ML17214A321: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 46: Line 46:
In brief, the Equipment Dose Map values were determined on the basis of time-dependent, mechanistic models of radioactive decay, containment spray washout, plateout, containment leakage, and filtration vhere applicable (e.g., the Shield Building Ventilation System Filters, and the Control Room Emergency Filters).Source terms ae discussed in Section l.Fourteen contributing factors to the dose vere identified and considered.
In brief, the Equipment Dose Map values were determined on the basis of time-dependent, mechanistic models of radioactive decay, containment spray washout, plateout, containment leakage, and filtration vhere applicable (e.g., the Shield Building Ventilation System Filters, and the Control Room Emergency Filters).Source terms ae discussed in Section l.Fourteen contributing factors to the dose vere identified and considered.
These are enumerated and discussed belov.Gamma doses were determined using a point-kernel methodology of the Rockwell type.Beta doses vere determined using the methodology and formulas of Hine and Brownell in their Radiation Dosimet in conjunction with point-kernel techniques.
These are enumerated and discussed belov.Gamma doses were determined using a point-kernel methodology of the Rockwell type.Beta doses vere determined using the methodology and formulas of Hine and Brownell in their Radiation Dosimet in conjunction with point-kernel techniques.
The Unit No.1 gamma and beta doses were determined as a function of time, and where applicable, cloud size, in the same manner as Unit No.2.Dose Contributors Normal 0 eration External (8)-Direct external dose due to gamma and beta irradiation over a 40 year period.The source terms are based on the assumption of 1X failed fuel in the reactor coolant.No credit is taken for the plant capacity factor, however, credit is taken for conservatively assumed equipment capacity factor or use factor.(2)Normal 0 erations Internal (B)-Similar to (1), except that this contributor refers to immersion of internal components in radioactive fluids (Saseous or liquid)containing the beta sources.(3)DBA Direct Radiation From Sump Water (Y)-Contribution from the direct external"shine" of gammas from safety or shutdown systems containing sump vater folloving an accident.*G.Hine, G.Brownell, Radiation Dosimet , Academic Press (1956).  
The Unit No.1 gamma and beta doses were determined as a function of time, and where applicable, cloud size, in the same manner as Unit No.2.Dose Contributors Normal 0 eration External (8)-Direct external dose due to gamma and beta irradiation over a 40 year period.The source terms are based on the assumption of 1X failed fuel in the reactor coolant.No credit is taken for the plant capacity factor, however, credit is taken for conservatively assumed equipment capacity factor or use factor.(2)Normal 0 erations Internal (B)-Similar to (1), except that this contributor refers to immersion of internal components in radioactive fluids (Saseous or liquid)containing the beta sources.(3)DBA Direct Radiation From Sump Water (Y)-Contribution from the direct external"shine" of gammas from safety or shutdown systems containing sump vater folloving an accident.*G.Hine, G.Brownell, Radiation Dosimet , Academic Press (1956).
(4)DBA Direct Radiation From Sum Mater'8)-Similar to (2), except that the source here, is DBA sump vater rather than vater containing a radionuclide inventory resulting from"1X failed fuel during normal operation.
(4)DBA Direct Radiation From Sum Mater'8)-Similar to (2), except that the source here, is DBA sump vater rather than vater containing a radionuclide inventory resulting from"1X failed fuel during normal operation.
DBA Direct Radiation From Containment (Y)-The conatinment atmosphere is treated as a spherical cloud source for dose calculations at points outside containment.
DBA Direct Radiation From Containment (Y)-The conatinment atmosphere is treated as a spherical cloud source for dose calculations at points outside containment.

Revision as of 15:03, 26 April 2019

Rev 1 to Equipment Qualification Radiation Dose Map Development.
ML17214A321
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 06/24/1983
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17214A320 List:
References
RTR-NUREG-0588, RTR-NUREG-588 NUDOCS 8307220514
Download: ML17214A321 (18)


Text

Revj.sj.on 1-6/24/83 pages 1, 4, 5, 14,'16)FLORIDA POViR&LIGHT COMPANY ST LUCIE UNIT NO.1 EQUIPMENT QUALIFICATION RADIATION DOSE MAP DEVELOPMENT SOURCE TERMS Several sets of source terms were developed for use in calculations of dose rates and doses for normal operating and design basis accident (DBA)conditions.

Source terms used in calculations of the 40 year normal operations dose are, for the most part, those previously developed for plant shielding and personnel protection purposes, and are based on the type of zadj.onuclide inventory infozmation represented by the current revisions of Sections 11.1, 11.2 and 12.2 of the St.Lucie Unit No.1 FSAR, as well as plant process information (flow rates, volumes, etc.)presented elsewhere.

Although the introduction of Section 1.4 of NUREG&588 speaks of"the normally expected radiation environment", the source terms actually used are maximum values, ultimately predicated on reactor coolant water containing a radionuclide inventory corresponding to an assumption of 1X failed fuel.DBA source term sets were developed from the St.Lucie Unit No.1 core inventory of radionuclides, which was derived from Table 4.3-1 of the Combustion Engineering System 80"Radiation Design Guide".*The St.Lucie Unit No.1 core inventory, separated for convenience into noble gases, halogens and other nuclides is shown in Table 1.Positions 1.4(l)-(5) of NUREG-0588 provide guidance for the preparation of source terms used in an equipment dose assessment.

The St.Lucie Unit No.1 calculations followed these recommendations in developing mechanistically rational models for radionuclide transport as a function of time through the containment and other parts of the plant.The ma)or division of DBA source term sets are for containment atmosphere, plateout, and containment sump water.These are discussed in the, following sections.CONTAINlKNT ATMOSPHERE SOURCE Xn accordance with Position 1.4(1)of NUREGW588 (also, for example,Section II.B.2 of NUREG-0737 (10/80), Section 2.1.6.b of NUREGW578 (7/79), Table 1 of Regulatory Guide 1.7 QR2, 11/78), and Position C.2 of Regulatory Guide 1.89 (RO, ll/74)), it was assumed that the following percentages of the core inventory of radionuclides are instantaneously released from the fuel to the containment atmosphere at the start of a LOCA: 100X noble gases 50X halogens 1X other nuclides Combustion Engineering,"Radiation Design Guide", Rev.4, SYS80-PE-PG (7/12/7 9).830?2205i4 830?15 PDR ADOCK 05000335 P PDR jf I'I This release is assumed to be uniformly distributed in the containment atmosphere, a good assumption in a PWR containment trhich lacks the many compartments found in a BWR containment.

This is also a conservative assumption for calculation of time-dependent dose rates, as stated in Section 4 of Appendix D of NUREGW588, and is a"rational assumption", in accordance vith the'instructions of Po'sition 1.4(3)of the NUREG.The St.Lucie Unit No.1 containment free volume was taken as 2.60x10 ft (7.3bxlO cm).Specific radionuclide activities corresponding to this model appear in Table 2.The above stated assumptions for St Lucie Unit No.1 are the same as for St Lucie Unit No.2.1.1.1 Containment S ray Washout Model The action of the containment spray system vill remove certain radionuclides from the containment atmosphere as a function of time.The St.Lucie calculations model this effect, as suggested in Position 1.4(4)of NUREGW588.

The noble gas inventory is not affected by the spray, and would only be removed through radioactive decay.The St.Lucie Unit No.1 model assumes that 90X'of the airborne halogens (elemental) are removed at a rate characterized by a removal coefficient of 10.0 hr , and that the remaining 10X are not removed at all.This is conservative compared to the NUREG&588 Appendix D model of removal coefficients of: 27.2 hr 1 applied td 91X clem'ental halogens (iodine);and 0 hr applied to 4%organic halogens (iodine)(note that the NUREGW588 apportionment of the iodines among elemental, particulate and organic forms follows the guidance of Regulatory Guide 1.4 (R2, 6/74)).It vas further assumed for St.Lucie Unit No.1 that the solid fission products vould be removed vith a coefficient of 0.43 hr 1.The removal coefficients applied to different species of nuclides are summarized in Table 3.The removal rates for the St Lucie Unit No.1 Spray Washout Model are the same as those for St Lucie Unit No.2.1.1.2 Plateout Model In addition to containment spray removal, the competing process of plateout of radionuclides on the exposed surfaces inside the containment also removes radionuclides from the containment atmosphere.

Position 1.4(5)of NUREGW588 suggests that a mechanistic model be used for plateout, rather than the nonmechanistic assumption of 50%instantaneous plateout of the halogens released from the core.The St.Lucie'nit No.1 model assumes a plateout removal factor from the containment atmosphere of 1.0 day 1 for all radionuclides except noble gases, distributed uniformly on a surface area of 2.5x105 ft.This compares to a NUREGW588 Appendix D assumption of a coefficient of 1.23 hr for elemental iodine only, and a surface area of 5.0xl05 ft2.1.2 CONTAINMEHT PLATEOUT SOURCE The plateout'model for removal of radionuclides from the containment atmosphere through deposition on the exposed surfaces in the containment is discussed in Subsection 1.1.2.Naturally, the deposition rate on surfaces, which determines the time-dependent plateout source term set, is simply equal to the removal rate from the atmosphere.

The St Lucie Unit No.1 plateout removal factor of 1.0 day 1 in contrast to the St Lucie Unit No.2 plateout removal factor of 1.0 hr tends to enhance the conservatism for submersion Y cloud dose by increasing the'source terms.2

1.3 CONTAINMENT

SUMP SOURCE A mechanistic model of the time-dependence of the radioactive source in the containment sump water would begin with a zero source at the start of the DBA, building up with time as halogens wash out of the containment atmosphere due to containment spray removal.However, as recognized in Appendix D (Section 6)of NUREGW588, since most of the halogens would be transferred from the containment atmosphere to the sump in a few minutes time, there would be little difference in calculation of dose whether a mechanistic model or the-older (Regulatory Guide 1.7, TID-14844) model, which assumed instantaneous release of 50X of the core's inventory of halogens and lX of the other nuclides to the sump, were used.Additionally the conservative assumption was made that 50X of the noble gases were dissolved immediately in the sump water without detracting from the 100X noble gas core inventory source terms assumed for air.The dilution volume for the containment sump (recirculated}

water was created by using the combined volumes of the reactor coolant, the Safety Injection Tanks, and the minimum volume of the Refueling Mater Tank.This total volume is approximately 427,000 gallons.However, a more conservative (greater nuclide concentration) value of 400,000 gallons (1.52xl0 cm)was actually used in the calculations.

The resulting initial sump nuc3.ide inventory is shown in Table 5.The inventories at later times can be derived by applying the appropri'ate radioactive decay factor to each nuclide.The St Lucie Unit No.1 sump sources differed from St Lucie Unit No.2 sump sources in that the latter did not assume noble gas source terms.'2.DOSE CALCULATIONS Dose values were determined for normal and post-accident situations at many locations throughout the plant where safety-related equipment are located.Source terms were created using the models described in Section 1.Doses for 40 years normal operation are based on calculations done in the course of the St.Lucie Unit No.1 design work, as described in Section 12 of the FSAR.These doses are quite conservative since the calculations assumed worst case conditions of operation, shielding, radionuclide inventories (e.g., 1X failed fuel in reactoi coolant), etc.The normal dose values are recorded on the Equipment Radiation Dose Maps.For most pieces of equipment, the dose received during and following a DBA event far exceeds the normal operating dose, and is, thus, the governing contribution.

Calculations were done both inside and outside containment, for both gamma and beta radiation (as applicable), and values for four different times following the start of the DBA were recorded on the dose maps: 1 day, 30 days, 6 months, and 1 year.This dif f ers from the 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, 30 day, and 1 year times for St t,ucie Unit No.2.Accident doses are discussed in the following section for inside and outside containment.

Doses were generally calculated using the point&ernel technique integrated over time.

R1-6/24/83 2.1 DOSE INSIDE CONTAINMENT Three overall sources locations of radiation are considered inside the containment and modeled separately:

(1)airborne;(2)plateout;and, (3)sump water.The airborne gamma and beta doses are based on the time-dependent source terms of Section 1.1,, which take into account removal of activity.from the containment atmosphere by radioactive decay, plateout, and containment spray washout.Shield walls and finite cloud sizes are factored into the calculations which were carried out at a number of point inside the containment.

The relative contributions of these three sources to a particular piece of equipment depend on the exact location of the equipment in relation to each source, and to internal shield walls.Tne final containment dose model treats radiation exposure due to containment sump~ater, and was used to produce gamma and beta dose contributions to equipment located in the vicinity of the sump, or immersed in the sump water following a LOCA.The primary source of activity in the sump water is the iodine which is rapidly washed out of the containment atmosphere by the containment spray system.Doses from the three sources are combined at a number of locations in the containment, and are listed separately for gamma ano beta dose.I As described in the instructions for the use of the Equipment Radiation Dose Haps, the free-air beta dose given on the maps can be reduced through consideration of the attenuation effects of any covering that may be present between the beta source and the sensitive component of the equipment.

These dose reduction factors, shown in Table 6, were determined as a function of time and covering thickness for an elastometric material of density 1.0 gm/cm and a metal of density 8 gm/cm3.This treatment of beta dose, giving both unshielded abd shielded doses, is consistent with the guidelines of Positions 1.4(6)-(10) of NUREG&588.

Its guidance of 70 mils of elastrometric material thickness reducing the beta dose by a factor of 25 is somewhat more conservative than.the Bulletin 79-01B guidelines of 100 reduction factor for a 70 mil thickness.

2.2 DOSES

OUTSIDE CONTAINMENT Doses to equipment located outside containment are comprised of contributions from direct gamma radiation shine through the containment and shield building walls, direct gamma exposure from systems containing recirculated (sump)water, internal gamma and beta exposure if the equipment itself contains radioactive fluid, and airborne gamma and beta cloud dose exposure from leakage of containment atmosphere out of the containment building.The last contribution'conservatively assumes 0.5X leakage per day from the containment; all going to the Reactor Auxiliary Building.The actual source terms used are discussed in Section 1.Calculational methods for determining doses to equipment located outside the containment are essentially the same as those used for equipment inside the containment; i.e., point-kernel integration.

The factors considered and the methods used are consistent with the guidelines

'of NUREG-0588, in particular, Position 1.4(11).

R1-6/2II/83 2.3 EXAHPLES OF DOSE DETERMINATION OF PARTICULAR POINTS This section presents tvo examples vhich depict the contributory factors and calculational methods used in generating doses for two actual points appearing on the Equipment Dose Maps.One example is for a dose point located ins'ide containment; the other is for a dose point outside containment in the Reactor Auxiliary Building.In both cases, both normal and accident doses are computed.The.basic assumptions underlying the generation of the Equipment Dose Maps are given elsewhere in this Section.In particular, compliance with all NRC guidelines given in Position 1.4 of NUREG&588, by adopting either the NRC or more conservative models, is demonstrated point"by-point.

In brief, the Equipment Dose Map values were determined on the basis of time-dependent, mechanistic models of radioactive decay, containment spray washout, plateout, containment leakage, and filtration vhere applicable (e.g., the Shield Building Ventilation System Filters, and the Control Room Emergency Filters).Source terms ae discussed in Section l.Fourteen contributing factors to the dose vere identified and considered.

These are enumerated and discussed belov.Gamma doses were determined using a point-kernel methodology of the Rockwell type.Beta doses vere determined using the methodology and formulas of Hine and Brownell in their Radiation Dosimet in conjunction with point-kernel techniques.

The Unit No.1 gamma and beta doses were determined as a function of time, and where applicable, cloud size, in the same manner as Unit No.2.Dose Contributors Normal 0 eration External (8)-Direct external dose due to gamma and beta irradiation over a 40 year period.The source terms are based on the assumption of 1X failed fuel in the reactor coolant.No credit is taken for the plant capacity factor, however, credit is taken for conservatively assumed equipment capacity factor or use factor.(2)Normal 0 erations Internal (B)-Similar to (1), except that this contributor refers to immersion of internal components in radioactive fluids (Saseous or liquid)containing the beta sources.(3)DBA Direct Radiation From Sump Water (Y)-Contribution from the direct external"shine" of gammas from safety or shutdown systems containing sump vater folloving an accident.*G.Hine, G.Brownell, Radiation Dosimet , Academic Press (1956).

(4)DBA Direct Radiation From Sum Mater'8)-Similar to (2), except that the source here, is DBA sump vater rather than vater containing a radionuclide inventory resulting from"1X failed fuel during normal operation.

DBA Direct Radiation From Containment (Y)-The conatinment atmosphere is treated as a spherical cloud source for dose calculations at points outside containment.

DBA Direct Radiation From Ambient Sources (Y)-Similar to (3), except that filtration sources, such as the Shield Building Ventilation System filters, are considered rather than sump vater containing sources.DBA Submersion Cloud (')-Direct shine due to gamma radiation from airborne sources.DBA Direct Radiation From Sum (7)-Direct gamma radiation to points external to the containment sump from sump sources.(9)DBA Submersion Sum Radiation (Y)-Direct gamma radiation to equipment submerged in the containment sump from sump sources.I DBA Submersion Sum Radiation (8)-Similar to (9), except that beta rather than gamma radiation is treated.(11)DBA Plateout ()-Carta radiation from sources plated-out on exposed surfaces in the containment.

(12)DBA Plateout (8)-Similar to (11), except that beta rather than gamma radiation is treated.(13)DBA Submersion Cloud (8)-Similar to (7),.except that beta rather than gamma radiation is treated.(14)'BA Direct Radiation From Sum (8)-Similar to (8), except that beta rather-than gamma radiation is treated.

TABLE 1 CORE INVENTORY Noble Gases Nuclide Ci Nuclide Ci Nuclide Ci Nuclide Ci Kr-85m Kr&5 Kr-8.7 Kr&8 2.10+7(a)Kr-89 6.65+5 Kr&0 3.85+7 Kr-91 5.49+7 Xe-131m 6.73+7 6.65+7 4.91+7 5.86+5 Xe-133 Xe-13 5m Xe-135 Xe-137 1, 68+8 3.39+7 3.02+7 1.48+8 Xe-138 Xe-140 Xe-143 Xe-144 1.34+8 6.87+7 1.64+6 3.66+5 Halogens Nuclide Ci Nuclide Ci Nuclide Ci Nuclide Ci Br-84 Br-85 Br-87 Br&8 1.61+7 2.07+7 3.33+7 3.51+7 Br-89 Br-90 I-127 I-12 9 2.42+7 I-131 1.53+7 I-132 1.32+25()I-133 2.09+0 1-134 8.37+7 1.22+8 1.68+8 1.81+8 I-135 I"137 I-13 8.1.56+8 7.00+8 3.51+7 Other Nuclides Nuclide Ci Nu cl ide Ci Nuclide Ci Nuclide Ci Se>>84 As-85 S e-85 Se-87 Rb-88 Sr-89 Rb-90 Sr-90 Y-90 Rb-91 Sr-91 Y-91m Y-91'r-95 Y-9 5 Zr-95 1.54+7 2.67+6 9.52+6~5.53+7 5.58+7 7.75+7 6.84+7 5.4CH-6 5.67+6 8.81+7 9.52+7 5.4 8+7 1.01+8 1.02+8 1.34+8 1.4 (H.8 Nb-9 5 Zr-99 Nb-9 9 Mo-99 Tc-99m Mo-103 Tc-103 Ru-103 Tc-106 Ru-106 Sn-12 9 Sb-12 9 Te-129m Te-129 Sn-131.Sb-131 1.41+8 1.3&-8 1.45+8 l.53+S 1.32+8 1.34+8 1.36+8 1.37+8 5.65+7 3.87+7 8.89+6.2.76+7'.17+6 2.62+7 2.45+7 6.75+7 Te-131m Te-131 Sn-132 Sb-132 Te-132 Sn-133 Sb-133 Te<<133m Te-13 3 Cs"134 Sb-334 Te-134 Sb" 135 Te-135 Cs" 135 Cs-136 1.26+7 7.25+7 1.43+7 4.01+7 1.19+8 4.96+6 4.50+7 6.02+7 9.59+7 1.58+7 8.02+6 1.27+8 5.03+6 6.62+7 2.10+1 4.42+6 Cs-137 Ba-137m Cs-138 Cs-140 Ba-140 La-140 Cs-143 Ba-143 La-143 Ce-143 Pr-143 Cs-144 Ba-144 La-144 Ce-144 Pr-144'.25+6 6.87+6 1.43+8 l.29+8 1.46+8 l.50+8 2.7 9+7 l.11+8 1.25+8 l.26+8 1.24+8 8.52+6 8.25+7 l.09+8 9.95+7 l.00+8 Notes: (a)Read as 2.10x10 curies (b)I-127 is stable.Number given is total atoms.

TABLE 2 INITIAL CONTAIRFNT ATMOSPHERE SPECIFIC ACTIVITIES FOLLOWING A L(GA (a)Noble Gases Nuclide Ci/Cm Nuclide 3 Ci/Cm Nuclide 3 Ci/Cm Nuclide Ci/Cm 3 Kr-85m Kr-85 Kr-87 Kr-88 2.86-4(b)Kr-89 9.04-6 Kr&0 5.22-4 Kr-91 7.4 7-4 Ke-131m 9.15-4 9.04-4 6.67-4 7.96-6 Xe-13'3 Xe-135m Xe-135 Xe" 13 7 2.29-3 4.61-4 4.10-4 2.02-3 Xe-138 Xe-140 Xe-143 Xe-144 1.81-3~9.34-4 2.15-5 4.97-6 Halogens Nuclide Br-84 Br-85.Br-87 Br-88~3~Ci/cm 1.10-4 1.41-4 2.26-7 2.39-4 Nuclide Br-89 Br-90 I-12 9 3 Ci/cm 3..64-4 1.03-4 1.42-11 Nuc1 id e I-131 I-132 I-133 I-134 3 Ci/cm 5.68-4 8.26-4 l.14-3 1.23-3 Nuc lid e I-13 5 I-137 I-138 3 Ci/cm 1.06-3 4.76-4 2.39-4 Other Nuclides 3 Nuclide Ci/cm Nuclide 3 Ci/em Nuc lid e 3 Ci/cm Nuclide 3 Ci/cm Se-84 As-85 Se-85 Se-87 Rb-88 Sr-89 Rb-9 0 Sr-9.0 Y-9 0 Rb-91 Sr-91 Y-91m Y-93.Sr-95 Y&5 Zr-95~2.08-6 3.64-7 1.29-6 2.07-6 7.58-6 1.05-5 9.30-6 7.34-7 7.71-7 1.20-5 1.29-5 7.45-6 l.37-5 1.38"5 1.81-5 1.91-5 Nb-95 Zr-99 Nb-9 9 Mo&9 Tc-99m Mo-103 Tc-103 RU-103 Tc-106 Ru-106 Sn-129 Sb-129 Te-129m Te-329 Sn-131 Sb-131 1.92-5 1.88-5 1.97-5 2.07-5 1.7 8-5 1.81-5 1.84-5 1.86-5 7.67-6 5.26-6 1.21-6 3.75-6 9.74-7 3.56-6'.38-6.9.17-6 Te-131m Te-131 Sn-132 Sb-332 Te"132 Sn-133 Sb"133 Te-133m Te-133 Cs-334 Sb-134 Te-134 Sb-135 Te-135 Cs-135 Cs-136 1.71-6 9.84-6 1.94-&5.45-6 1.62-5 6.74-7 6'.12-6 8.18-6 1.30-5 2.15-6 1.09"6 1.73-5 6.83-7 8.99-6 2.86-12 6.01-7 Cs-137 Ba-13 7m Cs-138 Cs-140 Ba-14 0 La-140 Cs-143 Ba-143 La-143 Ce>>143 Pr-143 Cs-144 Ba-144 La-144 Ce-144 Pr-144 9.84-7 9.34-7 1.94-5 1.76-5 1.98-5 2.05-5 3.78-6 1.50-5 1.70-5 1.71-5 1.68-5 1.16-6 1.12-5 1.4 8-5 1.35-5 1.3 6-5 Notes: (a)100X core inventory noble gases 50X core inventory halogens 1X core inventory other nuclides (b)read as 2.86x10 curie s/cm Diluted in 2.6x106 ft (7.36x10 cm)

TABLE 3 CONTAINMENT SPRAY WASHOUT MODEL Percentage of Core Percentage by inventory Released Chemical Form Nuclide Species to Cont.Atm.SLl NRC SL1 NRC Removal Coefficient hr 1 Noble Gases 100 0.0 0.0 Halogens Elemental Particulate Organic 50 90 91 10 10.0 0.0 27.2 0.43 0.0 Other Nuclides 0.43 (b)Notes: (a)NUREG&588, Appendix D (RO, 12/79)(b)Not stated in NUREGW588 TAKE 4 PLATEOUT MODEL (a)Nuclide Species Percentage of Core Inventory Released Removal Coefficient to Cont.Atm.SL1 NRC Noble Gases 100 0,0 0.0 Halogens Elemental Particulate Organic 50 1.23 hr-1 1.0 day-l(c)0 0 0.0 Other Nuclides 1.0 day-1 Notes: (a)Containment surface area SLl-2.5x10 ft NRC-5.Oxl0 f t (b)NUREGW588, Appendix D (RO, 12/79)(c)The use of a small plateout removal factor tends to increase the source terms for the submersion y cloud dose~10 TABLE 5 INITIAL CONTAIRKNT SUMP MATER SPECIFIC ACTIUITIES FOLLOWING A LOCA(Noble Gases Nuclide Kr-85m Kr-85 Kr-87 Kr-88 3 Ci/cm 6.93-3 2.20-4 1.27-2 1.81-2 Nuclide Kr-89 Kr-90 Kr-91 Xe-131m 3 Ci/cm 2~22-2 2.20-2 1.62-2 1.93-4 Nuc1 id e Xe-133 Xe-135m Xe-135 Xe-137 3 Ci/cm 5.55-2 l.12-2 9.97-3 4.89" 2 Nuc 1 id e Xe-138 Xe-140 Xe-143 Xe-144 3 Ci/cm 4.43-2 2 e27 2 5.42-4 1.21-4 Halogens 3 3 Nuclide Ci/cm Nuclide Ci/cm Nuclide 3 Ci/cm 3 Nuclide Ci/cm Br-84 5.32-3()Br-89 Br-85 6.82-3 Br-90 Br-87 1.09-2 I-129 Br-88 1.16-2 7.94-3 I-131 5.00-3 I-132 6.87"10 I-133 1-134 2.75-2 4.00-2 5.51"2 5.98-2 I-13 5 5.14-2 I-137 2.30-2 I-138 1.16-2 Other Nuclides 3 Nuclide Ci/cm 3 Nuclide Ci/cm Nuclide 3 Ci/cm 3 Nuclide Ci/cm Se-84 As&5 Se-85 Se&7 Rb-88 Sr-89 Rb-90 Sr-90 Y-90 Rb-91.Sr-91 Y-91m Y-91 Sr&5 Y-95 Zr-95 1.01-4 1.76"5 6.26" 5 1.00-4 3.67-4 5.09-4 4.50-4 3.55-5 3.73-5 5.79-4 6.26-4 3.61-4 6.63-4 6.68-4 8.78-4 9.25-4 Nb-95 Zr-99 Nb-99 Mo"99 Tc-9 9m Mo-103 Tc-103 RU-103 Tc-106 RQ-106 Sn-129 Sb-12 9 Te-12 9m'Te-129 Sn-131 Sb"131 9.30-4 9.11-4 9.53-4 1.00-3 8.64-4 8.7 8-4 8.92-4 9.02-4 3.71-4 2.55-'4 5.84-5 1.82-4 4.72-5 1.72-4 1:62-4 4.44-4 Te-131m Te-131 Sn-132 Sb-132 Te-132 Sn-133 Sb-133 Te 13 3m Te-133 Cs-134 Sb-134 Te-134 Sb-135 Te-135 Cs-135 Cs-136 8.27-5 4.76-4 9.39-5 2.64-4 7.85-4 3.27-5 2.96-4 3.96-4 6.31-4 1.04-4 5.28-5 8.36-4 3.31-5 4.35-4 l.38-10 2.91-5 Cs-137 Ba-137m Cs-138 Cs-140 Ba-140 La-140 Cs-143 Ba-143 La-143 Ce-143 Pr-143 Cs-144 Ba-144 La-144 Ce-144 Pr-144 4.76-5 4.52-5 9.39-4 8.50-4 9.58-4 9.90-4 1.83-4 7.29-4 8.22-4 8.2 7-4 8.13-4 5.61-5 5.42-4 7.15-4 6.54-4 6.59-4 Notes: (a)50X core inventory noble gas 50X core inventory halogens 1X core inventory other nuclides (b)read as 5.32 x 10 curies/cm diluted in 400,000 gal (1.52 x 10 cm3}

TABLE 6 BETA DOSE REDUCTION FACTORS Metal Thickness mils (P 8 m/cm3)1 2 3 4 5 6 7'8 9 10 15 20 25 30 St Lucie 1 Beta Dose Reduction Factor.69.48.33.23.16.11.078.054.037.026.004.00067.0001.000017 Non-Metal Thickness Elastrometric Coating mils (@~1 m/cm3).1'10 15 20 25 30 35'40 45 50 60 70 80 90 100 St Lucie 1 Beta Dose Reduction Factor.96.80.63.50.40.32.25.20.16.13.10.064.04.026.016.01 NR" Beta Dose Reduction Factor(a).10.Ol Notes: (a)From Bulletin IE 79-01B 12 TABJ.E 7 GONTRIBVTORS TO DOSi;OF POINT INSIDE CONTAINMENT The contributions from the fourteen factors previously listed are shown for a particular point inside containment, chosen at Elevation 111.00 on the vertical axis of the containment.

Only significant contributions are listed.Note that the beta doses do not consider equipment c overi ngs.Dose Factor Descri tion'40 year,, Dose at Various Times Followi~n~DA Doteel After l de~After 30 0 Dose Y 8 Y Y Normal Op Ex-t erne 1 (y, g)1, 0+4~Normal Op In-ternal-(8).3 DBA Direct Radi-ation from Sump water (y)1.0+4-5.0+4 6.5+4-7.0+4 DBA Di rec t Rad i-ation from Sump water (g)DBA Direct Radi-ation from Con-t ainment (Y)DBA Direct Radi-ation from Ambi-ent Sources (Y)DBA Submersion Cloud (Y)4.2+6-1.7+7 l.8+7 2.0+7 D BA Di rec t Rad i-ation f rom Sump (Y)".Read as 1.0 X 10 rads TABLr;7 (Cont'd)R1-6/24/83 Dose Factor Descri tion 40 year Ho rmal 0 Dose Dose et Vstious Times Foiiouieg ggA-"'""X 8 S 0 8 DBA Submersion Sump Radiation (v)10 12 DBA Submersion Sump Ra'diation (8)DBA Plateout (y)DHA Plateout (6)3.5+4-l.1+5-l.7+5 2.0%5 13 14 DBA Submersion Cloud (6)DBA Direc.t Radi-ation from Sump (8)6.4+7-1.3+8-1.5+8 1.6+8 Rl SU BTOTA!l.N-4 4.2+6 6.4+7 1.7+7 1.3+8 1.8+7 1.5+8.2.0+1.6+8 Rl TOTAL (Includes 40 year Normal Op Dose)4.2'.6 6,4+7 1.7+7 1.3+8 l.8+7 1.5+8 2.0+7 1.6+8 TABLE 8 CONTRIBUTORS TO DOSL'F POINT OUTSIDE G)NTAINHENT For the purpose of this example, a point located in the vicinity of the Control Room Emergency Filters, on Elevation 62.00'f the Reactor Auxiliary Building, was chosen.Dose Factor Descri tion 40.year Normal 0 Dose~Y 8 Y 8 Y 8 8 Normal Op Ex-ternal (y,g)1.0+3*Normal Op In-ternal (8)DBA Direct Radi-ation from Sump water (Y)DBA Direct Radi-ation from Sump water (8)DBA Di rec t Rad 1-ation from Con-t ainment (Y)g 1.0+2-41.0+2-g 1.0+2-/1.0+2 DBA Direct Radi-ation from Ambi-ent Sources (Y)l.4+4-7.0+4-9.1+4 1.0+5 DBA Submersion Cloud (Y)5.2+2-4.0+4-4.4-I 4 4.4+5 DBA Di rec t Rad i-ation from Sump (Y)*Read as 1.0 X 10 rad s 3 TABLE 8 (Cont'd)Rl-6/24/83 Dose Factor Descri tion 9 DBA Submersion Sump Radiation (v)40 year Normal 0 Dose Dose st.Various Times following DDA After l day Af ter 30 Dayy After 0 months After l veer 0 V 8 10 12 13 14 DBA Submersion Sump Radiation (8)DBA Plateou t ('f)DBA Plateout (9)DBA Submersion Cloud (5)DBA Direct Radi-ation from Sump (0)43.1+3-(2.4+5-(2.6+5 (2.6+5 I Rl-SUBTOTAL TOTAL (Includes'40 year Normal Op Dose)1.0+3 1.5+4 (3.1+3 1.1+5 d'2.4+5 1.4+5 42.6+5 1.5+5<2,8-5 1.5+4 c 3.1+3 1.1+5 (2.4+5 1.4+5<2.6+5 1.5+5'.'2.6+5 Rl I 1