ML17249A345: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:STEAMGENERATORWATERHAMMERTECHNICALEVALUATIONGINNAPOWERSTATIONOCTOBER1979EG5GIDAHO,INC.7918190 CONTENTSIVV,2.4OperatorError2.5SteamLineBreak.2.6Loss-of-CoolantAccident.CONCLUSIONSANDRECOMMENDATIONSREFERENCES.I.INTRODUCTION.II.FEEDMATERSYSTEM.1.DESCRIPTION.2.GENERALOPERATION.III.MEANSTOREDUCETHEPOTENTIALFORMATER1.DESCRIPTION.2.EFFECTIVENESSDURINGTRANSIENTSANDCONDUCIVETOMATERHAMMER.2.1ReactorTrip.2.2LossofMainFeedwaterFlow.2.3LossofOffsitePower.HAMMER.CONDITIONS~~I22~~35577788910~1112 t
{{#Wiki_filter:STEAMGENERATOR WATERHAMMERTECHNICAL EVALUATION GINNAPOWERSTATIONOCTOBER1979EG5GIDAHO,INC.7918190 CONTENTSIVV,2.4OperatorError2.5SteamLineBreak.2.6Loss-of-Coolant Accident.CONCLUSIONS ANDRECOMMENDATIONS REFERENCES.
I.'NTRODUCTIONAnevaluationwasperformedfortheGinnafeedwatersystem.Thepurposeofthisevaluationwastoassesstheeffectivenessoftheexistingmeanstoreducethepotentialforsteamgeneratorwaterhammerinthefeedwatersystemduringnormalandhypotheticaloperatingconditions.Thesteam-waterslugginginthefeedwatersystems(specifically,thesteamgeneratorfeedwaterspargerringsandadjacentfeedwaterpiping)wasconsideredinthisreview.NoknownwaterhammereventdirectlyattributabletofeedwaterringdraininghasoccurredatGinna.Twowaterhammertransientscausedbyfeedwatercontrolvalvemalfunctiondidhappen,however.Thepotentialforsteamgeneratorwaterhammerisavoidedifthefeed-watersystemismaintainedfullofwater.Hence,thisevaluationwasbasedontheeffectivenessofthemeansutilizedatGinnatomaintainthefeedwatersystemfullofwaterduringnormalandhypotheticaloperatingconditions.Theinformationforthisevaluationwasobtainedfrom:1)discussionswiththelicensee,2)licenseesubmittalsofAugust1,1973,July17,Lll1975~,October31,1975~,January30,1976E,andJune15,1978"",r5~3)the"GinnaNuclearPlantFinalSafetyAnalysisReport"~j,4)"AnEvalu-ationofPMRSteamGeneratorMaterHamner,"NUREG-0291,and5)Mesting-[71houseTechnicalBulletin,NSD-TB-75-7"rBjAdescriptionofthefeedwatersystematGinnaanditsgeneraloperationispresentedinSectionII.Themeanstoreducethepotentialforsteamgen-eratorwaterhammerarepresentedinSectionIII,includingadiscussionoftheireffectivenessduringoperatingconditionsconducivetowaterhammer.Finally,conclusionsandrecommendationsarepresentedinSectionIVconcern-ingtheadequacyoftheexistingmeanstoreducethepotentialforsteamgeneratorwaterhammeratthisfacility.
I.INTRODUCTION.
IV II.FEEDWATERSYSTEM1.DESCRIPTIONThefeedwatersystemforGinnawasdesignedtoprovideanadequatesupplyoffeedwatertothesecondarysideofthetwosteamgeneratorsduringalloperationalconditions.Feedwaierissuppliedtothemainfeedwaterpumpsbytheheaterdrainpumpsandbythecondensatepumpsviathelowpressureheaters.Feedwaterfromthemainfeedwaterpumpsissuppliedtoamainheaderviathehighpressureheaters.Themainheadersplitsintotwo14-inchfeedwaterlinestosupplya10.75-inchdiameter,half-inchwallthicknessfeedringinsideeachsteamgenerator.Feedwaterisdischargeddownwardthroughinverted"J"shapedtubesuniformlydistributedontopofeachfedring.Thetwomainfeedwaterpumpsaresinglestage,doubleflow,centrifugaltype,eachratedforaflowrateof14,000gpmat853psig.Thetwopumps,eachdrivenbya5000hpelectricmotor,sharecommonsuctionanddischargeheaders.Thepumpmotorsarenormallysuppliedwithpowerviathemainauxiliarytransformer.Intheeventofaturbinetrip,offsitepowersuppliesthepumpmotorsviathereserveauxiliarytransformer.Theauxiliaryfeedwatersystem(APrlS)providesfeedwatertothesteamgeneratorsforresidualheatremovalduringreactorstartupandshutdown,lowpoweroperation,andintheeventoflossofmainfeedwaterflow.TheASSconsistsofamain(M)AFWSandastandby(SB)AFWS.The(M)ASSconsistsof2motor-drivenpumps,each200gpmcapacityand1turbine-driven,400gpmcapacity.Eachmotor-drivenpumpcansupplyeitheroneorbothsteamgenerators.Theturbine.-drivenpumpnormallysuppliesboihsteamgenerators.Theprimarysourceofwateristwo30,000galloncondensatestoragetankswhicharecross-connectedthroughlocked-openmanuallyoperatedvalves,whilethebackupsupplyisavailablefromtheservicewatersystem.Theturbine-drivenpumpissuppliedwithsteamfromthemainheaders.Tne(SB)AFWSconsistsof2motor-drivenpumps,each200gpmcapac.'ty.Thissystemwas-installedinaseparateplantareafromthe(M)APASduringAugust1979,toprovideindependentASScapabilityfollowingasteamorfed-waterlinebreakintheimmediatevicinityofthe(M)AFWSpumps.Theprimarywatersourceistheservicewatersystem.
II.FEEDMATER SYSTEM.1.DESCRIPTION
1t ThetwoAFASareeachpoweredfrom2redundantandindependentACemer-gencybusesfromplantemergencydieselgenerators.TheyareinterlockedsothatbotharenotsimultaneouslyloadedontothevitalACbuses.The(M)AFWSsuppliesfeedwatertoeachsteamgeneratorvia2three-inchlinesconnectedtoeachmainfeedwaterlinejustoutsidethecontainmentbuilding.The(SB)AFMSconnectionstoeachmainfeedwaterlineareplacedwithinthecontainmentbuildingviaonelinepersteamgenerator.Theyarecapableofbeingcross-connected.bytheoperationofmanualvalves.Allvalvesbetweenthepumpsandthesteamgeneratorsarelockedopen.2.GBIERALOPERATIONOuringnormalpoweroperationofthereactor,themainfeedwatersystemsuppliesfeedwatertothesecondarysideofthesteamgeneratorsforheatremovalfromthereactorcoolantsystem.Thefeedwaterflowisregulatedbyindividualregulatingvalvesinthemainfeedwaterlinestoeachsteamgenerator.Thepositionsofthevalvesareautomaticallycontrolledbaseduponsteamgeneratorlevel,steamflow,andfeedwaterflow.Ouringplantshutdown,startup,andforfeedwaterrequirementsuptoabout3Xoffullreactorpower,feedwaterisnormallysuppliedbythemainauxiliaryfeedwatersystem.Feedwaterflowismanuallyregulatedtomain-tainadequatewaterlevelsinthesteamgenerators.Aspowerisincreasedandsufficienthighpressuresteamisavailable,amainfeedwaterpumpisstartedandtheauxiliaryfeedwatersystemisshutdown.Forfeedwaterrequirementsofabout3XtoI55offullpower,>eedwaterismanuallycontrolledandsuppliedvialowflowbypasslineswhichbypassthemainfeedwaierregulatingvalveineachmainfeedwaterline.Thebypassregulatingvalveineachbypasslineallowsmoreaccurateandresponsiveeedwaterflowcontrolthanwouldbepossiblewiththelargermainregulatingvalvesduringlowpower(andlowfeedwaterflow)operation.Abovefeedwaterrequirementsofabout15"offullreactorpower,feedwatercontrolisshiftedtothemainregulatingvalves.Aspowerisincreasedto50-o0~offullpower,thesecondmainfeedwaterpumpisstartedandfeedwaterflowisplacedunderautomaticcontrol.  
.2.GENERALOPERATION
.III.MEANSTOREDUCETHEPOTENTIAL FORMATER1.DESCRIPTION
.2.EFFECTIVENESS DURINGTRANSIENTS ANDCONDUCIVE TOMATERHAMMER.2.1ReactorTrip.2.2LossofMainFeedwater Flow.2.3LossofOffsitePower.HAMMER.CONDITIONS
~~I22~~35577788910~1112 t
I.'NTRODUCTION Anevaluation wasperformed fortheGinnafeedwater system.Thepurposeofthisevaluation wastoassesstheeffectiveness oftheexistingmeanstoreducethepotential forsteamgenerator waterhammerinthefeedwater systemduringnormalandhypothetical operating conditions.
Thesteam-water slugginginthefeedwater systems(specifically, thesteamgenerator feedwater spargerringsandadjacentfeedwater piping)wasconsidered inthisreview.Noknownwaterhammereventdirectlyattributable tofeedwater ringdraininghasoccurredatGinna.Twowaterhammertransients causedbyfeedwater controlvalvemalfunction didhappen,however.Thepotential forsteamgenerator waterhammerisavoidedifthefeed-watersystemismaintained fullofwater.Hence,thisevaluation wasbasedontheeffectiveness ofthemeansutilizedatGinnatomaintainthefeedwater systemfullofwaterduringnormalandhypothetical operating conditions.
Theinformation forthisevaluation wasobtainedfrom:1)discussions withthelicensee, 2)licenseesubmittals ofAugust1,1973,July17,Lll1975~,October31,1975~,January30,1976E,andJune15,1978"",r5~3)the"GinnaNuclearPlantFinalSafetyAnalysisReport"~j,4)"AnEvalu-ationofPMRSteamGenerator MaterHamner,"NUREG-0291
,and5)Mesting-[71houseTechnical
: Bulletin, NSD-TB-75-7" rBjAdescription ofthefeedwater systematGinnaanditsgeneraloperation ispresented inSectionII.Themeanstoreducethepotential forsteamgen-eratorwaterhammerarepresented inSectionIII,including adiscussion oftheireffectiveness duringoperating conditions conducive towaterhammer.Finally,conclusions andrecommendations arepresented inSectionIVconcern-ingtheadequacyoftheexistingmeanstoreducethepotential forsteamgenerator waterhammeratthisfacility.
IV II.FEEDWATER SYSTEM1.DESCRIPTION Thefeedwater systemforGinnawasdesignedtoprovideanadequatesupplyoffeedwater tothesecondary sideofthetwosteamgenerators duringalloperational conditions.
Feedwaier issuppliedtothemainfeedwater pumpsbytheheaterdrainpumpsandbythecondensate pumpsviathelowpressureheaters.Feedwater fromthemainfeedwater pumpsissuppliedtoamainheaderviathehighpressureheaters.Themainheadersplitsintotwo14-inchfeedwater linestosupplya10.75-inch
: diameter, half-inch wallthickness feedringinsideeachsteamgenerator.
Feedwater isdischarged downwardthroughinverted"J"shapedtubesuniformly distributed ontopofeachfedring.Thetwomainfeedwater pumpsaresinglestage,doubleflow,centrifugal type,eachratedforaflowrateof14,000gpmat853psig.Thetwopumps,eachdrivenbya5000hpelectricmotor,sharecommonsuctionanddischarge headers.Thepumpmotorsarenormallysuppliedwithpowerviathemainauxiliary transformer.
Intheeventofaturbinetrip,offsitepowersuppliesthepumpmotorsviathereserveauxiliary transformer.
Theauxiliary feedwater system(APrlS)providesfeedwater tothesteamgenerators forresidualheatremovalduringreactorstartupandshutdown, lowpoweroperation, andintheeventoflossofmainfeedwater flow.TheASSconsistsofamain(M)AFWSandastandby(SB)AFWS.
The(M)ASSconsistsof2motor-driven pumps,each200gpmcapacityand1turbine-driven, 400gpmcapacity.
Eachmotor-driven pumpcansupplyeitheroneorbothsteamgenerators.
Theturbine.-driven pumpnormallysuppliesboihsteamgenerators.
Theprimarysourceofwateristwo30,000galloncondensate storagetankswhicharecross-connected throughlocked-open manuallyoperatedvalves,whilethebackupsupplyisavailable fromtheservicewatersystem.Theturbine-driven pumpissuppliedwithsteamfromthemainheaders.Tne(SB)AFWSconsistsof2motor-driven pumps,each200gpmcapac.'ty.
Thissystemwas-installed inaseparateplantareafromthe(M)APASduringAugust1979,toprovideindependent ASScapability following asteamorfed-waterlinebreakintheimmediate vicinityofthe(M)AFWSpumps.Theprimarywatersourceistheservicewatersystem.
1t ThetwoAFASareeachpoweredfrom2redundant andindependent ACemer-gencybusesfromplantemergency dieselgenerators.
Theyareinterlocked sothatbotharenotsimultaneously loadedontothevitalACbuses.The(M)AFWSsuppliesfeedwater toeachsteamgenerator via2three-inch linesconnected toeachmainfeedwater linejustoutsidethecontainment building.
The(SB)AFMSconnections toeachmainfeedwater lineareplacedwithinthecontainment buildingviaonelinepersteamgenerator.
Theyarecapableofbeingcross-connected.
bytheoperation ofmanualvalves.Allvalvesbetweenthepumpsandthesteamgenerators arelockedopen.2.GBIERALOPERATION Ouringnormalpoweroperation ofthereactor,themainfeedwater systemsuppliesfeedwater tothesecondary sideofthesteamgenerators forheatremovalfromthereactorcoolantsystem.Thefeedwater flowisregulated byindividual regulating valvesinthemainfeedwater linestoeachsteamgenerator.
Thepositions ofthevalvesareautomatically controlled baseduponsteamgenerator level,steamflow,andfeedwater flow.Ouringplantshutdown, startup,andforfeedwater requirements uptoabout3Xoffullreactorpower,feedwater isnormallysuppliedbythemainauxiliary feedwater system.Feedwater flowismanuallyregulated tomain-tainadequatewaterlevelsinthesteamgenerators.
Aspowerisincreased andsufficient highpressuresteamisavailable, amainfeedwater pumpisstartedandtheauxiliary feedwater systemisshutdown.Forfeedwater requirements ofabout3XtoI55offullpower,>eedwater ismanuallycontrolled andsuppliedvialowflowbypasslineswhichbypassthemainfeedwaier regulating valveineachmainfeedwater line.Thebypassregulating valveineachbypasslineallowsmoreaccurateandresponsive eedwaterflowcontrolthanwouldbepossiblewiththelargermainregulating valvesduringlowpower(andlowfeedwater flow)operation.
Abovefeedwater requirements ofabout15"offullreactorpower,feedwater controlisshiftedtothemainregulating valves.Aspowerisincreased to50-o0~offullpower,thesecondmainfeedwater pumpisstartedandfeedwater flowisplacedunderautomatic control.  


Afterthelossofmainfeedwaterflowtooneorbothsteamgenerators,automaticinitiationofthemainauxiliaryfeedwaterflowwillresultuponreceiptofoneormoreauxiliaryfeedwaterpumpstartupsignals.Themotordrivenauxiliaryfeedwaterpumpsstarton:I)thecoincidenceoftwooutofthreesteamgeneratorlow-Iowwaterlevel(15"ofnarrowrange,or1.3inchesabovethebottomsurfaceofthefeedring)signalsfromeithersteamgenerator,2)thetrippingofbothmainfeedwaterpumps,or3)asafetyinjectionsignal(SIS).Theturbinedrivenauxiliaryfeedwaterpumpstartson:I)thecoinci-denceoftwooutofthreesteamgeneratorlow-lowwaterlevelsignalsfrombothsteamgeneratorsor2)thecoincidenceofaturbine-generatortripandlossofoffsitepower.Theauxiliaryfeedwaterissubsequentlymanuallycontrolledtomaintainproperwaterlevelsinallsteamgenerators.Themotordrivenandturbinedrivenauxiliaryfeedwaterpumpscanalsobestartedmanually(localorremote).The(SB)ASSismanuallyinitiated.Plantdesignspecificationsallowforamaximumdelayofoneminutefromreceiptofanyauxiliaryfeedwaterpumpstartupsignalstodeliveryofmainauxiliaryfeedwatertothesteamgenerators.Alimitoftenminutesisallowedtogetthe(SB)AFMSonstream.OperatingprocedurestoadministrativelylimitauxiliaryfeedwaterIowduringrecoveryofthesteamgeneratorfeedringsfromnormalandabnormaltransientshavebeenimplementedatGinna.Inthesesituations,theauxiliaryfeedwaterflowratetoeithersteamgeneratoristobemanuallylimitedtoamaximumof150gpm.Thislimitationistoapplywheneversteamgeneratorlevelisbelowthelow-Iowlevelsetpoint,15%%dofnarrowrange,anduntilthelevelisrecoveredto255(Iinchabovethetopofthering).Thislimitationisnotapplicableintheeventofsafetyinjectioninvolvingwaterlevelsfarbelowthefeedring.Boththemainandstandbyauxiliaryfeedwatersystemsflowpathstothesteamgeneratorsarenotisolatedautomaticallyasaresultofasteamorfeedwater(mainorauxiliary)linebreak.Theisolationisaccomplishedmanually.  
Afterthelossofmainfeedwater flowtooneorbothsteamgenerators, automatic initiation ofthemainauxiliary feedwater flowwillresultuponreceiptofoneormoreauxiliary feedwater pumpstartupsignals.Themotordrivenauxiliary feedwater pumpsstarton:I)thecoincidence oftwooutofthreesteamgenerator low-Iowwaterlevel(15"ofnarrowrange,or1.3inchesabovethebottomsurfaceofthefeedring) signalsfromeithersteamgenerator, 2)thetrippingofbothmainfeedwater pumps,or3)asafetyinjection signal(SIS).Theturbinedrivenauxiliary feedwater pumpstartson:I)thecoinci-denceoftwooutofthreesteamgenerator low-lowwaterlevelsignalsfrombothsteamgenerators or2)thecoincidence ofaturbine-generator tripandlossofoffsitepower.Theauxiliary feedwater issubsequently manuallycontrolled tomaintainproperwaterlevelsinallsteamgenerators.
Themotordrivenandturbinedrivenauxiliary feedwater pumpscanalsobestartedmanually(localorremote).The(SB)ASSismanuallyinitiated.
Plantdesignspecifications allowforamaximumdelayofoneminutefromreceiptofanyauxiliary feedwater pumpstartupsignalstodeliveryofmainauxiliary feedwater tothesteamgenerators.
Alimitoftenminutesisallowedtogetthe(SB)AFMSonstream.Operating procedures toadministratively limitauxiliary feedwater Iowduringrecoveryofthesteamgenerator feedrings fromnormalandabnormaltransients havebeenimplemented atGinna.Inthesesituations, theauxiliary feedwater flowratetoeithersteamgenerator istobemanuallylimitedtoamaximumof150gpm.Thislimitation istoapplywheneversteamgenerator levelisbelowthelow-Iowlevelsetpoint,15%%dofnarrowrange,anduntilthelevelisrecovered to255(Iinchabovethetopofthering).Thislimitation isnotapplicable intheeventofsafetyinjection involving waterlevelsfarbelowthefeedring.
Boththemainandstandbyauxiliary feedwater systemsflowpathstothesteamgenerators arenotisolatedautomatically asaresultofasteamorfeedwater (mainorauxiliary) linebreak.Theisolation isaccomplished manually.  


III.MEANSTOREDUCETHEPOTENTIALFORWATERHAMMER1.DESCRIPTIONThefollowingaremeanscurrentlyemployedatGinnatoreducethepotentialforsteamgeneratorwaterhammer:1."J"shapeddischargetubesonallsteamgeneratorfeed-ringsinconjunctionwiththepromptautomaticinitiationofauxiliaryfeedwaterflowuponlossofmainfeedwaterflowand/orsteamgeneratorfeedringuncovery.2.AdministrativecontrolstolimitauxiliaryfeedwaterflowL7]tolessthan150gpmpersteamgeneratorduringperiodsofsteamgeneratorfeedringuncovery.3.Thereductionoftheeffecitvehorizontalsectionofmainfeedwaterpipingattheentrancetoallsteamgeneratorstolessthaneightfeet~~.The"J"shapeddischargetubeswereinstalledontopofthefedringsandthebottomholeswerepluggedtoprovidefortopdischargeofwaterratherthanbottomdischarge.Duringperiodsoffeedringuncovery,thisarrangementincreasesthetimeforcompletedrainageofthefeedringsandassociatedhorizontalfeedwaterpipingfromlessthanoneminutetoabout30minutes.Also,themaximummainauxiliaryfeedwaterflow(about400gpmpersteamgenerator)wasnotsuficienttomaintainthefeedringsandfeed-waterpipingfullofwaterwhenthefeedringshadbottomdischargeholes.Thefedringsequippedwith"J"shapeddischargetubes,however,permitfeedwaterflowratesaslowasabout10gpmpersteamgeneratortokeepthefeedringsandfeedwaterpipingfullofwateruntilfeedringrecoveryoccurs.Substantialdrainageofthefeedringsandpipingviathefeedringfittingclearancedoesnotoccurforaboutfiveminuteswhichallowstimeforautomaticactuationofthemainauxiliaryfeedwatersystemafterthelossofmainfeedwaterflow.Thepotentialforwaterharrierisavoidedifthefeedringsandfeedwaterpipingarekeptfullofwater.
III.MEANSTOREDUCETHEPOTENTIAL FORWATERHAMMER1.DESCRIPTION Thefollowing aremeanscurrently employedatGinnatoreducethepotential forsteamgenerator waterhammer:1."J"shapeddischarge tubesonallsteamgenerator feed-ringsinconjunction withthepromptautomatic initiation ofauxiliary feedwater flowuponlossofmainfeedwater flowand/orsteamgenerator feedringuncovery.
2.Administrative controlstolimitauxiliary feedwater flowL7]tolessthan150gpmpersteamgenerator duringperiodsofsteamgenerator feedringuncovery.
3.Thereduction oftheeffecitve horizontal sectionofmainfeedwater pipingattheentrancetoallsteamgenerators tolessthaneightfeet~~.The"J"shapeddischarge tubeswereinstalled ontopofthefedringsandthebottomholeswerepluggedtoprovidefortopdischarge ofwaterratherthanbottomdischarge.
Duringperiodsoffeedringuncovery, thisarrangement increases thetimeforcompletedrainageofthefeedrings andassociated horizontal feedwater pipingfromlessthanoneminutetoabout30minutes.Also,themaximummainauxiliary feedwater flow(about400gpmpersteamgenerator) wasnotsuficienttomaintainthefeedrings andfeed-waterpipingfullofwaterwhenthefeedrings hadbottomdischarge holes.Thefedringsequippedwith"J"shapeddischarge tubes,however,permitfeedwater flowratesaslowasabout10gpmpersteamgenerator tokeepthefeedrings andfeedwater pipingfullofwateruntilfeedringrecoveryoccurs.Substantial drainageofthefeedrings andpipingviathefeedringfittingclearance doesnotoccurforaboutfiveminuteswhichallowstimeforautomatic actuation ofthemainauxiliary feedwater systemafterthelossofmainfeedwater flow.Thepotential forwaterharrierisavoidedifthefeedrings andfeedwater pipingarekeptfullofwater.
P  
P  
'I"Thepromptautomati'c'startupofanyone"mainauxiliaryfeedwaterpumpafterthelossofmainfeedwaterflowprovidesfeedwaterflowtokeepthefedringsandfeedwaterpipingfullofwater,Hecausethe"J"shapeddis-chargetubesreducetheleakagefromthefeedring,theauxiliaryfeedwaterflowfromeitherofthemotordrivenpumpsortheturbinedrivenpumpismorethansufficienttokeepthefeedwatersystemfullofwater.ThepresentGinnamainfeedwaterpipinggeometryadjacenttoeachsteamgeneratorconsistsofahorizontalrunfromthesteamgeneratortothefirstdownwardturningelbowineachline.Thehorizontalrunsare2feet3inchesfromthenozzletothecenterlineofthedownwardlegoftheelbow,wellwithinthevendor'srecommendationstominimizewaterhammerdamagetothefeedwaterpipingsystem.Priortothedecisiontoinstall"J"tubesananalysisoftheGinnamainfeedwaterpipingusingapreliminary,Mestinghouse-deriveddynamicforcingfunctionwasperformed.Assumptionswerethatthesteam-water~331sluginitiatedatthesteamgenerators;thatauxiliaryfeedwaterwasinuse;andthatthemainfeedwatercheckvalveswereclosed.ThetimedependentmathematicalfunctionwasmodifiedfortheGinnapipingconfiguration.Thetimehistoryoftheacousticshockwavegeneratedbythesteam-waterslugwasevaluatedwithrespecttostresscriteriabasedonallowablestressobtainedfromtheoriginalconstructioncode.Theresultsshowedthattherewereseverallocationsinbothfeedwaterpipingsystemswhichexceededthestresscriteria."J"tubessubsequentlywereinstalledtoreducethepoten-tialforwaterhammer.NotestprogramshavebeenperformedatGinnatodeterminewhetheranywaterhammertransientwouldoccurasaresultofuncoveringofthesteamgeneratorfeedrings.However,bothfeedwaterlinesinsideofcontainmentwereinstrumentedfollowingthe1975transienttoprovidethecontrolroomoperatorwithpipingvibrationinformationduringplantstartup.
'I"Thepromptautomati'c'startup ofanyone"mainauxiliary feedwater pumpafterthelossofmainfeedwater flowprovidesfeedwater flowtokeepthefedringsandfeedwater pipingfullofwater,Hecausethe"J"shapeddis-chargetubesreducetheleakagefromthefeedring, theauxiliary feedwater flowfromeitherofthemotordrivenpumpsortheturbinedrivenpumpismorethansufficient tokeepthefeedwater systemfullofwater.ThepresentGinnamainfeedwater pipinggeometryadjacenttoeachsteamgenerator consistsofahorizontal runfromthesteamgenerator tothefirstdownwardturningelbowineachline.Thehorizontal runsare2feet3inchesfromthenozzletothecenterlineofthedownwardlegoftheelbow,wellwithinthevendor'srecommendations tominimizewaterhammerdamagetothefeedwater pipingsystem.Priortothedecisiontoinstall"J"tubesananalysisoftheGinnamainfeedwater pipingusingapreliminary, Mestinghouse-derived dynamicforcingfunctionwasperformed.
If'l 2.EFFECTIVENESSOURINGTRANSIENTSANOCONOITIONSCONOUCIVETOMATERHANMERTnenormalandhypotheticaltransientsandconditionsconducivetosteamgeneratorwaterhammerarediscussedinthissection.Hiththeexcep-tionofsubsection2.4entitled"OperatorError",eachsubsectiondescribesatransientresultingfromasingleinitiatingeventorfailurewiththeunitinnormalpoweroperation.potentialcomponentorsystemfailuresasadirectresultofahypotheticalsteamgeneratorwaterhaftmerareaccountedforintheanalysis.Asinglecriterionwasthebasisforevaluatingtheeffectivenessofthemeanstoadequatelyreducethepotentialforsteamgeneratorwaterhammer.Thecriterionistomaintainthefeedwatersystemfullofwaterduringthetimefromtheinitiatingeventresultinginfeedringuncoverytosubsequentfeedringrecoveryandstabilizedsteamgeneratorwaterinventory.2.1Areactortripwiththeplantinnormalpoweroperationwouldresultinaturbinetripandcausethewaterlevelinallsteamgeneratorstocollapsetoalevelbelowthefeedrings.Mithin60secondsoftheresultingsteamgeneratorlow-Iowwaterlevelsignals,themotordrivenandturbinedrivenmainauxiliaryfeedwaterpumpswouldautomaticallystartandsupplyauxiliaryfeedwatertothesteamgenerators.Iftheinitiatingeventforthereactortripdidnotclosethemainfeedwaterregulatingvalves,thevalveswouldcloseuponreceiptof:I)lowprimarycoolantaveragetemperaturesignals,2)steamgeneratorhigh-highwaterlevelsignals,or3)anS/S.Auxiliaryfeedwaterwouldthenbemanuallycontrolledtorestorethewaterlevelsinthesteamgeneratorsandmaintainthelevelsabovethefeedrings.Thepotentialforwaterhammeroccurringinthefeedringorfeedwaterpipingafterareactortripisverylowbecausethemainandauxiliaryfeed-waterkeepstheeedringsandfeedwaierpipingfullofwater.r2.2LossofMainFedwaterFlowThemainfeedwatersupplycouldbeinterruptedduetotheI)lossofoffsitepower,2)malfunctionortrippingofthemainfedwaterpumps,7  
Assumptions werethatthesteam-water
'I 3)lossofsuctiontothemainfeedwaterpumps,or4)closureofthemainfeed-waterregulatingand/orisolationvalves.Areactortripwouldoccuruponreceiptoftheresultingsteam/feedwaterflowmismatchsignalsandlowsteamgeneratorwaterlevelsignals.Thereactortripwouldcuasethewaterlevelsinallsteamgeneratorstocollapsetoalevelbelowthefeedrings.Themotordrivenandturbinedrivenmainauxiliaryfeedwaterpumpswould'startuponreceiptofthesubsequentIow-lowsteamgeneratorwaterlevelsignals.Auxiliaryfeedwater'wouldthenbeusedtorefillthesteamgeneratorsandrecoverthefeedrings.ThelossofmainfeedwaterflowandtheIikeIyuncoveryofthefeedringswouldnotresultinsubstantialfeedringandfeedwaterpipingdrainagesincethemainauxiliaryfeedwaterpumpswouldstartpromptlytosupplyfeedwatertothesteamgenerators.Therefore,thepotentialforwaterhammerissignificantlyreduced.2.3LossofOffsitePowerThecompleteinterruptionofoffsitepowerwouldresultinareactortripandautomaticstartupoftheemergencydieselgenerators.Automaticinitiationofthemotordrivenandturbinedrivenmainauxiliaryfeedwatersystemswouldoccurtosupplyfeedwatertothesteamgenerators.TheredundantauxiliaryfeedwatersystemsarefullyfunctionalwithoutoffsitepowersincethedieselgeneratorsandOCbatteriescansupplyallnecessaryelectricalpowertobothsystems.Aswasthecaseforthelossofmainfeedwaterflow,auxiliaryfeedwaterflowwouldmaintainthefeedringsandfeedwaterpipingfullofwateruntilfeedringrecoveryoccursandagainthepotentialforwaterhammerwouldbeveryIow.2.4OperatorErrorThepotentialforwaterhammerinthefeedwatersystemincreasesifuncoveredfeedringsareallowedtodrainsubstantiallyafteranevent'ausesthesteamgeneratorwaterlevelstodropbelowthefeedrings.Admissionoffeedwaierintothedrainedfeedringsandhorizontalfeedwaterpipingcouldthenresultinwatersluggingandsubsequentwaterhammer.Theuncoveryofoneorbothfeedringsispossiblethroughoperatorerrorwhentheplantis I
~331sluginitiated atthesteamgenerators; thatauxiliary feedwater wasinuse;andthatthemainfeedwater checkvalveswereclosed.Thetimedependent mathematical functionwasmodifiedfortheGinnapipingconfiguration.
operatingatlowpowerorduringstartuporwhileshuttingdownsincefeed-swaterisbeingregulatedmanually,ratherthanautomatically.Forthis-situ-ation,anadministrativelimitof150gpmonauxiliary,feedwaterflowhasbeenimplementedintheoperatingprocedures.ThislimitationwasrecommendedinReference7basedontestsatIndianPoint.2.5SteamLineBreakThepotentialforsteamgeneratorwaterhammereventsresultingfromorconcurrentwiththeruptureofasteamlineinsidecontainmentwasconsidered.Thesequenceofeventsfollowingsuchafailurewasevaluatedtodetermineifthebreakcouldresultinthe1)blowdownoftheremainingsteamgeneratorand/or2)inabilitytosupplyauxiliaryfeedwatertotheunaffectedsteamgenerator.TheruptureofasteamlinewouldautomaticallyresultinanSIScausingareactortrip,aturbinetrip,andisolationofallmainfeedwaterlines.Theloss.ofmainfeedwaterflowtothesteamgeneratorswouldresultintheautomaticstartupofthemotordrivenandturbinedrivenmainauxiliaryfeed-waterpumpsuponreceiptoflow-lowsteamgeneratorwaterlevelsignals.Auxiliaryfeedwaterwouldcontinuetobesuppliedforsubsequentrefilloftheunaffectedsteamgeneratorandrecoveryofthefeedring.However,iftheruptureoccursintheimmediatevicinityofthemainauxiliaryfeedwaterpumpsandrenderstheminoperable,theoperatingproceduresallowtenminutesfortheoperationofswitchesinthecontrolroomthatwillisolatethe(N)A'FMSandgetthe(SB)AFWSonstream.Althoughihefeedringmightdrainsignificantlyinthattime,theadministrativelimitof150gpmofauxiliaryfeedwaterflowwillreducethepotentialofwaterhammeroccurrence.ThislimitationisconsideredapplicableatGinnabasedonthebestavailableinformationobtainedintestsatIndianPoint.Theblowdownofasteamgeneratorwouldnotdeprivetheturbinedrivenauxiliaryfeedwaterpumpofdrivingsteam..Acheckvalveineachsteamsupplylinewouldprevent."crossover"blowdownthroughthesupplylinesfromtheunaffectedsteamgeneratortotheassociatedblowndownsteamgenerator.
Thetimehistoryoftheacousticshockwavegenerated bythesteam-water slugwasevaluated withrespecttostresscriteriabasedonallowable stressobtainedfromtheoriginalconstruction code.Theresultsshowedthattherewereseverallocations inbothfeedwater pipingsystemswhichexceededthestresscriteria.
kl Thepotentialforwaterhammerislowafterasteamlinebreaksincepromptdeliveryofauxiliaryfeedwaterinconjunctionwiththe"J"shapeddischargetubesmaintainfullfeedringsandfeedwaterpipingintheunaffectedsearngenerator,.2.6Loss-of-CoolantAccidentThepotentialfor,feedwaterwaterharmerduringapostulatedloss-of-coolantaccident(LOCA)ineitherunitwasexaminedbecauseI)awaterhammercouldincreasetheconsequencesofaLOCAand2)theplantprotectiveactionsduringaLOCAcouldresultinconditionswhichareconducivetowaterhammerifthefeedwatersystemisnotkeptfullofwater.ALOCAwouldresultinanSIS,areactortrip,aturbinetrip,andsub-sequentisolationofthefeedwatersystem.Thestartupofthemotordrivenandturbinedrivenmainauxiliaryfeedwaterpumpswouldresultandfeedwaterwouldbesuppliedtothesteamgeneratorswithin60secondsofthereactortrip.Refillofthesteamgeneratorsandrecoveryofthefeedringswouldoccurinamannertypicalofareactortriporthelossofoffsitepower.TheconditionsconducivetowaterhanmerinthefeedringsandfeedwaterpipingresultingfromaLOCAwouldbeverysimilartothoseresultingfromareactortrip.Therefore,themeanstoreducethepotentialforwaterhammerwouldbefullyeffectiveduringaLOCA.
"J"tubessubsequently wereinstalled toreducethepoten-tialforwaterhammer.Notestprogramshavebeenperformed atGinnatodetermine whetheranywaterhammertransient wouldoccurasaresultofuncovering ofthesteamgenerator feedrings.
IV.CONCLUSIONSAiVORECOMMENOATIONSTheassessment.ofthecapabilityofexistingmeanstoreducethepotentialforsteamgeneratorwaterhammerduringnormalandhypotheticaloperatingconditionswasdiscussedinSectionIII.Thisassessmenthasshownthatunderconditionswhicharemostconducivetowaterhammerinthefeedwatersystems(specifically,uncoveredanddrainingfeedringsandfeedwaterpipingsubjectedtoadmissionofcoldauxiliaryfeedwater),themeansavailabletoreducethepotentialforwaterhammeratGinnaareade-quatetomaintainsufficientlyfullfeedringsandfeedwaterpiping.Keepingthefeedringsandfeedwaterpipingfullofwateravoidsthepotentialforwaterhammer.Therefore,weconcludethatthemeanstoreducethepotentialforsteamgeneratorwaterhammeratthisfacilityareadequateandwerecommendacceptancebytheNRCstaff.
However,bothfeedwater linesinsideofcontainment wereinstrumented following the1975transient toprovidethecontrolroomoperatorwithpipingvibration information duringplantstartup.
REFERENCES1.G.E.Green,Roches.erGasandElectricCorp.(RGE),ltrtoJ.P.O'Reilly,NRC,"R.E.GinnaNuclearPowerPlant,UnitNo.I,FailureofSensingLineon'B'uxiliaryFeedwaterPump,AbnormalOccurrence73-6and73-7,"AugustI,1973.2.K.M.Amish,RGE,ltrtoR.T.Colson,NRC,"FeedwaterPipingTransientEvaluation,"July17,1975.:3.L.0.White,Jr.,RGE,ltrtoR.A.Purple,NRC,"SecondarySystemFluidFlowEnstability,R.E.GinnaNuclearPowerPlantUnitNo.I,"October31,1975.4.K.W.Amish,RGE,ltrtoR.A.Purole,NRC,"SpecificChangestradeatGinnaRelativetoMaterHammer,"January30,1976.5.L.D.White,Jr.,RGE,ItrtoD.Ziemann,NRC,"SteamGeneratorMaterHammerPrevention,"June15,1978.6.GinnaNuclearPowerPlantUnitNo.IUpdatedFinalFacilitDescritionandSaetAnalsisReort,RE,NRDocketNo.0-244.7.J.B.Block,etal,AnEvaluationofPMRSteamGeneratorMaterHammer,Creare,Inc.NUREG-029December98.M.E.Bennett,MaterhamnerinSteamGeneratorFeedwaterLines,WestinghouseTechnicaBueton,NSD-TB--June0,9712 f~itj vvvv~g1'v.I'lc~C~.~.si~~4Stondors(lorm1041September19)S4TreasuryFRM2000l0(2-l06PUBLICVOUCHER<FORRES'UNDSVoucherNo................C04L2-05SchcdutcNo..---------------,-,p'4.~'j~er'vv~vrv~.33X4675AppropriationorFund:ROCHESTERGASRELECCORP89EAVEROCHESTERNY14449~ATTNLDblHITEJRToAddressNUCLEARREGULATORYCOf1MISSIONU.S.(DepsrementorEstabllsbmenl,BureauorOmce)~.blASHINGTONDC20555Location:PAIDOY/2.R(-7fuv,A.vvsvs'I~-forDepositreceivedfromtheabove-nameddepositoron......................,19....hasbeenappliedasheresnstatedandthebalanceindicatedisreturnedIserelvithrv-AmountofdepositAppliedasexpIainedin"Remarks"below'.......'~v1v~~Balanceauthorizedtoberefunded4i000-00eRemarks:THENOV143979APPLICATIONblASREVIEblEDANDFOUNDNOTTOBESUBJECTTOFEEZBECAUSETHENRCISblAIVINGFEESFORCERTAINTYPESOFFIREPROTECTION,Al1ENDf1ENTS~12/31/79cc:DocketFileRefundFi1eReactorFileActivityFi1e(Signoriginalonly)Title.~vvvRefundbyheckNo..C(SignatureCash,g....-.-...-...--...on........ofpayee)Othermethod;g..........-----0v(Signorlglnalonly)(Describe)0u.s,corssIINCIIrrslaslacottlceIIsrs0sss$00tt~vv,vvI"~~~'}}
If'l 2.EFFECTIVENESS OURINGTRANSIENTS ANOCONOITIONS CONOUCIVE TOMATERHANMERTnenormalandhypothetical transients andconditions conducive tosteamgenerator waterhammerarediscussed inthissection.Hiththeexcep-tionofsubsection 2.4entitled"Operator Error",eachsubsection describes atransient resulting fromasingleinitiating eventorfailurewiththeunitinnormalpoweroperation.
potential component orsystemfailuresasadirectresultofahypothetical steamgenerator waterhaftmerareaccounted forintheanalysis.
Asinglecriterion wasthebasisforevaluating theeffectiveness ofthemeanstoadequately reducethepotential forsteamgenerator waterhammer.Thecriterion istomaintainthefeedwater systemfullofwaterduringthetimefromtheinitiating eventresulting infeedringuncoverytosubsequent feedringrecoveryandstabilized steamgenerator waterinventory.
2.1Areactortripwiththeplantinnormalpoweroperation wouldresultinaturbinetripandcausethewaterlevelinallsteamgenerators tocollapsetoalevelbelowthefeedrings.
Mithin60secondsoftheresulting steamgenerator low-Iowwaterlevelsignals,themotordrivenandturbinedrivenmainauxiliary feedwater pumpswouldautomatically startandsupplyauxiliary feedwater tothesteamgenerators.
Iftheinitiating eventforthereactortripdidnotclosethemainfeedwater regulating valves,thevalveswouldcloseuponreceiptof:I)lowprimarycoolantaveragetemperature signals,2)steamgenerator high-high waterlevelsignals,or3)anS/S.Auxiliary feedwater wouldthenbemanuallycontrolled torestorethewaterlevelsinthesteamgenerators andmaintainthelevelsabovethefeedrings.
Thepotential forwaterhammeroccurring inthefeedringorfeedwater pipingafterareactortripisverylowbecausethemainandauxiliary feed-waterkeepstheeedringsandfeedwaier pipingfullofwater.r2.2LossofMainFedwaterFlowThemainfeedwater supplycouldbeinterrupted duetotheI)lossofoffsitepower,2)malfunction ortrippingofthemainfedwaterpumps,7  
'I 3)lossofsuctiontothemainfeedwater pumps,or4)closureofthemainfeed-waterregulating and/orisolation valves.Areactortripwouldoccuruponreceiptoftheresulting steam/feedwater flowmismatchsignalsandlowsteamgenerator waterlevelsignals.Thereactortripwouldcuasethewaterlevelsinallsteamgenerators tocollapsetoalevelbelowthefeedrings.
Themotordrivenandturbinedrivenmainauxiliary feedwater pumpswould'startuponreceiptofthesubsequent Iow-lowsteamgenerator waterlevelsignals.Auxiliary feedwater
'wouldthenbeusedtorefillthesteamgenerators andrecoverthefeedrings.
Thelossofmainfeedwater flowandtheIikeIyuncoveryofthefeedrings wouldnotresultinsubstantial feedringandfeedwater pipingdrainagesincethemainauxiliary feedwater pumpswouldstartpromptlytosupplyfeedwater tothesteamgenerators.
Therefore,thepotential forwaterhammerissignificantly reduced.2.3LossofOffsitePowerThecompleteinterruption ofoffsitepowerwouldresultinareactortripandautomatic startupoftheemergency dieselgenerators.
Automatic initiation ofthemotordrivenandturbinedrivenmainauxiliary feedwater systemswouldoccurtosupplyfeedwater tothesteamgenerators.
Theredundant auxiliary feedwater systemsarefullyfunctional withoutoffsitepowersincethedieselgenerators andOCbatteries cansupplyallnecessary electrical powertobothsystems.Aswasthecaseforthelossofmainfeedwater flow,auxiliary feedwater flowwouldmaintainthefeedrings andfeedwater pipingfullofwateruntilfeedringrecoveryoccursandagainthepotential forwaterhammerwouldbeveryIow.2.4OperatorErrorThepotential forwaterhammerinthefeedwater systemincreases ifuncovered feedrings areallowedtodrainsubstantially afteranevent'auses thesteamgenerator waterlevelstodropbelowthefeedrings.
Admission offeedwaier intothedrainedfeedrings andhorizontal feedwater pipingcouldthenresultinwatersluggingandsubsequent waterhammer.Theuncoveryofoneorbothfeedrings ispossiblethroughoperatorerrorwhentheplantis I
operating atlowpowerorduringstartuporwhileshuttingdownsincefeed-swaterisbeingregulated
: manually, ratherthanautomatically.
Forthis-situ-ation,anadministrative limitof150gpmonauxiliary, feedwater flowhasbeenimplemented intheoperating procedures.
Thislimitation wasrecommended inReference7basedontestsatIndianPoint.2.5SteamLineBreakThepotential forsteamgenerator waterhammereventsresulting fromorconcurrent withtheruptureofasteamlineinsidecontainment wasconsidered.
Thesequenceofeventsfollowing suchafailurewasevaluated todetermine ifthebreakcouldresultinthe1)blowdownoftheremaining steamgenerator and/or2)inability tosupplyauxiliary feedwater totheunaffected steamgenerator.
Theruptureofasteamlinewouldautomatically resultinanSIScausingareactortrip,aturbinetrip,andisolation ofallmainfeedwater lines.Theloss.ofmainfeedwater flowtothesteamgenerators wouldresultintheautomatic startupofthemotordrivenandturbinedrivenmainauxiliary feed-waterpumpsuponreceiptoflow-lowsteamgenerator waterlevelsignals.Auxiliary feedwater wouldcontinuetobesuppliedforsubsequent refilloftheunaffected steamgenerator andrecoveryofthefeedring.
However,iftheruptureoccursintheimmediate vicinityofthemainauxiliary feedwater pumpsandrenderstheminoperable, theoperating procedures allowtenminutesfortheoperationofswitchesinthecontrolroomthatwillisolatethe(N)A'FMSandgetthe(SB)AFWSonstream.Althoughihefeedringmightdrainsignificantly inthattime,theadministrative limitof150gpmofauxiliary feedwater flowwillreducethepotential ofwaterhammeroccurrence.
Thislimitation isconsidered applicable atGinnabasedonthebestavailable information obtainedintestsatIndianPoint.Theblowdownofasteamgenerator wouldnotdeprivetheturbinedrivenauxiliary feedwater pumpofdrivingsteam..Acheckvalveineachsteamsupplylinewouldprevent."crossover" blowdownthroughthesupplylinesfromtheunaffected steamgenerator totheassociated blowndown steamgenerator.
kl Thepotential forwaterhammerislowafterasteamlinebreaksincepromptdeliveryofauxiliary feedwater inconjunction withthe"J"shapeddischarge tubesmaintainfullfeedrings andfeedwater pipingintheunaffected searngenerator,.
2.6Loss-of-Coolant AccidentThepotential for,feedwater waterharmerduringapostulated loss-of-coolantaccident(LOCA)ineitherunitwasexaminedbecauseI)awaterhammercouldincreasetheconsequences ofaLOCAand2)theplantprotective actionsduringaLOCAcouldresultinconditions whichareconducive towaterhammerifthefeedwater systemisnotkeptfullofwater.ALOCAwouldresultinanSIS,areactortrip,aturbinetrip,andsub-sequentisolation ofthefeedwater system.Thestartupofthemotordrivenandturbinedrivenmainauxiliary feedwater pumpswouldresultandfeedwater wouldbesuppliedtothesteamgenerators within60secondsofthereactortrip.Refillofthesteamgenerators andrecoveryofthefeedrings wouldoccurinamannertypicalofareactortriporthelossofoffsitepower.Theconditions conducive towaterhanmerinthefeedrings andfeedwater pipingresulting fromaLOCAwouldbeverysimilartothoseresulting fromareactortrip.Therefore, themeanstoreducethepotential forwaterhammerwouldbefullyeffective duringaLOCA.
IV.CONCLUSIONS AiVORECOMMENOATIONS Theassessment.
ofthecapability ofexistingmeanstoreducethepotential forsteamgenerator waterhammerduringnormalandhypothetical operating conditions wasdiscussed inSectionIII.Thisassessment hasshownthatunderconditions whicharemostconducive towaterhammerinthefeedwater systems(specifically, uncovered anddrainingfeedrings andfeedwater pipingsubjected toadmission ofcoldauxiliary feedwater),
themeansavailable toreducethepotential forwaterhammeratGinnaareade-quatetomaintainsufficiently fullfeedrings andfeedwater piping.Keepingthefeedrings andfeedwater pipingfullofwateravoidsthepotential forwaterhammer.Therefore, weconcludethatthemeanstoreducethepotential forsteamgenerator waterhammeratthisfacilityareadequateandwerecommend acceptance bytheNRCstaff.
REFERENCES 1.G.E.Green,Roches.er GasandElectricCorp.(RGE),ltrtoJ.P.O'Reilly, NRC,"R.E.GinnaNuclearPowerPlant,UnitNo.I,FailureofSensingLineon'B'uxiliary Feedwater Pump,AbnormalOccurrence 73-6and73-7,"AugustI,1973.2.K.M.Amish,RGE,ltrtoR.T.Colson,NRC,"Feedwater PipingTransient Evaluation,"
July17,1975.:3.L.0.White,Jr.,RGE,ltrtoR.A.Purple,NRC,"Secondary SystemFluidFlowEnstability, R.E.GinnaNuclearPowerPlantUnitNo.I,"October31,1975.4.K.W.Amish,RGE,ltrtoR.A.Purole,NRC,"Specific ChangestradeatGinnaRelativetoMaterHammer,"January30,1976.5.L.D.White,Jr.,RGE,ItrtoD.Ziemann,NRC,"SteamGenerator MaterHammerPrevention,"
June15,1978.6.GinnaNuclearPowerPlantUnitNo.IUpdatedFinalFacilitDescritionandSaetAnalsisReort,RE,NRDocketNo.0-244.7.J.B.Block,etal,AnEvaluation ofPMRSteamGenerator MaterHammer,Creare,Inc.NUREG-029 December98.M.E.Bennett,MaterhamnerinSteamGenerator Feedwater Lines,Westinghouse TechnicaBueton,NSD-TB--June0,9712 f~itj vvvv~g1'v.I'lc~C~.~.si~~4Stondors(
lorm1041September 19)S4TreasuryFRM2000l0(2-l06PUBLICVOUCHER<FORRES'UNDSVoucherNo................
C04L2-05SchcdutcNo..---------------
,-,p'4.~'j~er'vv~vrv~.33X4675Appropriation orFund:ROCHESTER GASRELECCORP89EAVEROCHESTER NY14449~ATTNLDblHITEJRToAddressNUCLEARREGULATORY COf1MISSIONU.S.(Depsrement orEstabllsbmenl, BureauorOmce)~.blASHINGTON DC20555Location:
PAIDOY/2.R(-7fuv,A.vvsvs'I~-forDepositreceivedfromtheabove-named depositor on...........
...........,
19....hasbeenappliedasheresnstatedandthebalanceindicated isreturnedIserelvithr v-AmountofdepositAppliedasexpIained in"Remarks" below'.......
'~v1v~~Balanceauthorized toberefunded4i000-00eRemarks:THENOV143979APPLICATION blASREVIEblED ANDFOUNDNOTTOBESUBJECTTOFEEZBECAUSETHENRCISblAIVINGFEESFORCERTAINTYPESOFFIREPROTECTION, Al1ENDf1ENTS
~12/31/79cc:DocketFileRefundFi1eReactorFileActivityFi1e(Signoriginalonly)Title.~vvvRefundbyheckNo..C(Signature Cash,g....-.-...-...-
-...on........ofpayee)Othermethod;g..........-
----0v(Signorlglnalonly)(Describe) 0u.s,corssIINCIIr rslaslacottlceIIsrs0sss$00tt~vv,vvI"~~~'}}

Revision as of 14:56, 29 June 2018

Steam Generator Water Hammer Technical Evaluation.
ML17249A345
Person / Time
Site: Ginna Constellation icon.png
Issue date: 10/31/1979
From:
EG&G, INC.
To:
Shared Package
ML17249A342 List:
References
TASK-05-13, TASK-5-13, TASK-RR NUDOCS 7912190066
Download: ML17249A345 (26)


Text

STEAMGENERATOR WATERHAMMERTECHNICAL EVALUATION GINNAPOWERSTATIONOCTOBER1979EG5GIDAHO,INC.7918190 CONTENTSIVV,2.4OperatorError2.5SteamLineBreak.2.6Loss-of-Coolant Accident.CONCLUSIONS ANDRECOMMENDATIONS REFERENCES.

I.INTRODUCTION.

II.FEEDMATER SYSTEM.1.DESCRIPTION

.2.GENERALOPERATION

.III.MEANSTOREDUCETHEPOTENTIAL FORMATER1.DESCRIPTION

.2.EFFECTIVENESS DURINGTRANSIENTS ANDCONDUCIVE TOMATERHAMMER.2.1ReactorTrip.2.2LossofMainFeedwater Flow.2.3LossofOffsitePower.HAMMER.CONDITIONS

~~I22~~35577788910~1112 t

I.'NTRODUCTION Anevaluation wasperformed fortheGinnafeedwater system.Thepurposeofthisevaluation wastoassesstheeffectiveness oftheexistingmeanstoreducethepotential forsteamgenerator waterhammerinthefeedwater systemduringnormalandhypothetical operating conditions.

Thesteam-water slugginginthefeedwater systems(specifically, thesteamgenerator feedwater spargerringsandadjacentfeedwater piping)wasconsidered inthisreview.Noknownwaterhammereventdirectlyattributable tofeedwater ringdraininghasoccurredatGinna.Twowaterhammertransients causedbyfeedwater controlvalvemalfunction didhappen,however.Thepotential forsteamgenerator waterhammerisavoidedifthefeed-watersystemismaintained fullofwater.Hence,thisevaluation wasbasedontheeffectiveness ofthemeansutilizedatGinnatomaintainthefeedwater systemfullofwaterduringnormalandhypothetical operating conditions.

Theinformation forthisevaluation wasobtainedfrom:1)discussions withthelicensee, 2)licenseesubmittals ofAugust1,1973,July17,Lll1975~,October31,1975~,January30,1976E,andJune15,1978"",r5~3)the"GinnaNuclearPlantFinalSafetyAnalysisReport"~j,4)"AnEvalu-ationofPMRSteamGenerator MaterHamner,"NUREG-0291

,and5)Mesting-[71houseTechnical

Bulletin, NSD-TB-75-7" rBjAdescription ofthefeedwater systematGinnaanditsgeneraloperation ispresented inSectionII.Themeanstoreducethepotential forsteamgen-eratorwaterhammerarepresented inSectionIII,including adiscussion oftheireffectiveness duringoperating conditions conducive towaterhammer.Finally,conclusions andrecommendations arepresented inSectionIVconcern-ingtheadequacyoftheexistingmeanstoreducethepotential forsteamgenerator waterhammeratthisfacility.

IV II.FEEDWATER SYSTEM1.DESCRIPTION Thefeedwater systemforGinnawasdesignedtoprovideanadequatesupplyoffeedwater tothesecondary sideofthetwosteamgenerators duringalloperational conditions.

Feedwaier issuppliedtothemainfeedwater pumpsbytheheaterdrainpumpsandbythecondensate pumpsviathelowpressureheaters.Feedwater fromthemainfeedwater pumpsissuppliedtoamainheaderviathehighpressureheaters.Themainheadersplitsintotwo14-inchfeedwater linestosupplya10.75-inch

diameter, half-inch wallthickness feedringinsideeachsteamgenerator.

Feedwater isdischarged downwardthroughinverted"J"shapedtubesuniformly distributed ontopofeachfedring.Thetwomainfeedwater pumpsaresinglestage,doubleflow,centrifugal type,eachratedforaflowrateof14,000gpmat853psig.Thetwopumps,eachdrivenbya5000hpelectricmotor,sharecommonsuctionanddischarge headers.Thepumpmotorsarenormallysuppliedwithpowerviathemainauxiliary transformer.

Intheeventofaturbinetrip,offsitepowersuppliesthepumpmotorsviathereserveauxiliary transformer.

Theauxiliary feedwater system(APrlS)providesfeedwater tothesteamgenerators forresidualheatremovalduringreactorstartupandshutdown, lowpoweroperation, andintheeventoflossofmainfeedwater flow.TheASSconsistsofamain(M)AFWSandastandby(SB)AFWS.

The(M)ASSconsistsof2motor-driven pumps,each200gpmcapacityand1turbine-driven, 400gpmcapacity.

Eachmotor-driven pumpcansupplyeitheroneorbothsteamgenerators.

Theturbine.-driven pumpnormallysuppliesboihsteamgenerators.

Theprimarysourceofwateristwo30,000galloncondensate storagetankswhicharecross-connected throughlocked-open manuallyoperatedvalves,whilethebackupsupplyisavailable fromtheservicewatersystem.Theturbine-driven pumpissuppliedwithsteamfromthemainheaders.Tne(SB)AFWSconsistsof2motor-driven pumps,each200gpmcapac.'ty.

Thissystemwas-installed inaseparateplantareafromthe(M)APASduringAugust1979,toprovideindependent ASScapability following asteamorfed-waterlinebreakintheimmediate vicinityofthe(M)AFWSpumps.Theprimarywatersourceistheservicewatersystem.

1t ThetwoAFASareeachpoweredfrom2redundant andindependent ACemer-gencybusesfromplantemergency dieselgenerators.

Theyareinterlocked sothatbotharenotsimultaneously loadedontothevitalACbuses.The(M)AFWSsuppliesfeedwater toeachsteamgenerator via2three-inch linesconnected toeachmainfeedwater linejustoutsidethecontainment building.

The(SB)AFMSconnections toeachmainfeedwater lineareplacedwithinthecontainment buildingviaonelinepersteamgenerator.

Theyarecapableofbeingcross-connected.

bytheoperation ofmanualvalves.Allvalvesbetweenthepumpsandthesteamgenerators arelockedopen.2.GBIERALOPERATION Ouringnormalpoweroperation ofthereactor,themainfeedwater systemsuppliesfeedwater tothesecondary sideofthesteamgenerators forheatremovalfromthereactorcoolantsystem.Thefeedwater flowisregulated byindividual regulating valvesinthemainfeedwater linestoeachsteamgenerator.

Thepositions ofthevalvesareautomatically controlled baseduponsteamgenerator level,steamflow,andfeedwater flow.Ouringplantshutdown, startup,andforfeedwater requirements uptoabout3Xoffullreactorpower,feedwater isnormallysuppliedbythemainauxiliary feedwater system.Feedwater flowismanuallyregulated tomain-tainadequatewaterlevelsinthesteamgenerators.

Aspowerisincreased andsufficient highpressuresteamisavailable, amainfeedwater pumpisstartedandtheauxiliary feedwater systemisshutdown.Forfeedwater requirements ofabout3XtoI55offullpower,>eedwater ismanuallycontrolled andsuppliedvialowflowbypasslineswhichbypassthemainfeedwaier regulating valveineachmainfeedwater line.Thebypassregulating valveineachbypasslineallowsmoreaccurateandresponsive eedwaterflowcontrolthanwouldbepossiblewiththelargermainregulating valvesduringlowpower(andlowfeedwater flow)operation.

Abovefeedwater requirements ofabout15"offullreactorpower,feedwater controlisshiftedtothemainregulating valves.Aspowerisincreased to50-o0~offullpower,thesecondmainfeedwater pumpisstartedandfeedwater flowisplacedunderautomatic control.

Afterthelossofmainfeedwater flowtooneorbothsteamgenerators, automatic initiation ofthemainauxiliary feedwater flowwillresultuponreceiptofoneormoreauxiliary feedwater pumpstartupsignals.Themotordrivenauxiliary feedwater pumpsstarton:I)thecoincidence oftwooutofthreesteamgenerator low-Iowwaterlevel(15"ofnarrowrange,or1.3inchesabovethebottomsurfaceofthefeedring) signalsfromeithersteamgenerator, 2)thetrippingofbothmainfeedwater pumps,or3)asafetyinjection signal(SIS).Theturbinedrivenauxiliary feedwater pumpstartson:I)thecoinci-denceoftwooutofthreesteamgenerator low-lowwaterlevelsignalsfrombothsteamgenerators or2)thecoincidence ofaturbine-generator tripandlossofoffsitepower.Theauxiliary feedwater issubsequently manuallycontrolled tomaintainproperwaterlevelsinallsteamgenerators.

Themotordrivenandturbinedrivenauxiliary feedwater pumpscanalsobestartedmanually(localorremote).The(SB)ASSismanuallyinitiated.

Plantdesignspecifications allowforamaximumdelayofoneminutefromreceiptofanyauxiliary feedwater pumpstartupsignalstodeliveryofmainauxiliary feedwater tothesteamgenerators.

Alimitoftenminutesisallowedtogetthe(SB)AFMSonstream.Operating procedures toadministratively limitauxiliary feedwater Iowduringrecoveryofthesteamgenerator feedrings fromnormalandabnormaltransients havebeenimplemented atGinna.Inthesesituations, theauxiliary feedwater flowratetoeithersteamgenerator istobemanuallylimitedtoamaximumof150gpm.Thislimitation istoapplywheneversteamgenerator levelisbelowthelow-Iowlevelsetpoint,15%%dofnarrowrange,anduntilthelevelisrecovered to255(Iinchabovethetopofthering).Thislimitation isnotapplicable intheeventofsafetyinjection involving waterlevelsfarbelowthefeedring.

Boththemainandstandbyauxiliary feedwater systemsflowpathstothesteamgenerators arenotisolatedautomatically asaresultofasteamorfeedwater (mainorauxiliary) linebreak.Theisolation isaccomplished manually.

III.MEANSTOREDUCETHEPOTENTIAL FORWATERHAMMER1.DESCRIPTION Thefollowing aremeanscurrently employedatGinnatoreducethepotential forsteamgenerator waterhammer:1."J"shapeddischarge tubesonallsteamgenerator feed-ringsinconjunction withthepromptautomatic initiation ofauxiliary feedwater flowuponlossofmainfeedwater flowand/orsteamgenerator feedringuncovery.

2.Administrative controlstolimitauxiliary feedwater flowL7]tolessthan150gpmpersteamgenerator duringperiodsofsteamgenerator feedringuncovery.

3.Thereduction oftheeffecitve horizontal sectionofmainfeedwater pipingattheentrancetoallsteamgenerators tolessthaneightfeet~~.The"J"shapeddischarge tubeswereinstalled ontopofthefedringsandthebottomholeswerepluggedtoprovidefortopdischarge ofwaterratherthanbottomdischarge.

Duringperiodsoffeedringuncovery, thisarrangement increases thetimeforcompletedrainageofthefeedrings andassociated horizontal feedwater pipingfromlessthanoneminutetoabout30minutes.Also,themaximummainauxiliary feedwater flow(about400gpmpersteamgenerator) wasnotsuficienttomaintainthefeedrings andfeed-waterpipingfullofwaterwhenthefeedrings hadbottomdischarge holes.Thefedringsequippedwith"J"shapeddischarge tubes,however,permitfeedwater flowratesaslowasabout10gpmpersteamgenerator tokeepthefeedrings andfeedwater pipingfullofwateruntilfeedringrecoveryoccurs.Substantial drainageofthefeedrings andpipingviathefeedringfittingclearance doesnotoccurforaboutfiveminuteswhichallowstimeforautomatic actuation ofthemainauxiliary feedwater systemafterthelossofmainfeedwater flow.Thepotential forwaterharrierisavoidedifthefeedrings andfeedwater pipingarekeptfullofwater.

P

'I"Thepromptautomati'c'startup ofanyone"mainauxiliary feedwater pumpafterthelossofmainfeedwater flowprovidesfeedwater flowtokeepthefedringsandfeedwater pipingfullofwater,Hecausethe"J"shapeddis-chargetubesreducetheleakagefromthefeedring, theauxiliary feedwater flowfromeitherofthemotordrivenpumpsortheturbinedrivenpumpismorethansufficient tokeepthefeedwater systemfullofwater.ThepresentGinnamainfeedwater pipinggeometryadjacenttoeachsteamgenerator consistsofahorizontal runfromthesteamgenerator tothefirstdownwardturningelbowineachline.Thehorizontal runsare2feet3inchesfromthenozzletothecenterlineofthedownwardlegoftheelbow,wellwithinthevendor'srecommendations tominimizewaterhammerdamagetothefeedwater pipingsystem.Priortothedecisiontoinstall"J"tubesananalysisoftheGinnamainfeedwater pipingusingapreliminary, Mestinghouse-derived dynamicforcingfunctionwasperformed.

Assumptions werethatthesteam-water

~331sluginitiated atthesteamgenerators; thatauxiliary feedwater wasinuse;andthatthemainfeedwater checkvalveswereclosed.Thetimedependent mathematical functionwasmodifiedfortheGinnapipingconfiguration.

Thetimehistoryoftheacousticshockwavegenerated bythesteam-water slugwasevaluated withrespecttostresscriteriabasedonallowable stressobtainedfromtheoriginalconstruction code.Theresultsshowedthattherewereseverallocations inbothfeedwater pipingsystemswhichexceededthestresscriteria.

"J"tubessubsequently wereinstalled toreducethepoten-tialforwaterhammer.Notestprogramshavebeenperformed atGinnatodetermine whetheranywaterhammertransient wouldoccurasaresultofuncovering ofthesteamgenerator feedrings.

However,bothfeedwater linesinsideofcontainment wereinstrumented following the1975transient toprovidethecontrolroomoperatorwithpipingvibration information duringplantstartup.

If'l 2.EFFECTIVENESS OURINGTRANSIENTS ANOCONOITIONS CONOUCIVE TOMATERHANMERTnenormalandhypothetical transients andconditions conducive tosteamgenerator waterhammerarediscussed inthissection.Hiththeexcep-tionofsubsection 2.4entitled"Operator Error",eachsubsection describes atransient resulting fromasingleinitiating eventorfailurewiththeunitinnormalpoweroperation.

potential component orsystemfailuresasadirectresultofahypothetical steamgenerator waterhaftmerareaccounted forintheanalysis.

Asinglecriterion wasthebasisforevaluating theeffectiveness ofthemeanstoadequately reducethepotential forsteamgenerator waterhammer.Thecriterion istomaintainthefeedwater systemfullofwaterduringthetimefromtheinitiating eventresulting infeedringuncoverytosubsequent feedringrecoveryandstabilized steamgenerator waterinventory.

2.1Areactortripwiththeplantinnormalpoweroperation wouldresultinaturbinetripandcausethewaterlevelinallsteamgenerators tocollapsetoalevelbelowthefeedrings.

Mithin60secondsoftheresulting steamgenerator low-Iowwaterlevelsignals,themotordrivenandturbinedrivenmainauxiliary feedwater pumpswouldautomatically startandsupplyauxiliary feedwater tothesteamgenerators.

Iftheinitiating eventforthereactortripdidnotclosethemainfeedwater regulating valves,thevalveswouldcloseuponreceiptof:I)lowprimarycoolantaveragetemperature signals,2)steamgenerator high-high waterlevelsignals,or3)anS/S.Auxiliary feedwater wouldthenbemanuallycontrolled torestorethewaterlevelsinthesteamgenerators andmaintainthelevelsabovethefeedrings.

Thepotential forwaterhammeroccurring inthefeedringorfeedwater pipingafterareactortripisverylowbecausethemainandauxiliary feed-waterkeepstheeedringsandfeedwaier pipingfullofwater.r2.2LossofMainFedwaterFlowThemainfeedwater supplycouldbeinterrupted duetotheI)lossofoffsitepower,2)malfunction ortrippingofthemainfedwaterpumps,7

'I 3)lossofsuctiontothemainfeedwater pumps,or4)closureofthemainfeed-waterregulating and/orisolation valves.Areactortripwouldoccuruponreceiptoftheresulting steam/feedwater flowmismatchsignalsandlowsteamgenerator waterlevelsignals.Thereactortripwouldcuasethewaterlevelsinallsteamgenerators tocollapsetoalevelbelowthefeedrings.

Themotordrivenandturbinedrivenmainauxiliary feedwater pumpswould'startuponreceiptofthesubsequent Iow-lowsteamgenerator waterlevelsignals.Auxiliary feedwater

'wouldthenbeusedtorefillthesteamgenerators andrecoverthefeedrings.

Thelossofmainfeedwater flowandtheIikeIyuncoveryofthefeedrings wouldnotresultinsubstantial feedringandfeedwater pipingdrainagesincethemainauxiliary feedwater pumpswouldstartpromptlytosupplyfeedwater tothesteamgenerators.

Therefore,thepotential forwaterhammerissignificantly reduced.2.3LossofOffsitePowerThecompleteinterruption ofoffsitepowerwouldresultinareactortripandautomatic startupoftheemergency dieselgenerators.

Automatic initiation ofthemotordrivenandturbinedrivenmainauxiliary feedwater systemswouldoccurtosupplyfeedwater tothesteamgenerators.

Theredundant auxiliary feedwater systemsarefullyfunctional withoutoffsitepowersincethedieselgenerators andOCbatteries cansupplyallnecessary electrical powertobothsystems.Aswasthecaseforthelossofmainfeedwater flow,auxiliary feedwater flowwouldmaintainthefeedrings andfeedwater pipingfullofwateruntilfeedringrecoveryoccursandagainthepotential forwaterhammerwouldbeveryIow.2.4OperatorErrorThepotential forwaterhammerinthefeedwater systemincreases ifuncovered feedrings areallowedtodrainsubstantially afteranevent'auses thesteamgenerator waterlevelstodropbelowthefeedrings.

Admission offeedwaier intothedrainedfeedrings andhorizontal feedwater pipingcouldthenresultinwatersluggingandsubsequent waterhammer.Theuncoveryofoneorbothfeedrings ispossiblethroughoperatorerrorwhentheplantis I

operating atlowpowerorduringstartuporwhileshuttingdownsincefeed-swaterisbeingregulated

manually, ratherthanautomatically.

Forthis-situ-ation,anadministrative limitof150gpmonauxiliary, feedwater flowhasbeenimplemented intheoperating procedures.

Thislimitation wasrecommended inReference7basedontestsatIndianPoint.2.5SteamLineBreakThepotential forsteamgenerator waterhammereventsresulting fromorconcurrent withtheruptureofasteamlineinsidecontainment wasconsidered.

Thesequenceofeventsfollowing suchafailurewasevaluated todetermine ifthebreakcouldresultinthe1)blowdownoftheremaining steamgenerator and/or2)inability tosupplyauxiliary feedwater totheunaffected steamgenerator.

Theruptureofasteamlinewouldautomatically resultinanSIScausingareactortrip,aturbinetrip,andisolation ofallmainfeedwater lines.Theloss.ofmainfeedwater flowtothesteamgenerators wouldresultintheautomatic startupofthemotordrivenandturbinedrivenmainauxiliary feed-waterpumpsuponreceiptoflow-lowsteamgenerator waterlevelsignals.Auxiliary feedwater wouldcontinuetobesuppliedforsubsequent refilloftheunaffected steamgenerator andrecoveryofthefeedring.

However,iftheruptureoccursintheimmediate vicinityofthemainauxiliary feedwater pumpsandrenderstheminoperable, theoperating procedures allowtenminutesfortheoperationofswitchesinthecontrolroomthatwillisolatethe(N)A'FMSandgetthe(SB)AFWSonstream.Althoughihefeedringmightdrainsignificantly inthattime,theadministrative limitof150gpmofauxiliary feedwater flowwillreducethepotential ofwaterhammeroccurrence.

Thislimitation isconsidered applicable atGinnabasedonthebestavailable information obtainedintestsatIndianPoint.Theblowdownofasteamgenerator wouldnotdeprivetheturbinedrivenauxiliary feedwater pumpofdrivingsteam..Acheckvalveineachsteamsupplylinewouldprevent."crossover" blowdownthroughthesupplylinesfromtheunaffected steamgenerator totheassociated blowndown steamgenerator.

kl Thepotential forwaterhammerislowafterasteamlinebreaksincepromptdeliveryofauxiliary feedwater inconjunction withthe"J"shapeddischarge tubesmaintainfullfeedrings andfeedwater pipingintheunaffected searngenerator,.

2.6Loss-of-Coolant AccidentThepotential for,feedwater waterharmerduringapostulated loss-of-coolantaccident(LOCA)ineitherunitwasexaminedbecauseI)awaterhammercouldincreasetheconsequences ofaLOCAand2)theplantprotective actionsduringaLOCAcouldresultinconditions whichareconducive towaterhammerifthefeedwater systemisnotkeptfullofwater.ALOCAwouldresultinanSIS,areactortrip,aturbinetrip,andsub-sequentisolation ofthefeedwater system.Thestartupofthemotordrivenandturbinedrivenmainauxiliary feedwater pumpswouldresultandfeedwater wouldbesuppliedtothesteamgenerators within60secondsofthereactortrip.Refillofthesteamgenerators andrecoveryofthefeedrings wouldoccurinamannertypicalofareactortriporthelossofoffsitepower.Theconditions conducive towaterhanmerinthefeedrings andfeedwater pipingresulting fromaLOCAwouldbeverysimilartothoseresulting fromareactortrip.Therefore, themeanstoreducethepotential forwaterhammerwouldbefullyeffective duringaLOCA.

IV.CONCLUSIONS AiVORECOMMENOATIONS Theassessment.

ofthecapability ofexistingmeanstoreducethepotential forsteamgenerator waterhammerduringnormalandhypothetical operating conditions wasdiscussed inSectionIII.Thisassessment hasshownthatunderconditions whicharemostconducive towaterhammerinthefeedwater systems(specifically, uncovered anddrainingfeedrings andfeedwater pipingsubjected toadmission ofcoldauxiliary feedwater),

themeansavailable toreducethepotential forwaterhammeratGinnaareade-quatetomaintainsufficiently fullfeedrings andfeedwater piping.Keepingthefeedrings andfeedwater pipingfullofwateravoidsthepotential forwaterhammer.Therefore, weconcludethatthemeanstoreducethepotential forsteamgenerator waterhammeratthisfacilityareadequateandwerecommend acceptance bytheNRCstaff.

REFERENCES 1.G.E.Green,Roches.er GasandElectricCorp.(RGE),ltrtoJ.P.O'Reilly, NRC,"R.E.GinnaNuclearPowerPlant,UnitNo.I,FailureofSensingLineon'B'uxiliary Feedwater Pump,AbnormalOccurrence 73-6and73-7,"AugustI,1973.2.K.M.Amish,RGE,ltrtoR.T.Colson,NRC,"Feedwater PipingTransient Evaluation,"

July17,1975.:3.L.0.White,Jr.,RGE,ltrtoR.A.Purple,NRC,"Secondary SystemFluidFlowEnstability, R.E.GinnaNuclearPowerPlantUnitNo.I,"October31,1975.4.K.W.Amish,RGE,ltrtoR.A.Purole,NRC,"Specific ChangestradeatGinnaRelativetoMaterHammer,"January30,1976.5.L.D.White,Jr.,RGE,ItrtoD.Ziemann,NRC,"SteamGenerator MaterHammerPrevention,"

June15,1978.6.GinnaNuclearPowerPlantUnitNo.IUpdatedFinalFacilitDescritionandSaetAnalsisReort,RE,NRDocketNo.0-244.7.J.B.Block,etal,AnEvaluation ofPMRSteamGenerator MaterHammer,Creare,Inc.NUREG-029 December98.M.E.Bennett,MaterhamnerinSteamGenerator Feedwater Lines,Westinghouse TechnicaBueton,NSD-TB--June0,9712 f~itj vvvv~g1'v.I'lc~C~.~.si~~4Stondors(

lorm1041September 19)S4TreasuryFRM2000l0(2-l06PUBLICVOUCHER<FORRES'UNDSVoucherNo................

C04L2-05SchcdutcNo..---------------

,-,p'4.~'j~er'vv~vrv~.33X4675Appropriation orFund:ROCHESTER GASRELECCORP89EAVEROCHESTER NY14449~ATTNLDblHITEJRToAddressNUCLEARREGULATORY COf1MISSIONU.S.(Depsrement orEstabllsbmenl, BureauorOmce)~.blASHINGTON DC20555Location:

PAIDOY/2.R(-7fuv,A.vvsvs'I~-forDepositreceivedfromtheabove-named depositor on...........

...........,

19....hasbeenappliedasheresnstatedandthebalanceindicated isreturnedIserelvithr v-AmountofdepositAppliedasexpIained in"Remarks" below'.......

'~v1v~~Balanceauthorized toberefunded4i000-00eRemarks:THENOV143979APPLICATION blASREVIEblED ANDFOUNDNOTTOBESUBJECTTOFEEZBECAUSETHENRCISblAIVINGFEESFORCERTAINTYPESOFFIREPROTECTION, Al1ENDf1ENTS

~12/31/79cc:DocketFileRefundFi1eReactorFileActivityFi1e(Signoriginalonly)Title.~vvvRefundbyheckNo..C(Signature Cash,g....-.-...-...-

-...on........ofpayee)Othermethod;g..........-


0v(Signorlglnalonly)(Describe) 0u.s,corssIINCIIr rslaslacottlceIIsrs0sss$00tt~vv,vvI"~~~'