ML17059A031: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:NineMilePointUnit1DocketNo.50-220DPR-63TACNo.M83486GenericLetter92-01ElasticPlasticFractureMechanicsAssessmentforNineMilePointVnitI:ResponsetoNRCRequestforAdditionalInformation'August,1993,9309i40275930908PDRADOCK05000220PDR
{{#Wiki_filter:NineMilePointUnit1DocketNo.50-220DPR-63TACNo.M83486GenericLetter92-01ElasticPlasticFractureMechanics Assessment forNineMilePointVnitI:ResponsetoNRCRequestforAdditional Information
'August,1993,9309i40275 930908PDRADOCK05000220PDR


TABLEOFCONTENTS
TABLEOFCONTENTS


==1.0INTRODUCTION==
==1.0INTRODUCTION==
......2.0RESPONSESTOENCLOSURE1REQUESTSFORADDITIONALINFORMATION-SERVICELEVELSAANDB2.1InformationRequest1.-J-RModel2.2InformationRequest2.-MechanicsModel2.3InformationRequest3.-EffectofCladding~..............~.....5515163.0RESPONSESTOENCLOSURE2REQUESTSFORADDITIONALINFORMATION-SERVICELEVELSCANDD3.1InformationRequest1.-TemperatureDependencies3.2InformationRequest2.-95%ConfidenceProperties...............3.3InformationRequest3.-J-MaterialValues3.4InformationRequest4.-TransientDuration.....~....~~.........3.5InformationRequest5.-ThermalTransientParameters3.6InformationRequest6.-CladEquivalentStress3.7InformationRequest7.-StressIntensityFactorEquation...........'.3.8.InformationRequest8.-SampleCalculation18182122242631323
......
 
==2.0 RESPONSES==
TOENCLOSURE 1REQUESTSFORADDITIONAL INFORMATION
-SERVICELEVELSAANDB2.1Information Request1.-J-RModel2.2Information Request2.-Mechanics Model2.3Information Request3.-EffectofCladding~..............
~.....5515163.0RESPONSES TOENCLOSURE 2REQUESTSFORADDITIONAL INFORMATION
-SERVICELEVELSCANDD3.1Information Request1.-Temperature Dependencies 3.2Information Request2.-95%Confidence Properties
...............
3.3Information Request3.-J-Material Values3.4Information Request4.-Transient Duration.....~....~~.........
3.5Information Request5.-ThermalTransient Parameters 3.6Information Request6.-CladEquivalent Stress3.7Information Request7.-StressIntensity FactorEquation...........'
.3.8.Information Request8.-SampleCalculation 18182122242631323


==44.0REFERENCES==
==44.0REFERENCES==
.........37Appendix-ExampleLevelCFlawStabilityCalculation........,...~.....~...38  
 
.........
37Appendix-ExampleLevelCFlawStability Calculation
........,...
~.....~...38  


==1.0INTRODUCTION==
==1.0INTRODUCTION==
NiagaraMohawkPowerCorporation(NMPC)submittedtheReference[MA92]reporttotheNRCbyletterdatedOctober16,1992.CommentsprovidedbytheNRCwereincorporatedintotheanalysisandarevisedreportwassubmittedonDecember17,1992[MA92b].TheNRClaterconcurredwithNMPCthattheA302BmaterialmodelisappropriateforanalysisoftheNineMilePointUnit1(NMP-1)beltlineplates,andareport[MA93]waspreparedwhichcontainsonlytheA302Bmaterialmodel(theA533Bmodelwasdeleted).The[MA93]reportwasnotsenttotheNRCbecausetheA302BmodelandresultsareidenticaltothosereportedinReference'[MA92b].Thesesubmittalscontainaplant-specificelastic-plasticfracturemechanicsassessmentforNMP-1underServiceLevelAandBloadings.AreportwhichcontainstheresultsforServiceLevelCandDloadings[MA93b]wassubmittedtotheNRConFebruary26,1993.TheanalysesdescribedinthesereportswereperformedinaccordancewiththedraftASMEAppendixX[ASME92],anddemonstratethatsufficientmarginsofsafetyagainstfractureexistthroughend-of-license(EOL).InaletterdatedJuly22,1993,theNRCindicatedthatapreliminaryreviewofthesereportshasbeencompletedandthatadditionalinformationisrequiredtocompletethereview.ThisreportwaspreparedinresponsetotheNRC'srequestforadditionalinformationandisfullyresponsivetoallinformationrequestsprovidedinEnclosures1and2oftheJuly22,1993letter.
0 2.0RESPONSESTOENCLOSURE1REQUESTSFORADDITIONALINFORMATION-SERVICELEVELSAANDB2.1InformationRequest1.-J-RModel"ThereportindicatesthattheJ-Rcurvefora6Tspecimentestedat180'1'isdrawntomeettheJaxisatJc=525in-lblin',thenthiscurveisshif)eddowntomaketheJpointcoincidewiththeestimatedJicpoint,leavingthedifferencebetweentheplateaulevelofJandJicconstantat175in-Iblin',independentofbothtemperatureandUSE.ProvidejustificationfortheassertedindependenceoftheJdifference(175in-Iblin)withrespecttotemperatureandUSEvalues.AlsojustifythattheproposedJ-RmodelshouldbreakdownwhenUSEvaluesreachzero.(AlthoughthisissuewasaddressedinatelephoneconferenceheldinJanuary1993,awrittenresponseisrequired)"RESPONSE:~BackcaadIncontrastwiththeJ-Rcurvedatatrendsforotherpressurevesselmaterials,Reference[H189]reportedanunprecedentedsizeeffectforA302Bsteel.AsshowninFigure2.1-1,thethickerthespecimen,thelowertheJ-RresponselevelaAerinitiation.Whilesimilardatatrendshavebeenobservedforsomepressurevesselmaterials,decreasesintheJ-RcurvesofthemagnitudereportedbyHiserhavenotbeenreportedearlier.Basedonchemicalandmicrostructuralconsiderations,itwasdeterminedthatthemodifiedA302B(A302M)NMP-1plateswouldexhibitductilefracturebehaviorsimilartothatpresentedinReference[HI89].Reference[HI89]reportedJ-Rdatafor0.5T,1T,2T,and4Tspecimens,butonlyone6Ttestwasperformed(180'F,T-Lorientation).ThemicromechanicalexplanationfortheJ-RcurvebehaviorshowninFigure2.1-1hasnotbeendefinitivelyestablished.Hiser[HI89]hasreportedbrittle-likesplits,orlaminatetearing,forallofthespecimenstested.Thesesplitsareorientedinthedirectionofcrackgrowthwithsmallamountsofmicrovoidcoalescenceintheregionbetweenthesplits.Thesize,relativenumber,anddistributionofthesplitsareapproximatelyconstantforvariousspecimensizes.Hiserconcludedthatthesplitsresultedfromseparationof,theinterfacebetweenthematerialmatrixandtheinclusions(sulfides,aluminides)and/orthesplittingofthemorebrittlealloyrichbondedstructure(possiblybainite).Theonlyapparentdifferenceinthefractureofsmallandlargespecimensisthetotalnumberofsplitsandnottherelativeproportion,Acomplete~micromechanicalexplanationisnotyetavailable.ReferenceMA92AnalsisSincetherearenotsufficientthick-specimendata(6Tto8T)availableatpresenttodefinitivelyestablishtherelationshipbetweenJ<<andtheJplateau(hJ),asafunctionoftoughnesslevel(inparticular,USElevel),theReference[MA92]analysiswasperformedassumingthatthedifferencebetweentheplateaulevelofJandJ<<isaconstantequalto175in-


Ib/in'overtherangeofUSElevelsfrom10it-lbsto100A-lbs).Atthetimetheanalysiswasperformed,itwasrecognizedthatthe175in-lb/indifferencemaychangesomewhatasthetoughnessofthesteelvaries.HowevertheUSElevelforthissteelis52ft-lbs(T-L),whichisroughlyinthemiddleoftherangeoverwhichtheJ-Rcurvescalingwasdone.Therefore,itwasjudgedthatthedifferencebetweentheactualmaterialbehavior,andthematerialmodelbasedontheassumptionofaconstantB,J=175in-lb/in',wouldbesmallandadequatelyrepresentedbyotherconservatisminthemodel.SincethereisnophysicalbasisuponwhichtovaryhJastheUSElevelischanged,thechoiceofaconstanthJobtainedfrom6Tdataisareasonablemodellingassumption.6JCharacterizationTheNRChasrequestedthatjustificationfortheconstantb,Jusedinthe[MA92]calculationsbeprovided.Unfortunately,asdiscussedabove,withoutextensiveadditionaltestingandanalysis,completejustificationcannotbeprovided.Inparticular,sincetheplateauforthe6TA302Btestissolowat52A-lbs,itispossiblethattheh,JvariationatlowerUSElevelsmaynotscale,inthesamemannerasotherRPVmaterials.Intheabsenceofadditionaldata,calculationshavebeenperformedusing0.5Tand1TdatatoassessthehJvariationatlowtoughness.Sinceitislikelythatthesedataareconservativeincomparisonwith6TA302Bdata,thecalculationsprovidedbelowshouldbeviewedasworstcaseimpactassessments.Inandefforttocharacterizetheh,Jvariationwithtoughness,0.5Tand1TdatafromReferences[MEA90]and[MEA83]wereanalyzed.Thephysicalcrackextension(ha,)fortheanalysesreportedinReference[MA92]isontheorderof0.1in.Therefore,6Jforthe0.5Tand1TdatawascalculatedbysubtractingJ<<fromJatha;-0.1in.(J).Itisimportanttonotethatthethinspecimensatintermediatetohightoughnesslevelsdonotexhibitaplateauatsmallh,aaswiththe6TA302Bdata.However,thesmallspecimendatacanbeusedtoobtainanestimateofthelLJvariationwithtoughness.Infact,atthepresenttime,thisistheonlymethodavailableforcharacterizingthehJvariation.ThesedataarepresentedinFigure2.1-2.TheReference[MEA83]J-RpowerlawformulationwasusedtomodelthedatashowninFigure2.1-2.Themodel,determinedfromleastsquaresregression,isgivenby:where,J=C(ha)'=J-Integral(in-lb/in')C=1000[-0.4876(USE/100)+7.5611(USE/100)'](in-lb/in')ha=crackextension(in)n=0.267(C/1000)'""Figures2.1-3and2.1-4illustratethefunctionalformofCandn.TheresultsobtainedusingthepowerlawmodelareshowninTable2.1-1andinFigure2.1-2.Themodelrepresentsthe0.5Tand1Tdatawell,andapproachesaphysicallymeaningfullimitatlowtoughness.Asexpected,  
NiagaraMohawkPowerCorporation (NMPC)submitted theReference
[MA92]reporttotheNRCbyletterdatedOctober16,1992.CommentsprovidedbytheNRCwereincorporated intotheanalysisandarevisedreportwassubmitted onDecember17,1992[MA92b].TheNRClaterconcurred withNMPCthattheA302Bmaterialmodelisappropriate foranalysisoftheNineMilePointUnit1(NMP-1)beltlineplates,andareport[MA93]waspreparedwhichcontainsonlytheA302Bmaterialmodel(theA533Bmodelwasdeleted).
The[MA93]reportwasnotsenttotheNRCbecausetheA302Bmodelandresultsareidentical tothosereportedinReference'[MA92b].
Thesesubmittals containaplant-specific elastic-plastic fracturemechanics assessment forNMP-1underServiceLevelAandBloadings.
AreportwhichcontainstheresultsforServiceLevelCandDloadings[MA93b]wassubmitted totheNRConFebruary26,1993.Theanalysesdescribed inthesereportswereperformed inaccordance withthedraftASMEAppendixX[ASME92],
anddemonstrate thatsufficient marginsofsafetyagainstfractureexistthroughend-of-license (EOL).InaletterdatedJuly22,1993,theNRCindicated thatapreliminary reviewofthesereportshasbeencompleted andthatadditional information isrequiredtocompletethereview.ThisreportwaspreparedinresponsetotheNRC'srequestforadditional information andisfullyresponsive toallinformation requestsprovidedinEnclosures 1and2oftheJuly22,1993letter.
0
 
==2.0 RESPONSES==
TOENCLOSURE 1REQUESTSFORADDITIONAL INFORMATION
-SERVICELEVELSAANDB2.1Information Request1.-J-RModel"Thereportindicates thattheJ-Rcurvefora6Tspecimentestedat180'1'isdrawntomeettheJaxisatJc=525in-lblin',
thenthiscurveisshif)eddowntomaketheJpointcoincidewiththeestimated Jicpoint,leavingthedifference betweentheplateaulevelofJandJicconstantat175in-Iblin',
independent ofbothtemperature andUSE.Providejustification fortheassertedindependence oftheJdifference (175in-Iblin) withrespecttotemperature andUSEvalues.AlsojustifythattheproposedJ-Rmodelshouldbreakdown whenUSEvaluesreachzero.(Although thisissuewasaddressed inatelephone conference heldinJanuary1993,awrittenresponseisrequired)"
 
===RESPONSE===
~BackcaadIncontrastwiththeJ-Rcurvedatatrendsforotherpressurevesselmaterials, Reference
[H189]reportedanunprecedented sizeeffectforA302Bsteel.AsshowninFigure2.1-1,thethickerthespecimen, thelowertheJ-RresponselevelaAerinitiation.
Whilesimilardatatrendshavebeenobservedforsomepressurevesselmaterials, decreases intheJ-Rcurvesofthemagnitude reportedbyHiserhavenotbeenreportedearlier.Basedonchemicalandmicrostructural considerations, itwasdetermined thatthemodifiedA302B(A302M)NMP-1plateswouldexhibitductilefracturebehaviorsimilartothatpresented inReference
[HI89].Reference
[HI89]reportedJ-Rdatafor0.5T,1T,2T,and4Tspecimens, butonlyone6Ttestwasperformed (180'F,T-Lorientation).
Themicromechanical explanation fortheJ-RcurvebehaviorshowninFigure2.1-1hasnotbeendefinitively established.
Hiser[HI89]hasreportedbrittle-like splits,orlaminatetearing,forallofthespecimens tested.Thesesplitsareorientedinthedirection ofcrackgrowthwithsmallamountsofmicrovoid coalescence intheregionbetweenthesplits.Thesize,relativenumber,anddistribution ofthesplitsareapproximately constantforvariousspecimensizes.Hiserconcluded thatthesplitsresultedfromseparation of,theinterface betweenthematerialmatrixandtheinclusions (sulfides, aluminides) and/orthesplitting ofthemorebrittlealloyrichbondedstructure (possibly bainite).
Theonlyapparentdifference inthefractureofsmallandlargespecimens isthetotalnumberofsplitsandnottherelativeproportion, Acomplete~micromechanical explanation isnotyetavailable.
Reference MA92AnalsisSincetherearenotsufficient thick-specimen data(6Tto8T)available atpresenttodefinitively establish therelationship betweenJ<<andtheJplateau(hJ),asafunctionoftoughness level(inparticular, USElevel),theReference
[MA92]analysiswasperformed assumingthatthedifference betweentheplateaulevelofJandJ<<isaconstantequalto175in-
 
Ib/in'over therangeofUSElevelsfrom10it-lbsto100A-lbs).Atthetimetheanalysiswasperformed, itwasrecognized thatthe175in-lb/indifference maychangesomewhatasthetoughness ofthesteelvaries.HowevertheUSElevelforthissteelis52ft-lbs(T-L),whichisroughlyinthemiddleoftherangeoverwhichtheJ-Rcurvescalingwasdone.Therefore, itwasjudgedthatthedifference betweentheactualmaterialbehavior, andthematerialmodelbasedontheassumption ofaconstantB,J=175in-lb/in',
wouldbesmallandadequately represented byotherconservatism inthemodel.SincethereisnophysicalbasisuponwhichtovaryhJastheUSElevelischanged,thechoiceofaconstanthJobtainedfrom6Tdataisareasonable modelling assumption.
6JCharacterization TheNRChasrequested thatjustification fortheconstantb,Jusedinthe[MA92]calculations beprovided.
Unfortunately, asdiscussed above,withoutextensive additional testingandanalysis, completejustification cannotbeprovided.
Inparticular, sincetheplateauforthe6TA302Btestissolowat52A-lbs,itispossiblethattheh,Jvariation atlowerUSElevelsmaynotscale,inthesamemannerasotherRPVmaterials.
Intheabsenceofadditional data,calculations havebeenperformed using0.5Tand1TdatatoassessthehJvariation atlowtoughness.
Sinceitislikelythatthesedataareconservative incomparison with6TA302Bdata,thecalculations providedbelowshouldbeviewedasworstcaseimpactassessments.
Inandefforttocharacterize theh,Jvariation withtoughness, 0.5Tand1TdatafromReferences
[MEA90]and[MEA83]wereanalyzed.
Thephysicalcrackextension (ha,)fortheanalysesreportedinReference
[MA92]isontheorderof0.1in.Therefore, 6Jforthe0.5Tand1Tdatawascalculated bysubtracting J<<fromJatha;-0.1in.(J).Itisimportant tonotethatthethinspecimens atintermediate tohightoughness levelsdonotexhibitaplateauatsmallh,aaswiththe6TA302Bdata.However,thesmallspecimendatacanbeusedtoobtainanestimateofthelLJvariation withtoughness.
Infact,atthepresenttime,thisistheonlymethodavailable forcharacterizing thehJvariation.
Thesedataarepresented inFigure2.1-2.TheReference
[MEA83]J-Rpowerlawformulation wasusedtomodelthedatashowninFigure2.1-2.Themodel,determined fromleastsquaresregression, isgivenby:where,J=C(ha)'=J-Integral (in-lb/in')
C=1000[-0.4876 (USE/100)+
7.5611(USE/100)']
(in-lb/in')
ha=crackextension (in)n=0.267(C/1000)'""
Figures2.1-3and2.1-4illustrate thefunctional formofCandn.TheresultsobtainedusingthepowerlawmodelareshowninTable2.1-1andinFigure2.1-2.Themodelrepresents the0.5Tand1Tdatawell,andapproaches aphysically meaningful limitatlowtoughness.
Asexpected,  
 
themodelshowsthataconstanthJ=175in-lb/in's conservative forUSElevelsaboveabout40ft-lb,butissomewhatnon-conservative forUSElevelsbelow40ft-lb.Inordertoassesstheimpactofadecreasing hJwithtoughness, thefollowing materialmodelwasanalyzed:
USEft-ib10203040-100~EJinib/in/02082175Theabovedescribed J-Rmaterialmodelisthesameasthatdescribed inReference
[MA92];exceptthatbelow40ft-ibtheb,Jvariedinaccordance withtheabovelisteddata.TheresultsofthisanalysisareshowninTable2.1-2.Reviewofthesedatashowsthatevenifh,Jweretodecreasedramatically atUSElevelsbelow40ft-lb,theminimumallowable USEisbelowtheprojected materialUSEatEOL.MaterialModelTemeratureDeendenceWithregardtothequestionoftemperature dependence oftheJ-Rcurves,the6TJ-Rtestat180'F[HI89]isexpectedtoconservatively represent thematerialbehavioruptoreactoroperating temperature.
AsshowninFigure2.1-5,the6Ttestwasperformed atatemperature slightlyhigherthantheon-setoftheuppershelf.TheCharpydataindicatetemperature independence fromabout165'Fuptoreactoroperating temperature.
NMPCPositionItisNMPC'spositionthattheresultsoftheAppendixXanalysisreportedinReference
[MA92]areaccurateandconservative.
Atpresent,therearenotsufficient dataavailable tocharacterize thevariation ofh,Jwithtoughness forthicksectioncomponents.
Therefore, theuseofaconstant4J=175inlb/in'sreasonable andisexpectedtoyieldamaterialmodelwhichaccurately represents thicksectionbehavior.
~J-USEModelBehavioratLowTouhnessTheJ-RmodelfortheA302Bmaterialreliesonthecorrelation ofJ<<withUSEasshowninFigure4-12oftheDecember17,1992submittal.
IfitwerepossibletoproduceamaterialwithUSE=0(i.e.,noenergyrequiredtodriveacrack),thenJ<<mustalsobezero(i.e.,'ocrackdrivingforcerequired).
Therefore, thetheoretical limitforaJ<<vs.USEcorrelation astoughness decreases istheorigin.Thisdatatrendisclearlydemonstrated inFigure4-12.However,asapractical consideration, theUSEforferriticRPVsteelswouldnotbeexpectedtodropbelowthelowershelfenergylevel.Reference
[MEA90]showsthatthelowershelfforA302Bsteelisintherangeof4-18ft-lbs.Therefore, asthematerialtoughness decreases, theJ,c-USEcorrelation isexpectedtodescribethematerialfracturebehaviorastheUSElevelapproaches theCharpylowershelfenergylevel.
 
A302BJ-RDATAFORVARIOUSSPECIMENTHICKNESSES
'15001000XlICO05500CDO0k~~;~kaJ~~~~~~~+MID~~cI0.5TDATA<0.5TDATA00.5TDATA40.5TDATA*0.5TDATA*0.5TDATA01TDATA+1TDATAo2TDATAa2TDATA<4TDATA44TDATA~6TDATADeltaa(ln.)Figure2.1-1Comparison ofJ;RCurvesforA302BPlate(DataTakenfrom[HI89])
 
J-RCurveDeltaversusJicA302BandA533BMaterial30002500Ol4tOIQI20005500C)u1000cd500PowerLawModel100020003000Jtc(in-Ibs/in**2)
T-L~L-T+A533A302A302Figure2.1-2h,JasaFunctionofJ,cfor0.5Tand1TSpecimens
 
HUCLERRVESSELSTEELS288C,1T~,28-25%SGFILLEDSYNOLSRREIRRRDIRTED
~-lKUNENTS~i-HROOGHTN4gkgJ~wCS~~C/18887.5611%(Cv/188)
+2".4878%(cv/188)
I.BCv/IBB(ft-lb)2.BFigure2.1-3Correlation ofNormalized Coefficients withNormalized CharpyUpperShelfEnergyValuesPvKA83]10
 
1.88NUCLERRVESSELSTEELS288oC~iTCT~2825~SGFILLEDSYMBOLSRREIRRRDIRTED
.68ggSgWggSOhgh0glhn-8.2SC(CiBBB)82'62aa-gQMENTS>>-NROUGHT8.888812Cti888(4roaEq.3-i)28Figure2.1-4Correlation ofPowerLawExponent"n"withCoefficient "C"[MEA83]


themodelshowsthataconstanthJ=175in-lb/in'sconservativeforUSElevelsaboveabout40ft-lb,butissomewhatnon-conservativeforUSElevelsbelow40ft-lb.InordertoassesstheimpactofadecreasinghJwithtoughness,thefollowingmaterialmodelwasanalyzed:USEft-ib10203040-100~EJinib/in/02082175TheabovedescribedJ-RmaterialmodelisthesameasthatdescribedinReference[MA92];exceptthatbelow40ft-ibtheb,Jvariedinaccordancewiththeabovelisteddata.TheresultsofthisanalysisareshowninTable2.1-2.Reviewofthesedatashowsthatevenifh,JweretodecreasedramaticallyatUSElevelsbelow40ft-lb,theminimumallowableUSEisbelowtheprojectedmaterialUSEatEOL.MaterialModelTemeratureDeendenceWithregardtothequestionoftemperaturedependenceoftheJ-Rcurves,the6TJ-Rtestat180'F[HI89]isexpectedtoconservativelyrepresentthematerialbehavioruptoreactoroperatingtemperature.AsshowninFigure2.1-5,the6Ttestwasperformedatatemperatureslightlyhigherthantheon-setoftheuppershelf.TheCharpydataindicatetemperatureindependencefromabout165'Fuptoreactoroperatingtemperature.NMPCPositionItisNMPC'spositionthattheresultsoftheAppendixXanalysisreportedinReference[MA92]areaccurateandconservative.Atpresent,therearenotsufficientdataavailabletocharacterizethevariationofh,Jwithtoughnessforthicksectioncomponents.Therefore,theuseofaconstant4J=175inlb/in'sreasonableandisexpectedtoyieldamaterialmodelwhichaccuratelyrepresentsthicksectionbehavior.~J-USEModelBehavioratLowTouhnessTheJ-RmodelfortheA302BmaterialreliesonthecorrelationofJ<<withUSEasshowninFigure4-12oftheDecember17,1992submittal.IfitwerepossibletoproduceamaterialwithUSE=0(i.e.,noenergyrequiredtodriveacrack),thenJ<<mustalsobezero(i.e.,'ocrackdrivingforcerequired).Therefore,thetheoreticallimitforaJ<<vs.USEcorrelationastoughnessdecreasesistheorigin.ThisdatatrendisclearlydemonstratedinFigure4-12.However,asapracticalconsideration,theUSEforferriticRPVsteelswouldnotbeexpectedtodropbelowthelowershelfenergylevel.Reference[MEA90]showsthatthelowershelfforA302Bsteelisintherangeof4-18ft-lbs.Therefore,asthematerialtoughnessdecreases,theJ,c-USEcorrelationisexpectedtodescribethematerialfracturebehaviorastheUSElevelapproachestheCharpylowershelfenergylevel.
188TEHPERRTURE
('F)I88288388A302-8PLATE(V50)NewData6858previousData48382818188TEHPERRTURE
('C)Figure2.1-5Comparison oftheAverageCurvefits totheNewandthePreviousCDatafortheA302-BPlate.TheNewDataIndicateHigherOverallToughness, withaHigherUpperShelfEnergyLevelandLowerTransition Tempeiatures.
IHI89]12


A302BJ-RDATAFORVARIOUSSPECIMENTHICKNESSES'15001000XlICO05500CDO0k~~;~kaJ~~~~~~~+MID~~cI0.5TDATA<0.5TDATA00.5TDATA40.5TDATA*0.5TDATA*0.5TDATA01TDATA+1TDATAo2TDATAa2TDATA<4TDATA44TDATA~6TDATADeltaa(ln.)Figure2.1-1ComparisonofJ;RCurvesforA302BPlate(DataTakenfrom[HI89])
Table2.1-1PowerLawModelforb,JasaFunctionofToughness USE253040506080100J(0.1)(in-lb/in')
223321547807109117092360SmallSpecimenDataJic.(in-lb/in')
199239319399479639798hJ(in-lb/in')
248222840861210701562h,JUsedin[MA92](in-lb/in' 17517517517517517517513 0
Table2.1-2EAectof4JVariation ontheMinimumUpperShelfEnergyLevelforNMP-1PlateG-8-1PlateASMEServiceLevelMaterialModelHawGrowthof0.1in.Criterion Ji~Jo.iHawStability Criterion MinimumUSE(Ft-lbs)4J=175in-ib/in'law Growthof0.1in.Criterion Ji~o.iFlawStability Criterion MinimumUSE(Ft-Ibs)Variable4JG-8-1G-8-1G-8-1A8cBDA302BA302BA302B1310231020333136313014 0
2.2Information Request2.-Mechanics ModelltTheieportcontainsnodescription ofthefracturemechanics analysisprocedure, i.e.theequations usedforcalculating J,>,T,>,andP~,.Onlythenameofacomputer-programismentioned.
EitherconJirmthattheequations usedareidentical tothoseinAppendixXorlistalltheequations whichdier."RESPONSE:
Asmentioned inSection3.0ofReference IMA92],theprocedure andequations specified inAppendixX[ASME92]forServiceLevelsAandBareidentical tothoseusedtocalculate theappliedJ,theappliedtearingmodulus,andinternalpressureatflawinstability, undertheJ-Integral/Tearing ModulusProcedure.
15 C
2.3Information Request3.-EffectofCladding"Provideinforniation regarding theeffectofcladdingtothecalculated appliedJvalue."RESPONSE:
~BackcuadReference
[ASME92]doesnotexplicitly recommend norrequirethatcladstresseffectsbeincludedintheServiceLevelAandBanalysis.
Discussions withseveralmembersoftheASMEWorkingGrouponFlawEvaluation (WGFE)indicated thattheeffectsofcladdinghavebeendiscussed, butthegroupdoesnotplantorecommend incorporation ofcladstressanalysisprocedures intoAppendixX.ASMEarticleA-3000,"MethodforK,Determination",
doesrequireconsideration ofresidualandappliedstressofallforms,including clad-induced stress,tobeincludedinstressintensity factorformulation.
Therefore, NMPCincludedcladinducedstresseffectsforServiceLevelCandDloadings, becausetheServiceLevelCandDanalysesrequirecalculations tobeperformed forshallowsurfaceflawswherecladinducedstresscanbesignificant.
However,cladstresseffectswerenotincludedintheServiceLevelAandBanalysesbecause1/4Tflawsarepostulated intheseanalysesandthecladinducedstresswereassumedtobenegligible.
Estimated CladInducedStressEffectInresponsetotheNRCinformation request,theefFectofcladdingontheappliedJforServiceLevelAandBloadingshasbeenestimated.
Surfacetensilestressesresultfromdifferential thermalcontraction fromthestressreliefheattreatment at1150'F.Alinearelasticmodelwasformulated tocalculate thestressresulting fromcooldownfrom1150'F,andthemodelpredictsthatthehoopstressesexceedyieldbeforethevesselIDtemperature reaches100'F.Anelastic-plastic finiteelementanalysisofthecooldownfrom1150'Ftoroomtemperature, followedbyre-heating to528'F,withasubsequent 100'F/hrcooldown, wasperformed.
Theresultsofthefiniteelementanalysisconfirmed theanalytical modelprediction ofa36ksihoopstressinthecladduetodifFerential thermalcontraction whenthecooldownofthevesselwasterminated atavesselIDtemperature of100'F.Thestressintensity atthe1/4Tflawduetothecladstress~~)wascalculated andfoundtobe6.6ksiVin.Thestressintensity modelincludestheeffectsofthebasemetalcompressive reactionforce.Theminimumallowable USEwascalculated byaddingK~tothestressintensity factorsdefinedinAppendixX.TheAppendixXcalculative procedures werefollowedandtheevaluation criteriaapplied.Theresultsofthesecalculations areshowninTable2.3-1.ReviewofthesedatashowsthatifcladstresseffectswereincludedintheServiceLevelAandBanalysis, theminimumallowable USEisbelowtheprojected materialUSEatEOL.r16


J-RCurveDeltaversusJicA302BandA533BMaterial30002500Ol4tOIQI20005500C)u1000cd500PowerLawModel100020003000Jtc(in-Ibs/in**2)T-L~L-T+A533A302A302Figure2.1-2h,JasaFunctionofJ,cfor0.5Tand1TSpecimens
Table2.3-1EffectofCladStressontheMinimumUpperShelfEnergyLevelforNMP-1PlateG-8-1PlateASMEServiceLevelMaterialModelMinimumUSE(Ft-Lbs)WithoutCladStressEffectMinimumUSE(Ft-Lbs)WithCladStressEffectG-8-1A&BA302BFlawGrowthof0.1in.Criterion Ji~Jo.i13FlawStability Criterion 23FlawGrowthof0.1in.Criterion Ji~o.i26FlawStability Criterion 3717


HUCLERRVESSELSTEELS288C,1T~,28-25%SGFILLEDSYNOLSRREIRRRDIRTED~-lKUNENTS~i-HROOGHTN4gkgJ~wCS~~C/18887.5611%(Cv/188)+2".4878%(cv/188)I.BCv/IBB(ft-lb)2.BFigure2.1-3CorrelationofNormalizedCoefficientswithNormalizedCharpyUpperShelfEnergyValuesPvKA83]10
==3.0 RESPONSES==
TOENCLOSURE 2REQUESTSFORADDITIONAL INFORMATION
-SERVICELEVELSCANDD3.1Information Request1.-Temperature Dependencies "Thereportindicates inSection4.1thattemperature dependent properties wereusedinthethermalandstressanalyses.
Providethedetailsofthesetemperature dependencies."


1.88NUCLERRVESSELSTEELS288oC~iTCT~2825~SGFILLEDSYMBOLSRREIRRRDIRTED.68ggSgWggSOhgh0glhn-8.2SC(CiBBB)82'62aa-gQMENTS>>-NROUGHT8.888812Cti888(4roaEq.3-i)28Figure2.1-4CorrelationofPowerLawExponent"n"withCoefficient"C"[MEA83]
===RESPONSE===
Table3.1-1showsthetemperature dependent properties referredtoinSection4.1ofReference
[MA93b].ThefiniteelementsoAwarePVELD3]useslinearinterpolation withinthematerialpropertytables.Thevolumetric heatcapacity(c)isrelatedtospecificheat(C,)anddensity(p)by:c=pC,Theinstantaneous coefficient ofthermalexpansion isdefinedintermsoftheslopeofthethermalstrainversustemperature curve:dera=-dTTheinstantaneous coefficient isdifferent fromtheaveragecoefficient whichisperhapsmorecommonly'sed.
Whiletheaveragecoefficient musthaveanassociated reference temperature (thetemperature atwhichthermalstrainiszero),theinstantaneous valuedoesnot.Table3.1-2showstheaveragecoefficient ofthermalexpansion thatwasautomatically generated bythefiniteelementsofbvarefromtheinputinstantaneous values.Thevaluesbasedonareference temperature of1150'Fwereusedincomputing theinitialresidualstressstateduetoslowcoolingfromastress-free condition at1150'Fto528'F.Thevaluesbasedona'reference temperature of528'Fwereusedforthetransient thermalanalysesassociated withLevelCandLevelDloadings.18


188TEHPERRTURE('F)I88288388A302-8PLATE(V50)NewData6858previousData48382818188TEHPERRTURE('C)Figure2.1-5ComparisonoftheAverageCurvefitstotheNewandthePreviousCDatafortheA302-BPlate.TheNewDataIndicateHigherOverallToughness,withaHigherUpperShelfEnergyLevelandLowerTransitionTempeiatures.IHI89]12
Table3.1-1Temperature Dependence ofMaterialProperties Temperature Conductivity Vol.HeatCapacityElasticModulusPoisson's RatioInst.Coef.Th.Exp.(T):(k):(G)(E):(v)-(a).OFBtu/in/sec/'F Btu/iq/'Flh/innondimensional 1/oFStainless steelTk50.0.000182300.0.000212550.0.000242750.1000.1300.claddingc0.03120.03460.0371(type304)E28700000.
27100000.
25800000.
24200000.
22500000.
20200000.
0.260.280.310.320.300.280.00000816


Table2.1-1PowerLawModelforb,JasaFunctionofToughnessUSE253040506080100J(0.1)(in-lb/in')223321547807109117092360SmallSpecimenDataJic.(in-lb/in')199239319399479639798hJ(in-lb/in')248222840861210701562h,JUsedin[MA92](in-lb/in'17517517517517517517513 0
==0.0 0000894==
Table2.1-2EAectof4JVariationontheMinimumUpperShelfEnergyLevelforNMP-1PlateG-8-1PlateASMEServiceLevelMaterialModelHawGrowthof0.1in.CriterionJi~Jo.iHawStabilityCriterionMinimumUSE(Ft-lbs)4J=175in-ib/in'lawGrowthof0.1in.CriterionJi~o.iFlawStabilityCriterionMinimumUSE(Ft-Ibs)Variable4JG-8-1G-8-1G-8-1A8cBDA302BA302BA302B1310231020333136313014 0
0.00000960
2.2InformationRequest2.-MechanicsModelltTheieportcontainsnodescriptionofthefracturemechanicsanalysisprocedure,i.e.theequationsusedforcalculatingJ,>,T,>,andP~,.Onlythenameofacomputer-programismentioned.EitherconJirmthattheequationsusedareidenticaltothoseinAppendixXorlistalltheequationswhichdier."RESPONSE:AsmentionedinSection3.0ofReferenceIMA92],theprocedureandequationsspecifiedinAppendixX[ASME92]forServiceLevelsAandBareidenticaltothoseusedtocalculatetheappliedJ,theappliedtearingmodulus,andinternalpressureatflawinstability,undertheJ-Integral/TearingModulusProcedure.15 C
2.3InformationRequest3.-EffectofCladding"ProvideinforniationregardingtheeffectofcladdingtothecalculatedappliedJvalue."RESPONSE:~BackcuadReference[ASME92]doesnotexplicitlyrecommendnorrequirethatcladstresseffectsbeincludedintheServiceLevelAandBanalysis.DiscussionswithseveralmembersoftheASMEWorkingGrouponFlawEvaluation(WGFE)indicatedthattheeffectsofcladdinghavebeendiscussed,butthegroupdoesnotplantorecommendincorporationofcladstressanalysisproceduresintoAppendixX.ASMEarticleA-3000,"MethodforK,Determination",doesrequireconsiderationofresidualandappliedstressofallforms,includingclad-inducedstress,tobeincludedinstressintensityfactorformulation.Therefore,NMPCincludedcladinducedstresseffectsforServiceLevelCandDloadings,becausetheServiceLevelCandDanalysesrequirecalculationstobeperformedforshallowsurfaceflawswherecladinducedstresscanbesignificant.However,cladstresseffectswerenotincludedintheServiceLevelAandBanalysesbecause1/4Tflawsarepostulatedintheseanalysesandthecladinducedstresswereassumedtobenegligible.EstimatedCladInducedStressEffectInresponsetotheNRCinformationrequest,theefFectofcladdingontheappliedJforServiceLevelAandBloadingshasbeenestimated.Surfacetensilestressesresultfromdifferentialthermalcontractionfromthestressreliefheattreatmentat1150'F.Alinearelasticmodelwasformulatedtocalculatethestressresultingfromcooldownfrom1150'F,andthemodelpredictsthatthehoopstressesexceedyieldbeforethevesselIDtemperaturereaches100'F.Anelastic-plasticfiniteelementanalysisofthecooldownfrom1150'Ftoroomtemperature,followedbyre-heatingto528'F,withasubsequent100'F/hrcooldown,wasperformed.Theresultsofthefiniteelementanalysisconfirmedtheanalyticalmodelpredictionofa36ksihoopstressinthecladduetodifFerentialthermalcontractionwhenthecooldownofthevesselwasterminatedatavesselIDtemperatureof100'F.Thestressintensityatthe1/4Tflawduetothecladstress~~)wascalculatedandfoundtobe6.6ksiVin.Thestressintensitymodelincludestheeffectsofthebasemetalcompressivereactionforce.TheminimumallowableUSEwascalculatedbyaddingK~tothestressintensityfactorsdefinedinAppendixX.TheAppendixXcalculativeprocedureswerefollowedandtheevaluationcriteriaapplied.TheresultsofthesecalculationsareshowninTable2.3-1.ReviewofthesedatashowsthatifcladstresseffectswereincludedintheServiceLevelAandBanalysis,theminimumallowableUSEisbelowtheprojectedmaterialUSEatEOL.r16


Table2.3-1EffectofCladStressontheMinimumUpperShelfEnergyLevelforNMP-1PlateG-8-1PlateASMEServiceLevelMaterialModelMinimumUSE(Ft-Lbs)WithoutCladStressEffectMinimumUSE(Ft-Lbs)WithCladStressEffectG-8-1A&BA302BFlawGrowthof0.1in.CriterionJi~Jo.i13FlawStabilityCriterion23FlawGrowthof0.1in.CriterionJi~o.i26FlawStabilityCriterion3717
==0.0 0001003==
0.00001056


3.0RESPONSESTOENCLOSURE2REQUESTSFORADDITIONALINFORMATION-SERVICELEVELSCANDD3.1InformationRequest1.-TemperatureDependencies"ThereportindicatesinSection4.1thattemperaturedependentpropertieswereusedinthethermalandstressanalyses.Providethedetailsofthesetemperaturedependencies."RESPONSE:Table3.1-1showsthetemperaturedependentpropertiesreferredtoinSection4.1ofReference[MA93b].ThefiniteelementsoAwarePVELD3]useslinearinterpolationwithinthematerialpropertytables.Thevolumetricheatcapacity(c)isrelatedtospecificheat(C,)anddensity(p)by:c=pC,Theinstantaneouscoefficientofthermalexpansionisdefinedintermsoftheslopeofthethermalstrainversustemperaturecurve:dera=-dTTheinstantaneouscoefficientisdifferentfromtheaveragecoefficientwhichisperhapsmorecommonly'sed.Whiletheaveragecoefficientmusthaveanassociatedreferencetemperature(thetemperatureatwhichthermalstrainiszero),theinstantaneousvaluedoesnot.Table3.1-2showstheaveragecoefficientofthermalexpansionthatwasautomaticallygeneratedbythefiniteelementsofbvarefromtheinputinstantaneousvalues.Thevaluesbasedonareferencetemperatureof1150'Fwereusedincomputingtheinitialresidualstressstateduetoslowcoolingfromastress-freeconditionat1150'Fto528'F.Thevaluesbasedona'referencetemperatureof528'FwereusedforthetransientthermalanalysesassociatedwithLevelCandLevelDloadings.18
==0.0 0001141==
A302BhasemetalTkc50.300.550.750.1000.1300.0.0005340.02980.0005720.03410.0005530.037630000000.
29000000.
27700000.
26200000.
24500000.
22200000.
0.280.280.280.280.280.280.00000607 0.00000710=


Table3.1-1TemperatureDependenceofMaterialPropertiesTemperatureConductivityVol.HeatCapacityElasticModulusPoisson'sRatioInst.Coef.Th.Exp.(T):(k):(G)(E):(v)-(a).OFBtu/in/sec/'FBtu/iq/'Flh/innondimensional1/oFStainlesssteelTk50.0.000182300.0.000212550.0.000242750.1000.1300.claddingc0.03120.03460.0371(type304)E28700000.27100000.25800000.24200000.22500000.20200000.0.260.280.310.320.300.280.000008160.000008940.000009600.000010030.000010560.00001141A302BhasemetalTkc50.300.550.750.1000.1300.0.0005340.02980.0005720.03410.0005530.037630000000.29000000.27700000.26200000.24500000.22200000.0.280.280.280.280.280.280.000006070.00000710=0.000008160.000008940.000010000.00001100NOTE:Dataforkandcattemperaturesabove550'Farenotprovidedsincethermaltransientanalyseswereperformedattemperaturesbelow550'F.19
==0.0 0000816==
0.00000894


Table3.1-2AverageCoefficientsofThermalExpansionforReferenceTemperaturesof1150'Fand528'FStainlesssteelcladding(type304)a,(1/oF)50.300.550.750.1000.1300.A302Bhasemetal1150oF9.64330E-069.96485E-061.02544E-051.04741E-051.07725E-051.11975E-05528oF8.87958E-069.24096E-069.57096E-069.79082E-061.00579E-051.04181E-056,(1/oF)50.300.550.750.1000.1300.1150~F8.33523E-068.85000E-069.35833E-069.76250E-061.02500E-051.07500E-05528DF7.06121E-067.58336E-068.11336E-068.50673E-069.01694E-069.59326E-0620
==0.0 0001000==
0.00001100 NOTE:Dataforkandcattemperatures above550'Farenotprovidedsincethermaltransient analyseswereperformed attemperatures below550'F.19


3.2InformationRequest2.-95%ConfidenceProperties"1'igure4-12inthereportdatedDecember17,1992,andinapreviousreportdatedOctober16,1992,indicatesthattheMean-2opropertiesandthe95%confidenceproperties(Mean'-1.645o)giv'ethesamelowerboundline.ClarifythisandconfirmthatMean-2apropertieshavebeenusedforLevels2,8,andCanalyses."RESPONSE:TheOctober16,1992,reportisbasedon95%lowerboundconfidencelimits.Inparticular,the95%lowerboundJ<<valuesshowninFigure4-12werecalculatedusing:Jic=3.1(USE),USE(75ft-lbsJ<<=-363.4+7.93295(USE),USE>75ft-lbswhere,J<<=in-ib/in'SE=ft-IbTheportionofthemodelbetweentheoriginand75ft-1bswasdeterminedbasedonconservative~~engineeringjudgement.Theportionofthemodelabove75ft-lbscomesfromtheregressionanalysisandrepresentsthe95%confidencelowerbound.InresponsetotheNRC'srequest,the95%confidencelowerboundwas.replacedbyatwosigmalowerboundconfidenceintervalandthismodelwasdescribedintheDecember17,1992,submittal.Thetwosigmalowerboundmodelisgivenby:Jic=31(USE)~USE(75ft-lbsJic=-363.4+7.915(USE),USE>75ft-lbsTheportionofthemodelabove75ft-lbscomesfromtheregressionanalysisandrepresentsthetwosigmalowerbound.Theportionofthemodelbelow75ft-lbsisbasedonengineeringjudgementandisidenticaltothemodelusedintheOctober16,1992report.ItisNMPC'spositionthatthemodelusedbelow75ft-lbsismoreconservativethanatwosigmalowerboundlevel.SincetheJ-g.curvemodelbelow75ft-ibsusedintheOctober16,1992,reportisthesameasthatusedintheDecember17,1992,report,andtheminimumallowableUSEisbelow75ft-Ib(calculationsyielded23ft-lbs),theminimumallowableUSEwhichwascalculateddidnotchangewhenthetwosigmamodelwasused.Insummary,mean-2opropertieshavebeenusedforServiceLevelA,B,andCanalyses.21
Table3.1-2AverageCoefficients ofThermalExpansion forReference Temperatures of1150'Fand528'FStainless steelcladding(type304)a,(1/oF)50.300.550.750.1000.1300.A302Bhasemetal1150oF9.64330E-06 9.96485E-06 1.02544E-05 1.04741E-05 1.07725E-05 1.11975E-05 528oF8.87958E-06 9.24096E-06 9.57096E-06 9.79082E-06 1.00579E-05 1.04181E-05 6,(1/oF)50.300.550.750.1000.1300.1150~F8.33523E-06 8.85000E-06 9.35833E-06 9.76250E-06 1.02500E-05 1.07500E-05 528DF7.06121E-06 7.58336E-06 8.11336E-06 8.50673E-06 9.01694E-06 9.59326E-06 20


3.3InformationRequest3.-J-MaterialValuesIITheJmatenalvaluesat0.1inchlistedinTable5-3arelowerthanthecorrespondingvaluesinFigures5-1to5-4and5-7to5-10intheLevelsAdcBreportbyapproximately6lbs.Explainthisdifference."RESPONSE:AsdescribedinReference[MA93b],pointwiseexperimentaldata,scaledtoaccountforthetoughnesslevel,wereusedintheanalysis.TheUSE(3.0)codeusesamulti-linearrepresentationwithinterpolationwhenthepointwiseinputoptionisused.Asanexample,thematerialJp,datuminTable5-3ofReference[MA93b]at30ft-ibs(J=261in-lb/in')wasdeterminedbyinterpolatingthepointwiseJ-Rdata.ThematerialmodelinputforthiscaseisshowninTable3.3-1.ThedatainTable3.3-1showsthattheplateaubeginsat4a=0.112in.withJ=267.4in-Ib/in'.Thus,theapparentdiscrepancyisanartifactofthepointwisemodel.CarefulexaminationofFigures5-1to5-4and5-7to5-10oftheReferenceIMA92]reportshowsthattheinterpolatedJ-materialvaluesat0.1inchhave'beencorrectlycalculatedandtheJ-Rcurvesarecorrectlyplotted.22
3.2Information Request2.-95%Confidence Properties "1'igure4-12inthereportdatedDecember17,1992,andinapreviousreportdatedOctober16,1992,indicates thattheMean-2oproperties andthe95%confidence properties (Mean'-1.645o)giv'ethesamelowerboundline.ClarifythisandconfirmthatMean-2aproperties havebeenusedforLevels2,8,andCanalyses."


Table3.3-1USE3.0OutputListingShowingJ-RCurvePointwiseInput02/15/199315'-NPIP-1PLATEG"8"1A302BMATERIALNODELANALYSISCURVE&#xb9;JIC=92.4k'44$g4444$)kff4$)k$)gg)kgb)kg)kgb)}'4$$$$)kgffffgggggg)gg)l(4444)kg$$$44$44444441.CorresoondinauooershelfenerovUSE=30(ft-Ibs)&#xb9;1&#xb9;2&#xb9;3:&#xb9;&#xb9;5:&#xb9;6:&#xb9;7:&#xb9;8:&#xb9;9:&#xb9;10&#xb9;11:&#xb9;12&#xb9;13:&#xb9;14&#xb9;15:&#xb9;16:&#xb9;17&#xb9;18:19:&#xb9;20:Deltaa0.0020.0040.0050.0060.0100.0170.0170'220.0230.0250.0300.0320.0360.0430.0480.0560.0680.0730.0830.098JDelta.a21.600&#xb9;21:0.112~33.400&#xb9;22:3.00055.30075.00095.000109;-400116.400136.400144.400154.400165.400183'00191.400201.400210.400218.400225.400240.400247.400260.400J267.400268.00023
===RESPONSE===
TheOctober16,1992,reportisbasedon95%lowerboundconfidence limits.Inparticular, the95%lowerboundJ<<valuesshowninFigure4-12werecalculated using:Jic=3.1(USE),USE(75ft-lbsJ<<=-363.4+7.93295(USE),USE>75ft-lbswhere,J<<=in-ib/in'SE
=ft-IbTheportionofthemodelbetweentheoriginand75ft-1bswasdetermined basedonconservative
~~engineering judgement.
Theportionofthemodelabove75ft-lbscomesfromtheregression analysisandrepresents the95%confidence lowerbound.InresponsetotheNRC'srequest,the95%confidence lowerboundwas.replaced byatwosigmalowerboundconfidence intervalandthismodelwasdescribed intheDecember17,1992,submittal.
Thetwosigmalowerboundmodelisgivenby:Jic=31(USE)~USE(75ft-lbsJic=-363.4+7.915(USE),USE>75ft-lbsTheportionofthemodelabove75ft-lbscomesfromtheregression analysisandrepresents thetwosigmalowerbound.Theportionofthemodelbelow75ft-lbsisbasedonengineering judgement andisidentical tothemodelusedintheOctober16,1992report.ItisNMPC'spositionthatthemodelusedbelow75ft-lbsismoreconservative thanatwosigmalowerboundlevel.SincetheJ-g.curvemodelbelow75ft-ibsusedintheOctober16,1992,reportisthesameasthatusedintheDecember17,1992,report,andtheminimumallowable USEisbelow75ft-Ib(calculations yielded23ft-lbs),theminimumallowable USEwhichwascalculated didnotchangewhenthetwosigmamodelwasused.Insummary,mean-2oproperties havebeenusedforServiceLevelA,B,andCanalyses.
21


3.4InformationRequest4.-TransientDuration"LevelsCandDtransientsmustbeanalyzedfromthebeginningofthetransienttothetimeatwhichthemetalatthetipoftheJlawbeinganalyzedreachesatemperatureequivalenttotheadjustedRT>>rplus50'F.Confirmthatthispracticehasbeenadoptedorproviderevisedanalyses."RESPONSE:ForserviceLevelsCandD,theARTNDTforplateG-307-4rangesbetween144'Fand163'Ffromthe1/4TpositiontotheIDsurfaceat18EFPY.Therefore,theARTNDrplus50'Fwouldrangefrom199'Fto210'F.Theblowdowntransientsareterminatedwhenthepressurereaches35psigtoaccountforthecontainmentpressurelevelatthattimeinthetransient.IntheReferencePdA93b]thermalstresscalculations,thesetransientswereextendedtolongertimes,conservativelyassuminga300'Fperhourcooldowntoa212'FvesselIDtemperature.Thus,theLevelCandDtransientswerenotanalyzedtoatemperatureequivalenttotheARTNDrplus50'Fattheflawtip.However,asdiscussedinReferenceIMA93b],thelimitingtransientsexperiencedpeakthermalandmechanicalloadspriortothepointwhenthetransientanalysiswasterminated.ThecooldownfromthefinaltransientconditionstoARTNTplus50'Fisacontrolledevolutionwhichisnotincludedinthetransientdefinitionandisproperlyconsideredasarecoveryaction.Thecooldownfrom212'Fwouldbeboundedbytheemergencycooldowneventandinmostcaseswouldbeboundedbythenormaloperationcooldownanalysis.ThestandardGEthermalcycletransientdefinitionusedforthedesignbasisemergencyandfaultedstressanalysisdoesnotincludeacooldowntoARTNDTplus50'F.ThestandardGEthermalcyclediagramisthebasisforthelimitingLevelC(emergency)andlimitingLevelD(faulted)thermaltransientusedfortheReferencePvtA93b]analyses.ThestandardLevelCandDtemperatureandpressuretransientaredefinedbasedonthedesignbasiseventandareterminatedwhentheeventisstabilized.ThecooldownfromthefinalstabilizedtransientconditiontotheARTNDTplus50'Fiscontrolledbyoperatoractionsandemergencyoperatingprocedureguidelines.Ingeneral,theoperatorguidelinesincludemaintainingthecooldownwithinthe100'Fperhournormalguideline.ForalltheLevelCtransientconditions,theoperatorcanbeassumedtohavetheabilitytocontroltherecoverycooldownratewithinthenormaloperatingguidelinesaAertheeventhasstabilized.ForthelimitingdesignbasisLevelDrecirculationlinebreakevent,theemergencyoperatingprocedureguidelinesincludeacontainmentfloodupwhichoccursovera6to12hourperiod.Containmentfloodupiscompletedusinglakewaterassumedtobeatthemaximumof81'Fandaminimumofapproximately35'F.Thelimitingassumptionwouldbethatthevesselwalltemperatureisrapidlycooledfrom212to100'F(ambientcontainmenttemperatureandpressureisapproximatedtoremaingreaterthan100'Fduetodecayheat).Thislimitingconditioniscloselyapproximatedbythenormalcooldownrateassumptions.24
3.3Information Request3.-J-Material ValuesIITheJmatenalvaluesat0.1inchlistedinTable5-3arelowerthanthecorresponding valuesinFigures5-1to5-4and5-7to5-10intheLevelsAdcBreportbyapproximately 6lbs.Explainthisdifference."


AssumingtheNMP-1designbasisLOCAscenariowherethereactorisnotreflooded,theultimatecooldownfromsaturatedconditionsiscontrolledbythecontainmentaccidenttemperature.Theprimarycontainmentwetwellanddrywelltemperatureprofileresultsinthedrywellairspacetemperatureremaininggreaterthat175'Fforapproximately4hourswithasubsequentslowcooldownrate(muchlessthan100'Fperhourcooldown)linkedtothecontainmentheatremovalsystems.Insummary,theLevelCandDtransientswerenotanalyzedtothetimeatwhichthemetalatthetipoftheflawreachesatemperatureequivalenttotheadjustedRT~rplus50'F.However,thelimitingtransientsreachedpeakthermalandmechanicalloadspriortothepointwherethe.transientanalysiswasterminated.Therefore,theresultsreportedinReference[MA93b]arethemostconservativeresultsforanyoftheServiceLevelCandDtransients.25 0
===RESPONSE===
3.5InformationRequest5.-ThermalTransientParameters"Supplyacompletelistofinputparametersandconditionsforthetransientthermalanalysis,includingspecificheat',thermalconductivity,,density,theresultingvalueofthermaldiffusivity,coefficientofthermalexpansion,elasticmodulusandPoisson'sratio(forbothcladdingandbasemetal);alsotherelationshipsneededtodeterminetheinsidesurfaceheattransfercoeJJicient."RESPONSE:Theinformationprovidedbelowdefinestheinputparametersandconditionsforthetransient,thermalanalysis.ThematerialpropertiesaregiveninTables3.5-1and3.5-2.Specificheats(C,)anddensities(p)werenotinputtothethermalanalysis.Volumetricheatcapacity(c),theproductofthesetwoparameters,wasinputinstead.Thermaldiffusivity(x)wasalsonotadirectinputtotheanalyses.However,itwascomputedfromtheconductivity(k)andheatcapacity(c)propertiesasfollows:x=k/cTable3.5-3summarizesthethermaldiffusivitiesresultingfromtheconductivitiesandheatcapacitieslistedinTable3.5-1.ThetimedependentinternalpressureandfluidtemperatureboundaryconditionsfortheLevelCandDloadingsaregiveninTables3-7(LevelC)and3-8(LevelD)ofthereport[MA93b].Theoutersurfaceofthevesselisassumedtobeinsulated.Thetimedependentheattransfercoefficientattheinnervesselsurfaceisalsogiveninthesetables.Thefiniteelementsofbvarelinearlyinterpolates(intime)betweentheinputvaluesofinternalpressureandfluidtemperaturethatarespecifiedbyTables3-7and3-8ofReference[MA93b].Theheattransfercoefficients(h),however,arenotlinearlyinterpolated.Theheattransfercoefficientsarechangedinthemodelinastepwisemanner.Forexample,inTable3-7[MA93b],hisheldat10,000untilatimeof380seconds;thenhischangedinstantaneouslytothenewvalueof164.Sincehneverincreasesduringthecriticaltimesofthesetransients,thisprocedureresultsinlargerhvaluesbeingusedfurtherintothecoolingtransient.Thisresultsinlargerthermalgradientsbeingcalculatedandthusconservativethermalstresspredictions.TheheattransfercoefficientsofTables3-7and3-8aregiveninunitsofBTU/hr/ft'/'F.TheanalysisusedunitsofBTU/sec/in'/'F.Table3.5-4providesthehvaluesofTables3-7and3-8[MA93b]intheunitsoftheanalysis.26 0
Asdescribed inReference
Table3.5-1TemperatureDependenceofMaterialPropertiesTemperatureConductivityVol.HeatCapacityElasticNoduluspoisson'sRatioInst.Coef.Th.Exp.(T):(k):(c):(E):(v).(a)oFBtu/in/sec/'FBtu/ip/Flb/innondimensional1/0F50.300.550.750.1000;1300.0.0001820.0002120.0002420.03120.03460.037128700000.27100000.25800000.24200000.22500000.20200000.A302BbasemetalTkStainlesssteelcladding(type304)TkcEV0.260.280.310.320.300.280.000008160.000008940.000009600.000010030.000010560.0000114150.300.550.750.1000.1300.0.0005340.0005720.0005530.02980.03410.037630000000.29000000.27700000.26200000.24500000.22200000.0.280.280.280.280.280.280.000006070.000007100.000008160.000008940.000010000.00001100Dataforkandcattemperaturesabove550'Farenotprovidedsincethermaltransientanalyseswereperformedattemperaturesbelow550'F.27
[MA93b],pointwise experimental data,scaledtoaccountforthetoughness level,wereusedintheanalysis.
TheUSE(3.0)codeusesamulti-linear representation withinterpolation whenthepointwise inputoptionisused.Asanexample,thematerialJp,datuminTable5-3ofReference
[MA93b]at30ft-ibs(J=261in-lb/in')
wasdetermined byinterpolating thepointwise J-Rdata.ThematerialmodelinputforthiscaseisshowninTable3.3-1.ThedatainTable3.3-1showsthattheplateaubeginsat4a=0.112in.withJ=267.4in-Ib/in'.
Thus,theapparentdiscrepancy isanartifactofthepointwise model.Carefulexamination ofFigures5-1to5-4and5-7to5-10oftheReference IMA92]reportshowsthattheinterpolated J-material valuesat0.1inchhave'been correctly calculated andtheJ-Rcurvesarecorrectly plotted.22


Table3.5-2AverageCoefficientsofThermalExpansionforReferenceTemperaturesof1150'Fand528'FStainlesssteelcladding(type304)0,(1/F)aveA302Bbasemetal50.300.550.750.1000.1300.11500F9.64330E-069.96485E-061.02544E-051.04741E-OS1.07725E-051.11975E-OSS28'F8.87958E-069.24096E-OG9.57096E-OG9.79082E-OG1.00579E-051.04181E-050,(1/F)50.300.550.750.1000.1300.11500F8.33523E-068.85000E-069.3S833E-069.76250E-OG1.02500E-051.07500E-05528oF7.06121E-067.58336E-OG8.11336E-068.50673E-069.01694E-069.59326E-OG
Table3.3-1USE3.0OutputListingShowingJ-RCurvePointwise Input02/15/1993 15'-NPIP-1PLATEG"8"1A302BMATERIALNODELANALYSISCURVE&#xb9;JIC=92.4k'44$g4444$)kff4$)k$)gg)kgb)kg)kgb)}'4$
$$$)kgffffgggggg)gg)l(4444)kg$
$$44$44444441.Corresoondina uooershelfenerovUSE=30(ft-Ibs)&#xb9;1&#xb9;2&#xb9;3:&#xb9;&#xb9;5:&#xb9;6:&#xb9;7:&#xb9;8:&#xb9;9:&#xb9;10&#xb9;11:&#xb9;12&#xb9;13:&#xb9;14&#xb9;15:&#xb9;16:&#xb9;17&#xb9;18:19:&#xb9;20:Deltaa0.0020.0040.0050.0060.0100.0170.0170'220.0230.0250.0300.0320.0360.0430.0480.0560.0680.0730.0830.098JDelta.a21.600&#xb9;21:0.112~33.400&#xb9;22:3.00055.30075.00095.000109;-400116.400136.400144.400154.400165.400183'00191.400201.400210.400218.400225.400240.400247.400260.400J267.400268.00023


Table3.5-3ThermalDiffusivityDiffusivity(K):in/secStainlesssteelcladding(type304)TK=50.5.83E-03300.6.13E-03550.6.52E-03A302BbasemetalTK50.1.79E-02300.1.68E-02550.1.47E-0229
3.4Information Request4.-Transient Duration"LevelsCandDtransients mustbeanalyzedfromthebeginning ofthetransient tothetimeatwhichthemetalatthetipoftheJlawbeinganalyzedreachesatemperature equivalent totheadjustedRT>>rplus50'F.Confirmthatthispracticehasbeenadoptedorproviderevisedanalyses.
"RESPONSE:
ForserviceLevelsCandD,theARTNDTforplateG-307-4rangesbetween144'Fand163'Ffromthe1/4TpositiontotheIDsurfaceat18EFPY.Therefore, theARTNDrplus50'Fwouldrangefrom199'Fto210'F.Theblowdowntransients areterminated whenthepressurereaches35psigtoaccountforthecontainment pressurelevelatthattimeinthetransient.
IntheReference PdA93b]thermalstresscalculations, thesetransients wereextendedtolongertimes,conservatively assuminga300'Fperhourcooldowntoa212'FvesselIDtemperature.
Thus,theLevelCandDtransients werenotanalyzedtoatemperature equivalent totheARTNDrplus50'Fattheflawtip.However,asdiscussed inReference IMA93b],thelimitingtransients experienced peakthermalandmechanical loadspriortothepointwhenthetransient analysiswasterminated.
Thecooldownfromthefinaltransient conditions toARTNTplus50'Fisacontrolled evolution whichisnotincludedinthetransient definition andisproperlyconsidered asarecoveryaction.Thecooldownfrom212'Fwouldbeboundedbytheemergency cooldowneventandinmostcaseswouldbeboundedbythenormaloperation cooldownanalysis.
ThestandardGEthermalcycletransient definition usedforthedesignbasisemergency andfaultedstressanalysisdoesnotincludeacooldowntoARTNDTplus50'F.ThestandardGEthermalcyclediagramisthebasisforthelimitingLevelC(emergency) andlimitingLevelD(faulted) thermaltransient usedfortheReference PvtA93b]analyses.
ThestandardLevelCandDtemperature andpressuretransient aredefinedbasedonthedesignbasiseventandareterminated whentheeventisstabilized.
Thecooldownfromthefinalstabilized transient condition totheARTNDTplus50'Fiscontrolled byoperatoractionsandemergency operating procedure guidelines.
Ingeneral,theoperatorguidelines includemaintaining thecooldownwithinthe100'Fperhournormalguideline.
ForalltheLevelCtransient conditions, theoperatorcanbeassumedtohavetheabilitytocontroltherecoverycooldownratewithinthenormaloperating guidelines aAertheeventhasstabilized.
ForthelimitingdesignbasisLevelDrecirculation linebreakevent,theemergency operating procedure guidelines includeacontainment floodupwhichoccursovera6to12hourperiod.Containment floodupiscompleted usinglakewaterassumedtobeatthemaximumof81'Fandaminimumofapproximately 35'F.Thelimitingassumption wouldbethatthevesselwalltemperature israpidlycooledfrom212to100'F(ambientcontainment temperature andpressureisapproximated toremaingreaterthan100'Fduetodecayheat).Thislimitingcondition iscloselyapproximated bythenormalcooldownrateassumptions.
24


Table3.5-4HeatTransferCoefficientConversionBTU/hr!ft/'FBTU/sec'/inl'F69,18810,0005001641.33E-011.93E-029.65E-043.16E-0430 0
AssumingtheNMP-1designbasisLOCAscenariowherethereactorisnotreflooded, theultimatecooldownfromsaturated conditions iscontrolled bythecontainment accidenttemperature.
3.6InformationRequest6.-CladEquivalentStress"SupplythedetailedcalculationprocedurefordeterminingthecladequivalentstressvalueslistedinTable5-1."The"ExtrapolatedSurfaceStress"columninTable5-1ofReferenceIMA93b]isthestressatthepressurevesselIDsurfaceobtainedbyfittingthebasemetalfiniteelementcalculatedstressdistributiontothefollowingequation,a=Ao+A,X+A2X'A,X'here,A;=regressionconstantsX=distancethroughthewallandextrapolatingtotheIDsurface.The"CladStressMinusExtrapolatedSurfaceStress"columnisthedifferencebetweenthediscontinuouscladstressduetocooldownfromreactoroperatingtemperatureduringthetransientandtheextrapolatedbasemetalstressatthesurface.The"ResidualStress"columnisthetensilestressinthecladduetocooldownfrom1150'Ftoreactoroperatingtemperatureduringfinalstressrelief.The"CladTotalStress"columnisthesumofthe"CladStressMinusExtrapolatedSurfaceStress"dataandtheclad"ResidualStress"data.The"CrackSurfacePressure"columnisthestressonthecrackfacesduetocoolantpressure.The"CladEquivalentLineStress"columnwasobtainedbymultiplyingthe"CladTotalStress"bythecladthickness(5/32in.)toobtaintheequivalentlinestressforthestressintensitymodel,andaddingthe"CrackSurfacePressure"timesthemaximumanticipatedflawdepth(1.0in).Itisrecognizedthatthe"CrackSurfacePressure"maybeaddedtothebasemetalfiniteelementcalculatedstressdistributionandthenfitasdescribedearlier.However,theabovedescribedprocedureisconservativeandcomputationallysimpler.31 00 3.7InformationRequest7.-StressIntensityFactorEquation"Providethederivationorthereference(indicatingthepagenumber)ofEquation(5-3)."RESPONSE:Equation5-3ofReference[MA93b]canbefoundinthefollowingreferenceTheStressAnalsisofCracksHandbook,Tada,H.,Paris,P.,Irwin,G.,DelResearchCorporation,June,1973,page2.27AcopyoftheTadamodelisshowninFigure3.7-1.32
Theprimarycontainment wetwellanddrywelltemperature profileresultsinthedrywellairspacetemperature remaining greaterthat175'Fforapproximately 4hourswithasubsequent slowcooldownrate(muchlessthan100'Fperhourcooldown) linkedtothecontainment heatremovalsystems.Insummary,theLevelCandDtransients werenotanalyzedtothetimeatwhichthemetalatthetipoftheflawreachesatemperature equivalent totheadjustedRT~rplus50'F.However,thelimitingtransients reachedpeakthermalandmechanical loadspriortothepointwherethe.transient analysiswasterminated.
Therefore, theresultsreportedinReference
[MA93b]arethemostconservative resultsforanyoftheServiceLevelCandDtransients.
25 0
3.5Information Request5.-ThermalTransient Parameters "Supplyacompletelistofinputparameters andconditions forthetransient thermalanalysis, including specificheat',thermalconductivity,,density, theresulting valueofthermaldiffusivity, coefficient ofthermalexpansion, elasticmodulusandPoisson's ratio(forbothcladdingandbasemetal);alsotherelationships neededtodetermine theinsidesurfaceheattransfercoeJJicient."


-2.27-F(~cQ~)3.52('l-/~)<.3o-5.28+~(I-N)s/-"(I-4)'2<-(Fa)*PCdt7IIIIZIOl~oOUi+JII02II0./0.6C/g0.8Method:EstimatedbyInterpolationAccuracy:F(c/a,a/b)-foraula$sexpectedtohave2Xaccuracyforanyvaluesofc/aanda/b
===RESPONSE===
Theinformation providedbelowdefinestheinputparameters andconditions forthetransient, thermalanalysis.
Thematerialproperties aregiveninTables3.5-1and3.5-2.Specificheats(C,)anddensities (p)werenotinputtothethermalanalysis.
Volumetric heatcapacity(c),theproductofthesetwoparameters, wasinputinstead.Thermaldiffusivity (x)wasalsonotadirectinputtotheanalyses.
However,itwascomputedfromtheconductivity (k)andheatcapacity(c)properties asfollows:x=k/cTable3.5-3summarizes thethermaldiffusivities resulting fromtheconductivities andheatcapacities listedinTable3.5-1.Thetimedependent internalpressureandfluidtemperature boundaryconditions fortheLevelCandDloadingsaregiveninTables3-7(LevelC)and3-8(LevelD)ofthereport[MA93b].Theoutersurfaceofthevesselisassumedtobeinsulated.
Thetimedependent heattransfercoefficient attheinnervesselsurfaceisalsogiveninthesetables.Thefiniteelementsofbvarelinearlyinterpolates (intime)betweentheinputvaluesofinternalpressureandfluidtemperature thatarespecified byTables3-7and3-8ofReference
[MA93b].Theheattransfercoefficients (h),however,arenotlinearlyinterpolated.
Theheattransfercoefficients arechangedinthemodelinastepwisemanner.Forexample,inTable3-7[MA93b],hisheldat10,000untilatimeof380seconds;thenhischangedinstantaneously tothenewvalueof164.Sincehneverincreases duringthecriticaltimesofthesetransients, thisprocedure resultsinlargerhvaluesbeingusedfurtherintothecoolingtransient.
Thisresultsinlargerthermalgradients beingcalculated andthusconservative thermalstresspredictions.
Theheattransfercoefficients ofTables3-7and3-8aregiveninunitsofBTU/hr/ft'/'F.
TheanalysisusedunitsofBTU/sec/in'/'F.
Table3.5-4providesthehvaluesofTables3-7and3-8[MA93b]intheunitsoftheanalysis.
26 0
Table3.5-1Temperature Dependence ofMaterialProperties Temperature Conductivity Vol.HeatCapacityElasticNoduluspoisson's RatioInst.Coef.Th.Exp.(T):(k):(c):(E):(v).(a)oFBtu/in/sec/'F Btu/ip/Flb/innondimensional 1/0F50.300.550.750.1000;1300.0.0001820.0002120.0002420.03120.03460.037128700000.
27100000.
25800000.
24200000.
22500000.
20200000.
A302BbasemetalTkStainless steelcladding(type304)TkcEV0.260.280.310.320.300.280.00000816
 
==0.0 0000894==
0.00000960
 
==0.0 0001003==
0.00001056
 
==0.0 0001141==
50.300.550.750.1000.1300.0.0005340.0005720.0005530.02980.03410.037630000000.
29000000.
27700000.
26200000.
24500000.
22200000.
0.280.280.280.280.280.280.00000607
 
==0.0 0000710==
0.00000816
 
==0.0 0000894==
0.00001000
 
==0.0 0001100==
Dataforkandcattemperatures above550'Farenotprovidedsincethermaltransient analyseswereperformed attemperatures below550'F.27
 
Table3.5-2AverageCoefficients ofThermalExpansion forReference Temperatures of1150'Fand528'FStainless steelcladding(type304)0,(1/F)aveA302Bbasemetal50.300.550.750.1000.1300.11500F9.64330E-06 9.96485E-06 1.02544E-05 1.04741E-OS 1.07725E-05 1.11975E-OS S28'F8.87958E-06 9.24096E-OG 9.57096E-OG 9.79082E-OG 1.00579E-05 1.04181E-05 0,(1/F)50.300.550.750.1000.1300.11500F8.33523E-06 8.85000E-06 9.3S833E-06 9.76250E-OG 1.02500E-05 1.07500E-05 528oF7.06121E-06 7.58336E-OG 8.11336E-06 8.50673E-06 9.01694E-06 9.59326E-OG
 
Table3.5-3ThermalDiffusivity Diffusivity (K):in/secStainless steelcladding(type304)TK=50.5.83E-03300.6.13E-03550.6.52E-03A302BbasemetalTK50.1.79E-02300.1.68E-02550.1.47E-0229
 
Table3.5-4HeatTransferCoefficient Conversion BTU/hr!ft
/'FBTU/sec'/in l'F69,18810,0005001641.33E-011.93E-029.65E-043.16E-0430 0
3.6Information Request6.-CladEquivalent Stress"Supplythedetailedcalculation procedure fordetermining thecladequivalent stressvalueslistedinTable5-1."The"Extrapolated SurfaceStress"columninTable5-1ofReference IMA93b]isthestressatthepressurevesselIDsurfaceobtainedbyfittingthebasemetalfiniteelementcalculated stressdistribution tothefollowing
: equation, a=Ao+A,X+A2X'A,X'here, A;=regression constants X=distancethroughthewallandextrapolating totheIDsurface.The"CladStressMinusExtrapolated SurfaceStress"columnisthedifference betweenthediscontinuous cladstressduetocooldownfromreactoroperating temperature duringthetransient andtheextrapolated basemetalstressatthesurface.The"Residual Stress"columnisthetensilestressinthecladduetocooldownfrom1150'Ftoreactoroperating temperature duringfinalstressrelief.The"CladTotalStress"columnisthesumofthe"CladStressMinusExtrapolated SurfaceStress"dataandtheclad"Residual Stress"data.The"CrackSurfacePressure" columnisthestressonthecrackfacesduetocoolantpressure.
The"CladEquivalent LineStress"columnwasobtainedbymultiplying the"CladTotalStress"bythecladthickness (5/32in.)toobtaintheequivalent linestressforthestressintensity model,andaddingthe"CrackSurfacePressure" timesthemaximumanticipated flawdepth(1.0in).Itisrecognized thatthe"CrackSurfacePressure" maybeaddedtothebasemetalfiniteelementcalculated stressdistribution andthenfitasdescribed earlier.However,theabovedescribed procedure isconservative andcomputationally simpler.31 00 3.7Information Request7.-StressIntensity FactorEquation"Providethederivation orthereference (indicating thepagenumber)ofEquation(5-3)."RESPONSE:
Equation5-3ofReference
[MA93b]canbefoundinthefollowing reference TheStressAnalsisofCracksHandbook, Tada,H.,Paris,P.,Irwin,G.,DelResearchCorporation, June,1973,page2.27AcopyoftheTadamodelisshowninFigure3.7-1.32
 
-2.27-F(~cQ~)3.52('l-/~)<.3o-5.28+~
(I-N)s/-"(I-4)'2<-(Fa)*PCdt7IIIIZIOl~oOUi+JII02II0./0.6C/g0.8Method:Estimated byInterpolation Accuracy:
F(c/a,a/b)-foraula
$sexpectedtohave2Xaccuracyforanyvaluesofc/aanda/b


==Reference:==
==Reference:==
Tada1974Figure3,7-1EquivalentLineLoadStressIntensityFactorEquation.33 C
3.8InformationRequest8.-SampleCalculation"Provideloadsandvaluesofdafortheresultslabelledunder"FlawStabilityCriterion"inTables5-3and5-4.Supplydetailsforonecalculation."RESPONSE:TheappliedstressesforthelimitingLevelCandDtransientsareprovidedinReference[MA93b].TheappliedJandhavaluesforthelimitingpostulatedfiawdepthundertheASMEAppendixXflawstabilitycriterionforLevelCloadingconditionsaregiveninTable3.8-1.SimilardataforLevelDloadingconditionsaregiveninTable3.8-2.Theresultsshownareforthelargesth,awhichcorrespondstothedeepestpostulatedinitialflawanalyzed.IterativecalculationswereperformedwhichallowthecracktoextendtoitsequilibriumlengthforcaseswheretheinitialJisgreaterthanJ<<.Aspectrumofinitialflaws,upto1/10ofthebasemetalwallthickness,wereassumed.Thesmallestpostulatedflawis0.05in.andtheinitialflawsizeswereincrementedby0.05in.uptoamaximuminitialflawdepthof0.75in.AsshowninTables3.8-1and3.8-2,forUSElevelsabove20Mbs,theflawgrowthislessth'an0.08in.ThereforetheJ-Rcurveplateauisnotreachedandstabletearingoccursuntiltheequilibriumflawdepthisreached.AsampleflawstabilitycalculationfortheLevelCloadingisprovidedinAttachment1.34


Table3.8-1AppliedLoadsandCrackExtensionforVariousUSELevelsAnalyzedUndertheASMEAppendixXFlawStabilityCriterionforLevelCLoadingConditionsandanAxialFlawOrientation'SELevel102030405060708090100FinalAppliedJ'in-ib/in~182.2181.5180.9180.7180.4179.8179.8.179.8179.8179.8h,aPhysical~in.0.07930.05080.03240.02460.01800.00.00.00.00.0AppliedT0.0960.1070.1140.1170.1200.1270.1270.1270.1270.127CriterionSatisfiedyesyesyesyesyesyes,J<Jrcyes,J<Jrcyes,J<J<<yes,J<J<<yes,J<J<<E'esultsshownarefor'thelargesth,awhichoccursforthedeepestpostulatedbasemetalflaw(a.=0.75in)'hefinalappliedJisiterativelycalculatedandrepresentstheappliedJaAerthecrackreachesitsequilibriumlength35 I'
Tada1974Figure3,7-1Equivalent LineLoadStressIntensity FactorEquation.33 C
Table3.8-2AppliedLoadsandCrackExtensionforVariousUSELevelsAnalyzedUndertheASMEAppendixXFlawStabilityCriterionforLevelDLoadingConditionsandanAxialFlawOrientation'SELevel10FinalAppliedJ'in-ib/in~haPhysical~in.AppliedTCriterionSatisfiedno20299.50.07300.129yes30405060708090.100297.6296.4296.4296.4296.4296.4296.4296.40.02550.00.00.00.00.00.00.00.1580.1740.1740.1740.1740.1740.1740.174yesyes,JCircyes,J'Jrcyes,J<Jrcyes,J<Jrcyes,JNrcyes,J<Jrcyes,J<J<<'esultsshownareforthelargesthawhichoccursforthedeepestpostulatedbasemetalflaw(a.=0.75in)'hefinalappliedJisiterativelycalculatedandrepresentstheappliedJaAerthecrackreachesitsequilibriumlength'6 0  
3.8Information Request8.-SampleCalculation "Provideloadsandvaluesofdafortheresultslabelledunder"FlawStability Criterion" inTables5-3and5-4.Supplydetailsforonecalculation."
 
===RESPONSE===
TheappliedstressesforthelimitingLevelCandDtransients areprovidedinReference
[MA93b].TheappliedJandhavaluesforthelimitingpostulated fiawdepthundertheASMEAppendixXflawstability criterion forLevelCloadingconditions aregiveninTable3.8-1.SimilardataforLevelDloadingconditions aregiveninTable3.8-2.Theresultsshownareforthelargesth,awhichcorresponds tothedeepestpostulated initialflawanalyzed.
Iterative calculations wereperformed whichallowthecracktoextendtoitsequilibrium lengthforcaseswheretheinitialJisgreaterthanJ<<.Aspectrumofinitialflaws,upto1/10ofthebasemetalwallthickness, wereassumed.Thesmallestpostulated flawis0.05in.andtheinitialflawsizeswereincremented by0.05in.uptoamaximuminitialflawdepthof0.75in.AsshowninTables3.8-1and3.8-2,forUSElevelsabove20Mbs,theflawgrowthislessth'an0.08in.Therefore theJ-Rcurveplateauisnotreachedandstabletearingoccursuntiltheequilibrium flawdepthisreached.Asampleflawstability calculation fortheLevelCloadingisprovidedinAttachment 1.34
 
Table3.8-1AppliedLoadsandCrackExtension forVariousUSELevelsAnalyzedUndertheASMEAppendixXFlawStability Criterion forLevelCLoadingConditions andanAxialFlawOrientation'SE Level102030405060708090100FinalAppliedJ'in-ib/in~
182.2181.5180.9180.7180.4179.8179.8.179.8179.8179.8h,aPhysical~in.0.07930.05080.03240.02460.01800.00.00.00.00.0AppliedT0.0960.1070.1140.1170.1200.1270.1270.1270.1270.127Criterion Satisfied yesyesyesyesyesyes,J<Jrcyes,J<Jrcyes,J<J<<yes,J<J<<yes,J<J<<E'esultsshownarefor'thelargesth,awhichoccursforthedeepestpostulated basemetalflaw(a.=0.75in)'hefinalappliedJisiteratively calculated andrepresents theappliedJaAerthecrackreachesitsequilibrium length35 I'
Table3.8-2AppliedLoadsandCrackExtension forVariousUSELevelsAnalyzedUndertheASMEAppendixXFlawStability Criterion forLevelDLoadingConditions andanAxialFlawOrientation'SE Level10FinalAppliedJ'in-ib/in
~haPhysical~in.AppliedTCriterion Satisfied no20299.50.07300.129yes30405060708090.100297.6296.4296.4296.4296.4296.4296.4296.40.02550.00.00.00.00.00.00.00.1580.1740.1740.1740.1740.1740.1740.174yesyes,JCircyes,J'Jrcyes,J<Jrcyes,J<Jrcyes,JNrcyes,J<Jrcyes,J<J<<'esultsshownareforthelargesthawhichoccursforthedeepestpostulated basemetalflaw(a.=0.75in)'hefinalappliedJisiteratively calculated andrepresents theappliedJaAerthecrackreachesitsequilibrium length'6 0  


==4.0REFERENCES==
==4.0REFERENCES==
[ASME92]ASMEDraftCodeCaseN-XXX,"AssessmentofReactorVesselswithLowUpperShelfCharpyEnergyLevels",Revision11,May27,1992.[HI89][MA92]Hiser,A.L.,Terrell,J.B.,"SizeEffectsonJ-RCurvesforA302BPlate",NUI&G/CR-5265,January,1989.ENMPCLetterfromC.D.TerrytoNRC,datedOctober16,1992,"Elastic-PlasticFractureMechanicsAssessmentofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings".[MA92b]NMPCLetterfromC.D.TerrytoNRC,datedDecember17,1992,"Elastic-PlasticFractureMechanicsAssessmentofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings".[MA93]Manahari,M.P.Sr.,"Elastic-PlasticFractureMechanicsAssessmentofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings",FinalreportpreparedforNMPC,MPM-USE-293215,February,1993.[MA93b]NMPCLetterfromC.D.TerrytoNRC,datedFebruaiy26,1993"Elastic-PlasticFractureMechanicsAssessmentofNineMilePointUnit1BeltlinePlatesforServiceLevelCandDLoadings".[MEA83]MaterialsEngineeringAssociates,Inc.,Lanham,MD(Hiser,A.L.,andFishman,D.B.),"J-RCurveDataBaseAnalysisofIrradiatedReactorPressureVesselSteels",FinalreportpreparedforEPIU,December,1983.[MEA90]MaterialsEngineeringAssociates,Inc.,Lanham,MD,"InfluenceofFluenceRateonRadiation-InducedMechanicalPropertyChangesinReactorPressureVesselSteelsFinalReportonExploratoiyExperiments",preparedforNRC,NUIT/CR-5493,March,1990.[WELD3]"WELD3ComputerCodeVerification",MPMResearch&Consulting,CalculationNo.MPM-NMPC-99205,Rev.0,January21,1993.37 0
 
Appendix-ExampleLevelCFlawStabilityCalculation38}}
[ASME92]ASMEDraftCodeCaseN-XXX,"Assessment ofReactorVesselswithLowUpperShelfCharpyEnergyLevels",Revision11,May27,1992.[HI89][MA92]Hiser,A.L.,Terrell,J.B.,"SizeEffectsonJ-RCurvesforA302BPlate",NUI&G/CR-5265, January,1989.ENMPCLetterfromC.D.TerrytoNRC,datedOctober16,1992,"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings".
[MA92b]NMPCLetterfromC.D.TerrytoNRC,datedDecember17,1992,"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings".
[MA93]Manahari, M.P.Sr.,"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings",
FinalreportpreparedforNMPC,MPM-USE-293215,
: February, 1993.[MA93b]NMPCLetterfromC.D.TerrytoNRC,datedFebruaiy26,1993"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelCandDLoadings".
[MEA83]Materials Engineering Associates, Inc.,Lanham,MD(Hiser,A.L.,andFishman,D.B.),"J-RCurveDataBaseAnalysisofIrradiated ReactorPressureVesselSteels",FinalreportpreparedforEPIU,December, 1983.[MEA90]Materials Engineering Associates, Inc.,Lanham,MD,"Influence ofFluenceRateonRadiation-Induced Mechanical PropertyChangesinReactorPressureVesselSteelsFinalReportonExploratoiy Experiments",
preparedforNRC,NUIT/CR-5493,March,1990.[WELD3]"WELD3ComputerCodeVerification",
MPMResearch&Consulting, Calculation No.MPM-NMPC-99205, Rev.0,January21,1993.37 0
Appendix-ExampleLevelCFlawStability Calculation 38}}

Revision as of 22:57, 29 June 2018

Elastic Plastic Fracture Mechanics Assessment...Nine Mile Point,Unit 1:Response to NRC RAI Re GL 92-01
ML17059A031
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 08/31/1993
From:
NIAGARA MOHAWK POWER CORP.
To:
Shared Package
ML17059A032 List:
References
GL-92-01, GL-92-1, TAC-M83486, NUDOCS 9309140275
Download: ML17059A031 (74)


Text

NineMilePointUnit1DocketNo.50-220DPR-63TACNo.M83486GenericLetter92-01ElasticPlasticFractureMechanics Assessment forNineMilePointVnitI:ResponsetoNRCRequestforAdditional Information

'August,1993,9309i40275 930908PDRADOCK05000220PDR

TABLEOFCONTENTS

1.0INTRODUCTION

......

2.0 RESPONSES

TOENCLOSURE 1REQUESTSFORADDITIONAL INFORMATION

-SERVICELEVELSAANDB2.1Information Request1.-J-RModel2.2Information Request2.-Mechanics Model2.3Information Request3.-EffectofCladding~..............

~.....5515163.0RESPONSES TOENCLOSURE 2REQUESTSFORADDITIONAL INFORMATION

-SERVICELEVELSCANDD3.1Information Request1.-Temperature Dependencies 3.2Information Request2.-95%Confidence Properties

...............

3.3Information Request3.-J-Material Values3.4Information Request4.-Transient Duration.....~....~~.........

3.5Information Request5.-ThermalTransient Parameters 3.6Information Request6.-CladEquivalent Stress3.7Information Request7.-StressIntensity FactorEquation...........'

.3.8.Information Request8.-SampleCalculation 18182122242631323

44.0REFERENCES

.........

37Appendix-ExampleLevelCFlawStability Calculation

........,...

~.....~...38

1.0INTRODUCTION

NiagaraMohawkPowerCorporation (NMPC)submitted theReference

[MA92]reporttotheNRCbyletterdatedOctober16,1992.CommentsprovidedbytheNRCwereincorporated intotheanalysisandarevisedreportwassubmitted onDecember17,1992[MA92b].TheNRClaterconcurred withNMPCthattheA302Bmaterialmodelisappropriate foranalysisoftheNineMilePointUnit1(NMP-1)beltlineplates,andareport[MA93]waspreparedwhichcontainsonlytheA302Bmaterialmodel(theA533Bmodelwasdeleted).

The[MA93]reportwasnotsenttotheNRCbecausetheA302Bmodelandresultsareidentical tothosereportedinReference'[MA92b].

Thesesubmittals containaplant-specific elastic-plastic fracturemechanics assessment forNMP-1underServiceLevelAandBloadings.

AreportwhichcontainstheresultsforServiceLevelCandDloadings[MA93b]wassubmitted totheNRConFebruary26,1993.Theanalysesdescribed inthesereportswereperformed inaccordance withthedraftASMEAppendixX[ASME92],

anddemonstrate thatsufficient marginsofsafetyagainstfractureexistthroughend-of-license (EOL).InaletterdatedJuly22,1993,theNRCindicated thatapreliminary reviewofthesereportshasbeencompleted andthatadditional information isrequiredtocompletethereview.ThisreportwaspreparedinresponsetotheNRC'srequestforadditional information andisfullyresponsive toallinformation requestsprovidedinEnclosures 1and2oftheJuly22,1993letter.

0

2.0 RESPONSES

TOENCLOSURE 1REQUESTSFORADDITIONAL INFORMATION

-SERVICELEVELSAANDB2.1Information Request1.-J-RModel"Thereportindicates thattheJ-Rcurvefora6Tspecimentestedat180'1'isdrawntomeettheJaxisatJc=525in-lblin',

thenthiscurveisshif)eddowntomaketheJpointcoincidewiththeestimated Jicpoint,leavingthedifference betweentheplateaulevelofJandJicconstantat175in-Iblin',

independent ofbothtemperature andUSE.Providejustification fortheassertedindependence oftheJdifference (175in-Iblin) withrespecttotemperature andUSEvalues.AlsojustifythattheproposedJ-Rmodelshouldbreakdown whenUSEvaluesreachzero.(Although thisissuewasaddressed inatelephone conference heldinJanuary1993,awrittenresponseisrequired)"

RESPONSE

~BackcaadIncontrastwiththeJ-Rcurvedatatrendsforotherpressurevesselmaterials, Reference

[H189]reportedanunprecedented sizeeffectforA302Bsteel.AsshowninFigure2.1-1,thethickerthespecimen, thelowertheJ-RresponselevelaAerinitiation.

Whilesimilardatatrendshavebeenobservedforsomepressurevesselmaterials, decreases intheJ-Rcurvesofthemagnitude reportedbyHiserhavenotbeenreportedearlier.Basedonchemicalandmicrostructural considerations, itwasdetermined thatthemodifiedA302B(A302M)NMP-1plateswouldexhibitductilefracturebehaviorsimilartothatpresented inReference

[HI89].Reference

[HI89]reportedJ-Rdatafor0.5T,1T,2T,and4Tspecimens, butonlyone6Ttestwasperformed (180'F,T-Lorientation).

Themicromechanical explanation fortheJ-RcurvebehaviorshowninFigure2.1-1hasnotbeendefinitively established.

Hiser[HI89]hasreportedbrittle-like splits,orlaminatetearing,forallofthespecimens tested.Thesesplitsareorientedinthedirection ofcrackgrowthwithsmallamountsofmicrovoid coalescence intheregionbetweenthesplits.Thesize,relativenumber,anddistribution ofthesplitsareapproximately constantforvariousspecimensizes.Hiserconcluded thatthesplitsresultedfromseparation of,theinterface betweenthematerialmatrixandtheinclusions (sulfides, aluminides) and/orthesplitting ofthemorebrittlealloyrichbondedstructure (possibly bainite).

Theonlyapparentdifference inthefractureofsmallandlargespecimens isthetotalnumberofsplitsandnottherelativeproportion, Acomplete~micromechanical explanation isnotyetavailable.

Reference MA92AnalsisSincetherearenotsufficient thick-specimen data(6Tto8T)available atpresenttodefinitively establish therelationship betweenJ<<andtheJplateau(hJ),asafunctionoftoughness level(inparticular, USElevel),theReference

[MA92]analysiswasperformed assumingthatthedifference betweentheplateaulevelofJandJ<<isaconstantequalto175in-

Ib/in'over therangeofUSElevelsfrom10it-lbsto100A-lbs).Atthetimetheanalysiswasperformed, itwasrecognized thatthe175in-lb/indifference maychangesomewhatasthetoughness ofthesteelvaries.HowevertheUSElevelforthissteelis52ft-lbs(T-L),whichisroughlyinthemiddleoftherangeoverwhichtheJ-Rcurvescalingwasdone.Therefore, itwasjudgedthatthedifference betweentheactualmaterialbehavior, andthematerialmodelbasedontheassumption ofaconstantB,J=175in-lb/in',

wouldbesmallandadequately represented byotherconservatism inthemodel.SincethereisnophysicalbasisuponwhichtovaryhJastheUSElevelischanged,thechoiceofaconstanthJobtainedfrom6Tdataisareasonable modelling assumption.

6JCharacterization TheNRChasrequested thatjustification fortheconstantb,Jusedinthe[MA92]calculations beprovided.

Unfortunately, asdiscussed above,withoutextensive additional testingandanalysis, completejustification cannotbeprovided.

Inparticular, sincetheplateauforthe6TA302Btestissolowat52A-lbs,itispossiblethattheh,Jvariation atlowerUSElevelsmaynotscale,inthesamemannerasotherRPVmaterials.

Intheabsenceofadditional data,calculations havebeenperformed using0.5Tand1TdatatoassessthehJvariation atlowtoughness.

Sinceitislikelythatthesedataareconservative incomparison with6TA302Bdata,thecalculations providedbelowshouldbeviewedasworstcaseimpactassessments.

Inandefforttocharacterize theh,Jvariation withtoughness, 0.5Tand1TdatafromReferences

[MEA90]and[MEA83]wereanalyzed.

Thephysicalcrackextension (ha,)fortheanalysesreportedinReference

[MA92]isontheorderof0.1in.Therefore, 6Jforthe0.5Tand1Tdatawascalculated bysubtracting J<<fromJatha;-0.1in.(J).Itisimportant tonotethatthethinspecimens atintermediate tohightoughness levelsdonotexhibitaplateauatsmallh,aaswiththe6TA302Bdata.However,thesmallspecimendatacanbeusedtoobtainanestimateofthelLJvariation withtoughness.

Infact,atthepresenttime,thisistheonlymethodavailable forcharacterizing thehJvariation.

Thesedataarepresented inFigure2.1-2.TheReference

[MEA83]J-Rpowerlawformulation wasusedtomodelthedatashowninFigure2.1-2.Themodel,determined fromleastsquaresregression, isgivenby:where,J=C(ha)'=J-Integral (in-lb/in')

C=1000[-0.4876 (USE/100)+

7.5611(USE/100)']

(in-lb/in')

ha=crackextension (in)n=0.267(C/1000)'""

Figures2.1-3and2.1-4illustrate thefunctional formofCandn.TheresultsobtainedusingthepowerlawmodelareshowninTable2.1-1andinFigure2.1-2.Themodelrepresents the0.5Tand1Tdatawell,andapproaches aphysically meaningful limitatlowtoughness.

Asexpected,

themodelshowsthataconstanthJ=175in-lb/in's conservative forUSElevelsaboveabout40ft-lb,butissomewhatnon-conservative forUSElevelsbelow40ft-lb.Inordertoassesstheimpactofadecreasing hJwithtoughness, thefollowing materialmodelwasanalyzed:

USEft-ib10203040-100~EJinib/in/02082175Theabovedescribed J-Rmaterialmodelisthesameasthatdescribed inReference

[MA92];exceptthatbelow40ft-ibtheb,Jvariedinaccordance withtheabovelisteddata.TheresultsofthisanalysisareshowninTable2.1-2.Reviewofthesedatashowsthatevenifh,Jweretodecreasedramatically atUSElevelsbelow40ft-lb,theminimumallowable USEisbelowtheprojected materialUSEatEOL.MaterialModelTemeratureDeendenceWithregardtothequestionoftemperature dependence oftheJ-Rcurves,the6TJ-Rtestat180'F[HI89]isexpectedtoconservatively represent thematerialbehavioruptoreactoroperating temperature.

AsshowninFigure2.1-5,the6Ttestwasperformed atatemperature slightlyhigherthantheon-setoftheuppershelf.TheCharpydataindicatetemperature independence fromabout165'Fuptoreactoroperating temperature.

NMPCPositionItisNMPC'spositionthattheresultsoftheAppendixXanalysisreportedinReference

[MA92]areaccurateandconservative.

Atpresent,therearenotsufficient dataavailable tocharacterize thevariation ofh,Jwithtoughness forthicksectioncomponents.

Therefore, theuseofaconstant4J=175inlb/in'sreasonable andisexpectedtoyieldamaterialmodelwhichaccurately represents thicksectionbehavior.

~J-USEModelBehavioratLowTouhnessTheJ-RmodelfortheA302Bmaterialreliesonthecorrelation ofJ<<withUSEasshowninFigure4-12oftheDecember17,1992submittal.

IfitwerepossibletoproduceamaterialwithUSE=0(i.e.,noenergyrequiredtodriveacrack),thenJ<<mustalsobezero(i.e.,'ocrackdrivingforcerequired).

Therefore, thetheoretical limitforaJ<<vs.USEcorrelation astoughness decreases istheorigin.Thisdatatrendisclearlydemonstrated inFigure4-12.However,asapractical consideration, theUSEforferriticRPVsteelswouldnotbeexpectedtodropbelowthelowershelfenergylevel.Reference

[MEA90]showsthatthelowershelfforA302Bsteelisintherangeof4-18ft-lbs.Therefore, asthematerialtoughness decreases, theJ,c-USEcorrelation isexpectedtodescribethematerialfracturebehaviorastheUSElevelapproaches theCharpylowershelfenergylevel.

A302BJ-RDATAFORVARIOUSSPECIMENTHICKNESSES

'15001000XlICO05500CDO0k~~;~kaJ~~~~~~~+MID~~cI0.5TDATA<0.5TDATA00.5TDATA40.5TDATA*0.5TDATA*0.5TDATA01TDATA+1TDATAo2TDATAa2TDATA<4TDATA44TDATA~6TDATADeltaa(ln.)Figure2.1-1Comparison ofJ;RCurvesforA302BPlate(DataTakenfrom[HI89])

J-RCurveDeltaversusJicA302BandA533BMaterial30002500Ol4tOIQI20005500C)u1000cd500PowerLawModel100020003000Jtc(in-Ibs/in**2)

T-L~L-T+A533A302A302Figure2.1-2h,JasaFunctionofJ,cfor0.5Tand1TSpecimens

HUCLERRVESSELSTEELS288C,1T~,28-25%SGFILLEDSYNOLSRREIRRRDIRTED

~-lKUNENTS~i-HROOGHTN4gkgJ~wCS~~C/18887.5611%(Cv/188)

+2".4878%(cv/188)

I.BCv/IBB(ft-lb)2.BFigure2.1-3Correlation ofNormalized Coefficients withNormalized CharpyUpperShelfEnergyValuesPvKA83]10

1.88NUCLERRVESSELSTEELS288oC~iTCT~2825~SGFILLEDSYMBOLSRREIRRRDIRTED

.68ggSgWggSOhgh0glhn-8.2SC(CiBBB)82'62aa-gQMENTS>>-NROUGHT8.888812Cti888(4roaEq.3-i)28Figure2.1-4Correlation ofPowerLawExponent"n"withCoefficient "C"[MEA83]

188TEHPERRTURE

('F)I88288388A302-8PLATE(V50)NewData6858previousData48382818188TEHPERRTURE

('C)Figure2.1-5Comparison oftheAverageCurvefits totheNewandthePreviousCDatafortheA302-BPlate.TheNewDataIndicateHigherOverallToughness, withaHigherUpperShelfEnergyLevelandLowerTransition Tempeiatures.

IHI89]12

Table2.1-1PowerLawModelforb,JasaFunctionofToughness USE253040506080100J(0.1)(in-lb/in')

223321547807109117092360SmallSpecimenDataJic.(in-lb/in')

199239319399479639798hJ(in-lb/in')

248222840861210701562h,JUsedin[MA92](in-lb/in' 17517517517517517517513 0

Table2.1-2EAectof4JVariation ontheMinimumUpperShelfEnergyLevelforNMP-1PlateG-8-1PlateASMEServiceLevelMaterialModelHawGrowthof0.1in.Criterion Ji~Jo.iHawStability Criterion MinimumUSE(Ft-lbs)4J=175in-ib/in'law Growthof0.1in.Criterion Ji~o.iFlawStability Criterion MinimumUSE(Ft-Ibs)Variable4JG-8-1G-8-1G-8-1A8cBDA302BA302BA302B1310231020333136313014 0

2.2Information Request2.-Mechanics ModelltTheieportcontainsnodescription ofthefracturemechanics analysisprocedure, i.e.theequations usedforcalculating J,>,T,>,andP~,.Onlythenameofacomputer-programismentioned.

EitherconJirmthattheequations usedareidentical tothoseinAppendixXorlistalltheequations whichdier."RESPONSE:

Asmentioned inSection3.0ofReference IMA92],theprocedure andequations specified inAppendixX[ASME92]forServiceLevelsAandBareidentical tothoseusedtocalculate theappliedJ,theappliedtearingmodulus,andinternalpressureatflawinstability, undertheJ-Integral/Tearing ModulusProcedure.

15 C

2.3Information Request3.-EffectofCladding"Provideinforniation regarding theeffectofcladdingtothecalculated appliedJvalue."RESPONSE:

~BackcuadReference

[ASME92]doesnotexplicitly recommend norrequirethatcladstresseffectsbeincludedintheServiceLevelAandBanalysis.

Discussions withseveralmembersoftheASMEWorkingGrouponFlawEvaluation (WGFE)indicated thattheeffectsofcladdinghavebeendiscussed, butthegroupdoesnotplantorecommend incorporation ofcladstressanalysisprocedures intoAppendixX.ASMEarticleA-3000,"MethodforK,Determination",

doesrequireconsideration ofresidualandappliedstressofallforms,including clad-induced stress,tobeincludedinstressintensity factorformulation.

Therefore, NMPCincludedcladinducedstresseffectsforServiceLevelCandDloadings, becausetheServiceLevelCandDanalysesrequirecalculations tobeperformed forshallowsurfaceflawswherecladinducedstresscanbesignificant.

However,cladstresseffectswerenotincludedintheServiceLevelAandBanalysesbecause1/4Tflawsarepostulated intheseanalysesandthecladinducedstresswereassumedtobenegligible.

Estimated CladInducedStressEffectInresponsetotheNRCinformation request,theefFectofcladdingontheappliedJforServiceLevelAandBloadingshasbeenestimated.

Surfacetensilestressesresultfromdifferential thermalcontraction fromthestressreliefheattreatment at1150'F.Alinearelasticmodelwasformulated tocalculate thestressresulting fromcooldownfrom1150'F,andthemodelpredictsthatthehoopstressesexceedyieldbeforethevesselIDtemperature reaches100'F.Anelastic-plastic finiteelementanalysisofthecooldownfrom1150'Ftoroomtemperature, followedbyre-heating to528'F,withasubsequent 100'F/hrcooldown, wasperformed.

Theresultsofthefiniteelementanalysisconfirmed theanalytical modelprediction ofa36ksihoopstressinthecladduetodifFerential thermalcontraction whenthecooldownofthevesselwasterminated atavesselIDtemperature of100'F.Thestressintensity atthe1/4Tflawduetothecladstress~~)wascalculated andfoundtobe6.6ksiVin.Thestressintensity modelincludestheeffectsofthebasemetalcompressive reactionforce.Theminimumallowable USEwascalculated byaddingK~tothestressintensity factorsdefinedinAppendixX.TheAppendixXcalculative procedures werefollowedandtheevaluation criteriaapplied.Theresultsofthesecalculations areshowninTable2.3-1.ReviewofthesedatashowsthatifcladstresseffectswereincludedintheServiceLevelAandBanalysis, theminimumallowable USEisbelowtheprojected materialUSEatEOL.r16

Table2.3-1EffectofCladStressontheMinimumUpperShelfEnergyLevelforNMP-1PlateG-8-1PlateASMEServiceLevelMaterialModelMinimumUSE(Ft-Lbs)WithoutCladStressEffectMinimumUSE(Ft-Lbs)WithCladStressEffectG-8-1A&BA302BFlawGrowthof0.1in.Criterion Ji~Jo.i13FlawStability Criterion 23FlawGrowthof0.1in.Criterion Ji~o.i26FlawStability Criterion 3717

3.0 RESPONSES

TOENCLOSURE 2REQUESTSFORADDITIONAL INFORMATION

-SERVICELEVELSCANDD3.1Information Request1.-Temperature Dependencies "Thereportindicates inSection4.1thattemperature dependent properties wereusedinthethermalandstressanalyses.

Providethedetailsofthesetemperature dependencies."

RESPONSE

Table3.1-1showsthetemperature dependent properties referredtoinSection4.1ofReference

[MA93b].ThefiniteelementsoAwarePVELD3]useslinearinterpolation withinthematerialpropertytables.Thevolumetric heatcapacity(c)isrelatedtospecificheat(C,)anddensity(p)by:c=pC,Theinstantaneous coefficient ofthermalexpansion isdefinedintermsoftheslopeofthethermalstrainversustemperature curve:dera=-dTTheinstantaneous coefficient isdifferent fromtheaveragecoefficient whichisperhapsmorecommonly'sed.

Whiletheaveragecoefficient musthaveanassociated reference temperature (thetemperature atwhichthermalstrainiszero),theinstantaneous valuedoesnot.Table3.1-2showstheaveragecoefficient ofthermalexpansion thatwasautomatically generated bythefiniteelementsofbvarefromtheinputinstantaneous values.Thevaluesbasedonareference temperature of1150'Fwereusedincomputing theinitialresidualstressstateduetoslowcoolingfromastress-free condition at1150'Fto528'F.Thevaluesbasedona'reference temperature of528'Fwereusedforthetransient thermalanalysesassociated withLevelCandLevelDloadings.18

Table3.1-1Temperature Dependence ofMaterialProperties Temperature Conductivity Vol.HeatCapacityElasticModulusPoisson's RatioInst.Coef.Th.Exp.(T):(k):(G)(E):(v)-(a).OFBtu/in/sec/'F Btu/iq/'Flh/innondimensional 1/oFStainless steelTk50.0.000182300.0.000212550.0.000242750.1000.1300.claddingc0.03120.03460.0371(type304)E28700000.

27100000.

25800000.

24200000.

22500000.

20200000.

0.260.280.310.320.300.280.00000816

0.0 0000894

0.00000960

0.0 0001003

0.00001056

0.0 0001141

A302BhasemetalTkc50.300.550.750.1000.1300.0.0005340.02980.0005720.03410.0005530.037630000000.

29000000.

27700000.

26200000.

24500000.

22200000.

0.280.280.280.280.280.280.00000607 0.00000710=

0.0 0000816

0.00000894

0.0 0001000

0.00001100 NOTE:Dataforkandcattemperatures above550'Farenotprovidedsincethermaltransient analyseswereperformed attemperatures below550'F.19

Table3.1-2AverageCoefficients ofThermalExpansion forReference Temperatures of1150'Fand528'FStainless steelcladding(type304)a,(1/oF)50.300.550.750.1000.1300.A302Bhasemetal1150oF9.64330E-06 9.96485E-06 1.02544E-05 1.04741E-05 1.07725E-05 1.11975E-05 528oF8.87958E-06 9.24096E-06 9.57096E-06 9.79082E-06 1.00579E-05 1.04181E-05 6,(1/oF)50.300.550.750.1000.1300.1150~F8.33523E-06 8.85000E-06 9.35833E-06 9.76250E-06 1.02500E-05 1.07500E-05 528DF7.06121E-06 7.58336E-06 8.11336E-06 8.50673E-06 9.01694E-06 9.59326E-06 20

3.2Information Request2.-95%Confidence Properties "1'igure4-12inthereportdatedDecember17,1992,andinapreviousreportdatedOctober16,1992,indicates thattheMean-2oproperties andthe95%confidence properties (Mean'-1.645o)giv'ethesamelowerboundline.ClarifythisandconfirmthatMean-2aproperties havebeenusedforLevels2,8,andCanalyses."

RESPONSE

TheOctober16,1992,reportisbasedon95%lowerboundconfidence limits.Inparticular, the95%lowerboundJ<<valuesshowninFigure4-12werecalculated using:Jic=3.1(USE),USE(75ft-lbsJ<<=-363.4+7.93295(USE),USE>75ft-lbswhere,J<<=in-ib/in'SE

=ft-IbTheportionofthemodelbetweentheoriginand75ft-1bswasdetermined basedonconservative

~~engineering judgement.

Theportionofthemodelabove75ft-lbscomesfromtheregression analysisandrepresents the95%confidence lowerbound.InresponsetotheNRC'srequest,the95%confidence lowerboundwas.replaced byatwosigmalowerboundconfidence intervalandthismodelwasdescribed intheDecember17,1992,submittal.

Thetwosigmalowerboundmodelisgivenby:Jic=31(USE)~USE(75ft-lbsJic=-363.4+7.915(USE),USE>75ft-lbsTheportionofthemodelabove75ft-lbscomesfromtheregression analysisandrepresents thetwosigmalowerbound.Theportionofthemodelbelow75ft-lbsisbasedonengineering judgement andisidentical tothemodelusedintheOctober16,1992report.ItisNMPC'spositionthatthemodelusedbelow75ft-lbsismoreconservative thanatwosigmalowerboundlevel.SincetheJ-g.curvemodelbelow75ft-ibsusedintheOctober16,1992,reportisthesameasthatusedintheDecember17,1992,report,andtheminimumallowable USEisbelow75ft-Ib(calculations yielded23ft-lbs),theminimumallowable USEwhichwascalculated didnotchangewhenthetwosigmamodelwasused.Insummary,mean-2oproperties havebeenusedforServiceLevelA,B,andCanalyses.

21

3.3Information Request3.-J-Material ValuesIITheJmatenalvaluesat0.1inchlistedinTable5-3arelowerthanthecorresponding valuesinFigures5-1to5-4and5-7to5-10intheLevelsAdcBreportbyapproximately 6lbs.Explainthisdifference."

RESPONSE

Asdescribed inReference

[MA93b],pointwise experimental data,scaledtoaccountforthetoughness level,wereusedintheanalysis.

TheUSE(3.0)codeusesamulti-linear representation withinterpolation whenthepointwise inputoptionisused.Asanexample,thematerialJp,datuminTable5-3ofReference

[MA93b]at30ft-ibs(J=261in-lb/in')

wasdetermined byinterpolating thepointwise J-Rdata.ThematerialmodelinputforthiscaseisshowninTable3.3-1.ThedatainTable3.3-1showsthattheplateaubeginsat4a=0.112in.withJ=267.4in-Ib/in'.

Thus,theapparentdiscrepancy isanartifactofthepointwise model.Carefulexamination ofFigures5-1to5-4and5-7to5-10oftheReference IMA92]reportshowsthattheinterpolated J-material valuesat0.1inchhave'been correctly calculated andtheJ-Rcurvesarecorrectly plotted.22

Table3.3-1USE3.0OutputListingShowingJ-RCurvePointwise Input02/15/1993 15'-NPIP-1PLATEG"8"1A302BMATERIALNODELANALYSISCURVE¹JIC=92.4k'44$g4444$)kff4$)k$)gg)kgb)kg)kgb)}'4$

$$$)kgffffgggggg)gg)l(4444)kg$

$$44$44444441.Corresoondina uooershelfenerovUSE=30(ft-Ibs)¹1¹2¹3:¹¹5:¹6:¹7:¹8:¹9:¹10¹11:¹12¹13:¹14¹15:¹16:¹17¹18:19:¹20:Deltaa0.0020.0040.0050.0060.0100.0170.0170'220.0230.0250.0300.0320.0360.0430.0480.0560.0680.0730.0830.098JDelta.a21.600¹21:0.112~33.400¹22:3.00055.30075.00095.000109;-400116.400136.400144.400154.400165.400183'00191.400201.400210.400218.400225.400240.400247.400260.400J267.400268.00023

3.4Information Request4.-Transient Duration"LevelsCandDtransients mustbeanalyzedfromthebeginning ofthetransient tothetimeatwhichthemetalatthetipoftheJlawbeinganalyzedreachesatemperature equivalent totheadjustedRT>>rplus50'F.Confirmthatthispracticehasbeenadoptedorproviderevisedanalyses.

"RESPONSE:

ForserviceLevelsCandD,theARTNDTforplateG-307-4rangesbetween144'Fand163'Ffromthe1/4TpositiontotheIDsurfaceat18EFPY.Therefore, theARTNDrplus50'Fwouldrangefrom199'Fto210'F.Theblowdowntransients areterminated whenthepressurereaches35psigtoaccountforthecontainment pressurelevelatthattimeinthetransient.

IntheReference PdA93b]thermalstresscalculations, thesetransients wereextendedtolongertimes,conservatively assuminga300'Fperhourcooldowntoa212'FvesselIDtemperature.

Thus,theLevelCandDtransients werenotanalyzedtoatemperature equivalent totheARTNDrplus50'Fattheflawtip.However,asdiscussed inReference IMA93b],thelimitingtransients experienced peakthermalandmechanical loadspriortothepointwhenthetransient analysiswasterminated.

Thecooldownfromthefinaltransient conditions toARTNTplus50'Fisacontrolled evolution whichisnotincludedinthetransient definition andisproperlyconsidered asarecoveryaction.Thecooldownfrom212'Fwouldbeboundedbytheemergency cooldowneventandinmostcaseswouldbeboundedbythenormaloperation cooldownanalysis.

ThestandardGEthermalcycletransient definition usedforthedesignbasisemergency andfaultedstressanalysisdoesnotincludeacooldowntoARTNDTplus50'F.ThestandardGEthermalcyclediagramisthebasisforthelimitingLevelC(emergency) andlimitingLevelD(faulted) thermaltransient usedfortheReference PvtA93b]analyses.

ThestandardLevelCandDtemperature andpressuretransient aredefinedbasedonthedesignbasiseventandareterminated whentheeventisstabilized.

Thecooldownfromthefinalstabilized transient condition totheARTNDTplus50'Fiscontrolled byoperatoractionsandemergency operating procedure guidelines.

Ingeneral,theoperatorguidelines includemaintaining thecooldownwithinthe100'Fperhournormalguideline.

ForalltheLevelCtransient conditions, theoperatorcanbeassumedtohavetheabilitytocontroltherecoverycooldownratewithinthenormaloperating guidelines aAertheeventhasstabilized.

ForthelimitingdesignbasisLevelDrecirculation linebreakevent,theemergency operating procedure guidelines includeacontainment floodupwhichoccursovera6to12hourperiod.Containment floodupiscompleted usinglakewaterassumedtobeatthemaximumof81'Fandaminimumofapproximately 35'F.Thelimitingassumption wouldbethatthevesselwalltemperature israpidlycooledfrom212to100'F(ambientcontainment temperature andpressureisapproximated toremaingreaterthan100'Fduetodecayheat).Thislimitingcondition iscloselyapproximated bythenormalcooldownrateassumptions.

24

AssumingtheNMP-1designbasisLOCAscenariowherethereactorisnotreflooded, theultimatecooldownfromsaturated conditions iscontrolled bythecontainment accidenttemperature.

Theprimarycontainment wetwellanddrywelltemperature profileresultsinthedrywellairspacetemperature remaining greaterthat175'Fforapproximately 4hourswithasubsequent slowcooldownrate(muchlessthan100'Fperhourcooldown) linkedtothecontainment heatremovalsystems.Insummary,theLevelCandDtransients werenotanalyzedtothetimeatwhichthemetalatthetipoftheflawreachesatemperature equivalent totheadjustedRT~rplus50'F.However,thelimitingtransients reachedpeakthermalandmechanical loadspriortothepointwherethe.transient analysiswasterminated.

Therefore, theresultsreportedinReference

[MA93b]arethemostconservative resultsforanyoftheServiceLevelCandDtransients.

25 0

3.5Information Request5.-ThermalTransient Parameters "Supplyacompletelistofinputparameters andconditions forthetransient thermalanalysis, including specificheat',thermalconductivity,,density, theresulting valueofthermaldiffusivity, coefficient ofthermalexpansion, elasticmodulusandPoisson's ratio(forbothcladdingandbasemetal);alsotherelationships neededtodetermine theinsidesurfaceheattransfercoeJJicient."

RESPONSE

Theinformation providedbelowdefinestheinputparameters andconditions forthetransient, thermalanalysis.

Thematerialproperties aregiveninTables3.5-1and3.5-2.Specificheats(C,)anddensities (p)werenotinputtothethermalanalysis.

Volumetric heatcapacity(c),theproductofthesetwoparameters, wasinputinstead.Thermaldiffusivity (x)wasalsonotadirectinputtotheanalyses.

However,itwascomputedfromtheconductivity (k)andheatcapacity(c)properties asfollows:x=k/cTable3.5-3summarizes thethermaldiffusivities resulting fromtheconductivities andheatcapacities listedinTable3.5-1.Thetimedependent internalpressureandfluidtemperature boundaryconditions fortheLevelCandDloadingsaregiveninTables3-7(LevelC)and3-8(LevelD)ofthereport[MA93b].Theoutersurfaceofthevesselisassumedtobeinsulated.

Thetimedependent heattransfercoefficient attheinnervesselsurfaceisalsogiveninthesetables.Thefiniteelementsofbvarelinearlyinterpolates (intime)betweentheinputvaluesofinternalpressureandfluidtemperature thatarespecified byTables3-7and3-8ofReference

[MA93b].Theheattransfercoefficients (h),however,arenotlinearlyinterpolated.

Theheattransfercoefficients arechangedinthemodelinastepwisemanner.Forexample,inTable3-7[MA93b],hisheldat10,000untilatimeof380seconds;thenhischangedinstantaneously tothenewvalueof164.Sincehneverincreases duringthecriticaltimesofthesetransients, thisprocedure resultsinlargerhvaluesbeingusedfurtherintothecoolingtransient.

Thisresultsinlargerthermalgradients beingcalculated andthusconservative thermalstresspredictions.

Theheattransfercoefficients ofTables3-7and3-8aregiveninunitsofBTU/hr/ft'/'F.

TheanalysisusedunitsofBTU/sec/in'/'F.

Table3.5-4providesthehvaluesofTables3-7and3-8[MA93b]intheunitsoftheanalysis.

26 0

Table3.5-1Temperature Dependence ofMaterialProperties Temperature Conductivity Vol.HeatCapacityElasticNoduluspoisson's RatioInst.Coef.Th.Exp.(T):(k):(c):(E):(v).(a)oFBtu/in/sec/'F Btu/ip/Flb/innondimensional 1/0F50.300.550.750.1000;1300.0.0001820.0002120.0002420.03120.03460.037128700000.

27100000.

25800000.

24200000.

22500000.

20200000.

A302BbasemetalTkStainless steelcladding(type304)TkcEV0.260.280.310.320.300.280.00000816

0.0 0000894

0.00000960

0.0 0001003

0.00001056

0.0 0001141

50.300.550.750.1000.1300.0.0005340.0005720.0005530.02980.03410.037630000000.

29000000.

27700000.

26200000.

24500000.

22200000.

0.280.280.280.280.280.280.00000607

0.0 0000710

0.00000816

0.0 0000894

0.00001000

0.0 0001100

Dataforkandcattemperatures above550'Farenotprovidedsincethermaltransient analyseswereperformed attemperatures below550'F.27

Table3.5-2AverageCoefficients ofThermalExpansion forReference Temperatures of1150'Fand528'FStainless steelcladding(type304)0,(1/F)aveA302Bbasemetal50.300.550.750.1000.1300.11500F9.64330E-06 9.96485E-06 1.02544E-05 1.04741E-OS 1.07725E-05 1.11975E-OS S28'F8.87958E-06 9.24096E-OG 9.57096E-OG 9.79082E-OG 1.00579E-05 1.04181E-05 0,(1/F)50.300.550.750.1000.1300.11500F8.33523E-06 8.85000E-06 9.3S833E-06 9.76250E-OG 1.02500E-05 1.07500E-05 528oF7.06121E-06 7.58336E-OG 8.11336E-06 8.50673E-06 9.01694E-06 9.59326E-OG

Table3.5-3ThermalDiffusivity Diffusivity (K):in/secStainless steelcladding(type304)TK=50.5.83E-03300.6.13E-03550.6.52E-03A302BbasemetalTK50.1.79E-02300.1.68E-02550.1.47E-0229

Table3.5-4HeatTransferCoefficient Conversion BTU/hr!ft

/'FBTU/sec'/in l'F69,18810,0005001641.33E-011.93E-029.65E-043.16E-0430 0

3.6Information Request6.-CladEquivalent Stress"Supplythedetailedcalculation procedure fordetermining thecladequivalent stressvalueslistedinTable5-1."The"Extrapolated SurfaceStress"columninTable5-1ofReference IMA93b]isthestressatthepressurevesselIDsurfaceobtainedbyfittingthebasemetalfiniteelementcalculated stressdistribution tothefollowing

equation, a=Ao+A,X+A2X'A,X'here, A;=regression constants X=distancethroughthewallandextrapolating totheIDsurface.The"CladStressMinusExtrapolated SurfaceStress"columnisthedifference betweenthediscontinuous cladstressduetocooldownfromreactoroperating temperature duringthetransient andtheextrapolated basemetalstressatthesurface.The"Residual Stress"columnisthetensilestressinthecladduetocooldownfrom1150'Ftoreactoroperating temperature duringfinalstressrelief.The"CladTotalStress"columnisthesumofthe"CladStressMinusExtrapolated SurfaceStress"dataandtheclad"Residual Stress"data.The"CrackSurfacePressure" columnisthestressonthecrackfacesduetocoolantpressure.

The"CladEquivalent LineStress"columnwasobtainedbymultiplying the"CladTotalStress"bythecladthickness (5/32in.)toobtaintheequivalent linestressforthestressintensity model,andaddingthe"CrackSurfacePressure" timesthemaximumanticipated flawdepth(1.0in).Itisrecognized thatthe"CrackSurfacePressure" maybeaddedtothebasemetalfiniteelementcalculated stressdistribution andthenfitasdescribed earlier.However,theabovedescribed procedure isconservative andcomputationally simpler.31 00 3.7Information Request7.-StressIntensity FactorEquation"Providethederivation orthereference (indicating thepagenumber)ofEquation(5-3)."RESPONSE:

Equation5-3ofReference

[MA93b]canbefoundinthefollowing reference TheStressAnalsisofCracksHandbook, Tada,H.,Paris,P.,Irwin,G.,DelResearchCorporation, June,1973,page2.27AcopyoftheTadamodelisshowninFigure3.7-1.32

-2.27-F(~cQ~)3.52('l-/~)<.3o-5.28+~

(I-N)s/-"(I-4)'2<-(Fa)*PCdt7IIIIZIOl~oOUi+JII02II0./0.6C/g0.8Method:Estimated byInterpolation Accuracy:

F(c/a,a/b)-foraula

$sexpectedtohave2Xaccuracyforanyvaluesofc/aanda/b

Reference:

Tada1974Figure3,7-1Equivalent LineLoadStressIntensity FactorEquation.33 C

3.8Information Request8.-SampleCalculation "Provideloadsandvaluesofdafortheresultslabelledunder"FlawStability Criterion" inTables5-3and5-4.Supplydetailsforonecalculation."

RESPONSE

TheappliedstressesforthelimitingLevelCandDtransients areprovidedinReference

[MA93b].TheappliedJandhavaluesforthelimitingpostulated fiawdepthundertheASMEAppendixXflawstability criterion forLevelCloadingconditions aregiveninTable3.8-1.SimilardataforLevelDloadingconditions aregiveninTable3.8-2.Theresultsshownareforthelargesth,awhichcorresponds tothedeepestpostulated initialflawanalyzed.

Iterative calculations wereperformed whichallowthecracktoextendtoitsequilibrium lengthforcaseswheretheinitialJisgreaterthanJ<<.Aspectrumofinitialflaws,upto1/10ofthebasemetalwallthickness, wereassumed.Thesmallestpostulated flawis0.05in.andtheinitialflawsizeswereincremented by0.05in.uptoamaximuminitialflawdepthof0.75in.AsshowninTables3.8-1and3.8-2,forUSElevelsabove20Mbs,theflawgrowthislessth'an0.08in.Therefore theJ-Rcurveplateauisnotreachedandstabletearingoccursuntiltheequilibrium flawdepthisreached.Asampleflawstability calculation fortheLevelCloadingisprovidedinAttachment 1.34

Table3.8-1AppliedLoadsandCrackExtension forVariousUSELevelsAnalyzedUndertheASMEAppendixXFlawStability Criterion forLevelCLoadingConditions andanAxialFlawOrientation'SE Level102030405060708090100FinalAppliedJ'in-ib/in~

182.2181.5180.9180.7180.4179.8179.8.179.8179.8179.8h,aPhysical~in.0.07930.05080.03240.02460.01800.00.00.00.00.0AppliedT0.0960.1070.1140.1170.1200.1270.1270.1270.1270.127Criterion Satisfied yesyesyesyesyesyes,J<Jrcyes,J<Jrcyes,J<J<<yes,J<J<<yes,J<J<<E'esultsshownarefor'thelargesth,awhichoccursforthedeepestpostulated basemetalflaw(a.=0.75in)'hefinalappliedJisiteratively calculated andrepresents theappliedJaAerthecrackreachesitsequilibrium length35 I'

Table3.8-2AppliedLoadsandCrackExtension forVariousUSELevelsAnalyzedUndertheASMEAppendixXFlawStability Criterion forLevelDLoadingConditions andanAxialFlawOrientation'SE Level10FinalAppliedJ'in-ib/in

~haPhysical~in.AppliedTCriterion Satisfied no20299.50.07300.129yes30405060708090.100297.6296.4296.4296.4296.4296.4296.4296.40.02550.00.00.00.00.00.00.00.1580.1740.1740.1740.1740.1740.1740.174yesyes,JCircyes,J'Jrcyes,J<Jrcyes,J<Jrcyes,JNrcyes,J<Jrcyes,J<J<<'esultsshownareforthelargesthawhichoccursforthedeepestpostulated basemetalflaw(a.=0.75in)'hefinalappliedJisiteratively calculated andrepresents theappliedJaAerthecrackreachesitsequilibrium length'6 0

4.0REFERENCES

[ASME92]ASMEDraftCodeCaseN-XXX,"Assessment ofReactorVesselswithLowUpperShelfCharpyEnergyLevels",Revision11,May27,1992.[HI89][MA92]Hiser,A.L.,Terrell,J.B.,"SizeEffectsonJ-RCurvesforA302BPlate",NUI&G/CR-5265, January,1989.ENMPCLetterfromC.D.TerrytoNRC,datedOctober16,1992,"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings".

[MA92b]NMPCLetterfromC.D.TerrytoNRC,datedDecember17,1992,"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings".

[MA93]Manahari, M.P.Sr.,"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelAandBLoadings",

FinalreportpreparedforNMPC,MPM-USE-293215,

February, 1993.[MA93b]NMPCLetterfromC.D.TerrytoNRC,datedFebruaiy26,1993"Elastic-Plastic FractureMechanics Assessment ofNineMilePointUnit1BeltlinePlatesforServiceLevelCandDLoadings".

[MEA83]Materials Engineering Associates, Inc.,Lanham,MD(Hiser,A.L.,andFishman,D.B.),"J-RCurveDataBaseAnalysisofIrradiated ReactorPressureVesselSteels",FinalreportpreparedforEPIU,December, 1983.[MEA90]Materials Engineering Associates, Inc.,Lanham,MD,"Influence ofFluenceRateonRadiation-Induced Mechanical PropertyChangesinReactorPressureVesselSteelsFinalReportonExploratoiy Experiments",

preparedforNRC,NUIT/CR-5493,March,1990.[WELD3]"WELD3ComputerCodeVerification",

MPMResearch&Consulting, Calculation No.MPM-NMPC-99205, Rev.0,January21,1993.37 0

Appendix-ExampleLevelCFlawStability Calculation 38