inthecoldpool.Themeasurement valuesaredocumented inSection8.4.2.85.23.7.2Illustration oftheMeasurement ValuesThetimedurationoftheintermittent condensation inthecoldpoolwasabout100seconds.Thetotalnumberofcondensation eventsatthequencherwas52.Themaximummeasurement valuesoccurredintheverticaldirection atSG4.3.Thefrequency distribution oftheresultant bendingmoments(SG4.'3/4.4) atthequencherarmisshowinFigure8-156.Themeanvalueofthemaximummeasurement valuesofeacheventis11.8kN-m.Themaximummeasuredvaluewas66.5kN-m.Thefrequencydistribution oftheresultant bendingmoments(SG4.5/4.6)atthebottomsupportisshowninfigure8-158.Themeanvalueofthemeasuremen tvaluesis89kN-m.Themaximumvaluewasapproximately 30kN-mThemeasuredmaximumvalueofthetorsional momentduringtheintermittentcondensationis6.2kN-m.8.52373Evaluation oftheMeasurement ResultsfortheOuencherArmFigure8-157showsthefrequency distribution oftheresultant bendingmoments,whichweretransformed fromthemeasuring pointintotheweld(seeSection8.5.2.3.3.3.

Themeanvalueofthesebendingmomentsis15.2kN-m.Themaximumvalueis86kN-m.Themeasuredbendingmomentsrepresent staticequivalent loads.,InSection4.1.2.7andTable4-12,avalueof25.4kN-mwasspecified

.fortheequivalent loadfortheresultant bendingmomentintheweldduringintermittent condensation.

Theloadsspecified areformulated foranoccurrence frequency of106.REV.li3/798-78 PROPRIETARY Inthefatigueanalysis, themechanical loadsrepresent onlyoneloadcomponent.

Anotherpartofthefatigueloadingisproducedbythealternating thermalloading.Theassumption madeinthespecification was106temperature stepsfrom35~Cto133~Candfrom133~Cto35oC.Thelow-frequency oscillations ofthepipe'sinternalpressuremeasuredatP4.4areusedasabasisforthemeasuredtemperature alternation.

Thesaturated-steam temperatures arethencorrelated withthosepressures.

Thepressureoscillations haveanoscillation frequency ofabout0.5Hzandamaximumamplitude of05baroverpressure

=approx.2barabsolutepressure.

Thispressureliesbelowthespecified valueof3bar.Themeasuredmaximumpressureof2barcorresponds toasaturated-steam temperature of120~C.Assumingthattheinflowing waterinSSESisatatemperature cfatleast35~C,thenthetemperature stepis85C.Atemperature stepof98~Cisassumedinthespecification, sothatthereisareserveof13~C.Themeasurement valuesformingthebasisfortheevaluation andcomparison withthespecification wereobservedonlyduringthephaseofintermittent condensation withcoldwaterinthetesttank.Aswiththeboundarypressures inthetesttank(Section8.4.2),theloadsonthequencherwereconsiderably lowerduringtheintermittent condensation phasewithwarmwaterthanduringintermittent condensation withcoldwater.Themeasuredmaximumbendingmomentduringthiscondensation phasewas(1kN-mrelativetotheweldseam.Inaddition, KMUinplanttestsintheBrunsbuttel nuclearpowerplantshowedthat,forapoolwatertemperature ofapproximately 35~andabove,intermittent condensation loadsonaquencherweresmaller.Thisindicates thattheregionwh'ereintermittent condensation loadsofanyconsequence canbeexpectedislimitedtothatofverylowpooltemperatures (approximately 25~C)andverylowsteammassflowsandthatheatingofthepoolasmallamountresultsinareduction inloading8.52.3.7.4Evaluation oftheMeasurement ResultsfortheBottomS~uportAnimpulsively actingtransverse forceof17.5kNwasspecified onthequencherforintermittent condensation.

REVl~3/798-79 PROPRIETARY Thedistancefromthemiddleofthequenchertothemeasuring pointforthebendingmomentsatthebottomsupportis0.5m,sothatthespecified bendingmomentwithrespecttothebottomsupportis:(175kNx2)x0.5m=17.5KNm(staticequivalent load)Themaximumresultant bendingmomentfromthetestsisapproximately 30KN-m.l85.2375Evaluation oftheMeasuredTorsional MomentsAnimpulsively actingtorsional momentof19kN-mwasspecified fortheintermittent condensation.

Thisstepfunctionyieldsatorsional momentof:38kN-masthestaticequivalent loadThespecified torsional momentsconservatively envelopthemeasuredmaximumvalueof6.2kN-m.852.3.76Evaluation oftheMeasuredMaximumMomentsattheQuencherArmduringIntermittent Condensation Amaximumresultant bendingmomentof665kN-matthequencherarmwasmeasuredintheintermittent condensation phase,whichresultsinamomentof86kN-mintheweld.Themeasuredmaximumvaluesoftheresultant bendingmomentsatthequencherarmduringintermittent condensation areontheorderofmagnitude ofthemeasuredmaximumvlauesduringtheventclearingphase(Section8.5.2.3.3.2).Fortheventclearing, atemperature differenceof184~Cwasspecified.

Fortheintermittent condensation, atemperature difference of98~Cwasspecified.

Thetotalstressesloadingthequencherarmarecomposedofmechanical andthermalstresses.

Thethermalstressesaredistinctly largerthanthemechanical stresses.

Themaximumresultant bendingmomentatthequencherarmforintermittent condensation exceedthevaluespecified fortheventclearingbyabout40%.,However,theassociated temperature jumpisonlyabouthalfaslargeasfortheventclearing.

REV-1,3/798-80 PROPRIETARY853Verification ofSuppression PoolBoundaryLoadSpecification DuetoSRVActuation InSection4l.3,threepressuretimehistories arespecified asthebasisforthecontainment analysisduetoSRVactuation.

Thethreetracesveretakenfromalargenumberofbottompressuretimehistories fromvariousKKBinplanttests.Theevaluation ofthepressureoscillation measurements intheKarlstein ventclearingtestswilltherefore concentrate ondemonstrating thatthepressuretimehistories specified areenveloping.

Accordingly, analysisandassessment.

oftheindividual measuredpressuretimehistories isrestricted toaminimum.8.5.3.1Evaluation oftheLocalEffectsSeenatPressureTransducer P5.5AsshowninFigures8-10to8-12,thepressuretransducer P5.5ismountedontheconcretewalloppositethemiddleoftheholearrayonthequencherarm.About0.25secondsafterexpulsion ofthewatercolumn,P5.5,incomparison withtheotherpressuretransducers, exhibitshigh-frequency positivepressurepeakswhicharenotobservedattheneighboring pressuretransducers.

Thiseffectisfromthelocalturbu1ences.

Thesehighfrequency pressurepeakshaveasmallenergycontentsothattheirrangeofactionislimitedtotheimmediate vicinityofthepressuretransducer.

'hefollowing TableshouldmakethisclearInthisTable,theratioofthemeasuredpressureamplitudes oftheneighboring pressuretransducers

{P5.10andP5.4)tothepressuremaximumatP5.5isindicated foralltestsvhichexhibited amaximumpressureamplitude

>1baratpressuretransducer P5.5.REV1,3/798-81 PROPRIETARY p5.lOPS'+TestP54P5.10P5.5P5.4/55P5.10/P5.5(bar)(bar)(bar)4165.1.710R1.720Rl920Rl1025125R20,60,551,00,450,4li00,730,551,70,450,4.lr01,00,651,730,550,61,00,85081,550,60,450,430,450,580~550,550,550,40,320,40,380,60,52FromthisTablewecanseethatthemeasurement valuehasdecayedbyhalfatabout1mfromthemeasuring pointP5.5.Thecomparison measurement pointsP5.4andP5.10areintheregionoforigination oftheairbubbleoscillation, sothatnoattenuation effectduetodistanceeffectscouldoccuratthatmeasuring pointTherefore, thesharpdecreaseofthepressureamplitude whichismeasurednevertheless showsclearlythatthepressuremeasuredatpressuretransducer P5.5islimitedtoitslocalvicinity.

Asfurtherverification thatthiseffectislimitedtotheareaaroundpressuretransducer P5.5,acomparison ismadebetweenthepowerspectraldensities fromP5.5andthebottompressuretransducer P5.2.REV.1,,3/798-82 PROPRIETARY Thefollowing testsvereselected:

Test11.1Thistestexhibited thehighestpowerspectrumatthedominantfrequency Test4.1.6Thistestexhibited thehighestpressureamplitude atP5.5forthelongdischarge lineTest20.R1.10Thistestexhibited thehighestpressureamplitude atP55fortheshortdischarge line.Thecomparison canbesummarized asfollovs:Atthedominantfrequency, thepowerdensities arethesamemagnitude forthepressureoscillations atthebottompressuretransducer P5.2andat.pressuretransducer P5.5.Thedifferences atthehigherfrequencies issignificant.

Fortests4.1.6and20.R1.10thefrequency spectrumofP5.5exhibitssignificantly higherpowerdensities athigherfrequencies thanthecorresponding frequency spectrumatpressuretransducer P52.Thissignificant factorisnotnotedforthefrequency spectrumoftest11.1(seeFigures8-159and8-160).Inthattest,thedifference betweenthemaximumpressureamplitudes forpressuretransducers P5.5andP5.2was013bar.ThepressureratioisP55/P52=0'8/065=12.Intest4.1.6,thedifference inthepowerdensities atthehigherfrequencies isalreadymorestronglyevident(seeFigures8-161and8-162).Inthattest,thedifference betweenthemaximumpressureamplitudes forP5.5andP5.2was0.5bar.ThepressureratioisP5.5/P52=1/0.5=2.Thedifference inthepowerdensities atthehigherfrequencies isquitestronglypronounced intests20.Rl.10(seeFigures8-163and8-164).Thedifference inthemaximumpressureamplitudes forP5.5andP5.2was1.1barinthattest.ThepressureratioisP5.5/P5.2

=1.73/0.63=2.75.Thepressuredifferences orpressureratiosarenotdiscernible inthepowerspectraforthedominantfrequencies, butareatthehigherfrequencies Fromthatwecanconcludethatthepressureoscillation whichwasmeasuredatpressuretransducer P5-5hasapproximately thesameamplitude atthedominantfrequency asthepressureoscillations vhichweremeasuredelsewhere inthevicinityofthequencher, eg.,atP5.2Inaddition, higherfrequency pressureoscillation components havingahighamplitude areoccasionally superimposed onthefundamental oscillation inthepressureoscillations atP55.Thehigherfrequency components, vhichoccuratpressureREV1,3/798-83 PROPRIETARY transducer P5.5,decayrapidlyintimeandspace,sothattheeffectofthehighfrequency pressureoscillations remainslimitedtotheimmediate vicinityofmeasuring locationP5.5Therefore, asstatedbefore,themeasurement resultsforthedynamicpressures atP5.5represent localeventshavingnoglobaleffectonthecontainment.

Wewilltherefore notconsiderthepositivepressuremeasurements atP5.5whenverifying thedesignspecification fortheoverallcontainment analysistheresultsfromthisgageareincludedfortheverification oftheloadingsonthecolumns.8.5.3.2Verification ofthe~Secified PressureA~mlitudes andVerticalPressureProfilesafterVentClearingThemeasuredpeakpressureamplitudes forthe125ventclearingtestsaretabulated inTables8.9and810.Section8.4.1alsopresentsanumberofFigures(8.27to8.34)whichshowthatthepressureamplitudes measuredinthetestshadnosignificant dependence ontheinitialreactorpressure.

Therefore, nomodification tothemeasuredpressures willbemadetoaccountfordifferences inthereactorpressurebetweenSSESandtheKarlstein teststand.Inaddition, asexplained intheprevioussection,thepositivepressuremeasurements aP5.5willnotbeconsidered whenverifying thedesignspecification fortheoverallcontainment analysis.

8532.1Overpressures Themaximumoverpressureamplitude measuredontheboundaryoftheKarlstein testtankwas1.0barThatpressurewasmeasuredattheconcretewall(p5.4)intest20.R1.10.

Amaximumpressureamplitude ofl.2barisspecifiedinsection4.1.3(KKBPressureTraceNo.35withthe1.5multiplier)

.Themaximumspecified overpressure amplitude of1.2bar.evelopsthemeasuredmaximumoverpresure amplitude of10bar.8.5.32.1.1VerticalPressureProfileItcanbeassumedthatthemaximumdynamicpressurevilloccurinaspherewhichsurrounds thequencherandhasapproximately theradiusofaquencherarm,(5'-0").Atsomedistancefromit,themaximumvaluewillbeattenuated inaccordance withadistancelaw.Foraninfinitewaterspace,the1/Rlawisapplicable forthedecreaseofthepressurewithdistancefromthesource.Thatlawappliesinalldirections, i.e,intheverticaldirection also.Thevalidityofthe1/Rlawisbasedontheassumption ofastationary (i.e.,fixedposition) oscillating bubbleintheinfinitewaterspace.Thatidealcasedoesnotholdfortheclearingofthereliefsystem.Alreadyshortlyaftertheexpulsion oftheair-steam mixture,BEV1,3/798-84 PROPRIETARY smallairparticles movetothesurfaceofthepoolbecauseofbuoyancy.

Evenmoreimportant, however,isthefactthatthewatersurfaceandthetankboundarysurfacesinfluence thedistancelawandthatthepressureamplitude mustvanishatthewatersurfaceitself.Accordingly, specified in6e0(183m)<hatheight,surface.apressureprofileintheverticaldirection isSection4.1.3.4providing foraconstant'pressure atabovethesuppression poolsbottomand,startingata,lineardecreaseofpressureuptothewaterFigure8-165showsthatthemaximumspecified pressuredistribution veryconservatively envelopsthemeasuredmaximumpressureamplitudes.

Theconservativeness becomesclearlyevidentif,basedonthemeasuredmaximumvalueofwallpressureamplitude of1baratpressuretransducer P5.4,weassumealineardecreaseofpressurefromthatmeasuringpointtothewatersurface.Thatassumedlinearpressuredecrease(depicted inFigure8-165byadashedline)alsoenvelopsthemaximumpressureamplitudes measuredintheverticaldirection.

Incomparison withtheassumedlinearpressuredecreaseandthespecified pressuredistribution, theconservativeness ofthespecificationbecomesobvious.~'-5-3-~2..

2VerticalPressureProfileIucluainulocalEffactsatP5.5Fortheevaluation oftheunpertubed pressuredistribution intheverticaldireciton, themeasuring pointP5.5wasomitted,eventhoughitliesinadirectlinewiththepressuretransducers P5.4,P5.6andP5.7.BecauseofthelocaleffectforP5.5,aseparateanalysisshallbeperformed here.Thatanalysisstartswithanestimation oftheverticalzoneofinfluence associated withthepressurepeakmeasuredatP5.5.Thelateralholesinthequencherarmsextendoverananglerangeof72~oneachside.Theholesaredrilledradially, sothatinfirstapproximation wecanassumeasourceflowoftheemergingfluid.Thehigh-frequency pressurepeakatP5.5occursatamuchlatertimethantheventclearing.

Itcanbesupposedthatatthattimethereisasteam-air mixtureflowingoutofthequencher.

Thesteam-air jetsemergingfromtheholeshaveahighdegreeofturbulence.

Thus,theedgesareverysoonmixedwiththesurrounding water.Furthermore, theemergingsteamiscondensed immediately andtheexpelledairiscooleddownquickly,sothattheexpelledcompactvolumeisreducedrapidly.Therefore toestimatetherangeofaction,itisassumedthatthesourceflowactsoverameananglerangeof8=e/2=720/236o.ThetotalrangeofactionisthenREVli3/798-85 PROPRIETARYb=xtan36~x=1.575m{distance fromcenterline ofb=1.14mquencherarmtoconcretewall)Thisrangeofactionof'1.14misdividedintoequalpartsaboveandbelowthemeasuring pointP5.5,sothatweobtainarangeofactionof10.57mrelativetothemeasurement locationBasedonthisrangeofactinthemeasuredverticalpressuredistribution considering thelocaleffectiscomparedwiththespecified pressuredistribution inFigure8-166.Thebasepointsofthepressureelevation atP5.5wereplacedonthestraightlineofthelinearpressuredropsymmetrically withrespecttothequencher's centerplane.FromFigure8-166itcanbeseenthatthemaximumspecified pressuredistribution resultsinalargerresultant forceonthecontainment boundaryandcolumnsthandoesthemeasuredpressuredistribution including consideration ofthelocaleffectThismeansthattheoverallspecified pressuredistributrion intheverticaldirection alsoenvelopes thelocalpressureelevation atp5.5.8.5322Unde~rressuresThemaximumunderpressure amplitude measuredontheboundaryofKarlstein testtankwas-0.68bar.Thatpressurewasmeasuredatheconcretewall.{P5.10)intest25.R2.Amaximumunderpressure amplitude of-0.56barisspecified inSection4.1.3{KKBPressureTraceNo.76withthe1.5multiplier).

The'nextlargestunderpressure recordedduringtest25.R2was-050bar.Thenextlargestunderpressure recordedanywhereduringtheventclearingtestswas-058baratP5.2intest25.1.Exceptforthetwomeasurement valuescalledoutaboveallothermeasuredunderpressures werehounded.bythemaximumspecified valueof-0.56har.8.5.322.1VerticalPressureProfileFigure8.167showsaplotofthemaximumspecified underpressure distribution andthemaximummeasuredunderpressure valuesfortheKarlstein tests.Itcanheseenthat,exceptfortheonevalueatP510fortest2S.R2,themaximumspecified pressuredistribution envelopsthemaximummeasuredpressureamplitudes.

REV.1,3/798-86 PROPRIETARY Inaddition, forSSES,themostunfavorable boundarycondition inthiscomparison isthelowliquidlevelof22ft=6.70minthesuppression pool.Thehydrostatic pressuredistribution withrespecttothatliquidlevelisindicated byadashedlineinFigure8-167.Thecomparison ofthemeasuredworstunderpressure distribution viththehydrostatic waterloadresulting fromtheworstboundarycondition forthiscomparison (lowestwaterlevelinthesuppression pool)showsthatthecompressive forcesfromthewaterloadandthetensileforcesfromtheunderpressure distribution=

maintaintheequilibrium."

Thus,theKarlstein testshave,inaddition, demonstrated thattheblowdownoftheSSESreliefsystemviththequencherdoesnotresultinanyresultant tensileforcesonthesteelliner,evenfortheworstpossiblesuperposition.

85.33Verification ofthePressureTimeHistories UsedfortheSSESContainment AnalysisXnordertoverifythatthepressuretimehistories usedfortheSSESdynamicanalysisduetoSRVactuation arebounding, thePowerSpectralDensities (PSDs)ofthespecified timehistories (withtheappropriate amplitude increaseandfrequency rangefromSection4.1.3)arecomparedwiththePSD'softheappropriate timehistories recordedintheKarlstein testtankandtransposed totheSSES"suppression pool.Statements concerning theclearingofparallelquenchers arebasedontheunrealistic andextremely conservative assumption thattheexpelled, airbubblesareequallylargeandoscillate inphase.Aquantification ofthatconservativeness isnotgiven.Mevillfirstdiscussandverifythetheorytobeusedtotranspose theoscillation frequencies measuredinthetesttanktothesuppression pool.Then,theappropriate multipliers forthisfrequency transposition willbeestablished.

Adiscussion isalsoprovidedfortransposing themeasuredpressureamplitudes tothesuppression pool.Finally,theactualverification ispresented.

85.33.1Tr~ansositionmethodfortheOscillation Frequency Thetheoretical basisforthetransposition ofthepressuretimehistories measuredintheKarlstein teststotheSSESsuppression poolisprovidedbytheKMUcomputercodesVELPOTandKOVIBlAByusingthetestresultsfromthePPGLquenchertestsinKarlstein, theGKMquenchertests,andthenon-nuclear hottestsintheBrunsbuttel nuclearpowerplant(KKBhottests),weshallfirstconfirmexperimentally thecorrectness ofthetransposition BEV1,3/798-87 PROPRIETAR Ytheory.Thatisfollowedbyacalculation ofthefrequencies forthefollowing threeblowdowncases:(1)Simultaneous blowdownofall16quenchers (2)Simultaneous blowdownofthe6quenchers relatedtotheautomatic depressurization system(ADS)(3)BlowdownofoneouterquencherForeachcase,acomparison ofthetheoretically calculated frequencies withthefrequencies measuredintheteststand)providesanumber(frequency multiplier) bywhichafrequency measuredintheteststandmustbemultiplied inordertogetthecorresponding frequency intheSSESsuppression poolAfactorfortheinfluence ofthesuppression pooloverpressure isalsodetermined inthesameway.Thecorresponding measuredpressuretimehistoryistransposed totheplantbydividingbythisfactor853.3.1.1Calculation ofMeasuredOscillation

~r~cruencies85.33.1.11PPGLTestsatKarlstein SinceitwasfoundthatFluid-Structure Interaction intheKarlstein testtankhasnosignificant influence onthemeasuredpressuretimehistories, itissufficient tocarryouttheanalysisforarigidtank.Thecomparison ofcalculated andmeasuredoscillation frequencies willbebasedon'theassumption ofequalbubblevolumes.Themeasuredoscillation frequencies aretakenfromTables8.9and8.10.Theassociated bubblevolumeswerecalculated fromthetestdata,usingtheformula:pp-piieeee'e)]~eo>[P-cP(7T[p-P(T'satpool)]TpipepipePpipePsatCTpoolpipefreepipevolume(ms)pressureinpipe(bar)hydrostatic pressureatthequencherlocation(bar)saturation steampressure(bar)relativehumidity(s=1at1005)watertemperature (oC)meantemperature inpipe(oC)Theaveraging ofthetemperature inthepipeisperformed byusingtheformulaEi1NpipeiwherethepipewasdividedintoNequalsections.

Thetemperature Tintheithsectionwasobtainedbyinterpolation betweenthemeasuredtemperatures.

REV.li3/798-88 PROPRIETARY Thecomparison betweenthemeasuredandcalculated bubblefrequency isshowninFigures8-168and8-169inwhichthebubblepulsation frequency isplottedversustheequilibrium volumeatstaticpressure.

Porthemeasurement pointsinFigure8-168itwasassumedthatdryairwasinthepipepriortotheteststart,whilewetair(100%humidity) wasassumedinFigure8-169.Ingeneral,goodagreement isfoundbetweenthetheoryandmeasuredfrequency.

However,wecannotoverlookthefactthatthemeasuredfrequencies infigure8-168)arehigherthanthecalculated ones,especially forsmallbubblevolumes.Thismayberelatedtothefactthattheactivevolumeofairunderwaterisactuallysmallerthanthevolumefoundfordryairfromthetestdata.Thisishintedatbythecalculation ofthebubblevolumeundertheassumption of100%humidityinthepipe.Therethemeasurement pointsareclosertothecalculated curve(Pigure8.169).Inordertokeeptheuncertainties associated withsucheffectsassmallaspossible, onlytestsforwhichtheinitialpipetemperature wasbelow700Cwerechosenforthecomparison withthetheoretical case.8.5.3.3.1.1.2 GKMMode~luencherTestsAnothersorceusedtoverifythetheoryisofferedbytheGKNquenchertests(Ref1).Sincethepipetemperatures therewereinthevicinityof300Corbelow,uncertainties inthebubble.volumeunderwateraredistinctly smallerthanintheKarlstein tests.Inaddition, theGKMtestswerealsorunwithbackpressure inthesuppression chamber,sothatinformation derivedfromthecomputercodesforblowdownofthequencherduringaloss-of-coolant accidentcanalsobeverified.

TheresultscanbefoundinFigures8-.170and8-171.Figure8-170showsthecalculated andmeasureddependence ofthepulsation frequency onthebubblevolumeforvarioussubmergences (2m,4mand6m)withatmospheric pressureinthesuppression chamber.Thetheoryandmeasuredfrequency agreeevenbetterherethanintheKarlstein quenchertests.Thisisprobablyduetothefactthatthebubblevolumesdetermined fromthemeasurement valueshaveamuchsmallerscatterduetothelowtemperatures inthepipe.Theinfluence ofbackpressure onthepulsation frequency isshowninFigure8-171.Hereagain,thetheoryisverifiedbythetestdata.85.33113KKBHotTestsInordertodemonstrate thecorrectness ofthetheoryforin-plantconditions also,calculations wereperformed fortheblowdowntestswithonevalveinthenon-nuclear hottestsintheBrunsbuttel BMRplant(Ref.3).Pigure8-172showstheresults.Theagreement betweenthecalculated andmeasured'requency issimilartothatintheKarlstein tests.Thesameistrueforthescatterrangeofthemeasurement values.Sincethepipetemperature herewasatabout90OC,alargerscatteractuallyREYlt3/798-89 PROPRIETARY wouldhavebeenexpected, butdidnotoccurbecausethepipewascarefully flushedwithairpriortothebeginning ofthesetests.8.5.3.3.1.1.4 Conclusion fromtheFrequency Calculations Thetestcalculations described aboveshowthatthetheory{VELPOTandKOVIB1Acomputerprograms) describes themeasuredfrequencies notonlyinonespecialcase,butalsoforabroadrangeofgeometries andbackpressure:

(1)Thesizeofthewaterspacevariesfromapproximately 7m>(GKN)toapproximately 23m~(testtankatKarlstein) toapproximately 400m~(suppression chamberinBrunsbuttel nuclearpowerplant).(2)Thequenchersubmergence rangedfromapproximately 2mto6m.(3)Thebubbleequilibrium.

volumevariedbetweenapproximately 015m~to37m~.(4)Thesuppression chamberpressurevariedfrom1barto3bar.(5)Thewatertemperature inthesuppression poolvariedbetweenapproximatley 16~Cto800C.Thus,thetheorycanbeconsidered verifiedandcanbeusedtotranspose thepulsation frequencies measuredintheKarlstein teststandtotheSSESsuppression pool.8.5.33.2Nuit~iliersforConversion oftheBubbleFrequencies fromtheTestStandtoSSESUsingtheVELPOTandKOVIBlAcomputercodes,thefollowing threeblowdowncasesareanalyzed:

(1)'Simultaneous blowdownofall16quenchers (2)Simultaneous blowdownofthequenchers A,B,G,K,M,PwhichareincludedintheADS{3)Blowdownofonequencher(quencher B)Theresultsareillustrated inFigure8-173whichshowsthepulsation frequencyasafunctionofbubblevolume(bubbleinhydrostatic equilibrium).

Thebehaviorofthefrequency curveforthe16-quencher caseintheplantispractically thesameasfortheteststand(Figure168),therebyconfirming onceagainthesuitability oftheteststandgeometrythatwaschosen.Inthecaseofthe6quenchers intheADScase,thefrequencies arehigherduetothelargersinglecellcorresponding tothesmallerREVli3/79~8-90 PROPRIETARYhydrodynamic bubblemass.Theyareevenhigherinthecaseofonequencher.

BasedontheresultsshowninFigures8-168and.8-173,asimpleformulacanbegivenforconverting fromthemeasuredbubblefrequencies tothesefrequencies foundintheplantbyasking:Bywhatfactort"multiplier")

mustabubblefrequency measuredintheteststandbemultiplied togetacorresponding frequency intheplant'?Thismultiplier isplottedinFigure8-174versusthe(measured) startingfrequency.

Thus,wehave:v=f(v).vplantvtest'estinwhichthemuliiplier fforagiveninitialfreguency canhereadofffromPigure8-173.ThegraphinFigure8-173isapplicable onlyforcaseswithapressureof1barinthesuppression poolairspace.However,theblowdownfortheADScaseduringaloss-of-coolant accidentisassociated withasuppresson pooloverpressure.

p~>lbarAnadditional multiplier fpKK(pKK)isnecessary forsuchcases,sothatthefrequency conversion mustbewritteninamoregeneralmanner:V=f(P).S(V).VplantPkk'testtestkkThemultiplier fpKK(pKK')canbetakenfromFigure8-175.Forasuppression chamberpressureof7bar,ithastheavalueof1,asitmustbe.Themultipliers forthefrequency alsofixthemultipliers fortheoscillation periodwhentransposing thepressuretimehistories measuredintheteststandtotheplant:ttesttlPkkvtestkkI85.33.3Transposition MethodforthePressureA~mlitudes Asalreadydescribed indetailinSection8.51,theteststandwassodesignedandthe.pressuretransducers weresoarrangedthatthemeasuredpressureamplitudes canbetransposed totheplantwithoutchangeCorrespondingly, a1:1transposition ismade.Becauseofitsobviousconservativeness, sucha1:1REV1,3/798-91 PROPRIETARY aiplitude transposition offerstheadvantage thatmoreexactquantitative proofsdonothavetobeprovided.

Themostsignificant conservative featuresarethefolloving:

(1)Inblowdowncase'swithseveralquenchers, itisassumedthatallbubblesareequallylargeandoscillate inphase.Deviations fromthisassumption

{suchasactuallyoccurintheplant)resultonlyinloverpressureamplitudes.

(2)Blowdowncaseswithlessthan16quenchers areassignedthesamepessureamplitude asthe16-quencher case.Inreality,suchcaseshavealoweramplitude duetothegeometry(largersinglecell).Theconservativeness described in(1)hasnotyetbeenprovenexperimentally inanyquenchertests,butitisalreadyobviousfromatheoretical viewpoint, sinceatime-shifted superposition oftvotemporalmaximaalwaysyieldssmallervaluesthananadditionofthemaximumvalues.Concerning theconservativeness of(2),thereareanumberqualitative indications fromtheKarlstein teststhemselves, fromcorresponding modelstudiesattheKarlstein modelteststand(Ref.1),andfromcalculations withtheVELPOTandKOVIB1Aprograms.

Theinformation obtainedfromallthreeoftheseinvestigations shallbedescribed inthefollowing sections.

Inaddition, wewillalsoexaminewhethertheconservative featuresareaffectedbyapossiblebackpressure inthesuppression poolairspace.85.33.31PPGL~uencher TestsatKarlstein Indications oftheconservativeness discussed in(2)aboveareobtainedfromtheKarlstein testsonthebasisofFigure8-176vhichillustrates themeasuredrelationship betweenexcitation (relative amplitude) andpressure-oscillation frequency fortheKarlstein tests.Thefrequency analysisforeachpressuretimehistoryhasatleasttwomaximaofthepowerdensity.Onepowerdensitymaximumliesatlowfrequencies andtheotheratsomevhathigherfrequencies.

Thereisafactorofapproximately twobetweenthetvofreqeuncies.

Thefirstpeakofthepowerdensity(lowfrequency).

isalwayslargerthanthesecondpeakofthepowerdensity(higherfrequency).

Accordingly, thelovfrequency isalvaysdesignated asthedominantfrequency Forpressuretransducer P510,thepowerdensities ofallanalyzedtestsareevaluated inFigure8-176.Different analysistimesvereselectedfortestshavingdifferent pressureoscillation frequencies ThetimevassochosenthatREV.1,3/798-92 PROPRIETARY approximately thesameoscillation periodscouldalvaysbeevaluated.

Thefollowing analysistimeswereselectedfortheevaluation:

3HzTime:5HzTime:9HzTime:0-1.8seconds0-1.3seconds0-0.6secondsTheareabeneaththefrequency spectrumvasdetermined andthenthesquarerootofthatnumerical valuewastaken.Thatresultsinvalueshavingthedimension

>>har>>.Thosenumerical valueswerenormalized tothemaximumvalue.Theresultsarethen"relative pressures>>

withrespecttothecalculated maximumpressurefromthefrequency spectra.Sincenodominantfrequencies higherthan6.5HzweremeasuredintheKarlstein tests,thesecondpeakswerealsousedtoevaluatethehigherfrequencies.

Hence,thepowerdensities ofboththedominantfrequency andthenexthigherfrequency areevaluated inFigure8-176.Basedonanempirical evaluation, it.followsfromFigure8-176thatthepressureoscillations vithhigherfrequencies havesmallerenergycontentthanthepressureoscillations withloverfrequencies.

Znaddition, asshowninFigure8-169,thehubblefrequency increases withdecreasing hubblevolume.Butdecreasing bubblevolumewithconstantsingle-cell sizemeans,according tothelawsofsimilarity, thesamethingasincreasing thecellsizewithconstantbubblevolumeTherefore, fromtheKarlstein testdata,itcanbesaidthatthepressureamplitudes decreasewithincreasing cellsize.8.5.33.32KM~UuencherTestsintheModelTestStandin~Ka1steinDuringthedevelopment oftheKWUquencher, testsvereperformed.

toexaminetheinfluence ofthesizeofthewaterspace(specifically:

freewatersurface)inthemodelteststandinKarlstein (Ref.1).Theresultsareillustrated inFigure8-177,whichvastakenfromRefence1.Itshowsdirectlyhovthebottompressureamplitudes decreasewithincreasing sizeofthewaterspace(singlecell).8.53.3.33Analytical Calculations Theconservativeness described in(2)aboveisalsoconfirmed fromresultsofcalculations withtheVELPOTandKOVIB1AREV.1,3/798-93 PROPRIETARY programs.

Asforthefrequency conversion, appropriate multipliers canbedetermined alsofortheconversion ofthepressureamplitudes fromtheteststandtotheplant.Theydependontheinfluence ofthewaterspaceonthestationary velocitypotential (spatialpressuredistribution normalized tounitsourcestrength) andonthehydrodynamic sourcestrengthassociated withthebubbledynamics.

Thesourcestrengthitselfisdependent inturnonthepressureinthebubble,.whichisdetermined bytheinterplay-of

.bubblevolumeandairsupplyintothebubble.Sincetheairsupplyvariesaccording tothedifferent operating conditions duringtheblowdown, onlyaconservative estimatecanbegivenwithintheframework ofthepresentinvestigations T'econversion

.fromteststandtotheplantforonequenchermayserveasanexamplehere.Meobtainforthebottompressurebeneaththequencher:

P(1quencher)

<0.7Pplanttestasuppervalue.8.5.333.4Influence ofBackgressure onthePressureAmplitudes Asforthebubbleoscillation frequency, thequestionoftheeffectofbackpressure inthesuppression poolairspacemustbeinvestigated.

Figure8-178showsthebottompressureamplitudes measuredintheGKNmodelquenchertestsforasuppression poolairspacepressures of1and3barAscanbeseen,thepressureamplitudes donotdependonthesuppression poolairspacepressure.

8.533.4Verification ofDes~in~Secification Inthetransposition ofthepressureoscillations measuredinKarlstein totheSSES,theextremely conservative assumption thatthesamepressuretimehistories areactingatallquenchers simultaneously isused.Differences inthepressuretimehistories originating fromthedifferent discharge linesareneglected.

Therefore, eachmeasuredpressureoscillation intheKarlstein ventclearingtestsisarepresentative containment

,loadforallloadcases:symmetrical loadcase(simultaneous responseofall16SRV'sunsymmetrical loadcase(response ofoneorthreeadjacentSRV'sautomatic depressurization inloss-of-coolant accidentREV.1,3/798-94 PROPREETARYAtransposition ofthemeasurement resultstotheplantisperformedfortheseloadcases.TheKarlstein testtankformsaconservative singlecell.Therefore, conservative enveloping pressureamplitudes weremeasuredinthatteststand.Mhentransposing thepressureoscillations fromthesinglecelltotheplant,thereisanincreaseofthepressureoscillation frequencies asdiscussed inSection8.5.3.3.2.

Asstatedpreviously, theincreaseofthepressureoscillation frequencies isaccompanied byadecreaseoftheamplitudes.

Thedecreaseoftheamplitudes isneglected forthisevaluation, Theamplitudes ofthemeasuredpressureoscillations remainconstantforallfrequencies.

Thatisanadditional conservative feature,asalreadydiscussed inSection8533385.33.4.1~foe~nencAnalysesofSelectedTestsThepressuretimehistories forselectedKarlstein testsareillustrated inFigures8-41to8-65Thefreqeuncy analyseswerecarriedout.withtheFourierAnalyzer5451madebyHewlettPackard.Thefrequency analysesweregenerated aspowerspectraldensities.

Thefrequencies atwhichastructure isexcitedintooscillation canbereadofffromthepowerspectraldensities.

Freqeuncy analyseswereperformed forpressuretransducers P5.2,P5.4,P5.5,andP5.10andforthefollowing tests:4el.l,4.16,12.1,llel,19R27~20Rl1,20eRle10,2lel~21.2,25.R2Pressureoscillations atboththewallandthebottomareconsidered inthefreqeuncy analyses.

Alsoconsidered wasthefrequency analysisforpressuretransducer P5.5,whichshowsthefrlocaleffectThelimitation ofthemeasuredfrequencies ofthepressureoscillations wasdeterminative inselecting theteststobeanalyzed.

Thetestsselectedwerethosewhichexhibited pressureamplitudes

>0.3barbothatlowfrequency andalsoathigherfrequencies.

Thefrequency spectraforseveralKarlstein testsareillustrated inFigures8-179to8-182forpressuretransducers P5.10andp5.4.Thefrequency spectrafortwotestswiththelongdischarge lineandloweredwaterlevelareshowninFigure8-179.Theprincipal REV.1,3g798-95 PROPRIETARY frequency ofthepressureoscillations isat2-.3Hzforthesetests.Theyarethelowestpressureoscillation frequencies thatveremeasuredintheKarlstein tests.Figure8-180showsthedifference inthepressureoscillation frequencies fromclean-condition teststoreal-condition and/ormultiple-actuation testsforthelonglineThepressureoscillations haveaprincipal freqeuncy of3.5Hzintest4.1.1(cleancondition) and5Hzintest4.1.6{realcondition)

Fortheshortdischarge line,thefrequency shiftsfromcleantorealcondition areillustrated inFigure8-181fortests21.1and21.2.Theresultfortheshortlineis:cleancondition:

pressureoscillation frequency 5Hzrealcondition:

pressureoscillation frequency 6.5HzThefollowing canbesaidaboutthemeasuredgrin~cialfrequencies fortheKarlstein tests:Thelowestpressureoscillation frequency vasmeasuredinthetestswiththelonglineandadischarge linewaterlevelloweredto2.5mabovethemiddleofthequencher.

Itwas2.0-3Hz.2)Fortheclean-condition tests,pressureoscillation frequencies of3.5-4Hzweremeasuredwiththelongdischarge line.3)Fortheclean-condition tests,pressureoscillation frequencies of4.5-5Hzweremeasuredwiththeshortdischarge1ine.4)Thehighestfrequency fortheKarlstein testsvasmeasuredforthereal-condition and/ormultiple-actuation tests.Themeasuredfrequencies vere6-6.5Hz.Figure8-183shovsfrequency analysesfordifferent pressuretransducers foronetest.P5.2-sitsonthebottombeneaththemiddleofaquencherarm.P54-ismountedontheconcretewallattheintersection ofwallandbottom.P5.10-sitsontheconcretewalloppositethecenterpointof'heballofthequencher.

Thefrequency spectraofthepressuretransducers alldisplayapowermaximumatthesamefrequency (3Hz).Therefore, theREV13/798-96 PROPRIETARYlocationofthemeasurement andthestructure ofthemountingpositioninthewaterregionoftheKarlstein teststandhavenoinfluence onthemeasuredfrequency ofthepressureoscillations.

85.3.34e2ShiftingofthePSD'intheTra~nsositionfromtheTestStandtoSSESThecomparison ofthepressuretimehistories measuredintheKarlstein quenchertestswiththepressuretimehistories specified inSection4.13isaccomplished byusingthefrequency powerspectra.Thefrequency spectraoftheKKBtracesformingthebasisofthespecification inSection4.1.3andareillustrated inFigures4-31to4-33Thespecified pressureoscillations havetheirdominantfrequency intherangeof6.5-8Hz.Tocoverthepressureoscillation frequencies forSSES,thefollowing rulefortreatment ofthetraceswasgiven:Thethreetracesshouldbetime-expanded byafactorintherangefrom0.9to1.8.Thepressureamplitudes shouldbemultiplied byafactorof1.5.Tobeabletomakeacomparison withthemeasuredpressureoscillations, itisnecessary thatthefrequency spectraofthethreetracesbeshiftedinfrequency andstretched inamplitude.

InthisSection,weillustrate amethodbywhichthoseoperations onthefrequency spectracanbeperformed.

8.5.3.3.4.2.1 Pte5uencf shiftTheamplitudes arepreserved inthefrequency shift.Toensurethat,theareaunderthepowerspectrummustbeheldconstant.

Sincetheanalysistimerangeforthefrequency analysisisfinite,itmustbemadecertainthatthecomparison involvesonlyspectrainwhichapproximately thesamenumberofoscillation periodswereanalyzedThetracesareexpandedorcompressed bythefactorf<,whilekeepingthezeropointfixedLetusdesignate theexpandedorcompressed frequency byf'ndtheoriginalfrequency byf.Apowerspectrumcanalwaysbesubdivided approximately intotriangles whosebaseisthefrequency andwhosealtitudeisthepowerdensityIntheoriginalspectrum, theareabeneathatriangleis:f-fA21~h2REVli3/798-97 PROPRIETARYForthenewfrequency:

fl=fxflfxfp2Therefore, wehaveforthenewarea:AutsinceA'A,h=f~hh~rThepowerdensityoftheshiftedspectrumisinversely proportional tothefrequency multiplier.

Inthisdefinition, thefrequency multipliers aretobetakenfromSection4.1.3.Fromthefactor1.8wegetfV=1/1.8andfromthefactor0.9wegetfV=1/0.9.Ifthefrequency isreducedtohalf,thepowerdensityisdoubled.85.3.34.2.2~AmlitudeStretching Thefollowing relationprevailsbetweentheamplitude ofaload-vs.-timefunctionandthepowerdensity:a=k-bf'2k=correction factorForthestretched amplitude, wehavea'fa.Therelationbetweenpowerdensityandamplitude ispreserved bythestretching, sothatthesamecorrection factorisalsovalidafterthestretching.

Therefore:

hk-bf'andthus:hah)h'=f.hh2a8-98 PROPRIETARYThepowerdensityratiointheamplitude stretching isproportional tothesquareof'heamplitude multiplier.

8.53.3.43Symmetrical LoadCase~Simultaneous Blowdownofall16SRV's)AlltheKarlstein clean-condition andreal-condition testsareusedtoevaluatethisloadcase.Themultipleactuation testsareconsidered asirrelevant totheplantforthisloadcase.Theoneexception isthe10thblovdowntestofanentiremultipleactuation testwiththeshortdischarge line.Thosetestsarestarted10,minutesaftercompletion ofthe9thblowdowntest.Theyarethussubjecttothesameconditions asthereal-condition tests.Accordingly, the10thblowdovntestsofamultipleactuation testwiththeshortdischarge linearetreatedasreal-condition tests.ThetesttankinKarlstein represents thesmallestsinglecellwithrespecttothewaterspace.Thatmeansthatthemaximumpossiblepressureamplitudes forSSESweremeasured.

According toSection8.5.3.2,themeasuredpressureamplitudes arecoveredbythespecification Forthisloadcase,themeasuredfrequencies ofthepressureoscillations canalsobetransposed directlyfromtheKarlstein teststandtoSSES(seeSection8.53.2).Thus,allthepressuretimehistorycanbetransposed directlyfromtheteststandtoSSES.Inordertoshowthatthemeasuredtimehistories arealsoenveloped bythespecification, thefrequency spectraofthemeasuredpressureoscillations arecomparedwiththefrequency spectraofthespecified traces.Sincethemeasuredfrequencies differfrom.thefrequencies ofthespecified traces,thespectramustbetreatedbythemethodillustrated inSection8.5.3.3.42andbroughtintocoincidence atthedominantfrequency.

Thepressureoscillations measuredatpressuretransducer P5.2areusedforthiscomparison, since,thepressuretransducer P5.2exhibitsthehighestpowerspectrumofallthepressuretransducers thatareuseablefortheoverallloadingofthecontainment (P5.5isnotconsidered

-seeSection8.5.3.1).

Pressuretransducer P5.2ismountedonthebottomofthetesttank,directlybeneathaquencherarm.ThatpositionisalsopresentinSSES.Therefore, thispressuretransducer measurespressureoscillations havingthegreatestrelevance toSSES.Purthermore, thespecified tracesarealsoresultsofameasurement madewitha.bottompressuretransducer whoselocationwassimilartothatofP5.2.REV1,3/798-99 PROPRIETARYThecomparison ofthefrequency powerspectraisshowninFigures8-184to8-188Weseethatthefrequency spectraoftheKKBtraces,whichwerefrequency-shifted andamplitude-stretched asdescribed inSection8.5.3.3.4.2 envelopthefrequency spectraofthemeasuredpressureoscillations.

Therefore, itcanbestatedthat:a)theKarlstein measurement resultsareconservative fortheloadcaseofsimultaneous clearingofall16quenchers

{single-cell effect);'Ib)forthisloadcase,thepressureoscillations areenveloped bythespecification withrespecttotheiramplitude, theirfrequency powerspectra,'andtheirspatialdistribution.

8.5.3.3.4 4Unsymmetrical LoadCaseslowdownViaOneSRV)Forthisloadcase,alldeterminative parameters, exceptforthe-,watersurfacearea,weresimulated intheKarlstein teststandaccording totheiractualvaluesforSSES.Fortheloadcaseofventclearingwithonequencher, alargerwatersurfaceareaisavailable tothequencherinSSESthaninthetestintheKarlstein teststand.Accordingly, thepressureoscillation frequencies areraisedandthepressureamplitudes arelowered.Inthisverification, weconservatively makenoallowance fortheamplitude decreasewithincreasing watersurfacearea.Thefrequencies calculated according toSection8.5.3.3.2 fortheloadcaseofblowdownviaoneSRVarecompiledinthefollowing table:Frequency ofthepressureoscillations (Hz)MeasuredFrequency multiplier PlantSpecified frequency.

bandCLEANCONDITION 3.5-41.54-1.48 5.4-5.9REALCONDITIONS 5CLEANCONDITION 1.421.427.17.13.75-8.9480RWREALCONDITIONS 6.51.378.9REV.1,3/798-100 PROPRIETARY Thefrequencies transposed totheplantareallenveloped bythespecified frequency band.Fortheloadcaseofventclearingofonequencher, themultipleactuation testsmustalsobeconsidered (theywereincludedunder"realconditions" intheTableabove)Fortheloadcaseofsimultaneous blowdownof16quenchers, itwasshownthatthemeasuredpowerspectraareenveloped bythespecified powerspectra.Thatstatement appliesforallfrequency ranges.Iftwopowerspectraarebroughtintocoincidence atonefrequency andifbothspectraaresubjected tothesamefrequency shift,thenthereisnochangeintherelationofthetwospectratoeachother.Therefore, thepowerspectraoftheclean-condition andreal-condition testsarealsocoveredbythespecification intheloadcaseofventclearingofonequencher, since,asstatedabove,thetransposed frequencies fromthetestareallenveloped bythespecification frequency range.Forthemultipleactuation tests,test4.1.6isconsidered tobeenveloping forthelongdischarge line,sinceitprovidedthehighestpressureamplitudes.

Fortheshortdischarge line,test20.R1.10(whichformallycanbeclassified asamultipleactuation test)isconsidered tobeenveloping forthesamereason..Classified asareal-condition test,itwasshowninthepreceding Sectionthatthespecified tracesenvelopthepressuretimehistories forthattest.InFigure8-189itisshownthatthepowerspectrumoftest4.16isalsoenveloped bythespecified KKBtraces.Evenundertheveryconservative assumption thatthepressureamplitudes measuredinKarlstein canbetransferred withoutchangefortheloadcaseofvent,clearingofonequencher, thepressuretimehistories areenveloped bythespecified traces.85.3.34.5Un~smmetrical LoadCaseslowdownviaThreeA~d'acent SRV~sgThisloadcaseisboundedbytheloadcasesofsimultaneous ventclearingof16quenchers andventclearingofonequencher.

8.5.3.3.4-6 Automatic DeDzessuzizatio~as stem~A~DS LoadCaseInthissectionwediscusstheloadcasethatconsiders thefiringofthesixquenchers associated withtheADSunderLOCAconditions.

REVli3j'798-101 PROPRIETARY AsshowninFigure8-190,thefollowing conditions prevailinthesuppression chamberwhentheautomatic depressurization systemisactuatedduringIBA:Absolutepressureinthewetwellairspace,approximately Pressuredifference

.betweendrywell'andsuppression chamber2.55bar0.42barTheKarlstein testswithloweredwaterlevelinthedischarge lineareusedtoverifytheADScase.Thesetestsareusedastheycorrectly simulatethedischarge lineasitwouldbewithapositivepressuredifferential ofapproximately 0.42barinthedrywell.Thispositivepressuredifferential wouldresultintheloweringofthewaterlevelinthedischarge linetotheelevation ofthebottomofthedowncomers aswassimulated fortests10.3,ll1,12.1and13.1.Of'thosetests,thetest11.1(enveloping inamplitude andpowerdensity)isusedasthebasisfortheverification.Theamplitude-reducing influence ofthelargerwatersurfaceareaassignedtotheindividual quencherintheADScaseisconservatively neglected.

Also,sinceearlierKMUtestsprovedthatthebackpressure inthesuppression chamberhasnoinfluence onthepressureamplitudes, themeasuredpressureamplitudes aretakenunaltered fromthecorresponding Karlstein tests,inwhichthemeasurements weremadeatatmosphericpressure.

Thepredominant frequency intest11.1isat3Hz.According toSection8.5.3.3.2, Figures8-174and8-175,thefollowing frequency multipliers areobtainedfortheADScasefortransposition ofthepressureoscillations fromtest11.1totheplant:Influence ofthelargerwatersurfaceareaInfluence ofthe2.55barbackpressure Totalfrequency factorDomi.nant frequency 135141957HzNote:Themeasuredlowestdominantpressureoscillation frequency wasmeasuredintests12.1and13.1,whichfallintothesamecategoryastestll1.Miththetotalmultiplier 1.9,thefrequencies areraisedto3.8Hzandthusliewithinthespecifiedfrequency band(seeSection8.5.3.3.5).Thedominantfrequency iswithinthespecified frequency bandREVlg3/798-102 PROPRIETARY Thecomparison betweenthepreparedtracefrompressuretransducer P5.2fortest11.1andthespecificationisshowninFigure8-191.Asfortheotherloadcases,thecomparison ismadeinthepowerspectra'ofthepressuretimehistories.

Thespectrumoftest11.1wasshiftedfromthedominant.frequency of3Hztothedominantfreqeuncyof5.7Hzwhilepreserving thearea(amplitude)

.TheKKBtraceoftest76wasshiftedfrom8Hzto5.7Hzwhilepreserving thearea,andthenstretched byafactorofl.5inamplitude.

Figure8-191showsthatthetracefromthespecification, treatedinthismanner,envelopsthetraceofKarlstein test11.1transformerd totheADScasesincethetotalenergyrepresented bytheareaunderthepowerspectrumcurvefromthespecification isgreaterthanthatfromtheKarlstein testll.185.33.47SummaryIthasbeendemonstrated thatthe,frequency powerspectrumofthepressureoscillations inthesuppression chamberareenveloped bythefrequency powerspectrumspecified inSection4.1.3forallloadcases.Thus,thedesignspecification providesenveloping loadsalsoforthedynamicexcitation oftheSSFScontainment byventclearingofthereliefsystemwiththequencher.

8.5.33.5Evaluation oftheNeasuredPressureOscillations DuringCondensation Asdiscussed inSection8.4.2,threeregimescanbedistinguised inthecondensation process:a)Thequencherisclearedcontinually.

b)Thequencherisnotclearedcontinually.

c)Onlytheslidingjointiscleared,andthesteamcondenses inthedischarge line.8.533.51TheguencherisClearedContinually Thesteamiscondensed continually inthewaterpooloutsidethe-quencher.

Calmcondensation prevailsforcoldwaterandalsoforhotwaterintheblowdowntank(seeFigures8-78and8-79)Themeasured.maximumpressureamplitude iss0.13bar.Thiscondensation phasewasmeasuredforreactorpressures uptoabout4bar.Thefrequencies ofthepressureoscillations are70-120Hzforacoldpooland20-45Hzforahotpool.REV1,3/798-103 PROPRIETARY 8.5.3.3.5 2TheQuencherisnotClearedContinu~all Thiscondensaton phasebeginsvhenthecondensation rateoutsidethequencheris.greaterthanthesteammassflovthroughtheline.Thepressureinthequencherdropsbelovthehydrostatic pressureofthesurrounding vater.Thewaterpenetrates intothequencher.

Thecondensation surfaceareaistherebydecreased andsoisthecondensation rate.Theresultisapressureriseinthedischarge line,sothatthewaterthathasflovedinisexpelledagain.Theinflowofvaterfromthesuppression chamberintothequencherandthesubsequent brakingandre-expulsion ofthewaterisanonstationary processvhichoccursperiodically.

Forthatreason,thiscondensation phaseisalsocalledintermittent condensation.

Thephenomenon ofintermittent condensaton isdependent onthewatertemperature.

Forcoldvaterthereisahigherrateofcondensation outsidethequencher, resulting inalargergeneration ofnegativepressureinsidethequencherandtherefore amorevigorousflowofwaterintothequencher.

Foracoldwaterpool,theprofileofthedynamicpressures issimilartotheprofilevhichisfamiliarfromthechuggingphaseofthecondensation attheventpipes;seeFigure8-76.Forheatedvaterinthesuppression chamber,thecondensation rateoutsidethequencherissmaller,sothattheentireprocesstakesontheformofalow-frequency pressureoscillation (SeeFigure8-80)Thetestsin"Karlstein yieldedasmaximummeasurement resultforthedynamicpressure:

+0.28,-0.18bar,foracoldpool.Thetimebetweentwoeventsisabout1.0second.Foraheatedpool,themeasuredmaximumamplitude is+0.12,-0.07,bar.8.533.5.3Condensation intheDischarge LineandThrutheSlidi~nJointIfthesteamflovdecreases further,acondition isfinallyreachedinwhichthequencherisnolongercleared,butratherremainscontinually filledwithvater.Thenthereissteady-statecondensation ofsteaminsidethedischarge lineThiscondensation phaseproceedsverycalmlyandbeginsatreactorpressures below2bar.Inthiscondensation phase,maximumdynamicpressures of+0.08,-0.04barweremeasuredinthewaterpoolduringtheKarlstein tests.REVl,3/798-t04 PROPRIETARY 853.3.54Tr~ansositionoftheMeasurement ResultstoSSESInregardtosteamcondensation, theconditions oftheKarlstein teststandaredirecltytransposable totheconditions ofSSES.Onthewhole,thepressureamplitudes duringcondensation aresmallcomparedtot'hoseduringventclearingandtherefore arecoveredbythelatter.85.4PoolMixinqDurincnSRVActuation andThermalPerformance ofthe~uencher 85.41Introduction WhenanSRVresponds, steamiscondensed inthewaterofthesuppression poolviaaquencherAsthishappens,thewatermustabsorbtheheatofvaporization ofthesteam,andsoitisheated.Whenthereisalong-lasting discharge ofsteamviaaquencher, allthewaterinthesuppression chambershouldparticpate intheheating,soastolimitthelocalheatinginthevicinityofthedischarging quencherInordertoobtaingoodmixingofthehotterandcolderwaterinthepool,allquenchers arepositioned atasmalldistancefromthebottom(3~6"=1.07m)(seeFigure8-192)).Thewaterheatednearaquencherisspecifically lighterthanthecolderwaterlyingaboveit.Therefore, thewarmerwaterwillriseandmixwiththecolderwater.Toobtainanadditional mixingeffect,theholeoccupancy ofthequenchers weremadeslightlyunsymmetrical (approximately 8%).Mhereasthequencherarmshavethesameholeoccupancies onthesides,onlyonearmofeachquencherhasholesontheendcap.Inthatway,aunilateral thrustcanbeexertedonthewaterinthesuppression pool.Inthetopviewofthequencherarrangement (Figure8-193),weseethatthequenchers arearrangedintwograduated circles.Alongtheinnergraduated circle,thequencherarmsallpointinthecircumferential direction, andtheendcapwithholesallpointinthesamecircumferential direction.

Ontheoutergraduated circle,thecolumnswouldpractically preventathrusteffectifthequenchers werearrangedinthesamemanner.Therefore, thequenchers weredirectedmoreradially, butturnedbyanangleofgf=300inthecircumferential direction fromtheradii.Inthisway,50%ofthethrusttillactsinthecircumferential direction (equidirectionally withthethrustofthequenchers ontheinnergraduated circle).Itshouldbenotedthatthisnewarrangement supersedes theoriginalarrangement showninFigure1-4.Inthefollowing, weshallestimatetheacceleration ofthewaterpoolforthecaseinwhichonequencherontheoutergraduated REVli3/798-105 PROPRIETARY circleisoperatedforalongperiodoftimeatareactorpressureof70bar{valvefailureinopenposition)

.Thenweshallpresentsomemeasurement resultsfromatestwitha4-armquencherintheBrunsbuttel nuclearpowerplantandsomeinformation fromtheGEMNodelquenchertestsrelatedtosteamcondensation withaquencher.

85.42EquationofNotionoftheRotationPoolZtisassumedthatthewaterflowintherotatingpoolcanbeconsidered asastraight-line channelflowduetothesmallcurvature ofthegraduated circleandthelowcircumferential velocity.

Ifweplacetheoriginofthecoordinate systematthecenterofthedischarging

quencher, thentheequationofmotionoftherotatingpoolreads:5'.2mx+c2xFffmWcWeffThismassofwatertobeaccelerated inthesuppression chambersumofallflowresistances effective drivingforcedifferential equationhasthegeneralform:x+ax=bSubstituting x=u,thedifferential equationtakestheform:u+au~=bThisdifferential equationisaspecialformoftheRiccatidifferentialequationThegeneralsolutionofthedifferential equations readsR'ef.53:na.b+bTanha.b(t-K)u(t(n)=-.ga.b+a.q'Tanhga'b (t-c)Theinitialcondition fort=0reads:0n/ab+bTanh/ab-g)/ab=an.Tanh/ab(-g)REVl,3/798-106 PROPRIETARY Thisconditional equationissatisfied onlyif6andn=0.Theinitialcondition thenleadstothesolution:

b.Tanha.bu(t)=ga.bSinceu(t)=X(t),theequationforthevelocityoftherotatingpoolreads:x(t)=b)a.bTaab)a.btForthedistancecovered,wehave:x(t)=pJ'(v)dvThesolutionreads:X(t)=-ln[coshia.b.t(085.03'etermination ofthePlowResistances Thefollowing resistances areconsidered:

a)Wallresistance ofthechannelb)Resistance forflowaroundthedischarge lineswithquenchers andbottomsupportc)Resistance forflowaroundtheventpipesd)Resistance forflowaroundthecolumnsThechannelhasthefollowing dimensions:

REV.li3/798-107 PHOPRIETARYThehydraulic diameterofthechannelis:73(26~822-8~84Rect226.822-8.84(27.3)+,22.8cnFortheReynoldsnumber,wehave:Re!W.RRAccording toReference 36,thekinematic viscosity forwaterat40oCisv=0.65lx10-~m~/s.Xfweassumeavelocityof10-2m/ssoas'tocoverthestart-upphasealso,weget:R+10x2.8.43x1024.651x10TheSSESsuppession poolislinedwithasteellinerwhichcannotbeconsidered hydraulically smooth.Forsuchlargesteelstructures itmustbeassumedthattheindividual platesarenotjoinedtogetherwiththeiredgesparallel, sothattheflowresistance isincreased byprojecting edges.Wetherefore conservatively assumeanabsoluteroughness ofk=2mm.Thenwehave:Kdh2.8x10-47.1x10Thiscorresponds toafrictioncoefficient of>=0.022.Theresistance coefficient isthen:~.1mWh26.844+8.84m'2~7fRR56mr-.022w'28)Cylindrical bodiesareimmersedintothewaterofthesuppression chamber.Theyarethedischarge.

lineswithguenchers, theventpipes,andthesteelcolumns.REV1,3/798-108 PROPRIETARY OutsidediametermSubmergence mQuantityDischarge linesVentpipesSteelcolumns03240.61106733357-3168712Fortheindividual structural components, wethenhavethefollowing Reynoldsnumber:v=0.01m/s(seeabove)WRe=-dmFortheroughness, weassumek=0.2mm.Then,according toReference 39:ReynoldsnumberSubmergence dDischarge linewithquenchervi.thbottomsupportVentpipe5x10~9.4x10~6.17x10-i6.28x1022.555073073Columnl63x10'9x10-+6.9073Theresistance forceist,hen:p92Thesurfaceareaonwhichthewallresistance actsis:24Furthermore:

c6.16x.44+.73x50+.73x177.8+.73x93WAA16x0.324x9.650m.2c=238mA87x.61x3.35177.8.m2AS-12xl.06x7.3~93m2Sincethewaterregionofthesuppression chamberalsocontainsafewstructural components whichverenotconsidered here,anadditional allowance shallbemade.Mechoose:2c300mWREV.13/798-109 PROPRIETARY 8.5.4.4Determination oftheForceNovi~nthe PoolForcesonthewatermassinthesuppression poolareproducedbythrustfromtheboreholes ononeoftheendcapswhicharepresentoneachofthequenchers.

Thesmallestthrustforceisproducedbythequenchers alongtheoutergraduated circle,sincetheydonothavetheirthrustboreholes arrangedinthecircumferential direction.

Thequenchers alongtheoutergraduated circleareturnedbyanangle4=30orelativetotheradialdirection.

g=50'DV=difference betweenpressureinthequencherandambientpressureThethrustforceresultsfromtheimpulseoftheoutflowing steam.F~APxA-+PxMDxA~Ueffective outletareaofquencherPD=densityoftheoutflowing steamW=velocityoftheoutflowing steamDAsaneffective outletareaofaquencherendcap,thereisavailable:

A~ga<xADUgeomeDC0.8(Section8.5.2.3)+0geom(~l2(4)6.9x10m-32ADOgeom5'~2x10m-32Aconstantreactorpressureof70barischosenfortheestimateof.theeffectiveness oftherotatingpool.According toReference 37,themassflowthroughthereliefvalveatareactorpressureof70baris:REVlr3/798-110 PROPRIETARY m=illkg/sTheresulting stagnation pressureinthequencheris:p=llbarandthesteampressureinthequencherholesis:pD=64barTherefore, PD"=34kg/m>WD462m/sTheforceactinginthecircumferential direction isthen:FeffFsinFeffTherefore:

(AP+P+Wj))A"xsinQwithQ=30'DUFeff2~O'N+lo5KN3~5KN85.45WorkingEquations fortheRotation'Pool ofSSESTheequationofmotionfortherotatingpoolreads:5'.2mx+c2effwwThisdifferential equationwassolvedingeneralforminSection85.4-2.Todetermine considerthehave:themassofwaterwhichistobemoved,wemustinternalstructures whichreducethewatermass.MeI,4(26.822)-(8.84))x.73--x(.324)x7.3x164--x(61)x3.35x87--x(1.06)x12x7.3]43.5x10KgForthetotalresistance coefficient wehaveaccording toSection8543:C<=300mandfortheeffectively actingforcewehaveaccording toSection8544:F=35KNeffREVl,3/798-111 PROPRIETARY Therefore, theeguationofmotionreads:3.5x10xX+1.5x10xX6-52or3.5x10Therefore,for:a=4.3x104b=9.9x102X+aX=bVab6.55x10tTheequationforthevelocityoftherotatingpoolreads:-1-3X(t)=,1.52x10Yanh6.55x10tTheequationforthedisplacement reads:X(t)=23.21nicosh6.55x10tiTheresultsareillustrated inFigures8-194and8-195.854.6EstimateoftheHeati~noftheSuppression ChamberMaterThelocalheatingofthesuppression chambervaterresultsfromthebalanceoftheheatbroughtinbythecondensing steamandtheheatdissipated bytheflowingwater.Astimepasses,hovever,thepoolissetintomotionbytheimpulseof.theinflowing steamandreachesavelocitysuchthatmostoftheheatbroughtinisdistributed overalargervolumeofwaterthantheassumedlocalvolume.,Thedifference betweenthelocalandmeanwatertemperature decreases.

85.47Experimental Proofs854.71NodelTankTestsThrustmeasurements onasteamjetveremadeintheKarlstein modeltankintheSpringof1973(Ref40).Thetestset-upisillustrated inFigure8-196Thesteampipeisconnected by.aspringtothesidewallofthemodeltank.Theexcursion ofthespringwiththesteampipeismeasuredbyadisplacement transducer.

Themeasurement systemvascalibrated bydetermining theexcursion ofthesteampipeforadefinedforce.Thesteamoutletopeninghadadiameterof10mm.Themassflowdensityvas600to630kg/m<s.Themeasuredreactionforceswere20-28N.REV1,3/798-112 PROPRIETARY Ashortcalculation yields:OutletareaRestpressurebeforetheoutletopeningPressureaftertheoutletopeningSteamdensity(at2.6bar)=7.854x10-~m~4.5bar2.6bar.=1.44kg/m~Theresulting outletvelocityis:W=gK-2.6x10~~1.135W-452.7m/sandthethrustforceis:F=(PW+hP)AffAff=08xAegeomF~(1.44x(452.72)+1.6x10)x0.8x7.854x10F~284NThemeasuredvaluesareloverthanthecalculated values.Themeasurements haveprovedclearlythattheimpulseoftheemergingsteamjetbecomesactiveasathrustandthat,vithrespecttothevelocitybuildupoftherotatingpool(andthusforthemaximumlocalheating),

itisconservatively boundedbythecalculated values.85.47.2KKBTestDuringtheNuclearCommissioning Thepressurereliefsystemwastestedduringthecommissioning phaseoftheBrunsbuttel nuclearpoverplant.Inonesuchtest,areliefvalvewasheldopenforatimeofabout270seconds.Thesuppression chambercoolingsystemvasswitchedonduringthetest.Waterwasdrawnoffinthelowerpartofthepool,cooled,andsprayedfrompipesprovidedwithholesandlocatedunderthetopofthesuppression chamber.12measuring pointsaremountedinthewaterregionofthesuppression chamber.Theyarearrangedatthreedifferent elevations (14m,16.5m,18.2m)andatfourdifferent circumferential positions (5o,75o,195o,245o).Thewaterlevelisataheightof18.89m.Figure8-197showsathreedimensional spatialrepresentation ofthemeasuredtemperature fieldinthevaterjustbeforeteststart(curve1)andat228secondsafterteststart(curve2).InFigure8-197,theverticalpositionofthetransducer isrepresented ontheordinateandthecircumferential positionontheabscissaThetemperature axispointstotherear.Theheatingofthepoolisindicated asthedifference ofcurves2and1atthreeelevation positions.

Themeanwatertemperature wasapproximately 32.3oCbeforethetestandapproximately 42.8oCREV.1,3/798-113 PROPRIETARY at228slater..Themaximummeasuredtemperature was500C,sothatthemaximumdeviation fromthemeanwas7.20C.Thedischarging quencherwaslocatedat285'tanelevation of14915mandaccelerated thewatertowardtheleftintheFigure.Correspondingly, the.water temperature ishigheraboveandtotheleftofthequencher.

Fromthatwecanseetheeffectiveness ofthequencher's arrangement nearthebottomandoftheunsymmetrical holearrangement withre.,pecttouniformutilization oftheheatsinkofthewaterpool.85473GKNHalfScaleQuencherCondensation TestAseriesofintermediate scale(1:2)condensation testswereperformed intheGKMteststandtodemonstrate thehightemperature performance oftheguenchers(Ref.

27).Condensation testswererunonsevendifferent versionsofthequencherdevice.Thelastthreeversionshad10-mmdiameterholeson'hequencherarmsThespacingoftheholecenterlines was1.5diameters circumferentially and5.0diameters axially.ThisholepatternisalsoadoptedintheactualSSESquencherdesign.Thesetestswererunatawatertemperature rangingfrom13oCto100oC(56oF-2120F) andasteammassflux(withrespecttotheholearea)rangeof8to495kg/m~(1.6to101ibm/ft~s).

Matertemperatures ashighas1070C(225~F) weremeasuredatcertainlocations inthesetests.85.48SummaryTheKarlstein'uencher testsandpreviousGKMhalfscalequenchertestsshowclearlythatsmoothsteamcondensation canbeachievedatelevatedtemperatures whichapproachthe.localsaturation limit.Xnadditionthecalculations andKKB,inplanttestsprovideinformation whichsuggestthatpoolmixingisenhancedbysteamdischarge throughtheholesintheendcapsofthequencher."

85.5Verification ofSubmerged Structures Load~Secification DueToSQVActuation Section4.1.3.7givesthedesignspecification fortheloadsonsubmerged structures duetoSRVactuation.

Thebasisforthespecification isthethreepressuretimehistories usedforthecontainment analysisbutinsteadofaconstantamplitude multiplier of1.5variousmultipliers, relatedtothecrossectional areaoftheobject,areused.(seeTable4-15).Theloadingonthecolumnsincluding thelocalized efectatP5.5hasbeendiscussed inSection8.5.3.2.1.2 REV1,3/798-114 PROPREETARYInadditiontheeffectsofairbubbleoscillation loadsonthequenchers havebeendiscussed inSection8.5.23.6.Thefollowing sectionwilldiscusstheloadingsontheventpipesasmeasuredintheKarlstein testtankandprovideadescription oftheinfluence fortheexpelledwaterduri'ngventclearing.

8.5.51LoadsontheVentP~ie85.511Measurement oftheLoadsXnordertodetermine theloadingoftheventpipenearaquencher, aventpipehavingthesameoutsidediameterandwallthickness asthatinSSESwasinstalled intheKarlstein teststandandsupported bytypicalbracing.(seeFigure8-10).Underneath thebracing,bendingstrainsweremeasuredintwomutuallyperpendicular planesbymeansofstraingauges(SGS1andSGS2)(seeFigures8-11and8-12).Thestraingaugesweremountedabout100mmbelowthebracing.Theoutsidediameteroftheventpipeis:D=0609mandtheinsidediameteris:D;=0589mThus,thecross-sectional areais:A~0.0188m2andthemomentofresistance is:4Dl320Wehave:-332.77x10mxW~'M~GxExWTherefore:

M~2.77x10'0'-3,11'ndhence;M~057cREV.1,3/798-115 PROPRIETARY Ifweinsertcinmicrometers permeterintothisequation, weobtainthebendingmomentinkN-mThebendingmomentscalculated inthismannerarestaticequivalentloads.5-5-5.1.2 MeasnnedBendi~nsaeents Figures8-198to8-200showthedependence ofthemeasuredresultant bendingmomentsonthereactorpressure, ventclearingpressure, and.pressureoscillation amplitude thatweremeasuredneartheventpipeontheconcretewall.Onlythetestswithcleanconditions wereusedfortheplotofthemeasuredbendingmomentsversusreactorpressure, whereasalltestsinthereactorpressurerangeof60-81barwereusedfortheplotsofthebendingmomentversusventclearingpressureandpressureoscillation amplitude.

Themeasurements ofthebendingstrainsattheventpipewereperformed onlyforthetestswiththelongdischarge line.Themeasuredmaximumbendingmomentwas14.6kN-mata74barreactorpressureanda13.8barventclearingpressure.

85513Extr~aolationoftheMeasurement Resultsand~ComarisonwiththeSpecified ValueIfthemeasurement valuesareextrapolated totheextremeconditions intheplantonthebasisofFigures8-198and8-199,wegetthefollowing extrapolated maximumvalues:16.5kN-mwithrespecttoan88barreactorpressure, 19.0kN-mwithrespecttotheventclearingpressureof16.5barforthelongdischarge pipe,asextrapolated inSection8.4fortheextremeboundaryconditions intheplant.Inthespecification, amaximumpressuredifference of0.75x0.8=0.6barwasspecified fortheventpipewiththedistribution illustrated inFigure4-24.Thepressuredistribution fortheventpipeinstalled intheKarlstein teststandisshowninFigure8-201Thefollowing relationappliesforthepressureattheendofaventpipe:~dPdP7.3-1.837.3-3.65hPssOe4barREVli3/798-116 PROPRIETARYAttheclampingpointoftheventstrut,wehave:AP07.3-1.837.3-6.3AP=01barThepressuredistribution fromtheendoftheventpipetotheclampingpointofthevent-pipe strutistrapezoidal.

L=0.1x-'-'-x2.652.65(0.4-0.1)2S'(2)3Theleverarmoftheactingforcewithrespecttotheclampingpointis:0.1+.0.42S1'59Forthebendingmomentattheclampingpointweget:M5=(~2~'2.65x0.6x1.59)10SP~SP63kNmRelativetothestraingauges,wehave:MBSP57kNmTheextrapolated maximummomentwas19kN-m.Itisthusdemonstrated thatthespecification envelopsthemeasurement valuesandtheirextrapolation.

Theproofthatthespecification envelopsthemeasurement valuesandtheirextrapolation isbasedonapurelystaticanalysis.

Suchananalysisispermissible becausetheexcitingpressureoscillations haveafrequency of4-6Hz.However,thestraingaugesindicateanaturaloscillation frequency of17-20Hzfortheventpipewhichisveryclosetothenaturalfrequency oftheventinSSES(19Hz)(seeFigure8-202).Hence,itcanbeassumedthatthedynamicloadfactorisclosetoone.8552Influence ofExpelledWaterDuringVentClearinc[

AreviewofthehighspeedfilmsandpressuretracesatP5.5fromtheKarlstein testsshowsnegligable influence oftheexpelledwateratthisgage.Inadditionthetotalpenetration oftheexpelledvaterappearstobeapproximately 3feetfora70barinitialsystempressure.

Therefore, noadditional loading,otherthanthatalreadyincludedinthepressuretracesvillheconsidered.

REV1,3/798-117 PROPRIETARY (Atimecorrelation ofahighspeedfilmtopressuretraceatP5.5willbesuppliedlater.}85.53SummaryTheloadsmeasuredonthedummyventpipearestaticequivalent loads,butloadswhichareasumofindividual components.

Inthespecification, thetransverse loadsoninternalstructures originating fromtheblowdownofthereliefsystemare.formulated asdifferential pressures acrosstheinternalstructures.

Thedifferential pressures havethesamepressuretimehistoryasthedynamicpressures inthewaterregionofthesuppression chamberThisformulation ofthetransverse loadsontheventpipe(moregenerally ontheinternalstructures inthewaterregionofthesuppression pool)yieldstheenveloping staticeg'uivalent load.ThiswasalsoverifiedbytheKKBtestswiththeactualreliefsystem(Ref.38).Themaximumdifferential pressures calculated fromthemeasurement resultsarep=0.16baratthequencherarm,andp=0.11barattheprotective pipeonthedischarge line.Theyarebothconservatively boundedbytheKKBspecified valueofp=0.2bar.TheKKBtestresultsshowsthatthereisaclearseparation betweenthespecified loadsandthemaximummeasuredloadsforboththelateralandverticalloadsoninternals inthepoolofthesuppression pool.Basedontheverification ofthetransverse loadsbytheKKBtestsandbasedonthecomparison betweenspecification andmeasurement fortheKarlstein tests(seeSection8.5.5.1),itcanbestatedthatthevaluesformulated inthespecification forthetransverse loadsoninternalstructures inthewaterregionyieldenveloping staticequivalent loads.REV1g3/798-118 KEY:1.Reliefvalve2.Compressed air3.HPsteamline4.Heating5.SRV6.Condensate eP,$$...'CIA,(o!>.d'1$$'4(C$!PACmli0a!0CUmmZCh0Zzzgzo$mLmZZr~Dmmnfh0Z

1$3t'4P<Pg~$4.$1716.))),O~15OO$$X(4DO~$)3KEY)l.Reliefvalve2.Compressed air3~HPsteamline4.Heating5.SRV6.Condensate I~~Ii.Ispo'gA9ggl~P8~%1,,C0Cpmxmgm)NyIIIgr~'Ngoc.)pE$$$$eIPE$'4)7Q3gy$~pill)yOH e

bi<<'seyesronJle'e/rs+cecrco~fttprnConcretesthtcttrral elementspaA0o<O040O4nchoa40OIiCl~0~I+ern,/iP5.30POwsleywntppe~O0ociOon00D'nXPS.p0oV/~~+YgPP59'P5.4np55P5.6P5.7p4IfR'~RT5.3vus.cXi0Oron/Ctop0n~0BBrooreDischarge lineforttWUSRvtnnlustedforIh+testsinqwstionlREV13/79SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTKARLSTEIN TESTTANKPLANVIERTYPICALVENTCLZARIl6INSTRU-MENTATION FIGURE'.7 LPc.5Ciscctce!cr(("IU5((ar(hata>seatla>Iheleeleahaa>estaahl

~~'0o0cteo'0ct'c>00orIIII.IIIILPr3IStJ5.(Ic>G5.2I"0't'.0o~000~00a~"~P5.70~~~~00J0,~a7...-.~T5.c0~a0LP42-gt~a>I.ooI~00oa~7o00iJiWJ~iLt.;,*:;'.Cl~~pa90rJ~Ja>~Ph:iI>thesBracingOummymentptpet>>at>'se>esIipali5.5K.S.prototype quencherP54P,S.3Pc2REVISUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTKARLSTEIH TESTTAHKC-DVIENTYHCALVEHTCLEARINGIsSSTRU-MEHTATIOH FIGURE8.8 LPC>d,dLP4,4~7,2m~6,2emSG52~oI~~~0~0~~0.00~~rLP4.2SG5.t0T56PST0Jg'h20000Cl02.65m~~p0Od~g4000000LprIaooT53nP56ppeP5.9~o00~rIOdd~~o4~~JdJo20JddCrooorPJ~dJCdT5IIT52PSoIP5!0P6iSS.ESprototype quencherREV13/79SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTKhRLSTEIN TE8TThEKh-BVISfvrncar.errchemi;aeraU-MEm,'hTIOS FIGURE8.9

100Oc908093C=200FIa0TwoActuations (firstclean,secondreal)~MultipleActuations (firstclean,subsequent real)OO70CDCD6050e<03020-24"C=75F55C=130FOperation FieldaVlID.CDCDCD6a~cn<(IaCD.CDCD34I10III203040I506070,80bar90ReactorPressureREV1SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLOCATIONOFTESTCROUPN).1INTHEOPERATION FIELOFIGUREey6 100908093C=200FIaCO130TwoActuations (firstclean,secondreal)OO70CDCD6055C=130FSO403024C=7SFOperation FieldUJDO)COCIIClCLCDCDCD110Cll10I":02030II4050607080bar90RecctorPresure3/79SUSQUEHANNA STEAMELECTRICSTATIONUNITS'IAND2DESIGNASSESSMENT REPORTLOCATIONOFTESTGROUPNO.2INTHEOPERATION FIELDFIGURE817 100'CU9080OO7093C=200FIaChCDaVlCLC)C)~MultipleActuations (firstclean,subsequent real)6055C=130F50403024C=75FOperation FieldLaJDCACDaVlCLC)15~cr'(IatDC)g020304050I607080bar90ReaciorPressUreREF1SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLOCATIONOFTESTGROUPIOo3INTHEOPERATION FIELDFIGURE

1009080OO7093C=200FaIhCL(D240TwoActvations (firstclean,secondreal1~MultipleActvations (firstclean,subsequent real)6050403055C=130FOperation Field22LUChlDCIIt5CLlDC3CD21~oi0UlGLC)EDPl24DC~750F1617181920I10II2030II4050II607080bar90ReactorPressure3/V9SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLOCATIONOFTESTGROUPNO.4INTHEOPKRhTION FIELDFIGURE8.19 100'C9080OO7093C=200FlaalhCL.lDC)0TwoActuations (firstcleanIsecondreal)6050403024C=75F55C=130FOperation FieldLaJDChCDCIIaCLC)C)C)L25alACLCIC)201020304050607080bcr90RBQclorPressureREV1SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLOCATIONOFTESTGROUPNO~5INTHEOPERATION FIELDFIGURE8.20 100'CP9080OO7093C=200FlaClCIlCLCDCD0OneActuatinnundercleancondition 6TwoActuations (firstclean,secondreal)6050403024C=75F55C=130FOperation FieldIaJDCDCDCIIaUlO.C)CD26/32laA3CDCD<IIaVlID.CD20-I1020304050607080bar90ReactorPressureaZV13/79SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLOChTIONOFTESTGROUPIO.6IlfTHEOPERATION FIELDFIGURE8.21 bor129Q.8cn6acn5o4CD32102030405060?08090bQrAbs.SystemPressureP2.6-~REV13/V9SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTVESTCLEARIRrHIESSUREVERSUSSYSTEMPRESSUREM?FLIlKV%ITCLEARINGTESTSFIGURE8.25 0

bar1413121098UlVlOl0OcA6cn5Co432102030405060708090barAbs.SystemPressureP2.6-5>>3/79SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTVENTCLEARINGPRESSUREVERSUSSYSTEMPRESSURESHORTLINEVENTCLFAHIlSTESTSFIGUREB.p6 50Height2019CO501Temperature Distribution 0beforeTest-Beginnig rr2Temperature Distribution 228SecondsafterTest-Beginnig CJe18,2co18cr0ooocoo17g16,5oc16Iclo)0COCOCO4CgagC.,o~C(C0'~~O)@0iN)IpMMMOI0CC7mmXCO922yC+m3'm22r~Um~uOOI02153(fC14~04080'ocation oftheQuencher195751201602002402803203604080Circumferential LocationoftheCondensation Chamber QRj+~l~+~q~~ge7PREFACF.hisReportcontainsdata,descriptions andanaylsisre1ativetoeadequacyoftheSusquehanna SteamElectricStationsdesigntoacmmodateloadsresultinq fromasafetyrelief,valve(SRV)discrgeand/oraloss-of-coolant accident(LOCA)./h IC=

~DlIT88LJOFCONTENTSChapterlGENERALINFORMATION 1.1PurposeofReport1.2HistoryofProblem1.3QuencherDischarge Device14tlKIISupportinq Program1.5PlantDescription 1.6Fiqures1.7TablesChapter2SUN'RY2.1LoadDefinitionSummary2.2DesiqnAssessment SummaryChapter3SRVDISCHARGE ANDLOCATRANSIENT DESCRIPTION Chapter4LOADDEFINITION 4.1LoadsfromSafetyReliefValveDischarge 4.2LoadsfromLoss-of-Coolant Accident4.3AnnulusPressurization 4.4Fiqures4.5Tables3.1Description ofSafetyReliefValve{SRV)Discharge 3.2Description ofLoss-of-Coolant Accident(LOCA)Chapter5LOADCONBINATIONS FORSTRUCTUR~ES PIPING~ANDEOUIPi'IENT 5.1ConcreteContainment andReactorBuildingLoadCombinations 5.2STructural SteelLoadCombinations 5.3LinerPlateLoadCombinations 54Dovncomer LoadCombinations 5.5Piping,Quencher, andQuencherSupportLoadCombinations 5.6NSSSLoadCombinations 5.7Equipment LoadCombinations 5.8Figures5.9TablesChapter6DESIGNCAPABILITY ASSESSMENT 6.1ConcreteContainment andReactorBuildingCapability Assessment Criteria6.2Structural SteelCapability Assessment Criteria6.3LinerPlateCapability Assessment Criteria

TABLEOFCONTENTS~Continue~d 6.4Downcomer Capability Assessment Criteria6.5Pipinq,Quencher, andQuencherSupportCapability Assessment Criteria6.6NSSSCapability Assessment Criteria6.7Equipment Capability Assessment CriteriaChapter7DESIGNASSESSMENT 7.1Assessment Methodology 7.2DesignCapability Margins7.3FiguresChapter88~SEEOENCHERVERIVICETION TEST8.1UnitCellApproach8.2Simulation ofSSESParameters 8.3Instrumentation Arrangement 8.4TestMatrix8.5AnalysisofData8.6FiguresChapter9RESPONSESTONRC~UESTIONS9.1Identification ofQuestions UniquetoSSES9.2Questions UniquetoSSESandResponses Thereto9.3FiguresChapter10REFERENCES AppendixACONTAINMENT DESIGNASSESSMENT A.IContainment Structural DesignAssessment A.2Submerged Structures DesiqnAssessment AppendixBCONTAINMENT RESPONSESPECTRADUETOSRVANDLOCA)LOADSAppendixCREACTORBUILDINGRESPONSESPECTRADUETOSRVANDLOCALOADS It.'II,it)+lrIii''tt' AppendixDTABLEOPCONTENTS~Continue~d PROGRAMVERIFICATION D.1Poolswell ModelVerification D.2FiquresD.3TablesAppendixEREACTORBUILDINGSTRUCTURAL DESIGNASSESSMENT AppendixFPIPINGDESIGNASSESSNENT AppendixGNSSSDESIGNASSESSNENT AppendixHEQUIPMENT DESIGNASSESSHENT CHAPTER1GENERALINFORMATION TABLEOFCONTENTS1.1PURPOSE'OFREPORT12HISTORYOFPROBLEM13QUENCHERDISCHARGE DEVICE1.4MARKIX,SUPPORTING PROGRAM15PLANTDESCRIPTION 1.5.1PrimaryContainment 1.5.1.1Penetrations 1.5.1.2InternalStructures 16FIGURES1.7TABLES1-1 NumberTitle1-11-21-0CrossSectionofContainment Suppression Chamber,PartialPlanSuppression Chamber,SectionViewQuencherDistribution CHAPTER1TABLESNumber1-2TitleSSESX,icensing Basis"SSESContainment'Dimensions 1-3SSESContainment DesignParameters

"-1-3 10GQNERAIINFOBHATEON 11PURPOSEANDOBGANXZATXON OFBEPQRTThepurposeofthisreportistopresentevidencethattheSusguehanna SteamElectricStation(SSES)designmarginsareadequateshouldtheplantbesubjected totherecentlydefinedthermohydrodynamic loadswhich-'r'esult'rom safetyreliefvalve(SBV)operations and/ordischarges duringaloss-of-coolant accident(LOCA)..inaGE.boilinq waterreactor(BWB)1-4 Thecriteriausedfors'election oftheSRVdischarge deviceforSSESwereminimization ofpressureoscillation loadsinthesuppression poolandstablecond'ensation ofsteamfortherangeofsuppression pooltemperatures overwhichsafetyreliefvalvescanbeexpectedtooperateTheoptionsconsidered forsatisfyinqthesecriteriaweretherams-head tee,thequencherdischarge device,andvariations onthesedesigns.Evaluation ofthetwoprincipal devicesindicated thatthequencherofferedsignificant advantages overtherams-head, including improvedthermalperformance athigherpooloperatinq temperatures, aswellasreducedloads.Athermohydraulic quencherdesignforthesafe'tyreliefsystemoftheSSZSisbeingengineered byKraftwerk Onion{KMU)tosatisfytheabovecriteria.

TheSSESquencherdesignisdifferent fromthatpresented intheMarkIIDFFRinthatithasbeenoptimized basedonparametric teststudieswhichwereconducted byKMUinordertominimizeSRVdischarge loadsKraftwerk UnionhassuppliedtoPPGLapackageofsignificant desiqnandtestreportspertaining tothequencherdevelopment todemonstrate designadequacyandgualityoftheirdevice{refertoTable1-1).Mithreqardtothe<<secondpop<<phenomenon, KMUtestshaveindicated that,duetothequencherflowresistance, thewaterlevelintheSRVdischarge pipefollowing initialdischarge doesnotriseabovethewaterlevelofthesuppression pool.RefertoSubsection 0.1.3.6forafurtherdiscussion.

ToverifyKMU'sdesignapproachafull-scale SSESuniqueunitce11test,asdescribed inChapter8,isbeingperformed byKMUforPPSL.Section01presentstheanalysismethodsoftheSRVdischarqe loading1-7 1.4HARKIISUPPORTING PROGRAMPPGLisamemberoftheMarkIIovnersgroupthatvasformedinJune,1975todefineandinvestigate thedynamicloadsduetoSRVdischarge andLOCA.TheNarkIIovnersgroupcontainment programconcentrated initially onthetasksrequiredforthelicensing oftheleadplants(Zimmer,LaSalle,andShoreham)

.Thisphaseof,work,calledtheshorttermprogram,isessentially complete(asofJanuary,1978)andalonqertermprogramisundervay.

ThefinalgoaloftheMarkIIprogramistoevolveacompleteDPFRwhichvillsupporttheplant-unique DARssubmitted byeachplantforitslicensetooperate.Afterqainingsomeunderstanding ofthecontainment loadsthroughtheinitialMarkIIwork,PPGLdecidedtofindaqualified consultant tosupplement in-housetechnical resources andassistinthedetermination ofarealistic courseofactionforSusquehanna.

InNovember, 1976,StanfordResearchInstitute, novcalledStanfordResearchInstitute International (SRI),wasselected, andaninformation exchangebetweenSHIandPPGLensuedtodetermine whatcausedthegreatestloadsonthecontainment structure.

Afterconducting acompletereviewofknowndatafromtheMarkIIprogramandotherknowledqeable personsandorganizations, PPGXandSRIdecidedthattheloadsfrommainsteamsafetyreliefvalve(SHV)discharge werethekey1oadstobecontrolled.

Astudyofpossiblemethodsofcontrolling theloadandareviewofvhatactivities wereoccurring inEuropeledPPGLandSHItotheconclusion thatanSRVdischarge mitigating device{quencher) shouldbeemployedtoreducethisloadingontheSusquehanna containment.

AlthoughtheHarkIIovnersgrouphadquencher-related tasksintheirprogram,thesetaskswerenotsufficiently timelytosatisfySSES-construction scheduleneeds.Promreviewinq theworkdoneinEuropebysuchfirmsasASEATOM,MARVIKEN, andKraftwerk Union,PPGLdiscovered thatallknownquencherdesignswerebasedondatafromKraftwerk Union(KMU).Thus,inMarch,1977,SRI,Bechtel(theSSESArchitect/Engineer) andPPGLvisitedKWUfordiscussion andtourofquencher-related facilities.

InlateJuly,1977,PPGLemployedtheservicesofKMUtodesignaSSES-unique quencherdevice(seeSection1.3).Thedefinition ofLOCAloads(Section4.2)isinaccordance withtheNarkIIprogramDuetotheschedulerestrictions forSusquehanna.

PPGLwilldefinethethermo-hydrodynamic loadsresultinq fromSRVdischarge usinqanapproachdeveloped byKMU.Thisapproach(presented inSection4.1)differsfromthatoftheHarkIIproqram.See Tablel-lforasummaryofthedocumentation supportinq SSESlicensinq.

1-8 15PLANTDESCRIPTION TheSSES,Units1and2,isbeingbuiltinSalemTownship, Luzecne,County, about5milesnoctheast oftheBorouqhofBerwick.Twogenerating unitsofapproximately 1,100megawatts eachare.scheduled foroperation.

Unit'1forNovembec1,1980,andUnit2forMay1,1982.GeneralElectricissupplying'he nuclearsteamsupplysystems;Bechtelpowercorporation isthearchitect-engineer andconstructor.

Thereactorbuildingcontainsthemajornuclearsystemsandequipment.

ThenuclearreactorsforUnits1and2areboilingwater,directcycletypeswitharatedheatoutputof11.2x10~Btu/hr.Eachreactorsupplies134x10~lb/hrofsteamtothetandemcompound, doubleflowtucbines.

15.'IP~cimanContainment aThecontainment isareinforced concretestructure consisting ofacylindrical suppression chamberbeneathatruncated conicaldrywell.Piqure1-1showsthegeometry'f the.containment andinternalstructures.

Theconicalportionoftheprimarycontainment (drywell) enclosesthereactorvessel,reactorcoolantrecirculation loops,andassociated components

'ofthereactorcoolantsystem.Thedcywellisseparated fromthewetwell,ie,thepressuresuppression chamberandpool,bythedrywellfloor,.alsonamedthediaphragm slabMajorsystemsandcomponents inthecontainment includetheventpipesystem(downcomers) connecting thedrywellandwetwell,isolation valves,vacuumreliefsystem,containment coolingsystems,andotherserviceequipment.

Theconeandcylinderformastructurally inteqrated reinforced concretevessel,linedwithsteelplateandclosedatthetopofthedrywellwithasteeldomedhead.Thecarbonsteellinerplateisanchoredtotheconcretebystru'ctural steelmembersembeddedintheconcreteandweldedto-theplate.Theentire-containment isstructurally separated fromthesurrounding reactorbuildingexceptatthebasefoundation slabfareinforced concretemat,toplinedwithacarbonsteellinerplate)whereacoldjointbetweenthetwoadjoining foundation slabsisprovided.

Thecontainment structure dimensions andparameters arelistedinTables1-2and1-3.Adetailedplantdescription canbefoundintheSSESPSAH,Section3.81.5.l.1PenetrationsServicesandcommunication betweentheinsideandoutsideofthecontainment aremadepossiblebypenetrations throughthecontainment wallThebasictypesofpenetrations arethedrywellhead,accesshatches(equipment hatches,personnel lock,suppression chamberaccesshatches,CRDremovalhatch),electrical penetrations, andpipepenetcations.

Thepiping1-9 penetrations consistbasically ofapipewithplateflangeweldedtoit.Theplateflange.isembeddedintheconcretewallandprovidesananchorage forthepenetration toresistnormaloperating andaccidentpipereaction.

loads.Theinternalstructures consistofreinforced concreteandstructural steelandhavethemajorfunctions ofsupporting andshielding thereactorvessel,supporting thepipingandeguipment, andformingthepressuresuppression boundary.

Thesestructures include'he drywellfloor(diaphragm slab),thereactorpedestal(aconcentric cylindrical reinforced concreteshellrestingonthecontainment basefoundation slabandsupportinq thereactorvessel),thereactorshieldwall,thesuppression chambercolumns(hollow steelpipecolumnssupporting thediaphragm slab),thedrywellplatforms, theseismictrusses,thequenchersupports, andthereactorsteamsupplysystemsupports.

SeeFigures1-1through1-4aridTables1-2and1-31-10 dyCt"dp~rIsl.400106PC'CrCONTAINMENT Up(gpSRVDIAPHRAGM SLABPENETRATION FROMDIAPHRAGM SLABPENETRATION O~,Ce,i03.0>~~dp~136o~fp<'~u~e~Criy160P0r~drg1sr~irIdQ8O~'EDESTAL TOQUENCHERSSRVDIAPHRAGM SLABPENETRATION NOTE:BRACINGISNOTSHOWNSUSQUEHANNA STEAMELECTRICSTATION.UNITS1AND2DESIGNASSESSMENT REPORTSUPPRESSION CHAMBERPARTIALPLAN/FIGURE1-2 3454001So315000'PP,<<PO.<<<<~~~~<<'<<454300088FT'"K"-ur,25822mm~~2850P100FT"30480mmH~h,BGo0~a'~.A<<<<MP~,<<I'O7500<<2700d.a2550b<<0RSOFT"18288mm<<~pP3eFT<mP'<<4<<a'1050240V5r~P<<0~~C22542FT'"F12802mmD~<<<<<<~~L'<<<<~~.e0<<~4'0PP~k'3519541CS4NOTE:INDICATES ADS-ASSOCIATED QUENCHERSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTQUENCHERDISTRIBUTION FIGURE1R TABLE1-1SSESLICENSING BASISI..MarkIIContainment

-Supporting ProgramA.LOCh-RelatedTasksh.2.h.3.PoolSwellModelReportImpactTestsh.4.ImpactModelEPRI1/13ScaleTestsTaskeeetet~ettivetA.l."4T"PhasesI,II,IIXActivitePhaseITestReportPhaseIApplication Memorandum PhaseII6IIITestReportPhaseII&IIIApplication Memorandum ModelReportPSTF1/3ScaleTestsMarkI1/2ScaleTestsPSTF1/3ScaleTestsMarkI1/2ScaleTestsEPRIReportTarget~teeletteCompleted Completed Completed Completed Completed Completed Completed Completed Completed Completed Documentation NEDO/NEDE 13442-P-01

-5/76Application Memo-6/76NEDO/NEDE 13468-P-12/76Application Memo-1/77HEDO/NEDE 21544-P-12/76HEDE13426-P-8/75NEDC20989-2P-9/75NEDE13426-P-8/75HEDC20989-2P-9/75EPRINP-441-4/77UsedforSSESLicensinYesYesYesYesYesYesYesYesNoYesA.5.LoadsonSubmerged Structures LOCA/RHAirBubbleModel12/77LOCA/RHHaterJetModel12/77Applications Methods12/77TestReports1Q/78NEDE21471NEDE21472NEDE21730ReportUndecided Undecided Undecided Undecided h.6.h.7~A.8.ChuggingAnalysisandTestingChuggingSingleVentEPRITestEvaluation SingleCellReport4TFSIReportMultivent ModelCREAREReportEPRI-4TComparison Completed 1/7812/774Q/77Completed HEDE23703-P-ll/77 NEDE23710-PNEDE21669-PReportNEDO21667<<8/77 YesHoHoYesh.9.Multivent SubscaleTestingandAnalysisFacilityDescription and4Q/77TestPlanTestReport1979ReportFinalReportUndecided Undecided TaskNumberA.10.~eetteitSingleVentLateralLoadsActiviteAnalysisReportTarget~Contestee4Q/77Documentation ReportUsedforSSESLicensinUndecided B.SRVRelatedTasksB.l.QuencherModelB.2.RamsheadModelB.3.Monticello In-PlantSRVTestsDFFRModelConfirmatory TestsAnalysisPreliminary TestReportHydrodynamic ReportCompleted 3Q/78Completed Completed Completed NEDO/NEDE 21061-P-9/76ReportNEDO/NEDE 21061-P-9/76NEDC21465-P-12/76NEDC215&1-P-8/77..NoNoNoNoNoB.4.B.5.B.6.Be7.B.S.B.9vB.10.B.11.B.12.B.13.Consecutive Actuation Transient AnalysisSRVQuencherIn-PlantCaorsoTestsThermalMixingModelSRVWaterClearingQuencherAirBubbleFrequency Monticello FluidStructure Interaction (FSI)DFFRRamsheadModelComparison toMonticello DataRamsheadSRVMethodology SurnLaryStructural ResponsetoSRVDischarge QuencherEmpirical ModelUpdateAnalytical ModelsTestPlanAdvanceTestReportPinalReportAnalytical ModelAnalysisAnalytical ModelAnalysisData/Model Comparison Analytical MethodsAnalytical ReportAnalytical ModelandCorrelation 4Q/77Completed 1Q/784QI784Q/783Q/784Q/771Q/78Completed Completed 4Q/77lQ/79ReportNEDM20988-12/76ReportReportNEDC23689ReportReportReportNSC-GEN0394-10/77 NEDO24070-11/77 ReportReportNoNoNoNoNoNoNoNoNoNoNoNo TaskNnett~ActivitC.Miscellaneous TasksActiviteTarget.~ConlotionDocumentation UsedforSSESLicensinC.l.C.2.C.3.DFFR,Rev.3MassandEnergyReleaseReportNRCRound1Questions RevisionAnalytical ReportDFFRAmendment 110/783/77Completed GB-77-65NEDO/NEDE 21061Amendment 1-12/76YesYesNEDO/NEDE 21061Revision3Notyetavailable C.4.C.5.C.6.Decoupling ChuggingandSRVLoadsSRSSJustification NRCRound2Questions DFFRAmendment 1,Supplement 1SRSSReportDFFRAmendment 212/77OnholdCompleted Completed NEDO/NEDE 21061Amendment 1,Supplement 2NEDO/NEDE 24010-7/77NEDO/NEDE 21061Amendment 2-6/77YesYesYesDFFRAmendment 2,Supplement 1DFFRAmendment 2,Supplement 2Supplement 3Completed Completed 4q/77NEDO/NEDE 21061Amendment 2,Supplement 1-8/77NEDO/NEDE 21061Amendment 2,.Supplement 2Supplement 3YesYesYesC.7.Justification of"4T"BoundingLoadsChuggingLoadsJustification Completed NEDO/NEDE 23617"P-8/77 NEDO/NEDE 24013-P-8/77 NEDO/NEDE 24104-P-8/77 NEDO/NEDE 24015-P-8/77 NEDO/NEDE 24016-P'-8/77 NEDO/NEDE 24017-P-8/77 NEDO/NEDE 23627-P-8/77 Undecided Undecided Undecided Undecided Undecided Undecided Undecided C.g.FSIEffectsinMarkIIContainments C.9.MonitorWorldTestsII.1NUTestsandReports(supplied toPP&L)Evaluation ofFSIEffectslg/78Monitoring WorldPressureSuppression TestsReportReports(Quarterly)

Undecided NoDocumentNumberTitleFormation andoscillation ofaspherical gasbubbleStatusCompleted Documentation AEG-Report2241UsedforSSESLicensinYesAnalytical modelforclarification ofpressurepulsation inthewetwellafterventcleaningCopletedAEG-Report2208

DocumentNumber3~4,5.6.7.8.TitleTestsonmixedcondensation withmodelquenchers Condensation andventclearingtestsatGKMwithquenchers Conceptanddesignofthepressurereliefsystemwithquenchers KKBventclearingwithquencherTestsoncondensation withquenchers whensubmergence ofquencherarmsisshallowKKB-ConceptandtaskofpressurereliefsystemStatusCompleted Completed Completed Completed Completed Completed Documentation KWV-Report2593KWV-Report2594KWV-Report2703KWV-Report2796KWV-Report2840KWV-.Report2871UsedforSSESLicensinYesYesYesYesYesYes9.Experimental approachtoventclearinginamodeltankCompleted KMV-Report3129Yes10.KKB-Specification ofblowdowntestsduringnon-nuclear hot.functional test-Rev.IdatedOctober4,1974Completed KWU/V822ReportYesAnticipated dataforblowdowntestswith-pressurereliefsystemduringthenon-nuclear hotfunctional testatnuclearpowerstationBrunsbuttel (KKB)Completed KWU-Report3141Yes12.13.Resultsofthenon-nuclear hotfunctional testswiththepressurereliefsysteminthenuclearpowerstationBrunsbuttel Analysisoftheloadsmeasuredonthepressurereliefsystemduringthenon-nuclear hot,functional testatKKBCompleted Completed KWU-Report3267KWU-Report3346YesYes14.KKB-Listingoftestparameters andimportant testdataofthenon-nuclear hotfunctional testswiththepressurereliefsystemCompleted KWU-WorkingReportR521/40/77 Yes15.KKB-Specification ofadditional testsfortestingofthepressurereliefvalvesduringthenuclearstart-up, Rev.1Completed KWU/V822TAYes16.KKB-Resultsfromnuclearstart-uptestingofpressurereliefsystemCompletedKNJ-WorkingReportR142-136/76 Yes17'uclearPowerStationPhillipsburg

-Unit1HotFunctional Test:Specification ofpressurereliefvalvetestsaswellasemergency coolingandwetwellcoolingsystemsCompleted KWU/V822/RF13Yes DocumentNumberTitleStatusDocumentation UsedforSSESLicensin18.Resultsofthenon-nuclear hotfunctional testswiththepressurereliefsysteminthenuclearpowerstationPhillipsburg Completed KWU-WorkingReportR142-38/77 Yes19.KKPI-Listingoftestparameters andimportant testdataofthenon-nuclear hotfunctional testswiththepressurereliefsystemCompleted KWU-WorkingReportR521/41/77 Yes20.Airoscillations duringventclearingwithsingleanddoublepipesCompleted AEG-Report2327Yes616715/cak TABLE1-3SSESCONTAINMENT DESIGNPAKQKTERS A.DrellandSuressionChamber1.InternalDesignPressure2.ExternalDesignPressure3.DrywellFloorDesignDifferential PressureUpwardDownward4.DesignTemperature 5.DrywellFreeVolume(Minimum)

(including vents)(Normal)(Maximum) 6.Suppression ChamberVolumeFree(Minimum)

(Normal)(Maximum) 7.Suppression ChamberWaterVolume(Minimum)

(Normal)(Maximum) 8.PoolCross-Section Area~Drell53psig5psid340'F239,337ft33239,593ft3239,850ft.28psid28psidSuressionChamber45psig5psid220'F148,590ft3153,860ft3159,130ft122,410ft3131,550ftGross(OutsidePedestal)

TotalGross(Including PedestalWaterArea)Free(OutsidePedestal)

TotalFree5379ft5679ft5065ft5365ft CHAPTER2SUMMARYTABLEOPCONTENTSLOADDEFINITION SUMMARY21.1SRULoadDefinition Summary2.1.2LOCAI.oadDefinition SummaryDESIGNASSESSMENT SUMMARY2.2.1Containment Structure andReactorBuildingAssessment Summary2.2.1.1Containment Structure Assessment Summary.2.2.1.2ReactorBuildingAssessment Summary222223Containment Submerged Structures Assessment SummaryPipingSystemsAsessment Summary 20SUMMARYThisDesignAssessment ReportcontainstheSSESadequacyevaluation fordynamicloadsduetoLOCAandSRVdischarge.

2-2 21LOADDEFINITION SUMNARY2.1.1SRVLoadDefinition S~nmmarHydrodynamic loadsresulting fromSRVactuation fallintotvodistinctcategories:

loadsontheSRVsystemitself(thedischarge lineandthedischarge quencherdevice),andtheairclearingloadsonthesuppression poolwallsandsubmerged structures.

LoadsontheSRVsystemduringSRVactuation includeloadson,theSRVpipingduetoeffectsofsteadybackpressure, transient vaterslugclearing, andSRVlinetemperature.

Determination ofloadingonthequencherbody,arms,andsupportisbasedontransients resulting fromvalveopening(waterclearingandairclearing),

valveclosing,andoperation ofanadjacentquencher.

Airclearingloadsareexaminedforfourloadingcases:symmetric (allvalve)SRVactuation, asymmetric SBVactuation, singleSRVactuation, andAutomatic Depressurization System{ADS)actuation.

Dynamicforcingfunctions forloadingofthecontainment walls,pedestal, basemat,andsubmerged structures aredeveloped usingt'echniques developed inSection4.1.LoadsontheSRVsystemduetoSRVactuation arediscussed

.inSubsection 4.1.2,andloadsonsuppression poolstructures duetoSRVactuation arediscussed inSubsection 4.1.3.Afullscale,unitcelltestprogramisheingemployedtoverifySSESuniqueSRVloadingasdescribed inChapter8.2.12LOCALoadDefinition SummaryThespectrumofLOCA-induced loadsontheSSEScontainment structure ischaracterized byLOCAloadsassociated withpoolsvell, condensation oscillation andchuggingloads,aswellaslongtermLOCAloads.TheLOCAloadsassociated vithpoolsvell resultfromshortdurationtransients andincludedowncomer clearingloads,w'aterjetloads,poolsvell impactanddragloads,poolfallbackdragloads,poolswell airbubbleloads,andloadsduetodryvellandvetwelltemperature andpressuretransients.

Techniques usedtoevaluatetheseloadsaredescribed inSubsection 4.21.Condensation oscillations resultfrommixedflow{air/steam) andpuresteamfloveffectsinthesuppression pool.Chuggingloadsresultfromlovmassfluxpuresteamcondensation.

Theloaddefinitions forthesephenomena arecontained inSubsection 4.2.2.LongtermLOCAloadsresultfromthosevetvellanddryvellpressureandtemperature transients whichareassociated withdesignbasisaccidents (DBA),intermediate accidents (IBA),andsmallbreakaccidents (SBA).Theirloaddefinitions arecontained inSubsection

4.2.3. Structures

directlyaffectedbyLOCAloadsincludethedrywellwallsandfloor,wetwellwalls,RPVpedestal, basemat,linerplate,columns,downcomers, downcomer bracingsystem,guenchers, andwetwellpiping.Theirloadingconditions aredescribed inSubsection 424.2-4 22DESIGNASSESSMENT SUNKARYDesignassessment oftheSSESstructures andcomponents isachievedbyanalyzing theresponseofthestructures andcomponents totheloadcombinations explained inChapter5.InChapter7,predicted stressesandresponses (fromtheloadsdefinedinChapter4andcombinedasdescribed inChapter5)arecomparedviththeapplicable codeallovable valuesidentified inChapter6;theSSESdesignvillbeassessedasadequatebyvirtueofdesigncapabilities exceeding thestressesorresponses resulting fromSRVdischarge orJ.OCAloads.2.2.1Containment Structure andReactorBuildingAssessment Sum~mar2.2.1.1Containment Structure Assessment SummaryTheprimarycontainment valls,baseslab,diaphragm slab,reactorpedestal, andreactorshieldareanalyzedfortheeffectsofSRVandLOCAinaccordance vithTable5-1.TheANSYSfiniteelementprogramisusedforthedynamicanalysisofstructures.

Responsespectracurvesaredeveloped atvariouslocations withinthe~containment>>

structure.to assesstheadequacyof,components.,

Stressresultants duetodynamicloadsarecombinedwithother1oadsinaccordance withTable5-1to'evaluate rebarandconcretestresses.'esign

'safetymarginswillaredefinedbycomparing theactualconcreteandrebarstressesatcriticalsectionsvith,thecode,allowable values.2.2.'1.2ReactorBuildingAssessment SummaryThereactorbuildingisassessedfortheeffectsofSRVandLOCAloadsinaccordance withTable5-1.Containment basematacceleration timehistories areusedtoinvestigate thereactorbuildingresponsetotheSRVandLOCAloads.Responsespectracurvesatvariousreactorbuildingelevations areusedtoassesstheadequacyofcomponents inthereactorbuilding.

2.2.2Containment Submerged Structures Assessment SummaryDesignassessment ofthesuppression chambercolumnsanddovncomer pipesisbeingperformed.Baseduponanapproximate, equivalent staticanalysiscarriedouttodate,strengthening ofthesestructures shouldnotberequired.

Thisconclusion villbeconfirmed whenthedynamicanalysisiscompletePreliminary resultsfromthedynamicanalysisofthesuppression poollinerplateindicatethatnostructural modifications arerequiredThisconclusion willbeconfirmed whenthefinalanalysisiscomplete.

2-5 Theoriginaldowncomer bracinghasbeenredesigned withpipesectionstominimizebracinqdragloadsduetopoolsvell andfallback.

Therevisedbracingsystemisdesignedusingasimplified equivalent staticapproach.

Containment andreactorbuildingpipingsystemsarebeingdesignedtowithstand theeffectsofLOCAandSRVinduceddynamicloads.Theloadcombinations forpipingaredefinedinTable6.1ofRef.10.2-6 31DESCRIPTXOM OFSAFETYRELIEFVALVEDISCHARGE Susquehanna Units1and2areequippedwithasafetyreliefsystemwhichcondenses reactorsteaminasuppression chamberpool.Bythisarrangement, reactor,steamisconducted tothewetwell.viafastactingsafetyreliefvalvesandquencherequippeddischarge lines..Thissectiondiscusses thecausesofSRVdischarge, describes theSRVdischarge proce'ss, andidentifies theresultant SRVdischarge actuation cases31.1CausesofSVDischa~reDuringcertainreactoroperating transients, theSRVsmaybeactuated(bypressure, byelectrical signal,orbyoperatoraction)forrapidreliefofpressureinthereactorpressurevessel.Thefollowing reactoroperating transients have,beenidentified asthosewhichmayresultinSRVactuation:

\a.Turbineqenerator trip(withbypassorwithout)b.Hainsteamlineisolation valve(NSIV)closurec.Lossofcondenser vacuumd.Feedwater controller failuree.Pressureregulator failure-openf.Generator loadrejection (withandwithoutbypass)q.LossofacpowerhLossoffeedwater flowTripoftworecirculation pumpsRecirculation flowcontrolfailure-decreasing flowk.Inadvertent safetyreliefvalveopeningAdetaileddescription ofthesetransients isprovidedinSection15.2oftheFSAR3.1.2Description oftheSRVDischarge Phenomena andSRV~t.aadinCasesBeforeanindividual safetyreliefvalveopens,thewaterlevelinthedischarge lineisapproximately equaltothewaterlevelinthepoolAsavalveopens,steamflowsintothedischarge lineairspacebetweenthevalveandthewatercolumnandmixeswiththeair(seedetailedevaluation inChapter3ofRef1,pages6-12through6-14).Sincethedownstream portionofthedischarge linecontainsawatersluganddoesnotallowan3-3 immediate steamdischarge intothepool~thepressureinside-theline'increases.

Theincreased pres'sure expelsthewaterslugfromtheSRVdischarge lineandquencher.

Themagnitude ofthewaterclearinqpressureisprimarily influenced bythesteamflowratethroughthevalve,thedeqreetowhichenteringsteamiscondensed alongthedischarge line;,walls, thevolumeofthedischarge lineairspace, andthelengthofthewaterslugtobeaccelerated.

Theclearingofwaterisfollowedbyanexpulsion oftheenclosedair-steam volume.Theexhausted gasformsanoscillating systemwiththesurrounding water,wherethegasactsasthespringandthewateractsasthemass.Thisoscillating systemisthesourceofshorttermairclearingloads.Whiletheair-steam mixtureoscillates inthepoolitrisesbecauseofbuoyancyandeventually breaksthroughthepoolwatersurfaceatwhichtimeairclearingloadscease.Whenall'theairleavesthesafetyreliefsystem,steamflowsintothesuppression poolthrough'he quencherholesandcondenses.

TheSSESquencherdesignassuresstablecondensation evenwithelevatedpoolwatertemperature.

TheSBVactuation casesresulting fromthetransients listedinSubsection 3.1.1areclassified, asbeingoneofthefollowing cases:a.Symmetric (allvalve,orAOT)discharge b.Asymmetric discharge, including singlevalvedischarge c.Automatic Depressurization System(ADS)discharqe Alsoconsidered inthecontainment designistheeffectofsubsequent SRVactuations (second-pop),

discussed inSubsection 4.1-3-6.Thesymmetric discharge case(otherwise termedtheall-valve, orAOT,case)isclassified asthetypeofSRVdischarge thatwouldfollowrapidisolation ofthevesselfromtheturbinesuchasturbinetrip,closureofallMSXVs,lossofcondenser vacuum,etc.Aspressurebuildsupfollowing isolation ofthe'vessel,theSBVsactuatesequentially according tothepressuresetpointsofthevalves.Thismayormaynotresultinactuation ofalltheSRVs,butforconservatism inloadingconsiderations allvalvesareassumedtoactuateRefertoSubsection 4.1.3.1fordiscussion oftheloadsresulting fromthisall-valve case.Asymmetric discharqe isdefinedasthefiringoftheSRVsforthe~threead'jacent quencherdeviceswhichresultsinthegreatestasymmetric pressureloadinqonthecontainment.

Thissituation ishypot'hesized when,following areactor'cram andisolation oftheVessel,decayheatraisesvesselpressuresothatlowsetpointvalvesactuate.Xf,duringthistimeofdischarge ofdecayheatenergy,manualactuation ofthetwootheradjacentSRVsthat3-4 comprisetheasymmetric caseisassumed,thisactuation wouldresultinthemaximumsymmetric pressure'loadonthecontainment.

Subsection 4.1.3.2givesadiscussion oftheloadsresulting fromtheasymmetric discharqe case.Thesinglevalvedischarge caseisclassified asthefiringoftheSRVwhichqivesthesinglelargesthydrodynamic load.Transients thatcouldpotentially initiatesuchacaseareaninadvertent SRVdischarqe orDesignBasisAccident(DBA).RefertoSubsection 3.2.3foradiscussiori ofthelatterpossibility Subsection 4.1.3.2.1providesadiscussion oft'eloadsresulting fromthesinglevalvecase.TheADSdischarge isdefinedasthesimultaneous actuation ofthesixSRVsassociated withtheADS.SeePigure1-4forthelocationofthequencherdevicesassociated withtheADSvalves.TheADSisassumedtoactuatedurinqanIntermediate BreakAccident(IBA)orSmallBreakAccident'(SBA).IfanADSdischarge ishypothesized'oincident toanIBAorSBA(described inSubsections 3.2.2and3.2.1,respectively),

theeffectsofanincreased suppression pooltemperature (resulting fromsteamcondensation duringtheLOCAtransient) andincreased suppression chamberpressure(resultinq fromclearingofthedryvellairintothepooldurinqthetransient) areconsidered inthecalculation ofpressureloadingsfortheADSdischarge case.SeeSubsection 4.1.3.'3forfurtherdiscussion oftheloadsresulting fromtheADScase.I3-5 32DESCRIPTION OFLOSS-OF-COOLANT ACCIDENT'his eventinvolvesthepostulation ofaspectrumofpipingbreaksinsidethecontainment varyinginsizetype,andlocationofthebreak.Fortheanalysisofhydrodynamic loadingsonthecontainment, thepostulated LOCAeventisidentified as.aSmallBreakAccident(SBA),anIntermediate BreakAccident(IBA),oraDesignBasisAccident(DBA).32.1SmallBreakAccientSB~AThissubsection discusses the.containment transient associated withsmallprimarysystemblowdowns.

Theprimarysystemrupturesiathiscategoryarethoserupturesthatwillnotresultinreactordepressurization fromeitherlossofreactorcoolantorautomatic operation oftheECCSequipment, ie,thoseruptureswithabreaksize.lessthan01sqftThefollowinq sequenceofeventsisassumedtooccurWiththereactorandcontainmeat operating atthemaximumnormalconditions, asmallbreakoccursthatallowsblowdownofreactorsteamorwatertothedrywell.Theresulting pressureincreaseinthedrywellleadstoahiqhdrywellpressuresignalthatscramsthereactorandactivates thecontainment isolation system.Thedrywellpressurecontinues toincreaseataratedependent uponthesizeofthesteamleak.Thepressureincreaselowersthewaterlevelinthe-downcomers.

At.thistime,airandsteamenterthesuppression poolataratedependent uponthesizeoftheleak.Onceallthedrywellairiscarriedovertothesuppression chamber,pressurization ofthesuppression chamberceasesandthesystemreachesanequilibrium condition.

The'drywellcontainsonlysuperheated steam,andcontinued blowdownofreactorsteamcondenses inthesuppression pool.Theprincipal loadinqcondition inthiscaseisthegradually increasinq pressureinthedrywellandsuppression poolchamberandtheloadsrelatedtothecondensation ofsteamattheendofthevents.3.2.2Intermediate BeakAccidentIBAThissubsection discusses thecontainment transient associated withintermediate primarysystemblowdowns.

Thisclassification coversbreaksforwhichtheblowdownwillresultinlimitedreactordepressurization andoperation oftheECCS,ie,thebreaksizeisequaltoorslightlyqreaterthan0.1sqft.Following thebreak,thedrywellpressureincreases atapproximately 1.0psi/sec.Thisdrywellpressuretransient issufficiently slowsothatthedynamiceffectofthewaterintheventsisnegligible andtheventswillclearwhenthedrywell-to-suppression chamberdifferential pressureisequaltothehydrostatic pressurecorresponding totheventsubmergence.

The3-6 CHAPTER4LOADDEFINITION TABLEOFCONTENTS4.1SAFETYRELIEFVALVE(SRV)DISCHARGE LOADDEFINITION 42LOSS-OF-COOLANT ACCIDENT(LOCA)LOADDEFINITION 42.142114212421342.1442.1.54.2.1.64.2.1.74.2.24.2.2.1422.242.34.23.14.2.3.2423-342.44.2.4142.424.2.4.342444.2.4.542.46LOCALoadsAssociated withPoolswell Metwell/Drywell Pressures duringPoolswell PoolswellImpactI.oadPoolswell DragLoadDowncomer ClearingIoadsDowncomer WaterJetLoadPoolswell AirBubbleLoadPoolswell FallbackLoadCondensation Oscillations andChuggingLoadsCondensation Oscillation LoadDefinition ChuggingLoadDefinition LongTermI.OCALoadDefinition DesignBasisAccident(DBA)Transients Intermediate BreakAccident(IBA)Transients SmallBreakAccident(SBA)Transients LOCA.LoadingHistories forSSESContainment Components LOCALoadsontheContainment MallandPedestalLOCALOadsontheBasematandLinerPlateLOCALoadsontheDrywellandDrywellFloorLOCALoadsontheColumnsLOCALoadsontheDowncomers LOCALoadsonthedowncomer Bracing4-1 4.247LOCALoadsonMetwellPiping43ANNULUSPRESSURIZATION 44FIGURES45TABLES4-2 CHAPTER4Mum~beTitleP~XGURS4-1through4-37k4-384-394-404-414-424-434-444-454-464-474-48Thesefiguresareproprietary andare,foundintheproprietary supplement tothisDAR.SSESShortTermSuppression PoolHeightSSESShortTermWetwellPressureSSESPoolSurfaceVelocityvsElevation Basemat-SSESWaterClearingJetSSESJetImpingement Area(WaterClearing)

SSESPoolswell AirBubblePressureAirBubblePressureonSuppression PoolWallsSymmetric andAsymmetric Spatial'LoadingSpecification SSESDrywellPressureResponsetoDBALOCASSESWetwellPressureResponsetoDBALOCASSESSuppression PoolTemperature ResponsetoDBALOCA4-494-504-514-524-534-544-55SSESDrywellTemperature ResponsetoDBALOCASSESSuppression PoolTemperature ResponsetoIBATypicalNarkIIContainment ResponsetotheIBATypicalNarkIIContainment ResponsetotheSBASSESComponents AffectedbyLOCALoadsSSESComponents AffectedbyLOCALoadsLOCALoadingHistory.fortheSSESContainment WallandPedestalLocalLoadingHistoryfortheSSESBasematandLinerPlate4-57LOCALoadingHistoryfortheSSESDrywellandDrywellFloor4-3 4-584-594-604-614-62LOCALoadingHistoryfortheSSESColumnsLOCALoadingHistoryfortheSSESDovncomers LOCALoadingHistoryfortheSSESDovncomer BracingSystemLOCALoadingHistoryforSSESQetvellPipingThisfigureisproprietary 4-4 CHAPTER4Num~beTitleTABLES4-1through4-15Thesetablesareproprietary andarefoundintheproprietary supplement tothisDAR4-164-174-184-194-204-21LOCALoadsAssociated withPoolsvell SSESDryvellPressureSSESPlantUniquePoolsvell CodeInputDataInputDataforSSESLOCATransients Component LOCALoadChartforSSESHetvellPipingLOCALoadingSItuations 0LOADDEPXNTTION 4.1SAFETYRELIEFVALVESB~VDISCRARGE LOADDEFINITION SeetheProprietary Supplement-forthissection.4-6 42LOCALOADDEFINITION Subsections 4.2.1,4.2.2and4.2.3villdiscussthenumerical definition ofloadsresulting fromaLOCAintheSSEScontainment.

TheLOCAloadsaredividedintothreegroups.V(1)ShorttermLOCAloadsassociated withpoolsvell (Subsection 4.2.1)(2)Condensation oscillations andchuggingloads(Subsection 4.2.2)(3)LongtermLOCAloads(Subsection 4.2.3).Theapplication oftheseloadstothevariouscomponents andstructures intheSSEScontainment isdiscussed inSubsection 4.2.4.421LOCALOADSASSOCIATED WITHPOOLSWELL Adescription oftheLOCA/Poolswell transient hasbeengiveninSection3.2ofthisDesignAssessment Report.TheLOCAloadsassociated vithpoolsvell are-listed inTable4-16.Theappropriate MarkXIgenericdocumentfromwhichSSESplantuniqueloadsarecalculated isalsoshowninTable4-16.Adiscussion oftheseloa'dsandtheirSSESuniquevaluesfollows.Thedrywellpressuretransient usedforthepoolswell portionoftheLOCAtransient

(<2.0seconds)isgiveninTableIV-D-3ofRef7.Aportionofthistableisreproduced hereinasTable4-17.Thisdrywellpressuretransient includestheblovdowneffectsofpipeinventory andreactorsubcooling andisthehighestpossibledrywellpressurecaseforpoolsvell.

Theshorttermpoolsvell wetwellpressuretransient resulting fromthis'dr@wellpressuretransient iscalculated byapplyingthepoolswell modelcontained inRef8.Theequations andassumptions inthepoolsvell modelwerecodedintoaBechtelcomputerprogramandverifiedagainsttheClass1,2and3testcasescontained inRef9.Thisverification isdocumented inAppendixDtothisreport.Otherinputsusedforthecalculation oftheSSESplantuniguepoolswell transient areshowninTable4-18.Theshorttermsuppression poolsurfaceelevation andcorresponding wetwellpressuretransient calculated withthe.poolsvell codeareshowninPigures4-38and4-39respectively.

Theshorttermwetvellpressurepeakis561psia{41.4psig).The(drywellminuswetvell)pressuredifferential isalsoplottedonthiscurve.TheminimumAPoccurring durinqpoolswell is-9.2psidat0.893secondsafterventclearing(1.

58secondsafterthebreakoccurs)4-7 4.212Poolswell ZmactLoa'dAnystructure locatedbetweenthe.initialsuppression poolsurface(el.672')andthepeakpoolswell height(el690',seefiqure4-38)issubjecttothepoolswell waterimpactloadThereareonlyminorstructures (suchasmiscellaneous wetwellpipinq)inthisportionoftheSSESwetwall.

Thisloadiscalculated asspecified inRef10,S'ubsection 44.6.ASSESplant-unique velocityyselevation curvehasbeenqenerated withthepoolswell model(Figure4-40).I<isusedinconjunction withimpactpressurevsvelocitycurvesforvarioussizeandshapecomponents (Ref10,Figures4-34,4-35and4-36)todevelopapeakimpactpressureatthecomponen-t's elevation.

Thepe'akimpactpressureiscombinedwithageneralized impactpressuretimehistorycurve(Ref10,Figure4-37)tospecifythestructural load.Allstructures, subjecttopoolswell impactloadsintheSSEScontainment areclassified as>>smallstructures>>.

2.1.3Poolaeell D~aaLoadThepoolswell dragloadappliestoanystructure locatedbetweentheelevation oftheventexit(el.660')andthepeakpoolswell,heiqht(el.690').Theloadiscalculated'for allcomponents intheregionbaseduponthemaximumpoolsurfacevelocity(29.35fps),regardless ofelevation.

Thedragloadpressureiscalculated fromRef10,Equation4-24usingVf=29.35fpsforthevelocityandp=62.41bmjft~.forthedensityofwater,fP=(1/2)CDpfVf~(4-1)P(psi)=5.8C'4-2)Theappropriate dragcoefficient forthestructure involvedisselectedfromRef10,Figure4-29.Thepoolswelldragloadisappliedineitherthehorizontal orverticaldirection (Subsection 4.45.2ofRef10).Forthecaseofacomponent orientedvertically withitsaxisparalleltothevelocityofthepoolsurface,*

theskinfrictioncoefficient, AC~,usedinRef10,Subsection 44.8isappliedinplaceofCD.I'hismethodwouldapply,forexample,totheverticalloadsondowncomers, columns,orsafetyrelieflinesinthewetwell.UsinqCf=0.0023,theverticaldragforcepsonavertically orientedcomponent isrecalculated usingEquation4-26ofRef10.F(lbf)=0.0133Af(in~).V(4-3)HereAfistheskinfrictionarea(wettedsurfacearea)subjectto,theverticaldragforce.LOCAloadsonthedowncomer bracingaredescribed inSubsection 4246 Verticalloadsonthedowncomers duringdowncomer'learing canbeestimated byusingadragloadformulasimilartoEquation4-3.Inthiscasetheventclearingvelocityis60fps(Ref10,Subsection 4.4.5.1)andAfisthewettedinsideareaofthedowncomer, conservatively calculated to.beAf={12ft}(m)(2ft)=75~4ft<FromEquation4-3theverticalclearingloadonthedowncomer forSSESis,P=0.6kips.V'hisisofsimilarmagnitude totheverticalthrustloadof0.7kipsonthedowncomer durinqsteamblowdown(Ref10,Subsection 4.2.3).Lateralloadsonthedowncomers duringclearingareestimated fromRef11,Table3-4tobelessthan3kips.4215Downcomer HaterJetLoadThewaterclearinqjetloadiscalculated basedontheapproachdeveloped inthedesignguides{Befs12and13).Thisloadisexperience asadragloadbystructures locatedwithinthe)etconebeneaththedowncomers andasa,jetimpingement loadbythebasemat.Thejetimpingement loadonthebasematiscalculated fromRef10,Equation4-25,p.4-43.Pg=pfAvf2(4-4)Herepisthedensityofwater{takentobe62.4ibm/ft~),

Aisthetotaljetimpingement areaandvistheattenuated watervelocitycorresponding tothemaximumventclearinggetvelocity(Ref10).Figures4-41and4-42showelevation andplanviewsoftheSSESdowncomers andtheirassociated jetcones.Theradiusofthejetconeatthebasematis2.69ft.andthetotalareaintercepted bythe87downcomers intheSSESwetwellis1978ft~.AsseeninFigure4-42thereisnosignificant overlapofadjacentjetsonthebasemat.Theventclearingvelocityof60fpsisattenuated byafactorof0.68usinqthemethoddescribed inRef.10,'ubsection 4.4.5.1toyieldavalueof40.8fpsatthebasemat.Thejetimpingement pressureiscalculated fromRef10,Equation4-26,p.4-43tobeP=pfvIP=22m4ps'.~IUsingthevalueforAof1978ft~fortheSSESdesignthetotaldowncomer waterjetimpingement loadonthebasematis4-9 F=2848.3kips.Thisloadactsvertically downwardonthebasematfromthetimethebreakoccursuntil'thedovncomers havecleared,at0.6863sec(Ref7).4.2.1.6Poolswell AirBubbleLoadThepoolsvell airbubblepressureload'asitappliestothecontainment wallsisdescribed inRef10,Subsection 4.4.5.3.Thisloadisviewedasanincreaseinthehydrostatic pressureonthesuppression poolwallsbelovtheventexitplaneandiscausedbytheairbubblewhichhasbeenpurgedfromthedrywellintheinitialstagesoftheLOCA.Theairbubblepressuretransient calculated withthepoolsvell model(described inSubsection 4.2.1.2)isshovninFigure4-43.Figure4-44shovsthenormalized total.pressuredistribution (hydrostatic plusairbubble)toheappliedtothecontainment asaresultofthisload.Thepressureonthewetvellwallsbetweentheventexitandthewatersurfacecontainsalineardecreaseto0.0psigatthewatersurface(Ref10,Subsection 4.4.5.3).'his loadasitappliestosubmerged structures isdescribed inRefs13and14.4.2.1.7Poolswell FallbackLoadThepoolswell fallback3.oadisadragloadvhichappliestoallstructures betweenthepeakpoolswell height(el.690')andtheventexit(el.660').Thisloadiscalculated forcomponents inthisregionusingtheanalysisofSubsection 4.4.54ofRef10Sincetheverticalstructures areparalleltothefallbackflow,theyaresubjected tonegligible fallbackloads.(Forafallbackvelocityof30fpstheloadissignificantly lessthan1kip).Thedowncomer bracingstructure atelevation 668'-0"is,however,perpendicular tothefallbackflowandvillundergoafallbackloadappliedvertically dovnvard.

Thefallbackdragvelocityiscalculated usingtheequationonpage4-45ofRef10.VFB='.82(8)</~(4-6)FortheSSESdesign,themaximumdowncomer submergence, Ho,is12feetsothefallbackvelocityis34.05fps.Thedragpressureduetothisvelocityiscalculated fromRef10,Equation4-24.tobePFB(psi)=78(4-7)whereCpistheappropriate dragcoefficientforthestructure beingloaded.4-10 Pallbackloadsarecalculated usingRefs12and13.2.2Condensation oscillations a~adchuin'oadsCondensation oscillation andchugginqloadsfollowthepoolswell loadsintime.Therearebasically threeloadsinthistimeperiod,i.e.,fromabout4to60secondsafterthebreak.Condensation oscillation isbrokendownintotwophenomena, amixedflowregiemeandasteamflowregieme.Themixedflowreqiemeisarelatively highmassfluxphenomenon vhichoccursduringthefinalperiodofairpurgingfromthedrywelltothevetvell.Thus,themixedflowthroughthedovncomer ventscontainssomeairaswellassteam.Thesteamflovportionofthecondensation oscillation phenomena occursafteralltheairhasbeencarriedovertothevetwellandarelatively highmassfluxofpuresteamflowisestablished.

Chuggingisapulsating condensation phenomenon whichcanoccureither.folloving theintermediate massfluxphaseofaLOCA,orduringtheclassofsmallerpostulated pipebreaksthatresultinsteamflowthroughtheventsystemintothesuppression poolAnecessary condition forchuggingtooccuristhatpuresteam.flowsfromtheLOCAvents.Chuqqingimpartsaloadingcondition tothesuppression poolboundaryandallsubmerged structures.

4.2.2.1Condensation Oscillation LoadDefinition Theloadspecification forthemixedandsteamflowphasesofcondensation oscillation istakenfromAppendixAtoRef20.Themixedflovportionofthecondensation oscillation loadisspecified asasinusoidal loadatthecontainment's criticalfrequencies, between2and7Hzvithanamplitude ofx1.75psi.Thisloadistobeapplieduniformly tothevettedportionofthesuppression poolboundarybelowtheventexitwithalinearattenuation tothefreesurfaceo'fthesuppression pool.Thedurationofthisloadisfrom4to15secondsafterthebreakhasoccurred.

Thesteamflowportionofthecondensation oscillation loadisspecified asasinusoidal loadatthecontainment's criticalfreguencies betveen2and7Hzvithanamplitude ofa5.0psi.Theloadistobeapplieduniformly to,thewettedportionofthe:suppression poolboundarybelowtheventexitwithalinear.attenuation tothesuppression poolfreesurface.Alsoasinusoidal loadofamplitude a0.5psiisapplieduniformly tothedrywellboundaryatcriticalfrequencies between2and7Hz.Thedurationofboththedryvellandsuppression poolsteamflovcondensation oscillation loadisthetimeperiodfrom15to25secondsfollowinq theinitial.break.Condensation

'oscillation loadsonsubmerged structures arecalculated usinqRefs12and13.4-11 Thepoolboundarychuggingloadisspecified inRef15Tvoloadinqconditions aredescribed:

symmetric andasymmetric.

Thesymmetric loadinqcondition isspecified as+4.8psig/-4.0psigandistobeapplieduniformly aroundtheentirepoolboundaryasshovn.inFigure4-45(extracted fromRef15).eTheasymmetric loadingcondition hasaspecified maximumpositive/negative pressureof+20psig/-14psiqandhasthecircumfezential spatialdistribution depictedinFigure4-45.Chugqingloadsonsubmerged structures villbeevaluated whenthedesiqnguidedealingviththeseloadsiscompleted Thechuggingloadimpartedtothedowncomer willbespecified whentheappropriate dynamicforcingfunctionbecomesavailable 4-23LONGTERMLOCALOADDEFINITION Theloss-of-coolant accidentcausespressureandtemperature transients inthedrywellandwetvellduetomassandenergyreleasedfromthelinebreak.Thedryvellandwetvellpressureandtemperature timehistories arerequiredtoestablish thestructural loadingconditions i.ntheconta'inment becausetheyarethebasisforothercontainment hydrodynamic phenomena.

Theresponsemustbedetermined forarangeofparameters suchasleaksize,reactorpressureandcontainment init'ialconditions.

Theresultsofthisanalysisaredocumented inRef7.TheDBALOCAforSSESisconservatively estimated tobea3.53ft~breakoftherecirculation line(Ref7).'heSSESplantuniqueinputsforthisanalysisareshowninTable4-19.Drywellandvetvellpressureresponses areshovninFigures4-46and4-47(extracted fromRef7)Thesetransient descriptions donot,hovever,containtheeffectsofreactorsubcooling Suppression pooltemperature responseisshovninFigure4-48(Ref7~).Thistransient description alsodoesnotcontaintheeffectofreactorsubcoolinq.

Dry'veiltemperature zesponseisshowninFigure4-49andsimilarly doesnotcontaintheeffectsofpipeinventory orreactor'subcooling 4.2.3.2Intermediate Breakaccident~IBA)

Transients Theworst-case intermediate breakfortheMarkXIplantsisamainsteamlinebreakontheorderof0.05to0.1ft~.AtthistimeplantuniqueIBA,data.forSSESisavailable onlyforthesuppression pooltemperature responsetoa0.05ft>break(Ref7).ThisdataisshowninPiqure4-50.Drywelltemperature andwetwellanddryvellpressures fortheSSESXBAareestimated fromcurvesforatypicalMarkIZcontainment showninFigure4-51(extractedfromRef10)4-12 Atthistimeplant-unique SBAdataforSSESisnotavailable.

Thewetwellanddrywellpressureandtemperature transients

'foratypicalNarkIIcontainment areusedtoestimateSSEScontainment responsetotheseaccidents.

ThesecurvesareshowninFigure4-52{extracted fromRef10).424LOCALOADINGHISTORIES FORSSESCONTAINNENT CONPONENTS Thevariouscomponents directlyaffectedbyLOCAloadsareshownschematically inFigures4-53and4-54.Thesecomponents mayinturnloadothercomponents astheyrespondtotheLOCAloads.Forexample,lateralloadsont'edowncomer ventsproduceminorreactionloadsinthedryvellfloorfromwhichthe:downcomer's aresupported.

Thereactionloadinthedrywellfloorisanindirectloadresulting fromtheLOCAandisdefinedbytheappropriate structural modelofthedowncomer/drywell floorsystemOnlythedirectloadinqsituations aredescribed explicitly here.Table4-20isaLOCAloadchartforSSES.ThischartshowswhichLOCAloadsdirectlyaffectthevariousstructures intheSSEScontainment designDetailsoftheloadingtimehistories arediscussed inthefolloving subsections..

424.1LOCALoadsontheContainment WallandPedestalFigure4-55showstheLOCAloadinghistoryfortheSSEScontainment wallandtheRPVpedestal.

Thewetvellpressureloadsapplytotheunwettedelevations inthewetwell;theappropriate hydrostatic pressureadditionismadeforloadsonthewettedelevations.

Condensation oscillation andchuggingloadsareappliedtothewettedelevations inthevetwellonly.Thepoolswell airbubbleloadappliestothevetwellbo'undaries asshowninFigure4-44.42.4.2LOCALoadsontheBasematandLinerPlateFigure4-56showstheLOCAloadinghistoryfortheSSESbasematandlinerplate.Wetwellpressures areappliedtothewettedandunwettedportionsofthelinerplateasdiscussed inSubsection 4.2.4.1.Thedowncomer waterjetimpactsthebasematlinerplateasdoesthepoolsvell airbubbleload.Chuggingandcondensation oscillation loadsareappliedtothewettedportionofthelinerplate.42.4.3LOCALoadsontaheDcwellandD~rwellFloorFiqure4-57showstheLOCAloadinghistoryfortheSSESdrywellanddrywellfloor.Thedrywellfloorundergoes avertically applied,continuously varyingdifferential

pressure, theupwardcomponent ofwhichisespecially prominent duringpoolswell vhenthevetwellairspaceishighlycompressed 4-13 Figure4-58showstheLOCAloadinghistoryfortheSSEScolumns.Poolswell dragandfallbackloadsareveryminorsincethecolumnsurfaceisorientedparalleltothepoolswellandfallbackvelocities.

Thepoolswell airbubble,condensation oscillations andchugqinqwillprovideloadsonthesubmerged

{wetted)portionofthecolumns.4.2.4.5LOCALoadsontheDowncomers Fiqure4-59showstheLOCAloadinghistory.fortheSSESdowncomers.

Thedowncomer clearingloadisalateralloadappliedatthedowncomer exit{inthesamemannerasthechugginglateralload)plusaverticalthrustload.Poolswell dragandfallbackloadsareveryminorsincethedowncomer surfacesareorientedparalleltothepoolswellandfallbackvelocities.

Thepoolswell airbubbleloadisappliedtothesubmerged portionofthedowncomer asarethechuggingandcondensation oscillation loads.4.2.4.6LOCALoadsontheDowncomer BracingFigure4-60showstheLOCAloadinqhistoryfortheSSESdowncomer bracinqsystem.Thissystemisnotsubjecttoimpactloadssinceitissubmerged atelevation 668'sasubmerged structure itissubjecttopoolswell drag,fallbackandairbubbleloads.Condensation oscillations andchuggingattheventexitwillalsoloadthebracingsystemboththroughdowncomer reaction{indirect load)anddirectlythroughthehydrodynamic loadinginthesuppression pool.I4.2.47LOCALoadsonMetwellPipingFigure4-61showstheLOCAloadinghistoryforpipingintheSSESwetwell.Sincethewetwellpipingoccursatavarietyofelevations intheSSESwetwell,sectionsmaybecompletely submerqed, partially submerged, orinitially uncovered.

pipingmayoccurparalleltopoolswell andfallbackvelocities aswiththemainsteamsafetyreliefpiping.For,thesereasonsthereareanumberofpotential loadinqsituations whichariseasshowninTable4-21..Znaddition, thepoolswell airbubbleloadappliesto,thesubmerged portionofthewetwellpipingasdothecondensation oscillation andchuggingloads.'-14 43ANNULUSPRESSURIZATION TheRPVshieldannulushastherecirculation pumpssuctionlinespassingthroughit{forlocationincontainment seeFigure1-1).Themassandenergyreleaseratesfrom-apostulated recirculation linebreakconstitute themostseveretransient inthereactor,shieldannulus.Therefore, thispipebreakisselectedforanalyzing loadingoftheshieldwallandthereactorpressurevesselsupportskirtforpipebreaksinsidetheannulusThereactorshieldannulusdifferential pressureanalysisandanalytical techniques arepresented inAppendices 6Aand6BoftheSSESFinalSafetyAnalysisReport(FSAB)4-15 17.71ft0.883sec150:J'2wCO~10ZI0L,5IKCgfLwDXT30766.1104770.00.250.50.0.751.0TIMEAFTER'VENT CLEARING(SEC)SUSQUEHANNA STEANQLIKCTRIC STATIONUNITS1ANQ2DESIGNASSESSMENT REPORTSSESSHORTTERMSUPPRESSION POOLSURFACEHEIGHTFIGURE4-38

WETWELLPRESSURE(PSIA)OOOo0QQOVOl4CPOQCmPfllIIOQmZJHfllgmCXfm0QIllmXQZzZpC>COCOm~mCoCOCO~zZc+amrvfltll0OCO.Ozrm(mzoUl0IIIRQOooooo(0CO4l~0AtOMDK4oO(DRYWELL-WETWELL)QP(PSID) fP~yh'1lf,Hk' DOWNCOMERB.O.VENTPIPEEL.660'-0"PEDESTAL"iDIAPHRAGM SLABSUPPORTCOLUMN12'4"EL.648'-0<'ASEMAT SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2:.DESIGNASSESSMENT REPORTBASEMATSSESWATERCLEARINGJETFIGURE441 tIIAA-,I1WA~"tt

/II///-/IIjlCOLUMNS///8X//ql/I//t/(////lfJETIMPINGEMENT AREA(22.73SQ.FT./VENT)

(FROMDOWNCOMER WATERCLEARING) 4~~~4~lj~hz~~++I4Pv~~'~eg~e.O4'~~~5~~ygI~ICONTAINMENT WALL~~~~I~r~~~SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTSSESJETIMPINGEMENT AREA(WATERCLEARING)

FIGURE442

~IP.IAA'Il'\'~\C~rE CONTAINMEAT WALLCOLUMNPEDESTAL0.0PSIG0.0PSIGEL.672'-0"PB(t)+HYDRO.STATICPB(t)+HYDRO.STATICEL.660'0"PB(t)+HYDROSTATIC PB(t)+HYDROSTATIC PB(t)+HYDROSTATIC EL.6480BASEMATSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTAIRBUBBLEPRESSUREONSUPPRESSION POOLWALLSFIGURE444 30DRYWELL20CllCOLQscc10WETWELL-1OO10102TIME(seel103,104105(a)CONTAINMENT PRESSURERESPONSEFORINTERMEDIATE BREAKAREA300-200ss:DIIZ100IDRYWELL1OO10110TIME(sec)1031O4105(b)DRYWELLTEMPERATURE RESPONSEFORINTERMEDIATE BREAKAREASUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTTYPICALMARKIICONTAINMENT RESPONSETOTHEIBAFIGURE4-51 CONTAINMENT WALL0K0ooo00000000~04A00~0:o0"ooooac,ooORoy.o0DOWNCOMERSCOLUMNS,0000~0q00'Ieoo~oooooo0ooooWETWELLPIPINGNOTE:DOWNCOMER BRACINGISONLYPARTIALLY SHOWNINTHEINTERESTOFCLARITY.LETTERSINDICATESRVQUENCHERS SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTSSESCOMPONENTS AF-FECTEO BYLOCALOADSFIGURE4-S3

~~'\~r~,IINI I~1.:~~,B.O.SLABEL.700'-3"B.O.HYDROGENRECOMBINER EL.691'-0"VACUUMBREAKEREl'.692'-1"IIT.O.PLATFORMEL.691'-0"MAXIMUMPOOLSWELLEL.690'-0"MAXIMUMPOOLSWELLHEIGHT~1.5XMAXVENTSUBMERGENCE

~18'-0'C~~'RACINGEL.668'-0"HIGHWATERLEVELEL.672'.0"INORMWATERLEVEL'L.671'-0"IMMAXUMVENTSUBMERGENCE 0tiB.O.VENTPIPEEL.660'-0"12'IAPHRAGM SLABSUPPORTCOLUMN0IIWETWELLPIPING3t6ttT.O.SLABEL.648'-0"SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORT.SSES.COMPONENTS AFFECTEDBYLOCALOADSFIGURE4-54

TABLE4-16LOCALOADSASSOCIATED MITHPOOLSMFLL LoadReference 1.Hetwell/Dr ywellPressures duringPoolswell 2.Poolswell ImpactLoadsRef7,TableIV-D-3;Ref10,Subsec-tion4.,4.1.5Ref10,Subsec-tion4.4.6~3.Poolswell DragLoadsRef10,Subsections 4452,4.4.7,4484..Downcomer ClearingLoadsRef10,Subsection 4.3.1,Reference 11,Subsection 3.3.1.25.Downcomer HaterJetLoad6.Poolswell AirBubbleLoadRef10,Sub-section4.4.5.1Ref10,Sub-section4.45.37.Poolswell FallbackLoadRef10,Sub-section4.4.5.4 TAB.LE4-18SSESPLANTUNIQUEPOOLSWZLL CODEINPUTD'ATADowncomer Area(each)Suppression PoolFreeSurfaceAreaMaximumDowncnmer Submerqence Downcomer OverallLossCoefficient NumberofDowncomers InitialMetwellPressureHetwellFreeAiVolumeVentClearingTimePoolVelocityatVentClearingInitialDrywellTemperature InitialDrywellRelativeHumidity2.96ft~506503ft~12.002.58715.45psia149,000ft~0.6863sec3.0ft/sec135oF020 0

TABLE4-19INPUTDATAFORSSESLOCATRANSIENTS Drywellfreeairvolume(includinq ventsjMetwellfreeairvolumeNaximumdowncomer submerqence Downcomer flowarea(total)Downcomer losscoefficient

'Initialdrywe11pressureInitialwetwellpressureInitialdrywellhumidityInitialpooltemperature Estimated DBAbreaksizeNumberofventsInitialmassofsteaminvesselInitialmassofsaturated waterinvessel239,600fthm149r000ft>12.0ft256.7ft2.515.45psia15.V5psia205900P353ft~8724,5001bm674,0001bmMinimumsuppression poolmassInitialvesselpressureVessel6internals massVessel6internals overallheattransfercoefficient 7.6x10~ibm1,055psia2,940,300 ibm484.9Btu/secoF Vesselandinternals specificheatInitialcontrolroddriveflowInitia1steamflowto'ainturbineRCIC6HPCI(HPCS)flowinitiation level,distancefromvessel"0"0123Dtu/1bmF1083ibm/sec3931.51bm/sec489.5in Tahle4-19~Conti nuedgRCIC6HPCI(HPCS)flowshutofflevel(normalwaterlevel),distancefromvessel"0<<564.0inRatedRCICflowratetovesselRatedHPCI(HPCS)flowratetovesselRCICshutoffpressureHPCI(HPCS)shutoffpressureCondensatestoragetankentha1py'CRDenthalpyInitialpowerlevelPeedwater enthalpyCleanupsystemflowCleanupsystemreturnenthalpyInitialvesselfluidenthalpyRHRheatexchanqer

>>K~~inpoolcoolingmodeRHRheatexchanger steamflowincondensing modeRHRheatexchanger flowinpoolcoolinqmodeRHRheatexchanger outletenthalpyincondensinq modeServicewatertemperature 83.4ibm/sec695.ibm/sec165psia165psia48Btu/ibm48Btu/ibm3.23x10~Btu/sec78Btu/ibm36.94ibm/sec413.2Btu/ibm573.1Btu/1bm306Btu/sec~F25lbs/sec1390lbs/sec108Btu/lhm90~F CHAPTER5LOADCOMBINATIONS FORSTRUCTURES'IPING'ND EQUIPMENT TABLEOFCONTENTS51CONCRETE.CONTAINMENT ANDREACTORBUILDINGLOADCOMBINATIONS 52STRUCTURAL STEELLOADCOMBINATIONS 53LINERPLATELOADCOMBINATIONS 54DOMNCOMER LOADCOMBINATIONS PIPING'UENCHER'ND QUENCHERSUPPORTLOADCOMB'INATIONS5.5.1LoadConsiderations forPipingInsidethe'Dryvell5.5.2LoadConsiderations

.forPipingInsidetheMetwell5.5.3QuencherandQuencherSupportLoadConsiderations 5.5.4LoadConsiderations forPipingintheReactorBuilding5'NSSSLOADCOMBINATIONS 57EQUIPMENT LOADCOMBINATIONS 58FIGURES59TABLES5-1 CHAPTER5FIGURES~umber5-15-25-35-4TitlePipingStressDiagramsandTablesPipingStressDiagramsandTablesPipingStressDiagramsandTablesPipingStressDiagramsandTables5-2 CHAPTER5TABLESTitle5-1LoadCombinations forContainment andReactorBuildinqConcreteStructures Considering Hydrodynamic Loads5-2LoadCombinations andAllowable Stre'sses forStructural SteelComponents 5-3LoadCombinations andAllowable StressesforDowncomers 5-3 50LQRU~CQBINILTIO~S FORSTRUCTURES PIPINGINDEQUIPNENT Toverifytheadequacyofmechanical andstructural design,itisnecessary firsttodefinetheloadcombinations towhichstructures, piping,andequipment maybesubjected.

Inadditiontotheloadsduetopressure, weight,thermalexpansion, seismic,andfluidtransients, hydrodynamic loadsresulting fromLOCAandSRVdischarge areconsidered inthedesignofstructures, piping,andequipment inthedrywellandsuppression pool.Thischapterspecifies howtheLOCAandSRVdischarge hydrodynamic loadswillhecombinedwiththeotherloadingconditions.

Zortheloadcombinations discussed inthischapter,seismicandhydrodynamic responses arecombinedhythemethodsspecified inRef.10Subsection 5.2.2andRef10Section'.3.

5-4 53LINERPLATELOADCOMBINATIONS Thelinerplateandanchorage systemaredesignedfortheloadcombinatioms listedinTable5-1exceptthatallloadfactorsaretakenasunity.5-7

~5.4DIIRHCO~NR LOANCOMBINATIONS I.oadcombinations forthedowncomers aregiveninTable5-3.'hese loadcombinations arebasedontheloadcombinations giveninTable6-1ofBef10.5-8 55PTPIN~G~UEQCH~E~

A~NDUgNCHERSUPPORTLOADCOMBINATIONS T.OCAloadsconsidered onpipingsystemsincludepoolswell impactloads,poolswell dragloads,downcomer waterjetloads,poolswell airbubbleloads,,fallback dragloads,condensation oscillation loads,chuqginqloads,'nd inertialloadingduetoacceleration ofthecontainment structure producedbyLOCAloads.LoadsduetoSRVdischarge onpipingsystemsincludewaterclearingloads,airclearing.loads,fluidtransient loadsonSRVdischarge piping,reactionforcesatthequencher, andinertialloadingduetotheaccleration ofthecontainment structure producedbySRVdischarge loads.Theloadcombinatioas andtheacceptance criteriaforpipingsystemsaregiveninTab1e6-1ofRef10.55.1LoadConsiderations forPi~in@InsidetheDrywellPipingsystemsinside%hedrywellaresubjected toinertialloadinqduetotheacceleratioa ofthe.containment producedbyLOCAandSRVdischarge loadsinthewetwell.'heSRVdischarge pipinginthedrywellisalsosubjected tofluidtransient forcesduetoSRVdischarqe.

55.2LoadConsiderations for~piincn'nside theMetwellAllpipinginthewetwellissubjecttotheinertialloadingduetoLOCAandSRVdischarge.

DragandimpactloadsduetoLOCAandSRVdischarge onindividual pipesinthewetwelldependonthephysicallocationofthepipinq.OtherSRVdischarge andLOCAloadsapplicable topiping-inthewetwellarediscussed intheparagraphs thatfollow.Pipingsystemslocatedbelowthesuppression chamberwaterlevelareshownonFigures5-1and5-2.Theselinesarelocatedoutsideofthejetimpingement coneofthedowncomer.

Inadditiontotheinertialloads'hese pipingsystemsaresubjecttoairbubbleloads,condensation oscillation ldads,andchuggingloadsduetoLOCAandSRVoperation.

TheSRVpiping,quencher, andquenchersupportarealsosubjecttofluidtransient forcesduetoSRVdischarge.

Pipingsystemswithinthepoolswell volumeareshowncnFigures5-2,5-3and5-4.Allhorizontal runsofthesepipesareabovethesuppression chamberwaterlevel.Thefollowing loads,inadditiontoinertialloads,actonthesesystems:a.'Thehorizontal runsofpipebelowelevation 690',experience poolswell impact,poolswell drag,andfallbackdraqloads.5-9 b.Thevertical, portionsofpipeinthewaterbelowelevation 690'-experience" poolswell dragandfallbackdragloads.~55.3nenc~hrandquenchersn~ortLoadconsiderations Thequencherandquenchersupportsaresubjected tothe'ollowinq hydrodynamic loadsinadditiontothepressure, weight,thermal,andseismicloads:a.Unbalanced loadsonthequencherduetoSRVwaterclearinqandairclearingtransients, irregular condensation, andsteadystateblowdownb.DragloadsduetoSRVdischarge andLOCAc.SRVpipinqendloadsd.Inertialloadingduetotheacceleration ofthecontainment producedbySRVdischarge andLOCA.5.5.4LoadConsiderations forPipinginthetheReactorBuildingTheeffectsoftheinertialloadingduetoacceleration ofthecontainment producedbySRVdischarqe andLOCAloadswillbeevaluated forthispiping.5-10 56NSSSLOADCOMBINATIONS Tobeprovidedlater.5-11 57EQUXPMZNT L'OADCONBINATZONS

'1Loadcombinations forsafety-related equipment locatedwithinthereactorbuildingandcontainment willbeassessedanddescribed inarevisiontothis'DesignAssessment Report("Safety-related" isdefinedinTable1.8-1ofthePSAR).5-12 FIG.NO.LINENO.12"-GBC-101 12"-GBC-101QTY10SYSTEMM.S.R.V.DISCHARGE PIPINGR.F.C.M.E.L.

S.J.B.D.P.N.G.K.A.H.

ELACS1'-0"CS1'4I"SI.EEVEPENETRATION EL704'-0"~~IIII~4.~I'1.0.EL694'-0"HIGHWATERLEVEL!TWODIRHORZ84TORSIONAL REST.EL672'4"ANCHOREL694'4"HEIGHTEL,680'L668'-0"TWODIRHORZREST.s0'a,o.'AELAEL649'4I"TWODIRHORZ64TORSIONAL REST.FIGUREAFIGUREBBOTTOMSUPPRESSION POOLEL040'4I"SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTPIPINGSTRESSDIAG1'A@8ANDTABLESFIGURE6-3" FIG.NO.QTYLINENO.SYSTEMELAEl.BEl.CRADYDIM.XREST.EL6"-GBB-120 RHRMS'-61/2"M6'4"897'4"12'43/6"1S6/8"697'-0"696'4"QRPVRADYELC24VERTICAL5iAXIALREST.ELB~'ERTICALREST.POOLSWELL EL690'4"ELAIHIGHWATEREL672'A"DIM.Xa%~~4aEL048'4I"SUSQUEHANNA STEAMELECTRICSTATIONUNITt1AND2DESIGNASSESSMENT REPORT=IMPINGSTRESSDIAGRAMSANDTABLES'IGURE

$4

TABLE5-1LOADCOMBINATIONS FORCOHTAINMEHT ANDREACTORBUILDIHGCONCRETESTRUCTURES

{CONSIDERING Load.EquationCondition DLPTR000SSpARSRV<>>AOTVADSASYMSingleValveLOCA~>>1Normalw/oTemp2Normalw/Temp.3NormalSev.Env.1417101013101010 10101010101251513125X(tl4Abnormal1.01.04aAbnormal1.01.01.25-1010125101012510XX5AbnormalSev.Env,1.01.01010XISaAbnormal"SevEnv6NormalExt.Env.10101010101010 1011101010107AbnormalExt.Env.7aAbnormalExt.Env.10101010010101.01.01.01.01010101010 XILoadDescritionD-"DeadLoadsL.=LiveLoadsT=Operating Temperature Loads0R=Operating PipeReactions 0P.=Operating PressureLoads0SRV=SafetyReliefValveLoadsE=Operating-Basis Earthquake 0ES=SafeShutdownEarthguake SSPB=SBAorIBA(LOCA)PressureLoadP=DBA(LOCA)PressureLoadAT=PipeBreakTemperature LoadAR=PipeBreakTemperatures ReactionLoadsAR=Reactionandjetforcesassociated withthepipebreak~Noe1)Xindicates applicability forthedesignated loadcombination.

2)porthecoluansdesignated AOT,ADS,ASYH,andSingleValve,onlyoneofthefourpossiblecolunnsnaybeincludedintheloadconbination foranyoneequation.

Forexanple,inequation1eitherAOTorASYNnaybeconsidered withtheotherloadsbutnotbothAOTandASY5sinultaneously.

3)LOCAchuggingandcondensation oscillation loadswillbeincludedinasubsequent revisiontothistable TABLE5-2LOADCOMBINATIONS ANDALLOWABLE STRESSESFORSTEELSTRUCTURAL COMPONENTS

{Suppression ChamberColumns,Douncoaer B~racin~andReactorBuildingStructural Steel)~cCuation

.Condition Normalw/oTemp.Normalw/TempNormal/SevereLoadCombination D+L+SRVD+L+T+SRV0D+L+T+E+SRV0Stress,'LimitF15FSNormal/ExtremeD+L+T+E'+SRV01.5FSAbnormalD+L+P+(T+T)+R+SRV(Note1)6Abnormal/SevereD+L+P+(T+T)+R+E(Note1)+SRVAbnormal/

ExtremeD+L+P+(To+Ta)+R+E+SRV(Note1)Note1:Innocaseshalltheallowable stressexceed0.90Finbendinq,0.85Finaxialtensionorcompression, 5nd0.50F>inshear.Wherethedesignisgovernedbyrequirements ofstability (localorlateralbuckling),

theactualstressshallnotexceed1.5FS.

TABLE5-2~Continuedg Notations:

Fq=Allowable stressaccording totheAISC,"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings",

dated1969,Part10DeadloadLiveloadTpTaThermaleffectsduringnormaloperating conditions including temperature gradients andequipment andpipereactions.

Addedthermaleffects(overandaboveop'crating thermaleffects)whichoccurduringadesignaccident.

DesignBasisAccidentpressureloadLocalforceorpressureonstructure duetopostulated piperuptureincluding theeffectsofsteam/water getimpingement, pipe.whip,'andpipereaction.

ELoadduetoOperating BasisEarthquake.

LoadduetoSafeShutdownEarthquake.

SHVFySafetyreliefvalveloads.Ninumumspecified yieldstength TABLE5-3,LOADCOMBINATIONS ANDALLOMABLE STRESSESFORDOMNCOMERS

~EuatgonCondition UpsetEmerqency Emergency FaultedFaultedLoadCombination D+P+SRVALL0D+.PSRVALL+E0D'PSBA'SRADS'E'BAD~P+SRVALL+E0D+PIBA+SRVADS+E+

IEAPrimaryStressLimit1SSm2.25S225Sm3Smm7Notations:FaultedFaultedFaulted0+PS/A[orPjBA)(orBA)D+PA+E'+DBA 1D+PA+E'DBA2m3S3SSmDP0Maximumallowable stressaccording toTableI-10.1,Ref28.Deadweightofthedowncomer Pressuredifferential betweendrywellandsuppression chamberduringnormaloperating, condition.

SBAIBA'ASRVALLSRVADSPressuredifferential betweendrywellandsuppression chamberdurinqSBA.Pressuredifferential betweendrywellandsuppression chamberdurinqIBA.Pressuredifferential betweendrywellandsuppression chamberduringDBA.Dynamiclateralpressureandinertialoadduetothedischarge ofall16safetyreliefvalvessequentially.

Dynamiclateralpressureandinertialoadduetothedischarge ofall6ADSsafetyreliefvalvessimultaneously.

LoadduetoOperating BasisEarthquake ElSBALoadduetoSaeShutdownEarthquake ChuqqingloadsduetoSBAasfollows:.1.Horizontal loadatbottomofdowncomer, and2.Horizontal andverticalinertialloads.ZBAChuqqingloadsduetoIBAasfollows:1.Horizontal loadatbottomofdowncomer, and2.Horizontal andverticalinertialloads.DBA1Verticalloadsdueto:/1.Viscousandpressureforcesexertedbytheflowingsteam,andDEA22.InertialloadduetoDBAChuqqingloadsduetoDBAasfollows:1.Horizontal loadat'bottomofdowncomer.

and2.Horizontal andverticalinertialloads.

CHAPTER6DESIGNCAPABILITY

'ASSESSMENT CRITERIATABLEOFCONTENTS61CONCRETECONTAINMENT ANDREACTORBUILDINGCAPABILITY ASSESSMENT CRITERIA6.16.1.2Containment Structure Capability Assessment CriteriaReactorBuildingCapability Assessment Criteria.

62STRUCTURAL STEELCAPABILITY ASSESSMENT CRITERIA63LINERP'LATECAPABILITY ASSESSMENT CRITERIA6'DOWNCOMER CAPABILITY ASSESSMENT CRITERIA65PIPENGiQUENCHERANDQUENCHERSUPPORTCAPABILITY ASSESSMENT CRITERIA66NSSSCAPABILITY ASSESSMENT CRITERIA67EQUIPMENT CAPABILITY ASSESSMENT CRITERIA6-1 60DESIGNCAPABILITY ASSESSMENT CRITERIAThecriteriabywhichthedesigncapability isdetermined arediscussed in.thischapterDesignoftheSSESisassessedasadequatewhenthedesigncapability ofthestructures, piping,andequipment isgreaterthantheloads(including LOCAandSRVdischarge) towhichthestructures, piping,andeguipment aresubjected.

Loadingcombinations arediscussed inChapter5.Themarginsbywhichdesigncapabilities exceedtheseloadingsarediscussed inChapter7,DesignAssessment.

6-2 63LENEPLATECAPABILITY ASSESSMENT CRITERIAThestrainsinthelinerplateandanchorage system(weldsandanchors)fromself-limiting loadssuchasdeadload,creep,.shrinkage, andthermaleffectsarelimitedtotheallowable valuesspecified inTableCC-3720-1 ofRef29,andthedisplacements ofthelineranchorage arelimitedtothedisplacement valuesofTableCC-3730-'I ofRef29.Primarymembranestressesinthelinerplateandanchorage system(weldsandanchors)frommechanical loadssuchasSRVdischarge andchuggingarecheckedaccording toSubsection NE-3221.1ofRef28.Primaryplussecondary membraneplusbendingstressesarecheckedaccording toSubsection NE-3222.2 ofthesamecode.Zatiguestrengthevaluation isbasedonSubsection NE-3222.4.Allowable designstressintensity values,designfatiguecurves,andmaterialproperties usedconformtoSubsection NA,AppendixofRef28.Thecapacityofthelinerplateanchorage islimitedbyconcretepull-outtotheserviceloadallowables ofconcreteasspecified inRef30.6-5 Theallowable stressesforthedovncomers aregiveninTable5-3.Theseallowable stressesareinaccordance withRef28;Subsection NE.Aspermitted by,Subsection NE-1120forMCcomponents, thedowncomers areanalyzedinaccordance vithSubsection NB-3650ofRef28;however,theloverallovable

stresses, Sm~fromTableI-10.1forNCcomponents are"usedvhenperforming theanalysis.

65PIPINGQUENCHERANDQUENCHERSUPPORTCAPABILITY ASSESSNENT CRITERIAPipinginthecontainment andreactorbuildingisanalyze'd inaccordance withRef28Subsections NB3600,NC3600,andND3600fortheloadingdescribed inSection5.5.Thequencherisdesignedinaccordance withRef28,Subsection NC3200,for loadingdiscussed inSubsection 5.5.3.The,quenchersupportisdesignedinaccordance withSubsection NF3000-ofRef28.6-7 Tobeprovidedlater.6-8 67EUIPMENTCAPABILITY ASSESSMENT CRITERIAAssessment criteriaforsafety-related equipment subjecttoLOCAandSRVdischarge loadingwhichislocatedwithinthecontainment andreactorbuildingwillbedescribed inarevisiontothisDesignAssessment Report("Safety-related"

.isdefinedinTable1.8-1ofthePSAH)4 CHAPTER7DESIGNASSESSMENT TABIEOPCONTENTS71117.1.127.127-12171.227'.1.37.1.471.S'1671772DESIGNCAPABILITY MARGINS73PIGURES71ASSESSMENT METHODOLOGY 7.1.1Containment andReactorBuildingAssessment Methodology Containment Structure Assessment Methodology ReactorBuildingAssessment Methodology Structural SteelAssessment Methodology Suppression Chamber.ColumnsAssessment MethodologyDovncomer BracingAssessment Methodlogy LinerPlateAssessment Methodlogy Downcomer Assessment Methodology PipingandSRVSystemsAssessment Methodology NSSSAssessment Methodlogy Eguipment Assessment Methodology 7-1 CHAPTER7PIGURES'Nu~be7-17-27-37-47-57-6Title.GeometryPlotofContainment Structure ModelEquivalent ModelDampingRatiovs.Model'Frequency Structural Stiffness

-Proportional

-DampingFiniteElementModelofColumn1LinerPlateLoads-NormalCondition LinerPlateLoads-AbnormalCondition Downcomer Analytical Model7-2 70DESIGN'ASSESSNENT J.oadsonSSESstructures, piping,andequipment aredefinedinChapter4.Themethodsbywhichtheseloadsarecombinedarediscussed inChapter5Thecriteriaforestablishing designcapability arestatedinChapter6.Thischapterdescribes theassessment oftheadequacy.

oftheSSESdesiqnbycomparing designcapabilities withtheloadingsto.whichstructures, piping,andcomponents aresubjected and~demonstrating theextentofthedesignmargin.Thefirstsection,ofthischapterdiscusses themethodology bywhichdesign'capability andloadsarecompared.

Thesecondsectionindicates

'theresultsofthesecomparisons.

7-3 71ASSESSMENT METHODOLOGY 7.11Containment andReactorBuildinAssessment Methodolo~

'Thedynamicanalysisforthestructural responseofthecontaiament andinternalstructures duetotheSRVdischarge loadsandLOCArelatedloadsisperformed usingthefiniteelementmethod.TheANSYSfiniteelementcomputerprogramischosenforthetransient dynamicanalysis.

Figure7-1showstheANSYSfiniteelementmodel.Platshellelementsareusedtomodelthereinforced-concrete containment structure andthereactorvessel.Pipeelementsareusedtomodelthecolumnssupportinq thediaphragm slab.The.soilstructure interaction istakenintoconsideration bymodelling'he soilusingaseriesofdiscretespringsanddampers.inthreedir'ections asshownonFigure7-1.Thesediscretesprinqsanddampersarespecified basedontheformulaeforlumpedparameter foundations foundinRef.32.TheANSYSprogramusesstiffness-proportional-damping, implyingastructural dampingmatrixinthefollowing form:{C)=g{K)~whereCKDampingMatrixastiffness-proportional dampingconstantStiffness Matrix,Fiqure7-2showstheequivalent modaldampingratioversusthemodalfrequency forstructural stiffness-proportional-damping Avalueofgequaling000063isusedintheANSYSmodelwhichcorresponds toastructural modaldampingofapproximately 4percentofcriticalat20Hz.Twocomputerprogramshavebeendeveloped, oneasapreprocessor andtheotherasapostprocessor totheANSYScomputerprogram.Thepreprocessor transforms thepressureforcingfunctions actingonthesuppression poolwalls,basemat,andpedestalintoa~concentrated forceactiagattheassociated nodesoftheANSYSmodel.Thepostprocessor calculates theacceleration timehistoryfromthedisplacement timehistoryobtainedbyANSYSandscansforthemaximum.displacements andaccelerations.

Acceleration timehistories, maximumstructural displacements, accelerations, andbroadened acceleration responsespectraatselectednodesanddirections aredeveloped fortheanalysisofthepiping,equipment, andNSSSsystems.Responsespectracurvesaredeveloped forallthepreviously mentioned SRVdischarge andLOCAloads.7-4 Theresponsespectraarefurnished forfourdifferent spectraldampingvaluesie,0.5,,1,2,and5percentofcriti'cal.

Eachspectrumhasbeenbroadened toaccountfortheuncertainties inthestructural modelingtechniques andmaterialproperties; Allspectralaccelerations areexpressed inunitsofg(thegravitational constant).

AppendixBcontainsexamplesofthebroadened response" spectracurvesdeveloped forthedifferent loadingcasesofSRVdischarge andLOCArelatedloads.(Thepressuretimehistorysho~non'iqure4-29isusedasthebasisfortheexamplesgiven)TheANSYSprogram(stresspass)isalsousedtocomputetheforcesandmomentsduetotheSRVdischarge andLOCArelatedloads.Theseforcesandmomentsarethencombinedwiththenonhydrodynamic loadsinaccordance withTable5-1.Material.stressesatthecriticaldesignsectionsintheprimarycontainme'nt andinternalconcretestructures areanalyiedusing.theCECAPcomputerproqram(RefertoAppendixAtoFSARSection3.Q).Concretecrackingisconsidered intheanalysisofreinforced concretesections.

Theconstruction oftheSSESreactorbuildingissuchthatnodirectcouplingwiththecontainment occurs.A2in.separation

)ointiskeptbetweenthecontainment structure andthereactorbuildinqatallpointswherethetwostructures abut,exceptatthebaseslabswhereacoldjointexists.Thisarrangement minimizes thetransferofanydirectdynamicresponsetothereactorbuildingfromthecontainment, wheretheSRVdischarge, andLOCAhydrodynamic loadsoriginate.

Theaveragehorizontal andverticalbaseaccelerations fromthecontainment dynamicanalysisarecomputedandusedasinputmotionsonthereactorbuildingfoundations.

Thisresultsintwohorizontal motionsandoneverticalmotion.Theinputmotionsareusedintheformofacceleration timehistories atthebaseslab.Reactorbuildinqseismicmodels(horizontal north-south andeast-vest andvertical),

asshownonPSARFigures3.7-9throuqh3.7-11andexplained indetailinSubsection 3.7.2.1boftheFSAR,areusedinthestructural responseanalysisduetoSRVdischarge andLOCAloads.AppendixCprovideseXamplesofthebroadened responsespectracurvesforthereactorbuildingduetoSRVdischarge loadsfortheabnormaloperating transient (AOT)caseatselectedlocations.

ThepressuretimehistoryshowninPiqure4-29isusedasthebasisfortheexamplesgiven).Theresponsespectracurvesaredeveloped foruseinthedesignofpipingandNSSSsystems.Theresponsespectraarefurnished forfourdifferent spectraldampinqvalues,ie,0.5,,1,2,and5percentofcritical.

Eachspectrumhasbeenbroadened toaccountforthe7-5 uncertainties inthestructural modelling techniques andmaterialpropeties.

Al'lspectralaccelerations areexpressed inunitsofq(thegravitational constant)

.TheforcesandmomentsduetoSRVdischarge andLOCAloadsarecombinedwiththenon-hydrodynamic loadsinaccordance withTable5-1.7.-12SructuralSteelAssessment Nethodolo~

471.21SuressionChamberColumnsAssessment Nethodol~o Theassessment methodsusedfornon-hydrodynamic loadssuchasdead,live,pressure, temperature, seismic,andpipe,ruptureloadsaredescribed intheFSAR,Section3.8..3.45.Fortheanalysisofthecolumnsforhydrodynamic loads,theAHSYScomputerprogramisusedAtypicalcolumnismodelledasa,fixed-ended beamasshownonFigure7-3.Thetotallengthofthecolumnis'ivided intobeamfiniteelements)oinedatnodepoints.Aneffective watermassduetosubmerqence isconsidered.

Dynamichorizontal forcesareappliedtothecolumnatthenodepointsbelowwaterlevel.Time-varying forcesandmomentsinthecolumnarecalculated foreachfiniteelement.Theseresultsarecombinedwiththosefornon-hydrodynamic loadstodetermine thet'otalforcesandmomentsinthecolumn.Axialloadsareproducedinthebracingduetolateralloadingonthedowncomers.

SeeSubsection 7.1.4foradescription oftheanalysisofthedowncomers forlateralloads.Todetermine themaximumaxialloadinthebracing,lateralloadsareassumedtooccuronalldowncomers withina90degreeinfluence zonein.ei.thertheradialortanqential directions.

Bracingforthe16SRVdischarge pipesisincludedwiththedowncomer bracing.Aslidingsupportisprovidedattheconnection ofthebracingtothedischarge pipetoallowthedischarge pipetomovevertically withoutproducing areactionloadonthebracing.Sincetheselateralloadsonthedowncomers duetoseismicandhydrodynamic loadsarerandomlyoriented, variouscombinations ofloaddirections areconsidered inordertodetermine themaximumaxialloadinthebracinq.Xnadditiontotheaxialload,therearelateralpressures appliedalongthelengthof thebracingmembersduetodirecthydrodynamic loadingSincethebracingmembersareofvaryinglengths,severaldifferent lengthsofbracingmembersareconsidered fortheanalysis.

Stressesinthedowncomer bracingduetoequivalent staticlateralpressures arecalculated usingclassical beamtheoryequations.

Stressesinthedowncomer bracinqduetodynamiclateralpressures arecalculated usingtheANSYScomputerprogram..

Thetotallengthofthebracingmemberisdividedintobeamfiniteelementsjoinedatnodepoints.Aneffective watermassduetosubmergence willbeconsidered.

Dynamiclateralforcesareappliedtothebracingatthenode points.,Time-varying forcesandmomentsinthebracingmemberarecalculatedforeachfiniteelement.Maximumstressesarecalculated fromtheseresultsusingclassical beamtheoryequations.

7.1.3LinerPlateAssessment~ethodolocCy PSARSubsection 3.8.1providesadescription ofthe.linerplateandanchorage systemforthecontainment.

Theanalysisofthelinerplateandanchorages fornon-hydrodynamic loadsisinaccordance withRef18Fortheanalysisofthelinerplateandanchorages-for hydrodynamic suctionpressureloads,theloadonthelineristhenetnegativepressureload.ThenetnegativepressureloadequalsthedynamicnegativepressureviuetoSRVactuation orLOCAchuggingminusthestaticpositivepressureduetohydrostatic pressureorLOCA..Pigures7-4and7-5describetheloadsonthebasematandsuppression chamberealllinerplateforthenormalandabno'rmal loadcombinations respectively.

Porthenormalcondition, thehydrostatic pressureonthebasematis10.4psiandthemaximumnegativepressureduetotheactuation ofallSRV'sis7.8psi.Thedistribution ofthesepressures onthesuppression chamberwallisshowninFigure.7-4.Portheabnormalcondition, thetotalpositivepressureonthebasematis35.4psiwhichconsistsof10.4psifromhydrostatic pressureplus25.0fromLOCA(smallorintermediate breakaccident)

.Thetotalmaximumnegativepressureonthebasematis21.8psiduetotheasymmetric chuggingload.Themaximumnegativepressures fromSRVactuation andchuggingarecombinedforconservatism.

Itisrecognized thattheprobability ofthesetoophenomena producing peak,negativepressures atthesametimeisverylosThedistribution ofpressures onthesuppression chamberwallisshowninFigure7-5.Sincethenegativepressureismorethanbalancedbythepositivepressure, theliner-platedoesnotexperience anynetnegativepressure.

Therefore, therearenoflexuralstressesinducedinthe'inerplate.7.1.4Dovncomer Assessment Methodolo~

Stressesinthedovncomer pipesduetostaticloads,suchasdead@eightandpressure, arecalculated usingclassical eguations.

Stressesinthe'dosncomer pipesduetoinertialloadscausedbyseismicandhydrodynamic loadsarecalculated usingtheresponsespectrummethod.TheANSYScomputerprogramisusedtosolvefor7>>7 themodeshapesandfrequencies ofthedovncomers andthedovncomer bracing.Agroupofdovncomer pipesandbracingmembersisrepresented byalumpedmassmodel.Theinertiaeffectofthewatersurrounding thesubmerged portionofthedovncomers isapproximated bytheadditionofaneffective vatermass.Themassofwaterinsidethedowncomers isincludedinthemodelforalldynamicloadingsexceptLOCA.FortheLOCAconditions, thewaterhasbeenventedfromthedovncomers andtherefore itisnotincludedinthemodel.TheANSYScomputerprogramisusedtocalculate thestressesinthedowncomer pipesduetohydrodynamic lateralloads.Atypicaldovncomer pipeismodelledasshowninFigure7-6.PointAatthetopofthedovncomer isrestqained to'epresent thefixityofthedowncomer atthedryvellfloor.PointBislaterally

.restrai'ned torepresent th'elateralsupportfurnished bythedowncomer bracing.Thetotallengthofthedowncomer isdividedintobeamfiniteelements)oinedatnodepoints.Dynamichorizontal-forces areappliedtothedowncomer atthenodepointsbelowwaterlevel.Time-varying forcesandmomentsinthedovncomer arecalculated foreachfiniteelement.Maximum.stressesarecalculated fromtheseresultsusingclassical.

beamtheoryequations.

ThepipingandSRVsystemsvillbeanalyzedfortheloadsdiscussed inSection5.5usingBechtelcomputerprogramsHE101andME632.Theseprogramsaredescribed inFSARSection3.9-StaticanddynamicanalysesofthepipingandSRVsystemsareperformed asdescribed intheparagraphs below.Staticanalysistechniques areusedtodetermine thestressesduetosteadystateloadsand/ordynamicloadshavingequivalent staticloads.Thedragandimpactloadsareappliedasequivalent staticloads.Responsespectraatthepipinganchorsareobtainedfromthedynamicanalysisofthecontainment subjected toLOCAandSRVloading.Pipingsystemsarethenanalyzedfortheseresponsespectrafollowing themethoddescribed inRef19.

TimehistorydynamicanalysisoftheSRVdischarge pipingsubjected tofluidtransient forcesinthepipeduetoreliefvalveopeningisperformed usingBechtelcomputercodeHE632.71.6SSSAssessment Nethodol~og Tobeprovidedlater~71.7.simesmsesseemtNe~hodolocpy Analysismethodologies forsafety-related equipment withinthecontainment andreactorbuildingsubjecttoLOCAandSBVdischarge loadingwillbedescribed inarevisiontothisDAR(<<Safetyrelated<<isdefinedinTable1.8-1oftheFSAR)7-9 72DESIGNCAPABZLXTY MARGINSStressesatthecriticalsectionsforeachoftheab'ovestructures, piping,andeguipment villbeevaluated foralltheloadinqcombinations presented inChapter5.'Theresultsofthestructural assessment ofthecontainment andsubmerged structures villbesummarized inAppendixA.-'Figure A-2showsthedesignsectionsinthebasemat,containment walls,reactorpedestal, andthediaphragm slabconsidered inthestructural assessment)

ThetablesofAppendixAatpresentgivethecalculated designmarginsforloadcombination Eguation1ofTable5-1whichappliestothepreviously mentioned structural>

components.

Similartablesvillheincludedinafuturerevisionofthisreportinordertopresentthefullassessment ofthedesigncapability marginforalltheotherloadcombinations.

Thereinforcinq steelandconcretegualitycontroltestresultsshovthatmaterialstrengths arehigherthantheminimumspecified valuesusedincomputing thesemargins.Thisconservatism, alongwiththeoverloadfactorsintheloadcombinations giveninTable5-1andthematerialunderstrength factorsbuiltintotheallovable stresscriteria, resultsinactualsafetymarginsqreaterthatthosegiveninthetablesofApp'endix A.Theresultsofthestructural assessment ofthereactorbuildingvillbesummarized inAppendixE.Theresultsoftheanalysisofthepipingsystemsvillbesummarized inAppendixFintheformoftables.Thesetablesvillprovidethemaximumstressforthecriticalloadcombination, theallowable stress,andthedesignmarginTheresultsoftheassessment oftheNuclearSteamSupplySystem(NSSS)villbesummarized inAppendixG.Theresultsoftheassessment ofequipment villhesummarized inAppendixH.7-10 RPVNOTE:X-AXISISINPLANTEWANDY-AXISINPLANTNSDIRECTION RPVSHIELDCONTAINMENT RPVPEDESTALSUSQUEHANNA STEAMELECTRICSTATION'UNITS1AND2DESIGNASSESSMENT REPORT.GEOMEYRYPLOTOFCONTAINMENT STRUCTURE MODELFIGURE7-1 DRYWELLFL.Ogp.~vrrriv~j5sQ-DECK3lt42"PSTEELPIPECOL.FINITEELEMENTSL~52'-3"NODEPOINTSHIGHWATERLEVEL24'-0"BASEMAT(VdpiI0io44.jgiCMODELSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTFINITEELEMENTMODELOFCOLUMNFIGURE7-3 PEDESTALCONTAINMENT WALLHYDROSTATIC 24'10.4psi+10.4psi.BASEMATSRVIII18'7.8psi-7.8ps<TOTAL18'2.6psi+2.6psiSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLINERPLATEPRESSURES NORMALCONDITION FIGURE7C POSITIVEPEDESTALHYDROSTATIC CONTAINMENT WALL+10.4PSI+10.4PSIBASEMATWETWELLPRESSUREDUETOSBAORIBAD+25PSINOTE:WETWELLPRESSUREDUETODBA=34PSI+25PSITOTAL+35,4PSI+35.4PSISUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLINERPLATEPRESSURES ABNORMALCONDITION FIGURE7-5SHEET1OF3

RPVNOTEX~AXISISINPLANTEWANDY-AXISINPLANTNSDIRECTION RPVSHIELDCONTAINMENT RPVPEDESTALSUSQUEHANNA STEAMEI.ECTRIC STATIONUNITS1AND2DESIGNASSESSMENT REPORT3-DCONTAINMENT FINITEELEMENTMODEL(ANSYSMODEL)fIGURE7 DAMPINGRATIOP~0.00063 0.080.070.060.050.040.030.020.01]02040FREQUENCY SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTEQUIVALENT MODALDAMPINGRATIOVSMODALFREQ.FORSTRUCTURAL STIFFNESS PROPORTIONAL DAMPINGFIGURE7-2

NEGATIVEPEDESTALCONTAINMENT WALL<<VADS-7.8PSI-7.8PSIBASEMAT12'HUGGINGASyM

-14PSI-14PSITOTAL-21.8PSI-19,2PSI-21.8PSISUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTLINERPLATEPRESSURES ABNORMALCONDITION FIGURE7-5'SHEET2OF3 PEDESTAL+11PSICONTAINMENT WALL+13.6PSIBASEMATTOTAL=POSITIVE+NEGATIVESUSQUEHANNA STEAMELECTRICSTATION'NITS1AND2DESIGNASSESSMENT REPORTLINERPLATEPRESSURES ABNORMALCONDITION FIGURE7-5SHEET3OF3 SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTMNINCOMER ANALYTICAL MODELFIGURE7%

CHAPTER9RESPONSES TONRCQUESTIONSTABLEOFCONTENTS91929.3,IDENTIFICATION OPQUESTIONS UNIQUETOSSES4QUESTIONS UNIQUETOSSESANDRESPONSES THERETO,FIGURES Thischaptervillprovideresponses tothoseNuclearRegulatory Commission (HRC)questions whichhave beendesignated byRef10(asamended)tobefoundintheplant-unique DesignAssessment Reportandtothosequestions forvhichtheresponseinRef10isinapplicable.

TheNRCquestions forvhichresponses villbeprovidedarej.dentified inSection9.1,anddetailedresponses tothequestions arefoundinSection-9.2.9-2 1IDENTIFICATION

~OFUESTIONSUNIQUETOSSESThebelowlistedquestions addressconcernsuniquetoSSES.Thesequestions areansweredindetailinSection9.2.NRC~ueetiau NumberM02026N020.27N020.44N02055M02058(1)i(2),(3)M020.59(1),(3),(4)MP20.60M02061M1301M1302M1304N1305N130.6QuestionTopicPrimaryandSecondary LOCALoadsInventory EffectsonBlowdownPoolswell WavesandSeismiCSloshSRVLoadsonSubmerged Structures PlantUniquePoolswell Calculations Downcomer LateralBracesWetwellPressureHistoryPoolswell InsidePedestalPressureLoadingDuetoSRVDischarge LoadCombination HistorySoilNodellinq LinerandAnchorage Nathematical ModelContainment Structural Model-Asymmetric LoadsN130.12SRVStructural Response9-3

~92UESTIONSUNIQUETOSSESANDRESPONSES THERETO~UESTIONM02026TheDFFRpresentsadescription ofanumberofLOCArelatedhydrodynamic loadswithoutdifferentiating betveenprimaryandsecondary loads.Providethisdifferentiation betveentheprimaryandsecondary LOCA-related hydrodynamic loads".Werecognize thatthisdifferentiation mayva'ryfromplanttoplant.Wevoulddesignate asaprimaryloadanyloadthathasorvillresultinadesignmodification inanyNarkIXcontainment sincethepooldynamicconcernswereidentified inourApril1975genericletters.~ESPONSENO2026ThetablebelowshowstheLOCA-related hydrodynamic loadsontheSSEScon'tainment.

Thoseloadswhichhaveresultedincontainment desiqnmodifications aredesignated as"PrimaryLoads"Theseprimaryloadsresultfromthepoolswell transient.

Dryvellfloorupliftpressures duringthewetwellcompression phaseofpoolswell leadtothedecisiontoincreasetheSSESdrywellfloordesignsafetymarginforupliftpressures byrelocating drywellfloorshearties.Poolsvell impact,drag,andfallbackloadsresultedintherelocation ofequipment intheSSESwetwelltoapositionabovethepeakpoolsvell height.Furthermore, thedowncomer bracingsystemvasredesigned.

AllotherLOCA-related hydrodynamic 1oadsaredesignated as"Secondary Loads"sincenodesignmodification hasresultedfromtheirpresence.

LOCALoad"PrimarvLoad>>Secondary Load'R1.Wetwell/Drywell Pressures (DuringPoolswell)

XC1)2.Poolswell ImpactLoad3.Poolsvell DraqLoad4.Downcomer ClearingLoad5.Downcomer JetLoadx<>>x~>>6.Poolsvell AirBubbleLoad7.Poolswell Fallback.Loadxc+>8.MixedFlovCondensation Oscillation Load9-4 9.PureSteamCondensation Oscillation Load10.Chugging.

11.Wetwell/Drywell PressureandTemperature duringDBALOCA(LongTerm)12.Wetwell/Drywell PressureandTemperature duringXBALOCA(LonqTerm)13.Wetwell/Drywell PressureandTemperature duringSBALOCA(LonqTerm)Footnote's:

(3,)Sheartieschangedindrywellfloor.(2)Equipment movedinwetwell.(3)Equipment movedinwetwell.Bracingsystemredesign.

(4)Equipment movedinwetwell.QUESTIONM02027Thecalculated drywellpressuretransient typically assumesthatthemassflowratefromtherecirculation systemorsteamline isequaltothesteady-state criticalflowratebasedonthecriticalflowareaofthejetpumpnozzleorsteamline orifice.However,forapproximately thefirstsecondafterthebreakopening,therateofmassflowfromthebreakwillbegreaterthanthesteady-state value.Ithasbeenestimated thatforaNarkIcontainment thiseffectresultsinatemporary increaseinthedrywellpressurization rateofabout20percentabovethevaluebasedsolelyonthesteady-state criticalflowrate.Thedrywellpressuretransient usedfortheLOCApooldynamicloadevaluation, foreachNarkIIplant,shouldincludethisinitially higherblowdownrateduetotheadditional fluidinventory intherecirculation line.RESPONSEM02027Thedrywellpressuretransients havebeenrecalculated byGE(Ref7)withtheadditional blowdownflowrateproducedbytheinventory effectsincludedintheanalysis.

TheLOCAloadspresented inSection4.2havebeencalculated usingtheserecalculated drywellpressuretransients.

Specifically, thedrywellpressuretransient resulting fromtheDBALOCAincluding theeffectsofpipeinventory hasbeenusedasinputtothepoolswell model.

UESTIN02044Table5-1andFigures5-1through5-16intheDFPRprovidealistingoftheloadsandtheloadcombinations tobeincludedintheassessment ofspecificMarkIIplants.Thistableandthesefiguresdo'notincludeloadsresulting frompoolswellwavesfollowinq thepoolswellprocessorseismicslosh.Merequirethatanevaluation oftheseloadsbeprovidedfortheMarkIIcontainment design.RESPONSEM02044Thisinformation willbesuppliedinasubsequent revisiontothisDARgUESTZONN020.55Thecomputational methoddescribed inDFFRSection34'forcalculating SRVloadsonsubmerged structures isnotacceptable.

ItisourpositionthattheMarkIIcontainment applications shouldcommittooneofthefollowing twoapproaches:

(1)Designthesubmerged structures forthefullSRVpressureloadsactingononesideofthestructures; thepressureattenuation lawdescribed inSection3.4.1ofNEDO-21061 fortheramsheadandSectionA10.3."1ofNEDO-11314-08forthequenchercanbeappliedforcalculating thepressureloads.(2)Followtheresolution ofGESSAH-238 NJonthisissue.Theapplicant forGESSAR-238 NIhasproposedamethodpresented intheGEreport,"Unsteady DragonSubmerged Structures,"

whichisattachedtotheletterdatedMarch24,1976fromG.L.GyoreytoR.L.Tedesco.Thisreportisactively, underrev,iew.RESPONSEM02055Loadsonsubmerged structures duetoSRVactuation.

arediscussed inSubsection 4.1.3.7.~OESTZONM020.58Relatinqtothepool.swellcalculations, werequirethefollowing information foreachMarkIIplant:(1)Provideadescription ofandjustifyalldeviations fromtheDPPRpoolswellmodel.Identifythepartyresponsible forconducting thepoolswellcalculations (ie,GEortheAGE).Providetheprograminputandresultsofbenchmarkcalculations toqualifythepoolswellcomputerproqra,m.

9-6 (2)Providethepoolswellmodelinputincluding ailinitialandboundaryconditions.

Showthatthembd01injectrepresents conservative valueswithresPecttoobtaining maximumpoolswellloads.Inthecaseofcalculated input,(ie,drywellpressureresponse, ventclearingtime),thecalculational methodsshould.bedescribed andjustified.

Xnaddition, thepartyresponsible forthecalculation (ie,GEortheAGE)shouldbeidentified.

(3)Poolswellcalculations shouldbeconducted foreachNarkIIplantThefollowing poolswellresultsshouldbeprovidedingraphicformforeachplant,:(a)Poolsurfacepositionversustime(b)Poolsurfacevelocityversustime(c)Poolsurfacevelocityversusposition(d)Pressureofthesuppression poolairslugandthewetwellairversustime.RESPONSEN02058AspecificresponsetothisquestioncanbefoundinSubsection 4.2.1.1.Verification oftheSSESpoolswell modelisprovidedinAppendixSectionD.l(2)(3)Inputanddiscussion ofthepoolswell mod@1inputcanbefoundinTables4-17,4-18,andSection4.2.1.1.Therequested graphicresultsoftheSSESpoolswell calculation canbefoundinFigures4-38,4-39,4-40,and4-43.QUESTIONM02059Xnthe4TtestreportNEDE-13442P-01 Section3.3thestatement ismadethatforthevariousNarkIIplantsawidediversity existsinthetypeandlocationoflateralbracingbetweendowncomers andthatthebracinginthe4Ttestswasdesignedtominimizetheinterference withupwardflow.Providethefollowing information foreachNarkIIplant:(3)Adescription ofthedowncomer lateralbracingsystem.Thisdescription shouldincludethebracingdimensions, methodofattachment tothedowncomers andwalls,elevation andlocationrelativetothepoolsurface.Asketchofthebracingsystemshouldbeprovided.

Thebasisforcalculating theimpactordragloadonthebracingsystemordowncomer flanges.Thdmagnitude anddurationofimpactordragforcesonthebracingsystemordowncomer flangesshouldalsobeprovided.

9-7 (4)Anassessment oftheeffectofdowncomer flangesonventlateralloads.RESPONSEN020.59.Adowncomer bracingsystemisfurnished toresistlateralloadsonthedowncomers.

Theoriginaldowncomer bracingwasdesignedtoresistseismicinertialoads.Areviseddowncomer bracingsystemhasbeendesignedto.resisthydrodynamic loadsaswellasseismicinertialoads.Therevised,bracingsystemconsistsofhorizontal 6in.diametersteelpipesspanningbetweenthedowncomers andembedsinthesuppressi'on chamberwallortheRPVpedestal.

Thepatternofbracingmembersformsahorizontal trussasshownonFigure9-1.Thebracingmembersareboltedorweldedtothedowncomers andembedsinthesuppression chamberwallasshownonFigure9-2.Thebracingsystemislocated8ftfromthebottomendofthedowncomer whichis.3ftbelowthenormalwaterlevel.(3)Thebasisforcalculating theimpactordragloadsonthedowncomer bracingsystem(el.668')anddowncomer stiffener rinqs(el.668'ndel.682')isgiveninSection42.Themagnitude anddurationofimpact'rdragforcesonthebracingsystemanddowncomer stiffener ringsisalsoqiveninSection4.2.(4)Thisitemisnotapplicable totheSSESdesign.QUESTIONM02060Inthe4TtestreportNEDE-13442P-01 Section5.4.3.2thestatement ismadethatanunderpressure doesoccurwithrespecttothehydrostatic pressurepriortothechug.However,thepressurization oftheairspaceabovethepoolissuchthattheoverallpressureisstillpositiveatalltimesduringthechug.MerequirethateachNark,IIplantprovidesufficient information reqardinq theboundaryunderpressure, thehydrostatic

pressure, theairspaceandtheSRVloadpressuretoconfirmthisstatement oralternatively provideaboundingcalculation applicable toallNarkIIplants.RESPONSEN020.60Thisinformation

-willbesuppliedinasubsequent revisiontothisDAB.~UMNTZONM020.61Siqniticant variations existintheNarkIIplantswithregardtothedesiqnofthewetwellstructures intheregionenclosedbythereactorpedestalThesevariations occurintheareasof{1)concretebackfillofthepedestal,

{2)placement ofdowncomers, (3)wetwellairspacevolumes,and(4)locationofthediaphragm 9-8 relativetothepoolsurface.Inadditiontovariation betweenplants,foragivenplant,variations existinsomeoftheseareaswithinagivenplant.Asaresult,foragivenplant,significant differences inthepoolswellphenomena canoccurinthesetworegions.Mewill.reguirethateachplantprovideaseparateevaluation ofpoolswellphenomena andloadsinsideofthereactorpedestal.

RESPONSEN020.61TheSSESpedestalandvetwellareaisshownonFigures1-1and9.3.Duetotheabsenceofdovncomers inthepedestalinterior, nopoolswellwouldbeexpectedinthisregion.Thereare12holesinthepedestal, hovever,eightofwhichwouldallowtheflowofwaterfromthesuppression pooltothepedestalduringaLOCA.Somedovncomers arenearthepedestalflowholes,leadingtothepossibility thataircouldbeblownthroughthepedestalholes,whichwouldleadtoagreaterpedestalpoolswellthanvouldbeexperienced byincompressible vaterflovalone.Onewouldexpectthepedestalpoolswelltobemuchreducedfromthesuppression poolswellduetoitsrelativeseparation fromthesuppression poolandthelackofdirectchargingfromdcwncomer vents.Indeed,l/13.3scalemodeltestsoftheSSESpedestaldesiqnconducted attheStanfordResearchInstitute underthesponsorship ofEPRIshowthatthepedestalpoolswellislesst'han20percentofthepoolswellinthesuppression pool(Ref31).Thereisnopipingorequipment insidetheSSESpedestaland,sincethepedestalpoolswellisverysmall,theonlyloadinvolvedduetopedestalpoolswellvouldbeasmall~Pacrossthepedestalduetodifferent waterlevelsbetweenthesuppression poolandthepedestal.

Thisloadisconsidered inthedesignoftheSSESpedestal9~USTIONN1301ProvideinSection5adescription of.thepressureloadingsonthecontainment wall,pedestalwall,basemat,andotherstructural elementsinthesuppression pool,duetothevariouscombinations ofSRVdischarges, including thetimefunctionandprofileforeachcombination.

Ifthisinformation isnotgeneric,eachaffectedutilityshouldsubmittheinformation asdescribed above.RESPONSEN130-1Chapter4describes thepressureloadingsandtimehistories duetoSRVdischarge and'otherhydrodynamic loads.~UESTIOHN1302InDFFRSection5.2itisstatedthattheloadcombination histories arepresented intheformofbarchartsasshovnonFigures5-1through5-16.Itisnotindicated hovtheseload9-9 combination histories areused.Inparticular, itisnotclearwhetheronlyloadsrepresented byconcurrent barswillbecombinedanditshouldbenotedthatdepending onthedynamicproperties ofthestructures andtherisetimeanddurati6noftheloads,astructure mayrespondtotwoormoregivenloadsatthesametimeeventhoughtheseloadsoccurat.different times.Also,althoughcondensation oscillations aredepictedasbarsonthebarchart's,theprocedure fortheanalysisofstructures duetotheseloadshasnotbeenpresented.

Accordingly, thedescription ofthemethodshouldincludeconsideration "ofsuchconditions.

Also,forcondensation oscillation loadsandforSRVoscillatory loads,includelowcyclefatigueanalysis.

RESPONSEM1302Theloadswillbecombinedaccording toTabl'es5-1and5-2ofthisDARtoassessthecontainment'tructural components Chapters5.and7explaintheloadcombination methodsusedincontainment analysis.

Thestructural analysisprocedur'e toaccountforcondensation oscillation loadwillbepresented inasubsequent revisiontothisDAR.QUESTIONM1304Throughtheuseoffigures,describeindetailthesoilmodelling asindicated inDPFRSubsection 5.4.3anddescribethe'olidfiniteelementswhichyouintendtouseforthesoil.RESPONSEM1304Soilmodelling isexplained inSubsection 7.1.1.1andZiqure7-1.QUESTZOE5130.5Describethemathematical modelwhichyouwilluseforthe'linerandtheanchorage systemintheanalysisasdescribed in.DPFRSubsection 5.6.3.RESPONSEM1305Themathematical modelwhichwillbeusedforanalysisofthelinerandtheanchorage forhydrodynamic suctionpressures isdescribed inSubsection 7.1.3QUESTION6130.6InDPPRSubsection 5.1.1.1itwasstatedthattheSRVdischarge couldcauseaxisymmetric orasymmetric loadsonthecontainment.

InSubsection 5.4.1anaxisymmetric finiteelementcomputerprogramisrecommended tordynamicanalysisofstructures duetoSRVloads,andnomentionismadeoftheanalysisforasymmetric loads.Describethestructural analysisprocedure usedtoconsiderasymmetric pooldynamicloadsonstructures andthrough9-100 theuseoffigures,describeinmoredetailthestructural modelwhichyouintendtouse.RESPONSE8130.t3Thedynamicanalysesandmodelsusedareexplained inChapter7gUPSTZONN13012Reference ismadeinDFFRSubsection 5.4.3tostudiesofstructural responsetoSRVload.Providecitations forthisreference andwheresuchstudiesarenotreadilyavailable, copiesarerequested.

RESPONSEM130.12Studiesmentioned inDFFRSubsection 5.4.3aretheresultsofanalysiscompleted foraspecificplantatthetimeofwritingoftheDFFR.Reference tothestudieswasintendedtoindicatetheneedforconsidering straindependent soilproperties.

For.theSSESanalysis, Ref32isusedtodetermine thesoilconsta<Lts intheanalysis9-11 g0CONTAINMENT WALLc.b+>iSy-ij+o0000MSRVDISCHARGE PIPE(TYPICAL) 0000000DOWNCOMER (TYPICAL)

COLUMN(TYPICAL)

BRACINGMEMBER(TYPICAL) e'ye4r.~rtIegto4~RPVPEDESTALSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTDOWNCOMER BRACINGSYSTEMFIGURE9-'I

DIAPHRAGM SLAB~~~oio'O3-1"5H.S.BOLTSDOWNCOMERDOWNCOMER6"$PIPE11/4"Q1/2"ItTOP&BOTTOM.,DETAIL1:-.aEMBED/gO,P4rei4~0o>o5HIGHWATERLEVELEL672'4"BRACINGEL668'4"6"j5PIPEDETAILCONTAINMENT WALLBASEMATb'+~igO)r+SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORT-DOWNCOMERBRACINGDETAILSFIGURE9-2 DOWNCOMERS

~~'IHIGHWATERLEVELEL.672'-0"PEDESTAL.HOLES12'USQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTSPATIALRELATIONSHIP OFDOWNCOMERS ANDPEDESTALHOLESFIGURE9-3 100REFERENCES 2\Dr.N.BeckerandDr.E.Koch,<<KKB-Vent ClearingwiththePerforated-Pipe Quencher" (translated byAd-ExpWatertown, Nassachusetts),,

KWU/E3-2796, Kraftwez'kUnion,October1973.IDr.M-BeckerandDr.E.Koch,"Construction andDesignoftheReliefSystemwithPerforated-Pipe Quencher>>

(translated byAd-Ex),E3/E2-2703, KraftwerkUniori,July1973.3.Dr.N.Becker,<<ResultsoftheNon-Nuclear HotTestswiththeReliefSystemintheBrunsbuttel NuclearPowerPlant"(translated byAd-Ex),KWU/R113-3267, Kraftwerk Union,,December1974.4.Dr.H.Weisshaupl,

<<Formation andOsci1lations ofaSpherical GasBubbleUnderWater<<(translated byAd-Ex),AEG-Telefunken ReportNo.2241,Kraftwerk Union,December19725.Dr.HWeisshaupl andSchall,"Calculation ModeltoClarify'he PressureOscillations intheSuppression ChamberAfterVentClearing>>

(translated byAd-Ex),AEG-'elefunken ReportNo.2208,Kraftwerk Union,March1972.6.Dr.M.Becker,FeistandM.Burro,"Analysis oftheLoadsMeasuredontheReliefSystemDuringtheNon-Nuclear HotTestinKKB<<(translated byAd-Ex),R113/R213/R314/R521-3346'raf twerkUnionsApril1975-7.Letter,J.W.Mi1lardtoN.J.Lidl,"Susquehanna 162:MassandEnergyReleaseforSuppression PoolTemperature AnalysisduringSafetyReliefValveandLOCATransients,"

GB-77-65, March14,1977.8.R.J.ErnstandM.G.Ward,"NarkIIPressureSuppression Containment Systems:AnAnalytical ModelofthePoolSwellPhenomenon,<<

NEDE-21544P, GeneralElectricCo.,December1976.9.Letter,F.C.RallytoNarkIITechnical SteeringCommittee Members,"PoolSwellNodelTestCases,"MKII-301-'E,August22,.1977.10.>>DynamicForcingFunctions Information report(DFFR),<<Rev.2,NED0-21061, GeneralElectricCo.andSarqentandLundyEngineers, September 1976.11.T.Y.Fukushima, etal,"TestResultsEmployedbyGEforBWRContainment andVertica1VentLoads,<<NEDE-21078-P, Table3-4,GeneralElectricCo.,October1975.10-1 12.F.J.Moody,Analytical ModelforLiquidJetProperties forPredicting ForcesonRigidSubmerged Structures, AEDE-21472,GeneralElectricCo.,(tobepublished)

.13.R.J.Ernst,etal.,MarkIIPressureSuppression Containment Systems:LoadsonSubmerged Structures

-Anapplication Memorandum, NEDE-2)730, GeneralElectricCo.,(tobepubLished).14.F.-J..Moody, Analytical ModelforEstimating DragForcesonRigidSubmerged Structures CausedbyLOCAandSafetyReliefValveRamsheadAirDischarges, NEDE-21471, GeneralElectricCo.,(tobepublished) 15.MarkII-PhaseI,4TTestsApplications Memorandum, LetterandReporttoM.R'utler(NRC)fromJ.FQuirk(GE),June14,1976.16.M.J.Bilanin,et.al.,MarkIILeadPlantTopicalReport:PoolBoundaryandMainVentChuggingLoadsJustification, NEDE-23617P, July1977.17.Warmeatlas (HeatTransferData),VDI(SocietyofGermanEngineers),

Dusseldorf, 1974.1'8.T.E.Johnson,etal.,<<Containment BuildingLinerPlhtbDesignReport,>>BC-TOP-1, BechtelCorporation; SanFrancisco, December1972.19.<<Sei'smic AnalysisofPipingSystems,"

BP-TOP"1, Rev2,BechtelPowerCorporation, SanFrancisco, Januhry1975.20.Letter,J.R.MartintoMarkIIOwnersGroupandTSC,MKXI-,'50-E,

Subject:

Condensation Oscillation ExcerptstoApplications Memorandum, July1,197721.D.HoffmanandESchmid,>>Brunsbuttel NuclearPowerPlantListofTestParameters andMostImportant Measurement ResultsoftheNon-Nuclear HotTestswiththePresureReliefSystem<<(translated byAd-Ex),R521/40/77,Kraftwerk Union,August197722.DGobel,"ResultsoftheNon-Nuclear HotTestswiththeReliefSysteminthePhilippsburq NuclearPowerplant<<(translated byAd-Ex),R142-38/77,Kraftwerk Union,March1977.23.D.HoffmanandE.Schmid,>>Philippsburg INuclearPowerPlantListofTestParameters andMostImportant Measurement ResultsoftheNon-Nuclear HotTestswiththePressureReliefSystem"(translated byAd-Ex),R521/41/77, Kraftwerk Union,August1977.10-2 24.Klans-D.Werner,>>Experimental StudiesofVentCleavingintheNodelTestStand<<(translated byAd-Ex)',KWU/R521-3129,Kraftwerk Union,July1975.25.D.Gobel,>>KKB-NuclearStart-UpResultsoftheTestswiththePressureReliefSystem>>(translated byAd-Ex),R142-136/76, KraftwerkUnion,September 1976.426.D.HoffmanandDr.KMelchior,

<<Condensation andVentClearingTestsinGKNwithPerforated Pipes"(translated byAd-Ex),KWU/E3-2594, Kraftwerk Union,Nay1973.27.GEDrawing761E579,BechtelNo.8856-N1-B11-89 28.ASNEBoilerandPressureVesselCode,SectionIII,Division1,197429.ASNEBoilerandPressureVesselCode,SectionIII,Division2,197430ACI318-7131.R.L.Kiang andB.J.Grossi,<<DynamicNodelling ofaNarkIZPressureSuppression System,"EPRI-NP-441, PaloAlto~April1977.32."SeismicAnalysesofStructures andEquipment forNuclearPowerPlants,<<BC-TOP-4A,BechtelPowerCorporation, November197410-3 APPENDIXACONTAINMENT DESIGNASSESSMENT TABLEOPCONTENTSA1CONTAINMENT STRUCTURAL DESIGNASSESSMENT A2CONTAINMENT SUBMERGED STRUCTURES DESIGNASSESSMENT A3FIGURES APPENDIXAFIGURESNumber.TitleConcreteandReinforcement StressElementsA-2TypicalSectionShovingSectionLocationReinforced BarArrangement Containment Containment margins-Dr yvellMallmargins-ShieldMallandRPVPedestalA-6A-8Containment Margins-MetvellMallContainment Nargins-RPVPedestalContainment Margins-BaseSlabContainment Nargins-Diaphragm-Slab A-2 APPENDIXAContainment DesignAssessment Thisappendixindicates thecontainment elementsandcross-sectionswherestressesaretobedetermined andcontainsatabulation of.thepredicted

stresses, allowedstressed, phddesignmarginsforeachloadingcombination considered.

Thestructural assessment ofthecontainment iscoveredi>iSectionA.1;thesubmerged structures areassessedinSectionA.2.A1CONTAINMENT STRUCTURAL DESIGNASSESSMENT Typicalexamplesofthismaterialareincludedinthede.port(FiguresA-1throughA-9);acompleteSectionA.1willbeincludedinafuturerevisiontothisreportA2CONTAIN'MENT SUBMERGED STRUCTURES DESIGNASSESSMENTTobeincludediaafuturerevisiontothisreport.A-3 CECAPOUTPUTLOADCOMBINATION EQN.1=1.4D+1.5 SRV(ASYM)

STRESSESINKSISTRUC.TURALCOMPONENTANSYSELEMENTNUMBERSECTIONNUMBERVERT.HOOPINSIDEFACEREBAR4VERT.OUTSIDEFACEREBAR4HOOPSPIRALISPIRAL2SHEARTIESPRINCIPAL CONC.STRESS86-0.017-0.067-0.1230.1230.027-0.027-0.233-0.039103-0.099-0.054~0.1450.052-0.018~0.0764.103-0.026231~0.264~0.017~0.3730.080~0.126~0.166.4I.127-0.0630Cmmrnzzmzpc+Chcn~+cnmmen~+<+mmz~ZOm+~0mAg7co0z311-0.3500.409315~0.6360.570"ALLOWABLE REINFORCING STEELSTRESS=54KSI-0.480-0.5950.5860.0070.6180.0970.044~0.015-0.140~0.304-0.076-0.090

CECAPOUTPUTLOAD'COMBINATION EQN.1=1.4D+1.5 SRV(ASYM)

STRESSESINKSIANSVSTURALELEMENT*NUMBERNENTSECTIONNUMBERVERT.HOOPINSIOEFACEREBAR%VERT.HOOPSPIRAL1OUTSIDEFACEREBAR%SPIRAL2SHEARTIESPRINCIPAL CONC.STRESS165120Z134)Chczmm~rpLpr2r<mpg0mB02mcn"-IDcmCOmzZZLc+>zenm+mCOCom+m2ZI~0mAm0COOZI-K36215"ALLOWABLE REINFORCING STEELSTRESS=54 KSI CECAPOUTPUTLOADCOMBINATIGN EQN.-1='1.4D+1.5 SFIV(ASYM)

STRESSESIN-KSISTRUC.ANSySELEMENTCOMPO-NUMBERNENTSECTIONNUMBERVERT.HOOPINSIDEFACEREBAR"VERT,HOOPSPIRALISPIRAL2OUTSIDEFACEREBAR"SHEARTIESPRINCIPAL CONC.STRESS441-0.996.113.601.391.36-0.080~0.145455-0.943.76~0.952.520.990.59-0.140-0.140473~0.922.91~0.872.080.620.59-0.078~0.13100hlZIIllIllIZrIrzraZ0Cmmnzzzac+gzc,m-ImCOCOm>mZZI~0m0illOOXIMOz47510-1.236.10495-1.244.09"ALLOWABLE REINFORCING STEELSTRESS=54 KSI~0.703~0.833.111.691.121.651.174.052~0.32-0.191~0.19 CECAPOUTPUTLOADCOMBINATION EQN.1=1.4D+1.5 SRV(ASYM)

STRESSESINKSISTRUC-TURALCOMPO.NENTANSYSELEMENTNUMBERSECTIONNUMBERVERT.HOOPINSIDEFACEREBAR%VERT.OUTSIDEFACEREBAR"HOOPSPIRAL1SPIRAL2SHEARTIESPRINCIPAL CONC.STRESS484161.710.472-3.150.6870.00.01.68~0.55255017~0.9530.926-1.782.570.00.00.160-0.264l-cc:59518-1.120.306-1.730.480.00.0-0.030~0.25760619-1.07-0.038-2.190.2380.00.00.234~0.337O0zx-azCgmmmz0+lllg0xlQz0CmmcnXazzzcn+PyZcillfllCOm~mZZgIOmg7~Am1l0AOZ20-1.28-0.031"ALLOWABLE REINFORCING STEELSTRESS=54 KSI-2.170.1960.00.00.281-0.330 CECAPOUTPUTLOADCOMBINATION EQN.1=1.4D+1.5 SRV(ASYM)

STRESSESINKSISTRUC.TURALCOMPO.NENTANSYSELEMENTNUMBERSECTIONNUMBERRADIALTANGENTIALTOPFACEREBAR~~iBOTTOMFACEREBAR"""RADIALTANGENTIAL SHEARTIESPRINCIPAL CONC.STRESS551308.512.102.430.920.501-0.129260.4311.28-0.26-0.134.2774.082QcmO0Z+'ZgmCOr~m2QZD0mmMpc+ez~en+mcn~~zm+m~Zc0mX~OmACO0z710.72729'.552.411.42270.5540.6803.115.890.54iNORTH-SOUTHBARS4%EAST-WFSTBARS""~ALLOWABLE REINFORCING STEELSTRESS=54 KSI0.821.960.02'I0.0950.2000.481-0.075-0.1024.105 CECAPOUTPUTLOADCOMBINATION EQN.1=1.4D+1.5 SRV(ASYM1 STRESSESINKSISTRUC.TURALCOMPO.NENTANSYSELEMENTNUMBERSECTIONNUMBERRAOIALTANGENTIAL TOPFACEREBAR%BOTTOMFACEREBAR"RADIALTANGENTIAL SHEARTIESPRINCIPAL CONC.STRESS253.603.712.90-0.321-0.050ACoOUZxz33K)OIllG)ZcoEI~Qz0CITImcnzzzc.+~zengWmCh<+mmzzom+MOITI0Og7COI0zClUIT:KCLO41144024211.933.33452220.844470230.392'ALLOWABLE REINFORCING STEELSTRESS=54 KSI3.401.553.623.873.232.931.922.185.551.694.424.2204.3504.614.564.048-0.0734.031 APPENDIXDPROGRAMVERIPICATXON TABLEOPCONTENTSD1D2D3POOLSMELL 5ODELVERIFICATION PIGURESTABLES APPENDIXD~FZORES~uebeoD-1D-2D-3D-4D-5CodeVerification-Poolsvell HeightforClassl'lantCOdeVerification-Poolssell VelocityforClass1PlantCodeVerification-Poolssell HeightforClass2Plant'CodeVerification-Poolsvell VelocityforClass2PlantCodeVerification-Poolswell HeightforClass3PlantCodeVerification-Poolsvell VelocityforClass3PlantD-2 APPBNDIXD~urbeD-1D-2D-3~T~te4DrywellPressureTransients fortheTestCases4PLantSpecificParameters fortheTest,CasesComparison ofHaximumPoolSmellVelocityforClasses,l,2,and3TestCasesD-4CommonAssumptions fortheTestCasesD-3 APPENDIXDROGAVERIXCAIONThepurposeofthisappendixistoprovideinformation whichverifiestheaccuracyofthecomputerprogramsusedinconjunction withSSESdesignassessment.

ADOOLSLL-NODLVIICAIONThissubsection demonstrates theaccuracyoftheSSESDARpoolswell modelbycomparing itwiththemodeldeveloped bytheGeneralElectricCompany.Thelattermodelhaspredicted conservatively theresultsofthe4Tpoolswell tests{Ref8).Toevaluatetheagreement betweentheGEpoolswell codeandthepoolswell codeusedfortheSSESDAR,threetestcaseswereselected.

ThetestcasesusedweretheClasses1,2,and3plantsdescribed inRef10TheinputdataforthesethreeproblemsaregiveninTablesD-1andD-2(takenfromRef9).(Intheverification ofthemodel,theboundaryconditions assumedbyGEinRef9wereused..Theseassumptions areshowninTableD-4.),Thesedataarerepresentative oftypicalU.S.NarkIIBWRs.Thepoolswell codeusedinthisDARwasreviseduntiltheresultswereincloseagreement withGE'sresultsasgiveninRef9.Agreement wasjudgedbyexamining thepeakswellvelocitypredicted, sincethisisoneofthemostimportant poolswellparameters andonethatisfairlysensitive tohowthephenomenon

'smodelled.

Thedegreeofagreement finallyachievedbetweenthepoolswell

'codeusedinthisDARandtheGEcodeisshowninTableD-3wherepeakswellvelocities arecompared.

Transient comparisons forClasses1,2,and3plantsareshownonFiguresD-1throughD-6wherethetransient predictions ofthetwocodesareshowntobeessentially identical Promthegoodagreement showninthecheckcases,thepoolswell codeusedinthisDARisverifiedtobethesameastheGEcodeforevaluation ofpoolswell.

APPENDIXETheresultsofanalysisofthereactorbuildingstructure willbesummarized inthisappendix.

Thisappendixwillbeprovidedinafuturerevisiontothisreport f,t