ML18026A222: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:REGOLAT'ORYINFORMATIONDISTRIBUTIONSYSTEM(RIDS)ACCESSIONNBR:8103230429"OOC~DATE:81./03/20NOTARIZED:HOFACIL:50SusquehannaSteamElectricStation<UnitirPennsy'lva388usEruehannaSteamElectricStationiUnit2rPennsylvaAUTHOR'FFILIATIONPennsylvaniaPower8LightCo~RECIPIENTAFFILIATIONLicensingBranch1DOCKET&#xb9;0500038705000388
 
==SUBJECT:==
ForwardsrevisedpagestoFSAR~0ISTRISOTIONCOOS:ROOTSCOPIESRECEIVESILTR3,ENCLlgSIZE:I+8'~TITLE:PSAR/FSARANDTSandRelatedCorrespondenceNOTES:SendI8,E3cooiesFSAR8allamends'endI8E3copiesFSAR8allamends'500038705000388RECIPIENTIDCODE/NAMEACTION:A/DLICENSNGRUSHBROOKgtvI~INTERNAL:ACCIDEYALRR26CHKHENGBR08CORKPERFBR10K%ERGPREP22GEOSCIKNCES14HYD/GEO3R15I8,E06LICQUALBRMECHKNG8R18NRCPOR02OPLICBRPROC/TSTREV20RADASSESSRR22I&#xc3;FIL01CYNGBR25COPIESLTTR'ENCL1010111,111011223311111111111111RECIPIENTIOCODE/NAMEYOUNGBLOODEBSTARKgR~04dUXSYSSR07CONTSYS8R0'?EFFTRSYSBR12EQUIPQUALBR13PULIFACTENGBRI8CSYSBRieLICGUIDBR'LIATLKNGBR17MPAOELDPOWERSYSBR1?QABR21REACSYSBR23SITANALBR2aSYSINTERACBRCOPIESLTTRENCL1011111111331111110101111111EXTERNAL:ACRSNSIC2705161611LPDR0311TOTALNU'vIBEROFCOPIESRFQUIREO:LTTR57ENCL51 TWONORTHNINTHSTREET,ALLENTOWN,PA.18101PHONEs(215)770-5151NORMANW.CURTISVicePresirtent.Engineering8Construction-Nuclear770.5381March20,1981Mr.B.J.YoungbloodLicensingProject:Branch81DivisionofProjectManagementU.S.NuclearRegulatoryCommissionWashington,DC20555SUSQUEHANNASTEAMELECTRICSTATIONFSARCHANGESER100450FILE841-2PLA-662Enclosedplease'indforty(40)copiesofchangestotheSusquehannaSteamElectricStationFinalSafetyAnalysisReport.EffectedFSARSectionsarelistedontheattachmenttothisletter.Verytrulyyours,N.W.CurtisVicePresident-EngineeringttConstruction-NuclearTEG/mksEnclosureyooI5I/goPENNSYLVANIAPOWER8LIGHTCOMPANY8~Psgg0489 SSES-FSARTABLE3.2-1(Continued)Pae30NANoneApplicableXManufacturer'sStandards6)I-TheequipmentshallbeconstructedinaccordancewiththeseismicrequirementsfortheSafeShutdownEarthquake,asdescribedinSection3.7.NA-TheseismicrequirementsfortheSafeShutdownEarthquakearenotapplicabletotheequipmentorstructure.7)Y-Requirescompliancewiththerequirementsof10CFR50,AppendixBinaccordancewiththequalityassuranceprogramdescribedinChapter17.N-NotwithinthescopeoflOCFR50,AppendixB.8)TheclassificationofthecontrolroddrivewaterreturnlinefromthereactorvesselthroughthethirdisolationvalvewillbeGroupA.BeyondthethirdvalvewillbeGroupD,exceptasnotedinTable3.2-1.9)Thefollowingqualificationshallbemetwithrespecttothecertificationrequirements:Themanufactureroftheturbinestopvalves,turbinecontrolvalves,turbinebypassvalves,andmainsteamleadsfromturbinecontrolvalvetoturbinecastingshallusequalitycontrolproceduresequivalenttothosedefinedinGeneralElectricPublicationGEZ-4982A,"GeneralElectricLargeSteamTurbine-GeneratorequalityControlProgram".2.Acertificationshallbeobtainedfromthemanufacturerofthesevalvesandsteamleadsthatthequalitycontrolprogramsodefinedhasbeenaccomplished.10)1.Instrumentandsamplingpipingfromthepointwheretheyconnecttotheprocessboundaryandthroughtheprocessshutoff(root)valve(s),isolationvalve(s),andexcessflowcheckvalve,whenprovided,willbeofthesameclassificationasthesystemtowhichtheyconnect.2.AllinstrumentlineswhichareconnectedtothereactorcoolantpressureboundaryandareutilizedtoactuatesafetysystemsshallbeGroupBfromtheprocessshutoff(root)valve(s),isolationvalve(s),orexcessflowcheckvalve,whenprovided,tothesensinginstrumentation.3.AllinstrumentlineswhichareconnectedtothereactorcoolantpressureboundaryandarenotutilizedtoactuatesafetysystemsshallbeequalityGroupCfromthe8103230429 SSES-FSARTABLE3.2-1(Continued)Pae31processshutoff(root)valve(s),isolationvalve(s),excessflowcheckvalves,whenprovided,tothesensinginstrumentation.4.Otherinstrumentlines:.a)ThoseconnectedtospecialequipmentorGroupDsystempressureboundariesandutilizedtoactuatesafetysystemswillbeGroupCfromthesystempressureboundarythroughtheprocessshutoffvalve(s)tothesensinginstrumentation.b)ThoseconnectedtoGroupBandGroupCsystemsandutilizedtoactuatesafetysystemsshallbeofthesameclassificationastheprocesssystemtothesensinginstrumentation.c)ThoseconnectedtoGroupBandGroupCsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassificationexceptforthoseGroupCsystemsbyGEutilizingcapillary(filledandsealed)instrumentlines.d)ThoseconnectedtoGroupDsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification.5.ForGroupA,B,andCsystems,thesamplelinebeyondtheprocessshutoff(root)valve(s)orisolationvalve(s)willbeGroupBthroughthepenetrationandGroupDfromtheisolationvalvetotheshutoffvalveoutsideofthesamplestation.ll)TheHPCIandRCICturbinesdonotfallwithintheapplicabledesigncodes.Toensurethattheturbineisfabricatedtothestandardscommensuratewiththeirsafetyandperformancerequirements,GeneralElectrichasestablishedspecificdesignrequirementsforthiscomponent.12)Thehydrauliccontrolunit(HCU)isaGeneralElectricfactoryassembled,engineeredmoduleofvalves,tubing,piping,andstoredwaterwhichcontrolsasinglecontrolroddrivebytheapplicationofpreciselytimedsequencesofpressuresandflowstoaccomplishslowinsertionorwithdrawalofthecontrolrodsforpowercontrol,whileprovidingrapidinsertionforreactorscram.Althoughthehydrauliccontrolunitisfieldinstalledandconnectedtoprocesspiping,manyofitsinternalpartsdiffermaikedlyfromprocesspipingcomponentsbecauseofthemorecomplexfunctionstheymustprovide.Thus,althoughthe THISFIGUREHASBEENINTENTIONALLYLEFTBLANKREV.22,4/81SUSQUEHANNASTEAINELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTTHISFIGUREHASBEENINTENTIONALLYLEFTBLANKFIGURE3.6-9 SSES-FSARTABLE39-2INDEXLOADINGCOMBINATIONS~STRESSLIMITSAiNDALLO@ABLESTRESSESaReactorVesselPressureandShroudSupportAssemblyb.ReactorVesselInternalsandAssociatedEquipmentc.ReactorRaterCleanupHeatExchangersdClass1MainSteamPipinge.Class1RecirculationLoopPipingf.Thisitemintentionallyleftblankq.Safety/ReliefValves(MainSteam)h.MainSteamIsolationValvei.RecirulationPumpReactorRecirculationSystemGateValves(Suction/Discharge)k.Thisitemintentionallyleftblank1.StandbyLiquidControlPumpm.StandbyLiquidControlTankn.ECCSPumpo.RHRHeatExchangerpR'ACUPumpq.RCICTurbineSeRCICPumpNewFuelStorageRackst.HighPressureCoolantInjectionPumpuThisitemintentionallyleftblankv.ControlRodDriveHousingJetPumpsaa.ControlRodGuideTubeabIncoreHousingacReactorVesselSupportEquipmentCRDHousingSupportRev.22,4/81 SSES-FSABTABLE39-2ZNDEX-Continuedad.Thisitemintentionallyleftblankae.HPCZTurbine.DesignCalculationsaf.HighDensitySpentFuelStorageRacksRev.22,4/81 TABLE3.9-2(s)-(page1of2)NEWFUELSTORAGERACKSCRITERIA1.NEWFUELSTORAGERACKSLOADINGFAULTEDCONDITION"A"LOCATIONALLOWABLESTRESS(.7ULT)CALCULATEDSTRESSStressduetonormalupsetoremergencyloadingshallnotcauseafailuresoastoresultinacriticalarray.l.2.3.4.DeadLoadsFullFuelLoadinrackS.S.E.Thermal(notappli-cable)1.Beam(Axial)l.26,0008/in222.Beam(Trans.)'2.'6,000/I/in>3.Combined=3.26,0008/in1.18,9058/ig22.7,005///in2.25,9108/in2.SOURCEOFALLOWABLESTRESS(.7ULT)a~b.C~d.e.ASTMB308Alloy6061-T6ASMECode-BoilersandPressureVessels,Sect.III,NAProductSafetyStandardsforBt& MarkIII,Sect.VI,A.(3)ASME-PressureVesselsandPiping:DesignandAnalysis,VolumeOne,Page69.ASTHcodeforBoilersandPressureVesselswasselectedonthepremisethatdatausedfromthissourcewouldnecessarilybeontheconvervativesideasappliedtothefuelstoragerackcalculations.Rev.22,4/81 TABLE3.9-2(se2of2)S-S.S.E.loadsderivedbydynamicanalysis.=Totalstressreferstocombinedearthquakeandthermalloadathighestexpectedpooltemperature.Earthquakestressesobtainedbysquarerootofthesumof-thesquaresmethodforaresponseduetotri-axialexcitation.Stressgivenisthehighestinthetotalstructuralarray.4.NEWFUELSTORAGERACKSFAULTEDCONDITION"B"Stressesduetonormalupset(SeeBelow,Par.~)oremergencyloadingshallnotcauseafailuresoastoresultinacriticalarray.(Location-SeePar.6,Below)NotApplicableNotApplicableFAULTEDCONDITION"B":Condition"B"isanemergencyconditioninwhichthestresslimitisequaltotheyieldstrengthat0.2%offset.Theracksweretestedtodeterminetheircapabilitytosafelywithstandtheaccidental,uncontrolled,dropofafu'elbundlefromitsfullyretractedpositionintotheweakestportionoftherack.6.METHODOFTESTING:Four(4)rackcastingsweresubjectedtoimpactloadsrangingfrom1908ft.lbs.to4070ft.lbs.whichweregeneratedbydroppingsimulatedfuelbundlesweigh-ing660lbs.fromheightsvaryingfrom3.0'nd6.17'.Rackswerealignedinpairsandsimulatedbundlesweredroppedonbothracksattheflangearea.Both.centerimpactandendimpacttestswereconducted.(Two(2)oftherackswereX-Rayexaminedpriortotesting.Straingagesweremountedonrackstoascer-tainmax.strainandaccelerometersweremountedonbundlestodetermine"G"loads.)7.TESTRESULTS:Atotalofnineteen(19)testswereperformedwithdropheightincreasedateachtest.FirstfailureoccurredduetoacentralimpactonrackNo.3fromamax.heightof6.17',(Test813).Racks81andi02bothfailedfromacenterimpactcausedbyaloaddroppedfromaheightof5.33',(Testf/19).Accelerometerreadingsarenotavailableduetotheinabilitytoadequatelyaffixtheaccel-erometertothesimulatedfuelbundle.Rev.22,4/81 SSES-FSARTABLE3.9-2(af)e1of2HIGHDENSITYSPENTFUELRACKSTYPESOFANALYSISPERB3MEDDYNAMICANALYSIS:Adynamicmodalanalysisusingtheseismic,SRV,andDX'Aresponsespectrawasperformedonasimplifiedmodelconsistingof6racks(1quadrant).'Iheresultingloadsonthecornermodulewereextractedandamoredetailedanalysisperforned.STATICANALYSIS:Adetailedfiniteelement(1364elanents)modelofthecornermodulewasdevelopedandastaticanalysisperformedusingtheloadingresultsofthedynamicanalysis.Thesectiondescriptions,allowablestressesandstressratiosforthedetailedmodelaregivenonpage2ofthistable.FUELRA'ITLINGANALYSIS:Atimehistoryanalysiswasperformedtodeterminelocalimpactloadsduetofuelrattling.Acanparisonofthesupportloadsfromthefuelrattlinganalysiswiththoseoftheresponsespectrumanalysisshowedthatthefuelrattlingresultsarelessthanorequaltotheresponsespectrumresults.Analysisofthepoisoncanwascompletedusingthelocalimpactloads.MODELIMPACTANALYSIS:Anequivalentstaticloadwasdeterminedforthefollowingdropconditions:1)18"fueldroponcorneroftopcasting2)18"fueldroponmiddleoftopcasting3)fueldropfulllengththroughthecavityimpactingbottomcastingatthemiddle.Forthefirst2casestheequivalentstaticloadscalculatedwerecombinedwithdeadloadandappliedtothedetailedmodel.Forthe3rdcase,theultimateloadofthebundleshearingoutofthefuelseatwasdeterminedandcombinedwithdeadload.Thiscombinedloadwasthenappliedtothedetailednadel.Rev.22,4/81 SSES-FSARTABIE3.9-2(af),page2of2HIGHDENSITYSPENTFUELRACKSUMMARYOFRESUL'LSFORTHEDETAIIZDMODELELEMENTSNORMALAUlMABLESTRESSESNORMALOPERATINGCONDITIONDESIGNACCIDENTANDEKTREMEENVIRONMENTALCONDITIONSSECT.NO.SECTIONDESCRIPTIONFaFbyFbxfafbfbxFbxSTRESSRATIO(1)fbxFbyMAXSTRESSRATIO(l)4BottomGridInnerSect.8550BottcmGridOuterSectionNearLeg96501TopGridOuterSection99412TopGridInnerSection94203BottomGridOuterSect.88301576015760.0261576015760.0571576012120.0621576012120.0051576012120.047.009.055.248.831.249.747.78.813.93.108.42.013.85.269.57.018.040.062.005.047.006.715.74.039.766.85.248.108.42.831.013.85.249.269.57BottomGridInnerSectionNearLeg95301576012120.046.508.248.80.046.508.248.807BottomGridFoot8BottanGridFoot91/2"Plate107/8"Plate(1)StressRatio10250110203320173701576012120.1321418014180.161Fv=1390F=10970abvfbxFa+%'FbxxRev.22,4/81(2)PlateStressRatio=f>fx+.001.13.003.1699(2)92(2).160.1950.003.160.006.2076(2).92(2)NOZEAllowablestressesarefactoredupperTable9.1-7aoftheSSES-FSAR.
SSES-FSAH4.4.6INSTHH:.5ENTATI0NREQ0IHEiJENTSThereactorvesselinstrumentationmonitorsheKeyreac.orvesseloperatinqparametersduringplannedoperations.Thi-ensuressuffi"ientcontroloftheparamete=s.ThefollowinqreactorvesselsensorsarediscussedinSubsection7.7.1.l.(1)ReactorVesselTemperatu"e(2)ReactorVessel~r,'aterLevel(3)ReactorVesselCoolantFlowHatesandDifferen=ialPressures(4)ReactorVesselXntmalPressure(5)Neutron.'lonitoringSystem4.4.61LoosePa"tsilonitoringTheLoosePartsMonitoringSystemforSusquehannaSESisdiscussedinSubsections7.7.1.12and7.7.2.12.44.7REFERENCES4.4-1GeneralElectricThermalAnalysisBasis(GETAB):Data,Cor"elationandDesiqnApplication,GenealElectricCompany,January1977,(N"D0-10958A).4.4-2Co"FlowDisributioninaModernBoilingMaterReactora-MeasuredinlJonticello,Auqus"1976,(NFDO-10722A).4.4-3H.C.NartinelliandD.F..Nelson,"PredictionofPressureDropsDuinqForcedConvectionBoilinqof:Hater,"ASHZTrans.,70,pp695-702,1948.44-4C.J.Baroczy,"ASystematicCorrelationforTwo-PhasePressureDrop,"HeatTran"ferConference(LosAngeles),AECLE,PreprintNo.37,1966.44-5Jens,R.H.,andLottes,P.A,AnalysisofHeatTransfer,Burnout,PressureDrop,andDensityDataforHighPressuredater,USAECReport-4627,1972.4.4-6Neal,LG.,andRivi,S.il.,"TheStabilityofBoiling-cfaterReactorsandLoops,"Nuc1earScienceandEngineerinq,30p.25,1967.Rev.22,4/814.4-27 1.6TOTALCORESTABILITY1.41,0ULTIMATEPERFORMANCELIMITOIL00.80.6NATURALCIRCULATION105'%ODLINE0.40200204080120PERCENTPOWERSUSQUEHANNASTEAMfLECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCOREREACTXVITYSTABILXTYFIGURE44 SSES-TSAR.separatedhousing,givesaforceofapproximately35,000lb.Thisforceismultiplidbyafa"torof3forimpact,conservativelyassumingthatthehousingtravelsthroughal-in.gapbeforeitconta"tsthesupports.Thetotalforce(105,0001b)isthentreatedasastaticloadindesign.AllCRDhousingsupportsubassembliesarefabricatedofcommonlyavailablestructuralsteel,exceptforthediscsprings,whichareSchnorr,TypeBS-125-71-8.6.2~EvaluationsoftheCRDSThissubjectiscoveredundernuclearsafetyandoperationalanalysis(NSOA)inAppendix15A,Subsection15A.6.5.3.4.6.2.3Safety-Evaluat.iou-Safetyevaluationofteecontrolrods,CRDS,andcontrolroddrivehousingsupports.isdescribedbelow..Purtherdescriptionof"ontrolrodsiscontainedinSection4.2.4.6.2.3.1-ControlRods4.62..3;1.1HaterialsAdequacy-Thro~uhoutDesignlifetimeTheadequacyofthematerialsthroughoutthedesignlifewasevaluatedinthemechanicaldesignofthe"ontrolrods.Theprimarymaterials,84"powderand304austeniticstainlesssteel,havebeenfoundsuitableinmeetingthedemandsoftheBQRenvironment.,Rev.22,4/8146-20 SSES-FSARthatareautomaticallyactuatedcanalsobemaauallyactuatedfromthemaincontrolroom.Asinglefailureiaanyelectricalsystemisanalyzedregardlessofwhetherthelossofasafetyfunctioniscausedbyeithercomponentfailingtoperformarequisitemechanicalmotion,orcomponentperforminganunnecessarymechanicalmotion.6.2.4.4TestsandInsectionsThecontainmentisolationsystemispreoperationallytestedinaccordancewiththerequirementsofChapter14.Thecontainmentisolationsystemisscheduledtoundergoperiodictestingduringreactoroperation.Thefunctionalcapabilitiesofpoweroperatedisolationvalvesaretestedremotemanuallyfromthecontrolroom.Byobservingpositionindicatorsandchangesintheaffectedsystemoperation,theclosingabilityofaparticularisolatioavalveisdemonstrated.Adiscussionoftestingandiaspection,includingleaktightnesstesting,pertainingtoisolationvalvesisprovidedinSubsection6.2.6andiaChapter16.Table6.2-12listsallisolationvalves.Instrumentswillbeperiodicallytestedandinspected.Testand/orcalibrationpointswillbesuppliedwitheachinstrument.Excessflowcheckvalves(EFCV)shallbeperiodicallytestedbyopeningatestdrainvalvedownstreamoftheEFCVandverifyingproperoperation.WiththeexceptionoftheCRDinsertandwithdrawallines,thepenetrationslistedinTable6.2-12areTypeCtested.ThetestmethodsandacceptancecriteriaarelistedinSubsections6.2.6and3.9.6.2.6.2.5COMBUSTIBLEGASCONTROLINCONTAINMENTThecombustiblegascontrolsystemisprovided,inaccordancewiththerequirementsofGeneralDesignCriterion41ofAppendixAto10CFR50,tocontroltheconcentrationofhydrogenwithiathecontainmentfollowingaloss-of-coolantaccident(IOCA).Rev.22,4/816.2-4S SSES-ESARTABLE6.2-22LEAKAGERATETESTLISTPenetrationDescriptionInboardIsolationBarrierTypeBarrierDescription/TestValveNo.Notes*OutboardIsolationBarrierBarrierDescription/ValveNo.Notes*ExemptiontoIOCFR50AppendixJRequiredX-IX-2X-2X-2X-2X-3AX-3BEquip.accesshatchBEquip.accesshatchuithpersonnellockPersonnellockbarrelBPersonnellockinnerdoorBPersonnellockouterdoorBSparePrimaryContainmentPressureInst.(2)Double0-ringDouble0-ringInnerdoor/barrelDouble0-ringCap1>21,310Outerdoor/barrelDouble0-ring1>21,310,11X-3CX-3DX-4X-5X-6X-7ASpareSpareDry@oilheadaccessmanholeDryuellheadSpareCRDremovalhatchMainsteamACapACapDouble0-ringDouble0-ringCapDouble0-ringHV-IF022A4>5,17HV-IF028A>HV-IFOOIB,PTIN06IB,~I10514>19YesX-78X-7CX-7DHainsteamHainsteamHainsteam~CHV-IF022BCIW-IF022CCIAf-IF022D4,5,174,5,174,5,17HV-IF028B>HV-IFOOIFPT-IN061F,PT-IN051FHV-1E028C>HV-IFOOIKPT-IN061K>PT-IN051KHV-IF028D>HV-IFOOIPPT-IN061P>PT-IN05IP4>194>194,19IIYesYesX-8X-9ARev.,4/81HainsteamlinedrainFeeduaterCHV-IF016CIFOIOA17>1814>18HV-IF019HV-IF032A>IN-IF013,HV-IF042,HV-1F1041914,19 SSES-FSARTABLE6.2-22ContinuedPa8c6PenetrationDescriptionInboardIsolationBarrierTypeBarrierDescription/TestValveNo.Notes*OutboardIsolationBarrierBarrierDescription/ValveNo.Notes*Exemptionto10CFR50,AppendixJRequiredX-58AX-58BX-59hX-59BX-60AX-60AX-60AX-60BX-61AX-61AX-61AX-61BX-62AX-62BX-63AX-63BX-64AX-64BX-65AX-65BX-66AX-66BX-72AX-728Mainsteam,RWCUinst(4)AHainsteam,RWCUinst(2)hReactorlevelinstReactorlevelinst0sample0sample0sampleReactorWaterSampleDemin.WaterFlowInstrumentationAhCSY-15740BCSV-15776BCSV-15750BCIN-IF019C1-41-018hMainsteaminst(2)Mainsteaminst(2)Mainstcaminst(2)Hainsteaminst(2)Hainstcam,RWCUinst(3)Hainsteaminst(2)Prcssureinst(3)ReactorlevelinstReactorlevelinstReactorlevelinstReactorlevelinstLiquidradwasteLiquidradwaatehh.hAAhhCliV-16116hlCUV-16108A1ILRTLeakVeriiicationC1-57-1931010101018l81817>18181018101010101010101010101017,1817,18SV-15742BSV-15774BSV-15752BUV-1F0201-41-0171-57-195HV-16116A2UV-16108A210,1110,1110,1110>1111>1911>1911,1919191910~1110,1110>1110>1110,1110,1110,1110,1110,1110>1110>1111,1911,19Rev.22,4/81 SSES-FSARTABLE6.2-23IVITIALA'.EDBOUNDAHYCONDITIONSFORIVADVERTENTSPRAYACTUATIONSTIJDY-00Tz.meZerotoDrvwellVolume(&#x17d;t~)Pressure(PSIA)Temperature(F)RelativeHumidity(n)SprayRate(GPN/TRANS)Metwell23960014.81501000/023960034.8325910010700/1Volume-VaporRegion(Ft~)SuppressionPool(Ft~)Pressure(PSIATemperature(F)RelativeHumidity(K)SuppressionPoolFreeSurfaceArea(Ft~)>letwegl-to-DrvwellVacuumBreake."-NumberofValveAssembliesFlowAreaPerAssembly(Ft~)FlowCoefficientAssumedVacuumBreakerLiftingPressureRHRSystem-DrgwellSprayModeServiceMaterFlowHate(GPM)ServiceMaterTemperature(F)HeatExchangeEffectiveness14859013155014.8501005277(puid)14590013155030.28501005277of52.050.3539000320.245Rev.22,4/81 SSES-FSAR6.3.5INSTRUMENTATIONREUIREMENTSDesigndetailsincludingredundancyandlogicoftheECCSinstrumentationarediscussedinSection7.3.AllinstrumentationrequiredforautomaticandmanualinitiationoftheHPCI,CS,LPCIandADSisdiscussedinSubsection7.3.2andisdesignedtomeettherequirementsofIEEE279andotherapplicableregulatoryrequirements.TheHPCI,CS,LPCIandADScanbemanuallyinitiatedfromthecontrolroom.TheHPCI,CS,andLPCIareautomaticallyinitiatedonlowreactorwaterlevelorhighdrywellpressure.(SeeTable6.3-2forspecificinitiationlevelsforeachsystem.)TheADSisautomaticallyactuatedbysensedvariablesforreactorvessellowwaterleveland',drywellhighpressureplustheindicationthatatleastoneLPCIpumporbothCSpumpsinthesameloopareoperating.TheHPCI,CSandLPCIautomaticallyreturnfromsystemflowtestmodestotheemergencycorecoolingmodeofoperationfollowingreceiptofanautomaticinitiationsignal.TheCSandLPCIsysteminjectionintotheRPVbeginwhenreactorpressuredecreasestosystemdischargeshutoffpressure.HPCIinjectionbeginsassoonastheHPCIturbinepumpisuptospeedandtheinjectionvalveisopenedsincetheHPCIiscapableofinjectingwaterintotheRPVoverapressurerangefrom150psigto1145psig.6.3.6NPSHMARGINANDVORTEXFORMATIONAFTERAPASSIVEFAILUREINAWATERTIGHTECCSPUMPROOMNPSHcalculationsforECCSpumpshaveshownadequatemargintoassurecapabilityofproperpumpoperationafterapoolleveldropduetoaworstcasepassivefailureinanECCSwatertightpumproom.ThiscapabilitywillbeverifiedduringpreoperationaltestingassumingapassivefailureintheECCSpumproomresultinginthelowestpoollevelwithsubsequentoperationoftheECCSpumpwiththesmallestNPSHmarginaboveNPSHrequired.ECCSpumpdataispresentedinFigures6.3-75thru6.3"78.ThepoolleveldrophasbeendeterminedassumingapassivefailureinaECCSwatertightpumproomwithoperatoraction10minutesafteranalarmintheroomindicatinghighwaterlevel.ThislowestsuppressionpoolwaterlevelwillalsobeusedduringpreoperationaltestingtoverifytheabsenceofvortexformationintheflowapproachingthesuctionstrainersinthepoolduringECCSpumpoperation.Pumpperformanceandpumpnoisewillbemonitoredduringtheseteststodetermineifpumpsaresensitivetosuctionflowconditionsinthesuppressionpool.Rev.22,4/816.3-32 SSES-FSAR7.3.1.1b.8.5.3.7ActuatedDevicesRefertoSubsection9.4.8.7.3.1.1b.8.5.3.8SearationTheinstrumentation,controls,andpowersupplyoftheESSWpumphousearedivisionallyseparated.TwobaysprovidephysicalandelectricalseparationbetweenDivisionIandDivisionII.7.3.1.1b.8.5.3.9SuortinSstemsTheinstrumentationandcontrolsoftheESSWpumphouseventilationsystemarepoweredfromClass1E125Vdcand120Vacsystems.TheseelectricalsystemsarediscussedinChapter8.TheESSWpumphouseunitheaterssupporttheventilationsystemasdiscussedinSubsection9.4.8.7.3.l.lb.8.5.3.10SstemPartsNotReuiredforSafetThepartsoftheESSWpumphouseventilationsystemnotrequiredforsafetyareasfollows:a)Allelectricunitheaters,seeSubsection9.4.8b)InstrumentationformonitoringairflowfromtheESSWpumphouseventilationsystemc)Instrumentationforalarminginthemaincontrolroomofhigh-highandlow-lowtemperaturesintheESSWpumphouse7.3.1.lb.8.5.4ESFSwitchear(SWGR)RoomsCoolinSstemForthedescriptionofoperationoftheabovesystemrefertoSubsection9.4.2.2.Rev.22,4/817.3-101 SSES-FSARonegroupwillnotinterferewithproperoperationoftheredundantportionsofthesysteminSection8.1.I7.3.2a.5.4.3IEEEStandard338(1975)ThecapabilityfortestingthesuppressionpoolcoolinginstrumentationandcontrolsystemisdiscussedinSection7.3.2.6.4.1.9and7.3.2.6.3.1.10.7.3.2a.5.4.4IEEEStandard379(1972)aThesinglefailurecriterionofIEEE279(1971),paragraph4.2asfurtherdefinedinIEEE379(1972),"ApplicationoftheSingleFailureCriteriontoNuclearPowerGeneratingStationProtectionSystem,"ismetasdescribedinSection7.3.2a.5.4.1.2.7.3.2a.5.4.5IEEEStandard384(1974)IndependenceofsuppressionpoolcoolingequipmentisdemonstratedintheSectiononConformancetoIEEE279(1971)paragraph4.6andIEEE308(1974).SeeSections7.3.2a.5.3.1.6and7.3.2a.5.3.2.7.3.2a.6throuh7.3,2a.llTheseSubsectionnumberswerenotused.7.3.2a.12AdditionalDesinConsiderationsAnalses7.3'a.12.1GeneralPlantSafetAnalsisITheexaminationofthe'subjectESFsystemattheplantsafetyanalyseslevelispresentedinChapter15andAppendix15A.Rev.22,4/817.3-196 SSES-FSAR7.6.1b.1.1.8EnvironmentalConsiderationThepressuretransmitterslocatedoutsidetheprimarycontainmentaredesignedandqualifiedtowithstandallanticipatedenvironmentalconditionsinaccordancewithIEEE-323-1974andIEEE-344-1975.7.6.1b.1.2PrimaryContainmentandSuppressionPoolTemperatureMonitoringSystem7.6.1b.1.2.1SystemIdentificationTheSuppressionPoolsystemsaredesignedtomonitorthetemperatureintheprimarycontainmentandsuppressionpoolduringnormalplantoperationsandafterLOCA.7.6.1b.1.2.2SafetyEvaluationTheindicationofcontainmenttemperaturesinthecontrolroomisrequiredforpostaccidentmonitoringandissafetyrelated.Theinitiatingcontactsfortheautomaticstartofthedrywellfansarederivedfromelectronicswitchesinthetemperaturesensingloop.Thisfunctionissafetyrelated.Thesystemdesignconformstoallapplicablecriteriaforphysicalseparationanddivisionalization.RefertoSubsection7.3.l.lb.Thehardcopytimeplotofthecontainmenttemperaturesisoperatinghistoryonlyandisnotsafetyrelated.However,redundantsystemsareprovided.iOTheindicationofsuppressionpooltemperatureinthecontrolroomisrequiredtoensurethattheplantisalwaysoperatingwithinthetechnicalspecificationlimits.Manual,operatoractionisrequiredtomaintaintheplantwithinthespecifications.Suppressionpooltemperatureisalsorequiredforpostaccidentmonitoring.Bothofthesefunctionsaresafetyrelated.Thesystemdesignconformstoallapplicablecriteriaforphysicalseparationanddivisionalization.Refertosubsection7.3.1.lb.Thehardcopytimeplotofsuppressionpooltemperatureisoperatinghistoryonlyandisnotsafetyrelated.However,redundantsystemsareprovidedandaredevisionalized.TheprimaryContainmentandsuppressionchambertemperatureelementsandtemperatureindicatorswillbequalifiedtooperatefollowingaDBA.IRev.22,4/817.6-57 SSES-FSAR7.6.1b.1.2.3PowerSourcesThesafetyrelatedinstrumentationispoweredfromdivisionalizedpowersources.DivisionIClassIEbus(120Vac)powersLoopA,DivisionIIClassIEbus(120Vac)powersLoopB.FourdualelementRTDsperredundantsystemarelocatedintheprimarycontainmenttosensethetemperatureatthefollowingelevations:a)Reactorpressurevesselheadb)Upperplatformc)Lowerplatformd).Drywell(belowreactorpressurevessel).Tworedundanttemperatureelementsarelocatedinthesuppressionchamber.Theselectedlocationforthetemperaturesensorshelpstheoperatortodefinetheareaoftheheatsourcewithintheprimarycontainment.ThesignalfromtheRTDelementsareamplifiedbyelectronictemperaturetransmitterstodrivemeters,recorderchannels,andalarmswitchesinthecontrolroom.Tworedundantindicators,fortheprimarycontainmentarelocatedinthemaincontrolroom.Theinitiatingcontactsforthehighspeedstartofthedrywellcoolingfans(refertosystemdescriptioninSection9.4)andderivedfromthetworedundanttemperaturesensingelementslocatedintheserviceareaofthefans.Ifhightemperatureisdetectedtheelectronicswitcheswillinitiatethehighspeedstartofthedrywellcoolingfans.Electronicsignalconverterswithfullelectricalinput-outputisolationareplacedbetweensafetyrelatedinstrumentationandtheinputchannelstotherecorders.!TworedundantmultipointrecordersfortheprimarycontainmenttemperaturemonitoringsystemprovideapermanenthistoryofallRTDmeasurementstotheoperatorinthecontrolroom.Eachtemperaturesensingcircuitisequippedwithalarmswitchesandinitiateonecontrolroomalarmperredundantchannel.Rev.22,4/817.6-58 SSES-FSAROnetemperatureindicatorfortheprimarycontainmentislocatedontheremoteshutdownpanel.RefertoSubsection7.4.1.4forsystemdescription.InstrumentrangesaredefinedinSection7.5.7.6.lb.2.4bEquipmentDesign-Su~pressionPoolTemperatureThesuppressionpooltemperatureismonitoredbytworedundantsystems,eachofwhichperformsasdescribedbelow.EightRTD'sperredundantsystemarelocatedinthesuppressionpoolapproximatelysixinchesbelowtheminimumpoolwaterlevel.Thesesensorsarelocatedaroundthepoolinordertoprovideagoodspatialdistributionofpooltemperature.RefertoTable7.6-9fortheexactlocationofthesesensors.Thesignalsfromthesenosrsareprocessedbyanelectronicunitlocatedinthecontrolroom.ThiselectronicunitconvertstheRTDsignalsintodegreesFahrenheitandcomputestheaverageoftheeighttemperatures.IfoneoftheRTDsfails,anerroralarmisgenerated,andthefailedRTDmayberemovedfromthecalculationoftheaveragebyoperatoraction.Theaveragevalueisdisplayedbydigitalindicatorslocatedbothontheelectronicunitandonthemaincontrolboard.Akeyboardallowstheoperatortodisplayanyindividualtemperatureinput.Ahightemperaturealarmisgeneratedbycomparingtheaveragetemperaturetoseveralinternallystoredsetpoints.Thealarmconditionisdisplayedbystatuslightslocatedbothontheelectronicunitandonthemaincontrolboard.Electricallyisolatedoutputsinterfacewithanannunciatorlocatedonthemaincontrolboard.Adigitalprinterlocatedontheelectronicunitperiodicallyprintstheaveragetemperature,plustheindividualtemperatures,plusthecurrentdateandtime.Trendinginformationmayalsobeprintedattheoperator'srequest.Alarmconditionsareprintedalongwiththetemperature.Electricallyisolateddigitalandanalogsignalsareprovidedtointerfacewithotherplantinformationsystems.Theelectronicunithasaselfcheckingdiagnosticsystemthatprovidesanerroralarmifafailureisdetectedinanypartofthesystem.Inadditiontotheeighttemperaturesensorsmentionedabove,therearefouradditionalsensorsassociatedwithDivisionI.Thesesensorsarelocatedinthesuppressionpool,sixteenfeetbelowminimumwaterlevel.Theyareusedfordisplayonlyandarenotusedinthecalculationofaveragetemperatureandarenotredundant.InstrumentrangesandaccuraciesaredefinedinTable7.5-3.Rev.22,4/817.6-59 SSES-FSAR7.6.-1h-12.5--Redundancy-Redundantinstrumentationisprovidedforthecontainmentandsuppressionpooltemperaturemonitorinqsystem7~6;1b-1.2.6--SeDaration-JPhysicalandelectricalseparationisprovidedforthesafetyrelatediastrumentatioa.Nonsafetycircuitsareisolatedbyelectronicconvertersvith.fullinput-output.isolation.7,6Pb,-12~7-genatiooaZ..Consideration-ThesystemisdesignedtofunctionduringnormalplantoperationandafteraDBA.7611.-1.28--Zn~ironmental-Consideration-Alltemperatureseasingelementslocatedinsidethecontainmentaredesiqned.tooperate.inthenormaloperatingenvironment,durinqandafteraLOCA.Allelectroniceguipmentandindicatingdevicesarelocatedwithinthecontrolstructure..Expectedenvironmenta1coaditionsaredefinedinChapter3.7-,6~4k.,~1-Q--~ggesgigg.Qoo3.-Wage~Level-monitoringSystem.7.6ilb=-l3= -System-Tdentification-Theinstrumentatioaforsuppressionpoolwaterlevelmonitoringisdesiqnedtoprovideindicatioaandarecordinthecontrolroomofthesuppressionpool'leveldurinqnormalplantoperationandinaccidentconditions,includingaLOCA.,Rev.22,4/817.6-59a SSES-FSARTABLE7.6-9SuressionPoolTemeratureSensorLocationsAzimuth36030'8o100o30'02o141o30'43o179o18030'16o30'18o268o30'70o318o319030'4830'50oRadius34'-6"34I6II44'4'4I6ll34'-6"44'4'4'-6"34I6ll44'4'4I6ll34I6ll44'4'ev.22,4/81 SSES-FSARI77CONTROLSYSTEMSNOTREQUIREDFORSAFETY7.71DESCRIPTION-Thissubsectiondiscussesinstrumentationcontrolsofsystemswhosefunctionsarenotessentialforthesafetyoftheplantandpermitsanunderstandingofthewaythereactorandimportantsubsystemsarecontrolled.Thesystemsinclude:(1)Reactorvessel-instrumentationVLSSS(2)Reactormanualcontrolsystem-instrumentationandcontrols,NSSS(3)Recirculationflowcontrolsystem-instrumentationandcontrolsNSSS{0)Reactorfeedwatersystem-instrumentationandcontrolsNSSS(5)Pressureregulatorandturbine-qeneratorsystem-instumentationand.controlsnon-NSSS(6)Neutronmonitoringsystem-TIP(7)Processcomputersystem-instrumentationNSSS(8)Neutronmonitoringsystem-traversingin-coreprobeNSSS(9)Reactorwatercleanupsystem-instrumentationandcontrolsNSSS(10)Refuelinginterlockssystem(ll)NuclearPressureReliefSystem-instrumentation5controls(12)Rodblockmonitorsystem(13)Loosepartsmonitoringsystem7.7.~~.ReacgogVessel-InstrumentationthosesysteRev.22,4/817&71Figures5.1-3aand5.1-3bshowtheinstrumentnumbers,arrangementsofthesensors,andsensingequipmentusedtomonitorthereactorvesselconditions.Becausethereactorvesselsensorsusedforsafetysystems,engineeredsafeguards,andcontrolsystemsaredescribedandevaluatedinotherportionsofthisdocument,onlythesensorsthatarenotrequiredformsaredescribedinthissubsection.
SSES-FSAR7.7.1.11.1.5Testability0Therodblockmonitorchannelsaretestedandcalibratedwithproceduresgivenintheapplicableinstructionmanuals.TheRBMsarefunctionallytestedbyintroducingtestsignalsintotheRBMchannels.7.7.1.11.2EnvironmentalConsiderations(SeedescriptionforAPRM,Subsection7.6.la.5.6.2)7.7.1.11.3OperationalConsiderationsWhenincreasingpower,theset-uppermissivelampwilllightatwhichtimetheoperatormustevaluateconditionsbeforemanuallychangingtothenexthigherrodblocksetpointline.7.7.1.12LoosePartsMonitorin~SystemTheLoosePartsMonitoringSystemwillmonitor,alarmandrecordtheReactorVesselacousticsforthepresenceofinternalloosepartsinaccordancewithR.G.1.133Draft-2Rev.1.Thesystemwillmonitorthepointslistedbelow.Whenanimpacteventsignalexceedsaselectableamplitude,analarmwilloccurandpeakimpactandimpactrepetitionwillautomaticallyberecordedandtimedsequentially,foreachselectedchannel.EightpiezoelectricaccelerometersareattachedexternallytotheReactorVessel:a.Twomountedapprox.180apartonornearthemainsteamlinestomonitortheupperheadregions.b.Twomountedapprox.180oapartonornearthefeedwaterlinestomonitortheuppervesselregions.c.Twomountedapprox.180apartandat90rotationfromtheuppervesselsensorsmountedonorneartherecirculationsuctionlinestomonitorthevesselcoreplateregion.Rev.22,4/817.7-62 SSES-FSARd.Twomountedapprox.90apart,oneonaCRDHousingandtheotherontheRPVdrainpiping,tomonitorthelowervesselregions.7.7.1.12NuclearPressureReliefSystem7.7.1.12.1SystemIdentificationTheNuclearPressureReliefSystem,consistingofsafetyreliefvalvesandassociatedcircuitry,isdesignedtolimitnuclearsteamsupplysystempressureundervariousmodesofreactoroperation.7.7.1.12.2EquipmentDesignTheNuclearPressureReliefSystemcontrolsandinstrumentationconsistofmanualcontrol/pressuresensorchannelseachdedicatedtoitsrespectivesafetyreliefvalveandassociatedvalveoperator(solenoidoperatedairpilotvalve).Thepilotvalvecontrolsthepneumaticpressureappliedtotheaircylinderoperator.Uponenergizingthepilotvalve,pneumaticpressureisdirectedfromtheaccumulatortoactontheaircylinderoperatorcausingthesafetyreliefvalvetoopen.Uponagainde-energizingthepilotvalve,airintheaircylinderisexhaustedandtheaccumulatorisonceagainisolatedviathede-energizedpilotvalve.Anaccumulator,oneforeachvalve,isincludedwiththecontrolequipmenttostorethepneumaticenexgyforsafetyreliefvalveoperation.Safetyreliefvalvesareautomaticallyinitiatedbyhighreactorpressureconditions.CablesfromthepressuresensorsforvesselpressureareroutedRev.22,4/Sl7.7-62a SSES-FSAR10"-FR50-AppendixA.Criteria-24-TheRBMprovidesaninterlockingfunctioninthecontrolrodvithdravalportionofthe"RDreactormanualcontrolsystem.Thisdesignisseparatedfromtheprotectivefunctionsintheplanttoassuretheirindependence.ThRBHisdesignedtopreven'tinadvertentcontrolrod.vithdravalgivenanimposedsinqlefailurevithintheRBN.OneofthetvoRBHchannelsissufficienttoprovideanappropriatecontrolrodvithdravalblock.Enaddition,theRBNhasbeendesignedtomeet"appropriateprotectionsystemcriteria....acceptabletotheRegulatoryStaff."(Reference7.7-2)7.7.2.12LoosePartsHonitorin~SystemTheLPNSisnotasafety-relatedsystem.TthasbeendesignedinaccordancewithRegulatoryGuide1.133,Rev.1,Draft2.7.72;l2-NuclearPressureRelief--System-Igstgumentationand-gotltrols-)@7$~12Q.--General-Fuactioaai-BeguirementsConformanceTheNuclearPressureReliefSystemisdesignedtoprovidethenu"learsteamsupplypressurerelieffunctionvithoutjeopardytothesafety-relatedADSfunction,dis"ussedinSection7.3.7,42~4,22--Specific"RegulatoryRequirements(1)10CPR50AppendixA-"riterion10.TheNuclearPressureReliefSystemprovidesadditionalmeansforminimizingtheprobabilityofabnormalreactorcoolantpressureboundaryleakage.(2)10CPR50AppendixA-"riterion15.TheNuclearPressureReliefSystemisdesignedtoaffordadeguateadditionalmarqintoassurethatthedesignconditionsofthe"eactorcoolantpressureboundaryarenotexceededduringanyconditionofnormaloperation,includinganticipatedoperationaloccurrences.(3)10CPR50AppendixA-"riterion30.ThecomponentsoftheNuclarPressureReliefSystemaredesigned,selected,fabricated,erectedandtestedtothehighest,practical,currentindustrialstandards.TheSystemisRev.22,4/817.7-78 lvt~z,loge~~ll~',IIr--Ilvsfsceoosese>>4~efcesfsliIIII,I+ALJL~.SONV>>ICOSAlt(SIDIC)loxK.J,ecosr<<teI~leseO<<(TN)tftfIIfI~~~~oT~1lo4c>~aRITs(NOIR.AlcsotSSISNT-DssSV(stCDC)tslaefvor(tKlNNvsol)Ql~TsecosscNNcoa~OTCNTSALA.llxvassocsossscrccr----iI(STNLNcceecs4Il~4SI1~tltIvIIIIIIIIsl~JX-ltfeeSotf((l--@J'rSAIIIIt.soxvtlceoASDSCKICACKSllhCWONTSCSSSCIAflRCDNTTssr(fscoefCSISCSSAONSCS\~0'fCSSTSSLIlI~DAlI~~AC~'IICTsOOO>>NCSS<<ffoeefSAL(CCCRCSc~)~NColPAAIllSCVDCVKCTASLCDCSCNOTsevNCNICNsSNo)4re(i(oecSTAcxeee~lteleSTANLOADCC>>SCCSTe>>CAPCCDCSDeeceuertxrfSCLATo4pccocslovcAceseescllfNCLATeccDSReeceteeoeotlesetoevcscsteecrfNSLAYsofcICSCWLSSetlcSIclfcOlCOVS~seooeepoocrewNSLA'fsee>>e~osoC~KoeveopccDIRst>>DKNIlcOCLAY(TNKSOTS~~cooefcdoe>>N~SoOeeelNg@aa~~C.fsWeWPdsSPCPOSSCitoosocefIt~OCOOOtepeecc4I@a~e5it@O>>reerAloceeeelCNvelc4voltsecTCScrsfcrVOL'leecTelrecxscoo~Ll>>s'lIf~llCIISS~IIIIII5II'N<<PSOtesorcofo(Dccel)(scCtsOSS-C)vrfsIIIIIlfIQC5~IsesI~~oeoWooi&olrfX.,II~l)<<>>~llfllflI'IlIIIIIIIIIfOeeloIITccsesssocs<<tvfONTSSLI>>N>>~ee>>l>>ICsoo~CSCSf)(Neerxxccsc)(fceplot)$IIl(5(f)5ls,ace.JIIIIIIIIr-IsllI~tte>>APTSOCeKPOaSAre*TIISSSltl(OXSOl)lueasO5-c)IIIIIlsIf,''I.'SKAAbcsNLLKOCAI~steercALcretroIleeelxCKCI0Cele<<teesc)(ONRlOSTC)cftectxcseoesefrfeesTWII~II,IIIIIIIslII~ilIlIIICCCL.JIIIIIIIIeIAeosOPSOC*(CKSOS)CKSOSA(eoel4ACCec)CSCNacCDC)(esca~Nf)lIllllSSI~N()TecpcoToDcvsccsxACl(lITesteACCOCSATCDC>>SclorSASCASCCKc.Tsseo'(ance>>AcxsfALLcsecsssf~cxsscRCCONNCCTCDTDl'NCSLSL.~tees<<AIcIAIt%0>>ooteeoccscotsssoLsssoAsetpeeso4s>>soececooseeatecceceesAlter>>eATssoorfsejeol~IALsolocoeeorclecotsTKpolQoceefoo~eoeesegteKI~Neer>>lfep<<~pLA~LcoesorlN~N4.elclATco>>erectclolcoAToogsssoe>>4seoeecfolcPDSAsstoSTARTDeCKLKDTlvc%teeepApsLoeoo~.SefskssssecsCP(stcxtso)sssTKINCPCK,tKpsLoseclccltfesoeeoeocecrfA<<pooseooAtlococoessctetesopeaeosaefe<<saoso.SooxtoeKepfocTees~oLATrAssrf>>>>sfocfIcoscocrowfoKxseopSLToALTCKNATDsccacoAoNAseesDNccv.srlttco~COAXItxteteeesDCTICCW4>>CSTCSC>>CANCSNSTtocfeccccacvoLTIcArtssu.KArcDLDADtokcNKscxccrsfsoLccxsooweecs.locowlTswIssxcfKctlxreKollcloloovDDccscxcofcsc'f)~.SoosteoplaflrAsffcofsorsopoateKop<<eseeaeocafooooooelse>>so4IttsehSA.KTostoee<<os(SolAfDOAN~pss(AflowepoeesosseaeefsscfexfcoINopsKATseeeeroscATSKStAN'oeooA4O<<CILALIASpeRAAoseor~oeitoseeaexsooDriesLLseoeeooreeat>>eeoc%TINeeetfCNOKACSSIstol>>NetPesxfsltloSavTKAteopeowosLsocorcwcfresttster~exefsoelOPSteoCeOeaeete<<AD%NOLANONLYOeaCATSSAooxpeolosATelTsssDeooAC4>>tNesrse4~cLNDess~Kvcellooper>>IceoooiIINNNL+tfe1%,cerovLeefooTDSSea.sstoloctoowxa.setoslkesopofL,CKAcxsossteaNelecvecossNetsfsosfcoostoolcASLCosoNotLsoeeKTessAlso<<oe5)scfcsINCCLIoovteecPI~stslo(SACOK)IOSSAADSWX4leKVSSOOA$SNthqmalAlCAoPP4~Ij;"eDhE4sCBSLlI.coeetctoeoosa((39RtLfsCCCCSlCAIIIIJo~Ceca(4SOKreNODAl(~~e~lwxsessaNets)l)>*IL~J~~soalcloSllosSsofs8&~ccoortcfCoIseoctpoetf4softfcoefccssovfccsuwAFAT(tooocvtecsKNAICCAcol,osssec(Dolsssstfsosfooeeoseotsfco(,tevesslcoetlSSNTOTSCATOSN~tOOLCOi'OSSICSCCSCCNSOos(CDOOSATDOOTSTDSCTSCNgVSOLID~eotlxsefotssATDCNScseccsaeecoSCOO-OrtsACSCgeaoleasfceC4DDAOSovD'scssesoocooNSLSfovoc(I,ONO<<COlofIIf~IfIjsIbmjIIIsIIIIIfo<<lIIV.ICsc4r-III~ISfI~JIseerqIONL4lesIflflfIIIbad'IIIII1IIlfs>>AIIII~'ItolIIII~esseIII.Cs,II,elIsll,~~sIIlslIITS(I-'IJ~IIll4IIllfIIliatoIIIIICwosIIII&#xb9;Nf.IREV.22,4/81E4SHT.1SUSQUEHANNASTEAMELECTRICSTATlONUNITS1AND2FINALSAFETYANALYSISREPORT~NOOoecrolcl(CKCPS)ltsocS(Cotf>>OL&4)ccecscassosefg~gflcoscerectctsooetcOTtSPAADNsseo4'pcoooslcsoo(eepcLAOCSS)(occPtcOS5)~~t~~1S1lONAXXLsNtfe&fSATDC)sr<<oscxvscccr4CAPCO)tsovNceresTlsoDLSONflPSOO~TCANSCOICCCCN>>WCCNCCOKsootleoo(oioos)NclocoRSSPItsoc(ccctssos>>OctsewsxoN)(loesvcxcsCC)o>>eospoo)sAexprregstesssSsoc>>scc~elf>>eel(oxlol)opfoocJspseec(locPSSD5-1)PNSSeO1KtfIl~~4~~1~~se(oxoos)OKsscA(OCCPSRODC)fP//JJJJI/JS/EJ/J///JteL,ILLcoostocssfDNteleeesstee>>Neollccocolccxcst(LJ//J//JJ//J/J/J//J/i%AestereoUNlT'I.4.16KVPOWERSYSTEMFIGURE8~I
 
TRICsOKR.TCSTYOSN(vastclwsuc<<(DIN(cLoSETRAN\OX(OILO(KOUfk(LA'I(4(LL)OPOSLLCO>>LOCKOUTRCC.AVmColOLRoftkYOSN'5ck)cCwYvlll(Dou'ICtosc4Kklst2cuofoilcNCKR(LtCOKN)oreNMAICKCocil)CLOlt'ecLKtkSteCfecAMATCNCIACLCAONeODOR/gffcCNORMAArtCLO<<I.OOOISLQK1-ooSN*(I'I)WtUCNCLNCtklklaOxOLLockoufkek'LIKO~LLV.eic<<<<5OKAOstkOOCNaf<<flatccw'YULNCOns"KLIC<<ucelC\'TAI~CNSOOO'21A42-(oo1CIC+CTAlfOkfCOKNMATCNC)ACLC52SAS)C)LTeCEAOLLSEAts'llaasoloi(oetolp,ul<<eI)Laeeeu)NDAI)NoaN*~eMN~seseoIOI)OLlol2t(LLIOS)524O)OC42tOCOC)CL.LOOO0IELSCLLCNt<<ISILLCNDit\CLCetNDICCCLlatMOi4DI.COt.oOo.f(Ocecols)(OCLSOK)(OOEOLO)(O!'eloco)Q~IA(~RA)Cle<<aXaueEN<<toesICONLc-)MWIO-NNsaoesIClsloe)~lkcoi}TaacocfIeloe)~oecoe)4240200SDCOCOC42LOCOC)lttOeoALIS<<CDLNM,C<<ooootoasCSAEIVed(TVANfoNotleat(NoseolcvfcIN'YLISNPsescfooileeo)CSW<<~eOON0ETA~Kk(LtloelCLOScfAsrteaTLtoffc<<D~SSASLE(eENODCFINCTIOKQA~TRN~tNKACLloelo<<CN0<<s(LAIOYIVOLlolet5CSTAlol)cf'e'octfklleeoeaeLL44ICAvcoO'OOOAUSYALleOkkfafee'Td'NOILIeaisu'oce))sA5)CA)2io)uivilifYEAI.ARMO'D)2)PUTRfIINARa)ARTIL<<eveeeefoeAICCoiNkvfckIASN.AANLIolsot4KVosoetIECC<<EAISECICTAastEY045ICLaeftkfSLDOCIITAAI)~Kv005LClftCK<<)Loot:CIAECIocvCVLrcvotkeckfeocICIAE))aolt<<eeesissNKNCfuL)AICSele~a~I.>>~EVOISICSOUA(eCLoaf(ILA<<LLAotj.we62)C)ClAt(pff)2(()ff))4",BREAKERTot.taf())UN)Tf(ESSTRAN~lfSC<<IWINOlSENC.SOl<<eIf<<0Mfkfeesus~fauc0emef<<iIf(40CASekoak52IceoeIAONlovesKoYoLiesccvksp~p~a-efaLO<<LVlusgee<<I0N52IousDestosl.<<LNONnlACCANROTOACA(IsOICDILSISCQCCKOKAIN).ALIC)~Icsee("-4(sefec(OCAIN~ILV'essI'OYKCJOkNOTceucfufcoOSCTIP(tKLAYoulkurCkslffIINCNNLv<<filllAktYkcltNToelfaeifless)see<<CNINY~KYOTelYACSCNToulfuf'ltisr'sw<<LNletLNYCITICNOTYACC(NTRCD~C'Lo\CAAMC(koCIACN4DLL)COSfkikfe4LA4to'\ECNortlpoktcNS'Aurofklo-IILNOLLLYOetksftoOtle(4(CCNIASLSYNTtk,fso<<00CISK)CONYC)TCRCNtufOVTYVTCXIST\YOLLovveaCAVLNCOCLAYISICkTININIOIISCoeefssfeoulsvA~NCacaifYLITCILLSLve<<CNlealaeAIf)5NOTYACSCNYtl'A~ILLYceetSILL<<))O,NLIAECACCAIA0LSNIILKieeLOOClose024OSOIe)000014<<S<<NLI~<<Ovosiaosceealooiolas<<4CcoeolYilaoIas~I000<<~oooiee<<01COI~)CteceoSlave'ivessveevco<<IILNoeitpcocK-NaeckoeuI~sitesIeaeNolff~>v~IaafoaktsiLLIL<<ecocswoacaftkLocal<<NNecaue<<1LI42eoII=20)IOslCa)oeLl-4'IIoeLItoeoeIaI2)eNsoto<<iSt.tseaeLlCOSYO~I.0404Litaap~LNVf~\LastOVNL<<ICKECLL'IOltali,+lingSILL'(Ocltl0III)A4ca'ESCANloltoef04AlioOs.lCoalcsa40222>toke~CIOIOO)I202~IAlotKosDSSIOI~004)11'2$)os2vs;Io)LIL202NOe.tSIL4044>&#xc3;2)AeeltLac$$2040I0$4$$toecLOlic)tcAIN40eof0(45)toiO'SIt'20eof\ILtooIKOIr.~IAAOINOI.C~Orts20)oo1020P0)saltSOALIVACLoeeascoooSaavu<<allACLAeaslesos<<clANINLlllooleois~CINE<<eELLLeCT24iCATtlClfaecta$$CKTSJCTC)I~Cfl42bettCC2PSCal51CcfttCfai)CICSJCETSS4427)Ca)asCessCT21ICTIetaEISSCttt)CattpCEY4)fflstCTC0$cta$244225CETttiranCSCfSO)aI)aaCSCISef)I)I)fa1$CSI2)IsISfs5$tfl~Iifrrtr4Cal)I4Cal)54Ccfa)4(TtSl~212ff~(ET~1~CtiSS~40271~ocros~CTISCtCTCes~OVSS~CCCSS0lal~I~Ccf4$~ill1)~4flff4CE1SS4Ctat)4ICat)4~EYCI4214740ffaIs4Ccrta$CCISC4241st0beff0CICSS~424244~)ISOA<<22ClCl4241CSc)24)454)NNeSEIIC)4)ffl)PINf4ff~EII.OetoefTNICOCLAV~CYCcelffufClllffYv<<INTNC-OefufISYACCINTAMOsooia<<itsSoceosvfoALresetAffok1NCoesfICCLSC()~2()T5,aeccEE(4cctveo)fee<<sn)cctc<<4404oosufcctv<<LeteeIT5eo<<Nae2<<escacefe<<oessecaeNvvf<<4atsfccflecRECEKccscocaurecvASALNC,-t,fokCINCILtLINCHETERANDRCLATOikcekk)IStokC.vokuaeYC.'SCCDWCeOOSOt4'2ORCAKCftCONfAOLCWITCNC'\WVeNCNPII(LCCTOUT'SMALLDCCCONNCCTALLRCCIOTCCONfkotCIACL)ITC~.)Nf(KCOIYOLV<<eeeoekl4t-COOC452.(OKYSWAL4(NOYCALTSOKONLY)VIINl<<litOKklINOACAATLNCeLtolefioif-S,PCN04)isfcotfRCCAT(4444SCCVIO-44$4CSI~sec0cArcsctfeforakpteorcvecuar2ctuforcc-E4)SHTSSCCA)(iOO-5Ia~C5Seat+Se~L44c<<tressfgOILSLL<<24'resLa'IRE)ERERCEf)WCI$.2oatolLL400<<Iocoo4220)00aes<<O4240200S240e<<ILLN4Ooois~ee<<OONIN<<a000<<Lola)ao000eeol<<YSICL0leseso100No<<IOOI<<4OesetLLlakestse"Iol424)(LAICillsioe4C'Coils~ALDsocleslIoeae2L~IIIAICEILlaCocoo.CSAItoaol0C45$1~4'W5LIEtolO<<OLoioeocloessIIAtoe~$Tc2)tct00e(Icos1ACLI~CCCSOCOIN42$0IolaCokNDLCioaeCOCOI14costsSlS4NNLCL42I~Ce'1CS40Ctaciata141744II$14140~CETCSCac)4CrassCKT$041474CfatoCCY40cactt44204CCY424f2)0t)4ctfptrCdatt4Ciata0CC1$44CIISI1Claeo0Illfa0)CCSC~442540CETSatCICSC4~seps414144)NISCYJe)S~Tltl0Clr400CCCtttgatffo447424412050SUSQUEHANNA.STEAMELECTRlQSTATION,.UNlTS1AND47-.,--.-'.FINALSAFETY'NALYS/S.RFsPOET'4.16KVBUs.)QcolvllNG'fhofRQR&ggR,LOGIC.OIAGRale--FIGURE'.3.15 I~
SSES-"SARtoneselectorswitch,areaselectorswitch,messagetaperecorder,riverwarningspeakers'andmonitors,andanoutdoorroofsiren.Thissystemsupplements"heradiationmonitoringsystemsdescribedinChapter12.Duringemergen"yconditionstheplantoperatorac+ivatesthesystembyselectingthedesignatedalamandareatobecovered.The.alarmsandinstructionsarebroadcastedv'ahePAsystempagelinestoallspeakersinselec+edareasthroughouttJeplant.Durincanemergencythenighttimemutefunctionofoutdoorspeakerswillbeoveridden.Ther'erwarningspeakershaveindependentamplifierswithoutputmonitorncinthecontrolroom~Theoperatorswitchesthesystemtoof,afterconfirmationofnormalconditions.ThepreferredpowerfortheEVACsystemissuppliedfromUnit1vi..alacbus,andthealterna+epowerisfedfromUnit2vitalacbus.DuringUnit1opera+ionwhileUnit2isunderconstruction,powertotheEVACsystemisfedfromheUnit1computerUPSbus.ThepreferredpowerfortheroofsirenissuppliedfromUnit1plant125VdcbusandthealternatepowerisfedfromUnit2plant125Vdcbus.DuringUnit1operationwhileUnit2isinconstructionstage,thealternatepowertotheroofsirenisfedfromaseparate125VdcbusofUnit1.{refertoSubsections8.3.1.8and8.3.2.1.1.1).9.5.2.2.5SecurityCommunicationand.AlarmSystemRefertotheSuscuehannaSESSecurityPlanForadescriptionoftheSecurityCommunicationsSystem.9.52.2.6.PortableCommunicationSystemOnsiteportableradiocommunicationsystemsaredescribedintheSusquehannaSESSecurityPlanandintheSusquehannaSESEmergencyza~.95.2.2.7SystemEvaluationSystemdesignconsiderationsincludediversityandoperationalreliability.Thein-PlantcommunicationsystemsareprovidedwithreliableandredundantpowersuppliesforuninterruptedcommunicationsbetweenallareasofthePlant.Rev.22,4/819.5-30
'
..gifagI~Ilt)OtlalgV>>4~>>Elaraoaa\tt~Will\Tl>>1001E40alIruatCvCf4+CO%SO)IICrl>>C~41rJg,,~4+-8h~w04'stsa4r0LC'WILKIWIMa>>El>>44~4440aw~lao+aatt(Katlow~4O'I10~IIfL>>r44O+CEIC~%+E,'sa~~'~~IJOG~IIJta1~~'JILaa.ltI0)RA0LJNIgOCIVLWIr>>ao4!OIP040EIOC+C~~a>>Ir~~'~rIKO)atl4ICJh44$ruatIIIIIIIIIIIIIIIIIIIIIIIIICgEl)a.g5C>>44.~4taaa)l~,.3~a)I)OWC'g(vgO)05Q-hQ4r~t~~~04\>>C>>~&'104'n/.4C~4c'IIIJ~cargear~futfOPOtc)O~I$IOCSC~~~+0W~~JLOC10106h0\F4viawaltta)00~l.MOlOEOall)laAletaatl0%>01fataL~IISII0IUStgltlatlwTC4J%gtatiL~~nLaoII~~I~I~IIOCjulIttr&CO$$lvIS~u~~ttCCOCIklKOt>OtA~!WJJalalr--Ch=W-A,arIIll041)l'Itlt~vsaallWTOTt4Ol~SeeeaEJOWtttMIOOMICOatMltl%42~Jtt'ISEO~ltNt~lICO~4t)0'actl02Jest0eatiO2Cattllat2MOSI22Kata!N4~1~NCttl2Ld<<at4CS+420)O)140atttatKCCkkWN4$OCR)0EgEC'hLIOltSlktt4AIO+fCtOAIKelw'a~LV4OcOC>0)0POO)ECOOl;-4000)0I~0(101/Af')44CC>010IA;/+t$44!I=IIIIIII+II~~I~I~IrcfIIIIIIII,IIIII4~nrarar'II0%CRITIII~.ttlIIag)0)II4I)lt~4altllttCiOOCIO)Alttt4flLTIO~~TCWAO~L.JOO,.,ICaIEIC.4'EOOOI~COlt~0)4Oa2!IJE1)41YOOCCOCI~4Oa114!rSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYStSREPORTREV.22,O/S>.M-162Sht,rakco.tCONOIOILICpa4CtratiP6XDLIQUIDRADNASTEPROCESSINGFIGURE11.2-10
 
SSES-FSAR135PLANTPROCEDURES135.1ADNINISTRATIVZPROCEDURESAllsafety-relatedoperationsatSusquehannaSteamElectricStationUnits162areconductedinaccordancewithdetailed,writtenandapprovedprocedures.Plantpersonnelreceivetrainingintheuseofappropriateproceduresandtheproceduresaremadeavailabletothematalltimes.135.1.1ProcedureConformanceProceduretopicsfollowtheguidancespecifiedbyapplicableportionsofRegulatoryGuide133,Revision1andproceduresaropreparedfollowingtheguidanceprovidedbyANSIV18.7-1976.13-51.2Pre~arationofProceduresProceduresarepreparedbytheplantstaff,supportorganizationsorcontractorganizatio'nsunderthedirectionoftheSupevisorofOperations,SupervisorofMaintenance,TechnicalSupervisor,HealthPhysicsSupervisor,QualitySupervisor,PersonnelandAdministrativeSupervisor,andSecuritySupervisor.Theplant!procedurecategoriesandatypicalscheduleforprocedurepreparationareshownonFigure13.5 Reviewofsafety-relatedproceduresuseandchangesthereto,isperformedbythePlantOperationsReviewCommittee(PORC}andapprovedbytheSuperintendentofPlantasdescribed.inSection13.4.Inaddition,functional'nitprocedureswillbereviewedbyNuclearQualityAssurance.ProceduresareperiodicallyreviewedtodetermineifchangesarenecessaryordesirableApplicableproceduresarereviewedaftersignificantsystemorequipmentmodification,andfollowinganunusualincident,"suchasahazardouscondition,anunexpectedtransient,asignificantoperatorerror,orequipmentmalfunctionwheretheprocedurescontributedtothecauseoftheincident,orwereinadequateinmitigatingtheeffectsoftheincident.Whenanoperationistemporarilyalteredinsuchamannerthatportionsofanexistingproceduredonotapply,thentheexistingproceduremaybetemporarilychanged.TemporarychangestoRev.22,4/81135-1 QRgPxjHH0zlmzmDmxzza2zcomzm0rMAOOzPROCEDURESADMIHISTRATIVEALARMRESPONSECHEMISTRYEMERGENCYEMERGEHCYPLAHENVIRONMENTALSURVEILLAHCEFUELNAHDLIHGGEHERALPLAHTHEALTHPHYSICSIHSTRUMEHTATIOHACONTROLMAINTENANCEMATERIALCOHTROLOFF-HORMALOPERATINGGUALITYRADWASTEMAHAGEMEHTREACTOREHGINEERIHGRECORDSRELAYCALIBRATIONSECURITYSPECIALEVENTSSURVEILLAHCETESTTRAIHIHGMOHTNSPRIORTOFUELLOADING343230282624222018161412108642CDCD SSES-FSARconditionarise,theplantoperatingstaffshalltakewhateveractionisnecessaryincluding,butnotlimitedto,stoppingthetestinordertorestoresafeplantconditions.Duringstartuptesting,theplantoperatingstaffisspecificallyresponsibleforcompliancewithoperatingtechnicalspecifications,andcompliancewiththeprovisionsoftheoperatinglicense.14.2'.2TestPrereuisitesSpecifictestprerequisitesareidentifiedineachpreoperationaltestprocedure.Thetestdirectorverifiesthateachprerequisiteiscompletedandproperlydocumentedpriortosignoffintheofficialtestcopyoftheprocedure.Ifaprerequisiteinapreoperationaltestcannotbesatisfied,thetestdirectorwilllisttheprerequisiteasatestexceptiontothePreoperationalTest.Asaprerequisitetopreoperationaltesting,properoperationofeachalarmloopisverifiedandlistedinanappendixtothetest.Duringthepreoperationaltest,systemparametersarevariedandinterlocksaretestedwhichcausealarmstoactuate.Thosealarmswhichareactuatedduringthecourseofthetestwillbedocumentedinthebodyofthepreoperationaltest.14.2.4.3ProcedureHodificationsTestsareconductedinaccordancewithapprovedprocedures.Zfnecessary,theseproceduresmaybemodifiedtocompletetesting.Suchproceduremodi-ficationsaredocumentedonatestchangenoticeform.Xnadditiontogenerationofatestchangenoticeform,thetestdizectormarksuptheofficialtestcopyoftheprocedureandinit:als/datesthechange.ReviewandapprovalfortestchangenoticesonpreoperationaltestproceduresisprovidedbytheTRB.Testchangenoticesforstartuptestproceduresshallbeinitialed/datedbyanon-shiftlicensedsenioroperatorinadditiontothetestdirector.ReviewandapprovalfortestchangenoticesonstartuptestproceduresisprovidedbythePORC.Preparation,reviewandapprovalactivitiesazeaccomplishedbeforeorafterperformanceofassociatedtestingbasedonthefollow'ngcriteria:a)Non<<IntentChangesiRev.22,4/81Forproceduremodificationsthatdonotchangeacceptancecriteriaanddopreservetheintentofthetest,thetestchangenoticemaybeapprovedafterperformanceofassociatedtesting.4b)IntentChangesForproceduremodificationsthataltertheacceptancecriteriaortheintentofthetest,thetestchangenoticeisapprovedbeforeperformanceofassociatedtesting.14.2-12 SSES-FSARinformationwillbesortedandreportedforaperiodoftwoyearspriortofuelloadonthefirstunit.TheManager-NuclearSupportisaddressedinSubsection17.2.1.14.2.9TRIALUSOFPLANTOPERATINGANDEMERGENCYPROCEDURESTheadequacyofPlantOperatingandEmergencyProcedureswillbeconfirmedbytrial-useduringtheInitialTestProgram.ThoseproceduresthatdonotrequirenuclearfuelareconfirmedadequatetotheextentpracticableduringthePreoperationalTestProgram.ThoseproceduresthatrequirenuclearfuelareconfirmedadequatetotheextentpracticableduringtheStartupTestProgram.Theplantoperatingstaffisresponsibleforconfirmationofoperatinqandemergencyprocedures.TheSuperintendentofPlantisresponsibleforensuringthatcomments/changesidentifiedduringconfirmationareincorporatedinfinalizedprocedures.Itisnotintendedthatpreoperationaltestproceduresexplicitlyincorporateorreferenceplantoperatingandemergencyprocedures.Thesetestsareintendedtostandontheirownsincetheyarenotnecessarilycompatiblewithconfigurationsandconditionsrequiredforconfirmationoffacilityoperatingandemergencyprocedures.Startuptestprocedureswill'ncorporateandreferenceplantoperatingandemergencyprocedurestotheextentpractical.14 10~INITIAL-FUEL-LOADINGANDINITIALCRITICALITYInitialfuelloadingisaccomplishedinaccordancewithstartuptestprocedure,ST-3FuelLoadingInitialcriticalityisaccomplishedinaccordancewithstartuptestprocedureST-4,PullCoreShutdownMargin.TheseprocedurescomplywiththegeneralguidelinesandregulatorypositionscontainedinRegulatoryGuide1.68(Revision1,January1977).Testabstractsestablishingtheobjectives,prerequisites,testmethod,andacceptancecriteriafortheseproceduresarepresentedinSubsection14.2.12.142-11T>STPROGRAMSCHEDULEcdRev.22,4/8114.2-19ThePreoperationalTestProgramisscheduledfor15monthsdurationontheUnit1andCommoncomponentsandfor12monthsdurationontheremainingUnit2components..(SeeFigure14.2-4a~'
SSES-FSAR(P30.1)ControlStructureHSVSstemPreperationalTestStructureHavSystemanditsinterlocksinsidethecontrolstructurebuildingtodemonstratethissystem'sabilitytomaintainapositivepressureaboveatmosphericduringnormaloperationandhighradiationsignalwhentheemergencyoutsideairsupplymodeisrunning.TodemonstratetheabilityoftheControlStructureHGVtoisolatebeforechlorinereachestheisolationdamperswhenchlorineisdetectedintheoutsideairintake.overtotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.TheControlStructureChilledWaterSystem,InstrumentAirSystemandturbinebuildingventareavailable.Required'lectricalpowersupplysystemsareavailable.TestMethod-Thesystemoperationisinitiatedmanuallyandfanperformance,damperoperationsandheatingelementoperationaredetermined.Thedifferentialpressureswithrespecttooutsideatmosphere.aremeasured.Requiredcontrolsareoperated'orsimulatedsignalsareappliedtoverifytheemergencyfilteroperationonhighradiationsignal,automaticrecirculationonhighchlorinesignal,systemmanualisolationandothersysteminterlocksandalarms.AccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththeapplicabledesigndocuments.(P30.2)ControlStructureChilledWaterSstemPreperationalTestStructureChilledWaterSystemtoprovidechilledwaterflowtoControlStructureHeating/VentilatingUnitsandControlroomfloorandcomputerroomfloorcoolingunits.toperformthistestandthesystemisturnedovertotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.TheServiceWaterSystem,EmergencyServiceWaterSystem,andInstrumentAirSystemareavailable.Requiredelectricalpowersupplysystemsareavailable.TestMethod-Thesystemisoperatedtodemonstratechilleroperationandchilledwaterpumpperformance.Requiredcontrolsareoperatedorsimulatedsignalsareappliedtoverifyautomaticalignmentofthesystemunderemergencyconditions(startofemergencycondenserwaterrecirculationpump)andothersysteminterlocksandalarms.Rev.22,4/8114.2-3l, SSES"FSARTestMethod-ThebatteryperformancetestismanuallyinitiatedbyconnectingthebatterybanktotheResistorI.oadBankanddischargingthebatteriesataconstantcurrentforaspecifiedperiodoftime.TheBatteryServiceTestismanuallyinitiatedbyconnectingthebatterybanktotheResistorLoadBankandsimulating,ascloselyaspossible,theloadthebatterieswillsupplyduringaDesignBaseAccident.Thenthebatterychargerisconnectedtothebatteriesandthedistributionpanelstoverifythattheycanequalizechargethebatterieswhilesimultaniouslyprovidingpowertothenormalplantloads.ThebatterychargerisalsoconnectedtotheResistorIoadBankandcurrentisincreasedtoitsmaximumratingwiththechargerisolatedfromitsassociatedbatterybank.Alarmsaresimulatorandverifiedtooperateproperly.AccetanceCriteria-Thebatteriescansatisfactorilydeliverstoredenergyforthespecifiedamountoftimeasrequiredfortheperformanceandservicetests.Thebatterychargerscandeliverratedoutput,also,thattheycanchargetheirassociatedbatterybankfromminimumvoltagetoafullychargedstateinaspecifiedamountoftimewhilesimultaneouslysupplyingnormalplantloads.Thealarmsoperateattheirengineeredsetpointsandannunciateinthecontrolroom.(P76.1)PlantLeakDetectionSstemPreperationalTestTestOb'ective-'TodemonstratetheoperabilityofthePlantIeakDetectionSystem.toperformthistestandthesystemisturnedovertotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.Requiredelectricalpowersupplysystemsareavailable.TestMethod-Sumplevelswillbevaried(ifpracticable)orsimulatedsignalsareappliedtolevelsensorstoverifytheleak'etectionsystemalarms'ccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththeapplicabledesigndocuments.Rev.22,4/8114.2-49 SSES-FSAR3)Thatallwarningsignalsareworkingperdesignintent.4)Thecapabilityofthecranetooperateinadesignatedareainaccordancewithdesignrequirements.overtotheISG.Requiredelectricalpowersupplysystemsareavailableandcontrolsareoperable.Requiredloadsareavailabletoperformloadtestingofthiscrane.TestMethod-Thelightingsystemforthecraneisenergizedandobservedforproperoperation.Thebridgeandthetrolleyarespeed-testedinbothdirections.Currentandvoltagereadingsaretakeninbothdirections.TheproximityswitchesaretestedforboththebridgeandthetrolleyincludingtrolleymovementrestrictionswitchesinzonesA,B,andC.Themainhoistandtheauxiliaryhoistarespeed-testedtravelingupandtravelingdown.Currentandvoltagereadingsaretakeninbothdirections.Alllimitswitchesaretested.Alossofpowersituationiscreatedforbothhoiststocheckthebrakesabilitytoholdwithoutpower.Anoverspeedtestissimulatedforeachhoist.Themainhoistloadlimitswitchisalsotested.Theabovelistedtestsarerunfromthependantpushbuttoncontrolsystem.Operabilityofthecraneisalsodemonstratedfromthecabandby'radiocontrol.Theanticollisionsystemistestedandthecranepowersourceisverified.AccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththe'pplicabledesigndocuments.(P100.1)ColdFunctionalTestcapableofoperatingonanintegratedbasisinnormalandemergencymodes,todemonstratethatadequatepowersuppliesfortheclassIEequipmentwillexist-completedandplantsystemsarereadyforoperationonanintegratedbasis.TestMethod-EmergencyCoreCoolingSystems(RHR6CoreSpray)arelinedupintheirnormalstandbymode.Theplantelectricalsystemislineduppernormalelectricalsystemlineup(ForUnitlthislineupmaybedifferentthanthelineupfortwounitoperation).Lossofcoolantaccidentsignalsareinitiatedwithandwithoutalossofoffsitepower.VoltagesandloadsareRev.22,4/8114.2"55 SSES-FSARUESTION021.01Providethefollowingadditionalinformationforthesecondarycontainment:(1)Showanappropriateplantelevationandsectiondrawings,,thosestructuresandareasthatwillbemaintainedatnegativepressurefollowingaloss-of-coolantaccidentandthatwereconsideredinthedosecalculationmodel;(2)ProvidetheTechnicalSpecificationlimitforleakagewhichmaybypasstheStandbyGasTreatmentSystemFilters,(e.g.,valveleakageandguardpipeleakage);and,(3)Discussthemethodsoftestingthatwillbeusedtoverifythatthesystemsprovidedarecapableofreducingtoandmaintaininganegativepressureof0.25",e.g.,withinallsecondarycontainmentvolumes.RESPONSE1)Followingaloss-of-coolant-accident,allaffectedvolumesofthesecondarycontainmentwillbemaintainedatnegativepressure.AllthesevolumesareidentifiedonFigures6.2-24thru6.2-43asventilationzonesI,IIandIII.AlsoseeSubsection6.5.3.2foradiscussionofthereactorbuildingrecirculationsystem.2)SeeTechnicalSpecification3/4.6;.5.3forthelimitingconditionsforoperationandthesurveillancerequirementsfortheSGTS.AllleakageintothesecondarycontainmentistreatedbytheSGTS.Refertosubsection6.2.3.2.3foradiscussionofcontainmentbypassleakage.3)TheStandbyGasTreatmentSystem(SeeSubsection6.5.1.1)inconjunctionwiththereactorbuildingrecirculationsystem(seeSubsection6.5.3.2)andthereactorbuildigisolationsystem(seeSubsection9.4.2.1.3)isprovidedtoproduceandmaintainnegativepressurewithinaffectedvolumesofthesecondarycontainment.Actuationandoperationoftheabovesystemswillbeusedtoverifythatthenegativepressureisestablishedandmaintained.Eachventilationzoneisprovidedwithredundantnegativepressurecontrollers.I,owpressuresideinputs(lowpressuresensingelements)tothesecontrollersarelocatedasfollows:VentilationZoneI-VentilationZoneII-AccessareofEL749'-l(SeeFigure6.2-28)AccessareaofEL.749'-l"Rev.22,4/81021.01-1 SSES-FSARVentilationZoneIII-RefuelingFloor,E1.818'-1"(SeeFigures6.2-30and6.2-40).Thequantityofairexhaustedfromthesecondarycontainmentwillbesuchthatineachaffectedventilationzonethenegativepressurewillbemaintained.Theinterconnectingductworkoftherecirculationsystemwillequalizethenegativepressurethroughouteachzone.Rev.2,9/78021.01"2 SSES-FSARUESTION021.10Withrespecttocontainmentsteambypassforsmallbreaks,indicateyourcompliancewithourproposedBranchTechnicalPosition"SteamBypassforMarkIIContainments,"whichisenclosed.RESPONSEAcomparisonoftheSusquehannaSESdesignwithyourproposedBTP"SteamBypassforMKIICoatainments"ispresentedbelow.TheitemnumberscorrespondwiththeitemsintheBTP.l.a.BassCaabilitContainmentWetwellSrasThewetwellspraysystemelectricalinstrumentationandcontrolssuppliedbyGEmeetthesameESFstandardsofquality,redundancyandtestabilityastheRHRsystem,ofwhichitisapart.Thesystemismanuallycontrolledandactuated.TheconsequencesofactuationofthewetwellsprayonECCSfunctionareaddressedintheresponsetoQuestion211.13.l.b.TransientBassCaabilitAnalsesThecalculationofmaximumallowablesteambypassleakageforsmallsteambreaksaspresentedinSection6.2.1oftheSusquehannaFSARcomplieswiththeintentoftheproposedbranchtechnicalposition;althoughitdoesnotassumeanormalplaatdepressurization/shutdowntimeof6hours.Thecalculationassumesthatthesteamleakageisterminaltedbysomeoperatoractioa(containmentsprays,ADS)within15minutesafteranabnormallyhighsuppressionchamberpressureisobserved(830psig).ThemaximumsuppressionchamberpressureexpectedduringaIOCA,assumingalldrywellairhasbeencarriedoverandnosteamleakagehasoccurred,is25psig.Significantlyexceedingthispressure(to&30psig)indicatesaleakagesituationandnecessitatesoperatoraction.Further,thecalculationconservativelyneglectsanycontainmentheatsinks(poolsurface,containmentwalls,etc.).Themethodemployedtocalculatethemaximumallowablesteambypasslakageflowcharacteristic(A/rgb)hasbeenpreviouslydescribedinsomedetailinsubmittalstoNRCquestionsontheHatchlnuclearplaat.Briefly,itsimplyinvolvesanendpointtypecalculationofthemassofsteamwhichcanbeaddedtothesuppressionchamberabove30psigtogivedesignpressure(45psig),conservativelyassumingalldrywellairhasbeencarriedoverthethesuppressionRev.22,4/81021.10-1 SSES-FSARchamberandtakingnocreditforsuppressionchamberheatsinks/condensation.KnowingthismassofsteamQMandassumingthattheoperatoractionwillbedelayed10minutesafterobservin'gthe30psig,andthattheactionwillrequire5moreminutestotakeeffect(5t=15min.total),theallowablelakeageratem=Am/Atcanbecalculated.TheflowcharacteristicA/~kcanthenbecalculatedfromM=A/lvpschp"(gwherebPis'thepressuredifferencebetweenthedrywellandsuppressionchamberatquasi-steadyflow(equalP<g/gH,whereH=ventsubmergence).TheresultisanA/~k=.06ft~forSusquehanna.2.a.FSARSubsection6.2.6.5'.1addressesthisitem.2.b.FSARSubsection6.2.6.5.1.2addressesthisitem.2.c.FSARSubsection'6.2.6.5.1.2addressesthisitem.3.a.TheSusquehannadesignmeetstheintentofthisitem.SeeSubsection6.2.1.1.3.2.WithrespecttocompliancewiththeproposedBranchTechnicalPosition"SteamBypassofMarkIIContainments,"thefollowingSusquehannaSRPpositionstatementisrespectfullyprovided:IssuanceoftheStandardReviewPlans(SRP)post-datestheSusquehannaconstructionpermitbymorethan2years.Therefore,noattemptwasmadetodesigntheplanttotherequirementsoftheSRPs.TheSusquehannaFSARwaspreparedusingRevision2ofRegulatoryGuide1.70asmuchaspracticalforaplantofitsvintage,withassurancefromNRCmanagementthatcompliancewiththisRegulatoryGuideassuredsubmittalofallnecessarylicensinginformation.AsdocumentedinaletterofAugust5,1977fromG.G.SherwoodtoE.G.CaseoftheNRC,theSRPsconstituteasubstantialincreaseintheinformationrequiredjusttodescribethedegreeofcomplianceofvarioussystems.Thisincreaseinturnrepresentsasubstantialresourceexpenditurewhichisunjustifiedandwhichcouldcauseprojectdelaysifrequiredoftheseprojects.Asstatedinthe,referenceletter,GeneralRev.22,4/Sl021.10-2 SSES-FSARElectric(andPPM)believesthatSRPsshouldbeappliedtoFSARsonlytotheextentthattheywererequiredintheFSARs.PPGLandGeneralElectricbelievetheaboveposition,whichistheessenceofadirectivefromBenC.Rusche,DirectorofNuclearReactorRegulation,totheNRCstaffdatedJanuary31,1977,istheappropriateprocedureforreviewoftheSusquehannaFSAR.Rev.22,4/81021.10-3 SSES-FSARUESTXON021.21Heareawarethatrevision3totheDFFRistobesubmittedtothisSummerandthatRevision2whichisnowreferencedisout-of-date,asitdoesnotadequatelyreflectthestatusofcurrentpooldynamicloads.DiscusshowtheDARwillbeupdatedtoreflectthisstatusanddiscussanyotherreportsyouintendtosubmittodocumentyourplantdesign.RESPONSE:PPGLisworkingwiththeotherMarkIIownerstodevelopmethodologies,analyticalprogramsandtestdatawhichwillprovideimproveddefinitionsofhydrodynamicloads.ThisefforthasresultedinRevision3totheDFFR,andisexpectedtoresultinfurtherrevisiontothatreport.ltispresentlybeingrevisedtoreflectthecurrentpositionoftheMarkXIowners.FuturerevisionstotheDFFRareexpectedtohavenoeffectontheSSESDAR,sinceplantspecificsaswellasgenericMarkXImethodologiesapplicabletoSSESwillbeincorporatedintotheDAR.TheDARhasbeenupdatedtoreflectthecurrentdesignassessmentmethodologiesusedatSSES.Rev.22,4/81021.21-1 SSES-PSARIdentifyallopeningsprovidedforgainingaccesstothesecondarycontainment,anddiscusstheadministr'ativecontrolsthatwillbeexercisedoverthem.Discusstheinstrumentationtobeprovidedtomonitorthestatusoftheopeningsandwhetherornotthepositionindicatorsandalarmswillhavereadoutandalarmcapabilityinthemaincontrolroom.RESPONSE:1)SecondaryContainmentAccessOpenings:DoorNos.Elev.Col.CoordinatesSecurityMonitored101102103-0104-0119A120A571-0670670670670676676818U/29U/37.4U/20.6U/29P/20.6P/37.4P/32YesYesYesYesYesYesYesRoofHatch8Elev.872,coordinates:P/37.4(SecurityMonitored)2)Doors5119A,120Aand571-0provideaccessintothesecondarycontainmentthroughtheuseofcardreader/cipherkeyboardcontrol.Doors101,102,108-0,104-0andtheroofhatch(54001)willnotnormallybeusedtogainaccessintothesecondarycontainment.AlltransactionswillbeloggedintotheSecurityDataandManagementSystem(SDMS).AllalarmsgeneratedwillannunciateatboththeSecurityControlCenter(SCC)andAlternateSecurityControlCenter(ASCC).Theplantcontrolroomwillnothaveareadoutoralarmcapability.BoththeSCCandASCCare,however,mannedcontinuously24hoursaday.InstrumentationtocontrolandmonitorthestatusofsecondarycontainmentisdescribedinChapter7.0oftheSusquehannaSESPhysicalSecurityPlan.Rev.22,4/81021.31-1 SSES-FSARSubsection4.2.2.2oftheDARstatesthat,thechuggingloadsonsubmergedstructuresandimpartedonthedowncomerswillbeevaluatedlater..Providethepresentstatusoftheseevaluationsandthescheduleforyoursubmissionofthecompletedevaluation.RESPONSE:ThecalculationofsubmergedstructureloadsduetochuggingwillusetheimprovedchuggingloadmethodologydevelopedunderMarkIZOwnersGroupTaskA16.TheappropriatedesignsourceswillbeusedwiththeGreen'sfunctionsolutionfortheSSESannularcontainmenttoprovidethepressuredistributioninthesuppressionpool.Thepressurearoundastructurewillbeintegratedtodeterminethenetpressureloadonthestructure.AdescriptionofthismethodologyandverificationwillbeincludedintheDAR.ThechuggingsourcesusedwillbedevelopedfromthepressuretimehistoriesprovidedbyKWUforthedesignassessment(seeSSESDAR,Section9.5.3).ThedowncomerhasbeenassessedforthechuggingloadsandtheresultswillbeincorporatedintotheDAR.Theothersubmergedstructuresarenowbeingevaluated.Weexpectcompletion'fthisevaluationinAprilof1981.Rev.22,4/81021.71-1 SSES-FSARProvidetheinformationpreviouslyrequestedin020.44regardingloadsresultingfrompoolswellwavesfollowingthepoolswellprocessorseismicslosh.Discusstheanalyticalmodelandassumptionsusedtoperformtheseanalyses.RESPONSE:TheanalyticalmethodofcalculatingtheloadsresultingfromseismicsloshandtheassumptionusedaredescribedinawriteuptobeincludedintheOAR.ThisinformationwillbesubmittedinApril1981.Rev.22,4/81021.73-1 SSES-FSARDiscusstheapplicabilityofthegenericsupportingprograms,testsandanalysestoSSESdesign(i.e.,FSIconcerns,downcomerstiffners,downcomerdiameter,etc.)RESPONSE:AcompletedescriptionoftheGKM-IIMtestprogram,testresultsandevaluationofthetestdataisprovidedinChapter9.0oftheSusquehannaSESDAR.TheGKM-IIMtestswerestructuredtobeasprototypicaloftheSusquehannaSESplantconfigurationsaswaspractical.Assuch,concernsrelatedtoFSI,downcomersstiffnessgdowncomerdiameter,etc.,arefullyaddressed.Rev.22,4/Sl021.75"1 SSES-FSARProvidethetimehistoryofplantofresponsesofplantstructures,componentstopooldynamicloads.modificationsresultingfrompoolspecificloadsandassessmentpiping,equipmentandIdentifyanysignificantplantdynamicloadsconsiderations.RESPONSE:TimehistoryinformationforLOCAloadscanbefoundinSSESDAR,Section4.2.SimilarinformationduetoSRVactuationcanbefoundinSSESDAR,Section4.1.Inaddition,theplantspecificLOCAandchuggingloaddefinitiondevelopedfromtheGKMII-MtestprogramcanbefoundinSubsection9.5.3.ThisloaddefinitionwillbeusedtoevaluatetheconservatismoftheDFFRLOCAloaddefinitiondevelopedfromtheGKMII-MtestprogramcanbefoundinSubsection9.5.3.ThisloaddefinitionwillbeusedtoevaluatetheconservatismoftheDFFRLOCAloaddefinitionandisscheduledforsubmittalinRevision5oftheSSESDAR(March,1981).Assessmentofthepipingtopooldynamicloadsisnotcompleted.PPGLinterpretsthisquestionasrequiring:a)Responseofpipinginthewetwelltopooldynamictimehistoryloads.b)Responseofpipinginthedrywell,wetwellandreactorbuildingtoresponsespectraduetoSRVandLOCAloads.SummaryoftheresultsofpipinganalysiswillbeprovidedintheDARuponcompletionofpipinganalysisinMayof1981.Modificationofplantdesigntodatea)Additionofquenchersb)Designchangesinplatform,vacuumbreakers,andrecombinerSupportbeamsbyraisingthemoutofthepoolswellzone.c)Redesignofdowncomerbracingsystemd)Added60reinforcingbarsineachsuppressionchamnber.e)Addedembedmentsandanchorboltsinsuppressionchamberwallsanddiaphragmslab.f)Diaphragmslabreinforcementschangedfrom'5to90toincreaseupliftloadingsacceptance.g)Significantnumberofpipesupportsaddedormodified.Rev.22,4/81021.76-1 SSES-FSARProvidefiguresshowingreactorpressure,quenchermassfluxandsuppressionpooltemperatureversustimeforthefollowingevents:(1)Astuck-openSRVduringpoweroperationassumingreactorscramat10minutesafterpooltemperaturereaches110FandallRHRsystemsoperable;(2)Sameasevent(1)aboveexceptthatonlyoneRHRtrainavailable;(3)Astuck-openSRVduringhotstandbyconditionassuming120FpooltemperatureinitiallyandonlyoneRHRtrainavailable;(4)TheAutomaticDepressurizationSystem(ADS)activatedfollowingasmalllinebreakassuminganinitialpooltemperatureof120FandonlyoneRHRtrainavailable;and(5)Theprimarysystemisisolatedanddepressurizingatarateof100Fperhourwithaninitialpooltemperatureof120FandonlyoneRHRtrainavailable.Provideparameterssuchasservicewatertemperature,RHRheatexchangercapability,andinitialpoolmassfortheanalysis.RESPONSE:TheSusquehannauniqueSRVmassandenergyreleaseanalysisispresentedinAppendixIoftheDAR.Rev.22,4/81021'7"1 SSES-FSARWithregardtothepooltemperaturelimit,providethefollowingadditionalinformation:(1)Definitionofthe"local"and"bulk"pooltemperatureandtheirapplicationtotheactualcontainmentandtothescaledtestfacilities,ifany;and(2)Thedatabasethatsupportanyassumeddifferencebetweenthelocalandthebulktemperatures.RESPONSE:Theterms"Local"and"bulk"temperatureareusedasdefinedinSubsectionIII.C.l.aofNUREG0487,"MackIIContainmentLeadPlantProgramLoadEvaluationandAcceptanceCritera",UnitedStatesNuclearRegulatoryCommission,October1978.Becauseofthedesignfeaturesofquenchersandtheirorientationinthesuppressionpool(asdiscussedintheSSESDAR,Subsection8.5.5),thedifferencesbetween"local"and"bulk"pooltempoeraturesareexpectedtobesmall.Therefore,thedifferenceshouldnotexceedthevaluewhichwaspreviouslyderivedforramsheaddischargedevicesinMarkIplants(10').Itisintendedtoverifythenumbersusingdatafromin-planttestswhicharepresentlyunderpreparationforLaSalleandZimmer.Rev.22,4/81021.78-1 SSES-FSARuestion021.79:Forthesuppressionpooltemperaturemonitoringsystem,providethefollowingadditionalinformation:(1)Type,numberandlocationoftimperatureinstrumentationthatwillbeinstalledinthepool;and(2)Discussionandjustificationofthesamplingoraveragingtechniquethatwillbeappliedtoarriveatadefinitivepooltemperature.RESPONSE:(1)PleaserefertorevisedSection7.6.1b.l.2.SusquehannaSEShascompletedevaluationofthesuppressionpoolmonitoringcriteriaasdefinedinNUREG-0487andhasdevelopedabasicsystemasfollows:oNumberandLocationofTemeratureInstruments:20remotetemperaturedetectors(seefigure021.74-35)ineachsuppressionpools-16remotetemperaturedetectorslocatedjustbelowthemin.waterlevelandarrangedtoprovide2eachon8locationsaroundthepool.-4remotetemperaturedetectors(seeFigure021.74-35-TE's15769,15761,15756,15751)distributedaroundthepoolat"Q"center-linelocationo~Te:ClassIEInstrument-Divisionalizedwithonefromeachlocationineachdivision,exceptfor4remotetemperaturedetectorsatthe"g"centerline.Allsensorswillberedundant,SeismicCategoryIandsuppliedfromonsiteemergincypower.(2)Thetechniqueissuedtoarriveatanaverage,orbulk,pooltemperatureisconservativeduetotheplacementofthe16pooltemperaturedetectors.These16detectorsareevenlydistributednearthepoolsurface,wherethehottestwaterwillriseRev;22'.4/81021.79-1 SSES"FSARTable7.2-4,DesignBasisSetpoints,wasdeletedinRevision11.Severalsectionsstillrefertodatacontainedinthattable.SeveralreferencesaremadetodesignbasissetpointspreviouslylistedinTable7.2-4.Thistablehasbeenintentionallyleftblank.Pleaseclarifythisdiscrepancy.RESPONSE:Table7.2-4wasdeletedbecausetheinformationthereonhasbeenincorporatedintheplantTechnicalSpecifications.SomeinformationfromTable7.2-1andalltheinformationfromTables7.2-5and7.2-6hasbeendeletedfromSection7.2andisalsocontainedintheTechnicalSpecificationsastheappropriatesinglepointofreferenceforthisdata.VariousdiscussionsinSection7.2havebeenrevisedbyappropriatelyreferencingtheTechnicalSpecificationsratherthanthedeletedtables.Rev.22,4/81032.52"1 SSES-FSARDiscussionoftheEmergencyCoreCoolingSystemsandtheassociatedtablesareincompleteandinconsistent.Correctandclarifythefollowing:1)ThesameinstrumentsareusedforReactorVessellowwaterlevelandPrimaryContainmenthighpressureformanyESFsystems.ThespecificationshownfortheseinstrumentsinTables7.3-1through7.3-5arenotconsistant.Correcttripsettings,ranges,andaccuraciesshownfortheseinstruments.2)Thesetableshaveallottedcolumnsforinstrumentresponsetimesandmargins(oftripsetting)tomeetrequirementsofIEEE279-1971Section3,butmostdatahasbeenomitted.Responsetimesshouldindicateminimumand/ormaximumwhereapplicable.3)Table7.3"1hasomittedallspecificationsfortheTurbineoverspeedinstrument.4)Figure7.3-5hasseveralerrors:oItdoesnotshowtwoADSlogicsasindicatedin7.3.l.la.,1.4.4.oReferencedFigure7.3-16doesnotexist.oItdoesnotshowlowpressureinterlockstoLPCIandCSrequiredtoinitiateADSasindicatedin7.3.l.la.l.4.4.5)Table7.3-2indicatesonlyonereactorwaterlevelsetpoint(-149inches)fortheADS.Section7.3.1.1a.l.4.4indicatestwolevelsetpoints,alowandalowerwaterlevel.6)Useoflevelswticheswitharangeof-150"/0/+60"toinitiateADSandCSactionwithtripsettingsat-149doesnotseemlikeconservativedesign.Justifytheuseofthisrangeforthisapplication.Discussaccuracyofthetripsettingandhowitisaffectedbynormalandaccidentenvironmentalconditionsandlongtermdrift.7)WhyaretworangesshownforLPCIpumpdischargepressure(10-240psigand10-260psig).RangeshownforthisinstrumentinTable7.3-4is10-240psigonly.8)Section7.3.1.1a.l.4.5onADSBypassesandInterlocksindicatesthatitispossiblefortheoperatortomanuallydelaythedepressurizingactionandstates"ThiswouldresetRev.22,4/Sl032.54"1 SSES-FSARthetimerstozerosecondsandpreventdepressurizationfor105seconds."Table7.3-2,Figure7.3-8Sht.3andTable6.3-2allindicateatimedelayof120seconds.Howisatimedelayof105secondsachieved?9)Explainwhytworanges(50-1000psigand50-1200psig)arelistedfortheReactorVesselLowPressureinstrumentinTable7.3-3.10)Instrumentrangesforpumpdischargeflow,Table7.3-3,andpumpminimumflowbypass,Table7.3-4,arespecifiedininchesofwaterbuttripsettingsareingpm.Supplyrangesfortheseflowinstrumentsingpm.Table7.3-9HPCISystemMinimumNumbersofTripChannelsRequiredforFunctionalPerformancedoesnotagreewithTable7.3-1HPCIInstrumentSpecifications.Table7.3-8doesnotlistHPCIpumphighsuctionpressureorTurbineOverspeedasshowninTable7.3-1.Table7.3-8liststwoitems,HPCIpumpflowandHPCIpumpdischargeflow,notshowninTable7.3-1.12)Table7.3-4LowPressureCoolantInjection-InstrumentSpecificationsdoesnotagreewithTable7.3-10LowPressureCoolantInjectionSystemMinimumNumberofTripChannelsRequiredforFunctionalPerformance.Table7.3-10doesnotlistReactorlowpressureorPumpdischargepressureasshowninTable7.3-4.Table7.3-10listsseveraltripchannelswhicharenotshowninTable7.3-4.TheseincludeReactorvessellowwaterlevelinsideshroud,Reactorvessellowflow,Primarycontainmenthighpressure,andReactorvessellowwaterlevel(RecirculationPumps).13)Table7.3-11CoreSpraySystemMinimumNumbersofTripChannelsRequiredforFunctionalPerformanceisincomplete.ItdoesnotlistPumpDischargeFlowasshowninTable7.3-1.RESPONSE:Tables7.3-1thru7.3-4havebeenrevisedtoincludeallappropriateinstrumentfunctionsandthenumberofchannelsprovided.Thetripsettingsandresponsetimeinformationhasbeendeleted,andisprovidedintheTechnicalSpecifications.Tables7.3-8thru7.3-11aredeleted,withappropriatenumberofchannelinformationincorporatedintoTables7.3-1thru7.3-4.RevisionstoTable7'-5havebeensubmittedwiththeresponsetoQuestion032.55.2.Theinstrumentresponsetimesandmargins(oftripsettings)areincludedintheTechnicalSpecifications.ThedatainRev.22,4/Sl032.54"2 SSES-FSARtheTechnicalSpecificationsisintendedtoalsosatisfytherequirementsofIEEE279-1971,Section3.3.TheHPCIturbineoverspeedtripisawhichisintegralwiththeturbine.discussionoftheHPCIturbine.TheandaccuracyinformationisprovidedSpecifications.mechanicaldevice,SeeSection6.3,foroverspeedtripsettingintheTechnical4,Figure7.3-5isrevisedtoshowasimplifiedpictureoftheADSandLPCI/CSinitiationlogic.The"ADSdivisionIandIILogics,discussedinrevisedSubsection7.3.l.la.l4-4andshownindetailbyFigure7.3-8sheet3,areidenticalandenergizingeitherwillinitiateADS.ThereforetheyareshowntwiceinFigure7.3-5.RelatingthesimplifiedpictureinFigure7.3-5tothedetailedonein'Figure7.3"8,theleftbranchcorrespondstologicAinDiv.I(orBinDiv.II)andtherighttologicCinDivisionI(orDinDiv.II).Anotehasbeenadded,toFigure7.3-5toclarifytheseparatelogicsforDiv.IandDiv.II.ThereferencetoFigure7.3-16containedonFigure7.3-5iserroneous.ThecorrectreferenceFigureforLPCIlogicisFigure7.3-10,RHRFCD.Thelowpressureinterlocksforpumps(CSandRHR)havebeenaddedtoFigure7.3-5.5.TherevisedTable7.3-2includesanappropriateentryfor.ADSinitiation,withactioncausedbytwosignals,oneeachfromthereactorwaterlevelLl,andreactorwaterlevelL3.BothsignalsarerequiredbeforeADSisautomaticallyinitiated.ThesetpointforthisactionisprovidedintheTechnicalSpecifications.6.TheinstrumenttripsettingshavebeenremovedfromthetablesofChapter7andincludedintheTechnicalSpecifications'helevelswitchtripsettingof-149inchesforADSandCSwillbechangedandwillbewithintheproperaccuracyandrangeoftheinstrument.Thetripsettingaccuracyrelatedtoabnormaloperatingtemperaturewithinthedrywellisdiscussedintheresponsetoquestion032.59.Instrumentdriftisincludedindevelopingtheinstrumentsetpoints.7./8.TheLPCIpumpdischargepressurepermissivefortheADShastworedundantchannelsprovidedforeachLPCI(RHR)pump.Howevertheinstrumentshaveidenticalranges,soTable7.3-2hasbeenrevisedtoagreewithTable7.3-4.TheADStimersetpointfoundinTable6.3-2isanupperlimit.Thecorrectsetpoints(includingmargin)areprovidedintheTechnicalSpecification.Thepropertimedelaytimeisbymechanicaladjustmentofpneumaticallyoperatedtimedelayrelay.ThetextofSubsectionRev.22,4/81032.54-3
.SSES-FSAR7.3'.1a.l.4.5hasbeenrevisedtodeletetheactualnumericalvalue.The105secondtimevalueisnominal,andwasusedtoallowforthemarginandtoleranceofthedevice.ThepropervalueisprovidedintheTechnicalSpecification.9.ThetwotripsystemsforCShavediverseinstrumentsspecifiedforreactorvesselandthesameinstrumentsareusedinLPCIlowpressure.Tables7.3-3and7.3-4,asrevised,givetheinstrumentrangesforbothtripsystems.ThetripsettingvaluesareprovidedintheTechnicalSpecifications.10.TheCSandLPCI(RHR)pumpminimumflowbypassrangesareconvertedfromdifferentialpressuretoflowontherevisedTables7.3-3and7.3-4.11.Table7.3-1hasbeenrevisedtoincludeHPCIpumpminimumflowbypassandtheHPCIpumpflowcontrollersignalingtheHPCIturbine.Theturbineoverspeedtripisamechanicaldevicethatisintegralwiththeturbine,seeSection6.3.TheturbineoverspeedinstrumentrangehasbeenaddedtoTable7.3-1.ThenumberofchannelsprovidedisaddedtoTable7.3-1,andTable7.3-8isdeleted.TheminimumnumberoftripchannelsrequiredhavebeenaddedtotheTechnicalSpecifications.12.TheLPCITable7.3-4hasbeenexpandedtoincludetheinstrumentsoftheactualdesignandthenumberofchannelsprovided.ThemarginandtripsettingofTable7.3-4aswellasTable7.3-10havebeendeleted.13.TheCSTable7'-3hasbeenrevisedtoaddthenumberofinstrumentchannelsprovided,andmargin,responsetime,andtripsettingshavebeendeleted.Table7.3-11hasbeendeleted.Rev.22,4/81032.54-4 SSES-FSARUESTION040.2ThestaffrequiresthatthefollowingqualificationtestprograminformationbeprovidedforallClass1Eequipment:(1)IdentificationofEquipmentincluding,(a)Manufacturer(b)Manufacturer'stypenumber(c)Manufacturer'smodelnumber(2)Equipmentdesignspecificationrequirements,including,(a)Thesystem"safetyfunctionrequirements(b)Anenvironmentalenvelopewhichincludesallextremeparameters,bothmaximumandminimumvalues,expectedtooccurduringplantshutdown,normaloperation,abnormaloperation,andanydesignbasisevent.(c)Timerequiredtofulfillitssafetyfunctionwhensubjectedtoanyoftheextremesoftheenvironmentalenvelopespecifiedabove.(3)Testplan,(4)Testset-up,(5)Testprocedures,(6)Acceptabilitygoalsandrequirements,(7)Testresults,(8)Identificationofthedocumentswhichincludeanddescribetheaboveitems.(9)TheinformationrequestedaboveshallbeprovidedforatleastoneitemineachofthefollowinggroupsofClass1Eequipment.(a)Switchgear(b)Motorcontrolcenters,(c)Valveoperators(incontainment)(d)Motors(e)IogicequipmentRev.22,4/81040.2-1 SSES-FSAR(f)Cable(g)Dieselgeneratorcontrolequipment(h)Sensors(i)Limitswitches(j)Heaters(k)Fans(1)Controlboards(m)Instrumentracksandpanels(n)Connectors(o)Penetrations(p)Splices(q)Terminalblocks(10)InaccordancewiththerequirementsofAppendixBof10CFR50,thestaffrequiresastatementverifying:(a)thatallClass1Eequipmenthasbeenqualifiedtotheprogramdescribedabove,and(b)thatthequalificationinformationisavailableforanNRCaudit.RESPONSE:ThequalificationtestprograminformationforClasslEequipmentisprovidedintheSusquehannaSESEnvironmental(}ualificationReportForClasslEEquipmentsubmittedunderseparatecover.Rev.22,4/81040.2-2 SSES-PSABstartontheautostartsignalandoperateonstandbyforfiveminutes.(d)Verifyingthatonlossofoffsitepowerinconjunctionwithasafetyfeaturesactuationsignalthedieselgeneratorsstartontheautostartsignal,theemergencybusesareenergizedwithpermanentlyconnectedloads,theauto-connectedemergency(accident)loadsareenergizedthroughtheloadsequence,andthesystemoperatesfozfiveminuteswhilethegeneratorsareloadedwiththeemergencyloads.(e)Verifyingthatoninterruptionoftheonsitesourcestheoadsareshedfromtheemergencybusesinaccordancewithdesignrequirementsandthatsubsequentloadingoftheonsitesourcesisthroughtheloadsequencer.(4)Thevoltagelevelsatthesafety-relatedbusesshouldbeoptimizedforthefullloadandminimumloadconditionsthatareexpectedthroughouttheanticipatedrangeofvoltagevariationsoftheoffsitepowezsourcebyappropriateadjustmentofthevoltagetapsettingsoftheinterveningtransformers.Merequirethattheadequacyofthedesigninthisregardbevezifiedbyactualmeasurementandbycorrelationofmeasuredvalueswithanalysisresults.Provideadescriptionofthemethodformakingthisverification;beforeinitialreactorpoweroperation,providethedocumentationrequiredtoestablishthatthisverificationhasbeenaccomplished.RESPONSEI.RefertoFigures8.3-1,83-2,8.3-3and8.3-15forthefollowingdiscussiononundervoltagedetectionandtransferlogic.Theprimarybustransferonlossofoffsitepowerisinitiatedatthe13.8kVstartupswitchgear.Eachclass1E4.16kVswitchgearbusesprovidethebackupundervoltagetransfer.RefertoSubsection8.3fordiscussiononbusarrangementandtheinterconnectionoftheoffsitepowersuppliesandtheon-sitedistributionsystem~~Rev.22,4/81040.6-3 SSES-ZSAR(1)Each13.8kVstartupbusisprovidedwithanoffsitepowersupplyandthecapabilityofconnectingtothesecondoffsitepowersupplybytheclosingofthel3.8kVtiebreaker(breaker52-10502).Theundervoltagedetectionsystemateach13.8kVswitchgearbusconsistsof(1)incomingfeeder(offsitepowersupply)undervoltage-clays-device27AI,(2)busundervoltagerelay-device27A2,and(3)tiebusundervoltagerelay-device27A1.{a)Device27AX-initiatestrippingoftheincomingfeeder.Device27AIisaninstantaneousplungertyperelaywithpickupsettingat93.6volts(78%oftherate120volts).TwoindependentsinglephaserelaysareusedtomonitortheA-Band0-Cphasevoltages.Theincomingbreakeristrippedoncoincidencelogicofthetwoundervoltagerelaysat917voltswith30cycletimedelay.(b)Device27A1-ProvidesthepermissiveforclosingoftiebreakerDevice27A1isalongtimeinductiondisctypeundervoltagerelaysetat82volts(68%ofrated)andtimedial1/2.Twosinglephaserelayareprovidedformonitoringtheavailabilityofthealternateoffsitepowersupplyatthe13.8kVlevelandprovideacoincidencelogicfortheclosingofthetiebreaker(c)Device27A2-initiatesthebustransfer)Device27A2isa3phaseinstantaneousplungertyperelaywiththreefullwavebridgerectifiers.Therelayissettodropoutat30volt(25%ofrated).Bustransferiscompletedbytheclosingofthetiebreaker(permissivebydevice27A1).2.Each4.16kVclass1Eswitchgearbusisprovidedwithapreferredandanalternate(offsite)powersupplyandonedieselgeneratorfeederasdiscussedinSubsection83.1.3Theundervoltagedetectionandbackupbustransferonlossofoffsitepowerorsustaineddegradedvoltageonthebusisprovidedby(1)incomingfeederundervoltagerelay-device27',(2)busundervoltagerelay-device27A,and(3)degradedvoltageprotectionrelays-devices27B1,27B2,27B3,and27B4.ThedevicesettingsfortheClassIEbusundervoltageprotectionaresummarizedinthefollowingTable40.6-1.Rev.22,.4(83>040.6-4 SSES-FSARDevice27AI-providesthepermissiveforclosingoftheincomingbreakerDevice27AIisasinglephaseinductiondisctyperelaysetat92voltsandtimedial1/2.Thisrelayisusedtomonitortheavailabilityof'theoffsitepowersupplyattheclasslE4.16ivlevel.(b)Device27A-initiatesthebustransferDevice27Aisa3phaseinstantaneousplungertyperelaywiththreefullwaverectifiers.Therelayissettodropoutat18voltor15%ofratedbusvoltage.The4.16kVbustransferisinitiatedwithatimedelayof10cyclesbytrippingofthepreferincomingfeederbreaker.Thetransferiscompletedifthealternateoffsitepowersupplytothis4.16kVbusisavailable(permissivebydevice27AI).Incasethealternateoffsitepowerisnotavailable,thestandbydieselgeneratorisinitiatedtostartwitha0.5seconddelay.(c)Devices27B1,27B2,27B3,and27B4-initiatebustransferandundervoltagealarm.Theseundervoltagerelaysaresolid-state,singlephasewithdefinitetimedelay(ITE27Dtypedefinitelongtime).Theadditionallevelvoltageprotectionforeach4.16kVClassIEbusisprovidedtoassurethatvoltagelevelsatallClassIEdistributionbusesmeettheminimumrequirementofallsafetyrelatedequipment.Intheeventoflossofvoltageonthe4.16kVClassIEbus,thebusundervoltagerelay(27A)initiatesbustransferperparagraph(b)above.Inaddition,relays27Bl,27B2,27B3,and27B4providebackupprotectionforalarmsandinitiatingbustransfer.Ifadegradedvoltageconditionoccursonthe4.16kVClassIEbus,withnoLOCAsignalpresent(seeFigure8.3-15),whichisbelowthesettingofrelays27B1and27B2,analarm(coincidencelogic)willbeinitiatedafter10seconds.Thesamerelayswillinitiatethebustransferafter30minutesLOCAsignalswillbypassrelays27B1and27B2orbustransferwillbeblockedbyLOCA.The10secondtimedelayisprovidedtoprecludespuriousalarms.The30~inutestimedelayisprovidedforoperatorstoinitiatecorrectiveactions.Theserelaysprovidepre-alarmtoalerttheoperatorthat"abnormal"voltageconditionexistsattheClassIEbus.Rev.22,4/81040.6-5 SSES-FSARInaddition,relays27B3and27B4willinitiateanalarmandbustransferafter17secondswhenthebusvoltageisdegradedbelowthesettingcoincidentwithanLOCAcondition.Thesetworelaysarealsoconnectedinacoincidentlogicwithtimedelayrelaystoprecludespurioustrippingoftheoffsitepowersources.Thisprotectiveschemewillforcealossofoffsitepoweronthe4.16kVClassIEbusondegradedbusvoltage.Ifthealternateoffsitepowerisnotavailable,theemergencydieselgeneratorwillbestartedautomaticallywitha0.5seconddelayandconnectedtotherespectivebuswithin10secondspersection8.3.1.4.1.Allbusundervoltagerelayswillinitiatebustransfer,onlywhenthebusisfedfromtheoffsitepowersupplies.However,theserelayswillinitiateundervoltagealarmevenwhenthebusisenergizedbyemergencydieselgenerator.II.(1)Selectionofallvoltagerelaysettingsisbasedontheon-sitedistributionsystemloadflowstudyandisverifiedbypreopezationaltests.Thecontinuousoperatingvoltageateachdistributionvoltagelevelismaintainedat,+10%oftheratedvoltagelevelovertheentiretransmissiongridoperatingrange.Trippingoftheoffsitepoversupplyatthe13.8kVlevelisaccomplishedbyacoincidencelogicoftvoindependent'inglephaseundervoltagerelays.ThebackuptrippingofthesameoffsitepowersupplytotheClass1E416kVsvitchgearisprovidedbya3phasefullwaverectifierstypeundezvoltagerelayforminimizingnuisancetrippingsuchaslossofa-..singlecontrolfuseinthedetectioncircuit..Thetotaltimedelayallowedbyrestarting{starting)ofclasslEequipmentafteraDBAis13secondsasshownon'able8.3-1.10secondsisreservedfordieselgeneratorstarting.Therefore,3secondsisallocatedforvoltagesensingandbustransfer.Pze-operatingtestsvillverifythatthetimedelayonthebustransferdoesnotexceedtheallowabletime.Asdiscussedin(I)ofabove,offsitepowersupplyzsautomaticallydisconnectedatthe13.8kVlevel.IfthetransferisnotcompletedwithinthetimedelayoftheClass1E416kVbustransfercircuit,theoffsitepowersupplyisalsodisconnectedatthe4.16kVlevel.TheundervoltagedetectionsensorsandcircuitsaredesignedinaccordancewithIEEEstd279-1971Rev.22,4/81040.6-6 SSES-FSAR4)4((2)Allloadsoneach4.16kVClass1Eswitchgearbusexceptthe480voltloadcentercederareshedonlossofpowertothebus.Oncethebusisre-energized,the4.16kVClasslEloadsareloadedinaccordancewiththepre-settimedelay.Loadsheddingandreloadingof4.16kVclasslEloadsarerepeatedasdiscussedabovewheneverthebusbecomesde-energized.(4)RefertoChapter16forTechnicalSpecification.Transformertapsettingsaceselectedforoptionaloperatingvoltagelevelsfora11loadingconditionsundertheanticipatedvoltagevariationoftheoffsitepowersupplies.Thecontinuousoperatingvoltageateachlevelismaintainedwithin+10%orated.Pre-opeationaltestsverifytheactualvoltagelevels.III.RelaySettings:Thefunctionandsettingsofundervoltagerelaysaredeterminedinconsiderationofthefullload,minimumload,andthelargestmotorstartingconditionsthatareexpectedthroughouttheanticipatedrangeofvoltagevariationsfortheoffsitepowersources.Thefollowingdesigncriteriaareused:(1)Themaximumallowablevoltageatnoloadortheminimumloadcondztxonsis110%ofthemotorratedvoltage.(2)Theminimumvoltageunderthemaximumrunningloadconditionxs90/ofthebusratedvoltage.(3)Theminimumstartingvoltageis80%ofmotorratedvoltage.SeeTable40.6-1.Rev.22,4/81040.6-7 SSES-FSARTABLE40.6-1SETTINGTABLE(4KVBUS)DeviceNo.27AI(preferred)FunctionPermissivetoclosethepreferredpowerincomingBreaker.AlarmYesVoltage~nettin95%Time~nettin8sec.27AI(alternate)PermissivetoclosethealternatepowerincomingBreakerYes95%8sec.27A59/27Initiatebustransfer.Triptheincomingclosedbreaker.Busover/undervoltage(alarmonly&locatedinloadcenter)YesYes15%110%/90%10cycles10sec.27Bl27B2Undervoltagealarmandinitiatebustransferwithtimedelayrelays.Yes95%10sec.27B1X27B2XTimedelayrelayswith27B1&27B2toinitiatebustransfer.No30min.27B327B4InitiatebustransferonLOCAconditionNo93%17sec.Rev.22,4/81 SSES-FSARQUESTION040.32:Insection9.5.2.2youdescribetheplantcommunicationssystemprovided.Itisnotedthatuseofradio(portableandfixed)communicationshasbeenexcluded.Aspartoftheplantdefense-in-depthconcept,intheeventofanaccidentorfireinanareawherefixedcommunicationssystemscannotbeused,werequire(asaminimum)thatportablecommunicationsequipmentbeprovidedatstrategicworkstationsintheplantforusebypersonnelundersuchconditions.RESPONSE:RefertorevisedSubsection9.5.2andtheresponseprovidedtoquestion281.13.Rev.22,4/81040.32-1 SSES-FSARUESTION40.951.Provideatablethatlistsallequipmentincludinginstrumentationandvitalsupportsystemequipmentrequiredtoachieveandmaintainhotand/orcoldshutdown.Foreachequipmentlisted:a.Differentiatebetweenequipmentrequiredtoachieveandmaintainhotshutdownandequipmentrequiredtoachieveandmaintaincoldshutdown.b.Defineeachequipment'slocationbyfirearea,c.Defineeachequipment'sredundantcounterpart,d.Identifyeachequipment'sessentialcabling(instrumentation,control,andpower).Foreachcableidentified:(1)Describethecablerouting(byfirearea)'fromsourcetotermination,and(2)Identifyeachfirearealocationwherethecablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesforanyredundantshutdownsystem,ande.Listanyproblemareasidentifiedbyiteml.d.(2)abovethatwillbecorrectedinaccordancewithSectionIII.G.3ofAppendixR(i.e.,alternateordedicatedshutdowncapability).RESPONSE:Themethodofverifyingsafe-shutdowncapabilitysuggestedinQ40.95wasconsidered.However,amoreefficientandlesstime-consumingbutequallyeffectivemethodofreviewbasedonexaminationofeachfirezonewaschosen.First,alistofsystemsrequiredtoshutdowntheplantwasdeveloped.Criteriaincludedalossofoffsitepower,allsystemsshouldbesafety-related,nosinglefailure(otherthanasinglefireanditseffects),andthatmanualoperationandcontrolpost-firewereacceptable.SeeTable40.95-1.Toshowtheredundantequipmentanddifferentiatebetweenequipmentrequiredtoachieveandmaintainhotshutdownandequipmentrequiredtoachieveandmaintaincoldshutdown,Table40.95-1isdividedintothreegroupsofsystems,categorizedbytheirfunctions,asdescribedbelow.GroupIconsistsofthosesystemsrequiredforbothhotandcoldshutdown.Anexampleisthecontrolroddrivemanualscramcircuits.GroupIsystemsarefurtherdividedintotwoindependentsubsystemsdesignatedDivisionIandDivisionII.DivisionsinanyoneGroupIsystemmustbesingle-fireisolated*fromeachother.Rev.22,4/8140.95-1 SSES-FSARGroupIIconsistsofthosesystemsrequiredforhotshutdown.Severalsystemsarelistedt;ogetherbecauseoftheinterdependencyofthesesystems,e.g.dieselgeneratorsandauxiliaries.Again,thesesystemsarefurtherdividedintoDivisionsIandII.AllequipmentandcablesessentialforGroupII,DivisionI,mustbesingle-fireisolatedfromallessentialcablesforGroupIIDivisionIIsystems.Hence,asanexample,RCIC(DivisionI)andHPCI(DivisionII)mustbesingle-fireisolated*fromeachother.GroupIIIconsistsofthosesystemsrequiredforcoldshutdown.Again,DivisionImustbesingle-fireisolated*fromDivisionII.Thosesystemswithcontainmentisolationvalveshaveacross-divisonalcircuit.Thisisnecessaryfordiversecontainmentisolationfunction.Ifthesystem,sayHPCI,isDivisionII,thecross-divisionisolationvalvecircuitswouldberoutedintheirownseparatedconduits.Likewise,theRCICsystem,DivisionI,thecross-divisionalcircuitswouldberoutedintheirownconduits.Thecrossdivisionalcircuitsofthesetwosystems,willbesingle-fireisolatedfromeachotherandfrombothDivisionsIandIIuptothebreaker.Table40'5-2isaspecificcomponentlistingofthosedevicesessentialtothefunctioningofthesystemsinTable40.95-1.Firezonelocationforeachdeviceisalso-listed.Unit2equipmentfornon-commonsystemsdifferonlyinthattheprefix1ischangedto2forbothequipmentnumberandfirezone.Thespecificmethodofcablereviewisdescribedbelow.TheFireProtectionReviewReportanalysis(Section4.0)verifiesthatfireswillbecontainedwithinthezoneoforigin.Eachfirezoneisreviewedindividually.First,aracewaylayoutdrawingismarkedtoshowthedivisionalizationofthesafety-relatedraceway.Theminoritydivisionisidentifiedanditsracewayislisted.Theterm"minoritydivision"referstotheelectricaldivisionwhichhasfewerofitsracewaysroutedthroughthefirezoneinquestion.Actually,eitherdivisioncouldbechosenforfurtherexamination,buttheminoritydivisionrepresentstheleasteffort.Thecablesinallthelistedminorityracewaysarechecked,andanynotconnectedtoasafeshutdownsystemasgiveninTable40.95-1ortoanyofthecomponentslistedinTable40.95-2aredeleted.Allcableleftisreviewedforitssupportofthesystem'ssafeshutdownfunction(s)andfortheeffectsoffailurecausedbyfire.Thisstepleavessafeshutdowncablingthatviolatesfirezoneseparation.Eachcableorcomponentisthenreviewedforapplicablefireprotectionmeasures.Thecableistheneitherreroutedorseparationbarriersand/orsuppressionanddetectionsystems,asnecessary,areprovided.*Single-fireisolatedmeanseitherinseparatefirezonesorhavingthefollowingfire-protectionmeasures:a)Fire/smokedetectionisprovidedinallfirezonescontainingessentialminoritydivisionsafeshutdownraceway..Rev.22,4/8140.95-2 FSAR-SSESTABLE40-95-1SystemsRequiredForShutdownGROUPI-SystemsRequiredforHot6ColdShutdownControlRodDrive-ManualScramCircuitsonlyMainSteamIsolationValves(manualclosurefunctionsonly)SuppressionPoolTemperatureMcnitorinqReactorPressureVesselInstrumentationGROUPII-SystemsRequiredforHotShutdownDivisionIRCICADSESHESSWPumphouseHVACDieselGeneratorsandAuxiliariesDieselGeneratorHVACContainmentInstrumentGasDivisionIlHPCIplusallDivisionIIofthesesystemsunderModeII,DivisionexceptRCIC.GROUpIII-SystemsRequiredforColdShutdownDivisionIRHRRHRSMESQESSMPumphouseHVACDieselGeneratorsandAuxiliariesDieselGeneratorHVACDivisionIIAllDivisionIIofaboveRev.22,4/Sl SSES-FSAR2.ProvideatablethatlistsClass1EandNon-ClassIEcablesthatareassociatedwiththeessentialsafeshutdownsystemsidentifiedin,item1above.Foreachcablelisted:a.Definethecables'ssociationtothesafeshutdownsystem(commonpowersource,commonraceway,separationlessthanRegulatoryGuide1.75guidelines,cablesforequipmentwhosespuriousoperationwilladverselyaffectshutdownsystems,etc.))b.Describeeachassociatedcablerouting(byfirearea)fromsourcetotermination,andc.Identifyeachlocationwheretheassociatedcablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesrequiredfororassociatedwithanyredundantshutdownsystem.RESPONSE:a.AffiliatedcircuitsareusedinSSESinplaceof"associated"circuitswhicharedefinedinSection8.1.6.lnparagraph4)and5).Theseparation/isolationbetweenClassIEandnon-ClassIEcablesaredesignedtominimizeanyfailureinthenon-ClassIEequipmentfromcausingunacceptableinfluencesintheClassIEsystem.b.TheaffiliatedcircuitsaresubjectedtothesamerequirementsasClassIEcircuits.RefertoSections3.12.3.4and8.3.1.11.4andTable8.3-10forcableroutingrequirements.c.TheaffiliatedcablesareroutedwiththeirrespectiveClassIEcablesasdescribedinTable8.3-10.Therefore,theseparationbetweentheaffiliatedcablesandtheredundantClassIEcables,includingthosecablesrequiredforsafeshutdown,isinaccordancewithRegulatoryGuide1.75.The.responsetoQuestion40.95addressesthecableseparationbetweenredundantshutdownsystems.Rev.22,4/8140.96-1 SSES-FSARUESTION3.Provideoneofthefollowingforeachofthecircuitsidentifiedinitem2.cabove:aTheresultsofananalysisthatdemonstratesthatfailurecausedbyopen,ground,orhotshortofcableswillnotaffectit'sassociatedshutdownsystem,b.IdentifyeachcircuitrequiringasolutioninaccordancewithsectionIII.G.3ofAppendixR,orIdentifyeachcircuitmeetingtherequirementsofsectionIII.G.2ofAppendixR(i.e.,three-hourwall,20feetofclearspacewithautomaticfiresuppression,orone-hourbarrierwithautomaticfiresuppression).RESPONSE:a.Anaffiliatedcircuitmayaffectitsassociatedshutdownsystemintwoways:Affiliatedcircuitroutedwithshutdowncircuitorinsameenclosure:A~nalaie:AnopencircuitofaffiliatedcablewillnotaffectshutdownsystembecausetheClassIEcableandaffiliatedcablehavethesamequalifiedcableinsulation.(seeTable9.5-1).Forshortingorgroundingofaffiliatedcircuits,refertoSection8.1.6.lnparagraph5)forthebasisandmethodsforseparation/isolationofNon-ClassIEandClassIEcircuits.Theworstcredibleeventwhichcouldaffectoneoftheredundantshutdowntrainsthroughtheaffiliatedcircuitisafireinvolvingaracewaycontainingbothaffiliatedcableanditsassociatedshutdownsystemcables.Assumeintheworstcasewherethesecablesareallshortedtogetherwith120Vac,125Vdc,250Vdc,or480Vaccableduetoafire.(4kVandhighervoltagecablesareroutedintheirownconduit).Theprotectivedevice(s)ofthefaultedcircuitsshouldbetrippedtopreventfurtherdamageintotheshutdownsystem.IftheClasslEprotectivedevicedoesnottrip,theshutdownequipmentmaybedamaged,andthereforepreventtheequipmentfromperformingitsshutdownfunction.However,failureofaClasslEdevicetotripmustbeconsideredasinglefailure,whichisbeyondthefireprotectiondesignbasis.Inorderforthisshutdowntrain,asdesigned,tofailduetofire,thesemultiple,independent,lowprobabilityeventsmusthappensimultaneously.Thisisconsideredextremelyunlikely.Rev.22,4/8140.97-1 SSES-PSAR(2)Affiliatedcircuitsharingthesamepowersupplyoftheassociatedshutdowncircuits:A~nalsis:SameasdescribedinSection8.1.6.1.nforseparation/isolationofnon-ClassIEandClassIEcircuits.b.Rc.TheaffiliatedcircuitsaresubjectedtothesamerequirementsasClassIEcircuits.Theresponsetoquestion40.95addressesthiscondition.Rev.22,4/8140.97-2 SSES-FSAR5~Theresidualheatremovalsystemisgenerallyalowpressuresystemthatinterfaceswiththehighpressureprimarycoolantsystem.ToprecludeaLOCAthroughthisinterface,werequirecompliancewiththerecommendationsofBranchTechnicalPositionRSB5-1.Thus,thisinterfacemostlikelyconsistsoftworedundantandindependentmotoroperatedvalveswithdiverseinterlocksinaccordancewithBranchTechnicalPositionICSB3.Thesetwomotoroperatedvalvesandtheirassociatedcablemaybesubjecttoasinglefirehazard.Itisourconcernthatthissinglefirecouldcausethetwovalvestoopenresultinginafire-initiatedIOCAthroughthesubjecthigh-lowpressuresysteminterface.Toassurethatthisinterfaceandotherhigh-lowpressureinterfacesareadequatelyprotectedfromtheeffectsofasinglefire,werequirethefollowinginformation:a~Identifyeachhigh-lowpressureinterfacethatusesredundantelectricallycontrolleddevices(suchastwoseriesmotoroperatedvalves)toisolateorprecluderuptureofanyprimarycoolantboundary.b.Identifyeachdevice'sessentialcabling(powerandcontrol)anddescribethecablerouting(byfirearea)fromsourcetotermination.C.Identifyeachlocationwheretheidentifiedcablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesfortheredundantdevice.d.Fortheareasidentifiedinitemcabove(ifany),providethebasesandjustificationastotheacceptabilityoftheexistingdesignoranyproposedmodifications.RESPONSE:Wehavereviewedthemajorreactorpressureboundaryhighpressure/lowpressureinterfacevalvesperBranchTechnicalPositionRSB5-1.Usingthesecriteria,checkvalvesinserieswithmotoroperatedvalves(MOVs)areacceptable.AfirecouldopenonlytheMOV.ManyoccurrencesofthiscombinationofcheckandMOVexistatSSESintheCoreSpray,Feedwater,andResidualHeatRemovalSystems,amongothers.Usuallyassociatedwiththecheckvalveisapneumaticoperator.Thisoperatorisfortestingpurposesonlyandcanneitherunseatnorpreventfromseatingthevalveflapperwhenadifferentialpressureexistsacrossthevalve.Hence,afire-causedfailureofthesolenoidactuatorsforthepneumaticoperatorsonthesecheckvalvescannotcausethevalvestoopeninadvertentlyandthuscannotdegradethereactorcoolantpressureboundary.Rev.22,4/Sl40.99"1 SSES-FSARInadditiontotheabove,threepairsofvalvesperunit(sixpairstotal),allassociatedwiththeRHRSystemashigh/lowpressureinterfacevalves,consistoftworemotelyoperatedvalvesinseries.Onepairofthesevalvesperunitintheshutdowncoolingsuctionline.TheotherpairareinthelinestoeachRHRheatexchangerforuseinthesteamcondensingmode.Thevalvenumbersaregivenbelow:Unit1HV-E-11-1F008/HV-E-ll-lF009ShutdownCoolingMode(motoroperated)PV-E-ll-1F051A/PV-E-ll-lF052ASteamCondensingMode(airoperated)PV-E-ll-1F051B/PV-E-ll-lF052BSteamCondensingMode(airoperated)Unit2HV-E-11-2F008/HV-E-ll-2F009ShutdownCoolingMode(motoroperated)PV-E-ll-2F051A/PV-E-11-2F052A'teamCondensingMode(airoperated)PV"E-11-2F051B/PV-E-ll-2F052BSteamCondensingMode(airoperated)Theshutdowncoolingsuctionvalvesareinseparatedivisionsandaresubjecttothenormalseparationcriteria.Also,theinboardvalveislocatedinsidetheinertedcontainmentwhereafirecannotbepostulated.Acable-by-cableseparationreviewwasconducted;cablesfrombothvalvesarenotroutedinanysinglefirezoneotherthanthemaincontrolroomandtheRemoteShutdownPanels(RSP).AreactorpressurevesselinterlockpreventsashutdowncoolingvalveswitchinthemaincontrolroomfromopeningitsvalvewheneverthevesselpressureexceedsthedesignratingofthedownstreamRERpiping.AdesignchangeisunderwaytorelocatethepressureinterlockcontactbetweentheMCRandtheRSP.Therelaypanelscontainingthepressurecontactsarelocatedinseparatedrelayrooms.Hence,afireoranoperatormistakeineithertheMCRorRSPwillnotcauseanoverpressurization.Thesteamcondensingmodevalvesareinterconnectedbydesignforcoordinatedsteamadmissionandpressurecontrolandhencearenotseparatednordivisionalized.Shouldbothvalvesbedrivenopenbyfire,adequateoverpressurizationprotectionexistsviaPSV-Ell"F055A8BtopreventruptureofthedownstreamRHRpiping.Rev.22,4/8140.99-2 SSES-FSARFigures3.6-1through3.6-9and3.6-14areindicatedas"Later".ProvideaschedulefortheirinclusionintheFSAR.RESPONSE:Seerevisedfigures3.6-1through3.6-8.Figure3.6-9hasbeenintentionallyleftblank.Figure3'-14willbeprovidedinthesecondquarterof1981.Rev.22,4/81110.29-1 SSES-FSARAsrequiredby10CFR50.55a(g)werequestthatyousubmityourpreserviceandinitial20monthinservicetestingprogramforpumpsandvalves.Enclosure110-3providesasuggestedformatforthissubmittalandadiscussionofinformationwerequiretojustifyanyreliefrequests.RESPONSE:Thepreserviceandinitial20monthinservicetestingprogramforpumpsandvalveshasbeensubmittedunderseparatecover.Rev.22,4/81110.47-1 SSES-FSARAreviewofthedesignadequacyofyoursafety-relatedelectricalandmechanicalequipmentunderseismicandhydrodynamicloadingswillbeperformedbyourSeismicQualificationReviewTeam(SQRT).Asitevisitatsomefuturedatewillbenecessarytoinspectandotherwiseevaluateselectedequipmentafterourreviewofthefollowingrequestedinformation.TheSQRTeffortwillbeprimarilyfocusedontwosubjects.Thefirstistheadequacyoftheoriginalsingle-axis,single-frequencytestsoranalysesofequipmentqualifiedperthecriteriaofZEEEStd.344-1971.Thesecondsubjectisthequalificationofequipmentforthecombinedseismicandhydrodynamicvibratoryloadings.Thefrequencyofthisvibrationmayexceed33hertzandnegatetheoriginalassumptionofacomponentsrigidityinsomecases.AttachedEnclosure110-4describestheSQRTanditsprocedures.SectionV.2.ArequiresinformationwhichyoushouldsubmitsothatSQRTcanperformitsreview.SeveraloftheBNRHarkZIOLapplicantshavestatedintheirClosureReportsthatequipmentwillbequalifiedfortheSRSScombinationofthehydrodynamicandseismicrequiredresponsespectra(RRS).Similarly,whenqualifiedbyanalysis,thepeakdynamicresponsesoftheequipmenttothehydrodynamicandseismicloadswillbecombinedbySRSS.ThecombiningbySRSSofeithertheRRSorpeakdynamicresponsesforhydrodynamicandseismicloadingsisnotacceptableatthistime.Toaidthestaffinitsreview,provideacompilationoftherequiredresponsespectralistedbelowforeachflooroftheseismicCategory1buildingsatyourplant.(1)theRRSfortheOBEorSSE,whicheveriscontrolling.lftheOBEiscontrolling,explainwhy.(2)thecontrollinghydrodynamicRRS(3)items(1)and(2)combinedbySRSS(4)items(1)and(2)combinedbyabsolutesum.RESPONSE:TheconcernsraisedbythisquestionhavebeenaddressedintheSRQTsubmittalsofDecember,1980,January,1981andFebruary,1981.Rev.22,4/81110.50-1 SSES-PSARQUESTION121.8:~ewillrequirethatyourinspectionprogramforClass1,Zand3componentsbeinaccordancewiththe=evise'ulesin10CEHPdr50,Section50.55a,paragraph(g)publ'shedinthePebruary12,1976issueofthe."-EDERALREGISTER.Toevaluateyourinspec-ionp"ogram,"hefollowingminimuminformationisnecessaryrorourreview:(1)Apreserviceinspectionplantoconsis-oftheapplicableASllECodeEditionandtheexceptionstotheCoderequirements.(2)Aninserviceinspectionplansubmittedwithinsixmonthsofanticipatedcommercialoperation.Thepreserviceinspectionplanwillberevi..wedtosupportthesafetyevaluationreportfindingoncompliancewithpreserviceandinserviceinspectionrequirements.Thebasisforthedeterminationwillbecompliancewith:(1)TheEditionofSectionXIoftheASl}ECodestatedinyourPSARorlaterEdit'onsofSectionXI=eferencedintheFEDERALREGISTERthatyoumayelecttoapply.AllaugmentedexaminationsestablishedbytheCommissionwhenaddedassuranceofstructuralreliabilitywasdeemednecessary.ExamplesofaugmentedexaminationrequirementscanbefoundinNRCpositionson(a)highenergyfluidsystemsinSRPSection3.2,(b)turbinediskintegrityinSRPSection10.2.3,and(c)feedwaterinletnozzleinnerradii.YourresponseshoulddefinetheapplicableSectionXIEdition(s)andsubsections.Ifanyexaminationrequirementsofthe"-ditionofSectionXIinyourPSARcannotbemet,areliefrequestincludingcompletetechnicaljustificationtosupportyourconclusionmustbeprovided.Theinserviceinspectionplanshouldbesubmittedforreviewwithinsixmonthsofanticipatedcommercialoperationtodemonstratecompliancewith10CFRPart50,Section50.55a,paragraph(g).Thisplanwillbeevaluatedinasafetyevaluationreportsupplement.TheobjectiveistoincorporateintotheinserviceinspectionprogramSectionXIrequirementsineffectsixmonthspriortocommercialoperationandanyaugmentedRev.22,4/81121.8-1 examinationrequirementsestablishedbytheCommission.Yourresponseshoulddefineallexaminationrequirementsthatyoudeterminearenotpracticalwithinthelimitationsofdesign',geometry,andmaterialsofconstructionofthecomponents.Attachedaredetailedguidelinesforthepreparationandcontentoftheinspectionprogramsandreliefrequeststobesubmittedforstaffreview.RESPONSE:TheinspectionprogramforClass1,2and3componentshasbeenprovided(PLA-619,N.W.CurtistoB.J.Youngblooddated1/27/81).Rev.22,4/81121.8-2 SSES-FSARUESTION123.1PursuanttoGeneralDesignCriterion2,safety-relatedstructures,systemsandcomponentsaretobedesignedforappropriateloadcombinationsarisingfromaccidentsandseverenaturalphenomena.Withregardtothevibratoryloadsattributedtothefeedbackofhydrodynamicloadsfromthepressuresuppressionpoolofthecontainment,thestaffrequiresthatsafety-relatedmechanical,electrical,instrumentationandcontrolequipmentbedesignedandqualifiedtowithstandeffectsofhydrodynamicvibratoryloadsassociatedwitheithersafetyreliefvalve(SRV)dischargeofLOCAblowdownintothepressuresuppressioncontainmentcombinedwiththeeffectsofdynamicloadsarisingfromearthquakes.ThecriteriatobeusedbythestafftodeterminetheacceptabilityofyourequipmentqualificationprogramforseismicanddynamicloadsareIEEEStd.344-1975assupplementedbyRegulatoryGuides1.100and1.92,andStandardReviewPlanSections3.9.2and3.10.Statetheextenttowhichtheequipmentinyourplantmeetstheserequirementsandtheaboverequirementstocombineseismicandhydrodynamicvibratoryloads.Forequipmentthatdoesnotmeettheserequirementsprovidejustificationfortheuseofothercriteria.RESPONSE:I.BOPForSusquehannaProject,allBOPSafetyrelatedmechanical,electrical,instrumentationandcontrolequipmentlocatedinsidePrimaryContainment,ReactorandControlbuildings,isbeingqualifiedforSeismicloadsincombinationwithhydrodynamicvibratoryloadsassociatedwithSRVdischargeandLOCAblowdown.AlthoughtheSRSSmethodofcombinationofseismicandhydrodynamicloadsisacceptable,fortheprojecttobeconservative,theloadsarecombinedbyabsolutesummethod.Thecaseswhichhavedeviationsfromtheabsolutesummethodofcombinationwillbeidentifiedinthequalificationreports.ThecriteriaforthequalificationofBOPequipmentforseismicloadsisdescribedinSection3.7b.3oftheFSAR.ThecriteriaforloadcombinationsandmethodologyforthedesignassessmentandqualificationofSafetyrelatedBOPequipmentforseismicandhydrodynamicloadshavebeendescribedinSections5'and7.1.7oftheDesignAssessmentReport(DAR)Rev.2.BasicallytherequirementsofIEEEStd.344-1975asSupplementedbyRegulatoryguides1.100and1.92andSRPSections3.9.2and3.10arecoveredinthecriteriawiththefollowingexceptionforspatialcombinationofthreecomponentsofdynamicmotionasstatedinSection7.1.7.1.3oftheDAR.Thecriteriastates"theresponseatanypointisthemaximumvalue~Rev.22,4/81123.1"1 SSES-FSARobtainedbyaddingtheresponseduetoverticaldynamicloadwiththelargervalueoftheresponsesduetooneofthehorizontaldynamicloadsbytheabsolutesummethod."AllSusquehannaBOPequipmentisbeingqualifiedforthecriteriadiscussedabove.II.NSSSLOADCOMBINATIONS:TheseweretransmittedtotheNRCon8/28/80asPage3ofAttachmentNtoPLA-536.ThiswasinresponsetoNRCQuestion110.42.IMPLEMENTATIONOFLOADCOMBINATIONS:TheGESQRTProgramusesoutputsfromtheGEEquipmentAdequacyEvaluationProgramwhichcombinesdynamicloadsbySSESasacceptedbytheNRCinNUREG-0484.Theindividualitemsassociatedwiththeloadcombinationsareaddedasdescribedbelow:SteadyStateEvents(e.g.,DeadLoad,Pressure)-AbsoluteSumTimeVaryingComponents(e.g.,MaximumSeismic,MaximumHydrodynamic)-SRSSComponentsofEvents(e.g.,MaximumX-LoadDuetoY-Earthquake)-SRSSModalResponse-SRSS,exceptforcloselyspacedmodeswhereeffectsarecombinedbyAbsoluteSum,DoubleSum,orGrouping.Detailsforeachitemofequipmentarecontainedinthatequipment'sDesignRecordFilewhichisavailableforaudit.Rev.22,4/81123.1"2 SSES-FSARProvidethefollowinginformation:Twosummaryequipmentlists(oneforNSSSsuppliedequipmentandoneforBOPsuppliedequipment).Theselistsshouldincludeallsafetyrelatedmechanicalcomponents,electrical,instrumen-tation,andcontrolequipment,includingvalveactuatorsandotherappurtenancesofactivepumpsandvalves.Inthelists,thefollowinginformationshouldbespecifiedforeachitemofequipment.(1)Methodofqualificationused:a)Analysisoftest(indicatethecompanythatpreparedthereport,thereferencereportnumberanddateofthepublication).b)Ifbytest,describewhetheritwasasingleormulti-frequencytestandwhetherinputwassingleaxisormulti-axis.c)Ifbyanalysis,describewhetherstaticordynamic,singleormultiple-axisanalysiswasused.Providenaturalfrequency(orfrequencies)ofequipment.(2)Indicatewhethertheequipmenthasmetthequalificationrequirements.(3)Indicatethesysteminwhichtheequipmentislocatedandwhethertheequipmentisrequiredfor:a)hotstand-byb)coldshutdownc)bothd)neither(4)Locationofequipment,i.e.,building,elevation.(5)Availabilityforinspection(Istheequipmentalreadyinstalledattheplantsite?)Rev.22,4/81123.2-1 SSES-FSAR(ii)Anacceptablescenarioofhowtomaintainhotstand-byandcoldshutdownbasedonthefollowingassumptions:(1)SSEorOBE(2)Lossofoffsitepower(3)Anysinglefailure(iii)Acompilationoftherequiredresponsespectra(RRS)forallapplicablevibratoryloads(individualandcombinedifrequired)foreachfloorofthenuclearstationunderconsideration.RESPONSE:TheresponsetothisquestionwassubmittedviaPLA-627(CurtistoYoungblood)datedFebruary5,1981.Rev.22,4/81123.2-2 SSES-FSARUESTION123.3Identifythoseitemsofnuclearsteamsupplysystemandbalance-of-plantequipmentrequiringreevaluationandspecifywhyreevaluationisnecessary(i.e.becausetheoriginalqualificationusedthesinglefrequency,singleaxismethodology,becauseequipmentisaffectedbyhydrodynamicloads,orbecausebothoftheaboveconditionswerepresent)foreachitemofequipment.RESPONSE:OriginallyalmostallSafetyrelatedBOPequipmentsforSusquehannahadbeenqualifiedforonlySeismicloads.Thisequipmenthasbeenre-.evaluatedduetotheinclusionofnewhydrodynamic(SRV6LOCA)loads,andarebeingre-qualifiedwithrespecttothecriteriadescribedinDARSection7.17.ThequalificationprogramfortheBOPSafetyrelatedequipmentisbeingexecutedinthefollowingfourphases.Phase-I:uglificationofEuimentforOnlSeismicLoads:qrempecxfx.edxnFSARSubsectx.on3.7b.3.Phase>>II:EvaluationforCombinedSeismicandHdrodamic(SRV8LOCA)Loads:TheonlyknowndynamicloadatthetimeofexecutionofthisphaseoftheprogramwasSeismicloads.Duringthisphase,thevendorssupplyingtheequipmentwererequiredtoqualifytheequipmentinaccordancewiththereuientssThisphasewasundertakentoevaluateiftheexistingSeismicqualificationofallSafetyrelatedBOPequipmentcouldbeextendedtothecombinedSeismicandhydrodynamicloads.Thecriteriausedforthere-evaluationisdescribedinDARSection7.1.7.Thegeneralproblemareasidentifiedduringthisevaluationandtheproposedactiontomitigatetheseproblemsareshownbelow.Rev.22,4/81123.3-1 SSES-FSARPROBLEMACTIONAdditionalHydrodynamicLoadsFlexibilityofEquipmentSupportnotconsideredoRetestand/orReanalysis.oModificationstoequipmentortheirSupportsifrequired.oProvideresponsespectreconsideringsupportflexi-bility.InadequateModellingInadequateTestingoIncludeSupportConditionsduringanalysisortesting.oCorrectduringreanalysis.oRetestoQualificationbyanalysis.PhaseIII:ReuglificationEfforts:Specifically,theProblemareasidentifiedinthepreviousphaseareresolvedduringthisphasebytakingappropriateactions.There-qualificationreportsdemonstratethatthecriteriaofDARSection7.1.7havebeencompliedwith.PhaseIV:ModificationstoEuimentorEuimentSuorts:EquipmentortheirSupportsneedingmodificationsidentifiedduringtheregulationseffortsofPhaseIIIareexecutedduringthisphase.ThefollowingareNSSSequipment:SYSTEMSafetyReliefValveMSIVFlowElementRecirc.PumpMotorGateValveHCUCRDValvesSLCStorageTankSLCAccumulatorSLCPumpSLCExplosiveValveMPLijB21F013B21F022/F028B21N051/52/53/54B31C001B31F023/31/32C12D001C12F009/10/ll/12C41A001C41A003C41C001C41F004Rev.22,4/81123.3-2 RHRHeatExchangerRHRPumpFlowOrificeAssemblyLPCSPump6MotorFlowOrificeAssemblyMSIVHeaterMSIVBlowerHPCIPumpHPCITurbineFlowOrificeAssemblyRCICPumpRCICTurbineFlowOrificeAssemblyFuelPrepMachineGen.PurposeGrappleDryerSSeparatorSlingHeadStrongBackControlRodGrappleRefuelingPlatformInVesselRackDef.FuelStorageCont.FuelStorageVaultSSES-FSARCONTROLROOMPANELSE11B001E11C002E11N012/N014E21C001E21N002E32B001E32C001/C002E41C001E41C002E41N007E51C001E51C002E51N001E18E001F18E011F19E008F19E009F20E002E21E003F22E006F22E009F22E012ReactorCoreCoolingBBPowerRangeMonitoringCabinetRPSDiv.1and2LogVBRPSDiv.2and3LogicalVBNSSSTemperatureRecorderVBFeedwater8RecirculationInstrumentPanelNSSSProcessInstrumentPanelDiv1RHR/HPCIRelayVBDiv2RHR/HPCIRelayVBADSChARelayVBMSIVLeakageControlDiv2VBHPCIRelayVBRCICRelayVBInboardValveRelayBoardOutboardValveRelayVBDiv1CSRelayVBDiv2CSRelayVBADSChBRelayVBMSIVLeakageControlDiv1VBRadiationMonitoringInstrumentPanelARadiationMonitoringInstrumentPanelBOperatingBBH12-P601H12-P608H12"P609H12-P611H12-P614H12-P612H12-P613H12-P617H12-P618H12-P628H12"P654H12-P620H12-P621H12"P622H12-P623H12-P626H12-P627H12-P631H12-P655H12-P606H12"P633'12-P680Rev.22,4/8l123.3-3 SSES-FSARTerminationCabinetsPlantOperationBenchboardCondensingChamberCondensingChamberCondensingChamberCondensingChamberCondensingChamberCondensingChamberNUCLEARBOILERLOCALPANELSH12-P700SeriesH12-P853B21-D002B21-D004ABB21-D006ADB21-D007ADB21"D008ADB21-D009ADReactorWaterClean-UpReactorVesselIevelandPressure(A)ReactorVesselLevelandPressure(B)RecirculationPumpAJetPumpBHighPressureCoolantInjectionBReactorCoreIsolationCoolingAResidualHeatRemovalChannelAResidualHeatRemovalDiv.2ChannelBRecirculationPumpsDrywellPressureLocalPanelADrywellPressureLocalPanelBMainSteamIsolationValveIeakageControlCoreSprayLocalPanelAStandbyLiquidControlMainSteamFlowA/BHighPressureCoolantInjectionLeakDet.CoreSprayChannelBMainSteamFlowC/DHighPressureCoolantInjectionReactorCoreIsolationCoolingLeakDet.MainSteamFlowA/BMainSteamFlowC/DMainSteamIsolationValveLeakageCon.HighPressureCoolantInjectionDiv.1AReactorCoreIsolationCoolingDiv.2BSRM/IRMNUCLEARBOILERTemperatureElementTemperatureElementTemperatureElementH23-P002H23-P004H23"P005H23-P009H23-P010H23-P014H23-PoljH23-P018H23"P021H23-P022H23"P057H23-P058H23"P074Div.2H23-P001H23-P011H23-P015H23-P016H23"P019H23-P025H23-P036H23-F038Div.2(B)H23-P041H23-P042H23-P073Div.1H23"P034H23-P037H23-P030/31/32/33B21-N004B21"N010ADB21-N014ADRev.22,4/81123.3-4 SSES-FSARTransmitterTransmitterTransmitterTransmitterTransmitterTransmitterPressureSwitchTemperatureElementTemperatureElementVacuumSwitchTemperatureElementDifferentialPressureTemperatureElementDifferentialPressureLevelSwitchI,evelSwitchTemperatureSwitchPressureTransmitterPressureIndicatorValve,GuideTubeMiscellaneousPartsPressureSwitchPressureSwitchLimitSwitchLimitSwitchI,evelTransmitterTemperatureElementDifferentialPressureDifferentialPressureDifferentialPressurePressureSwitchSwitchPressureSwitchLevelSwitchLevelSwitchTemperatureElementTemperatureElementFlowIndicatingSwitchDifferentialPressureSwitchPressureSwitchFlowMeterLevelSwitchLevelSwitchLevelSwitchIevelSwitchIevelSwitchTemperatureElementTemperatureElementTemperatureElementTemperatureIndicatorI,evelSwitchTemperatureElementB21"N015ADB21-N016ADB21-N017B21-N056ADB21-N064B31-N014CDB31-N023ABB31-N024ABC12-N013ADC12-N013EFC41-N003C41-N004C41"R003C51-J004AEC51-5110001C72-N003ADC72-N005ADC72-N006ADC72-N008ADEll-N008ABEll-N009ADEll"N013Ell-N015AEll-N015BEll-N018Ell-N021ABEll-N022ABEll-N023ABEll-N024Ell-N029ADEll-N030ADEll"N033ABE21-N003ABE21-N006ABE21-N007ABE32-N006E41-N002E41-N003E14-N014E41-N015ABE41"N018E41-N024ABE41-N025AHE41-N028ABE41-R002E51-N010E51-N011ABthruE41-N030ABRev.22,4/81123.3-5 SSES"FSARTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureSwitchElementElementElementElement.IndicatorElementElementElementE51-N021ABE51-N022ABE51-N023ABE51-N025ADthruE51-N027ADE51-R005G33-N016AFG33-N022AFG33-N023AFG33-N044ARev.22,4/81123.3-6 SSES"FSARQUESTION123.4:Describethemethodsandcriteriausedtodeterminetheacceptabilityoftheoriginalequipmentqualificationtomeettherequiredresponsespectraofitem2.(iii).-123.2(iii).RESPONSE:I.BOPForcases.wheretheoriginalspectraforwhichanequipmentwasqualifiedenvelopedthecombinedSeismicandhydrodynamicloadspectraofItem123.2(iii),theequipmentisconsideredqualified.Otherwise(whichistrueformostcases)theequipment,isrequalifiedforthecombinedspectratomeetthecriteriadiscussedinresponsetoQuestions123.1.ThesecriteriaaredescribedinSection7.1.7oftheDesignAssessmentReport.II.NSSSThemethodsandcriteriausedtodeterminetheacceptabilityoftheoriginalequipmentqualificationmaybefoundinGeneralElectricCompany'sProprietaryreports:NEDE-24788,"SeismicQualificationReviewTeam(SQRT)TechnicalApproachforRe-EvaluationofBWR4/5Equipment";andNEDE-25250"GenericCriteriaForHigh-FrequencyCutoffofBWREquipment".Rev.22,4/81123.4-1 SSES-FSARDescribethemethodsandcriteriausedtoaddressthevibrationfatiquecycleeffectsontheaffectedequipmentduetorequiredloadingconditions.RESPONSE:I.BOPAsdescribedinSubsection3.7b.3.2ofFSAR,ingeneral,thedesignofequipmentisnotfatiguecontrolledsincethenumberofcyclesinanearthquakeislow.ForcombinedSeismicandhydrodynamicloadsforequipmentqualifiedbyanalysis,thefatigueeffectsareimplicitlyconsideredsincethestressesduetoSRV(whicharegenerallycontrollingforfatigue)areasmallcontributiontotheoverallequipmentstresses.FatigueeffectsinBOPequipmentqualifiedbytestingareaccountedforbyrepetitionofthetests.Typicallytestsaredonefor5OBE(or5upsetconditions,i.e.,OBE+SRV+LOCA)followedby1SSE(or1faultedcondition,i.e.,SSE+SRV+LOCA)ineachoffront-to-back/verticalandside-to-side/verticalbiaxialconfigurations.Inaddition,onsomeselectedpiecesofequipment,vibratorytabletestingiscarriedoutforanextendeddurationoftime(suchas30to60minutes)beyondthecombinedloadingtest.TheinputmotionsfortheextendeddurationtestswillbesuchthatthegeneratedtestresponsespectraforanysegmentoftheextendeddurationtestswillenvelopetheSRVspectra.Furthermore,itwillbeascertainedthattheequipmentperformsitsintendedfunctionbefore,duringandafterthevibratorytabletests.Theresultsoftheextendeddurationtestswillbedocumentedintherespectivequalificationreports.II.NSSSVibrationfatiguecycleeffectsforNSSSequipmentdesignedtoASMEcoderequirementswasreviewedatGEbyNRCconsultantsfromBattellePacificNorthwestLaboratoriesonOctober7,1980.TheconsultantsstatedsatisfactionwiththeGEapproachwhichencompassesOBE,SRV,thermalandpressurecycles.NonASMECodecomponentsqualifiedbytestaddressthe"strongmotion"phaseofseismicandSRVdynamicmotionsufficienttogeneratemaximumequipmentresponse.Theseloadsarecontrolling.GEtestinggenerallyconsistsof5upsetand1faultedtestof30secondseachwhichisabout50$greaterthanrequiredtoaddressstrongmotionvibration.Rev.22,4/81123.5-1 SSES-FSARNonASMECodecomponentsqualifiedbyanalysisgenerallyhavenot,inthepast,hadtoaddressvibrationfatiguecycleeffects.Inmostcases,sucheffectsarenotnowpartofthequalificationrecord.Rev.22,4/Sl123.5-2 SSES-FSARBasedonthemethodsandcriteriadescribedinitems4and5,providetheresultsofthereviewoftheoriginalequipmentqualificationwithidentificationof(1)equipmentwhichhasfailedtomeettherequiredresponsespectraandrequiredrequalification,and(2)equipmentwhichwasfoundacceptable,togetherwiththenecessaryinformationtojustifytheadequacyoftheoriginalqualificatioa.RESPONSEI.BOPForcaseswheretheoriginalseismicreportscanbeextendedtoqualifyanequipmentforcombinedseismicandhydrodynamicloadsbyinspectionandsubsequentconcurrencebyvendor,suchdocumentsformapartofthequalificationpackage.Thefollowingpiecesofequipmentboughtundertheindicatedpurchaseorder(P.O.)fallintothiscategory:(1)Coolingandchilledwaterpumps(P.O.gM-327)(2)ExpansionTanksandAirSeparatorTaaks(P.O.AM-302)(3)NitrogenGasAccumulators(P.O.j/M-156)TherestoftheBOPequipmentisbeingqualifiedforthecriteriadescribedinSection7.1.7oftheDesignAssessmentReport.Thequalificationreportsforthisequipmentwillprovidetheappropriatedocumentation.II.NSSSRefertotheResponsetoQuestion123.3forthelistofequipmentreevaluatedbyGEoatheSusquehannaSQRTProgram.AlloftheequipmentlistedinqualifiedtoSQRTCriteriawiththeexceptionofthefollowiag:B21"F022/F028B31-F031/F032C12>>F009/F010F011/F012C41-A003C41-F004E32-B001MSIVGateValveCRDValveSLCAccumulatorSLCExplosiveValveMSIVHeaterDatarequiredfromvendorOperabilitydeflectionanalysisrequiredOperabilitydeflectionanalysisrequiredA/EpipeaccelerationsrequiredA/EpipeaccelerationsrequiredTestrequiredRev.22,4/81123.6-1 SSES-FSARE41-C002E51-C002F22-E006F22-E009H12-P608H23-P030"P031"P032-P033163C1158272A8005272A8006HPCITurbineRCICTurbineInvesselRackDef.FuelStorageCont.PowerRangeMonitoringCabinetSRM/IRMPanelsFlowTransmitteronH23-P074SwitchonH12-P853SwitchonH12-853TestrequiredAnalysisoflubeoilpipingrequiredAnalysisrequiredAnalysisrequiredTestrequiredTestrequiredTestrequiredTestrequiredTestrequiredInformationtojustifyqualificationoftheequipmentselectedbytheNRCfortheSiteAuditwillbeavailableatthesiteforNRCinspection.InformationtojustifyqualificationoftheremainderoftheequipmentisavailableforNRCauditatGE-SanJose.Rev.22,4/Sl123.6-2 SSES-FSARDescribeproceduresandscheduleforcompletionofeachitemidentifiedinitem6.(1)123.6(1)thatrequiresrequalification.RESPONSE:I.BOPTypically,thequalificationprogramisexecutedinthefollowingsteps.oDetermineQualificationAwardsRequestVendor(orConsultant)QuoteReceiveandEvaluateQuotePlacePurchaseOrderoPerformQualificationREviewTestProcedureReviewAnalysisMethodologyBeginAnalysisorTestingoFinalCompletionReceiveandreviewRequalificationReportsFinalApprovaloftheReportThescheduleforthecompletionofthequalificationprogramisshownintheattachedTable123.7-1.II.NSSSTheresponsetoQuestion123.6liststheequipmentfoundbyGEtorequirerequalificationalongwithastatementdefiningtheworktobeperformed.AllrequalificationwillbecompletedonaschedulesufficienttopermitNRCreviewpriortofuelload.Rev.22,4/Sl123.7-1 TABLE123.7-1SCHEDULEFORCOMPLETIONOFEUIPMENTREQUALIFICATIONPage1of6SQRTFormNo.E-109-1E"109-2E-112E"117-1E-118E"119A"1E-119A-2E-119A-3E-119BCE-120 120"2E-121-1E-121"2E-135-1E-135-2E-136E"151E-152E-155J-038AE~niment4kVSwitchgear4kVSwitchgearSub-ComponentsESW8RHRPumpMotors480VSafe-GuardLoadCenterUnitSubstations480VMotorControlCentersBatteryMonitorsBatteryFuseBoxeseBatteryChargers24Vdc,125VdcS250VdcBatteryCells6Racks125VdcDistributionPanels24VdcDistributionPanels125V6250VdcIoadCenters250VdcControlCentersElectricalPenetration(MediumVoltage)ElectricalPenetration(LowVoltage)ACInstrumentTransformersMotorGeneratorSets8ControlCabinetAutomaticTransferSwitchesControlSwitchesFieldMountedElectronicPressureTransmittersNo.ofItems/2Units12122420162216121232144Sets4432CompletionDate3-13-815-15-81Complete3-27-814-17-813-27-813-27-813-27-815-29"813-20-814-10-813-27-814-10-815-15-815-15-813-27-81CompleteComplete6-15-81CompleteRev.22,4/81 SQRTFormNo.J-03B-1thruJ-03B-14E~nimentPanel-MountedInstrumentsNo.ofItems/2Units242Page2of6CompletionDate4thquarter1981J-05A-14,31,33,37,ControlPanels6Devices10A6B,43,47,49,92,93,95697315-30-81(panels)6-15-81(devices)J-05B-1RemoteShutdownControlPanel5-30-81(panels)6-15-81(devices)J-27J-31J-59-1thruJ-59-10ReactorCoolantPressureBoundaryLeakDetectionSystemAnnubarFlowElementsRTD's54Complete(panels)6-15-81(devices)Complete5"22-81J-65-1thruJ-65-4ControlValvesinNuclearService283-27-81J-65B-1thruJ-65B-llControlValvesinNuclearService863-27-81J-69-162J-69B-1thru6J-70-1J-70-2J-92-1thruJ"92-5PilotSolenoidValvesPilotSolenoidValvesPressureRegulatingValvesProcessSolenoidValvesExcessFlowCheckValves74762385-15-815-15-815-15-815-15-815 81J-98CarrierModulator(Isolator)6"15-&1M-llM"12M"22-162M-30(78forms)M-30(6forms)M-55ESWPumpsRHRSuctionWaterPumpsReactorBuildingCranesDieselGeneratorDieselGeneratorReactorVesselTopHeadInsulationSupportSteel4Sets4SetsCompleteComplete4 81Complete2"27-81CompleteRev.22,4/81 SQRTFormNo.E-58M-60M-87-1M-87-2M-90M-149M"151M-156E~nimentDieselOilTransferPumpsBuriedDieselGeneratorFuelOilStorageTanksContainmentHydrogenRecombinersHydrogenRecombinerPowerSupplyFuelPoolSkimmerSurgeTanksContainmentVacuumReliefValvesSuppressionPoolSuctionStrainersContainmentNitrogenGasAccumulatorsNo.ofItems/2Units203260Page3of6CompletionDateComplete3-27-815-15-81Complete4-27-815-22-81CompleteCompleteM-159-1thruM-159-21NuclearSafety8ReliefValves585 81M-160ACSRVDischargeLine8,RHRReliefValveF055DischargeLineVacuumBreakers685-15-81M-164-192CRDVentValvePlatformHighDensitySpentFuelPoolRacks48ModulesCompleteCompleteM"302M-307-1thruM-307-3ExpansionTanks6AirSeparatorsCentrifugalFansComplete3-13-81M-308"1M-308"2VaneAxialFans,ReactorBuildingVaneAxialFans,Diesel'eneratorBuilding5-1"81CompleteM-308-364M-309-1thruM>>309-4VaneAxialFans,ESSWPumphouseAirHandlingUnits12Complete4-17-81M"310M"315M-317'-320"1CentrifugalWaterChillersReactorBuildingUnitCoolersDrywellUnitCoolersChlorineDetectors24125-22-815-29-813"27-816-15-81Rev.22,4/81 SQRTFormNo.M-320 1A61BM-320 2AM-320-3M-320-4M-370-5A65BM-320 1A61BM"320 2AM-320"6-3A67M-320-8M-320-9M-320-10M-321"1M-321-2M"321-3~EnimentFlowSwitchesFlowSwitchesLevelGaugePressureDifferentialSwitchesTemperatureSwitchesTemperatureSwitchesTemperatureSwitchesTemperatureSwitchesPressureDifferentialTransmitterTemperatureDetectorUnitLevelSwitchesStandbyGasTreatmentSystem-HousingStandbyGasTreatmentSystem-DelugeDrainValvesStandbyGasTreatmentSystem-ControlPanelsNo.ofItems/2Units282410184Page4of6CompletionDate6-15-816-15-816-15-816-15-816-15-816-15-816-15-816-15-816"15-816-15"816-15-812-20-815 813 81M"323C-1M-323C-2M-325M-327-1M"327-2M-334-1thruZ-334-5AirFlowMonitoringUnitSGTSExhaustVentFlowCondition-ing8SamplingProbeSystemHighEfficiencyVentilationFiltersChilledWaterPumpCoolingWaterPumpHVACControlPanels6Devices123"13-813-13-81CompleteCompleteComplete5-30-81(panels)6-15-81(devices)M-336AM-362M"365P"10A-1HVACDampersSGTSCentrifugalFansChilledWaterReliefValvesMotorOperatedGateValves,6008195Units5 81Complete5 816-15-81Rev.22,4/81 SQRTFormNo.-10A"2P-10A-3E~nimentMotorOperatedGateValves,9008MotorOperatedGlobeValves,900886008No.ofItems/2Units15Page5of6CompletionDate6-15-816-15-81P-10BMotorOperatedStopCheckValves,90086-15-81P-11A-1P-11A-2MotorOperatedGateValves,900'irOperatedTestableCheckValves,90086-15-816"1-81P"12A-1P12A-2P12A-3P-12A"4MotorOperatedGateValves,150j/MotorOperatedGlobeValves,300j/MotorOperatedGateValves,300j/GearOperatedGate8GlobeValves,300jj24206-15-816-15-816-15-816 81P-12B-1P-12B"2-12B"3MotorOperatedGateValves,150jj63008AirOperatedGateValves,150j/GearOperatedGate8GlobeValves,150jj14136-15"816 816 81P-14AP-14BP-15AP15B-1P-15B-2P-16A-1MotorOperatedGlobeValves,15008MotorOperatedGlobeValves,1500//MotorOperatedGlobeValves,15008MotorOperatedGateValves,15008AirOperatedGateValves,1500'otorOperatedButterflyValves,150jj18286-15"816-15-816-15-816-15-816 816-15-81P16A-2P-16A-3AirOperatedButterflyValves,1500GearOperatedButterflyValves,150jj126 816 81P"17A 17A-2MotorOperatedGateValves,900j/MotorOperatedGlobeValves,90086-15-816"15-81Rev.22,4/81 SQRTFormNo.P-17A-3P"17A"4P-17BP-18AP-31AE~nimentAirOperatedTestableCheckValves,9008GearOperatedGateValves,900//AirOperatedTestableCheckValves,90017GearOperatedGateValves,1508AirOperatedButterflyValves,1508No.ofitems/2UnitsPage6of6CompletionDate6-1"816 816 816 816 81Rev.22,4/81 SSES-FSARUESTION123.8Describeplansforaconfirmatoryin-situimpedancetestandanin-plantSRVtestprogramorotheralternativestocharacterizetheabilityofequipmenttoaccommodatehydrodynamicloading.RESPONSE:In-Situtestsarebeingperformedforthedeterminationofstructuraldynamiccharacteristicsoftheequipmentforin-servicecondition.Thisin-situinformationisbeingusedassupportingevidencefor(a)validatingamathematicalmodelforqualificationbyanalysis,or(b)simulatingthein-serviceconditiononthevibratorytabletestsforqualificationbytesting.Theresultsandtheusageofin-situtestingwillbedescribedintherespectivequalificationreports,wheneversuchtestsareperformed.AllsafetyrelatedBOPequipmentfoSusquehannaprojectisbeingqualifiedforcombinedseismicandhydrodynamicloadsforthecriteriadescribedinSection7.1.7ofDAR.Susquehannahasnoplanstoperformanin-plantSRVtestforequipmentqualifications,perse.AnairbubbletestwasconductedinthesuppressionpoolinanattempttosimulatetheeffectsofanSRVairclearingtransientload.Thedatafromthistestarebeingstudiedinanefforttodeterminetheextentofconservatismsintheanalyticalpredictionofappliedhydrodynamicloads.Rev.22,4/81123.8-1 SSES-FSARToconfirmtheextenttowhichthesafetyrelatedequipmentmeetstherequirementsofGeneralDesignCriterion2,theSeismicQualificationReviewTeam(SQRT)willconductaplantsitereview.Forselectedequipment,SQRTwillreviewthecombinedrequiredresponsespectra(RRS)orthecombineddynamicresponse,examinetheequipmentconfigurationandmounting,andthendeterminewhetherthetestoranalysiswhichhasbeenconducteddemonstratescompliancewiththeRRSiftheequipmentwasqualifiedbytest,ortheacceptableanalyticalcriteriaifqualifiedbyanalysis.Thestaffrequiresthata"QualificationSummaryofEquipment"asshownontheattachedpagesbepreparedforeachselectedpieceofequipmentandsubmittedtothestafftwoweekspriortotheplantsitevisit.TheapplicantshouldmakeavailableattheplantsiteforSQRTreviewallthepertinentdocumentsandreportsofthequalificationfortheselectedequipment.Afterthevisit,theapplicantshouldbepreparedtosubmitcertainselecteddocumentsandreportsforfurtherstaffreview.RESPONSE:SusquehannaSQRTpre-visitinformationrequiredforhasbeensubmittedforallBOPandNSSSequipment.ofEquipment"andthepertinentdocuments,reports,necessaryinformationasrequiredareavailablefortheSQRTsitereview"QualificationSummaryvendorprintsandallSQRTreview.Rev.22,4/81123.9-1 SSES-FSARTheSusquehannaFSARSection3.7b.2.1indicatesthatbothaflexiblebasemodelandafixedbasemodelwereutilizedfortheseismicanalysisofthecontainmentbuilding.Discussandexplaintherationaleforusingtwodifferentmodelsfortheseismicanalysis.Demonstratetheequivalencyofthetwomodelsbycomparingtheirdynamiccharacteristicsontheresultsfromthetwoanalyses.RESPONSE:Afixedbasemodelcanbejustifiedsincethecontainmentisfoundedonhard,competentrock.Theminimumshearwavevelocity,Vs,fortherockis6200fps(reference:Subsection2.5.4.2.1).Therefore,structuraldesignofthecontainmentwasbasedonthefixedbaseresults.Aflexiblebaseanalysis,whichtakesintoaccountsoilstructureinteractioneffects,wasusedtogeneratestructuralresponsespectraforevaluationofequipment,pipingsystems,etc.SeeattachedFigures130.20-15through130.20-18forcomparativeresponsespectraatthetopofthereactorpedestalforbothfixedandflexiblebaseresults.Thestructuralaccelerations,shearforces,bendingmomentsandaxialforcesforthefixedandflexiblebaseanalysesgenerallydifferbylessthan20%withthemajorityofvalueswithin10-15'hisisshownintheattachedFigures130.20-1through130.20-10.Therefore,thetworesultsareconsideredcomparable.SinceseismicforcesfortheSusquehannasiteaccountforlessthan20%ofthetotalmaximumreinforcingsteelstressforthegoverningloadcombination,the20%maximumincreaseinseismicresponsefortheflexiblebaseresultswouldresultinonlya4%increaseinstress.Thisincreaseinstressiswellwithintheexistingdesignmargin.Theflexiblebasedisplacementsarelargerthanthefixedbasedisplacementsbyapproximately20-50%.ThisisshownintheattachedFigures130.20-11through130.20-14.Theselargerdisplacementsfortheflexiblebaseanalysiswereusedtodeterminetherequiredseparationbetweenthecontainmentandthesurroundingreactorandcontrolbuildings.Rev.22,4/81130.20-1 SSES-FSARInTorsionalAnalysisofDieselGeneratorBuildingandESSNpumphouse:Justifytheuseofstaticanalysisforadynamicphenomenon.RESPONSE:Subsection3.7b.2.11states"Astaticanalysiswasdonetoaccountfortorsion...".Thisstatementpertainstothedistributionofseismicforces.Duringthedynamicanalysisstagetheinertiaforceateachmass.However,sincethecenterofrigiditydoesnotcoincidewiththecenterofmass,thereistorsion.Theinertiaforceobtainedfromthedynamicanalysiswasusedbymultiplyingitwiththeeccentricity(thedistancebetweenthecenterofmassandthecenterofrigidity)toobtainthetorsionalmoment.Thismomentwasthendistributedtothestructuralwallsforassessment.Aminimumexcentricityof5%wasconsidered.Rev.224/81130.21-1
.136-~0.128-FlexibleBaseModelResultsFixedBaseModelResults,~228I~3,0.220~caIo.2ooI/9'5'0.175II./8/0.154Ii~/so0.137l~/2Ij~/080.109I.oeqI1011~os'u~>77/I,052120.046I22(.ZS80.24023~8'830.614.~sos0.446IIj~345'0.294Ij~2/g0.183I'~/360.128II1524I~/97I~/8Io.128'7./~/2180.108Ij~ot30.09126~078I190.071III.o~tfIIRev.22,4//81UNITS:G's13.0320.021~a210,020SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHORIZONTALACCELERATIONSOBEFIGURE130.20-1 56789101213'~Z'Ml0.251I~83/,0.215I~zo30.189Ij~gzo0.169i~/50.152'(~/48~0.137l~/36Il0.126~/z5i~/o30.092IjlloBo(,0.067II~o520.0342214.390.33123II24~Z7oJ520716P.lt170.161~,/S457180.140I~/320.12126II~/2o190.100I~iot200.073l~//Z70,751I~5540.545I,I~I(~4410.360Ii~zBZ0.225I.(z+0.161UNITS:G'sRev.22,4/81,d5SUSQUEHANNASTEAMELECTRICSTATION210.034UNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHORIZONTALACCELERATIONSSSE.136-FlexibleBaseModelResults0.128-FixedBaseModelResults.FIGIIHE.130.20-2
.0400.059I~040>O.OS9l~03'PI.'iO.O58Ij~03S0.055Ii~0360.051I,~0340.047I~o3z0.043~O300.0391415161718~ocr0.062II.o65~0.061II~o~o0.057QP222425./030.103lII~ioo0.101.a%40.094f~os'.084I.a670.05420.032101213~2728.uz00.024l~0200,0153pI2926II19I~osI0.0122pIl~Oiafo.oovfII21~o~o0.0250.028I~Cnfj~o4o0.035l~o0.026Il~o20.017Il.j~o>O.OI77UNITS:G'sRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTo.136-FlexibleBase'odelResults0.128-FixedBaseModelResultsCONTAINMENTVERTICAL,ACCELERATIONSOBElFIGIJRE130.20-3 9~0500.059101213~ops0.112I~O7O0.111'~is50.162II~tpo0.158tI22II~o~s0.109140.098III~fl1240.096II~IO80.089I~0690.10340.14715f4~~lB30.131/0.0850.097~OS20.089I16'Idio0.085~oII80.070~os80.08217~os@0.073.062~0570.0450.046.0050&I/~070.055t~osq0.041I~os0.027UNITS:Q'g42728I,CoOg0.050I~osv0.02930I4I~oso0.01242926I19~os~0.02220III21Ii~&i0.011IRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSIS'EPORT~~~~~I136-.FlexibleBaseMode'1Results0.3.28-FixedBaseModelResultsCONTAINMENTVERTICALACCELERATIONS%REFIQURE~130.20-4 46~44164~(97260IM2~'1431232562g102~104~1,>>0l300423gag2883t51,440I&207,770~IRIDO1524264~$1g25eee~e'735~10>>2,070~2'LQO2,220~14)02,550QtI02,720ZERO3,62040003,830'tZI0161718261924e~ek1$~646~5958970'7ss1~>ag36455817766f99$4UNITS:KIPS124.010~44l0204O2~WOa13274,100~$55Q2127424$35Rev.22,4/SlD.136-FlexibleBaseMo'delResults0.128-FixedBaseModelResultsFIGURE130.20"5SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTSHEARFORCESOBE se~4e201~25536648I010~573311261+014231,380I6$0010~654ese~4Il41.7so~2l302,180Z550e,sso~Z4l50151617440~4193404f449242517ceo~8qg014~Italo1028503ggg3.110[335l0e,eeo~3801826011~85l.7209I2.'430SZSQ194,68o5590404444447~485UNITS:KIPS12204,91o53004ee~54913'7210,040~kola27see~6O7Rev.22,4/81II*..136-FlexibleBaseModelResults0.128-FixedBaseModelResultsFIGURE130.20-6SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTSHEARFORCESARE 1022020.50~O.QS24,22~W.S/140222.ss~Z.pg42162'5~158.33F.'74242.42P.ag54o.s~6.061,0~6l~01615.4~IS~/2516.8~III.Z81.2~f/0171832I317~108//.28.8~3'7.I10105~ll5124~/'37145I~l149tgy1826173ZD,224.8ZV.519623,2so1~2.221916.6~242.62UNITS:10'.FT12256m32014.9l7.813214~34lo2115.s~l7.527222~@/22718.0/'7.IRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT'0.136-FlexibleBaseModelResults.0'28-FixedBaseModelResults.CONTAINMENTMOMENTSOBEFIGURE130.20-7 1'22020.630.7/oss.ss~6.3&140232.873,2Co4.2s.g~3z.s249.14'1510.2l2.Is4g,g~6is.3sss~RO.6ioo~Ill1617251s.s~~Z3520.5~246S5.149.g10.iss~i5li52~f7178208183QJg182621.2263SOS38224.0304]UNITS:10sK-FT24s~ZOO~19so.s~Z5.512sis~3720is.s~z3.o13sss~4532112.7~Z'Z.727~~136-FlexibleBaseModelResults0.128-FixedBaseModelResults4~~53S22220qg,+Rev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.CONTAINMENTMOMENTSs'c'CFIGURE130.20-8 2'2sv~4&ieo~~f2I1423131JrO10ees~IZED>'I4ss~SISsos~eJRQs7s~+72ese~Sg(7'Z792015161718-26so~@9~oet!04se~<7l491503396Q'26242517ee4~233ees~5361,010<>s~$4.gUNITS:KIPS'2131,070307120214es~$65Rev.22,4/811,090136-FlexibleBaseModelResults0.128-FixedBaseModelResults'31SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINEMNTAXIALFORCESOBEFIGURE130.20-9 6I>>~+'2126Jg6777256~24026r5232os~Zan150~1085951&1oso~15<12so'~367145o~911590lQIG~lSI't1720161718261o2~l<~164~f41I719gQ764BOO614~7602517966~g(g525~4465UNITS:KIPS1219002010f12'0642~7i'll662~3544'13~t70l.2050126136-FlexibleBaseModelResults~~~0.128'FixedBaseModelResults.21669D5Rev.22,4/81.SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAlNMENTAX(ALFORCESSSEFIGURE'30..20-10 136-FlexibleBaseModelResults~~0.128-FixedBaseModelResults31.662396127I10Itc,C.'.8130.0i~aSI27.7I~3'I,2IiIj~~o,S21.4I~<<.918.7j)i~.~l>16.5j~2.(.0144I~j3,814151617182619t~18.9IjCn3l11.77.06II~~,SIUNITS:10FTI,~I411923ItIS6I.SiMi<<'399l83.5I,~so.ar53.94th32.4~1213'.69~4'.oe1.89't.t820213.54II'.10Rev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHOBIZONTALDISPLACENIENTSOBEFIGURE130.20-11 D136-FlexibleBaseModelResults0.128-FixedBaseModelResultsS5I38.636.6i~vs.aI33.8I~s.i.zI~s.i~29.6IiE~M26.1Ii~os,z22.81415162223II24)48.8~7o4I551.~z<q189Ii~(145Ij~flII789101112i~si.si20.1'isa.s'7.5I'3.6!~lc..oIiI~la,4,i5.75II~a,ss132.32~<.sv17I'ns>>'+5'182.126j2<8'4.3UNITS:10~FT1920~I%1)8.65I4.37II3.'ti1.3721Rev.22,4/8iSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2'INALSAFETYANALYSISREPORT,CONTAINMENTHORIZONTALDISPLACEMENTSSSEFIGURE130.20-12 151617d,649.34101213~o.f980.812Ij~o,89>2~0.804II~o,as+3,0,79114I'~o,see40.752.d.g2t5.'.703II~o,7'9260.648.~0,75670.594I.d,7l780.53518'~o.st@~omit~~0.4300.4460.658I2728'926j~o.5<770.329,19IIl~u~z300.21520II~a.slh0.090211.57II1.55II1.47I~no1.41I~/.481.16~I0.896I~d.974,0.667IIaazs0.427IIg,+700.181'223242517~Z.W72.69II1~2.i'22.64II1~21(2.47II,~2.5'2.22UNITS:104FTRev.22,4/81~d,Z95'~0,%9S~AZ'FS.$36-FlexibleBaseModelResults0.128-FixedBaseModelResultsSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTVERTICA'LDISPLACEMENTSOBEPIGIIRE,130.20-13
~ll.s~s101.53I1.51IIj~l.&O1.49II~r,ss1.41Ij~l.so1.321415l~l.4'31..2216It1.1217j~i.so'IS'.00l.J2'90e[,cg,OX'0.7750.754Ie22I.Ij~SDAp42.40II~s.t~"2.233.oS2.1917~41.80I!~i~1.395-514.18I.S.~I4.10I.~~asI3.44/ot.2.19UNITS:104FT12132728f29;~o<j0.616~II~O,RSL300.364jIj~o.aa0.170II~5Kb5,'5%>26Ij~l.7419i1.04I.~I.'L'9200.663Ij~o.ass21I0.282O.S3oRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.136-FlexibleBaseModelResults0.128-FixedBaseModelResultsCONTAINMENTVERTICALDISPLACEMENTSSSEFIGURE.130.20-14 1.8001.6001.4001.200zOcc1.000.800Pk~'hieWse..600.400.200.0000.1'0.20.40.61.02.04.06.010..20.FREQUENCY(HZ)40.60.100.LOCATION:RPVPEDESTALDIRECTION:HORIZONTALEARTHQUAKE:OBEDAMPING:0.005Rev.22,4/SlI.SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMAT'RPVPEDESTALHORIZONTALOBEFIGURE130.20-15 0
/3.0002.7002.4002.100i.sooz0I-a1.5001.200F(ex''ltlbd$8900600~300.0000.1'.20.40.61.02.04.06.010.FREQUENCY(HZ)20.40,60.100.LOCATION:RPVPEDESTALDIRECTION:HORIZONTALEARTHQUAKE:SSEDAMPING:0.010Rev.22,4/SlSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALHORIZONTALSSEFIGURE130;20-16 kix'eelhase0.10.2OA06102.04.06.010.FREQUENCY(HZ)20.40.60.100..LOCATION.'PVPEDESTALDIRECTION:VERTICALEARTHQUAKE:OBEDAMPING:0.005Rev.22,4/B1SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALOBEFIGURE130.17 2.0001.8001.6001.4001.200OI-cc1.000.800/legibleb~seri~Frxed!~b~t~600~400~200~0000.1~0.20.40.61.02.04.06,010.FREQUENCY{HZ)20.40.60.100LOCATION:RPVPEDESTALDIRECTION:VERTICALEARTHQUAKE:SSEDAMPING:0.010Rev.22,4/81~SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALSSEhFIQURE130.'20-18
>IIIIIIIIIIIIIIIII)IIIIItttllll>llll.llllll'mIIIIII<IIIf~II~s~~~~~~~~~'FI~~~~~~~0.~~'I/LI~IMCNABle/4r/v/tICA4i4ftt6/At,c~L/.//rt/cae//esm~~~Jt~4/Ot/~A4C5CCAVOlOeV4W/ttl~!o/ktIIi/p)~.~f4"J'.C.\1tvRev.22/4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTFINALPLANTGRADES,7.FIGURE2~5.-.24
 
SSES-FSARQUESTION130.22:rExplainwhytheanalysisforthetorsionaleffectwasnotdonefortheReactorBuilding.RESPONSE':Thetorsionaleffectinthereactor/controlbuildingwasconsideredinthedynamicanalysis.Units1and2wereconsideredsimultaneously.IntheN-Sdirectiontheeccentricityislargerthan5%.TheN-SdynamicmodelpresentedonFigure3.7b-10ofFSARconsistsof3sticksateachfloorandthestiffnessdistributionofthestructuralwallsaresuchthatproperrepresentationoftheeccentricityisobtained.Therefore,thetorsionaleffectisproperlyaccountedforinthedynamicanalysis.Thecomputeddynamicmemberforcesandmodelpaintresponseswereusedfortheassesmentofstructureandequipment.IntheE-Wdirection(seeseismicmodelonFigure3.7b-9)theeccentricityislessthan5%.However,amiriimumeccentricityof5%wasconsideredbyredistributingthemasses.Thiswasdonefortheassesmentofwalls.Rev.224/81130.22-1 SSES-FSARInFigure7-6whichshowsdowncomerbracingsystemdetails,itappearsthatthebracingisweldedtothelinerplatethroughtheuseofanembeddedplatewithoutanyanchoragetothecontainmentconcretewall.Sincethesteellinerplateisnotastructuralcomponent,indicatehowthepullingforcesfromthebracingcanberesistedandhowtheleaktightintegrityofthelinercanbemaintained.RESPONSE:Downcomerbracingforcesareresistedbyembeddedanchoragesinthecontainmentconcretewall.Thisdesignassurestheleaktightintegrityofthelinerplateismaintained.Rev.22,4/81130.23-1 SSES-FSARItappearsthatportionsoftherecirculationpumpsealcoolingwaterarenotseismicCategoryI(RegulatoryGuide1.29).Thestaffrequiresadditionalinformationtoshowthatacompletelossofpumpsealcoolingwaterwouldnotleadtounacceptableconsequences.RESPONSE:TwononseismicCategory1sourcesofcoolingareavailabletotherecirculationpumpseals:recirculationpumpsealcoolingwatersuppliedbyRBCLCWandrecirculationpumpsealinjectionwatersuppliedbytheCRD-system.GeneralElectric'sLicensingTopicalReport,NED0-24083,RecirculationPumpShaftSealLeakageAnalysis,provides:ananalyticalbasisforrecirculationpumpsealleakage,assumingafailureofbothcoolingwatersystems.Thisgenericanalysispredictsaboundingleakageratewellunder100gpm.ThegenericanalysisisapplicabletoSusquehanna.Thereportalsodocumentstestresults,demonstratingthatpumpsealintegritywillbemaintainedifanyoneofthetwocoolingwatersystemsisoutofoperationatagiventime.Rev.22,4/81211.1-1 SSES-FSARQUESTION211.8TheSRP54.7statestheresidualheatremovalsystem(RHRS)shouldmeettherequirementsofGeneralDesignCriterion(GDC)34ofAppendixAto10CFRPart50.TheRHRbyitselfcannotaccomplishthcheatremovalfunctionsasrequiredbyGDC34.TocomplywiththesinglefailurecriteriontheFSARdescribesanalternatemethodofachievingcoldshutdowninSection15.2.9Insufficientinformationisprovidedtoallowanadequateevaluationofthisalternatemethod.Inparticular,wehaverecentlyapprovedRevision2toSRP5.4.7(containinqBranchTechnicalPositionRSB5-1)whichdelineatesaccceptablemethodsformeetingthesinglefailurecriterion.ThisBranchTechnicalPositionrequirestestinqtodemonstratetheexpectedperformanceofthealternatemethodforachievinqcoldshutdown.Youshoulddescribeplanstomeetthisrequirement.Inaddition,werequirethatallcomponentsofthealternatesystembesafetygrade(seismicCateqoryI).Asaresultofthisrequirement,theairsupplytotheautomaticdepressurizationsystem(ADS)valves,includingthesystemupstreamoftheaccumulators,mustbesafetygrade.Thisairsupplymustbesufficienttoaccountforairconsumptionnecessaryforvalveoperationplusairlossduetosystemleakageoveraprolongedperiodwithlossofoffsitepower.RESPONSE.AsdiscussedinSubsection93.1.5.1,thegassupplytotheADSvaluesandthebackupqassupplytotheADSaccumulatorsissafetygrade.Codescoveringthedesignandconstructionofthesecompon'eatsarediscussedinSubsection9.3.1.5.1Allcomponentsthatareapartofthealternateshutdownloop(seeSd>section15.2.9&Figs.15.2-14and15,2-15areroutinelytestedasrequiredbytechnicalspecifications.Testingofthetotalalternateshutdownsystemwouldnotprovideanyadditionalpertinentinformationandwouldresultinintroducinglowerquality(suppressionpool)waterintothevessel.Bsedontheabove,wedonotfeelthattestingofthetotalloopisnecessaryordesirable.ThisissuewastentativelyresolvedwiththeNRContheShorehamdocket(BWR/4)byanagreementtotestonesafetyreliefvalveinSanJosesimulatingthealternateshutdowncondition.TherationaleforacceptanceofthisplanwasthattheSRVistheonlycomponentintheloopwhichhasnotbeendemonstratedtobesuitableforalternateshutdownconditions.Thistest.wassuccessfullycompletedinDecember1979.Rev,224/812118-1 SSES-PSARGeneralHlectricinconjunctionviththeThreeMileIslandOwnersGroupisplanninqfurtherSRVtestinqinresponsetoTMIrelatedissues.Thistestinq.villincludeconditionssimilartothealternateshutdovn-conditionsandwillincludeavalveofCrosbyManufactureasisusedintheSusquehannaplant.Itisexpectedthatthesetestswillfurtherconfirmthatanin-planttestisnotrequiredtodemonstratealternateshutdownconditionscapability.REV18,1$/802118-2 SSES-I'SARQUESTION21185:ProvideassurancethatadequateNPSHexistsforanECCSpassivefailureinawater-tightpumpcoom.AddressthepossibilityofvortexfomationatthesuctionoftheremainingECCSpumpswiththeloweredpoollevel.DiscusspreoperationalteststobeperformedtodemonstratethatthereisnotimpairmentofECCSfunctionduetoloweredsuppressionpoollevel.RESPONSESeeSubsection6.3.6fordiscussionofNPSHavailabilitywithECCSpassivefailureandofvortexformationinthesuppressionpool.TestingforpumpoperationatminimumNPSHmarginisprovidedbypreoperationaltests.Rev.22,4/8121185-1 SSES-FSARItisnotevidentthattheassumeddropof100Finfeedwatertemperature0givesaconservativeresultofthistransientwithmanualrecirculationflowcontrol.Forexample,afeedwatertemperaturedropofabout150FoccurredatonedomesticBWRresultingfromasingleelectricalcomponentfailure.Theelectricalequipmentmalfunction(circuitbreak-tripofamotorcontrolcenter)causedacompletelossofallfeedwaterheatingduetototallossofextractionsteam.Accordingly,either(1)submitasuf-ficientlydetailedfailuremodesandeffectsanalysis(FMEA)todemonstratetheadequacyofa100Ffeedwatertemperaturereductionrelativetosingleelectricalmalfunctionsor(2)submitcalculationsusingalimitingFWtemperaturedropwhichclearlyboundscurrentoperatingexperience.Also,temperaturedropsoflessthan100Fcanoccurandinvolvemorerealisticslowchangeswithtime.Assumingallcombinationsresultinslowtransientswiththesurfaceheatfluxinequilibriumwiththeneutronfluxattheoccurrenceofscram,asmallertemperaturedropthan100FthatstillcausesscramcouldresultinalargerQCPR.Pleaseevaluatethistransientandjustifythattheassumedvaluesofthemagnitudeandtimerateofchangeinthefeedwatertemoeratureareconservative.RESPONSE:Nosingleelectricalcomponentfailurewillcausethelossofmorethanonetrainoffeedwaterheatersasseparatepowersourcesaresuppliedtoeachofthefeedwatercontrolpanels.Eachfeedwaterheatertrainconsistsoffivefeedwaterheatersplusadraincooler.SSESdoesnothaveafeedwaterheatertrainbypassline.TheGEfeedwaterheatersystemdesignspecificationrequiresthatthemaximumtemperaturedecreasewhichcanbecausedbybypassingfeedwaterheater(s)byasimplevalveoperationwillbelessthanorequalto100oF.Thisisthebasisoftheassumeddropof100Finfeedwatertemperatureintheanalysis.LossofonefeedwaterheatertrainatSSESwillactuallyresultinsignificantlylessthana100Ftemperaturedrop.Itshouldbepointedoutthatasteadystate(i.e.,thesurfaceheatfluxinequilibriumwiththeneutronflux)isassumedindeterminingtheMCPRduringthetransient.Therefore,atemperaturelosssmallerthan100FisnotexpectedtoresultinamymoresevereatransientthanthatanalyzedRev.22,4/81211.116-1 SSES-FSARQUESTION211.120:FortherecirculationpumpseizureaccidentwenoteinTable15.3-3thatcreditistakenfornonsafety-gradeequipmenttoterminatethisevent.Section15.3.3oftheStandardReviewPlan,Revision1,rewuiresuseofonlysafety-gradeequipmentandthesafetyfunctionsbeaccomplishedassumingtheworstsinglefailureofanactivecomponent.Reevaluatethisaccidentwiththeabovespecificcriteria,andprovidetheresultingCPRandpercentageoffuelrodsinboilingtransition.RESPONSE:Therecirculationpumpseizureenent,assumingtheoperationofspecificnon-safetygradeequipment,hasamildimpactinrelationtothedesign-basisdouble-endedrecirculationlingbreakinSectouns6.3and15.6.Failureofsuchequipmentwouldnotmakethecoreperformanceand/orradiologicalconsequencesofthishighlyimprobablepumpseizure(rapidcoreflowdecrease)eventmorelimitingthanthemaximumDBA-LOCAaddressedintheFSAR.Therefore,noadditionalevaluationsareconsiderednecessary.TheFSARtexthasbeenrevisedregardingfrequencyclassificationbydeletingreferencestoinfrequentincidentclassificationinSubsection15.3.3.1.2and15.3'.1.2,recirculationpumpseizureandrecirculationpumpshaftbreakrespectivelyRev.22,4/81211.120-1 SSES-FSAROperationofSusquehannawithpartialfeedwaterheatingmightoccurduringmaintenanceorasaresultofadecisiontooperatewithlowerfeedwatertemperaturenearendofcycle.Justifythatthismodeofoperationwillnotresultin(1)greatermaximumreactorvesselpressuresthanthoseobtainedwiththeassumptionusedinSection5.2.2,or(2)amorelimiting5MCPRthanwouldbeobtainedwiththeassumptionsusedinSection15.0.Thebasisforthemaximumreductioninfeedwaterheatingconsideredintheresponseshouldbeprovided(e.g.,specificturbineoperationallimitations).RESPONSE:Lowerfeedwatertemperatureincreasesthecoreinletsubcoolingandresultsinacorrespondingdecreaseinboththecoreaveragevoidfractionandthesteamproduction.Thefeedwatertemperatureof250oFisconsideredasthelowerlimitbasedontheconclusionthatplantswithimprovedinterferencefitspargerscanberuninthismode(250FFFVZ)withoutadverseconsequences.Typically,thecoreaveragevoidfractionisreducedby-16$whenthefeedwatertemperatureisreducedfrom420Fto250F.Thelowersteamproductionratereducesthepeakpressureswhichoccurduringatransient(Table211.125).TheuseoffeedwatertemperaturereductiontoextendthecyclebeyondnormalEOCisnotexpectedtoresultinmoreseveretransients.Thelowervoidfraction("16$lowerat250FFFWT)reducesthedynamicvoidcoefficientandtheseverityofthetransient(i.e.,theACPRduetothetransient)isless.Table211.125providesthetypicalACPRnumbersfortwotransientsanalyzed.Althoughthescramreactivityresponseissomewhatdegradedduetothelessbottompeakedpowershape,theoverallresponseisdominatedbythevoidfeedbackeffectsandtheresultingtransientislesssevere.ReducingthefeedwatertemperaturebeforeEOCwillnotresultinmoresevereplanttransienteither.Thepeakpressureswillbelessduetothereducedsteamproduction.TheACPRwillbelessduetothesmallervoidcoefficient.Duetothepresenceofasignificantnumberofcontrolrodsinsertedintothecoreforthiscondition,thescramresponseisnotappreciablyaffectedbythefeedwatertemperaturereduction.Inaddition,thetransientresponseatpointsinthecycleotherthanEOCisconsistentlylessthanEOC.Ifoperationinthereducedfeedwatertemperaturemodeisutilized,priortooperationananalyseswillbeperformedtoshowthismodeofoperationwillnotviolateMCPRsafetylimits,giventheeventsinChapter15.Rev.22,4/81211.125-1 TABLE211.125TRANSIENTANALYSISRESULTSReactor~CeleTransientExposurePointPeakVesselPressureCPRBWR4251"764Evil.cycleLoadrejectionw/obypassRatedEOC(104.2/power)1235.17(ReducedFeedwater)ExtendedEOCHeating(100$power)12190.16FeedwaterControllerfailureRatedEOC(104.2$power)12020.12(Reduced'eedwater)ExtendedEOCHeating(100$power)10600.05*ODYNANALYSISRESULTSRev.22,4/81 SSES-FSARIntheevaluationofthe"generatorloadrejection"transient,afull-strokeclosuretimeof0.15secondsisassumedfortheturbinecontrolvalves(TCV).Section15.2.2.3.4statesthattheassumedclosuretimeisconservativecomparedtoanactualclosuretimeofmorelike0.20seconds.However,inFigure10.2-2,TurbineControlValveFastClosureCharacteristic,anacceptableTCVclosuretimeof0.08secondsisimplied.Explainthisapparentnon-conservativediscrepancyandtheeffectithasonanalysesinChapter15requiringTCVclosure.RESPONSE:The0.08secondsshowninFigure10.2.2isanacceptablevaluewhereasthe.07secondsTCVclosuretimeinTables15.2-1and15.2-2istheboundingvalue.SeeresponsetoQuestion211.117forfurtherclarificationtothisquestion.Rev.22,4/81211.161-1 SSES-FSARThenarrativeonpage15.4-13discussingthe"abnormalstartupofanidlerecirculationpump"transientstates,"Thewaterleveldoesnotreacheitherthehighorlowlevelsetpoints."Table15.4.3.indicatesalowleveltripoccurs22.0secondsafterpumpstart.Figure15.4-6indicatesalowleveltripoccursapproximately23.5secondsafterpumpstart.Further:a)Table15.4-6indicatesalowlevelalarm10.5secondsafterpumpstartwhileFigure15.4-6indicatesthisalarmoccursabout11.5secondsafterthepumpstarts.b)Table15.4-6indicatesvessellevelbeginningtostabilize50'secondsafterthepumpstarts.Figure15.4-6showsnosuchindication.Resolvethesediscrepancies.RESPONSE:ThesequenceinTable15.4-3startsoutwithascramat10secondsfollowingtheimproperpumpstart.Figure15.4-6confirmsthis.At23.5seconds(ratherthan22)levelfallstoL3whichalsoissuesaredundantscramsignaltoasystemwhichhasalreadyscrammed.ItistheintentofTable15.4-3hasbeenmodified.a)Table15.4-4indicatesL4nearllseconds.ThisisverifiedbyFigure15.4-6,b)Table15.4-4indicatesthatvessellevelisbeginningtostabilizeat50seconds.Thisappearstobecorrect.Actually,levelrecoveredfromL3atabout41secondsandfrom30to40secondslevelischangingattherateof2.5in/sec.From50to60secondslevelrateisdefinitelyflatteningoutundernormalfeedwaterlevelcontrol.Rev.224/81211.180-1 SSES-FSARQUESTION211.210:ExpandthediscussioninSection6.3todescribethedesignprovisionsthatareincorporatedtofacilitatemaintenance(includinqdraininqandflushing)andcontinuousoperationoftheECCSpumps,seals,valves,heatexchangers,andpipingrunsinthelong-termLOCAmodeofoperationconsideringthatthewaterbeingrecirculatedispotentiallyveryradioactive.RESPONSE:TheSusquehannaeguipmentforlong-termcoolinqfcllowingapostulatedLOCAincludestwoccmpletecozespraysystemsandtwoRHRsystems.Thesetvosystemsconsistofatotalofeightpumpscapableofpzovidinqwatertothereactorpressurevessel.ThepipinqandinstrumentationdiagramsofthesesystemsareshowninFigures6.3-4and5.4-13.Lonq-termcoolingvatercanbeprovidedtothecorebyoneRHR(LPCXmode)pumporoneCSloop(bothpumps),whileheatcanberejectedtotheultimateheatsinkviaeitherofthetwoRHRheatexchangersusingoneoffourRHRpumps.Thusamaximumofthreepumpsvouldberequiredforpost-LOCAcorecoolinq.AllofthesecomponentsaredesiqnedtoremainoperableduringandfollovinqaLossofCoolantAccident,andtheredundancyprovidedissuchthatmaintenanceisnotexpectedtoberequiredduringthelong-teracorecoolingperiodfollowinqaLOCA.Hovever,theRHRandCoreSpraysystemsaredesignedwithprovisionsforflushingasshovninFigures6.3-4and5.4-13.Rev.224/81211210-1 SSES-FSARgDESTXON211.211:SeverewaterhammeroccurrenceintheECCSdischargepipingduringstartupoftheECCSpumpsisavoidedbyensuringthatthedischargepipesaremaintainedfullofwater.ThecondensatetransfersystemiusedtoachievethisfunctionforallECCSpiping.Sincethecondensatetransfersystemalsosupplies~atertonumerousothersystems,thefollowingareasrequireclarification:a)JustifytheuseofacommonfillingsystemforallECCSdischargepipingversusind,ependenijockeypumps.b)Identifytheexpecteddemandsonthecondensatetransfersystemandwhateffects,ifany,wouldbeexpectedonthemakeuprequiredtokeepthedischargepipesfullofwater?c)Canindividual"filllines"beisolatedtopermitmaintenanceononeECCSsystemwithoutaffectingtheothersystem?d)Thedischargepiping"fillsystem"isapparentlyconsideredtobeanauxiliarysystem.Areanypriorityinterlocksprovidedtoensurethatthe"fillingsystem"willbegivenpriorityovertheotherusesofthecondensatetransfersystemwater?e)Theindividualfilllinesapparentlydonothaveinstrumentationtomonitorlowpressure.provideassurancethatwhenthecondensatetransferpumpsareoperatingthattheindividualECCSdischargelinesarefullofwater.f)Whatisthehistoryofwaterhammereventsatotherplantsemployingthisdesign?RESPONSEa)ThepumpfillsystemadoptedforSusquehannaSESutilizestheexistingcondensatesystemandisrelativelysimple.Ztisbelievedtohaveahighersystemoverallreliabilitythanasystemrequiringindividualpumps,orso-calledjockeypumps,toperformthefillfunction.However,thereisnoknownoperatingexperiencewithacommondischargelinefillsystem.Thecondensatetransfersystemhasbeendesignedtobereliableinsomuchasitisrequiredforplantoperation.ThereforecompletefailureofthiscommonfillingsystemfortheECCSwouldrequirethattheplantbebroughttoashutdowncondition.b)Atstandbypressuressubstantiallybelowvalveratedpressures,the'estimatedmakeupfortheECCSsystemsislessthanl(one)gpm.SeerevisedSubsection6.3.2.2.5.Rev.22,4/Sl211.211-1 SSES-PSAR.)TheindividualfilllinescanbeisolatedtopermitmaintenanceonECCSsystemsandindividualloops'fasystemwithoutaffectingtheotherloops.SeerevisedSubsection6.3.22.5.d)Duetotheverysmallamountofcontinuousmake-uprequirednointerlocksareprovidedtogivepriorityto"keep-full"functionoftheCondensateTransferSystem'sECCSfilllines.e)Seerevisedsubsection6.3.2.2.5.f)ThewaterhammereventswhichhaveoccurredinBHRplantswithECCSfillsystemsaredocumentedandtransmittedtotheNRCasLicensingEventReports(LER).ThesearekeptonfileattheNRC.SeeTable211.211-1foratabulationofwaterhammereventsbasedonLERinformationonfilewiththeGeneralElectricCompany.Rev.17,9/802'l1.211-2 SSES-FSARProvidedatatoverifythatrepresentativeHPCIactivecomponents(inparticular,thepump)havebeen"proof-tested"underthemostsevereoperatingconditionsthatareanticipated.TheservicelifeandthemaximumexpectedoperatingtimeaccumulatedduringtheservicelifeofthatHPCIpumpshouldbespecified.RESPONSE:TheHPCIpumpforSusquehannaSESissimilarindesignandfabricationtopumpsthathavebeeninstalledandoperatedinBWRplantsforseveralyears.WhiletheyhaveneverbeencalledupontofunctionduringaDBA,thesepumpsareperiodicallytestedinoperatingplantsandhavebeenshowntoperformsatisfactorily.Eachpumpistestedatthevendor'splantforhydraulicperformanceandfreedomfromvibration.ThisisinadditiontothetestsandinspectionsperformedduringthefabricationofthepumpsThesevereoperatingconditionstowhichthepumpsareexposedaretemperaturesto148Fambient,maximumexpectedpost-DBAradiationlevelsanddynamicloadsduetothesafeshutdownearthquakeandhydrodynamiceffectsassociatedwiththeDBA.Thepumpsaremainlyfabricatedofmetallicmaterialswhichwillnotbedegradedbytheexpectedpost-DBAtemperatureandradiationenvironment.Thenon-metallicgasketsandsealsaremadeofmaterialswithademonstratedresistancetothepost-DBAenvironment.Thedynamicloadinputsareaddressedanalyticallyandevaluatedagainstappropriatecriteriatoassureoperationofthepumpwhileundergoingdynamicloading.Theaboveassuresthattheexpectedservicelifewillexceedtheexpectedoperatingtimeofapproximately550hours.Abreakdownofexpectedoperatinghoursforseveraleventsdu'ringthelifeofthepumpisprovidedbelow:Event0eratinTime(Hours)ShopTestingPreoperationalTestingMonthlyTestingYearlyTestingPost-LOCAShutdown2104048012N/ATheassumedoperatingtimeforpost-LOCAis12hoursfortheHPCIpump.ThelowpressureRHRandCSsystemstakeupthe'coreRev.22'/81211.226-1 SSES"FSARcoolingwithin12hoursafterincipientLOCAeventandmaintainthelongtermcorecoolingofpostLOCAsubsequentto12hoursperiod.GEstatedthattheECCSpumpmotorsmeettheenvironmentalqualificationrequirementsoftheDORguidelinesandIEEE323-1971.PriortoJune30,1982,furtherqualificationworkwillbepreformedtobringtheseitemsuptoatleastthelevelofIEEE323-1971perNUREG0588CategoryII.Rev.224/81211.226-2 SSES-FSARUESTION211.260:IdentifytheFailureModeandEffectAnalysisforevaluatingthecontrolroddrivesystemwhichyoustateisprovidedinAppendix15A.RESPONSE:Subsection4.6.2hasbeenrevisedtostatethatTheNuclearSafetyandOperationalAnalysisispresentedinsubsection15A.6.5.3.Rev.'224/81211.260-1 SSES-FSARQUESTION211.262:Forthe"recirculationpumpseizure"accident,coincidentlossofoff-sitepowerisnotsimulatedwiththeassumedturbinetripandcoastdownoftheundamagedpump.ReanalyzethistransientassumingcoincidentlossofoffsitepowerandincorporatethisreanalysiswiththatpreviouslyrequestedinQ211.120.RESPONSE:Theeventseverityofacoincidentlossofoffsitepowerwiththepostulatedrecirculationpumpseizureaccidentisboundedbytheanalysisof"LossofACPower"asshowninSection15.2.6.Theonlydifferencebetweenthesetwoeventsisthecoreflowcoastdownrate,TheflowcoastdownrateduringthepumpseizureeventcoincidentwithalossofoffsitepowerisfasterthanthatduringthelossofACpowertransient.ThelossofACpowercausesthiseventtobecomeapressurizationevent.Thefasterflowcoastdownforpressurizationeventsarelessseverebecauseofnegativevoidreactivitycoefficient.Ifthelossofoffsitepowerwerecoincidentwiththehighwaterlevelturbinetrip,theresultingaccidentwouldbelessseverethantheoneanalyzedintheFSAR.Thisisduetothefactthattherecirculationpumptripwilloccurearlierintheformeraccident.TodiscusstheeffectofcorecoastdownrateonCPR,thefollowingispresented.CorecoastdownratehasaneffectonthechangeinCPR.Thiseffecthastwocriticalcomponentswhichvaryinverselywitheachother.Theinverserelationshipexistsbetweentheheatgenerationrate(neutronflux)andtheheatdissipationrate(thermalhydraulics),Thefasterthecoastdownrate,thefastertheneutronfluxdrops,but,theslowertheresidualheatinthefuelisdissipated.TheeventsinChapter15'areanalyzedtoconservativelyaccountforthisrelationshipwithregardstothechangeinCPR-Rev.22,4/81211.262-1 SSES-FSARg,>>6:Fromthediscussionofsinglefailuresforthe"inadvertentHPCIstartup"transient,itisindicatedthatasinglefailureofthepressureregulatororlevelcontrolwillaggravatethetransient,resultinginreducedthermalmargins.ProvidetheHCPRandpeakvesselpressurevaluesthatresultforthiseventwiththemostlimitingoftheabovesinglefailuresconsideredintheanalysis.RESPONSE:Intheeventofthe"inadvertentHPCIstartup"transient,neitherthepressureregulatornorthelevelcontrollerisexpectedtofailbecausebothsystemsareinnormalcontinuousoperationatthetimeofthehypothesizedevent,andnosignificantchangeintheirfunctionisdemandedbytheevent.Theyshouldsimplycontinuetheirnormalfunction.InadvertentstartupoftheHPCIresultsinamildpressurization.Uponpressurizationduetotheadditionofcoolerwaterintothefeedwatersparger,thepressureregulatortendstoregulatethevesselpressurebyadjustingthepositionoftheturbinecontrolvalve.Whenanactivefailureoftheregulatorsystemisconsidered,suchthattheturbinecontrolvalveswouldnotopen,furtherpressurizationwouldresultwhichwouldleadtoaneventsimilartothe"pressureregulatorfailure-close"transient(15.2.1)Nosignificantchangeinthermalmarginprotectionwouldoccur(<.01CPRchange).Becauseoftheadditionofthecoolerwaterinfeedwatersparger,thelevelcontrolsystemtendstoreducethefeedwaterflowtomaintainthenormalwaterlevel.Whenanactivefailureofthelevelcontrolsystemisconsidered,thewaterlevelwouldcontinuetorise..Thissituationissimilartothe"feedwatercontrollerfailure-maximumdemand"transient(15.1.2)andresultsinasimilarCPRchange.SincetheHPCIstartupdoesnotchallengethesecontrolsystemssignificantly,beyondtheirnormalcontxolfunctions,theindependent,simultaneousfailureofeitherisconsideredextremelyunlikely.Note:Theword"aggravate"usedinthetextdoesnotmeanaworsethermalmargin.Itratherimpliesanundesirableaction(e.g.turbinetrip)whichmayresultinreactorscramandshutdown.RBV.22,.4/81211.276-1 SSES-FSAROurpositionontheemergencycorecoolingsystems(ECCS)isthatthesesystemsshouldbedesignedtowithstandthefailureofanysingleactiveorpassivecomponentwithoutadverselyaffectitheirlong-termcoolingcapabilities.lnthisregard,weareconcernedthatthesuppressionpoolinboilingwaterreactors(BWR's)maybedrainedbyleakagefromisolationvalveswhichmayberenderedinaccessiblebylocalizedradioactivecontaminationfollowingapostulatedloss-of-coolantaccident(LOCA).Accordingly,indicatethedesignfeaturesintheSusquehannafacilitywhichwillcontainleakagefromthefirstisolationvalveintheECCSlinestakingwater(suctionlines)fromthesuppressionpoolduringthelong-termcoolingphasefollowingapostulatedLOCA.RESPONSE:TheECCSisdesignedtowithstandthefailureofanysingleactiveorpassivecomoonentwithoutadverselyaffectingthelong-termcoolingcapabilities.AnyleakagefromECCSsystemscanbeisolatedandcontained.ThedesignfeaturesinSusquehannathatassurethiscapabilityaredescribedinresponsetoFSARQuestion211.10.Rev.22,4/81211.295-1 SSES-FSARQUESTION221.14:YourresponsetoQuestion221.1isunacceptable.Thestaffbelievesthatthestate-of-the-arthasprogressedsuchthateffectiveLPMsystemscanbeinstalledincommercialLWRs.TherationaleforthisisdocumentedindraftRegulatoryGuide1.133(Loose-PartDetectionProgramforthePrimarySystemofLight-Water-Cooled-Reactors).Additionalrationaleclarifyingthestaffpositionc'nalsobefoundinaletter,VassallotoJ.E.Mecca(PugentSoundPowerandLightCompany)"SkagitNuclearPowerProject,Units162"datedJuly20,1978(DocketNos.50-522/523)availableintheNRCpublicdocumentroom.AnumberofLWR's,includingBWR's,atthesamestageoflicensingasSusquehanna,havecommittedtotheinstallationofaLPMsystem.Inaddition,itisrequiredbythestaffthataLPMsystembeinstalledandoperationalpriortostartupofthereactor.Therefore,pleaseprovidetheinformationrequestedinQ221.1.RESPONSE:TheSusquehannaSESLoosePartsMonitoringSystemisdiscussedinsubsections7.7.1.12and7.7.2.12.Rev.22,4/81221.14-1 SSES-PSARTheresponsetoQuestion221.9isunacceptable.Theapplicantshouldcommittosubmitareportdescribingthecomputerprogramusedforcorethermal-hydraulicanalysispriortoissuanceofanoperatinglicenseforSusquehanna.Thereportshouldprovidethecodedescription,thecalculationalmethodsandempiricalcorrelationsused,asampleapplicationandcodeverificationthroughcomparisonwithexperimentaldata.1RESPONSE:ThecomputerprogramcitedinSubsection4.4.4.5isnamedTSCOR.VariousversionsofthiscodehavebeenusedbytheGeneralElectricCompanyforoveradecadetoperformdetailedcore,steadystate,thermal-hydraulicanalyses.TheXSCORcomputerprogramisusedasthebasisforthesteadystatethermal-hydraulicmoduleintheGEBS/PANACthree-dimensionalBWRcoresimulator.Themodelsandnon-proprietarycorrelationsaredescribedinChapter4oftheBWRCoreSimulatorLicensingTopicalReport(NEDO-20953,Hay1976).Rev.22,4/81230.1-1 SSES-FSARTheresponsetoQuestion221.2isunacceptable.Question2requestedassumptionsusedforamountofcrudusedindesigncalculationsandthesensitivityofCPRandcorepressuredroptovariationsintheamountofcrudpresent.Merelystatingthat"aconservativeamountofcrudisdepositedonthefuelrodsandfuelrodspacers"doesnotbegintoanswerthisquestion.Thequestionalsoaskedforadiscussionofhowcrudbuildupinthecorewouldbedetected;'odiscussionisprovided.RESPONSE:Ingeneral,theCPRisnotaffectedascrudaccumulatesonfuelrods,(References1and2).Therefore,nomodificationstoGEXLaremadetoaccountforcruddeposition.Forpressuredropconsiderations,theamountofcrudassumedtobedepositedonthefuelrodsandfuelrodspacersisgreaterthanisactuallyexpectedatanypointinthefuellifetime.Thiscruddepositionisreflectedinadecreasedflowarea,increasedfrictionfactors,andincreasedspacerlosscoefficients,theeffectof,whichis.toincreasethecorepressuredropbyapproximately.1.7psi,anamountwhichislargeenoughtobedetectedinmonitoringofcorepressuredrop.Itshouldbenotedthatassumptionsmadewithrespecttocruddepositionincorethermalhydraulicanalysesareconsistentwithestablishedwaterchemistryrequirements.Moredetaileddiscussionofcrud(service-inducedvariations)anditsuncertaintyisfoundinSectionIIIofReference3.
 
==Reference:==
1.McBeth,R.V.,R.Trenberth,andR.W.Wood,"AnInvestigationIntotheEffectsofCrudDepositsonSurfaceTemperature,Dry-Out,andPressureDrop,withForcedConvectionBoilingofWaterat69BarinanAnnularTestSection",AEEW-R-705,1971.2.Green,S.J.,B.W.LeTourneau,A.C.Peterson,"ThermalandHydraulicEffectsofCrudDepositedonElectricallyHeatedRodBundles",WAPD-TM-918,Sept.1970.3."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication",GeneralElectricCompany,January1977,(NEDO-10958A).Rev.22,4/81230.2-1 SSES-FSARYourresponsetoquestion221.13isincomplete.Sincetheoperationaldesignguidelinesareexceededforsomeoperatingconditions,Figure4.4-6shouldberevisedtoshowdecayratiosasafunctionofrodposition,recirculationflowandpower.Figure4.4-6ascurrentlypresentedisnotsufficientlydetailedforuseininferringoperationalboundaries.RESPONSE:Theoperationaldesignguidelineisnotintendedforuseindefiningoperationalboundaries.Itisusedtodeterminetherangeofoptionaloperationintheautomaticflowcontrolmode.Currentguidelineisthedecayratio0.5.ItisclearfromFigure4.4-6thatmostoftheoperatingdomainmeettheguideline.Itshouldbenoted,however,thatpower/flowconditionwhichhasadecayratiogreaterthantheguidelinecanalwaysbeoperatedinthemanualflowcontrolmode.AlthoughGEdoesutilizedesignstabilityguidestooptimizeBNRoperationandperformancefromanavailabilityconsiderations,applicationoftheseguidelinesisnotconsideredtobeanecessaryrequirementtodemonstrate'anacceptableandlicensableconfiguration.Thecriterionusedwithrespecttosafetyisthatthecalculateddecayratiobelessthan1.0overtheexpectedrangeofoperation.ThishasbeendemonstratedforSusquehannaunit.OperationalguideshavebeendeletedfromFigure4.4-6.Rev.22,4/81230.3-1 SSES-FSARYourresponsetoQuestion221.15isunacceptable.YoureferenceNEDO-10958-Aforadiscussionoftheuncertaintiesandtheirbases.ThestaffevaluationofNEDO-10958states"TheestimatedvalueoftheuncertaintiesandthebasisforthevaluedependonthespecificdesignandequipmentofeachreactorandwillbeevaluatedforeachreactoratthetimeTechnicalSpecificationsareissued."InformationtosupporttheuncertaintyvaluesforSusquehannamustbesubmittedpriortoissuanceofasafetyevaluationreportforSusquehanna.RESPONSE:AgeneraldiscussionoftheboundingstatisticalanalysisuncertaintieshowninTable4.4-6isgivenintheGETABLicensingtopicalreport(Reference1).Oftheseuncertainties,allexceptthatofcriticalpowerareunaffectedbythetwowater-rodassemblydesign.TheGEXLcriticalpowerpredictabilityforthe8x8twowater-roddesignhasbeenshowntobesimilartothestandardonewater-roddesign(seetheresponsetoQuestion221.3);thevalueforthisuncertaintycitedinReference1(1=3.6%)isconservativewithrespecttobothonewater-rodandtwowater-roddesigns.AdditionalinformationconcerningtheremaininguncertaintiesinTable4.4-6andthebasesusedinthederivationofthoseuncertaintiesiscontainedintheLicensingtopicalreport"ProcessComputerPerformanceEvaluationAccuracy"(References2,3and4).Asstatedtherein,"theanalysiswasperformed...formeasurementssystemstypicalof(orconservativewithrespectto)theBWR4-6,"andisthereforedirectlyapplicabletoSusquehanna.
 
==References:==
1."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication,"GeneralElectricCompany,January1977(NEDO-10958A).2.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracy,"GeneralElectricCompany,June1974(NEDO-20340).3.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracyAmendment1,"GeneralElectricCompany,December1974(NEDO-20340-1).4.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracyAmendment2,"GeneralElectricCompany,September1975(NEDO-20340-2).Rev.22,4/81230.4-1 SSES-FSAR*UESTION230.8:Thesteady-stateoperatinglimitfortheMinimumCriticalPowerRatio(MCPR)is1.25.ThisvalueiscalculatedbasedonREDYmodeldescribedinNEDO-10802.TheresultsofthreeturbinetriptestsperformedatthePeachBottom-2haverevealedthatincertaincasestheresultspredictedbyREDYmodelarenon-conservative.TheGeneralElectricCompany'snewODYNforuseintransientanalyseshasbeenapproved.Accordingly,theapplicantisrequiredtoreanalyzepriortocriticalitythefollowingtransientswithODYN:1)generatorloadrejection/turbinetrip,2)feedwatercontrollerfailure~aximumdemandand3)mainsteamisolationvalveclosurewithpositionswitchscramfailure.Ifanothereventshouldbemorelimitingthanthoselistedabove,theothereventshouldreanalyzedwithODYN.ThereanalysesshouldincludeCPRcalculationanddemonstratethattheoperatinglimitforMCPRisnotlessthan1.25.RESPONSE:TheSusquehannaSESODYNsubmittalisscheduledforthesecondquarterof1981.
UESTION281.17ItisourpositiontomeetSectionC.lofAppendixAtoBTP-ASB9.5-1automaticsmokedetectorsbeprovidedinthefollowingareasandthattheyalarmandannunciateinthecontrolroom.Firedetectorsshould,asaminimum,beselectedandinstalledinaccordancewithNFPA72E,"AutomaticFireDetectors".ReactorBuildingFireZoneAreaElevationl.1-1G2.1-2A3.1-3A4.1-3B5.1-3C6.1-4A7.1-4B8.1-4G9.1-5A10.1-5B11.1-5D12.1-5E13.1-6A14.1-6D15.1-6E16.1-6F17.0-6G18.1-7A19.1-7B20.0-8ASumppumproomAccessareaAccessareaAccessareaAccessareaContainmentaccessareaPipepenetrationroomMainsteampipingFuelpoolpumps6heatexchangersValveaccessareaRMCUPumps8heatexchangersPenetrationroom'ccessAreaHSVequipmentroomRecirculationfansareaSpentfuelpoolSurgetankvaultHRVfanandfilterroomsRecirculationfanroomRefuelingfloor645-668670-683683-719683-719683-719719-747719-733717-816749-771761-771749-766749-777779-797779-797778-797779-797775-797779-816799-816818-873partialRESPONSE:Eachoftheareaslistedarebeingexaminedtodetermineiftheycontainorpresentafireexposurehazardtosafety-relatedsystemsnecessarytoaccomplishormaintainasafe-shutdowncondition.Additionalsmokedetectionwillbeprovidedinthoseareassatisfyingeithercriteria.ThisisdocumentedinRevisionltothePireProtectionReviewReport.Rev.20,2/81281.17-1 SSES-FSARUESTION313.1TheclassificationsystemforemergencyconditionsusedbyPPSLisidentifiedintheemergencyplan,asisthesystemusedbytheLuzerneCountyOfficeofCivilDefenseandthePABureauofRadiologicalHealth.Whiletheseclassificationsystemsappearcompatible,thetermsusedaredifferentandnodirectcomparisonismadeintheplan.ProvidesuchacomparisonbetweentheclassificationtermsusedbyPPMandthoseusedbytheoffsiteagencies,eitherinthetextofSection4oftheplan,oronFigure6.1.RESPONSEoAsestablishedin10CFR50AppendixEandNUREG0654/FEMAREPl,Rev.l,PPSI,,State,andLocalEmergencyPlanshaveincorporatedthesameemergencyclassificationsystem.TheclassificationsystemoutlinedinSection4.0oftheSusquehannaSESEmergencyPlanRev.2datedOctober1980isidenticaltothestateandlocalemergencyclassificationsystem.Rev.22,4/81313.1-1 SSES-FSARUESTION313.6Concerningprotectiveactions,describestepstakentomakeavailableonrequesttooccupantsinthelowpopulationzone,informationconcerninghowtheemergencyplansprovidefornotificationtothemandhowtheycanexpecttobeadvisedwhattodo.RESPONSEThefollowingmethodswillbeimplementedtoensureinformationonEmergencyPlanningistransmittedtotheEmergencyPlanningZoneresidents.Annually,afullpagead,summarizingtheinstructionandactiontobetakenbytheEPZresidentsintheeventofanemergencywillbepublishedinthelocalnewspaper.Annually,printedinstructionsandevacuationmapswillbedistributedtoresidentswithintheEPZ.EvacuationmapsandprintedinstructionswillbeprintedinalltelephonedirectorieswithintheEPZ.Analert.warningsirensystemcontrolledbythecountyEmergencyOperationsCenterswillbeinstalledwithintheEPZtoprovideearlynotificationtothepublic.ThissystemwillalertthepublictotunetothelocalEmergencyBroadcastSystemforfurtherinformationanddirection.Rev.22,4/81313.6-1 SSES"FSARUESTION313.7DescribethetrainingprovidedtheappropriatestaffmembersoftheBerwickHospitaltoshowthattheyarepreparedandqualifiedtohandleradiologicalemergencies.RESPONSEKeymembersoftheBerwickHospitalStaffwillbeinitiallytrainedattheOakRidge"REACTS"course.AnnualtrainingofappropriateBerwickHospitalpersonnelwillbeprovidedbyaconsultantexperiencedinthehandlingofcontaminated/irradiatedinjuredpersonnel.AnnualdrillsofBerwickHospitalstaffmemberswillbeconductedandcritiquedtoensuretheirabilitytohandleradiologicalemergencies.Rev.22,4/81313.7-1 SSES"FSARUESTION313.8Provideacommitmenttoconductannualexercisestotesttheadequacyoftheemergencyplanandtheimplementingprocedures.SeeRegulatoryGuide1.101,AnnexA,atSection8.1.2.RESPONSEThesecondsentenceofthefirstparagraphinSection8.1.2oftheEmergencyPlanwillbechangedtoread:"AninitialexercisepriortoloadingoffuelforUnit1andannualexercisesthereafterwillinvolveascenarioappropriatetoaSiteEmergencyorGeneralEmergencyCondition."Theseexerciseswillbeconductedusingtheguidelinesof10CFR50AppendixFNUREG0654/FEMAREP1Rev.l,andANSI/ANS-3.7.3-l979.Rev.22,4/81'313.8-1 SSES-FSARgWhenwillsettlementreadingsontheESSWPumphouseBasement(FSARTable2.5-8)beprovided?RESPONSE:Theresponsetothisquestionisgivenin362.22.Rev.22,4/81362.9-1 SSES-FSARProvideamapofthesiteclearlyshowingthetopographyasalteredbytheplant.NotethatFSARFigure2.4-1isinadequatebecauseitisverydifficulttoseethecontoursinthevicinityoftheplant.RESPONSE:Figure2.5"24hasbeenrevisedandshowsallthepresentroadsandfinishedgradingforbothUnits1and2.Rev.22,4/81371.19-1' SSRS-FSARgmSTXON-421.442=.Zthas"ometoouratantionthatsomeapplicantsailnotintendto"onductconfirmatorytestsofsomeDistcibutiosystmsanitransformerssuoplyingpowrtovitalbusesasreguiceDbyPosition3ofRegulatoryGuide1.68,andmorespecificxtllybyPact4ofthestaffpositiononDegradedgridvoltage(appliedtoallplantsinli=ensingceviewbythePowerSystemsBranchsin"e1976).Part4ofthedgcaDeDgciDvoltagepositionstatesasfoliows:ThavoltageleveLsatthesafety-related'usesshouldbeoptimizedforthefullloaDandmininumloadconditionsthataceexpecteDthcoughoutthanticipatedrangeofvoltagevariationsoftheoffsitepowersourcebyappropriateaDjustmentofthevoltagetapsettingsoftheinterveningtcansfocmecs.HerequirethattheadequacyaftheDesigninthisregardbeverifiedbyactualmeasurementandbycorrelationofmeasuredvalueswithanalysisresults.ProvidezDescriptionofthemethodfocmakingthisvacification;beforeinitialreactorpoweropecation,pcovidethedo"umentationrequiceDtoestablishthatthisvecificationhasbeenaccomplished.'!YourtestdescriptioninFSAR.Chap.tecl4doesnotcontainsufficientdetailforust>determineifyouintendtoconductsuchatest.Itisourpositionthat&#x17d;onficmxtorytestsofallvitalbusesmustbeconductedincludingallsour"esofpowecsuppliestothebusesNoiifyyourtestDescriptiontoindicatethatthistestingwillbeconductedinaccordancewithRegulatoryGuide168andtheaboveciteDposition..BZSPOBSZ=.VoltagesrecordedduringtheP100.1Preoperationaltest(Subsection14.2.12.1),willbereviewedandanalyzedagainstdesigncalcul'ationstoassureoptimaltapsettingshavebeenselected.Rev.22,4/81421.042-1 SSES-FSAR5ous55.x.5.z.5.c.c5.f.f5h.hvalves:andturbinestop,intecept,andcontrolvalves.Verifyresponsetimesofbranchsteamlineisolation.Demonstrateadequateperformancemarginsforshieldingandpenetrationcoolingsystemscapableofmaintainingternperaturesofcooledcomponentswithindesignlimitswiththeminimumdesigncapabilityofcoolingsystemcomponentsavailable(100/)Demonstrateadequatebeginning-of-I.ifeperformancemarginsforauxiliarysystemsrequiredtosupporttheoperationofenqineeredsafetyfeaturesortomaintaintheenvironmentinspacesthathouseenqineeredsafetyfeatures.Engineeredsafetyfeatureswillbecapableoperformingtheirdesignfunctionsovertherangeofdesigncaoabilityofoperablecomponentsintheseauxiliarysystems(50%,100%).Demonstratethatprocessandeffluentradiationmonitoringsystemsarerespondingcorrectly.Demonstratethatgaseousandliquidradioactivewasteprocessinq,storage,andreleasesystemsoperateinaccordancewithdesign.Demonstratethattheventilationsystemthatservesthemainsteamlinetunnelmaintainstemperaturewithinthedesignlimits.Demonstratethatthedynamicresponseoftheplanttothedesiqnloadswingsforthefacility.5oisla5.1.1.DemonstratethatthedynamicresponseoftheplantisinaccordancewithdesignforclosureoXreactorcoolantsystemflowcontrolvalves.Demonstratethatthedynamicresponseoftheplantisinaccordancewithdesignrequirementsforturbinetrip.QESPOQS~Preoperationaltestsofsafetyrelatedsystemsaredescribedbythetestabstractsprovidedinsubsection14 12-1.Specificdetailedguidelinesfortestinqsuchalossofpower,air,etc.aredescribedinthestartupadministrationmanualSection7.5.Lossofpoweristestedifitcausesanevolutiontooccurwithinthesystemsuchasswitchingautomaticallytoadifferentpowersource.Lossofairtestingisperformedbyplacingthevalveinitsnon-failedpositionbynormalactuatoroperation,thenisolatingtheactuatorairsupply,bletdingoffairpressureandverifyingvalvemovementtothefailedposition.Eachautomaticcontainmentisolationvalveistestedinthesystempre-optest.forproperoper-ationandclosuretimingasrequiredbythedesignsectionsoftheFSAR.Leakdetectionsystemssuchassteamleakdetectionaretestedinthesystempre-opsaffectedbythedetectionsystem.Rev.22,4/81423.12-5 SSES-FSARTheresponsetoitem423.14indicatesthat,testingdescribedinRegulatoryGuide1.80sectionsC.7throughC.10willnotbedonesincethetestingwillhavealreadybeendoneduring"varioussystempreoperationaltests".EitherprovidetestdescriptionsthatshowtestingequivalenttothatspecifiedinregulatorypositionsC.8,C.9,andC.10willbeperformed,ormodifyyourpreoperationaltestprogramtoincludeanintegratedlossofairtestandprovideanabstractofthattest.RESPONSE:SeerevisedresponsetoQuestion423.12.Table'23.28-1listsairoperatorvalves/HVACdamperswhicharetestedforlossofair.PreoperationaltestswithinwhichthelossofairtestingisaccomplishedisalsoprovidedinTable423.28-1.FurthertestingisperformedfortheADS/SRVvalvesasfollows:1.Verifyminimumcapacityofaccumulatorinacceptancecriteria.2.VerifyADS/SRV'sareoperatedfromtheirrespectiveaccumulator/supplywithothersuppliesdepressurized.3.Recordpressureatwhichanopenvalvebeginstocloseforsafety/reliefvalvesandverifyvalvefailstocloseonlossofair.4.VerifyanopenADSvalveismaintainedopenataccumulatorpressureof75+0-2PSIGandfailsclosedonlossofair.Rev.22,4/81423.28-1 SYSTEMRHRVALVENO.1-Ell<<P050A;BPREOP.NO.P49.1INST.AIRORPRI.CONT.INST.GAS~Inst<AirCCO1-E11-P122A,B'-E11-F051A,B1-Ell<<F052A,B1-E11-P053A,Bl-E11-F305A,DInst;GasInst.Air1-'Ell-PlllA,B1<<Ell-F129A,B.l-E11-F132A,B1<<E11-F136,F137,P140HV-E51-'17088''..'V-E51-1F025;1P026W-E51-1F004,1F005'HV-E51-1P054~CoreSpray.HV-E21lF006A,B~1N-E21~1F037A,B~~P50;1'$51.1'Inst'Gas'nst;Air.':ln'st;'GasHPCICRD..-HV-E41-.1F028,1F029HV>>E41-1F025,1P026'HV-E41-1P057,1P100.C12-POoaA,B.......XV-lP010,1P011.HV-B31-1P019;1P020.Both+'~~~'52;1'''~~~~P55sl~~\~Inst;Air''1F100'Ga's'Inst.Air0thes.Ins't'ir~~~
SYSVALVENO.PREOPNO.INST.AIRORPRICONT.INST.GASPireProtectionXV-12244,45;46,48,49XV-12205A,B,CXV-02247A,B;CXV-02248.XV-02215liv-11315'P13P14.Inst;'Air'Inst;.Air'BHVACllD17534A,B,C,D,E,ll',llAll+'ID17502AjB;Hg17514A,BAll*1~P34;XInst;'A'irllD17530A,B,'lD17531A'llD17564A,B;BD17524A,B.A11\~IlD17576A,B;-)lD17586A;BAll*llD17508A,B~.Both+-llD17651..BDID17603A;BBDID17604A;B;-BDID17605A;B..BDID17606A;B;BDID17609A;B.~7aI17659AB-n6BDID17668A,B;BDID17669A,BBDID.17670A,B;.QDID1761A,B.....~~~~~~BDID.17674A,B;BDID17675A.,B..
SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASRWCUia""'ii)oHV-14506A;B;14507A,B.HV-14508A,B;14510A,B.P61'.3.'nst;AirHV-14511AB'4512AB'HV-14513A,B;14514A,B'HV-14566A,B;14522....HV-14523,14528,14516HV-14518,14519;14520'HV-14521,G33-1F033Liquid-Radwast16108A1;16116Al16108A2,16116ALBoth'*~~e~/P69'.1'Ihst;'Air'ContainmentRecirculationHV-17521,23,24,22,25'A11''HV-157040514'All'''V-15703;13..~~'P73'.1'Inst.'Aii'~~~/~~~~'0~~/~~-
SYSTEMVALVENO.PREOP.NO.INST-AIRORPRCONT.INST.GASR.B.HVACPDD17501A;B;HD17511A;9'34'.'1'nst;'AirRBChilledMaterHD17521AB;HD17513A9HD17518A,B;HD17516HD17523A,B;HD17528A,BPDD17578A,B;HD17526':HD17566A~B~)'ID17588Af'9HD17538A,BTV-18726A1,A2,B1,92TV-18741A;9,C,DTV<<18743A,B.P34.2.~~Inst;AirTV-18751A9CD~TV-18753A,BTV-18764A,BTY-18771A;9;C,D~TV-18781A1A2,9192,A11+HV18782A1~A2~91~92~A11HV-18791A1,.A2,91,92h11*\~Inst;.Gas.HV-18791AlgA2,91;92All.*~~
SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASControlStructureQHVAGHDM&7802AB'oth*HDM-07833A,B;HDM-07824A2,B2HDM-07824A4B4HDM-078S'BHDM-07872A,B;HDM-07873A,BAll*'V-07813A,BTV-08602A,B0O.lP30..2.~.'....Feedwater10604ABC'10640'106'4114107A,B10650'10606A,B;C10604A,B;C'0663A'1~A2~B1~B27C1~C210664A;B,C.~~~~~~~
SSES-FSAROurreviewofrecentlicenseeeventreportsdisclosedthatasignificantnumberofreportedeventsconcernedtheoperabilityofhydraulicandmechanicalsnubbers.Provideadescriptionoftheinspectionsorteststhatwillbeperformedfollowingsystemoperationtoassurethatthesnubbersareoperable.Theseinspectionsortestsshouldbeperformedpreoperationallyifsystemoperationcanbeaccomplishedpriortogenerationofnuclearheat.RESPONSE:ExistingQArecordsontheconstructioninstallationandinspectionofsafetyrelatedsnubberswillbeassembledintoapackageforreviewbytheSuperintendentofPlant.Thispackagewillprovideassurancethatthepreoperationalconditionofthesnubbersisacceptableandthattheyareinstalledinaccordancewithdesign.Aftersystempreoperationaltestingandpriortofuelload,snubberswillbevisuallyexaminedandmanuallytestedfcrfreedomofmovementovertherangeofstrokeinbothcompressionandtension.ThismeetstherequirementofZEBulletin81-01Rev.1.Nohydraulic'nubbersareutilizedinsafetyapplicationsatSusquehannaSES.Rev.22,4/81423.40-1
 
}}

Revision as of 04:10, 21 April 2018

Forwards Revision 22 to FSAR
ML18026A222
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 03/20/1981
From: CURTIS N W
PENNSYLVANIA POWER & LIGHT CO.
To: YOUNGBLOOD B J
Office of Nuclear Reactor Regulation
Shared Package
ML17138B875 List:
References
ER-100450, PLA-662, NUDOCS 8103230429
Download: ML18026A222 (177)


Text

REGOLAT'ORYINFORMATIONDISTRIBUTIONSYSTEM(RIDS)ACCESSIONNBR:8103230429"OOC~DATE:81./03/20NOTARIZED:HOFACIL:50SusquehannaSteamElectricStation<UnitirPennsy'lva388usEruehannaSteamElectricStationiUnit2rPennsylvaAUTHOR'FFILIATIONPennsylvaniaPower8LightCo~RECIPIENTAFFILIATIONLicensingBranch1DOCKET¹0500038705000388

SUBJECT:

ForwardsrevisedpagestoFSAR~0ISTRISOTIONCOOS:ROOTSCOPIESRECEIVESILTR3,ENCLlgSIZE:I+8'~TITLE:PSAR/FSARANDTSandRelatedCorrespondenceNOTES:SendI8,E3cooiesFSAR8allamends'endI8E3copiesFSAR8allamends'500038705000388RECIPIENTIDCODE/NAMEACTION:A/DLICENSNGRUSHBROOKgtvI~INTERNAL:ACCIDEYALRR26CHKHENGBR08CORKPERFBR10K%ERGPREP22GEOSCIKNCES14HYD/GEO3R15I8,E06LICQUALBRMECHKNG8R18NRCPOR02OPLICBRPROC/TSTREV20RADASSESSRR22IÃFIL01CYNGBR25COPIESLTTR'ENCL1010111,111011223311111111111111RECIPIENTIOCODE/NAMEYOUNGBLOODEBSTARKgR~04dUXSYSSR07CONTSYS8R0'?EFFTRSYSBR12EQUIPQUALBR13PULIFACTENGBRI8CSYSBRieLICGUIDBR'LIATLKNGBR17MPAOELDPOWERSYSBR1?QABR21REACSYSBR23SITANALBR2aSYSINTERACBRCOPIESLTTRENCL1011111111331111110101111111EXTERNAL:ACRSNSIC2705161611LPDR0311TOTALNU'vIBEROFCOPIESRFQUIREO:LTTR57ENCL51 TWONORTHNINTHSTREET,ALLENTOWN,PA.18101PHONEs(215)770-5151NORMANW.CURTISVicePresirtent.Engineering8Construction-Nuclear770.5381March20,1981Mr.B.J.YoungbloodLicensingProject:Branch81DivisionofProjectManagementU.S.NuclearRegulatoryCommissionWashington,DC20555SUSQUEHANNASTEAMELECTRICSTATIONFSARCHANGESER100450FILE841-2PLA-662Enclosedplease'indforty(40)copiesofchangestotheSusquehannaSteamElectricStationFinalSafetyAnalysisReport.EffectedFSARSectionsarelistedontheattachmenttothisletter.Verytrulyyours,N.W.CurtisVicePresident-EngineeringttConstruction-NuclearTEG/mksEnclosureyooI5I/goPENNSYLVANIAPOWER8LIGHTCOMPANY8~Psgg0489 SSES-FSARTABLE3.2-1(Continued)Pae30NANoneApplicableXManufacturer'sStandards6)I-TheequipmentshallbeconstructedinaccordancewiththeseismicrequirementsfortheSafeShutdownEarthquake,asdescribedinSection3.7.NA-TheseismicrequirementsfortheSafeShutdownEarthquakearenotapplicabletotheequipmentorstructure.7)Y-Requirescompliancewiththerequirementsof10CFR50,AppendixBinaccordancewiththequalityassuranceprogramdescribedinChapter17.N-NotwithinthescopeoflOCFR50,AppendixB.8)TheclassificationofthecontrolroddrivewaterreturnlinefromthereactorvesselthroughthethirdisolationvalvewillbeGroupA.BeyondthethirdvalvewillbeGroupD,exceptasnotedinTable3.2-1.9)Thefollowingqualificationshallbemetwithrespecttothecertificationrequirements:Themanufactureroftheturbinestopvalves,turbinecontrolvalves,turbinebypassvalves,andmainsteamleadsfromturbinecontrolvalvetoturbinecastingshallusequalitycontrolproceduresequivalenttothosedefinedinGeneralElectricPublicationGEZ-4982A,"GeneralElectricLargeSteamTurbine-GeneratorequalityControlProgram".2.Acertificationshallbeobtainedfromthemanufacturerofthesevalvesandsteamleadsthatthequalitycontrolprogramsodefinedhasbeenaccomplished.10)1.Instrumentandsamplingpipingfromthepointwheretheyconnecttotheprocessboundaryandthroughtheprocessshutoff(root)valve(s),isolationvalve(s),andexcessflowcheckvalve,whenprovided,willbeofthesameclassificationasthesystemtowhichtheyconnect.2.AllinstrumentlineswhichareconnectedtothereactorcoolantpressureboundaryandareutilizedtoactuatesafetysystemsshallbeGroupBfromtheprocessshutoff(root)valve(s),isolationvalve(s),orexcessflowcheckvalve,whenprovided,tothesensinginstrumentation.3.AllinstrumentlineswhichareconnectedtothereactorcoolantpressureboundaryandarenotutilizedtoactuatesafetysystemsshallbeequalityGroupCfromthe8103230429 SSES-FSARTABLE3.2-1(Continued)Pae31processshutoff(root)valve(s),isolationvalve(s),excessflowcheckvalves,whenprovided,tothesensinginstrumentation.4.Otherinstrumentlines:.a)ThoseconnectedtospecialequipmentorGroupDsystempressureboundariesandutilizedtoactuatesafetysystemswillbeGroupCfromthesystempressureboundarythroughtheprocessshutoffvalve(s)tothesensinginstrumentation.b)ThoseconnectedtoGroupBandGroupCsystemsandutilizedtoactuatesafetysystemsshallbeofthesameclassificationastheprocesssystemtothesensinginstrumentation.c)ThoseconnectedtoGroupBandGroupCsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassificationexceptforthoseGroupCsystemsbyGEutilizingcapillary(filledandsealed)instrumentlines.d)ThoseconnectedtoGroupDsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification.5.ForGroupA,B,andCsystems,thesamplelinebeyondtheprocessshutoff(root)valve(s)orisolationvalve(s)willbeGroupBthroughthepenetrationandGroupDfromtheisolationvalvetotheshutoffvalveoutsideofthesamplestation.ll)TheHPCIandRCICturbinesdonotfallwithintheapplicabledesigncodes.Toensurethattheturbineisfabricatedtothestandardscommensuratewiththeirsafetyandperformancerequirements,GeneralElectrichasestablishedspecificdesignrequirementsforthiscomponent.12)Thehydrauliccontrolunit(HCU)isaGeneralElectricfactoryassembled,engineeredmoduleofvalves,tubing,piping,andstoredwaterwhichcontrolsasinglecontrolroddrivebytheapplicationofpreciselytimedsequencesofpressuresandflowstoaccomplishslowinsertionorwithdrawalofthecontrolrodsforpowercontrol,whileprovidingrapidinsertionforreactorscram.Althoughthehydrauliccontrolunitisfieldinstalledandconnectedtoprocesspiping,manyofitsinternalpartsdiffermaikedlyfromprocesspipingcomponentsbecauseofthemorecomplexfunctionstheymustprovide.Thus,althoughthe THISFIGUREHASBEENINTENTIONALLYLEFTBLANKREV.22,4/81SUSQUEHANNASTEAINELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTTHISFIGUREHASBEENINTENTIONALLYLEFTBLANKFIGURE3.6-9 SSES-FSARTABLE39-2INDEXLOADINGCOMBINATIONS~STRESSLIMITSAiNDALLO@ABLESTRESSESaReactorVesselPressureandShroudSupportAssemblyb.ReactorVesselInternalsandAssociatedEquipmentc.ReactorRaterCleanupHeatExchangersdClass1MainSteamPipinge.Class1RecirculationLoopPipingf.Thisitemintentionallyleftblankq.Safety/ReliefValves(MainSteam)h.MainSteamIsolationValvei.RecirulationPumpReactorRecirculationSystemGateValves(Suction/Discharge)k.Thisitemintentionallyleftblank1.StandbyLiquidControlPumpm.StandbyLiquidControlTankn.ECCSPumpo.RHRHeatExchangerpR'ACUPumpq.RCICTurbineSeRCICPumpNewFuelStorageRackst.HighPressureCoolantInjectionPumpuThisitemintentionallyleftblankv.ControlRodDriveHousingJetPumpsaa.ControlRodGuideTubeabIncoreHousingacReactorVesselSupportEquipmentCRDHousingSupportRev.22,4/81 SSES-FSABTABLE39-2ZNDEX-Continuedad.Thisitemintentionallyleftblankae.HPCZTurbine.DesignCalculationsaf.HighDensitySpentFuelStorageRacksRev.22,4/81 TABLE3.9-2(s)-(page1of2)NEWFUELSTORAGERACKSCRITERIA1.NEWFUELSTORAGERACKSLOADINGFAULTEDCONDITION"A"LOCATIONALLOWABLESTRESS(.7ULT)CALCULATEDSTRESSStressduetonormalupsetoremergencyloadingshallnotcauseafailuresoastoresultinacriticalarray.l.2.3.4.DeadLoadsFullFuelLoadinrackS.S.E.Thermal(notappli-cable)1.Beam(Axial)l.26,0008/in222.Beam(Trans.)'2.'6,000/I/in>3.Combined=3.26,0008/in1.18,9058/ig22.7,005///in2.25,9108/in2.SOURCEOFALLOWABLESTRESS(.7ULT)a~b.C~d.e.ASTMB308Alloy6061-T6ASMECode-BoilersandPressureVessels,Sect.III,NAProductSafetyStandardsforBt& MarkIII,Sect.VI,A.(3)ASME-PressureVesselsandPiping:DesignandAnalysis,VolumeOne,Page69.ASTHcodeforBoilersandPressureVesselswasselectedonthepremisethatdatausedfromthissourcewouldnecessarilybeontheconvervativesideasappliedtothefuelstoragerackcalculations.Rev.22,4/81 TABLE3.9-2(se2of2)S-S.S.E.loadsderivedbydynamicanalysis.=Totalstressreferstocombinedearthquakeandthermalloadathighestexpectedpooltemperature.Earthquakestressesobtainedbysquarerootofthesumof-thesquaresmethodforaresponseduetotri-axialexcitation.Stressgivenisthehighestinthetotalstructuralarray.4.NEWFUELSTORAGERACKSFAULTEDCONDITION"B"Stressesduetonormalupset(SeeBelow,Par.~)oremergencyloadingshallnotcauseafailuresoastoresultinacriticalarray.(Location-SeePar.6,Below)NotApplicableNotApplicableFAULTEDCONDITION"B":Condition"B"isanemergencyconditioninwhichthestresslimitisequaltotheyieldstrengthat0.2%offset.Theracksweretestedtodeterminetheircapabilitytosafelywithstandtheaccidental,uncontrolled,dropofafu'elbundlefromitsfullyretractedpositionintotheweakestportionoftherack.6.METHODOFTESTING:Four(4)rackcastingsweresubjectedtoimpactloadsrangingfrom1908ft.lbs.to4070ft.lbs.whichweregeneratedbydroppingsimulatedfuelbundlesweigh-ing660lbs.fromheightsvaryingfrom3.0'nd6.17'.Rackswerealignedinpairsandsimulatedbundlesweredroppedonbothracksattheflangearea.Both.centerimpactandendimpacttestswereconducted.(Two(2)oftherackswereX-Rayexaminedpriortotesting.Straingagesweremountedonrackstoascer-tainmax.strainandaccelerometersweremountedonbundlestodetermine"G"loads.)7.TESTRESULTS:Atotalofnineteen(19)testswereperformedwithdropheightincreasedateachtest.FirstfailureoccurredduetoacentralimpactonrackNo.3fromamax.heightof6.17',(Test813).Racks81andi02bothfailedfromacenterimpactcausedbyaloaddroppedfromaheightof5.33',(Testf/19).Accelerometerreadingsarenotavailableduetotheinabilitytoadequatelyaffixtheaccel-erometertothesimulatedfuelbundle.Rev.22,4/81 SSES-FSARTABLE3.9-2(af)e1of2HIGHDENSITYSPENTFUELRACKSTYPESOFANALYSISPERB3MEDDYNAMICANALYSIS:Adynamicmodalanalysisusingtheseismic,SRV,andDX'Aresponsespectrawasperformedonasimplifiedmodelconsistingof6racks(1quadrant).'Iheresultingloadsonthecornermodulewereextractedandamoredetailedanalysisperforned.STATICANALYSIS:Adetailedfiniteelement(1364elanents)modelofthecornermodulewasdevelopedandastaticanalysisperformedusingtheloadingresultsofthedynamicanalysis.Thesectiondescriptions,allowablestressesandstressratiosforthedetailedmodelaregivenonpage2ofthistable.FUELRA'ITLINGANALYSIS:Atimehistoryanalysiswasperformedtodeterminelocalimpactloadsduetofuelrattling.Acanparisonofthesupportloadsfromthefuelrattlinganalysiswiththoseoftheresponsespectrumanalysisshowedthatthefuelrattlingresultsarelessthanorequaltotheresponsespectrumresults.Analysisofthepoisoncanwascompletedusingthelocalimpactloads.MODELIMPACTANALYSIS:Anequivalentstaticloadwasdeterminedforthefollowingdropconditions:1)18"fueldroponcorneroftopcasting2)18"fueldroponmiddleoftopcasting3)fueldropfulllengththroughthecavityimpactingbottomcastingatthemiddle.Forthefirst2casestheequivalentstaticloadscalculatedwerecombinedwithdeadloadandappliedtothedetailedmodel.Forthe3rdcase,theultimateloadofthebundleshearingoutofthefuelseatwasdeterminedandcombinedwithdeadload.Thiscombinedloadwasthenappliedtothedetailednadel.Rev.22,4/81 SSES-FSARTABIE3.9-2(af),page2of2HIGHDENSITYSPENTFUELRACKSUMMARYOFRESUL'LSFORTHEDETAIIZDMODELELEMENTSNORMALAUlMABLESTRESSESNORMALOPERATINGCONDITIONDESIGNACCIDENTANDEKTREMEENVIRONMENTALCONDITIONSSECT.NO.SECTIONDESCRIPTIONFaFbyFbxfafbfbxFbxSTRESSRATIO(1)fbxFbyMAXSTRESSRATIO(l)4BottomGridInnerSect.8550BottcmGridOuterSectionNearLeg96501TopGridOuterSection99412TopGridInnerSection94203BottomGridOuterSect.88301576015760.0261576015760.0571576012120.0621576012120.0051576012120.047.009.055.248.831.249.747.78.813.93.108.42.013.85.269.57.018.040.062.005.047.006.715.74.039.766.85.248.108.42.831.013.85.249.269.57BottomGridInnerSectionNearLeg95301576012120.046.508.248.80.046.508.248.807BottomGridFoot8BottanGridFoot91/2"Plate107/8"Plate(1)StressRatio10250110203320173701576012120.1321418014180.161Fv=1390F=10970abvfbxFa+%'FbxxRev.22,4/81(2)PlateStressRatio=f>fx+.001.13.003.1699(2)92(2).160.1950.003.160.006.2076(2).92(2)NOZEAllowablestressesarefactoredupperTable9.1-7aoftheSSES-FSAR.

SSES-FSAH4.4.6INSTHH:.5ENTATI0NREQ0IHEiJENTSThereactorvesselinstrumentationmonitorsheKeyreac.orvesseloperatinqparametersduringplannedoperations.Thi-ensuressuffi"ientcontroloftheparamete=s.ThefollowinqreactorvesselsensorsarediscussedinSubsection7.7.1.l.(1)ReactorVesselTemperatu"e(2)ReactorVessel~r,'aterLevel(3)ReactorVesselCoolantFlowHatesandDifferen=ialPressures(4)ReactorVesselXntmalPressure(5)Neutron.'lonitoringSystem4.4.61LoosePa"tsilonitoringTheLoosePartsMonitoringSystemforSusquehannaSESisdiscussedinSubsections7.7.1.12and7.7.2.12.44.7REFERENCES4.4-1GeneralElectricThermalAnalysisBasis(GETAB):Data,Cor"elationandDesiqnApplication,GenealElectricCompany,January1977,(N"D0-10958A).4.4-2Co"FlowDisributioninaModernBoilingMaterReactora-MeasuredinlJonticello,Auqus"1976,(NFDO-10722A).4.4-3H.C.NartinelliandD.F..Nelson,"PredictionofPressureDropsDuinqForcedConvectionBoilinqof:Hater,"ASHZTrans.,70,pp695-702,1948.44-4C.J.Baroczy,"ASystematicCorrelationforTwo-PhasePressureDrop,"HeatTran"ferConference(LosAngeles),AECLE,PreprintNo.37,1966.44-5Jens,R.H.,andLottes,P.A,AnalysisofHeatTransfer,Burnout,PressureDrop,andDensityDataforHighPressuredater,USAECReport-4627,1972.4.4-6Neal,LG.,andRivi,S.il.,"TheStabilityofBoiling-cfaterReactorsandLoops,"Nuc1earScienceandEngineerinq,30p.25,1967.Rev.22,4/814.4-27 1.6TOTALCORESTABILITY1.41,0ULTIMATEPERFORMANCELIMITOIL00.80.6NATURALCIRCULATION105'%ODLINE0.40200204080120PERCENTPOWERSUSQUEHANNASTEAMfLECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCOREREACTXVITYSTABILXTYFIGURE44 SSES-TSAR.separatedhousing,givesaforceofapproximately35,000lb.Thisforceismultiplidbyafa"torof3forimpact,conservativelyassumingthatthehousingtravelsthroughal-in.gapbeforeitconta"tsthesupports.Thetotalforce(105,0001b)isthentreatedasastaticloadindesign.AllCRDhousingsupportsubassembliesarefabricatedofcommonlyavailablestructuralsteel,exceptforthediscsprings,whichareSchnorr,TypeBS-125-71-8.6.2~EvaluationsoftheCRDSThissubjectiscoveredundernuclearsafetyandoperationalanalysis(NSOA)inAppendix15A,Subsection15A.6.5.3.4.6.2.3Safety-Evaluat.iou-Safetyevaluationofteecontrolrods,CRDS,andcontrolroddrivehousingsupports.isdescribedbelow..Purtherdescriptionof"ontrolrodsiscontainedinSection4.2.4.6.2.3.1-ControlRods4.62..3;1.1HaterialsAdequacy-Thro~uhoutDesignlifetimeTheadequacyofthematerialsthroughoutthedesignlifewasevaluatedinthemechanicaldesignofthe"ontrolrods.Theprimarymaterials,84"powderand304austeniticstainlesssteel,havebeenfoundsuitableinmeetingthedemandsoftheBQRenvironment.,Rev.22,4/8146-20 SSES-FSARthatareautomaticallyactuatedcanalsobemaauallyactuatedfromthemaincontrolroom.Asinglefailureiaanyelectricalsystemisanalyzedregardlessofwhetherthelossofasafetyfunctioniscausedbyeithercomponentfailingtoperformarequisitemechanicalmotion,orcomponentperforminganunnecessarymechanicalmotion.6.2.4.4TestsandInsectionsThecontainmentisolationsystemispreoperationallytestedinaccordancewiththerequirementsofChapter14.Thecontainmentisolationsystemisscheduledtoundergoperiodictestingduringreactoroperation.Thefunctionalcapabilitiesofpoweroperatedisolationvalvesaretestedremotemanuallyfromthecontrolroom.Byobservingpositionindicatorsandchangesintheaffectedsystemoperation,theclosingabilityofaparticularisolatioavalveisdemonstrated.Adiscussionoftestingandiaspection,includingleaktightnesstesting,pertainingtoisolationvalvesisprovidedinSubsection6.2.6andiaChapter16.Table6.2-12listsallisolationvalves.Instrumentswillbeperiodicallytestedandinspected.Testand/orcalibrationpointswillbesuppliedwitheachinstrument.Excessflowcheckvalves(EFCV)shallbeperiodicallytestedbyopeningatestdrainvalvedownstreamoftheEFCVandverifyingproperoperation.WiththeexceptionoftheCRDinsertandwithdrawallines,thepenetrationslistedinTable6.2-12areTypeCtested.ThetestmethodsandacceptancecriteriaarelistedinSubsections6.2.6and3.9.6.2.6.2.5COMBUSTIBLEGASCONTROLINCONTAINMENTThecombustiblegascontrolsystemisprovided,inaccordancewiththerequirementsofGeneralDesignCriterion41ofAppendixAto10CFR50,tocontroltheconcentrationofhydrogenwithiathecontainmentfollowingaloss-of-coolantaccident(IOCA).Rev.22,4/816.2-4S SSES-ESARTABLE6.2-22LEAKAGERATETESTLISTPenetrationDescriptionInboardIsolationBarrierTypeBarrierDescription/TestValveNo.Notes*OutboardIsolationBarrierBarrierDescription/ValveNo.Notes*ExemptiontoIOCFR50AppendixJRequiredX-IX-2X-2X-2X-2X-3AX-3BEquip.accesshatchBEquip.accesshatchuithpersonnellockPersonnellockbarrelBPersonnellockinnerdoorBPersonnellockouterdoorBSparePrimaryContainmentPressureInst.(2)Double0-ringDouble0-ringInnerdoor/barrelDouble0-ringCap1>21,310Outerdoor/barrelDouble0-ring1>21,310,11X-3CX-3DX-4X-5X-6X-7ASpareSpareDry@oilheadaccessmanholeDryuellheadSpareCRDremovalhatchMainsteamACapACapDouble0-ringDouble0-ringCapDouble0-ringHV-IF022A4>5,17HV-IF028A>HV-IFOOIB,PTIN06IB,~I10514>19YesX-78X-7CX-7DHainsteamHainsteamHainsteam~CHV-IF022BCIW-IF022CCIAf-IF022D4,5,174,5,174,5,17HV-IF028B>HV-IFOOIFPT-IN061F,PT-IN051FHV-1E028C>HV-IFOOIKPT-IN061K>PT-IN051KHV-IF028D>HV-IFOOIPPT-IN061P>PT-IN05IP4>194>194,19IIYesYesX-8X-9ARev.,4/81HainsteamlinedrainFeeduaterCHV-IF016CIFOIOA17>1814>18HV-IF019HV-IF032A>IN-IF013,HV-IF042,HV-1F1041914,19 SSES-FSARTABLE6.2-22ContinuedPa8c6PenetrationDescriptionInboardIsolationBarrierTypeBarrierDescription/TestValveNo.Notes*OutboardIsolationBarrierBarrierDescription/ValveNo.Notes*Exemptionto10CFR50,AppendixJRequiredX-58AX-58BX-59hX-59BX-60AX-60AX-60AX-60BX-61AX-61AX-61AX-61BX-62AX-62BX-63AX-63BX-64AX-64BX-65AX-65BX-66AX-66BX-72AX-728Mainsteam,RWCUinst(4)AHainsteam,RWCUinst(2)hReactorlevelinstReactorlevelinst0sample0sample0sampleReactorWaterSampleDemin.WaterFlowInstrumentationAhCSY-15740BCSV-15776BCSV-15750BCIN-IF019C1-41-018hMainsteaminst(2)Mainsteaminst(2)Mainstcaminst(2)Hainsteaminst(2)Hainstcam,RWCUinst(3)Hainsteaminst(2)Prcssureinst(3)ReactorlevelinstReactorlevelinstReactorlevelinstReactorlevelinstLiquidradwasteLiquidradwaatehh.hAAhhCliV-16116hlCUV-16108A1ILRTLeakVeriiicationC1-57-1931010101018l81817>18181018101010101010101010101017,1817,18SV-15742BSV-15774BSV-15752BUV-1F0201-41-0171-57-195HV-16116A2UV-16108A210,1110,1110,1110>1111>1911>1911,1919191910~1110,1110>1110>1110,1110,1110,1110,1110,1110>1110>1111,1911,19Rev.22,4/81 SSES-FSARTABLE6.2-23IVITIALA'.EDBOUNDAHYCONDITIONSFORIVADVERTENTSPRAYACTUATIONSTIJDY-00Tz.meZerotoDrvwellVolume(Žt~)Pressure(PSIA)Temperature(F)RelativeHumidity(n)SprayRate(GPN/TRANS)Metwell23960014.81501000/023960034.8325910010700/1Volume-VaporRegion(Ft~)SuppressionPool(Ft~)Pressure(PSIATemperature(F)RelativeHumidity(K)SuppressionPoolFreeSurfaceArea(Ft~)>letwegl-to-DrvwellVacuumBreake."-NumberofValveAssembliesFlowAreaPerAssembly(Ft~)FlowCoefficientAssumedVacuumBreakerLiftingPressureRHRSystem-DrgwellSprayModeServiceMaterFlowHate(GPM)ServiceMaterTemperature(F)HeatExchangeEffectiveness14859013155014.8501005277(puid)14590013155030.28501005277of52.050.3539000320.245Rev.22,4/81 SSES-FSAR6.3.5INSTRUMENTATIONREUIREMENTSDesigndetailsincludingredundancyandlogicoftheECCSinstrumentationarediscussedinSection7.3.AllinstrumentationrequiredforautomaticandmanualinitiationoftheHPCI,CS,LPCIandADSisdiscussedinSubsection7.3.2andisdesignedtomeettherequirementsofIEEE279andotherapplicableregulatoryrequirements.TheHPCI,CS,LPCIandADScanbemanuallyinitiatedfromthecontrolroom.TheHPCI,CS,andLPCIareautomaticallyinitiatedonlowreactorwaterlevelorhighdrywellpressure.(SeeTable6.3-2forspecificinitiationlevelsforeachsystem.)TheADSisautomaticallyactuatedbysensedvariablesforreactorvessellowwaterleveland',drywellhighpressureplustheindicationthatatleastoneLPCIpumporbothCSpumpsinthesameloopareoperating.TheHPCI,CSandLPCIautomaticallyreturnfromsystemflowtestmodestotheemergencycorecoolingmodeofoperationfollowingreceiptofanautomaticinitiationsignal.TheCSandLPCIsysteminjectionintotheRPVbeginwhenreactorpressuredecreasestosystemdischargeshutoffpressure.HPCIinjectionbeginsassoonastheHPCIturbinepumpisuptospeedandtheinjectionvalveisopenedsincetheHPCIiscapableofinjectingwaterintotheRPVoverapressurerangefrom150psigto1145psig.6.3.6NPSHMARGINANDVORTEXFORMATIONAFTERAPASSIVEFAILUREINAWATERTIGHTECCSPUMPROOMNPSHcalculationsforECCSpumpshaveshownadequatemargintoassurecapabilityofproperpumpoperationafterapoolleveldropduetoaworstcasepassivefailureinanECCSwatertightpumproom.ThiscapabilitywillbeverifiedduringpreoperationaltestingassumingapassivefailureintheECCSpumproomresultinginthelowestpoollevelwithsubsequentoperationoftheECCSpumpwiththesmallestNPSHmarginaboveNPSHrequired.ECCSpumpdataispresentedinFigures6.3-75thru6.3"78.ThepoolleveldrophasbeendeterminedassumingapassivefailureinaECCSwatertightpumproomwithoperatoraction10minutesafteranalarmintheroomindicatinghighwaterlevel.ThislowestsuppressionpoolwaterlevelwillalsobeusedduringpreoperationaltestingtoverifytheabsenceofvortexformationintheflowapproachingthesuctionstrainersinthepoolduringECCSpumpoperation.Pumpperformanceandpumpnoisewillbemonitoredduringtheseteststodetermineifpumpsaresensitivetosuctionflowconditionsinthesuppressionpool.Rev.22,4/816.3-32 SSES-FSAR7.3.1.1b.8.5.3.7ActuatedDevicesRefertoSubsection9.4.8.7.3.1.1b.8.5.3.8SearationTheinstrumentation,controls,andpowersupplyoftheESSWpumphousearedivisionallyseparated.TwobaysprovidephysicalandelectricalseparationbetweenDivisionIandDivisionII.7.3.1.1b.8.5.3.9SuortinSstemsTheinstrumentationandcontrolsoftheESSWpumphouseventilationsystemarepoweredfromClass1E125Vdcand120Vacsystems.TheseelectricalsystemsarediscussedinChapter8.TheESSWpumphouseunitheaterssupporttheventilationsystemasdiscussedinSubsection9.4.8.7.3.l.lb.8.5.3.10SstemPartsNotReuiredforSafetThepartsoftheESSWpumphouseventilationsystemnotrequiredforsafetyareasfollows:a)Allelectricunitheaters,seeSubsection9.4.8b)InstrumentationformonitoringairflowfromtheESSWpumphouseventilationsystemc)Instrumentationforalarminginthemaincontrolroomofhigh-highandlow-lowtemperaturesintheESSWpumphouse7.3.1.lb.8.5.4ESFSwitchear(SWGR)RoomsCoolinSstemForthedescriptionofoperationoftheabovesystemrefertoSubsection9.4.2.2.Rev.22,4/817.3-101 SSES-FSARonegroupwillnotinterferewithproperoperationoftheredundantportionsofthesysteminSection8.1.I7.3.2a.5.4.3IEEEStandard338(1975)ThecapabilityfortestingthesuppressionpoolcoolinginstrumentationandcontrolsystemisdiscussedinSection7.3.2.6.4.1.9and7.3.2.6.3.1.10.7.3.2a.5.4.4IEEEStandard379(1972)aThesinglefailurecriterionofIEEE279(1971),paragraph4.2asfurtherdefinedinIEEE379(1972),"ApplicationoftheSingleFailureCriteriontoNuclearPowerGeneratingStationProtectionSystem,"ismetasdescribedinSection7.3.2a.5.4.1.2.7.3.2a.5.4.5IEEEStandard384(1974)IndependenceofsuppressionpoolcoolingequipmentisdemonstratedintheSectiononConformancetoIEEE279(1971)paragraph4.6andIEEE308(1974).SeeSections7.3.2a.5.3.1.6and7.3.2a.5.3.2.7.3.2a.6throuh7.3,2a.llTheseSubsectionnumberswerenotused.7.3.2a.12AdditionalDesinConsiderationsAnalses7.3'a.12.1GeneralPlantSafetAnalsisITheexaminationofthe'subjectESFsystemattheplantsafetyanalyseslevelispresentedinChapter15andAppendix15A.Rev.22,4/817.3-196 SSES-FSAR7.6.1b.1.1.8EnvironmentalConsiderationThepressuretransmitterslocatedoutsidetheprimarycontainmentaredesignedandqualifiedtowithstandallanticipatedenvironmentalconditionsinaccordancewithIEEE-323-1974andIEEE-344-1975.7.6.1b.1.2PrimaryContainmentandSuppressionPoolTemperatureMonitoringSystem7.6.1b.1.2.1SystemIdentificationTheSuppressionPoolsystemsaredesignedtomonitorthetemperatureintheprimarycontainmentandsuppressionpoolduringnormalplantoperationsandafterLOCA.7.6.1b.1.2.2SafetyEvaluationTheindicationofcontainmenttemperaturesinthecontrolroomisrequiredforpostaccidentmonitoringandissafetyrelated.Theinitiatingcontactsfortheautomaticstartofthedrywellfansarederivedfromelectronicswitchesinthetemperaturesensingloop.Thisfunctionissafetyrelated.Thesystemdesignconformstoallapplicablecriteriaforphysicalseparationanddivisionalization.RefertoSubsection7.3.l.lb.Thehardcopytimeplotofthecontainmenttemperaturesisoperatinghistoryonlyandisnotsafetyrelated.However,redundantsystemsareprovided.iOTheindicationofsuppressionpooltemperatureinthecontrolroomisrequiredtoensurethattheplantisalwaysoperatingwithinthetechnicalspecificationlimits.Manual,operatoractionisrequiredtomaintaintheplantwithinthespecifications.Suppressionpooltemperatureisalsorequiredforpostaccidentmonitoring.Bothofthesefunctionsaresafetyrelated.Thesystemdesignconformstoallapplicablecriteriaforphysicalseparationanddivisionalization.Refertosubsection7.3.1.lb.Thehardcopytimeplotofsuppressionpooltemperatureisoperatinghistoryonlyandisnotsafetyrelated.However,redundantsystemsareprovidedandaredevisionalized.TheprimaryContainmentandsuppressionchambertemperatureelementsandtemperatureindicatorswillbequalifiedtooperatefollowingaDBA.IRev.22,4/817.6-57 SSES-FSAR7.6.1b.1.2.3PowerSourcesThesafetyrelatedinstrumentationispoweredfromdivisionalizedpowersources.DivisionIClassIEbus(120Vac)powersLoopA,DivisionIIClassIEbus(120Vac)powersLoopB.FourdualelementRTDsperredundantsystemarelocatedintheprimarycontainmenttosensethetemperatureatthefollowingelevations:a)Reactorpressurevesselheadb)Upperplatformc)Lowerplatformd).Drywell(belowreactorpressurevessel).Tworedundanttemperatureelementsarelocatedinthesuppressionchamber.Theselectedlocationforthetemperaturesensorshelpstheoperatortodefinetheareaoftheheatsourcewithintheprimarycontainment.ThesignalfromtheRTDelementsareamplifiedbyelectronictemperaturetransmitterstodrivemeters,recorderchannels,andalarmswitchesinthecontrolroom.Tworedundantindicators,fortheprimarycontainmentarelocatedinthemaincontrolroom.Theinitiatingcontactsforthehighspeedstartofthedrywellcoolingfans(refertosystemdescriptioninSection9.4)andderivedfromthetworedundanttemperaturesensingelementslocatedintheserviceareaofthefans.Ifhightemperatureisdetectedtheelectronicswitcheswillinitiatethehighspeedstartofthedrywellcoolingfans.Electronicsignalconverterswithfullelectricalinput-outputisolationareplacedbetweensafetyrelatedinstrumentationandtheinputchannelstotherecorders.!TworedundantmultipointrecordersfortheprimarycontainmenttemperaturemonitoringsystemprovideapermanenthistoryofallRTDmeasurementstotheoperatorinthecontrolroom.Eachtemperaturesensingcircuitisequippedwithalarmswitchesandinitiateonecontrolroomalarmperredundantchannel.Rev.22,4/817.6-58 SSES-FSAROnetemperatureindicatorfortheprimarycontainmentislocatedontheremoteshutdownpanel.RefertoSubsection7.4.1.4forsystemdescription.InstrumentrangesaredefinedinSection7.5.7.6.lb.2.4bEquipmentDesign-Su~pressionPoolTemperatureThesuppressionpooltemperatureismonitoredbytworedundantsystems,eachofwhichperformsasdescribedbelow.EightRTD'sperredundantsystemarelocatedinthesuppressionpoolapproximatelysixinchesbelowtheminimumpoolwaterlevel.Thesesensorsarelocatedaroundthepoolinordertoprovideagoodspatialdistributionofpooltemperature.RefertoTable7.6-9fortheexactlocationofthesesensors.Thesignalsfromthesenosrsareprocessedbyanelectronicunitlocatedinthecontrolroom.ThiselectronicunitconvertstheRTDsignalsintodegreesFahrenheitandcomputestheaverageoftheeighttemperatures.IfoneoftheRTDsfails,anerroralarmisgenerated,andthefailedRTDmayberemovedfromthecalculationoftheaveragebyoperatoraction.Theaveragevalueisdisplayedbydigitalindicatorslocatedbothontheelectronicunitandonthemaincontrolboard.Akeyboardallowstheoperatortodisplayanyindividualtemperatureinput.Ahightemperaturealarmisgeneratedbycomparingtheaveragetemperaturetoseveralinternallystoredsetpoints.Thealarmconditionisdisplayedbystatuslightslocatedbothontheelectronicunitandonthemaincontrolboard.Electricallyisolatedoutputsinterfacewithanannunciatorlocatedonthemaincontrolboard.Adigitalprinterlocatedontheelectronicunitperiodicallyprintstheaveragetemperature,plustheindividualtemperatures,plusthecurrentdateandtime.Trendinginformationmayalsobeprintedattheoperator'srequest.Alarmconditionsareprintedalongwiththetemperature.Electricallyisolateddigitalandanalogsignalsareprovidedtointerfacewithotherplantinformationsystems.Theelectronicunithasaselfcheckingdiagnosticsystemthatprovidesanerroralarmifafailureisdetectedinanypartofthesystem.Inadditiontotheeighttemperaturesensorsmentionedabove,therearefouradditionalsensorsassociatedwithDivisionI.Thesesensorsarelocatedinthesuppressionpool,sixteenfeetbelowminimumwaterlevel.Theyareusedfordisplayonlyandarenotusedinthecalculationofaveragetemperatureandarenotredundant.InstrumentrangesandaccuraciesaredefinedinTable7.5-3.Rev.22,4/817.6-59 SSES-FSAR7.6.-1h-12.5--Redundancy-Redundantinstrumentationisprovidedforthecontainmentandsuppressionpooltemperaturemonitorinqsystem7~6;1b-1.2.6--SeDaration-JPhysicalandelectricalseparationisprovidedforthesafetyrelatediastrumentatioa.Nonsafetycircuitsareisolatedbyelectronicconvertersvith.fullinput-output.isolation.7,6Pb,-12~7-genatiooaZ..Consideration-ThesystemisdesignedtofunctionduringnormalplantoperationandafteraDBA.7611.-1.28--Zn~ironmental-Consideration-Alltemperatureseasingelementslocatedinsidethecontainmentaredesiqned.tooperate.inthenormaloperatingenvironment,durinqandafteraLOCA.Allelectroniceguipmentandindicatingdevicesarelocatedwithinthecontrolstructure..Expectedenvironmenta1coaditionsaredefinedinChapter3.7-,6~4k.,~1-Q--~ggesgigg.Qoo3.-Wage~Level-monitoringSystem.7.6ilb=-l3= -System-Tdentification-Theinstrumentatioaforsuppressionpoolwaterlevelmonitoringisdesiqnedtoprovideindicatioaandarecordinthecontrolroomofthesuppressionpool'leveldurinqnormalplantoperationandinaccidentconditions,includingaLOCA.,Rev.22,4/817.6-59a SSES-FSARTABLE7.6-9SuressionPoolTemeratureSensorLocationsAzimuth36030'8o100o30'02o141o30'43o179o18030'16o30'18o268o30'70o318o319030'4830'50oRadius34'-6"34I6II44'4'4I6ll34'-6"44'4'4'-6"34I6ll44'4'4I6ll34I6ll44'4'ev.22,4/81 SSES-FSARI77CONTROLSYSTEMSNOTREQUIREDFORSAFETY7.71DESCRIPTION-Thissubsectiondiscussesinstrumentationcontrolsofsystemswhosefunctionsarenotessentialforthesafetyoftheplantandpermitsanunderstandingofthewaythereactorandimportantsubsystemsarecontrolled.Thesystemsinclude:(1)Reactorvessel-instrumentationVLSSS(2)Reactormanualcontrolsystem-instrumentationandcontrols,NSSS(3)Recirculationflowcontrolsystem-instrumentationandcontrolsNSSS{0)Reactorfeedwatersystem-instrumentationandcontrolsNSSS(5)Pressureregulatorandturbine-qeneratorsystem-instumentationand.controlsnon-NSSS(6)Neutronmonitoringsystem-TIP(7)Processcomputersystem-instrumentationNSSS(8)Neutronmonitoringsystem-traversingin-coreprobeNSSS(9)Reactorwatercleanupsystem-instrumentationandcontrolsNSSS(10)Refuelinginterlockssystem(ll)NuclearPressureReliefSystem-instrumentation5controls(12)Rodblockmonitorsystem(13)Loosepartsmonitoringsystem7.7.~~.ReacgogVessel-InstrumentationthosesysteRev.22,4/817&71Figures5.1-3aand5.1-3bshowtheinstrumentnumbers,arrangementsofthesensors,andsensingequipmentusedtomonitorthereactorvesselconditions.Becausethereactorvesselsensorsusedforsafetysystems,engineeredsafeguards,andcontrolsystemsaredescribedandevaluatedinotherportionsofthisdocument,onlythesensorsthatarenotrequiredformsaredescribedinthissubsection.

SSES-FSAR7.7.1.11.1.5Testability0Therodblockmonitorchannelsaretestedandcalibratedwithproceduresgivenintheapplicableinstructionmanuals.TheRBMsarefunctionallytestedbyintroducingtestsignalsintotheRBMchannels.7.7.1.11.2EnvironmentalConsiderations(SeedescriptionforAPRM,Subsection7.6.la.5.6.2)7.7.1.11.3OperationalConsiderationsWhenincreasingpower,theset-uppermissivelampwilllightatwhichtimetheoperatormustevaluateconditionsbeforemanuallychangingtothenexthigherrodblocksetpointline.7.7.1.12LoosePartsMonitorin~SystemTheLoosePartsMonitoringSystemwillmonitor,alarmandrecordtheReactorVesselacousticsforthepresenceofinternalloosepartsinaccordancewithR.G.1.133Draft-2Rev.1.Thesystemwillmonitorthepointslistedbelow.Whenanimpacteventsignalexceedsaselectableamplitude,analarmwilloccurandpeakimpactandimpactrepetitionwillautomaticallyberecordedandtimedsequentially,foreachselectedchannel.EightpiezoelectricaccelerometersareattachedexternallytotheReactorVessel:a.Twomountedapprox.180apartonornearthemainsteamlinestomonitortheupperheadregions.b.Twomountedapprox.180oapartonornearthefeedwaterlinestomonitortheuppervesselregions.c.Twomountedapprox.180apartandat90rotationfromtheuppervesselsensorsmountedonorneartherecirculationsuctionlinestomonitorthevesselcoreplateregion.Rev.22,4/817.7-62 SSES-FSARd.Twomountedapprox.90apart,oneonaCRDHousingandtheotherontheRPVdrainpiping,tomonitorthelowervesselregions.7.7.1.12NuclearPressureReliefSystem7.7.1.12.1SystemIdentificationTheNuclearPressureReliefSystem,consistingofsafetyreliefvalvesandassociatedcircuitry,isdesignedtolimitnuclearsteamsupplysystempressureundervariousmodesofreactoroperation.7.7.1.12.2EquipmentDesignTheNuclearPressureReliefSystemcontrolsandinstrumentationconsistofmanualcontrol/pressuresensorchannelseachdedicatedtoitsrespectivesafetyreliefvalveandassociatedvalveoperator(solenoidoperatedairpilotvalve).Thepilotvalvecontrolsthepneumaticpressureappliedtotheaircylinderoperator.Uponenergizingthepilotvalve,pneumaticpressureisdirectedfromtheaccumulatortoactontheaircylinderoperatorcausingthesafetyreliefvalvetoopen.Uponagainde-energizingthepilotvalve,airintheaircylinderisexhaustedandtheaccumulatorisonceagainisolatedviathede-energizedpilotvalve.Anaccumulator,oneforeachvalve,isincludedwiththecontrolequipmenttostorethepneumaticenexgyforsafetyreliefvalveoperation.Safetyreliefvalvesareautomaticallyinitiatedbyhighreactorpressureconditions.CablesfromthepressuresensorsforvesselpressureareroutedRev.22,4/Sl7.7-62a SSES-FSAR10"-FR50-AppendixA.Criteria-24-TheRBMprovidesaninterlockingfunctioninthecontrolrodvithdravalportionofthe"RDreactormanualcontrolsystem.Thisdesignisseparatedfromtheprotectivefunctionsintheplanttoassuretheirindependence.ThRBHisdesignedtopreven'tinadvertentcontrolrod.vithdravalgivenanimposedsinqlefailurevithintheRBN.OneofthetvoRBHchannelsissufficienttoprovideanappropriatecontrolrodvithdravalblock.Enaddition,theRBNhasbeendesignedtomeet"appropriateprotectionsystemcriteria....acceptabletotheRegulatoryStaff."(Reference7.7-2)7.7.2.12LoosePartsHonitorin~SystemTheLPNSisnotasafety-relatedsystem.TthasbeendesignedinaccordancewithRegulatoryGuide1.133,Rev.1,Draft2.7.72;l2-NuclearPressureRelief--System-Igstgumentationand-gotltrols-)@7$~12Q.--General-Fuactioaai-BeguirementsConformanceTheNuclearPressureReliefSystemisdesignedtoprovidethenu"learsteamsupplypressurerelieffunctionvithoutjeopardytothesafety-relatedADSfunction,dis"ussedinSection7.3.7,42~4,22--Specific"RegulatoryRequirements(1)10CPR50AppendixA-"riterion10.TheNuclearPressureReliefSystemprovidesadditionalmeansforminimizingtheprobabilityofabnormalreactorcoolantpressureboundaryleakage.(2)10CPR50AppendixA-"riterion15.TheNuclearPressureReliefSystemisdesignedtoaffordadeguateadditionalmarqintoassurethatthedesignconditionsofthe"eactorcoolantpressureboundaryarenotexceededduringanyconditionofnormaloperation,includinganticipatedoperationaloccurrences.(3)10CPR50AppendixA-"riterion30.ThecomponentsoftheNuclarPressureReliefSystemaredesigned,selected,fabricated,erectedandtestedtothehighest,practical,currentindustrialstandards.TheSystemisRev.22,4/817.7-78 lvt~z,loge~~ll~',IIr--Ilvsfsceoosese>>4~efcesfsliIIII,I+ALJL~.SONV>>ICOSAlt(SIDIC)loxK.J,ecosr<<teI~leseO<<(TN)tftfIIfI~~~~oT~1lo4c>~aRITs(NOIR.AlcsotSSISNT-DssSV(stCDC)tslaefvor(tKlNNvsol)Ql~TsecosscNNcoa~OTCNTSALA.llxvassocsossscrccr----iI(STNLNcceecs4Il~4SI1~tltIvIIIIIIIIsl~JX-ltfeeSotf((l--@J'rSAIIIIt.soxvtlceoASDSCKICACKSllhCWONTSCSSSCIAflRCDNTTssr(fscoefCSISCSSAONSCS\~0'fCSSTSSLIlI~DAlI~~AC~'IICTsOOO>>NCSS<<ffoeefSAL(CCCRCSc~)~NColPAAIllSCVDCVKCTASLCDCSCNOTsevNCNICNsSNo)4re(i(oecSTAcxeee~lteleSTANLOADCC>>SCCSTe>>CAPCCDCSDeeceuertxrfSCLATo4pccocslovcAceseescllfNCLATeccDSReeceteeoeotlesetoevcscsteecrfNSLAYsofcICSCWLSSetlcSIclfcOlCOVS~seooeepoocrewNSLA'fsee>>e~osoC~KoeveopccDIRst>>DKNIlcOCLAY(TNKSOTS~~cooefcdoe>>N~SoOeeelNg@aa~~C.fsWeWPdsSPCPOSSCitoosocefIt~OCOOOtepeecc4I@a~e5it@O>>reerAloceeeelCNvelc4voltsecTCScrsfcrVOL'leecTelrecxscoo~Ll>>s'lIf~llCIISS~IIIIII5II'N<<PSOtesorcofo(Dccel)(scCtsOSS-C)vrfsIIIIIlfIQC5~IsesI~~oeoWooi&olrfX.,II~l)<<>>~llfllflI'IlIIIIIIIIIfOeeloIITccsesssocs<<tvfONTSSLI>>N>>~ee>>l>>ICsoo~CSCSf)(Neerxxccsc)(fceplot)$IIl(5(f)5ls,ace.JIIIIIIIIr-IsllI~tte>>APTSOCeKPOaSAre*TIISSSltl(OXSOl)lueasO5-c)IIIIIlsIf,I.'SKAAbcsNLLKOCAI~steercALcretroIleeelxCKCI0Cele<<teesc)(ONRlOSTC)cftectxcseoesefrfeesTWII~II,IIIIIIIslII~ilIlIIICCCL.JIIIIIIIIeIAeosOPSOC*(CKSOS)CKSOSA(eoel4ACCec)CSCNacCDC)(esca~Nf)lIllllSSI~N()TecpcoToDcvsccsxACl(lITesteACCOCSATCDC>>SclorSASCASCCKc.Tsseo'(ance>>AcxsfALLcsecsssf~cxsscRCCONNCCTCDTDl'NCSLSL.~tees<<AIcIAIt%0>>ooteeoccscotsssoLsssoAsetpeeso4s>>soececooseeatecceceesAlter>>eATssoorfsejeol~IALsolocoeeorclecotsTKpolQoceefoo~eoeesegteKI~Neer>>lfep<<~pLA~LcoesorlN~N4.elclATco>>erectclolcoAToogsssoe>>4seoeecfolcPDSAsstoSTARTDeCKLKDTlvc%teeepApsLoeoo~.SefskssssecsCP(stcxtso)sssTKINCPCK,tKpsLoseclccltfesoeeoeocecrfA<<pooseooAtlococoessctetesopeaeosaefe<<saoso.SooxtoeKepfocTees~oLATrAssrf>>>>sfocfIcoscocrowfoKxseopSLToALTCKNATDsccacoAoNAseesDNccv.srlttco~COAXItxteteeesDCTICCW4>>CSTCSC>>CANCSNSTtocfeccccacvoLTIcArtssu.KArcDLDADtokcNKscxccrsfsoLccxsooweecs.locowlTswIssxcfKctlxreKollcloloovDDccscxcofcsc'f)~.SoosteoplaflrAsffcofsorsopoateKop<<eseeaeocafooooooelse>>so4IttsehSA.KTostoee<<os(SolAfDOAN~pss(AflowepoeesosseaeefsscfexfcoINopsKATseeeeroscATSKStAN'oeooA4O<<CILALIASpeRAAoseor~oeitoseeaexsooDriesLLseoeeooreeat>>eeoc%TINeeetfCNOKACSSIstol>>NetPesxfsltloSavTKAteopeowosLsocorcwcfresttster~exefsoelOPSteoCeOeaeete<<AD%NOLANONLYOeaCATSSAooxpeolosATelTsssDeooAC4>>tNesrse4~cLNDess~Kvcellooper>>IceoooiIINNNL+tfe1%,cerovLeefooTDSSea.sstoloctoowxa.setoslkesopofL,CKAcxsossteaNelecvecossNetsfsosfcoostoolcASLCosoNotLsoeeKTessAlso<<oe5)scfcsINCCLIoovteecPI~stslo(SACOK)IOSSAADSWX4leKVSSOOA$SNthqmalAlCAoPP4~Ij;"eDhE4sCBSLlI.coeetctoeoosa((39RtLfsCCCCSlCAIIIIJo~Ceca(4SOKreNODAl(~~e~lwxsessaNets)l)>*IL~J~~soalcloSllosSsofs8&~ccoortcfCoIseoctpoetf4softfcoefccssovfccsuwAFAT(tooocvtecsKNAICCAcol,osssec(Dolsssstfsosfooeeoseotsfco(,tevesslcoetlSSNTOTSCATOSN~tOOLCOi'OSSICSCCSCCNSOos(CDOOSATDOOTSTDSCTSCNgVSOLID~eotlxsefotssATDCNScseccsaeecoSCOO-OrtsACSCgeaoleasfceC4DDAOSovD'scssesoocooNSLSfovoc(I,ONO<<COlofIIf~IfIjsIbmjIIIsIIIIIfo<<lIIV.ICsc4r-III~ISfI~JIseerqIONL4lesIflflfIIIbad'IIIII1IIlfs>>AIIII~'ItolIIII~esseIII.Cs,II,elIsll,~~sIIlslIITS(I-'IJ~IIll4IIllfIIliatoIIIIICwosIIII¹Nf.IREV.22,4/81E4SHT.1SUSQUEHANNASTEAMELECTRICSTATlONUNITS1AND2FINALSAFETYANALYSISREPORT~NOOoecrolcl(CKCPS)ltsocS(Cotf>>OL&4)ccecscassosefg~gflcoscerectctsooetcOTtSPAADNsseo4'pcoooslcsoo(eepcLAOCSS)(occPtcOS5)~~t~~1S1lONAXXLsNtfe&fSATDC)sr<<oscxvscccr4CAPCO)tsovNceresTlsoDLSONflPSOO~TCANSCOICCCCN>>WCCNCCOKsootleoo(oioos)NclocoRSSPItsoc(ccctssos>>OctsewsxoN)(loesvcxcsCC)o>>eospoo)sAexprregstesssSsoc>>scc~elf>>eel(oxlol)opfoocJspseec(locPSSD5-1)PNSSeO1KtfIl~~4~~1~~se(oxoos)OKsscA(OCCPSRODC)fP//JJJJI/JS/EJ/J///JteL,ILLcoostocssfDNteleeesstee>>Neollccocolccxcst(LJ//J//JJ//J/J/J//J/i%AestereoUNlT'I.4.16KVPOWERSYSTEMFIGURE8~I

TRICsOKR.TCSTYOSN(vastclwsuc<<(DIN(cLoSETRAN\OX(OILO(KOUfk(LA'I(4(LL)OPOSLLCO>>LOCKOUTRCC.AVmColOLRoftkYOSN'5ck)cCwYvlll(Dou'ICtosc4Kklst2cuofoilcNCKR(LtCOKN)oreNMAICKCocil)CLOlt'ecLKtkSteCfecAMATCNCIACLCAONeODOR/gffcCNORMAArtCLO<<I.OOOISLQK1-ooSN*(I'I)WtUCNCLNCtklklaOxOLLockoufkek'LIKO~LLV.eic<<<<5OKAOstkOOCNaf<<flatccw'YULNCOns"KLIC<<ucelC\'TAI~CNSOOO'21A42-(oo1CIC+CTAlfOkfCOKNMATCNC)ACLC52SAS)C)LTeCEAOLLSEAts'llaasoloi(oetolp,ul<<eI)Laeeeu)NDAI)NoaN*~eMN~seseoIOI)OLlol2t(LLIOS)524O)OC42tOCOC)CL.LOOO0IELSCLLCNt<<ISILLCNDit\CLCetNDICCCLlatMOi4DI.COt.oOo.f(Ocecols)(OCLSOK)(OOEOLO)(O!'eloco)Q~IA(~RA)Cle<<aXaueEN<<toesICONLc-)MWIO-NNsaoesIClsloe)~lkcoi}TaacocfIeloe)~oecoe)4240200SDCOCOC42LOCOC)lttOeoALIS<<CDLNM,C<<ooootoasCSAEIVed(TVANfoNotleat(NoseolcvfcIN'YLISNPsescfooileeo)CSW<<~eOON0ETA~Kk(LtloelCLOScfAsrteaTLtoffc<<D~SSASLE(eENODCFINCTIOKQA~TRN~tNKACLloelo<<CN0<<s(LAIOYIVOLlolet5CSTAlol)cf'e'octfklleeoeaeLL44ICAvcoO'OOOAUSYALleOkkfafee'Td'NOILIeaisu'oce))sA5)CA)2io)uivilifYEAI.ARMO'D)2)PUTRfIINARa)ARTIL<<eveeeefoeAICCoiNkvfckIASN.AANLIolsot4KVosoetIECC<<EAISECICTAastEY045ICLaeftkfSLDOCIITAAI)~Kv005LClftCK<<)Loot:CIAECIocvCVLrcvotkeckfeocICIAE))aolt<<eeesissNKNCfuL)AICSele~a~I.>>~EVOISICSOUA(eCLoaf(ILA<<LLAotj.we62)C)ClAt(pff)2(()ff))4",BREAKERTot.taf())UN)Tf(ESSTRAN~lfSC<<IWINOlSENC.SOl<<eIf<<0Mfkfeesus~fauc0emef<<iIf(40CASekoak52IceoeIAONlovesKoYoLiesccvksp~p~a-efaLO<<LVlusgee<<I0N52IousDestosl.<<LNONnlACCANROTOACA(IsOICDILSISCQCCKOKAIN).ALIC)~Icsee("-4(sefec(OCAIN~ILV'essI'OYKCJOkNOTceucfufcoOSCTIP(tKLAYoulkurCkslffIINCNNLv<<filllAktYkcltNToelfaeifless)see<<CNINY~KYOTelYACSCNToulfuf'ltisr'sw<<LNletLNYCITICNOTYACC(NTRCD~C'Lo\CAAMC(koCIACN4DLL)COSfkikfe4LA4to'\ECNortlpoktcNS'Aurofklo-IILNOLLLYOetksftoOtle(4(CCNIASLSYNTtk,fso<<00CISK)CONYC)TCRCNtufOVTYVTCXIST\YOLLovveaCAVLNCOCLAYISICkTININIOIISCoeefssfeoulsvA~NCacaifYLITCILLSLve<<CNlealaeAIf)5NOTYACSCNYtl'A~ILLYceetSILL<<))O,NLIAECACCAIA0LSNIILKieeLOOClose024OSOIe)000014<<S<<NLI~<<Ovosiaosceealooiolas<<4CcoeolYilaoIas~I000<<~oooiee<<01COI~)CteceoSlave'ivessveevco<<IILNoeitpcocK-NaeckoeuI~sitesIeaeNolff~>v~IaafoaktsiLLIL<<ecocswoacaftkLocal<<NNecaue<<1LI42eoII=20)IOslCa)oeLl-4'IIoeLItoeoeIaI2)eNsoto<<iSt.tseaeLlCOSYO~I.0404Litaap~LNVf~\LastOVNL<<ICKECLL'IOltali,+lingSILL'(Ocltl0III)A4ca'ESCANloltoef04AlioOs.lCoalcsa40222>toke~CIOIOO)I202~IAlotKosDSSIOI~004)11'2$)os2vs;Io)LIL202NOe.tSIL4044>Ã2)AeeltLac$$2040I0$4$$toecLOlic)tcAIN40eof0(45)toiO'SIt'20eof\ILtooIKOIr.~IAAOINOI.C~Orts20)oo1020P0)saltSOALIVACLoeeascoooSaavu<<allACLAeaslesos<<clANINLlllooleois~CINE<<eELLLeCT24iCATtlClfaecta$$CKTSJCTC)I~Cfl42bettCC2PSCal51CcfttCfai)CICSJCETSS4427)Ca)asCessCT21ICTIetaEISSCttt)CattpCEY4)fflstCTC0$cta$244225CETttiranCSCfSO)aI)aaCSCISef)I)I)fa1$CSI2)IsISfs5$tfl~Iifrrtr4Cal)I4Cal)54Ccfa)4(TtSl~212ff~(ET~1~CtiSS~40271~ocros~CTISCtCTCes~OVSS~CCCSS0lal~I~Ccf4$~ill1)~4flff4CE1SS4Ctat)4ICat)4~EYCI4214740ffaIs4Ccrta$CCISC4241st0beff0CICSS~424244~)ISOA<<22ClCl4241CSc)24)454)NNeSEIIC)4)ffl)PINf4ff~EII.OetoefTNICOCLAV~CYCcelffufClllffYv<<INTNC-OefufISYACCINTAMOsooia<<itsSoceosvfoALresetAffok1NCoesfICCLSC()~2()T5,aeccEE(4cctveo)fee<<sn)cctc<<4404oosufcctv<<LeteeIT5eo<<Nae2<<escacefe<<oessecaeNvvf<<4atsfccflecRECEKccscocaurecvASALNC,-t,fokCINCILtLINCHETERANDRCLATOikcekk)IStokC.vokuaeYC.'SCCDWCeOOSOt4'2ORCAKCftCONfAOLCWITCNC'\WVeNCNPII(LCCTOUT'SMALLDCCCONNCCTALLRCCIOTCCONfkotCIACL)ITC~.)Nf(KCOIYOLV<<eeeoekl4t-COOC452.(OKYSWAL4(NOYCALTSOKONLY)VIINl<<litOKklINOACAATLNCeLtolefioif-S,PCN04)isfcotfRCCAT(4444SCCVIO-44$4CSI~sec0cArcsctfeforakpteorcvecuar2ctuforcc-E4)SHTSSCCA)(iOO-5Ia~C5Seat+Se~L44c<<tressfgOILSLL<<24'resLa'IRE)ERERCEf)WCI$.2oatolLL400<<Iocoo4220)00aes<<O4240200S240e<<ILLN4Ooois~ee<<OONIN<<a000<<Lola)ao000eeol<<YSICL0leseso100No<<IOOI<<4OesetLLlakestse"Iol424)(LAICillsioe4C'Coils~ALDsocleslIoeae2L~IIIAICEILlaCocoo.CSAItoaol0C45$1~4'W5LIEtolO<<OLoioeocloessIIAtoe~$Tc2)tct00e(Icos1ACLI~CCCSOCOIN42$0IolaCokNDLCioaeCOCOI14costsSlS4NNLCL42I~Ce'1CS40Ctaciata141744II$14140~CETCSCac)4CrassCKT$041474CfatoCCY40cactt44204CCY424f2)0t)4ctfptrCdatt4Ciata0CC1$44CIISI1Claeo0Illfa0)CCSC~442540CETSatCICSC4~seps414144)NISCYJe)S~Tltl0Clr400CCCtttgatffo447424412050SUSQUEHANNA.STEAMELECTRlQSTATION,.UNlTS1AND47-.,--.-'.FINALSAFETY'NALYS/S.RFsPOET'4.16KVBUs.)QcolvllNG'fhofRQR&ggR,LOGIC.OIAGRale--FIGURE'.3.15 I~

SSES-"SARtoneselectorswitch,areaselectorswitch,messagetaperecorder,riverwarningspeakers'andmonitors,andanoutdoorroofsiren.Thissystemsupplements"heradiationmonitoringsystemsdescribedinChapter12.Duringemergen"yconditionstheplantoperatorac+ivatesthesystembyselectingthedesignatedalamandareatobecovered.The.alarmsandinstructionsarebroadcastedv'ahePAsystempagelinestoallspeakersinselec+edareasthroughouttJeplant.Durincanemergencythenighttimemutefunctionofoutdoorspeakerswillbeoveridden.Ther'erwarningspeakershaveindependentamplifierswithoutputmonitorncinthecontrolroom~Theoperatorswitchesthesystemtoof,afterconfirmationofnormalconditions.ThepreferredpowerfortheEVACsystemissuppliedfromUnit1vi..alacbus,andthealterna+epowerisfedfromUnit2vitalacbus.DuringUnit1opera+ionwhileUnit2isunderconstruction,powertotheEVACsystemisfedfromheUnit1computerUPSbus.ThepreferredpowerfortheroofsirenissuppliedfromUnit1plant125VdcbusandthealternatepowerisfedfromUnit2plant125Vdcbus.DuringUnit1operationwhileUnit2isinconstructionstage,thealternatepowertotheroofsirenisfedfromaseparate125VdcbusofUnit1.{refertoSubsections8.3.1.8and8.3.2.1.1.1).9.5.2.2.5SecurityCommunicationand.AlarmSystemRefertotheSuscuehannaSESSecurityPlanForadescriptionoftheSecurityCommunicationsSystem.9.52.2.6.PortableCommunicationSystemOnsiteportableradiocommunicationsystemsaredescribedintheSusquehannaSESSecurityPlanandintheSusquehannaSESEmergencyza~.95.2.2.7SystemEvaluationSystemdesignconsiderationsincludediversityandoperationalreliability.Thein-PlantcommunicationsystemsareprovidedwithreliableandredundantpowersuppliesforuninterruptedcommunicationsbetweenallareasofthePlant.Rev.22,4/819.5-30

'

..gifagI~Ilt)OtlalgV>>4~>>Elaraoaa\tt~Will\Tl>>1001E40alIruatCvCf4+CO%SO)IICrl>>C~41rJg,,~4+-8h~w04'stsa4r0LC'WILKIWIMa>>El>>44~4440aw~lao+aatt(Katlow~4O'I10~IIfL>>r44O+CEIC~%+E,'sa~~'~~IJOG~IIJta1~~'JILaa.ltI0)RA0LJNIgOCIVLWIr>>ao4!OIP040EIOC+C~~a>>Ir~~'~rIKO)atl4ICJh44$ruatIIIIIIIIIIIIIIIIIIIIIIIIICgEl)a.g5C>>44.~4taaa)l~,.3~a)I)OWC'g(vgO)05Q-hQ4r~t~~~04\>>C>>~&'104'n/.4C~4c'IIIJ~cargear~futfOPOtc)O~I$IOCSC~~~+0W~~JLOC10106h0\F4viawaltta)00~l.MOlOEOall)laAletaatl0%>01fataL~IISII0IUStgltlatlwTC4J%gtatiL~~nLaoII~~I~I~IIOCjulIttr&CO$$lvIS~u~~ttCCOCIklKOt>OtA~!WJJalalr--Ch=W-A,arIIll041)l'Itlt~vsaallWTOTt4Ol~SeeeaEJOWtttMIOOMICOatMltl%42~Jtt'ISEO~ltNt~lICO~4t)0'actl02Jest0eatiO2Cattllat2MOSI22Kata!N4~1~NCttl2Ld<<at4CS+420)O)140atttatKCCkkWN4$OCR)0EgEC'hLIOltSlktt4AIO+fCtOAIKelw'a~LV4OcOC>0)0POO)ECOOl;-4000)0I~0(101/Af')44CC>010IA;/+t$44!I=IIIIIII+II~~I~I~IrcfIIIIIIII,IIIII4~nrarar'II0%CRITIII~.ttlIIag)0)II4I)lt~4altllttCiOOCIO)Alttt4flLTIO~~TCWAO~L.JOO,.,ICaIEIC.4'EOOOI~COlt~0)4Oa2!IJE1)41YOOCCOCI~4Oa114!rSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYStSREPORTREV.22,O/S>.M-162Sht,rakco.tCONOIOILICpa4CtratiP6XDLIQUIDRADNASTEPROCESSINGFIGURE11.2-10

SSES-FSAR135PLANTPROCEDURES135.1ADNINISTRATIVZPROCEDURESAllsafety-relatedoperationsatSusquehannaSteamElectricStationUnits162areconductedinaccordancewithdetailed,writtenandapprovedprocedures.Plantpersonnelreceivetrainingintheuseofappropriateproceduresandtheproceduresaremadeavailabletothematalltimes.135.1.1ProcedureConformanceProceduretopicsfollowtheguidancespecifiedbyapplicableportionsofRegulatoryGuide133,Revision1andproceduresaropreparedfollowingtheguidanceprovidedbyANSIV18.7-1976.13-51.2Pre~arationofProceduresProceduresarepreparedbytheplantstaff,supportorganizationsorcontractorganizatio'nsunderthedirectionoftheSupevisorofOperations,SupervisorofMaintenance,TechnicalSupervisor,HealthPhysicsSupervisor,QualitySupervisor,PersonnelandAdministrativeSupervisor,andSecuritySupervisor.Theplant!procedurecategoriesandatypicalscheduleforprocedurepreparationareshownonFigure13.5 Reviewofsafety-relatedproceduresuseandchangesthereto,isperformedbythePlantOperationsReviewCommittee(PORC}andapprovedbytheSuperintendentofPlantasdescribed.inSection13.4.Inaddition,functional'nitprocedureswillbereviewedbyNuclearQualityAssurance.ProceduresareperiodicallyreviewedtodetermineifchangesarenecessaryordesirableApplicableproceduresarereviewedaftersignificantsystemorequipmentmodification,andfollowinganunusualincident,"suchasahazardouscondition,anunexpectedtransient,asignificantoperatorerror,orequipmentmalfunctionwheretheprocedurescontributedtothecauseoftheincident,orwereinadequateinmitigatingtheeffectsoftheincident.Whenanoperationistemporarilyalteredinsuchamannerthatportionsofanexistingproceduredonotapply,thentheexistingproceduremaybetemporarilychanged.TemporarychangestoRev.22,4/81135-1 QRgPxjHH0zlmzmDmxzza2zcomzm0rMAOOzPROCEDURESADMIHISTRATIVEALARMRESPONSECHEMISTRYEMERGENCYEMERGEHCYPLAHENVIRONMENTALSURVEILLAHCEFUELNAHDLIHGGEHERALPLAHTHEALTHPHYSICSIHSTRUMEHTATIOHACONTROLMAINTENANCEMATERIALCOHTROLOFF-HORMALOPERATINGGUALITYRADWASTEMAHAGEMEHTREACTOREHGINEERIHGRECORDSRELAYCALIBRATIONSECURITYSPECIALEVENTSSURVEILLAHCETESTTRAIHIHGMOHTNSPRIORTOFUELLOADING343230282624222018161412108642CDCD SSES-FSARconditionarise,theplantoperatingstaffshalltakewhateveractionisnecessaryincluding,butnotlimitedto,stoppingthetestinordertorestoresafeplantconditions.Duringstartuptesting,theplantoperatingstaffisspecificallyresponsibleforcompliancewithoperatingtechnicalspecifications,andcompliancewiththeprovisionsoftheoperatinglicense.14.2'.2TestPrereuisitesSpecifictestprerequisitesareidentifiedineachpreoperationaltestprocedure.Thetestdirectorverifiesthateachprerequisiteiscompletedandproperlydocumentedpriortosignoffintheofficialtestcopyoftheprocedure.Ifaprerequisiteinapreoperationaltestcannotbesatisfied,thetestdirectorwilllisttheprerequisiteasatestexceptiontothePreoperationalTest.Asaprerequisitetopreoperationaltesting,properoperationofeachalarmloopisverifiedandlistedinanappendixtothetest.Duringthepreoperationaltest,systemparametersarevariedandinterlocksaretestedwhichcausealarmstoactuate.Thosealarmswhichareactuatedduringthecourseofthetestwillbedocumentedinthebodyofthepreoperationaltest.14.2.4.3ProcedureHodificationsTestsareconductedinaccordancewithapprovedprocedures.Zfnecessary,theseproceduresmaybemodifiedtocompletetesting.Suchproceduremodi-ficationsaredocumentedonatestchangenoticeform.Xnadditiontogenerationofatestchangenoticeform,thetestdizectormarksuptheofficialtestcopyoftheprocedureandinit:als/datesthechange.ReviewandapprovalfortestchangenoticesonpreoperationaltestproceduresisprovidedbytheTRB.Testchangenoticesforstartuptestproceduresshallbeinitialed/datedbyanon-shiftlicensedsenioroperatorinadditiontothetestdirector.ReviewandapprovalfortestchangenoticesonstartuptestproceduresisprovidedbythePORC.Preparation,reviewandapprovalactivitiesazeaccomplishedbeforeorafterperformanceofassociatedtestingbasedonthefollow'ngcriteria:a)Non<<IntentChangesiRev.22,4/81Forproceduremodificationsthatdonotchangeacceptancecriteriaanddopreservetheintentofthetest,thetestchangenoticemaybeapprovedafterperformanceofassociatedtesting.4b)IntentChangesForproceduremodificationsthataltertheacceptancecriteriaortheintentofthetest,thetestchangenoticeisapprovedbeforeperformanceofassociatedtesting.14.2-12 SSES-FSARinformationwillbesortedandreportedforaperiodoftwoyearspriortofuelloadonthefirstunit.TheManager-NuclearSupportisaddressedinSubsection17.2.1.14.2.9TRIALUSOFPLANTOPERATINGANDEMERGENCYPROCEDURESTheadequacyofPlantOperatingandEmergencyProcedureswillbeconfirmedbytrial-useduringtheInitialTestProgram.ThoseproceduresthatdonotrequirenuclearfuelareconfirmedadequatetotheextentpracticableduringthePreoperationalTestProgram.ThoseproceduresthatrequirenuclearfuelareconfirmedadequatetotheextentpracticableduringtheStartupTestProgram.Theplantoperatingstaffisresponsibleforconfirmationofoperatinqandemergencyprocedures.TheSuperintendentofPlantisresponsibleforensuringthatcomments/changesidentifiedduringconfirmationareincorporatedinfinalizedprocedures.Itisnotintendedthatpreoperationaltestproceduresexplicitlyincorporateorreferenceplantoperatingandemergencyprocedures.Thesetestsareintendedtostandontheirownsincetheyarenotnecessarilycompatiblewithconfigurationsandconditionsrequiredforconfirmationoffacilityoperatingandemergencyprocedures.Startuptestprocedureswill'ncorporateandreferenceplantoperatingandemergencyprocedurestotheextentpractical.14 10~INITIAL-FUEL-LOADINGANDINITIALCRITICALITYInitialfuelloadingisaccomplishedinaccordancewithstartuptestprocedure,ST-3FuelLoadingInitialcriticalityisaccomplishedinaccordancewithstartuptestprocedureST-4,PullCoreShutdownMargin.TheseprocedurescomplywiththegeneralguidelinesandregulatorypositionscontainedinRegulatoryGuide1.68(Revision1,January1977).Testabstractsestablishingtheobjectives,prerequisites,testmethod,andacceptancecriteriafortheseproceduresarepresentedinSubsection14.2.12.142-11T>STPROGRAMSCHEDULEcdRev.22,4/8114.2-19ThePreoperationalTestProgramisscheduledfor15monthsdurationontheUnit1andCommoncomponentsandfor12monthsdurationontheremainingUnit2components..(SeeFigure14.2-4a~'

SSES-FSAR(P30.1)ControlStructureHSVSstemPreperationalTestStructureHavSystemanditsinterlocksinsidethecontrolstructurebuildingtodemonstratethissystem'sabilitytomaintainapositivepressureaboveatmosphericduringnormaloperationandhighradiationsignalwhentheemergencyoutsideairsupplymodeisrunning.TodemonstratetheabilityoftheControlStructureHGVtoisolatebeforechlorinereachestheisolationdamperswhenchlorineisdetectedintheoutsideairintake.overtotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.TheControlStructureChilledWaterSystem,InstrumentAirSystemandturbinebuildingventareavailable.Required'lectricalpowersupplysystemsareavailable.TestMethod-Thesystemoperationisinitiatedmanuallyandfanperformance,damperoperationsandheatingelementoperationaredetermined.Thedifferentialpressureswithrespecttooutsideatmosphere.aremeasured.Requiredcontrolsareoperated'orsimulatedsignalsareappliedtoverifytheemergencyfilteroperationonhighradiationsignal,automaticrecirculationonhighchlorinesignal,systemmanualisolationandothersysteminterlocksandalarms.AccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththeapplicabledesigndocuments.(P30.2)ControlStructureChilledWaterSstemPreperationalTestStructureChilledWaterSystemtoprovidechilledwaterflowtoControlStructureHeating/VentilatingUnitsandControlroomfloorandcomputerroomfloorcoolingunits.toperformthistestandthesystemisturnedovertotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.TheServiceWaterSystem,EmergencyServiceWaterSystem,andInstrumentAirSystemareavailable.Requiredelectricalpowersupplysystemsareavailable.TestMethod-Thesystemisoperatedtodemonstratechilleroperationandchilledwaterpumpperformance.Requiredcontrolsareoperatedorsimulatedsignalsareappliedtoverifyautomaticalignmentofthesystemunderemergencyconditions(startofemergencycondenserwaterrecirculationpump)andothersysteminterlocksandalarms.Rev.22,4/8114.2-3l, SSES"FSARTestMethod-ThebatteryperformancetestismanuallyinitiatedbyconnectingthebatterybanktotheResistorI.oadBankanddischargingthebatteriesataconstantcurrentforaspecifiedperiodoftime.TheBatteryServiceTestismanuallyinitiatedbyconnectingthebatterybanktotheResistorLoadBankandsimulating,ascloselyaspossible,theloadthebatterieswillsupplyduringaDesignBaseAccident.Thenthebatterychargerisconnectedtothebatteriesandthedistributionpanelstoverifythattheycanequalizechargethebatterieswhilesimultaniouslyprovidingpowertothenormalplantloads.ThebatterychargerisalsoconnectedtotheResistorIoadBankandcurrentisincreasedtoitsmaximumratingwiththechargerisolatedfromitsassociatedbatterybank.Alarmsaresimulatorandverifiedtooperateproperly.AccetanceCriteria-Thebatteriescansatisfactorilydeliverstoredenergyforthespecifiedamountoftimeasrequiredfortheperformanceandservicetests.Thebatterychargerscandeliverratedoutput,also,thattheycanchargetheirassociatedbatterybankfromminimumvoltagetoafullychargedstateinaspecifiedamountoftimewhilesimultaneouslysupplyingnormalplantloads.Thealarmsoperateattheirengineeredsetpointsandannunciateinthecontrolroom.(P76.1)PlantLeakDetectionSstemPreperationalTestTestOb'ective-'TodemonstratetheoperabilityofthePlantIeakDetectionSystem.toperformthistestandthesystemisturnedovertotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.Requiredelectricalpowersupplysystemsareavailable.TestMethod-Sumplevelswillbevaried(ifpracticable)orsimulatedsignalsareappliedtolevelsensorstoverifytheleak'etectionsystemalarms'ccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththeapplicabledesigndocuments.Rev.22,4/8114.2-49 SSES-FSAR3)Thatallwarningsignalsareworkingperdesignintent.4)Thecapabilityofthecranetooperateinadesignatedareainaccordancewithdesignrequirements.overtotheISG.Requiredelectricalpowersupplysystemsareavailableandcontrolsareoperable.Requiredloadsareavailabletoperformloadtestingofthiscrane.TestMethod-Thelightingsystemforthecraneisenergizedandobservedforproperoperation.Thebridgeandthetrolleyarespeed-testedinbothdirections.Currentandvoltagereadingsaretakeninbothdirections.TheproximityswitchesaretestedforboththebridgeandthetrolleyincludingtrolleymovementrestrictionswitchesinzonesA,B,andC.Themainhoistandtheauxiliaryhoistarespeed-testedtravelingupandtravelingdown.Currentandvoltagereadingsaretakeninbothdirections.Alllimitswitchesaretested.Alossofpowersituationiscreatedforbothhoiststocheckthebrakesabilitytoholdwithoutpower.Anoverspeedtestissimulatedforeachhoist.Themainhoistloadlimitswitchisalsotested.Theabovelistedtestsarerunfromthependantpushbuttoncontrolsystem.Operabilityofthecraneisalsodemonstratedfromthecabandby'radiocontrol.Theanticollisionsystemistestedandthecranepowersourceisverified.AccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththe'pplicabledesigndocuments.(P100.1)ColdFunctionalTestcapableofoperatingonanintegratedbasisinnormalandemergencymodes,todemonstratethatadequatepowersuppliesfortheclassIEequipmentwillexist-completedandplantsystemsarereadyforoperationonanintegratedbasis.TestMethod-EmergencyCoreCoolingSystems(RHR6CoreSpray)arelinedupintheirnormalstandbymode.Theplantelectricalsystemislineduppernormalelectricalsystemlineup(ForUnitlthislineupmaybedifferentthanthelineupfortwounitoperation).Lossofcoolantaccidentsignalsareinitiatedwithandwithoutalossofoffsitepower.VoltagesandloadsareRev.22,4/8114.2"55 SSES-FSARUESTION021.01Providethefollowingadditionalinformationforthesecondarycontainment:(1)Showanappropriateplantelevationandsectiondrawings,,thosestructuresandareasthatwillbemaintainedatnegativepressurefollowingaloss-of-coolantaccidentandthatwereconsideredinthedosecalculationmodel;(2)ProvidetheTechnicalSpecificationlimitforleakagewhichmaybypasstheStandbyGasTreatmentSystemFilters,(e.g.,valveleakageandguardpipeleakage);and,(3)Discussthemethodsoftestingthatwillbeusedtoverifythatthesystemsprovidedarecapableofreducingtoandmaintaininganegativepressureof0.25",e.g.,withinallsecondarycontainmentvolumes.RESPONSE1)Followingaloss-of-coolant-accident,allaffectedvolumesofthesecondarycontainmentwillbemaintainedatnegativepressure.AllthesevolumesareidentifiedonFigures6.2-24thru6.2-43asventilationzonesI,IIandIII.AlsoseeSubsection6.5.3.2foradiscussionofthereactorbuildingrecirculationsystem.2)SeeTechnicalSpecification3/4.6;.5.3forthelimitingconditionsforoperationandthesurveillancerequirementsfortheSGTS.AllleakageintothesecondarycontainmentistreatedbytheSGTS.Refertosubsection6.2.3.2.3foradiscussionofcontainmentbypassleakage.3)TheStandbyGasTreatmentSystem(SeeSubsection6.5.1.1)inconjunctionwiththereactorbuildingrecirculationsystem(seeSubsection6.5.3.2)andthereactorbuildigisolationsystem(seeSubsection9.4.2.1.3)isprovidedtoproduceandmaintainnegativepressurewithinaffectedvolumesofthesecondarycontainment.Actuationandoperationoftheabovesystemswillbeusedtoverifythatthenegativepressureisestablishedandmaintained.Eachventilationzoneisprovidedwithredundantnegativepressurecontrollers.I,owpressuresideinputs(lowpressuresensingelements)tothesecontrollersarelocatedasfollows:VentilationZoneI-VentilationZoneII-AccessareofEL749'-l(SeeFigure6.2-28)AccessareaofEL.749'-l"Rev.22,4/81021.01-1 SSES-FSARVentilationZoneIII-RefuelingFloor,E1.818'-1"(SeeFigures6.2-30and6.2-40).Thequantityofairexhaustedfromthesecondarycontainmentwillbesuchthatineachaffectedventilationzonethenegativepressurewillbemaintained.Theinterconnectingductworkoftherecirculationsystemwillequalizethenegativepressurethroughouteachzone.Rev.2,9/78021.01"2 SSES-FSARUESTION021.10Withrespecttocontainmentsteambypassforsmallbreaks,indicateyourcompliancewithourproposedBranchTechnicalPosition"SteamBypassforMarkIIContainments,"whichisenclosed.RESPONSEAcomparisonoftheSusquehannaSESdesignwithyourproposedBTP"SteamBypassforMKIICoatainments"ispresentedbelow.TheitemnumberscorrespondwiththeitemsintheBTP.l.a.BassCaabilitContainmentWetwellSrasThewetwellspraysystemelectricalinstrumentationandcontrolssuppliedbyGEmeetthesameESFstandardsofquality,redundancyandtestabilityastheRHRsystem,ofwhichitisapart.Thesystemismanuallycontrolledandactuated.TheconsequencesofactuationofthewetwellsprayonECCSfunctionareaddressedintheresponsetoQuestion211.13.l.b.TransientBassCaabilitAnalsesThecalculationofmaximumallowablesteambypassleakageforsmallsteambreaksaspresentedinSection6.2.1oftheSusquehannaFSARcomplieswiththeintentoftheproposedbranchtechnicalposition;althoughitdoesnotassumeanormalplaatdepressurization/shutdowntimeof6hours.Thecalculationassumesthatthesteamleakageisterminaltedbysomeoperatoractioa(containmentsprays,ADS)within15minutesafteranabnormallyhighsuppressionchamberpressureisobserved(830psig).ThemaximumsuppressionchamberpressureexpectedduringaIOCA,assumingalldrywellairhasbeencarriedoverandnosteamleakagehasoccurred,is25psig.Significantlyexceedingthispressure(to&30psig)indicatesaleakagesituationandnecessitatesoperatoraction.Further,thecalculationconservativelyneglectsanycontainmentheatsinks(poolsurface,containmentwalls,etc.).Themethodemployedtocalculatethemaximumallowablesteambypasslakageflowcharacteristic(A/rgb)hasbeenpreviouslydescribedinsomedetailinsubmittalstoNRCquestionsontheHatchlnuclearplaat.Briefly,itsimplyinvolvesanendpointtypecalculationofthemassofsteamwhichcanbeaddedtothesuppressionchamberabove30psigtogivedesignpressure(45psig),conservativelyassumingalldrywellairhasbeencarriedoverthethesuppressionRev.22,4/81021.10-1 SSES-FSARchamberandtakingnocreditforsuppressionchamberheatsinks/condensation.KnowingthismassofsteamQMandassumingthattheoperatoractionwillbedelayed10minutesafterobservin'gthe30psig,andthattheactionwillrequire5moreminutestotakeeffect(5t=15min.total),theallowablelakeageratem=Am/Atcanbecalculated.TheflowcharacteristicA/~kcanthenbecalculatedfromM=A/lvpschp"(gwherebPis'thepressuredifferencebetweenthedrywellandsuppressionchamberatquasi-steadyflow(equalP<g/gH,whereH=ventsubmergence).TheresultisanA/~k=.06ft~forSusquehanna.2.a.FSARSubsection6.2.6.5'.1addressesthisitem.2.b.FSARSubsection6.2.6.5.1.2addressesthisitem.2.c.FSARSubsection'6.2.6.5.1.2addressesthisitem.3.a.TheSusquehannadesignmeetstheintentofthisitem.SeeSubsection6.2.1.1.3.2.WithrespecttocompliancewiththeproposedBranchTechnicalPosition"SteamBypassofMarkIIContainments,"thefollowingSusquehannaSRPpositionstatementisrespectfullyprovided:IssuanceoftheStandardReviewPlans(SRP)post-datestheSusquehannaconstructionpermitbymorethan2years.Therefore,noattemptwasmadetodesigntheplanttotherequirementsoftheSRPs.TheSusquehannaFSARwaspreparedusingRevision2ofRegulatoryGuide1.70asmuchaspracticalforaplantofitsvintage,withassurancefromNRCmanagementthatcompliancewiththisRegulatoryGuideassuredsubmittalofallnecessarylicensinginformation.AsdocumentedinaletterofAugust5,1977fromG.G.SherwoodtoE.G.CaseoftheNRC,theSRPsconstituteasubstantialincreaseintheinformationrequiredjusttodescribethedegreeofcomplianceofvarioussystems.Thisincreaseinturnrepresentsasubstantialresourceexpenditurewhichisunjustifiedandwhichcouldcauseprojectdelaysifrequiredoftheseprojects.Asstatedinthe,referenceletter,GeneralRev.22,4/Sl021.10-2 SSES-FSARElectric(andPPM)believesthatSRPsshouldbeappliedtoFSARsonlytotheextentthattheywererequiredintheFSARs.PPGLandGeneralElectricbelievetheaboveposition,whichistheessenceofadirectivefromBenC.Rusche,DirectorofNuclearReactorRegulation,totheNRCstaffdatedJanuary31,1977,istheappropriateprocedureforreviewoftheSusquehannaFSAR.Rev.22,4/81021.10-3 SSES-FSARUESTXON021.21Heareawarethatrevision3totheDFFRistobesubmittedtothisSummerandthatRevision2whichisnowreferencedisout-of-date,asitdoesnotadequatelyreflectthestatusofcurrentpooldynamicloads.DiscusshowtheDARwillbeupdatedtoreflectthisstatusanddiscussanyotherreportsyouintendtosubmittodocumentyourplantdesign.RESPONSE:PPGLisworkingwiththeotherMarkIIownerstodevelopmethodologies,analyticalprogramsandtestdatawhichwillprovideimproveddefinitionsofhydrodynamicloads.ThisefforthasresultedinRevision3totheDFFR,andisexpectedtoresultinfurtherrevisiontothatreport.ltispresentlybeingrevisedtoreflectthecurrentpositionoftheMarkXIowners.FuturerevisionstotheDFFRareexpectedtohavenoeffectontheSSESDAR,sinceplantspecificsaswellasgenericMarkXImethodologiesapplicabletoSSESwillbeincorporatedintotheDAR.TheDARhasbeenupdatedtoreflectthecurrentdesignassessmentmethodologiesusedatSSES.Rev.22,4/81021.21-1 SSES-PSARIdentifyallopeningsprovidedforgainingaccesstothesecondarycontainment,anddiscusstheadministr'ativecontrolsthatwillbeexercisedoverthem.Discusstheinstrumentationtobeprovidedtomonitorthestatusoftheopeningsandwhetherornotthepositionindicatorsandalarmswillhavereadoutandalarmcapabilityinthemaincontrolroom.RESPONSE:1)SecondaryContainmentAccessOpenings:DoorNos.Elev.Col.CoordinatesSecurityMonitored101102103-0104-0119A120A571-0670670670670676676818U/29U/37.4U/20.6U/29P/20.6P/37.4P/32YesYesYesYesYesYesYesRoofHatch8Elev.872,coordinates:P/37.4(SecurityMonitored)2)Doors5119A,120Aand571-0provideaccessintothesecondarycontainmentthroughtheuseofcardreader/cipherkeyboardcontrol.Doors101,102,108-0,104-0andtheroofhatch(54001)willnotnormallybeusedtogainaccessintothesecondarycontainment.AlltransactionswillbeloggedintotheSecurityDataandManagementSystem(SDMS).AllalarmsgeneratedwillannunciateatboththeSecurityControlCenter(SCC)andAlternateSecurityControlCenter(ASCC).Theplantcontrolroomwillnothaveareadoutoralarmcapability.BoththeSCCandASCCare,however,mannedcontinuously24hoursaday.InstrumentationtocontrolandmonitorthestatusofsecondarycontainmentisdescribedinChapter7.0oftheSusquehannaSESPhysicalSecurityPlan.Rev.22,4/81021.31-1 SSES-FSARSubsection4.2.2.2oftheDARstatesthat,thechuggingloadsonsubmergedstructuresandimpartedonthedowncomerswillbeevaluatedlater..Providethepresentstatusoftheseevaluationsandthescheduleforyoursubmissionofthecompletedevaluation.RESPONSE:ThecalculationofsubmergedstructureloadsduetochuggingwillusetheimprovedchuggingloadmethodologydevelopedunderMarkIZOwnersGroupTaskA16.TheappropriatedesignsourceswillbeusedwiththeGreen'sfunctionsolutionfortheSSESannularcontainmenttoprovidethepressuredistributioninthesuppressionpool.Thepressurearoundastructurewillbeintegratedtodeterminethenetpressureloadonthestructure.AdescriptionofthismethodologyandverificationwillbeincludedintheDAR.ThechuggingsourcesusedwillbedevelopedfromthepressuretimehistoriesprovidedbyKWUforthedesignassessment(seeSSESDAR,Section9.5.3).ThedowncomerhasbeenassessedforthechuggingloadsandtheresultswillbeincorporatedintotheDAR.Theothersubmergedstructuresarenowbeingevaluated.Weexpectcompletion'fthisevaluationinAprilof1981.Rev.22,4/81021.71-1 SSES-FSARProvidetheinformationpreviouslyrequestedin020.44regardingloadsresultingfrompoolswellwavesfollowingthepoolswellprocessorseismicslosh.Discusstheanalyticalmodelandassumptionsusedtoperformtheseanalyses.RESPONSE:TheanalyticalmethodofcalculatingtheloadsresultingfromseismicsloshandtheassumptionusedaredescribedinawriteuptobeincludedintheOAR.ThisinformationwillbesubmittedinApril1981.Rev.22,4/81021.73-1 SSES-FSARDiscusstheapplicabilityofthegenericsupportingprograms,testsandanalysestoSSESdesign(i.e.,FSIconcerns,downcomerstiffners,downcomerdiameter,etc.)RESPONSE:AcompletedescriptionoftheGKM-IIMtestprogram,testresultsandevaluationofthetestdataisprovidedinChapter9.0oftheSusquehannaSESDAR.TheGKM-IIMtestswerestructuredtobeasprototypicaloftheSusquehannaSESplantconfigurationsaswaspractical.Assuch,concernsrelatedtoFSI,downcomersstiffnessgdowncomerdiameter,etc.,arefullyaddressed.Rev.22,4/Sl021.75"1 SSES-FSARProvidethetimehistoryofplantofresponsesofplantstructures,componentstopooldynamicloads.modificationsresultingfrompoolspecificloadsandassessmentpiping,equipmentandIdentifyanysignificantplantdynamicloadsconsiderations.RESPONSE:TimehistoryinformationforLOCAloadscanbefoundinSSESDAR,Section4.2.SimilarinformationduetoSRVactuationcanbefoundinSSESDAR,Section4.1.Inaddition,theplantspecificLOCAandchuggingloaddefinitiondevelopedfromtheGKMII-MtestprogramcanbefoundinSubsection9.5.3.ThisloaddefinitionwillbeusedtoevaluatetheconservatismoftheDFFRLOCAloaddefinitiondevelopedfromtheGKMII-MtestprogramcanbefoundinSubsection9.5.3.ThisloaddefinitionwillbeusedtoevaluatetheconservatismoftheDFFRLOCAloaddefinitionandisscheduledforsubmittalinRevision5oftheSSESDAR(March,1981).Assessmentofthepipingtopooldynamicloadsisnotcompleted.PPGLinterpretsthisquestionasrequiring:a)Responseofpipinginthewetwelltopooldynamictimehistoryloads.b)Responseofpipinginthedrywell,wetwellandreactorbuildingtoresponsespectraduetoSRVandLOCAloads.SummaryoftheresultsofpipinganalysiswillbeprovidedintheDARuponcompletionofpipinganalysisinMayof1981.Modificationofplantdesigntodatea)Additionofquenchersb)Designchangesinplatform,vacuumbreakers,andrecombinerSupportbeamsbyraisingthemoutofthepoolswellzone.c)Redesignofdowncomerbracingsystemd)Added60reinforcingbarsineachsuppressionchamnber.e)Addedembedmentsandanchorboltsinsuppressionchamberwallsanddiaphragmslab.f)Diaphragmslabreinforcementschangedfrom'5to90toincreaseupliftloadingsacceptance.g)Significantnumberofpipesupportsaddedormodified.Rev.22,4/81021.76-1 SSES-FSARProvidefiguresshowingreactorpressure,quenchermassfluxandsuppressionpooltemperatureversustimeforthefollowingevents:(1)Astuck-openSRVduringpoweroperationassumingreactorscramat10minutesafterpooltemperaturereaches110FandallRHRsystemsoperable;(2)Sameasevent(1)aboveexceptthatonlyoneRHRtrainavailable;(3)Astuck-openSRVduringhotstandbyconditionassuming120FpooltemperatureinitiallyandonlyoneRHRtrainavailable;(4)TheAutomaticDepressurizationSystem(ADS)activatedfollowingasmalllinebreakassuminganinitialpooltemperatureof120FandonlyoneRHRtrainavailable;and(5)Theprimarysystemisisolatedanddepressurizingatarateof100Fperhourwithaninitialpooltemperatureof120FandonlyoneRHRtrainavailable.Provideparameterssuchasservicewatertemperature,RHRheatexchangercapability,andinitialpoolmassfortheanalysis.RESPONSE:TheSusquehannauniqueSRVmassandenergyreleaseanalysisispresentedinAppendixIoftheDAR.Rev.22,4/81021'7"1 SSES-FSARWithregardtothepooltemperaturelimit,providethefollowingadditionalinformation:(1)Definitionofthe"local"and"bulk"pooltemperatureandtheirapplicationtotheactualcontainmentandtothescaledtestfacilities,ifany;and(2)Thedatabasethatsupportanyassumeddifferencebetweenthelocalandthebulktemperatures.RESPONSE:Theterms"Local"and"bulk"temperatureareusedasdefinedinSubsectionIII.C.l.aofNUREG0487,"MackIIContainmentLeadPlantProgramLoadEvaluationandAcceptanceCritera",UnitedStatesNuclearRegulatoryCommission,October1978.Becauseofthedesignfeaturesofquenchersandtheirorientationinthesuppressionpool(asdiscussedintheSSESDAR,Subsection8.5.5),thedifferencesbetween"local"and"bulk"pooltempoeraturesareexpectedtobesmall.Therefore,thedifferenceshouldnotexceedthevaluewhichwaspreviouslyderivedforramsheaddischargedevicesinMarkIplants(10').Itisintendedtoverifythenumbersusingdatafromin-planttestswhicharepresentlyunderpreparationforLaSalleandZimmer.Rev.22,4/81021.78-1 SSES-FSARuestion021.79:Forthesuppressionpooltemperaturemonitoringsystem,providethefollowingadditionalinformation:(1)Type,numberandlocationoftimperatureinstrumentationthatwillbeinstalledinthepool;and(2)Discussionandjustificationofthesamplingoraveragingtechniquethatwillbeappliedtoarriveatadefinitivepooltemperature.RESPONSE:(1)PleaserefertorevisedSection7.6.1b.l.2.SusquehannaSEShascompletedevaluationofthesuppressionpoolmonitoringcriteriaasdefinedinNUREG-0487andhasdevelopedabasicsystemasfollows:oNumberandLocationofTemeratureInstruments:20remotetemperaturedetectors(seefigure021.74-35)ineachsuppressionpools-16remotetemperaturedetectorslocatedjustbelowthemin.waterlevelandarrangedtoprovide2eachon8locationsaroundthepool.-4remotetemperaturedetectors(seeFigure021.74-35-TE's15769,15761,15756,15751)distributedaroundthepoolat"Q"center-linelocationo~Te:ClassIEInstrument-Divisionalizedwithonefromeachlocationineachdivision,exceptfor4remotetemperaturedetectorsatthe"g"centerline.Allsensorswillberedundant,SeismicCategoryIandsuppliedfromonsiteemergincypower.(2)Thetechniqueissuedtoarriveatanaverage,orbulk,pooltemperatureisconservativeduetotheplacementofthe16pooltemperaturedetectors.These16detectorsareevenlydistributednearthepoolsurface,wherethehottestwaterwillriseRev;22'.4/81021.79-1 SSES"FSARTable7.2-4,DesignBasisSetpoints,wasdeletedinRevision11.Severalsectionsstillrefertodatacontainedinthattable.SeveralreferencesaremadetodesignbasissetpointspreviouslylistedinTable7.2-4.Thistablehasbeenintentionallyleftblank.Pleaseclarifythisdiscrepancy.RESPONSE:Table7.2-4wasdeletedbecausetheinformationthereonhasbeenincorporatedintheplantTechnicalSpecifications.SomeinformationfromTable7.2-1andalltheinformationfromTables7.2-5and7.2-6hasbeendeletedfromSection7.2andisalsocontainedintheTechnicalSpecificationsastheappropriatesinglepointofreferenceforthisdata.VariousdiscussionsinSection7.2havebeenrevisedbyappropriatelyreferencingtheTechnicalSpecificationsratherthanthedeletedtables.Rev.22,4/81032.52"1 SSES-FSARDiscussionoftheEmergencyCoreCoolingSystemsandtheassociatedtablesareincompleteandinconsistent.Correctandclarifythefollowing:1)ThesameinstrumentsareusedforReactorVessellowwaterlevelandPrimaryContainmenthighpressureformanyESFsystems.ThespecificationshownfortheseinstrumentsinTables7.3-1through7.3-5arenotconsistant.Correcttripsettings,ranges,andaccuraciesshownfortheseinstruments.2)Thesetableshaveallottedcolumnsforinstrumentresponsetimesandmargins(oftripsetting)tomeetrequirementsofIEEE279-1971Section3,butmostdatahasbeenomitted.Responsetimesshouldindicateminimumand/ormaximumwhereapplicable.3)Table7.3"1hasomittedallspecificationsfortheTurbineoverspeedinstrument.4)Figure7.3-5hasseveralerrors:oItdoesnotshowtwoADSlogicsasindicatedin7.3.l.la.,1.4.4.oReferencedFigure7.3-16doesnotexist.oItdoesnotshowlowpressureinterlockstoLPCIandCSrequiredtoinitiateADSasindicatedin7.3.l.la.l.4.4.5)Table7.3-2indicatesonlyonereactorwaterlevelsetpoint(-149inches)fortheADS.Section7.3.1.1a.l.4.4indicatestwolevelsetpoints,alowandalowerwaterlevel.6)Useoflevelswticheswitharangeof-150"/0/+60"toinitiateADSandCSactionwithtripsettingsat-149doesnotseemlikeconservativedesign.Justifytheuseofthisrangeforthisapplication.Discussaccuracyofthetripsettingandhowitisaffectedbynormalandaccidentenvironmentalconditionsandlongtermdrift.7)WhyaretworangesshownforLPCIpumpdischargepressure(10-240psigand10-260psig).RangeshownforthisinstrumentinTable7.3-4is10-240psigonly.8)Section7.3.1.1a.l.4.5onADSBypassesandInterlocksindicatesthatitispossiblefortheoperatortomanuallydelaythedepressurizingactionandstates"ThiswouldresetRev.22,4/Sl032.54"1 SSES-FSARthetimerstozerosecondsandpreventdepressurizationfor105seconds."Table7.3-2,Figure7.3-8Sht.3andTable6.3-2allindicateatimedelayof120seconds.Howisatimedelayof105secondsachieved?9)Explainwhytworanges(50-1000psigand50-1200psig)arelistedfortheReactorVesselLowPressureinstrumentinTable7.3-3.10)Instrumentrangesforpumpdischargeflow,Table7.3-3,andpumpminimumflowbypass,Table7.3-4,arespecifiedininchesofwaterbuttripsettingsareingpm.Supplyrangesfortheseflowinstrumentsingpm.Table7.3-9HPCISystemMinimumNumbersofTripChannelsRequiredforFunctionalPerformancedoesnotagreewithTable7.3-1HPCIInstrumentSpecifications.Table7.3-8doesnotlistHPCIpumphighsuctionpressureorTurbineOverspeedasshowninTable7.3-1.Table7.3-8liststwoitems,HPCIpumpflowandHPCIpumpdischargeflow,notshowninTable7.3-1.12)Table7.3-4LowPressureCoolantInjection-InstrumentSpecificationsdoesnotagreewithTable7.3-10LowPressureCoolantInjectionSystemMinimumNumberofTripChannelsRequiredforFunctionalPerformance.Table7.3-10doesnotlistReactorlowpressureorPumpdischargepressureasshowninTable7.3-4.Table7.3-10listsseveraltripchannelswhicharenotshowninTable7.3-4.TheseincludeReactorvessellowwaterlevelinsideshroud,Reactorvessellowflow,Primarycontainmenthighpressure,andReactorvessellowwaterlevel(RecirculationPumps).13)Table7.3-11CoreSpraySystemMinimumNumbersofTripChannelsRequiredforFunctionalPerformanceisincomplete.ItdoesnotlistPumpDischargeFlowasshowninTable7.3-1.RESPONSE:Tables7.3-1thru7.3-4havebeenrevisedtoincludeallappropriateinstrumentfunctionsandthenumberofchannelsprovided.Thetripsettingsandresponsetimeinformationhasbeendeleted,andisprovidedintheTechnicalSpecifications.Tables7.3-8thru7.3-11aredeleted,withappropriatenumberofchannelinformationincorporatedintoTables7.3-1thru7.3-4.RevisionstoTable7'-5havebeensubmittedwiththeresponsetoQuestion032.55.2.Theinstrumentresponsetimesandmargins(oftripsettings)areincludedintheTechnicalSpecifications.ThedatainRev.22,4/Sl032.54"2 SSES-FSARtheTechnicalSpecificationsisintendedtoalsosatisfytherequirementsofIEEE279-1971,Section3.3.TheHPCIturbineoverspeedtripisawhichisintegralwiththeturbine.discussionoftheHPCIturbine.TheandaccuracyinformationisprovidedSpecifications.mechanicaldevice,SeeSection6.3,foroverspeedtripsettingintheTechnical4,Figure7.3-5isrevisedtoshowasimplifiedpictureoftheADSandLPCI/CSinitiationlogic.The"ADSdivisionIandIILogics,discussedinrevisedSubsection7.3.l.la.l4-4andshownindetailbyFigure7.3-8sheet3,areidenticalandenergizingeitherwillinitiateADS.ThereforetheyareshowntwiceinFigure7.3-5.RelatingthesimplifiedpictureinFigure7.3-5tothedetailedonein'Figure7.3"8,theleftbranchcorrespondstologicAinDiv.I(orBinDiv.II)andtherighttologicCinDivisionI(orDinDiv.II).Anotehasbeenadded,toFigure7.3-5toclarifytheseparatelogicsforDiv.IandDiv.II.ThereferencetoFigure7.3-16containedonFigure7.3-5iserroneous.ThecorrectreferenceFigureforLPCIlogicisFigure7.3-10,RHRFCD.Thelowpressureinterlocksforpumps(CSandRHR)havebeenaddedtoFigure7.3-5.5.TherevisedTable7.3-2includesanappropriateentryfor.ADSinitiation,withactioncausedbytwosignals,oneeachfromthereactorwaterlevelLl,andreactorwaterlevelL3.BothsignalsarerequiredbeforeADSisautomaticallyinitiated.ThesetpointforthisactionisprovidedintheTechnicalSpecifications.6.TheinstrumenttripsettingshavebeenremovedfromthetablesofChapter7andincludedintheTechnicalSpecifications'helevelswitchtripsettingof-149inchesforADSandCSwillbechangedandwillbewithintheproperaccuracyandrangeoftheinstrument.Thetripsettingaccuracyrelatedtoabnormaloperatingtemperaturewithinthedrywellisdiscussedintheresponsetoquestion032.59.Instrumentdriftisincludedindevelopingtheinstrumentsetpoints.7./8.TheLPCIpumpdischargepressurepermissivefortheADShastworedundantchannelsprovidedforeachLPCI(RHR)pump.Howevertheinstrumentshaveidenticalranges,soTable7.3-2hasbeenrevisedtoagreewithTable7.3-4.TheADStimersetpointfoundinTable6.3-2isanupperlimit.Thecorrectsetpoints(includingmargin)areprovidedintheTechnicalSpecification.Thepropertimedelaytimeisbymechanicaladjustmentofpneumaticallyoperatedtimedelayrelay.ThetextofSubsectionRev.22,4/81032.54-3

.SSES-FSAR7.3'.1a.l.4.5hasbeenrevisedtodeletetheactualnumericalvalue.The105secondtimevalueisnominal,andwasusedtoallowforthemarginandtoleranceofthedevice.ThepropervalueisprovidedintheTechnicalSpecification.9.ThetwotripsystemsforCShavediverseinstrumentsspecifiedforreactorvesselandthesameinstrumentsareusedinLPCIlowpressure.Tables7.3-3and7.3-4,asrevised,givetheinstrumentrangesforbothtripsystems.ThetripsettingvaluesareprovidedintheTechnicalSpecifications.10.TheCSandLPCI(RHR)pumpminimumflowbypassrangesareconvertedfromdifferentialpressuretoflowontherevisedTables7.3-3and7.3-4.11.Table7.3-1hasbeenrevisedtoincludeHPCIpumpminimumflowbypassandtheHPCIpumpflowcontrollersignalingtheHPCIturbine.Theturbineoverspeedtripisamechanicaldevicethatisintegralwiththeturbine,seeSection6.3.TheturbineoverspeedinstrumentrangehasbeenaddedtoTable7.3-1.ThenumberofchannelsprovidedisaddedtoTable7.3-1,andTable7.3-8isdeleted.TheminimumnumberoftripchannelsrequiredhavebeenaddedtotheTechnicalSpecifications.12.TheLPCITable7.3-4hasbeenexpandedtoincludetheinstrumentsoftheactualdesignandthenumberofchannelsprovided.ThemarginandtripsettingofTable7.3-4aswellasTable7.3-10havebeendeleted.13.TheCSTable7'-3hasbeenrevisedtoaddthenumberofinstrumentchannelsprovided,andmargin,responsetime,andtripsettingshavebeendeleted.Table7.3-11hasbeendeleted.Rev.22,4/81032.54-4 SSES-FSARUESTION040.2ThestaffrequiresthatthefollowingqualificationtestprograminformationbeprovidedforallClass1Eequipment:(1)IdentificationofEquipmentincluding,(a)Manufacturer(b)Manufacturer'stypenumber(c)Manufacturer'smodelnumber(2)Equipmentdesignspecificationrequirements,including,(a)Thesystem"safetyfunctionrequirements(b)Anenvironmentalenvelopewhichincludesallextremeparameters,bothmaximumandminimumvalues,expectedtooccurduringplantshutdown,normaloperation,abnormaloperation,andanydesignbasisevent.(c)Timerequiredtofulfillitssafetyfunctionwhensubjectedtoanyoftheextremesoftheenvironmentalenvelopespecifiedabove.(3)Testplan,(4)Testset-up,(5)Testprocedures,(6)Acceptabilitygoalsandrequirements,(7)Testresults,(8)Identificationofthedocumentswhichincludeanddescribetheaboveitems.(9)TheinformationrequestedaboveshallbeprovidedforatleastoneitemineachofthefollowinggroupsofClass1Eequipment.(a)Switchgear(b)Motorcontrolcenters,(c)Valveoperators(incontainment)(d)Motors(e)IogicequipmentRev.22,4/81040.2-1 SSES-FSAR(f)Cable(g)Dieselgeneratorcontrolequipment(h)Sensors(i)Limitswitches(j)Heaters(k)Fans(1)Controlboards(m)Instrumentracksandpanels(n)Connectors(o)Penetrations(p)Splices(q)Terminalblocks(10)InaccordancewiththerequirementsofAppendixBof10CFR50,thestaffrequiresastatementverifying:(a)thatallClass1Eequipmenthasbeenqualifiedtotheprogramdescribedabove,and(b)thatthequalificationinformationisavailableforanNRCaudit.RESPONSE:ThequalificationtestprograminformationforClasslEequipmentisprovidedintheSusquehannaSESEnvironmental(}ualificationReportForClasslEEquipmentsubmittedunderseparatecover.Rev.22,4/81040.2-2 SSES-PSABstartontheautostartsignalandoperateonstandbyforfiveminutes.(d)Verifyingthatonlossofoffsitepowerinconjunctionwithasafetyfeaturesactuationsignalthedieselgeneratorsstartontheautostartsignal,theemergencybusesareenergizedwithpermanentlyconnectedloads,theauto-connectedemergency(accident)loadsareenergizedthroughtheloadsequence,andthesystemoperatesfozfiveminuteswhilethegeneratorsareloadedwiththeemergencyloads.(e)Verifyingthatoninterruptionoftheonsitesourcestheoadsareshedfromtheemergencybusesinaccordancewithdesignrequirementsandthatsubsequentloadingoftheonsitesourcesisthroughtheloadsequencer.(4)Thevoltagelevelsatthesafety-relatedbusesshouldbeoptimizedforthefullloadandminimumloadconditionsthatareexpectedthroughouttheanticipatedrangeofvoltagevariationsoftheoffsitepowezsourcebyappropriateadjustmentofthevoltagetapsettingsoftheinterveningtransformers.Merequirethattheadequacyofthedesigninthisregardbevezifiedbyactualmeasurementandbycorrelationofmeasuredvalueswithanalysisresults.Provideadescriptionofthemethodformakingthisverification;beforeinitialreactorpoweroperation,providethedocumentationrequiredtoestablishthatthisverificationhasbeenaccomplished.RESPONSEI.RefertoFigures8.3-1,83-2,8.3-3and8.3-15forthefollowingdiscussiononundervoltagedetectionandtransferlogic.Theprimarybustransferonlossofoffsitepowerisinitiatedatthe13.8kVstartupswitchgear.Eachclass1E4.16kVswitchgearbusesprovidethebackupundervoltagetransfer.RefertoSubsection8.3fordiscussiononbusarrangementandtheinterconnectionoftheoffsitepowersuppliesandtheon-sitedistributionsystem~~Rev.22,4/81040.6-3 SSES-ZSAR(1)Each13.8kVstartupbusisprovidedwithanoffsitepowersupplyandthecapabilityofconnectingtothesecondoffsitepowersupplybytheclosingofthel3.8kVtiebreaker(breaker52-10502).Theundervoltagedetectionsystemateach13.8kVswitchgearbusconsistsof(1)incomingfeeder(offsitepowersupply)undervoltage-clays-device27AI,(2)busundervoltagerelay-device27A2,and(3)tiebusundervoltagerelay-device27A1.{a)Device27AX-initiatestrippingoftheincomingfeeder.Device27AIisaninstantaneousplungertyperelaywithpickupsettingat93.6volts(78%oftherate120volts).TwoindependentsinglephaserelaysareusedtomonitortheA-Band0-Cphasevoltages.Theincomingbreakeristrippedoncoincidencelogicofthetwoundervoltagerelaysat917voltswith30cycletimedelay.(b)Device27A1-ProvidesthepermissiveforclosingoftiebreakerDevice27A1isalongtimeinductiondisctypeundervoltagerelaysetat82volts(68%ofrated)andtimedial1/2.Twosinglephaserelayareprovidedformonitoringtheavailabilityofthealternateoffsitepowersupplyatthe13.8kVlevelandprovideacoincidencelogicfortheclosingofthetiebreaker(c)Device27A2-initiatesthebustransfer)Device27A2isa3phaseinstantaneousplungertyperelaywiththreefullwavebridgerectifiers.Therelayissettodropoutat30volt(25%ofrated).Bustransferiscompletedbytheclosingofthetiebreaker(permissivebydevice27A1).2.Each4.16kVclass1Eswitchgearbusisprovidedwithapreferredandanalternate(offsite)powersupplyandonedieselgeneratorfeederasdiscussedinSubsection83.1.3Theundervoltagedetectionandbackupbustransferonlossofoffsitepowerorsustaineddegradedvoltageonthebusisprovidedby(1)incomingfeederundervoltagerelay-device27',(2)busundervoltagerelay-device27A,and(3)degradedvoltageprotectionrelays-devices27B1,27B2,27B3,and27B4.ThedevicesettingsfortheClassIEbusundervoltageprotectionaresummarizedinthefollowingTable40.6-1.Rev.22,.4(83>040.6-4 SSES-FSARDevice27AI-providesthepermissiveforclosingoftheincomingbreakerDevice27AIisasinglephaseinductiondisctyperelaysetat92voltsandtimedial1/2.Thisrelayisusedtomonitortheavailabilityof'theoffsitepowersupplyattheclasslE4.16ivlevel.(b)Device27A-initiatesthebustransferDevice27Aisa3phaseinstantaneousplungertyperelaywiththreefullwaverectifiers.Therelayissettodropoutat18voltor15%ofratedbusvoltage.The4.16kVbustransferisinitiatedwithatimedelayof10cyclesbytrippingofthepreferincomingfeederbreaker.Thetransferiscompletedifthealternateoffsitepowersupplytothis4.16kVbusisavailable(permissivebydevice27AI).Incasethealternateoffsitepowerisnotavailable,thestandbydieselgeneratorisinitiatedtostartwitha0.5seconddelay.(c)Devices27B1,27B2,27B3,and27B4-initiatebustransferandundervoltagealarm.Theseundervoltagerelaysaresolid-state,singlephasewithdefinitetimedelay(ITE27Dtypedefinitelongtime).Theadditionallevelvoltageprotectionforeach4.16kVClassIEbusisprovidedtoassurethatvoltagelevelsatallClassIEdistributionbusesmeettheminimumrequirementofallsafetyrelatedequipment.Intheeventoflossofvoltageonthe4.16kVClassIEbus,thebusundervoltagerelay(27A)initiatesbustransferperparagraph(b)above.Inaddition,relays27Bl,27B2,27B3,and27B4providebackupprotectionforalarmsandinitiatingbustransfer.Ifadegradedvoltageconditionoccursonthe4.16kVClassIEbus,withnoLOCAsignalpresent(seeFigure8.3-15),whichisbelowthesettingofrelays27B1and27B2,analarm(coincidencelogic)willbeinitiatedafter10seconds.Thesamerelayswillinitiatethebustransferafter30minutesLOCAsignalswillbypassrelays27B1and27B2orbustransferwillbeblockedbyLOCA.The10secondtimedelayisprovidedtoprecludespuriousalarms.The30~inutestimedelayisprovidedforoperatorstoinitiatecorrectiveactions.Theserelaysprovidepre-alarmtoalerttheoperatorthat"abnormal"voltageconditionexistsattheClassIEbus.Rev.22,4/81040.6-5 SSES-FSARInaddition,relays27B3and27B4willinitiateanalarmandbustransferafter17secondswhenthebusvoltageisdegradedbelowthesettingcoincidentwithanLOCAcondition.Thesetworelaysarealsoconnectedinacoincidentlogicwithtimedelayrelaystoprecludespurioustrippingoftheoffsitepowersources.Thisprotectiveschemewillforcealossofoffsitepoweronthe4.16kVClassIEbusondegradedbusvoltage.Ifthealternateoffsitepowerisnotavailable,theemergencydieselgeneratorwillbestartedautomaticallywitha0.5seconddelayandconnectedtotherespectivebuswithin10secondspersection8.3.1.4.1.Allbusundervoltagerelayswillinitiatebustransfer,onlywhenthebusisfedfromtheoffsitepowersupplies.However,theserelayswillinitiateundervoltagealarmevenwhenthebusisenergizedbyemergencydieselgenerator.II.(1)Selectionofallvoltagerelaysettingsisbasedontheon-sitedistributionsystemloadflowstudyandisverifiedbypreopezationaltests.Thecontinuousoperatingvoltageateachdistributionvoltagelevelismaintainedat,+10%oftheratedvoltagelevelovertheentiretransmissiongridoperatingrange.Trippingoftheoffsitepoversupplyatthe13.8kVlevelisaccomplishedbyacoincidencelogicoftvoindependent'inglephaseundervoltagerelays.ThebackuptrippingofthesameoffsitepowersupplytotheClass1E416kVsvitchgearisprovidedbya3phasefullwaverectifierstypeundezvoltagerelayforminimizingnuisancetrippingsuchaslossofa-..singlecontrolfuseinthedetectioncircuit..Thetotaltimedelayallowedbyrestarting{starting)ofclasslEequipmentafteraDBAis13secondsasshownon'able8.3-1.10secondsisreservedfordieselgeneratorstarting.Therefore,3secondsisallocatedforvoltagesensingandbustransfer.Pze-operatingtestsvillverifythatthetimedelayonthebustransferdoesnotexceedtheallowabletime.Asdiscussedin(I)ofabove,offsitepowersupplyzsautomaticallydisconnectedatthe13.8kVlevel.IfthetransferisnotcompletedwithinthetimedelayoftheClass1E416kVbustransfercircuit,theoffsitepowersupplyisalsodisconnectedatthe4.16kVlevel.TheundervoltagedetectionsensorsandcircuitsaredesignedinaccordancewithIEEEstd279-1971Rev.22,4/81040.6-6 SSES-FSAR4)4((2)Allloadsoneach4.16kVClass1Eswitchgearbusexceptthe480voltloadcentercederareshedonlossofpowertothebus.Oncethebusisre-energized,the4.16kVClasslEloadsareloadedinaccordancewiththepre-settimedelay.Loadsheddingandreloadingof4.16kVclasslEloadsarerepeatedasdiscussedabovewheneverthebusbecomesde-energized.(4)RefertoChapter16forTechnicalSpecification.Transformertapsettingsaceselectedforoptionaloperatingvoltagelevelsfora11loadingconditionsundertheanticipatedvoltagevariationoftheoffsitepowersupplies.Thecontinuousoperatingvoltageateachlevelismaintainedwithin+10%orated.Pre-opeationaltestsverifytheactualvoltagelevels.III.RelaySettings:Thefunctionandsettingsofundervoltagerelaysaredeterminedinconsiderationofthefullload,minimumload,andthelargestmotorstartingconditionsthatareexpectedthroughouttheanticipatedrangeofvoltagevariationsfortheoffsitepowersources.Thefollowingdesigncriteriaareused:(1)Themaximumallowablevoltageatnoloadortheminimumloadcondztxonsis110%ofthemotorratedvoltage.(2)Theminimumvoltageunderthemaximumrunningloadconditionxs90/ofthebusratedvoltage.(3)Theminimumstartingvoltageis80%ofmotorratedvoltage.SeeTable40.6-1.Rev.22,4/81040.6-7 SSES-FSARTABLE40.6-1SETTINGTABLE(4KVBUS)DeviceNo.27AI(preferred)FunctionPermissivetoclosethepreferredpowerincomingBreaker.AlarmYesVoltage~nettin95%Time~nettin8sec.27AI(alternate)PermissivetoclosethealternatepowerincomingBreakerYes95%8sec.27A59/27Initiatebustransfer.Triptheincomingclosedbreaker.Busover/undervoltage(alarmonly&locatedinloadcenter)YesYes15%110%/90%10cycles10sec.27Bl27B2Undervoltagealarmandinitiatebustransferwithtimedelayrelays.Yes95%10sec.27B1X27B2XTimedelayrelayswith27B1&27B2toinitiatebustransfer.No30min.27B327B4InitiatebustransferonLOCAconditionNo93%17sec.Rev.22,4/81 SSES-FSARQUESTION040.32:Insection9.5.2.2youdescribetheplantcommunicationssystemprovided.Itisnotedthatuseofradio(portableandfixed)communicationshasbeenexcluded.Aspartoftheplantdefense-in-depthconcept,intheeventofanaccidentorfireinanareawherefixedcommunicationssystemscannotbeused,werequire(asaminimum)thatportablecommunicationsequipmentbeprovidedatstrategicworkstationsintheplantforusebypersonnelundersuchconditions.RESPONSE:RefertorevisedSubsection9.5.2andtheresponseprovidedtoquestion281.13.Rev.22,4/81040.32-1 SSES-FSARUESTION40.951.Provideatablethatlistsallequipmentincludinginstrumentationandvitalsupportsystemequipmentrequiredtoachieveandmaintainhotand/orcoldshutdown.Foreachequipmentlisted:a.Differentiatebetweenequipmentrequiredtoachieveandmaintainhotshutdownandequipmentrequiredtoachieveandmaintaincoldshutdown.b.Defineeachequipment'slocationbyfirearea,c.Defineeachequipment'sredundantcounterpart,d.Identifyeachequipment'sessentialcabling(instrumentation,control,andpower).Foreachcableidentified:(1)Describethecablerouting(byfirearea)'fromsourcetotermination,and(2)Identifyeachfirearealocationwherethecablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesforanyredundantshutdownsystem,ande.Listanyproblemareasidentifiedbyiteml.d.(2)abovethatwillbecorrectedinaccordancewithSectionIII.G.3ofAppendixR(i.e.,alternateordedicatedshutdowncapability).RESPONSE:Themethodofverifyingsafe-shutdowncapabilitysuggestedinQ40.95wasconsidered.However,amoreefficientandlesstime-consumingbutequallyeffectivemethodofreviewbasedonexaminationofeachfirezonewaschosen.First,alistofsystemsrequiredtoshutdowntheplantwasdeveloped.Criteriaincludedalossofoffsitepower,allsystemsshouldbesafety-related,nosinglefailure(otherthanasinglefireanditseffects),andthatmanualoperationandcontrolpost-firewereacceptable.SeeTable40.95-1.Toshowtheredundantequipmentanddifferentiatebetweenequipmentrequiredtoachieveandmaintainhotshutdownandequipmentrequiredtoachieveandmaintaincoldshutdown,Table40.95-1isdividedintothreegroupsofsystems,categorizedbytheirfunctions,asdescribedbelow.GroupIconsistsofthosesystemsrequiredforbothhotandcoldshutdown.Anexampleisthecontrolroddrivemanualscramcircuits.GroupIsystemsarefurtherdividedintotwoindependentsubsystemsdesignatedDivisionIandDivisionII.DivisionsinanyoneGroupIsystemmustbesingle-fireisolated*fromeachother.Rev.22,4/8140.95-1 SSES-FSARGroupIIconsistsofthosesystemsrequiredforhotshutdown.Severalsystemsarelistedt;ogetherbecauseoftheinterdependencyofthesesystems,e.g.dieselgeneratorsandauxiliaries.Again,thesesystemsarefurtherdividedintoDivisionsIandII.AllequipmentandcablesessentialforGroupII,DivisionI,mustbesingle-fireisolatedfromallessentialcablesforGroupIIDivisionIIsystems.Hence,asanexample,RCIC(DivisionI)andHPCI(DivisionII)mustbesingle-fireisolated*fromeachother.GroupIIIconsistsofthosesystemsrequiredforcoldshutdown.Again,DivisionImustbesingle-fireisolated*fromDivisionII.Thosesystemswithcontainmentisolationvalveshaveacross-divisonalcircuit.Thisisnecessaryfordiversecontainmentisolationfunction.Ifthesystem,sayHPCI,isDivisionII,thecross-divisionisolationvalvecircuitswouldberoutedintheirownseparatedconduits.Likewise,theRCICsystem,DivisionI,thecross-divisionalcircuitswouldberoutedintheirownconduits.Thecrossdivisionalcircuitsofthesetwosystems,willbesingle-fireisolatedfromeachotherandfrombothDivisionsIandIIuptothebreaker.Table40'5-2isaspecificcomponentlistingofthosedevicesessentialtothefunctioningofthesystemsinTable40.95-1.Firezonelocationforeachdeviceisalso-listed.Unit2equipmentfornon-commonsystemsdifferonlyinthattheprefix1ischangedto2forbothequipmentnumberandfirezone.Thespecificmethodofcablereviewisdescribedbelow.TheFireProtectionReviewReportanalysis(Section4.0)verifiesthatfireswillbecontainedwithinthezoneoforigin.Eachfirezoneisreviewedindividually.First,aracewaylayoutdrawingismarkedtoshowthedivisionalizationofthesafety-relatedraceway.Theminoritydivisionisidentifiedanditsracewayislisted.Theterm"minoritydivision"referstotheelectricaldivisionwhichhasfewerofitsracewaysroutedthroughthefirezoneinquestion.Actually,eitherdivisioncouldbechosenforfurtherexamination,buttheminoritydivisionrepresentstheleasteffort.Thecablesinallthelistedminorityracewaysarechecked,andanynotconnectedtoasafeshutdownsystemasgiveninTable40.95-1ortoanyofthecomponentslistedinTable40.95-2aredeleted.Allcableleftisreviewedforitssupportofthesystem'ssafeshutdownfunction(s)andfortheeffectsoffailurecausedbyfire.Thisstepleavessafeshutdowncablingthatviolatesfirezoneseparation.Eachcableorcomponentisthenreviewedforapplicablefireprotectionmeasures.Thecableistheneitherreroutedorseparationbarriersand/orsuppressionanddetectionsystems,asnecessary,areprovided.*Single-fireisolatedmeanseitherinseparatefirezonesorhavingthefollowingfire-protectionmeasures:a)Fire/smokedetectionisprovidedinallfirezonescontainingessentialminoritydivisionsafeshutdownraceway..Rev.22,4/8140.95-2 FSAR-SSESTABLE40-95-1SystemsRequiredForShutdownGROUPI-SystemsRequiredforHot6ColdShutdownControlRodDrive-ManualScramCircuitsonlyMainSteamIsolationValves(manualclosurefunctionsonly)SuppressionPoolTemperatureMcnitorinqReactorPressureVesselInstrumentationGROUPII-SystemsRequiredforHotShutdownDivisionIRCICADSESHESSWPumphouseHVACDieselGeneratorsandAuxiliariesDieselGeneratorHVACContainmentInstrumentGasDivisionIlHPCIplusallDivisionIIofthesesystemsunderModeII,DivisionexceptRCIC.GROUpIII-SystemsRequiredforColdShutdownDivisionIRHRRHRSMESQESSMPumphouseHVACDieselGeneratorsandAuxiliariesDieselGeneratorHVACDivisionIIAllDivisionIIofaboveRev.22,4/Sl SSES-FSAR2.ProvideatablethatlistsClass1EandNon-ClassIEcablesthatareassociatedwiththeessentialsafeshutdownsystemsidentifiedin,item1above.Foreachcablelisted:a.Definethecables'ssociationtothesafeshutdownsystem(commonpowersource,commonraceway,separationlessthanRegulatoryGuide1.75guidelines,cablesforequipmentwhosespuriousoperationwilladverselyaffectshutdownsystems,etc.))b.Describeeachassociatedcablerouting(byfirearea)fromsourcetotermination,andc.Identifyeachlocationwheretheassociatedcablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesrequiredfororassociatedwithanyredundantshutdownsystem.RESPONSE:a.AffiliatedcircuitsareusedinSSESinplaceof"associated"circuitswhicharedefinedinSection8.1.6.lnparagraph4)and5).Theseparation/isolationbetweenClassIEandnon-ClassIEcablesaredesignedtominimizeanyfailureinthenon-ClassIEequipmentfromcausingunacceptableinfluencesintheClassIEsystem.b.TheaffiliatedcircuitsaresubjectedtothesamerequirementsasClassIEcircuits.RefertoSections3.12.3.4and8.3.1.11.4andTable8.3-10forcableroutingrequirements.c.TheaffiliatedcablesareroutedwiththeirrespectiveClassIEcablesasdescribedinTable8.3-10.Therefore,theseparationbetweentheaffiliatedcablesandtheredundantClassIEcables,includingthosecablesrequiredforsafeshutdown,isinaccordancewithRegulatoryGuide1.75.The.responsetoQuestion40.95addressesthecableseparationbetweenredundantshutdownsystems.Rev.22,4/8140.96-1 SSES-FSARUESTION3.Provideoneofthefollowingforeachofthecircuitsidentifiedinitem2.cabove:aTheresultsofananalysisthatdemonstratesthatfailurecausedbyopen,ground,orhotshortofcableswillnotaffectit'sassociatedshutdownsystem,b.IdentifyeachcircuitrequiringasolutioninaccordancewithsectionIII.G.3ofAppendixR,orIdentifyeachcircuitmeetingtherequirementsofsectionIII.G.2ofAppendixR(i.e.,three-hourwall,20feetofclearspacewithautomaticfiresuppression,orone-hourbarrierwithautomaticfiresuppression).RESPONSE:a.Anaffiliatedcircuitmayaffectitsassociatedshutdownsystemintwoways:Affiliatedcircuitroutedwithshutdowncircuitorinsameenclosure:A~nalaie:AnopencircuitofaffiliatedcablewillnotaffectshutdownsystembecausetheClassIEcableandaffiliatedcablehavethesamequalifiedcableinsulation.(seeTable9.5-1).Forshortingorgroundingofaffiliatedcircuits,refertoSection8.1.6.lnparagraph5)forthebasisandmethodsforseparation/isolationofNon-ClassIEandClassIEcircuits.Theworstcredibleeventwhichcouldaffectoneoftheredundantshutdowntrainsthroughtheaffiliatedcircuitisafireinvolvingaracewaycontainingbothaffiliatedcableanditsassociatedshutdownsystemcables.Assumeintheworstcasewherethesecablesareallshortedtogetherwith120Vac,125Vdc,250Vdc,or480Vaccableduetoafire.(4kVandhighervoltagecablesareroutedintheirownconduit).Theprotectivedevice(s)ofthefaultedcircuitsshouldbetrippedtopreventfurtherdamageintotheshutdownsystem.IftheClasslEprotectivedevicedoesnottrip,theshutdownequipmentmaybedamaged,andthereforepreventtheequipmentfromperformingitsshutdownfunction.However,failureofaClasslEdevicetotripmustbeconsideredasinglefailure,whichisbeyondthefireprotectiondesignbasis.Inorderforthisshutdowntrain,asdesigned,tofailduetofire,thesemultiple,independent,lowprobabilityeventsmusthappensimultaneously.Thisisconsideredextremelyunlikely.Rev.22,4/8140.97-1 SSES-PSAR(2)Affiliatedcircuitsharingthesamepowersupplyoftheassociatedshutdowncircuits:A~nalsis:SameasdescribedinSection8.1.6.1.nforseparation/isolationofnon-ClassIEandClassIEcircuits.b.Rc.TheaffiliatedcircuitsaresubjectedtothesamerequirementsasClassIEcircuits.Theresponsetoquestion40.95addressesthiscondition.Rev.22,4/8140.97-2 SSES-FSAR5~Theresidualheatremovalsystemisgenerallyalowpressuresystemthatinterfaceswiththehighpressureprimarycoolantsystem.ToprecludeaLOCAthroughthisinterface,werequirecompliancewiththerecommendationsofBranchTechnicalPositionRSB5-1.Thus,thisinterfacemostlikelyconsistsoftworedundantandindependentmotoroperatedvalveswithdiverseinterlocksinaccordancewithBranchTechnicalPositionICSB3.Thesetwomotoroperatedvalvesandtheirassociatedcablemaybesubjecttoasinglefirehazard.Itisourconcernthatthissinglefirecouldcausethetwovalvestoopenresultinginafire-initiatedIOCAthroughthesubjecthigh-lowpressuresysteminterface.Toassurethatthisinterfaceandotherhigh-lowpressureinterfacesareadequatelyprotectedfromtheeffectsofasinglefire,werequirethefollowinginformation:a~Identifyeachhigh-lowpressureinterfacethatusesredundantelectricallycontrolleddevices(suchastwoseriesmotoroperatedvalves)toisolateorprecluderuptureofanyprimarycoolantboundary.b.Identifyeachdevice'sessentialcabling(powerandcontrol)anddescribethecablerouting(byfirearea)fromsourcetotermination.C.Identifyeachlocationwheretheidentifiedcablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesfortheredundantdevice.d.Fortheareasidentifiedinitemcabove(ifany),providethebasesandjustificationastotheacceptabilityoftheexistingdesignoranyproposedmodifications.RESPONSE:Wehavereviewedthemajorreactorpressureboundaryhighpressure/lowpressureinterfacevalvesperBranchTechnicalPositionRSB5-1.Usingthesecriteria,checkvalvesinserieswithmotoroperatedvalves(MOVs)areacceptable.AfirecouldopenonlytheMOV.ManyoccurrencesofthiscombinationofcheckandMOVexistatSSESintheCoreSpray,Feedwater,andResidualHeatRemovalSystems,amongothers.Usuallyassociatedwiththecheckvalveisapneumaticoperator.Thisoperatorisfortestingpurposesonlyandcanneitherunseatnorpreventfromseatingthevalveflapperwhenadifferentialpressureexistsacrossthevalve.Hence,afire-causedfailureofthesolenoidactuatorsforthepneumaticoperatorsonthesecheckvalvescannotcausethevalvestoopeninadvertentlyandthuscannotdegradethereactorcoolantpressureboundary.Rev.22,4/Sl40.99"1 SSES-FSARInadditiontotheabove,threepairsofvalvesperunit(sixpairstotal),allassociatedwiththeRHRSystemashigh/lowpressureinterfacevalves,consistoftworemotelyoperatedvalvesinseries.Onepairofthesevalvesperunitintheshutdowncoolingsuctionline.TheotherpairareinthelinestoeachRHRheatexchangerforuseinthesteamcondensingmode.Thevalvenumbersaregivenbelow:Unit1HV-E-11-1F008/HV-E-ll-lF009ShutdownCoolingMode(motoroperated)PV-E-ll-1F051A/PV-E-ll-lF052ASteamCondensingMode(airoperated)PV-E-ll-1F051B/PV-E-ll-lF052BSteamCondensingMode(airoperated)Unit2HV-E-11-2F008/HV-E-ll-2F009ShutdownCoolingMode(motoroperated)PV-E-ll-2F051A/PV-E-11-2F052A'teamCondensingMode(airoperated)PV"E-11-2F051B/PV-E-ll-2F052BSteamCondensingMode(airoperated)Theshutdowncoolingsuctionvalvesareinseparatedivisionsandaresubjecttothenormalseparationcriteria.Also,theinboardvalveislocatedinsidetheinertedcontainmentwhereafirecannotbepostulated.Acable-by-cableseparationreviewwasconducted;cablesfrombothvalvesarenotroutedinanysinglefirezoneotherthanthemaincontrolroomandtheRemoteShutdownPanels(RSP).AreactorpressurevesselinterlockpreventsashutdowncoolingvalveswitchinthemaincontrolroomfromopeningitsvalvewheneverthevesselpressureexceedsthedesignratingofthedownstreamRERpiping.AdesignchangeisunderwaytorelocatethepressureinterlockcontactbetweentheMCRandtheRSP.Therelaypanelscontainingthepressurecontactsarelocatedinseparatedrelayrooms.Hence,afireoranoperatormistakeineithertheMCRorRSPwillnotcauseanoverpressurization.Thesteamcondensingmodevalvesareinterconnectedbydesignforcoordinatedsteamadmissionandpressurecontrolandhencearenotseparatednordivisionalized.Shouldbothvalvesbedrivenopenbyfire,adequateoverpressurizationprotectionexistsviaPSV-Ell"F055A8BtopreventruptureofthedownstreamRHRpiping.Rev.22,4/8140.99-2 SSES-FSARFigures3.6-1through3.6-9and3.6-14areindicatedas"Later".ProvideaschedulefortheirinclusionintheFSAR.RESPONSE:Seerevisedfigures3.6-1through3.6-8.Figure3.6-9hasbeenintentionallyleftblank.Figure3'-14willbeprovidedinthesecondquarterof1981.Rev.22,4/81110.29-1 SSES-FSARAsrequiredby10CFR50.55a(g)werequestthatyousubmityourpreserviceandinitial20monthinservicetestingprogramforpumpsandvalves.Enclosure110-3providesasuggestedformatforthissubmittalandadiscussionofinformationwerequiretojustifyanyreliefrequests.RESPONSE:Thepreserviceandinitial20monthinservicetestingprogramforpumpsandvalveshasbeensubmittedunderseparatecover.Rev.22,4/81110.47-1 SSES-FSARAreviewofthedesignadequacyofyoursafety-relatedelectricalandmechanicalequipmentunderseismicandhydrodynamicloadingswillbeperformedbyourSeismicQualificationReviewTeam(SQRT).Asitevisitatsomefuturedatewillbenecessarytoinspectandotherwiseevaluateselectedequipmentafterourreviewofthefollowingrequestedinformation.TheSQRTeffortwillbeprimarilyfocusedontwosubjects.Thefirstistheadequacyoftheoriginalsingle-axis,single-frequencytestsoranalysesofequipmentqualifiedperthecriteriaofZEEEStd.344-1971.Thesecondsubjectisthequalificationofequipmentforthecombinedseismicandhydrodynamicvibratoryloadings.Thefrequencyofthisvibrationmayexceed33hertzandnegatetheoriginalassumptionofacomponentsrigidityinsomecases.AttachedEnclosure110-4describestheSQRTanditsprocedures.SectionV.2.ArequiresinformationwhichyoushouldsubmitsothatSQRTcanperformitsreview.SeveraloftheBNRHarkZIOLapplicantshavestatedintheirClosureReportsthatequipmentwillbequalifiedfortheSRSScombinationofthehydrodynamicandseismicrequiredresponsespectra(RRS).Similarly,whenqualifiedbyanalysis,thepeakdynamicresponsesoftheequipmenttothehydrodynamicandseismicloadswillbecombinedbySRSS.ThecombiningbySRSSofeithertheRRSorpeakdynamicresponsesforhydrodynamicandseismicloadingsisnotacceptableatthistime.Toaidthestaffinitsreview,provideacompilationoftherequiredresponsespectralistedbelowforeachflooroftheseismicCategory1buildingsatyourplant.(1)theRRSfortheOBEorSSE,whicheveriscontrolling.lftheOBEiscontrolling,explainwhy.(2)thecontrollinghydrodynamicRRS(3)items(1)and(2)combinedbySRSS(4)items(1)and(2)combinedbyabsolutesum.RESPONSE:TheconcernsraisedbythisquestionhavebeenaddressedintheSRQTsubmittalsofDecember,1980,January,1981andFebruary,1981.Rev.22,4/81110.50-1 SSES-PSARQUESTION121.8:~ewillrequirethatyourinspectionprogramforClass1,Zand3componentsbeinaccordancewiththe=evise'ulesin10CEHPdr50,Section50.55a,paragraph(g)publ'shedinthePebruary12,1976issueofthe."-EDERALREGISTER.Toevaluateyourinspec-ionp"ogram,"hefollowingminimuminformationisnecessaryrorourreview:(1)Apreserviceinspectionplantoconsis-oftheapplicableASllECodeEditionandtheexceptionstotheCoderequirements.(2)Aninserviceinspectionplansubmittedwithinsixmonthsofanticipatedcommercialoperation.Thepreserviceinspectionplanwillberevi..wedtosupportthesafetyevaluationreportfindingoncompliancewithpreserviceandinserviceinspectionrequirements.Thebasisforthedeterminationwillbecompliancewith:(1)TheEditionofSectionXIoftheASl}ECodestatedinyourPSARorlaterEdit'onsofSectionXI=eferencedintheFEDERALREGISTERthatyoumayelecttoapply.AllaugmentedexaminationsestablishedbytheCommissionwhenaddedassuranceofstructuralreliabilitywasdeemednecessary.ExamplesofaugmentedexaminationrequirementscanbefoundinNRCpositionson(a)highenergyfluidsystemsinSRPSection3.2,(b)turbinediskintegrityinSRPSection10.2.3,and(c)feedwaterinletnozzleinnerradii.YourresponseshoulddefinetheapplicableSectionXIEdition(s)andsubsections.Ifanyexaminationrequirementsofthe"-ditionofSectionXIinyourPSARcannotbemet,areliefrequestincludingcompletetechnicaljustificationtosupportyourconclusionmustbeprovided.Theinserviceinspectionplanshouldbesubmittedforreviewwithinsixmonthsofanticipatedcommercialoperationtodemonstratecompliancewith10CFRPart50,Section50.55a,paragraph(g).Thisplanwillbeevaluatedinasafetyevaluationreportsupplement.TheobjectiveistoincorporateintotheinserviceinspectionprogramSectionXIrequirementsineffectsixmonthspriortocommercialoperationandanyaugmentedRev.22,4/81121.8-1 examinationrequirementsestablishedbytheCommission.Yourresponseshoulddefineallexaminationrequirementsthatyoudeterminearenotpracticalwithinthelimitationsofdesign',geometry,andmaterialsofconstructionofthecomponents.Attachedaredetailedguidelinesforthepreparationandcontentoftheinspectionprogramsandreliefrequeststobesubmittedforstaffreview.RESPONSE:TheinspectionprogramforClass1,2and3componentshasbeenprovided(PLA-619,N.W.CurtistoB.J.Youngblooddated1/27/81).Rev.22,4/81121.8-2 SSES-FSARUESTION123.1PursuanttoGeneralDesignCriterion2,safety-relatedstructures,systemsandcomponentsaretobedesignedforappropriateloadcombinationsarisingfromaccidentsandseverenaturalphenomena.Withregardtothevibratoryloadsattributedtothefeedbackofhydrodynamicloadsfromthepressuresuppressionpoolofthecontainment,thestaffrequiresthatsafety-relatedmechanical,electrical,instrumentationandcontrolequipmentbedesignedandqualifiedtowithstandeffectsofhydrodynamicvibratoryloadsassociatedwitheithersafetyreliefvalve(SRV)dischargeofLOCAblowdownintothepressuresuppressioncontainmentcombinedwiththeeffectsofdynamicloadsarisingfromearthquakes.ThecriteriatobeusedbythestafftodeterminetheacceptabilityofyourequipmentqualificationprogramforseismicanddynamicloadsareIEEEStd.344-1975assupplementedbyRegulatoryGuides1.100and1.92,andStandardReviewPlanSections3.9.2and3.10.Statetheextenttowhichtheequipmentinyourplantmeetstheserequirementsandtheaboverequirementstocombineseismicandhydrodynamicvibratoryloads.Forequipmentthatdoesnotmeettheserequirementsprovidejustificationfortheuseofothercriteria.RESPONSE:I.BOPForSusquehannaProject,allBOPSafetyrelatedmechanical,electrical,instrumentationandcontrolequipmentlocatedinsidePrimaryContainment,ReactorandControlbuildings,isbeingqualifiedforSeismicloadsincombinationwithhydrodynamicvibratoryloadsassociatedwithSRVdischargeandLOCAblowdown.AlthoughtheSRSSmethodofcombinationofseismicandhydrodynamicloadsisacceptable,fortheprojecttobeconservative,theloadsarecombinedbyabsolutesummethod.Thecaseswhichhavedeviationsfromtheabsolutesummethodofcombinationwillbeidentifiedinthequalificationreports.ThecriteriaforthequalificationofBOPequipmentforseismicloadsisdescribedinSection3.7b.3oftheFSAR.ThecriteriaforloadcombinationsandmethodologyforthedesignassessmentandqualificationofSafetyrelatedBOPequipmentforseismicandhydrodynamicloadshavebeendescribedinSections5'and7.1.7oftheDesignAssessmentReport(DAR)Rev.2.BasicallytherequirementsofIEEEStd.344-1975asSupplementedbyRegulatoryguides1.100and1.92andSRPSections3.9.2and3.10arecoveredinthecriteriawiththefollowingexceptionforspatialcombinationofthreecomponentsofdynamicmotionasstatedinSection7.1.7.1.3oftheDAR.Thecriteriastates"theresponseatanypointisthemaximumvalue~Rev.22,4/81123.1"1 SSES-FSARobtainedbyaddingtheresponseduetoverticaldynamicloadwiththelargervalueoftheresponsesduetooneofthehorizontaldynamicloadsbytheabsolutesummethod."AllSusquehannaBOPequipmentisbeingqualifiedforthecriteriadiscussedabove.II.NSSSLOADCOMBINATIONS:TheseweretransmittedtotheNRCon8/28/80asPage3ofAttachmentNtoPLA-536.ThiswasinresponsetoNRCQuestion110.42.IMPLEMENTATIONOFLOADCOMBINATIONS:TheGESQRTProgramusesoutputsfromtheGEEquipmentAdequacyEvaluationProgramwhichcombinesdynamicloadsbySSESasacceptedbytheNRCinNUREG-0484.Theindividualitemsassociatedwiththeloadcombinationsareaddedasdescribedbelow:SteadyStateEvents(e.g.,DeadLoad,Pressure)-AbsoluteSumTimeVaryingComponents(e.g.,MaximumSeismic,MaximumHydrodynamic)-SRSSComponentsofEvents(e.g.,MaximumX-LoadDuetoY-Earthquake)-SRSSModalResponse-SRSS,exceptforcloselyspacedmodeswhereeffectsarecombinedbyAbsoluteSum,DoubleSum,orGrouping.Detailsforeachitemofequipmentarecontainedinthatequipment'sDesignRecordFilewhichisavailableforaudit.Rev.22,4/81123.1"2 SSES-FSARProvidethefollowinginformation:Twosummaryequipmentlists(oneforNSSSsuppliedequipmentandoneforBOPsuppliedequipment).Theselistsshouldincludeallsafetyrelatedmechanicalcomponents,electrical,instrumen-tation,andcontrolequipment,includingvalveactuatorsandotherappurtenancesofactivepumpsandvalves.Inthelists,thefollowinginformationshouldbespecifiedforeachitemofequipment.(1)Methodofqualificationused:a)Analysisoftest(indicatethecompanythatpreparedthereport,thereferencereportnumberanddateofthepublication).b)Ifbytest,describewhetheritwasasingleormulti-frequencytestandwhetherinputwassingleaxisormulti-axis.c)Ifbyanalysis,describewhetherstaticordynamic,singleormultiple-axisanalysiswasused.Providenaturalfrequency(orfrequencies)ofequipment.(2)Indicatewhethertheequipmenthasmetthequalificationrequirements.(3)Indicatethesysteminwhichtheequipmentislocatedandwhethertheequipmentisrequiredfor:a)hotstand-byb)coldshutdownc)bothd)neither(4)Locationofequipment,i.e.,building,elevation.(5)Availabilityforinspection(Istheequipmentalreadyinstalledattheplantsite?)Rev.22,4/81123.2-1 SSES-FSAR(ii)Anacceptablescenarioofhowtomaintainhotstand-byandcoldshutdownbasedonthefollowingassumptions:(1)SSEorOBE(2)Lossofoffsitepower(3)Anysinglefailure(iii)Acompilationoftherequiredresponsespectra(RRS)forallapplicablevibratoryloads(individualandcombinedifrequired)foreachfloorofthenuclearstationunderconsideration.RESPONSE:TheresponsetothisquestionwassubmittedviaPLA-627(CurtistoYoungblood)datedFebruary5,1981.Rev.22,4/81123.2-2 SSES-FSARUESTION123.3Identifythoseitemsofnuclearsteamsupplysystemandbalance-of-plantequipmentrequiringreevaluationandspecifywhyreevaluationisnecessary(i.e.becausetheoriginalqualificationusedthesinglefrequency,singleaxismethodology,becauseequipmentisaffectedbyhydrodynamicloads,orbecausebothoftheaboveconditionswerepresent)foreachitemofequipment.RESPONSE:OriginallyalmostallSafetyrelatedBOPequipmentsforSusquehannahadbeenqualifiedforonlySeismicloads.Thisequipmenthasbeenre-.evaluatedduetotheinclusionofnewhydrodynamic(SRV6LOCA)loads,andarebeingre-qualifiedwithrespecttothecriteriadescribedinDARSection7.17.ThequalificationprogramfortheBOPSafetyrelatedequipmentisbeingexecutedinthefollowingfourphases.Phase-I:uglificationofEuimentforOnlSeismicLoads:qrempecxfx.edxnFSARSubsectx.on3.7b.3.Phase>>II:EvaluationforCombinedSeismicandHdrodamic(SRV8LOCA)Loads:TheonlyknowndynamicloadatthetimeofexecutionofthisphaseoftheprogramwasSeismicloads.Duringthisphase,thevendorssupplyingtheequipmentwererequiredtoqualifytheequipmentinaccordancewiththereuientssThisphasewasundertakentoevaluateiftheexistingSeismicqualificationofallSafetyrelatedBOPequipmentcouldbeextendedtothecombinedSeismicandhydrodynamicloads.Thecriteriausedforthere-evaluationisdescribedinDARSection7.1.7.Thegeneralproblemareasidentifiedduringthisevaluationandtheproposedactiontomitigatetheseproblemsareshownbelow.Rev.22,4/81123.3-1 SSES-FSARPROBLEMACTIONAdditionalHydrodynamicLoadsFlexibilityofEquipmentSupportnotconsideredoRetestand/orReanalysis.oModificationstoequipmentortheirSupportsifrequired.oProvideresponsespectreconsideringsupportflexi-bility.InadequateModellingInadequateTestingoIncludeSupportConditionsduringanalysisortesting.oCorrectduringreanalysis.oRetestoQualificationbyanalysis.PhaseIII:ReuglificationEfforts:Specifically,theProblemareasidentifiedinthepreviousphaseareresolvedduringthisphasebytakingappropriateactions.There-qualificationreportsdemonstratethatthecriteriaofDARSection7.1.7havebeencompliedwith.PhaseIV:ModificationstoEuimentorEuimentSuorts:EquipmentortheirSupportsneedingmodificationsidentifiedduringtheregulationseffortsofPhaseIIIareexecutedduringthisphase.ThefollowingareNSSSequipment:SYSTEMSafetyReliefValveMSIVFlowElementRecirc.PumpMotorGateValveHCUCRDValvesSLCStorageTankSLCAccumulatorSLCPumpSLCExplosiveValveMPLijB21F013B21F022/F028B21N051/52/53/54B31C001B31F023/31/32C12D001C12F009/10/ll/12C41A001C41A003C41C001C41F004Rev.22,4/81123.3-2 RHRHeatExchangerRHRPumpFlowOrificeAssemblyLPCSPump6MotorFlowOrificeAssemblyMSIVHeaterMSIVBlowerHPCIPumpHPCITurbineFlowOrificeAssemblyRCICPumpRCICTurbineFlowOrificeAssemblyFuelPrepMachineGen.PurposeGrappleDryerSSeparatorSlingHeadStrongBackControlRodGrappleRefuelingPlatformInVesselRackDef.FuelStorageCont.FuelStorageVaultSSES-FSARCONTROLROOMPANELSE11B001E11C002E11N012/N014E21C001E21N002E32B001E32C001/C002E41C001E41C002E41N007E51C001E51C002E51N001E18E001F18E011F19E008F19E009F20E002E21E003F22E006F22E009F22E012ReactorCoreCoolingBBPowerRangeMonitoringCabinetRPSDiv.1and2LogVBRPSDiv.2and3LogicalVBNSSSTemperatureRecorderVBFeedwater8RecirculationInstrumentPanelNSSSProcessInstrumentPanelDiv1RHR/HPCIRelayVBDiv2RHR/HPCIRelayVBADSChARelayVBMSIVLeakageControlDiv2VBHPCIRelayVBRCICRelayVBInboardValveRelayBoardOutboardValveRelayVBDiv1CSRelayVBDiv2CSRelayVBADSChBRelayVBMSIVLeakageControlDiv1VBRadiationMonitoringInstrumentPanelARadiationMonitoringInstrumentPanelBOperatingBBH12-P601H12-P608H12"P609H12-P611H12-P614H12-P612H12-P613H12-P617H12-P618H12-P628H12"P654H12-P620H12-P621H12"P622H12-P623H12-P626H12-P627H12-P631H12-P655H12-P606H12"P633'12-P680Rev.22,4/8l123.3-3 SSES-FSARTerminationCabinetsPlantOperationBenchboardCondensingChamberCondensingChamberCondensingChamberCondensingChamberCondensingChamberCondensingChamberNUCLEARBOILERLOCALPANELSH12-P700SeriesH12-P853B21-D002B21-D004ABB21-D006ADB21-D007ADB21"D008ADB21-D009ADReactorWaterClean-UpReactorVesselIevelandPressure(A)ReactorVesselLevelandPressure(B)RecirculationPumpAJetPumpBHighPressureCoolantInjectionBReactorCoreIsolationCoolingAResidualHeatRemovalChannelAResidualHeatRemovalDiv.2ChannelBRecirculationPumpsDrywellPressureLocalPanelADrywellPressureLocalPanelBMainSteamIsolationValveIeakageControlCoreSprayLocalPanelAStandbyLiquidControlMainSteamFlowA/BHighPressureCoolantInjectionLeakDet.CoreSprayChannelBMainSteamFlowC/DHighPressureCoolantInjectionReactorCoreIsolationCoolingLeakDet.MainSteamFlowA/BMainSteamFlowC/DMainSteamIsolationValveLeakageCon.HighPressureCoolantInjectionDiv.1AReactorCoreIsolationCoolingDiv.2BSRM/IRMNUCLEARBOILERTemperatureElementTemperatureElementTemperatureElementH23-P002H23-P004H23"P005H23-P009H23-P010H23-P014H23-PoljH23-P018H23"P021H23-P022H23"P057H23-P058H23"P074Div.2H23-P001H23-P011H23-P015H23-P016H23"P019H23-P025H23-P036H23-F038Div.2(B)H23-P041H23-P042H23-P073Div.1H23"P034H23-P037H23-P030/31/32/33B21-N004B21"N010ADB21-N014ADRev.22,4/81123.3-4 SSES-FSARTransmitterTransmitterTransmitterTransmitterTransmitterTransmitterPressureSwitchTemperatureElementTemperatureElementVacuumSwitchTemperatureElementDifferentialPressureTemperatureElementDifferentialPressureLevelSwitchI,evelSwitchTemperatureSwitchPressureTransmitterPressureIndicatorValve,GuideTubeMiscellaneousPartsPressureSwitchPressureSwitchLimitSwitchLimitSwitchI,evelTransmitterTemperatureElementDifferentialPressureDifferentialPressureDifferentialPressurePressureSwitchSwitchPressureSwitchLevelSwitchLevelSwitchTemperatureElementTemperatureElementFlowIndicatingSwitchDifferentialPressureSwitchPressureSwitchFlowMeterLevelSwitchLevelSwitchLevelSwitchIevelSwitchIevelSwitchTemperatureElementTemperatureElementTemperatureElementTemperatureIndicatorI,evelSwitchTemperatureElementB21"N015ADB21-N016ADB21-N017B21-N056ADB21-N064B31-N014CDB31-N023ABB31-N024ABC12-N013ADC12-N013EFC41-N003C41-N004C41"R003C51-J004AEC51-5110001C72-N003ADC72-N005ADC72-N006ADC72-N008ADEll-N008ABEll-N009ADEll"N013Ell-N015AEll-N015BEll-N018Ell-N021ABEll-N022ABEll-N023ABEll-N024Ell-N029ADEll-N030ADEll"N033ABE21-N003ABE21-N006ABE21-N007ABE32-N006E41-N002E41-N003E14-N014E41-N015ABE41"N018E41-N024ABE41-N025AHE41-N028ABE41-R002E51-N010E51-N011ABthruE41-N030ABRev.22,4/81123.3-5 SSES"FSARTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureSwitchElementElementElementElement.IndicatorElementElementElementE51-N021ABE51-N022ABE51-N023ABE51-N025ADthruE51-N027ADE51-R005G33-N016AFG33-N022AFG33-N023AFG33-N044ARev.22,4/81123.3-6 SSES"FSARQUESTION123.4:Describethemethodsandcriteriausedtodeterminetheacceptabilityoftheoriginalequipmentqualificationtomeettherequiredresponsespectraofitem2.(iii).-123.2(iii).RESPONSE:I.BOPForcases.wheretheoriginalspectraforwhichanequipmentwasqualifiedenvelopedthecombinedSeismicandhydrodynamicloadspectraofItem123.2(iii),theequipmentisconsideredqualified.Otherwise(whichistrueformostcases)theequipment,isrequalifiedforthecombinedspectratomeetthecriteriadiscussedinresponsetoQuestions123.1.ThesecriteriaaredescribedinSection7.1.7oftheDesignAssessmentReport.II.NSSSThemethodsandcriteriausedtodeterminetheacceptabilityoftheoriginalequipmentqualificationmaybefoundinGeneralElectricCompany'sProprietaryreports:NEDE-24788,"SeismicQualificationReviewTeam(SQRT)TechnicalApproachforRe-EvaluationofBWR4/5Equipment";andNEDE-25250"GenericCriteriaForHigh-FrequencyCutoffofBWREquipment".Rev.22,4/81123.4-1 SSES-FSARDescribethemethodsandcriteriausedtoaddressthevibrationfatiquecycleeffectsontheaffectedequipmentduetorequiredloadingconditions.RESPONSE:I.BOPAsdescribedinSubsection3.7b.3.2ofFSAR,ingeneral,thedesignofequipmentisnotfatiguecontrolledsincethenumberofcyclesinanearthquakeislow.ForcombinedSeismicandhydrodynamicloadsforequipmentqualifiedbyanalysis,thefatigueeffectsareimplicitlyconsideredsincethestressesduetoSRV(whicharegenerallycontrollingforfatigue)areasmallcontributiontotheoverallequipmentstresses.FatigueeffectsinBOPequipmentqualifiedbytestingareaccountedforbyrepetitionofthetests.Typicallytestsaredonefor5OBE(or5upsetconditions,i.e.,OBE+SRV+LOCA)followedby1SSE(or1faultedcondition,i.e.,SSE+SRV+LOCA)ineachoffront-to-back/verticalandside-to-side/verticalbiaxialconfigurations.Inaddition,onsomeselectedpiecesofequipment,vibratorytabletestingiscarriedoutforanextendeddurationoftime(suchas30to60minutes)beyondthecombinedloadingtest.TheinputmotionsfortheextendeddurationtestswillbesuchthatthegeneratedtestresponsespectraforanysegmentoftheextendeddurationtestswillenvelopetheSRVspectra.Furthermore,itwillbeascertainedthattheequipmentperformsitsintendedfunctionbefore,duringandafterthevibratorytabletests.Theresultsoftheextendeddurationtestswillbedocumentedintherespectivequalificationreports.II.NSSSVibrationfatiguecycleeffectsforNSSSequipmentdesignedtoASMEcoderequirementswasreviewedatGEbyNRCconsultantsfromBattellePacificNorthwestLaboratoriesonOctober7,1980.TheconsultantsstatedsatisfactionwiththeGEapproachwhichencompassesOBE,SRV,thermalandpressurecycles.NonASMECodecomponentsqualifiedbytestaddressthe"strongmotion"phaseofseismicandSRVdynamicmotionsufficienttogeneratemaximumequipmentresponse.Theseloadsarecontrolling.GEtestinggenerallyconsistsof5upsetand1faultedtestof30secondseachwhichisabout50$greaterthanrequiredtoaddressstrongmotionvibration.Rev.22,4/81123.5-1 SSES-FSARNonASMECodecomponentsqualifiedbyanalysisgenerallyhavenot,inthepast,hadtoaddressvibrationfatiguecycleeffects.Inmostcases,sucheffectsarenotnowpartofthequalificationrecord.Rev.22,4/Sl123.5-2 SSES-FSARBasedonthemethodsandcriteriadescribedinitems4and5,providetheresultsofthereviewoftheoriginalequipmentqualificationwithidentificationof(1)equipmentwhichhasfailedtomeettherequiredresponsespectraandrequiredrequalification,and(2)equipmentwhichwasfoundacceptable,togetherwiththenecessaryinformationtojustifytheadequacyoftheoriginalqualificatioa.RESPONSEI.BOPForcaseswheretheoriginalseismicreportscanbeextendedtoqualifyanequipmentforcombinedseismicandhydrodynamicloadsbyinspectionandsubsequentconcurrencebyvendor,suchdocumentsformapartofthequalificationpackage.Thefollowingpiecesofequipmentboughtundertheindicatedpurchaseorder(P.O.)fallintothiscategory:(1)Coolingandchilledwaterpumps(P.O.gM-327)(2)ExpansionTanksandAirSeparatorTaaks(P.O.AM-302)(3)NitrogenGasAccumulators(P.O.j/M-156)TherestoftheBOPequipmentisbeingqualifiedforthecriteriadescribedinSection7.1.7oftheDesignAssessmentReport.Thequalificationreportsforthisequipmentwillprovidetheappropriatedocumentation.II.NSSSRefertotheResponsetoQuestion123.3forthelistofequipmentreevaluatedbyGEoatheSusquehannaSQRTProgram.AlloftheequipmentlistedinqualifiedtoSQRTCriteriawiththeexceptionofthefollowiag:B21"F022/F028B31-F031/F032C12>>F009/F010F011/F012C41-A003C41-F004E32-B001MSIVGateValveCRDValveSLCAccumulatorSLCExplosiveValveMSIVHeaterDatarequiredfromvendorOperabilitydeflectionanalysisrequiredOperabilitydeflectionanalysisrequiredA/EpipeaccelerationsrequiredA/EpipeaccelerationsrequiredTestrequiredRev.22,4/81123.6-1 SSES-FSARE41-C002E51-C002F22-E006F22-E009H12-P608H23-P030"P031"P032-P033163C1158272A8005272A8006HPCITurbineRCICTurbineInvesselRackDef.FuelStorageCont.PowerRangeMonitoringCabinetSRM/IRMPanelsFlowTransmitteronH23-P074SwitchonH12-P853SwitchonH12-853TestrequiredAnalysisoflubeoilpipingrequiredAnalysisrequiredAnalysisrequiredTestrequiredTestrequiredTestrequiredTestrequiredTestrequiredInformationtojustifyqualificationoftheequipmentselectedbytheNRCfortheSiteAuditwillbeavailableatthesiteforNRCinspection.InformationtojustifyqualificationoftheremainderoftheequipmentisavailableforNRCauditatGE-SanJose.Rev.22,4/Sl123.6-2 SSES-FSARDescribeproceduresandscheduleforcompletionofeachitemidentifiedinitem6.(1)123.6(1)thatrequiresrequalification.RESPONSE:I.BOPTypically,thequalificationprogramisexecutedinthefollowingsteps.oDetermineQualificationAwardsRequestVendor(orConsultant)QuoteReceiveandEvaluateQuotePlacePurchaseOrderoPerformQualificationREviewTestProcedureReviewAnalysisMethodologyBeginAnalysisorTestingoFinalCompletionReceiveandreviewRequalificationReportsFinalApprovaloftheReportThescheduleforthecompletionofthequalificationprogramisshownintheattachedTable123.7-1.II.NSSSTheresponsetoQuestion123.6liststheequipmentfoundbyGEtorequirerequalificationalongwithastatementdefiningtheworktobeperformed.AllrequalificationwillbecompletedonaschedulesufficienttopermitNRCreviewpriortofuelload.Rev.22,4/Sl123.7-1 TABLE123.7-1SCHEDULEFORCOMPLETIONOFEUIPMENTREQUALIFICATIONPage1of6SQRTFormNo.E-109-1E"109-2E-112E"117-1E-118E"119A"1E-119A-2E-119A-3E-119BCE-120 120"2E-121-1E-121"2E-135-1E-135-2E-136E"151E-152E-155J-038AE~niment4kVSwitchgear4kVSwitchgearSub-ComponentsESW8RHRPumpMotors480VSafe-GuardLoadCenterUnitSubstations480VMotorControlCentersBatteryMonitorsBatteryFuseBoxeseBatteryChargers24Vdc,125VdcS250VdcBatteryCells6Racks125VdcDistributionPanels24VdcDistributionPanels125V6250VdcIoadCenters250VdcControlCentersElectricalPenetration(MediumVoltage)ElectricalPenetration(LowVoltage)ACInstrumentTransformersMotorGeneratorSets8ControlCabinetAutomaticTransferSwitchesControlSwitchesFieldMountedElectronicPressureTransmittersNo.ofItems/2Units12122420162216121232144Sets4432CompletionDate3-13-815-15-81Complete3-27-814-17-813-27-813-27-813-27-815-29"813-20-814-10-813-27-814-10-815-15-815-15-813-27-81CompleteComplete6-15-81CompleteRev.22,4/81 SQRTFormNo.J-03B-1thruJ-03B-14E~nimentPanel-MountedInstrumentsNo.ofItems/2Units242Page2of6CompletionDate4thquarter1981J-05A-14,31,33,37,ControlPanels6Devices10A6B,43,47,49,92,93,95697315-30-81(panels)6-15-81(devices)J-05B-1RemoteShutdownControlPanel5-30-81(panels)6-15-81(devices)J-27J-31J-59-1thruJ-59-10ReactorCoolantPressureBoundaryLeakDetectionSystemAnnubarFlowElementsRTD's54Complete(panels)6-15-81(devices)Complete5"22-81J-65-1thruJ-65-4ControlValvesinNuclearService283-27-81J-65B-1thruJ-65B-llControlValvesinNuclearService863-27-81J-69-162J-69B-1thru6J-70-1J-70-2J-92-1thruJ"92-5PilotSolenoidValvesPilotSolenoidValvesPressureRegulatingValvesProcessSolenoidValvesExcessFlowCheckValves74762385-15-815-15-815-15-815-15-815 81J-98CarrierModulator(Isolator)6"15-&1M-llM"12M"22-162M-30(78forms)M-30(6forms)M-55ESWPumpsRHRSuctionWaterPumpsReactorBuildingCranesDieselGeneratorDieselGeneratorReactorVesselTopHeadInsulationSupportSteel4Sets4SetsCompleteComplete4 81Complete2"27-81CompleteRev.22,4/81 SQRTFormNo.E-58M-60M-87-1M-87-2M-90M-149M"151M-156E~nimentDieselOilTransferPumpsBuriedDieselGeneratorFuelOilStorageTanksContainmentHydrogenRecombinersHydrogenRecombinerPowerSupplyFuelPoolSkimmerSurgeTanksContainmentVacuumReliefValvesSuppressionPoolSuctionStrainersContainmentNitrogenGasAccumulatorsNo.ofItems/2Units203260Page3of6CompletionDateComplete3-27-815-15-81Complete4-27-815-22-81CompleteCompleteM-159-1thruM-159-21NuclearSafety8ReliefValves585 81M-160ACSRVDischargeLine8,RHRReliefValveF055DischargeLineVacuumBreakers685-15-81M-164-192CRDVentValvePlatformHighDensitySpentFuelPoolRacks48ModulesCompleteCompleteM"302M-307-1thruM-307-3ExpansionTanks6AirSeparatorsCentrifugalFansComplete3-13-81M-308"1M-308"2VaneAxialFans,ReactorBuildingVaneAxialFans,Diesel'eneratorBuilding5-1"81CompleteM-308-364M-309-1thruM>>309-4VaneAxialFans,ESSWPumphouseAirHandlingUnits12Complete4-17-81M"310M"315M-317'-320"1CentrifugalWaterChillersReactorBuildingUnitCoolersDrywellUnitCoolersChlorineDetectors24125-22-815-29-813"27-816-15-81Rev.22,4/81 SQRTFormNo.M-320 1A61BM-320 2AM-320-3M-320-4M-370-5A65BM-320 1A61BM"320 2AM-320"6-3A67M-320-8M-320-9M-320-10M-321"1M-321-2M"321-3~EnimentFlowSwitchesFlowSwitchesLevelGaugePressureDifferentialSwitchesTemperatureSwitchesTemperatureSwitchesTemperatureSwitchesTemperatureSwitchesPressureDifferentialTransmitterTemperatureDetectorUnitLevelSwitchesStandbyGasTreatmentSystem-HousingStandbyGasTreatmentSystem-DelugeDrainValvesStandbyGasTreatmentSystem-ControlPanelsNo.ofItems/2Units282410184Page4of6CompletionDate6-15-816-15-816-15-816-15-816-15-816-15-816-15-816-15-816"15-816-15"816-15-812-20-815 813 81M"323C-1M-323C-2M-325M-327-1M"327-2M-334-1thruZ-334-5AirFlowMonitoringUnitSGTSExhaustVentFlowCondition-ing8SamplingProbeSystemHighEfficiencyVentilationFiltersChilledWaterPumpCoolingWaterPumpHVACControlPanels6Devices123"13-813-13-81CompleteCompleteComplete5-30-81(panels)6-15-81(devices)M-336AM-362M"365P"10A-1HVACDampersSGTSCentrifugalFansChilledWaterReliefValvesMotorOperatedGateValves,6008195Units5 81Complete5 816-15-81Rev.22,4/81 SQRTFormNo.-10A"2P-10A-3E~nimentMotorOperatedGateValves,9008MotorOperatedGlobeValves,900886008No.ofItems/2Units15Page5of6CompletionDate6-15-816-15-81P-10BMotorOperatedStopCheckValves,90086-15-81P-11A-1P-11A-2MotorOperatedGateValves,900'irOperatedTestableCheckValves,90086-15-816"1-81P"12A-1P12A-2P12A-3P-12A"4MotorOperatedGateValves,150j/MotorOperatedGlobeValves,300j/MotorOperatedGateValves,300j/GearOperatedGate8GlobeValves,300jj24206-15-816-15-816-15-816 81P-12B-1P-12B"2-12B"3MotorOperatedGateValves,150jj63008AirOperatedGateValves,150j/GearOperatedGate8GlobeValves,150jj14136-15"816 816 81P-14AP-14BP-15AP15B-1P-15B-2P-16A-1MotorOperatedGlobeValves,15008MotorOperatedGlobeValves,1500//MotorOperatedGlobeValves,15008MotorOperatedGateValves,15008AirOperatedGateValves,1500'otorOperatedButterflyValves,150jj18286-15"816-15-816-15-816-15-816 816-15-81P16A-2P-16A-3AirOperatedButterflyValves,1500GearOperatedButterflyValves,150jj126 816 81P"17A 17A-2MotorOperatedGateValves,900j/MotorOperatedGlobeValves,90086-15-816"15-81Rev.22,4/81 SQRTFormNo.P-17A-3P"17A"4P-17BP-18AP-31AE~nimentAirOperatedTestableCheckValves,9008GearOperatedGateValves,900//AirOperatedTestableCheckValves,90017GearOperatedGateValves,1508AirOperatedButterflyValves,1508No.ofitems/2UnitsPage6of6CompletionDate6-1"816 816 816 816 81Rev.22,4/81 SSES-FSARUESTION123.8Describeplansforaconfirmatoryin-situimpedancetestandanin-plantSRVtestprogramorotheralternativestocharacterizetheabilityofequipmenttoaccommodatehydrodynamicloading.RESPONSE:In-Situtestsarebeingperformedforthedeterminationofstructuraldynamiccharacteristicsoftheequipmentforin-servicecondition.Thisin-situinformationisbeingusedassupportingevidencefor(a)validatingamathematicalmodelforqualificationbyanalysis,or(b)simulatingthein-serviceconditiononthevibratorytabletestsforqualificationbytesting.Theresultsandtheusageofin-situtestingwillbedescribedintherespectivequalificationreports,wheneversuchtestsareperformed.AllsafetyrelatedBOPequipmentfoSusquehannaprojectisbeingqualifiedforcombinedseismicandhydrodynamicloadsforthecriteriadescribedinSection7.1.7ofDAR.Susquehannahasnoplanstoperformanin-plantSRVtestforequipmentqualifications,perse.AnairbubbletestwasconductedinthesuppressionpoolinanattempttosimulatetheeffectsofanSRVairclearingtransientload.Thedatafromthistestarebeingstudiedinanefforttodeterminetheextentofconservatismsintheanalyticalpredictionofappliedhydrodynamicloads.Rev.22,4/81123.8-1 SSES-FSARToconfirmtheextenttowhichthesafetyrelatedequipmentmeetstherequirementsofGeneralDesignCriterion2,theSeismicQualificationReviewTeam(SQRT)willconductaplantsitereview.Forselectedequipment,SQRTwillreviewthecombinedrequiredresponsespectra(RRS)orthecombineddynamicresponse,examinetheequipmentconfigurationandmounting,andthendeterminewhetherthetestoranalysiswhichhasbeenconducteddemonstratescompliancewiththeRRSiftheequipmentwasqualifiedbytest,ortheacceptableanalyticalcriteriaifqualifiedbyanalysis.Thestaffrequiresthata"QualificationSummaryofEquipment"asshownontheattachedpagesbepreparedforeachselectedpieceofequipmentandsubmittedtothestafftwoweekspriortotheplantsitevisit.TheapplicantshouldmakeavailableattheplantsiteforSQRTreviewallthepertinentdocumentsandreportsofthequalificationfortheselectedequipment.Afterthevisit,theapplicantshouldbepreparedtosubmitcertainselecteddocumentsandreportsforfurtherstaffreview.RESPONSE:SusquehannaSQRTpre-visitinformationrequiredforhasbeensubmittedforallBOPandNSSSequipment.ofEquipment"andthepertinentdocuments,reports,necessaryinformationasrequiredareavailablefortheSQRTsitereview"QualificationSummaryvendorprintsandallSQRTreview.Rev.22,4/81123.9-1 SSES-FSARTheSusquehannaFSARSection3.7b.2.1indicatesthatbothaflexiblebasemodelandafixedbasemodelwereutilizedfortheseismicanalysisofthecontainmentbuilding.Discussandexplaintherationaleforusingtwodifferentmodelsfortheseismicanalysis.Demonstratetheequivalencyofthetwomodelsbycomparingtheirdynamiccharacteristicsontheresultsfromthetwoanalyses.RESPONSE:Afixedbasemodelcanbejustifiedsincethecontainmentisfoundedonhard,competentrock.Theminimumshearwavevelocity,Vs,fortherockis6200fps(reference:Subsection2.5.4.2.1).Therefore,structuraldesignofthecontainmentwasbasedonthefixedbaseresults.Aflexiblebaseanalysis,whichtakesintoaccountsoilstructureinteractioneffects,wasusedtogeneratestructuralresponsespectraforevaluationofequipment,pipingsystems,etc.SeeattachedFigures130.20-15through130.20-18forcomparativeresponsespectraatthetopofthereactorpedestalforbothfixedandflexiblebaseresults.Thestructuralaccelerations,shearforces,bendingmomentsandaxialforcesforthefixedandflexiblebaseanalysesgenerallydifferbylessthan20%withthemajorityofvalueswithin10-15'hisisshownintheattachedFigures130.20-1through130.20-10.Therefore,thetworesultsareconsideredcomparable.SinceseismicforcesfortheSusquehannasiteaccountforlessthan20%ofthetotalmaximumreinforcingsteelstressforthegoverningloadcombination,the20%maximumincreaseinseismicresponsefortheflexiblebaseresultswouldresultinonlya4%increaseinstress.Thisincreaseinstressiswellwithintheexistingdesignmargin.Theflexiblebasedisplacementsarelargerthanthefixedbasedisplacementsbyapproximately20-50%.ThisisshownintheattachedFigures130.20-11through130.20-14.Theselargerdisplacementsfortheflexiblebaseanalysiswereusedtodeterminetherequiredseparationbetweenthecontainmentandthesurroundingreactorandcontrolbuildings.Rev.22,4/81130.20-1 SSES-FSARInTorsionalAnalysisofDieselGeneratorBuildingandESSNpumphouse:Justifytheuseofstaticanalysisforadynamicphenomenon.RESPONSE:Subsection3.7b.2.11states"Astaticanalysiswasdonetoaccountfortorsion...".Thisstatementpertainstothedistributionofseismicforces.Duringthedynamicanalysisstagetheinertiaforceateachmass.However,sincethecenterofrigiditydoesnotcoincidewiththecenterofmass,thereistorsion.Theinertiaforceobtainedfromthedynamicanalysiswasusedbymultiplyingitwiththeeccentricity(thedistancebetweenthecenterofmassandthecenterofrigidity)toobtainthetorsionalmoment.Thismomentwasthendistributedtothestructuralwallsforassessment.Aminimumexcentricityof5%wasconsidered.Rev.224/81130.21-1

.136-~0.128-FlexibleBaseModelResultsFixedBaseModelResults,~228I~3,0.220~caIo.2ooI/9'5'0.175II./8/0.154Ii~/so0.137l~/2Ij~/080.109I.oeqI1011~os'u~>77/I,052120.046I22(.ZS80.24023~8'830.614.~sos0.446IIj~345'0.294Ij~2/g0.183I'~/360.128II1524I~/97I~/8Io.128'7./~/2180.108Ij~ot30.09126~078I190.071III.o~tfIIRev.22,4//81UNITS:G's13.0320.021~a210,020SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHORIZONTALACCELERATIONSOBEFIGURE130.20-1 56789101213'~Z'Ml0.251I~83/,0.215I~zo30.189Ij~gzo0.169i~/50.152'(~/48~0.137l~/36Il0.126~/z5i~/o30.092IjlloBo(,0.067II~o520.0342214.390.33123II24~Z7oJ520716P.lt170.161~,/S457180.140I~/320.12126II~/2o190.100I~iot200.073l~//Z70,751I~5540.545I,I~I(~4410.360Ii~zBZ0.225I.(z+0.161UNITS:G'sRev.22,4/81,d5SUSQUEHANNASTEAMELECTRICSTATION210.034UNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHORIZONTALACCELERATIONSSSE.136-FlexibleBaseModelResults0.128-FixedBaseModelResults.FIGIIHE.130.20-2

.0400.059I~040>O.OS9l~03'PI.'iO.O58Ij~03S0.055Ii~0360.051I,~0340.047I~o3z0.043~O300.0391415161718~ocr0.062II.o65~0.061II~o~o0.057QP222425./030.103lII~ioo0.101.a%40.094f~os'.084I.a670.05420.032101213~2728.uz00.024l~0200,0153pI2926II19I~osI0.0122pIl~Oiafo.oovfII21~o~o0.0250.028I~Cnfj~o4o0.035l~o0.026Il~o20.017Il.j~o>O.OI77UNITS:G'sRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTo.136-FlexibleBase'odelResults0.128-FixedBaseModelResultsCONTAINMENTVERTICAL,ACCELERATIONSOBElFIGIJRE130.20-3 9~0500.059101213~ops0.112I~O7O0.111'~is50.162II~tpo0.158tI22II~o~s0.109140.098III~fl1240.096II~IO80.089I~0690.10340.14715f4~~lB30.131/0.0850.097~OS20.089I16'Idio0.085~oII80.070~os80.08217~os@0.073.062~0570.0450.046.0050&I/~070.055t~osq0.041I~os0.027UNITS:Q'g42728I,CoOg0.050I~osv0.02930I4I~oso0.01242926I19~os~0.02220III21Ii~&i0.011IRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSIS'EPORT~~~~~I136-.FlexibleBaseMode'1Results0.3.28-FixedBaseModelResultsCONTAINMENTVERTICALACCELERATIONS%REFIQURE~130.20-4 46~44164~(97260IM2~'1431232562g102~104~1,>>0l300423gag2883t51,440I&207,770~IRIDO1524264~$1g25eee~e'735~10>>2,070~2'LQO2,220~14)02,550QtI02,720ZERO3,62040003,830'tZI0161718261924e~ek1$~646~5958970'7ss1~>ag36455817766f99$4UNITS:KIPS124.010~44l0204O2~WOa13274,100~$55Q2127424$35Rev.22,4/SlD.136-FlexibleBaseMo'delResults0.128-FixedBaseModelResultsFIGURE130.20"5SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTSHEARFORCESOBE se~4e201~25536648I010~573311261+014231,380I6$0010~654ese~4Il41.7so~2l302,180Z550e,sso~Z4l50151617440~4193404f449242517ceo~8qg014~Italo1028503ggg3.110[335l0e,eeo~3801826011~85l.7209I2.'430SZSQ194,68o5590404444447~485UNITS:KIPS12204,91o53004ee~54913'7210,040~kola27see~6O7Rev.22,4/81II*..136-FlexibleBaseModelResults0.128-FixedBaseModelResultsFIGURE130.20-6SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTSHEARFORCESARE 1022020.50~O.QS24,22~W.S/140222.ss~Z.pg42162'5~158.33F.'74242.42P.ag54o.s~6.061,0~6l~01615.4~IS~/2516.8~III.Z81.2~f/0171832I317~108//.28.8~3'7.I10105~ll5124~/'37145I~l149tgy1826173ZD,224.8ZV.519623,2so1~2.221916.6~242.62UNITS:10'.FT12256m32014.9l7.813214~34lo2115.s~l7.527222~@/22718.0/'7.IRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT'0.136-FlexibleBaseModelResults.0'28-FixedBaseModelResults.CONTAINMENTMOMENTSOBEFIGURE130.20-7 1'22020.630.7/oss.ss~6.3&140232.873,2Co4.2s.g~3z.s249.14'1510.2l2.Is4g,g~6is.3sss~RO.6ioo~Ill1617251s.s~~Z3520.5~246S5.149.g10.iss~i5li52~f7178208183QJg182621.2263SOS38224.0304]UNITS:10sK-FT24s~ZOO~19so.s~Z5.512sis~3720is.s~z3.o13sss~4532112.7~Z'Z.727~~136-FlexibleBaseModelResults0.128-FixedBaseModelResults4~~53S22220qg,+Rev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.CONTAINMENTMOMENTSs'c'CFIGURE130.20-8 2'2sv~4&ieo~~f2I1423131JrO10ees~IZED>'I4ss~SISsos~eJRQs7s~+72ese~Sg(7'Z792015161718-26so~@9~oet!04se~<7l491503396Q'26242517ee4~233ees~5361,010<>s~$4.gUNITS:KIPS'2131,070307120214es~$65Rev.22,4/811,090136-FlexibleBaseModelResults0.128-FixedBaseModelResults'31SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINEMNTAXIALFORCESOBEFIGURE130.20-9 6I>>~+'2126Jg6777256~24026r5232os~Zan150~1085951&1oso~15<12so'~367145o~911590lQIG~lSI't1720161718261o2~l<~164~f41I719gQ764BOO614~7602517966~g(g525~4465UNITS:KIPS1219002010f12'0642~7i'll662~3544'13~t70l.2050126136-FlexibleBaseModelResults~~~0.128'FixedBaseModelResults.21669D5Rev.22,4/81.SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAlNMENTAX(ALFORCESSSEFIGURE'30..20-10 136-FlexibleBaseModelResults~~0.128-FixedBaseModelResults31.662396127I10Itc,C.'.8130.0i~aSI27.7I~3'I,2IiIj~~o,S21.4I~<<.918.7j)i~.~l>16.5j~2.(.0144I~j3,814151617182619t~18.9IjCn3l11.77.06II~~,SIUNITS:10FTI,~I411923ItIS6I.SiMi<<'399l83.5I,~so.ar53.94th32.4~1213'.69~4'.oe1.89't.t820213.54II'.10Rev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHOBIZONTALDISPLACENIENTSOBEFIGURE130.20-11 D136-FlexibleBaseModelResults0.128-FixedBaseModelResultsS5I38.636.6i~vs.aI33.8I~s.i.zI~s.i~29.6IiE~M26.1Ii~os,z22.81415162223II24)48.8~7o4I551.~z<q189Ii~(145Ij~flII789101112i~si.si20.1'isa.s'7.5I'3.6!~lc..oIiI~la,4,i5.75II~a,ss132.32~<.sv17I'ns>>'+5'182.126j2<8'4.3UNITS:10~FT1920~I%1)8.65I4.37II3.'ti1.3721Rev.22,4/8iSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2'INALSAFETYANALYSISREPORT,CONTAINMENTHORIZONTALDISPLACEMENTSSSEFIGURE130.20-12 151617d,649.34101213~o.f980.812Ij~o,89>2~0.804II~o,as+3,0,79114I'~o,see40.752.d.g2t5.'.703II~o,7'9260.648.~0,75670.594I.d,7l780.53518'~o.st@~omit~~0.4300.4460.658I2728'926j~o.5<770.329,19IIl~u~z300.21520II~a.slh0.090211.57II1.55II1.47I~no1.41I~/.481.16~I0.896I~d.974,0.667IIaazs0.427IIg,+700.181'223242517~Z.W72.69II1~2.i'22.64II1~21(2.47II,~2.5'2.22UNITS:104FTRev.22,4/81~d,Z95'~0,%9S~AZ'FS.$36-FlexibleBaseModelResults0.128-FixedBaseModelResultsSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTVERTICA'LDISPLACEMENTSOBEPIGIIRE,130.20-13

~ll.s~s101.53I1.51IIj~l.&O1.49II~r,ss1.41Ij~l.so1.321415l~l.4'31..2216It1.1217j~i.so'IS'.00l.J2'90e[,cg,OX'0.7750.754Ie22I.Ij~SDAp42.40II~s.t~"2.233.oS2.1917~41.80I!~i~1.395-514.18I.S.~I4.10I.~~asI3.44/ot.2.19UNITS:104FT12132728f29;~o<j0.616~II~O,RSL300.364jIj~o.aa0.170II~5Kb5,'5%>26Ij~l.7419i1.04I.~I.'L'9200.663Ij~o.ass21I0.282O.S3oRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.136-FlexibleBaseModelResults0.128-FixedBaseModelResultsCONTAINMENTVERTICALDISPLACEMENTSSSEFIGURE.130.20-14 1.8001.6001.4001.200zOcc1.000.800Pk~'hieWse..600.400.200.0000.1'0.20.40.61.02.04.06.010..20.FREQUENCY(HZ)40.60.100.LOCATION:RPVPEDESTALDIRECTION:HORIZONTALEARTHQUAKE:OBEDAMPING:0.005Rev.22,4/SlI.SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMAT'RPVPEDESTALHORIZONTALOBEFIGURE130.20-15 0

/3.0002.7002.4002.100i.sooz0I-a1.5001.200F(exltlbd$8900600~300.0000.1'.20.40.61.02.04.06.010.FREQUENCY(HZ)20.40,60.100.LOCATION:RPVPEDESTALDIRECTION:HORIZONTALEARTHQUAKE:SSEDAMPING:0.010Rev.22,4/SlSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALHORIZONTALSSEFIGURE130;20-16 kix'eelhase0.10.2OA06102.04.06.010.FREQUENCY(HZ)20.40.60.100..LOCATION.'PVPEDESTALDIRECTION:VERTICALEARTHQUAKE:OBEDAMPING:0.005Rev.22,4/B1SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALOBEFIGURE130.17 2.0001.8001.6001.4001.200OI-cc1.000.800/legibleb~seri~Frxed!~b~t~600~400~200~0000.1~0.20.40.61.02.04.06,010.FREQUENCY{HZ)20.40.60.100LOCATION:RPVPEDESTALDIRECTION:VERTICALEARTHQUAKE:SSEDAMPING:0.010Rev.22,4/81~SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALSSEhFIQURE130.'20-18

>IIIIIIIIIIIIIIIII)IIIIItttllll>llll.llllll'mIIIIII<IIIf~II~s~~~~~~~~~'FI~~~~~~~0.~~'I/LI~IMCNABle/4r/v/tICA4i4ftt6/At,c~L/.//rt/cae//esm~~~Jt~4/Ot/~A4C5CCAVOlOeV4W/ttl~!o/ktIIi/p)~.~f4"J'.C.\1tvRev.22/4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTFINALPLANTGRADES,7.FIGURE2~5.-.24

SSES-FSARQUESTION130.22:rExplainwhytheanalysisforthetorsionaleffectwasnotdonefortheReactorBuilding.RESPONSE':Thetorsionaleffectinthereactor/controlbuildingwasconsideredinthedynamicanalysis.Units1and2wereconsideredsimultaneously.IntheN-Sdirectiontheeccentricityislargerthan5%.TheN-SdynamicmodelpresentedonFigure3.7b-10ofFSARconsistsof3sticksateachfloorandthestiffnessdistributionofthestructuralwallsaresuchthatproperrepresentationoftheeccentricityisobtained.Therefore,thetorsionaleffectisproperlyaccountedforinthedynamicanalysis.Thecomputeddynamicmemberforcesandmodelpaintresponseswereusedfortheassesmentofstructureandequipment.IntheE-Wdirection(seeseismicmodelonFigure3.7b-9)theeccentricityislessthan5%.However,amiriimumeccentricityof5%wasconsideredbyredistributingthemasses.Thiswasdonefortheassesmentofwalls.Rev.224/81130.22-1 SSES-FSARInFigure7-6whichshowsdowncomerbracingsystemdetails,itappearsthatthebracingisweldedtothelinerplatethroughtheuseofanembeddedplatewithoutanyanchoragetothecontainmentconcretewall.Sincethesteellinerplateisnotastructuralcomponent,indicatehowthepullingforcesfromthebracingcanberesistedandhowtheleaktightintegrityofthelinercanbemaintained.RESPONSE:Downcomerbracingforcesareresistedbyembeddedanchoragesinthecontainmentconcretewall.Thisdesignassurestheleaktightintegrityofthelinerplateismaintained.Rev.22,4/81130.23-1 SSES-FSARItappearsthatportionsoftherecirculationpumpsealcoolingwaterarenotseismicCategoryI(RegulatoryGuide1.29).Thestaffrequiresadditionalinformationtoshowthatacompletelossofpumpsealcoolingwaterwouldnotleadtounacceptableconsequences.RESPONSE:TwononseismicCategory1sourcesofcoolingareavailabletotherecirculationpumpseals:recirculationpumpsealcoolingwatersuppliedbyRBCLCWandrecirculationpumpsealinjectionwatersuppliedbytheCRD-system.GeneralElectric'sLicensingTopicalReport,NED0-24083,RecirculationPumpShaftSealLeakageAnalysis,provides:ananalyticalbasisforrecirculationpumpsealleakage,assumingafailureofbothcoolingwatersystems.Thisgenericanalysispredictsaboundingleakageratewellunder100gpm.ThegenericanalysisisapplicabletoSusquehanna.Thereportalsodocumentstestresults,demonstratingthatpumpsealintegritywillbemaintainedifanyoneofthetwocoolingwatersystemsisoutofoperationatagiventime.Rev.22,4/81211.1-1 SSES-FSARQUESTION211.8TheSRP54.7statestheresidualheatremovalsystem(RHRS)shouldmeettherequirementsofGeneralDesignCriterion(GDC)34ofAppendixAto10CFRPart50.TheRHRbyitselfcannotaccomplishthcheatremovalfunctionsasrequiredbyGDC34.TocomplywiththesinglefailurecriteriontheFSARdescribesanalternatemethodofachievingcoldshutdowninSection15.2.9Insufficientinformationisprovidedtoallowanadequateevaluationofthisalternatemethod.Inparticular,wehaverecentlyapprovedRevision2toSRP5.4.7(containinqBranchTechnicalPositionRSB5-1)whichdelineatesaccceptablemethodsformeetingthesinglefailurecriterion.ThisBranchTechnicalPositionrequirestestinqtodemonstratetheexpectedperformanceofthealternatemethodforachievinqcoldshutdown.Youshoulddescribeplanstomeetthisrequirement.Inaddition,werequirethatallcomponentsofthealternatesystembesafetygrade(seismicCateqoryI).Asaresultofthisrequirement,theairsupplytotheautomaticdepressurizationsystem(ADS)valves,includingthesystemupstreamoftheaccumulators,mustbesafetygrade.Thisairsupplymustbesufficienttoaccountforairconsumptionnecessaryforvalveoperationplusairlossduetosystemleakageoveraprolongedperiodwithlossofoffsitepower.RESPONSE.AsdiscussedinSubsection93.1.5.1,thegassupplytotheADSvaluesandthebackupqassupplytotheADSaccumulatorsissafetygrade.Codescoveringthedesignandconstructionofthesecompon'eatsarediscussedinSubsection9.3.1.5.1Allcomponentsthatareapartofthealternateshutdownloop(seeSd>section15.2.9&Figs.15.2-14and15,2-15areroutinelytestedasrequiredbytechnicalspecifications.Testingofthetotalalternateshutdownsystemwouldnotprovideanyadditionalpertinentinformationandwouldresultinintroducinglowerquality(suppressionpool)waterintothevessel.Bsedontheabove,wedonotfeelthattestingofthetotalloopisnecessaryordesirable.ThisissuewastentativelyresolvedwiththeNRContheShorehamdocket(BWR/4)byanagreementtotestonesafetyreliefvalveinSanJosesimulatingthealternateshutdowncondition.TherationaleforacceptanceofthisplanwasthattheSRVistheonlycomponentintheloopwhichhasnotbeendemonstratedtobesuitableforalternateshutdownconditions.Thistest.wassuccessfullycompletedinDecember1979.Rev,224/812118-1 SSES-PSARGeneralHlectricinconjunctionviththeThreeMileIslandOwnersGroupisplanninqfurtherSRVtestinqinresponsetoTMIrelatedissues.Thistestinq.villincludeconditionssimilartothealternateshutdovn-conditionsandwillincludeavalveofCrosbyManufactureasisusedintheSusquehannaplant.Itisexpectedthatthesetestswillfurtherconfirmthatanin-planttestisnotrequiredtodemonstratealternateshutdownconditionscapability.REV18,1$/802118-2 SSES-I'SARQUESTION21185:ProvideassurancethatadequateNPSHexistsforanECCSpassivefailureinawater-tightpumpcoom.AddressthepossibilityofvortexfomationatthesuctionoftheremainingECCSpumpswiththeloweredpoollevel.DiscusspreoperationalteststobeperformedtodemonstratethatthereisnotimpairmentofECCSfunctionduetoloweredsuppressionpoollevel.RESPONSESeeSubsection6.3.6fordiscussionofNPSHavailabilitywithECCSpassivefailureandofvortexformationinthesuppressionpool.TestingforpumpoperationatminimumNPSHmarginisprovidedbypreoperationaltests.Rev.22,4/8121185-1 SSES-FSARItisnotevidentthattheassumeddropof100Finfeedwatertemperature0givesaconservativeresultofthistransientwithmanualrecirculationflowcontrol.Forexample,afeedwatertemperaturedropofabout150FoccurredatonedomesticBWRresultingfromasingleelectricalcomponentfailure.Theelectricalequipmentmalfunction(circuitbreak-tripofamotorcontrolcenter)causedacompletelossofallfeedwaterheatingduetototallossofextractionsteam.Accordingly,either(1)submitasuf-ficientlydetailedfailuremodesandeffectsanalysis(FMEA)todemonstratetheadequacyofa100Ffeedwatertemperaturereductionrelativetosingleelectricalmalfunctionsor(2)submitcalculationsusingalimitingFWtemperaturedropwhichclearlyboundscurrentoperatingexperience.Also,temperaturedropsoflessthan100Fcanoccurandinvolvemorerealisticslowchangeswithtime.Assumingallcombinationsresultinslowtransientswiththesurfaceheatfluxinequilibriumwiththeneutronfluxattheoccurrenceofscram,asmallertemperaturedropthan100FthatstillcausesscramcouldresultinalargerQCPR.Pleaseevaluatethistransientandjustifythattheassumedvaluesofthemagnitudeandtimerateofchangeinthefeedwatertemoeratureareconservative.RESPONSE:Nosingleelectricalcomponentfailurewillcausethelossofmorethanonetrainoffeedwaterheatersasseparatepowersourcesaresuppliedtoeachofthefeedwatercontrolpanels.Eachfeedwaterheatertrainconsistsoffivefeedwaterheatersplusadraincooler.SSESdoesnothaveafeedwaterheatertrainbypassline.TheGEfeedwaterheatersystemdesignspecificationrequiresthatthemaximumtemperaturedecreasewhichcanbecausedbybypassingfeedwaterheater(s)byasimplevalveoperationwillbelessthanorequalto100oF.Thisisthebasisoftheassumeddropof100Finfeedwatertemperatureintheanalysis.LossofonefeedwaterheatertrainatSSESwillactuallyresultinsignificantlylessthana100Ftemperaturedrop.Itshouldbepointedoutthatasteadystate(i.e.,thesurfaceheatfluxinequilibriumwiththeneutronflux)isassumedindeterminingtheMCPRduringthetransient.Therefore,atemperaturelosssmallerthan100FisnotexpectedtoresultinamymoresevereatransientthanthatanalyzedRev.22,4/81211.116-1 SSES-FSARQUESTION211.120:FortherecirculationpumpseizureaccidentwenoteinTable15.3-3thatcreditistakenfornonsafety-gradeequipmenttoterminatethisevent.Section15.3.3oftheStandardReviewPlan,Revision1,rewuiresuseofonlysafety-gradeequipmentandthesafetyfunctionsbeaccomplishedassumingtheworstsinglefailureofanactivecomponent.Reevaluatethisaccidentwiththeabovespecificcriteria,andprovidetheresultingCPRandpercentageoffuelrodsinboilingtransition.RESPONSE:Therecirculationpumpseizureenent,assumingtheoperationofspecificnon-safetygradeequipment,hasamildimpactinrelationtothedesign-basisdouble-endedrecirculationlingbreakinSectouns6.3and15.6.Failureofsuchequipmentwouldnotmakethecoreperformanceand/orradiologicalconsequencesofthishighlyimprobablepumpseizure(rapidcoreflowdecrease)eventmorelimitingthanthemaximumDBA-LOCAaddressedintheFSAR.Therefore,noadditionalevaluationsareconsiderednecessary.TheFSARtexthasbeenrevisedregardingfrequencyclassificationbydeletingreferencestoinfrequentincidentclassificationinSubsection15.3.3.1.2and15.3'.1.2,recirculationpumpseizureandrecirculationpumpshaftbreakrespectivelyRev.22,4/81211.120-1 SSES-FSAROperationofSusquehannawithpartialfeedwaterheatingmightoccurduringmaintenanceorasaresultofadecisiontooperatewithlowerfeedwatertemperaturenearendofcycle.Justifythatthismodeofoperationwillnotresultin(1)greatermaximumreactorvesselpressuresthanthoseobtainedwiththeassumptionusedinSection5.2.2,or(2)amorelimiting5MCPRthanwouldbeobtainedwiththeassumptionsusedinSection15.0.Thebasisforthemaximumreductioninfeedwaterheatingconsideredintheresponseshouldbeprovided(e.g.,specificturbineoperationallimitations).RESPONSE:Lowerfeedwatertemperatureincreasesthecoreinletsubcoolingandresultsinacorrespondingdecreaseinboththecoreaveragevoidfractionandthesteamproduction.Thefeedwatertemperatureof250oFisconsideredasthelowerlimitbasedontheconclusionthatplantswithimprovedinterferencefitspargerscanberuninthismode(250FFFVZ)withoutadverseconsequences.Typically,thecoreaveragevoidfractionisreducedby-16$whenthefeedwatertemperatureisreducedfrom420Fto250F.Thelowersteamproductionratereducesthepeakpressureswhichoccurduringatransient(Table211.125).TheuseoffeedwatertemperaturereductiontoextendthecyclebeyondnormalEOCisnotexpectedtoresultinmoreseveretransients.Thelowervoidfraction("16$lowerat250FFFWT)reducesthedynamicvoidcoefficientandtheseverityofthetransient(i.e.,theACPRduetothetransient)isless.Table211.125providesthetypicalACPRnumbersfortwotransientsanalyzed.Althoughthescramreactivityresponseissomewhatdegradedduetothelessbottompeakedpowershape,theoverallresponseisdominatedbythevoidfeedbackeffectsandtheresultingtransientislesssevere.ReducingthefeedwatertemperaturebeforeEOCwillnotresultinmoresevereplanttransienteither.Thepeakpressureswillbelessduetothereducedsteamproduction.TheACPRwillbelessduetothesmallervoidcoefficient.Duetothepresenceofasignificantnumberofcontrolrodsinsertedintothecoreforthiscondition,thescramresponseisnotappreciablyaffectedbythefeedwatertemperaturereduction.Inaddition,thetransientresponseatpointsinthecycleotherthanEOCisconsistentlylessthanEOC.Ifoperationinthereducedfeedwatertemperaturemodeisutilized,priortooperationananalyseswillbeperformedtoshowthismodeofoperationwillnotviolateMCPRsafetylimits,giventheeventsinChapter15.Rev.22,4/81211.125-1 TABLE211.125TRANSIENTANALYSISRESULTSReactor~CeleTransientExposurePointPeakVesselPressureCPRBWR4251"764Evil.cycleLoadrejectionw/obypassRatedEOC(104.2/power)1235.17(ReducedFeedwater)ExtendedEOCHeating(100$power)12190.16FeedwaterControllerfailureRatedEOC(104.2$power)12020.12(Reduced'eedwater)ExtendedEOCHeating(100$power)10600.05*ODYNANALYSISRESULTSRev.22,4/81 SSES-FSARIntheevaluationofthe"generatorloadrejection"transient,afull-strokeclosuretimeof0.15secondsisassumedfortheturbinecontrolvalves(TCV).Section15.2.2.3.4statesthattheassumedclosuretimeisconservativecomparedtoanactualclosuretimeofmorelike0.20seconds.However,inFigure10.2-2,TurbineControlValveFastClosureCharacteristic,anacceptableTCVclosuretimeof0.08secondsisimplied.Explainthisapparentnon-conservativediscrepancyandtheeffectithasonanalysesinChapter15requiringTCVclosure.RESPONSE:The0.08secondsshowninFigure10.2.2isanacceptablevaluewhereasthe.07secondsTCVclosuretimeinTables15.2-1and15.2-2istheboundingvalue.SeeresponsetoQuestion211.117forfurtherclarificationtothisquestion.Rev.22,4/81211.161-1 SSES-FSARThenarrativeonpage15.4-13discussingthe"abnormalstartupofanidlerecirculationpump"transientstates,"Thewaterleveldoesnotreacheitherthehighorlowlevelsetpoints."Table15.4.3.indicatesalowleveltripoccurs22.0secondsafterpumpstart.Figure15.4-6indicatesalowleveltripoccursapproximately23.5secondsafterpumpstart.Further:a)Table15.4-6indicatesalowlevelalarm10.5secondsafterpumpstartwhileFigure15.4-6indicatesthisalarmoccursabout11.5secondsafterthepumpstarts.b)Table15.4-6indicatesvessellevelbeginningtostabilize50'secondsafterthepumpstarts.Figure15.4-6showsnosuchindication.Resolvethesediscrepancies.RESPONSE:ThesequenceinTable15.4-3startsoutwithascramat10secondsfollowingtheimproperpumpstart.Figure15.4-6confirmsthis.At23.5seconds(ratherthan22)levelfallstoL3whichalsoissuesaredundantscramsignaltoasystemwhichhasalreadyscrammed.ItistheintentofTable15.4-3hasbeenmodified.a)Table15.4-4indicatesL4nearllseconds.ThisisverifiedbyFigure15.4-6,b)Table15.4-4indicatesthatvessellevelisbeginningtostabilizeat50seconds.Thisappearstobecorrect.Actually,levelrecoveredfromL3atabout41secondsandfrom30to40secondslevelischangingattherateof2.5in/sec.From50to60secondslevelrateisdefinitelyflatteningoutundernormalfeedwaterlevelcontrol.Rev.224/81211.180-1 SSES-FSARQUESTION211.210:ExpandthediscussioninSection6.3todescribethedesignprovisionsthatareincorporatedtofacilitatemaintenance(includinqdraininqandflushing)andcontinuousoperationoftheECCSpumps,seals,valves,heatexchangers,andpipingrunsinthelong-termLOCAmodeofoperationconsideringthatthewaterbeingrecirculatedispotentiallyveryradioactive.RESPONSE:TheSusquehannaeguipmentforlong-termcoolinqfcllowingapostulatedLOCAincludestwoccmpletecozespraysystemsandtwoRHRsystems.Thesetvosystemsconsistofatotalofeightpumpscapableofpzovidinqwatertothereactorpressurevessel.ThepipinqandinstrumentationdiagramsofthesesystemsareshowninFigures6.3-4and5.4-13.Lonq-termcoolingvatercanbeprovidedtothecorebyoneRHR(LPCXmode)pumporoneCSloop(bothpumps),whileheatcanberejectedtotheultimateheatsinkviaeitherofthetwoRHRheatexchangersusingoneoffourRHRpumps.Thusamaximumofthreepumpsvouldberequiredforpost-LOCAcorecoolinq.AllofthesecomponentsaredesiqnedtoremainoperableduringandfollovinqaLossofCoolantAccident,andtheredundancyprovidedissuchthatmaintenanceisnotexpectedtoberequiredduringthelong-teracorecoolingperiodfollowinqaLOCA.Hovever,theRHRandCoreSpraysystemsaredesignedwithprovisionsforflushingasshovninFigures6.3-4and5.4-13.Rev.224/81211210-1 SSES-FSARgDESTXON211.211:SeverewaterhammeroccurrenceintheECCSdischargepipingduringstartupoftheECCSpumpsisavoidedbyensuringthatthedischargepipesaremaintainedfullofwater.ThecondensatetransfersystemiusedtoachievethisfunctionforallECCSpiping.Sincethecondensatetransfersystemalsosupplies~atertonumerousothersystems,thefollowingareasrequireclarification:a)JustifytheuseofacommonfillingsystemforallECCSdischargepipingversusind,ependenijockeypumps.b)Identifytheexpecteddemandsonthecondensatetransfersystemandwhateffects,ifany,wouldbeexpectedonthemakeuprequiredtokeepthedischargepipesfullofwater?c)Canindividual"filllines"beisolatedtopermitmaintenanceononeECCSsystemwithoutaffectingtheothersystem?d)Thedischargepiping"fillsystem"isapparentlyconsideredtobeanauxiliarysystem.Areanypriorityinterlocksprovidedtoensurethatthe"fillingsystem"willbegivenpriorityovertheotherusesofthecondensatetransfersystemwater?e)Theindividualfilllinesapparentlydonothaveinstrumentationtomonitorlowpressure.provideassurancethatwhenthecondensatetransferpumpsareoperatingthattheindividualECCSdischargelinesarefullofwater.f)Whatisthehistoryofwaterhammereventsatotherplantsemployingthisdesign?RESPONSEa)ThepumpfillsystemadoptedforSusquehannaSESutilizestheexistingcondensatesystemandisrelativelysimple.Ztisbelievedtohaveahighersystemoverallreliabilitythanasystemrequiringindividualpumps,orso-calledjockeypumps,toperformthefillfunction.However,thereisnoknownoperatingexperiencewithacommondischargelinefillsystem.Thecondensatetransfersystemhasbeendesignedtobereliableinsomuchasitisrequiredforplantoperation.ThereforecompletefailureofthiscommonfillingsystemfortheECCSwouldrequirethattheplantbebroughttoashutdowncondition.b)Atstandbypressuressubstantiallybelowvalveratedpressures,the'estimatedmakeupfortheECCSsystemsislessthanl(one)gpm.SeerevisedSubsection6.3.2.2.5.Rev.22,4/Sl211.211-1 SSES-PSAR.)TheindividualfilllinescanbeisolatedtopermitmaintenanceonECCSsystemsandindividualloops'fasystemwithoutaffectingtheotherloops.SeerevisedSubsection6.3.22.5.d)Duetotheverysmallamountofcontinuousmake-uprequirednointerlocksareprovidedtogivepriorityto"keep-full"functionoftheCondensateTransferSystem'sECCSfilllines.e)Seerevisedsubsection6.3.2.2.5.f)ThewaterhammereventswhichhaveoccurredinBHRplantswithECCSfillsystemsaredocumentedandtransmittedtotheNRCasLicensingEventReports(LER).ThesearekeptonfileattheNRC.SeeTable211.211-1foratabulationofwaterhammereventsbasedonLERinformationonfilewiththeGeneralElectricCompany.Rev.17,9/802'l1.211-2 SSES-FSARProvidedatatoverifythatrepresentativeHPCIactivecomponents(inparticular,thepump)havebeen"proof-tested"underthemostsevereoperatingconditionsthatareanticipated.TheservicelifeandthemaximumexpectedoperatingtimeaccumulatedduringtheservicelifeofthatHPCIpumpshouldbespecified.RESPONSE:TheHPCIpumpforSusquehannaSESissimilarindesignandfabricationtopumpsthathavebeeninstalledandoperatedinBWRplantsforseveralyears.WhiletheyhaveneverbeencalledupontofunctionduringaDBA,thesepumpsareperiodicallytestedinoperatingplantsandhavebeenshowntoperformsatisfactorily.Eachpumpistestedatthevendor'splantforhydraulicperformanceandfreedomfromvibration.ThisisinadditiontothetestsandinspectionsperformedduringthefabricationofthepumpsThesevereoperatingconditionstowhichthepumpsareexposedaretemperaturesto148Fambient,maximumexpectedpost-DBAradiationlevelsanddynamicloadsduetothesafeshutdownearthquakeandhydrodynamiceffectsassociatedwiththeDBA.Thepumpsaremainlyfabricatedofmetallicmaterialswhichwillnotbedegradedbytheexpectedpost-DBAtemperatureandradiationenvironment.Thenon-metallicgasketsandsealsaremadeofmaterialswithademonstratedresistancetothepost-DBAenvironment.Thedynamicloadinputsareaddressedanalyticallyandevaluatedagainstappropriatecriteriatoassureoperationofthepumpwhileundergoingdynamicloading.Theaboveassuresthattheexpectedservicelifewillexceedtheexpectedoperatingtimeofapproximately550hours.Abreakdownofexpectedoperatinghoursforseveraleventsdu'ringthelifeofthepumpisprovidedbelow:Event0eratinTime(Hours)ShopTestingPreoperationalTestingMonthlyTestingYearlyTestingPost-LOCAShutdown2104048012N/ATheassumedoperatingtimeforpost-LOCAis12hoursfortheHPCIpump.ThelowpressureRHRandCSsystemstakeupthe'coreRev.22'/81211.226-1 SSES"FSARcoolingwithin12hoursafterincipientLOCAeventandmaintainthelongtermcorecoolingofpostLOCAsubsequentto12hoursperiod.GEstatedthattheECCSpumpmotorsmeettheenvironmentalqualificationrequirementsoftheDORguidelinesandIEEE323-1971.PriortoJune30,1982,furtherqualificationworkwillbepreformedtobringtheseitemsuptoatleastthelevelofIEEE323-1971perNUREG0588CategoryII.Rev.224/81211.226-2 SSES-FSARUESTION211.260:IdentifytheFailureModeandEffectAnalysisforevaluatingthecontrolroddrivesystemwhichyoustateisprovidedinAppendix15A.RESPONSE:Subsection4.6.2hasbeenrevisedtostatethatTheNuclearSafetyandOperationalAnalysisispresentedinsubsection15A.6.5.3.Rev.'224/81211.260-1 SSES-FSARQUESTION211.262:Forthe"recirculationpumpseizure"accident,coincidentlossofoff-sitepowerisnotsimulatedwiththeassumedturbinetripandcoastdownoftheundamagedpump.ReanalyzethistransientassumingcoincidentlossofoffsitepowerandincorporatethisreanalysiswiththatpreviouslyrequestedinQ211.120.RESPONSE:Theeventseverityofacoincidentlossofoffsitepowerwiththepostulatedrecirculationpumpseizureaccidentisboundedbytheanalysisof"LossofACPower"asshowninSection15.2.6.Theonlydifferencebetweenthesetwoeventsisthecoreflowcoastdownrate,TheflowcoastdownrateduringthepumpseizureeventcoincidentwithalossofoffsitepowerisfasterthanthatduringthelossofACpowertransient.ThelossofACpowercausesthiseventtobecomeapressurizationevent.Thefasterflowcoastdownforpressurizationeventsarelessseverebecauseofnegativevoidreactivitycoefficient.Ifthelossofoffsitepowerwerecoincidentwiththehighwaterlevelturbinetrip,theresultingaccidentwouldbelessseverethantheoneanalyzedintheFSAR.Thisisduetothefactthattherecirculationpumptripwilloccurearlierintheformeraccident.TodiscusstheeffectofcorecoastdownrateonCPR,thefollowingispresented.CorecoastdownratehasaneffectonthechangeinCPR.Thiseffecthastwocriticalcomponentswhichvaryinverselywitheachother.Theinverserelationshipexistsbetweentheheatgenerationrate(neutronflux)andtheheatdissipationrate(thermalhydraulics),Thefasterthecoastdownrate,thefastertheneutronfluxdrops,but,theslowertheresidualheatinthefuelisdissipated.TheeventsinChapter15'areanalyzedtoconservativelyaccountforthisrelationshipwithregardstothechangeinCPR-Rev.22,4/81211.262-1 SSES-FSARg,>>6:Fromthediscussionofsinglefailuresforthe"inadvertentHPCIstartup"transient,itisindicatedthatasinglefailureofthepressureregulatororlevelcontrolwillaggravatethetransient,resultinginreducedthermalmargins.ProvidetheHCPRandpeakvesselpressurevaluesthatresultforthiseventwiththemostlimitingoftheabovesinglefailuresconsideredintheanalysis.RESPONSE:Intheeventofthe"inadvertentHPCIstartup"transient,neitherthepressureregulatornorthelevelcontrollerisexpectedtofailbecausebothsystemsareinnormalcontinuousoperationatthetimeofthehypothesizedevent,andnosignificantchangeintheirfunctionisdemandedbytheevent.Theyshouldsimplycontinuetheirnormalfunction.InadvertentstartupoftheHPCIresultsinamildpressurization.Uponpressurizationduetotheadditionofcoolerwaterintothefeedwatersparger,thepressureregulatortendstoregulatethevesselpressurebyadjustingthepositionoftheturbinecontrolvalve.Whenanactivefailureoftheregulatorsystemisconsidered,suchthattheturbinecontrolvalveswouldnotopen,furtherpressurizationwouldresultwhichwouldleadtoaneventsimilartothe"pressureregulatorfailure-close"transient(15.2.1)Nosignificantchangeinthermalmarginprotectionwouldoccur(<.01CPRchange).Becauseoftheadditionofthecoolerwaterinfeedwatersparger,thelevelcontrolsystemtendstoreducethefeedwaterflowtomaintainthenormalwaterlevel.Whenanactivefailureofthelevelcontrolsystemisconsidered,thewaterlevelwouldcontinuetorise..Thissituationissimilartothe"feedwatercontrollerfailure-maximumdemand"transient(15.1.2)andresultsinasimilarCPRchange.SincetheHPCIstartupdoesnotchallengethesecontrolsystemssignificantly,beyondtheirnormalcontxolfunctions,theindependent,simultaneousfailureofeitherisconsideredextremelyunlikely.Note:Theword"aggravate"usedinthetextdoesnotmeanaworsethermalmargin.Itratherimpliesanundesirableaction(e.g.turbinetrip)whichmayresultinreactorscramandshutdown.RBV.22,.4/81211.276-1 SSES-FSAROurpositionontheemergencycorecoolingsystems(ECCS)isthatthesesystemsshouldbedesignedtowithstandthefailureofanysingleactiveorpassivecomponentwithoutadverselyaffectitheirlong-termcoolingcapabilities.lnthisregard,weareconcernedthatthesuppressionpoolinboilingwaterreactors(BWR's)maybedrainedbyleakagefromisolationvalveswhichmayberenderedinaccessiblebylocalizedradioactivecontaminationfollowingapostulatedloss-of-coolantaccident(LOCA).Accordingly,indicatethedesignfeaturesintheSusquehannafacilitywhichwillcontainleakagefromthefirstisolationvalveintheECCSlinestakingwater(suctionlines)fromthesuppressionpoolduringthelong-termcoolingphasefollowingapostulatedLOCA.RESPONSE:TheECCSisdesignedtowithstandthefailureofanysingleactiveorpassivecomoonentwithoutadverselyaffectingthelong-termcoolingcapabilities.AnyleakagefromECCSsystemscanbeisolatedandcontained.ThedesignfeaturesinSusquehannathatassurethiscapabilityaredescribedinresponsetoFSARQuestion211.10.Rev.22,4/81211.295-1 SSES-FSARQUESTION221.14:YourresponsetoQuestion221.1isunacceptable.Thestaffbelievesthatthestate-of-the-arthasprogressedsuchthateffectiveLPMsystemscanbeinstalledincommercialLWRs.TherationaleforthisisdocumentedindraftRegulatoryGuide1.133(Loose-PartDetectionProgramforthePrimarySystemofLight-Water-Cooled-Reactors).Additionalrationaleclarifyingthestaffpositionc'nalsobefoundinaletter,VassallotoJ.E.Mecca(PugentSoundPowerandLightCompany)"SkagitNuclearPowerProject,Units162"datedJuly20,1978(DocketNos.50-522/523)availableintheNRCpublicdocumentroom.AnumberofLWR's,includingBWR's,atthesamestageoflicensingasSusquehanna,havecommittedtotheinstallationofaLPMsystem.Inaddition,itisrequiredbythestaffthataLPMsystembeinstalledandoperationalpriortostartupofthereactor.Therefore,pleaseprovidetheinformationrequestedinQ221.1.RESPONSE:TheSusquehannaSESLoosePartsMonitoringSystemisdiscussedinsubsections7.7.1.12and7.7.2.12.Rev.22,4/81221.14-1 SSES-PSARTheresponsetoQuestion221.9isunacceptable.Theapplicantshouldcommittosubmitareportdescribingthecomputerprogramusedforcorethermal-hydraulicanalysispriortoissuanceofanoperatinglicenseforSusquehanna.Thereportshouldprovidethecodedescription,thecalculationalmethodsandempiricalcorrelationsused,asampleapplicationandcodeverificationthroughcomparisonwithexperimentaldata.1RESPONSE:ThecomputerprogramcitedinSubsection4.4.4.5isnamedTSCOR.VariousversionsofthiscodehavebeenusedbytheGeneralElectricCompanyforoveradecadetoperformdetailedcore,steadystate,thermal-hydraulicanalyses.TheXSCORcomputerprogramisusedasthebasisforthesteadystatethermal-hydraulicmoduleintheGEBS/PANACthree-dimensionalBWRcoresimulator.Themodelsandnon-proprietarycorrelationsaredescribedinChapter4oftheBWRCoreSimulatorLicensingTopicalReport(NEDO-20953,Hay1976).Rev.22,4/81230.1-1 SSES-FSARTheresponsetoQuestion221.2isunacceptable.Question2requestedassumptionsusedforamountofcrudusedindesigncalculationsandthesensitivityofCPRandcorepressuredroptovariationsintheamountofcrudpresent.Merelystatingthat"aconservativeamountofcrudisdepositedonthefuelrodsandfuelrodspacers"doesnotbegintoanswerthisquestion.Thequestionalsoaskedforadiscussionofhowcrudbuildupinthecorewouldbedetected;'odiscussionisprovided.RESPONSE:Ingeneral,theCPRisnotaffectedascrudaccumulatesonfuelrods,(References1and2).Therefore,nomodificationstoGEXLaremadetoaccountforcruddeposition.Forpressuredropconsiderations,theamountofcrudassumedtobedepositedonthefuelrodsandfuelrodspacersisgreaterthanisactuallyexpectedatanypointinthefuellifetime.Thiscruddepositionisreflectedinadecreasedflowarea,increasedfrictionfactors,andincreasedspacerlosscoefficients,theeffectof,whichis.toincreasethecorepressuredropbyapproximately.1.7psi,anamountwhichislargeenoughtobedetectedinmonitoringofcorepressuredrop.Itshouldbenotedthatassumptionsmadewithrespecttocruddepositionincorethermalhydraulicanalysesareconsistentwithestablishedwaterchemistryrequirements.Moredetaileddiscussionofcrud(service-inducedvariations)anditsuncertaintyisfoundinSectionIIIofReference3.

Reference:

1.McBeth,R.V.,R.Trenberth,andR.W.Wood,"AnInvestigationIntotheEffectsofCrudDepositsonSurfaceTemperature,Dry-Out,andPressureDrop,withForcedConvectionBoilingofWaterat69BarinanAnnularTestSection",AEEW-R-705,1971.2.Green,S.J.,B.W.LeTourneau,A.C.Peterson,"ThermalandHydraulicEffectsofCrudDepositedonElectricallyHeatedRodBundles",WAPD-TM-918,Sept.1970.3."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication",GeneralElectricCompany,January1977,(NEDO-10958A).Rev.22,4/81230.2-1 SSES-FSARYourresponsetoquestion221.13isincomplete.Sincetheoperationaldesignguidelinesareexceededforsomeoperatingconditions,Figure4.4-6shouldberevisedtoshowdecayratiosasafunctionofrodposition,recirculationflowandpower.Figure4.4-6ascurrentlypresentedisnotsufficientlydetailedforuseininferringoperationalboundaries.RESPONSE:Theoperationaldesignguidelineisnotintendedforuseindefiningoperationalboundaries.Itisusedtodeterminetherangeofoptionaloperationintheautomaticflowcontrolmode.Currentguidelineisthedecayratio0.5.ItisclearfromFigure4.4-6thatmostoftheoperatingdomainmeettheguideline.Itshouldbenoted,however,thatpower/flowconditionwhichhasadecayratiogreaterthantheguidelinecanalwaysbeoperatedinthemanualflowcontrolmode.AlthoughGEdoesutilizedesignstabilityguidestooptimizeBNRoperationandperformancefromanavailabilityconsiderations,applicationoftheseguidelinesisnotconsideredtobeanecessaryrequirementtodemonstrate'anacceptableandlicensableconfiguration.Thecriterionusedwithrespecttosafetyisthatthecalculateddecayratiobelessthan1.0overtheexpectedrangeofoperation.ThishasbeendemonstratedforSusquehannaunit.OperationalguideshavebeendeletedfromFigure4.4-6.Rev.22,4/81230.3-1 SSES-FSARYourresponsetoQuestion221.15isunacceptable.YoureferenceNEDO-10958-Aforadiscussionoftheuncertaintiesandtheirbases.ThestaffevaluationofNEDO-10958states"TheestimatedvalueoftheuncertaintiesandthebasisforthevaluedependonthespecificdesignandequipmentofeachreactorandwillbeevaluatedforeachreactoratthetimeTechnicalSpecificationsareissued."InformationtosupporttheuncertaintyvaluesforSusquehannamustbesubmittedpriortoissuanceofasafetyevaluationreportforSusquehanna.RESPONSE:AgeneraldiscussionoftheboundingstatisticalanalysisuncertaintieshowninTable4.4-6isgivenintheGETABLicensingtopicalreport(Reference1).Oftheseuncertainties,allexceptthatofcriticalpowerareunaffectedbythetwowater-rodassemblydesign.TheGEXLcriticalpowerpredictabilityforthe8x8twowater-roddesignhasbeenshowntobesimilartothestandardonewater-roddesign(seetheresponsetoQuestion221.3);thevalueforthisuncertaintycitedinReference1(1=3.6%)isconservativewithrespecttobothonewater-rodandtwowater-roddesigns.AdditionalinformationconcerningtheremaininguncertaintiesinTable4.4-6andthebasesusedinthederivationofthoseuncertaintiesiscontainedintheLicensingtopicalreport"ProcessComputerPerformanceEvaluationAccuracy"(References2,3and4).Asstatedtherein,"theanalysiswasperformed...formeasurementssystemstypicalof(orconservativewithrespectto)theBWR4-6,"andisthereforedirectlyapplicabletoSusquehanna.

References:

1."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication,"GeneralElectricCompany,January1977(NEDO-10958A).2.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracy,"GeneralElectricCompany,June1974(NEDO-20340).3.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracyAmendment1,"GeneralElectricCompany,December1974(NEDO-20340-1).4.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracyAmendment2,"GeneralElectricCompany,September1975(NEDO-20340-2).Rev.22,4/81230.4-1 SSES-FSAR*UESTION230.8:Thesteady-stateoperatinglimitfortheMinimumCriticalPowerRatio(MCPR)is1.25.ThisvalueiscalculatedbasedonREDYmodeldescribedinNEDO-10802.TheresultsofthreeturbinetriptestsperformedatthePeachBottom-2haverevealedthatincertaincasestheresultspredictedbyREDYmodelarenon-conservative.TheGeneralElectricCompany'snewODYNforuseintransientanalyseshasbeenapproved.Accordingly,theapplicantisrequiredtoreanalyzepriortocriticalitythefollowingtransientswithODYN:1)generatorloadrejection/turbinetrip,2)feedwatercontrollerfailure~aximumdemandand3)mainsteamisolationvalveclosurewithpositionswitchscramfailure.Ifanothereventshouldbemorelimitingthanthoselistedabove,theothereventshouldreanalyzedwithODYN.ThereanalysesshouldincludeCPRcalculationanddemonstratethattheoperatinglimitforMCPRisnotlessthan1.25.RESPONSE:TheSusquehannaSESODYNsubmittalisscheduledforthesecondquarterof1981.

UESTION281.17ItisourpositiontomeetSectionC.lofAppendixAtoBTP-ASB9.5-1automaticsmokedetectorsbeprovidedinthefollowingareasandthattheyalarmandannunciateinthecontrolroom.Firedetectorsshould,asaminimum,beselectedandinstalledinaccordancewithNFPA72E,"AutomaticFireDetectors".ReactorBuildingFireZoneAreaElevationl.1-1G2.1-2A3.1-3A4.1-3B5.1-3C6.1-4A7.1-4B8.1-4G9.1-5A10.1-5B11.1-5D12.1-5E13.1-6A14.1-6D15.1-6E16.1-6F17.0-6G18.1-7A19.1-7B20.0-8ASumppumproomAccessareaAccessareaAccessareaAccessareaContainmentaccessareaPipepenetrationroomMainsteampipingFuelpoolpumps6heatexchangersValveaccessareaRMCUPumps8heatexchangersPenetrationroom'ccessAreaHSVequipmentroomRecirculationfansareaSpentfuelpoolSurgetankvaultHRVfanandfilterroomsRecirculationfanroomRefuelingfloor645-668670-683683-719683-719683-719719-747719-733717-816749-771761-771749-766749-777779-797779-797778-797779-797775-797779-816799-816818-873partialRESPONSE:Eachoftheareaslistedarebeingexaminedtodetermineiftheycontainorpresentafireexposurehazardtosafety-relatedsystemsnecessarytoaccomplishormaintainasafe-shutdowncondition.Additionalsmokedetectionwillbeprovidedinthoseareassatisfyingeithercriteria.ThisisdocumentedinRevisionltothePireProtectionReviewReport.Rev.20,2/81281.17-1 SSES-FSARUESTION313.1TheclassificationsystemforemergencyconditionsusedbyPPSLisidentifiedintheemergencyplan,asisthesystemusedbytheLuzerneCountyOfficeofCivilDefenseandthePABureauofRadiologicalHealth.Whiletheseclassificationsystemsappearcompatible,thetermsusedaredifferentandnodirectcomparisonismadeintheplan.ProvidesuchacomparisonbetweentheclassificationtermsusedbyPPMandthoseusedbytheoffsiteagencies,eitherinthetextofSection4oftheplan,oronFigure6.1.RESPONSEoAsestablishedin10CFR50AppendixEandNUREG0654/FEMAREPl,Rev.l,PPSI,,State,andLocalEmergencyPlanshaveincorporatedthesameemergencyclassificationsystem.TheclassificationsystemoutlinedinSection4.0oftheSusquehannaSESEmergencyPlanRev.2datedOctober1980isidenticaltothestateandlocalemergencyclassificationsystem.Rev.22,4/81313.1-1 SSES-FSARUESTION313.6Concerningprotectiveactions,describestepstakentomakeavailableonrequesttooccupantsinthelowpopulationzone,informationconcerninghowtheemergencyplansprovidefornotificationtothemandhowtheycanexpecttobeadvisedwhattodo.RESPONSEThefollowingmethodswillbeimplementedtoensureinformationonEmergencyPlanningistransmittedtotheEmergencyPlanningZoneresidents.Annually,afullpagead,summarizingtheinstructionandactiontobetakenbytheEPZresidentsintheeventofanemergencywillbepublishedinthelocalnewspaper.Annually,printedinstructionsandevacuationmapswillbedistributedtoresidentswithintheEPZ.EvacuationmapsandprintedinstructionswillbeprintedinalltelephonedirectorieswithintheEPZ.Analert.warningsirensystemcontrolledbythecountyEmergencyOperationsCenterswillbeinstalledwithintheEPZtoprovideearlynotificationtothepublic.ThissystemwillalertthepublictotunetothelocalEmergencyBroadcastSystemforfurtherinformationanddirection.Rev.22,4/81313.6-1 SSES"FSARUESTION313.7DescribethetrainingprovidedtheappropriatestaffmembersoftheBerwickHospitaltoshowthattheyarepreparedandqualifiedtohandleradiologicalemergencies.RESPONSEKeymembersoftheBerwickHospitalStaffwillbeinitiallytrainedattheOakRidge"REACTS"course.AnnualtrainingofappropriateBerwickHospitalpersonnelwillbeprovidedbyaconsultantexperiencedinthehandlingofcontaminated/irradiatedinjuredpersonnel.AnnualdrillsofBerwickHospitalstaffmemberswillbeconductedandcritiquedtoensuretheirabilitytohandleradiologicalemergencies.Rev.22,4/81313.7-1 SSES"FSARUESTION313.8Provideacommitmenttoconductannualexercisestotesttheadequacyoftheemergencyplanandtheimplementingprocedures.SeeRegulatoryGuide1.101,AnnexA,atSection8.1.2.RESPONSEThesecondsentenceofthefirstparagraphinSection8.1.2oftheEmergencyPlanwillbechangedtoread:"AninitialexercisepriortoloadingoffuelforUnit1andannualexercisesthereafterwillinvolveascenarioappropriatetoaSiteEmergencyorGeneralEmergencyCondition."Theseexerciseswillbeconductedusingtheguidelinesof10CFR50AppendixFNUREG0654/FEMAREP1Rev.l,andANSI/ANS-3.7.3-l979.Rev.22,4/81'313.8-1 SSES-FSARgWhenwillsettlementreadingsontheESSWPumphouseBasement(FSARTable2.5-8)beprovided?RESPONSE:Theresponsetothisquestionisgivenin362.22.Rev.22,4/81362.9-1 SSES-FSARProvideamapofthesiteclearlyshowingthetopographyasalteredbytheplant.NotethatFSARFigure2.4-1isinadequatebecauseitisverydifficulttoseethecontoursinthevicinityoftheplant.RESPONSE:Figure2.5"24hasbeenrevisedandshowsallthepresentroadsandfinishedgradingforbothUnits1and2.Rev.22,4/81371.19-1' SSRS-FSARgmSTXON-421.442=.Zthas"ometoouratantionthatsomeapplicantsailnotintendto"onductconfirmatorytestsofsomeDistcibutiosystmsanitransformerssuoplyingpowrtovitalbusesasreguiceDbyPosition3ofRegulatoryGuide1.68,andmorespecificxtllybyPact4ofthestaffpositiononDegradedgridvoltage(appliedtoallplantsinli=ensingceviewbythePowerSystemsBranchsin"e1976).Part4ofthedgcaDeDgciDvoltagepositionstatesasfoliows:ThavoltageleveLsatthesafety-related'usesshouldbeoptimizedforthefullloaDandmininumloadconditionsthataceexpecteDthcoughoutthanticipatedrangeofvoltagevariationsoftheoffsitepowersourcebyappropriateaDjustmentofthevoltagetapsettingsoftheinterveningtcansfocmecs.HerequirethattheadequacyaftheDesigninthisregardbeverifiedbyactualmeasurementandbycorrelationofmeasuredvalueswithanalysisresults.ProvidezDescriptionofthemethodfocmakingthisvacification;beforeinitialreactorpoweropecation,pcovidethedo"umentationrequiceDtoestablishthatthisvecificationhasbeenaccomplished.'!YourtestdescriptioninFSAR.Chap.tecl4doesnotcontainsufficientdetailforust>determineifyouintendtoconductsuchatest.ItisourpositionthatŽonficmxtorytestsofallvitalbusesmustbeconductedincludingallsour"esofpowecsuppliestothebusesNoiifyyourtestDescriptiontoindicatethatthistestingwillbeconductedinaccordancewithRegulatoryGuide168andtheaboveciteDposition..BZSPOBSZ=.VoltagesrecordedduringtheP100.1Preoperationaltest(Subsection14.2.12.1),willbereviewedandanalyzedagainstdesigncalcul'ationstoassureoptimaltapsettingshavebeenselected.Rev.22,4/81421.042-1 SSES-FSAR5ous55.x.5.z.5.c.c5.f.f5h.hvalves:andturbinestop,intecept,andcontrolvalves.Verifyresponsetimesofbranchsteamlineisolation.Demonstrateadequateperformancemarginsforshieldingandpenetrationcoolingsystemscapableofmaintainingternperaturesofcooledcomponentswithindesignlimitswiththeminimumdesigncapabilityofcoolingsystemcomponentsavailable(100/)Demonstrateadequatebeginning-of-I.ifeperformancemarginsforauxiliarysystemsrequiredtosupporttheoperationofenqineeredsafetyfeaturesortomaintaintheenvironmentinspacesthathouseenqineeredsafetyfeatures.Engineeredsafetyfeatureswillbecapableoperformingtheirdesignfunctionsovertherangeofdesigncaoabilityofoperablecomponentsintheseauxiliarysystems(50%,100%).Demonstratethatprocessandeffluentradiationmonitoringsystemsarerespondingcorrectly.Demonstratethatgaseousandliquidradioactivewasteprocessinq,storage,andreleasesystemsoperateinaccordancewithdesign.Demonstratethattheventilationsystemthatservesthemainsteamlinetunnelmaintainstemperaturewithinthedesignlimits.Demonstratethatthedynamicresponseoftheplanttothedesiqnloadswingsforthefacility.5oisla5.1.1.DemonstratethatthedynamicresponseoftheplantisinaccordancewithdesignforclosureoXreactorcoolantsystemflowcontrolvalves.Demonstratethatthedynamicresponseoftheplantisinaccordancewithdesignrequirementsforturbinetrip.QESPOQS~Preoperationaltestsofsafetyrelatedsystemsaredescribedbythetestabstractsprovidedinsubsection14 12-1.Specificdetailedguidelinesfortestinqsuchalossofpower,air,etc.aredescribedinthestartupadministrationmanualSection7.5.Lossofpoweristestedifitcausesanevolutiontooccurwithinthesystemsuchasswitchingautomaticallytoadifferentpowersource.Lossofairtestingisperformedbyplacingthevalveinitsnon-failedpositionbynormalactuatoroperation,thenisolatingtheactuatorairsupply,bletdingoffairpressureandverifyingvalvemovementtothefailedposition.Eachautomaticcontainmentisolationvalveistestedinthesystempre-optest.forproperoper-ationandclosuretimingasrequiredbythedesignsectionsoftheFSAR.Leakdetectionsystemssuchassteamleakdetectionaretestedinthesystempre-opsaffectedbythedetectionsystem.Rev.22,4/81423.12-5 SSES-FSARTheresponsetoitem423.14indicatesthat,testingdescribedinRegulatoryGuide1.80sectionsC.7throughC.10willnotbedonesincethetestingwillhavealreadybeendoneduring"varioussystempreoperationaltests".EitherprovidetestdescriptionsthatshowtestingequivalenttothatspecifiedinregulatorypositionsC.8,C.9,andC.10willbeperformed,ormodifyyourpreoperationaltestprogramtoincludeanintegratedlossofairtestandprovideanabstractofthattest.RESPONSE:SeerevisedresponsetoQuestion423.12.Table'23.28-1listsairoperatorvalves/HVACdamperswhicharetestedforlossofair.PreoperationaltestswithinwhichthelossofairtestingisaccomplishedisalsoprovidedinTable423.28-1.FurthertestingisperformedfortheADS/SRVvalvesasfollows:1.Verifyminimumcapacityofaccumulatorinacceptancecriteria.2.VerifyADS/SRV'sareoperatedfromtheirrespectiveaccumulator/supplywithothersuppliesdepressurized.3.Recordpressureatwhichanopenvalvebeginstocloseforsafety/reliefvalvesandverifyvalvefailstocloseonlossofair.4.VerifyanopenADSvalveismaintainedopenataccumulatorpressureof75+0-2PSIGandfailsclosedonlossofair.Rev.22,4/81423.28-1 SYSTEMRHRVALVENO.1-Ell<<P050A;BPREOP.NO.P49.1INST.AIRORPRI.CONT.INST.GAS~Inst<AirCCO1-E11-P122A,B'-E11-F051A,B1-Ell<<F052A,B1-E11-P053A,Bl-E11-F305A,DInst;GasInst.Air1-'Ell-PlllA,B1<<Ell-F129A,B.l-E11-F132A,B1<<E11-F136,F137,P140HV-E51-'17088..'V-E51-1F025;1P026W-E51-1F004,1F005'HV-E51-1P054~CoreSpray.HV-E21lF006A,B~1N-E21~1F037A,B~~P50;1'$51.1'Inst'Gas'nst;Air.':ln'st;'GasHPCICRD..-HV-E41-.1F028,1F029HV>>E41-1F025,1P026'HV-E41-1P057,1P100.C12-POoaA,B.......XV-lP010,1P011.HV-B31-1P019;1P020.Both+'~~~'52;1~~~~P55sl~~\~Inst;Air1F100'Ga's'Inst.Air0thes.Ins't'ir~~~

SYSVALVENO.PREOPNO.INST.AIRORPRICONT.INST.GASPireProtectionXV-12244,45;46,48,49XV-12205A,B,CXV-02247A,B;CXV-02248.XV-02215liv-11315'P13P14.Inst;'Air'Inst;.Air'BHVACllD17534A,B,C,D,E,ll',llAll+'ID17502AjB;Hg17514A,BAll*1~P34;XInst;'A'irllD17530A,B,'lD17531A'llD17564A,B;BD17524A,B.A11\~IlD17576A,B;-)lD17586A;BAll*llD17508A,B~.Both+-llD17651..BDID17603A;BBDID17604A;B;-BDID17605A;B..BDID17606A;B;BDID17609A;B.~7aI17659AB-n6BDID17668A,B;BDID17669A,BBDID.17670A,B;.QDID1761A,B.....~~~~~~BDID.17674A,B;BDID17675A.,B..

SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASRWCUia""'ii)oHV-14506A;B;14507A,B.HV-14508A,B;14510A,B.P61'.3.'nst;AirHV-14511AB'4512AB'HV-14513A,B;14514A,B'HV-14566A,B;14522....HV-14523,14528,14516HV-14518,14519;14520'HV-14521,G33-1F033Liquid-Radwast16108A1;16116Al16108A2,16116ALBoth'*~~e~/P69'.1'Ihst;'Air'ContainmentRecirculationHV-17521,23,24,22,25'A11HV-157040514'All'V-15703;13..~~'P73'.1'Inst.'Aii'~~~/~~~~'0~~/~~-

SYSTEMVALVENO.PREOP.NO.INST-AIRORPRCONT.INST.GASR.B.HVACPDD17501A;B;HD17511A;9'34'.'1'nst;'AirRBChilledMaterHD17521AB;HD17513A9HD17518A,B;HD17516HD17523A,B;HD17528A,BPDD17578A,B;HD17526':HD17566A~B~)'ID17588Af'9HD17538A,BTV-18726A1,A2,B1,92TV-18741A;9,C,DTV<<18743A,B.P34.2.~~Inst;AirTV-18751A9CD~TV-18753A,BTV-18764A,BTY-18771A;9;C,D~TV-18781A1A2,9192,A11+HV18782A1~A2~91~92~A11HV-18791A1,.A2,91,92h11*\~Inst;.Gas.HV-18791AlgA2,91;92All.*~~

SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASControlStructureQHVAGHDM&7802AB'oth*HDM-07833A,B;HDM-07824A2,B2HDM-07824A4B4HDM-078S'BHDM-07872A,B;HDM-07873A,BAll*'V-07813A,BTV-08602A,B0O.lP30..2.~.'....Feedwater10604ABC'10640'106'4114107A,B10650'10606A,B;C10604A,B;C'0663A'1~A2~B1~B27C1~C210664A;B,C.~~~~~~~

SSES-FSAROurreviewofrecentlicenseeeventreportsdisclosedthatasignificantnumberofreportedeventsconcernedtheoperabilityofhydraulicandmechanicalsnubbers.Provideadescriptionoftheinspectionsorteststhatwillbeperformedfollowingsystemoperationtoassurethatthesnubbersareoperable.Theseinspectionsortestsshouldbeperformedpreoperationallyifsystemoperationcanbeaccomplishedpriortogenerationofnuclearheat.RESPONSE:ExistingQArecordsontheconstructioninstallationandinspectionofsafetyrelatedsnubberswillbeassembledintoapackageforreviewbytheSuperintendentofPlant.Thispackagewillprovideassurancethatthepreoperationalconditionofthesnubbersisacceptableandthattheyareinstalledinaccordancewithdesign.Aftersystempreoperationaltestingandpriortofuelload,snubberswillbevisuallyexaminedandmanuallytestedfcrfreedomofmovementovertherangeofstrokeinbothcompressionandtension.ThismeetstherequirementofZEBulletin81-01Rev.1.Nohydraulic'nubbersareutilizedinsafetyapplicationsatSusquehannaSES.Rev.22,4/81423.40-1