ML17256A403: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:.E, | {{#Wiki_filter:.E,ATTACHMENT BANALYSISOFPLANTRESPONSEDURINGJANUARY25,1982STEAMGENERATOR TUBEFAILUREATTHER.E.GINNANUCLEARPOWERPLANTNOVEMBER, 1982Preparedby:E.C.Volpenhein II'estinghouse ElectricCorporation NuclearEnergySystemsP.O.Box355Pittsburgh, Pennsylvania 15230PreparedforRochester GasandElectric89EastAvenueRochester, N.Y.1464982ii290405000244821122pDRPQOCKpDp32740:1/111782 TABLEOFCONTENTSSECTIONPAGEABSTRACTLISTOFTABLESLISTOFFIGURES~~~~~~~~.1~~'~~~~~11~~~~~~~oillI.INTRODUCTION 1II.ANALYSISOFPLANTRESPONSE~~~~~~II.lSystemsAnalysisCodeII.2PlantDataII.3InitialLeakRate'II.4Pre-tripSystemResponse~II.5Post-trip SystemResponse5.1PrimarySystemPressure5.2ReactorCoolantFlow5.3ReactorCoolantTemperature 5.4Pressurizer Level5.5BreakFlow5.6ReactorCoolantVoiding~5.7SteamGenerator OverfillII.6LongTermRecovery-I~~~~~~2~~245~~7162128335255586062III.SUMMARYANDCONCLUSIONS | ||
...................65REFERENCES | |||
............................67AppendixA:InitialLeakRateCalculation | |||
~.-........ | |||
~~68AppendixB:BestEstimateBreakFlowModel............70:AppendixC:Calculation ofUpperHeadVoidSize-..743274/:1/111782 ABSTRACTPlantresponsetotheJanuary25,1982steamgenerator tubefailureattheR.E.GinnanuclearpowerplanthasbeenanalyzedusingthecomputercodeLOFTRANtoprovideadditional insightintoreactorcoolantvoiding,naturalcirculation loopflows,andprimary-to-secondary leakageduringtheevent.Resultsarecomparedtoavailable plantdata.3274(}:1/111782 | |||
/TABLEII.1-1LISTOFTABLESSEQUENCEOFMAJOREVENTSTABLEII.3-1PRE- | /TABLEII.1-1LISTOFTABLESSEQUENCEOFMAJOREVENTSTABLEII.3-1PRE-TRIPPRESSURIZER LEVELTABLE11.5.1-1.SEQUENCEOFPORVOPERATION TABLEC-1UPPERHEADVOIDSIZE3274O:1/111782 LISTOFFIGURESFIGUREFIGUREII.1-1!I.4-1FIGUREII.4-2FIGUREII.4-3FIGURE,II.4-4FIGUREII.4-5FIGUREII.4-6FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.4-7II.5-1II.5.2II.5.3II.5-4II.5.1-1II.5.1-2FIGUREFIGUREFIGUREFIGUREII.5.1-3II.5.1-4II.5.2-1II.5.2.1-1 FIGUREFIGUREII.5.3.1-2II.5.3.2-1 FIGUREFIGUREII.5.3.2-2 II.5.3.2-3FIGUREFIGUREFIGUREFIGUREII.5.3.2-4 II.5.3.2-5 II.5.3.2-6II.5.3.3-1FIGUREII.5.2.1-2 FIGUREII.5.3-'1 FIGUREII.5.3.1-1GINNASAFETYINJECTION CAPACITYPRE-TRIPNORMALIZED COREPOWERPRE-TRIPSECONDARY SYSTEMPRESSUREPRE-TRIPPRESSURIZER PRESSUREPRE-TRIPPRESSURIZER LEVELPRE-TRIPAVERAGERCSCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER PRESSURE: | ||
CONSTANTCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEMPERATURE NORMALIZED PRE-TRIPSTEAMFLOWNORMALIZED PRE-TRIPFfEDWATER FLOWINTACTSTEAMGENERATOR PRESSUREINTACTLOOPCOLDLEGTEMPERATURE REACTORCOOLANTSYSTEMPRESSURE'PRIMARY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOWPRESSURIZER WATERVOLUMEUPPERHEADFLUIDMASSVOLUMETRIC LOOPFLOWRATESCOMPARISON OF"MIXEDTEMPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROMTHESGOUTLETPLENUMFAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWSPOST-TRIP REACTORCOOLANTTEMPERATURES STEAMDUMPVALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCSGINNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES COMPARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEMPERATURES FOLLOWING REACTORTRIPFAULTEDLOOPCOLDLEGTEMPERATURES MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURf CALCULATION MIXINGVOLUMELOOPFLOWANDSAFETYINJECTION FLOWMIXINGVOLUMEFLOWTEMPERATURfS BESTESTIMATEREACTORVESSELDOWNCOMER TfMPERATURE COREEXITFLUIDTEMPERATURE 3274(:1/111982 111 | |||
LISTOFFIGURES(Cont.)FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.5.4-1II.5.5-1II.5.5-2II.5.7-1II.6-1II.6-28-1C-1FIGUREII.5.3.4-1FIGUREII.5.3.4-2FIGUREII.5.3.5-1FIGUREII.5.3.6-1FIGUREII.5.3.6- | LISTOFFIGURES(Cont.)FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.5.4-1II.5.5-1II.5.5-2II.5.7-1II.6-1II.6-28-1C-1FIGUREII.5.3.4-1FIGUREII.5.3.4-2FIGUREII.5.3.5-1FIGUREII.5.3.6-1FIGUREII.5.3.6-2BREAKFLOWFROMSGINLETANDOUTLETPLENUMSLOFTRANFAULTEDLOOPHOTLEGTEMPERATURE FAULTEDSGTUBEBUNDLEFLUIDTEMPERATURE POST-TRIP UPPERHEADFLUIDTEMPERATURE LOFTRANUPPERHEADFLUIDTEMPERATURE PRESSURIZER LEVELINDICATION LOFTRANANDBESTESTIMATEBREAKFLOWSFAULTEDSTEAMGENERATOR PRESSUREFAULTEDSTEAMGENERATOR WATERVOLUMERCSANDFAULTEDSTEAMGENERATOR PRESSURES LONGTERMPRESSURIZER LEVELRESPONSESGTUBERUPTUREFLOWMODELDIAGRAMUPPERHEADVOIDINGILLUSTRATION 32740:1/111982 1V I.INTRODUCTION AttherequestofRochester GasandElectric(RGE),Westinghouse hasanalyzedtheJanuary25,1982steamgenerator tuberuptureeventattheR.E.Ginnanuclearpowerplant.Theprinciple objective ofthiseffortistosupplement theexistingdatabase'oprovideamorethoroughunderstanding oftheplantr'esponse andactualsequenceofevents.Ofparticular interestarevoidingofthereactorcoolant,naturalcirculation loopflowbehavior, andprimary-to-secondary leakage.TheLOFTRANcomputercodewasusedfor(3)theseanalyses. | ||
Anumberofauxiliary calculations arealsodescribed whichcomplement LOFTRANbyprqviding moredetailedmodelling oflocalized effects.Theplantresponsetothesteamgenerator tubefailureandsubsequent r'ecovery actionsispresented forthreedifferent, phasesoftheevent.Thepre-tripdatarecordprovidesinformation forestimating theinitialleakrateandextentoftubefailure.LOFTRAHanalysisofthisperiodextrapolates thisdatatodetermine theapproximate timeoftubefailureandhistoryoftube(leakage.Following reactortrip,severalautomatic protection systemswere~~~actuatedinrapidsuccession andasequenceofemergency recoveryactionswasinitiated tomitigatetheconsequences oftheaccident. | |||
Thisemergency recov-eryperiodculminated intermination ofsafetyinjection. | |||
Theplantresponsetotheautomatic protection systemsandrecoveryactionsduringthisphasewasalsoinvestigated usingLOFTRAN.Finally,thelongtermplantresponseandadditional leakageintothefaultedsteamgenerator aftertermination ofsafetyinjection isdiscussed. | |||
Abriefdiscussion ofLOFTRANmodelling ispresented. | |||
Severallimitations areidentified whicharesignificant whenappliedtotheGinnaeventandmust-beconsidered whenevaluating theanalysisresults.Theseresultsarecomparedtotheavailable plantdatainthefollowing sections. | |||
32740:1/111882 | |||
II.ANALYSISOFPLANTRESPONSEII.1SystemsAnalysisCodeLOFTRANisafastrunning, | II.ANALYSISOFPLANTRESPONSEII.1SystemsAnalysisCodeLOFTRANisafastrunning,digitalcomputercodedeveloped tosimulatetran-sientbehaviorinWestinghouse pressurized waterreactors. | ||
Theprogrammodelsneutronkineticsaswellascontrolandprotection systemsontheprimaryandsecondary systems.Themostsignificant oftheprotection systems,theEmer-gencyCoreCoolingSystem(ECCS)andtheAuxiliary Feedwater (AFW)system,aredescribed below.TheECCSwasrepresented bythecombinedcapacityofthreehighheadsafetyinjection pumpsshowninFigureII.1-1.Safetyinjection initiated automatic-allyonlowpressurizer pressureof1740psiaandwasassumedequallydistrib-utedbetweenloops.Thesuctionofthesepumpswasinitially alignedtotwoboricacidtanks(BAT)containing approximately 4320gallonsofboratedwaterat140F.Onlowlevel,suctionwasautomatically re-aligned totheRefueling WaterStorageTank(RWST)whichcontained coolerwater.Intheanalysespre-sented,60FwaterfromtheRWSTwasassumedtobeinjectedthroughtheBATcontaining a140Fboricacidsolution. | |||
Reactorcoolantmakeupfromthenor-malchargingpumpswasalsosimulated withsuctionfromthesepumpsalignedtotheRWST.Chargingflowisdiscussed onacasebycasebasis'inthefollowing sections. | |||
TwomotordrivenAFWpumpsautomatically startedonasafetyinjection signal.Eachmotordrivenpumpprovidedapproximately 200GPMofwaterfromtheCondensate StorageTank(CST)anddelivered tooneofthetwosteamgener-ators.OnesteamdrivenAFWpumpstartedautomatically onlow-lowsteamgen-eratorlevel.Thesteamdrivenpumpsuppl.ied atotalof400GPMwhichwasavailable tobothsteamgenerators. | |||
AFWpumpoperation wassimulated asdes-cribedinthesequenceofeventsinTableII.l-l.Apurgevolumeof200ft3containing normalfeedwater wasalsosimulated. | |||
Thisrepresented adelayofapproximately 4minutesbeforecoldCSTwaterenteredthetuberegionof:theintactsteamgenerator. | |||
3274(}:1/111882 22002000180016001400120010008004002000.020040060080010001200FIGUREII.1-1.GINiVASAFETYIHJECTIOiV CAPACITY. | |||
3 PreviousLOFTRANanalyseshavesimulated thePrairieIslandtubefailureeventwell.However,LOFTRANissomewhatlimitedbythemodelling oftheupperheadregion,steamgenerator secondary side,andprimary-to-secondary leakage.Theupperheadmodelling assumeshomogeneous, thermodynamic equilibrium conditions duringflashingoftheupperheadfluid.Refilling oftheupperheadregionisartificially constrained tosimulatenon-equilibrium behavior. | |||
Effectively, theupperheadregioncannotrefillduringnaturalcirculation flow.Furthermore, flowintotheupperheadregionviaguidetubesisnotrepresented. | |||
Consequently, thecalculated upperheadfluidtemperature maybeunrealistic forplantswithsmallerupperhead"spray"nozzles,suchasGinna.LOFTRANisalsolimitedbythehomogeneous, | |||
'saturated conditions withinthe'secondary whichpromotesanunrealisticlylethargic tubebundleregiontemperature response,to AFMflowandsecondary-to-primary heattransfer. | |||
Inaddition, theseconditions resultinartifically reducedsteamgenerator pressures whennosteamflowoccurssincethesteamiseffectively assumedtobeincontactwiththesteamgenerator tubes.Thebreakflowcal-culations withinLOFTRANarebasedonconservative, i.e.maximumflow,criti-calflowcorrelations. | |||
Theaccuracyofthesecorrelations inpredicting criticalflowtrendsoverawiderangeofsystemconditions isuncertain. | |||
Furthermore, thebreakflowmodelling doesnotconsiderflowresistance throughthefailedtube,orfluidtemperature variations betweenthesteamgenerator inletandoutletplenums.Finally,LOFTRANdoesnotpermitreverseflowtooccurinthecoolantlooptowhichthepressurizer isconnected. | |||
Fortheresultspresented, thepressurizer wasmodelledontheintactloopalthoughduringtheGinnaeventthepressurizer wasonthefaultedloop.Thismayresultinunrealistic loopflowsduringrefilling ofthepressurizer. | |||
II.2PlantDataTheplantdatawhichformsthebasisoftheanalysesthatfollowwasobtainedfromvariouscomputerrecords,stripchartsofsystemparameters, andthesequenceofeventsasreconstructed byRGE.TheGinnaplantcomputerisarealtimecentralprocessing unitwhichstoresselectedplantparameters: | |||
foruseduringnormaloperations.Severalperipherial devicesservicedbythiscentralunitprovidetheprincipal dataforpost-accident analyseswhichincludesprimaryandsecondary pressures, reactorcoolanttemperatures, and3274(}:1/111882 r~ | |||
pressurizer level.Thesedevicesincludeapre-tripeventrecorder, aTI-7000teletypeterminal, analarmtypewriter, andalogtypewriter. | |||
Communications withRGEpersonnel supplemented thisdataandprovidedadditional insightintotheevent.Thesequenceofoperatoractionswasextracted fromthesequenceofeventsprovidedbyRGEandthechronology pfplantalarms.whenpossible. | |||
Themajoreventsarepresented inTableII.l-l.Comprehensive plantdataandthecompletesequenceofeventsisavailable inreference l.II.3InitialLeakRateThepre-trippressurizer levelresponsetothelossofreactorcoolantwasanalyzedtoestimatetheinitialprimary-to-secondary leakrate.Rapidvaria-tionsinreactorcoolanttemperature duetoturbinerunbackandautomatic steamdumptothecondenser tendedtomasktheinventory loss.However,anaverageleakratepriortotripwas.estimated byconsidering theindicated pressurizer levelresponsebetweentimesofconstantaveragecoolanttempera-ture.Sincethecoolanttemperatures atthesetimeswereapproximately thesame,theeffectoftheturbinerunbackonthiscalculation wasminimized. | |||
Thepre-trippressurizer level,adjustedforinstrumentation calibration, ispresented inTableII.3-1;Basedondiscussions withRGEpersonnel, twochargingpumpswereoperating priortothetubefailure,oneinmanualandtheotherinautomatic. | |||
Eachpumpwasdelivering approximately 25GPMofflow.Totalletdown,including | |||
'eactorcoolantpumpsealleakoff,was50GPM.Following tubefailure,onechargingpumpautomatically increased tothemaximumcapacityof60GPMaspressurizer leveldecreased. | |||
Althoughathirdchargingpumpwasmanuallystartedapproximately 40secondsbeforereactortrip,9:27:30,itwouldhaveprovidedlittleflowbeforetrip.Consequently, thenormalchargingsystemwassupplying anexcessofapproximately 35GPMduringthisperiod.Theaveragepre-tripleakratewasestimated tobe573GPM(Appendix A).Aninitialleakrateof634GPMwascalculated byextrapolating theaverage-leakratetotheinitialsystemconditions basedonsubcooled criticalflow(5)throughthefailedtube.Aneffective breakareaof0.0033ft2wasdetermined byproportioning thecriticalflowrateascalculated byLOFTRANforthe.initialsystemconditions tomatchtheinitialleakrate.3274(}:1/111882 | |||
TABLEII.3-1PRE- | TABLEII.3-1PRE-TRIPPRESSURIZER LEVEL~~Time(A.M.)Indicated Level(Xspan)Adjusted* | ||
Level('Xspan)Tavg(F)9:26:189:26:269:26:349:26:429:26'.589:27:069:27:149:27:229:27:309:27:389:27'469:27:549:28:029:28:10132.530.630.530.530.230.230.228.926.220.8'17.914.811.79.032.731.030.830.930.730.530.629.426.922.019.516.814.111.9571.2571.2571.9573.2575.2576.4576.8576.1575.3574.5573.4572.4571.4570.1*SeeAppendixA3274(}:1/1 11782 | |||
II.4Pre- | II.4Pre-TripSystemResponseThefirstindications ofabnormalconditions wererecordedatapproximately 9:25whenanumberofalarmssoundednearlysimultaneously. | ||
Theseincludedlowpressurizer | |||
: pressure, lowpressurizer level,condenser airejectorradia-tion,andBsteamgenerator leveldeviation alarms.Thealarmrecorderindi-catesthatthelowpressurizer presurealarmsoundedfirst.Systemconditions werenormalat9:22withnoapparentsymptomsofprimary-to-secondary leakage.Thereactorcoolantsystempressureandtemperature priortoreactortripwereanalyzedusingnormalized corepower,FigureII.4-1,'nd secondary | |||
: pressure, FigureII.4-2,dataasforcingfunctions forthecalculations. | |||
Alternative secondary sideboundaryconditions werealsoconsidered asforcingfunctions forthepre-tripcalculations, including normalized steamandfeedwater flows..Althoughtheseproducedreasonable results,theinstrument uncertain-tiesandresponsetimeswerenotasconducive assecondary pressuretopre-tripanalysis. | |||
Thepressurizer pressureandlevelresponses calculated usingLOFTRANagreedverywellwithplantdataasillustrated inFiguresII.4-3andII.4-4,respectively. | |||
Extrapolation ofthisdatawithaninitialleakrateof634GPMsuggeststhattubefailureoccurredat9:25:10(dmin).Thecalculated pressureattheactualtimeofreactortripwasapproximately 30PSIgreaterthanindicated. | |||
Theaveragereactorcoolanttemperature iscomparedwithpre-tripdatainFigureII.4-5.Theincreaseintemperature duetoturbinerunbackmomentarily maskedthedecreaseinprimarycoolantinventory. | |||
Simi-larly,whenthesteamdumpvalvesopened,theassociated cooldownenhancedreactorcoolantsystemdepressurization. | |||
FiguresII.4-6andII.4-7illustrate thepredicted pressurizer pressureandlevelresponses whenreactorcoolanttemperature wasmaintained constant. | |||
Asdemon'stated, thepressureandlevelresponses aresignificantly affectedbycoolanttemperature trends.3274(:1/111882 | |||
100GI<<HA(+)LOFTRAN(-)90~r80C)CL70C)LJJIVo..60C)509:24925926TINE(A.ii.)9:279:28929FIGUREII.4-1.PRE- | 100GI<<HA(+)LOFTRAN(-)90~r80C)CL70C)LJJIVo..60C)509:24925926TINE(A.ii.)9:279:28929FIGUREII.4-1.PRE-TRIPthORllALIZED COREPOllER. | ||
1100GINNA(+)LOFTRAN(-)10009008007006009249:25926TIVE(A.H.)9:279:28929FIGUREII.4-2.PRE- | 1100GINNA(+)LOFTRAN(-)10009008007006009249:25926TIVE(A.H.)9:279:28929FIGUREII.4-2.PRE-TRIPSECONDARY SYSTEMPRESSURE 2200GIN~iA(+)LOFTRAt~(-)20001800LU1600C'40012009:249:259:269:279:289:29TItiE(n.n.)FIGUREII.4-3.PRE-TRIPPRESSURI"ER PRESSURE. | ||
10080GIr<NA(+)LOFTRAN(-)60402009:249259:26927928929TIflE(A.H.)FIGUREII.4-4.PRE- | 10080GIr<NA(+)LOFTRAN(-)60402009:249259:26927928929TIflE(A.H.)FIGUREII.4-4.PRE-TRIPPRESSURIZER LEVEL. | ||
58520GINNA(+)LOFTRAN(-)1612u5755659249:259:269:279:2809:29TII1E(A.H.)FIGUREII.4-5.PRE-TRIPAVERAGERCSCOOLANTTft1PERATURE | 58520GINNA(+)LOFTRAN(-)1612u5755659249:259:269:279:2809:29TII1E(A.H.)FIGUREII.4-5.PRE-TRIPAVERAGERCSCOOLANTTft1PERATURE | ||
2200GINNA(+)LOFTRAN(-)2000180016001400'12009:249:259269:279:28TInE(A.W.)FIGUREII.4-6.PRE- | 2200GINNA(+)LOFTRAN(-)2000180016001400'12009:249:259269:279:28TInE(A.W.)FIGUREII.4-6.PRE-TRIPPRESSURIZER PRESSURE: | ||
CONSTANTCOOLANTTEf1PERATURE 100O60+O~r40UiCYUJ2009289249:259:27TIi'iE(A.t1.)FIGUREII.4-7.PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEHPERATURE 9:29 | |||
TABLEII.l-l:SEQUENCEOFMMOREVENTSEventManual(0)Automatic(A)ActualTIME(Sec) | TABLEII.l-l:SEQUENCEOFMMOREVENTSEventManual(0)Automatic (A)ActualTIME(Sec)Simulated TubeFailureTurbineRunbackAutomatic SteamDumpReactorTripSafetyInjection SignalFeedwater Isolation Auxiliary Feedwater StartReactorCoolantPumpTripBMotorDrivenAFWPumpOffManual.SteamDumpBLoopMSIVClosedAFWThrottled ASGAFWStoppedtoBSGChargingPumpsStartedPORVCycledSITerminated 078110182190192220230410(1)770(1)890("950(1)1250('2330(25404310(070118182198198239246410530(530(2)9501250233025404310Thesetimesareapproximate andtypically mayvarybyupto60seconds.SeesectionII.5foradiscussion onthesimulation oftheseevents.3274Q:1/111882 l5 | ||
II.5Post- | II.5Post-Trip SystemResponseContinued leakageofprimarycoolantincombination withrapidcooldownofthereactorcoolantsystemfollowing actuation ofthesteamdumpsystem,causedanautomatic reactortriponlowpressurizer pressure. | ||
Primarysystempressuredecreased rapidlyaspowergeneration wasabated,andseveralsupporting sys-tems,including theECCSandAFWsystem,startedinrelatively rapidsucces-sion.Aseriesofoperatoractionscommenced inaccordance withemergency responseprocedures torecovertheplanttoasafeshutdowncondition. | |||
TheplantresponsetothesesystemsandoperatoractionswasanalyzedusingLOFTRANandtheresultsarepresented inthefollowing sections. | |||
Theseanaly-seswerelimitedtothetimefrominitialfailureuntil10:40(75min),shortlyaftertermination ofsafetyinjection. | |||
Beyondthistime,LOFTRANanalysiswasnotappropriate becauseofthehomogeneous, equilibrium secondary sidemodelling. | |||
Additional leakageintothefaultedsteamgenerator wasestimated fromplantdatatodetermine themassdischarged fromthesteamgenerator afteroverfill. | |||
Thesteamgenerator tubefailureoccurredintheBloopduringtheGinnaevent.Consequently, faultedloopandBlooparesynonymous inthefollowing sections. | |||
Similarly, intactloopandAloopare*usedinterchangably. | |||
However,AloopandBloopdesignations generally refertoplantdata,andintactandfaultedtoLOFTRANcalculations. | |||
Fortheseanalyses, normalized steamflow,FigureII.5-1,andfeedwater flow,FigureII.5-2,fromplantdatawereusedpriortotripasforcingfunctions forthecalculations. | |||
Thisprovidedadditional flexibility inmodelling sub-sequentoperatoractionswithL'OFTRAN. | |||
TheLOFTRANanalysisresults,whichincludeanadjustment totheinputsteamflowtoaccountforincreased secon-daryp'ressure, arealsoshownforcomparison. | |||
Afterreactortrip,theintactsteam'generator pressurewascontrolled toreproduce theindicated loopAcoldlegtemperatures. | |||
Theintactsteamgenerator pressureinputtoLOFTRANiscomparedtoplantdatainFigureII.5-3.FigureII.5-4showsthecalculated andmeasuredintactloopfluidtemperatures atthecoldleginlet.NotethatloopAcoldlegfluidwassubcooled attheAloopsteamgenerator pressurebetweenapproximately 9:32(7min)and9:41(16min).Becauseofthehomo-geneousequilibrium secondary sidemodelling withLOFTRAN,suchsubcooling 32740:1/11188216 100GINNA(+)LOFTRAN(-)8060402009:249:259:26927TIi~>E(A.>>.)FIGUREII.5-1.i%OR/1ALIZED PRE-TRIPSTENlFLOW.9:28929 | |||
10080604020'9249'259:269:27TINE(A.ti.)FIGUREII.5-2. | 10080604020'9249'259:269:27TINE(A.ti.)FIGUREII.5-2.HORHALIZED PRE-TRIPFEEDHATER fLOW.9289:29 | ||
1200.01000.0GINNA(G)LOFTRAN(-)800.00CG600.00~400.00200.000.0CDCDCDTINKtMIN)FIGUREII.5-3. | 1200.01000.0GINNA(G)LOFTRAN(-)800.00CG600.00~400.00200.000.0CDCDCDTINKtMIN)FIGUREII.5-3.INTACTSTEANGENERATOR PRESSURE. | ||
19 | |||
700.00GINHA(G)LOFTRAN(-)INLETOUTLETC)C)ClAJ7lHE(MlM)FIGUREII.5-4.INTACTLOOPCOLDLEGTEf1PERATURE.20 | 700.00GINHA(G)LOFTRAN(-)INLETOUTLETC)C)ClAJ7lHE(MlM)FIGUREII.5-4.INTACTLOOPCOLDLEGTEf1PERATURE. | ||
20 | |||
couldnotbereproduced.,However, | couldnotbereproduced. | ||
,However,thecooldownoftheAloopwassimulated byartifically steamingtheintactsteamgenerator. | |||
Hence,thecalculated steamgenerator pressurewaslessthanmeasuredduringthisperiod.II.5.1PrimarySystemPressurePrimarypressurecontinued todecreasefollowing reactortripasbreakflowdepletedcoolantinventory andautomatic steamdumpcooledthereactorcoolantsystem.Safetyinjection wasactivated withinapproximately 16seconds,at9:28:28(3.2min),whenpressurizer pressurereached1740psia.Threehighheadsafetyinjection pumpsbegantoinjectshortlythereafter | |||
.torestorecoolantinventory. | |||
Pressurecontinued todecreasetoaminimumof1200psiabetween9:29(4min)and9:30(5min)asautomatic steamdumpestablished no-loadRCStemperature. | |||
Asmallvoidmayhavedeveloped intheupperheadregion.duringthisinitialdepressurization althoughLOFTRANdidnotpredictflashing(seesectionII.5.6.2). | |||
Thecalculated RCSpressurehistoryiscomparedtoplantdatainFigureII.5.1-1. | |||
Whenthepost-trip cooldownsubsidedafterno-loadtemperature hadbeenestab-lished,safetyinjection flowinexcessofbreakflow,FigureII.5.1-2, repressurized thereactorcoolantsystemuntilapproximately 9:32(7min).Heat-upofthereactorcoolantduringthetransition fromforcedtonaturalcirculation duetoRCPtripcontributed tothisrepressurization. | |||
LOFTRANanalysisdemonstrated amorerapidrepressurization duringthisperiodthanactuallyobservedpossiblybecauseofcollapseofanupperheadvoidduringtheactualevent.Reactorcoolantshrinkage, ascoldAFWenteredtheAloopsteamgenerator, incombination withbreakflowdecreased pressuretoamini-mumof1140psiabetween9:32(7min)and9:41(16min).Manualsteamreleasebeginning atapproximately 9:38(13min)contributed littletothisRCScool-downsincethesteamgenerator tubebundleregionwassubcooled. | |||
AlthoughadecreaseinprimarysystempressureisevidentintheanalysisresultsshowninFigureII.5.1-1, theactualpressuredecreased significantly lower.Thisiscausedinpartbytheinitially highercalculated primarypressureat-9:32(7min).Inaddition, althoughLOFTRANindicates asmallamountofwaterremainedinthepressurizer duringthisperiod,FigureII.5;1-3, thepressur-izermayhaveactuallydrained.Thiswouldhaveenhanceddepressurization oftheprimarysystem.3274(:1/111882 21 | |||
2500.02250.0GINNA(G)LOFTRAN(-)1750.01500.0GGGGCGG1000.0CDCDCDCDAJTINE(MIN)CDCDCDC)CDFIGUREII.5.1-1.REACTORCOOLANTSYSTE[1PRESSURE.22 | 2500.02250.0GINNA(G)LOFTRAN(-)1750.01500.0GGGGCGG1000.0CDCDCDCDAJTINE(MIN)CDCDCDC)CDFIGUREII.5.1-1. | ||
REACTORCOOLANTSYSTE[1PRESSURE. | |||
22 | |||
125.00LOFTRAN(-)100.00SIFLOll75.000lsJ~50.00025.000BREAKFLOW0.0C7C)EDC)C)AJC)C)CDC)TIVE(MlH)CDClC7CDtDC)C)CDC)EX7CDCDFIGUREII.5.1-2.PRIORY-TO- | 125.00LOFTRAN(-)100.00SIFLOll75.000lsJ~50.00025.000BREAKFLOW0.0C7C)EDC)C)AJC)C)CDC)TIVE(MlH)CDClC7CDtDC)C)CDC)EX7CDCDFIGUREII.5.1-2. | ||
PRIORY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOW.23 | |||
800.00700.00LOFTRAN(-)600.00500.00F00.00300.00CD200.00100.000.0CDCDCDAJCDTlHK(MlH)C)CDCDEOCDCDCDCOFIGUREII.5.1-3. | 800.00700.00LOFTRAN(-)600.00500.00F00.00300.00CD200.00100.000.0CDCDCDAJCDTlHK(MlH)C)CDCDEOCDCDCDCOFIGUREII.5.1-3. | ||
PRESSURIZER WATERVOLUt1E. | |||
WhenAFWflowwasterminated totheAloopsteamgenerator at9:41(16min),thecooldownofthereactorcoolantsystemsubsided. | |||
Safetyinjection flowrepressurized theprimarysystemtowardanequilibrium pressureofapproxi-mately1320psiawherebreakflowandsafetyinjection werenearlyequal,asillustrated inFigureII.5.1-2. | |||
Operation ofthesteamdumpvalvesoccasion-allyperturbed thisgeneraltrendandmaintained pressureslightlybelowequilibrium. | |||
LOFTRANcalculations slightlyoverestimated thereactorcoolantsystempressureduringthisperiod.Twochargingpumpswithacombinedcapac-ityof120gpmwereassumedtoi'njectintothefaultedloopcoldlegbeginning at10:04(39min),asnotedinthesequenceofevents.Asaresult,thepre-dictedprimarypressureincreased towardanequilibrium valueof1410psiaby10:07(42min).Thisisconsistent withplantdatawhichindicates anequi-libriumpressureofapproximately 1390psia.Cyclingofapressurizer PowerOperatedReliefValve(PORV)wassimulated beginning at10:07(42min)andproceeded asindicated inTableII.5.1-1. | |||
ThePORVwasmodelledtofullyopenorcloseinstantaneously. | |||
Duringtheactualevent,thePORVfailedtocloseonthefourthcycleandwasmanuallyiso-lated.Althoughthisisolation wasassumedcompleted by10:10(45min),theactualtimemayhavebeenslightlylater.Thecalculated reactorcoolantsystempressureresponseduringthisperiodagreedwellwithavailable plantdata.Theminimumpressureduringthisperiodwascalculated tobe847psia.Following isolation ofthefailedPORV,thereactorcoolantsystempressureincreased rapidlytoapproximately 1400psiaassafetyinjection flowandreverseflowfromtherupturedsteamgenerator increased coolantinventory. | |||
Theactualrepressurization wasslowerthancalculated byLOFTRAN.Asnotedpreviously, LOFTRANinhibitsrefilling oftheupperheadregionduringnaturalcirculation flow,asevidenced bytheconstantupperheadfluidmassbeyond10:10(45min)inFigureII.5.1-4. | |||
Thisenhancedrefilling ofthepressurizer and,consequently, repressurization oftheprimarysystem.Hence,theslowerincreaseinpressureobservedintheactualeventisattributed toatleastpartialrefilling oftheupperheadregion.By10:17(52min),safetyinjection andchargingflowshadreestablished anequilibrium withbreakflowatapproximately 1400psia.Whensafetyinjection 32740:1/111782 25 3.00E+OiLOFTRAH(-)2.50Ei"2.00Ei,~t.50E&iSaturated Liquidl.OOEKli5000.0r>-Saturated Vapor0.0C)CDAJ8CDCDCD07TINE(MlM)FIGUREII.5.1-4. | |||
UPPERHEADFLUID(NSS.26 TABLEII.5.1-1SEQUENCEOFPORVOPERATION CycleOpenedTime(A.M.)Closed10:07:30.5 10:07:35.5 10:07:49.3 10:07:57.3 10:08:44.0 10:08:52.7 10:09:10.1 Actualtimeofisolation mayhavebeenslightlylater32740:1/1 1178227 | |||
wasterminated at10:37(72min),primarysystempressuredecreased rapidlyfrom1370psiato945psia.LOFTRANanalysesdemonstrated asimilardepres-surization asthepressurizer steambubbleexpandedtoaccommodate residualbreakflowinexcessofreactorcoolantmakeup.Continued chargingflowandpressurizer heateroperation maintained primarypressuregreaterthan'thefaultedsteamgenerator pressureuntilprimary-to-secondary leakagewasterminated at12:30(185min).II.5.2ReactorCoolantFlowAtransition fromforcedtonaturalcirculation flowoccurredfollowing manualreactorcoolantpumptripat9:29:09(4min).Thisisevidenced bytheincreasing loopdelta-Tbetween9:29(4min)and9:31(6min).AFWflowpref-erentially cooledtheAsteamgenerator whichenhancednaturalcirculation flowintheAloopandretardedflowintheBloop.Thisresponsewasdemonstrated intheLOFTRANresultsshowninFigureII..5.2-1 from9:32(7min)to9:41(16min).WhenAFWflowwasthrottled at9:41(16'min),flowthroughtheAintactloopwascalculated todecreasetoapproximately 4Xofinitialconditions. | |||
Flowthroughthefaultedloopmomentarily increased, asAFWflowfromtheturbinedrivenAFWpumpcontinued tocoolthefaultedsteamgenerator, until9:46(21min)whenAFWflowwasterminated; Asthecooldownoftheintactsteamgenerator continued, flowthroughthefaultedloopwas'alculated tostagnateat10:10(45min).Natural.circulation flowthroughtheintactloopwasmaintained between3Xand4gfullflowuntilthereactorcoolantpumpwasrestarted at11:19(114min).II.5.2.1LoopBColdLegFlowAlthoughLOFTRANdidnotsupportsignificant reverseflowthroughthefaultedloop,theeffect.ofbreakflowmodelling onthecalculated loopflowwasuncertain. | |||
Hence,thepotential forprimary-to-secondary leakagegenerating sufficient reverseloopflowtoproducetheobservedBlooptemperature responsewasinvestigated. | |||
FigureII.5.2.1-1 comparesthetotalreverseflow,i.e.safetyinjection flowandloopflowfromthevesseldowncomer, whichwouldhaveamixedtemperature identical totheindicated Blooptemperature, 28 | |||
10.000LOFTRAN(-)8.00006.00001.0000lINTACTLOOP4~2.0000FAULTEDLOOP0.0"l.0000ClClCDClT1HEtHlN)CDCDCDCDCDCDEKIFIGUREII~ | 10.000LOFTRAN(-)8.00006.00001.0000lINTACTLOOP4~2.0000FAULTEDLOOP0.0"l.0000ClClCDClT1HEtHlN)CDCDCDCDCDCDEKIFIGUREII~52lVOLUMETRIC LOOPFLOWRATES~ | ||
300.00250.00200.00ChargingPumpsStartedPORVClosedCalculated(+)"MixedTemperature"ReverseLoopFlow.150.00PORVOpened50.000OutletPlenumBreakFlow0.0-25.000CDCDCDCDCDCDCDTIME"(HIM)CDCDCDCDCDCDCDCDCQCDFIGURE'I!.5.2.1-1. | 300.00250.00200.00ChargingPumpsStartedPORVClosedCalculated(+)"MixedTemperature" ReverseLoopFlow.150.00PORVOpened50.000OutletPlenumBreakFlow0.0-25.000CDCDCDCDCDCDCDTIME"(HIM)CDCDCDCDCDCDCDCDCQCDFIGURE'I!.5.2.1-1. | ||
COiiPARISON OF"MIXEDTEYiPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROtlSGOUTLETPLENUi~i. | |||
3O randthecalculated breakflowfromthesteamgenerator outletplenum.Asdemonstrated, primary-to-secondary leakagewasmuchlessthantherequiredmixedloopflow.Asanadditional assessment ofpotential reverseloopflow,theresponseofthetubebundlefluidtemperature inthefaultedsteamgenera-torwascalculated (seesectionII.5.3.5). | |||
Theseresultssuggestthatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenera-torwouldhavebeencolderthantheintactsteamgenerator. | |||
Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred. | |||
Ginnadatademonstrated propagation ofaportionofthesafetyinjection flowupstreamoftheinjection locationbeginning at9:39(14min).Inaddition, theobserved8loopcoldlegtemperature responsesuggestsacontinuous supplyofwarmfluidupstreamoftheinjection nozzle(seesectionII.5.3.3). | |||
Thecalculated fluidflowsintoandfromthefaultedloopcoldlegareshowninFigureII.5.2.1-2. | |||
Safetyinjection flowwascalculated tosplitwhenthefaultedloopflowstagnated at10:10(45min);asmallportionflowedtowardthesteamgenerator whilethemajorityflowedtowardthevessel.Acontinuous flowofwarmwaterwasnotobservedintheLOFTRANanalysisresults.Nosig-nificanttemperature increaseinthecalculated faultedloopcoldlegtempera-tureoccurred. | |||
Theseresultssupporttheexistence ofacounter-current typeofflowregimeupstreamoftheinjection nozzle.The8looptemperature responserepresents mixingofaportionofthesafetyinjection flowupstreamoftheinjection nozzlewithastreamofwarmerwaterfromthesteamgenerator. | |||
Suchmixingisnotsimulated intheonedimensional modelling ofLOFTRAN.Themagnitude offlowfromthefaultedsteamgenerator requiredtoproducethequasi-steady temperature responsewasestimated fromthecoldleginlettemperature andsafetyinjection flowinthefaultedloopcalculated withLOFTRAN.Experimental evidence'uggeststhatasignificant portionofsafetyinjection intoastagnantloopwouldpropagate upstreamoftheinjection nozzle.Basedonthisevidence, onethirdofthesafetyinjection flowwasassumedtomixupstreamoftheinjection location. | |||
Theresultofthiscalculation indicates thataminimumloopflowof21ibm/sec(170gpm)existedafter10:07(42min).3274(}:1/111982 31 | |||
1000.0LOFTRAIN(-)800.00600.003100.00OUTLETu-200.00IINLET0.0"100.00CDCDCDCDAJCDCDTlMf(MlN)CDCDCDCQCDCDFIGUREII.5.2.1-2.FAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWS.32 | 1000.0LOFTRAIN(-)800.00600.003100.00OUTLETu-200.00IINLET0.0"100.00CDCDCDCDAJCDCDTlMf(MlN)CDCDCDCQCDCDFIGUREII.5.2.1-2. | ||
FAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWS.32 | |||
II.5. | II.5.3ReactorCoolantTemperatures Theearlyreactorcoolanttemperature responses weretypicalofreactortrip.Hotandcoldlegtemperatures decreased rapidlyastheautomatic steamdumpsystemandsecondary coolantabsorbedenergymorerapidlythandecayingcorepower.Thelargeflow/power mismatchreducedthecorecoolanttemperature risetoonlyafewdegreesandthesteamdumpsystemoperatedtomomentarily stabilize temperatures nearno-load.Themeasuredcoretemperature risedecreased toaminimumof2Fbeforereactorcoolantpumpsweretrippedandsteadilyincreased thereafter toapproximately 10'Fby9:31(6min).From9:31(6min)to9:38(13min)allsteamdumpvalveswereclosed.Duringthistime,safetyinjection andauxiliary feedwater flowsabsorbeddecayheatandstabilized temperatures asdemonstrated intheLOFTRANanalysisresultsshowninFigureII.5.3-1. | ||
II.5.3.1ALoopColdLegTemperature ColdAFMflowrapidlycooledtheAloopcoldlegbeginning at9:32(7min).AlthoughtheAFWpumpswereautomatically startedshortlyafterreactortrip,thesteamgenerator feedlines anddowncomer volumedelayedinjection ofcoldwaterfromtheCondensate StorageTank(CST)intothetubebundleregion.Twosteamdumpvalveswere.manuallyopenedfromabout9:38(13min)until9:39(14min)todecreaseprimarycoolanttemperature asdirectedbytheemergency operating procedures. | |||
Thisappearstohavehadlittleeffectonthecoldlegtemperature sincethesecondary coolantinthetubebundleregionwassub-cooled.TheAloopcoldlegtemperature decreased toaminimumof485Fat9:41(16min)whenAFMflowwasterminated totheAsteamgenerator. | |||
Thehomogeneous equilibrium secondary sidemodelling withinLOFTRANtendedtounderestimate theprimarysystemcoolingduetoauxiliary feedwater. | |||
Conse-quently,theintactsteamgenerator pressurewasusedasaforcingfunctiontotreproduce theAloopcoldlegtemperature | |||
: response, aspreviously noted.FiguresII.5-3andII.5-4comparetheintactsteamgenerator pressureandcalculated, coldlegtemperature, respectively, withplantdata.Withtheexception ofthecooldownduetoAFWflow,bothpressureandtemperature matchthedatareasonably well.Decreases inmeasuredcoldlegtemperature 3274(:1/111882 33 700.00650.00LOFTRAN(-)600.00HOTLEG-550.00~5¹00ICOLDLEGi5000400.00ClC7TIHf(HIN),FIGUREII.5.3-1.POST-TRIP REACTORCOOLAHTTEMPERATURES. | |||
" | |||
correlate withtheoperation ofsteamdumpvalvesandAFWflowasshowninFigureII.5.3.1-1. | |||
500.00480.00COLDLEG(-)COREEXIT(+)460.00+++440.00l=:420.00400.00CDCDCDCDCD-CDCDCDCIlCDCDCDCDCDCDI/lCDCDCDV)T1MK(HlN)FIGUREII.5.3.1-2.GIHNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES.37 100.00650.00LOFTRAN(-)600.00o550.00FAULTEDLOOPCL'IXx500.00IINTACTLOOPi50.00100.00CIC7TlME(HtN)C7C)EDClC7IAAJFIGUREII.5.3.2-1. | Theinsurgeofsafetyinjection whenthepressurizer PORVwasopened,reducedthecoreexittemperature belowtheAloopcoldlegtem-perature, asshowninFigureII.5.3.1-2. | ||
700.00600.00500.00GGCOLDLEGINLETGINNA(G)LOFTRAN(-)400.00~300.00IZi-200.00COLDLgGOUTLETd4'cC0G100.000.0CDCDTIME(MlN)CDCDCDCDKl)CD'DFIGUREII.5.3.2-2.FAULTFDLOOPCOLDLEGTEMPERATURES.39 | Thissuggeststhatsecondary-to-primaryheattransfermayhavemomentarily occurredintheAloop.TheLOFTRANanalysisresultsdemonstrated asimiliarresponse. | ||
However,thedecreaseincoldlegtemperature between10:12(47min)and10:15(50min)wasunderestimated. | |||
Thisappearstobeaconsequence ofthehomogeneous secondary side.II.5.3.2BLoopColdLegTemperaaure TheBloopcoldlegtemperature responsewasessentially thesameastheAloopuntilAFMflowwasreducedtothe8steamgenerator atapproximately 9:32(7min).From9:32(7min)until9:39(14min)theBlooptemperature decreased moreslowlyasillustrated inFigureII.5.3.2-1. | |||
Atapproximately 9:39(14min),theBloopcoldlegtemperature decreased rapidly,indicative ofsafetyinjection flowupstreamoftheinjection nozzle.Beyondthistime,twodistincttrendsareevidentinthemeasuredtemperature response. | |||
Therapiddecreaseintemperature beginning at9:39(14min)istypicalofa"mixing-cup" configuration whereaportionofthecoldsafetyinjection flowmixeswiththewarmerfluidwithinafixedvolume.Sincetheinventory ofwarmer'wateravailable formixingislimited,suchasystemischaracterized bya.continuous, exponential decreaseinfluidtemperature tothetemperature oftheincomingsafetyinjection flow.Equallyevidentinthe8loopcoldlegtemperature responseisaquasi-steady periodbeginning atapproximately 9:57(32min).Itisclearthat"mixing-cup" conditions donotdescribethisbehaviorsincesufficient mixingvolumeisnotavailable tosupportanexponential fittothetemperature timeresponse. | |||
Furthermore, theincreaseincoldlegtemperature from10:11(46min)until10:18(53min)cannotbeexplained by"mixing-cup" behavior. | |||
Thissuggeststhataflowofwarmerwatercontinued intotheBloopcoldleg.Thecalculated faultedloopcoldlegfluidtemperatures arecompareuwithBloopdatainFigureII.5.3.2-2. | |||
Thecalculated coldlegoutlet,i.e.vesselinlet,temperature steadilydecreased, asflowthroughthefaultedsteamgenerator decayed,andapproached thetemperature ofthesafetyinjection 3274(}:1/111882 35 700.00650.00SteamDumpValvesOpen(0)SteamDumpValvesClosed(C)AFWFlowInitiated (I)AFWFlowTerminated (T)600.00455000OCLIz500.00i5000100.00CDC7CDTlMK(MIN)CDCPCDCDCDFIGUREII.5.3.1-1. | |||
STEAN'DUHP VALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCS. | |||
500.00480.00COLDLEG(-)COREEXIT(+)460.00+++440.00l=:420.00400.00CDCDCDCDCD-CDCDCDCIlCDCDCDCDCDCDI/lCDCDCDV)T1MK(HlN)FIGUREII.5.3.1-2. | |||
GIHNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES. | |||
37 100.00650.00LOFTRAN(-)600.00o550.00FAULTEDLOOPCL'IXx500.00IINTACTLOOPi50.00100.00CIC7TlME(HtN)C7C)EDClC7IAAJFIGUREII.5.3.2-1. | |||
COl1PARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEflPERATURES FOLLOhlING REACTORTRIP. | |||
700.00600.00500.00GGCOLDLEGINLETGINNA(G)LOFTRAN(-)400.00~300.00IZi-200.00COLDLgGOUTLETd4'cC0G100.000.0CDCDTIME(MlN)CDCDCDCDKl)CD'DFIGUREII.5.3.2-2.FAULTFDLOOPCOLDLEGTEMPERATURES. | |||
39 | |||
flow. | flow.AlthoughthisissimilartotheBlooptransition period,thecalcu-latedcoldlegoutlettemperature continued todecrease. | ||
Thecalculated temp-eratureupstreamofsafetyinjection remainedrelatively hotuntilapproxi-mately10:10(45min),atwhichtimesafetyinjection flowwasfirstpredicted byLOFTRANtopropagate upstreamoftheinjection nozzle.Whenthepressurizer PORVwascycledbeginning at10:07(42min),asurgeofsafetyinjection flowdecreased theBloopfluidtemperature. | |||
Thecalculated vesselinlettemperature demonstrated asimilarresponse. | |||
Althoughthecal-culatedfaultedloopcoldleginlettemperature wasnotsignificantly | |||
: affected, thelocationofthepressurizer mayhaveartificially promotedflowtowardthevessel.Noincreaseinfluidtemperature isobservedintheLOFTRANanalysisresultsafterisolation ofthefailedPORV.Evaluation ofthepotential flowdistributions withinthefaultedloopcoldleg(seesectionII.5.2.1)suggeststhatmulti-dimensional behaviormayhavesignificantly affectedtheactualtemperature response. | |||
Sucheffectsarebeyondthecapabilities ofLOFTRAN.However,theBlooptemperature responseindicates anadditional flowofwarmfluidintothecoldlegwhichisnotobservedintheLOFTRANanalysisresults.Consequently, thecalculated coldlegoutlettemperature showninFigureII.5.3.2-2 underestimates theexpectedminimumbulkfluidtemperature atthevesselinlet.Inordertomorerealisticly estimatetheminimumfluidtemperature inthereactorvessel,thevesseldowncomer, coldlegandcrossover legpiping,andreactorcoolantpumpweremodelledasasingle,mixingvolumeasshowninFigureII.5.3.2-3. | |||
Thetemperature responseofthisconfiguration toflowfromthefaultedsteamgenerator andsafetyinjection flow,FigureII.5.3.2-4, wascalculated assumingperfectfluidmixing.Theseflowsandassociated temperatures, FigureII.5.3.2-5, wereobtainedfromtheLOFTRANanalysisresults;however,aminimumloopflowof21ibm/sec(170gpm)wasassumed,asdiscussed insectionII.5.2.1. | |||
Metalheatadditionfromthereactorvessel,piping,andcoolantpumpwasdetermined fromaonedimensional conduction/ | |||
convection heattransfermodelbasedonthemeasuredfluidtemperature inthe~Bloopcoldleg.Thecalculated mixingvolumefluidtemperature iscomparedtotheLOFTRANanalysisvesselinlettemperature andBlooptemperature datainFigureII.5.3.2-6. | |||
Themetalheatandadditional loopflowincreased the3274(}:1/111982 40 | |||
SAFETYIHJECTIONRCPCOLDLEGVESSELDOWNCOMER CROSSOVER LEGLOOPFLOWCOREMIDPLANEFIGUREII.5.3.2-3 MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURE CALCULATION LOFTRAN(-)ESTIMATED | |||
(------)LOOPFLOWSAFETYINJECTION FLOWTlwf(Nlm)FIGUREII.5.3.2-4'IXING VOLUMELOOPFLOWANDSAFETYINJECTION FLOW42 700.00600.00LOOPFLOW500.00i00.00ce300.00~200.00f0000SAFETYINJECTION FLOW0.0ClClQTlNflNil1FIGUREII.5.3.2-5MIXINGVOLUMEFLOWTEMPERATURES 43 700.00600.00l00.00GINNABLOOPDATA(G)ce300.00BESTESTIMATEVESSELDOWNCOMER t00.00LOFTRANVESSELINLET0.0C7C)C)T!NfllolN1FIGUREII.5.3.2-6 BESTESTIMATEREACTORVESSELDOWNCOMER TEMPERATURE 44 | |||
minimumcalculated downcomer fluidtemperature atthecoremidplaneelevation toapproximately 200'F.Inaddition, anincreaseinfluidtemperature ocurredaftersafetyinjection wasterminated at1037(42min)asobservedduringtheactualevent.Theseresultsrepresent amorerealistic estimateoftheminimumfluidtemperature inthevesseldowncomer. | |||
II.5.3.3CoreExitFluidTemperature Thecalculated, coreexitfluidtemperature iscomparedtotheavailable datainFigureII.5.3.3-1. | |||
Imperfect mixingatthecoreinletwassimulated intheresultspresented; consequently, thecoreexittemperature isslightly. | |||
differ-entforthecoreregionsadjacenttothefaultedandintact,loops.Thecoreexitfluidtemperature trendedtheintactloopcoldlegandremainedsubcooled throughout thetransient. | |||
IIncreased reactorcoolantmakeupfollowing startupofthechargingpumpsandcyclingofthepressurizer PORVdecreased thecoreexitfluidtemperature beginning at10:04(39min).Thistemporarily decreased thecoreexittemper-aturebelowtheAloopcoldlegtemperature asdiscussed insectionII.5.3.1. | |||
II.5.3.4BLoopHotLegTemperature Primary-to-secondary leakagefromthesteamgenerator inletplenumprovidedamechanism forflowthroughthefaultedloophotlegevenforstagnantloopflowconditions. | |||
Basedonestimates ofthisbreakflow,FigureII.5.3.4-1, andthehotlegvolume,thefaultedloophotlegtemperature wasestimated tolagthecoreexittemperature bylessthan10minutes.TheLOFTRANanalysisdemonstrated thistrend,asshowninFigureII.5.3.4-2. | |||
Theseresultsindi-catethatthefaultedloophotlegfluidremainedsubcooled throughout theevent.II.5.3.5BSteamGenerator Temperature Thetubebundleregionfluidtemperature ofthefaultedsteamgenerator wascalculated bymodelling asingle,subcooled controlvolumeincommunication withtheprimarysystemviaprimary-to-secondary | |||
.leakageandspecified loopflow.Perfectenergytransferwasassumedsothatbreakflowandloopflow3274(:1/111982 45 | |||
700.00GINNA(G)LOFTRAN(-)INTACTLOOPFAULTEDLOOPCICDCDCDAJCDTINK(MtN)CDCDCDFIGUREII.5.3.3-1.COREEXITFLUIDTEIlPERATURE.46 | 700.00GINNA(G)LOFTRAN(-)INTACTLOOPFAULTEDLOOPCICDCDCDAJCDTINK(MtN)CDCDCDFIGUREII.5.3.3-1. | ||
COREEXITFLUIDTEIlPERATURE. | |||
46 | |||
S0.00040.000INLETCalculated(+)30.000OUTLETXCDCDCDCDCDCDAJCDCDCDTlHCtHIM)CDCDCDCQCDCDCDCDCDFIGUREII.5.3.4-1.BREAKFLOWFRO[1S.G.INLETANDOUTLETPLENUi1S. | S0.00040.000INLETCalculated | ||
(+)30.000OUTLETXCDCDCDCDCDCDAJCDCDCDTlHCtHIM)CDCDCDCQCDCDCDCDCDFIGUREII.5.3.4-1. | |||
BREAKFLOWFRO[1S.G.INLETANDOUTLETPLENUi1S. | |||
600.00HOTLEG(+)COREEXIT(-)CDCDCDAJCDCDCDCDCDCDCDCDCDCDTlME(MlN)FIGUREII.D.3.4-2.LOFTRAHFAULTEDLOOPHOTLEGTEHPERATURE.48 | 600.00HOTLEG(+)COREEXIT(-)CDCDCDAJCDCDCDCDCDCDCDCDCDCDTlME(MlN)FIGUREII.D.3.4-2.LOFTRAHFAULTEDLOOPHOTLEGTEHPERATURE. | ||
48 acheivedthermalequilibrium withthecontrolvolumeinventory. | |||
Twocasesofflowfromthefaultedsteamgenerator outletplenumwereconsidered: | |||
1)reverseloopflowthroughthesteamgenerator equaltothatpresented inFigureII.5.2.1-1, and2)onlyprimary-to-secondary leakagefromtheoutletplenumintothefaultedsteamgenerator. | |||
Thetemperature oftheseflowswasassumedequaltotheindicated Bloopcoldlegtemperature. | |||
Forbothcases,primary-to-secondary leakagefromthesteamgenerator inletplenumwasalsoconsidered. | |||
FigureII.5.3.5-1 comparestheresultsofthesecalculations withtheintactsteamgenerator temperature calculated withLOFTRAN.Case(1)suggeststhatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenerator wouldhavebeencolderthantheintactsteamgenerator. | |||
Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred. | |||
Case(2)indicates thatprimary-to-secondary leakageeffectively cooledthetubebundleregionofthefaultedsteamgenerator. | |||
II.5.3.6UpperHeadTemperature Duringnormaloperation, asmallfractionofthecoldlegflowisdivertedintotheupperheadregionofthereactorvesselandmixeswithflowfromtheupperplenumtomaintaintheupperheadfluidtemperature atGinnanear595F.Theseflowsremainnearlyconstantaslongasreactorcoolantpumpscon-tinuetorun.Afterreactortrip,thecoreexittemperature decreases rapidly.Withreactorcoolantpumpsrunning,theupperheadfluidtemperature willalsodecreaserapidlybutwilllagtheupperplenumandcoldlegtemper-atures.Theupperheadregiontemperature transient wasevaluated assumingconstantvolumetric upperheadflowsuntilreactorcoolantpumpsweretrippedat9:29:09(4min).Theaveragecoldlegandhotlegtemperatures asindicated bypre-tripdatawereassumedfortheflowsfromthecoldlegandupperplenum,respectively. | |||
FigureII.5.3.6-1 presentsthecalculated upperheadregionfluidtemperature withandwithoutmetalheat.Forthecasewithmetalheat,themetaltemperature wasassumedtobeequaltothefluidtemperature. | |||
Thefluidtemperature wascalculated tobeapproximately 553Fwhenreactor32740'1/111982 49 700600INTACTSG-------- | |||
FAULTEDSG500LaJI-400I-CASE2CASE1300200204060TI)1E(t1IN)80100..120FIGUREII.5.3.5-1. | |||
FAULTEDSGTUBEBUNDLEFLUIDTEl1PERATURE. | |||
50 600ep888p'p590580570I-560550540THOTpTCOLDTSATTUPPERHEAD(-)l8l]H/tlETALHEAT88IIIIIIIMII-CYEDVI-ll/0t1ETALItIlIIIIII'RR9269:27TItlE(A.f1.)9:289:29FIGUREII.5.3.6-1. | |||
POST-TRIP UPPERHEADFLUIDTEtiPERATURE. | |||
C | |||
coolantpumpsweretripped. | coolantpumpsweretripped.Thisisconsistent withtheupperheadthermo-Ccoupleindication of556Fat9:54(31min).Notethatvoidingmayhaveoccurredintheupperheatregionwhilereactorcoolantpumpswerestilloperating (seesectionII.5.6.2).Theupperheadregiontemperature calculated byLOFTRANisshowninFigureII.5.3.6-2. | ||
Sinceflowfromtheupperplenumthroughtheguidetubeswasnotmodelled, thefluidtemperature atreactortripwaslessthanwouldbeexpected. | |||
Hence,noupperheadvoidingocurredimmediately following reactortripintheLOFTRANresults.However,thefluidtemperature at10:07(42min),whenthepressurizer PORVwascycled,wasequaltothemeasuredupperheadthermocouple. | |||
Hence,theupperheadvoidingcalculated duringthisperiodisexpectedtoberepresentative oftheGinnaevent.II.5.4Pressurizer LevelResponseThecalculated pressurizer waterlevelindication iscomparedwithplantdatainFigureII.5.4-1. | |||
Theinitialdecreaseinlevelwaspredicted byLOFTRANverywell.Thepressurizer wascalculated todrainby9:29(4min)andbegintorefillsoonafterassafetyinjection flowrepressurized theprimarysys-tem,asillustrated inFigureII.5.1-3. | |||
Thepressurizer mayhavedraineda'econdtimebetween9:32(7min)and9:38(13min)duringcooldownviaAFMflow.Ginnadataindicates thatpressurizer levelreturnedonspanapproxi-matelywhenthechargingpumpswerestarted.Anindicated leveldidnotreturnintheLOFTRANanalysisresultsuntilthepressurizer PORYwascycledbeginning at10:07(42min).Asprimarypressuredecreased whenthePORVwasopened,pressurizer levelincreased assafetyinjection flowinexcessofbreakflow,FigureII.5.1-2, replacedventedsteaminthepressurizer. | |||
Soonafterwards, atapproximately 10:09:20(44,min), | |||
theupperheadwaterbegantoflash.Materdisplaced fromtheupperheadregionrapidly'increased pressurizer inventory andtheindi-catedlevelincreased offscale. | |||
TheLOFTRANanalysisdemonstrated similarlevelresponse; however,theindicated levelremainedonspan.Thisappearstobedueprimarily tothelowerinitiallevelpriortodepressurization oftheprimarysystem.Inaddition, noreverseflowfromthefaultedsteam3274(:1/111982 52 | |||
700.00GINNA(G)LOFTRAtl(-)CICIAjC)TIHj(HtN)C)C)CDFIGUREII.5.3.6-2.LOFTRANUPPERHEADFLUIDTEMPERATURE.53 | 700.00GINNA(G)LOFTRAtl(-)CICIAjC)TIHj(HtN)C)C)CDFIGUREII.5.3.6-2.LOFTRANUPPERHEADFLUIDTEMPERATURE. | ||
53 | |||
120.00100.00GINNA(G)LOFTRAN(-)80.000W>60.000~a0.00020.0000.0ClClClClAJClTIME(MIN)FIGUREII.5.4-1. | 120.00100.00GINNA(G)LOFTRAN(-)80.000W>60.000~a0.00020.0000.0ClClClClAJClTIME(MIN)FIGUREII.5.4-1. | ||
PRESSURIZER LEVELINDICATION. | |||
generator occurredintheLOFTRANresults(seesectionII.5.5).Upperheadvoidingmayhavealsobeenslightlyunderestimated becauseofthehomogeneous modelling, assuggested byAppendixCcalcualtions. | |||
Thecalculated pressurizer leveldecreased rapidlyaftersafetyinjection wasterminated at10:37(72min)asbreakflowdecreased coolantinventory. | |||
Theseresultsindicatethat95ft3ofwaterwasdisplaced fromthepressurizer asprimarypressuredecreased to945psia.Sucha.decrease wouldnothavebeendetectedbythelevelinstrumentation ifthepressurizer hadbeennearlywatersolid.Beyondapproximately 10:40(75min),thecalculated decreasein'pres-surizerlevelwasunrealistic. | |||
Primary-to-secondary leakagewasexaggerated afterthistimebecauseoftheunrealistic faultedsteamgenerator pressurecalculated byLOFTRAN.II.5.5BreakFlowPrimary-to-secondary leakagewascalculated inLOFTRANassuminganeffective breakflowareaandamodifiedZaloudekcriticalflowcorrelation. | |||
Forunchokedflow,theorificeequationwasused.FigureII.5.5-1showstheprimary-to-secondary leakagecalculated byLOFTRANduringtheGinnaevent.Priortoreactortrip,breakflowdecreased asprimarypressurealsodecreased. | |||
Immediately aftertrip,'herapidlydecreasing primarypressuredecreased breakflowuntilsafetyinjection flowbegantorepressurize thereactorcoolantsystem.Soonafterthefaultedloophotleghadcooledbelowthetemperature ofthefaultedsteamgenerator, 9:37(12min),flowthroughthefailedtubewascal-culatedtobecomeunchoked. | |||
Beyondthistime,thecalculated breakflowwassensitive tothefaultedsteamgenerator pressure. | |||
Asillustrated inFigureII.5.5-2, thesecondary sidemodelling withinLOFTRANunderpredicted thefaultedsteamgenerator pressureafter9:46(21min).Consequently, secondary-to-primary flowdidnotoccurintheLOFTRANanalysiswhenthepres-surizerPORVwasopened.Inordertoevaluatethelimitations ofLOFTRANbreakflowmodelling andassesstheeffectsontheanalysisresults,amoredetailedmodel(Appendix B)wasdeveloped tocalculate theflowfromeachsteamgenerator plenum.The3274Q:1/111982 55 75.000LOFTRAil(-)BestEstimate(+)50.000~25;000Ko.o+4+p+++++++ttNt~++~+++++-25.000++-50.000ClClCDC)CIC)IPJC)ClleTINK(HIH)C)CDC)OCPDw~~DOFIGUREII.5.5.-1. | |||
LOFTRANAHOBESTESTIHATEBREAKFLOWS.56 1200.01000.0800.00600.00~ioo.oo200.00GI~iNA(G)LOFTRAN(-)0.0C)CITIME(MIN)CDEOC)C)CCIFIGUREII.5.5-2. | |||
FAULTEDSTEAI1GENERATOR PRESSURE. | |||
57 | |||
fluidtemperature inthesteamgenerator inletandoutletplenumsweretakenfromtheLOFTRANresults.ActualGipnadatawasusedfortheprimaryandfaultedsteamgenerator pressures. | |||
Resultsofthesecalculations arealsoshowninFigureII.5.5-1. | |||
Asdemonstrated, LOFTRANprovidedareasonable estimateofthebreakflow,withtheexception ofreverseflowthroughthefailedtube,untilshortlyaftersafetyinjection wasterminated. | |||
Afterthattime,thelowerfaultedsteamgenerator pressureevidentintheLOFTRANanaly-sisresultedinoverestimated primary-to-secondary leakage.II.5.6ReactorCoolantVoidingDuringnaturalcirculation, portionsofthereactorcoolantsystemmaystag-nateandbecomeeffectively isolatedfromtheactivecoolantregions.Threesuchregionsmayexistontheprimarysideduringrecoveryfromasteamgener-atortuberuptureevent;thepr'essurizer, reactorvesselupperhead,andthefaultedsteamgenerator tubes.Assystempressureisreduced,hotfluidinthesestagnantregionsmayflashtosteam.TheextentofvoidingintheseregionsduringtheGinnaeventwasevaluated. | |||
II.5.6.1Pressurizer SteamBubbleItisclearfrompressurizer leveldata,FigureII.5.4-1, thatasteambubbleexistedinthepressurizer untiltheprimarysystemwasmanuallydepressurized beginning at10:07(42min).Atthattime,theindicated pressurizer levelincreased rapidlyoff-scale. | |||
LOFTRANresultssuggestthatthepressurizer didnotcompletely fill,FigureII.5.1-3; however,aspreviously noted,theincreaseinpressurizer levelmayhavebeenslightlyunderestimated. | |||
Thepressurizer levelresponsefollowing termination ofsafetyinjection suggeststhatthepressurizer wasnearly.fullatthattime.Specificly, pressurizer leveldidnotreturnonspanduringtheGinnaeventwhenprimarypressuredecreased by440psi.II.5.6.2UpperHeadVoidingThecalcu1ated upperheadtemperature history,FigureII.5.3.6-1, indicates thatvoidingmayhaveoccurredintheupperheadregionpriortoreactorcool-antpumptrip.Themaximumvolumeofthisvoidwasestimated tobelessthan3274Q:1/111982 | |||
132ft( | 132ft(Appendix C).Anysteambubbleintheupperheadatthistimewouldhavebeenquicklycondensed sincereactorcoolantpumpscontinued tooperate.Itisunlikelythatsignificant additional voidingoccurredpriortomanualdepressurization oftheprimarysystemat10:07(42min)sincethecalculated upperheadfluidtemperature remainedsubcooled. | ||
From10:07(42min)to10:10(45min),upperheadthermocouple andpressurizer levelresponses indicatethatvoidingalsooccurredwhenthepressurizer PORVwasopened.Theupperheadtemperature decreased fromapproximately 556'FwhenthePORVwasinitially openedtoaminimumofapproximately 525F,asshowninFigureII.5.3.6-2. | |||
Theupperheadregionwascalculated tocom-pletelyvoidduringthisdepressurization (Appendix C).Flashinginthenon-activeregionoftheupperplenum,i.e.abovethetopofthehotlegnozzles,wouldnotbeexpectedbecauseofrelatively goodmixingcharacteristics. | |||
Consequently, approximately 305ftofsteamvolumeexistedintheupperheadwhenthepressurizer PORVwasisolatedat10:10(45min).Noinstrumentation wasavailable abovetheupperheadflangeleveltotrackthesteambubblecollapse. | |||
However,assafetyinjection repressurized thereactorcoolantsystem,theupperheadthermocouples increased approximately alongthesaturation linefrom525Fto540'F.Aspressurecontinued toincrease, temperature thendecreased toastabletemperature of525'F.Thissuggestsflowofcolderfluidfromtheupperplenumpasttheflangelevelthermocouples andisindicative ofpartialsteambubblecollapse. | |||
Thisissupported bytheslowerrepressurization ofthe'primarysystemfollowing iso-lationofthefailedPORVascomparedwithLOFTRANanalysisresults(seesectionII.5.1).Thesizeofanysteambubblewhichexistedintheupperheadregionwhensafetyinjection wasterminated at10:37(72min)isuncertain. | |||
Themeasuredtemperature andpressureresponses suggestthattheupperheadwasnotcom-pletelyvoidedandcontained significantly subcooled water.Theupperheadprobablyvoidedathirdtimeasprimarysystempressuredecreased to945.psiafollowing termination ofsafetyinjection. | |||
Analysisoftheprimary-to-secondary leakage,chargingflow,andreactorcoolantexpansion suggestsamaximumof125ftofadditional voidingmayhaveoccurredduringthisperiod.Thisvoidmayhaveexisteduntilreactorcoolantpumpswere'restarted. | |||
3274/'1/111982 | |||
II.5.6. | II.5.6.3BSteamGenerator TubeYoidingThefluidtemperature inthefaultedsteamgenerator tubeswascalculated withLOFTRANtobe507Fat10:07(42min)whenthepressurizer PORYwasfirstopened.Thisisconsistent withplantdatawhichshowsthatpressureintheBsteamgenerator haddecreased to750psiaby9:46(21min)andisconservative | ||
'ithrespecttothecalculations presented insectionII.5.3.5. | |||
Sincethecalculated tubebundlefluidtemperature remainedsubcooled duringdepres-surization ofthereactorcoolantsystem,nosteamvoidwouldhavedeveloped inthisregion.11.5.7SteamGenerator OverfillPrimary-to-secondary leakageinexcessofsteamfloweventually filledtheBsteamgenerator withwaterandliftedthesecondary safetyvalve.TheLOFTRANanalysisindicates thatthefaultedsteamgenerator andmainsteamline wouldhavefilled'at 10:18(53min),asshowninFigureII.5.7-1. | |||
However,thisisbelievedtobeearlierthanduringtheactualeventforseveralreasons.Inordertosimulatethecooldownoftheprimarysystemfrom9:32(7min)to9:41(16min)(seesectionII.5.3.1), | |||
steamreleasefromthefaultedsteamgenera-tortothecondenser wasterminated 8minutesprematurely at9:32(7min).Thisunderestimated thesteamreleasedfromthefaultedsteamgenerator tothecondenser byamaximumof11000ibm.Inaddition, theconstraints onupperheadrefillmayhaveincreased carryover intothefaultedsteamgenerator byamaximumof300ft..Thetotalcarryover mayhavealsobeenslightlyover-estimated byLOFTRANsincereverseflowduringdepressurization oftheprimarysystemwasnotpredicted. | |||
Thecombination oftheseeffectsmayhavedelayedoverfillbyanestimated 7minutes.Theinitialsafetyvalveliftsat10:19(54min)and10:27(62min)wouldhavealsodecreased steamgenerator inven-toryandfurtherdelayedoverfill. | |||
Themassdischarged throughthefaultedsteamgenerator safetyvalvewasesti-matedfromtheprimary-to-secondary leakage.LOFTRANresultsindicatethat268,000ibmofprimarycoolantwastransferred intothefaultedsteamgener-atorpriortotermination ofsafetyinjection. | |||
Approximately 104,000ibmofthisleakageoccurredafterthesteamgenerator wascalculated tofill.Eval-uationofthebreakflowfrom10:40(75min)until12.30(185min)asshownin3274/:1/111982 | |||
'j.OOE+OiiLOFTRAN(-)8000.06000.0S.G. | 'j.OOE+OiiLOFTRAN(-)8000.06000.0S.G.andSteamline VolumeS.G.Volume~F000.0Z=I2000.00.0ClC)C7AJTIME(MIN)C)EDC)8FIGUREII.5.7-1. | ||
FAULTEDSTEAYiGENERATOR WATERVOLUf1E.6l | |||
FigureII.5.5- | FigureII.5.5-1suggeststhananadditional 132,000ibmwastransferred from~theprimarybeforeprimary-to-secondary leakagewasterminated. | ||
II.6LONGTERMRECOVERYWhensafetyinjection wasterminated at10:37(72min),primarysystempres-suredecreased rapidlyfrom1370psiato945psia.TheLOFTRANanalysiswasterminated atthistimesincethehomogeneous equilibrium modelling onthesecondary sideoverestimates theprimary-to-secondary pressuredifferential and,consequently, leakagethroughthefailedtube.Continued chargingflowandoperation ofthepressurizer heatersmaintained primarypressureslightlygreaterthanthefaultedsteamgenerator | |||
: pressure, asshowninFigureII.6-1.TheBsteamgenerator pressureincreased asprimary-to-secondary leakagecon-tinued.Thesequenceofevents'indicates thatsafetyinjection wasreinitated at11:07(102min)inpreparation forreactorcoolantpumprestart.However,Jtheeffectoftheincreased coolantmakeupontheprimaryandfaultedsteamgenerator pressures isnotevidentatthattime.Althoughtheprimary-andfaultedsteamgenerator pressures increased slowly,thepressuredifferential decreased. | |||
Atapproximately ll19(114min),arapiddecreaseinprimarysystempressureisevident,probablyduetothecollapseofanupperheadsteambubble(seesectionII.5.6.2) whenareactorcoolantpumpwasrestarted. | |||
Althoughtheavailable dataislimited,itappearsfromtheBsteamgenerator pressureresponsethatasafetyvalvemayhaveliftedatapproximately thesametime.Safetyinjection flowrepressurized thereactorcoolantsystembeginning atll:26(121min)untilflowwasthrottled at11:35(130min).Thefaultedsteamgenerator pressurealsoincreased untilthesafetyvalveliftedforthefinaltimeatapproximately 11:37(132min).Afterthisfinallift,thefaultedsteamgenerator pressureremainedapproximately 150psiabelowtheprimarysuggesting continued leakageintothesteamgenerator. | |||
Steamgener-atorblowdownlineradiation wasalsoincreasing duringthissameperiodsug-gestingflowthroughthisline.Pressurizer levelreturnedonspanatapprox-imately11:53(148min),asshowninFigureII.6-2,andcontinued todecreaseindicating alossofreactorcoolant.Asafetyinjection pumpwasoperatedintermittently from12:13(168min)until12:27(182min)tocontrollevel.By12:30(185min),thefaultedsteamgenerator pressurewasgreaterthahthereactorcoolantsystempressureandprimary-to-secondary leakagewasterminated. | |||
3274(}:1/111982 62 1300.0GINNA(G)ccccccGGCCGCGCRCS(-G-)CCC6@QCCCCCCCCG CGccccc'ccCcCCCCCGGFAULTEDSG(G)CITIME(MlN)C7EDC7C7ClC7C)r~FIGUREII.6-1.RCSANDFAULTEDSTEAt1GENERATOR PRESSURES. | |||
63 | |||
120.00100.0080.000GINNa(G) | 120.00100.0080.000GINNa(G)CGCCCGCCGCCGCGCGGCGGCCCGCCCGGCCGGCGCCGCCCCCCCGC CCGGccGGCCGGGCGo60.000~io.ooo)CGGGGGCCCCCG'CCc20.0000.0CDCDCDCDCDCDCDCDCDAJCDCDmCDCDCD.CDCDCDCDCDCDCDTIME(MtN)fIGUREII.6-2.LONG-TERtl PRESSURIZER LEVELRESPONSE. | ||
III. | III.SUMMARYANDCONCLUSIONS ThemaximumleakratethroughthefailedtubeduringtheGinnaeventwascal-culatedtobe634gpm.Adesignbasiseventwithconservative, FSARassump-tionsrepresents aninitialprimary-to-secondary leakrateof1147gpmforthesamesteamgenerator. | ||
Hence,theinitialleakratewassignificantly 1'essthandesignbasis.Breakflowdepletedprimarycoolantinventory andresultedinautomatic reac-tortripandsafetyinjection withinapproximately 3minutesoftheinitiating event.Primarypressuredecreased rapidlyfollowing reactortripascoolant'temperature decreased andbreakflowfurtherreducedcoolantinventory. | |||
Man-ualreactorcoolantpumptrip,whichoccurredwithin1minuteofreactortrip,wasfollowedbyasmoothtransition fromforcedtonaturalcirculation inbothloops.Naturalcirculation wasmaintained intheintactloopuntilareactorcoolantpumpwasrestarted. | |||
Isolation ofthefaultedsteamgenerator incom-binationwiththecooldownoftheintactloopeventually stagnated flowinthefaultedloop.Analysisresultsandevaluation oftheBloopcoldlegtempera-turesuggestthatacounter-current, flowpatternmayhavedeveloped inthefaultedloopcoldlegupstreamoftheinjection nozzle.Withtheexception oftheupperheadregionandthepressurizer, thereactorcoolantsystemremainedsubcooled throughout theevent.Theupperheadmayhavevoidedthreetimes.Immediately following reactortrip,avoidmayhave'eveloped beforereactorcoolantpumpsweretripped.Noadditional voidingoccurreduntilthepressurizer PORVwasmanuallyopenedtodepressurize theprimarysystem.Theupperheadregioncompletely voidedfrom10:07(42min)to10:10(45min)resulting ina305ftsteambubble.Therelatively slowrepressurization ofthereactorcoolantsystemfrom10:10(45min)to10:17(52min)andtheupperheadthermocouple responsesuggestthatthissteambubblewasatleastpartially collapsed by10:37(72min).However,addi-tionalvoidingoftheupperheadprobablyoccurredathirdtimewhensafetyinjection wasterminated. | |||
Thisvoidmayhaveexistedwhenthereactorcoolantpumpwasrestarted atll:19(114min).AlthoughLOFTRANresultsindicatethatthepressurizer didnotfillwithwater,pressurizer levelresponsefollowing termination ofsafetyinjection indicatethatthepressurizer wasnearlyfull.3274(}:1/111882 65 Thefaultedsteamgenerator wasestimated tohavefilledwithwaterbyapprox-imately10:25(60min).However,releasesduringtheearlysafetyvalveliftsmayhavereducedsteamgenerator inventory anddelayedoverfill. | |||
Anestimated 400,000ibmofprimarycoolantweretransferred tothefaultedsteamgener-ator.Approximately 253,000ibmwascalculated tobedischarged fromthefaultedsteamgenerator untilprimary-to-secondary leakagewasterminated at12:30(185min).Anestimated 28000ibmwasreleasedassteamtothecon-denser.Theremaining 225000ibmrepresents anestimateofthetotalreleasefromthefaultedsteamgenerator safetyvalve.Consideration oftheuncer-taintyassociated withfeedwater flowtothefaultedsteamgenerator andrefilling oftheupperheadindicates thatthisestimatemaybeconservative byupto48000ibm.Inaddition, thecalculated leakageintothefaultedsteamgenerator from10:40(75min)until12:30(185min)reliesonmeasuredsystempressures whicharesubjecttoinstrument uncertainties. | |||
3974n.1/111789 66 | |||
' | ' | ||
REFERENCES 1.LicenseeIncidentEvaluation ReportontheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,DocketNo.50-144,April'(1982).2.NRCEvaluation oftheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,NUREG-0909, April(1982).3.L.A.Campbell, et.al.,LOFTRANCODEDESCRIPTION, WCAP-7878, Rev.3,'anuary(1977).4.L.A.Campbell, et.al.,WESTINGHOUSE EYALUATION OFLICENSEEEVENT,No.SG79-11-030, Dec.(1979).5.F.R.Zaloudek, "Steam-Mater CriticalFlowFromHighPressureSystemsInterimReport"., | |||
APPENDIXA: | HanfordAtomicProductsOperation, | ||
: Richland, Washington, TID-4500, Jan.(1964).6.J.A.Block,FLUIDTHERMALMIXINGINAMODELCOLDLEGANDDOWNCOMER WITH~~~LOOPFLOW,CREAREInc.,Hanover,NewHampshire, EPRI-NP-2312, April(1982).7.S.LevyandJ.M.Lealzer,ANAPPROXIMATE PREDICTION OFHEATTRANSFERDURINGPRESSURIZED THERMALSHOCKWITHNOLOOPFLOWANDWITHMETALHEATADDITION, S.LevyInc.,Campbell, California, SLI-8220August(1982).3274(:1/111882 67 1 | |||
APPENDIXA:INITIALLEAKRATECALCULATION Theindicated pressurizer leveldecreased from32.5Xto11.7%over104seconds,asshowninTableII.3-1.Thislevelwasadjustedforpressurizer pressureasfollows:LPRZLINDX1+0/V1i0/V+100X'refVfVg10/V10/Vgrefwhere,PRZINDV~SubfSubgSubrefactualpressurizer levelindicated pressurizer levelfluidspecificvolumereferstosaturated liquidreferstosaturated vaporreferstonominalsystemconditions LPRZ9:26:18)=32.5x1.00.02698~~~=32.7LPRZ9:28:02)=11.7x1.0002698=14.10.1569+"'.1569'.17460.02617'.174610.15690.15690.19470.025430.1947Duringthistime,coolantinventory wasdepletedatanaveragerateof=1.202-=538GPM33BRK104sec5span'ecConsidering anexcessof'5gpmfromthechargingsystem,theaverageleakratewasapproximately 573gpm.Theinitialleakratewascalculated byextrapolating theaverageratetotheinitialsystemconditions of2250psiaand601F.Theaveragepressureandtemperature overthepre-tripperiodwereapproximately 2100psiaand601F,respectively. | |||
Basedonsubcooled criticalflowthroughthebreak,theinitialflowratewasestimated tobe3274/:1/111682 68 | |||
qggy(0)=573x(2250-0.9x1555)x0.02336xx0.5=634GPN32740:1/'] | qggy(0)=573x(2250-0.9x1555)x0.02336xx0.5=634GPN32740:1/']11682 69 | ||
APPENDIXB: | APPENDIXB:BESTESTIMATEBREAKFLOWMODELFollowing asteamgenerator tubefailure,primarycoolantflowsthroughthebreakintothesecondary sideofthesteamgenerator. | ||
Theprimary-to-secondary pressuredifferential providesthedrivingforceforthisflow.Thefailuresiteisconnected totwoprimaryfluidreserviors, i.e.steamgener-atorinletandoutletplenums,viathesegmented tube.Eachsegmentp'rovides asubstantial resistance tofluidflow.Forlargertubefailures, thisresis-tancerepresents alargefractionofthetotalresistance betweentheprimaryandsecondary systems.ThebreakflowmodelwithinLOFTRANdoesnotconsiderfrictional orformpressurelossesthrougheachtubesegment.Forcriticalflowconditions, thismaynotbeasignificant limitation sincethepressuredropisessentially localized atthebreaklocationorentrancetothefailedtube.However,temperature differences betweentheinletandoutletplenumswillaffectcriticalflowifentrancechokingoccurs.Thistemperature effectisalsonotsimulated withinLOFTRAN.Furthermore, theprimary-to-secondary pressuredifferential isnotaccurately predicted. | |||
Consequently, amoredetailedmodelwasdeveloped whichusesprimaryandsecondary pressuredataincombination withfluidtemperature resultsfromLOFTRANtocalculate breakflow.Flowthroughthefailedtubewassimulated asshowninFigureB-l.Frictional pressurelossesthrougheachtubesegmentwererepresented byanappropriate singlephasefrictionfactor,length,anddiameter. | |||
Entranceandexitlossesforeachtubesegmentandatthebreaklocationwerealsoincluded. | |||
Thissystemleadstothefollowing setofsimultaneous equations whichdescribeflowthroughthefailedtube:xWBRK-SGBRKBRKBRK2xgcxABRK(B-1)RCSBRK2IPLIPLIPLENTEXTD22xcxATUBERCSBRK"LopLENTEXTIJ3274t}:1/111882 7O | |||
FIGUREB-1.SGTUBERUPTUREFLOWMODELDIAGRAt1.~RCSTzpLLxswj~GGGPIWLaoc.FRC5Topi71 BRKIPLOPL(B-4)where,PVENTEXTADgcSubBRKSubRCSSubIPLSubOPLSubTUBEpressureflowratefluidspecificvolumeTubeentrancelosscoefficient=0.4,primary-to- | FIGUREB-1.SGTUBERUPTUREFLOWMODELDIAGRAt1. | ||
~RCSTzpLLxswj~GGGPIWLaoc.FRC5Topi71 BRKIPLOPL(B-4)where,PVENTEXTADgcSubBRKSubRCSSubIPLSubOPLSubTUBEpressureflowratefluidspecificvolumeTubeentrancelosscoefficient | |||
=0.4,primary-to-secondary flow=1.0,secondary-to-primary flowTubeexitlosscoefficient ATUAE21.0-BRK=1.0,secondary-to-primary flowMoodyfrictionfactorflowareatubediametergravitational constantreferstobreaklocationreferstoprimarysidereferstosteamgenerator inletplenumreferstosteamgenerator outletplenumreferstosteamgenerator tubeCriti'cal flowthroughthefailedtubewascalculated usingamodifiedZaloudekcorrelation forsubcooled criticalflow.Chokedflowconditions foreachtubesegmentandatthebreaklocationwerecalculated fromWCIL=ATUBExClxWCOPL=ATUBExC2x2gfPRCS-C2xPsat(TIPL)] | |||
IPLRCS2tOPL"OPL1/21/2(B-5)(B-6)WCBRK=ABRKxClx2gLPBRK-C2xPsat(TBRK)] | |||
1/2BRK(B-7)32740:1/111882 72 | |||
where,TsatWCClC2'lui'dtemperature, | where,TsatWCClC2'lui'dtemperature, Fsaturation | ||
: pressure, psiacriticalmassflowrate,ibm/secentranceeffectcoefficient (adjusted tomatchinitialleakrate)0.9Equations B-lthroughB-7weresolvedsimultaneously forbreakflowthroughthefailedtube.32740:1/111682 73 | |||
APPENDIXC: | APPENDIXC:CALCULATION OFUPPER,HEADVOIDSIZETheupperheadregionofthereactorvesselwasmodelledasasingle,strati-fiednodewithonlyoutwardflowas.showninFigureC-l.Assystempressuredecreased belowsaturation oftheupperheadfluid,voidingwithintheupperheadregiondisplaced liquidintotheupperplenum.Theextentofvoidingwasestimated assumingthermodynamic equilibrium betweenphases.Metalintheupperheadregionwasconservatively assumedtobeatthefluidtemperature. | ||
Amassandenergybalancebetweeninitialandfinalstateswithintheupperheadvolumeleadstothefollowing expression forthefractionoffinalsteamvolumeVUH,(hh)/V+(7hhf)/oVf(E-hf)(h-K)V+gVVfMC(TT)VUHosatwhere,=fluidspecificvolume'fluidenthalpy=VolumehT(MC)SuboSubfSubgSubUHaverageenthalpyofdisplace'd fluidfluidtemperature metalheatcapacityreferstoinitialcondi.tions referstosaturated liquidreferstosaturated vaporreferstoupperheadregionTableC-1liststheupperheadconditions forthefirsttwoincidents ofpotential upperheadvoidingduringtheGinnaevent(seesectionII.5.6.2). | |||
Thecalculated upperheadregionvoidfractions fromequationC-1arealsopresented. | |||
Fortheseresults,theenthalpyofdisplaced liquid,was assumedtobethelinear.averageoftheinitialandfinalstates.32740:1/111882 FIGUREC-1.UPPEP.HEADVOIDINGILLUSTRATION. | |||
XII'TIAtVtLLH)hIII75 TABLE0-1UPPERHEADVOIDSIZETirade9:28:30Pp(Psia)1300Tp(Psia)577.5PF(Psia)1200Vg/VUH0.431V(Ft~)13210:0710985568451.030532740:1/11168276}} |
Revision as of 12:52, 29 June 2018
ML17256A403 | |
Person / Time | |
---|---|
Site: | Ginna |
Issue date: | 11/30/1982 |
From: | LEWIS R N WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML17256A400 | List: |
References | |
3203Q:1-111582, NUDOCS 8211290439 | |
Download: ML17256A403 (131) | |
Text
.E,ATTACHMENT BANALYSISOFPLANTRESPONSEDURINGJANUARY25,1982STEAMGENERATOR TUBEFAILUREATTHER.E.GINNANUCLEARPOWERPLANTNOVEMBER, 1982Preparedby:E.C.Volpenhein II'estinghouse ElectricCorporation NuclearEnergySystemsP.O.Box355Pittsburgh, Pennsylvania 15230PreparedforRochester GasandElectric89EastAvenueRochester, N.Y.1464982ii290405000244821122pDRPQOCKpDp32740:1/111782 TABLEOFCONTENTSSECTIONPAGEABSTRACTLISTOFTABLESLISTOFFIGURES~~~~~~~~.1~~'~~~~~11~~~~~~~oillI.INTRODUCTION 1II.ANALYSISOFPLANTRESPONSE~~~~~~II.lSystemsAnalysisCodeII.2PlantDataII.3InitialLeakRate'II.4Pre-tripSystemResponse~II.5Post-trip SystemResponse5.1PrimarySystemPressure5.2ReactorCoolantFlow5.3ReactorCoolantTemperature 5.4Pressurizer Level5.5BreakFlow5.6ReactorCoolantVoiding~5.7SteamGenerator OverfillII.6LongTermRecovery-I~~~~~~2~~245~~7162128335255586062III.SUMMARYANDCONCLUSIONS
...................65REFERENCES
............................67AppendixA:InitialLeakRateCalculation
~.-........
~~68AppendixB:BestEstimateBreakFlowModel............70:AppendixC:Calculation ofUpperHeadVoidSize-..743274/:1/111782 ABSTRACTPlantresponsetotheJanuary25,1982steamgenerator tubefailureattheR.E.GinnanuclearpowerplanthasbeenanalyzedusingthecomputercodeLOFTRANtoprovideadditional insightintoreactorcoolantvoiding,naturalcirculation loopflows,andprimary-to-secondary leakageduringtheevent.Resultsarecomparedtoavailable plantdata.3274(}:1/111782
/TABLEII.1-1LISTOFTABLESSEQUENCEOFMAJOREVENTSTABLEII.3-1PRE-TRIPPRESSURIZER LEVELTABLE11.5.1-1.SEQUENCEOFPORVOPERATION TABLEC-1UPPERHEADVOIDSIZE3274O:1/111782 LISTOFFIGURESFIGUREFIGUREII.1-1!I.4-1FIGUREII.4-2FIGUREII.4-3FIGURE,II.4-4FIGUREII.4-5FIGUREII.4-6FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.4-7II.5-1II.5.2II.5.3II.5-4II.5.1-1II.5.1-2FIGUREFIGUREFIGUREFIGUREII.5.1-3II.5.1-4II.5.2-1II.5.2.1-1 FIGUREFIGUREII.5.3.1-2II.5.3.2-1 FIGUREFIGUREII.5.3.2-2 II.5.3.2-3FIGUREFIGUREFIGUREFIGUREII.5.3.2-4 II.5.3.2-5 II.5.3.2-6II.5.3.3-1FIGUREII.5.2.1-2 FIGUREII.5.3-'1 FIGUREII.5.3.1-1GINNASAFETYINJECTION CAPACITYPRE-TRIPNORMALIZED COREPOWERPRE-TRIPSECONDARY SYSTEMPRESSUREPRE-TRIPPRESSURIZER PRESSUREPRE-TRIPPRESSURIZER LEVELPRE-TRIPAVERAGERCSCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER PRESSURE:
CONSTANTCOOLANTTEMPERATURE PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEMPERATURE NORMALIZED PRE-TRIPSTEAMFLOWNORMALIZED PRE-TRIPFfEDWATER FLOWINTACTSTEAMGENERATOR PRESSUREINTACTLOOPCOLDLEGTEMPERATURE REACTORCOOLANTSYSTEMPRESSURE'PRIMARY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOWPRESSURIZER WATERVOLUMEUPPERHEADFLUIDMASSVOLUMETRIC LOOPFLOWRATESCOMPARISON OF"MIXEDTEMPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROMTHESGOUTLETPLENUMFAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWSPOST-TRIP REACTORCOOLANTTEMPERATURES STEAMDUMPVALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCSGINNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES COMPARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEMPERATURES FOLLOWING REACTORTRIPFAULTEDLOOPCOLDLEGTEMPERATURES MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURf CALCULATION MIXINGVOLUMELOOPFLOWANDSAFETYINJECTION FLOWMIXINGVOLUMEFLOWTEMPERATURfS BESTESTIMATEREACTORVESSELDOWNCOMER TfMPERATURE COREEXITFLUIDTEMPERATURE 3274(:1/111982 111
LISTOFFIGURES(Cont.)FIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREFIGUREII.5.4-1II.5.5-1II.5.5-2II.5.7-1II.6-1II.6-28-1C-1FIGUREII.5.3.4-1FIGUREII.5.3.4-2FIGUREII.5.3.5-1FIGUREII.5.3.6-1FIGUREII.5.3.6-2BREAKFLOWFROMSGINLETANDOUTLETPLENUMSLOFTRANFAULTEDLOOPHOTLEGTEMPERATURE FAULTEDSGTUBEBUNDLEFLUIDTEMPERATURE POST-TRIP UPPERHEADFLUIDTEMPERATURE LOFTRANUPPERHEADFLUIDTEMPERATURE PRESSURIZER LEVELINDICATION LOFTRANANDBESTESTIMATEBREAKFLOWSFAULTEDSTEAMGENERATOR PRESSUREFAULTEDSTEAMGENERATOR WATERVOLUMERCSANDFAULTEDSTEAMGENERATOR PRESSURES LONGTERMPRESSURIZER LEVELRESPONSESGTUBERUPTUREFLOWMODELDIAGRAMUPPERHEADVOIDINGILLUSTRATION 32740:1/111982 1V I.INTRODUCTION AttherequestofRochester GasandElectric(RGE),Westinghouse hasanalyzedtheJanuary25,1982steamgenerator tuberuptureeventattheR.E.Ginnanuclearpowerplant.Theprinciple objective ofthiseffortistosupplement theexistingdatabase'oprovideamorethoroughunderstanding oftheplantr'esponse andactualsequenceofevents.Ofparticular interestarevoidingofthereactorcoolant,naturalcirculation loopflowbehavior, andprimary-to-secondary leakage.TheLOFTRANcomputercodewasusedfor(3)theseanalyses.
Anumberofauxiliary calculations arealsodescribed whichcomplement LOFTRANbyprqviding moredetailedmodelling oflocalized effects.Theplantresponsetothesteamgenerator tubefailureandsubsequent r'ecovery actionsispresented forthreedifferent, phasesoftheevent.Thepre-tripdatarecordprovidesinformation forestimating theinitialleakrateandextentoftubefailure.LOFTRAHanalysisofthisperiodextrapolates thisdatatodetermine theapproximate timeoftubefailureandhistoryoftube(leakage.Following reactortrip,severalautomatic protection systemswere~~~actuatedinrapidsuccession andasequenceofemergency recoveryactionswasinitiated tomitigatetheconsequences oftheaccident.
Thisemergency recov-eryperiodculminated intermination ofsafetyinjection.
Theplantresponsetotheautomatic protection systemsandrecoveryactionsduringthisphasewasalsoinvestigated usingLOFTRAN.Finally,thelongtermplantresponseandadditional leakageintothefaultedsteamgenerator aftertermination ofsafetyinjection isdiscussed.
Abriefdiscussion ofLOFTRANmodelling ispresented.
Severallimitations areidentified whicharesignificant whenappliedtotheGinnaeventandmust-beconsidered whenevaluating theanalysisresults.Theseresultsarecomparedtotheavailable plantdatainthefollowing sections.
32740:1/111882
II.ANALYSISOFPLANTRESPONSEII.1SystemsAnalysisCodeLOFTRANisafastrunning,digitalcomputercodedeveloped tosimulatetran-sientbehaviorinWestinghouse pressurized waterreactors.
Theprogrammodelsneutronkineticsaswellascontrolandprotection systemsontheprimaryandsecondary systems.Themostsignificant oftheprotection systems,theEmer-gencyCoreCoolingSystem(ECCS)andtheAuxiliary Feedwater (AFW)system,aredescribed below.TheECCSwasrepresented bythecombinedcapacityofthreehighheadsafetyinjection pumpsshowninFigureII.1-1.Safetyinjection initiated automatic-allyonlowpressurizer pressureof1740psiaandwasassumedequallydistrib-utedbetweenloops.Thesuctionofthesepumpswasinitially alignedtotwoboricacidtanks(BAT)containing approximately 4320gallonsofboratedwaterat140F.Onlowlevel,suctionwasautomatically re-aligned totheRefueling WaterStorageTank(RWST)whichcontained coolerwater.Intheanalysespre-sented,60FwaterfromtheRWSTwasassumedtobeinjectedthroughtheBATcontaining a140Fboricacidsolution.
Reactorcoolantmakeupfromthenor-malchargingpumpswasalsosimulated withsuctionfromthesepumpsalignedtotheRWST.Chargingflowisdiscussed onacasebycasebasis'inthefollowing sections.
TwomotordrivenAFWpumpsautomatically startedonasafetyinjection signal.Eachmotordrivenpumpprovidedapproximately 200GPMofwaterfromtheCondensate StorageTank(CST)anddelivered tooneofthetwosteamgener-ators.OnesteamdrivenAFWpumpstartedautomatically onlow-lowsteamgen-eratorlevel.Thesteamdrivenpumpsuppl.ied atotalof400GPMwhichwasavailable tobothsteamgenerators.
AFWpumpoperation wassimulated asdes-cribedinthesequenceofeventsinTableII.l-l.Apurgevolumeof200ft3containing normalfeedwater wasalsosimulated.
Thisrepresented adelayofapproximately 4minutesbeforecoldCSTwaterenteredthetuberegionof:theintactsteamgenerator.
3274(}:1/111882 22002000180016001400120010008004002000.020040060080010001200FIGUREII.1-1.GINiVASAFETYIHJECTIOiV CAPACITY.
3 PreviousLOFTRANanalyseshavesimulated thePrairieIslandtubefailureeventwell.However,LOFTRANissomewhatlimitedbythemodelling oftheupperheadregion,steamgenerator secondary side,andprimary-to-secondary leakage.Theupperheadmodelling assumeshomogeneous, thermodynamic equilibrium conditions duringflashingoftheupperheadfluid.Refilling oftheupperheadregionisartificially constrained tosimulatenon-equilibrium behavior.
Effectively, theupperheadregioncannotrefillduringnaturalcirculation flow.Furthermore, flowintotheupperheadregionviaguidetubesisnotrepresented.
Consequently, thecalculated upperheadfluidtemperature maybeunrealistic forplantswithsmallerupperhead"spray"nozzles,suchasGinna.LOFTRANisalsolimitedbythehomogeneous,
'saturated conditions withinthe'secondary whichpromotesanunrealisticlylethargic tubebundleregiontemperature response,to AFMflowandsecondary-to-primary heattransfer.
Inaddition, theseconditions resultinartifically reducedsteamgenerator pressures whennosteamflowoccurssincethesteamiseffectively assumedtobeincontactwiththesteamgenerator tubes.Thebreakflowcal-culations withinLOFTRANarebasedonconservative, i.e.maximumflow,criti-calflowcorrelations.
Theaccuracyofthesecorrelations inpredicting criticalflowtrendsoverawiderangeofsystemconditions isuncertain.
Furthermore, thebreakflowmodelling doesnotconsiderflowresistance throughthefailedtube,orfluidtemperature variations betweenthesteamgenerator inletandoutletplenums.Finally,LOFTRANdoesnotpermitreverseflowtooccurinthecoolantlooptowhichthepressurizer isconnected.
Fortheresultspresented, thepressurizer wasmodelledontheintactloopalthoughduringtheGinnaeventthepressurizer wasonthefaultedloop.Thismayresultinunrealistic loopflowsduringrefilling ofthepressurizer.
II.2PlantDataTheplantdatawhichformsthebasisoftheanalysesthatfollowwasobtainedfromvariouscomputerrecords,stripchartsofsystemparameters, andthesequenceofeventsasreconstructed byRGE.TheGinnaplantcomputerisarealtimecentralprocessing unitwhichstoresselectedplantparameters:
foruseduringnormaloperations.Severalperipherial devicesservicedbythiscentralunitprovidetheprincipal dataforpost-accident analyseswhichincludesprimaryandsecondary pressures, reactorcoolanttemperatures, and3274(}:1/111882 r~
pressurizer level.Thesedevicesincludeapre-tripeventrecorder, aTI-7000teletypeterminal, analarmtypewriter, andalogtypewriter.
Communications withRGEpersonnel supplemented thisdataandprovidedadditional insightintotheevent.Thesequenceofoperatoractionswasextracted fromthesequenceofeventsprovidedbyRGEandthechronology pfplantalarms.whenpossible.
Themajoreventsarepresented inTableII.l-l.Comprehensive plantdataandthecompletesequenceofeventsisavailable inreference l.II.3InitialLeakRateThepre-trippressurizer levelresponsetothelossofreactorcoolantwasanalyzedtoestimatetheinitialprimary-to-secondary leakrate.Rapidvaria-tionsinreactorcoolanttemperature duetoturbinerunbackandautomatic steamdumptothecondenser tendedtomasktheinventory loss.However,anaverageleakratepriortotripwas.estimated byconsidering theindicated pressurizer levelresponsebetweentimesofconstantaveragecoolanttempera-ture.Sincethecoolanttemperatures atthesetimeswereapproximately thesame,theeffectoftheturbinerunbackonthiscalculation wasminimized.
Thepre-trippressurizer level,adjustedforinstrumentation calibration, ispresented inTableII.3-1;Basedondiscussions withRGEpersonnel, twochargingpumpswereoperating priortothetubefailure,oneinmanualandtheotherinautomatic.
Eachpumpwasdelivering approximately 25GPMofflow.Totalletdown,including
'eactorcoolantpumpsealleakoff,was50GPM.Following tubefailure,onechargingpumpautomatically increased tothemaximumcapacityof60GPMaspressurizer leveldecreased.
Althoughathirdchargingpumpwasmanuallystartedapproximately 40secondsbeforereactortrip,9:27:30,itwouldhaveprovidedlittleflowbeforetrip.Consequently, thenormalchargingsystemwassupplying anexcessofapproximately 35GPMduringthisperiod.Theaveragepre-tripleakratewasestimated tobe573GPM(Appendix A).Aninitialleakrateof634GPMwascalculated byextrapolating theaverage-leakratetotheinitialsystemconditions basedonsubcooled criticalflow(5)throughthefailedtube.Aneffective breakareaof0.0033ft2wasdetermined byproportioning thecriticalflowrateascalculated byLOFTRANforthe.initialsystemconditions tomatchtheinitialleakrate.3274(}:1/111882
TABLEII.3-1PRE-TRIPPRESSURIZER LEVEL~~Time(A.M.)Indicated Level(Xspan)Adjusted*
Level('Xspan)Tavg(F)9:26:189:26:269:26:349:26:429:26'.589:27:069:27:149:27:229:27:309:27:389:27'469:27:549:28:029:28:10132.530.630.530.530.230.230.228.926.220.8'17.914.811.79.032.731.030.830.930.730.530.629.426.922.019.516.814.111.9571.2571.2571.9573.2575.2576.4576.8576.1575.3574.5573.4572.4571.4570.1*SeeAppendixA3274(}:1/1 11782
II.4Pre-TripSystemResponseThefirstindications ofabnormalconditions wererecordedatapproximately 9:25whenanumberofalarmssoundednearlysimultaneously.
Theseincludedlowpressurizer
- pressure, lowpressurizer level,condenser airejectorradia-tion,andBsteamgenerator leveldeviation alarms.Thealarmrecorderindi-catesthatthelowpressurizer presurealarmsoundedfirst.Systemconditions werenormalat9:22withnoapparentsymptomsofprimary-to-secondary leakage.Thereactorcoolantsystempressureandtemperature priortoreactortripwereanalyzedusingnormalized corepower,FigureII.4-1,'nd secondary
- pressure, FigureII.4-2,dataasforcingfunctions forthecalculations.
Alternative secondary sideboundaryconditions werealsoconsidered asforcingfunctions forthepre-tripcalculations, including normalized steamandfeedwater flows..Althoughtheseproducedreasonable results,theinstrument uncertain-tiesandresponsetimeswerenotasconducive assecondary pressuretopre-tripanalysis.
Thepressurizer pressureandlevelresponses calculated usingLOFTRANagreedverywellwithplantdataasillustrated inFiguresII.4-3andII.4-4,respectively.
Extrapolation ofthisdatawithaninitialleakrateof634GPMsuggeststhattubefailureoccurredat9:25:10(dmin).Thecalculated pressureattheactualtimeofreactortripwasapproximately 30PSIgreaterthanindicated.
Theaveragereactorcoolanttemperature iscomparedwithpre-tripdatainFigureII.4-5.Theincreaseintemperature duetoturbinerunbackmomentarily maskedthedecreaseinprimarycoolantinventory.
Simi-larly,whenthesteamdumpvalvesopened,theassociated cooldownenhancedreactorcoolantsystemdepressurization.
FiguresII.4-6andII.4-7illustrate thepredicted pressurizer pressureandlevelresponses whenreactorcoolanttemperature wasmaintained constant.
Asdemon'stated, thepressureandlevelresponses aresignificantly affectedbycoolanttemperature trends.3274(:1/111882
100GI<<HA(+)LOFTRAN(-)90~r80C)CL70C)LJJIVo..60C)509:24925926TINE(A.ii.)9:279:28929FIGUREII.4-1.PRE-TRIPthORllALIZED COREPOllER.
1100GINNA(+)LOFTRAN(-)10009008007006009249:25926TIVE(A.H.)9:279:28929FIGUREII.4-2.PRE-TRIPSECONDARY SYSTEMPRESSURE 2200GIN~iA(+)LOFTRAt~(-)20001800LU1600C'40012009:249:259:269:279:289:29TItiE(n.n.)FIGUREII.4-3.PRE-TRIPPRESSURI"ER PRESSURE.
10080GIr<NA(+)LOFTRAN(-)60402009:249259:26927928929TIflE(A.H.)FIGUREII.4-4.PRE-TRIPPRESSURIZER LEVEL.
58520GINNA(+)LOFTRAN(-)1612u5755659249:259:269:279:2809:29TII1E(A.H.)FIGUREII.4-5.PRE-TRIPAVERAGERCSCOOLANTTft1PERATURE
2200GINNA(+)LOFTRAN(-)2000180016001400'12009:249:259269:279:28TInE(A.W.)FIGUREII.4-6.PRE-TRIPPRESSURIZER PRESSURE:
CONSTANTCOOLANTTEf1PERATURE 100O60+O~r40UiCYUJ2009289249:259:27TIi'iE(A.t1.)FIGUREII.4-7.PRE-TRIPPRESSURIZER LEVEL:CONSTANTCOOLANTTEHPERATURE 9:29
TABLEII.l-l:SEQUENCEOFMMOREVENTSEventManual(0)Automatic (A)ActualTIME(Sec)Simulated TubeFailureTurbineRunbackAutomatic SteamDumpReactorTripSafetyInjection SignalFeedwater Isolation Auxiliary Feedwater StartReactorCoolantPumpTripBMotorDrivenAFWPumpOffManual.SteamDumpBLoopMSIVClosedAFWThrottled ASGAFWStoppedtoBSGChargingPumpsStartedPORVCycledSITerminated 078110182190192220230410(1)770(1)890("950(1)1250('2330(25404310(070118182198198239246410530(530(2)9501250233025404310Thesetimesareapproximate andtypically mayvarybyupto60seconds.SeesectionII.5foradiscussion onthesimulation oftheseevents.3274Q:1/111882 l5
II.5Post-Trip SystemResponseContinued leakageofprimarycoolantincombination withrapidcooldownofthereactorcoolantsystemfollowing actuation ofthesteamdumpsystem,causedanautomatic reactortriponlowpressurizer pressure.
Primarysystempressuredecreased rapidlyaspowergeneration wasabated,andseveralsupporting sys-tems,including theECCSandAFWsystem,startedinrelatively rapidsucces-sion.Aseriesofoperatoractionscommenced inaccordance withemergency responseprocedures torecovertheplanttoasafeshutdowncondition.
TheplantresponsetothesesystemsandoperatoractionswasanalyzedusingLOFTRANandtheresultsarepresented inthefollowing sections.
Theseanaly-seswerelimitedtothetimefrominitialfailureuntil10:40(75min),shortlyaftertermination ofsafetyinjection.
Beyondthistime,LOFTRANanalysiswasnotappropriate becauseofthehomogeneous, equilibrium secondary sidemodelling.
Additional leakageintothefaultedsteamgenerator wasestimated fromplantdatatodetermine themassdischarged fromthesteamgenerator afteroverfill.
Thesteamgenerator tubefailureoccurredintheBloopduringtheGinnaevent.Consequently, faultedloopandBlooparesynonymous inthefollowing sections.
Similarly, intactloopandAloopare*usedinterchangably.
However,AloopandBloopdesignations generally refertoplantdata,andintactandfaultedtoLOFTRANcalculations.
Fortheseanalyses, normalized steamflow,FigureII.5-1,andfeedwater flow,FigureII.5-2,fromplantdatawereusedpriortotripasforcingfunctions forthecalculations.
Thisprovidedadditional flexibility inmodelling sub-sequentoperatoractionswithL'OFTRAN.
TheLOFTRANanalysisresults,whichincludeanadjustment totheinputsteamflowtoaccountforincreased secon-daryp'ressure, arealsoshownforcomparison.
Afterreactortrip,theintactsteam'generator pressurewascontrolled toreproduce theindicated loopAcoldlegtemperatures.
Theintactsteamgenerator pressureinputtoLOFTRANiscomparedtoplantdatainFigureII.5-3.FigureII.5-4showsthecalculated andmeasuredintactloopfluidtemperatures atthecoldleginlet.NotethatloopAcoldlegfluidwassubcooled attheAloopsteamgenerator pressurebetweenapproximately 9:32(7min)and9:41(16min).Becauseofthehomo-geneousequilibrium secondary sidemodelling withLOFTRAN,suchsubcooling 32740:1/11188216 100GINNA(+)LOFTRAN(-)8060402009:249:259:26927TIi~>E(A.>>.)FIGUREII.5-1.i%OR/1ALIZED PRE-TRIPSTENlFLOW.9:28929
10080604020'9249'259:269:27TINE(A.ti.)FIGUREII.5-2.HORHALIZED PRE-TRIPFEEDHATER fLOW.9289:29
1200.01000.0GINNA(G)LOFTRAN(-)800.00CG600.00~400.00200.000.0CDCDCDTINKtMIN)FIGUREII.5-3.INTACTSTEANGENERATOR PRESSURE.
19
700.00GINHA(G)LOFTRAN(-)INLETOUTLETC)C)ClAJ7lHE(MlM)FIGUREII.5-4.INTACTLOOPCOLDLEGTEf1PERATURE.
20
couldnotbereproduced.
,However,thecooldownoftheAloopwassimulated byartifically steamingtheintactsteamgenerator.
Hence,thecalculated steamgenerator pressurewaslessthanmeasuredduringthisperiod.II.5.1PrimarySystemPressurePrimarypressurecontinued todecreasefollowing reactortripasbreakflowdepletedcoolantinventory andautomatic steamdumpcooledthereactorcoolantsystem.Safetyinjection wasactivated withinapproximately 16seconds,at9:28:28(3.2min),whenpressurizer pressurereached1740psia.Threehighheadsafetyinjection pumpsbegantoinjectshortlythereafter
.torestorecoolantinventory.
Pressurecontinued todecreasetoaminimumof1200psiabetween9:29(4min)and9:30(5min)asautomatic steamdumpestablished no-loadRCStemperature.
Asmallvoidmayhavedeveloped intheupperheadregion.duringthisinitialdepressurization althoughLOFTRANdidnotpredictflashing(seesectionII.5.6.2).
Thecalculated RCSpressurehistoryiscomparedtoplantdatainFigureII.5.1-1.
Whenthepost-trip cooldownsubsidedafterno-loadtemperature hadbeenestab-lished,safetyinjection flowinexcessofbreakflow,FigureII.5.1-2, repressurized thereactorcoolantsystemuntilapproximately 9:32(7min).Heat-upofthereactorcoolantduringthetransition fromforcedtonaturalcirculation duetoRCPtripcontributed tothisrepressurization.
LOFTRANanalysisdemonstrated amorerapidrepressurization duringthisperiodthanactuallyobservedpossiblybecauseofcollapseofanupperheadvoidduringtheactualevent.Reactorcoolantshrinkage, ascoldAFWenteredtheAloopsteamgenerator, incombination withbreakflowdecreased pressuretoamini-mumof1140psiabetween9:32(7min)and9:41(16min).Manualsteamreleasebeginning atapproximately 9:38(13min)contributed littletothisRCScool-downsincethesteamgenerator tubebundleregionwassubcooled.
AlthoughadecreaseinprimarysystempressureisevidentintheanalysisresultsshowninFigureII.5.1-1, theactualpressuredecreased significantly lower.Thisiscausedinpartbytheinitially highercalculated primarypressureat-9:32(7min).Inaddition, althoughLOFTRANindicates asmallamountofwaterremainedinthepressurizer duringthisperiod,FigureII.5;1-3, thepressur-izermayhaveactuallydrained.Thiswouldhaveenhanceddepressurization oftheprimarysystem.3274(:1/111882 21
2500.02250.0GINNA(G)LOFTRAN(-)1750.01500.0GGGGCGG1000.0CDCDCDCDAJTINE(MIN)CDCDCDC)CDFIGUREII.5.1-1.
REACTORCOOLANTSYSTE[1PRESSURE.
22
125.00LOFTRAN(-)100.00SIFLOll75.000lsJ~50.00025.000BREAKFLOW0.0C7C)EDC)C)AJC)C)CDC)TIVE(MlH)CDClC7CDtDC)C)CDC)EX7CDCDFIGUREII.5.1-2.
PRIORY-TO-SECONDARY LEAKAGEANDTOTALSAFETYINJECTION FLOW.23
800.00700.00LOFTRAN(-)600.00500.00F00.00300.00CD200.00100.000.0CDCDCDAJCDTlHK(MlH)C)CDCDEOCDCDCDCOFIGUREII.5.1-3.
PRESSURIZER WATERVOLUt1E.
WhenAFWflowwasterminated totheAloopsteamgenerator at9:41(16min),thecooldownofthereactorcoolantsystemsubsided.
Safetyinjection flowrepressurized theprimarysystemtowardanequilibrium pressureofapproxi-mately1320psiawherebreakflowandsafetyinjection werenearlyequal,asillustrated inFigureII.5.1-2.
Operation ofthesteamdumpvalvesoccasion-allyperturbed thisgeneraltrendandmaintained pressureslightlybelowequilibrium.
LOFTRANcalculations slightlyoverestimated thereactorcoolantsystempressureduringthisperiod.Twochargingpumpswithacombinedcapac-ityof120gpmwereassumedtoi'njectintothefaultedloopcoldlegbeginning at10:04(39min),asnotedinthesequenceofevents.Asaresult,thepre-dictedprimarypressureincreased towardanequilibrium valueof1410psiaby10:07(42min).Thisisconsistent withplantdatawhichindicates anequi-libriumpressureofapproximately 1390psia.Cyclingofapressurizer PowerOperatedReliefValve(PORV)wassimulated beginning at10:07(42min)andproceeded asindicated inTableII.5.1-1.
ThePORVwasmodelledtofullyopenorcloseinstantaneously.
Duringtheactualevent,thePORVfailedtocloseonthefourthcycleandwasmanuallyiso-lated.Althoughthisisolation wasassumedcompleted by10:10(45min),theactualtimemayhavebeenslightlylater.Thecalculated reactorcoolantsystempressureresponseduringthisperiodagreedwellwithavailable plantdata.Theminimumpressureduringthisperiodwascalculated tobe847psia.Following isolation ofthefailedPORV,thereactorcoolantsystempressureincreased rapidlytoapproximately 1400psiaassafetyinjection flowandreverseflowfromtherupturedsteamgenerator increased coolantinventory.
Theactualrepressurization wasslowerthancalculated byLOFTRAN.Asnotedpreviously, LOFTRANinhibitsrefilling oftheupperheadregionduringnaturalcirculation flow,asevidenced bytheconstantupperheadfluidmassbeyond10:10(45min)inFigureII.5.1-4.
Thisenhancedrefilling ofthepressurizer and,consequently, repressurization oftheprimarysystem.Hence,theslowerincreaseinpressureobservedintheactualeventisattributed toatleastpartialrefilling oftheupperheadregion.By10:17(52min),safetyinjection andchargingflowshadreestablished anequilibrium withbreakflowatapproximately 1400psia.Whensafetyinjection 32740:1/111782 25 3.00E+OiLOFTRAH(-)2.50Ei"2.00Ei,~t.50E&iSaturated Liquidl.OOEKli5000.0r>-Saturated Vapor0.0C)CDAJ8CDCDCD07TINE(MlM)FIGUREII.5.1-4.
UPPERHEADFLUID(NSS.26 TABLEII.5.1-1SEQUENCEOFPORVOPERATION CycleOpenedTime(A.M.)Closed10:07:30.5 10:07:35.5 10:07:49.3 10:07:57.3 10:08:44.0 10:08:52.7 10:09:10.1 Actualtimeofisolation mayhavebeenslightlylater32740:1/1 1178227
wasterminated at10:37(72min),primarysystempressuredecreased rapidlyfrom1370psiato945psia.LOFTRANanalysesdemonstrated asimilardepres-surization asthepressurizer steambubbleexpandedtoaccommodate residualbreakflowinexcessofreactorcoolantmakeup.Continued chargingflowandpressurizer heateroperation maintained primarypressuregreaterthan'thefaultedsteamgenerator pressureuntilprimary-to-secondary leakagewasterminated at12:30(185min).II.5.2ReactorCoolantFlowAtransition fromforcedtonaturalcirculation flowoccurredfollowing manualreactorcoolantpumptripat9:29:09(4min).Thisisevidenced bytheincreasing loopdelta-Tbetween9:29(4min)and9:31(6min).AFWflowpref-erentially cooledtheAsteamgenerator whichenhancednaturalcirculation flowintheAloopandretardedflowintheBloop.Thisresponsewasdemonstrated intheLOFTRANresultsshowninFigureII..5.2-1 from9:32(7min)to9:41(16min).WhenAFWflowwasthrottled at9:41(16'min),flowthroughtheAintactloopwascalculated todecreasetoapproximately 4Xofinitialconditions.
Flowthroughthefaultedloopmomentarily increased, asAFWflowfromtheturbinedrivenAFWpumpcontinued tocoolthefaultedsteamgenerator, until9:46(21min)whenAFWflowwasterminated; Asthecooldownoftheintactsteamgenerator continued, flowthroughthefaultedloopwas'alculated tostagnateat10:10(45min).Natural.circulation flowthroughtheintactloopwasmaintained between3Xand4gfullflowuntilthereactorcoolantpumpwasrestarted at11:19(114min).II.5.2.1LoopBColdLegFlowAlthoughLOFTRANdidnotsupportsignificant reverseflowthroughthefaultedloop,theeffect.ofbreakflowmodelling onthecalculated loopflowwasuncertain.
Hence,thepotential forprimary-to-secondary leakagegenerating sufficient reverseloopflowtoproducetheobservedBlooptemperature responsewasinvestigated.
FigureII.5.2.1-1 comparesthetotalreverseflow,i.e.safetyinjection flowandloopflowfromthevesseldowncomer, whichwouldhaveamixedtemperature identical totheindicated Blooptemperature, 28
10.000LOFTRAN(-)8.00006.00001.0000lINTACTLOOP4~2.0000FAULTEDLOOP0.0"l.0000ClClCDClT1HEtHlN)CDCDCDCDCDCDEKIFIGUREII~52lVOLUMETRIC LOOPFLOWRATES~
300.00250.00200.00ChargingPumpsStartedPORVClosedCalculated(+)"MixedTemperature" ReverseLoopFlow.150.00PORVOpened50.000OutletPlenumBreakFlow0.0-25.000CDCDCDCDCDCDCDTIME"(HIM)CDCDCDCDCDCDCDCDCQCDFIGURE'I!.5.2.1-1.
COiiPARISON OF"MIXEDTEYiPERATURE" REVERSEFLOWTHROUGHFAULTEDLOOPANDBREAKFLOWFROtlSGOUTLETPLENUi~i.
3O randthecalculated breakflowfromthesteamgenerator outletplenum.Asdemonstrated, primary-to-secondary leakagewasmuchlessthantherequiredmixedloopflow.Asanadditional assessment ofpotential reverseloopflow,theresponseofthetubebundlefluidtemperature inthefaultedsteamgenera-torwascalculated (seesectionII.5.3.5).
Theseresultssuggestthatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenera-torwouldhavebeencolderthantheintactsteamgenerator.
Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred.
Ginnadatademonstrated propagation ofaportionofthesafetyinjection flowupstreamoftheinjection locationbeginning at9:39(14min).Inaddition, theobserved8loopcoldlegtemperature responsesuggestsacontinuous supplyofwarmfluidupstreamoftheinjection nozzle(seesectionII.5.3.3).
Thecalculated fluidflowsintoandfromthefaultedloopcoldlegareshowninFigureII.5.2.1-2.
Safetyinjection flowwascalculated tosplitwhenthefaultedloopflowstagnated at10:10(45min);asmallportionflowedtowardthesteamgenerator whilethemajorityflowedtowardthevessel.Acontinuous flowofwarmwaterwasnotobservedintheLOFTRANanalysisresults.Nosig-nificanttemperature increaseinthecalculated faultedloopcoldlegtempera-tureoccurred.
Theseresultssupporttheexistence ofacounter-current typeofflowregimeupstreamoftheinjection nozzle.The8looptemperature responserepresents mixingofaportionofthesafetyinjection flowupstreamoftheinjection nozzlewithastreamofwarmerwaterfromthesteamgenerator.
Suchmixingisnotsimulated intheonedimensional modelling ofLOFTRAN.Themagnitude offlowfromthefaultedsteamgenerator requiredtoproducethequasi-steady temperature responsewasestimated fromthecoldleginlettemperature andsafetyinjection flowinthefaultedloopcalculated withLOFTRAN.Experimental evidence'uggeststhatasignificant portionofsafetyinjection intoastagnantloopwouldpropagate upstreamoftheinjection nozzle.Basedonthisevidence, onethirdofthesafetyinjection flowwasassumedtomixupstreamoftheinjection location.
Theresultofthiscalculation indicates thataminimumloopflowof21ibm/sec(170gpm)existedafter10:07(42min).3274(}:1/111982 31
1000.0LOFTRAIN(-)800.00600.003100.00OUTLETu-200.00IINLET0.0"100.00CDCDCDCDAJCDCDTlMf(MlN)CDCDCDCQCDCDFIGUREII.5.2.1-2.
FAULTEDLOOPCOLDLEGINLETANDOUTLETFLOWS.32
II.5.3ReactorCoolantTemperatures Theearlyreactorcoolanttemperature responses weretypicalofreactortrip.Hotandcoldlegtemperatures decreased rapidlyastheautomatic steamdumpsystemandsecondary coolantabsorbedenergymorerapidlythandecayingcorepower.Thelargeflow/power mismatchreducedthecorecoolanttemperature risetoonlyafewdegreesandthesteamdumpsystemoperatedtomomentarily stabilize temperatures nearno-load.Themeasuredcoretemperature risedecreased toaminimumof2Fbeforereactorcoolantpumpsweretrippedandsteadilyincreased thereafter toapproximately 10'Fby9:31(6min).From9:31(6min)to9:38(13min)allsteamdumpvalveswereclosed.Duringthistime,safetyinjection andauxiliary feedwater flowsabsorbeddecayheatandstabilized temperatures asdemonstrated intheLOFTRANanalysisresultsshowninFigureII.5.3-1.
II.5.3.1ALoopColdLegTemperature ColdAFMflowrapidlycooledtheAloopcoldlegbeginning at9:32(7min).AlthoughtheAFWpumpswereautomatically startedshortlyafterreactortrip,thesteamgenerator feedlines anddowncomer volumedelayedinjection ofcoldwaterfromtheCondensate StorageTank(CST)intothetubebundleregion.Twosteamdumpvalveswere.manuallyopenedfromabout9:38(13min)until9:39(14min)todecreaseprimarycoolanttemperature asdirectedbytheemergency operating procedures.
Thisappearstohavehadlittleeffectonthecoldlegtemperature sincethesecondary coolantinthetubebundleregionwassub-cooled.TheAloopcoldlegtemperature decreased toaminimumof485Fat9:41(16min)whenAFMflowwasterminated totheAsteamgenerator.
Thehomogeneous equilibrium secondary sidemodelling withinLOFTRANtendedtounderestimate theprimarysystemcoolingduetoauxiliary feedwater.
Conse-quently,theintactsteamgenerator pressurewasusedasaforcingfunctiontotreproduce theAloopcoldlegtemperature
- response, aspreviously noted.FiguresII.5-3andII.5-4comparetheintactsteamgenerator pressureandcalculated, coldlegtemperature, respectively, withplantdata.Withtheexception ofthecooldownduetoAFWflow,bothpressureandtemperature matchthedatareasonably well.Decreases inmeasuredcoldlegtemperature 3274(:1/111882 33 700.00650.00LOFTRAN(-)600.00HOTLEG-550.00~5¹00ICOLDLEGi5000400.00ClC7TIHf(HIN),FIGUREII.5.3-1.POST-TRIP REACTORCOOLAHTTEMPERATURES.
"
correlate withtheoperation ofsteamdumpvalvesandAFWflowasshowninFigureII.5.3.1-1.
Theinsurgeofsafetyinjection whenthepressurizer PORVwasopened,reducedthecoreexittemperature belowtheAloopcoldlegtem-perature, asshowninFigureII.5.3.1-2.
Thissuggeststhatsecondary-to-primaryheattransfermayhavemomentarily occurredintheAloop.TheLOFTRANanalysisresultsdemonstrated asimiliarresponse.
However,thedecreaseincoldlegtemperature between10:12(47min)and10:15(50min)wasunderestimated.
Thisappearstobeaconsequence ofthehomogeneous secondary side.II.5.3.2BLoopColdLegTemperaaure TheBloopcoldlegtemperature responsewasessentially thesameastheAloopuntilAFMflowwasreducedtothe8steamgenerator atapproximately 9:32(7min).From9:32(7min)until9:39(14min)theBlooptemperature decreased moreslowlyasillustrated inFigureII.5.3.2-1.
Atapproximately 9:39(14min),theBloopcoldlegtemperature decreased rapidly,indicative ofsafetyinjection flowupstreamoftheinjection nozzle.Beyondthistime,twodistincttrendsareevidentinthemeasuredtemperature response.
Therapiddecreaseintemperature beginning at9:39(14min)istypicalofa"mixing-cup" configuration whereaportionofthecoldsafetyinjection flowmixeswiththewarmerfluidwithinafixedvolume.Sincetheinventory ofwarmer'wateravailable formixingislimited,suchasystemischaracterized bya.continuous, exponential decreaseinfluidtemperature tothetemperature oftheincomingsafetyinjection flow.Equallyevidentinthe8loopcoldlegtemperature responseisaquasi-steady periodbeginning atapproximately 9:57(32min).Itisclearthat"mixing-cup" conditions donotdescribethisbehaviorsincesufficient mixingvolumeisnotavailable tosupportanexponential fittothetemperature timeresponse.
Furthermore, theincreaseincoldlegtemperature from10:11(46min)until10:18(53min)cannotbeexplained by"mixing-cup" behavior.
Thissuggeststhataflowofwarmerwatercontinued intotheBloopcoldleg.Thecalculated faultedloopcoldlegfluidtemperatures arecompareuwithBloopdatainFigureII.5.3.2-2.
Thecalculated coldlegoutlet,i.e.vesselinlet,temperature steadilydecreased, asflowthroughthefaultedsteamgenerator decayed,andapproached thetemperature ofthesafetyinjection 3274(}:1/111882 35 700.00650.00SteamDumpValvesOpen(0)SteamDumpValvesClosed(C)AFWFlowInitiated (I)AFWFlowTerminated (T)600.00455000OCLIz500.00i5000100.00CDC7CDTlMK(MIN)CDCPCDCDCDFIGUREII.5.3.1-1.
STEAN'DUHP VALVEOPERATION ANDAFWFLOWDURINGCOOLDOWNOFTHERCS.
500.00480.00COLDLEG(-)COREEXIT(+)460.00+++440.00l=:420.00400.00CDCDCDCDCD-CDCDCDCIlCDCDCDCDCDCDI/lCDCDCDV)T1MK(HlN)FIGUREII.5.3.1-2.
GIHNACOREEXITANDINTACTLOOPCOLDLEGTEMPERATURES.
37 100.00650.00LOFTRAN(-)600.00o550.00FAULTEDLOOPCL'IXx500.00IINTACTLOOPi50.00100.00CIC7TlME(HtN)C7C)EDClC7IAAJFIGUREII.5.3.2-1.
COl1PARISON OFINTACTANDFAULTEDLOOPCOLDLEGTEflPERATURES FOLLOhlING REACTORTRIP.
700.00600.00500.00GGCOLDLEGINLETGINNA(G)LOFTRAN(-)400.00~300.00IZi-200.00COLDLgGOUTLETd4'cC0G100.000.0CDCDTIME(MlN)CDCDCDCDKl)CD'DFIGUREII.5.3.2-2.FAULTFDLOOPCOLDLEGTEMPERATURES.
39
flow.AlthoughthisissimilartotheBlooptransition period,thecalcu-latedcoldlegoutlettemperature continued todecrease.
Thecalculated temp-eratureupstreamofsafetyinjection remainedrelatively hotuntilapproxi-mately10:10(45min),atwhichtimesafetyinjection flowwasfirstpredicted byLOFTRANtopropagate upstreamoftheinjection nozzle.Whenthepressurizer PORVwascycledbeginning at10:07(42min),asurgeofsafetyinjection flowdecreased theBloopfluidtemperature.
Thecalculated vesselinlettemperature demonstrated asimilarresponse.
Althoughthecal-culatedfaultedloopcoldleginlettemperature wasnotsignificantly
- affected, thelocationofthepressurizer mayhaveartificially promotedflowtowardthevessel.Noincreaseinfluidtemperature isobservedintheLOFTRANanalysisresultsafterisolation ofthefailedPORV.Evaluation ofthepotential flowdistributions withinthefaultedloopcoldleg(seesectionII.5.2.1)suggeststhatmulti-dimensional behaviormayhavesignificantly affectedtheactualtemperature response.
Sucheffectsarebeyondthecapabilities ofLOFTRAN.However,theBlooptemperature responseindicates anadditional flowofwarmfluidintothecoldlegwhichisnotobservedintheLOFTRANanalysisresults.Consequently, thecalculated coldlegoutlettemperature showninFigureII.5.3.2-2 underestimates theexpectedminimumbulkfluidtemperature atthevesselinlet.Inordertomorerealisticly estimatetheminimumfluidtemperature inthereactorvessel,thevesseldowncomer, coldlegandcrossover legpiping,andreactorcoolantpumpweremodelledasasingle,mixingvolumeasshowninFigureII.5.3.2-3.
Thetemperature responseofthisconfiguration toflowfromthefaultedsteamgenerator andsafetyinjection flow,FigureII.5.3.2-4, wascalculated assumingperfectfluidmixing.Theseflowsandassociated temperatures, FigureII.5.3.2-5, wereobtainedfromtheLOFTRANanalysisresults;however,aminimumloopflowof21ibm/sec(170gpm)wasassumed,asdiscussed insectionII.5.2.1.
Metalheatadditionfromthereactorvessel,piping,andcoolantpumpwasdetermined fromaonedimensional conduction/
convection heattransfermodelbasedonthemeasuredfluidtemperature inthe~Bloopcoldleg.Thecalculated mixingvolumefluidtemperature iscomparedtotheLOFTRANanalysisvesselinlettemperature andBlooptemperature datainFigureII.5.3.2-6.
Themetalheatandadditional loopflowincreased the3274(}:1/111982 40
SAFETYIHJECTIONRCPCOLDLEGVESSELDOWNCOMER CROSSOVER LEGLOOPFLOWCOREMIDPLANEFIGUREII.5.3.2-3 MIXINGVOLUMEFORVESSELDOWNCOMER TEMPERATURE CALCULATION LOFTRAN(-)ESTIMATED
(------)LOOPFLOWSAFETYINJECTION FLOWTlwf(Nlm)FIGUREII.5.3.2-4'IXING VOLUMELOOPFLOWANDSAFETYINJECTION FLOW42 700.00600.00LOOPFLOW500.00i00.00ce300.00~200.00f0000SAFETYINJECTION FLOW0.0ClClQTlNflNil1FIGUREII.5.3.2-5MIXINGVOLUMEFLOWTEMPERATURES 43 700.00600.00l00.00GINNABLOOPDATA(G)ce300.00BESTESTIMATEVESSELDOWNCOMER t00.00LOFTRANVESSELINLET0.0C7C)C)T!NfllolN1FIGUREII.5.3.2-6 BESTESTIMATEREACTORVESSELDOWNCOMER TEMPERATURE 44
minimumcalculated downcomer fluidtemperature atthecoremidplaneelevation toapproximately 200'F.Inaddition, anincreaseinfluidtemperature ocurredaftersafetyinjection wasterminated at1037(42min)asobservedduringtheactualevent.Theseresultsrepresent amorerealistic estimateoftheminimumfluidtemperature inthevesseldowncomer.
II.5.3.3CoreExitFluidTemperature Thecalculated, coreexitfluidtemperature iscomparedtotheavailable datainFigureII.5.3.3-1.
Imperfect mixingatthecoreinletwassimulated intheresultspresented; consequently, thecoreexittemperature isslightly.
differ-entforthecoreregionsadjacenttothefaultedandintact,loops.Thecoreexitfluidtemperature trendedtheintactloopcoldlegandremainedsubcooled throughout thetransient.
IIncreased reactorcoolantmakeupfollowing startupofthechargingpumpsandcyclingofthepressurizer PORVdecreased thecoreexitfluidtemperature beginning at10:04(39min).Thistemporarily decreased thecoreexittemper-aturebelowtheAloopcoldlegtemperature asdiscussed insectionII.5.3.1.
II.5.3.4BLoopHotLegTemperature Primary-to-secondary leakagefromthesteamgenerator inletplenumprovidedamechanism forflowthroughthefaultedloophotlegevenforstagnantloopflowconditions.
Basedonestimates ofthisbreakflow,FigureII.5.3.4-1, andthehotlegvolume,thefaultedloophotlegtemperature wasestimated tolagthecoreexittemperature bylessthan10minutes.TheLOFTRANanalysisdemonstrated thistrend,asshowninFigureII.5.3.4-2.
Theseresultsindi-catethatthefaultedloophotlegfluidremainedsubcooled throughout theevent.II.5.3.5BSteamGenerator Temperature Thetubebundleregionfluidtemperature ofthefaultedsteamgenerator wascalculated bymodelling asingle,subcooled controlvolumeincommunication withtheprimarysystemviaprimary-to-secondary
.leakageandspecified loopflow.Perfectenergytransferwasassumedsothatbreakflowandloopflow3274(:1/111982 45
700.00GINNA(G)LOFTRAN(-)INTACTLOOPFAULTEDLOOPCICDCDCDAJCDTINK(MtN)CDCDCDFIGUREII.5.3.3-1.
COREEXITFLUIDTEIlPERATURE.
46
S0.00040.000INLETCalculated
(+)30.000OUTLETXCDCDCDCDCDCDAJCDCDCDTlHCtHIM)CDCDCDCQCDCDCDCDCDFIGUREII.5.3.4-1.
BREAKFLOWFRO[1S.G.INLETANDOUTLETPLENUi1S.
600.00HOTLEG(+)COREEXIT(-)CDCDCDAJCDCDCDCDCDCDCDCDCDCDTlME(MlN)FIGUREII.D.3.4-2.LOFTRAHFAULTEDLOOPHOTLEGTEHPERATURE.
48 acheivedthermalequilibrium withthecontrolvolumeinventory.
Twocasesofflowfromthefaultedsteamgenerator outletplenumwereconsidered:
1)reverseloopflowthroughthesteamgenerator equaltothatpresented inFigureII.5.2.1-1, and2)onlyprimary-to-secondary leakagefromtheoutletplenumintothefaultedsteamgenerator.
Thetemperature oftheseflowswasassumedequaltotheindicated Bloopcoldlegtemperature.
Forbothcases,primary-to-secondary leakagefromthesteamgenerator inletplenumwasalsoconsidered.
FigureII.5.3.5-1 comparestheresultsofthesecalculations withtheintactsteamgenerator temperature calculated withLOFTRAN.Case(1)suggeststhatifsufficient reverseloopflowdidoccurandproducedamixedtemperature responsesimilartotemperatures actuallyobserved, thefaultedsteamgenerator wouldhavebeencolderthantheintactsteamgenerator.
Sincethiswouldpromoteforwardflowinthefaultedloop,itisunlikelythatsuchsustained reverseflowoccurred.
Case(2)indicates thatprimary-to-secondary leakageeffectively cooledthetubebundleregionofthefaultedsteamgenerator.
II.5.3.6UpperHeadTemperature Duringnormaloperation, asmallfractionofthecoldlegflowisdivertedintotheupperheadregionofthereactorvesselandmixeswithflowfromtheupperplenumtomaintaintheupperheadfluidtemperature atGinnanear595F.Theseflowsremainnearlyconstantaslongasreactorcoolantpumpscon-tinuetorun.Afterreactortrip,thecoreexittemperature decreases rapidly.Withreactorcoolantpumpsrunning,theupperheadfluidtemperature willalsodecreaserapidlybutwilllagtheupperplenumandcoldlegtemper-atures.Theupperheadregiontemperature transient wasevaluated assumingconstantvolumetric upperheadflowsuntilreactorcoolantpumpsweretrippedat9:29:09(4min).Theaveragecoldlegandhotlegtemperatures asindicated bypre-tripdatawereassumedfortheflowsfromthecoldlegandupperplenum,respectively.
FigureII.5.3.6-1 presentsthecalculated upperheadregionfluidtemperature withandwithoutmetalheat.Forthecasewithmetalheat,themetaltemperature wasassumedtobeequaltothefluidtemperature.
Thefluidtemperature wascalculated tobeapproximately 553Fwhenreactor32740'1/111982 49 700600INTACTSG--------
FAULTEDSG500LaJI-400I-CASE2CASE1300200204060TI)1E(t1IN)80100..120FIGUREII.5.3.5-1.
FAULTEDSGTUBEBUNDLEFLUIDTEl1PERATURE.
50 600ep888p'p590580570I-560550540THOTpTCOLDTSATTUPPERHEAD(-)l8l]H/tlETALHEAT88IIIIIIIMII-CYEDVI-ll/0t1ETALItIlIIIIII'RR9269:27TItlE(A.f1.)9:289:29FIGUREII.5.3.6-1.
POST-TRIP UPPERHEADFLUIDTEtiPERATURE.
C
coolantpumpsweretripped.Thisisconsistent withtheupperheadthermo-Ccoupleindication of556Fat9:54(31min).Notethatvoidingmayhaveoccurredintheupperheatregionwhilereactorcoolantpumpswerestilloperating (seesectionII.5.6.2).Theupperheadregiontemperature calculated byLOFTRANisshowninFigureII.5.3.6-2.
Sinceflowfromtheupperplenumthroughtheguidetubeswasnotmodelled, thefluidtemperature atreactortripwaslessthanwouldbeexpected.
Hence,noupperheadvoidingocurredimmediately following reactortripintheLOFTRANresults.However,thefluidtemperature at10:07(42min),whenthepressurizer PORVwascycled,wasequaltothemeasuredupperheadthermocouple.
Hence,theupperheadvoidingcalculated duringthisperiodisexpectedtoberepresentative oftheGinnaevent.II.5.4Pressurizer LevelResponseThecalculated pressurizer waterlevelindication iscomparedwithplantdatainFigureII.5.4-1.
Theinitialdecreaseinlevelwaspredicted byLOFTRANverywell.Thepressurizer wascalculated todrainby9:29(4min)andbegintorefillsoonafterassafetyinjection flowrepressurized theprimarysys-tem,asillustrated inFigureII.5.1-3.
Thepressurizer mayhavedraineda'econdtimebetween9:32(7min)and9:38(13min)duringcooldownviaAFMflow.Ginnadataindicates thatpressurizer levelreturnedonspanapproxi-matelywhenthechargingpumpswerestarted.Anindicated leveldidnotreturnintheLOFTRANanalysisresultsuntilthepressurizer PORYwascycledbeginning at10:07(42min).Asprimarypressuredecreased whenthePORVwasopened,pressurizer levelincreased assafetyinjection flowinexcessofbreakflow,FigureII.5.1-2, replacedventedsteaminthepressurizer.
Soonafterwards, atapproximately 10:09:20(44,min),
theupperheadwaterbegantoflash.Materdisplaced fromtheupperheadregionrapidly'increased pressurizer inventory andtheindi-catedlevelincreased offscale.
TheLOFTRANanalysisdemonstrated similarlevelresponse; however,theindicated levelremainedonspan.Thisappearstobedueprimarily tothelowerinitiallevelpriortodepressurization oftheprimarysystem.Inaddition, noreverseflowfromthefaultedsteam3274(:1/111982 52
700.00GINNA(G)LOFTRAtl(-)CICIAjC)TIHj(HtN)C)C)CDFIGUREII.5.3.6-2.LOFTRANUPPERHEADFLUIDTEMPERATURE.
53
120.00100.00GINNA(G)LOFTRAN(-)80.000W>60.000~a0.00020.0000.0ClClClClAJClTIME(MIN)FIGUREII.5.4-1.
PRESSURIZER LEVELINDICATION.
generator occurredintheLOFTRANresults(seesectionII.5.5).Upperheadvoidingmayhavealsobeenslightlyunderestimated becauseofthehomogeneous modelling, assuggested byAppendixCcalcualtions.
Thecalculated pressurizer leveldecreased rapidlyaftersafetyinjection wasterminated at10:37(72min)asbreakflowdecreased coolantinventory.
Theseresultsindicatethat95ft3ofwaterwasdisplaced fromthepressurizer asprimarypressuredecreased to945psia.Sucha.decrease wouldnothavebeendetectedbythelevelinstrumentation ifthepressurizer hadbeennearlywatersolid.Beyondapproximately 10:40(75min),thecalculated decreasein'pres-surizerlevelwasunrealistic.
Primary-to-secondary leakagewasexaggerated afterthistimebecauseoftheunrealistic faultedsteamgenerator pressurecalculated byLOFTRAN.II.5.5BreakFlowPrimary-to-secondary leakagewascalculated inLOFTRANassuminganeffective breakflowareaandamodifiedZaloudekcriticalflowcorrelation.
Forunchokedflow,theorificeequationwasused.FigureII.5.5-1showstheprimary-to-secondary leakagecalculated byLOFTRANduringtheGinnaevent.Priortoreactortrip,breakflowdecreased asprimarypressurealsodecreased.
Immediately aftertrip,'herapidlydecreasing primarypressuredecreased breakflowuntilsafetyinjection flowbegantorepressurize thereactorcoolantsystem.Soonafterthefaultedloophotleghadcooledbelowthetemperature ofthefaultedsteamgenerator, 9:37(12min),flowthroughthefailedtubewascal-culatedtobecomeunchoked.
Beyondthistime,thecalculated breakflowwassensitive tothefaultedsteamgenerator pressure.
Asillustrated inFigureII.5.5-2, thesecondary sidemodelling withinLOFTRANunderpredicted thefaultedsteamgenerator pressureafter9:46(21min).Consequently, secondary-to-primary flowdidnotoccurintheLOFTRANanalysiswhenthepres-surizerPORVwasopened.Inordertoevaluatethelimitations ofLOFTRANbreakflowmodelling andassesstheeffectsontheanalysisresults,amoredetailedmodel(Appendix B)wasdeveloped tocalculate theflowfromeachsteamgenerator plenum.The3274Q:1/111982 55 75.000LOFTRAil(-)BestEstimate(+)50.000~25;000Ko.o+4+p+++++++ttNt~++~+++++-25.000++-50.000ClClCDC)CIC)IPJC)ClleTINK(HIH)C)CDC)OCPDw~~DOFIGUREII.5.5.-1.
LOFTRANAHOBESTESTIHATEBREAKFLOWS.56 1200.01000.0800.00600.00~ioo.oo200.00GI~iNA(G)LOFTRAN(-)0.0C)CITIME(MIN)CDEOC)C)CCIFIGUREII.5.5-2.
FAULTEDSTEAI1GENERATOR PRESSURE.
57
fluidtemperature inthesteamgenerator inletandoutletplenumsweretakenfromtheLOFTRANresults.ActualGipnadatawasusedfortheprimaryandfaultedsteamgenerator pressures.
Resultsofthesecalculations arealsoshowninFigureII.5.5-1.
Asdemonstrated, LOFTRANprovidedareasonable estimateofthebreakflow,withtheexception ofreverseflowthroughthefailedtube,untilshortlyaftersafetyinjection wasterminated.
Afterthattime,thelowerfaultedsteamgenerator pressureevidentintheLOFTRANanaly-sisresultedinoverestimated primary-to-secondary leakage.II.5.6ReactorCoolantVoidingDuringnaturalcirculation, portionsofthereactorcoolantsystemmaystag-nateandbecomeeffectively isolatedfromtheactivecoolantregions.Threesuchregionsmayexistontheprimarysideduringrecoveryfromasteamgener-atortuberuptureevent;thepr'essurizer, reactorvesselupperhead,andthefaultedsteamgenerator tubes.Assystempressureisreduced,hotfluidinthesestagnantregionsmayflashtosteam.TheextentofvoidingintheseregionsduringtheGinnaeventwasevaluated.
II.5.6.1Pressurizer SteamBubbleItisclearfrompressurizer leveldata,FigureII.5.4-1, thatasteambubbleexistedinthepressurizer untiltheprimarysystemwasmanuallydepressurized beginning at10:07(42min).Atthattime,theindicated pressurizer levelincreased rapidlyoff-scale.
LOFTRANresultssuggestthatthepressurizer didnotcompletely fill,FigureII.5.1-3; however,aspreviously noted,theincreaseinpressurizer levelmayhavebeenslightlyunderestimated.
Thepressurizer levelresponsefollowing termination ofsafetyinjection suggeststhatthepressurizer wasnearly.fullatthattime.Specificly, pressurizer leveldidnotreturnonspanduringtheGinnaeventwhenprimarypressuredecreased by440psi.II.5.6.2UpperHeadVoidingThecalcu1ated upperheadtemperature history,FigureII.5.3.6-1, indicates thatvoidingmayhaveoccurredintheupperheadregionpriortoreactorcool-antpumptrip.Themaximumvolumeofthisvoidwasestimated tobelessthan3274Q:1/111982
132ft(Appendix C).Anysteambubbleintheupperheadatthistimewouldhavebeenquicklycondensed sincereactorcoolantpumpscontinued tooperate.Itisunlikelythatsignificant additional voidingoccurredpriortomanualdepressurization oftheprimarysystemat10:07(42min)sincethecalculated upperheadfluidtemperature remainedsubcooled.
From10:07(42min)to10:10(45min),upperheadthermocouple andpressurizer levelresponses indicatethatvoidingalsooccurredwhenthepressurizer PORVwasopened.Theupperheadtemperature decreased fromapproximately 556'FwhenthePORVwasinitially openedtoaminimumofapproximately 525F,asshowninFigureII.5.3.6-2.
Theupperheadregionwascalculated tocom-pletelyvoidduringthisdepressurization (Appendix C).Flashinginthenon-activeregionoftheupperplenum,i.e.abovethetopofthehotlegnozzles,wouldnotbeexpectedbecauseofrelatively goodmixingcharacteristics.
Consequently, approximately 305ftofsteamvolumeexistedintheupperheadwhenthepressurizer PORVwasisolatedat10:10(45min).Noinstrumentation wasavailable abovetheupperheadflangeleveltotrackthesteambubblecollapse.
However,assafetyinjection repressurized thereactorcoolantsystem,theupperheadthermocouples increased approximately alongthesaturation linefrom525Fto540'F.Aspressurecontinued toincrease, temperature thendecreased toastabletemperature of525'F.Thissuggestsflowofcolderfluidfromtheupperplenumpasttheflangelevelthermocouples andisindicative ofpartialsteambubblecollapse.
Thisissupported bytheslowerrepressurization ofthe'primarysystemfollowing iso-lationofthefailedPORVascomparedwithLOFTRANanalysisresults(seesectionII.5.1).Thesizeofanysteambubblewhichexistedintheupperheadregionwhensafetyinjection wasterminated at10:37(72min)isuncertain.
Themeasuredtemperature andpressureresponses suggestthattheupperheadwasnotcom-pletelyvoidedandcontained significantly subcooled water.Theupperheadprobablyvoidedathirdtimeasprimarysystempressuredecreased to945.psiafollowing termination ofsafetyinjection.
Analysisoftheprimary-to-secondary leakage,chargingflow,andreactorcoolantexpansion suggestsamaximumof125ftofadditional voidingmayhaveoccurredduringthisperiod.Thisvoidmayhaveexisteduntilreactorcoolantpumpswere'restarted.
3274/'1/111982
II.5.6.3BSteamGenerator TubeYoidingThefluidtemperature inthefaultedsteamgenerator tubeswascalculated withLOFTRANtobe507Fat10:07(42min)whenthepressurizer PORYwasfirstopened.Thisisconsistent withplantdatawhichshowsthatpressureintheBsteamgenerator haddecreased to750psiaby9:46(21min)andisconservative
'ithrespecttothecalculations presented insectionII.5.3.5.
Sincethecalculated tubebundlefluidtemperature remainedsubcooled duringdepres-surization ofthereactorcoolantsystem,nosteamvoidwouldhavedeveloped inthisregion.11.5.7SteamGenerator OverfillPrimary-to-secondary leakageinexcessofsteamfloweventually filledtheBsteamgenerator withwaterandliftedthesecondary safetyvalve.TheLOFTRANanalysisindicates thatthefaultedsteamgenerator andmainsteamline wouldhavefilled'at 10:18(53min),asshowninFigureII.5.7-1.
However,thisisbelievedtobeearlierthanduringtheactualeventforseveralreasons.Inordertosimulatethecooldownoftheprimarysystemfrom9:32(7min)to9:41(16min)(seesectionII.5.3.1),
steamreleasefromthefaultedsteamgenera-tortothecondenser wasterminated 8minutesprematurely at9:32(7min).Thisunderestimated thesteamreleasedfromthefaultedsteamgenerator tothecondenser byamaximumof11000ibm.Inaddition, theconstraints onupperheadrefillmayhaveincreased carryover intothefaultedsteamgenerator byamaximumof300ft..Thetotalcarryover mayhavealsobeenslightlyover-estimated byLOFTRANsincereverseflowduringdepressurization oftheprimarysystemwasnotpredicted.
Thecombination oftheseeffectsmayhavedelayedoverfillbyanestimated 7minutes.Theinitialsafetyvalveliftsat10:19(54min)and10:27(62min)wouldhavealsodecreased steamgenerator inven-toryandfurtherdelayedoverfill.
Themassdischarged throughthefaultedsteamgenerator safetyvalvewasesti-matedfromtheprimary-to-secondary leakage.LOFTRANresultsindicatethat268,000ibmofprimarycoolantwastransferred intothefaultedsteamgener-atorpriortotermination ofsafetyinjection.
Approximately 104,000ibmofthisleakageoccurredafterthesteamgenerator wascalculated tofill.Eval-uationofthebreakflowfrom10:40(75min)until12.30(185min)asshownin3274/:1/111982
'j.OOE+OiiLOFTRAN(-)8000.06000.0S.G.andSteamline VolumeS.G.Volume~F000.0Z=I2000.00.0ClC)C7AJTIME(MIN)C)EDC)8FIGUREII.5.7-1.
FAULTEDSTEAYiGENERATOR WATERVOLUf1E.6l
FigureII.5.5-1suggeststhananadditional 132,000ibmwastransferred from~theprimarybeforeprimary-to-secondary leakagewasterminated.
II.6LONGTERMRECOVERYWhensafetyinjection wasterminated at10:37(72min),primarysystempres-suredecreased rapidlyfrom1370psiato945psia.TheLOFTRANanalysiswasterminated atthistimesincethehomogeneous equilibrium modelling onthesecondary sideoverestimates theprimary-to-secondary pressuredifferential and,consequently, leakagethroughthefailedtube.Continued chargingflowandoperation ofthepressurizer heatersmaintained primarypressureslightlygreaterthanthefaultedsteamgenerator
- pressure, asshowninFigureII.6-1.TheBsteamgenerator pressureincreased asprimary-to-secondary leakagecon-tinued.Thesequenceofevents'indicates thatsafetyinjection wasreinitated at11:07(102min)inpreparation forreactorcoolantpumprestart.However,Jtheeffectoftheincreased coolantmakeupontheprimaryandfaultedsteamgenerator pressures isnotevidentatthattime.Althoughtheprimary-andfaultedsteamgenerator pressures increased slowly,thepressuredifferential decreased.
Atapproximately ll19(114min),arapiddecreaseinprimarysystempressureisevident,probablyduetothecollapseofanupperheadsteambubble(seesectionII.5.6.2) whenareactorcoolantpumpwasrestarted.
Althoughtheavailable dataislimited,itappearsfromtheBsteamgenerator pressureresponsethatasafetyvalvemayhaveliftedatapproximately thesametime.Safetyinjection flowrepressurized thereactorcoolantsystembeginning atll:26(121min)untilflowwasthrottled at11:35(130min).Thefaultedsteamgenerator pressurealsoincreased untilthesafetyvalveliftedforthefinaltimeatapproximately 11:37(132min).Afterthisfinallift,thefaultedsteamgenerator pressureremainedapproximately 150psiabelowtheprimarysuggesting continued leakageintothesteamgenerator.
Steamgener-atorblowdownlineradiation wasalsoincreasing duringthissameperiodsug-gestingflowthroughthisline.Pressurizer levelreturnedonspanatapprox-imately11:53(148min),asshowninFigureII.6-2,andcontinued todecreaseindicating alossofreactorcoolant.Asafetyinjection pumpwasoperatedintermittently from12:13(168min)until12:27(182min)tocontrollevel.By12:30(185min),thefaultedsteamgenerator pressurewasgreaterthahthereactorcoolantsystempressureandprimary-to-secondary leakagewasterminated.
3274(}:1/111982 62 1300.0GINNA(G)ccccccGGCCGCGCRCS(-G-)CCC6@QCCCCCCCCG CGccccc'ccCcCCCCCGGFAULTEDSG(G)CITIME(MlN)C7EDC7C7ClC7C)r~FIGUREII.6-1.RCSANDFAULTEDSTEAt1GENERATOR PRESSURES.
63
120.00100.0080.000GINNa(G)CGCCCGCCGCCGCGCGGCGGCCCGCCCGGCCGGCGCCGCCCCCCCGC CCGGccGGCCGGGCGo60.000~io.ooo)CGGGGGCCCCCG'CCc20.0000.0CDCDCDCDCDCDCDCDCDAJCDCDmCDCDCD.CDCDCDCDCDCDCDTIME(MtN)fIGUREII.6-2.LONG-TERtl PRESSURIZER LEVELRESPONSE.
III.SUMMARYANDCONCLUSIONS ThemaximumleakratethroughthefailedtubeduringtheGinnaeventwascal-culatedtobe634gpm.Adesignbasiseventwithconservative, FSARassump-tionsrepresents aninitialprimary-to-secondary leakrateof1147gpmforthesamesteamgenerator.
Hence,theinitialleakratewassignificantly 1'essthandesignbasis.Breakflowdepletedprimarycoolantinventory andresultedinautomatic reac-tortripandsafetyinjection withinapproximately 3minutesoftheinitiating event.Primarypressuredecreased rapidlyfollowing reactortripascoolant'temperature decreased andbreakflowfurtherreducedcoolantinventory.
Man-ualreactorcoolantpumptrip,whichoccurredwithin1minuteofreactortrip,wasfollowedbyasmoothtransition fromforcedtonaturalcirculation inbothloops.Naturalcirculation wasmaintained intheintactloopuntilareactorcoolantpumpwasrestarted.
Isolation ofthefaultedsteamgenerator incom-binationwiththecooldownoftheintactloopeventually stagnated flowinthefaultedloop.Analysisresultsandevaluation oftheBloopcoldlegtempera-turesuggestthatacounter-current, flowpatternmayhavedeveloped inthefaultedloopcoldlegupstreamoftheinjection nozzle.Withtheexception oftheupperheadregionandthepressurizer, thereactorcoolantsystemremainedsubcooled throughout theevent.Theupperheadmayhavevoidedthreetimes.Immediately following reactortrip,avoidmayhave'eveloped beforereactorcoolantpumpsweretripped.Noadditional voidingoccurreduntilthepressurizer PORVwasmanuallyopenedtodepressurize theprimarysystem.Theupperheadregioncompletely voidedfrom10:07(42min)to10:10(45min)resulting ina305ftsteambubble.Therelatively slowrepressurization ofthereactorcoolantsystemfrom10:10(45min)to10:17(52min)andtheupperheadthermocouple responsesuggestthatthissteambubblewasatleastpartially collapsed by10:37(72min).However,addi-tionalvoidingoftheupperheadprobablyoccurredathirdtimewhensafetyinjection wasterminated.
Thisvoidmayhaveexistedwhenthereactorcoolantpumpwasrestarted atll:19(114min).AlthoughLOFTRANresultsindicatethatthepressurizer didnotfillwithwater,pressurizer levelresponsefollowing termination ofsafetyinjection indicatethatthepressurizer wasnearlyfull.3274(}:1/111882 65 Thefaultedsteamgenerator wasestimated tohavefilledwithwaterbyapprox-imately10:25(60min).However,releasesduringtheearlysafetyvalveliftsmayhavereducedsteamgenerator inventory anddelayedoverfill.
Anestimated 400,000ibmofprimarycoolantweretransferred tothefaultedsteamgener-ator.Approximately 253,000ibmwascalculated tobedischarged fromthefaultedsteamgenerator untilprimary-to-secondary leakagewasterminated at12:30(185min).Anestimated 28000ibmwasreleasedassteamtothecon-denser.Theremaining 225000ibmrepresents anestimateofthetotalreleasefromthefaultedsteamgenerator safetyvalve.Consideration oftheuncer-taintyassociated withfeedwater flowtothefaultedsteamgenerator andrefilling oftheupperheadindicates thatthisestimatemaybeconservative byupto48000ibm.Inaddition, thecalculated leakageintothefaultedsteamgenerator from10:40(75min)until12:30(185min)reliesonmeasuredsystempressures whicharesubjecttoinstrument uncertainties.
3974n.1/111789 66
'
REFERENCES 1.LicenseeIncidentEvaluation ReportontheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,DocketNo.50-144,April'(1982).2.NRCEvaluation oftheJanuary25,1982SteamGenerator TubeRuptureIncidentattheR.E.GinnaNuclearPowerPlant,NUREG-0909, April(1982).3.L.A.Campbell, et.al.,LOFTRANCODEDESCRIPTION, WCAP-7878, Rev.3,'anuary(1977).4.L.A.Campbell, et.al.,WESTINGHOUSE EYALUATION OFLICENSEEEVENT,No.SG79-11-030, Dec.(1979).5.F.R.Zaloudek, "Steam-Mater CriticalFlowFromHighPressureSystemsInterimReport".,
HanfordAtomicProductsOperation,
- Richland, Washington, TID-4500, Jan.(1964).6.J.A.Block,FLUIDTHERMALMIXINGINAMODELCOLDLEGANDDOWNCOMER WITH~~~LOOPFLOW,CREAREInc.,Hanover,NewHampshire, EPRI-NP-2312, April(1982).7.S.LevyandJ.M.Lealzer,ANAPPROXIMATE PREDICTION OFHEATTRANSFERDURINGPRESSURIZED THERMALSHOCKWITHNOLOOPFLOWANDWITHMETALHEATADDITION, S.LevyInc.,Campbell, California, SLI-8220August(1982).3274(:1/111882 67 1
APPENDIXA:INITIALLEAKRATECALCULATION Theindicated pressurizer leveldecreased from32.5Xto11.7%over104seconds,asshowninTableII.3-1.Thislevelwasadjustedforpressurizer pressureasfollows:LPRZLINDX1+0/V1i0/V+100X'refVfVg10/V10/Vgrefwhere,PRZINDV~SubfSubgSubrefactualpressurizer levelindicated pressurizer levelfluidspecificvolumereferstosaturated liquidreferstosaturated vaporreferstonominalsystemconditions LPRZ9:26:18)=32.5x1.00.02698~~~=32.7LPRZ9:28:02)=11.7x1.0002698=14.10.1569+"'.1569'.17460.02617'.174610.15690.15690.19470.025430.1947Duringthistime,coolantinventory wasdepletedatanaveragerateof=1.202-=538GPM33BRK104sec5span'ecConsidering anexcessof'5gpmfromthechargingsystem,theaverageleakratewasapproximately 573gpm.Theinitialleakratewascalculated byextrapolating theaverageratetotheinitialsystemconditions of2250psiaand601F.Theaveragepressureandtemperature overthepre-tripperiodwereapproximately 2100psiaand601F,respectively.
Basedonsubcooled criticalflowthroughthebreak,theinitialflowratewasestimated tobe3274/:1/111682 68
qggy(0)=573x(2250-0.9x1555)x0.02336xx0.5=634GPN32740:1/']11682 69
APPENDIXB:BESTESTIMATEBREAKFLOWMODELFollowing asteamgenerator tubefailure,primarycoolantflowsthroughthebreakintothesecondary sideofthesteamgenerator.
Theprimary-to-secondary pressuredifferential providesthedrivingforceforthisflow.Thefailuresiteisconnected totwoprimaryfluidreserviors, i.e.steamgener-atorinletandoutletplenums,viathesegmented tube.Eachsegmentp'rovides asubstantial resistance tofluidflow.Forlargertubefailures, thisresis-tancerepresents alargefractionofthetotalresistance betweentheprimaryandsecondary systems.ThebreakflowmodelwithinLOFTRANdoesnotconsiderfrictional orformpressurelossesthrougheachtubesegment.Forcriticalflowconditions, thismaynotbeasignificant limitation sincethepressuredropisessentially localized atthebreaklocationorentrancetothefailedtube.However,temperature differences betweentheinletandoutletplenumswillaffectcriticalflowifentrancechokingoccurs.Thistemperature effectisalsonotsimulated withinLOFTRAN.Furthermore, theprimary-to-secondary pressuredifferential isnotaccurately predicted.
Consequently, amoredetailedmodelwasdeveloped whichusesprimaryandsecondary pressuredataincombination withfluidtemperature resultsfromLOFTRANtocalculate breakflow.Flowthroughthefailedtubewassimulated asshowninFigureB-l.Frictional pressurelossesthrougheachtubesegmentwererepresented byanappropriate singlephasefrictionfactor,length,anddiameter.
Entranceandexitlossesforeachtubesegmentandatthebreaklocationwerealsoincluded.
Thissystemleadstothefollowing setofsimultaneous equations whichdescribeflowthroughthefailedtube:xWBRK-SGBRKBRKBRK2xgcxABRK(B-1)RCSBRK2IPLIPLIPLENTEXTD22xcxATUBERCSBRK"LopLENTEXTIJ3274t}:1/111882 7O
FIGUREB-1.SGTUBERUPTUREFLOWMODELDIAGRAt1.
~RCSTzpLLxswj~GGGPIWLaoc.FRC5Topi71 BRKIPLOPL(B-4)where,PVENTEXTADgcSubBRKSubRCSSubIPLSubOPLSubTUBEpressureflowratefluidspecificvolumeTubeentrancelosscoefficient
=0.4,primary-to-secondary flow=1.0,secondary-to-primary flowTubeexitlosscoefficient ATUAE21.0-BRK=1.0,secondary-to-primary flowMoodyfrictionfactorflowareatubediametergravitational constantreferstobreaklocationreferstoprimarysidereferstosteamgenerator inletplenumreferstosteamgenerator outletplenumreferstosteamgenerator tubeCriti'cal flowthroughthefailedtubewascalculated usingamodifiedZaloudekcorrelation forsubcooled criticalflow.Chokedflowconditions foreachtubesegmentandatthebreaklocationwerecalculated fromWCIL=ATUBExClxWCOPL=ATUBExC2x2gfPRCS-C2xPsat(TIPL)]
IPLRCS2tOPL"OPL1/21/2(B-5)(B-6)WCBRK=ABRKxClx2gLPBRK-C2xPsat(TBRK)]
1/2BRK(B-7)32740:1/111882 72
where,TsatWCClC2'lui'dtemperature, Fsaturation
- pressure, psiacriticalmassflowrate,ibm/secentranceeffectcoefficient (adjusted tomatchinitialleakrate)0.9Equations B-lthroughB-7weresolvedsimultaneously forbreakflowthroughthefailedtube.32740:1/111682 73
APPENDIXC:CALCULATION OFUPPER,HEADVOIDSIZETheupperheadregionofthereactorvesselwasmodelledasasingle,strati-fiednodewithonlyoutwardflowas.showninFigureC-l.Assystempressuredecreased belowsaturation oftheupperheadfluid,voidingwithintheupperheadregiondisplaced liquidintotheupperplenum.Theextentofvoidingwasestimated assumingthermodynamic equilibrium betweenphases.Metalintheupperheadregionwasconservatively assumedtobeatthefluidtemperature.
Amassandenergybalancebetweeninitialandfinalstateswithintheupperheadvolumeleadstothefollowing expression forthefractionoffinalsteamvolumeVUH,(hh)/V+(7hhf)/oVf(E-hf)(h-K)V+gVVfMC(TT)VUHosatwhere,=fluidspecificvolume'fluidenthalpy=VolumehT(MC)SuboSubfSubgSubUHaverageenthalpyofdisplace'd fluidfluidtemperature metalheatcapacityreferstoinitialcondi.tions referstosaturated liquidreferstosaturated vaporreferstoupperheadregionTableC-1liststheupperheadconditions forthefirsttwoincidents ofpotential upperheadvoidingduringtheGinnaevent(seesectionII.5.6.2).
Thecalculated upperheadregionvoidfractions fromequationC-1arealsopresented.
Fortheseresults,theenthalpyofdisplaced liquid,was assumedtobethelinear.averageoftheinitialandfinalstates.32740:1/111882 FIGUREC-1.UPPEP.HEADVOIDINGILLUSTRATION.
XII'TIAtVtLLH)hIII75 TABLE0-1UPPERHEADVOIDSIZETirade9:28:30Pp(Psia)1300Tp(Psia)577.5PF(Psia)1200Vg/VUH0.431V(Ft~)13210:0710985568451.030532740:1/11168276