ML17261B015: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 03/19/1990
| issue date = 03/19/1990
| title = Responds to Generic Ltr 89-19, Safety Implication of Control Sys in LWR Nuclear Plants (USI A-47). Overfill Protection Provided Through Trip Bistables in Reactor Protection Racks Powered from 120-volt Instrument Buses
| title = Responds to Generic Ltr 89-19, Safety Implication of Control Sys in LWR Nuclear Plants (USI A-47). Overfill Protection Provided Through Trip Bistables in Reactor Protection Racks Powered from 120-volt Instrument Buses
| author name = MECREDY R C
| author name = Mecredy R
| author affiliation = ROCHESTER GAS & ELECTRIC CORP.
| author affiliation = ROCHESTER GAS & ELECTRIC CORP.
| addressee name = JOHNSON A R
| addressee name = Johnson A
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| docket = 05000244
| docket = 05000244
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ACCELERATED DISTBJBUTION DEMONSTPA,TION SYSHMIIREGULATORY-.
{{#Wiki_filter:I ACCELERATED DISTBJBUTION DEMONSTPA,TION SYSHM I
INFORMATION DISTRIBUTION SYSTEM(RIDS)ACCESSION,,NBR:9003270120 DOC.DATE:
REGULATORY-. INFORMATION DISTRIBUTION SYSTEM         (RI DS )
90/03/19NOTARIZED:
ACCESSION,,NBR:9003270120             DOC.DATE:   90/03/19    NOTARIZED: YES          DOCKET FACIL:50-244 Robert Emmet Ginna Nuclear Plant, Unit 1, Rochester                   G 05000244 AUTH. NAME            AUTHOR AFFILIATION MECREDY,R.C.         Rochester Gas 6 Electric Corp.
YESFACIL:50-244 RobertEmmetGinnaNuclearPlant,Unit1,Rochester AUTH.NAMEAUTHORAFFILIATION MECREDY,R.C.
RECIP.NAME           RECIPIENT AFFILIATION JOHNSON,A.R.             Project Directorate I-3                                              R
Rochester Gas6ElectricCorp.RECIP.NAME RECIPIENT AFFILIATION JOHNSON,A.R.
ProjectDirectorate I-3DOCKETG05000244R


==SUBJECT:==
==SUBJECT:==
RespondstoGenericLtr89-19,"SafetyImplication ofControlSysinLWRNuclearPlants."DISTRIBUTION CODEA001DCOPIESRECEIVED:LTR ENCLSIZE:TITLE:ORSubmittal:
Responds to Generic Ltr 89-19, "Safety Implication of Control Sys in LWR Nuclear Plants."
GeneralDistribution NOTES:License Expdateinaccordance with10CFR2,2.109(9/19/72).
DISTRIBUTION CODE      A001D      COPIES RECEIVED:LTR         ENCL      SIZE:                 D TITLE: OR  Submittal: General Distribution                                                    S NOTES:License Exp date in accordance with 10CFR2,2.109(9/19/72).                     05000244 RECIPIENT              COPIES            RECIPIENT        COPIES ID  CODE/NAME            LTTR ENCL        ID  CODE/NAME     LTTR ENCL PD1-3 LA                      1    1    PD1-3 PD              1      1            D JOHNSON,A                     5  5 D'
DS05000244RECIPIENT IDCODE/NAME PD1-3LAJOHNSON,A INTERNAL:
INTERNAL: NRR/DET/ECMB 9H                1    1    NRR/DOEA/OTSB11        1      1 NRR/DST        8E2            1    1    NRR/DST/SELB 8D        1      1 NRR/DST/SICB 7E                1    1    NRR/DST/SRXB 8E        1      1 NUDOCS-ABSTRACT               1    1    0                      1      0 OGC/HDS2                    ~
NRR/DET/ECMB 9HNRR/DST8E2NRR/DST/SICB 7ENUDOCS-ABSTRACT OGC/HDS2RES/DSIR/EIB EXTERNAL:
                                        .1  0                            1      1 RES/DSIR/EIB                   1    1 EXTERNAL: LPDR                            1    1    NRC PDR                1      1 NSIC                          1  1 D
LPDRNSICCOPIESLTTRENCL115511111111~.10111111RECIPIENT IDCODE/NAME PD1-3PDNRR/DOEA/OTSB11 NRR/DST/SELB 8DNRR/DST/SRXB 8E0NRCPDRCOPIESLTTRENCL11111111101111DD'DNOTETOALL"RIDS"RECIPIENTS:
A D
ADDPLEASEHELPUSTOREDUCEWASTEICONTACTTHE.DOCUMENTCONTROLDESK,ROOMPI-37(EXT.20079)TOELIMINATE YOURNAMEFROMDISIRIBUTION LISTSFORDOCUMENTS YOUDON'TNEEDITOTALNUMBEROFCOPIESREQUIRED:
D NOTE TO ALL "RIDS" RECIPIENTS:
LTTR21ENCL19 I'lÃlllll
PLEASE HELP US TO REDUCE WASTEI CONTACT THE.DOCUMENT CONTROL DESK, ROOM PI-37 (EXT. 20079) TO ELIMINATEYOUR NAME FROM DISIRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEEDI TOTAL NUMBER OF COPIES REQUIRED: LTTR                21  ENCL    19
/f/EIFIEEIaI(hlaROCHESTER GASANDELECTRICCORPORATION o89EASTAVENUE,ROCHESTER, NY.14649.0001 March19,1990TELEPHONE AREACOOE715546.2700U.S.NuclearRegulatory Commission DocumentControlDeskAttn:Allen"R.JohnsonProjectDirectorate I-3Washington, D.C.20555
 
I'lÃlllll/f/ EIFIE                                                              EIaI (h  la ROCHESTER GAS AND ELECTRIC CORPORATION o 89 EAST AVENUE, ROCHESTER, N Y. 14649.0001 TELEPHONE March 19, 1990            AREA COOE 715 546.2700 U.S. Nuclear Regulatory Commission Document            Control Desk Attn: Allen" R. Johnson Project Directorate I-3 Washington, D.C.             20555


==Subject:==
==Subject:==
GenericLetter89-19,"SafetyImplication ofControlSysteminLWRNuclearPowerPlants"(USIA-47)R.E.GinnaNuclearPowerPlantDocketNo.50-244
Generic Letter 89-19, "Safety Implication of Control System in LWR Nuclear Power Plants" (USI A-47)
R.E. Ginna Nuclear Power Plant Docket No. 50-244
 
==Dear Mr. Johnson:==
 
Generic Letter 89-19 required licensees to respond within 180 days of the Generic Letter detailing whether the recommendations of the letter will be implemented and an implementation schedule applicable.
if The Generic            Letter addresses concerns about .Steam Generator (SG) overfill protection.              At Ginna, overfill protection is initiated on a SG high-water-level signal based on a 2-out-of-3 initiating logi'c. This instrumentation is safety grade but one of the three channels is used for both control and protection.                          The system isolates Main Feedwater (MFW) by closing the main feedwater. control and bypass            valves.
In terms of          USI A-47,  this design is  concluded to be acceptable                    if:
A)    The        Feedwater Control System      is not  powered    from the              same source as overfill protection.
B)    Overfill protection and feedwater control are not located within the same cabinets.
C)    Overfill protection and feedwater control signals are routed such that a fire is not likely to affect both systems.
D)    Plant procedures              and. Technical Specifications              include requirements to periodically verify operability of overfill protection.
The    following address each criterion in the context of the Ginna design:
5'003270i20 9003i9 PDR    ADOCK 05000244 PDC 001    MjA
                                                          )py4o$ 5 ~P
 
Overfill protection is provided through trip bistables in      the reactor protection racks, which are powered from A, B, C and D 120 VAC instrument buses. Upon bistable actuation, the 120 VAC protection relays (normally powered. by the bistable) are de-energized, and the relay contacts (configured in a 2-out-of-3 matrix) open, de-energizing the vent solenoids from Train A and Train B 125 VDC power, resulting in closure of the main feedwater control and bypass valves.
The Feedwater Control System receives power from the A and C 120 VAC instrument buses.      Separate- breakers are used to provide power to the protection racks and the feedwater control system except Feedwater Loop A and Level Loop 461 share a common instrument Bus A breaker and a common regulator (TWINCO-MQ400A).      Failure of the common breaker or regulator would cause a loss of Loop A feedwater control and. makeup of the LT-461 portion of overfill protection logic. Loss of any other breaker or regulator would only affect its associated level channel or Feedwater Control Loop B. Since overfill protection is fail safe, actuation of overfill protection will vent the feedwater control valve thus overriding any actions of the Control System.      The design of overfill protection is considered to be adequate because of the fail safe design and actuation will override any actions of the feedwater control system.
: 2. Location Overfill protection and feedwater control        are    physically located in separate cabinets.
: 3. Routin  Overfill Protection The  SG level transmitters, are located    inside,. containment.
Level signals from four of the transmitters exit containment in the Auxiliary Building Intermediate Floor (ABI). Two of the level signals exit containment in the Intermediate Building Basement (IBB). The trip bistables are lo'cated in protection racks in the Control Room.      The basic relay contacts for solenoid actuation are located in the SIA & SIB racks in the Relay Room. Routing from the penetration to the valve is illustrated on Table 1.
Routin    Feedwater Control The Feedwater  Control System is located in the feedwater rack in the Relay Room. The SG level signal is taken from LT-461 and, LT-471 channels via isolators located in the protection racks in the Control Room and supplied to the feedwater rack.
The valve control signal is routed from the feedwater rack to the control valves as illustrated on Table 1.
Overfill protection    and feedwater  control share    common  fire areas  but are not routed in the same cable.        A review of Ginna's safe shutdown capability in the event of any credible postulated fire (which include the common areas) was documented in our fire protection and Appendix R conformance reviews, and approved by the NRC in Safety Evaluation Reports dated 02/14/79
 
(Fire Protection) and 02/27/85 (Appendix R). Also, RG&E has
~  documented  contingency actions in the event of fires in specific areas (e.g., SC-3.30 series procedures and other plans covering fire-fighting strategies for safety-related fire areas). Thus,    it is considered that all required situations involving safe shutdown in the event of a fire have been addressed, and no additional changes are warranted.
: 4. Technical S ecifications/Surveillance Technical Specification 3.5.2 requires SG overfill protection to be operable and specifies limiting conditions for operation should the system or portions of the system become inoperable.
Technical Specification Table 4.1-1 requires SG level be tested monthly.. There'fore, Technical Specifications require periodic verification of system operability.
Procedures    are in place that implement the Technical Specification requirements. Also, functional logic tests are performed that verify valve response.
Based upon Technical Specification surveillance requirements, power supply configuration, fail-safe design of overfill protection, separate cabinets and adequate cable routing (fires have been addressed. -in Appendix R reviews), the Ginna design provides sufficient separation to ensure automatic SG overfill protection to mitigate a main feedwater overfeed event.                No system modifications are planned as a result of this Generic Letter.
Ver  truly yours, Robert C. c d Division  Manager Nuclear Production Subscribed and sworn to before me on  this 19th da of March, 1990.
g~  l, HAUCK
          ~~~&&aedNc      York RWE/091        MONROEcoU~
Attachment xc: Mr. Allen R. Johnson (Mail Stop        14D1)
Project Directorate I-3 Washington, D.C.      20555 U.S. Nuclear Regulatory Commission Region 475 I
Allendale Road King of Prussia, PA        19406 Ginna Senior Resident Inspector
 
TABLE 1 CABLE ROUTING OVERFILL PROTECTION Protection      SIA Level                Containment                        Rack        SIB Sicpal              Penetration  R~outin            Location    Location        Routine[
LT-461 6 LT-472          (AE10)    ABI, CT,  CR          CR                        RR, AHR, TB, Valve ABI LT-463  G LT-471        (AEll)    ABI, CT,  CR                      RR.          RR, AHR, TB, Valve ABI LT-462  & LT"473        (CE4)      IBB, CR              CR                        RR, AHR, TB, Valve IBB FEEDWATER CONTROL SYSTEH Signal            Feedwater Level        Pickup              Rack Sicgial      Location          Location      ~Routin LT-461          CR                            RR, AHR, TB,  Valve LT-471          CR                RR        RR, AHR; 'TB, Valve
~Le enu:
ABI  Auxiliary Building Intermediate  Floor IBB - Intermediate Building Basement CT  Cable Tunnel CR    Control Room RR    Relay Room TB    Turbine Building


==DearMr.Johnson:==
V>
GenericLetter89-19requiredlicensees torespondwithin180daysoftheGenericLetterdetailing whethertherecommendations oftheletterwillbeimplemented andanimplementation scheduleifapplicable.
          ~
TheGenericLetteraddresses concernsabout.SteamGenerator (SG)overfillprotection.
g
AtGinna,overfillprotection isinitiated onaSGhigh-water-level signalbasedona2-out-of-3 initiating logi'c.Thisinstrumentation issafetygradebutoneofthethreechannelsisusedforbothcontrolandprotection.
  / C
ThesystemisolatesMainFeedwater (MFW)byclosingthemainfeedwater.
.r}}
controlandbypassvalves.IntermsofUSIA-47,thisdesignisconcluded tobeacceptable if:A)TheFeedwater ControlSystemisnotpoweredfromthesamesourceasoverfillprotection.
B)Overfillprotection andfeedwater controlarenotlocatedwithinthesamecabinets.
C)Overfillprotection andfeedwater controlsignalsareroutedsuchthatafireisnotlikelytoaffectbothsystems.D)Plantprocedures and.Technical Specifications includerequirements toperiodically verifyoperability ofoverfillprotection.
Thefollowing addresseachcriterion inthecontextoftheGinnadesign:5'003270i20 9003i9PDRADOCK05000244PDC001MjA)py4o$5~P Overfillprotection isprovidedthroughtripbistables inthereactorprotection racks,whicharepoweredfromA,B,CandD120VACinstrument buses.Uponbistableactuation, the120VACprotection relays(normally powered.bythebistable) arede-energized, andtherelaycontacts(configured ina2-out-of-3matrix)open,de-energizing theventsolenoids fromTrainAandTrainB125VDCpower,resulting inclosureofthemainfeedwater controlandbypassvalves.TheFeedwater ControlSystemreceivespowerfromtheAandC120VACinstrument buses.Separate-breakersareusedtoprovidepowertotheprotection racksandthefeedwater controlsystemexceptFeedwater LoopAandLevelLoop461shareacommoninstrument BusAbreakerandacommonregulator (TWINCO-MQ400A).Failureofthecommonbreakerorregulator wouldcausealossofLoopAfeedwater controland.makeupoftheLT-461portionofoverfillprotection logic.Lossofanyotherbreakerorregulator wouldonlyaffectitsassociated levelchannelorFeedwater ControlLoopB.Sinceoverfillprotection isfailsafe,actuation ofoverfillprotection willventthefeedwater controlvalvethusoverriding anyactionsoftheControlSystem.Thedesignofoverfillprotection isconsidered tobeadequatebecauseofthefailsafedesignandactuation willoverrideanyactionsofthefeedwater controlsystem.2.LocationOverfillprotection andfeedwater controlarephysically locatedinseparatecabinets.
3.Routin-OverfillProtection TheSGleveltransmitters, arelocatedinside,.containment.
Levelsignalsfromfourofthetransmitters exitcontainment intheAuxiliary BuildingIntermediate Floor(ABI).Twoofthelevelsignalsexitcontainment intheIntermediate BuildingBasement(IBB).Thetripbistables arelo'catedinprotection racksintheControlRoom.Thebasicrelaycontactsforsolenoidactuation arelocatedintheSIA&SIBracksintheRelayRoom.Routingfromthepenetration tothevalveisillustrated onTable1.Routin-Feedwater ControlTheFeedwater ControlSystemislocatedinthefeedwater rackintheRelayRoom.TheSGlevelsignalistakenfromLT-461and,LT-471channelsviaisolators locatedintheprotection racksintheControlRoomandsuppliedtothefeedwater rack.Thevalvecontrolsignalisroutedfromthefeedwater racktothecontrolvalvesasillustrated onTable1.Overfillprotection andfeedwater controlsharecommonfireareasbutarenotroutedinthesamecable.AreviewofGinna'ssafeshutdowncapability intheeventofanycrediblepostulated fire(whichincludethecommonareas)wasdocumented inourfireprotection andAppendixRconformance reviews,andapprovedbytheNRCinSafetyEvaluation Reportsdated02/14/79 (FireProtection) and02/27/85(Appendix R).Also,RG&Ehas~documented contingency actionsintheeventoffiresinspecificareas(e.g.,SC-3.30seriesprocedures andotherplanscoveringfire-fighting strategies forsafety-related fireareas).Thus,itisconsidered thatallrequiredsituations involving safeshutdownintheeventofafirehavebeenaddressed, andnoadditional changesarewarranted.
4.Technical Secifications/Surveillance Technical Specification 3.5.2requiresSGoverfillprotection tobeoperableandspecifies limitingconditions foroperation shouldthesystemorportionsofthesystembecomeinoperable.
Technical Specification Table4.1-1requiresSGlevelbetestedmonthly..
There'fore, Technical Specifications requireperiodicverification ofsystemoperability.
Procedures areinplacethatimplement theTechnical Specification requirements.
Also,functional logictestsareperformed thatverifyvalveresponse.
BaseduponTechnical Specification surveillance requirements, powersupplyconfiguration, fail-safe designofoverfillprotection, separatecabinetsandadequatecablerouting(fireshavebeenaddressed.
-inAppendixRreviews),
theGinnadesignprovidessufficient separation toensureautomatic SGoverfillprotection tomitigateamainfeedwater overfeedevent.Nosystemmodifications areplannedasaresultofthisGenericLetter.Vertrulyyours,RobertC.cdDivisionManagerNuclearProduction Subscribed andsworntobeforemeonthis19thdaofMarch,1990.g~l,HAUCK~~~&&aedNc YorkRWE/091MONROEcoU~
Attachment xc:Mr.AllenR.Johnson(MailStop14D1)ProjectDirectorate I-3Washington, D.C.20555U.S.NuclearRegulatory Commission RegionI475Allendale RoadKingofPrussia,PA19406GinnaSeniorResidentInspector TABLE1CABLEROUTINGOVERFILLPROTECTION LevelSicpalLT-4616LT-472LT-463GLT-471Containment Penetration (AE10)ABI(AEll)ABIR~outinABI,CT,CRABI,CT,CRProtection RackLocationCRSIASIBLocationRR.Routine[RR,AHR,TB,ValveRR,AHR,TB,ValveLT-462&LT"473(CE4)IBBIBB,CRCRRR,AHR,TB,ValveFEEDWATER CONTROLSYSTEHLevelSicgialSignalPickupLocationFeedwater RackLocation~RoutinLT-461LT-471CRCRRRRR,AHR,TB,ValveRR,AHR;'TB,Valve~Leenu:ABI-Auxiliary BuildingIntermediate FloorIBB-Intermediate BuildingBasementCT-CableTunnelCR-ControlRoomRR-RelayRoomTB-TurbineBuilding V>g~/C.r}}

Latest revision as of 17:50, 29 October 2019

Responds to Generic Ltr 89-19, Safety Implication of Control Sys in LWR Nuclear Plants (USI A-47). Overfill Protection Provided Through Trip Bistables in Reactor Protection Racks Powered from 120-volt Instrument Buses
ML17261B015
Person / Time
Site: Ginna Constellation icon.png
Issue date: 03/19/1990
From: Mecredy R
ROCHESTER GAS & ELECTRIC CORP.
To: Andrea Johnson
Office of Nuclear Reactor Regulation
References
REF-GTECI-A-47, REF-GTECI-SY, TASK-A-47, TASK-OR GL-89-19, NUDOCS 9003270120
Download: ML17261B015 (6)


Text

I ACCELERATED DISTBJBUTION DEMONSTPA,TION SYSHM I

REGULATORY-. INFORMATION DISTRIBUTION SYSTEM (RI DS )

ACCESSION,,NBR:9003270120 DOC.DATE: 90/03/19 NOTARIZED: YES DOCKET FACIL:50-244 Robert Emmet Ginna Nuclear Plant, Unit 1, Rochester G 05000244 AUTH. NAME AUTHOR AFFILIATION MECREDY,R.C. Rochester Gas 6 Electric Corp.

RECIP.NAME RECIPIENT AFFILIATION JOHNSON,A.R. Project Directorate I-3 R

SUBJECT:

Responds to Generic Ltr 89-19, "Safety Implication of Control Sys in LWR Nuclear Plants."

DISTRIBUTION CODE A001D COPIES RECEIVED:LTR ENCL SIZE: D TITLE: OR Submittal: General Distribution S NOTES:License Exp date in accordance with 10CFR2,2.109(9/19/72). 05000244 RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD1-3 LA 1 1 PD1-3 PD 1 1 D JOHNSON,A 5 5 D'

INTERNAL: NRR/DET/ECMB 9H 1 1 NRR/DOEA/OTSB11 1 1 NRR/DST 8E2 1 1 NRR/DST/SELB 8D 1 1 NRR/DST/SICB 7E 1 1 NRR/DST/SRXB 8E 1 1 NUDOCS-ABSTRACT 1 1 0 1 0 OGC/HDS2 ~

.1 0 1 1 RES/DSIR/EIB 1 1 EXTERNAL: LPDR 1 1 NRC PDR 1 1 NSIC 1 1 D

A D

D NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTEI CONTACT THE.DOCUMENT CONTROL DESK, ROOM PI-37 (EXT. 20079) TO ELIMINATEYOUR NAME FROM DISIRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEEDI TOTAL NUMBER OF COPIES REQUIRED: LTTR 21 ENCL 19

I'lÃlllll/f/ EIFIE EIaI (h la ROCHESTER GAS AND ELECTRIC CORPORATION o 89 EAST AVENUE, ROCHESTER, N Y. 14649.0001 TELEPHONE March 19, 1990 AREA COOE 715 546.2700 U.S. Nuclear Regulatory Commission Document Control Desk Attn: Allen" R. Johnson Project Directorate I-3 Washington, D.C. 20555

Subject:

Generic Letter 89-19, "Safety Implication of Control System in LWR Nuclear Power Plants" (USI A-47)

R.E. Ginna Nuclear Power Plant Docket No. 50-244

Dear Mr. Johnson:

Generic Letter 89-19 required licensees to respond within 180 days of the Generic Letter detailing whether the recommendations of the letter will be implemented and an implementation schedule applicable.

if The Generic Letter addresses concerns about .Steam Generator (SG) overfill protection. At Ginna, overfill protection is initiated on a SG high-water-level signal based on a 2-out-of-3 initiating logi'c. This instrumentation is safety grade but one of the three channels is used for both control and protection. The system isolates Main Feedwater (MFW) by closing the main feedwater. control and bypass valves.

In terms of USI A-47, this design is concluded to be acceptable if:

A) The Feedwater Control System is not powered from the same source as overfill protection.

B) Overfill protection and feedwater control are not located within the same cabinets.

C) Overfill protection and feedwater control signals are routed such that a fire is not likely to affect both systems.

D) Plant procedures and. Technical Specifications include requirements to periodically verify operability of overfill protection.

The following address each criterion in the context of the Ginna design:

5'003270i20 9003i9 PDR ADOCK 05000244 PDC 001 MjA

)py4o$ 5 ~P

Overfill protection is provided through trip bistables in the reactor protection racks, which are powered from A, B, C and D 120 VAC instrument buses. Upon bistable actuation, the 120 VAC protection relays (normally powered. by the bistable) are de-energized, and the relay contacts (configured in a 2-out-of-3 matrix) open, de-energizing the vent solenoids from Train A and Train B 125 VDC power, resulting in closure of the main feedwater control and bypass valves.

The Feedwater Control System receives power from the A and C 120 VAC instrument buses. Separate- breakers are used to provide power to the protection racks and the feedwater control system except Feedwater Loop A and Level Loop 461 share a common instrument Bus A breaker and a common regulator (TWINCO-MQ400A). Failure of the common breaker or regulator would cause a loss of Loop A feedwater control and. makeup of the LT-461 portion of overfill protection logic. Loss of any other breaker or regulator would only affect its associated level channel or Feedwater Control Loop B. Since overfill protection is fail safe, actuation of overfill protection will vent the feedwater control valve thus overriding any actions of the Control System. The design of overfill protection is considered to be adequate because of the fail safe design and actuation will override any actions of the feedwater control system.

2. Location Overfill protection and feedwater control are physically located in separate cabinets.
3. Routin Overfill Protection The SG level transmitters, are located inside,. containment.

Level signals from four of the transmitters exit containment in the Auxiliary Building Intermediate Floor (ABI). Two of the level signals exit containment in the Intermediate Building Basement (IBB). The trip bistables are lo'cated in protection racks in the Control Room. The basic relay contacts for solenoid actuation are located in the SIA & SIB racks in the Relay Room. Routing from the penetration to the valve is illustrated on Table 1.

Routin Feedwater Control The Feedwater Control System is located in the feedwater rack in the Relay Room. The SG level signal is taken from LT-461 and, LT-471 channels via isolators located in the protection racks in the Control Room and supplied to the feedwater rack.

The valve control signal is routed from the feedwater rack to the control valves as illustrated on Table 1.

Overfill protection and feedwater control share common fire areas but are not routed in the same cable. A review of Ginna's safe shutdown capability in the event of any credible postulated fire (which include the common areas) was documented in our fire protection and Appendix R conformance reviews, and approved by the NRC in Safety Evaluation Reports dated 02/14/79

(Fire Protection) and 02/27/85 (Appendix R). Also, RG&E has

~ documented contingency actions in the event of fires in specific areas (e.g., SC-3.30 series procedures and other plans covering fire-fighting strategies for safety-related fire areas). Thus, it is considered that all required situations involving safe shutdown in the event of a fire have been addressed, and no additional changes are warranted.

4. Technical S ecifications/Surveillance Technical Specification 3.5.2 requires SG overfill protection to be operable and specifies limiting conditions for operation should the system or portions of the system become inoperable.

Technical Specification Table 4.1-1 requires SG level be tested monthly.. There'fore, Technical Specifications require periodic verification of system operability.

Procedures are in place that implement the Technical Specification requirements. Also, functional logic tests are performed that verify valve response.

Based upon Technical Specification surveillance requirements, power supply configuration, fail-safe design of overfill protection, separate cabinets and adequate cable routing (fires have been addressed. -in Appendix R reviews), the Ginna design provides sufficient separation to ensure automatic SG overfill protection to mitigate a main feedwater overfeed event. No system modifications are planned as a result of this Generic Letter.

Ver truly yours, Robert C. c d Division Manager Nuclear Production Subscribed and sworn to before me on this 19th da of March, 1990.

g~ l, HAUCK

~~~&&aedNc York RWE/091 MONROEcoU~

Attachment xc: Mr. Allen R. Johnson (Mail Stop 14D1)

Project Directorate I-3 Washington, D.C. 20555 U.S. Nuclear Regulatory Commission Region 475 I

Allendale Road King of Prussia, PA 19406 Ginna Senior Resident Inspector

TABLE 1 CABLE ROUTING OVERFILL PROTECTION Protection SIA Level Containment Rack SIB Sicpal Penetration R~outin Location Location Routine[

LT-461 6 LT-472 (AE10) ABI, CT, CR CR RR, AHR, TB, Valve ABI LT-463 G LT-471 (AEll) ABI, CT, CR RR. RR, AHR, TB, Valve ABI LT-462 & LT"473 (CE4) IBB, CR CR RR, AHR, TB, Valve IBB FEEDWATER CONTROL SYSTEH Signal Feedwater Level Pickup Rack Sicgial Location Location ~Routin LT-461 CR RR, AHR, TB, Valve LT-471 CR RR RR, AHR; 'TB, Valve

~Le enu:

ABI Auxiliary Building Intermediate Floor IBB - Intermediate Building Basement CT Cable Tunnel CR Control Room RR Relay Room TB Turbine Building

V>

~

g

/ C

.r