ML17256A403: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:.E,ATTACHMENTBANALYSISOFPLANTRESPONSEDURINGJANUARY25,1982STEAMGENERATORTUBEFAILUREATTHER.E.GINNANUCLEARPOWERPLANTNOVEMBER,1982Preparedby:E.C.VolpenheinII'estinghouseElectricCorporationNuclearEnergySystemsP.O.Box355Pittsburgh,Pennsylvania15230PreparedforRochesterGasandElectric89EastAvenueRochester,N.Y.1464982ii290405000244821122pDRPQOCKpDp32740:1/111782 TABLEOFCONTENTSSECTIONPAGEABSTRACTLISTOFTABLESLISTOFFIGURES~~~~~~~~.1~~'~~~~~11~~~~~~~oillI.INTRODUCTION1II.ANALYSISOFPLANTRESPONSE~~~~~~II.lSystemsAnalysisCodeII.2PlantDataII.3InitialLeakRate'II.4Pre-tripSystemResponse~II.5Post-tripSystemResponse5.1PrimarySystemPressure5.2ReactorCoolantFlow5.3ReactorCoolantTemperature5.4PressurizerLevel5.5BreakFlow5.6ReactorCoolantVoiding~5.7SteamGeneratorOverfillII.6LongTermRecovery-I~~~~~~2~~245~~7162128335255586062III.SUMMARYANDCONCLUSIONS...................65REFERENCES............................67AppendixA:InitialLeakRateCalculation~.-........~~68AppendixB:BestEstimateBreakFlowModel............70:AppendixC:CalculationofUpperHeadVoidSize-..743274/:1/111782 ABSTRACTPlantresponsetotheJanuary25,1982steamgeneratortubefailureattheR.E.GinnanuclearpowerplanthasbeenanalyzedusingthecomputercodeLOFTRANtoprovideadditionalinsightintoreactorcoolantvoiding,naturalcirculationloopflows,andprimary-to-secondaryleakageduringtheevent.Resultsarecomparedtoavailableplantdata.3274(}:1/111782  
{{#Wiki_filter:.E,ATTACHMENT BANALYSISOFPLANTRESPONSEDURINGJANUARY25,1982STEAMGENERATOR TUBEFAILUREATTHER.E.GINNANUCLEARPOWERPLANTNOVEMBER, 1982Preparedby:E.C.Volpenhein II'estinghouse ElectricCorporation NuclearEnergySystemsP.O.Box355Pittsburgh, Pennsylvania 15230PreparedforRochester GasandElectric89EastAvenueRochester, N.Y.1464982ii290405000244821122pDRPQOCKpDp32740:1/111782 TABLEOFCONTENTSSECTIONPAGEABSTRACTLISTOFTABLESLISTOFFIGURES~~~~~~~~.1~~'~~~~~11~~~~~~~oillI.INTRODUCTION 1II.ANALYSISOFPLANTRESPONSE~~~~~~II.lSystemsAnalysisCodeII.2PlantDataII.3InitialLeakRate'II.4Pre-tripSystemResponse~II.5Post-trip SystemResponse5.1PrimarySystemPressure5.2ReactorCoolantFlow5.3ReactorCoolantTemperature 5.4Pressurizer Level5.5BreakFlow5.6ReactorCoolantVoiding~5.7SteamGenerator OverfillII.6LongTermRecovery-I~~~~~~2~~245~~7162128335255586062III.SUMMARYANDCONCLUSIONS
...................65REFERENCES
............................67AppendixA:InitialLeakRateCalculation
~.-........
~~68AppendixB:BestEstimateBreakFlowModel............70:AppendixC:Calculation ofUpperHeadVoidSize-..743274/:1/111782 ABSTRACTPlantresponsetotheJanuary25,1982steamgenerator tubefailureattheR.E.GinnanuclearpowerplanthasbeenanalyzedusingthecomputercodeLOFTRANtoprovideadditional insightintoreactorcoolantvoiding,naturalcirculation loopflows,andprimary-to-secondary leakageduringtheevent.Resultsarecomparedtoavailable plantdata.3274(}:1/111782  


/TABLEII.1-1LISTOFTABLESSEQUENCEOFMAJOREVENTSTABLEII.3-1PRE-TRIPPRESSURIZERLEVELTABLE11.5.1-1.SEQUENCEOFPORVOPERATIONTABLEC-1UPPERHEADVOIDSIZE3274O:1/111782 LISTOFFIGURESFIGUREFIGUREII.1-1!I.4-1FIGUREII.4-2FIGUREII.4-3FIGURE,II.4-4FIGUREII.4-5FIGUREII.4-6FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.4-7II.5-1II.5.2II.5.3II.5-4II.5.1-1II.5.1-2FIGUREFIGUREFIGUREFIGUREII.5.1-3II.5.1-4II.5.2-1II.5.2.1-1FIGUREFIGUREII.5.3.1-2II.5.3.2-1FIGUREFIGUREII.5.3.2-2II.5.3.2-3FIGUREFIGUREFIGUREFIGUREII.5.3.2-4II.5.3.2-5II.5.3.2-6II.5.3.3-1FIGUREII.5.2.1-2FIGUREII.5.3-'1FIGUREII.5.3.1-1GINNASAFETYINJECTIONCAPACITYPRE-TRIPNORMALIZEDCOREPOWERPRE-TRIPSECONDARYSYSTEMPRESSUREPRE-TRIPPRESSURIZERPRESSUREPRE-TRIPPRESSURIZERLEVELPRE-TRIPAVERAGERCSCOOLANTTEMPERATUREPRE-TRIPPRESSURIZERPRESSURE:CONSTANTCOOLANTTEMPERATUREPRE-TRIPPRESSURIZERLEVEL:CONSTANTCOOLANTTEMPERATURENORMALIZEDPRE-TRIPSTEAMFLOWNORMALIZEDPRE-TRIPFfEDWATERFLOWINTACTSTEAMGENERATORPRESSUREINTACTLOOPCOLDLEGTEMPERATUREREACTORCOOLANTSYSTEMPRESSURE'PRIMARY-TO-SECONDARYLEAKAGEANDTOTALSAFETYINJECTIONFLOWPRESSURIZERWATERVOLUMEUPPERHEADFLUIDMASSVOLUMETRICLOOPFLOWRATESCOMPARISONOF"MIXEDTEMPERATURE"REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROMTHESGOUTLETPLENUMFAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWSPOST-TRIPREACTORCOOLANTTEMPERATURESSTEAMDUMPVALVEOPERATIONANDAFWFLOWDURINGCOOLDOWNOFTHERCSGINNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURESCOMPARISONOFINTACTANDFAULTEDLOOPCOLDLEGTEMPERATURESFOLLOWINGREACTORTRIPFAULTEDLOOPCOLDLEGTEMPERATURESMIXINGVOLUMEFORVESSELDOWNCOMERTEMPERATURfCALCULATIONMIXINGVOLUMELOOPFLOWANDSAFETYINJECTIONFLOWMIXINGVOLUMEFLOWTEMPERATURfSBESTESTIMATEREACTORVESSELDOWNCOMERTfMPERATURECOREEXITFLUIDTEMPERATURE3274(:1/111982111
/TABLEII.1-1LISTOFTABLESSEQUENCEOFMAJOREVENTSTABLEII.3-1PRE-TRIPPRESSURIZER LEVELTABLE11.5.1-1.SEQUENCEOFPORVOPERATION TABLEC-1UPPERHEADVOIDSIZE3274O:1/111782 LISTOFFIGURESFIGUREFIGUREII.1-1!I.4-1FIGUREII.4-2FIGUREII.4-3FIGURE,II.4-4FIGUREII.4-5FIGUREII.4-6FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.4-7II.5-1II.5.2II.5.3II.5-4II.5.1-1II.5.1-2FIGUREFIGUREFIGUREFIGUREII.5.1-3II.5.1-4II.5.2-1II.5.2.1-1 FIGUREFIGUREII.5.3.1-2II.5.3.2-1 FIGUREFIGUREII.5.3.2-2 II.5.3.2-3FIGUREFIGUREFIGUREFIGUREII.5.3.2-4 II.5.3.2-5 II.5.3.2-6II.5.3.3-1FIGUREII.5.2.1-2 FIGUREII.5.3-'1 FIGUREII.5.3.1-1GINNASAFETYINJECTION CAPACITYPRE-TRIPNORMALIZED COREPOWERPRE-TRIPSECONDARY SYSTEMPRESSUREPRE-TRIPPRESSURIZER PRESSUREPRE-TRIPPRESSURIZER LEVELPRE-TRIPAVERAGERCSCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER PRESSURE:
CONSTANTCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEMPERATURE NORMALIZED PRE-TRIPSTEAMFLOWNORMALIZED PRE-TRIPFfEDWATER FLOWINTACTSTEAMGENERATOR PRESSUREINTACTLOOPCOLDLEGTEMPERATURE REACTORCOOLANTSYSTEMPRESSURE'PRIMARY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOWPRESSURIZER WATERVOLUMEUPPERHEADFLUIDMASSVOLUMETRIC LOOPFLOWRATESCOMPARISON OF"MIXEDTEMPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROMTHESGOUTLETPLENUMFAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWSPOST-TRIP REACTORCOOLANTTEMPERATURES STEAMDUMPVALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCSGINNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES COMPARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEMPERATURES FOLLOWING REACTORTRIPFAULTEDLOOPCOLDLEGTEMPERATURES MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURf CALCULATION MIXINGVOLUMELOOPFLOWANDSAFETYINJECTION FLOWMIXINGVOLUMEFLOWTEMPERATURfS BESTESTIMATEREACTORVESSELDOWNCOMER TfMPERATURE COREEXITFLUIDTEMPERATURE 3274(:1/111982 111


LISTOFFIGURES(Cont.)FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.5.4-1II.5.5-1II.5.5-2II.5.7-1II.6-1II.6-28-1C-1FIGUREII.5.3.4-1FIGUREII.5.3.4-2FIGUREII.5.3.5-1FIGUREII.5.3.6-1FIGUREII.5.3.6-2BREAKFLOWFROMSGINLETANDOUTLETPLENUMSLOFTRANFAULTEDLOOPHOTLEGTEMPERATUREFAULTEDSGTUBEBUNDLEFLUIDTEMPERATUREPOST-TRIPUPPERHEADFLUIDTEMPERATURELOFTRANUPPERHEADFLUIDTEMPERATUREPRESSURIZERLEVELINDICATIONLOFTRANANDBESTESTIMATEBREAKFLOWSFAULTEDSTEAMGENERATORPRESSUREFAULTEDSTEAMGENERATORWATERVOLUMERCSANDFAULTEDSTEAMGENERATORPRESSURESLONGTERMPRESSURIZERLEVELRESPONSESGTUBERUPTUREFLOWMODELDIAGRAMUPPERHEADVOIDINGILLUSTRATION32740:1/1119821V I.INTRODUCTIONAttherequestofRochesterGasandElectric(RGE),WestinghousehasanalyzedtheJanuary25,1982steamgeneratortuberuptureeventattheR.E.Ginnanuclearpowerplant.Theprincipleobjectiveofthiseffortistosupplementtheexistingdatabase'oprovideamorethoroughunderstandingoftheplantr'esponseandactualsequenceofevents.Ofparticularinterestarevoidingofthereactorcoolant,naturalcirculationloopflowbehavior,andprimary-to-secondaryleakage.TheLOFTRANcomputercodewasusedfor(3)theseanalyses.AnumberofauxiliarycalculationsarealsodescribedwhichcomplementLOFTRANbyprqvidingmoredetailedmodellingoflocalizedeffects.Theplantresponsetothesteamgeneratortubefailureandsubsequentr'ecoveryactionsispresentedforthreedifferent,phasesoftheevent.Thepre-tripdatarecordprovidesinformationforestimatingtheinitialleakrateandextentoftubefailure.LOFTRAHanalysisofthisperiodextrapolatesthisdatatodeterminetheapproximatetimeoftubefailureandhistoryoftube(leakage.Followingreactortrip,severalautomaticprotectionsystemswere~~~actuatedinrapidsuccessionandasequenceofemergencyrecoveryactionswasinitiatedtomitigatetheconsequencesoftheaccident.Thisemergencyrecov-eryperiodculminatedinterminationofsafetyinjection.TheplantresponsetotheautomaticprotectionsystemsandrecoveryactionsduringthisphasewasalsoinvestigatedusingLOFTRAN.Finally,thelongtermplantresponseandadditionalleakageintothefaultedsteamgeneratorafterterminationofsafetyinjectionisdiscussed.AbriefdiscussionofLOFTRANmodellingispresented.SeverallimitationsareidentifiedwhicharesignificantwhenappliedtotheGinnaeventandmust-beconsideredwhenevaluatingtheanalysisresults.Theseresultsarecomparedtotheavailableplantdatainthefollowingsections.32740:1/111882  
LISTOFFIGURES(Cont.)FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.5.4-1II.5.5-1II.5.5-2II.5.7-1II.6-1II.6-28-1C-1FIGUREII.5.3.4-1FIGUREII.5.3.4-2FIGUREII.5.3.5-1FIGUREII.5.3.6-1FIGUREII.5.3.6-2BREAKFLOWFROMSGINLETANDOUTLETPLENUMSLOFTRANFAULTEDLOOPHOTLEGTEMPERATURE FAULTEDSGTUBEBUNDLEFLUIDTEMPERATURE POST-TRIP UPPERHEADFLUIDTEMPERATURE LOFTRANUPPERHEADFLUIDTEMPERATURE PRESSURIZER LEVELINDICATION LOFTRANANDBESTESTIMATEBREAKFLOWSFAULTEDSTEAMGENERATOR PRESSUREFAULTEDSTEAMGENERATOR WATERVOLUMERCSANDFAULTEDSTEAMGENERATOR PRESSURES LONGTERMPRESSURIZER LEVELRESPONSESGTUBERUPTUREFLOWMODELDIAGRAMUPPERHEADVOIDINGILLUSTRATION 32740:1/111982 1V I.INTRODUCTION AttherequestofRochester GasandElectric(RGE),Westinghouse hasanalyzedtheJanuary25,1982steamgenerator tuberuptureeventattheR.E.Ginnanuclearpowerplant.Theprinciple objective ofthiseffortistosupplement theexistingdatabase'oprovideamorethoroughunderstanding oftheplantr'esponse andactualsequenceofevents.Ofparticular interestarevoidingofthereactorcoolant,naturalcirculation loopflowbehavior, andprimary-to-secondary leakage.TheLOFTRANcomputercodewasusedfor(3)theseanalyses.
Anumberofauxiliary calculations arealsodescribed whichcomplement LOFTRANbyprqviding moredetailedmodelling oflocalized effects.Theplantresponsetothesteamgenerator tubefailureandsubsequent r'ecovery actionsispresented forthreedifferent, phasesoftheevent.Thepre-tripdatarecordprovidesinformation forestimating theinitialleakrateandextentoftubefailure.LOFTRAHanalysisofthisperiodextrapolates thisdatatodetermine theapproximate timeoftubefailureandhistoryoftube(leakage.Following reactortrip,severalautomatic protection systemswere~~~actuatedinrapidsuccession andasequenceofemergency recoveryactionswasinitiated tomitigatetheconsequences oftheaccident.
Thisemergency recov-eryperiodculminated intermination ofsafetyinjection.
Theplantresponsetotheautomatic protection systemsandrecoveryactionsduringthisphasewasalsoinvestigated usingLOFTRAN.Finally,thelongtermplantresponseandadditional leakageintothefaultedsteamgenerator aftertermination ofsafetyinjection isdiscussed.
Abriefdiscussion ofLOFTRANmodelling ispresented.
Severallimitations areidentified whicharesignificant whenappliedtotheGinnaeventandmust-beconsidered whenevaluating theanalysisresults.Theseresultsarecomparedtotheavailable plantdatainthefollowing sections.
32740:1/111882  


II.ANALYSISOFPLANTRESPONSEII.1SystemsAnalysisCodeLOFTRANisafastrunning,digitalcomputercodedevelopedtosimulatetran-sientbehaviorinWestinghousepressurizedwaterreactors.Theprogrammodelsneutronkineticsaswellascontrolandprotectionsystemsontheprimaryandsecondarysystems.Themostsignificantoftheprotectionsystems,theEmer-gencyCoreCoolingSystem(ECCS)andtheAuxiliaryFeedwater(AFW)system,aredescribedbelow.TheECCSwasrepresentedbythecombinedcapacityofthreehighheadsafetyinjectionpumpsshowninFigureII.1-1.Safetyinjectioninitiatedautomatic-allyonlowpressurizerpressureof1740psiaandwasassumedequallydistrib-utedbetweenloops.Thesuctionofthesepumpswasinitiallyalignedtotwoboricacidtanks(BAT)containingapproximately4320gallonsofboratedwaterat140F.Onlowlevel,suctionwasautomaticallyre-alignedtotheRefuelingWaterStorageTank(RWST)whichcontainedcoolerwater.Intheanalysespre-sented,60FwaterfromtheRWSTwasassumedtobeinjectedthroughtheBATcontaininga140Fboricacidsolution.Reactorcoolantmakeupfromthenor-malchargingpumpswasalsosimulatedwithsuctionfromthesepumpsalignedtotheRWST.Chargingflowisdiscussedonacasebycasebasis'inthefollowingsections.TwomotordrivenAFWpumpsautomaticallystartedonasafetyinjectionsignal.Eachmotordrivenpumpprovidedapproximately200GPMofwaterfromtheCondensateStorageTank(CST)anddeliveredtooneofthetwosteamgener-ators.OnesteamdrivenAFWpumpstartedautomaticallyonlow-lowsteamgen-eratorlevel.Thesteamdrivenpumpsuppl.iedatotalof400GPMwhichwasavailabletobothsteamgenerators.AFWpumpoperationwassimulatedasdes-cribedinthesequenceofeventsinTableII.l-l.Apurgevolumeof200ft3containingnormalfeedwaterwasalsosimulated.Thisrepresentedadelayofapproximately4minutesbeforecoldCSTwaterenteredthetuberegionof:theintactsteamgenerator.3274(}:1/111882 22002000180016001400120010008004002000.020040060080010001200FIGUREII.1-1.GINiVASAFETYIHJECTIOiVCAPACITY.3 PreviousLOFTRANanalyseshavesimulatedthePrairieIslandtubefailureeventwell.However,LOFTRANissomewhatlimitedbythemodellingoftheupperheadregion,steamgeneratorsecondaryside,andprimary-to-secondaryleakage.Theupperheadmodellingassumeshomogeneous,thermodynamicequilibriumconditionsduringflashingoftheupperheadfluid.Refillingoftheupperheadregionisartificiallyconstrainedtosimulatenon-equilibriumbehavior.Effectively,theupperheadregioncannotrefillduringnaturalcirculationflow.Furthermore,flowintotheupperheadregionviaguidetubesisnotrepresented.Consequently,thecalculatedupperheadfluidtemperaturemaybeunrealisticforplantswithsmallerupperhead"spray"nozzles,suchasGinna.LOFTRANisalsolimitedbythehomogeneous,'saturatedconditionswithinthe'secondarywhichpromotesanunrealisticlylethargictubebundleregiontemperatureresponse,toAFMflowandsecondary-to-primaryheattransfer.Inaddition,theseconditionsresultinartificallyreducedsteamgeneratorpressureswhennosteamflowoccurssincethesteamiseffectivelyassumedtobeincontactwiththesteamgeneratortubes.Thebreakflowcal-culationswithinLOFTRANarebasedonconservative,i.e.maximumflow,criti-calflowcorrelations.Theaccuracyofthesecorrelationsinpredictingcriticalflowtrendsoverawiderangeofsystemconditionsisuncertain.Furthermore,thebreakflowmodellingdoesnotconsiderflowresistancethroughthefailedtube,orfluidtemperaturevariationsbetweenthesteamgeneratorinletandoutletplenums.Finally,LOFTRANdoesnotpermitreverseflowtooccurinthecoolantlooptowhichthepressurizerisconnected.Fortheresultspresented,thepressurizerwasmodelledontheintactloopalthoughduringtheGinnaeventthepressurizerwasonthefaultedloop.Thismayresultinunrealisticloopflowsduringrefillingofthepressurizer.II.2PlantDataTheplantdatawhichformsthebasisoftheanalysesthatfollowwasobtainedfromvariouscomputerrecords,stripchartsofsystemparameters,andthesequenceofeventsasreconstructedbyRGE.TheGinnaplantcomputerisarealtimecentralprocessingunitwhichstoresselectedplantparameters:foruseduringnormaloperations.Severalperipherialdevicesservicedbythiscentralunitprovidetheprincipaldataforpost-accidentanalyseswhichincludesprimaryandsecondarypressures,reactorcoolanttemperatures,and3274(}:1/111882 r~
II.ANALYSISOFPLANTRESPONSEII.1SystemsAnalysisCodeLOFTRANisafastrunning,digitalcomputercodedeveloped tosimulatetran-sientbehaviorinWestinghouse pressurized waterreactors.
pressurizerlevel.Thesedevicesincludeapre-tripeventrecorder,aTI-7000teletypeterminal,analarmtypewriter,andalogtypewriter.CommunicationswithRGEpersonnelsupplementedthisdataandprovidedadditionalinsightintotheevent.ThesequenceofoperatoractionswasextractedfromthesequenceofeventsprovidedbyRGEandthechronologypfplantalarms.whenpossible.ThemajoreventsarepresentedinTableII.l-l.Comprehensiveplantdataandthecompletesequenceofeventsisavailableinreferencel.II.3InitialLeakRateThepre-trippressurizerlevelresponsetothelossofreactorcoolantwasanalyzedtoestimatetheinitialprimary-to-secondaryleakrate.Rapidvaria-tionsinreactorcoolanttemperatureduetoturbinerunbackandautomaticsteamdumptothecondensertendedtomasktheinventoryloss.However,anaverageleakratepriortotripwas.estimatedbyconsideringtheindicatedpressurizerlevelresponsebetweentimesofconstantaveragecoolanttempera-ture.Sincethecoolanttemperaturesatthesetimeswereapproximatelythesame,theeffectoftheturbinerunbackonthiscalculationwasminimized.Thepre-trippressurizerlevel,adjustedforinstrumentationcalibration,ispresentedinTableII.3-1;BasedondiscussionswithRGEpersonnel,twochargingpumpswereoperatingpriortothetubefailure,oneinmanualandtheotherinautomatic.Eachpumpwasdeliveringapproximately25GPMofflow.Totalletdown,including'eactorcoolantpumpsealleakoff,was50GPM.Followingtubefailure,onechargingpumpautomaticallyincreasedtothemaximumcapacityof60GPMaspressurizerleveldecreased.Althoughathirdchargingpumpwasmanuallystartedapproximately40secondsbeforereactortrip,9:27:30,itwouldhaveprovidedlittleflowbeforetrip.Consequently,thenormalchargingsystemwassupplyinganexcessofapproximately35GPMduringthisperiod.Theaveragepre-tripleakratewasestimatedtobe573GPM(AppendixA).Aninitialleakrateof634GPMwascalculatedbyextrapolatingtheaverage-leakratetotheinitialsystemconditionsbasedonsubcooledcriticalflow(5)throughthefailedtube.Aneffectivebreakareaof0.0033ft2wasdeterminedbyproportioningthecriticalflowrateascalculatedbyLOFTRANforthe.initialsystemconditionstomatchtheinitialleakrate.3274(}:1/111882  
Theprogrammodelsneutronkineticsaswellascontrolandprotection systemsontheprimaryandsecondary systems.Themostsignificant oftheprotection systems,theEmer-gencyCoreCoolingSystem(ECCS)andtheAuxiliary Feedwater (AFW)system,aredescribed below.TheECCSwasrepresented bythecombinedcapacityofthreehighheadsafetyinjection pumpsshowninFigureII.1-1.Safetyinjection initiated automatic-allyonlowpressurizer pressureof1740psiaandwasassumedequallydistrib-utedbetweenloops.Thesuctionofthesepumpswasinitially alignedtotwoboricacidtanks(BAT)containing approximately 4320gallonsofboratedwaterat140F.Onlowlevel,suctionwasautomatically re-aligned totheRefueling WaterStorageTank(RWST)whichcontained coolerwater.Intheanalysespre-sented,60FwaterfromtheRWSTwasassumedtobeinjectedthroughtheBATcontaining a140Fboricacidsolution.
Reactorcoolantmakeupfromthenor-malchargingpumpswasalsosimulated withsuctionfromthesepumpsalignedtotheRWST.Chargingflowisdiscussed onacasebycasebasis'inthefollowing sections.
TwomotordrivenAFWpumpsautomatically startedonasafetyinjection signal.Eachmotordrivenpumpprovidedapproximately 200GPMofwaterfromtheCondensate StorageTank(CST)anddelivered tooneofthetwosteamgener-ators.OnesteamdrivenAFWpumpstartedautomatically onlow-lowsteamgen-eratorlevel.Thesteamdrivenpumpsuppl.ied atotalof400GPMwhichwasavailable tobothsteamgenerators.
AFWpumpoperation wassimulated asdes-cribedinthesequenceofeventsinTableII.l-l.Apurgevolumeof200ft3containing normalfeedwater wasalsosimulated.
Thisrepresented adelayofapproximately 4minutesbeforecoldCSTwaterenteredthetuberegionof:theintactsteamgenerator.
3274(}:1/111882 22002000180016001400120010008004002000.020040060080010001200FIGUREII.1-1.GINiVASAFETYIHJECTIOiV CAPACITY.
3 PreviousLOFTRANanalyseshavesimulated thePrairieIslandtubefailureeventwell.However,LOFTRANissomewhatlimitedbythemodelling oftheupperheadregion,steamgenerator secondary side,andprimary-to-secondary leakage.Theupperheadmodelling assumeshomogeneous, thermodynamic equilibrium conditions duringflashingoftheupperheadfluid.Refilling oftheupperheadregionisartificially constrained tosimulatenon-equilibrium behavior.
Effectively, theupperheadregioncannotrefillduringnaturalcirculation flow.Furthermore, flowintotheupperheadregionviaguidetubesisnotrepresented.
Consequently, thecalculated upperheadfluidtemperature maybeunrealistic forplantswithsmallerupperhead"spray"nozzles,suchasGinna.LOFTRANisalsolimitedbythehomogeneous,
'saturated conditions withinthe'secondary whichpromotesanunrealisticlylethargic tubebundleregiontemperature response,to AFMflowandsecondary-to-primary heattransfer.
Inaddition, theseconditions resultinartifically reducedsteamgenerator pressures whennosteamflowoccurssincethesteamiseffectively assumedtobeincontactwiththesteamgenerator tubes.Thebreakflowcal-culations withinLOFTRANarebasedonconservative, i.e.maximumflow,criti-calflowcorrelations.
Theaccuracyofthesecorrelations inpredicting criticalflowtrendsoverawiderangeofsystemconditions isuncertain.
Furthermore, thebreakflowmodelling doesnotconsiderflowresistance throughthefailedtube,orfluidtemperature variations betweenthesteamgenerator inletandoutletplenums.Finally,LOFTRANdoesnotpermitreverseflowtooccurinthecoolantlooptowhichthepressurizer isconnected.
Fortheresultspresented, thepressurizer wasmodelledontheintactloopalthoughduringtheGinnaeventthepressurizer wasonthefaultedloop.Thismayresultinunrealistic loopflowsduringrefilling ofthepressurizer.
II.2PlantDataTheplantdatawhichformsthebasisoftheanalysesthatfollowwasobtainedfromvariouscomputerrecords,stripchartsofsystemparameters, andthesequenceofeventsasreconstructed byRGE.TheGinnaplantcomputerisarealtimecentralprocessing unitwhichstoresselectedplantparameters:
foruseduringnormaloperations.Severalperipherial devicesservicedbythiscentralunitprovidetheprincipal dataforpost-accident analyseswhichincludesprimaryandsecondary pressures, reactorcoolanttemperatures, and3274(}:1/111882 r~
pressurizer level.Thesedevicesincludeapre-tripeventrecorder, aTI-7000teletypeterminal, analarmtypewriter, andalogtypewriter.
Communications withRGEpersonnel supplemented thisdataandprovidedadditional insightintotheevent.Thesequenceofoperatoractionswasextracted fromthesequenceofeventsprovidedbyRGEandthechronology pfplantalarms.whenpossible.
Themajoreventsarepresented inTableII.l-l.Comprehensive plantdataandthecompletesequenceofeventsisavailable inreference l.II.3InitialLeakRateThepre-trippressurizer levelresponsetothelossofreactorcoolantwasanalyzedtoestimatetheinitialprimary-to-secondary leakrate.Rapidvaria-tionsinreactorcoolanttemperature duetoturbinerunbackandautomatic steamdumptothecondenser tendedtomasktheinventory loss.However,anaverageleakratepriortotripwas.estimated byconsidering theindicated pressurizer levelresponsebetweentimesofconstantaveragecoolanttempera-ture.Sincethecoolanttemperatures atthesetimeswereapproximately thesame,theeffectoftheturbinerunbackonthiscalculation wasminimized.
Thepre-trippressurizer level,adjustedforinstrumentation calibration, ispresented inTableII.3-1;Basedondiscussions withRGEpersonnel, twochargingpumpswereoperating priortothetubefailure,oneinmanualandtheotherinautomatic.
Eachpumpwasdelivering approximately 25GPMofflow.Totalletdown,including
'eactorcoolantpumpsealleakoff,was50GPM.Following tubefailure,onechargingpumpautomatically increased tothemaximumcapacityof60GPMaspressurizer leveldecreased.
Althoughathirdchargingpumpwasmanuallystartedapproximately 40secondsbeforereactortrip,9:27:30,itwouldhaveprovidedlittleflowbeforetrip.Consequently, thenormalchargingsystemwassupplying anexcessofapproximately 35GPMduringthisperiod.Theaveragepre-tripleakratewasestimated tobe573GPM(Appendix A).Aninitialleakrateof634GPMwascalculated byextrapolating theaverage-leakratetotheinitialsystemconditions basedonsubcooled criticalflow(5)throughthefailedtube.Aneffective breakareaof0.0033ft2wasdetermined byproportioning thecriticalflowrateascalculated byLOFTRANforthe.initialsystemconditions tomatchtheinitialleakrate.3274(}:1/111882  


TABLEII.3-1PRE-TRIPPRESSURIZERLEVEL~~Time(A.M.)IndicatedLevel(Xspan)Adjusted*Level('Xspan)Tavg(F)9:26:189:26:269:26:349:26:429:26'.589:27:069:27:149:27:229:27:309:27:389:27'469:27:549:28:029:28:10132.530.630.530.530.230.230.228.926.220.8'17.914.811.79.032.731.030.830.930.730.530.629.426.922.019.516.814.111.9571.2571.2571.9573.2575.2576.4576.8576.1575.3574.5573.4572.4571.4570.1*SeeAppendixA3274(}:1/111782
TABLEII.3-1PRE-TRIPPRESSURIZER LEVEL~~Time(A.M.)Indicated Level(Xspan)Adjusted*
Level('Xspan)Tavg(F)9:26:189:26:269:26:349:26:429:26'.589:27:069:27:149:27:229:27:309:27:389:27'469:27:549:28:029:28:10132.530.630.530.530.230.230.228.926.220.8'17.914.811.79.032.731.030.830.930.730.530.629.426.922.019.516.814.111.9571.2571.2571.9573.2575.2576.4576.8576.1575.3574.5573.4572.4571.4570.1*SeeAppendixA3274(}:1/1 11782


II.4Pre-TripSystemResponseThefirstindicationsofabnormalconditionswererecordedatapproximately9:25whenanumberofalarmssoundednearlysimultaneously.Theseincludedlowpressurizerpressure,lowpressurizerlevel,condenserairejectorradia-tion,andBsteamgeneratorleveldeviationalarms.Thealarmrecorderindi-catesthatthelowpressurizerpresurealarmsoundedfirst.Systemconditionswerenormalat9:22withnoapparentsymptomsofprimary-to-secondaryleakage.Thereactorcoolantsystempressureandtemperaturepriortoreactortripwereanalyzedusingnormalizedcorepower,FigureII.4-1,'ndsecondarypressure,FigureII.4-2,dataasforcingfunctionsforthecalculations.Alternativesecondarysideboundaryconditionswerealsoconsideredasforcingfunctionsforthepre-tripcalculations,includingnormalizedsteamandfeedwaterflows..Althoughtheseproducedreasonableresults,theinstrumentuncertain-tiesandresponsetimeswerenotasconduciveassecondarypressuretopre-tripanalysis.ThepressurizerpressureandlevelresponsescalculatedusingLOFTRANagreedverywellwithplantdataasillustratedinFiguresII.4-3andII.4-4,respectively.Extrapolationofthisdatawithaninitialleakrateof634GPMsuggeststhattubefailureoccurredat9:25:10(dmin).Thecalculatedpressureattheactualtimeofreactortripwasapproximately30PSIgreaterthanindicated.Theaveragereactorcoolanttemperatureiscomparedwithpre-tripdatainFigureII.4-5.Theincreaseintemperatureduetoturbinerunbackmomentarilymaskedthedecreaseinprimarycoolantinventory.Simi-larly,whenthesteamdumpvalvesopened,theassociatedcooldownenhancedreactorcoolantsystemdepressurization.FiguresII.4-6andII.4-7illustratethepredictedpressurizerpressureandlevelresponseswhenreactorcoolanttemperaturewasmaintainedconstant.Asdemon'stated,thepressureandlevelresponsesaresignificantlyaffectedbycoolanttemperaturetrends.3274(:1/111882  
II.4Pre-TripSystemResponseThefirstindications ofabnormalconditions wererecordedatapproximately 9:25whenanumberofalarmssoundednearlysimultaneously.
Theseincludedlowpressurizer
: pressure, lowpressurizer level,condenser airejectorradia-tion,andBsteamgenerator leveldeviation alarms.Thealarmrecorderindi-catesthatthelowpressurizer presurealarmsoundedfirst.Systemconditions werenormalat9:22withnoapparentsymptomsofprimary-to-secondary leakage.Thereactorcoolantsystempressureandtemperature priortoreactortripwereanalyzedusingnormalized corepower,FigureII.4-1,'nd secondary
: pressure, FigureII.4-2,dataasforcingfunctions forthecalculations.
Alternative secondary sideboundaryconditions werealsoconsidered asforcingfunctions forthepre-tripcalculations, including normalized steamandfeedwater flows..Althoughtheseproducedreasonable results,theinstrument uncertain-tiesandresponsetimeswerenotasconducive assecondary pressuretopre-tripanalysis.
Thepressurizer pressureandlevelresponses calculated usingLOFTRANagreedverywellwithplantdataasillustrated inFiguresII.4-3andII.4-4,respectively.
Extrapolation ofthisdatawithaninitialleakrateof634GPMsuggeststhattubefailureoccurredat9:25:10(dmin).Thecalculated pressureattheactualtimeofreactortripwasapproximately 30PSIgreaterthanindicated.
Theaveragereactorcoolanttemperature iscomparedwithpre-tripdatainFigureII.4-5.Theincreaseintemperature duetoturbinerunbackmomentarily maskedthedecreaseinprimarycoolantinventory.
Simi-larly,whenthesteamdumpvalvesopened,theassociated cooldownenhancedreactorcoolantsystemdepressurization.
FiguresII.4-6andII.4-7illustrate thepredicted pressurizer pressureandlevelresponses whenreactorcoolanttemperature wasmaintained constant.
Asdemon'stated, thepressureandlevelresponses aresignificantly affectedbycoolanttemperature trends.3274(:1/111882  


100GI<<HA(+)LOFTRAN(-)90~r80C)CL70C)LJJIVo..60C)509:24925926TINE(A.ii.)9:279:28929FIGUREII.4-1.PRE-TRIPthORllALIZEDCOREPOllER.  
100GI<<HA(+)LOFTRAN(-)90~r80C)CL70C)LJJIVo..60C)509:24925926TINE(A.ii.)9:279:28929FIGUREII.4-1.PRE-TRIPthORllALIZED COREPOllER.  


1100GINNA(+)LOFTRAN(-)10009008007006009249:25926TIVE(A.H.)9:279:28929FIGUREII.4-2.PRE-TRIPSECONDARYSYSTEMPRESSURE 2200GIN~iA(+)LOFTRAt~(-)20001800LU1600C'40012009:249:259:269:279:289:29TItiE(n.n.)FIGUREII.4-3.PRE-TRIPPRESSURI"ERPRESSURE.
1100GINNA(+)LOFTRAN(-)10009008007006009249:25926TIVE(A.H.)9:279:28929FIGUREII.4-2.PRE-TRIPSECONDARY SYSTEMPRESSURE 2200GIN~iA(+)LOFTRAt~(-)20001800LU1600C'40012009:249:259:269:279:289:29TItiE(n.n.)FIGUREII.4-3.PRE-TRIPPRESSURI"ER PRESSURE.
10080GIr<NA(+)LOFTRAN(-)60402009:249259:26927928929TIflE(A.H.)FIGUREII.4-4.PRE-TRIPPRESSURIZERLEVEL.
10080GIr<NA(+)LOFTRAN(-)60402009:249259:26927928929TIflE(A.H.)FIGUREII.4-4.PRE-TRIPPRESSURIZER LEVEL.
58520GINNA(+)LOFTRAN(-)1612u5755659249:259:269:279:2809:29TII1E(A.H.)FIGUREII.4-5.PRE-TRIPAVERAGERCSCOOLANTTft1PERATURE  
58520GINNA(+)LOFTRAN(-)1612u5755659249:259:269:279:2809:29TII1E(A.H.)FIGUREII.4-5.PRE-TRIPAVERAGERCSCOOLANTTft1PERATURE  


2200GINNA(+)LOFTRAN(-)2000180016001400'12009:249:259269:279:28TInE(A.W.)FIGUREII.4-6.PRE-TRIPPRESSURIZERPRESSURE:CONSTANTCOOLANTTEf1PERATURE 100O60+O~r40UiCYUJ2009289249:259:27TIi'iE(A.t1.)FIGUREII.4-7.PRE-TRIPPRESSURIZERLEVEL:CONSTANTCOOLANTTEHPERATURE9:29  
2200GINNA(+)LOFTRAN(-)2000180016001400'12009:249:259269:279:28TInE(A.W.)FIGUREII.4-6.PRE-TRIPPRESSURIZER PRESSURE:
CONSTANTCOOLANTTEf1PERATURE 100O60+O~r40UiCYUJ2009289249:259:27TIi'iE(A.t1.)FIGUREII.4-7.PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEHPERATURE 9:29  


TABLEII.l-l:SEQUENCEOFMMOREVENTSEventManual(0)Automatic(A)ActualTIME(Sec)SimulatedTubeFailureTurbineRunbackAutomaticSteamDumpReactorTripSafetyInjectionSignalFeedwaterIsolationAuxiliaryFeedwaterStartReactorCoolantPumpTripBMotorDrivenAFWPumpOffManual.SteamDumpBLoopMSIVClosedAFWThrottledASGAFWStoppedtoBSGChargingPumpsStartedPORVCycledSITerminated078110182190192220230410(1)770(1)890("950(1)1250('2330(25404310(070118182198198239246410530(530(2)9501250233025404310Thesetimesareapproximateandtypicallymayvarybyupto60seconds.SeesectionII.5foradiscussiononthesimulationoftheseevents.3274Q:1/111882l5
TABLEII.l-l:SEQUENCEOFMMOREVENTSEventManual(0)Automatic (A)ActualTIME(Sec)Simulated TubeFailureTurbineRunbackAutomatic SteamDumpReactorTripSafetyInjection SignalFeedwater Isolation Auxiliary Feedwater StartReactorCoolantPumpTripBMotorDrivenAFWPumpOffManual.SteamDumpBLoopMSIVClosedAFWThrottled ASGAFWStoppedtoBSGChargingPumpsStartedPORVCycledSITerminated 078110182190192220230410(1)770(1)890("950(1)1250('2330(25404310(070118182198198239246410530(530(2)9501250233025404310Thesetimesareapproximate andtypically mayvarybyupto60seconds.SeesectionII.5foradiscussion onthesimulation oftheseevents.3274Q:1/111882 l5


II.5Post-TripSystemResponseContinuedleakageofprimarycoolantincombinationwithrapidcooldownofthereactorcoolantsystemfollowingactuationofthesteamdumpsystem,causedanautomaticreactortriponlowpressurizerpressure.Primarysystempressuredecreasedrapidlyaspowergenerationwasabated,andseveralsupportingsys-tems,includingtheECCSandAFWsystem,startedinrelativelyrapidsucces-sion.Aseriesofoperatoractionscommencedinaccordancewithemergencyresponseprocedurestorecovertheplanttoasafeshutdowncondition.TheplantresponsetothesesystemsandoperatoractionswasanalyzedusingLOFTRANandtheresultsarepresentedinthefollowingsections.Theseanaly-seswerelimitedtothetimefrominitialfailureuntil10:40(75min),shortlyafterterminationofsafetyinjection.Beyondthistime,LOFTRANanalysiswasnotappropriatebecauseofthehomogeneous,equilibriumsecondarysidemodelling.Additionalleakageintothefaultedsteamgeneratorwasestimatedfromplantdatatodeterminethemassdischargedfromthesteamgeneratorafteroverfill.ThesteamgeneratortubefailureoccurredintheBloopduringtheGinnaevent.Consequently,faultedloopandBlooparesynonymousinthefollowingsections.Similarly,intactloopandAloopare*usedinterchangably.However,AloopandBloopdesignationsgenerallyrefertoplantdata,andintactandfaultedtoLOFTRANcalculations.Fortheseanalyses,normalizedsteamflow,FigureII.5-1,andfeedwaterflow,FigureII.5-2,fromplantdatawereusedpriortotripasforcingfunctionsforthecalculations.Thisprovidedadditionalflexibilityinmodellingsub-sequentoperatoractionswithL'OFTRAN.TheLOFTRANanalysisresults,whichincludeanadjustmenttotheinputsteamflowtoaccountforincreasedsecon-daryp'ressure,arealsoshownforcomparison.Afterreactortrip,theintactsteam'generatorpressurewascontrolledtoreproducetheindicatedloopAcoldlegtemperatures.TheintactsteamgeneratorpressureinputtoLOFTRANiscomparedtoplantdatainFigureII.5-3.FigureII.5-4showsthecalculatedandmeasuredintactloopfluidtemperaturesatthecoldleginlet.NotethatloopAcoldlegfluidwassubcooledattheAloopsteamgeneratorpressurebetweenapproximately9:32(7min)and9:41(16min).Becauseofthehomo-geneousequilibriumsecondarysidemodellingwithLOFTRAN,suchsubcooling32740:1/11188216 100GINNA(+)LOFTRAN(-)8060402009:249:259:26927TIi~>E(A.>>.)FIGUREII.5-1.i%OR/1ALIZEDPRE-TRIPSTENlFLOW.9:28929  
II.5Post-Trip SystemResponseContinued leakageofprimarycoolantincombination withrapidcooldownofthereactorcoolantsystemfollowing actuation ofthesteamdumpsystem,causedanautomatic reactortriponlowpressurizer pressure.
Primarysystempressuredecreased rapidlyaspowergeneration wasabated,andseveralsupporting sys-tems,including theECCSandAFWsystem,startedinrelatively rapidsucces-sion.Aseriesofoperatoractionscommenced inaccordance withemergency responseprocedures torecovertheplanttoasafeshutdowncondition.
TheplantresponsetothesesystemsandoperatoractionswasanalyzedusingLOFTRANandtheresultsarepresented inthefollowing sections.
Theseanaly-seswerelimitedtothetimefrominitialfailureuntil10:40(75min),shortlyaftertermination ofsafetyinjection.
Beyondthistime,LOFTRANanalysiswasnotappropriate becauseofthehomogeneous, equilibrium secondary sidemodelling.
Additional leakageintothefaultedsteamgenerator wasestimated fromplantdatatodetermine themassdischarged fromthesteamgenerator afteroverfill.
Thesteamgenerator tubefailureoccurredintheBloopduringtheGinnaevent.Consequently, faultedloopandBlooparesynonymous inthefollowing sections.
Similarly, intactloopandAloopare*usedinterchangably.
However,AloopandBloopdesignations generally refertoplantdata,andintactandfaultedtoLOFTRANcalculations.
Fortheseanalyses, normalized steamflow,FigureII.5-1,andfeedwater flow,FigureII.5-2,fromplantdatawereusedpriortotripasforcingfunctions forthecalculations.
Thisprovidedadditional flexibility inmodelling sub-sequentoperatoractionswithL'OFTRAN.
TheLOFTRANanalysisresults,whichincludeanadjustment totheinputsteamflowtoaccountforincreased secon-daryp'ressure, arealsoshownforcomparison.
Afterreactortrip,theintactsteam'generator pressurewascontrolled toreproduce theindicated loopAcoldlegtemperatures.
Theintactsteamgenerator pressureinputtoLOFTRANiscomparedtoplantdatainFigureII.5-3.FigureII.5-4showsthecalculated andmeasuredintactloopfluidtemperatures atthecoldleginlet.NotethatloopAcoldlegfluidwassubcooled attheAloopsteamgenerator pressurebetweenapproximately 9:32(7min)and9:41(16min).Becauseofthehomo-geneousequilibrium secondary sidemodelling withLOFTRAN,suchsubcooling 32740:1/11188216 100GINNA(+)LOFTRAN(-)8060402009:249:259:26927TIi~>E(A.>>.)FIGUREII.5-1.i%OR/1ALIZED PRE-TRIPSTENlFLOW.9:28929  


10080604020'9249'259:269:27TINE(A.ti.)FIGUREII.5-2.HORHALIZEDPRE-TRIPFEEDHATERfLOW.9289:29  
10080604020'9249'259:269:27TINE(A.ti.)FIGUREII.5-2.HORHALIZED PRE-TRIPFEEDHATER fLOW.9289:29  


1200.01000.0GINNA(G)LOFTRAN(-)800.00CG600.00~400.00200.000.0CDCDCDTINKtMIN)FIGUREII.5-3.INTACTSTEANGENERATORPRESSURE.19  
1200.01000.0GINNA(G)LOFTRAN(-)800.00CG600.00~400.00200.000.0CDCDCDTINKtMIN)FIGUREII.5-3.INTACTSTEANGENERATOR PRESSURE.
19  


700.00GINHA(G)LOFTRAN(-)INLETOUTLETC)C)ClAJ7lHE(MlM)FIGUREII.5-4.INTACTLOOPCOLDLEGTEf1PERATURE.20  
700.00GINHA(G)LOFTRAN(-)INLETOUTLETC)C)ClAJ7lHE(MlM)FIGUREII.5-4.INTACTLOOPCOLDLEGTEf1PERATURE.
20  


couldnotbereproduced.,However,thecooldownoftheAloopwassimulatedbyartificallysteamingtheintactsteamgenerator.Hence,thecalculatedsteamgeneratorpressurewaslessthanmeasuredduringthisperiod.II.5.1PrimarySystemPressurePrimarypressurecontinuedtodecreasefollowingreactortripasbreakflowdepletedcoolantinventoryandautomaticsteamdumpcooledthereactorcoolantsystem.Safetyinjectionwasactivatedwithinapproximately16seconds,at9:28:28(3.2min),whenpressurizerpressurereached1740psia.Threehighheadsafetyinjectionpumpsbegantoinjectshortlythereafter.torestorecoolantinventory.Pressurecontinuedtodecreasetoaminimumof1200psiabetween9:29(4min)and9:30(5min)asautomaticsteamdumpestablishedno-loadRCStemperature.Asmallvoidmayhavedevelopedintheupperheadregion.duringthisinitialdepressurizationalthoughLOFTRANdidnotpredictflashing(seesectionII.5.6.2).ThecalculatedRCSpressurehistoryiscomparedtoplantdatainFigureII.5.1-1.Whenthepost-tripcooldownsubsidedafterno-loadtemperaturehadbeenestab-lished,safetyinjectionflowinexcessofbreakflow,FigureII.5.1-2,repressurizedthereactorcoolantsystemuntilapproximately9:32(7min).Heat-upofthereactorcoolantduringthetransitionfromforcedtonaturalcirculationduetoRCPtripcontributedtothisrepressurization.LOFTRANanalysisdemonstratedamorerapidrepressurizationduringthisperiodthanactuallyobservedpossiblybecauseofcollapseofanupperheadvoidduringtheactualevent.Reactorcoolantshrinkage,ascoldAFWenteredtheAloopsteamgenerator,incombinationwithbreakflowdecreasedpressuretoamini-mumof1140psiabetween9:32(7min)and9:41(16min).Manualsteamreleasebeginningatapproximately9:38(13min)contributedlittletothisRCScool-downsincethesteamgeneratortubebundleregionwassubcooled.AlthoughadecreaseinprimarysystempressureisevidentintheanalysisresultsshowninFigureII.5.1-1,theactualpressuredecreasedsignificantlylower.Thisiscausedinpartbytheinitiallyhighercalculatedprimarypressureat-9:32(7min).Inaddition,althoughLOFTRANindicatesasmallamountofwaterremainedinthepressurizerduringthisperiod,FigureII.5;1-3,thepressur-izermayhaveactuallydrained.Thiswouldhaveenhanceddepressurizationoftheprimarysystem.3274(:1/11188221
couldnotbereproduced.
,However,thecooldownoftheAloopwassimulated byartifically steamingtheintactsteamgenerator.
Hence,thecalculated steamgenerator pressurewaslessthanmeasuredduringthisperiod.II.5.1PrimarySystemPressurePrimarypressurecontinued todecreasefollowing reactortripasbreakflowdepletedcoolantinventory andautomatic steamdumpcooledthereactorcoolantsystem.Safetyinjection wasactivated withinapproximately 16seconds,at9:28:28(3.2min),whenpressurizer pressurereached1740psia.Threehighheadsafetyinjection pumpsbegantoinjectshortlythereafter
.torestorecoolantinventory.
Pressurecontinued todecreasetoaminimumof1200psiabetween9:29(4min)and9:30(5min)asautomatic steamdumpestablished no-loadRCStemperature.
Asmallvoidmayhavedeveloped intheupperheadregion.duringthisinitialdepressurization althoughLOFTRANdidnotpredictflashing(seesectionII.5.6.2).
Thecalculated RCSpressurehistoryiscomparedtoplantdatainFigureII.5.1-1.
Whenthepost-trip cooldownsubsidedafterno-loadtemperature hadbeenestab-lished,safetyinjection flowinexcessofbreakflow,FigureII.5.1-2, repressurized thereactorcoolantsystemuntilapproximately 9:32(7min).Heat-upofthereactorcoolantduringthetransition fromforcedtonaturalcirculation duetoRCPtripcontributed tothisrepressurization.
LOFTRANanalysisdemonstrated amorerapidrepressurization duringthisperiodthanactuallyobservedpossiblybecauseofcollapseofanupperheadvoidduringtheactualevent.Reactorcoolantshrinkage, ascoldAFWenteredtheAloopsteamgenerator, incombination withbreakflowdecreased pressuretoamini-mumof1140psiabetween9:32(7min)and9:41(16min).Manualsteamreleasebeginning atapproximately 9:38(13min)contributed littletothisRCScool-downsincethesteamgenerator tubebundleregionwassubcooled.
AlthoughadecreaseinprimarysystempressureisevidentintheanalysisresultsshowninFigureII.5.1-1, theactualpressuredecreased significantly lower.Thisiscausedinpartbytheinitially highercalculated primarypressureat-9:32(7min).Inaddition, althoughLOFTRANindicates asmallamountofwaterremainedinthepressurizer duringthisperiod,FigureII.5;1-3, thepressur-izermayhaveactuallydrained.Thiswouldhaveenhanceddepressurization oftheprimarysystem.3274(:1/111882 21


2500.02250.0GINNA(G)LOFTRAN(-)1750.01500.0GGGGCGG1000.0CDCDCDCDAJTINE(MIN)CDCDCDC)CDFIGUREII.5.1-1.REACTORCOOLANTSYSTE[1PRESSURE.22  
2500.02250.0GINNA(G)LOFTRAN(-)1750.01500.0GGGGCGG1000.0CDCDCDCDAJTINE(MIN)CDCDCDC)CDFIGUREII.5.1-1.
REACTORCOOLANTSYSTE[1PRESSURE.
22  


125.00LOFTRAN(-)100.00SIFLOll75.000lsJ~50.00025.000BREAKFLOW0.0C7C)EDC)C)AJC)C)CDC)TIVE(MlH)CDClC7CDtDC)C)CDC)EX7CDCDFIGUREII.5.1-2.PRIORY-TO-SECONDARYLEAKAGEANDTOTALSAFETYINJECTIONFLOW.23  
125.00LOFTRAN(-)100.00SIFLOll75.000lsJ~50.00025.000BREAKFLOW0.0C7C)EDC)C)AJC)C)CDC)TIVE(MlH)CDClC7CDtDC)C)CDC)EX7CDCDFIGUREII.5.1-2.
PRIORY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOW.23  


800.00700.00LOFTRAN(-)600.00500.00F00.00300.00CD200.00100.000.0CDCDCDAJCDTlHK(MlH)C)CDCDEOCDCDCDCOFIGUREII.5.1-3.PRESSURIZERWATERVOLUt1E.
800.00700.00LOFTRAN(-)600.00500.00F00.00300.00CD200.00100.000.0CDCDCDAJCDTlHK(MlH)C)CDCDEOCDCDCDCOFIGUREII.5.1-3.
WhenAFWflowwasterminatedtotheAloopsteamgeneratorat9:41(16min),thecooldownofthereactorcoolantsystemsubsided.Safetyinjectionflowrepressurizedtheprimarysystemtowardanequilibriumpressureofapproxi-mately1320psiawherebreakflowandsafetyinjectionwerenearlyequal,asillustratedinFigureII.5.1-2.Operationofthesteamdumpvalvesoccasion-allyperturbedthisgeneraltrendandmaintainedpressureslightlybelowequilibrium.LOFTRANcalculationsslightlyoverestimatedthereactorcoolantsystempressureduringthisperiod.Twochargingpumpswithacombinedcapac-ityof120gpmwereassumedtoi'njectintothefaultedloopcoldlegbeginningat10:04(39min),asnotedinthesequenceofevents.Asaresult,thepre-dictedprimarypressureincreasedtowardanequilibriumvalueof1410psiaby10:07(42min).Thisisconsistentwithplantdatawhichindicatesanequi-libriumpressureofapproximately1390psia.CyclingofapressurizerPowerOperatedReliefValve(PORV)wassimulatedbeginningat10:07(42min)andproceededasindicatedinTableII.5.1-1.ThePORVwasmodelledtofullyopenorcloseinstantaneously.Duringtheactualevent,thePORVfailedtocloseonthefourthcycleandwasmanuallyiso-lated.Althoughthisisolationwasassumedcompletedby10:10(45min),theactualtimemayhavebeenslightlylater.Thecalculatedreactorcoolantsystempressureresponseduringthisperiodagreedwellwithavailableplantdata.Theminimumpressureduringthisperiodwascalculatedtobe847psia.FollowingisolationofthefailedPORV,thereactorcoolantsystempressureincreasedrapidlytoapproximately1400psiaassafetyinjectionflowandreverseflowfromtherupturedsteamgeneratorincreasedcoolantinventory.TheactualrepressurizationwasslowerthancalculatedbyLOFTRAN.Asnotedpreviously,LOFTRANinhibitsrefillingoftheupperheadregionduringnaturalcirculationflow,asevidencedbytheconstantupperheadfluidmassbeyond10:10(45min)inFigureII.5.1-4.Thisenhancedrefillingofthepressurizerand,consequently,repressurizationoftheprimarysystem.Hence,theslowerincreaseinpressureobservedintheactualeventisattributedtoatleastpartialrefillingoftheupperheadregion.By10:17(52min),safetyinjectionandchargingflowshadreestablishedanequilibriumwithbreakflowatapproximately1400psia.Whensafetyinjection32740:1/11178225 3.00E+OiLOFTRAH(-)2.50Ei"2.00Ei,~t.50E&iSaturatedLiquidl.OOEKli5000.0r>-SaturatedVapor0.0C)CDAJ8CDCDCD07TINE(MlM)FIGUREII.5.1-4.UPPERHEADFLUID(NSS.26 TABLEII.5.1-1SEQUENCEOFPORVOPERATIONCycleOpenedTime(A.M.)Closed10:07:30.510:07:35.510:07:49.310:07:57.310:08:44.010:08:52.710:09:10.1Actualtimeofisolationmayhavebeenslightlylater32740:1/11178227
PRESSURIZER WATERVOLUt1E.
WhenAFWflowwasterminated totheAloopsteamgenerator at9:41(16min),thecooldownofthereactorcoolantsystemsubsided.
Safetyinjection flowrepressurized theprimarysystemtowardanequilibrium pressureofapproxi-mately1320psiawherebreakflowandsafetyinjection werenearlyequal,asillustrated inFigureII.5.1-2.
Operation ofthesteamdumpvalvesoccasion-allyperturbed thisgeneraltrendandmaintained pressureslightlybelowequilibrium.
LOFTRANcalculations slightlyoverestimated thereactorcoolantsystempressureduringthisperiod.Twochargingpumpswithacombinedcapac-ityof120gpmwereassumedtoi'njectintothefaultedloopcoldlegbeginning at10:04(39min),asnotedinthesequenceofevents.Asaresult,thepre-dictedprimarypressureincreased towardanequilibrium valueof1410psiaby10:07(42min).Thisisconsistent withplantdatawhichindicates anequi-libriumpressureofapproximately 1390psia.Cyclingofapressurizer PowerOperatedReliefValve(PORV)wassimulated beginning at10:07(42min)andproceeded asindicated inTableII.5.1-1.
ThePORVwasmodelledtofullyopenorcloseinstantaneously.
Duringtheactualevent,thePORVfailedtocloseonthefourthcycleandwasmanuallyiso-lated.Althoughthisisolation wasassumedcompleted by10:10(45min),theactualtimemayhavebeenslightlylater.Thecalculated reactorcoolantsystempressureresponseduringthisperiodagreedwellwithavailable plantdata.Theminimumpressureduringthisperiodwascalculated tobe847psia.Following isolation ofthefailedPORV,thereactorcoolantsystempressureincreased rapidlytoapproximately 1400psiaassafetyinjection flowandreverseflowfromtherupturedsteamgenerator increased coolantinventory.
Theactualrepressurization wasslowerthancalculated byLOFTRAN.Asnotedpreviously, LOFTRANinhibitsrefilling oftheupperheadregionduringnaturalcirculation flow,asevidenced bytheconstantupperheadfluidmassbeyond10:10(45min)inFigureII.5.1-4.
Thisenhancedrefilling ofthepressurizer and,consequently, repressurization oftheprimarysystem.Hence,theslowerincreaseinpressureobservedintheactualeventisattributed toatleastpartialrefilling oftheupperheadregion.By10:17(52min),safetyinjection andchargingflowshadreestablished anequilibrium withbreakflowatapproximately 1400psia.Whensafetyinjection 32740:1/111782 25 3.00E+OiLOFTRAH(-)2.50Ei"2.00Ei,~t.50E&iSaturated Liquidl.OOEKli5000.0r>-Saturated Vapor0.0C)CDAJ8CDCDCD07TINE(MlM)FIGUREII.5.1-4.
UPPERHEADFLUID(NSS.26 TABLEII.5.1-1SEQUENCEOFPORVOPERATION CycleOpenedTime(A.M.)Closed10:07:30.5 10:07:35.5 10:07:49.3 10:07:57.3 10:08:44.0 10:08:52.7 10:09:10.1 Actualtimeofisolation mayhavebeenslightlylater32740:1/1 1178227


wasterminatedat10:37(72min),primarysystempressuredecreasedrapidlyfrom1370psiato945psia.LOFTRANanalysesdemonstratedasimilardepres-surizationasthepressurizersteambubbleexpandedtoaccommodateresidualbreakflowinexcessofreactorcoolantmakeup.Continuedchargingflowandpressurizerheateroperationmaintainedprimarypressuregreaterthan'thefaultedsteamgeneratorpressureuntilprimary-to-secondaryleakagewasterminatedat12:30(185min).II.5.2ReactorCoolantFlowAtransitionfromforcedtonaturalcirculationflowoccurredfollowingmanualreactorcoolantpumptripat9:29:09(4min).Thisisevidencedbytheincreasingloopdelta-Tbetween9:29(4min)and9:31(6min).AFWflowpref-erentiallycooledtheAsteamgeneratorwhichenhancednaturalcirculationflowintheAloopandretardedflowintheBloop.ThisresponsewasdemonstratedintheLOFTRANresultsshowninFigureII..5.2-1from9:32(7min)to9:41(16min).WhenAFWflowwasthrottledat9:41(16'min),flowthroughtheAintactloopwascalculatedtodecreasetoapproximately4Xofinitialconditions.Flowthroughthefaultedloopmomentarilyincreased,asAFWflowfromtheturbinedrivenAFWpumpcontinuedtocoolthefaultedsteamgenerator,until9:46(21min)whenAFWflowwasterminated;Asthecooldownoftheintactsteamgeneratorcontinued,flowthroughthefaultedloopwas'alculatedtostagnateat10:10(45min).Natural.circulationflowthroughtheintactloopwasmaintainedbetween3Xand4gfullflowuntilthereactorcoolantpumpwasrestartedat11:19(114min).II.5.2.1LoopBColdLegFlowAlthoughLOFTRANdidnotsupportsignificantreverseflowthroughthefaultedloop,theeffect.ofbreakflowmodellingonthecalculatedloopflowwasuncertain.Hence,thepotentialforprimary-to-secondaryleakagegeneratingsufficientreverseloopflowtoproducetheobservedBlooptemperatureresponsewasinvestigated.FigureII.5.2.1-1comparesthetotalreverseflow,i.e.safetyinjectionflowandloopflowfromthevesseldowncomer,whichwouldhaveamixedtemperatureidenticaltotheindicatedBlooptemperature,28  
wasterminated at10:37(72min),primarysystempressuredecreased rapidlyfrom1370psiato945psia.LOFTRANanalysesdemonstrated asimilardepres-surization asthepressurizer steambubbleexpandedtoaccommodate residualbreakflowinexcessofreactorcoolantmakeup.Continued chargingflowandpressurizer heateroperation maintained primarypressuregreaterthan'thefaultedsteamgenerator pressureuntilprimary-to-secondary leakagewasterminated at12:30(185min).II.5.2ReactorCoolantFlowAtransition fromforcedtonaturalcirculation flowoccurredfollowing manualreactorcoolantpumptripat9:29:09(4min).Thisisevidenced bytheincreasing loopdelta-Tbetween9:29(4min)and9:31(6min).AFWflowpref-erentially cooledtheAsteamgenerator whichenhancednaturalcirculation flowintheAloopandretardedflowintheBloop.Thisresponsewasdemonstrated intheLOFTRANresultsshowninFigureII..5.2-1 from9:32(7min)to9:41(16min).WhenAFWflowwasthrottled at9:41(16'min),flowthroughtheAintactloopwascalculated todecreasetoapproximately 4Xofinitialconditions.
Flowthroughthefaultedloopmomentarily increased, asAFWflowfromtheturbinedrivenAFWpumpcontinued tocoolthefaultedsteamgenerator, until9:46(21min)whenAFWflowwasterminated; Asthecooldownoftheintactsteamgenerator continued, flowthroughthefaultedloopwas'alculated tostagnateat10:10(45min).Natural.circulation flowthroughtheintactloopwasmaintained between3Xand4gfullflowuntilthereactorcoolantpumpwasrestarted at11:19(114min).II.5.2.1LoopBColdLegFlowAlthoughLOFTRANdidnotsupportsignificant reverseflowthroughthefaultedloop,theeffect.ofbreakflowmodelling onthecalculated loopflowwasuncertain.
Hence,thepotential forprimary-to-secondary leakagegenerating sufficient reverseloopflowtoproducetheobservedBlooptemperature responsewasinvestigated.
FigureII.5.2.1-1 comparesthetotalreverseflow,i.e.safetyinjection flowandloopflowfromthevesseldowncomer, whichwouldhaveamixedtemperature identical totheindicated Blooptemperature, 28  


10.000LOFTRAN(-)8.00006.00001.0000lINTACTLOOP4~2.0000FAULTEDLOOP0.0"l.0000ClClCDClT1HEtHlN)CDCDCDCDCDCDEKIFIGUREII~52lVOLUMETRICLOOPFLOWRATES~  
10.000LOFTRAN(-)8.00006.00001.0000lINTACTLOOP4~2.0000FAULTEDLOOP0.0"l.0000ClClCDClT1HEtHlN)CDCDCDCDCDCDEKIFIGUREII~52lVOLUMETRIC LOOPFLOWRATES~  


300.00250.00200.00ChargingPumpsStartedPORVClosedCalculated(+)"MixedTemperature"ReverseLoopFlow.150.00PORVOpened50.000OutletPlenumBreakFlow0.0-25.000CDCDCDCDCDCDCDTIME"(HIM)CDCDCDCDCDCDCDCDCQCDFIGURE'I!.5.2.1-1.COiiPARISONOF"MIXEDTEYiPERATURE"REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROtlSGOUTLETPLENUi~i.3O randthecalculatedbreakflowfromthesteamgeneratoroutletplenum.Asdemonstrated,primary-to-secondaryleakagewasmuchlessthantherequiredmixedloopflow.Asanadditionalassessmentofpotentialreverseloopflow,theresponseofthetubebundlefluidtemperatureinthefaultedsteamgenera-torwascalculated(seesectionII.5.3.5).Theseresultssuggestthatifsufficientreverseloopflowdidoccurandproducedamixedtemperatureresponsesimilartotemperaturesactuallyobserved,thefaultedsteamgenera-torwouldhavebeencolderthantheintactsteamgenerator.Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustainedreverseflowoccurred.Ginnadatademonstratedpropagationofaportionofthesafetyinjectionflowupstreamoftheinjectionlocationbeginningat9:39(14min).Inaddition,theobserved8loopcoldlegtemperatureresponsesuggestsacontinuoussupplyofwarmfluidupstreamoftheinjectionnozzle(seesectionII.5.3.3).ThecalculatedfluidflowsintoandfromthefaultedloopcoldlegareshowninFigureII.5.2.1-2.Safetyinjectionflowwascalculatedtosplitwhenthefaultedloopflowstagnatedat10:10(45min);asmallportionflowedtowardthesteamgeneratorwhilethemajorityflowedtowardthevessel.AcontinuousflowofwarmwaterwasnotobservedintheLOFTRANanalysisresults.Nosig-nificanttemperatureincreaseinthecalculatedfaultedloopcoldlegtempera-tureoccurred.Theseresultssupporttheexistenceofacounter-currenttypeofflowregimeupstreamoftheinjectionnozzle.The8looptemperatureresponserepresentsmixingofaportionofthesafetyinjectionflowupstreamoftheinjectionnozzlewithastreamofwarmerwaterfromthesteamgenerator.SuchmixingisnotsimulatedintheonedimensionalmodellingofLOFTRAN.Themagnitudeofflowfromthefaultedsteamgeneratorrequiredtoproducethequasi-steadytemperatureresponsewasestimatedfromthecoldleginlettemperatureandsafetyinjectionflowinthefaultedloopcalculatedwithLOFTRAN.Experimentalevidence'uggeststhatasignificantportionofsafetyinjectionintoastagnantloopwouldpropagateupstreamoftheinjectionnozzle.Basedonthisevidence,onethirdofthesafetyinjectionflowwasassumedtomixupstreamoftheinjectionlocation.Theresultofthiscalculationindicatesthataminimumloopflowof21ibm/sec(170gpm)existedafter10:07(42min).3274(}:1/11198231
300.00250.00200.00ChargingPumpsStartedPORVClosedCalculated(+)"MixedTemperature" ReverseLoopFlow.150.00PORVOpened50.000OutletPlenumBreakFlow0.0-25.000CDCDCDCDCDCDCDTIME"(HIM)CDCDCDCDCDCDCDCDCQCDFIGURE'I!.5.2.1-1.
COiiPARISON OF"MIXEDTEYiPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROtlSGOUTLETPLENUi~i.
3O randthecalculated breakflowfromthesteamgenerator outletplenum.Asdemonstrated, primary-to-secondary leakagewasmuchlessthantherequiredmixedloopflow.Asanadditional assessment ofpotential reverseloopflow,theresponseofthetubebundlefluidtemperature inthefaultedsteamgenera-torwascalculated (seesectionII.5.3.5).
Theseresultssuggestthatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenera-torwouldhavebeencolderthantheintactsteamgenerator.
Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred.
Ginnadatademonstrated propagation ofaportionofthesafetyinjection flowupstreamoftheinjection locationbeginning at9:39(14min).Inaddition, theobserved8loopcoldlegtemperature responsesuggestsacontinuous supplyofwarmfluidupstreamoftheinjection nozzle(seesectionII.5.3.3).
Thecalculated fluidflowsintoandfromthefaultedloopcoldlegareshowninFigureII.5.2.1-2.
Safetyinjection flowwascalculated tosplitwhenthefaultedloopflowstagnated at10:10(45min);asmallportionflowedtowardthesteamgenerator whilethemajorityflowedtowardthevessel.Acontinuous flowofwarmwaterwasnotobservedintheLOFTRANanalysisresults.Nosig-nificanttemperature increaseinthecalculated faultedloopcoldlegtempera-tureoccurred.
Theseresultssupporttheexistence ofacounter-current typeofflowregimeupstreamoftheinjection nozzle.The8looptemperature responserepresents mixingofaportionofthesafetyinjection flowupstreamoftheinjection nozzlewithastreamofwarmerwaterfromthesteamgenerator.
Suchmixingisnotsimulated intheonedimensional modelling ofLOFTRAN.Themagnitude offlowfromthefaultedsteamgenerator requiredtoproducethequasi-steady temperature responsewasestimated fromthecoldleginlettemperature andsafetyinjection flowinthefaultedloopcalculated withLOFTRAN.Experimental evidence'uggeststhatasignificant portionofsafetyinjection intoastagnantloopwouldpropagate upstreamoftheinjection nozzle.Basedonthisevidence, onethirdofthesafetyinjection flowwasassumedtomixupstreamoftheinjection location.
Theresultofthiscalculation indicates thataminimumloopflowof21ibm/sec(170gpm)existedafter10:07(42min).3274(}:1/111982 31


1000.0LOFTRAIN(-)800.00600.003100.00OUTLETu-200.00IINLET0.0"100.00CDCDCDCDAJCDCDTlMf(MlN)CDCDCDCQCDCDFIGUREII.5.2.1-2.FAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWS.32  
1000.0LOFTRAIN(-)800.00600.003100.00OUTLETu-200.00IINLET0.0"100.00CDCDCDCDAJCDCDTlMf(MlN)CDCDCDCQCDCDFIGUREII.5.2.1-2.
FAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWS.32  


II.5.3ReactorCoolantTemperaturesTheearlyreactorcoolanttemperatureresponsesweretypicalofreactortrip.Hotandcoldlegtemperaturesdecreasedrapidlyastheautomaticsteamdumpsystemandsecondarycoolantabsorbedenergymorerapidlythandecayingcorepower.Thelargeflow/powermismatchreducedthecorecoolanttemperaturerisetoonlyafewdegreesandthesteamdumpsystemoperatedtomomentarilystabilizetemperaturesnearno-load.Themeasuredcoretemperaturerisedecreasedtoaminimumof2Fbeforereactorcoolantpumpsweretrippedandsteadilyincreasedthereaftertoapproximately10'Fby9:31(6min).From9:31(6min)to9:38(13min)allsteamdumpvalveswereclosed.Duringthistime,safetyinjectionandauxiliaryfeedwaterflowsabsorbeddecayheatandstabilizedtemperaturesasdemonstratedintheLOFTRANanalysisresultsshowninFigureII.5.3-1.II.5.3.1ALoopColdLegTemperatureColdAFMflowrapidlycooledtheAloopcoldlegbeginningat9:32(7min).AlthoughtheAFWpumpswereautomaticallystartedshortlyafterreactortrip,thesteamgeneratorfeedlinesanddowncomervolumedelayedinjectionofcoldwaterfromtheCondensateStorageTank(CST)intothetubebundleregion.Twosteamdumpvalveswere.manuallyopenedfromabout9:38(13min)until9:39(14min)todecreaseprimarycoolanttemperatureasdirectedbytheemergencyoperatingprocedures.Thisappearstohavehadlittleeffectonthecoldlegtemperaturesincethesecondarycoolantinthetubebundleregionwassub-cooled.TheAloopcoldlegtemperaturedecreasedtoaminimumof485Fat9:41(16min)whenAFMflowwasterminatedtotheAsteamgenerator.ThehomogeneousequilibriumsecondarysidemodellingwithinLOFTRANtendedtounderestimatetheprimarysystemcoolingduetoauxiliaryfeedwater.Conse-quently,theintactsteamgeneratorpressurewasusedasaforcingfunctiontotreproducetheAloopcoldlegtemperatureresponse,aspreviouslynoted.FiguresII.5-3andII.5-4comparetheintactsteamgeneratorpressureandcalculated,coldlegtemperature,respectively,withplantdata.WiththeexceptionofthecooldownduetoAFWflow,bothpressureandtemperaturematchthedatareasonablywell.Decreasesinmeasuredcoldlegtemperature3274(:1/11188233 700.00650.00LOFTRAN(-)600.00HOTLEG-550.00~5&#xb9;00ICOLDLEGi5000400.00ClC7TIHf(HIN),FIGUREII.5.3-1.POST-TRIPREACTORCOOLAHTTEMPERATURES."  
II.5.3ReactorCoolantTemperatures Theearlyreactorcoolanttemperature responses weretypicalofreactortrip.Hotandcoldlegtemperatures decreased rapidlyastheautomatic steamdumpsystemandsecondary coolantabsorbedenergymorerapidlythandecayingcorepower.Thelargeflow/power mismatchreducedthecorecoolanttemperature risetoonlyafewdegreesandthesteamdumpsystemoperatedtomomentarily stabilize temperatures nearno-load.Themeasuredcoretemperature risedecreased toaminimumof2Fbeforereactorcoolantpumpsweretrippedandsteadilyincreased thereafter toapproximately 10'Fby9:31(6min).From9:31(6min)to9:38(13min)allsteamdumpvalveswereclosed.Duringthistime,safetyinjection andauxiliary feedwater flowsabsorbeddecayheatandstabilized temperatures asdemonstrated intheLOFTRANanalysisresultsshowninFigureII.5.3-1.
II.5.3.1ALoopColdLegTemperature ColdAFMflowrapidlycooledtheAloopcoldlegbeginning at9:32(7min).AlthoughtheAFWpumpswereautomatically startedshortlyafterreactortrip,thesteamgenerator feedlines anddowncomer volumedelayedinjection ofcoldwaterfromtheCondensate StorageTank(CST)intothetubebundleregion.Twosteamdumpvalveswere.manuallyopenedfromabout9:38(13min)until9:39(14min)todecreaseprimarycoolanttemperature asdirectedbytheemergency operating procedures.
Thisappearstohavehadlittleeffectonthecoldlegtemperature sincethesecondary coolantinthetubebundleregionwassub-cooled.TheAloopcoldlegtemperature decreased toaminimumof485Fat9:41(16min)whenAFMflowwasterminated totheAsteamgenerator.
Thehomogeneous equilibrium secondary sidemodelling withinLOFTRANtendedtounderestimate theprimarysystemcoolingduetoauxiliary feedwater.
Conse-quently,theintactsteamgenerator pressurewasusedasaforcingfunctiontotreproduce theAloopcoldlegtemperature
: response, aspreviously noted.FiguresII.5-3andII.5-4comparetheintactsteamgenerator pressureandcalculated, coldlegtemperature, respectively, withplantdata.Withtheexception ofthecooldownduetoAFWflow,bothpressureandtemperature matchthedatareasonably well.Decreases inmeasuredcoldlegtemperature 3274(:1/111882 33 700.00650.00LOFTRAN(-)600.00HOTLEG-550.00~5&#xb9;00ICOLDLEGi5000400.00ClC7TIHf(HIN),FIGUREII.5.3-1.POST-TRIP REACTORCOOLAHTTEMPERATURES.
"  


correlatewiththeoperationofsteamdumpvalvesandAFWflowasshowninFigureII.5.3.1-1.TheinsurgeofsafetyinjectionwhenthepressurizerPORVwasopened,reducedthecoreexittemperaturebelowtheAloopcoldlegtem-perature,asshowninFigureII.5.3.1-2.Thissuggeststhatsecondary-to-primaryheattransfermayhavemomentarilyoccurredintheAloop.TheLOFTRANanalysisresultsdemonstratedasimiliarresponse.However,thedecreaseincoldlegtemperaturebetween10:12(47min)and10:15(50min)wasunderestimated.Thisappearstobeaconsequenceofthehomogeneoussecondaryside.II.5.3.2BLoopColdLegTemperaaureTheBloopcoldlegtemperatureresponsewasessentiallythesameastheAloopuntilAFMflowwasreducedtothe8steamgeneratoratapproximately9:32(7min).From9:32(7min)until9:39(14min)theBlooptemperaturedecreasedmoreslowlyasillustratedinFigureII.5.3.2-1.Atapproximately9:39(14min),theBloopcoldlegtemperaturedecreasedrapidly,indicativeofsafetyinjectionflowupstreamoftheinjectionnozzle.Beyondthistime,twodistincttrendsareevidentinthemeasuredtemperatureresponse.Therapiddecreaseintemperaturebeginningat9:39(14min)istypicalofa"mixing-cup"configurationwhereaportionofthecoldsafetyinjectionflowmixeswiththewarmerfluidwithinafixedvolume.Sincetheinventoryofwarmer'wateravailableformixingislimited,suchasystemischaracterizedbya.continuous,exponentialdecreaseinfluidtemperaturetothetemperatureoftheincomingsafetyinjectionflow.Equallyevidentinthe8loopcoldlegtemperatureresponseisaquasi-steadyperiodbeginningatapproximately9:57(32min).Itisclearthat"mixing-cup"conditionsdonotdescribethisbehaviorsincesufficientmixingvolumeisnotavailabletosupportanexponentialfittothetemperaturetimeresponse.Furthermore,theincreaseincoldlegtemperaturefrom10:11(46min)until10:18(53min)cannotbeexplainedby"mixing-cup"behavior.ThissuggeststhataflowofwarmerwatercontinuedintotheBloopcoldleg.ThecalculatedfaultedloopcoldlegfluidtemperaturesarecompareuwithBloopdatainFigureII.5.3.2-2.Thecalculatedcoldlegoutlet,i.e.vesselinlet,temperaturesteadilydecreased,asflowthroughthefaultedsteamgeneratordecayed,andapproachedthetemperatureofthesafetyinjection3274(}:1/11188235 700.00650.00SteamDumpValvesOpen(0)SteamDumpValvesClosed(C)AFWFlowInitiated(I)AFWFlowTerminated(T)600.00455000OCLIz500.00i5000100.00CDC7CDTlMK(MIN)CDCPCDCDCDFIGUREII.5.3.1-1.STEAN'DUHPVALVEOPERATIONANDAFWFLOWDURINGCOOLDOWNOFTHERCS.
correlate withtheoperation ofsteamdumpvalvesandAFWflowasshowninFigureII.5.3.1-1.
500.00480.00COLDLEG(-)COREEXIT(+)460.00+++440.00l=:420.00400.00CDCDCDCDCD-CDCDCDCIlCDCDCDCDCDCDI/lCDCDCDV)T1MK(HlN)FIGUREII.5.3.1-2.GIHNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES.37 100.00650.00LOFTRAN(-)600.00o550.00FAULTEDLOOPCL'IXx500.00IINTACTLOOPi50.00100.00CIC7TlME(HtN)C7C)EDClC7IAAJFIGUREII.5.3.2-1.COl1PARISONOFINTACTANDFAULTEDLOOPCOLDLEGTEflPERATURESFOLLOhlINGREACTORTRIP.
Theinsurgeofsafetyinjection whenthepressurizer PORVwasopened,reducedthecoreexittemperature belowtheAloopcoldlegtem-perature, asshowninFigureII.5.3.1-2.
700.00600.00500.00GGCOLDLEGINLETGINNA(G)LOFTRAN(-)400.00~300.00IZi-200.00COLDLgGOUTLETd4'cC0G100.000.0CDCDTIME(MlN)CDCDCDCDKl)CD'DFIGUREII.5.3.2-2.FAULTFDLOOPCOLDLEGTEMPERATURES.39  
Thissuggeststhatsecondary-to-primaryheattransfermayhavemomentarily occurredintheAloop.TheLOFTRANanalysisresultsdemonstrated asimiliarresponse.
However,thedecreaseincoldlegtemperature between10:12(47min)and10:15(50min)wasunderestimated.
Thisappearstobeaconsequence ofthehomogeneous secondary side.II.5.3.2BLoopColdLegTemperaaure TheBloopcoldlegtemperature responsewasessentially thesameastheAloopuntilAFMflowwasreducedtothe8steamgenerator atapproximately 9:32(7min).From9:32(7min)until9:39(14min)theBlooptemperature decreased moreslowlyasillustrated inFigureII.5.3.2-1.
Atapproximately 9:39(14min),theBloopcoldlegtemperature decreased rapidly,indicative ofsafetyinjection flowupstreamoftheinjection nozzle.Beyondthistime,twodistincttrendsareevidentinthemeasuredtemperature response.
Therapiddecreaseintemperature beginning at9:39(14min)istypicalofa"mixing-cup" configuration whereaportionofthecoldsafetyinjection flowmixeswiththewarmerfluidwithinafixedvolume.Sincetheinventory ofwarmer'wateravailable formixingislimited,suchasystemischaracterized bya.continuous, exponential decreaseinfluidtemperature tothetemperature oftheincomingsafetyinjection flow.Equallyevidentinthe8loopcoldlegtemperature responseisaquasi-steady periodbeginning atapproximately 9:57(32min).Itisclearthat"mixing-cup" conditions donotdescribethisbehaviorsincesufficient mixingvolumeisnotavailable tosupportanexponential fittothetemperature timeresponse.
Furthermore, theincreaseincoldlegtemperature from10:11(46min)until10:18(53min)cannotbeexplained by"mixing-cup" behavior.
Thissuggeststhataflowofwarmerwatercontinued intotheBloopcoldleg.Thecalculated faultedloopcoldlegfluidtemperatures arecompareuwithBloopdatainFigureII.5.3.2-2.
Thecalculated coldlegoutlet,i.e.vesselinlet,temperature steadilydecreased, asflowthroughthefaultedsteamgenerator decayed,andapproached thetemperature ofthesafetyinjection 3274(}:1/111882 35 700.00650.00SteamDumpValvesOpen(0)SteamDumpValvesClosed(C)AFWFlowInitiated (I)AFWFlowTerminated (T)600.00455000OCLIz500.00i5000100.00CDC7CDTlMK(MIN)CDCPCDCDCDFIGUREII.5.3.1-1.
STEAN'DUHP VALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCS.
500.00480.00COLDLEG(-)COREEXIT(+)460.00+++440.00l=:420.00400.00CDCDCDCDCD-CDCDCDCIlCDCDCDCDCDCDI/lCDCDCDV)T1MK(HlN)FIGUREII.5.3.1-2.
GIHNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES.
37 100.00650.00LOFTRAN(-)600.00o550.00FAULTEDLOOPCL'IXx500.00IINTACTLOOPi50.00100.00CIC7TlME(HtN)C7C)EDClC7IAAJFIGUREII.5.3.2-1.
COl1PARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEflPERATURES FOLLOhlING REACTORTRIP.
700.00600.00500.00GGCOLDLEGINLETGINNA(G)LOFTRAN(-)400.00~300.00IZi-200.00COLDLgGOUTLETd4'cC0G100.000.0CDCDTIME(MlN)CDCDCDCDKl)CD'DFIGUREII.5.3.2-2.FAULTFDLOOPCOLDLEGTEMPERATURES.
39  


flow.AlthoughthisissimilartotheBlooptransitionperiod,thecalcu-latedcoldlegoutlettemperaturecontinuedtodecrease.Thecalculatedtemp-eratureupstreamofsafetyinjectionremainedrelativelyhotuntilapproxi-mately10:10(45min),atwhichtimesafetyinjectionflowwasfirstpredictedbyLOFTRANtopropagateupstreamoftheinjectionnozzle.WhenthepressurizerPORVwascycledbeginningat10:07(42min),asurgeofsafetyinjectionflowdecreasedtheBloopfluidtemperature.Thecalculatedvesselinlettemperaturedemonstratedasimilarresponse.Althoughthecal-culatedfaultedloopcoldleginlettemperaturewasnotsignificantlyaffected,thelocationofthepressurizermayhaveartificiallypromotedflowtowardthevessel.NoincreaseinfluidtemperatureisobservedintheLOFTRANanalysisresultsafterisolationofthefailedPORV.Evaluationofthepotentialflowdistributionswithinthefaultedloopcoldleg(seesectionII.5.2.1)suggeststhatmulti-dimensionalbehaviormayhavesignificantlyaffectedtheactualtemperatureresponse.SucheffectsarebeyondthecapabilitiesofLOFTRAN.However,theBlooptemperatureresponseindicatesanadditionalflowofwarmfluidintothecoldlegwhichisnotobservedintheLOFTRANanalysisresults.Consequently,thecalculatedcoldlegoutlettemperatureshowninFigureII.5.3.2-2underestimatestheexpectedminimumbulkfluidtemperatureatthevesselinlet.Inordertomorerealisticlyestimatetheminimumfluidtemperatureinthereactorvessel,thevesseldowncomer,coldlegandcrossoverlegpiping,andreactorcoolantpumpweremodelledasasingle,mixingvolumeasshowninFigureII.5.3.2-3.Thetemperatureresponseofthisconfigurationtoflowfromthefaultedsteamgeneratorandsafetyinjectionflow,FigureII.5.3.2-4,wascalculatedassumingperfectfluidmixing.Theseflowsandassociatedtemperatures,FigureII.5.3.2-5,wereobtainedfromtheLOFTRANanalysisresults;however,aminimumloopflowof21ibm/sec(170gpm)wasassumed,asdiscussedinsectionII.5.2.1.Metalheatadditionfromthereactorvessel,piping,andcoolantpumpwasdeterminedfromaonedimensionalconduction/convectionheattransfermodelbasedonthemeasuredfluidtemperatureinthe~Bloopcoldleg.ThecalculatedmixingvolumefluidtemperatureiscomparedtotheLOFTRANanalysisvesselinlettemperatureandBlooptemperaturedatainFigureII.5.3.2-6.Themetalheatandadditionalloopflowincreasedthe3274(}:1/11198240
flow.AlthoughthisissimilartotheBlooptransition period,thecalcu-latedcoldlegoutlettemperature continued todecrease.
Thecalculated temp-eratureupstreamofsafetyinjection remainedrelatively hotuntilapproxi-mately10:10(45min),atwhichtimesafetyinjection flowwasfirstpredicted byLOFTRANtopropagate upstreamoftheinjection nozzle.Whenthepressurizer PORVwascycledbeginning at10:07(42min),asurgeofsafetyinjection flowdecreased theBloopfluidtemperature.
Thecalculated vesselinlettemperature demonstrated asimilarresponse.
Althoughthecal-culatedfaultedloopcoldleginlettemperature wasnotsignificantly
: affected, thelocationofthepressurizer mayhaveartificially promotedflowtowardthevessel.Noincreaseinfluidtemperature isobservedintheLOFTRANanalysisresultsafterisolation ofthefailedPORV.Evaluation ofthepotential flowdistributions withinthefaultedloopcoldleg(seesectionII.5.2.1)suggeststhatmulti-dimensional behaviormayhavesignificantly affectedtheactualtemperature response.
Sucheffectsarebeyondthecapabilities ofLOFTRAN.However,theBlooptemperature responseindicates anadditional flowofwarmfluidintothecoldlegwhichisnotobservedintheLOFTRANanalysisresults.Consequently, thecalculated coldlegoutlettemperature showninFigureII.5.3.2-2 underestimates theexpectedminimumbulkfluidtemperature atthevesselinlet.Inordertomorerealisticly estimatetheminimumfluidtemperature inthereactorvessel,thevesseldowncomer, coldlegandcrossover legpiping,andreactorcoolantpumpweremodelledasasingle,mixingvolumeasshowninFigureII.5.3.2-3.
Thetemperature responseofthisconfiguration toflowfromthefaultedsteamgenerator andsafetyinjection flow,FigureII.5.3.2-4, wascalculated assumingperfectfluidmixing.Theseflowsandassociated temperatures, FigureII.5.3.2-5, wereobtainedfromtheLOFTRANanalysisresults;however,aminimumloopflowof21ibm/sec(170gpm)wasassumed,asdiscussed insectionII.5.2.1.
Metalheatadditionfromthereactorvessel,piping,andcoolantpumpwasdetermined fromaonedimensional conduction/
convection heattransfermodelbasedonthemeasuredfluidtemperature inthe~Bloopcoldleg.Thecalculated mixingvolumefluidtemperature iscomparedtotheLOFTRANanalysisvesselinlettemperature andBlooptemperature datainFigureII.5.3.2-6.
Themetalheatandadditional loopflowincreased the3274(}:1/111982 40


SAFETYIHJECTIONRCPCOLDLEGVESSELDOWNCOMERCROSSOVERLEGLOOPFLOWCOREMIDPLANEFIGUREII.5.3.2-3MIXINGVOLUMEFORVESSELDOWNCOMERTEMPERATURECALCULATION LOFTRAN(-)ESTIMATED(------)LOOPFLOWSAFETYINJECTIONFLOWTlwf(Nlm)FIGUREII.5.3.2-4'IXINGVOLUMELOOPFLOWANDSAFETYINJECTIONFLOW42 700.00600.00LOOPFLOW500.00i00.00ce300.00~200.00f0000SAFETYINJECTIONFLOW0.0ClClQTlNflNil1FIGUREII.5.3.2-5MIXINGVOLUMEFLOWTEMPERATURES43 700.00600.00l00.00GINNABLOOPDATA(G)ce300.00BESTESTIMATEVESSELDOWNCOMERt00.00LOFTRANVESSELINLET0.0C7C)C)T!NfllolN1FIGUREII.5.3.2-6BESTESTIMATEREACTORVESSELDOWNCOMERTEMPERATURE44
SAFETYIHJECTIONRCPCOLDLEGVESSELDOWNCOMER CROSSOVER LEGLOOPFLOWCOREMIDPLANEFIGUREII.5.3.2-3 MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURE CALCULATION LOFTRAN(-)ESTIMATED
(------)LOOPFLOWSAFETYINJECTION FLOWTlwf(Nlm)FIGUREII.5.3.2-4'IXING VOLUMELOOPFLOWANDSAFETYINJECTION FLOW42 700.00600.00LOOPFLOW500.00i00.00ce300.00~200.00f0000SAFETYINJECTION FLOW0.0ClClQTlNflNil1FIGUREII.5.3.2-5MIXINGVOLUMEFLOWTEMPERATURES 43 700.00600.00l00.00GINNABLOOPDATA(G)ce300.00BESTESTIMATEVESSELDOWNCOMER t00.00LOFTRANVESSELINLET0.0C7C)C)T!NfllolN1FIGUREII.5.3.2-6 BESTESTIMATEREACTORVESSELDOWNCOMER TEMPERATURE 44


minimumcalculateddowncomerfluidtemperatureatthecoremidplaneelevationtoapproximately200'F.Inaddition,anincreaseinfluidtemperatureocurredaftersafetyinjectionwasterminatedat1037(42min)asobservedduringtheactualevent.Theseresultsrepresentamorerealisticestimateoftheminimumfluidtemperatureinthevesseldowncomer.II.5.3.3CoreExitFluidTemperatureThecalculated,coreexitfluidtemperatureiscomparedtotheavailabledatainFigureII.5.3.3-1.Imperfectmixingatthecoreinletwassimulatedintheresultspresented;consequently,thecoreexittemperatureisslightly.differ-entforthecoreregionsadjacenttothefaultedandintact,loops.Thecoreexitfluidtemperaturetrendedtheintactloopcoldlegandremainedsubcooledthroughoutthetransient.IIncreasedreactorcoolantmakeupfollowingstartupofthechargingpumpsandcyclingofthepressurizerPORVdecreasedthecoreexitfluidtemperaturebeginningat10:04(39min).Thistemporarilydecreasedthecoreexittemper-aturebelowtheAloopcoldlegtemperatureasdiscussedinsectionII.5.3.1.II.5.3.4BLoopHotLegTemperaturePrimary-to-secondaryleakagefromthesteamgeneratorinletplenumprovidedamechanismforflowthroughthefaultedloophotlegevenforstagnantloopflowconditions.Basedonestimatesofthisbreakflow,FigureII.5.3.4-1,andthehotlegvolume,thefaultedloophotlegtemperaturewasestimatedtolagthecoreexittemperaturebylessthan10minutes.TheLOFTRANanalysisdemonstratedthistrend,asshowninFigureII.5.3.4-2.Theseresultsindi-catethatthefaultedloophotlegfluidremainedsubcooledthroughouttheevent.II.5.3.5BSteamGeneratorTemperatureThetubebundleregionfluidtemperatureofthefaultedsteamgeneratorwascalculatedbymodellingasingle,subcooledcontrolvolumeincommunicationwiththeprimarysystemviaprimary-to-secondary.leakageandspecifiedloopflow.Perfectenergytransferwasassumedsothatbreakflowandloopflow3274(:1/11198245
minimumcalculated downcomer fluidtemperature atthecoremidplaneelevation toapproximately 200'F.Inaddition, anincreaseinfluidtemperature ocurredaftersafetyinjection wasterminated at1037(42min)asobservedduringtheactualevent.Theseresultsrepresent amorerealistic estimateoftheminimumfluidtemperature inthevesseldowncomer.
II.5.3.3CoreExitFluidTemperature Thecalculated, coreexitfluidtemperature iscomparedtotheavailable datainFigureII.5.3.3-1.
Imperfect mixingatthecoreinletwassimulated intheresultspresented; consequently, thecoreexittemperature isslightly.
differ-entforthecoreregionsadjacenttothefaultedandintact,loops.Thecoreexitfluidtemperature trendedtheintactloopcoldlegandremainedsubcooled throughout thetransient.
IIncreased reactorcoolantmakeupfollowing startupofthechargingpumpsandcyclingofthepressurizer PORVdecreased thecoreexitfluidtemperature beginning at10:04(39min).Thistemporarily decreased thecoreexittemper-aturebelowtheAloopcoldlegtemperature asdiscussed insectionII.5.3.1.
II.5.3.4BLoopHotLegTemperature Primary-to-secondary leakagefromthesteamgenerator inletplenumprovidedamechanism forflowthroughthefaultedloophotlegevenforstagnantloopflowconditions.
Basedonestimates ofthisbreakflow,FigureII.5.3.4-1, andthehotlegvolume,thefaultedloophotlegtemperature wasestimated tolagthecoreexittemperature bylessthan10minutes.TheLOFTRANanalysisdemonstrated thistrend,asshowninFigureII.5.3.4-2.
Theseresultsindi-catethatthefaultedloophotlegfluidremainedsubcooled throughout theevent.II.5.3.5BSteamGenerator Temperature Thetubebundleregionfluidtemperature ofthefaultedsteamgenerator wascalculated bymodelling asingle,subcooled controlvolumeincommunication withtheprimarysystemviaprimary-to-secondary
.leakageandspecified loopflow.Perfectenergytransferwasassumedsothatbreakflowandloopflow3274(:1/111982 45


700.00GINNA(G)LOFTRAN(-)INTACTLOOPFAULTEDLOOPCICDCDCDAJCDTINK(MtN)CDCDCDFIGUREII.5.3.3-1.COREEXITFLUIDTEIlPERATURE.46  
700.00GINNA(G)LOFTRAN(-)INTACTLOOPFAULTEDLOOPCICDCDCDAJCDTINK(MtN)CDCDCDFIGUREII.5.3.3-1.
COREEXITFLUIDTEIlPERATURE.
46  


S0.00040.000INLETCalculated(+)30.000OUTLETXCDCDCDCDCDCDAJCDCDCDTlHCtHIM)CDCDCDCQCDCDCDCDCDFIGUREII.5.3.4-1.BREAKFLOWFRO[1S.G.INLETANDOUTLETPLENUi1S.  
S0.00040.000INLETCalculated
(+)30.000OUTLETXCDCDCDCDCDCDAJCDCDCDTlHCtHIM)CDCDCDCQCDCDCDCDCDFIGUREII.5.3.4-1.
BREAKFLOWFRO[1S.G.INLETANDOUTLETPLENUi1S.  


600.00HOTLEG(+)COREEXIT(-)CDCDCDAJCDCDCDCDCDCDCDCDCDCDTlME(MlN)FIGUREII.D.3.4-2.LOFTRAHFAULTEDLOOPHOTLEGTEHPERATURE.48 acheivedthermalequilibriumwiththecontrolvolumeinventory.Twocasesofflowfromthefaultedsteamgeneratoroutletplenumwereconsidered:1)reverseloopflowthroughthesteamgeneratorequaltothatpresentedinFigureII.5.2.1-1,and2)onlyprimary-to-secondaryleakagefromtheoutletplenumintothefaultedsteamgenerator.ThetemperatureoftheseflowswasassumedequaltotheindicatedBloopcoldlegtemperature.Forbothcases,primary-to-secondaryleakagefromthesteamgeneratorinletplenumwasalsoconsidered.FigureII.5.3.5-1comparestheresultsofthesecalculationswiththeintactsteamgeneratortemperaturecalculatedwithLOFTRAN.Case(1)suggeststhatifsufficientreverseloopflowdidoccurandproducedamixedtemperatureresponsesimilartotemperaturesactuallyobserved,thefaultedsteamgeneratorwouldhavebeencolderthantheintactsteamgenerator.Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustainedreverseflowoccurred.Case(2)indicatesthatprimary-to-secondaryleakageeffectivelycooledthetubebundleregionofthefaultedsteamgenerator.II.5.3.6UpperHeadTemperatureDuringnormaloperation,asmallfractionofthecoldlegflowisdivertedintotheupperheadregionofthereactorvesselandmixeswithflowfromtheupperplenumtomaintaintheupperheadfluidtemperatureatGinnanear595F.Theseflowsremainnearlyconstantaslongasreactorcoolantpumpscon-tinuetorun.Afterreactortrip,thecoreexittemperaturedecreasesrapidly.Withreactorcoolantpumpsrunning,theupperheadfluidtemperaturewillalsodecreaserapidlybutwilllagtheupperplenumandcoldlegtemper-atures.Theupperheadregiontemperaturetransientwasevaluatedassumingconstantvolumetricupperheadflowsuntilreactorcoolantpumpsweretrippedat9:29:09(4min).Theaveragecoldlegandhotlegtemperaturesasindicatedbypre-tripdatawereassumedfortheflowsfromthecoldlegandupperplenum,respectively.FigureII.5.3.6-1presentsthecalculatedupperheadregionfluidtemperaturewithandwithoutmetalheat.Forthecasewithmetalheat,themetaltemperaturewasassumedtobeequaltothefluidtemperature.Thefluidtemperaturewascalculatedtobeapproximately553Fwhenreactor32740'1/11198249 700600INTACTSG--------FAULTEDSG500LaJI-400I-CASE2CASE1300200204060TI)1E(t1IN)80100..120FIGUREII.5.3.5-1.FAULTEDSGTUBEBUNDLEFLUIDTEl1PERATURE.50 600ep888p'p590580570I-560550540THOTpTCOLDTSATTUPPERHEAD(-)l8l]H/tlETALHEAT88IIIIIIIMII-CYEDVI-ll/0t1ETALItIlIIIIII'RR9269:27TItlE(A.f1.)9:289:29FIGUREII.5.3.6-1.POST-TRIPUPPERHEADFLUIDTEtiPERATURE.C  
600.00HOTLEG(+)COREEXIT(-)CDCDCDAJCDCDCDCDCDCDCDCDCDCDTlME(MlN)FIGUREII.D.3.4-2.LOFTRAHFAULTEDLOOPHOTLEGTEHPERATURE.
48 acheivedthermalequilibrium withthecontrolvolumeinventory.
Twocasesofflowfromthefaultedsteamgenerator outletplenumwereconsidered:
1)reverseloopflowthroughthesteamgenerator equaltothatpresented inFigureII.5.2.1-1, and2)onlyprimary-to-secondary leakagefromtheoutletplenumintothefaultedsteamgenerator.
Thetemperature oftheseflowswasassumedequaltotheindicated Bloopcoldlegtemperature.
Forbothcases,primary-to-secondary leakagefromthesteamgenerator inletplenumwasalsoconsidered.
FigureII.5.3.5-1 comparestheresultsofthesecalculations withtheintactsteamgenerator temperature calculated withLOFTRAN.Case(1)suggeststhatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenerator wouldhavebeencolderthantheintactsteamgenerator.
Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred.
Case(2)indicates thatprimary-to-secondary leakageeffectively cooledthetubebundleregionofthefaultedsteamgenerator.
II.5.3.6UpperHeadTemperature Duringnormaloperation, asmallfractionofthecoldlegflowisdivertedintotheupperheadregionofthereactorvesselandmixeswithflowfromtheupperplenumtomaintaintheupperheadfluidtemperature atGinnanear595F.Theseflowsremainnearlyconstantaslongasreactorcoolantpumpscon-tinuetorun.Afterreactortrip,thecoreexittemperature decreases rapidly.Withreactorcoolantpumpsrunning,theupperheadfluidtemperature willalsodecreaserapidlybutwilllagtheupperplenumandcoldlegtemper-atures.Theupperheadregiontemperature transient wasevaluated assumingconstantvolumetric upperheadflowsuntilreactorcoolantpumpsweretrippedat9:29:09(4min).Theaveragecoldlegandhotlegtemperatures asindicated bypre-tripdatawereassumedfortheflowsfromthecoldlegandupperplenum,respectively.
FigureII.5.3.6-1 presentsthecalculated upperheadregionfluidtemperature withandwithoutmetalheat.Forthecasewithmetalheat,themetaltemperature wasassumedtobeequaltothefluidtemperature.
Thefluidtemperature wascalculated tobeapproximately 553Fwhenreactor32740'1/111982 49 700600INTACTSG--------
FAULTEDSG500LaJI-400I-CASE2CASE1300200204060TI)1E(t1IN)80100..120FIGUREII.5.3.5-1.
FAULTEDSGTUBEBUNDLEFLUIDTEl1PERATURE.
50 600ep888p'p590580570I-560550540THOTpTCOLDTSATTUPPERHEAD(-)l8l]H/tlETALHEAT88IIIIIIIMII-CYEDVI-ll/0t1ETALItIlIIIIII'RR9269:27TItlE(A.f1.)9:289:29FIGUREII.5.3.6-1.
POST-TRIP UPPERHEADFLUIDTEtiPERATURE.
C  


coolantpumpsweretripped.Thisisconsistentwiththeupperheadthermo-Ccoupleindicationof556Fat9:54(31min).Notethatvoidingmayhaveoccurredintheupperheatregionwhilereactorcoolantpumpswerestilloperating(seesectionII.5.6.2).TheupperheadregiontemperaturecalculatedbyLOFTRANisshowninFigureII.5.3.6-2.Sinceflowfromtheupperplenumthroughtheguidetubeswasnotmodelled,thefluidtemperatureatreactortripwaslessthanwouldbeexpected.Hence,noupperheadvoidingocurredimmediatelyfollowingreactortripintheLOFTRANresults.However,thefluidtemperatureat10:07(42min),whenthepressurizerPORVwascycled,wasequaltothemeasuredupperheadthermocouple.Hence,theupperheadvoidingcalculatedduringthisperiodisexpectedtoberepresentativeoftheGinnaevent.II.5.4PressurizerLevelResponseThecalculatedpressurizerwaterlevelindicationiscomparedwithplantdatainFigureII.5.4-1.TheinitialdecreaseinlevelwaspredictedbyLOFTRANverywell.Thepressurizerwascalculatedtodrainby9:29(4min)andbegintorefillsoonafterassafetyinjectionflowrepressurizedtheprimarysys-tem,asillustratedinFigureII.5.1-3.Thepressurizermayhavedraineda'econdtimebetween9:32(7min)and9:38(13min)duringcooldownviaAFMflow.Ginnadataindicatesthatpressurizerlevelreturnedonspanapproxi-matelywhenthechargingpumpswerestarted.AnindicatedleveldidnotreturnintheLOFTRANanalysisresultsuntilthepressurizerPORYwascycledbeginningat10:07(42min).AsprimarypressuredecreasedwhenthePORVwasopened,pressurizerlevelincreasedassafetyinjectionflowinexcessofbreakflow,FigureII.5.1-2,replacedventedsteaminthepressurizer.Soonafterwards,atapproximately10:09:20(44,min),theupperheadwaterbegantoflash.Materdisplacedfromtheupperheadregionrapidly'increasedpressurizerinventoryandtheindi-catedlevelincreasedoffscale.TheLOFTRANanalysisdemonstratedsimilarlevelresponse;however,theindicatedlevelremainedonspan.Thisappearstobedueprimarilytothelowerinitiallevelpriortodepressurizationoftheprimarysystem.Inaddition,noreverseflowfromthefaultedsteam3274(:1/11198252
coolantpumpsweretripped.Thisisconsistent withtheupperheadthermo-Ccoupleindication of556Fat9:54(31min).Notethatvoidingmayhaveoccurredintheupperheatregionwhilereactorcoolantpumpswerestilloperating (seesectionII.5.6.2).Theupperheadregiontemperature calculated byLOFTRANisshowninFigureII.5.3.6-2.
Sinceflowfromtheupperplenumthroughtheguidetubeswasnotmodelled, thefluidtemperature atreactortripwaslessthanwouldbeexpected.
Hence,noupperheadvoidingocurredimmediately following reactortripintheLOFTRANresults.However,thefluidtemperature at10:07(42min),whenthepressurizer PORVwascycled,wasequaltothemeasuredupperheadthermocouple.
Hence,theupperheadvoidingcalculated duringthisperiodisexpectedtoberepresentative oftheGinnaevent.II.5.4Pressurizer LevelResponseThecalculated pressurizer waterlevelindication iscomparedwithplantdatainFigureII.5.4-1.
Theinitialdecreaseinlevelwaspredicted byLOFTRANverywell.Thepressurizer wascalculated todrainby9:29(4min)andbegintorefillsoonafterassafetyinjection flowrepressurized theprimarysys-tem,asillustrated inFigureII.5.1-3.
Thepressurizer mayhavedraineda'econdtimebetween9:32(7min)and9:38(13min)duringcooldownviaAFMflow.Ginnadataindicates thatpressurizer levelreturnedonspanapproxi-matelywhenthechargingpumpswerestarted.Anindicated leveldidnotreturnintheLOFTRANanalysisresultsuntilthepressurizer PORYwascycledbeginning at10:07(42min).Asprimarypressuredecreased whenthePORVwasopened,pressurizer levelincreased assafetyinjection flowinexcessofbreakflow,FigureII.5.1-2, replacedventedsteaminthepressurizer.
Soonafterwards, atapproximately 10:09:20(44,min),
theupperheadwaterbegantoflash.Materdisplaced fromtheupperheadregionrapidly'increased pressurizer inventory andtheindi-catedlevelincreased offscale.
TheLOFTRANanalysisdemonstrated similarlevelresponse; however,theindicated levelremainedonspan.Thisappearstobedueprimarily tothelowerinitiallevelpriortodepressurization oftheprimarysystem.Inaddition, noreverseflowfromthefaultedsteam3274(:1/111982 52


700.00GINNA(G)LOFTRAtl(-)CICIAjC)TIHj(HtN)C)C)CDFIGUREII.5.3.6-2.LOFTRANUPPERHEADFLUIDTEMPERATURE.53  
700.00GINNA(G)LOFTRAtl(-)CICIAjC)TIHj(HtN)C)C)CDFIGUREII.5.3.6-2.LOFTRANUPPERHEADFLUIDTEMPERATURE.
53  


120.00100.00GINNA(G)LOFTRAN(-)80.000W>60.000~a0.00020.0000.0ClClClClAJClTIME(MIN)FIGUREII.5.4-1.PRESSURIZERLEVELINDICATION.  
120.00100.00GINNA(G)LOFTRAN(-)80.000W>60.000~a0.00020.0000.0ClClClClAJClTIME(MIN)FIGUREII.5.4-1.
PRESSURIZER LEVELINDICATION.


generatoroccurredintheLOFTRANresults(seesectionII.5.5).Upperheadvoidingmayhavealsobeenslightlyunderestimatedbecauseofthehomogeneousmodelling,assuggestedbyAppendixCcalcualtions.Thecalculatedpressurizerleveldecreasedrapidlyaftersafetyinjectionwasterminatedat10:37(72min)asbreakflowdecreasedcoolantinventory.Theseresultsindicatethat95ft3ofwaterwasdisplacedfromthepressurizerasprimarypressuredecreasedto945psia.Sucha.decreasewouldnothavebeendetectedbythelevelinstrumentationifthepressurizerhadbeennearlywatersolid.Beyondapproximately10:40(75min),thecalculateddecreasein'pres-surizerlevelwasunrealistic.Primary-to-secondaryleakagewasexaggeratedafterthistimebecauseoftheunrealisticfaultedsteamgeneratorpressurecalculatedbyLOFTRAN.II.5.5BreakFlowPrimary-to-secondaryleakagewascalculatedinLOFTRANassuminganeffectivebreakflowareaandamodifiedZaloudekcriticalflowcorrelation.Forunchokedflow,theorificeequationwasused.FigureII.5.5-1showstheprimary-to-secondaryleakagecalculatedbyLOFTRANduringtheGinnaevent.Priortoreactortrip,breakflowdecreasedasprimarypressurealsodecreased.Immediatelyaftertrip,'herapidlydecreasingprimarypressuredecreasedbreakflowuntilsafetyinjectionflowbegantorepressurizethereactorcoolantsystem.Soonafterthefaultedloophotleghadcooledbelowthetemperatureofthefaultedsteamgenerator,9:37(12min),flowthroughthefailedtubewascal-culatedtobecomeunchoked.Beyondthistime,thecalculatedbreakflowwassensitivetothefaultedsteamgeneratorpressure.AsillustratedinFigureII.5.5-2,thesecondarysidemodellingwithinLOFTRANunderpredictedthefaultedsteamgeneratorpressureafter9:46(21min).Consequently,secondary-to-primaryflowdidnotoccurintheLOFTRANanalysiswhenthepres-surizerPORVwasopened.InordertoevaluatethelimitationsofLOFTRANbreakflowmodellingandassesstheeffectsontheanalysisresults,amoredetailedmodel(AppendixB)wasdevelopedtocalculatetheflowfromeachsteamgeneratorplenum.The3274Q:1/11198255 75.000LOFTRAil(-)BestEstimate(+)50.000~25;000Ko.o+4+p+++++++ttNt~++~+++++-25.000++-50.000ClClCDC)CIC)IPJC)ClleTINK(HIH)C)CDC)OCPDw~~DOFIGUREII.5.5.-1.LOFTRANAHOBESTESTIHATEBREAKFLOWS.56 1200.01000.0800.00600.00~ioo.oo200.00GI~iNA(G)LOFTRAN(-)0.0C)CITIME(MIN)CDEOC)C)CCIFIGUREII.5.5-2.FAULTEDSTEAI1GENERATORPRESSURE.57  
generator occurredintheLOFTRANresults(seesectionII.5.5).Upperheadvoidingmayhavealsobeenslightlyunderestimated becauseofthehomogeneous modelling, assuggested byAppendixCcalcualtions.
Thecalculated pressurizer leveldecreased rapidlyaftersafetyinjection wasterminated at10:37(72min)asbreakflowdecreased coolantinventory.
Theseresultsindicatethat95ft3ofwaterwasdisplaced fromthepressurizer asprimarypressuredecreased to945psia.Sucha.decrease wouldnothavebeendetectedbythelevelinstrumentation ifthepressurizer hadbeennearlywatersolid.Beyondapproximately 10:40(75min),thecalculated decreasein'pres-surizerlevelwasunrealistic.
Primary-to-secondary leakagewasexaggerated afterthistimebecauseoftheunrealistic faultedsteamgenerator pressurecalculated byLOFTRAN.II.5.5BreakFlowPrimary-to-secondary leakagewascalculated inLOFTRANassuminganeffective breakflowareaandamodifiedZaloudekcriticalflowcorrelation.
Forunchokedflow,theorificeequationwasused.FigureII.5.5-1showstheprimary-to-secondary leakagecalculated byLOFTRANduringtheGinnaevent.Priortoreactortrip,breakflowdecreased asprimarypressurealsodecreased.
Immediately aftertrip,'herapidlydecreasing primarypressuredecreased breakflowuntilsafetyinjection flowbegantorepressurize thereactorcoolantsystem.Soonafterthefaultedloophotleghadcooledbelowthetemperature ofthefaultedsteamgenerator, 9:37(12min),flowthroughthefailedtubewascal-culatedtobecomeunchoked.
Beyondthistime,thecalculated breakflowwassensitive tothefaultedsteamgenerator pressure.
Asillustrated inFigureII.5.5-2, thesecondary sidemodelling withinLOFTRANunderpredicted thefaultedsteamgenerator pressureafter9:46(21min).Consequently, secondary-to-primary flowdidnotoccurintheLOFTRANanalysiswhenthepres-surizerPORVwasopened.Inordertoevaluatethelimitations ofLOFTRANbreakflowmodelling andassesstheeffectsontheanalysisresults,amoredetailedmodel(Appendix B)wasdeveloped tocalculate theflowfromeachsteamgenerator plenum.The3274Q:1/111982 55 75.000LOFTRAil(-)BestEstimate(+)50.000~25;000Ko.o+4+p+++++++ttNt~++~+++++-25.000++-50.000ClClCDC)CIC)IPJC)ClleTINK(HIH)C)CDC)OCPDw~~DOFIGUREII.5.5.-1.
LOFTRANAHOBESTESTIHATEBREAKFLOWS.56 1200.01000.0800.00600.00~ioo.oo200.00GI~iNA(G)LOFTRAN(-)0.0C)CITIME(MIN)CDEOC)C)CCIFIGUREII.5.5-2.
FAULTEDSTEAI1GENERATOR PRESSURE.
57  


fluidtemperatureinthesteamgeneratorinletandoutletplenumsweretakenfromtheLOFTRANresults.ActualGipnadatawasusedfortheprimaryandfaultedsteamgeneratorpressures.ResultsofthesecalculationsarealsoshowninFigureII.5.5-1.Asdemonstrated,LOFTRANprovidedareasonableestimateofthebreakflow,withtheexceptionofreverseflowthroughthefailedtube,untilshortlyaftersafetyinjectionwasterminated.Afterthattime,thelowerfaultedsteamgeneratorpressureevidentintheLOFTRANanaly-sisresultedinoverestimatedprimary-to-secondaryleakage.II.5.6ReactorCoolantVoidingDuringnaturalcirculation,portionsofthereactorcoolantsystemmaystag-nateandbecomeeffectivelyisolatedfromtheactivecoolantregions.Threesuchregionsmayexistontheprimarysideduringrecoveryfromasteamgener-atortuberuptureevent;thepr'essurizer,reactorvesselupperhead,andthefaultedsteamgeneratortubes.Assystempressureisreduced,hotfluidinthesestagnantregionsmayflashtosteam.TheextentofvoidingintheseregionsduringtheGinnaeventwasevaluated.II.5.6.1PressurizerSteamBubbleItisclearfrompressurizerleveldata,FigureII.5.4-1,thatasteambubbleexistedinthepressurizeruntiltheprimarysystemwasmanuallydepressurizedbeginningat10:07(42min).Atthattime,theindicatedpressurizerlevelincreasedrapidlyoff-scale.LOFTRANresultssuggestthatthepressurizerdidnotcompletelyfill,FigureII.5.1-3;however,aspreviouslynoted,theincreaseinpressurizerlevelmayhavebeenslightlyunderestimated.Thepressurizerlevelresponsefollowingterminationofsafetyinjectionsuggeststhatthepressurizerwasnearly.fullatthattime.Specificly,pressurizerleveldidnotreturnonspanduringtheGinnaeventwhenprimarypressuredecreasedby440psi.II.5.6.2UpperHeadVoidingThecalcu1atedupperheadtemperaturehistory,FigureII.5.3.6-1,indicatesthatvoidingmayhaveoccurredintheupperheadregionpriortoreactorcool-antpumptrip.Themaximumvolumeofthisvoidwasestimatedtobelessthan3274Q:1/111982  
fluidtemperature inthesteamgenerator inletandoutletplenumsweretakenfromtheLOFTRANresults.ActualGipnadatawasusedfortheprimaryandfaultedsteamgenerator pressures.
Resultsofthesecalculations arealsoshowninFigureII.5.5-1.
Asdemonstrated, LOFTRANprovidedareasonable estimateofthebreakflow,withtheexception ofreverseflowthroughthefailedtube,untilshortlyaftersafetyinjection wasterminated.
Afterthattime,thelowerfaultedsteamgenerator pressureevidentintheLOFTRANanaly-sisresultedinoverestimated primary-to-secondary leakage.II.5.6ReactorCoolantVoidingDuringnaturalcirculation, portionsofthereactorcoolantsystemmaystag-nateandbecomeeffectively isolatedfromtheactivecoolantregions.Threesuchregionsmayexistontheprimarysideduringrecoveryfromasteamgener-atortuberuptureevent;thepr'essurizer, reactorvesselupperhead,andthefaultedsteamgenerator tubes.Assystempressureisreduced,hotfluidinthesestagnantregionsmayflashtosteam.TheextentofvoidingintheseregionsduringtheGinnaeventwasevaluated.
II.5.6.1Pressurizer SteamBubbleItisclearfrompressurizer leveldata,FigureII.5.4-1, thatasteambubbleexistedinthepressurizer untiltheprimarysystemwasmanuallydepressurized beginning at10:07(42min).Atthattime,theindicated pressurizer levelincreased rapidlyoff-scale.
LOFTRANresultssuggestthatthepressurizer didnotcompletely fill,FigureII.5.1-3; however,aspreviously noted,theincreaseinpressurizer levelmayhavebeenslightlyunderestimated.
Thepressurizer levelresponsefollowing termination ofsafetyinjection suggeststhatthepressurizer wasnearly.fullatthattime.Specificly, pressurizer leveldidnotreturnonspanduringtheGinnaeventwhenprimarypressuredecreased by440psi.II.5.6.2UpperHeadVoidingThecalcu1ated upperheadtemperature history,FigureII.5.3.6-1, indicates thatvoidingmayhaveoccurredintheupperheadregionpriortoreactorcool-antpumptrip.Themaximumvolumeofthisvoidwasestimated tobelessthan3274Q:1/111982  


132ft(AppendixC).Anysteambubbleintheupperheadatthistimewouldhavebeenquicklycondensedsincereactorcoolantpumpscontinuedtooperate.Itisunlikelythatsignificantadditionalvoidingoccurredpriortomanualdepressurizationoftheprimarysystemat10:07(42min)sincethecalculatedupperheadfluidtemperatureremainedsubcooled.From10:07(42min)to10:10(45min),upperheadthermocoupleandpressurizerlevelresponsesindicatethatvoidingalsooccurredwhenthepressurizerPORVwasopened.Theupperheadtemperaturedecreasedfromapproximately556'FwhenthePORVwasinitiallyopenedtoaminimumofapproximately525F,asshowninFigureII.5.3.6-2.Theupperheadregionwascalculatedtocom-pletelyvoidduringthisdepressurization(AppendixC).Flashinginthenon-activeregionoftheupperplenum,i.e.abovethetopofthehotlegnozzles,wouldnotbeexpectedbecauseofrelativelygoodmixingcharacteristics.Consequently,approximately305ftofsteamvolumeexistedintheupperheadwhenthepressurizerPORVwasisolatedat10:10(45min).Noinstrumentationwasavailableabovetheupperheadflangeleveltotrackthesteambubblecollapse.However,assafetyinjectionrepressurizedthereactorcoolantsystem,theupperheadthermocouplesincreasedapproximatelyalongthesaturationlinefrom525Fto540'F.Aspressurecontinuedtoincrease,temperaturethendecreasedtoastabletemperatureof525'F.Thissuggestsflowofcolderfluidfromtheupperplenumpasttheflangelevelthermocouplesandisindicativeofpartialsteambubblecollapse.Thisissupportedbytheslowerrepressurizationofthe'primarysystemfollowingiso-lationofthefailedPORVascomparedwithLOFTRANanalysisresults(seesectionII.5.1).Thesizeofanysteambubblewhichexistedintheupperheadregionwhensafetyinjectionwasterminatedat10:37(72min)isuncertain.Themeasuredtemperatureandpressureresponsessuggestthattheupperheadwasnotcom-pletelyvoidedandcontainedsignificantlysubcooledwater.Theupperheadprobablyvoidedathirdtimeasprimarysystempressuredecreasedto945.psiafollowingterminationofsafetyinjection.Analysisoftheprimary-to-secondaryleakage,chargingflow,andreactorcoolantexpansionsuggestsamaximumof125ftofadditionalvoidingmayhaveoccurredduringthisperiod.Thisvoidmayhaveexisteduntilreactorcoolantpumpswere'restarted.3274/'1/111982  
132ft(Appendix C).Anysteambubbleintheupperheadatthistimewouldhavebeenquicklycondensed sincereactorcoolantpumpscontinued tooperate.Itisunlikelythatsignificant additional voidingoccurredpriortomanualdepressurization oftheprimarysystemat10:07(42min)sincethecalculated upperheadfluidtemperature remainedsubcooled.
From10:07(42min)to10:10(45min),upperheadthermocouple andpressurizer levelresponses indicatethatvoidingalsooccurredwhenthepressurizer PORVwasopened.Theupperheadtemperature decreased fromapproximately 556'FwhenthePORVwasinitially openedtoaminimumofapproximately 525F,asshowninFigureII.5.3.6-2.
Theupperheadregionwascalculated tocom-pletelyvoidduringthisdepressurization (Appendix C).Flashinginthenon-activeregionoftheupperplenum,i.e.abovethetopofthehotlegnozzles,wouldnotbeexpectedbecauseofrelatively goodmixingcharacteristics.
Consequently, approximately 305ftofsteamvolumeexistedintheupperheadwhenthepressurizer PORVwasisolatedat10:10(45min).Noinstrumentation wasavailable abovetheupperheadflangeleveltotrackthesteambubblecollapse.
However,assafetyinjection repressurized thereactorcoolantsystem,theupperheadthermocouples increased approximately alongthesaturation linefrom525Fto540'F.Aspressurecontinued toincrease, temperature thendecreased toastabletemperature of525'F.Thissuggestsflowofcolderfluidfromtheupperplenumpasttheflangelevelthermocouples andisindicative ofpartialsteambubblecollapse.
Thisissupported bytheslowerrepressurization ofthe'primarysystemfollowing iso-lationofthefailedPORVascomparedwithLOFTRANanalysisresults(seesectionII.5.1).Thesizeofanysteambubblewhichexistedintheupperheadregionwhensafetyinjection wasterminated at10:37(72min)isuncertain.
Themeasuredtemperature andpressureresponses suggestthattheupperheadwasnotcom-pletelyvoidedandcontained significantly subcooled water.Theupperheadprobablyvoidedathirdtimeasprimarysystempressuredecreased to945.psiafollowing termination ofsafetyinjection.
Analysisoftheprimary-to-secondary leakage,chargingflow,andreactorcoolantexpansion suggestsamaximumof125ftofadditional voidingmayhaveoccurredduringthisperiod.Thisvoidmayhaveexisteduntilreactorcoolantpumpswere'restarted.
3274/'1/111982  


II.5.6.3BSteamGeneratorTubeYoidingThefluidtemperatureinthefaultedsteamgeneratortubeswascalculatedwithLOFTRANtobe507Fat10:07(42min)whenthepressurizerPORYwasfirstopened.ThisisconsistentwithplantdatawhichshowsthatpressureintheBsteamgeneratorhaddecreasedto750psiaby9:46(21min)andisconservative'ithrespecttothecalculationspresentedinsectionII.5.3.5.Sincethecalculatedtubebundlefluidtemperatureremainedsubcooledduringdepres-surizationofthereactorcoolantsystem,nosteamvoidwouldhavedevelopedinthisregion.11.5.7SteamGeneratorOverfillPrimary-to-secondaryleakageinexcessofsteamfloweventuallyfilledtheBsteamgeneratorwithwaterandliftedthesecondarysafetyvalve.TheLOFTRANanalysisindicatesthatthefaultedsteamgeneratorandmainsteamlinewouldhavefilled'at10:18(53min),asshowninFigureII.5.7-1.However,thisisbelievedtobeearlierthanduringtheactualeventforseveralreasons.Inordertosimulatethecooldownoftheprimarysystemfrom9:32(7min)to9:41(16min)(seesectionII.5.3.1),steamreleasefromthefaultedsteamgenera-tortothecondenserwasterminated8minutesprematurelyat9:32(7min).Thisunderestimatedthesteamreleasedfromthefaultedsteamgeneratortothecondenserbyamaximumof11000ibm.Inaddition,theconstraintsonupperheadrefillmayhaveincreasedcarryoverintothefaultedsteamgeneratorbyamaximumof300ft..Thetotalcarryovermayhavealsobeenslightlyover-estimatedbyLOFTRANsincereverseflowduringdepressurizationoftheprimarysystemwasnotpredicted.Thecombinationoftheseeffectsmayhavedelayedoverfillbyanestimated7minutes.Theinitialsafetyvalveliftsat10:19(54min)and10:27(62min)wouldhavealsodecreasedsteamgeneratorinven-toryandfurtherdelayedoverfill.Themassdischargedthroughthefaultedsteamgeneratorsafetyvalvewasesti-matedfromtheprimary-to-secondaryleakage.LOFTRANresultsindicatethat268,000ibmofprimarycoolantwastransferredintothefaultedsteamgener-atorpriortoterminationofsafetyinjection.Approximately104,000ibmofthisleakageoccurredafterthesteamgeneratorwascalculatedtofill.Eval-uationofthebreakflowfrom10:40(75min)until12.30(185min)asshownin3274/:1/111982  
II.5.6.3BSteamGenerator TubeYoidingThefluidtemperature inthefaultedsteamgenerator tubeswascalculated withLOFTRANtobe507Fat10:07(42min)whenthepressurizer PORYwasfirstopened.Thisisconsistent withplantdatawhichshowsthatpressureintheBsteamgenerator haddecreased to750psiaby9:46(21min)andisconservative
'ithrespecttothecalculations presented insectionII.5.3.5.
Sincethecalculated tubebundlefluidtemperature remainedsubcooled duringdepres-surization ofthereactorcoolantsystem,nosteamvoidwouldhavedeveloped inthisregion.11.5.7SteamGenerator OverfillPrimary-to-secondary leakageinexcessofsteamfloweventually filledtheBsteamgenerator withwaterandliftedthesecondary safetyvalve.TheLOFTRANanalysisindicates thatthefaultedsteamgenerator andmainsteamline wouldhavefilled'at 10:18(53min),asshowninFigureII.5.7-1.
However,thisisbelievedtobeearlierthanduringtheactualeventforseveralreasons.Inordertosimulatethecooldownoftheprimarysystemfrom9:32(7min)to9:41(16min)(seesectionII.5.3.1),
steamreleasefromthefaultedsteamgenera-tortothecondenser wasterminated 8minutesprematurely at9:32(7min).Thisunderestimated thesteamreleasedfromthefaultedsteamgenerator tothecondenser byamaximumof11000ibm.Inaddition, theconstraints onupperheadrefillmayhaveincreased carryover intothefaultedsteamgenerator byamaximumof300ft..Thetotalcarryover mayhavealsobeenslightlyover-estimated byLOFTRANsincereverseflowduringdepressurization oftheprimarysystemwasnotpredicted.
Thecombination oftheseeffectsmayhavedelayedoverfillbyanestimated 7minutes.Theinitialsafetyvalveliftsat10:19(54min)and10:27(62min)wouldhavealsodecreased steamgenerator inven-toryandfurtherdelayedoverfill.
Themassdischarged throughthefaultedsteamgenerator safetyvalvewasesti-matedfromtheprimary-to-secondary leakage.LOFTRANresultsindicatethat268,000ibmofprimarycoolantwastransferred intothefaultedsteamgener-atorpriortotermination ofsafetyinjection.
Approximately 104,000ibmofthisleakageoccurredafterthesteamgenerator wascalculated tofill.Eval-uationofthebreakflowfrom10:40(75min)until12.30(185min)asshownin3274/:1/111982  


'j.OOE+OiiLOFTRAN(-)8000.06000.0S.G.andSteamlineVolumeS.G.Volume~F000.0Z=I2000.00.0ClC)C7AJTIME(MIN)C)EDC)8FIGUREII.5.7-1.FAULTEDSTEAYiGENERATORWATERVOLUf1E.6l  
'j.OOE+OiiLOFTRAN(-)8000.06000.0S.G.andSteamline VolumeS.G.Volume~F000.0Z=I2000.00.0ClC)C7AJTIME(MIN)C)EDC)8FIGUREII.5.7-1.
FAULTEDSTEAYiGENERATOR WATERVOLUf1E.6l  


FigureII.5.5-1suggeststhananadditional132,000ibmwastransferredfrom~theprimarybeforeprimary-to-secondaryleakagewasterminated.II.6LONGTERMRECOVERYWhensafetyinjectionwasterminatedat10:37(72min),primarysystempres-suredecreasedrapidlyfrom1370psiato945psia.TheLOFTRANanalysiswasterminatedatthistimesincethehomogeneousequilibriummodellingonthesecondarysideoverestimatestheprimary-to-secondarypressuredifferentialand,consequently,leakagethroughthefailedtube.Continuedchargingflowandoperationofthepressurizerheatersmaintainedprimarypressureslightlygreaterthanthefaultedsteamgeneratorpressure,asshowninFigureII.6-1.TheBsteamgeneratorpressureincreasedasprimary-to-secondaryleakagecon-tinued.Thesequenceofevents'indicatesthatsafetyinjectionwasreinitatedat11:07(102min)inpreparationforreactorcoolantpumprestart.However,Jtheeffectoftheincreasedcoolantmakeupontheprimaryandfaultedsteamgeneratorpressuresisnotevidentatthattime.Althoughtheprimary-andfaultedsteamgeneratorpressuresincreasedslowly,thepressuredifferentialdecreased.Atapproximatelyll19(114min),arapiddecreaseinprimarysystempressureisevident,probablyduetothecollapseofanupperheadsteambubble(seesectionII.5.6.2)whenareactorcoolantpumpwasrestarted.Althoughtheavailabledataislimited,itappearsfromtheBsteamgeneratorpressureresponsethatasafetyvalvemayhaveliftedatapproximatelythesametime.Safetyinjectionflowrepressurizedthereactorcoolantsystembeginningatll:26(121min)untilflowwasthrottledat11:35(130min).Thefaultedsteamgeneratorpressurealsoincreaseduntilthesafetyvalveliftedforthefinaltimeatapproximately11:37(132min).Afterthisfinallift,thefaultedsteamgeneratorpressureremainedapproximately150psiabelowtheprimarysuggestingcontinuedleakageintothesteamgenerator.Steamgener-atorblowdownlineradiationwasalsoincreasingduringthissameperiodsug-gestingflowthroughthisline.Pressurizerlevelreturnedonspanatapprox-imately11:53(148min),asshowninFigureII.6-2,andcontinuedtodecreaseindicatingalossofreactorcoolant.Asafetyinjectionpumpwasoperatedintermittentlyfrom12:13(168min)until12:27(182min)tocontrollevel.By12:30(185min),thefaultedsteamgeneratorpressurewasgreaterthahthereactorcoolantsystempressureandprimary-to-secondaryleakagewasterminated.3274(}:1/11198262 1300.0GINNA(G)ccccccGGCCGCGCRCS(-G-)CCC6@QCCCCCCCCGCGccccc'ccCcCCCCCGGFAULTEDSG(G)CITIME(MlN)C7EDC7C7ClC7C)r~FIGUREII.6-1.RCSANDFAULTEDSTEAt1GENERATORPRESSURES.63  
FigureII.5.5-1suggeststhananadditional 132,000ibmwastransferred from~theprimarybeforeprimary-to-secondary leakagewasterminated.
II.6LONGTERMRECOVERYWhensafetyinjection wasterminated at10:37(72min),primarysystempres-suredecreased rapidlyfrom1370psiato945psia.TheLOFTRANanalysiswasterminated atthistimesincethehomogeneous equilibrium modelling onthesecondary sideoverestimates theprimary-to-secondary pressuredifferential and,consequently, leakagethroughthefailedtube.Continued chargingflowandoperation ofthepressurizer heatersmaintained primarypressureslightlygreaterthanthefaultedsteamgenerator
: pressure, asshowninFigureII.6-1.TheBsteamgenerator pressureincreased asprimary-to-secondary leakagecon-tinued.Thesequenceofevents'indicates thatsafetyinjection wasreinitated at11:07(102min)inpreparation forreactorcoolantpumprestart.However,Jtheeffectoftheincreased coolantmakeupontheprimaryandfaultedsteamgenerator pressures isnotevidentatthattime.Althoughtheprimary-andfaultedsteamgenerator pressures increased slowly,thepressuredifferential decreased.
Atapproximately ll19(114min),arapiddecreaseinprimarysystempressureisevident,probablyduetothecollapseofanupperheadsteambubble(seesectionII.5.6.2) whenareactorcoolantpumpwasrestarted.
Althoughtheavailable dataislimited,itappearsfromtheBsteamgenerator pressureresponsethatasafetyvalvemayhaveliftedatapproximately thesametime.Safetyinjection flowrepressurized thereactorcoolantsystembeginning atll:26(121min)untilflowwasthrottled at11:35(130min).Thefaultedsteamgenerator pressurealsoincreased untilthesafetyvalveliftedforthefinaltimeatapproximately 11:37(132min).Afterthisfinallift,thefaultedsteamgenerator pressureremainedapproximately 150psiabelowtheprimarysuggesting continued leakageintothesteamgenerator.
Steamgener-atorblowdownlineradiation wasalsoincreasing duringthissameperiodsug-gestingflowthroughthisline.Pressurizer levelreturnedonspanatapprox-imately11:53(148min),asshowninFigureII.6-2,andcontinued todecreaseindicating alossofreactorcoolant.Asafetyinjection pumpwasoperatedintermittently from12:13(168min)until12:27(182min)tocontrollevel.By12:30(185min),thefaultedsteamgenerator pressurewasgreaterthahthereactorcoolantsystempressureandprimary-to-secondary leakagewasterminated.
3274(}:1/111982 62 1300.0GINNA(G)ccccccGGCCGCGCRCS(-G-)CCC6@QCCCCCCCCG CGccccc'ccCcCCCCCGGFAULTEDSG(G)CITIME(MlN)C7EDC7C7ClC7C)r~FIGUREII.6-1.RCSANDFAULTEDSTEAt1GENERATOR PRESSURES.
63  


120.00100.0080.000GINNa(G)CGCCCGCCGCCGCGCGGCGGCCCGCCCGGCCGGCGCCGCCCCCCCGCCCGGccGGCCGGGCGo60.000~io.ooo)CGGGGGCCCCCG'CCc20.0000.0CDCDCDCDCDCDCDCDCDAJCDCDmCDCDCD.CDCDCDCDCDCDCDTIME(MtN)fIGUREII.6-2.LONG-TERtlPRESSURIZERLEVELRESPONSE.  
120.00100.0080.000GINNa(G)CGCCCGCCGCCGCGCGGCGGCCCGCCCGGCCGGCGCCGCCCCCCCGC CCGGccGGCCGGGCGo60.000~io.ooo)CGGGGGCCCCCG'CCc20.0000.0CDCDCDCDCDCDCDCDCDAJCDCDmCDCDCD.CDCDCDCDCDCDCDTIME(MtN)fIGUREII.6-2.LONG-TERtl PRESSURIZER LEVELRESPONSE.


III.SUMMARYANDCONCLUSIONSThemaximumleakratethroughthefailedtubeduringtheGinnaeventwascal-culatedtobe634gpm.Adesignbasiseventwithconservative,FSARassump-tionsrepresentsaninitialprimary-to-secondaryleakrateof1147gpmforthesamesteamgenerator.Hence,theinitialleakratewassignificantly1'essthandesignbasis.Breakflowdepletedprimarycoolantinventoryandresultedinautomaticreac-tortripandsafetyinjectionwithinapproximately3minutesoftheinitiatingevent.Primarypressuredecreasedrapidlyfollowingreactortripascoolant'temperaturedecreasedandbreakflowfurtherreducedcoolantinventory.Man-ualreactorcoolantpumptrip,whichoccurredwithin1minuteofreactortrip,wasfollowedbyasmoothtransitionfromforcedtonaturalcirculationinbothloops.Naturalcirculationwasmaintainedintheintactloopuntilareactorcoolantpumpwasrestarted.Isolationofthefaultedsteamgeneratorincom-binationwiththecooldownoftheintactloopeventuallystagnatedflowinthefaultedloop.AnalysisresultsandevaluationoftheBloopcoldlegtempera-turesuggestthatacounter-current,flowpatternmayhavedevelopedinthefaultedloopcoldlegupstreamoftheinjectionnozzle.Withtheexceptionoftheupperheadregionandthepressurizer,thereactorcoolantsystemremainedsubcooledthroughouttheevent.Theupperheadmayhavevoidedthreetimes.Immediatelyfollowingreactortrip,avoidmayhave'evelopedbeforereactorcoolantpumpsweretripped.NoadditionalvoidingoccurreduntilthepressurizerPORVwasmanuallyopenedtodepressurizetheprimarysystem.Theupperheadregioncompletelyvoidedfrom10:07(42min)to10:10(45min)resultingina305ftsteambubble.Therelativelyslowrepressurizationofthereactorcoolantsystemfrom10:10(45min)to10:17(52min)andtheupperheadthermocoupleresponsesuggestthatthissteambubblewasatleastpartiallycollapsedby10:37(72min).However,addi-tionalvoidingoftheupperheadprobablyoccurredathirdtimewhensafetyinjectionwasterminated.Thisvoidmayhaveexistedwhenthereactorcoolantpumpwasrestartedatll:19(114min).AlthoughLOFTRANresultsindicatethatthepressurizerdidnotfillwithwater,pressurizerlevelresponsefollowingterminationofsafetyinjectionindicatethatthepressurizerwasnearlyfull.3274(}:1/11188265 Thefaultedsteamgeneratorwasestimatedtohavefilledwithwaterbyapprox-imately10:25(60min).However,releasesduringtheearlysafetyvalveliftsmayhavereducedsteamgeneratorinventoryanddelayedoverfill.Anestimated400,000ibmofprimarycoolantweretransferredtothefaultedsteamgener-ator.Approximately253,000ibmwascalculatedtobedischargedfromthefaultedsteamgeneratoruntilprimary-to-secondaryleakagewasterminatedat12:30(185min).Anestimated28000ibmwasreleasedassteamtothecon-denser.Theremaining225000ibmrepresentsanestimateofthetotalreleasefromthefaultedsteamgeneratorsafetyvalve.Considerationoftheuncer-taintyassociatedwithfeedwaterflowtothefaultedsteamgeneratorandrefillingoftheupperheadindicatesthatthisestimatemaybeconservativebyupto48000ibm.Inaddition,thecalculatedleakageintothefaultedsteamgeneratorfrom10:40(75min)until12:30(185min)reliesonmeasuredsystempressureswhicharesubjecttoinstrumentuncertainties.3974n.1/11178966
III.SUMMARYANDCONCLUSIONS ThemaximumleakratethroughthefailedtubeduringtheGinnaeventwascal-culatedtobe634gpm.Adesignbasiseventwithconservative, FSARassump-tionsrepresents aninitialprimary-to-secondary leakrateof1147gpmforthesamesteamgenerator.
Hence,theinitialleakratewassignificantly 1'essthandesignbasis.Breakflowdepletedprimarycoolantinventory andresultedinautomatic reac-tortripandsafetyinjection withinapproximately 3minutesoftheinitiating event.Primarypressuredecreased rapidlyfollowing reactortripascoolant'temperature decreased andbreakflowfurtherreducedcoolantinventory.
Man-ualreactorcoolantpumptrip,whichoccurredwithin1minuteofreactortrip,wasfollowedbyasmoothtransition fromforcedtonaturalcirculation inbothloops.Naturalcirculation wasmaintained intheintactloopuntilareactorcoolantpumpwasrestarted.
Isolation ofthefaultedsteamgenerator incom-binationwiththecooldownoftheintactloopeventually stagnated flowinthefaultedloop.Analysisresultsandevaluation oftheBloopcoldlegtempera-turesuggestthatacounter-current, flowpatternmayhavedeveloped inthefaultedloopcoldlegupstreamoftheinjection nozzle.Withtheexception oftheupperheadregionandthepressurizer, thereactorcoolantsystemremainedsubcooled throughout theevent.Theupperheadmayhavevoidedthreetimes.Immediately following reactortrip,avoidmayhave'eveloped beforereactorcoolantpumpsweretripped.Noadditional voidingoccurreduntilthepressurizer PORVwasmanuallyopenedtodepressurize theprimarysystem.Theupperheadregioncompletely voidedfrom10:07(42min)to10:10(45min)resulting ina305ftsteambubble.Therelatively slowrepressurization ofthereactorcoolantsystemfrom10:10(45min)to10:17(52min)andtheupperheadthermocouple responsesuggestthatthissteambubblewasatleastpartially collapsed by10:37(72min).However,addi-tionalvoidingoftheupperheadprobablyoccurredathirdtimewhensafetyinjection wasterminated.
Thisvoidmayhaveexistedwhenthereactorcoolantpumpwasrestarted atll:19(114min).AlthoughLOFTRANresultsindicatethatthepressurizer didnotfillwithwater,pressurizer levelresponsefollowing termination ofsafetyinjection indicatethatthepressurizer wasnearlyfull.3274(}:1/111882 65 Thefaultedsteamgenerator wasestimated tohavefilledwithwaterbyapprox-imately10:25(60min).However,releasesduringtheearlysafetyvalveliftsmayhavereducedsteamgenerator inventory anddelayedoverfill.
Anestimated 400,000ibmofprimarycoolantweretransferred tothefaultedsteamgener-ator.Approximately 253,000ibmwascalculated tobedischarged fromthefaultedsteamgenerator untilprimary-to-secondary leakagewasterminated at12:30(185min).Anestimated 28000ibmwasreleasedassteamtothecon-denser.Theremaining 225000ibmrepresents anestimateofthetotalreleasefromthefaultedsteamgenerator safetyvalve.Consideration oftheuncer-taintyassociated withfeedwater flowtothefaultedsteamgenerator andrefilling oftheupperheadindicates thatthisestimatemaybeconservative byupto48000ibm.Inaddition, thecalculated leakageintothefaultedsteamgenerator from10:40(75min)until12:30(185min)reliesonmeasuredsystempressures whicharesubjecttoinstrument uncertainties.
3974n.1/111789 66
'
'
REFERENCES1.LicenseeIncidentEvaluationReportontheJanuary25,1982SteamGeneratorTubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,DocketNo.50-144,April'(1982).2.NRCEvaluationoftheJanuary25,1982SteamGeneratorTubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,NUREG-0909,April(1982).3.L.A.Campbell,et.al.,LOFTRANCODEDESCRIPTION,WCAP-7878,Rev.3,'anuary(1977).4.L.A.Campbell,et.al.,WESTINGHOUSEEYALUATIONOFLICENSEEEVENT,No.SG79-11-030,Dec.(1979).5.F.R.Zaloudek,"Steam-MaterCriticalFlowFromHighPressureSystemsInterimReport".,HanfordAtomicProductsOperation,Richland,Washington,TID-4500,Jan.(1964).6.J.A.Block,FLUIDTHERMALMIXINGINAMODELCOLDLEGANDDOWNCOMERWITH~~~LOOPFLOW,CREAREInc.,Hanover,NewHampshire,EPRI-NP-2312,April(1982).7.S.LevyandJ.M.Lealzer,ANAPPROXIMATEPREDICTIONOFHEATTRANSFERDURINGPRESSURIZEDTHERMALSHOCKWITHNOLOOPFLOWANDWITHMETALHEATADDITION,S.LevyInc.,Campbell,California,SLI-8220August(1982).3274(:1/11188267 1
REFERENCES 1.LicenseeIncidentEvaluation ReportontheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,DocketNo.50-144,April'(1982).2.NRCEvaluation oftheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,NUREG-0909, April(1982).3.L.A.Campbell, et.al.,LOFTRANCODEDESCRIPTION, WCAP-7878, Rev.3,'anuary(1977).4.L.A.Campbell, et.al.,WESTINGHOUSE EYALUATION OFLICENSEEEVENT,No.SG79-11-030, Dec.(1979).5.F.R.Zaloudek, "Steam-Mater CriticalFlowFromHighPressureSystemsInterimReport".,
APPENDIXA:INITIALLEAKRATECALCULATIONTheindicatedpressurizerleveldecreasedfrom32.5Xto11.7%over104seconds,asshowninTableII.3-1.Thislevelwasadjustedforpressurizerpressureasfollows:LPRZLINDX1+0/V1i0/V+100X'refVfVg10/V10/Vgrefwhere,PRZINDV~SubfSubgSubrefactualpressurizerlevelindicatedpressurizerlevelfluidspecificvolumereferstosaturatedliquidreferstosaturatedvaporreferstonominalsystemconditionsLPRZ9:26:18)=32.5x1.00.02698~~~=32.7LPRZ9:28:02)=11.7x1.0002698=14.10.1569+"'.1569'.17460.02617'.174610.15690.15690.19470.025430.1947Duringthistime,coolantinventorywasdepletedatanaveragerateof=1.202-=538GPM33BRK104sec5span'ecConsideringanexcessof'5gpmfromthechargingsystem,theaverageleakratewasapproximately573gpm.Theinitialleakratewascalculatedbyextrapolatingtheaverageratetotheinitialsystemconditionsof2250psiaand601F.Theaveragepressureandtemperatureoverthepre-tripperiodwereapproximately2100psiaand601F,respectively.Basedonsubcooledcriticalflowthroughthebreak,theinitialflowratewasestimatedtobe3274/:1/11168268
HanfordAtomicProductsOperation,
: Richland, Washington, TID-4500, Jan.(1964).6.J.A.Block,FLUIDTHERMALMIXINGINAMODELCOLDLEGANDDOWNCOMER WITH~~~LOOPFLOW,CREAREInc.,Hanover,NewHampshire, EPRI-NP-2312, April(1982).7.S.LevyandJ.M.Lealzer,ANAPPROXIMATE PREDICTION OFHEATTRANSFERDURINGPRESSURIZED THERMALSHOCKWITHNOLOOPFLOWANDWITHMETALHEATADDITION, S.LevyInc.,Campbell, California, SLI-8220August(1982).3274(:1/111882 67 1
APPENDIXA:INITIALLEAKRATECALCULATION Theindicated pressurizer leveldecreased from32.5Xto11.7%over104seconds,asshowninTableII.3-1.Thislevelwasadjustedforpressurizer pressureasfollows:LPRZLINDX1+0/V1i0/V+100X'refVfVg10/V10/Vgrefwhere,PRZINDV~SubfSubgSubrefactualpressurizer levelindicated pressurizer levelfluidspecificvolumereferstosaturated liquidreferstosaturated vaporreferstonominalsystemconditions LPRZ9:26:18)=32.5x1.00.02698~~~=32.7LPRZ9:28:02)=11.7x1.0002698=14.10.1569+"'.1569'.17460.02617'.174610.15690.15690.19470.025430.1947Duringthistime,coolantinventory wasdepletedatanaveragerateof=1.202-=538GPM33BRK104sec5span'ecConsidering anexcessof'5gpmfromthechargingsystem,theaverageleakratewasapproximately 573gpm.Theinitialleakratewascalculated byextrapolating theaverageratetotheinitialsystemconditions of2250psiaand601F.Theaveragepressureandtemperature overthepre-tripperiodwereapproximately 2100psiaand601F,respectively.
Basedonsubcooled criticalflowthroughthebreak,theinitialflowratewasestimated tobe3274/:1/111682 68


qggy(0)=573x(2250-0.9x1555)x0.02336xx0.5=634GPN32740:1/']1168269
qggy(0)=573x(2250-0.9x1555)x0.02336xx0.5=634GPN32740:1/']11682 69


APPENDIXB:BESTESTIMATEBREAKFLOWMODELFollowingasteamgeneratortubefailure,primarycoolantflowsthroughthebreakintothesecondarysideofthesteamgenerator.Theprimary-to-secondarypressuredifferentialprovidesthedrivingforceforthisflow.Thefailuresiteisconnectedtotwoprimaryfluidreserviors,i.e.steamgener-atorinletandoutletplenums,viathesegmentedtube.Eachsegmentp'rovidesasubstantialresistancetofluidflow.Forlargertubefailures,thisresis-tancerepresentsalargefractionofthetotalresistancebetweentheprimaryandsecondarysystems.ThebreakflowmodelwithinLOFTRANdoesnotconsiderfrictionalorformpressurelossesthrougheachtubesegment.Forcriticalflowconditions,thismaynotbeasignificantlimitationsincethepressuredropisessentiallylocalizedatthebreaklocationorentrancetothefailedtube.However,temperaturedifferencesbetweentheinletandoutletplenumswillaffectcriticalflowifentrancechokingoccurs.ThistemperatureeffectisalsonotsimulatedwithinLOFTRAN.Furthermore,theprimary-to-secondarypressuredifferentialisnotaccuratelypredicted.Consequently,amoredetailedmodelwasdevelopedwhichusesprimaryandsecondarypressuredataincombinationwithfluidtemperatureresultsfromLOFTRANtocalculatebreakflow.FlowthroughthefailedtubewassimulatedasshowninFigureB-l.Frictionalpressurelossesthrougheachtubesegmentwererepresentedbyanappropriatesinglephasefrictionfactor,length,anddiameter.Entranceandexitlossesforeachtubesegmentandatthebreaklocationwerealsoincluded.Thissystemleadstothefollowingsetofsimultaneousequationswhichdescribeflowthroughthefailedtube:xWBRK-SGBRKBRKBRK2xgcxABRK(B-1)RCSBRK2IPLIPLIPLENTEXTD22xcxATUBERCSBRK"LopLENTEXTIJ3274t}:1/1118827O
APPENDIXB:BESTESTIMATEBREAKFLOWMODELFollowing asteamgenerator tubefailure,primarycoolantflowsthroughthebreakintothesecondary sideofthesteamgenerator.
Theprimary-to-secondary pressuredifferential providesthedrivingforceforthisflow.Thefailuresiteisconnected totwoprimaryfluidreserviors, i.e.steamgener-atorinletandoutletplenums,viathesegmented tube.Eachsegmentp'rovides asubstantial resistance tofluidflow.Forlargertubefailures, thisresis-tancerepresents alargefractionofthetotalresistance betweentheprimaryandsecondary systems.ThebreakflowmodelwithinLOFTRANdoesnotconsiderfrictional orformpressurelossesthrougheachtubesegment.Forcriticalflowconditions, thismaynotbeasignificant limitation sincethepressuredropisessentially localized atthebreaklocationorentrancetothefailedtube.However,temperature differences betweentheinletandoutletplenumswillaffectcriticalflowifentrancechokingoccurs.Thistemperature effectisalsonotsimulated withinLOFTRAN.Furthermore, theprimary-to-secondary pressuredifferential isnotaccurately predicted.
Consequently, amoredetailedmodelwasdeveloped whichusesprimaryandsecondary pressuredataincombination withfluidtemperature resultsfromLOFTRANtocalculate breakflow.Flowthroughthefailedtubewassimulated asshowninFigureB-l.Frictional pressurelossesthrougheachtubesegmentwererepresented byanappropriate singlephasefrictionfactor,length,anddiameter.
Entranceandexitlossesforeachtubesegmentandatthebreaklocationwerealsoincluded.
Thissystemleadstothefollowing setofsimultaneous equations whichdescribeflowthroughthefailedtube:xWBRK-SGBRKBRKBRK2xgcxABRK(B-1)RCSBRK2IPLIPLIPLENTEXTD22xcxATUBERCSBRK"LopLENTEXTIJ3274t}:1/111882 7O


FIGUREB-1.SGTUBERUPTUREFLOWMODELDIAGRAt1.~RCSTzpLLxswj~GGGPIWLaoc.FRC5Topi71 BRKIPLOPL(B-4)where,PVENTEXTADgcSubBRKSubRCSSubIPLSubOPLSubTUBEpressureflowratefluidspecificvolumeTubeentrancelosscoefficient=0.4,primary-to-secondaryflow=1.0,secondary-to-primaryflowTubeexitlosscoefficientATUAE21.0-BRK=1.0,secondary-to-primaryflowMoodyfrictionfactorflowareatubediametergravitationalconstantreferstobreaklocationreferstoprimarysidereferstosteamgeneratorinletplenumreferstosteamgeneratoroutletplenumreferstosteamgeneratortubeCriti'calflowthroughthefailedtubewascalculatedusingamodifiedZaloudekcorrelationforsubcooledcriticalflow.ChokedflowconditionsforeachtubesegmentandatthebreaklocationwerecalculatedfromWCIL=ATUBExClxWCOPL=ATUBExC2x2gfPRCS-C2xPsat(TIPL)]IPLRCS2tOPL"OPL1/21/2(B-5)(B-6)WCBRK=ABRKxClx2gLPBRK-C2xPsat(TBRK)]1/2BRK(B-7)32740:1/11188272
FIGUREB-1.SGTUBERUPTUREFLOWMODELDIAGRAt1.
~RCSTzpLLxswj~GGGPIWLaoc.FRC5Topi71 BRKIPLOPL(B-4)where,PVENTEXTADgcSubBRKSubRCSSubIPLSubOPLSubTUBEpressureflowratefluidspecificvolumeTubeentrancelosscoefficient
=0.4,primary-to-secondary flow=1.0,secondary-to-primary flowTubeexitlosscoefficient ATUAE21.0-BRK=1.0,secondary-to-primary flowMoodyfrictionfactorflowareatubediametergravitational constantreferstobreaklocationreferstoprimarysidereferstosteamgenerator inletplenumreferstosteamgenerator outletplenumreferstosteamgenerator tubeCriti'cal flowthroughthefailedtubewascalculated usingamodifiedZaloudekcorrelation forsubcooled criticalflow.Chokedflowconditions foreachtubesegmentandatthebreaklocationwerecalculated fromWCIL=ATUBExClxWCOPL=ATUBExC2x2gfPRCS-C2xPsat(TIPL)]
IPLRCS2tOPL"OPL1/21/2(B-5)(B-6)WCBRK=ABRKxClx2gLPBRK-C2xPsat(TBRK)]
1/2BRK(B-7)32740:1/111882 72


where,TsatWCClC2'lui'dtemperature,Fsaturationpressure,psiacriticalmassflowrate,ibm/secentranceeffectcoefficient(adjustedtomatchinitialleakrate)0.9EquationsB-lthroughB-7weresolvedsimultaneouslyforbreakflowthroughthefailedtube.32740:1/11168273
where,TsatWCClC2'lui'dtemperature, Fsaturation
: pressure, psiacriticalmassflowrate,ibm/secentranceeffectcoefficient (adjusted tomatchinitialleakrate)0.9Equations B-lthroughB-7weresolvedsimultaneously forbreakflowthroughthefailedtube.32740:1/111682 73


APPENDIXC:CALCULATIONOFUPPER,HEADVOIDSIZETheupperheadregionofthereactorvesselwasmodelledasasingle,strati-fiednodewithonlyoutwardflowas.showninFigureC-l.Assystempressuredecreasedbelowsaturationoftheupperheadfluid,voidingwithintheupperheadregiondisplacedliquidintotheupperplenum.Theextentofvoidingwasestimatedassumingthermodynamicequilibriumbetweenphases.Metalintheupperheadregionwasconservativelyassumedtobeatthefluidtemperature.AmassandenergybalancebetweeninitialandfinalstateswithintheupperheadvolumeleadstothefollowingexpressionforthefractionoffinalsteamvolumeVUH,(hh)/V+(7hhf)/oVf(E-hf)(h-K)V+gVVfMC(TT)VUHosatwhere,=fluidspecificvolume'fluidenthalpy=VolumehT(MC)SuboSubfSubgSubUHaverageenthalpyofdisplace'dfluidfluidtemperaturemetalheatcapacityreferstoinitialcondi.tionsreferstosaturatedliquidreferstosaturatedvaporreferstoupperheadregionTableC-1liststheupperheadconditionsforthefirsttwoincidentsofpotentialupperheadvoidingduringtheGinnaevent(seesectionII.5.6.2).ThecalculatedupperheadregionvoidfractionsfromequationC-1arealsopresented.Fortheseresults,theenthalpyofdisplacedliquid,wasassumedtobethelinear.averageoftheinitialandfinalstates.32740:1/111882 FIGUREC-1.UPPEP.HEADVOIDINGILLUSTRATION.XII'TIAtVtLLH)hIII75 TABLE0-1UPPERHEADVOIDSIZETirade9:28:30Pp(Psia)1300Tp(Psia)577.5PF(Psia)1200Vg/VUH0.431V(Ft~)13210:0710985568451.030532740:1/11168276}}
APPENDIXC:CALCULATION OFUPPER,HEADVOIDSIZETheupperheadregionofthereactorvesselwasmodelledasasingle,strati-fiednodewithonlyoutwardflowas.showninFigureC-l.Assystempressuredecreased belowsaturation oftheupperheadfluid,voidingwithintheupperheadregiondisplaced liquidintotheupperplenum.Theextentofvoidingwasestimated assumingthermodynamic equilibrium betweenphases.Metalintheupperheadregionwasconservatively assumedtobeatthefluidtemperature.
Amassandenergybalancebetweeninitialandfinalstateswithintheupperheadvolumeleadstothefollowing expression forthefractionoffinalsteamvolumeVUH,(hh)/V+(7hhf)/oVf(E-hf)(h-K)V+gVVfMC(TT)VUHosatwhere,=fluidspecificvolume'fluidenthalpy=VolumehT(MC)SuboSubfSubgSubUHaverageenthalpyofdisplace'd fluidfluidtemperature metalheatcapacityreferstoinitialcondi.tions referstosaturated liquidreferstosaturated vaporreferstoupperheadregionTableC-1liststheupperheadconditions forthefirsttwoincidents ofpotential upperheadvoidingduringtheGinnaevent(seesectionII.5.6.2).
Thecalculated upperheadregionvoidfractions fromequationC-1arealsopresented.
Fortheseresults,theenthalpyofdisplaced liquid,was assumedtobethelinear.averageoftheinitialandfinalstates.32740:1/111882 FIGUREC-1.UPPEP.HEADVOIDINGILLUSTRATION.
XII'TIAtVtLLH)hIII75 TABLE0-1UPPERHEADVOIDSIZETirade9:28:30Pp(Psia)1300Tp(Psia)577.5PF(Psia)1200Vg/VUH0.431V(Ft~)13210:0710985568451.030532740:1/11168276}}

Revision as of 12:52, 29 June 2018

Evaluation of Alternative Reactor Coolant Pump Trip Criteria for Re Ginna Nuclear Power Plant.
ML17256A403
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/30/1982
From: LEWIS R N
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17256A400 List:
References
3203Q:1-111582, NUDOCS 8211290439
Download: ML17256A403 (131)


Text

.E,ATTACHMENT BANALYSISOFPLANTRESPONSEDURINGJANUARY25,1982STEAMGENERATOR TUBEFAILUREATTHER.E.GINNANUCLEARPOWERPLANTNOVEMBER, 1982Preparedby:E.C.Volpenhein II'estinghouse ElectricCorporation NuclearEnergySystemsP.O.Box355Pittsburgh, Pennsylvania 15230PreparedforRochester GasandElectric89EastAvenueRochester, N.Y.1464982ii290405000244821122pDRPQOCKpDp32740:1/111782 TABLEOFCONTENTSSECTIONPAGEABSTRACTLISTOFTABLESLISTOFFIGURES~~~~~~~~.1~~'~~~~~11~~~~~~~oillI.INTRODUCTION 1II.ANALYSISOFPLANTRESPONSE~~~~~~II.lSystemsAnalysisCodeII.2PlantDataII.3InitialLeakRate'II.4Pre-tripSystemResponse~II.5Post-trip SystemResponse5.1PrimarySystemPressure5.2ReactorCoolantFlow5.3ReactorCoolantTemperature 5.4Pressurizer Level5.5BreakFlow5.6ReactorCoolantVoiding~5.7SteamGenerator OverfillII.6LongTermRecovery-I~~~~~~2~~245~~7162128335255586062III.SUMMARYANDCONCLUSIONS

...................65REFERENCES

............................67AppendixA:InitialLeakRateCalculation

~.-........

~~68AppendixB:BestEstimateBreakFlowModel............70:AppendixC:Calculation ofUpperHeadVoidSize-..743274/:1/111782 ABSTRACTPlantresponsetotheJanuary25,1982steamgenerator tubefailureattheR.E.GinnanuclearpowerplanthasbeenanalyzedusingthecomputercodeLOFTRANtoprovideadditional insightintoreactorcoolantvoiding,naturalcirculation loopflows,andprimary-to-secondary leakageduringtheevent.Resultsarecomparedtoavailable plantdata.3274(}:1/111782

/TABLEII.1-1LISTOFTABLESSEQUENCEOFMAJOREVENTSTABLEII.3-1PRE-TRIPPRESSURIZER LEVELTABLE11.5.1-1.SEQUENCEOFPORVOPERATION TABLEC-1UPPERHEADVOIDSIZE3274O:1/111782 LISTOFFIGURESFIGUREFIGUREII.1-1!I.4-1FIGUREII.4-2FIGUREII.4-3FIGURE,II.4-4FIGUREII.4-5FIGUREII.4-6FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.4-7II.5-1II.5.2II.5.3II.5-4II.5.1-1II.5.1-2FIGUREFIGUREFIGUREFIGUREII.5.1-3II.5.1-4II.5.2-1II.5.2.1-1 FIGUREFIGUREII.5.3.1-2II.5.3.2-1 FIGUREFIGUREII.5.3.2-2 II.5.3.2-3FIGUREFIGUREFIGUREFIGUREII.5.3.2-4 II.5.3.2-5 II.5.3.2-6II.5.3.3-1FIGUREII.5.2.1-2 FIGUREII.5.3-'1 FIGUREII.5.3.1-1GINNASAFETYINJECTION CAPACITYPRE-TRIPNORMALIZED COREPOWERPRE-TRIPSECONDARY SYSTEMPRESSUREPRE-TRIPPRESSURIZER PRESSUREPRE-TRIPPRESSURIZER LEVELPRE-TRIPAVERAGERCSCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER PRESSURE:

CONSTANTCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEMPERATURE NORMALIZED PRE-TRIPSTEAMFLOWNORMALIZED PRE-TRIPFfEDWATER FLOWINTACTSTEAMGENERATOR PRESSUREINTACTLOOPCOLDLEGTEMPERATURE REACTORCOOLANTSYSTEMPRESSURE'PRIMARY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOWPRESSURIZER WATERVOLUMEUPPERHEADFLUIDMASSVOLUMETRIC LOOPFLOWRATESCOMPARISON OF"MIXEDTEMPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROMTHESGOUTLETPLENUMFAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWSPOST-TRIP REACTORCOOLANTTEMPERATURES STEAMDUMPVALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCSGINNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES COMPARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEMPERATURES FOLLOWING REACTORTRIPFAULTEDLOOPCOLDLEGTEMPERATURES MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURf CALCULATION MIXINGVOLUMELOOPFLOWANDSAFETYINJECTION FLOWMIXINGVOLUMEFLOWTEMPERATURfS BESTESTIMATEREACTORVESSELDOWNCOMER TfMPERATURE COREEXITFLUIDTEMPERATURE 3274(:1/111982 111

LISTOFFIGURES(Cont.)FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.5.4-1II.5.5-1II.5.5-2II.5.7-1II.6-1II.6-28-1C-1FIGUREII.5.3.4-1FIGUREII.5.3.4-2FIGUREII.5.3.5-1FIGUREII.5.3.6-1FIGUREII.5.3.6-2BREAKFLOWFROMSGINLETANDOUTLETPLENUMSLOFTRANFAULTEDLOOPHOTLEGTEMPERATURE FAULTEDSGTUBEBUNDLEFLUIDTEMPERATURE POST-TRIP UPPERHEADFLUIDTEMPERATURE LOFTRANUPPERHEADFLUIDTEMPERATURE PRESSURIZER LEVELINDICATION LOFTRANANDBESTESTIMATEBREAKFLOWSFAULTEDSTEAMGENERATOR PRESSUREFAULTEDSTEAMGENERATOR WATERVOLUMERCSANDFAULTEDSTEAMGENERATOR PRESSURES LONGTERMPRESSURIZER LEVELRESPONSESGTUBERUPTUREFLOWMODELDIAGRAMUPPERHEADVOIDINGILLUSTRATION 32740:1/111982 1V I.INTRODUCTION AttherequestofRochester GasandElectric(RGE),Westinghouse hasanalyzedtheJanuary25,1982steamgenerator tuberuptureeventattheR.E.Ginnanuclearpowerplant.Theprinciple objective ofthiseffortistosupplement theexistingdatabase'oprovideamorethoroughunderstanding oftheplantr'esponse andactualsequenceofevents.Ofparticular interestarevoidingofthereactorcoolant,naturalcirculation loopflowbehavior, andprimary-to-secondary leakage.TheLOFTRANcomputercodewasusedfor(3)theseanalyses.

Anumberofauxiliary calculations arealsodescribed whichcomplement LOFTRANbyprqviding moredetailedmodelling oflocalized effects.Theplantresponsetothesteamgenerator tubefailureandsubsequent r'ecovery actionsispresented forthreedifferent, phasesoftheevent.Thepre-tripdatarecordprovidesinformation forestimating theinitialleakrateandextentoftubefailure.LOFTRAHanalysisofthisperiodextrapolates thisdatatodetermine theapproximate timeoftubefailureandhistoryoftube(leakage.Following reactortrip,severalautomatic protection systemswere~~~actuatedinrapidsuccession andasequenceofemergency recoveryactionswasinitiated tomitigatetheconsequences oftheaccident.

Thisemergency recov-eryperiodculminated intermination ofsafetyinjection.

Theplantresponsetotheautomatic protection systemsandrecoveryactionsduringthisphasewasalsoinvestigated usingLOFTRAN.Finally,thelongtermplantresponseandadditional leakageintothefaultedsteamgenerator aftertermination ofsafetyinjection isdiscussed.

Abriefdiscussion ofLOFTRANmodelling ispresented.

Severallimitations areidentified whicharesignificant whenappliedtotheGinnaeventandmust-beconsidered whenevaluating theanalysisresults.Theseresultsarecomparedtotheavailable plantdatainthefollowing sections.

32740:1/111882

II.ANALYSISOFPLANTRESPONSEII.1SystemsAnalysisCodeLOFTRANisafastrunning,digitalcomputercodedeveloped tosimulatetran-sientbehaviorinWestinghouse pressurized waterreactors.

Theprogrammodelsneutronkineticsaswellascontrolandprotection systemsontheprimaryandsecondary systems.Themostsignificant oftheprotection systems,theEmer-gencyCoreCoolingSystem(ECCS)andtheAuxiliary Feedwater (AFW)system,aredescribed below.TheECCSwasrepresented bythecombinedcapacityofthreehighheadsafetyinjection pumpsshowninFigureII.1-1.Safetyinjection initiated automatic-allyonlowpressurizer pressureof1740psiaandwasassumedequallydistrib-utedbetweenloops.Thesuctionofthesepumpswasinitially alignedtotwoboricacidtanks(BAT)containing approximately 4320gallonsofboratedwaterat140F.Onlowlevel,suctionwasautomatically re-aligned totheRefueling WaterStorageTank(RWST)whichcontained coolerwater.Intheanalysespre-sented,60FwaterfromtheRWSTwasassumedtobeinjectedthroughtheBATcontaining a140Fboricacidsolution.

Reactorcoolantmakeupfromthenor-malchargingpumpswasalsosimulated withsuctionfromthesepumpsalignedtotheRWST.Chargingflowisdiscussed onacasebycasebasis'inthefollowing sections.

TwomotordrivenAFWpumpsautomatically startedonasafetyinjection signal.Eachmotordrivenpumpprovidedapproximately 200GPMofwaterfromtheCondensate StorageTank(CST)anddelivered tooneofthetwosteamgener-ators.OnesteamdrivenAFWpumpstartedautomatically onlow-lowsteamgen-eratorlevel.Thesteamdrivenpumpsuppl.ied atotalof400GPMwhichwasavailable tobothsteamgenerators.

AFWpumpoperation wassimulated asdes-cribedinthesequenceofeventsinTableII.l-l.Apurgevolumeof200ft3containing normalfeedwater wasalsosimulated.

Thisrepresented adelayofapproximately 4minutesbeforecoldCSTwaterenteredthetuberegionof:theintactsteamgenerator.

3274(}:1/111882 22002000180016001400120010008004002000.020040060080010001200FIGUREII.1-1.GINiVASAFETYIHJECTIOiV CAPACITY.

3 PreviousLOFTRANanalyseshavesimulated thePrairieIslandtubefailureeventwell.However,LOFTRANissomewhatlimitedbythemodelling oftheupperheadregion,steamgenerator secondary side,andprimary-to-secondary leakage.Theupperheadmodelling assumeshomogeneous, thermodynamic equilibrium conditions duringflashingoftheupperheadfluid.Refilling oftheupperheadregionisartificially constrained tosimulatenon-equilibrium behavior.

Effectively, theupperheadregioncannotrefillduringnaturalcirculation flow.Furthermore, flowintotheupperheadregionviaguidetubesisnotrepresented.

Consequently, thecalculated upperheadfluidtemperature maybeunrealistic forplantswithsmallerupperhead"spray"nozzles,suchasGinna.LOFTRANisalsolimitedbythehomogeneous,

'saturated conditions withinthe'secondary whichpromotesanunrealisticlylethargic tubebundleregiontemperature response,to AFMflowandsecondary-to-primary heattransfer.

Inaddition, theseconditions resultinartifically reducedsteamgenerator pressures whennosteamflowoccurssincethesteamiseffectively assumedtobeincontactwiththesteamgenerator tubes.Thebreakflowcal-culations withinLOFTRANarebasedonconservative, i.e.maximumflow,criti-calflowcorrelations.

Theaccuracyofthesecorrelations inpredicting criticalflowtrendsoverawiderangeofsystemconditions isuncertain.

Furthermore, thebreakflowmodelling doesnotconsiderflowresistance throughthefailedtube,orfluidtemperature variations betweenthesteamgenerator inletandoutletplenums.Finally,LOFTRANdoesnotpermitreverseflowtooccurinthecoolantlooptowhichthepressurizer isconnected.

Fortheresultspresented, thepressurizer wasmodelledontheintactloopalthoughduringtheGinnaeventthepressurizer wasonthefaultedloop.Thismayresultinunrealistic loopflowsduringrefilling ofthepressurizer.

II.2PlantDataTheplantdatawhichformsthebasisoftheanalysesthatfollowwasobtainedfromvariouscomputerrecords,stripchartsofsystemparameters, andthesequenceofeventsasreconstructed byRGE.TheGinnaplantcomputerisarealtimecentralprocessing unitwhichstoresselectedplantparameters:

foruseduringnormaloperations.Severalperipherial devicesservicedbythiscentralunitprovidetheprincipal dataforpost-accident analyseswhichincludesprimaryandsecondary pressures, reactorcoolanttemperatures, and3274(}:1/111882 r~

pressurizer level.Thesedevicesincludeapre-tripeventrecorder, aTI-7000teletypeterminal, analarmtypewriter, andalogtypewriter.

Communications withRGEpersonnel supplemented thisdataandprovidedadditional insightintotheevent.Thesequenceofoperatoractionswasextracted fromthesequenceofeventsprovidedbyRGEandthechronology pfplantalarms.whenpossible.

Themajoreventsarepresented inTableII.l-l.Comprehensive plantdataandthecompletesequenceofeventsisavailable inreference l.II.3InitialLeakRateThepre-trippressurizer levelresponsetothelossofreactorcoolantwasanalyzedtoestimatetheinitialprimary-to-secondary leakrate.Rapidvaria-tionsinreactorcoolanttemperature duetoturbinerunbackandautomatic steamdumptothecondenser tendedtomasktheinventory loss.However,anaverageleakratepriortotripwas.estimated byconsidering theindicated pressurizer levelresponsebetweentimesofconstantaveragecoolanttempera-ture.Sincethecoolanttemperatures atthesetimeswereapproximately thesame,theeffectoftheturbinerunbackonthiscalculation wasminimized.

Thepre-trippressurizer level,adjustedforinstrumentation calibration, ispresented inTableII.3-1;Basedondiscussions withRGEpersonnel, twochargingpumpswereoperating priortothetubefailure,oneinmanualandtheotherinautomatic.

Eachpumpwasdelivering approximately 25GPMofflow.Totalletdown,including

'eactorcoolantpumpsealleakoff,was50GPM.Following tubefailure,onechargingpumpautomatically increased tothemaximumcapacityof60GPMaspressurizer leveldecreased.

Althoughathirdchargingpumpwasmanuallystartedapproximately 40secondsbeforereactortrip,9:27:30,itwouldhaveprovidedlittleflowbeforetrip.Consequently, thenormalchargingsystemwassupplying anexcessofapproximately 35GPMduringthisperiod.Theaveragepre-tripleakratewasestimated tobe573GPM(Appendix A).Aninitialleakrateof634GPMwascalculated byextrapolating theaverage-leakratetotheinitialsystemconditions basedonsubcooled criticalflow(5)throughthefailedtube.Aneffective breakareaof0.0033ft2wasdetermined byproportioning thecriticalflowrateascalculated byLOFTRANforthe.initialsystemconditions tomatchtheinitialleakrate.3274(}:1/111882

TABLEII.3-1PRE-TRIPPRESSURIZER LEVEL~~Time(A.M.)Indicated Level(Xspan)Adjusted*

Level('Xspan)Tavg(F)9:26:189:26:269:26:349:26:429:26'.589:27:069:27:149:27:229:27:309:27:389:27'469:27:549:28:029:28:10132.530.630.530.530.230.230.228.926.220.8'17.914.811.79.032.731.030.830.930.730.530.629.426.922.019.516.814.111.9571.2571.2571.9573.2575.2576.4576.8576.1575.3574.5573.4572.4571.4570.1*SeeAppendixA3274(}:1/1 11782

II.4Pre-TripSystemResponseThefirstindications ofabnormalconditions wererecordedatapproximately 9:25whenanumberofalarmssoundednearlysimultaneously.

Theseincludedlowpressurizer

pressure, lowpressurizer level,condenser airejectorradia-tion,andBsteamgenerator leveldeviation alarms.Thealarmrecorderindi-catesthatthelowpressurizer presurealarmsoundedfirst.Systemconditions werenormalat9:22withnoapparentsymptomsofprimary-to-secondary leakage.Thereactorcoolantsystempressureandtemperature priortoreactortripwereanalyzedusingnormalized corepower,FigureII.4-1,'nd secondary
pressure, FigureII.4-2,dataasforcingfunctions forthecalculations.

Alternative secondary sideboundaryconditions werealsoconsidered asforcingfunctions forthepre-tripcalculations, including normalized steamandfeedwater flows..Althoughtheseproducedreasonable results,theinstrument uncertain-tiesandresponsetimeswerenotasconducive assecondary pressuretopre-tripanalysis.

Thepressurizer pressureandlevelresponses calculated usingLOFTRANagreedverywellwithplantdataasillustrated inFiguresII.4-3andII.4-4,respectively.

Extrapolation ofthisdatawithaninitialleakrateof634GPMsuggeststhattubefailureoccurredat9:25:10(dmin).Thecalculated pressureattheactualtimeofreactortripwasapproximately 30PSIgreaterthanindicated.

Theaveragereactorcoolanttemperature iscomparedwithpre-tripdatainFigureII.4-5.Theincreaseintemperature duetoturbinerunbackmomentarily maskedthedecreaseinprimarycoolantinventory.

Simi-larly,whenthesteamdumpvalvesopened,theassociated cooldownenhancedreactorcoolantsystemdepressurization.

FiguresII.4-6andII.4-7illustrate thepredicted pressurizer pressureandlevelresponses whenreactorcoolanttemperature wasmaintained constant.

Asdemon'stated, thepressureandlevelresponses aresignificantly affectedbycoolanttemperature trends.3274(:1/111882

100GI<<HA(+)LOFTRAN(-)90~r80C)CL70C)LJJIVo..60C)509:24925926TINE(A.ii.)9:279:28929FIGUREII.4-1.PRE-TRIPthORllALIZED COREPOllER.

1100GINNA(+)LOFTRAN(-)10009008007006009249:25926TIVE(A.H.)9:279:28929FIGUREII.4-2.PRE-TRIPSECONDARY SYSTEMPRESSURE 2200GIN~iA(+)LOFTRAt~(-)20001800LU1600C'40012009:249:259:269:279:289:29TItiE(n.n.)FIGUREII.4-3.PRE-TRIPPRESSURI"ER PRESSURE.

10080GIr<NA(+)LOFTRAN(-)60402009:249259:26927928929TIflE(A.H.)FIGUREII.4-4.PRE-TRIPPRESSURIZER LEVEL.

58520GINNA(+)LOFTRAN(-)1612u5755659249:259:269:279:2809:29TII1E(A.H.)FIGUREII.4-5.PRE-TRIPAVERAGERCSCOOLANTTft1PERATURE

2200GINNA(+)LOFTRAN(-)2000180016001400'12009:249:259269:279:28TInE(A.W.)FIGUREII.4-6.PRE-TRIPPRESSURIZER PRESSURE:

CONSTANTCOOLANTTEf1PERATURE 100O60+O~r40UiCYUJ2009289249:259:27TIi'iE(A.t1.)FIGUREII.4-7.PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEHPERATURE 9:29

TABLEII.l-l:SEQUENCEOFMMOREVENTSEventManual(0)Automatic (A)ActualTIME(Sec)Simulated TubeFailureTurbineRunbackAutomatic SteamDumpReactorTripSafetyInjection SignalFeedwater Isolation Auxiliary Feedwater StartReactorCoolantPumpTripBMotorDrivenAFWPumpOffManual.SteamDumpBLoopMSIVClosedAFWThrottled ASGAFWStoppedtoBSGChargingPumpsStartedPORVCycledSITerminated 078110182190192220230410(1)770(1)890("950(1)1250('2330(25404310(070118182198198239246410530(530(2)9501250233025404310Thesetimesareapproximate andtypically mayvarybyupto60seconds.SeesectionII.5foradiscussion onthesimulation oftheseevents.3274Q:1/111882 l5

II.5Post-Trip SystemResponseContinued leakageofprimarycoolantincombination withrapidcooldownofthereactorcoolantsystemfollowing actuation ofthesteamdumpsystem,causedanautomatic reactortriponlowpressurizer pressure.

Primarysystempressuredecreased rapidlyaspowergeneration wasabated,andseveralsupporting sys-tems,including theECCSandAFWsystem,startedinrelatively rapidsucces-sion.Aseriesofoperatoractionscommenced inaccordance withemergency responseprocedures torecovertheplanttoasafeshutdowncondition.

TheplantresponsetothesesystemsandoperatoractionswasanalyzedusingLOFTRANandtheresultsarepresented inthefollowing sections.

Theseanaly-seswerelimitedtothetimefrominitialfailureuntil10:40(75min),shortlyaftertermination ofsafetyinjection.

Beyondthistime,LOFTRANanalysiswasnotappropriate becauseofthehomogeneous, equilibrium secondary sidemodelling.

Additional leakageintothefaultedsteamgenerator wasestimated fromplantdatatodetermine themassdischarged fromthesteamgenerator afteroverfill.

Thesteamgenerator tubefailureoccurredintheBloopduringtheGinnaevent.Consequently, faultedloopandBlooparesynonymous inthefollowing sections.

Similarly, intactloopandAloopare*usedinterchangably.

However,AloopandBloopdesignations generally refertoplantdata,andintactandfaultedtoLOFTRANcalculations.

Fortheseanalyses, normalized steamflow,FigureII.5-1,andfeedwater flow,FigureII.5-2,fromplantdatawereusedpriortotripasforcingfunctions forthecalculations.

Thisprovidedadditional flexibility inmodelling sub-sequentoperatoractionswithL'OFTRAN.

TheLOFTRANanalysisresults,whichincludeanadjustment totheinputsteamflowtoaccountforincreased secon-daryp'ressure, arealsoshownforcomparison.

Afterreactortrip,theintactsteam'generator pressurewascontrolled toreproduce theindicated loopAcoldlegtemperatures.

Theintactsteamgenerator pressureinputtoLOFTRANiscomparedtoplantdatainFigureII.5-3.FigureII.5-4showsthecalculated andmeasuredintactloopfluidtemperatures atthecoldleginlet.NotethatloopAcoldlegfluidwassubcooled attheAloopsteamgenerator pressurebetweenapproximately 9:32(7min)and9:41(16min).Becauseofthehomo-geneousequilibrium secondary sidemodelling withLOFTRAN,suchsubcooling 32740:1/11188216 100GINNA(+)LOFTRAN(-)8060402009:249:259:26927TIi~>E(A.>>.)FIGUREII.5-1.i%OR/1ALIZED PRE-TRIPSTENlFLOW.9:28929

10080604020'9249'259:269:27TINE(A.ti.)FIGUREII.5-2.HORHALIZED PRE-TRIPFEEDHATER fLOW.9289:29

1200.01000.0GINNA(G)LOFTRAN(-)800.00CG600.00~400.00200.000.0CDCDCDTINKtMIN)FIGUREII.5-3.INTACTSTEANGENERATOR PRESSURE.

19

700.00GINHA(G)LOFTRAN(-)INLETOUTLETC)C)ClAJ7lHE(MlM)FIGUREII.5-4.INTACTLOOPCOLDLEGTEf1PERATURE.

20

couldnotbereproduced.

,However,thecooldownoftheAloopwassimulated byartifically steamingtheintactsteamgenerator.

Hence,thecalculated steamgenerator pressurewaslessthanmeasuredduringthisperiod.II.5.1PrimarySystemPressurePrimarypressurecontinued todecreasefollowing reactortripasbreakflowdepletedcoolantinventory andautomatic steamdumpcooledthereactorcoolantsystem.Safetyinjection wasactivated withinapproximately 16seconds,at9:28:28(3.2min),whenpressurizer pressurereached1740psia.Threehighheadsafetyinjection pumpsbegantoinjectshortlythereafter

.torestorecoolantinventory.

Pressurecontinued todecreasetoaminimumof1200psiabetween9:29(4min)and9:30(5min)asautomatic steamdumpestablished no-loadRCStemperature.

Asmallvoidmayhavedeveloped intheupperheadregion.duringthisinitialdepressurization althoughLOFTRANdidnotpredictflashing(seesectionII.5.6.2).

Thecalculated RCSpressurehistoryiscomparedtoplantdatainFigureII.5.1-1.

Whenthepost-trip cooldownsubsidedafterno-loadtemperature hadbeenestab-lished,safetyinjection flowinexcessofbreakflow,FigureII.5.1-2, repressurized thereactorcoolantsystemuntilapproximately 9:32(7min).Heat-upofthereactorcoolantduringthetransition fromforcedtonaturalcirculation duetoRCPtripcontributed tothisrepressurization.

LOFTRANanalysisdemonstrated amorerapidrepressurization duringthisperiodthanactuallyobservedpossiblybecauseofcollapseofanupperheadvoidduringtheactualevent.Reactorcoolantshrinkage, ascoldAFWenteredtheAloopsteamgenerator, incombination withbreakflowdecreased pressuretoamini-mumof1140psiabetween9:32(7min)and9:41(16min).Manualsteamreleasebeginning atapproximately 9:38(13min)contributed littletothisRCScool-downsincethesteamgenerator tubebundleregionwassubcooled.

AlthoughadecreaseinprimarysystempressureisevidentintheanalysisresultsshowninFigureII.5.1-1, theactualpressuredecreased significantly lower.Thisiscausedinpartbytheinitially highercalculated primarypressureat-9:32(7min).Inaddition, althoughLOFTRANindicates asmallamountofwaterremainedinthepressurizer duringthisperiod,FigureII.5;1-3, thepressur-izermayhaveactuallydrained.Thiswouldhaveenhanceddepressurization oftheprimarysystem.3274(:1/111882 21

2500.02250.0GINNA(G)LOFTRAN(-)1750.01500.0GGGGCGG1000.0CDCDCDCDAJTINE(MIN)CDCDCDC)CDFIGUREII.5.1-1.

REACTORCOOLANTSYSTE[1PRESSURE.

22

125.00LOFTRAN(-)100.00SIFLOll75.000lsJ~50.00025.000BREAKFLOW0.0C7C)EDC)C)AJC)C)CDC)TIVE(MlH)CDClC7CDtDC)C)CDC)EX7CDCDFIGUREII.5.1-2.

PRIORY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOW.23

800.00700.00LOFTRAN(-)600.00500.00F00.00300.00CD200.00100.000.0CDCDCDAJCDTlHK(MlH)C)CDCDEOCDCDCDCOFIGUREII.5.1-3.

PRESSURIZER WATERVOLUt1E.

WhenAFWflowwasterminated totheAloopsteamgenerator at9:41(16min),thecooldownofthereactorcoolantsystemsubsided.

Safetyinjection flowrepressurized theprimarysystemtowardanequilibrium pressureofapproxi-mately1320psiawherebreakflowandsafetyinjection werenearlyequal,asillustrated inFigureII.5.1-2.

Operation ofthesteamdumpvalvesoccasion-allyperturbed thisgeneraltrendandmaintained pressureslightlybelowequilibrium.

LOFTRANcalculations slightlyoverestimated thereactorcoolantsystempressureduringthisperiod.Twochargingpumpswithacombinedcapac-ityof120gpmwereassumedtoi'njectintothefaultedloopcoldlegbeginning at10:04(39min),asnotedinthesequenceofevents.Asaresult,thepre-dictedprimarypressureincreased towardanequilibrium valueof1410psiaby10:07(42min).Thisisconsistent withplantdatawhichindicates anequi-libriumpressureofapproximately 1390psia.Cyclingofapressurizer PowerOperatedReliefValve(PORV)wassimulated beginning at10:07(42min)andproceeded asindicated inTableII.5.1-1.

ThePORVwasmodelledtofullyopenorcloseinstantaneously.

Duringtheactualevent,thePORVfailedtocloseonthefourthcycleandwasmanuallyiso-lated.Althoughthisisolation wasassumedcompleted by10:10(45min),theactualtimemayhavebeenslightlylater.Thecalculated reactorcoolantsystempressureresponseduringthisperiodagreedwellwithavailable plantdata.Theminimumpressureduringthisperiodwascalculated tobe847psia.Following isolation ofthefailedPORV,thereactorcoolantsystempressureincreased rapidlytoapproximately 1400psiaassafetyinjection flowandreverseflowfromtherupturedsteamgenerator increased coolantinventory.

Theactualrepressurization wasslowerthancalculated byLOFTRAN.Asnotedpreviously, LOFTRANinhibitsrefilling oftheupperheadregionduringnaturalcirculation flow,asevidenced bytheconstantupperheadfluidmassbeyond10:10(45min)inFigureII.5.1-4.

Thisenhancedrefilling ofthepressurizer and,consequently, repressurization oftheprimarysystem.Hence,theslowerincreaseinpressureobservedintheactualeventisattributed toatleastpartialrefilling oftheupperheadregion.By10:17(52min),safetyinjection andchargingflowshadreestablished anequilibrium withbreakflowatapproximately 1400psia.Whensafetyinjection 32740:1/111782 25 3.00E+OiLOFTRAH(-)2.50Ei"2.00Ei,~t.50E&iSaturated Liquidl.OOEKli5000.0r>-Saturated Vapor0.0C)CDAJ8CDCDCD07TINE(MlM)FIGUREII.5.1-4.

UPPERHEADFLUID(NSS.26 TABLEII.5.1-1SEQUENCEOFPORVOPERATION CycleOpenedTime(A.M.)Closed10:07:30.5 10:07:35.5 10:07:49.3 10:07:57.3 10:08:44.0 10:08:52.7 10:09:10.1 Actualtimeofisolation mayhavebeenslightlylater32740:1/1 1178227

wasterminated at10:37(72min),primarysystempressuredecreased rapidlyfrom1370psiato945psia.LOFTRANanalysesdemonstrated asimilardepres-surization asthepressurizer steambubbleexpandedtoaccommodate residualbreakflowinexcessofreactorcoolantmakeup.Continued chargingflowandpressurizer heateroperation maintained primarypressuregreaterthan'thefaultedsteamgenerator pressureuntilprimary-to-secondary leakagewasterminated at12:30(185min).II.5.2ReactorCoolantFlowAtransition fromforcedtonaturalcirculation flowoccurredfollowing manualreactorcoolantpumptripat9:29:09(4min).Thisisevidenced bytheincreasing loopdelta-Tbetween9:29(4min)and9:31(6min).AFWflowpref-erentially cooledtheAsteamgenerator whichenhancednaturalcirculation flowintheAloopandretardedflowintheBloop.Thisresponsewasdemonstrated intheLOFTRANresultsshowninFigureII..5.2-1 from9:32(7min)to9:41(16min).WhenAFWflowwasthrottled at9:41(16'min),flowthroughtheAintactloopwascalculated todecreasetoapproximately 4Xofinitialconditions.

Flowthroughthefaultedloopmomentarily increased, asAFWflowfromtheturbinedrivenAFWpumpcontinued tocoolthefaultedsteamgenerator, until9:46(21min)whenAFWflowwasterminated; Asthecooldownoftheintactsteamgenerator continued, flowthroughthefaultedloopwas'alculated tostagnateat10:10(45min).Natural.circulation flowthroughtheintactloopwasmaintained between3Xand4gfullflowuntilthereactorcoolantpumpwasrestarted at11:19(114min).II.5.2.1LoopBColdLegFlowAlthoughLOFTRANdidnotsupportsignificant reverseflowthroughthefaultedloop,theeffect.ofbreakflowmodelling onthecalculated loopflowwasuncertain.

Hence,thepotential forprimary-to-secondary leakagegenerating sufficient reverseloopflowtoproducetheobservedBlooptemperature responsewasinvestigated.

FigureII.5.2.1-1 comparesthetotalreverseflow,i.e.safetyinjection flowandloopflowfromthevesseldowncomer, whichwouldhaveamixedtemperature identical totheindicated Blooptemperature, 28

10.000LOFTRAN(-)8.00006.00001.0000lINTACTLOOP4~2.0000FAULTEDLOOP0.0"l.0000ClClCDClT1HEtHlN)CDCDCDCDCDCDEKIFIGUREII~52lVOLUMETRIC LOOPFLOWRATES~

300.00250.00200.00ChargingPumpsStartedPORVClosedCalculated(+)"MixedTemperature" ReverseLoopFlow.150.00PORVOpened50.000OutletPlenumBreakFlow0.0-25.000CDCDCDCDCDCDCDTIME"(HIM)CDCDCDCDCDCDCDCDCQCDFIGURE'I!.5.2.1-1.

COiiPARISON OF"MIXEDTEYiPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROtlSGOUTLETPLENUi~i.

3O randthecalculated breakflowfromthesteamgenerator outletplenum.Asdemonstrated, primary-to-secondary leakagewasmuchlessthantherequiredmixedloopflow.Asanadditional assessment ofpotential reverseloopflow,theresponseofthetubebundlefluidtemperature inthefaultedsteamgenera-torwascalculated (seesectionII.5.3.5).

Theseresultssuggestthatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenera-torwouldhavebeencolderthantheintactsteamgenerator.

Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred.

Ginnadatademonstrated propagation ofaportionofthesafetyinjection flowupstreamoftheinjection locationbeginning at9:39(14min).Inaddition, theobserved8loopcoldlegtemperature responsesuggestsacontinuous supplyofwarmfluidupstreamoftheinjection nozzle(seesectionII.5.3.3).

Thecalculated fluidflowsintoandfromthefaultedloopcoldlegareshowninFigureII.5.2.1-2.

Safetyinjection flowwascalculated tosplitwhenthefaultedloopflowstagnated at10:10(45min);asmallportionflowedtowardthesteamgenerator whilethemajorityflowedtowardthevessel.Acontinuous flowofwarmwaterwasnotobservedintheLOFTRANanalysisresults.Nosig-nificanttemperature increaseinthecalculated faultedloopcoldlegtempera-tureoccurred.

Theseresultssupporttheexistence ofacounter-current typeofflowregimeupstreamoftheinjection nozzle.The8looptemperature responserepresents mixingofaportionofthesafetyinjection flowupstreamoftheinjection nozzlewithastreamofwarmerwaterfromthesteamgenerator.

Suchmixingisnotsimulated intheonedimensional modelling ofLOFTRAN.Themagnitude offlowfromthefaultedsteamgenerator requiredtoproducethequasi-steady temperature responsewasestimated fromthecoldleginlettemperature andsafetyinjection flowinthefaultedloopcalculated withLOFTRAN.Experimental evidence'uggeststhatasignificant portionofsafetyinjection intoastagnantloopwouldpropagate upstreamoftheinjection nozzle.Basedonthisevidence, onethirdofthesafetyinjection flowwasassumedtomixupstreamoftheinjection location.

Theresultofthiscalculation indicates thataminimumloopflowof21ibm/sec(170gpm)existedafter10:07(42min).3274(}:1/111982 31

1000.0LOFTRAIN(-)800.00600.003100.00OUTLETu-200.00IINLET0.0"100.00CDCDCDCDAJCDCDTlMf(MlN)CDCDCDCQCDCDFIGUREII.5.2.1-2.

FAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWS.32

II.5.3ReactorCoolantTemperatures Theearlyreactorcoolanttemperature responses weretypicalofreactortrip.Hotandcoldlegtemperatures decreased rapidlyastheautomatic steamdumpsystemandsecondary coolantabsorbedenergymorerapidlythandecayingcorepower.Thelargeflow/power mismatchreducedthecorecoolanttemperature risetoonlyafewdegreesandthesteamdumpsystemoperatedtomomentarily stabilize temperatures nearno-load.Themeasuredcoretemperature risedecreased toaminimumof2Fbeforereactorcoolantpumpsweretrippedandsteadilyincreased thereafter toapproximately 10'Fby9:31(6min).From9:31(6min)to9:38(13min)allsteamdumpvalveswereclosed.Duringthistime,safetyinjection andauxiliary feedwater flowsabsorbeddecayheatandstabilized temperatures asdemonstrated intheLOFTRANanalysisresultsshowninFigureII.5.3-1.

II.5.3.1ALoopColdLegTemperature ColdAFMflowrapidlycooledtheAloopcoldlegbeginning at9:32(7min).AlthoughtheAFWpumpswereautomatically startedshortlyafterreactortrip,thesteamgenerator feedlines anddowncomer volumedelayedinjection ofcoldwaterfromtheCondensate StorageTank(CST)intothetubebundleregion.Twosteamdumpvalveswere.manuallyopenedfromabout9:38(13min)until9:39(14min)todecreaseprimarycoolanttemperature asdirectedbytheemergency operating procedures.

Thisappearstohavehadlittleeffectonthecoldlegtemperature sincethesecondary coolantinthetubebundleregionwassub-cooled.TheAloopcoldlegtemperature decreased toaminimumof485Fat9:41(16min)whenAFMflowwasterminated totheAsteamgenerator.

Thehomogeneous equilibrium secondary sidemodelling withinLOFTRANtendedtounderestimate theprimarysystemcoolingduetoauxiliary feedwater.

Conse-quently,theintactsteamgenerator pressurewasusedasaforcingfunctiontotreproduce theAloopcoldlegtemperature

response, aspreviously noted.FiguresII.5-3andII.5-4comparetheintactsteamgenerator pressureandcalculated, coldlegtemperature, respectively, withplantdata.Withtheexception ofthecooldownduetoAFWflow,bothpressureandtemperature matchthedatareasonably well.Decreases inmeasuredcoldlegtemperature 3274(:1/111882 33 700.00650.00LOFTRAN(-)600.00HOTLEG-550.00~5¹00ICOLDLEGi5000400.00ClC7TIHf(HIN),FIGUREII.5.3-1.POST-TRIP REACTORCOOLAHTTEMPERATURES.

"

correlate withtheoperation ofsteamdumpvalvesandAFWflowasshowninFigureII.5.3.1-1.

Theinsurgeofsafetyinjection whenthepressurizer PORVwasopened,reducedthecoreexittemperature belowtheAloopcoldlegtem-perature, asshowninFigureII.5.3.1-2.

Thissuggeststhatsecondary-to-primaryheattransfermayhavemomentarily occurredintheAloop.TheLOFTRANanalysisresultsdemonstrated asimiliarresponse.

However,thedecreaseincoldlegtemperature between10:12(47min)and10:15(50min)wasunderestimated.

Thisappearstobeaconsequence ofthehomogeneous secondary side.II.5.3.2BLoopColdLegTemperaaure TheBloopcoldlegtemperature responsewasessentially thesameastheAloopuntilAFMflowwasreducedtothe8steamgenerator atapproximately 9:32(7min).From9:32(7min)until9:39(14min)theBlooptemperature decreased moreslowlyasillustrated inFigureII.5.3.2-1.

Atapproximately 9:39(14min),theBloopcoldlegtemperature decreased rapidly,indicative ofsafetyinjection flowupstreamoftheinjection nozzle.Beyondthistime,twodistincttrendsareevidentinthemeasuredtemperature response.

Therapiddecreaseintemperature beginning at9:39(14min)istypicalofa"mixing-cup" configuration whereaportionofthecoldsafetyinjection flowmixeswiththewarmerfluidwithinafixedvolume.Sincetheinventory ofwarmer'wateravailable formixingislimited,suchasystemischaracterized bya.continuous, exponential decreaseinfluidtemperature tothetemperature oftheincomingsafetyinjection flow.Equallyevidentinthe8loopcoldlegtemperature responseisaquasi-steady periodbeginning atapproximately 9:57(32min).Itisclearthat"mixing-cup" conditions donotdescribethisbehaviorsincesufficient mixingvolumeisnotavailable tosupportanexponential fittothetemperature timeresponse.

Furthermore, theincreaseincoldlegtemperature from10:11(46min)until10:18(53min)cannotbeexplained by"mixing-cup" behavior.

Thissuggeststhataflowofwarmerwatercontinued intotheBloopcoldleg.Thecalculated faultedloopcoldlegfluidtemperatures arecompareuwithBloopdatainFigureII.5.3.2-2.

Thecalculated coldlegoutlet,i.e.vesselinlet,temperature steadilydecreased, asflowthroughthefaultedsteamgenerator decayed,andapproached thetemperature ofthesafetyinjection 3274(}:1/111882 35 700.00650.00SteamDumpValvesOpen(0)SteamDumpValvesClosed(C)AFWFlowInitiated (I)AFWFlowTerminated (T)600.00455000OCLIz500.00i5000100.00CDC7CDTlMK(MIN)CDCPCDCDCDFIGUREII.5.3.1-1.

STEAN'DUHP VALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCS.

500.00480.00COLDLEG(-)COREEXIT(+)460.00+++440.00l=:420.00400.00CDCDCDCDCD-CDCDCDCIlCDCDCDCDCDCDI/lCDCDCDV)T1MK(HlN)FIGUREII.5.3.1-2.

GIHNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES.

37 100.00650.00LOFTRAN(-)600.00o550.00FAULTEDLOOPCL'IXx500.00IINTACTLOOPi50.00100.00CIC7TlME(HtN)C7C)EDClC7IAAJFIGUREII.5.3.2-1.

COl1PARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEflPERATURES FOLLOhlING REACTORTRIP.

700.00600.00500.00GGCOLDLEGINLETGINNA(G)LOFTRAN(-)400.00~300.00IZi-200.00COLDLgGOUTLETd4'cC0G100.000.0CDCDTIME(MlN)CDCDCDCDKl)CD'DFIGUREII.5.3.2-2.FAULTFDLOOPCOLDLEGTEMPERATURES.

39

flow.AlthoughthisissimilartotheBlooptransition period,thecalcu-latedcoldlegoutlettemperature continued todecrease.

Thecalculated temp-eratureupstreamofsafetyinjection remainedrelatively hotuntilapproxi-mately10:10(45min),atwhichtimesafetyinjection flowwasfirstpredicted byLOFTRANtopropagate upstreamoftheinjection nozzle.Whenthepressurizer PORVwascycledbeginning at10:07(42min),asurgeofsafetyinjection flowdecreased theBloopfluidtemperature.

Thecalculated vesselinlettemperature demonstrated asimilarresponse.

Althoughthecal-culatedfaultedloopcoldleginlettemperature wasnotsignificantly

affected, thelocationofthepressurizer mayhaveartificially promotedflowtowardthevessel.Noincreaseinfluidtemperature isobservedintheLOFTRANanalysisresultsafterisolation ofthefailedPORV.Evaluation ofthepotential flowdistributions withinthefaultedloopcoldleg(seesectionII.5.2.1)suggeststhatmulti-dimensional behaviormayhavesignificantly affectedtheactualtemperature response.

Sucheffectsarebeyondthecapabilities ofLOFTRAN.However,theBlooptemperature responseindicates anadditional flowofwarmfluidintothecoldlegwhichisnotobservedintheLOFTRANanalysisresults.Consequently, thecalculated coldlegoutlettemperature showninFigureII.5.3.2-2 underestimates theexpectedminimumbulkfluidtemperature atthevesselinlet.Inordertomorerealisticly estimatetheminimumfluidtemperature inthereactorvessel,thevesseldowncomer, coldlegandcrossover legpiping,andreactorcoolantpumpweremodelledasasingle,mixingvolumeasshowninFigureII.5.3.2-3.

Thetemperature responseofthisconfiguration toflowfromthefaultedsteamgenerator andsafetyinjection flow,FigureII.5.3.2-4, wascalculated assumingperfectfluidmixing.Theseflowsandassociated temperatures, FigureII.5.3.2-5, wereobtainedfromtheLOFTRANanalysisresults;however,aminimumloopflowof21ibm/sec(170gpm)wasassumed,asdiscussed insectionII.5.2.1.

Metalheatadditionfromthereactorvessel,piping,andcoolantpumpwasdetermined fromaonedimensional conduction/

convection heattransfermodelbasedonthemeasuredfluidtemperature inthe~Bloopcoldleg.Thecalculated mixingvolumefluidtemperature iscomparedtotheLOFTRANanalysisvesselinlettemperature andBlooptemperature datainFigureII.5.3.2-6.

Themetalheatandadditional loopflowincreased the3274(}:1/111982 40

SAFETYIHJECTIONRCPCOLDLEGVESSELDOWNCOMER CROSSOVER LEGLOOPFLOWCOREMIDPLANEFIGUREII.5.3.2-3 MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURE CALCULATION LOFTRAN(-)ESTIMATED

(------)LOOPFLOWSAFETYINJECTION FLOWTlwf(Nlm)FIGUREII.5.3.2-4'IXING VOLUMELOOPFLOWANDSAFETYINJECTION FLOW42 700.00600.00LOOPFLOW500.00i00.00ce300.00~200.00f0000SAFETYINJECTION FLOW0.0ClClQTlNflNil1FIGUREII.5.3.2-5MIXINGVOLUMEFLOWTEMPERATURES 43 700.00600.00l00.00GINNABLOOPDATA(G)ce300.00BESTESTIMATEVESSELDOWNCOMER t00.00LOFTRANVESSELINLET0.0C7C)C)T!NfllolN1FIGUREII.5.3.2-6 BESTESTIMATEREACTORVESSELDOWNCOMER TEMPERATURE 44

minimumcalculated downcomer fluidtemperature atthecoremidplaneelevation toapproximately 200'F.Inaddition, anincreaseinfluidtemperature ocurredaftersafetyinjection wasterminated at1037(42min)asobservedduringtheactualevent.Theseresultsrepresent amorerealistic estimateoftheminimumfluidtemperature inthevesseldowncomer.

II.5.3.3CoreExitFluidTemperature Thecalculated, coreexitfluidtemperature iscomparedtotheavailable datainFigureII.5.3.3-1.

Imperfect mixingatthecoreinletwassimulated intheresultspresented; consequently, thecoreexittemperature isslightly.

differ-entforthecoreregionsadjacenttothefaultedandintact,loops.Thecoreexitfluidtemperature trendedtheintactloopcoldlegandremainedsubcooled throughout thetransient.

IIncreased reactorcoolantmakeupfollowing startupofthechargingpumpsandcyclingofthepressurizer PORVdecreased thecoreexitfluidtemperature beginning at10:04(39min).Thistemporarily decreased thecoreexittemper-aturebelowtheAloopcoldlegtemperature asdiscussed insectionII.5.3.1.

II.5.3.4BLoopHotLegTemperature Primary-to-secondary leakagefromthesteamgenerator inletplenumprovidedamechanism forflowthroughthefaultedloophotlegevenforstagnantloopflowconditions.

Basedonestimates ofthisbreakflow,FigureII.5.3.4-1, andthehotlegvolume,thefaultedloophotlegtemperature wasestimated tolagthecoreexittemperature bylessthan10minutes.TheLOFTRANanalysisdemonstrated thistrend,asshowninFigureII.5.3.4-2.

Theseresultsindi-catethatthefaultedloophotlegfluidremainedsubcooled throughout theevent.II.5.3.5BSteamGenerator Temperature Thetubebundleregionfluidtemperature ofthefaultedsteamgenerator wascalculated bymodelling asingle,subcooled controlvolumeincommunication withtheprimarysystemviaprimary-to-secondary

.leakageandspecified loopflow.Perfectenergytransferwasassumedsothatbreakflowandloopflow3274(:1/111982 45

700.00GINNA(G)LOFTRAN(-)INTACTLOOPFAULTEDLOOPCICDCDCDAJCDTINK(MtN)CDCDCDFIGUREII.5.3.3-1.

COREEXITFLUIDTEIlPERATURE.

46

S0.00040.000INLETCalculated

(+)30.000OUTLETXCDCDCDCDCDCDAJCDCDCDTlHCtHIM)CDCDCDCQCDCDCDCDCDFIGUREII.5.3.4-1.

BREAKFLOWFRO[1S.G.INLETANDOUTLETPLENUi1S.

600.00HOTLEG(+)COREEXIT(-)CDCDCDAJCDCDCDCDCDCDCDCDCDCDTlME(MlN)FIGUREII.D.3.4-2.LOFTRAHFAULTEDLOOPHOTLEGTEHPERATURE.

48 acheivedthermalequilibrium withthecontrolvolumeinventory.

Twocasesofflowfromthefaultedsteamgenerator outletplenumwereconsidered:

1)reverseloopflowthroughthesteamgenerator equaltothatpresented inFigureII.5.2.1-1, and2)onlyprimary-to-secondary leakagefromtheoutletplenumintothefaultedsteamgenerator.

Thetemperature oftheseflowswasassumedequaltotheindicated Bloopcoldlegtemperature.

Forbothcases,primary-to-secondary leakagefromthesteamgenerator inletplenumwasalsoconsidered.

FigureII.5.3.5-1 comparestheresultsofthesecalculations withtheintactsteamgenerator temperature calculated withLOFTRAN.Case(1)suggeststhatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenerator wouldhavebeencolderthantheintactsteamgenerator.

Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred.

Case(2)indicates thatprimary-to-secondary leakageeffectively cooledthetubebundleregionofthefaultedsteamgenerator.

II.5.3.6UpperHeadTemperature Duringnormaloperation, asmallfractionofthecoldlegflowisdivertedintotheupperheadregionofthereactorvesselandmixeswithflowfromtheupperplenumtomaintaintheupperheadfluidtemperature atGinnanear595F.Theseflowsremainnearlyconstantaslongasreactorcoolantpumpscon-tinuetorun.Afterreactortrip,thecoreexittemperature decreases rapidly.Withreactorcoolantpumpsrunning,theupperheadfluidtemperature willalsodecreaserapidlybutwilllagtheupperplenumandcoldlegtemper-atures.Theupperheadregiontemperature transient wasevaluated assumingconstantvolumetric upperheadflowsuntilreactorcoolantpumpsweretrippedat9:29:09(4min).Theaveragecoldlegandhotlegtemperatures asindicated bypre-tripdatawereassumedfortheflowsfromthecoldlegandupperplenum,respectively.

FigureII.5.3.6-1 presentsthecalculated upperheadregionfluidtemperature withandwithoutmetalheat.Forthecasewithmetalheat,themetaltemperature wasassumedtobeequaltothefluidtemperature.

Thefluidtemperature wascalculated tobeapproximately 553Fwhenreactor32740'1/111982 49 700600INTACTSG--------

FAULTEDSG500LaJI-400I-CASE2CASE1300200204060TI)1E(t1IN)80100..120FIGUREII.5.3.5-1.

FAULTEDSGTUBEBUNDLEFLUIDTEl1PERATURE.

50 600ep888p'p590580570I-560550540THOTpTCOLDTSATTUPPERHEAD(-)l8l]H/tlETALHEAT88IIIIIIIMII-CYEDVI-ll/0t1ETALItIlIIIIII'RR9269:27TItlE(A.f1.)9:289:29FIGUREII.5.3.6-1.

POST-TRIP UPPERHEADFLUIDTEtiPERATURE.

C

coolantpumpsweretripped.Thisisconsistent withtheupperheadthermo-Ccoupleindication of556Fat9:54(31min).Notethatvoidingmayhaveoccurredintheupperheatregionwhilereactorcoolantpumpswerestilloperating (seesectionII.5.6.2).Theupperheadregiontemperature calculated byLOFTRANisshowninFigureII.5.3.6-2.

Sinceflowfromtheupperplenumthroughtheguidetubeswasnotmodelled, thefluidtemperature atreactortripwaslessthanwouldbeexpected.

Hence,noupperheadvoidingocurredimmediately following reactortripintheLOFTRANresults.However,thefluidtemperature at10:07(42min),whenthepressurizer PORVwascycled,wasequaltothemeasuredupperheadthermocouple.

Hence,theupperheadvoidingcalculated duringthisperiodisexpectedtoberepresentative oftheGinnaevent.II.5.4Pressurizer LevelResponseThecalculated pressurizer waterlevelindication iscomparedwithplantdatainFigureII.5.4-1.

Theinitialdecreaseinlevelwaspredicted byLOFTRANverywell.Thepressurizer wascalculated todrainby9:29(4min)andbegintorefillsoonafterassafetyinjection flowrepressurized theprimarysys-tem,asillustrated inFigureII.5.1-3.

Thepressurizer mayhavedraineda'econdtimebetween9:32(7min)and9:38(13min)duringcooldownviaAFMflow.Ginnadataindicates thatpressurizer levelreturnedonspanapproxi-matelywhenthechargingpumpswerestarted.Anindicated leveldidnotreturnintheLOFTRANanalysisresultsuntilthepressurizer PORYwascycledbeginning at10:07(42min).Asprimarypressuredecreased whenthePORVwasopened,pressurizer levelincreased assafetyinjection flowinexcessofbreakflow,FigureII.5.1-2, replacedventedsteaminthepressurizer.

Soonafterwards, atapproximately 10:09:20(44,min),

theupperheadwaterbegantoflash.Materdisplaced fromtheupperheadregionrapidly'increased pressurizer inventory andtheindi-catedlevelincreased offscale.

TheLOFTRANanalysisdemonstrated similarlevelresponse; however,theindicated levelremainedonspan.Thisappearstobedueprimarily tothelowerinitiallevelpriortodepressurization oftheprimarysystem.Inaddition, noreverseflowfromthefaultedsteam3274(:1/111982 52

700.00GINNA(G)LOFTRAtl(-)CICIAjC)TIHj(HtN)C)C)CDFIGUREII.5.3.6-2.LOFTRANUPPERHEADFLUIDTEMPERATURE.

53

120.00100.00GINNA(G)LOFTRAN(-)80.000W>60.000~a0.00020.0000.0ClClClClAJClTIME(MIN)FIGUREII.5.4-1.

PRESSURIZER LEVELINDICATION.

generator occurredintheLOFTRANresults(seesectionII.5.5).Upperheadvoidingmayhavealsobeenslightlyunderestimated becauseofthehomogeneous modelling, assuggested byAppendixCcalcualtions.

Thecalculated pressurizer leveldecreased rapidlyaftersafetyinjection wasterminated at10:37(72min)asbreakflowdecreased coolantinventory.

Theseresultsindicatethat95ft3ofwaterwasdisplaced fromthepressurizer asprimarypressuredecreased to945psia.Sucha.decrease wouldnothavebeendetectedbythelevelinstrumentation ifthepressurizer hadbeennearlywatersolid.Beyondapproximately 10:40(75min),thecalculated decreasein'pres-surizerlevelwasunrealistic.

Primary-to-secondary leakagewasexaggerated afterthistimebecauseoftheunrealistic faultedsteamgenerator pressurecalculated byLOFTRAN.II.5.5BreakFlowPrimary-to-secondary leakagewascalculated inLOFTRANassuminganeffective breakflowareaandamodifiedZaloudekcriticalflowcorrelation.

Forunchokedflow,theorificeequationwasused.FigureII.5.5-1showstheprimary-to-secondary leakagecalculated byLOFTRANduringtheGinnaevent.Priortoreactortrip,breakflowdecreased asprimarypressurealsodecreased.

Immediately aftertrip,'herapidlydecreasing primarypressuredecreased breakflowuntilsafetyinjection flowbegantorepressurize thereactorcoolantsystem.Soonafterthefaultedloophotleghadcooledbelowthetemperature ofthefaultedsteamgenerator, 9:37(12min),flowthroughthefailedtubewascal-culatedtobecomeunchoked.

Beyondthistime,thecalculated breakflowwassensitive tothefaultedsteamgenerator pressure.

Asillustrated inFigureII.5.5-2, thesecondary sidemodelling withinLOFTRANunderpredicted thefaultedsteamgenerator pressureafter9:46(21min).Consequently, secondary-to-primary flowdidnotoccurintheLOFTRANanalysiswhenthepres-surizerPORVwasopened.Inordertoevaluatethelimitations ofLOFTRANbreakflowmodelling andassesstheeffectsontheanalysisresults,amoredetailedmodel(Appendix B)wasdeveloped tocalculate theflowfromeachsteamgenerator plenum.The3274Q:1/111982 55 75.000LOFTRAil(-)BestEstimate(+)50.000~25;000Ko.o+4+p+++++++ttNt~++~+++++-25.000++-50.000ClClCDC)CIC)IPJC)ClleTINK(HIH)C)CDC)OCPDw~~DOFIGUREII.5.5.-1.

LOFTRANAHOBESTESTIHATEBREAKFLOWS.56 1200.01000.0800.00600.00~ioo.oo200.00GI~iNA(G)LOFTRAN(-)0.0C)CITIME(MIN)CDEOC)C)CCIFIGUREII.5.5-2.

FAULTEDSTEAI1GENERATOR PRESSURE.

57

fluidtemperature inthesteamgenerator inletandoutletplenumsweretakenfromtheLOFTRANresults.ActualGipnadatawasusedfortheprimaryandfaultedsteamgenerator pressures.

Resultsofthesecalculations arealsoshowninFigureII.5.5-1.

Asdemonstrated, LOFTRANprovidedareasonable estimateofthebreakflow,withtheexception ofreverseflowthroughthefailedtube,untilshortlyaftersafetyinjection wasterminated.

Afterthattime,thelowerfaultedsteamgenerator pressureevidentintheLOFTRANanaly-sisresultedinoverestimated primary-to-secondary leakage.II.5.6ReactorCoolantVoidingDuringnaturalcirculation, portionsofthereactorcoolantsystemmaystag-nateandbecomeeffectively isolatedfromtheactivecoolantregions.Threesuchregionsmayexistontheprimarysideduringrecoveryfromasteamgener-atortuberuptureevent;thepr'essurizer, reactorvesselupperhead,andthefaultedsteamgenerator tubes.Assystempressureisreduced,hotfluidinthesestagnantregionsmayflashtosteam.TheextentofvoidingintheseregionsduringtheGinnaeventwasevaluated.

II.5.6.1Pressurizer SteamBubbleItisclearfrompressurizer leveldata,FigureII.5.4-1, thatasteambubbleexistedinthepressurizer untiltheprimarysystemwasmanuallydepressurized beginning at10:07(42min).Atthattime,theindicated pressurizer levelincreased rapidlyoff-scale.

LOFTRANresultssuggestthatthepressurizer didnotcompletely fill,FigureII.5.1-3; however,aspreviously noted,theincreaseinpressurizer levelmayhavebeenslightlyunderestimated.

Thepressurizer levelresponsefollowing termination ofsafetyinjection suggeststhatthepressurizer wasnearly.fullatthattime.Specificly, pressurizer leveldidnotreturnonspanduringtheGinnaeventwhenprimarypressuredecreased by440psi.II.5.6.2UpperHeadVoidingThecalcu1ated upperheadtemperature history,FigureII.5.3.6-1, indicates thatvoidingmayhaveoccurredintheupperheadregionpriortoreactorcool-antpumptrip.Themaximumvolumeofthisvoidwasestimated tobelessthan3274Q:1/111982

132ft(Appendix C).Anysteambubbleintheupperheadatthistimewouldhavebeenquicklycondensed sincereactorcoolantpumpscontinued tooperate.Itisunlikelythatsignificant additional voidingoccurredpriortomanualdepressurization oftheprimarysystemat10:07(42min)sincethecalculated upperheadfluidtemperature remainedsubcooled.

From10:07(42min)to10:10(45min),upperheadthermocouple andpressurizer levelresponses indicatethatvoidingalsooccurredwhenthepressurizer PORVwasopened.Theupperheadtemperature decreased fromapproximately 556'FwhenthePORVwasinitially openedtoaminimumofapproximately 525F,asshowninFigureII.5.3.6-2.

Theupperheadregionwascalculated tocom-pletelyvoidduringthisdepressurization (Appendix C).Flashinginthenon-activeregionoftheupperplenum,i.e.abovethetopofthehotlegnozzles,wouldnotbeexpectedbecauseofrelatively goodmixingcharacteristics.

Consequently, approximately 305ftofsteamvolumeexistedintheupperheadwhenthepressurizer PORVwasisolatedat10:10(45min).Noinstrumentation wasavailable abovetheupperheadflangeleveltotrackthesteambubblecollapse.

However,assafetyinjection repressurized thereactorcoolantsystem,theupperheadthermocouples increased approximately alongthesaturation linefrom525Fto540'F.Aspressurecontinued toincrease, temperature thendecreased toastabletemperature of525'F.Thissuggestsflowofcolderfluidfromtheupperplenumpasttheflangelevelthermocouples andisindicative ofpartialsteambubblecollapse.

Thisissupported bytheslowerrepressurization ofthe'primarysystemfollowing iso-lationofthefailedPORVascomparedwithLOFTRANanalysisresults(seesectionII.5.1).Thesizeofanysteambubblewhichexistedintheupperheadregionwhensafetyinjection wasterminated at10:37(72min)isuncertain.

Themeasuredtemperature andpressureresponses suggestthattheupperheadwasnotcom-pletelyvoidedandcontained significantly subcooled water.Theupperheadprobablyvoidedathirdtimeasprimarysystempressuredecreased to945.psiafollowing termination ofsafetyinjection.

Analysisoftheprimary-to-secondary leakage,chargingflow,andreactorcoolantexpansion suggestsamaximumof125ftofadditional voidingmayhaveoccurredduringthisperiod.Thisvoidmayhaveexisteduntilreactorcoolantpumpswere'restarted.

3274/'1/111982

II.5.6.3BSteamGenerator TubeYoidingThefluidtemperature inthefaultedsteamgenerator tubeswascalculated withLOFTRANtobe507Fat10:07(42min)whenthepressurizer PORYwasfirstopened.Thisisconsistent withplantdatawhichshowsthatpressureintheBsteamgenerator haddecreased to750psiaby9:46(21min)andisconservative

'ithrespecttothecalculations presented insectionII.5.3.5.

Sincethecalculated tubebundlefluidtemperature remainedsubcooled duringdepres-surization ofthereactorcoolantsystem,nosteamvoidwouldhavedeveloped inthisregion.11.5.7SteamGenerator OverfillPrimary-to-secondary leakageinexcessofsteamfloweventually filledtheBsteamgenerator withwaterandliftedthesecondary safetyvalve.TheLOFTRANanalysisindicates thatthefaultedsteamgenerator andmainsteamline wouldhavefilled'at 10:18(53min),asshowninFigureII.5.7-1.

However,thisisbelievedtobeearlierthanduringtheactualeventforseveralreasons.Inordertosimulatethecooldownoftheprimarysystemfrom9:32(7min)to9:41(16min)(seesectionII.5.3.1),

steamreleasefromthefaultedsteamgenera-tortothecondenser wasterminated 8minutesprematurely at9:32(7min).Thisunderestimated thesteamreleasedfromthefaultedsteamgenerator tothecondenser byamaximumof11000ibm.Inaddition, theconstraints onupperheadrefillmayhaveincreased carryover intothefaultedsteamgenerator byamaximumof300ft..Thetotalcarryover mayhavealsobeenslightlyover-estimated byLOFTRANsincereverseflowduringdepressurization oftheprimarysystemwasnotpredicted.

Thecombination oftheseeffectsmayhavedelayedoverfillbyanestimated 7minutes.Theinitialsafetyvalveliftsat10:19(54min)and10:27(62min)wouldhavealsodecreased steamgenerator inven-toryandfurtherdelayedoverfill.

Themassdischarged throughthefaultedsteamgenerator safetyvalvewasesti-matedfromtheprimary-to-secondary leakage.LOFTRANresultsindicatethat268,000ibmofprimarycoolantwastransferred intothefaultedsteamgener-atorpriortotermination ofsafetyinjection.

Approximately 104,000ibmofthisleakageoccurredafterthesteamgenerator wascalculated tofill.Eval-uationofthebreakflowfrom10:40(75min)until12.30(185min)asshownin3274/:1/111982

'j.OOE+OiiLOFTRAN(-)8000.06000.0S.G.andSteamline VolumeS.G.Volume~F000.0Z=I2000.00.0ClC)C7AJTIME(MIN)C)EDC)8FIGUREII.5.7-1.

FAULTEDSTEAYiGENERATOR WATERVOLUf1E.6l

FigureII.5.5-1suggeststhananadditional 132,000ibmwastransferred from~theprimarybeforeprimary-to-secondary leakagewasterminated.

II.6LONGTERMRECOVERYWhensafetyinjection wasterminated at10:37(72min),primarysystempres-suredecreased rapidlyfrom1370psiato945psia.TheLOFTRANanalysiswasterminated atthistimesincethehomogeneous equilibrium modelling onthesecondary sideoverestimates theprimary-to-secondary pressuredifferential and,consequently, leakagethroughthefailedtube.Continued chargingflowandoperation ofthepressurizer heatersmaintained primarypressureslightlygreaterthanthefaultedsteamgenerator

pressure, asshowninFigureII.6-1.TheBsteamgenerator pressureincreased asprimary-to-secondary leakagecon-tinued.Thesequenceofevents'indicates thatsafetyinjection wasreinitated at11:07(102min)inpreparation forreactorcoolantpumprestart.However,Jtheeffectoftheincreased coolantmakeupontheprimaryandfaultedsteamgenerator pressures isnotevidentatthattime.Althoughtheprimary-andfaultedsteamgenerator pressures increased slowly,thepressuredifferential decreased.

Atapproximately ll19(114min),arapiddecreaseinprimarysystempressureisevident,probablyduetothecollapseofanupperheadsteambubble(seesectionII.5.6.2) whenareactorcoolantpumpwasrestarted.

Althoughtheavailable dataislimited,itappearsfromtheBsteamgenerator pressureresponsethatasafetyvalvemayhaveliftedatapproximately thesametime.Safetyinjection flowrepressurized thereactorcoolantsystembeginning atll:26(121min)untilflowwasthrottled at11:35(130min).Thefaultedsteamgenerator pressurealsoincreased untilthesafetyvalveliftedforthefinaltimeatapproximately 11:37(132min).Afterthisfinallift,thefaultedsteamgenerator pressureremainedapproximately 150psiabelowtheprimarysuggesting continued leakageintothesteamgenerator.

Steamgener-atorblowdownlineradiation wasalsoincreasing duringthissameperiodsug-gestingflowthroughthisline.Pressurizer levelreturnedonspanatapprox-imately11:53(148min),asshowninFigureII.6-2,andcontinued todecreaseindicating alossofreactorcoolant.Asafetyinjection pumpwasoperatedintermittently from12:13(168min)until12:27(182min)tocontrollevel.By12:30(185min),thefaultedsteamgenerator pressurewasgreaterthahthereactorcoolantsystempressureandprimary-to-secondary leakagewasterminated.

3274(}:1/111982 62 1300.0GINNA(G)ccccccGGCCGCGCRCS(-G-)CCC6@QCCCCCCCCG CGccccc'ccCcCCCCCGGFAULTEDSG(G)CITIME(MlN)C7EDC7C7ClC7C)r~FIGUREII.6-1.RCSANDFAULTEDSTEAt1GENERATOR PRESSURES.

63

120.00100.0080.000GINNa(G)CGCCCGCCGCCGCGCGGCGGCCCGCCCGGCCGGCGCCGCCCCCCCGC CCGGccGGCCGGGCGo60.000~io.ooo)CGGGGGCCCCCG'CCc20.0000.0CDCDCDCDCDCDCDCDCDAJCDCDmCDCDCD.CDCDCDCDCDCDCDTIME(MtN)fIGUREII.6-2.LONG-TERtl PRESSURIZER LEVELRESPONSE.

III.SUMMARYANDCONCLUSIONS ThemaximumleakratethroughthefailedtubeduringtheGinnaeventwascal-culatedtobe634gpm.Adesignbasiseventwithconservative, FSARassump-tionsrepresents aninitialprimary-to-secondary leakrateof1147gpmforthesamesteamgenerator.

Hence,theinitialleakratewassignificantly 1'essthandesignbasis.Breakflowdepletedprimarycoolantinventory andresultedinautomatic reac-tortripandsafetyinjection withinapproximately 3minutesoftheinitiating event.Primarypressuredecreased rapidlyfollowing reactortripascoolant'temperature decreased andbreakflowfurtherreducedcoolantinventory.

Man-ualreactorcoolantpumptrip,whichoccurredwithin1minuteofreactortrip,wasfollowedbyasmoothtransition fromforcedtonaturalcirculation inbothloops.Naturalcirculation wasmaintained intheintactloopuntilareactorcoolantpumpwasrestarted.

Isolation ofthefaultedsteamgenerator incom-binationwiththecooldownoftheintactloopeventually stagnated flowinthefaultedloop.Analysisresultsandevaluation oftheBloopcoldlegtempera-turesuggestthatacounter-current, flowpatternmayhavedeveloped inthefaultedloopcoldlegupstreamoftheinjection nozzle.Withtheexception oftheupperheadregionandthepressurizer, thereactorcoolantsystemremainedsubcooled throughout theevent.Theupperheadmayhavevoidedthreetimes.Immediately following reactortrip,avoidmayhave'eveloped beforereactorcoolantpumpsweretripped.Noadditional voidingoccurreduntilthepressurizer PORVwasmanuallyopenedtodepressurize theprimarysystem.Theupperheadregioncompletely voidedfrom10:07(42min)to10:10(45min)resulting ina305ftsteambubble.Therelatively slowrepressurization ofthereactorcoolantsystemfrom10:10(45min)to10:17(52min)andtheupperheadthermocouple responsesuggestthatthissteambubblewasatleastpartially collapsed by10:37(72min).However,addi-tionalvoidingoftheupperheadprobablyoccurredathirdtimewhensafetyinjection wasterminated.

Thisvoidmayhaveexistedwhenthereactorcoolantpumpwasrestarted atll:19(114min).AlthoughLOFTRANresultsindicatethatthepressurizer didnotfillwithwater,pressurizer levelresponsefollowing termination ofsafetyinjection indicatethatthepressurizer wasnearlyfull.3274(}:1/111882 65 Thefaultedsteamgenerator wasestimated tohavefilledwithwaterbyapprox-imately10:25(60min).However,releasesduringtheearlysafetyvalveliftsmayhavereducedsteamgenerator inventory anddelayedoverfill.

Anestimated 400,000ibmofprimarycoolantweretransferred tothefaultedsteamgener-ator.Approximately 253,000ibmwascalculated tobedischarged fromthefaultedsteamgenerator untilprimary-to-secondary leakagewasterminated at12:30(185min).Anestimated 28000ibmwasreleasedassteamtothecon-denser.Theremaining 225000ibmrepresents anestimateofthetotalreleasefromthefaultedsteamgenerator safetyvalve.Consideration oftheuncer-taintyassociated withfeedwater flowtothefaultedsteamgenerator andrefilling oftheupperheadindicates thatthisestimatemaybeconservative byupto48000ibm.Inaddition, thecalculated leakageintothefaultedsteamgenerator from10:40(75min)until12:30(185min)reliesonmeasuredsystempressures whicharesubjecttoinstrument uncertainties.

3974n.1/111789 66

'

REFERENCES 1.LicenseeIncidentEvaluation ReportontheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,DocketNo.50-144,April'(1982).2.NRCEvaluation oftheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,NUREG-0909, April(1982).3.L.A.Campbell, et.al.,LOFTRANCODEDESCRIPTION, WCAP-7878, Rev.3,'anuary(1977).4.L.A.Campbell, et.al.,WESTINGHOUSE EYALUATION OFLICENSEEEVENT,No.SG79-11-030, Dec.(1979).5.F.R.Zaloudek, "Steam-Mater CriticalFlowFromHighPressureSystemsInterimReport".,

HanfordAtomicProductsOperation,

Richland, Washington, TID-4500, Jan.(1964).6.J.A.Block,FLUIDTHERMALMIXINGINAMODELCOLDLEGANDDOWNCOMER WITH~~~LOOPFLOW,CREAREInc.,Hanover,NewHampshire, EPRI-NP-2312, April(1982).7.S.LevyandJ.M.Lealzer,ANAPPROXIMATE PREDICTION OFHEATTRANSFERDURINGPRESSURIZED THERMALSHOCKWITHNOLOOPFLOWANDWITHMETALHEATADDITION, S.LevyInc.,Campbell, California, SLI-8220August(1982).3274(:1/111882 67 1

APPENDIXA:INITIALLEAKRATECALCULATION Theindicated pressurizer leveldecreased from32.5Xto11.7%over104seconds,asshowninTableII.3-1.Thislevelwasadjustedforpressurizer pressureasfollows:LPRZLINDX1+0/V1i0/V+100X'refVfVg10/V10/Vgrefwhere,PRZINDV~SubfSubgSubrefactualpressurizer levelindicated pressurizer levelfluidspecificvolumereferstosaturated liquidreferstosaturated vaporreferstonominalsystemconditions LPRZ9:26:18)=32.5x1.00.02698~~~=32.7LPRZ9:28:02)=11.7x1.0002698=14.10.1569+"'.1569'.17460.02617'.174610.15690.15690.19470.025430.1947Duringthistime,coolantinventory wasdepletedatanaveragerateof=1.202-=538GPM33BRK104sec5span'ecConsidering anexcessof'5gpmfromthechargingsystem,theaverageleakratewasapproximately 573gpm.Theinitialleakratewascalculated byextrapolating theaverageratetotheinitialsystemconditions of2250psiaand601F.Theaveragepressureandtemperature overthepre-tripperiodwereapproximately 2100psiaand601F,respectively.

Basedonsubcooled criticalflowthroughthebreak,theinitialflowratewasestimated tobe3274/:1/111682 68

qggy(0)=573x(2250-0.9x1555)x0.02336xx0.5=634GPN32740:1/']11682 69

APPENDIXB:BESTESTIMATEBREAKFLOWMODELFollowing asteamgenerator tubefailure,primarycoolantflowsthroughthebreakintothesecondary sideofthesteamgenerator.

Theprimary-to-secondary pressuredifferential providesthedrivingforceforthisflow.Thefailuresiteisconnected totwoprimaryfluidreserviors, i.e.steamgener-atorinletandoutletplenums,viathesegmented tube.Eachsegmentp'rovides asubstantial resistance tofluidflow.Forlargertubefailures, thisresis-tancerepresents alargefractionofthetotalresistance betweentheprimaryandsecondary systems.ThebreakflowmodelwithinLOFTRANdoesnotconsiderfrictional orformpressurelossesthrougheachtubesegment.Forcriticalflowconditions, thismaynotbeasignificant limitation sincethepressuredropisessentially localized atthebreaklocationorentrancetothefailedtube.However,temperature differences betweentheinletandoutletplenumswillaffectcriticalflowifentrancechokingoccurs.Thistemperature effectisalsonotsimulated withinLOFTRAN.Furthermore, theprimary-to-secondary pressuredifferential isnotaccurately predicted.

Consequently, amoredetailedmodelwasdeveloped whichusesprimaryandsecondary pressuredataincombination withfluidtemperature resultsfromLOFTRANtocalculate breakflow.Flowthroughthefailedtubewassimulated asshowninFigureB-l.Frictional pressurelossesthrougheachtubesegmentwererepresented byanappropriate singlephasefrictionfactor,length,anddiameter.

Entranceandexitlossesforeachtubesegmentandatthebreaklocationwerealsoincluded.

Thissystemleadstothefollowing setofsimultaneous equations whichdescribeflowthroughthefailedtube:xWBRK-SGBRKBRKBRK2xgcxABRK(B-1)RCSBRK2IPLIPLIPLENTEXTD22xcxATUBERCSBRK"LopLENTEXTIJ3274t}:1/111882 7O

FIGUREB-1.SGTUBERUPTUREFLOWMODELDIAGRAt1.

~RCSTzpLLxswj~GGGPIWLaoc.FRC5Topi71 BRKIPLOPL(B-4)where,PVENTEXTADgcSubBRKSubRCSSubIPLSubOPLSubTUBEpressureflowratefluidspecificvolumeTubeentrancelosscoefficient

=0.4,primary-to-secondary flow=1.0,secondary-to-primary flowTubeexitlosscoefficient ATUAE21.0-BRK=1.0,secondary-to-primary flowMoodyfrictionfactorflowareatubediametergravitational constantreferstobreaklocationreferstoprimarysidereferstosteamgenerator inletplenumreferstosteamgenerator outletplenumreferstosteamgenerator tubeCriti'cal flowthroughthefailedtubewascalculated usingamodifiedZaloudekcorrelation forsubcooled criticalflow.Chokedflowconditions foreachtubesegmentandatthebreaklocationwerecalculated fromWCIL=ATUBExClxWCOPL=ATUBExC2x2gfPRCS-C2xPsat(TIPL)]

IPLRCS2tOPL"OPL1/21/2(B-5)(B-6)WCBRK=ABRKxClx2gLPBRK-C2xPsat(TBRK)]

1/2BRK(B-7)32740:1/111882 72

where,TsatWCClC2'lui'dtemperature, Fsaturation

pressure, psiacriticalmassflowrate,ibm/secentranceeffectcoefficient (adjusted tomatchinitialleakrate)0.9Equations B-lthroughB-7weresolvedsimultaneously forbreakflowthroughthefailedtube.32740:1/111682 73

APPENDIXC:CALCULATION OFUPPER,HEADVOIDSIZETheupperheadregionofthereactorvesselwasmodelledasasingle,strati-fiednodewithonlyoutwardflowas.showninFigureC-l.Assystempressuredecreased belowsaturation oftheupperheadfluid,voidingwithintheupperheadregiondisplaced liquidintotheupperplenum.Theextentofvoidingwasestimated assumingthermodynamic equilibrium betweenphases.Metalintheupperheadregionwasconservatively assumedtobeatthefluidtemperature.

Amassandenergybalancebetweeninitialandfinalstateswithintheupperheadvolumeleadstothefollowing expression forthefractionoffinalsteamvolumeVUH,(hh)/V+(7hhf)/oVf(E-hf)(h-K)V+gVVfMC(TT)VUHosatwhere,=fluidspecificvolume'fluidenthalpy=VolumehT(MC)SuboSubfSubgSubUHaverageenthalpyofdisplace'd fluidfluidtemperature metalheatcapacityreferstoinitialcondi.tions referstosaturated liquidreferstosaturated vaporreferstoupperheadregionTableC-1liststheupperheadconditions forthefirsttwoincidents ofpotential upperheadvoidingduringtheGinnaevent(seesectionII.5.6.2).

Thecalculated upperheadregionvoidfractions fromequationC-1arealsopresented.

Fortheseresults,theenthalpyofdisplaced liquid,was assumedtobethelinear.averageoftheinitialandfinalstates.32740:1/111882 FIGUREC-1.UPPEP.HEADVOIDINGILLUSTRATION.

XII'TIAtVtLLH)hIII75 TABLE0-1UPPERHEADVOIDSIZETirade9:28:30Pp(Psia)1300Tp(Psia)577.5PF(Psia)1200Vg/VUH0.431V(Ft~)13210:0710985568451.030532740:1/11168276