ML17309A416: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ATELEDYNEENGINE="RINGSFRVICFS7mCi-j>j)C~A~RE~OP7TR-3454-1ASMESECT)ONX)FRACTUREhlECHANlCSEVALUAT)ONOFlNLETNOZZ~MINSERV)CP.NSPEC~.)ON.INDICAT)QNR.E.GINNAUNITNO.1REACTORVESSELMARCH151979  
{{#Wiki_filter:ATELEDYNEENGINE="RING SFRVICFS7mCi-j>j)C~A~
't ROCHESTERGASll(ELECTRICCORPORATIOi'l89EASTAVENUEROCHESTER,NY14649R.E.GIf'lilAUNITNO.1REACTORVESSELTECHNICALREPORTTR-3454-1ASHESECTIOf'lXIFRACTUREHECHANICSEVALUATIONOFINLETNOZZLEINSERVICE.Ii'lSPECTIOi'lIffDICATIOffi~1ARCH1",1979)iiTELEDYNEENGli4E=~lNGSERViCES303BEARHILLROAD'P/ALTHAiYi,MASSACHUSETTS02154
RE~OP7TR-3454-1 ASMESECT)ONX)FRACTUREhlECHANlCSEVALUAT)ON OFlNLETNOZZ~MINSERV)CP.
NSPEC~.)ON.INDICAT)QNR.E.GINNAUNITNO.1REACTORVESSELMARCH151979  
't ROCHESTER GASll(ELECTRICCORPORATIOi'l 89EASTAVENUEROCHESTER, NY14649R.E.GIf'lilAUNITNO.1REACTORVESSELTECHNICAL REPORTTR-3454-1 ASHESECTIOf'l XIFRACTUREHECHANICS EVALUATION OFINLETNOZZLEINSERVICE
.Ii'lSPECTIOi'l IffDICATIOff i~1ARCH1",1979)iiTELEDYNEENGli4E=~lNG SERViCES303BEARHILLROAD'P/ALTHAiYi, MASSACHUSETTS 02154


TABLEOFCONTENTSABSTRACT
TABLEOFCONTENTSABSTRACT
Line 25: Line 28:


==2.0CONCLUSION==
==2.0CONCLUSION==
3.0DESCRIPTIONOFVESSELANDREPORTEDFLAW4.0COMPARISONOFGINNA-1REPORTEDFLAWWITHPREYIOUSLYEVALUATEDFLAWS5.0MATERIALPROPERTIES6.07.08.0PRESSURE-TEMPERATURELIMITSSTRESSANALYSiSFATIGUECRACKGROWTH9.0FRACTUREMECHANICSANALYSISANDCRITERIA10.0ELASTIC-PLASTi'CANALYSISAPPENDICESA.STRESSANALYSISB.EF"=CTOFFLAWSiZEANDTOUGHNESSVARIATiONSC.E"FFECTOFAPPLIEDSTRESSVARIATiONSD.ELASTiC-PLASTICEVALUATIONA4-3


ENG',NEWlRGSERVICESABSTRACTITheInserviceInspectionindicationofanearmid-wallflawinthereactorpressurevesselinletnozzleN2hasbeenevaluatedinaccordancewiththerequirementsofSectionXIoftheASHEBoilerandPressureVesselCode.ThereportedflawsatisfiestheCodecriteriaforacceptancebyeval-uation.Therefore,atleastwithrespecttothisindication,thevessel.isacceptableforserviceasiswithoutremovalorrepairoftheindication.  
==3.0 DESCRIPTION==
OFVESSELANDREPORTEDFLAW4.0COMPARISON OFGINNA-1REPORTEDFLAWWITHPREYIOUSLY EVALUATED FLAWS5.0MATERIALPROPERTIES 6.07.08.0PRESSURE-TEMPERATURE LIMITSSTRESSANALYSiSFATIGUECRACKGROWTH9.0FRACTUREMECHANICS ANALYSISANDCRITERIA10.0ELASTIC-PLASTi'CANALYSISAPPENDICES A.STRESSANALYSISB.EF"=CTOFFLAWSiZEANDTOUGHNESS VARIATiONS C.E"FFECTOFAPPLIEDSTRESSVARIATiONS D.ELASTiC-PLASTICEVALUATION A4-3


\1.0INTRODUCTIOHR.E.G>nnaUnitHo.1isaWestinghousePWRwhichwentintocommercialserviceinJune,1970.Thereactorpressurevessel,constructedbytheBabcock6Wilcox.Companywas.subjectedtoanInserviceInspectioninaccordancewithTechnicalSpecificationandSectionXIoftheASHEBoilerandPressureVesselCoderequirements.Whencertainalleviatingfactorsarenotconsidered,anultrasonicindicationinexcessofthesizepermittedforacceptancebyexaminationwasidentifiedintheweldwhichattachedaninletnozzletothevessel.InsupportofotherapproachesbeingfollowedbyRochesterGasandElectricpersonnel,.TeledyneEngineeringServices(TES)wasrequestedto,eval-uatethereportedindicationinaccordancewiththeSectionXIrequirementsforacceptancebyevaluation.Thisreportcontainstheresultsofthatin-.vestigations~A4-5
ENG',NEWlRG SERVICESABSTRACTITheInservice Inspection indication ofanearmid-wallflawinthereactorpressurevesselinletnozzleN2hasbeenevaluated inaccordance withtherequirements ofSectionXIoftheASHEBoilerandPressureVesselCode.Thereportedflawsatisfies theCodecriteriaforacceptance byeval-uation.Therefore, atleastwithrespecttothisindication, thevessel.isacceptable forserviceasiswithoutremovalorrepairoftheindication.  


Z.OCONCLUSIONS2.1ThereportedflawsatisfiestheCodecriteriaforacceptancebyevaluation,soisacceptableforserviceasiswithoutremoval~~orrepairoftheindication.2.2Forthereportedflaw,ofdimensions:Through-walldepth=2a=0.93inchesLenth=I=5.3inchesEccentricity=e=1.0inches,thecalculatedstressintensityfactoris9.2ksi~in.TheCodeacceptablevalueis63.2ksi/in.Therefore,thetotalfactorofi21.7ascornaredtothecoderequiredfactorofsafetyof~10:3.16.2.3TheeffectofvariationsinflawsizeortoughnessofthematerialcanbedeterminedromFigure1.Basedupontheresultsplotte'hereon,aflawofthrough-walldimension2a=4.0inches,wouldsatisyCodeacceptancerequirementsevenifthetoughnesswe.oreducedzo67ksivin.Theef-"ofvariant.onsinapp1iedstressacrossthe7(awcan"edet.mined=romFigure2.Basedupontheresultsplot-.edtherein,tnerepor-dflaw,Za=0.93inches,wouldsatisfyCodeacceptancerequire:-;.-=.tseveni=theappliedstressacrosstheflawwereequa;totheyieldstrengthofthematerial,or51<si,whicheverislower.Statddifferently,thecalculatdpressuresLressactiingacrosstheflawcouldbeincreasedbyafactorinexcessof6wi-;nouiviolationoftheCodecriteria.
\1.0INTRODUCTIOH R.E.G>nnaUnitHo.1isaWestinghouse PWRwhichwentintocommercial serviceinJune,1970.Thereactorpressurevessel,constructed bytheBabcock6Wilcox.Companywas.subjected toanInservice Inspection inaccordance withTechnical Specification andSectionXIoftheASHEBoilerandPressureVesselCoderequirements.
Whencertainalleviating factorsarenotconsidered, anultrasonic indication inexcessofthesizepermitted foracceptance byexamination wasidentified intheweldwhichattachedaninletnozzletothevessel.Insupportofotherapproaches beingfollowedbyRochester GasandElectricpersonnel,.
TeledyneEngineering Services(TES)wasrequested to,eval-uatethereportedindication inaccordance withtheSectionXIrequirements foracceptance byevaluation.
Thisreportcontainstheresultsofthatin-.vestigations~
A4-5


2.5Anelastic-plasticfracturemechanicsanalysis,followingthemethodsappliedbyDr.P.C.ParisasaconsultanttoNRCtoasimilarinvestigationindicatedthat:a.Thefactorofsafetyagainstplasticinstabilityfailureisinexcessof3foraflawthrough-walldimensioninexcessof2a=4inches.b.Foraflawthrough-walldimensioninexcessof2a=4inches,yieldingcanoccurandresidualstresses,suchasthosewhichresultfromweldin,'nddiscontinuitystresses,suchaqthosewhichresultfromterneraturedifferentialsorfrompipereactionstresses,wouldbeeliminatedfromconsideration.Althoughthisevaluationresultsintheconclusionthatsuchstressesmaybeignored,suchstresseswereconsideredintheevaluationswhichleadtothepreviouslylistedconclusions.2.6ThepreviousMCAP-8503ASHEIII,AppendixGanalysiswasreviewedtodetermineifthepressureofthereportedflawrequiresare-e!aluat:onoftheAppendixGrequirements.ItisaconclusionofthisreviewthattheMestingnouseevaluationofapostulatedflawinthevicinityofanoutletnozzlerepresentsamucnmoresigni-f;:cantsituationthandoesthereportedflaw.Tnerefore,accepz-abiiitofthepostulatedoutletnozzleflawlsfu1tnerconfirmac'.on,oftheacceptabilityofthereportedflaw.A4-7 II>>"
Z.OCONCLUSIONS 2.1Thereportedflawsatisfies theCodecriteriaforacceptance byevaluation, soisacceptable forserviceasiswithoutremoval~~orrepairoftheindication.
3.0DESCRIPTIONOFVESSELANDREPORTEDFLAWTheGinnaUnit1ReactorPressureYesse1(RPV)wasfabricatedbytheBabcock5WilcoxCompany(85W)totherequirementsofSectionIIIoftheASt<EBoilerandPressureVesselCodeinaccordancewithWestinghouseElectricCompany(W)Equip-mentSpecificationHo.676206Revision0withAddendum676554,Revision0.TheRPVStressReorts'reB8W1966,ReportsNumbers.1through12.rTheinsidediameter,totheinnersurfaceofthecladding,is132inches.Theminimumcladthicknessis5/32inches.Thewallthicknessis61/2inchesatthebeltlineand9inchesatthenozzlecourse.Thenozzlecoursecontainstwo521/2inchoutsidediameterinletnozzles,two49inchdiameteroutletnoz-'lesandtwonominal4inchdiametersafetyinjectionnozzles.Theinletandoutletnozzlesareata-commonel'evation.AsketchoftheinletnozzleisshowninFigure3,withthedimensionsoftheweldpreparationontheODofthenozzlesketchesabove.Thisconfigure-ionismportantbecauseitlocatesthereportedflaw.Figure4showstheinne.por-tionofthisweldprepa.ationwiththereportedflawlyingalongthelineAC.Thereweldprparationdimensionsaredefinedonaradialplanethroughthevesselcen-erline(==0'360').Sincetheweldoreparationismachinedcylindrcallywiththenozzlecenterline,theradialdis-ancebe-'.veentheinsideofthe.esse.and-heweldpreparationlandvarieswithradialposition~.Theflawisloca-;edbe-ween305'9<316.5",approximatelythe10:30o'lockpositionwnenlook':ngalongthenozzlecenterlinefromoutsideofthevessel.Figure4indicates:~eradialdistancefromtheRPVIDtoPointDasvaryingbetween4.2and..1inches.Thereportedflaw"through-wall"dimensionmeasuredalongtheweldprepa.ationis0.93inches.Forpurposesofanalysis,SectionXIpermitsthisflawtobre-olvedintoa"throuah-wall"dimensionmeasuredperpendiculartothevess'elsur-facewhichwoulddecreasethe2adimension,Becauseofthecomplexgeometry,advantageisnottakenofthisfactor.Theflawlength,measuredaroundthecir-cumVerenceoftheweldpreparationasthedistancebetween305'nd316.5's5.27 ENG)NEER)NGSERVtCESinches.SectionXIdefinestheflaweccentricityasthedistancebetween.theflawcenterandthevesselmidplane.ThedistancefromthevesselIDtotheflawcentervariesbetweenapproximately3.55and4.47inches.Conservativelyneglectingtheincreasedthicknessresultingfromtheouternozzlecornerradius,thereforetakingthetotalthicknessas9inches;theeccentricityvariesbetweenapproximately0and1".8asedupontheabovediscussion,andnotingthatanincreaseineccentricityincreasesthecalculatedstressintensityfactor,theflawisdefinedforpur-posesofanalysisbythedimensions:pa=0.93inches1=5.3inchese=1.0inch Ilay AENGINEERINGSERVICES4.0COMPARISONOFGINNA-1REPORTEDFLAWWITHPREVIOUSLYEVALUATEDFLAWSForpurposesofexaminingpressure-temperaturelimitations,WCAP-8503*consideredtheeffectsofaflawadjacenttotheoutletnozzle.Althoughthere~$Naredifferencesingeometrybetweentheinletandoutletnozzles,thestressesareverysimilar.ThisevaluationconsideredasurfaceflawinaplanepassingthroughtheRPVcenterlineofdepthequalto1.8inches{a/t=0.20)andsurfacelengthof1,8inches{aspectratioof1:6).Sinceasurfaceflawof'givenlengthanddepthresultsinapproximatelythesamestressintensityfactorasdoesasubsurface.flawofthesamelengthandtwicethethrough-walldimension,theWCAP-8503evaluationisequivalenttothaiwhichwouldbeobtainedforamid-wallflawof2a=3.6and1=10.8inthesameorientation...Infact,theWCAPevalu-'Iationwouldbeveryconservativebecausethesurfaceissubject,todiscontinuitystresseswhichhavebutlittleeffectnearmidplane.Ofevenmoreimportance,however,isthediffe.enceinorientationbetweenthetwoflaws.TheindicatedGinnaflawiscircumferentialtothenozzleandtheWCAPflawisradialtothenozzle;therefore,thepressurestressnormaltotheWCAPflawisaboutthretimesaslargeast.atnormaltotheGinnaindication.The.efore,theindic'tdGinnaflawisofconsiderablelesssignificancethanthenozzleflawusedfortheAppendixGevaluationofiheGinnavesselThemid-wall,nozzleattachmentweldflawmostsimilartothatindicesdinGinna-1whichhasbeensubjectedtoextensveinvestigationbyTESandbythe*HRCistheindicationinthePilgrim-1recirculationinletnozzleNZBwhichwasfirstdetec.edin1974andwnichwasreevaluatedin1976bybothTESandHRC.Thesignificantparametersmaybecomparedasfollows,usingthePilgrimvaluesevaluatedbyTES:ttWCAP-8'03,"ASMEIII,AppendixGAnalysisofRochesterGashElectricCorporationR.E.GinnaUnitHo.1ReactorVessel,July1975.  
2.2Forthereportedflaw,ofdimensions:
Through-wall depth=2a=0.93inchesLenth=I=5.3inchesEccentricity
=e=1.0inches,thecalculated stressintensity factoris9.2ksi~in.TheCodeacceptable valueis63.2ksi/in.Therefore, thetotalfactorofi21.7ascornaredtothecoderequiredfactorofsafetyof~10:3.16.2.3Theeffectofvariations inflawsizeortoughness ofthematerialcanbedetermined romFigure1.Basedupontheresultsplotte'hereon,aflawofthrough-wall dimension 2a=4.0inches,wouldsatisyCodeacceptance requirements evenifthetoughness we.oreducedzo67ksivin.Theef-"ofvariant.onsinapp1iedstressacrossthe7(awcan"edet.mined=romFigure2.Basedupontheresultsplot-.edtherein,tnerepor-dflaw,Za=0.93inches,wouldsatisfyCodeacceptance require:-;.-=.
tseveni=theappliedstressacrosstheflawwereequa;totheyieldstrengthofthematerial, or51<si,whichever islower.Statddifferently, thecalculatdpressuresLressactiingacrosstheflawcouldbeincreased byafactorinexcessof6wi-;nouiviolation oftheCodecriteria.  


AFEi~jNEER)NGSERVICESPlant:Depth,2a,in.Length,1,in.Eccentricity,e,in..Hoopstressinvessel,ksi(atoperatingpressure)Yessejthickness6irma-I0.935.31.016.59.05.2~PI'Irim-11,55.20.5516.27.010.7TheNRCevaluationassumedsomewhatmoreconservativeparameters.SoththeTESandHRCevajuationsconcludedthawthePilgrim-1RPYwassatisfactoryiorcontinuedservice.Tnecalculatedstressntensiy=actorsforGInna-1woutdbeexpectedtobemuchsmallerthanthosecomputed=orPilgrim-l.Sasedupontheseiwocomparisonswithpreviouslyevaluatedflaws,onewouidjudgethaitheGinna-1vesselwouldeasilysatisfytheSectionXlcriria=oracceptancebyevaluation.A4-11 t'jIt,KIr 5.0HATERIALPROPERTIES4~~BaseduponthevaluespublishedinWCAP-8421*,-theunirradiatedmateria1propertiesofthenozzle,usingoutletnozzledata,andoftheweld,usingbeltlinewelddata,areasfollows:LocationRTNDTCyShelf,ft-1bNozzleWeld0.090.236001258018Thecomputedend-of-lifefluenceatthenozzleelevationis1.08(IO)atone-quarterthickness.UsingRegulatoryGuide'l.99,Revision1,theend-of-lifepropertiesarecomputedas:LocationNDT',fShelf,ft-lbNozzleWeld607011262!I,inWCAP-8503hasusedanuppershelfKl=200ksi~n.IRTheSect-ionXItoughnessversustemoeraturecurvesareplottedinFigure=foranend-of-lifeRTi'=70F.sUl"'iCAP-8421,AnalysisofCapsuleRFromtheRochesterGasandlectricCorporationR.:.GinnaUnitNo.1ReactorilesselRadiationSurveillanceProgram,November,1974.
2.5Anelastic-plastic fracturemechanics
I 6.0PRESSURE-TEMPERATURELIMITSTheupperlimitoftheTechnicalSpecificationheatupand.cooldowncurvesarealsoplottedonFigure5.Becausetheselimitsarecontrolledbythe.higherfluencebeltlineregion,full'operatingpressure,ZZSOpsig,isnotpermittedbelow315F.Thistemperatureisonthetoughnessuppershelfbyamargininexcessof100F.,
: analysis, following themethodsappliedbyDr.P.C.Parisasaconsultant toNRCtoasimilarinvestigation indicated that:a.Thefactorofsafetyagainstplasticinstability failureisinexcessof3foraflawthrough-wall dimension inexcessof2a=4inches.b.Foraflawthrough-wall dimension inexcessof2a=4inches,yieldingcanoccurandresidualstresses, suchasthosewhichresultfromweldin,'nddiscontinuity
  )>TELEDYNEENGINEERINGSERVICES7.0STRESSANALYSISThesignificantstressesactingacrosstheflawindicationarethoseduetovesselpressureandduetoweldingresidualstresses.Atthenearmid-walllocation,thermalstressesandstressesresultingfrompipereactioneffectsarenegligible.Thepressurestressesofinterestarethoseactinginaradialdirectionwithrespecttothenozzle.Inthemainshellcourseawayfromthenozzle,theoperatingpressureof2250psigcausesahoopstressequalto16.5ksiandanaxialstressequalto8.3ksi.Thepresenceofthenozzlereducestheradialstress,sineataradiusequaltothenozzleboreradiusthestressesmustbeequalto-2,3ksi,Iwhere'thenegativesignindicatescompression.Inthecourseofevaluatingsimilarflawsinothervessels,averysimplestresscalculationtechniquewasfoundtogiveexcellentanswersforthepressurmemoranestressacrosstheflaw.Specifically,thevaluesobtainedwiththsim-oleapproximationmaybecomparedtoothersolutionsasfollows:!!ethodSimp1eapproximat-:.on30finiteelement08C8.710.3membraneinnersurfacemid-walloutersurface20axisymmetricmodel,doubled7.7innerwall10.0mid-wailThi5slmpleapproximationisusedinthisevaluation.inordertoobtainthepressurestressactingnormaltotheF')aw,ascontainedinAooendix.A.
: stresses, suchaqthosewhichresultfromterneraturedifferentials orfrompipereactionstresses, wouldbeeliminated fromconsideration.
Althoughthisevaluation resultsintheconclusion thatsuchstressesmaybeignored,suchstresseswereconsidered intheevaluations whichleadtothepreviously listedconclusions.
2.6ThepreviousMCAP-8503 ASHEIII,AppendixGanalysiswasreviewedtodetermine ifthepressureofthereportedflawrequiresare-e!aluat:on oftheAppendixGrequirements.
Itisaconclusion ofthisreviewthattheMestingnouse evaluation ofapostulated flawinthevicinityofanoutletnozzlerepresents amucnmoresigni-f;:cantsituation thandoesthereportedflaw.Tnerefore, accepz-abiiitofthepostulated outletnozzleflawlsfu1tnerconfirmac'.on
,oftheacceptability ofthereportedflaw.A4-7 II>>"


><TELEDYNEEiNGIREERNGSERVICESTheresidualstressesusedinthisevaluationareaconservativeapproximationtothosemeasuredinaheavyweldmentafterpost-weldheattreatment*.Thesedataindicatethattheresidualstrsssesvarythroughthethicknesswithacosinerelationshipfrom8.0ksitensileonthesurfacesto8.0ksicompressionatmid-wall.DespiteconiirmationofthepresenceofcompressiveresidualstressesatmidwallbyremovalofasimilarflawtotheoneunderconsiderationinaRP'J.Hocreditistakenforthesecompressivestressesinthisanalysis.Instead,theresidualstressesareconsideredtovaryasacosinefunctionthroughthethicknesswith8.0ksitensileonthesurfacesto0ksiatthecenter.PreviousevaluationofarecirculationinletnozzleinaBtlR,whichissub-jectedtolargertemperaturechangesthanisthesubjectPHRinletnozzle,indi-catesthatthermalstressesarenotsignificantaslongastheflawdoesnotapproachwithinabout11/2"fromtheinnersurface,Thisistrueduringnormalandabnormaloperationsbecausetheinletnozzleandtheadjacentvesselaresuojectedtothesametemperaturetransientandaresimilarinthickness.Tnere-fore,thermalstresseffectsarenotconsideredtobeofimportanceintherangeoiilawsizesconsidered,2a<4inches.Pipereactionstressesiniheweldregionareprimarilybendingstressesvaryingiromtensileaionesurfacetocompressiveattheother.Sincethere-sortedilawoiinte.estisnearmid-wall,pipereactionstressesacrossthetaware'.'nsignificant.Asaresultoithisdiscussion,theonlystressesusedinthefracturemechanicsanalysisofAopendix8arethosewhichresultfrominternalpressureandtheweldr'esidualstresses.Sincetheresultingstressintensityfactorisverylow,aquestionoftenarisesastotheconsequencesofanerrorinthecal-culatedstress.Forthisreason,anadditionalevaluation,AppendixC,ismadefortheindicatedflawdimensionsgivingthestressintensityfactorwhichwouldbe'computodforarbitraryvaluesoimembranestressactingacrosstheflaw.D..'.Ferr'.'(1P."".~uhlandD.R.l1iller,".'4easuremento7Residua1Stressesina"e'6e'lT.qsr';te'd.,'na~pumaIResea,cnUDDlemenr.,tlovemoeri"coA4-15
==3.0 DESCRIPTION==
  )<TELEDYNEZG;XEERIXGSERVICESWithrespecttoFaultedConditions,theinletnozzleprovidesthepathforinjectionflowforabout40minutesfollowingaLOCA.Forthefirst20secondstheflowisfromthesafetyinjectionaccumulatorsatatemperatureof90'F.Atthattimethesafetyinjectionpumpsarestartedanddeliver155Ffluidfromtheboricacidtanks.At140secondsfollowingLOCAinitiationtheflowtrans-ferstotherefuelingwaterstoragetankandthewatertemperaturedropsto'60F.Attheendof40minutesflowswitchestothecontainmentdumpandflowisataminimumof140F,ThereactorpressuredropstonearzeroimmediatelyfollowingaLOCA.TheotherFaultedConditionofconcernisaLargeSteamlineBreakAccidenl(LSBA).FollowingaLSBAthereactorcoolanttemperatureendpressurerapidlydecreases.Whenthepressuredescreasesbelow1450psig,flowfromtheboricacidstoragetanksentersthevesselat155F.SafetyinjectionterminatestenminutesaftertheLSBA.Flowduringtheseeventsisthroughtheinletnozzleanddownthevessel.Becausethenozzleandvesselareofaboutthesamethickness,butsmallthe.maldiscontinuitystressesresult.Analysisofsimilartransientinothernozzlesindicatesthermalstressesacrosstheweldoflessthan5ksi.Sincethepressurenasdecreased,thetotalstressintensityfactor,fortheFaultedConditionis,smallerthanthatcalculatedduringnormaloperation.Therefore,postulateesur-facflawsinthevesselbeltlineregionaremorelimitingthanisthereportednozzleweldflaw.A4-16 Cll~J'  Ei~tNEERIRGSERY}CES8.0FATIGUECRACKGROWTHBecauseoftheoperatingcharacteristicsofaPWR,theinletnozzletemperaturevariationswithinthepowerrangearenegligible.Evenwhencoolanttemperature'changesdooccur,thenozzleandvesselrespondsimilarlyinthatthermaldiscontinuitystressesarenegligibl'einthevicinityofthereportedflaw.Skin-typethermalstressesmaybesignificantatandneartheinnersurfaces,butnotinthevicinityofthereportedflaw.Thereforetheonlycycleofimportancetogrowthofthereportedflawispressurizationanddepressurization.ForthereportedFlaw,theaKforpres-.surizationto2500'psig,thedesignpressure,isonly8.7ksi.An.Forasubsurfaceflaw,FigureA-4300-1predictsafatiguecrackgrowthrateof8(10)in/cycleforpressurizationto2500psig.Thereforenofatiguecrackgrowthispredicted.l EiMNEERjl4GSERVCES9.0FRACTUREMECHANICSANALYSISANDCRITERIAThelinearelasticfracturemechanicsmethodsofAppendixA,SectionXIoftheASMECodeareused.Thesemethodsareconservative,butarenotoverlyconservativeintheabsenceofsteepstressgradientsasisthecaseinthissolution.TheacceptancecriteriausedarethosebasedonappliedstressintensityfactorascontainedintheSummer1978AddendatoSectionXIoftheASMECode,IWB-3612.ThesecriteriaareidenticaltothoseusedinthePilgrim-1evalu-ation,althoughatthattimethecriteriawerereferencedtoaJunell,1974letterfromASMEtoBostonEdison.  
OFVESSELANDREPORTEDFLAWTheGinnaUnit1ReactorPressureYesse1(RPV)wasfabricated bytheBabcock5WilcoxCompany(85W)totherequirements ofSectionIIIoftheASt<EBoilerandPressureVesselCodeinaccordance withWestinghouse ElectricCompany(W)Equip-mentSpecification Ho.676206Revision0withAddendum676554,Revision0.TheRPVStressReorts'reB8W1966,ReportsNumbers.1through12.rTheinsidediameter, totheinnersurfaceofthecladding, is132inches.Theminimumcladthickness is5/32inches.Thewallthickness is61/2inchesatthebeltlineand9inchesatthenozzlecourse.Thenozzlecoursecontainstwo521/2inchoutsidediameterinletnozzles,two49inchdiameteroutletnoz-'lesandtwonominal4inchdiametersafetyinjection nozzles.Theinletandoutletnozzlesareata-commonel'evation.
AsketchoftheinletnozzleisshowninFigure3,withthedimensions oftheweldpreparation ontheODofthenozzlesketchesabove.Thisconfigure-ion ismportantbecauseitlocatesthereportedflaw.Figure4showstheinne.por-tionofthisweldprepa.ationwiththereportedflawlyingalongthelineAC.Thereweldprparationdimensions aredefinedonaradialplanethroughthevesselcen-erline
(==0'360').Sincetheweldoreparation ismachinedcylindrcallywiththenozzlecenterline, theradialdis-ancebe-'.veen theinsideofthe.esse.and-heweldpreparation landvarieswithradialposition~.Theflawisloca-;edbe-ween305'9<316.5",approximately the10:30o'lockpositionwnenlook':ngalongthenozzlecenterline fromoutsideofthevessel.Figure4indicates
:~eradialdistancefromtheRPVIDtoPointDasvaryingbetween4.2and..1inches.Thereportedflaw"through-wall"dimension measuredalongtheweldprepa.ation is0.93inches.Forpurposesofanalysis, SectionXIpermitsthisflawtobre-olvedintoa"throuah-wall" dimension measuredperpendicular tothevess'elsur-facewhichwoulddecreasethe2adimension, Becauseofthecomplexgeometry, advantage isnottakenofthisfactor.Theflawlength,measuredaroundthecir-cumVerence oftheweldpreparation asthedistancebetween305'nd316.5's5.27 ENG)NEER)NG SERVtCESinches.SectionXIdefinestheflaweccentricity asthedistancebetween.theflawcenterandthevesselmidplane.
ThedistancefromthevesselIDtotheflawcentervariesbetweenapproximately 3.55and4.47inches.Conservatively neglecting theincreased thickness resulting fromtheouternozzlecornerradius,therefore takingthetotalthickness as9inches;theeccentrici tyvariesbetweenapproximately 0and1".8asedupontheabovediscussion, andnotingthatanincreaseineccentricity increases thecalculated stressintensity factor,theflawisdefinedforpur-posesofanalysisbythedimensions:
pa=0.93inches1=5.3inchese=1.0inch Ilay AENGINEERING SERVICES4.0COMPARISON OFGINNA-1REPORTEDFLAWWITHPREVIOUSLY EVALUATED FLAWSForpurposesofexamining pressure-temperature limitations, WCAP-8503*
considered theeffectsofaflawadjacenttotheoutletnozzle.Althoughthere~$Naredifferences ingeometrybetweentheinletandoutletnozzles,thestressesareverysimilar.Thisevaluation considered asurfaceflawinaplanepassingthroughtheRPVcenterline ofdepthequalto1.8inches{a/t=0.20)andsurfacelengthof1,8inches{aspectratioof1:6).Sinceasurfaceflawof'givenlengthanddepthresultsinapproximately thesamestressintensity factorasdoesasubsurface.
flawofthesamelengthandtwicethethrough-wall dimension, theWCAP-8503 evaluation isequivalent tothaiwhichwouldbeobtainedforamid-wallflawof2a=3.6and1=10.8inthesameorientation...In fact,theWCAPevalu-'Iationwouldbeveryconservative becausethesurfaceissubject,todiscontinuity stresseswhichhavebutlittleeffectnearmidplane.
Ofevenmoreimportance, however,isthediffe.enceinorientation betweenthetwoflaws.Theindicated Ginnaflawiscircumferential tothenozzleandtheWCAPflawisradialtothenozzle;therefore, thepressurestressnormaltotheWCAPflawisaboutthretimesaslargeast.atnormaltotheGinnaindication.
The.efore,theindic'tdGinnaflawisofconsiderable lesssignificance thanthenozzleflawusedfortheAppendixGevaluation ofiheGinnavesselThemid-wall, nozzleattachment weldflawmostsimilartothatindicesdinGinna-1whichhasbeensubjected toextensveinvestigation byTESandbythe*HRCistheindication inthePilgrim-1 recirculation inletnozzleNZBwhichwasfirstdetec.edin1974andwnichwasreevaluated in1976bybothTESandHRC.Thesignificant parameters maybecomparedasfollows,usingthePilgrimvaluesevaluated byTES:ttWCAP-8'03, "ASMEIII,AppendixGAnalysisofRochester GashElectricCorporation R.E.GinnaUnitHo.1ReactorVessel,July1975.  


10.0ELASTIC-PLASTICA!HALYSISAttachment4tothe!'(RCStaffEvaluationofthe1976Pilgrim-1ISIresults,datedApril21,1976,summarizesanelastic-plasticFractureMechanicsAnalysisperformedbyOr.P.C.ParisasaconsultanttoNRC.AppendixOtothisreportcontainsanelastic-plasticanalysisapplicabletotheGinna-1situationwhichfollowsParis'lternativesecondarystresscomputationmethod.Alsoconsideredisthemaximumilawsizewhichwouldresultinretentionofafactorofsafetyofburstofatleast,three.Thisanalysisi.ndicatesthataflawthrough-wall(2a)dimensioninexcssof4inchesisrequiredto'reducethefactorofsafetybelow3.0,usingananalysiswhichassumesaverylongflaw.Inaddition,thisanalysisshowsthatanyresidualorsecondarystresseswnicharepresentinthestructurewillbeeliminatedbyyieldingaslongastheflawdepth(2a),islessthananu;.-be.inexcessof4".Thatis,weldresidualstresses,thermalstressesandpipereactionstressesneednotbeconside.edinevaluatingthevesse!saic-yif2a<4inches.
AFEi~jNEER)NG SERVICESPlant:Depth,2a,in.Length,1,in.Eccentricity, e,in..Hoopstressinvessel,ksi(atoperating pressure)
Yessejthickness 6irma-I0.935.31.016.59.05.2~PI'Irim-11,55.20.5516.27.010.7TheNRCevaluation assumedsomewhatmoreconservative parameters.
SoththeTESandHRCevajuations concluded thawthePilgrim-1 RPYwassatisfactory iorcontinued service.Tnecalculated stressntensiy=actorsforGInna-1woutdbeexpectedtobemuchsmallerthanthosecomputed=orPilgrim-l.
Sasedupontheseiwocomparisons withpreviously evaluated flaws,onewouidjudgethaitheGinna-1vesselwouldeasilysatisfytheSectionXlcriria=oracceptance byevaluation.
A4-11 t'jIt,KIr
 
==5.0 HATERIALPROPERTIES==
4~~BaseduponthevaluespublishedinWCAP-8421*,
-theunirradiatedmateria1properties ofthenozzle,usingoutletnozzledata,andoftheweld,usingbeltlinewelddata,areasfollows:LocationRTNDTCyShelf,ft-1bNozzleWeld0.090.236001258018Thecomputedend-of-life fluenceatthenozzleelevation is1.08(IO)atone-quarter thickness.
UsingRegulatory Guide'l.99,Revision1,theend-of-lifeproperties arecomputedas:LocationNDT',fShelf,ft-lbNozzleWeld607011262!I,inWCAP-8503 hasusedanuppershelfKl=200ksi~n.IRTheSect-ionXItoughness versustemoerature curvesareplottedinFigure=foranend-of-life RTi'=70F.sUl"'iCAP-8421, AnalysisofCapsuleRFromtheRochester GasandlectricCorporation R.:.GinnaUnitNo.1ReactorilesselRadiation Surveillance Program,November, 1974.
I 6.0PRESSURE-TEMPERATURE LIMITSTheupperlimitoftheTechnical Specification heatupand.cooldowncurvesarealsoplottedonFigure5.Becausetheselimitsarecontrolled bythe.higherfluencebeltlineregion,full'operating
: pressure, ZZSOpsig,isnotpermitted below315F.Thistemperature isonthetoughness uppershelfbyamargininexcessof100F.,
  )>TELEDYNEENGINEERING SERVICES7.0STRESSANALYSISThesignificant stressesactingacrosstheflawindication arethoseduetovesselpressureandduetoweldingresidualstresses.
Atthenearmid-walllocation, thermalstressesandstressesresulting frompipereactioneffectsarenegligible.
Thepressurestressesofinterestarethoseactinginaradialdirectionwithrespecttothenozzle.Inthemainshellcourseawayfromthenozzle,theoperating pressureof2250psigcausesahoopstressequalto16.5ksiandanaxialstressequalto8.3ksi.Thepresenceofthenozzlereducestheradialstress,sineataradiusequaltothenozzleboreradiusthestressesmustbeequalto-2,3ksi,Iwhere'the negativesignindicates compression.
Inthecourseofevaluating similarflawsinothervessels,averysimplestresscalculation technique wasfoundtogiveexcellent answersforthepressurmemoranestressacrosstheflaw.Specifically, thevaluesobtainedwiththsim-oleapproximation maybecomparedtoothersolutions asfollows:!!ethodSimp1eapproximat-:.on30finiteelement08C8.710.3membraneinnersurfacemid-walloutersurface20axisymmetric model,doubled7.7innerwall10.0mid-wailThi5slmpleapproximat ionisusedinthisevaluation.inordertoobtainthepressurestressactingnormaltotheF')aw,ascontained inAooendix.A.
 
><TELEDYNEEiNGIREERNG SERVICESTheresidualstressesusedinthisevaluation areaconservative approximation tothosemeasuredinaheavyweldmentafterpost-weld heattreatment*.
Thesedataindicatethattheresidualstrsssesvarythroughthethickness withacosinerelationship from8.0ksitensileonthesurfacesto8.0ksicompression atmid-wall.Despiteconiirmation ofthepresenceofcompressive residualstressesatmidwallbyremovalofasimilarflawtotheoneunderconsideration inaRP'J.Hocreditistakenforthesecompressive stressesinthisanalysis.
Instead,theresidualstressesareconsidered tovaryasacosinefunctionthroughthethickness with8.0ksitensileonthesurfacesto0ksiatthecenter.Previousevaluation ofarecirculation inletnozzleinaBtlR,whichissub-jectedtolargertemperature changesthanisthesubjectPHRinletnozzle,indi-catesthatthermalstressesarenotsignificant aslongastheflawdoesnotapproachwithinabout11/2"fromtheinnersurface,Thisistrueduringnormalandabnormaloperations becausetheinletnozzleandtheadjacentvesselaresuojected tothesametemperature transient andaresimilarinthickness.
Tnere-fore,thermalstresseffectsarenotconsidered tobeofimportance intherangeoiilawsizesconsidered, 2a<4inches.Pipereactionstressesiniheweldregionareprimarily bendingstressesvaryingiromtensileaionesurfacetocompressive attheother.Sincethere-sortedilawoiinte.estisnearmid-wall, pipereactionstressesacrossthetaware'.'nsignificant.
Asaresultoithisdiscussion, theonlystressesusedinthefracturemechanics analysisofAopendix8arethosewhichresultfrominternalpressureandtheweldr'esidual stresses.
Sincetheresulting stressintensity factorisverylow,aquestionoftenarisesastotheconsequences ofanerrorinthecal-culatedstress.Forthisreason,anadditional evaluation, AppendixC,ismadefortheindicated flawdimensions givingthestressintensity factorwhichwouldbe'computod forarbitrary valuesoimembranestressactingacrosstheflaw.D..'.Ferr'.'(1 P."".~uhlandD.R.l1iller,".'4easurement o7Residua1Stressesina"e'6e'lT.qsr';te'd.,'na
~pumaIResea,cnUDDlemenr.,
tlovemoer i"coA4-15
  )<TELEDYNEZG;XEERIXG SERVICESWithrespecttoFaultedConditions, theinletnozzleprovidesthepathforinjection flowforabout40minutesfollowing aLOCA.Forthefirst20secondstheflowisfromthesafetyinjection accumulators atatemperature of90'F.Atthattimethesafetyinjection pumpsarestartedanddeliver155Ffluidfromtheboricacidtanks.At140secondsfollowing LOCAinitiation theflowtrans-ferstotherefueling waterstoragetankandthewatertemperature dropsto'60F.Attheendof40minutesflowswitchestothecontainment dumpandflowisataminimumof140F,Thereactorpressuredropstonearzeroimmediately following aLOCA.TheotherFaultedCondition ofconcernisaLargeSteamline BreakAccidenl(LSBA).Following aLSBAthereactorcoolanttemperature endpressurerapidlydecreases.
Whenthepressuredescreases below1450psig,flowfromtheboricacidstoragetanksentersthevesselat155F.Safetyinjection terminates tenminutesaftertheLSBA.Flowduringtheseeventsisthroughtheinletnozzleanddownthevessel.Becausethenozzleandvesselareofaboutthesamethickness, butsmallthe.maldiscontinuity stressesresult.Analysisofsimilartransient inothernozzlesindicates thermalstressesacrosstheweldoflessthan5ksi.Sincethepressurenasdecreased, thetotalstressintensity factor,fortheFaultedCondition is,smallerthanthatcalculated duringnormaloperation.
Therefore, postulatee sur-facflawsinthevesselbeltlineregionaremorelimitingthanisthereportednozzleweldflaw.A4-16 Cll~J'  Ei~tNEERIRG SERY}CES8.0FATIGUECRACKGROWTHBecauseoftheoperating characteristics ofaPWR,theinletnozzletemperature variations withinthepowerrangearenegligible.
Evenwhencoolanttemperature
'changesdooccur,thenozzleandvesselrespondsimilarly inthatthermaldiscontinuity stressesarenegligibl'e inthevicinityofthereportedflaw.Skin-type thermalstressesmaybesignificant atandneartheinnersurfaces, butnotinthevicinityofthereportedflaw.Therefore theonlycycleofimportance togrowthofthereportedflawispressurization anddepressurization.
ForthereportedFlaw,theaKforpres-.surization to2500'psig,thedesignpressure, isonly8.7ksi.An.Forasubsurface flaw,FigureA-4300-1predictsafatiguecrackgrowthrateof8(10)in/cycleforpressurization to2500psig.Therefore nofatiguecrackgrowthispredicted.
l EiMNEERjl4GSERVCES9.0FRACTUREMECHANICS ANALYSISANDCRITERIAThelinearelasticfracturemechanics methodsofAppendixA,SectionXIoftheASMECodeareused.Thesemethodsareconservative, butarenotoverlyconservative intheabsenceofsteepstressgradients asisthecaseinthissolution.
Theacceptance criteriausedarethosebasedonappliedstressintensity factorascontained intheSummer1978AddendatoSectionXIoftheASMECode,IWB-3612.
Thesecriteriaareidentical tothoseusedinthePilgrim-1 evalu-ation,althoughatthattimethecriteriawerereferenced toaJunell,1974letterfromASMEtoBostonEdison.
 
10.0ELASTIC-PLASTICA!HALYSIS Attachment 4tothe!'(RCStaffEvaluation ofthe1976Pilgrim-1 ISIresults,datedApril21,1976,summarizes anelastic-plastic FractureMechanics Analysisperformed byOr.P.C.Parisasaconsultant toNRC.AppendixOtothisreportcontainsanelastic-plastic analysisapplicable totheGinna-1situation whichfollowsParis'lternative secondary stresscomputation method.Alsoconsidered isthemaximumilawsizewhichwouldresultinretention ofafactorofsafetyofburstofatleast,three.Thisanalysisi.ndicates thataflawthrough-wall (2a)dimension inexcssof4inchesisrequiredto'reducethefactorofsafetybelow3.0,usingananalysiswhichassumesaverylongflaw.Inaddition,thisanalysisshowsthatanyresidualorsecondary stresseswnicharepresentinthestructure willbeeliminated byyieldingaslongastheflawdepth(2a),islessthananu;.-be.inexcessof4".Thatis,weldresidualstresses, thermalstressesandpipereactionstressesneednotbeconside.edinevaluating thevesse!saic-yif2a<4inches.
41 Ie[1  
41 Ie[1  


I=Jqo~EZ79~svG~oatm-'HKD.ETDATE~ITr~FI--"ct'l=Wre<iegTfcc3gAJIATIoNSSHETHO.OFFEOAEO.-'4<~70~~I~~~:.I..:IIII~r~I~~It~'r'I...L......~rI/+orox~\0~~~~I~rI304Jr~<<~~~~~204JfDt~~r~~~rI~tt~).BIO~~I4oME/v)ggAggSTRK55I...G.p~,-K's1r 1
I=Jqo~EZ79~svG~oatm-'HKD.ETDATE~ITr~FI--"ct'l=
Wre<iegTfcc3gAJIATIoNS SHETHO.OFFEOAEO.-'4<~70~~I~~~:.I..:IIII~r~I~~It~'r'I...L......~rI/+orox~\0~~~~I~rI304Jr~<<~~~~~204JfDt~~r~~~rI~tt~).BIO~~I4oME/v)ggAggSTRK55I...G.p~,-K's1r 1
t/6A~3.,i,.dr.is<a.->-i.(~.&(wJg(rtI7'i'g/0F~QZzS2.7qlc>3Z1ItMtM27.7eqGV3'JcPi)4l-.NP,ntylI~~Xg'.)  
t/6A~3.,i,.dr.is<a.->-i.(~.&(wJg(rtI7'i'g/0F~QZzS2.7qlc>3Z1ItMtM27.7eqGV3'JcPi)4l-.NP,ntylI~~Xg'.)  


goz.alega~c-QP/g/6gcQfro~.pa)>g/gQo'csscIZP(~~c../cot)~~ai~vcrJwvgLccIvg8lc,I4J<c't.9io<N.F35770"~,/%7g,(fa4.3/(~'~~~~~0~Q*~~~.,O.P~(0,.(l,>el)f0nb)Jl*Ip~/~c./5'-.9g.',/gIID(st',4.o[2Ci'C&$,2C.s/8lS)Ic~c.~~Ie~y+jgggfvgdf<lcc~fcv~Ecld~ick;pO09s0(.:f~J>go~~3]LAL/<f7t/3.5XO.999 II  
goz.alega~c-QP/g/6gcQfro~.pa)>g/gQo'csscIZP(~~c../cot)~~ai~vcrJwvgLccIvg8lc,I4J<c't.9io
(~P~~~PN~l4 Cl TechnicalReport'TR-3454-1FAG'NEE~)NGSERVICESAPPENDIXA
<N.F35770"~,/%7g,(fa4.3/(~'~~~~~0~Q*~~~.,O.P~(0,.(l,>el)f0nb)Jl*Ip~/~c./5'-.9g.',
/gIID(st',4.o[2Ci'C&$,2C.s/8lS)Ic~c.~~Ie~y+jgggfvgdf<lcc~fcv~Ecld~ick;pO09s0(.:f~J>go~~3]LAL/<f7t/3.5XO.999 II  
(~P~~~PN~l4 Cl Technical Report'TR-3454-1 FAG'NEE~)NG SERVICESAPPENDIXA


/71lMChD/sTANcFJA'HG5O4iYo~0tO I
/71lMChD/sTANcFJA'HG5O4iYo~0tO I
0~li~p4rrPk~pJ~~  
0~li~p4rrPk~pJ~~  


iav4Moira~Z-~~.sv~aim>>>>~SHEETNa.OFwm.xo.~~<>~~~l~~4THE'ESUL.75ARE:.COA'SERiA7/VEJ3ECAUS'E'HZRESTRAMieGEF'FEC75...Ok"WPE'",hlo2PiG',RE)WFOacE-~~/V)6'iV7HAYE82ZHNE,6LEdPRESSdRE'N.TAG...A'd'.2+4':'s&'AS.HAsTHE'.:M"D~D.OD/ER.6'V29HoLE/HArw'~pR-'=-AT'PP<)C,~BLEE4LJA7.row'.I/7HZR/'R57dFEPH,(.42.joF'h'EdR/OI='IZLWS7/.C/7Va..Vm'~~...6.7/'/aRA~/ALS7R'ES5ARDiXJV'O'...SSICHArL,A7E'SL!ZJE.C7EDl=dD~.AI.AXIALI=NSldh/.;8<F~i-,/On)T~e'EPulcc.)~A..FORPRaaL,e~/S:~~~IG~=28Vv'4F/v'Cc=G~(i'C.c5~~~I~~~I~
iav4Moira~Z-~~.sv~aim>>>>~SHEETNa.OFwm.xo.~~<>~~~l~~4THE'ESUL.75 ARE:.COA'SERiA 7/VEJ3ECAUS'E'HZRESTRAMieGEF'FEC75...Ok"WPE'",hlo2PiG',
RE)WFOacE-~~/V)6'iV7HAYE82ZHNE,6LEdPRESSdRE'N
.TAG...A'd'.2+4':'s&
'AS.HAsTHE'.:M"D~D.OD/ER.6'V29HoLE/HArw'~pR-'=-AT'PP<)C,~BLEE4LJA7.row'.I/7HZR/'R57dFEPH,(.42.joF'h'EdR/
OI='IZLWS7/.C/7Va..Vm'~~...6.7/'/aRA~/ALS7R'ES5ARDiXJV'O'...
SSICHArL,A7E'SL!ZJE.C 7EDl=dD~.AI.AXIAL I=NSldh/.;8<F~i-,/On)T~e'EPulcc.)~A..
FORPRaaL,e~/S:~~~IG~=28Vv'4F/v'Cc=
G~(i'C.c5~~~I~~~I~
1 CHKD.BY'ATE  
1 CHKD.BY'ATE  


'aCl2OPRES~URF+RCSIOCJAL57AF'55JSoatrlhlIglAIi)l.V>/hrrI1IW(Io0r>)uuvv~u.DtSrwdcEtNC825JB]axoo4)O  
'aCl2OPRES~URF+RCSIOCJAL 57AF'55JSoatrlhlIglAIi)l.V>/hrrI1IW(Io0r>)uuvv~u.DtSrwdcEtNC825JB]axoo4)O  


TechnicalReportTR-3454-1EMNEERINGSERVICESAPPEHOIX8A4-31 k
Technical ReportTR-3454-1 EMNEERING SERVICESAPPEHOIX8A4-31 k
lM~4aaAPPGHoIX8CBKD.BYDATc~'37ou6HNz5$jr',zA7lungSMKETNO.OF/8PRO4.NO..S'7ZHSS..AA/rr(LYSJDHx'R/ass/aA'~~~c+ZC7"/dAl.X/~.A"ZQgg.JFCPOr)PE+eHA77"k'a~4~*):.~c;gAi.$7-RE'sS..S'/$7Rrddrroh'.zezcsS7a=-,v-a/c<+=zj.'.9ZLlh'Zgg/RZD..../&..A.'Vc=RYSPZC((=/CrrtdrtrlVCg,A&3..gg=..N=mZPAPEIr(~:Ar~'aT'ue.BENa(NCrP>-cannP~e<~/TSZ=-/'~e)';r;-r~a..rW/SA//ZrVerS.D/V=-S7m~wx/se-s/~;~~~o~g,~xua5+.///7.=-~re5/='44,Q(=~C'7RESS~Gs~..pA/&,7r",~S7.ZW~~S)i977+E.P/r7KZJL~S)ZDc5~y.~'S'r~5'5>>,-;rf(MaArr',4GqIC,G~tIgIII.'II'.'l(aIr~Icfur..CSpr4(r~~.~oQs,2ASLIMA'/f4P'IO%-4CpPl5r4(+/4-444'4A4-32  
lM~4aaAPPGHoIX8CBKD.BYDATc~'37ou6HNz5$
jr',zA7lungSMKETNO.OF/8PRO4.NO..S'7ZHSS..AA/rr(LYS JDHx'R/ass/aA'~~~c+ZC7"/dAl
.X/~.A"ZQgg.JFCPOr)PE+
eHA77"k'a~4~*):.~c;gAi.$7-RE'sS..S'/$7Rrddrroh'.
zezcsS7a=-,v-a/c<+=zj
.'.9ZLlh'Zgg/RZD..../&
..A.'Vc=RYSPZC((=/CrrtdrtrlVCg, A&3..gg=..N=mZPAPEIr(~:Ar~'aT'ue.BENa(NCrP>-cannP~e<~/TS Z=-/'~e)';r;-r~a
..rW/SA//ZrVerS.D/V=-S7m~wx/se-s/~;~~~o~g,~xua5+.///7.=-~re5/='44,Q(=~C'7RESS~Gs~..pA/&,7r",~S7.ZW~~S) i977+E.P/r7KZJL~S)ZDc5~y.~'S'r~5'5>>,-;rf(
MaArr',4GqIC,G~tIgIII.'II'.'l(aIr~Icfur..CSpr4(r~~.~oQs,2ASLIMA'/f4P
'IO%-4CpPl5r4(+/4-444'4A4-32  


Dy4r3r3DAvm~~-/2-7CHKD.SYDATI~~/3)1D3ezDTNo.~o3E3wee.xo........Pw&AVi&c.;..',.:".....'Cg=.$4MFACE:$7)2~SS~rG.=s7-W~ssXr'~e<"w~~DwMLAMJsrzessw7-ospreyFLrvV~~0EED,oR3~I~~~aur~,RjVP~S>~Or~O.Z.~JA//VZAPADS7ES6B'.~=)rrZ.QA.VE,~7rP~55+~A'//'lGS7PWS5a=,+Ag<DIAM=7:-7d;...Q~8'gDDED...F43&V'z8'cKA'H8".rrI~~~~~~~~~~I~r~~II~I~~~~<<I>>IE~~~<<~>>~I~~~~~~~~<<~~~~I~E~I~~<<~~~~~~~I~~~~~~<<~I~~zc=-rr-.,rcr-/<r=zrn8E'DDEDr=~Avr'/57AA'=<C3r-r-C8A'C;7f-.i<re'c~F.rv0E1<.-Woa(~/-~-~)Ki,"..=r'z.(E'OFo)s(o:.'-G)EA4-33 S
Dy4r3r3DAvm~~-/2-7 CHKD.SYDATI~~/3)1D3ezDTNo.~o3E3wee.xo........Pw&AVi&c
l~IIgyMOAIO~n.7CHKD.8YDATE~I'~~~SHEETNO.OF83PRC4I.NO.+D,e'i(s)7'.V..:.,'~.,G~=Gs-,Gq*~~..;.'P~=N.-Z~-Z.~GW-za.-z.aIrIIZ,g-2.6(j,-.:C~'"~\Cs-Ge)~o'I'Coe-xa.-ze,<oZ4-2.~trIOoIIGs)-zeg7<-28/AZOZ+PS)I/QI4'(t-.-~')=~(~-.-.t,-,'4cZG~=Go.PWo.-I..C)g=w'IPl7/o'cCgrlz7A...2x'=.-a...-..e.'......,..~-24Gg,i-Wo'gP~Iltog~JC~s='lt-/i-~>!+~L(isWo1~  
.;..',.:".....'
~4tS BYnwva~-/~1~oxxosPvVoATs~>~>Asxsrrxo.~os~reoz.Xo.lwee=o2)e0Sy=+Z,OK5/Cowg.zSo-5'WZ.uZS2.4-7S,/27-Z/Z//2S7437.f~~82ZOZS~+C72,47~g.5-.c7S-/./Z5.7-"3-/.st'z.ezs-z.+7s'7Z7/.d8/2+./Cc4,207~Zg.d/.DC23/K-,/23/WO2.25+d5DIao-35 J'IlIC BY&OATB~/27OHKD.BY~LWDATE~OSHZH'O.OPPROJ.NO.C/$E'ZFORO.25',O.Z5D.55//25~025''4T5.Z./ZZ.0'7.9SZ,+g7ZS75.Z.C2584-75g~Z..32K-./ZKI/g-IDZ5-/.47E.943'c//72-o.7Dg78d.5/3d.Z07l3/Gs((G,)G~/~IC(C~+Oj/)OY//i4c3/~270J/.ZZC.7D,z7C//C3'4.z87.35277/a~//"330~47o8/<~28B/z.7S.Z~Z~7P7dg903.30+A4-36 4  
Cg=.$4MFACE:$7)2~SS~rG.=s7-W~ssXr'~e<"w~~DwMLAMJsrzessw7-ospreyFLrvV~~0EED,oR3~I~~~aur~,RjVP~S>~Or~O.Z.~JA//VZAPADS 7ES6B'.~=)rrZ.QA.VE,~7rP~55+~A'//'lGS7PWS5a=,+Ag<DIAM=7:-7d;...Q~8'gDDED...
~~~~rrfp 4t TechnicalReportTR-3454-1I~~<iceENGINEERINGSERVlCESAPPfHOIXC
F43&V'z8'cKA'H8".rrI~~~~~~~~~~I~r~~II~I~~~~<<I>>IE~~~<<~>>~I~~~~~~~~<<~~~~I~E~I~~<<~~~~~~~I~~~~~~<<~I~~zc=-rr-.,rcr-/<r=zrn8E'DDED r=~Avr'/57AA'=<C3r-r-C8A'C;7f-.i<re'c~F.rv0E1<.-Woa(~/-~-~)Ki,"..=r'z.(E'OFo)s(o:.'-G)EA4-33 S
l~IIgyMOAIO~n.7CHKD.8YDATE~I'~~~SHEETNO.OF83PRC4I.NO.+D,e'i(s)7'.V..:.,
'~.,G~=Gs-,Gq*~~..;.'P~=N.-Z~-Z.~GW-za.-z.aIrIIZ,g-2.6(j,-.:C~'"~\Cs-Ge)~o'I'Coe-xa.-ze,<oZ4-2.~trIOoIIGs)-zeg7<-28/AZOZ+PS)I/QI4'(t-.-~')=~(~-.-.t,-,'4cZG~=Go.PWo.-I..C)g=w'IPl7/o'cCgrlz7A...2x'=.-a...-..e.'......,
..~-24Gg,i-Wo'gP~Iltog~JC~s='lt-/i-~>!+~L(isWo1~  
~4tS BYnwva~-/~1~oxxosPvVoATs~>~>
Asxsrrxo.~os~reoz.Xo.lwee=o2)e0Sy=+Z,OK5/Cowg.zSo-5'WZ.uZS2.4-7S,/27-Z/Z//2S7437.f~~82ZOZS~+C72,47~g.5-.c7S-/./Z5.7-"3-/.st'z.ezs-z.+7s'7Z7/.d8/2+./Cc4,207~Zg.d/.DC23/K-,/23/WO2.25+d5DIao-35 J'IlIC BY&OATB~/27OHKD.BY~LWDATE~O SHZH'O.OPPROJ.NO.C/$E'ZFORO.25',O.Z5D.55//25~025''4T5.Z./ZZ.0'7.9SZ,+g7ZS75.Z.C2584-75g~Z..32K-./ZKI/g-IDZ5-/.47E.943'c//72-o.7Dg78d.5/3d.Z07l3/Gs((G,)G~/~IC(C~+Oj/)OY//i4c3/~270J/.ZZC.7D,z7C//C3'4.z87.35277/a~//"330~47o8/<~28B/z.7S.Z~Z~7P7dg903.30+A4-36 4  
~~~~rrfp 4t Technical ReportTR-3454-1 I~~<iceENGINEERING SERVlCESAPPfHOIXC
~I  
~I  
~'~ICNlm.BY~EATE~Er+Fg//+c7-or=Ap/or/E'D87RESSYwararvontEf~'M9tea~g~n~~~~~APPEHD/gSHEETHO,PROP.NO.IOF~~~CASE'-l'':.:.'..ZK~'~'2.cb=-0'~~g~/g~/0.3~I~4-45'0877/80.35'7ZO.....'....30I~5.~Z'.':..833/o7//.c9/.al'...'..l..'o.Z.:.::.;,.5'.5'8~8'87/o/0//C"-/:/p.rr-.:-:/Z~O/ZS3~I(~-"l)O,p~I~/34;...2S~I7(F~<<O)lIESy=84.s4-8/~/3S77-/O9yn/-Izs8Vg~/.ada'"I<<j/cD/3+.i/'r43ZS.'Z.'.:/-/7/Z74/oZ'...'."Z:as+,,/o3~/'oOD7+Ig~rIr/6IJI+=  
~'~ICNlm.BY~EATE~Er+
Fg//+c7-or=Ap/or/E'D87RESSYwararvontEf~'M9tea~g~n~~~~~APPEHD/gSHEETHO,PROP.NO.IOF~~~CASE'-l'':.:.'..Z K~'~'2.cb=-0'~~g~/g~/0.3~I~4-45'0877/80.35'7ZO.....'....30I~5.~Z'.':..833/o7//.c9/.al'...'..l
..'o.Z.:.::.;,.5'.5'8
~8'87/o/0//C"-/:/p.rr-.:-:/Z~O/ZS3~I(~-"l)O,p~I~/34;...2S~I7(F~<<O)lIESy=84.s4-8/~/3S77-/O9yn/-Izs8Vg~/.ada'"I<<j/cD/3+.i/'r43ZS.'Z.'.:/-/7/Z74/oZ'...'."Z:as+,,/o3~/'oOD7+Ig~rIr/6IJI+=  


TechnicalReportTR-3454-1APPcHOIX0
Technical ReportTR-3454-1 APPcHOIX0
)i  
)i  
/g~~/ePgsglfPg.cl<herr~9fZ~~g/~C/o~~~~sm~~~/~g.'8';Zo(tn)CJPPCcPlnC'ICHOCCJCACAO+/(+~2CQc~vesJ'qre,sgv<Jze~~~~./.h..P4.~lowe'H/eZru~+/c"~C'af2'grVCkcc~c.I-4->~i@ig..M+.Crj.vJf ICi Iksmhsss4smEsss'EEs~r"IBYc~~DATE~V'5(LJI.'CEKD.BYMMDATE~>SHAK'O.ZDPZOLWQ.C4~//c~c(j~)><X'Mumf'4uw~/i@&QCr~irap/"9r'~jIrJiAjagre'<CO~u/Cr~YDYrli~sjdgP/<rVQJJC~'y/Y"~~/C"~r~--G2~(/)~(~)~sugg(Z)>~C'~/eIjld<2>~oJ~ICIc.gPQJTtTsCA&Is+~4i~ccpv)(~~A4-42  
/g~~/ePgsglfPg.cl<herr
~9fZ~~g/~C/o~~~~sm~~~/~g.'8';Zo(tn)CJPPCcPlnC'ICHOCCJCACAO+/(+~2CQc~vesJ'qre,sgv<Jze~~~~./.h..P4.~lowe'H/eZru~+/c"~C'af2'grVCkcc~c.I-4->~i@ig..M+.Crj.vJf ICi Iksmhsss4smEsss' EEs~r"IBYc~~DATE~V'5(LJ I.'CEKD.BYMMDATE~>
SHAK'O.ZDPZOLWQ.C4~//c~c(j~)><X'Mumf'4uw~/i@&QCr~irap/"9r'~jIrJiAjagre'<CO~u/Cr~YDYrli~sjdgP/<rVQJJC~'
y/Y"~~/C"~r~--G2~(/)~(~)~sugg(Z)>~C'~/eIjld<2>~oJ~ICIc.gPQJTtTsCA&Is+~4i~ccpv)(~~A4-42  


,fe'YoaTE~<<~iC4KD.ET@+DATE~SSHEETHD.DS~PROJ.No,g~=O,Q3'~g(goo)7heij7VwC/cd8(0wghv)+rCJJE'geA4-43 a
,fe'YoaTE~<<~iC4KD.ET@+DATE~SSHEETHD.DS~PROJ.No,g~=O,Q3'~g(goo)7heij7VwC/cd8(0wghv)+rCJJE'geA4-43 a
ATTACHMENT3SCOPEOFULTRASONICEXAMINATIONSOFTHEREACTORPRESSUREVESSELWELDS r~~VI~1 Thefollowingisalistingofmechanizedultrasonicezaminationsofthereactorpressurevesselweldsandadjacentpipingwelds.Theseexaminationswillinclude1/2Tbasematerialforvesselweldsand1/4inchbasematerialforpipingwelds.Alsoshownaretheanticipatedezaminationanglesandthedirectionofthebeamcomponent.Thelowerheadisforgedandhasnomeridionalweldsandtheshellcoursesareringsectionswithnolongitudinalwelds.Inallcasesthegoalistoexamine100%oftheweldplus1/2Teachsideoftheweld.Examinationof100%oftheweldlengthisthegoalalsoforthecircumferentialvesselweldseventhough74/S75SectionXIonlyrequires5%.Interferencefromothervesselcomponentsmaylimitthedesiredezaminationcoverage.Ifthiswasthecaseinpreviousezaminations,ithasbeennoted.AcompletediscussionoftheindividualezaminationareacoveragewiQbeprovidedinthefinalreportoftheezaminationsasrequiredbyRegulatoryGuide1.150Rev.l.MechUTexaminationswillbeperformedonthereactorvesselweldsandselectedreactorcoolantpipingweldsfromtheinsidesurfaceutilizingthePaRISI-2DeviceandSwHIFastPaRequipment.Ezaminationareasincludevesselcircumferential,nozzle-to-shell,andnozzlepipingwelds.TheMechUTezaminationsoftheRPVwillbeperformedinaccordancewiththerequirementsofthe74/S75SectionXIandReydatoryGuide1.150,Rev.1.Na)"RPVShellandHeadAVelds1)0-degreelongitudinalwave(UTOL)examinationswillbeperformedfordetectionoflaminarreQectorswhichmightaffectinterpretationofangle-beamresults.2)0-degreelongitudinalwave(UTOKV)ezaminationswillalsobeperformedfordetectionofreflectorsintheweldandbasematerial.3)45-degreeand60-de~eeshearwave(UT45andUT60)ezaminationswillbeperformedfordetectionofreflectorsintheweldandbasematerialorientedparalleltotheweld.4)45-degreeand60-degreetransverseshearwave(UT45TandUT60T)ezaminationswillbeperformedfordetectionofreflectorsintheweldandbasematerialorientedtransversetotheweld.5)InthecaseoftheRPVwelds,SwRI50/70tandemsearchunitsv%beusedtoezaminetoadepthofapproximately2.25inchesfordetectionofreQectorsintheclad-to-basemetalinterfaceareaandalsointhevolumebetweentheexaminationsurfaceandthedepthofthefirstCodecalibrationreQector.Thesedual-elementtandemsearchunitsdevelopaninteractivebeamwithlongitudinal'wavepropagationandproduceanezaminationwithsignificantlyimprovedsignal-to-noiseratiooverconventionalnear-surfacetechniques.
ATTACHMENT 3SCOPEOFULTRASONIC EXAMINATIONS OFTHEREACTORPRESSUREVESSELWELDS r~~VI~1 Thefollowing isalistingofmechanized ultrasonic ezaminations ofthereactorpressurevesselweldsandadjacentpipingwelds.Theseexaminations willinclude1/2Tbasematerialforvesselweldsand1/4inchbasematerialforpipingwelds.Alsoshownaretheanticipated ezamination anglesandthedirection ofthebeamcomponent.
Thelowerheadisforgedandhasnomeridional weldsandtheshellcoursesareringsectionswithnolongitudinal welds.Inallcasesthegoalistoexamine100%oftheweldplus1/2Teachsideoftheweld.Examination of100%oftheweldlengthisthegoalalsoforthecircumferential vesselweldseventhough74/S75SectionXIonlyrequires5%.Interference fromothervesselcomponents maylimitthedesiredezamination coverage.
Ifthiswasthecaseinpreviousezaminations, ithasbeennoted.Acompletediscussion oftheindividual ezamination areacoveragewiQbeprovidedinthefinalreportoftheezaminations asrequiredbyRegulatory Guide1.150Rev.l.MechUTexaminations willbeperformed onthereactorvesselweldsandselectedreactorcoolantpipingweldsfromtheinsidesurfaceutilizing thePaRISI-2DeviceandSwHIFastPaRequipment.
Ezamination areasincludevesselcircumferential, nozzle-to-shell, andnozzlepipingwelds.TheMechUTezaminations oftheRPVwillbeperformed inaccordance withtherequirements ofthe74/S75SectionXIandReydatory Guide1.150,Rev.1.Na)"RPVShellandHeadAVelds1)0-degreelongitudinal wave(UTOL)examinations willbeperformed fordetection oflaminarreQectors whichmightaffectinterpretation ofangle-beam results.2)0-degreelongitudinal wave(UTOKV)ezaminations willalsobeperformed fordetection ofreflectors intheweldandbasematerial.
3)45-degree and60-de~eeshearwave(UT45andUT60)ezaminations willbeperformed fordetection ofreflectors intheweldandbasematerialorientedparalleltotheweld.4)45-degree and60-degree transverse shearwave(UT45TandUT60T)ezaminations willbeperformed fordetection ofreflectors intheweldandbasematerialorientedtransverse totheweld.5)InthecaseoftheRPVwelds,SwRI50/70tandemsearchunitsv%beusedtoezaminetoadepthofapproximately 2.25inchesfordetection ofreQectors intheclad-to-base metalinterface areaandalsointhevolumebetweentheexamination surfaceandthedepthofthefirstCodecalibration reQector.
Thesedual-element tandemsearchunitsdevelopaninteractive beamwithlongitudinal
'wavepropagation andproduceanezamination withsignificantly improvedsignal-to-noise ratiooverconventional near-surface techniques.
CIt,rF~
CIt,rF~
b)RPVNozzleAreasTheinlet,outlet,andsafetyinjectionnozzle-to-vesselweldswillbeexaminedfromtheboreutilizing15-degree(forinletnozzles),10degree(foroutletnozzles)10-degree(forsafetyinjectionnozzle)and45-degreebeamsfordetectionofreQectorsintheweldandbasematerial.Inaddition,UT45TandUT60TezaminationswillbeperformedfromtheshellinsidesurfacefordetectionofreQectorsorientedtransversetotheweldandbasematerial.ThesetransverseexaminationsvrillutilizeacomputertocontroltheX-Y-ZmovementsofthePaR.devicetoassureaccuratepositioningaroundthenozzleduringezaminations.50/70tandemsearchunitswiHbeutilizedfromtheboreandshellinsidesurfacesfordetectionofreflectorslocatedintheclad-to-basemetalinterfaceregionandalsothevolumebetweentheexaminationsurfaceendtheQrstCodecalibrationreQectorforthepurposeofsatisfyingtherequirementsinSectionXI.c)PipingWeldsNozzlePiinWeldsFortheinletsafeend-to-nozzlewelds,aUTOLscanwillbeusedfordetectionofreQectorswhichmightaffectinterpretationoftheangle-beamresults.UT45andUT60scanswillbeusedfordetectionofreQectorsparalleltotheweldfrombothsidesoftheweld.AUT45Tscanwillbeusedfordetectionofreflectorsorientedtransversetotheweld.Theacousticpropertiesoftheinletelbowsprecludeezaminationfromtheelbowside;therefore,aUTOWscanwillbeperformedinadditiontothescansidentifledabove.Limitationsareexpectedaroundthevesselsupportlugs,safetyinjectionandinletnozzlesduetotheproximityofthesecomponents.Otherlimitationsarelisted.I.CircumferentialweldsEstimatedtime-(2.5shifts)Ringfory'ng-to-lowerheadweld(RPV-E)Ezaminationarea0-3600-360Angle0,45,60,50/700,45T,60T,50/70TBeamComponentup/dnmv/cdLowersheD-to-ringforgingweld(RPV-D)Ezaminationarea0-3600-360Angle0,45,60,50/700,45T,60T,50/70TBeamComponentup/dncw/ccwLimitationsduetoprozimityofcoresupportlugs@0from(344.20-15.90)CG-190from(74.20-105.80)CG-2180from(164.20-195.80)CG-3270from(255.25-284.75)CGAIntermediatesheD-to-lowershellweld(RPV-C)Ezaminationarea0-3600-360Angle0,45,60,50/700,45T,60T,50/70TBeamComponentup/dnmv/cd 1~h~t  
b)RPVNozzleAreasTheinlet,outlet,andsafetyinjection nozzle-to-vessel weldswillbeexaminedfromtheboreutilizing 15-degree (forinletnozzles),
~~D.UppersheH-to-intermediateshellweld(RPV-B)Examinationarea0-3600-360Angle0,45,60,50/700,45T,60T,50/70TBeamComponentup/dncw/ccwII.Uppershellregionarea(A)A.Flange-to-uppershellweld(RPV-A)fromshellEstimatedtime-(3.0Shifts)Examinationarea0-3600-360Angle0,45,60,50/700,45T,60T,50/70TBeamComponentupcw/cdB.Outletnozzle-to-shellwelds(N1A),(NlB)fromshellExaminationareanozzle(0-360)Angle0,45T,GOT,50/70TBeamComponentnv/cdC.Inletnozzle-to-shellwelds(N2A),(N2H)fromshellExaminationareanozzle(0-360)Angle0,45T,GOT,50/70TBeamComponentcw/cdD.Safetyinjectionnozzle-to-shellweld(AC-1002),(AC-1003)fromshellExaminationareanozzle(0-360)Angle0,45T,60T,50/70TBeamComponentav/cdIII.Uppershellrey'onarea(B)A.Flange-to-uppershellweld(RPV-A)fromsealsurfaceEstimatedTime-(1.5shifts)Examinationarea0-360B.Vesselsupportlugs'mminationareaVesselsupport(RPV-VSL-1)Vesselsupport(RPV-VSL-1)Vesselsupport(RPV-VSL-2)Vesselsupport(RPV-VSL-2)Angle18,11,4Angle0,45,60,50/700,45T,60T,50/70T0,45,60,50/700,45T,60T,50/70TBeamComponentdnBeamComponentup/dnnv/cdup/dncw/ca,vA1-3 I~wJ'I~~
10degree(foroutletnozzles)10-degree (forsafetyinjection nozzle)and45-degree beamsfordetection ofreQectors intheweldandbasematerial.
IV.Nozzleinnerradius,integralmentionandnozzleboreEstimatedtime-(3.5shifts)~7~~rA.Outletnozzleinnerradiussectionintegralextensionregionandnozzlebore.B.ExaminationareaOutletA(N1A-IRS)OutletB(NlB-IRS)OutletA(N1A-IE)OutletB(N1B-IE)InletnozzleinsideradiusregionExaminationareaInletA(N2A-IRS)InletB(N2B-IRS)Angle10,45,50/7010,45,50/7050/7050/70Angle50/70-50/70BeamComponentToVesselC/Lcw/ccwToVesselC/Lcw/cmvToVesselC/LToVesselC/LBeamComponentcw/cmvcw/cdC.Nozzle-to-sheDweldsfromnozzleboreExaminationareaInletA(N2A)InletB(N2B)Angle15,45,50/7015,45,50/70BeamComponentToVesselC/Lnv/cdToVesselC/Lzv/ccwD.SafetyinjectioninsideradiusregionandnozzleboreEmminationareaSafetyinjectionA(ACr1003-IRS)SafetyinjectionB(AC-1002-IRS)Angle0,100,10BeamComponentToVesselC/LToVesselC/LSafetyinjectionnozzleintegralnxensionEzaminationareaAngleSafetyinjectionA{AC-1003-IE)70SafetyinjectionB{AC-1002-IE)70BeamComponentAvWvV.Nozzle-to-pipingweldsElbow-toinletnozzleweldsEstimatedTime-(3.5Shifts)EzaminationareaInletA(PL-FW-V)InletB(PL-PV-VII)InletA(PL-FKV-V)InletB(PL-FW-VII)InletA(PL-FW-V)InletB(PL-FW-VII)Angle0,45,600,45,6045RLT45RLT45RL45RLBeamComponentAwayfromVesselC/LAwayfromVesselC/Lnv/cdcw/cnvToVesselC/LToVesselC/L 4~I~t B.Nozzle-topipingweldsExaminationareaOutletA(PIPW-II)OutletA(PL-FW-Il)OutletB(PL-FiV-IV)OutletB(PIFW-IV)C.Safeend-to-nozzleweldsExaminationareaSafetyinjectionA(AC-1003-1)SafetyinjectionA(AC-1003-1)SafetyinjectionB(AC-1002-1)SafetyinjectionB(AC-1002-1)D.Piping-to-safeendweldsExaminationareaSafetyinjection'A(AC-1003-2)SafetyinjectionA(AC-1003-2)SafetyinjectionB(AC-1002-2)SafetyinjectionB(AC-1002-2)Angle0,45,60,45T,600,45,60,45T,600,45,60,45T,600,45>60,45T,60Angle0,45,45T,600,45,45T,600,45,45T,600,45,45T,60Angle0,45,45T,600745,45T,600,45,45T,600,45,45T,60BeamComponentAwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/LBeamComponentAwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/LBeamComponentAwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/L  
Inaddition, UT45TandUT60Tezaminations willbeperformed fromtheshellinsidesurfacefordetection ofreQectors orientedtransverse totheweldandbasematerial.
Thesetransverse examinations vrillutilizeacomputertocontroltheX-Y-Zmovements ofthePaR.devicetoassureaccuratepositioning aroundthenozzleduringezaminations.
50/70tandemsearchunitswiHbeutilizedfromtheboreandshellinsidesurfacesfordetection ofreflectors locatedintheclad-to-base metalinterface regionandalsothevolumebetweentheexamination surfaceendtheQrstCodecalibration reQectorforthepurposeofsatisfying therequirements inSectionXI.c)PipingWeldsNozzlePiinWeldsFortheinletsafeend-to-nozzle welds,aUTOLscanwillbeusedfordetection ofreQectors whichmightaffectinterpretation oftheangle-beam results.UT45andUT60scanswillbeusedfordetection ofreQectors paralleltotheweldfrombothsidesoftheweld.AUT45Tscanwillbeusedfordetection ofreflectors orientedtransverse totheweld.Theacousticproperties oftheinletelbowsprecludeezamination fromtheelbowside;therefore, aUTOWscanwillbeperformed inadditiontothescansidentifled above.Limitations areexpectedaroundthevesselsupportlugs,safetyinjection andinletnozzlesduetotheproximity ofthesecomponents.
Otherlimitations arelisted.I.Circumferential weldsEstimated time-(2.5shifts)Ringfory'ng-to-lower headweld(RPV-E)Ezamination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dnmv/cdLowersheD-to-ring forgingweld(RPV-D)Ezamination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dncw/ccwLimitations duetoprozimity ofcoresupportlugs@0from(344.20-15.90)CG-190from(74.20-105.80)CG-2180from(164.20-195.80)CG-3270from(255.25-284.75)CGAIntermediate sheD-to-lower shellweld(RPV-C)Ezamination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dnmv/cd 1~h~t  
~~D.UppersheH-to-intermediate shellweld(RPV-B)Examination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dncw/ccwII.Uppershellregionarea(A)A.Flange-to-upper shellweld(RPV-A)fromshellEstimated time-(3.0Shifts)Examination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent upcw/cdB.Outletnozzle-to-shell welds(N1A),(NlB)fromshellExamination areanozzle(0-360)Angle0,45T,GOT,50/70T BeamComponent nv/cdC.Inletnozzle-to-shell welds(N2A),(N2H)fromshellExamination areanozzle(0-360)Angle0,45T,GOT,50/70T BeamComponent cw/cdD.Safetyinjection nozzle-to-shell weld(AC-1002),
(AC-1003) fromshellExamination areanozzle(0-360)Angle0,45T,60T,50/70T BeamComponent av/cdIII.Uppershellrey'onarea(B)A.Flange-to-upper shellweld(RPV-A)fromsealsurfaceEstimated Time-(1.5shifts)Examination area0-360B.Vesselsupportlugs'mmination areaVesselsupport(RPV-VSL-1)
Vesselsupport(RPV-VSL-1)
Vesselsupport(RPV-VSL-2)
Vesselsupport(RPV-VSL-2)
Angle18,11,4Angle0,45,60,50/70 0,45T,60T,50/70T 0,45,60,50/70 0,45T,60T,50/70T BeamComponent dnBeamComponent up/dnnv/cdup/dncw/ca,vA1-3 I~wJ'I~~
IV.Nozzleinnerradius,integralmentionandnozzleboreEstimated time-(3.5shifts)~7~~rA.Outletnozzleinnerradiussectionintegralextension regionandnozzlebore.B.Examination areaOutletA(N1A-IRS)
OutletB(NlB-IRS)
OutletA(N1A-IE)OutletB(N1B-IE)InletnozzleinsideradiusregionExamination areaInletA(N2A-IRS)
InletB(N2B-IRS)
Angle10,45,50/70 10,45,50/70 50/7050/70Angle50/70-50/70BeamComponent ToVesselC/Lcw/ccwToVesselC/Lcw/cmvToVesselC/LToVesselC/LBeamComponent cw/cmvcw/cdC.Nozzle-to-sheD weldsfromnozzleboreExamination areaInletA(N2A)InletB(N2B)Angle15,45,50/70 15,45,50/70 BeamComponent ToVesselC/Lnv/cdToVesselC/Lzv/ccwD.Safetyinjection insideradiusregionandnozzleboreEmmination areaSafetyinjection A(ACr1003-IRS)
Safetyinjection B(AC-1002-IRS)
Angle0,100,10BeamComponent ToVesselC/LToVesselC/LSafetyinjection nozzleintegralnxensionEzamination areaAngleSafetyinjection A{AC-1003-IE) 70Safetyinjection B{AC-1002-IE) 70BeamComponent AvWvV.Nozzle-to-piping weldsElbow-toinletnozzleweldsEstimated Time-(3.5Shifts)Ezamination areaInletA(PL-FW-V)
InletB(PL-PV-VII)
InletA(PL-FKV-V)
InletB(PL-FW-VII)
InletA(PL-FW-V)
InletB(PL-FW-VII)
Angle0,45,600,45,6045RLT45RLT45RL45RLBeamComponent AwayfromVesselC/LAwayfromVesselC/Lnv/cdcw/cnvToVesselC/LToVesselC/L 4~I~t B.Nozzle-to pipingweldsExamination areaOutletA(PIPW-II)OutletA(PL-FW-Il)
OutletB(PL-FiV-IV)
OutletB(PIFW-IV)C.Safeend-to-nozzle weldsExamination areaSafetyinjection A(AC-1003-1)
Safetyinjection A(AC-1003-1)
Safetyinjection B(AC-1002-1)
Safetyinjection B(AC-1002-1)
D.Piping-to-safe endweldsExamination areaSafetyinjection'A(AC-1003-2)
Safetyinjection A(AC-1003-2)
Safetyinjection B(AC-1002-2)
Safetyinjection B(AC-1002-2)
Angle0,45,60,45T,60 0,45,60,45T,60 0,45,60,45T,60 0,45>60,45T,60 Angle0,45,45T,60 0,45,45T,60 0,45,45T,60 0,45,45T,60 Angle0,45,45T,60 0745,45T,60 0,45,45T,60 0,45,45T,60 BeamComponent AwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/LBeamComponent AwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/LBeamComponent AwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/L  


SCHEDULEOFMECHANIZEDEXAMINATIONSFORR.E.GIHHARPVaninationAreasCircunferential'LleldsRPV-E,D,C,-BDay1Day22[12Day3Day412I--I-Day5Day6Day7I12I--I-DaysOn~==Vessel(c="-CrewShiftUpperShellRegionAreaMelds(A)RPV-A,H1A,N18,H2A,HZB,AC-1002,&AC.1003UpperShellRegionAreaWelds(8)RPV-VSL1)RPV-VSL2(&RPV-AAC1002PipingMeldsElbowcoInletNozzleAPL-FM.V8PLFM;VIIOutletNozzletoPipeAPL-FN-II8PL-FM-IVSISafeEndtoNozzleAAC-1003-18AC-10021SIPipetoSafeEndAAC.1003.28AC-1002.2NozzleInsideRadiusSectionsandIntegralExtensionOutletA(H1A-IRS,-IE)Outlet8(N18-IRS,-IE)InletA(H2A-IRS)Inlet8(H28-IRS)SafetyinjectionAC.1003.IRS,-IEIRS,-IE----X  
SCHEDULEOFMECHANIZED EXAMINATIONS FORR.E.GIHHARPVanination AreasCircunferential
'LleldsRPV-E,D,C,-BDay1Day22[12Day3Day412I--I-Day5Day6Day7I12I--I-DaysOn~==Vessel (c="-Crew ShiftUpperShellRegionAreaMelds(A)RPV-A,H1A,N18,H2A,HZB,AC-1002,&AC.1003UpperShellRegionAreaWelds(8)RPV-VSL1)
RPV-VSL2(
&RPV-AAC1002PipingMeldsElbowcoInletNozzleAPL-FM.V8PLFM;VIIOutletNozzletoPipeAPL-FN-II8PL-FM-IVSISafeEndtoNozzleAAC-1003-1 8AC-10021SIPipetoSafeEndAAC.1003.2 8AC-1002.2 NozzleInsideRadiusSectionsandIntegralExtension OutletA(H1A-IRS,-
IE)Outlet8(N18-IRS,-IE)
InletA(H2A-IRS)
Inlet8(H28-IRS)
Safetyinjection AC.1003.IRS,-IE IRS,-IE----X  
$~'1  
$~'1  
'~~~tIII1~'~~I~t~'tII  
'~~~tIII1~'~~I~t~'tII  


~005~8S~I>I~~IQ')I0P 7%~i NlAOUTi~iNOZZi~A2830'OZZLETO~SELWELD(mICAL)VESSELSUPPORTVSL-1eBB-30'0II2~e.iINJECTIONNOc~'=AC-'I00310830'OOPAN29,Wl::NOZZ'"S14830'2AINI:-iNOZZ'A32830'UPPOrciPAD-/~/I//-/)2/0AC-IGD2ACiGG22880'OOPBVSi-2~2"830'80IIIIIIIIIIIaaa.lWCZ.'IDC'1~~II'OSHO.REACTORPRESSUREYc=SELGDfFAROC..~~~~~~C--R05i~cNB<TURK fT1 ATTACHMENT4NOZZLEFLAWSIZXNGPROGRAM(FOCUSEDTRANSDUCERDEVELOPMENT) 4}}
~005~8S~I>I~~IQ')I0P 7%~i NlAOUTi~iNOZZi~A2830'OZZLETO~SELWELD(mICAL)VESSELSUPPORTVSL-1eBB-30'0 II2~e.iINJECTION NOc~'=AC-'I00310830'OOPAN29,Wl::NOZZ'"S14830'2AINI:-iNOZZ'A32830'UPPOrc iPAD-/~/I//-/)2/0AC-IGD2ACiGG22880'OOPBVSi-2~2"830'80IIIIIIIIIIIaaa.lWCZ.'IDC'1~~II'OSHO.REACTORPRESSUREYc=SELGDfFAROC..~~~~~~C--R05i~cNB<
TURK fT1 ATTACHMENT 4NOZZLEFLAWSIZXNGPROGRAM(FOCUSEDTRANSDUCER DEVELOPMENT) 4}}

Revision as of 11:10, 29 June 2018

ASME Section Xi Fracture Mechanics Evaluation of Inlet Nozzle Inservice Insp Indication.
ML17309A416
Person / Time
Site: Ginna Constellation icon.png
Issue date: 03/15/1979
From:
TELEDYNE ENGINEERING SERVICES
To:
Shared Package
ML17261A806 List:
References
TR-3454-1, NUDOCS 8901100417
Download: ML17309A416 (108)


Text

ATELEDYNEENGINE="RING SFRVICFS7mCi-j>j)C~A~

RE~OP7TR-3454-1 ASMESECT)ONX)FRACTUREhlECHANlCSEVALUAT)ON OFlNLETNOZZ~MINSERV)CP.

NSPEC~.)ON.INDICAT)QNR.E.GINNAUNITNO.1REACTORVESSELMARCH151979

't ROCHESTER GASll(ELECTRICCORPORATIOi'l 89EASTAVENUEROCHESTER, NY14649R.E.GIf'lilAUNITNO.1REACTORVESSELTECHNICAL REPORTTR-3454-1 ASHESECTIOf'l XIFRACTUREHECHANICS EVALUATION OFINLETNOZZLEINSERVICE

.Ii'lSPECTIOi'l IffDICATIOff i~1ARCH1",1979)iiTELEDYNEENGli4E=~lNG SERViCES303BEARHILLROAD'P/ALTHAiYi, MASSACHUSETTS 02154

TABLEOFCONTENTSABSTRACT

1.0INTRODUCTION

2.0CONCLUSION

3.0 DESCRIPTION

OFVESSELANDREPORTEDFLAW4.0COMPARISON OFGINNA-1REPORTEDFLAWWITHPREYIOUSLY EVALUATED FLAWS5.0MATERIALPROPERTIES 6.07.08.0PRESSURE-TEMPERATURE LIMITSSTRESSANALYSiSFATIGUECRACKGROWTH9.0FRACTUREMECHANICS ANALYSISANDCRITERIA10.0ELASTIC-PLASTi'CANALYSISAPPENDICES A.STRESSANALYSISB.EF"=CTOFFLAWSiZEANDTOUGHNESS VARIATiONS C.E"FFECTOFAPPLIEDSTRESSVARIATiONS D.ELASTiC-PLASTICEVALUATION A4-3

ENG',NEWlRG SERVICESABSTRACTITheInservice Inspection indication ofanearmid-wallflawinthereactorpressurevesselinletnozzleN2hasbeenevaluated inaccordance withtherequirements ofSectionXIoftheASHEBoilerandPressureVesselCode.Thereportedflawsatisfies theCodecriteriaforacceptance byeval-uation.Therefore, atleastwithrespecttothisindication, thevessel.isacceptable forserviceasiswithoutremovalorrepairoftheindication.

\1.0INTRODUCTIOH R.E.G>nnaUnitHo.1isaWestinghouse PWRwhichwentintocommercial serviceinJune,1970.Thereactorpressurevessel,constructed bytheBabcock6Wilcox.Companywas.subjected toanInservice Inspection inaccordance withTechnical Specification andSectionXIoftheASHEBoilerandPressureVesselCoderequirements.

Whencertainalleviating factorsarenotconsidered, anultrasonic indication inexcessofthesizepermitted foracceptance byexamination wasidentified intheweldwhichattachedaninletnozzletothevessel.Insupportofotherapproaches beingfollowedbyRochester GasandElectricpersonnel,.

TeledyneEngineering Services(TES)wasrequested to,eval-uatethereportedindication inaccordance withtheSectionXIrequirements foracceptance byevaluation.

Thisreportcontainstheresultsofthatin-.vestigations~

A4-5

Z.OCONCLUSIONS 2.1Thereportedflawsatisfies theCodecriteriaforacceptance byevaluation, soisacceptable forserviceasiswithoutremoval~~orrepairoftheindication.

2.2Forthereportedflaw,ofdimensions:

Through-wall depth=2a=0.93inchesLenth=I=5.3inchesEccentricity

=e=1.0inches,thecalculated stressintensity factoris9.2ksi~in.TheCodeacceptable valueis63.2ksi/in.Therefore, thetotalfactorofi21.7ascornaredtothecoderequiredfactorofsafetyof~10:3.16.2.3Theeffectofvariations inflawsizeortoughness ofthematerialcanbedetermined romFigure1.Basedupontheresultsplotte'hereon,aflawofthrough-wall dimension 2a=4.0inches,wouldsatisyCodeacceptance requirements evenifthetoughness we.oreducedzo67ksivin.Theef-"ofvariant.onsinapp1iedstressacrossthe7(awcan"edet.mined=romFigure2.Basedupontheresultsplot-.edtherein,tnerepor-dflaw,Za=0.93inches,wouldsatisfyCodeacceptance require:-;.-=.

tseveni=theappliedstressacrosstheflawwereequa;totheyieldstrengthofthematerial, or51<si,whichever islower.Statddifferently, thecalculatdpressuresLressactiingacrosstheflawcouldbeincreased byafactorinexcessof6wi-;nouiviolation oftheCodecriteria.

2.5Anelastic-plastic fracturemechanics

analysis, following themethodsappliedbyDr.P.C.Parisasaconsultant toNRCtoasimilarinvestigation indicated that:a.Thefactorofsafetyagainstplasticinstability failureisinexcessof3foraflawthrough-wall dimension inexcessof2a=4inches.b.Foraflawthrough-wall dimension inexcessof2a=4inches,yieldingcanoccurandresidualstresses, suchasthosewhichresultfromweldin,'nddiscontinuity
stresses, suchaqthosewhichresultfromterneraturedifferentials orfrompipereactionstresses, wouldbeeliminated fromconsideration.

Althoughthisevaluation resultsintheconclusion thatsuchstressesmaybeignored,suchstresseswereconsidered intheevaluations whichleadtothepreviously listedconclusions.

2.6ThepreviousMCAP-8503 ASHEIII,AppendixGanalysiswasreviewedtodetermine ifthepressureofthereportedflawrequiresare-e!aluat:on oftheAppendixGrequirements.

Itisaconclusion ofthisreviewthattheMestingnouse evaluation ofapostulated flawinthevicinityofanoutletnozzlerepresents amucnmoresigni-f;:cantsituation thandoesthereportedflaw.Tnerefore, accepz-abiiitofthepostulated outletnozzleflawlsfu1tnerconfirmac'.on

,oftheacceptability ofthereportedflaw.A4-7 II>>"

3.0 DESCRIPTION

OFVESSELANDREPORTEDFLAWTheGinnaUnit1ReactorPressureYesse1(RPV)wasfabricated bytheBabcock5WilcoxCompany(85W)totherequirements ofSectionIIIoftheASt<EBoilerandPressureVesselCodeinaccordance withWestinghouse ElectricCompany(W)Equip-mentSpecification Ho.676206Revision0withAddendum676554,Revision0.TheRPVStressReorts'reB8W1966,ReportsNumbers.1through12.rTheinsidediameter, totheinnersurfaceofthecladding, is132inches.Theminimumcladthickness is5/32inches.Thewallthickness is61/2inchesatthebeltlineand9inchesatthenozzlecourse.Thenozzlecoursecontainstwo521/2inchoutsidediameterinletnozzles,two49inchdiameteroutletnoz-'lesandtwonominal4inchdiametersafetyinjection nozzles.Theinletandoutletnozzlesareata-commonel'evation.

AsketchoftheinletnozzleisshowninFigure3,withthedimensions oftheweldpreparation ontheODofthenozzlesketchesabove.Thisconfigure-ion ismportantbecauseitlocatesthereportedflaw.Figure4showstheinne.por-tionofthisweldprepa.ationwiththereportedflawlyingalongthelineAC.Thereweldprparationdimensions aredefinedonaradialplanethroughthevesselcen-erline

(==0'360').Sincetheweldoreparation ismachinedcylindrcallywiththenozzlecenterline, theradialdis-ancebe-'.veen theinsideofthe.esse.and-heweldpreparation landvarieswithradialposition~.Theflawisloca-;edbe-ween305'9<316.5",approximately the10:30o'lockpositionwnenlook':ngalongthenozzlecenterline fromoutsideofthevessel.Figure4indicates

~eradialdistancefromtheRPVIDtoPointDasvaryingbetween4.2and..1inches.Thereportedflaw"through-wall"dimension measuredalongtheweldprepa.ation is0.93inches.Forpurposesofanalysis, SectionXIpermitsthisflawtobre-olvedintoa"throuah-wall" dimension measuredperpendicular tothevess'elsur-facewhichwoulddecreasethe2adimension, Becauseofthecomplexgeometry, advantage isnottakenofthisfactor.Theflawlength,measuredaroundthecir-cumVerence oftheweldpreparation asthedistancebetween305'nd316.5's5.27 ENG)NEER)NG SERVtCESinches.SectionXIdefinestheflaweccentricity asthedistancebetween.theflawcenterandthevesselmidplane.

ThedistancefromthevesselIDtotheflawcentervariesbetweenapproximately 3.55and4.47inches.Conservatively neglecting theincreased thickness resulting fromtheouternozzlecornerradius,therefore takingthetotalthickness as9inches;theeccentrici tyvariesbetweenapproximately 0and1".8asedupontheabovediscussion, andnotingthatanincreaseineccentricity increases thecalculated stressintensity factor,theflawisdefinedforpur-posesofanalysisbythedimensions:

pa=0.93inches1=5.3inchese=1.0inch Ilay AENGINEERING SERVICES4.0COMPARISON OFGINNA-1REPORTEDFLAWWITHPREVIOUSLY EVALUATED FLAWSForpurposesofexamining pressure-temperature limitations, WCAP-8503*

considered theeffectsofaflawadjacenttotheoutletnozzle.Althoughthere~$Naredifferences ingeometrybetweentheinletandoutletnozzles,thestressesareverysimilar.Thisevaluation considered asurfaceflawinaplanepassingthroughtheRPVcenterline ofdepthequalto1.8inches{a/t=0.20)andsurfacelengthof1,8inches{aspectratioof1:6).Sinceasurfaceflawof'givenlengthanddepthresultsinapproximately thesamestressintensity factorasdoesasubsurface.

flawofthesamelengthandtwicethethrough-wall dimension, theWCAP-8503 evaluation isequivalent tothaiwhichwouldbeobtainedforamid-wallflawof2a=3.6and1=10.8inthesameorientation...In fact,theWCAPevalu-'Iationwouldbeveryconservative becausethesurfaceissubject,todiscontinuity stresseswhichhavebutlittleeffectnearmidplane.

Ofevenmoreimportance, however,isthediffe.enceinorientation betweenthetwoflaws.Theindicated Ginnaflawiscircumferential tothenozzleandtheWCAPflawisradialtothenozzle;therefore, thepressurestressnormaltotheWCAPflawisaboutthretimesaslargeast.atnormaltotheGinnaindication.

The.efore,theindic'tdGinnaflawisofconsiderable lesssignificance thanthenozzleflawusedfortheAppendixGevaluation ofiheGinnavesselThemid-wall, nozzleattachment weldflawmostsimilartothatindicesdinGinna-1whichhasbeensubjected toextensveinvestigation byTESandbythe*HRCistheindication inthePilgrim-1 recirculation inletnozzleNZBwhichwasfirstdetec.edin1974andwnichwasreevaluated in1976bybothTESandHRC.Thesignificant parameters maybecomparedasfollows,usingthePilgrimvaluesevaluated byTES:ttWCAP-8'03, "ASMEIII,AppendixGAnalysisofRochester GashElectricCorporation R.E.GinnaUnitHo.1ReactorVessel,July1975.

AFEi~jNEER)NG SERVICESPlant:Depth,2a,in.Length,1,in.Eccentricity, e,in..Hoopstressinvessel,ksi(atoperating pressure)

Yessejthickness 6irma-I0.935.31.016.59.05.2~PI'Irim-11,55.20.5516.27.010.7TheNRCevaluation assumedsomewhatmoreconservative parameters.

SoththeTESandHRCevajuations concluded thawthePilgrim-1 RPYwassatisfactory iorcontinued service.Tnecalculated stressntensiy=actorsforGInna-1woutdbeexpectedtobemuchsmallerthanthosecomputed=orPilgrim-l.

Sasedupontheseiwocomparisons withpreviously evaluated flaws,onewouidjudgethaitheGinna-1vesselwouldeasilysatisfytheSectionXlcriria=oracceptance byevaluation.

A4-11 t'jIt,KIr

5.0 HATERIALPROPERTIES

4~~BaseduponthevaluespublishedinWCAP-8421*,

-theunirradiatedmateria1properties ofthenozzle,usingoutletnozzledata,andoftheweld,usingbeltlinewelddata,areasfollows:LocationRTNDTCyShelf,ft-1bNozzleWeld0.090.236001258018Thecomputedend-of-life fluenceatthenozzleelevation is1.08(IO)atone-quarter thickness.

UsingRegulatory Guide'l.99,Revision1,theend-of-lifeproperties arecomputedas:LocationNDT',fShelf,ft-lbNozzleWeld607011262!I,inWCAP-8503 hasusedanuppershelfKl=200ksi~n.IRTheSect-ionXItoughness versustemoerature curvesareplottedinFigure=foranend-of-life RTi'=70F.sUl"'iCAP-8421, AnalysisofCapsuleRFromtheRochester GasandlectricCorporation R.:.GinnaUnitNo.1ReactorilesselRadiation Surveillance Program,November, 1974.

I 6.0PRESSURE-TEMPERATURE LIMITSTheupperlimitoftheTechnical Specification heatupand.cooldowncurvesarealsoplottedonFigure5.Becausetheselimitsarecontrolled bythe.higherfluencebeltlineregion,full'operating

pressure, ZZSOpsig,isnotpermitted below315F.Thistemperature isonthetoughness uppershelfbyamargininexcessof100F.,

)>TELEDYNEENGINEERING SERVICES7.0STRESSANALYSISThesignificant stressesactingacrosstheflawindication arethoseduetovesselpressureandduetoweldingresidualstresses.

Atthenearmid-walllocation, thermalstressesandstressesresulting frompipereactioneffectsarenegligible.

Thepressurestressesofinterestarethoseactinginaradialdirectionwithrespecttothenozzle.Inthemainshellcourseawayfromthenozzle,theoperating pressureof2250psigcausesahoopstressequalto16.5ksiandanaxialstressequalto8.3ksi.Thepresenceofthenozzlereducestheradialstress,sineataradiusequaltothenozzleboreradiusthestressesmustbeequalto-2,3ksi,Iwhere'the negativesignindicates compression.

Inthecourseofevaluating similarflawsinothervessels,averysimplestresscalculation technique wasfoundtogiveexcellent answersforthepressurmemoranestressacrosstheflaw.Specifically, thevaluesobtainedwiththsim-oleapproximation maybecomparedtoothersolutions asfollows:!!ethodSimp1eapproximat-:.on30finiteelement08C8.710.3membraneinnersurfacemid-walloutersurface20axisymmetric model,doubled7.7innerwall10.0mid-wailThi5slmpleapproximat ionisusedinthisevaluation.inordertoobtainthepressurestressactingnormaltotheF')aw,ascontained inAooendix.A.

><TELEDYNEEiNGIREERNG SERVICESTheresidualstressesusedinthisevaluation areaconservative approximation tothosemeasuredinaheavyweldmentafterpost-weld heattreatment*.

Thesedataindicatethattheresidualstrsssesvarythroughthethickness withacosinerelationship from8.0ksitensileonthesurfacesto8.0ksicompression atmid-wall.Despiteconiirmation ofthepresenceofcompressive residualstressesatmidwallbyremovalofasimilarflawtotheoneunderconsideration inaRP'J.Hocreditistakenforthesecompressive stressesinthisanalysis.

Instead,theresidualstressesareconsidered tovaryasacosinefunctionthroughthethickness with8.0ksitensileonthesurfacesto0ksiatthecenter.Previousevaluation ofarecirculation inletnozzleinaBtlR,whichissub-jectedtolargertemperature changesthanisthesubjectPHRinletnozzle,indi-catesthatthermalstressesarenotsignificant aslongastheflawdoesnotapproachwithinabout11/2"fromtheinnersurface,Thisistrueduringnormalandabnormaloperations becausetheinletnozzleandtheadjacentvesselaresuojected tothesametemperature transient andaresimilarinthickness.

Tnere-fore,thermalstresseffectsarenotconsidered tobeofimportance intherangeoiilawsizesconsidered, 2a<4inches.Pipereactionstressesiniheweldregionareprimarily bendingstressesvaryingiromtensileaionesurfacetocompressive attheother.Sincethere-sortedilawoiinte.estisnearmid-wall, pipereactionstressesacrossthetaware'.'nsignificant.

Asaresultoithisdiscussion, theonlystressesusedinthefracturemechanics analysisofAopendix8arethosewhichresultfrominternalpressureandtheweldr'esidual stresses.

Sincetheresulting stressintensity factorisverylow,aquestionoftenarisesastotheconsequences ofanerrorinthecal-culatedstress.Forthisreason,anadditional evaluation, AppendixC,ismadefortheindicated flawdimensions givingthestressintensity factorwhichwouldbe'computod forarbitrary valuesoimembranestressactingacrosstheflaw.D..'.Ferr'.'(1 P."".~uhlandD.R.l1iller,".'4easurement o7Residua1Stressesina"e'6e'lT.qsr';te'd.,'na

~pumaIResea,cnUDDlemenr.,

tlovemoer i"coA4-15

)<TELEDYNEZG;XEERIXG SERVICESWithrespecttoFaultedConditions, theinletnozzleprovidesthepathforinjection flowforabout40minutesfollowing aLOCA.Forthefirst20secondstheflowisfromthesafetyinjection accumulators atatemperature of90'F.Atthattimethesafetyinjection pumpsarestartedanddeliver155Ffluidfromtheboricacidtanks.At140secondsfollowing LOCAinitiation theflowtrans-ferstotherefueling waterstoragetankandthewatertemperature dropsto'60F.Attheendof40minutesflowswitchestothecontainment dumpandflowisataminimumof140F,Thereactorpressuredropstonearzeroimmediately following aLOCA.TheotherFaultedCondition ofconcernisaLargeSteamline BreakAccidenl(LSBA).Following aLSBAthereactorcoolanttemperature endpressurerapidlydecreases.

Whenthepressuredescreases below1450psig,flowfromtheboricacidstoragetanksentersthevesselat155F.Safetyinjection terminates tenminutesaftertheLSBA.Flowduringtheseeventsisthroughtheinletnozzleanddownthevessel.Becausethenozzleandvesselareofaboutthesamethickness, butsmallthe.maldiscontinuity stressesresult.Analysisofsimilartransient inothernozzlesindicates thermalstressesacrosstheweldoflessthan5ksi.Sincethepressurenasdecreased, thetotalstressintensity factor,fortheFaultedCondition is,smallerthanthatcalculated duringnormaloperation.

Therefore, postulatee sur-facflawsinthevesselbeltlineregionaremorelimitingthanisthereportednozzleweldflaw.A4-16 Cll~J' Ei~tNEERIRG SERY}CES8.0FATIGUECRACKGROWTHBecauseoftheoperating characteristics ofaPWR,theinletnozzletemperature variations withinthepowerrangearenegligible.

Evenwhencoolanttemperature

'changesdooccur,thenozzleandvesselrespondsimilarly inthatthermaldiscontinuity stressesarenegligibl'e inthevicinityofthereportedflaw.Skin-type thermalstressesmaybesignificant atandneartheinnersurfaces, butnotinthevicinityofthereportedflaw.Therefore theonlycycleofimportance togrowthofthereportedflawispressurization anddepressurization.

ForthereportedFlaw,theaKforpres-.surization to2500'psig,thedesignpressure, isonly8.7ksi.An.Forasubsurface flaw,FigureA-4300-1predictsafatiguecrackgrowthrateof8(10)in/cycleforpressurization to2500psig.Therefore nofatiguecrackgrowthispredicted.

l EiMNEERjl4GSERVCES9.0FRACTUREMECHANICS ANALYSISANDCRITERIAThelinearelasticfracturemechanics methodsofAppendixA,SectionXIoftheASMECodeareused.Thesemethodsareconservative, butarenotoverlyconservative intheabsenceofsteepstressgradients asisthecaseinthissolution.

Theacceptance criteriausedarethosebasedonappliedstressintensity factorascontained intheSummer1978AddendatoSectionXIoftheASMECode,IWB-3612.

Thesecriteriaareidentical tothoseusedinthePilgrim-1 evalu-ation,althoughatthattimethecriteriawerereferenced toaJunell,1974letterfromASMEtoBostonEdison.

10.0ELASTIC-PLASTICA!HALYSIS Attachment 4tothe!'(RCStaffEvaluation ofthe1976Pilgrim-1 ISIresults,datedApril21,1976,summarizes anelastic-plastic FractureMechanics Analysisperformed byOr.P.C.Parisasaconsultant toNRC.AppendixOtothisreportcontainsanelastic-plastic analysisapplicable totheGinna-1situation whichfollowsParis'lternative secondary stresscomputation method.Alsoconsidered isthemaximumilawsizewhichwouldresultinretention ofafactorofsafetyofburstofatleast,three.Thisanalysisi.ndicates thataflawthrough-wall (2a)dimension inexcssof4inchesisrequiredto'reducethefactorofsafetybelow3.0,usingananalysiswhichassumesaverylongflaw.Inaddition,thisanalysisshowsthatanyresidualorsecondary stresseswnicharepresentinthestructure willbeeliminated byyieldingaslongastheflawdepth(2a),islessthananu;.-be.inexcessof4".Thatis,weldresidualstresses, thermalstressesandpipereactionstressesneednotbeconside.edinevaluating thevesse!saic-yif2a<4inches.

41 Ie[1

I=Jqo~EZ79~svG~oatm-'HKD.ETDATE~ITr~FI--"ct'l=

Wre<iegTfcc3gAJIATIoNS SHETHO.OFFEOAEO.-'4<~70~~I~~~:.I..:IIII~r~I~~It~'r'I...L......~rI/+orox~\0~~~~I~rI304Jr~<<~~~~~204JfDt~~r~~~rI~tt~).BIO~~I4oME/v)ggAggSTRK55I...G.p~,-K's1r 1

t/6A~3.,i,.dr.is<a.->-i.(~.&(wJg(rtI7'i'g/0F~QZzS2.7qlc>3Z1ItMtM27.7eqGV3'JcPi)4l-.NP,ntylI~~Xg'.)

goz.alega~c-QP/g/6gcQfro~.pa)>g/gQo'csscIZP(~~c../cot)~~ai~vcrJwvgLccIvg8lc,I4J<c't.9io

<N.F35770"~,/%7g,(fa4.3/(~'~~~~~0~Q*~~~.,O.P~(0,.(l,>el)f0nb)Jl*Ip~/~c./5'-.9g.',

/gIID(st',4.o[2Ci'C&$,2C.s/8lS)Ic~c.~~Ie~y+jgggfvgdf<lcc~fcv~Ecld~ick;pO09s0(.:f~J>go~~3]LAL/<f7t/3.5XO.999 II

(~P~~~PN~l4 Cl Technical Report'TR-3454-1 FAG'NEE~)NG SERVICESAPPENDIXA

/71lMChD/sTANcFJA'HG5O4iYo~0tO I

0~li~p4rrPk~pJ~~

iav4Moira~Z-~~.sv~aim>>>>~SHEETNa.OFwm.xo.~~<>~~~l~~4THE'ESUL.75 ARE:.COA'SERiA 7/VEJ3ECAUS'E'HZRESTRAMieGEF'FEC75...Ok"WPE'",hlo2PiG',

RE)WFOacE-~~/V)6'iV7HAYE82ZHNE,6LEdPRESSdRE'N

.TAG...A'd'.2+4':'s&

'AS.HAsTHE'.:M"D~D.OD/ER.6'V29HoLE/HArw'~pR-'=-AT'PP<)C,~BLEE4LJA7.row'.I/7HZR/'R57dFEPH,(.42.joF'h'EdR/

OI='IZLWS7/.C/7Va..Vm'~~...6.7/'/aRA~/ALS7R'ES5ARDiXJV'O'...

SSICHArL,A7E'SL!ZJE.C 7EDl=dD~.AI.AXIAL I=NSldh/.;8<F~i-,/On)T~e'EPulcc.)~A..

FORPRaaL,e~/S:~~~IG~=28Vv'4F/v'Cc=

G~(i'C.c5~~~I~~~I~

1 CHKD.BY'ATE

'aCl2OPRES~URF+RCSIOCJAL 57AF'55JSoatrlhlIglAIi)l.V>/hrrI1IW(Io0r>)uuvv~u.DtSrwdcEtNC825JB]axoo4)O

Technical ReportTR-3454-1 EMNEERING SERVICESAPPEHOIX8A4-31 k

lM~4aaAPPGHoIX8CBKD.BYDATc~'37ou6HNz5$

jr',zA7lungSMKETNO.OF/8PRO4.NO..S'7ZHSS..AA/rr(LYS JDHx'R/ass/aA'~~~c+ZC7"/dAl

.X/~.A"ZQgg.JFCPOr)PE+

eHA77"k'a~4~*):.~c;gAi.$7-RE'sS..S'/$7Rrddrroh'.

zezcsS7a=-,v-a/c<+=zj

.'.9ZLlh'Zgg/RZD..../&

..A.'Vc=RYSPZC((=/CrrtdrtrlVCg, A&3..gg=..N=mZPAPEIr(~:Ar~'aT'ue.BENa(NCrP>-cannP~e<~/TS Z=-/'~e)';r;-r~a

..rW/SA//ZrVerS.D/V=-S7m~wx/se-s/~;~~~o~g,~xua5+.///7.=-~re5/='44,Q(=~C'7RESS~Gs~..pA/&,7r",~S7.ZW~~S) i977+E.P/r7KZJL~S)ZDc5~y.~'S'r~5'5>>,-;rf(

MaArr',4GqIC,G~tIgIII.'II'.'l(aIr~Icfur..CSpr4(r~~.~oQs,2ASLIMA'/f4P

'IO%-4CpPl5r4(+/4-444'4A4-32

Dy4r3r3DAvm~~-/2-7 CHKD.SYDATI~~/3)1D3ezDTNo.~o3E3wee.xo........Pw&AVi&c

.;..',.:".....'

Cg=.$4MFACE:$7)2~SS~rG.=s7-W~ssXr'~e<"w~~DwMLAMJsrzessw7-ospreyFLrvV~~0EED,oR3~I~~~aur~,RjVP~S>~Or~O.Z.~JA//VZAPADS 7ES6B'.~=)rrZ.QA.VE,~7rP~55+~A'//'lGS7PWS5a=,+Ag<DIAM=7:-7d;...Q~8'gDDED...

F43&V'z8'cKA'H8".rrI~~~~~~~~~~I~r~~II~I~~~~<>IE~~~<<~>>~I~~~~~~~~<<~~~~I~E~I~~<<~~~~~~~I~~~~~~<<~I~~zc=-rr-.,rcr-/<r=zrn8E'DDED r=~Avr'/57AA'=<C3r-r-C8A'C;7f-.i<re'c~F.rv0E1<.-Woa(~/-~-~)Ki,"..=r'z.(E'OFo)s(o:.'-G)EA4-33 S

l~IIgyMOAIO~n.7CHKD.8YDATE~I'~~~SHEETNO.OF83PRC4I.NO.+D,e'i(s)7'.V..:.,

'~.,G~=Gs-,Gq*~~..;.'P~=N.-Z~-Z.~GW-za.-z.aIrIIZ,g-2.6(j,-.:C~'"~\Cs-Ge)~o'I'Coe-xa.-ze,<oZ4-2.~trIOoIIGs)-zeg7<-28/AZOZ+PS)I/QI4'(t-.-~')=~(~-.-.t,-,'4cZG~=Go.PWo.-I..C)g=w'IPl7/o'cCgrlz7A...2x'=.-a...-..e.'......,

..~-24Gg,i-Wo'gP~Iltog~JC~s='lt-/i-~>!+~L(isWo1~

~4tS BYnwva~-/~1~oxxosPvVoATs~>~>

Asxsrrxo.~os~reoz.Xo.lwee=o2)e0Sy=+Z,OK5/Cowg.zSo-5'WZ.uZS2.4-7S,/27-Z/Z//2S7437.f~~82ZOZS~+C72,47~g.5-.c7S-/./Z5.7-"3-/.st'z.ezs-z.+7s'7Z7/.d8/2+./Cc4,207~Zg.d/.DC23/K-,/23/WO2.25+d5DIao-35 J'IlIC BY&OATB~/27OHKD.BY~LWDATE~O SHZH'O.OPPROJ.NO.C/$E'ZFORO.25',O.Z5D.55//25~0254T5.Z./ZZ.0'7.9SZ,+g7ZS75.Z.C2584-75g~Z..32K-./ZKI/g-IDZ5-/.47E.943'c//72-o.7Dg78d.5/3d.Z07l3/Gs((G,)G~/~IC(C~+Oj/)OY//i4c3/~270J/.ZZC.7D,z7C//C3'4.z87.35277/a~//"330~47o8/<~28B/z.7S.Z~Z~7P7dg903.30+A4-36 4

~~~~rrfp 4t Technical ReportTR-3454-1 I~~<iceENGINEERING SERVlCESAPPfHOIXC

~I

~'~ICNlm.BY~EATE~Er+

Fg//+c7-or=Ap/or/E'D87RESSYwararvontEf~'M9tea~g~n~~~~~APPEHD/gSHEETHO,PROP.NO.IOF~~~CASE'-l:.:.'..Z K~'~'2.cb=-0'~~g~/g~/0.3~I~4-45'0877/80.35'7ZO.....'....30I~5.~Z'.':..833/o7//.c9/.al'...'..l

..'o.Z.:.::.;,.5'.5'8

~8'87/o/0//C"-/:/p.rr-.:-:/Z~O/ZS3~I(~-"l)O,p~I~/34;...2S~I7(F~<<O)lIESy=84.s4-8/~/3S77-/O9yn/-Izs8Vg~/.ada'"I<<j/cD/3+.i/'r43ZS.'Z.'.:/-/7/Z74/oZ'...'."Z:as+,,/o3~/'oOD7+Ig~rIr/6IJI+=

Technical ReportTR-3454-1 APPcHOIX0

)i

/g~~/ePgsglfPg.cl<herr

~9fZ~~g/~C/o~~~~sm~~~/~g.'8';Zo(tn)CJPPCcPlnC'ICHOCCJCACAO+/(+~2CQc~vesJ'qre,sgv<Jze~~~~./.h..P4.~lowe'H/eZru~+/c"~C'af2'grVCkcc~c.I-4->~i@ig..M+.Crj.vJf ICi Iksmhsss4smEsss' EEs~r"IBYc~~DATE~V'5(LJ I.'CEKD.BYMMDATE~>

SHAK'O.ZDPZOLWQ.C4~//c~c(j~)><X'Mumf'4uw~/i@&QCr~irap/"9r'~jIrJiAjagre'<CO~u/Cr~YDYrli~sjdgP/<rVQJJC~'

y/Y"~~/C"~r~--G2~(/)~(~)~sugg(Z)>~C'~/eIjld<2>~oJ~ICIc.gPQJTtTsCA&Is+~4i~ccpv)(~~A4-42

,fe'YoaTE~<<~iC4KD.ET@+DATE~SSHEETHD.DS~PROJ.No,g~=O,Q3'~g(goo)7heij7VwC/cd8(0wghv)+rCJJE'geA4-43 a

ATTACHMENT 3SCOPEOFULTRASONIC EXAMINATIONS OFTHEREACTORPRESSUREVESSELWELDS r~~VI~1 Thefollowing isalistingofmechanized ultrasonic ezaminations ofthereactorpressurevesselweldsandadjacentpipingwelds.Theseexaminations willinclude1/2Tbasematerialforvesselweldsand1/4inchbasematerialforpipingwelds.Alsoshownaretheanticipated ezamination anglesandthedirection ofthebeamcomponent.

Thelowerheadisforgedandhasnomeridional weldsandtheshellcoursesareringsectionswithnolongitudinal welds.Inallcasesthegoalistoexamine100%oftheweldplus1/2Teachsideoftheweld.Examination of100%oftheweldlengthisthegoalalsoforthecircumferential vesselweldseventhough74/S75SectionXIonlyrequires5%.Interference fromothervesselcomponents maylimitthedesiredezamination coverage.

Ifthiswasthecaseinpreviousezaminations, ithasbeennoted.Acompletediscussion oftheindividual ezamination areacoveragewiQbeprovidedinthefinalreportoftheezaminations asrequiredbyRegulatory Guide1.150Rev.l.MechUTexaminations willbeperformed onthereactorvesselweldsandselectedreactorcoolantpipingweldsfromtheinsidesurfaceutilizing thePaRISI-2DeviceandSwHIFastPaRequipment.

Ezamination areasincludevesselcircumferential, nozzle-to-shell, andnozzlepipingwelds.TheMechUTezaminations oftheRPVwillbeperformed inaccordance withtherequirements ofthe74/S75SectionXIandReydatory Guide1.150,Rev.1.Na)"RPVShellandHeadAVelds1)0-degreelongitudinal wave(UTOL)examinations willbeperformed fordetection oflaminarreQectors whichmightaffectinterpretation ofangle-beam results.2)0-degreelongitudinal wave(UTOKV)ezaminations willalsobeperformed fordetection ofreflectors intheweldandbasematerial.

3)45-degree and60-de~eeshearwave(UT45andUT60)ezaminations willbeperformed fordetection ofreflectors intheweldandbasematerialorientedparalleltotheweld.4)45-degree and60-degree transverse shearwave(UT45TandUT60T)ezaminations willbeperformed fordetection ofreflectors intheweldandbasematerialorientedtransverse totheweld.5)InthecaseoftheRPVwelds,SwRI50/70tandemsearchunitsv%beusedtoezaminetoadepthofapproximately 2.25inchesfordetection ofreQectors intheclad-to-base metalinterface areaandalsointhevolumebetweentheexamination surfaceandthedepthofthefirstCodecalibration reQector.

Thesedual-element tandemsearchunitsdevelopaninteractive beamwithlongitudinal

'wavepropagation andproduceanezamination withsignificantly improvedsignal-to-noise ratiooverconventional near-surface techniques.

CIt,rF~

b)RPVNozzleAreasTheinlet,outlet,andsafetyinjection nozzle-to-vessel weldswillbeexaminedfromtheboreutilizing 15-degree (forinletnozzles),

10degree(foroutletnozzles)10-degree (forsafetyinjection nozzle)and45-degree beamsfordetection ofreQectors intheweldandbasematerial.

Inaddition, UT45TandUT60Tezaminations willbeperformed fromtheshellinsidesurfacefordetection ofreQectors orientedtransverse totheweldandbasematerial.

Thesetransverse examinations vrillutilizeacomputertocontroltheX-Y-Zmovements ofthePaR.devicetoassureaccuratepositioning aroundthenozzleduringezaminations.

50/70tandemsearchunitswiHbeutilizedfromtheboreandshellinsidesurfacesfordetection ofreflectors locatedintheclad-to-base metalinterface regionandalsothevolumebetweentheexamination surfaceendtheQrstCodecalibration reQectorforthepurposeofsatisfying therequirements inSectionXI.c)PipingWeldsNozzlePiinWeldsFortheinletsafeend-to-nozzle welds,aUTOLscanwillbeusedfordetection ofreQectors whichmightaffectinterpretation oftheangle-beam results.UT45andUT60scanswillbeusedfordetection ofreQectors paralleltotheweldfrombothsidesoftheweld.AUT45Tscanwillbeusedfordetection ofreflectors orientedtransverse totheweld.Theacousticproperties oftheinletelbowsprecludeezamination fromtheelbowside;therefore, aUTOWscanwillbeperformed inadditiontothescansidentifled above.Limitations areexpectedaroundthevesselsupportlugs,safetyinjection andinletnozzlesduetotheproximity ofthesecomponents.

Otherlimitations arelisted.I.Circumferential weldsEstimated time-(2.5shifts)Ringfory'ng-to-lower headweld(RPV-E)Ezamination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dnmv/cdLowersheD-to-ring forgingweld(RPV-D)Ezamination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dncw/ccwLimitations duetoprozimity ofcoresupportlugs@0from(344.20-15.90)CG-190from(74.20-105.80)CG-2180from(164.20-195.80)CG-3270from(255.25-284.75)CGAIntermediate sheD-to-lower shellweld(RPV-C)Ezamination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dnmv/cd 1~h~t

~~D.UppersheH-to-intermediate shellweld(RPV-B)Examination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent up/dncw/ccwII.Uppershellregionarea(A)A.Flange-to-upper shellweld(RPV-A)fromshellEstimated time-(3.0Shifts)Examination area0-3600-360Angle0,45,60,50/70 0,45T,60T,50/70T BeamComponent upcw/cdB.Outletnozzle-to-shell welds(N1A),(NlB)fromshellExamination areanozzle(0-360)Angle0,45T,GOT,50/70T BeamComponent nv/cdC.Inletnozzle-to-shell welds(N2A),(N2H)fromshellExamination areanozzle(0-360)Angle0,45T,GOT,50/70T BeamComponent cw/cdD.Safetyinjection nozzle-to-shell weld(AC-1002),

(AC-1003) fromshellExamination areanozzle(0-360)Angle0,45T,60T,50/70T BeamComponent av/cdIII.Uppershellrey'onarea(B)A.Flange-to-upper shellweld(RPV-A)fromsealsurfaceEstimated Time-(1.5shifts)Examination area0-360B.Vesselsupportlugs'mmination areaVesselsupport(RPV-VSL-1)

Vesselsupport(RPV-VSL-1)

Vesselsupport(RPV-VSL-2)

Vesselsupport(RPV-VSL-2)

Angle18,11,4Angle0,45,60,50/70 0,45T,60T,50/70T 0,45,60,50/70 0,45T,60T,50/70T BeamComponent dnBeamComponent up/dnnv/cdup/dncw/ca,vA1-3 I~wJ'I~~

IV.Nozzleinnerradius,integralmentionandnozzleboreEstimated time-(3.5shifts)~7~~rA.Outletnozzleinnerradiussectionintegralextension regionandnozzlebore.B.Examination areaOutletA(N1A-IRS)

OutletB(NlB-IRS)

OutletA(N1A-IE)OutletB(N1B-IE)InletnozzleinsideradiusregionExamination areaInletA(N2A-IRS)

InletB(N2B-IRS)

Angle10,45,50/70 10,45,50/70 50/7050/70Angle50/70-50/70BeamComponent ToVesselC/Lcw/ccwToVesselC/Lcw/cmvToVesselC/LToVesselC/LBeamComponent cw/cmvcw/cdC.Nozzle-to-sheD weldsfromnozzleboreExamination areaInletA(N2A)InletB(N2B)Angle15,45,50/70 15,45,50/70 BeamComponent ToVesselC/Lnv/cdToVesselC/Lzv/ccwD.Safetyinjection insideradiusregionandnozzleboreEmmination areaSafetyinjection A(ACr1003-IRS)

Safetyinjection B(AC-1002-IRS)

Angle0,100,10BeamComponent ToVesselC/LToVesselC/LSafetyinjection nozzleintegralnxensionEzamination areaAngleSafetyinjection A{AC-1003-IE) 70Safetyinjection B{AC-1002-IE) 70BeamComponent AvWvV.Nozzle-to-piping weldsElbow-toinletnozzleweldsEstimated Time-(3.5Shifts)Ezamination areaInletA(PL-FW-V)

InletB(PL-PV-VII)

InletA(PL-FKV-V)

InletB(PL-FW-VII)

InletA(PL-FW-V)

InletB(PL-FW-VII)

Angle0,45,600,45,6045RLT45RLT45RL45RLBeamComponent AwayfromVesselC/LAwayfromVesselC/Lnv/cdcw/cnvToVesselC/LToVesselC/L 4~I~t B.Nozzle-to pipingweldsExamination areaOutletA(PIPW-II)OutletA(PL-FW-Il)

OutletB(PL-FiV-IV)

OutletB(PIFW-IV)C.Safeend-to-nozzle weldsExamination areaSafetyinjection A(AC-1003-1)

Safetyinjection A(AC-1003-1)

Safetyinjection B(AC-1002-1)

Safetyinjection B(AC-1002-1)

D.Piping-to-safe endweldsExamination areaSafetyinjection'A(AC-1003-2)

Safetyinjection A(AC-1003-2)

Safetyinjection B(AC-1002-2)

Safetyinjection B(AC-1002-2)

Angle0,45,60,45T,60 0,45,60,45T,60 0,45,60,45T,60 0,45>60,45T,60 Angle0,45,45T,60 0,45,45T,60 0,45,45T,60 0,45,45T,60 Angle0,45,45T,60 0745,45T,60 0,45,45T,60 0,45,45T,60 BeamComponent AwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/LBeamComponent AwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/LBeamComponent AwayfromVesselC/LToVesselC/LAwayfromVesselC/LToVesselC/L

SCHEDULEOFMECHANIZED EXAMINATIONS FORR.E.GIHHARPVanination AreasCircunferential

'LleldsRPV-E,D,C,-BDay1Day22[12Day3Day412I--I-Day5Day6Day7I12I--I-DaysOn~==Vessel (c="-Crew ShiftUpperShellRegionAreaMelds(A)RPV-A,H1A,N18,H2A,HZB,AC-1002,&AC.1003UpperShellRegionAreaWelds(8)RPV-VSL1)

RPV-VSL2(

&RPV-AAC1002PipingMeldsElbowcoInletNozzleAPL-FM.V8PLFM;VIIOutletNozzletoPipeAPL-FN-II8PL-FM-IVSISafeEndtoNozzleAAC-1003-1 8AC-10021SIPipetoSafeEndAAC.1003.2 8AC-1002.2 NozzleInsideRadiusSectionsandIntegralExtension OutletA(H1A-IRS,-

IE)Outlet8(N18-IRS,-IE)

InletA(H2A-IRS)

Inlet8(H28-IRS)

Safetyinjection AC.1003.IRS,-IE IRS,-IE----X

$~'1

'~~~tIII1~'~~I~t~'tII

~005~8S~I>I~~IQ')I0P 7%~i NlAOUTi~iNOZZi~A2830'OZZLETO~SELWELD(mICAL)VESSELSUPPORTVSL-1eBB-30'0 II2~e.iINJECTION NOc~'=AC-'I00310830'OOPAN29,Wl::NOZZ'"S14830'2AINI:-iNOZZ'A32830'UPPOrc iPAD-/~/I//-/)2/0AC-IGD2ACiGG22880'OOPBVSi-2~2"830'80IIIIIIIIIIIaaa.lWCZ.'IDC'1~~II'OSHO.REACTORPRESSUREYc=SELGDfFAROC..~~~~~~C--R05i~cNB<

TURK fT1 ATTACHMENT 4NOZZLEFLAWSIZXNGPROGRAM(FOCUSEDTRANSDUCER DEVELOPMENT) 4