ML18054B012: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 60: Line 60:
*
*
* EA-FC-809-13 Poart I R*v 1 pa.ge 4 of %. ) c> Ra.t* of Pzr pr .. ssure incre*se, psi/sec = KS<-dV/V),
* EA-FC-809-13 Poart I R*v 1 pa.ge 4 of %. ) c> Ra.t* of Pzr pr .. ssure incre*se, psi/sec = KS<-dV/V),
ref 1, where V =PCS volume= 10,311.7ft3, from ref 2 & 3, .and dV = Swell and ma.ss additions, converted to ft3/s9C, .and K = Bulk modulus of elasticity for wa.ter <see attacment 1> d) dV is calculated for Swell from the rela.tionship dV = <Vf-Vf')/VfSVpcs/t or <Vf-Vf')/VfiVpzr/t , where Vf = fluid specific volume temp of interest, .and Vf'= fluid specific temp of interest + 10 deg, and Vpcs, or Vpzr = the affected volume, and t = the elapsed time for the temper*ture change, in seconds Vpcs = PCS volume -Pzr volume = 8,80Sft3, from ref 2 Vpzr =Pressurizer volume= 1,503.7, from ref 3 e> dV is calculated for ma.ss additions from the rela.tionship dVchg, or dVhpsi = gpm I gal/ft3 I siK:/min = ft3/sac, where dVchg = charging flow = 133gpm, and dVhpsi = High Pressure Sa.fety Injection Flow fro* ref 6, and gal/ft3 = 7.48, and sec/min = 60 f> HPSI pumps delivery as a function of Pzr pressure is ta.ken from reference  
ref 1, where V =PCS volume= 10,311.7ft3, from ref 2 & 3, .and dV = Swell and ma.ss additions, converted to ft3/s9C, .and K = Bulk modulus of elasticity for wa.ter <see attacment 1> d) dV is calculated for Swell from the rela.tionship dV = <Vf-Vf')/VfSVpcs/t or <Vf-Vf')/VfiVpzr/t , where Vf = fluid specific volume temp of interest, .and Vf'= fluid specific temp of interest + 10 deg, and Vpcs, or Vpzr = the affected volume, and t = the elapsed time for the temper*ture change, in seconds Vpcs = PCS volume -Pzr volume = 8,80Sft3, from ref 2 Vpzr =Pressurizer volume= 1,503.7, from ref 3 e> dV is calculated for ma.ss additions from the rela.tionship dVchg, or dVhpsi = gpm I gal/ft3 I siK:/min = ft3/sac, where dVchg = charging flow = 133gpm, and dVhpsi = High Pressure Sa.fety Injection Flow fro* ref 6, and gal/ft3 = 7.48, and sec/min = 60 f> HPSI pumps delivery as a function of Pzr pressure is ta.ken from reference
: 6. g> Constants used in the .analyses are: A= Vpcs/t = 8,80811,800  
: 6. g> Constants used in the .analyses are: A= Vpcs/t = 8,80811,800  
= 4.8933 *** ft3/sec over the range of 50 to 170 deg F = B,808/900  
= 4.8933 *** ft3/sec over the range of 50 to 170 deg F = B,808/900  
Line 137: Line 137:
ft3/sec PCS tempeature Jp_t? Vf @
ft3/sec PCS tempeature Jp_t? Vf @
ii =
ii =
Vf  
Vf
:i =
:i =
Pzr temp
Pzr temp
Line 169: Line 169:
__
__
C*_l2.at;YS.-
C*_l2.at;YS.-
3 /, ,;z7 '!2 .'J'C.'71  
3 /, ,;z7 '!2 .'J'C.'71
:r 1 l, '1B PCS tempeature ljg:_ Vf @ .7-(..P-_p!Si a = ,g,!/_,-Z,.-::_-Vf a Pzr temp l_f_y_" Vf @ ___ psi a. = -----Vf '@ ___ ___ psi a dVhpsi =  
:r 1 l, '1B PCS tempeature ljg:_ Vf @ .7-(..P-_p!Si a = ,g,!/_,-Z,.-::_-Vf a Pzr temp l_f_y_" Vf @ ___ psi a. = -----Vf '@ ___ ___ psi a dVhpsi =  
=
=
Line 206: Line 206:
\   
\   
* * *=-. . >> -EA-Fc-eaq-13 P*rt PAQ* ..1. of "3_] Const*nts on P*Q**
* * *=-. . >> -EA-Fc-eaq-13 P*rt PAQ* ..1. of "3_] Const*nts on P*Q**
Ca l/.8/2 I  
Ca l/.8/2 I
:r :JI. 'l.-2 3r;. t 0, t
:r :JI. 'l.-2 3r;. t 0, t
* 3J. 2. 'J 122. 08'-
* 3J. 2. 'J 122. 08'-
Line 270: Line 270:
___ psi*=-----
___ psi*=-----
Vf'@ ___ & ___ psia = dVhpsi =  
Vf'@ ___ & ___ psia = dVhpsi =  
= ______ ft3/sec dVchg = 133gpm/7.48/60  
= ______ ft3/sec dVchg = 133gpm/7.48/60
:::r .2963ft3/sec dVpcs =  
:::r .2963ft3/sec dVpcs =  
=
=
Line 361: Line 361:
Vf
Vf
* a =
* a =
Pzr Vf  
Pzr Vf
:a  
:a  
= .;..QL&sect;_'i'J dVhpsi =  
= .;..QL&sect;_'i'J dVhpsi =  
Line 370: Line 370:
=
=
dVtot = _ ... Y.!'J.}_ ft3/sec RATE of Pzr Press dVtot*C =  
dVtot = _ ... Y.!'J.}_ ft3/sec RATE of Pzr Press dVtot*C =  
= PCS temoeature Vf 9  
= PCS temoeature Vf 9
:a  
:a  
=
=
Line 401: Line 401:
= .2963ft3/sec dVccs =  
= .2963ft3/sec dVccs =  
=
=
RATE of Pzr Press rise= dVtot*C =  
RATE of Pzr Press rise= dVtot*C =
: .-dVp::r =  
: .-dVp::r =  
=
=
Line 479: Line 479:
=
=
F' z !"' temp Vf * ]L-'?-PS i a =
F' z !"' temp Vf * ]L-'?-PS i a =
Vf . s i a =  
Vf . s i a =
: 3. dVhpsi =  
: 3. dVhpsi =  
=
=
Line 527: Line 527:
* a =
* a =
Pz temp Vf 8 1L'2_psi a = :J?Lflt.f>
Pz temp Vf 8 1L'2_psi a = :J?Lflt.f>
Vf i a =  
Vf i a =
:I' jVhpsi =  
:I' jVhpsi =  
=-
=-
Line 549: Line 549:
* a =
* a =
Vf  
Vf  
=  
=
: 2) dVhps1 =  
: 2) dVhps1 =  
=  
=
: 1) 1) dVchg dVpcs dVp=r dVtot = 133gpm/7.48/60  
: 1) 1) dVchg dVpcs dVp=r dVtot = 133gpm/7.48/60  
=-.2963ft3/sec  
=-.2963ft3/sec  
Line 573: Line 573:
=
=
dVpzr =  
dVpzr =  
=  
=
: 1. '"" Equivalent gpm =
: 1. '"" Equivalent gpm =
RATE of Pzr Press r!se= dVtot*C =  
RATE of Pzr Press r!se= dVtot*C =  
Line 619: Line 619:
PCS tempeature  
PCS tempeature  
&deg;3J&#xa3;: Vf @ l1_7'_:1&#xa3;psi a =
&deg;3J&#xa3;: Vf @ l1_7'_:1&#xa3;psi a =
Vf  
Vf
:1. =
:1. =
Pzr temp5_h_0 Vf  
Pzr temp5_h_0 Vf  
Line 905: Line 905:
* c. , ,.v 11/11( """ c..J ,,: .z. 00 * /2 ro it . .11 c;)
* c. , ,.v 11/11( """ c..J ,,: .z. 00 * /2 ro it . .11 c;)
* r . F 1111:.
* r . F 1111:.
II fl r(,I z.,o* fl, ''4".J A-l'e.  
II fl r(,I z.,o* fl, ''4".J A-l'e.
(, ( a.C F#r 2.vv 0 p rll '($" o
(, ( a.C F#r 2.vv 0 p rll '($" o
* p 1111 (cc -e..J " ,. 41:. CA I c"' 1..1-J' {:,.,,.._
* p 1111 (cc -e..J " ,. 41:. CA I c"' 1..1-J' {:,.,,.._
Line 911: Line 911:
I./ 11 le '"4-' {o-t" 3 2.
I./ 11 le '"4-' {o-t" 3 2.
* ts* 120&deg; tc.-o* so ) "'-le ... Ad I.vi:""' 1 I I ) .J ,-, ;.,,, .(,,. IO" -t...,,,,1.1, I. I AA.1. ! vcll 15 f' :If)/ Mi.J2 ISOOfr:a/
* ts* 120&deg; tc.-o* so ) "'-le ... Ad I.vi:""' 1 I I ) .J ,-, ;.,,, .(,,. IO" -t...,,,,1.1, I. I AA.1. ! vcll 15 f' :If)/ Mi.J2 ISOOfr:a/
S* .';, (c..,.t=W',..f;r--,.'  
S* .';, (c..,.t=W',..f;r--,.'
:1 r "fct r -<k -r 10 Is-;4 . 71, e t /."" le'l',./&deg;"'IJ Afr4.I-/-,* t tf."I' n ; {e.;o ,A f'I' >".e * .f VtJt (4..tt, ?o t" !  
:1 r "fct r -<k -r 10 Is-;4 . 71, e t /."" le'l',./&deg;"'IJ Afr4.I-/-,* t tf."I' n ; {e.;o ,A f'I' >".e * .f VtJt (4..tt, ?o t" !  
...  
...  
Line 926: Line 926:
-1 3 i Sheet 2. of 2-Rev# ______ _ s ... o t>>o "J t:1CJO 'Jc::>,, 000 11'00 "3 ;Jo CJt;I 0 "'
-1 3 i Sheet 2. of 2-Rev# ______ _ s ... o t>>o "J t:1CJO 'Jc::>,, 000 11'00 "3 ;Jo CJt;I 0 "'
J'l.P 1 O(JC) "l 13 I ] O'OJ 0'1CI l l.O_.. 00(.) l' 3 11> I J]D* /$....,,0  
J'l.P 1 O(JC) "l 13 I ] O'OJ 0'1CI l l.O_.. 00(.) l' 3 11> I J]D* /$....,,0  
-;.o iii,ooo  
-;.o iii,ooo
: l. 1.10)000 'l lO "f(,, t "l.Z <./<i'j I l 1.(:1, &deg;" 0 l J z, ooo  
: l. 1.10)000 'l lO "f(,, t "l.Z <./<i'j I l 1.(:1, &deg;" 0 l J z, ooo  
'+'7 I "'52.'f  
'+'7 I "'52.'f  
Line 932: Line 932:
'J4oJooo 1 1-o J. 11-" "":. 'l<1, "3 ";Ii I I l?J 0 :J '"1 "" 0 '3 3/, j (lf, I 'I 0 J 11, 0 0 () "3 -z.1, 81-.s;' 3 '311' I 2.10  
'J4oJooo 1 1-o J. 11-" "":. 'l<1, "3 ";Ii I I l?J 0 :J '"1 "" 0 '3 3/, j (lf, I 'I 0 J 11, 0 0 () "3 -z.1, 81-.s;' 3 '311' I 2.10  
'1 l1J "oo 3/0 1 /&f;,
'1 l1J "oo 3/0 1 /&f;,
Jr::. ('l"'""' re+s C..i_  
Jr::. ('l"'""' re+s C..i_
(<.* P. -P\ /(( V, .. ) (".a i**p.t.a,.c.  
(<.* P. -P\ /(( V, .. ) (".a i**p.t.a,.c.  
.;. f ,*._) ...  
.;. f ,*._) ...  
Line 950: Line 950:
Begin of page following ( (
Begin of page following ( (
* II R*v 1 2 of 4 PORV FLOW versus TIME <From Reference 5> 1) 2) 3> 4) 5) 6) 7) :GraphlLift IEffect.IEff.ct.
* II R*v 1 2 of 4 PORV FLOW versus TIME <From Reference 5> 1) 2) 3> 4) 5) 6) 7) :GraphlLift IEffect.IEff.ct.
Area: Cv ISqrt dP :sqrt Time: milsl Area l/F.S.Eft Ar.  
Area: Cv ISqrt dP :sqrt Time: milsl Area l/F.S.Eft Ar.
: 9) 10> IAdjustedlTotall Flow= Cv*Sqrt dP ----> : Time : Time: = 5) S 6) = 5> I 7> -------------______ =_5>_1_8>  
: 9) 10> IAdjustedlTotall Flow= Cv*Sqrt dP ----> : Time : Time: = 5) S 6) = 5> I 7> -------------______ =_5>_1_8>
: 1) 2> 3) 4> 5> . IGraphlLift lEffect. :Effect. Areal Cv Time: mils:
: 1) 2> 3) 4> 5> . IGraphlLift lEffect. :Effect. Areal Cv Time: mils:
l/F.S.Eft Ar.1<219*  
l/F.S.Eft Ar.1<219*
: 9) 10) IAdjustedlTotall Flow : Time : Time: = ----> = 5> = 5> > 11) 13) 7) 8) .Sqrt dP :sqrt dP :sqrt dP > :a310 s.p 11> 12) 13) FlON 310 spl700 spl900 sp _s_8> ____________________  
: 9) 10) IAdjustedlTotall Flow : Time : Time: = ----> = 5> = 5> > 11) 13) 7) 8) .Sqrt dP :sqrt dP :sqrt dP > :a310 s.p 11> 12) 13) FlON 310 spl700 spl900 sp _s_8> ____________________  
------------------
------------------
Line 962: Line 962:
------------------
------------------
: 2) 3) 4) 5) 6) 7> 8) :GraphlLift IEffect.IEffect.
: 2) 3) 4) 5) 6) 7> 8) :GraphlLift IEffect.IEffect.
Area: Cv :sqrt dP :sqrt dP :sqrt dP Time: mils: AraA l/F.S.Eft Ar.I s.p NIA 11,0001 S.77321 1. 0 219 9) 10) 13.96 11> 12> 13) IAdjusted:Totall Flow= CvtSqrt dP ----> Flow  
Area: Cv :sqrt dP :sqrt dP :sqrt dP Time: mils: AraA l/F.S.Eft Ar.I s.p NIA 11,0001 S.77321 1. 0 219 9) 10) 13.96 11> 12> 13) IAdjusted:Totall Flow= CvtSqrt dP ----> Flow
: Time : Time: = S> t 6> 310 spl700 spl900 sp 1 ' 880 : 2' 080 : = s)
: Time : Time: = S> t 6> 310 spl700 spl900 sp 1 ' 880 : 2' 080 : = s)
* 7) 3' 057 ________ : ___________  
* 7) 3' 057 ________ : ___________  
Line 1,003: Line 1,003:
==Reference:==
==Reference:==


GW08304, F1l1 *011, -317.0 In accordance w1th our t1l1phon1 conversation af Septellblr  
GW08304, F1l1 *011, -317.0 In accordance w1th our t1l1phon1 conversation af Septellblr
: 18. 1989, the purpose of thts 11tt1r 11 to conft,.. our confidence 1n the accuracy and validity of the ca11put1r progr .. and th* approach, which havt bltn used to calculate the opening and clo1t"9 t1 ..
: 18. 1989, the purpose of thts 11tt1r 11 to conft,.. our confidence 1n the accuracy and validity of the ca11put1r progr .. and th* approach, which havt bltn used to calculate the opening and clo1t"9 t1 ..
* for tht replac ... nt PORV's to bt 1n1t111ed in Palt11d11 thta fall. Tht1 con,1d1nc1 1s based tn part on the results of calculatton1 of th* stroke t1 .. a of s1m11ar v1lv11 in tests p1rforllld by EPRI at fact11tt11 1n Norco, Caltforn1a.
* for tht replac ... nt PORV's to bt 1n1t111ed in Palt11d11 thta fall. Tht1 con,1d1nc1 1s based tn part on the results of calculatton1 of th* stroke t1 .. a of s1m11ar v1lv11 in tests p1rforllld by EPRI at fact11tt11 1n Norco, Caltforn1a.
Th1s1 calcul1t1on1, reported tn a 11tt1r to CPCo datad Septtllbtr 15, 1989 (98*108-08), showed good corrtlatton with the test data. Variations bltwe1n the and t11t data vert also g1n1ralty in th* con11rv1t1v1 d1rtctton, 1.g., calculatld opening ti11es for the water tests ..,.. 91n1rally slower than the t11t data. W1 hav* also calculated th1.r11pon11 of the P1lisad11 r1plac1111nt valves over a w1dt range of f1u1d condtt1on1 and consider th1 var1at1ons to bl con11stent 1xpectatfon1 for thts valve d11tgn. e.g., 110rt rapid response for 1t1* condttions than for sub-cooled water al\d lllOrt d1l1ytd response for saturated water cond1t1ons.
Th1s1 calcul1t1on1, reported tn a 11tt1r to CPCo datad Septtllbtr 15, 1989 (98*108-08), showed good corrtlatton with the test data. Variations bltwe1n the and t11t data vert also g1n1ralty in th* con11rv1t1v1 d1rtctton, 1.g., calculatld opening ti11es for the water tests ..,.. 91n1rally slower than the t11t data. W1 hav* also calculated th1.r11pon11 of the P1lisad11 r1plac1111nt valves over a w1dt range of f1u1d condtt1on1 and consider th1 var1at1ons to bl con11stent 1xpectatfon1 for thts valve d11tgn. e.g., 110rt rapid response for 1t1* condttions than for sub-cooled water al\d lllOrt d1l1ytd response for saturated water cond1t1ons.
These data w1r1 reported to CPCo in l1tt1r1 d1tld S1ptlllber  
These data w1r1 reported to CPCo in l1tt1r1 d1tld S1ptlllber
: 7. 1911 (98-108*01) and S1ptlllbtr 12, 1989 (98-108*07).  
: 7. 1911 (98-108*01) and S1ptlllbtr 12, 1989 (98-108*07).  
' We 1nt1nd to include cQllpltt*
' We 1nt1nd to include cQllpltt*
Line 1,013: Line 1,013:
In the m11nt1111 if you have any qu1stion1 conc1rn1ng th111 .. tt1r1 or requir* further infort11tion, p111s1 giYI .. I Clll. *-* -** .........   
In the m11nt1111 if you have any qu1stion1 conc1rn1ng th111 .. tt1r1 or requir* further infort11tion, p111s1 giYI .. I Clll. *-* -** .........   
* * ++o EN6INEERIN6 ANALYSIS EA-FC-809-13 III Rev 1 1 of 4 Title: Pressure Response Effects of VLTOP with Replacement PORVs Part III -Recommended LTOP Set Points for Variable LTOP Protection Objective:
* * ++o EN6INEERIN6 ANALYSIS EA-FC-809-13 III Rev 1 1 of 4 Title: Pressure Response Effects of VLTOP with Replacement PORVs Part III -Recommended LTOP Set Points for Variable LTOP Protection Objective:
Determine the LTOP set points to preclude exceeding Appx. 6 Limit9, considering  
Determine the LTOP set points to preclude exceeding Appx. 6 Limit9, considering
:
:
* Permissable heating/cooling rates
* Permissable heating/cooling rates
Line 1,022: Line 1,022:
* Assumptions:
* Assumptions:
EA-FC-809-13 P*rt II I Rav 1 page 2 of 4 a> Signal Processing D*l*y is 200 milliseconds  
EA-FC-809-13 P*rt II I Rav 1 page 2 of 4 a> Signal Processing D*l*y is 200 milliseconds  
<reference  
<reference
: 3) b> PORV response time is 1680 mill.iseconds  
: 3) b> PORV response time is 1680 mill.iseconds  
<reference 6> c> PORV full stroke opening time is 200 milliseconds  
<reference 6> c> PORV full stroke opening time is 200 milliseconds  
<reference  
<reference
: 6) d) PORV Cv at partial stroke is proportion*!
: 6) d) PORV Cv at partial stroke is proportion*!
to effective  
to effective  
Line 1,031: Line 1,031:
Equation 1, Heating Limited Plim = C17.206xC26.78+Cl.233xExpC.014Sx<T-86-dT114>>>>>-B4 Equation 2, Cooling Limited Plim = <17.206xC26.78+Cl.233xExpC.0145xCT-86+dT114>>>>>-<5.85xdTmax>-84 Where Plim =
Equation 1, Heating Limited Plim = C17.206xC26.78+Cl.233xExpC.014Sx<T-86-dT114>>>>>-B4 Equation 2, Cooling Limited Plim = <17.206xC26.78+Cl.233xExpC.0145xCT-86+dT114>>>>>-<5.85xdTmax>-84 Where Plim =
set point in PSIS before allowance for shoot, T = PCS temperature, degrees F dTl/4 for 20deg/hr 40deg/hr 60deg/hr 100deg/hr He*ting 6.3 12.4 18.2 30.0 Cooling 4.4 9.0 13.9 23.6 dTm*x for Cooling 10.1 20.s 31.8 54.0 <---from Part !--------------------->  
set point in PSIS before allowance for shoot, T = PCS temperature, degrees F dTl/4 for 20deg/hr 40deg/hr 60deg/hr 100deg/hr He*ting 6.3 12.4 18.2 30.0 Cooling 4.4 9.0 13.9 23.6 dTm*x for Cooling 10.1 20.s 31.8 54.0 <---from Part !--------------------->  
<Part II>C7x8> p.s1&-ps/A. 1 2 3 4 5 6 7 8 9 10 11 PCS lHtg/ClglPumpsldV/seclEquivl K lR*te oflTima forlPresslAppx GlM*x Temp:Rate  
<Part II>C7x8> p.s1&-ps/A. 1 2 3 4 5 6 7 8 9 10 11 PCS lHtg/ClglPumpsldV/seclEquivl K lR*te oflTima forlPresslAppx GlM*x Temp:Rate
:oper-:Cu.ft  
:oper-:Cu.ft
:Press IPORV flolO'shtlLimit  
:Press IPORV flolO'shtlLimit
:Perm degFldeg/hr labia: :Incra*s:=Equival:
:Perm degFldeg/hr labia: :Incra*s:=Equival:
psi :-Temp&lSat 110 ll..O . 'lO"/(, . lo"/&. '3 'l.11 * '3121'
psi :-Temp&lSat 110 ll..O . 'lO"/(, . lo"/&. '3 'l.11 * '3121'
Line 1,043: Line 1,043:
2 3 4 6 7 Htg/ClglPumpsldV/seclEquivl K :Rate of Rate lOper-:Cu.ft lgpm I :Press deg/hr lable : : l llncreas I psi/sec EA-FC-809-13 Part III page 3 of 4 Rev 1 <Part II> <7x8> 8 9 10 11 Time for Pr*sslAppx 61Max PORV flo O'sMt Limit :Perm =Equival psi -Temp&ISet gpm Press IPnt ____ -----------------------____ -------in sac's -----Errors f'3o 2,c:> 3C'4.J I . ""J.'J.';/
2 3 4 6 7 Htg/ClglPumpsldV/seclEquivl K :Rate of Rate lOper-:Cu.ft lgpm I :Press deg/hr lable : : l llncreas I psi/sec EA-FC-809-13 Part III page 3 of 4 Rev 1 <Part II> <7x8> 8 9 10 11 Time for Pr*sslAppx 61Max PORV flo O'sMt Limit :Perm =Equival psi -Temp&ISet gpm Press IPnt ____ -----------------------____ -------in sac's -----Errors f'3o 2,c:> 3C'4.J I . ""J.'J.';/
I /<;,'/  
I /<;,'/  
/<:1,82.1/  
/<:1,82.1/
: 2. .1 2 3 3,/ /C(<.;, I _
: 2. .1 2 3 3,/ /C(<.;, I _
I 1328  
I 1328  
/"* 1-2.o":f 2 3 l'>"o I , 'llG'f l f5'/  
/"* 1-2.o":f 2 3 l'>"o I , 'llG'f l f5'/  
'"*'1 o3 l I(,
'"*'1 o3 l I(,
* __  
* __
:  
:  
.!!!.!  
.!!!.!
: 2. 38 '{ -, '"'1&#xa2; 110 : .3s-1>-:  
: 2. 38 '{ -, '"'1&#xa2; 110 : .3s-1>-:
:311,t11:tc.P.8'l?-r z.:. 33, --o I l 1'-B :J",13':
:311,t11:tc.P.8'l?-r z.:. 33, --o I l 1'-B :J",13':
Z.'1 l!io-,,o: 1 : 1 : .'JGl..' : 1(,?.. :J1J,,,;:  
Z.'1 l!io-,,o: 1 : 1 : .'JGl..' : 1(,?.. :J1J,,,;:
:--r-: 23 : 1.DO ! ! ! . 't<J 2. : Jfl I l3 I01l8': IZ' l>-PJ r: : 2. i:;. I 3 e 3 'L.to: I : I : .'1QqC>l 1&1  
:--r-: 23 : 1.DO ! ! ! . 't<J 2. : Jfl I l3 I01l8': IZ' l>-PJ r: : 2. i:;. I 3 e 3 'L.to: I : I : .'1QqC>l 1&1  
"*88'1'):
"*88'1'):
I : ZS" : 't'03 22.0: : : .<tD11fl 181 : I :  
I : ZS" : 't'03 22.0: : : .<tD11fl 181 : I :
: Z '5" l '1'l. z.10: I : : . '-to9:5 : te'f : : z. 5" 1 z. a.C{o: __ 'r :____ '.'{o'f3:
: Z '5" l '1'l. z.10: I : : . '-to9:5 : te'f : : z. 5" 1 z. a.C{o: __ 'r :____ '.'{o'f3:
1 c/ * 'z. -' B .z.,-o: E>O l l ."/ 31./ l I Cf'( l I Z I '11-f l.lo 2'&deg; 2:1-o 2SO 230 2.'io I 1.cto I '"o: l*o* 'Jto 110 l.1.o 1'1.o Ho .H6 Jew l"fo .h'OI f 00 l'o: . J'l"l 4(10: '110 : "IJ*: 'f'/Ql )&deg;#l 3 c"'s : .  
1 c/ * 'z. -' B .z.,-o: E>O l l ."/ 31./ l I Cf'( l I Z I '11-f l.lo 2'&deg; 2:1-o 2SO 230 2.'io I 1.cto I '"o: l*o* 'Jto 110 l.1.o 1'1.o Ho .H6 Jew l"fo .h'OI f 00 l'o: . J'l"l 4(10: '110 : "IJ*: 'f'/Ql )&deg;#l 3 c"'s : .  
'' e : I : 12.-9.s:is,-
'' e : I : 12.-9.s:is,-
I : l -:r : v l. u.nr : 3 . / 5' 18: /,<./I e. : . : "2 . 'i' I I I f 9 : -I 1c.i.3 : *"'"oo: *1c;-:r: I : ''''"'"1 I : l-:r 1 s's-+2UPrt: l.1.s.-av:
I : l -:r : v l. u.nr : 3 . / 5' 18: /,<./I e. : . : "2 . 'i' I I I f 9 : -I 1c.i.3 : *"'"oo: *1c;-:r: I : ''''"'"1 I : l-:r 1 s's-+2UPrt: l.1.s.-av:
1,1/olr I : 'iZ.e7811  
1,1/olr I : 'iZ.e7811
: 1'1S' : S'S" le"&deg;! s 1'ir: I : n.t3 :
: 1'1S' : S'S" le"&deg;! s 1'ir: I : n.t3 :
* 1 : it--: 'z".!>: c.10 I** : 'f<.BB,31 1 l'J>-I ! 'r''l2. 13'"' 1 .v391..:*,.,?-1 I:
* 1 : it--: 'z".!>: c.10 I** : 'f<.BB,31 1 l'J>-I ! 'r''l2. 13'"' 1 .v391..:*,.,?-1 I:
Line 1,068: Line 1,068:
I /'!5' : (,'i/ i !>-lo 1.5 C'-! : . '1**1''1-'1..:
I /'!5' : (,'i/ i !>-lo 1.5 C'-! : . '1**1''1-'1..:
z.o 1 : I : 13 j : ze 1 .,,."&deg; : -:ri.r-lrZHl'u: 3./6.!!i>-l'ol l,'/'2./ I "' : 'Jl,flOl : /'i" : 1-'-IO : S-5'&, :3 '"' : ,
z.o 1 : I : 13 j : ze 1 .,,."&deg; : -:ri.r-lrZHl'u: 3./6.!!i>-l'ol l,'/'2./ I "' : 'Jl,flOl : /'i" : 1-'-IO : S-5'&, :3 '"' : ,
11 l.o'f  
11 l.o'f
: 10. ?"lc;r: l : z. : ,-, : _;t_ e_g  
: 10. ?"lc;r: l : z. : ,-, : _;t_ e_g  
'l./1--'.b1 l,4L4l I l I f&#xa3;r l 1--'7" ! 'S-3 130.9 : .'f}-CJ>4 20<1 I I I /O',,f.'fl:
'l./1--'.b1 l,4L4l I l I f&#xa3;r l 1--'7" ! 'S-3 130.9 : .'f}-CJ>4 20<1 I I I /O',,f.'fl:
I I 22. :
I I 22. :
S''f :+z11Pu:l.11i.9:
S''f :+z11Pu:l.11i.9:
1,42t.{: *: 1-"l.,1301  
1,42t.{: *: 1-"l.,1301
: /":>-+, 1 8'2. 1 1-f7 :3,1,9 :
: /":>-+, 1 8'2. 1 1-f7 :3,1,9 :
Z.u'f: I : 10.1"1-?-S:
Z.u'f: I : 10.1"1-?-S:
I : 2'2. I CJ37-l 92'} :+ 2.'IPr.n 1 . r;.'L'f I Ul1.'l l 1 ':/-4.  
I : 2'2. I CJ37-l 92'} :+ 2.'IPr.n 1 . r;.'L'f I Ul1.'l l 1 ':/-4.
: I 51-1 '3 r 1 7 <t :1 C:'-9 : * 't'S-3&#xa5;1 z.o 3 : I : /o. ,,3.1 I : 2 2. : 11 0 't..s:": I "Ir  
: I 51-1 '3 r 1 7 <t :1 C:'-9 : * 't'S-3&#xa5;1 z.o 3 : I : /o. ,,3.1 I : 2 2. : 11 0 't..s:": I "Ir
: 11. 11"18l /)'il..'/I  
: 11. 11"18l /)'il..'/I
: &deg;1'1,.,"113  
: &deg;1'1,.,"113
: 1s+ : ,,
: 1s+ : ,,
1 FJ82.
1 FJ82.
Line 1,086: Line 1,086:
* lo'i!I : I ./ '/ : 7 1 1 o 1 ! /, o "t-1,eu.1 Bt81 : : 'lo: f) l,1'1'f .
* lo'i!I : I ./ '/ : 7 1 1 o 1 ! /, o "t-1,eu.1 Bt81 : : 'lo: f) l,1'1'f .
* I , l &S' f I '-Z l l I '-8 I f l '-l { 2.lj 8 , 'U,. r: l f. 'j : ' I '3 f l f J <.( l (I "{ fJ ';f-l * ' l.: z 'i o : ,.,, ,o't'3: : 2 3 I /, ' e o : I, tr 7 f l.tG. ( -, -I /1.-zc.j9:).f -r I Z'I : f} e 8'/ : I, 81-'f 302. I : //. 'i8'1'1: : VI : z.' f 9 : 2' .fO
* I , l &S' f I '-Z l l I '-8 I f l '-l { 2.lj 8 , 'U,. r: l f. 'j : ' I '3 f l f J <.( l (I "{ fJ ';f-l * ' l.: z 'i o : ,.,, ,o't'3: : 2 3 I /, ' e o : I, tr 7 f l.tG. ( -, -I /1.-zc.j9:).f -r I Z'I : f} e 8'/ : I, 81-'f 302. I : //. 'i8'1'1: : VI : z.' f 9 : 2' .fO
* 1-ff,,& : l t z.: I I f 2. l. '1 l-o1 I : l : z' "3 ti::> : 3 1-B 33'?,1 : 12*'"'''1:  
* 1-ff,,& : l t z.: I I f 2. l. '1 l-o1 I : l : z' "3 ti::> : 3 1-B 33'?,1 : 12*'"'''1:
: Z"1-2.C.l:J( *1-3Cfol 3Ji..: 'V: 11 .. 111.S': I Z7-:3,04'e:3_,o!>_.>_   
: Z"1-2.C.l:J( *1-3Cfol 3Ji..: 'V: 11 .. 111.S': I Z7-:3,04'e:3_,o!>_.>_   
* *
* *
Line 1,140: Line 1,140:
* I
* I
* I ' * .t' ' .' * *' " o . . ............................. . 90 130 180 230 280 330 380 430 Degrees F * *'1 I
* I ' * .t' ' .' * *' " o . . ............................. . 90 130 180 230 280 330 380 430 Degrees F * *'1 I
* 2,200 2, 100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1, 100 1,000 900 800 Cl: 700 -600 UJ 500 a.. 400 300 200 100 ACTUAL LTOP SET POINTS w/SDC ISOLATED *.**,**.*  
* 2,200 2, 100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1, 100 1,000 900 800 Cl: 700 -600 UJ 500 a.. 400 300 200 100 ACTUAL LTOP SET POINTS w/SDC ISOLATED *.**,**.*
:*.**.**,*  
:*.**.**,*  
*.**.**.*  
*.**.**.*  
Line 1,160: Line 1,160:
== 6.3 12.4 18.2 30.0 dTl/4 for cooling == 4.4 9.0 13.9 23.6 dTma>: for cooling == 10.i 20.5 31. 8 54 The above equations indicate that cooling is more limiting than heating for temperatures at or below 285 deg F; ie, calculated values from 280 to 290 deg for 60deg/hr rate of change are as follows: Heating Cooling 280 698.6 685.6 281 702.9 692.4 282 707.2 699.2 283 711. 6 706.2 284 716.07 713.3 285 720.5932 720.5719 286 725.1 727.8 287 729.8 735.2 288 734.5 742.7 289 739 .. 3 750.4 290 744.1 758. 1 Therefore, limiting values will be calculated with the heating equation from 290 degrees and greater, and with the cooling equation from 280 degrees and less. 1 PCS Temp 2 eqLI. b "".!' .... Rate: Limit equ. a 4 from Part III 5 6 Limit : Overshoot LTDP T.S. Limit w/HPSI w/o HPSI w/HPSI 7 Comments de F si si A si A
== 6.3 12.4 18.2 30.0 dTl/4 for cooling == 4.4 9.0 13.9 23.6 dTma>: for cooling == 10.i 20.5 31. 8 54 The above equations indicate that cooling is more limiting than heating for temperatures at or below 285 deg F; ie, calculated values from 280 to 290 deg for 60deg/hr rate of change are as follows: Heating Cooling 280 698.6 685.6 281 702.9 692.4 282 707.2 699.2 283 711. 6 706.2 284 716.07 713.3 285 720.5932 720.5719 286 725.1 727.8 287 729.8 735.2 288 734.5 742.7 289 739 .. 3 750.4 290 744.1 758. 1 Therefore, limiting values will be calculated with the heating equation from 290 degrees and greater, and with the cooling equation from 280 degrees and less. 1 PCS Temp 2 eqLI. b "".!' .... Rate: Limit equ. a 4 from Part III 5 6 Limit : Overshoot LTDP T.S. Limit w/HPSI w/o HPSI w/HPSI 7 Comments de F si si A si A
____  
____  
>'"'"""O ,, 35'1-'C/ 2. 0 3 .>&#xa3;3 1-4/ z. 4 0 80 ,., Z.4 3'' C> II <<-t" s lt.oo i f. * ., ccf *""' ; )\ ; ii a/ Par tP_.uJ r; f '3 to rs Jft EA-FC-809-13 Par-t IV Rev 1 page 3 of 4 o equ. b equ. a from Part III 1 2 3 4 5 6 7 PCS :Ratel Limit : Limit :overshoot  
>'"'"""O ,, 35'1-'C/ 2. 0 3 .>&#xa3;3 1-4/ z. 4 0 80 ,., Z.4 3'' C> II <<-t" s lt.oo i f. * ., ccf *""' ; )\ ; ii a/ Par tP_.uJ r; f '3 to rs Jft EA-FC-809-13 Par-t IV Rev 1 page 3 of 4 o equ. b equ. a from Part III 1 2 3 4 5 6 7 PCS :Ratel Limit : Limit :overshoot
:LTOP T.S. Limit: Comments Temp: of :cooling:heating:w/o HPSil w/HPSilw/o HPSI w/HPSI: degFlChng:
:LTOP T.S. Limit: Comments Temp: of :cooling:heating:w/o HPSil w/HPSilw/o HPSI w/HPSI: degFlChng:
psiG psiG psi psi psiA psiA If.IC> :  
psiG psiG psi psi psiA psiA If.IC> :  
'31-?-l 10: 3ez. 12..o: l8"1-/3o: <f I 'to: "'to I '!>(): '109 I (,o: i( I 'l I ;.o l ft>j'};,.
'31-?-l 10: 3ez. 12..o: l8"1-/3o: <f I 'to: "'to I '!>(): '109 I (,o: i( I 'l I ;.o l ft>j'};,.
3 S" I Sol 388-/ 90 _!_ ___ -: ----'t.e_'t____  
3 S" I Sol 388-/ 90 _!_ ___ -: ----'t.e_'t____  
-2.ool  
-2.ool
:  
:  
!Ya*"-: __ _ 2. to: ..,., z. 3o: 'l .
!Ya*"-: __ _ 2. to: ..,., z. 3o: 'l .
__ 'Z z. Z'Z. 'Z. 2.. z '3 z '!> z ?. 2. > Z3 z. 't z '!> 2.G. z. 'i .. *-
__ 'Z z. Z'Z. 'Z. 2.. z '3 z '!> z ?. 2. > Z3 z. 't z '!> 2.G. z. 'i .. *-
2S 3b' 3_:; 'f l 37-7 l : : 3/:;)s-: I --***-*-. ""--*----**------L 31z -. l__ ____ 'l_C!__{ __ : ______ : '110 t "&deg;: : 5'2. 'I 5'& !J-2. s."O: (,cl/J,r : S" Z?. 5'Cj G. i y;--------]Uo: 5'C.? Z.1-
2S 3b' 3_:; 'f l 37-7 l : : 3/:;)s-: I --***-*-. ""--*----**------L 31z -. l__ ____ 'l_C!__{ __ : ______ : '110 t "&deg;: : 5'2. 'I 5'& !J-2. s."O: (,cl/J,r : S" Z?. 5'Cj G. i y;--------]Uo: 5'C.? Z.1-
----i..l_ L .. -*------Leo: 'es ' :  
----i..l_ L .. -*------Leo: 'es ' :
:________ .  
:________ .
:  
:  
'31<.J: 8 !>-8 l  
'31<.J: 8 !>-8 l  
Line 1,177: Line 1,177:
* 3c.w: * : t, l>o 1, 101 .3.>"0 l I J 1 1 08 JGo : : / , n S 1, I If I l1o: l,llc./
* 3c.w: * : t, l>o 1, 101 .3.>"0 l I J 1 1 08 JGo : : / , n S 1, I If I l1o: l,llc./
1,  
1,  
'*' '-.!J -----* 'iCIO: 1 1 908 'itt>l 2.,oZ'l 'IZo: i., 't&o _"/-23-.l___  
'*' '-.!J -----* 'iCIO: 1 1 908 'itt>l 2.,oZ'l 'IZo: i., 't&o _"/-23-.l___
: 2. I '( 80 'tt6: 2, !>-10 __ <It.,: I 2., S'f_ I 4301 ,,.,too I. I 19'.i" 1'1> l'Jf ____ _ ( 'i y {tr, ( ':>'1-l 1:>' r I f 3 z. ( ., 'f 90 -z. 3-------2. i.f 2. 'f _'II( 1.. ';) --*------.. " f ';j _:_ 1-fS  
: 2. I '( 80 'tt6: 2, !>-10 __ <It.,: I 2., S'f_ I 4301 ,,.,too I. I 19'.i" 1'1> l'Jf ____ _ ( 'i y {tr, ( ':>'1-l 1:>' r I f 3 z. ( ., 'f 90 -z. 3-------2. i.f 2. 'f _'II( 1.. ';) --*------.. " f ';j _:_ 1-fS  
... .. c. .. fil',. 8'' q '<>
... .. c. .. fil',. 8'' q '<>

Revision as of 20:48, 25 April 2019

Pressure Response Effect of Variable Low Temp Overpressure Protection W/Replacement Porvs.
ML18054B012
Person / Time
Site: Palisades Entergy icon.png
Issue date: 09/20/1989
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML18054B007 List:
References
EA-FC-809-13, EA-FC-809-13-R01, EA-FC-809-13-R1, NUDOCS 8909280102
Download: ML18054B012 (45)


Text

  • *
  • TSP0889-0101-MD01-NL04 ATTACHMENT V Consumers Power Company Palisades Plant Docket 50-255 PRESSURE RESPONSE EFFECT OF VLTOP WITH REPLACEMENT PORVs (EA-FC-809-13, Rev. 1) September 22, 1989 44 Pages
  • Proc No GRE-02 DESIGN REVIEW SIGNOFF JlEcEJVEo At:t:achment:

J Revision l Page l of l EA: -FC-809-13 ft,...,./.

PURPOSE: SEP 211989 NUCLEAR VL TOP RaPL.-.c.l'1'11NT PORV:,

VLTOP .4c:.'1uAT10N Sir Po1,.1c; PROCEDURE UTILIZED:

1.-lAN.0 CAL.Clit.ATION'i SIMILAl.ITIES WITH PREVIOUS DESICJIS:

BoT" MA'.'.>>:a AND V.r Wllll ANAL.Y'SIS, 131.11 Plf.!VIOUS ANALYSIS.S AS')UM£D A SPECIAL MEDIA ATrACB!D (DIMIIBCS, MICKOrICBI, ETC) NO V YES -LI ST OP ATrACHMDTS IBCLUDID IN CON':ITANT K, /3u1.K Mooui..us.

OF TY* FSAB. UPDATE REQUIRED:

v YES UPDATI ATTACHED Oil SMou&.o 13* '-°"' Pi..*'TA.O 4i: PAICT-;;;-

F C. PAc.1< A C8 d. . UPDATE ASSIGBED TO: R!QUIUD CQMPLETIOB DATE:

fREPAB.ED Y Da e I i 1 l" IJ 1 vPll!PAUJl Date APPROVED BY I f Ui/*; I IEWD Dat:e APPROVED BY

<: I I , i' .;.a /,-:-j ltEPOllT Dat:e APPROVED BY fm0486-000ld-91

  • EN6INEERINB ANALYSIS EA-FC-809-13 page 1 of Z. 'l Rev 1 Title: Pressure Response Effects of VLTOP with Replacement PORVs Methodology:

The analysis is completed in four parts, described below. One p*rt determines pressure overshoot, another the PORV flows, another the recommended LTOP set points, and the last, the Tech Specs limit. Part I calculates rate at which Pzr pressure would increase for permissable heating rates CPCS and Pzr>, and mass addition rates. It also calculates an equivalent gpm for all effects, for use in Part III -Valve Opening Reguirements.

Mass addition rates both with and without HPSI are calculated over the 230 to 3SO degree PCS temperature range. Part II calculates the water flow for a single PORV to op*n full stroke, for use in Part III and Part IV. Part III calculates the App*ndix G pressure limits for PCS temperatur*s with allowance for temperature and pressure errors of S degrees and 30 psi respectively, and an allowance for pressure overshoot.

These are the LTOP setpoints.

The setpoints are plotted, and then a new plot of a smooth curve is prepared which envelopes all of th* set points. This second curve is the recommended LTOP set point curv*. Part IV calculates the Appendix G pressure limits for PCS tamp*ratures without temperature and pressure error, but with allowance for pressure overshoot.

These values are plotted, and produce the LTOP Tech Specs Limit curve (3-4 in the T.S *. change request>.

During the preparation and review of this analysis, several questions were raised, and answered.

The more significant of these are included below: 1> WHAT CONSERVATISMS ARE INCLUDED IN THE ANALYSIS?

a> The longest PORV full stroke time was* utilized in calculating time until required flow, for all cases, even though Pzr liquid would hav* to be saturated to produce such a stroke time. Times with subcooled liquid are computed to be substantially shorter. b> PORV flow figure used was that for only 310 psia in the pressurizer, regardless of LTOP set point. Further, PORV backpressure was assumed to be 115 psia nuously, even though it will likely be much lower tially, and cannot be sustained at that level due to the quench tank rupture discps 90 psig set point *

  • *
  • EA-FC-809-13 p*ge 2 of 21 Rav 1 c) Prassurizer he*ting rate w*a assumed to be 200 deg/hr, as permitted, but actual maximum heating rate when pressurizer is w*ter-solid is substanti*lly lower. d) The Bulk Modulus of Elasticity, k, w*s not recalculat*d for every temperature above 200 degrees, but rather was *stepped'down, such that over much of the temp*rature range it is higher than actual, resulting in calculation of a higher than actual rate of pressure increas*.

e> No PORV flow is assumed to occur until the valve is full open; ie, flow is stepped, not ramped. f) PCS volume is assumed to be that resulting from 29.3"/. average steam generator tube plugging, worsening th* pressure increase rate over that with the current level of plugging 2> WHY ARE THE POTENTIAL MEASUREMENT ERRORS NOT INCLUDED IN THE LTOP TECH SPECS LIMIT CURVE? The T.S. curve represents the pressure at which the PORV must be actuated in order to prevent exclHtding the Appendix G limit, considering the pressure overshoot during tha time it takes for the valve to open. The amount by which the set point must be reduced below this value to offset potential error, drift, etc. may vary under the influence of bration temperature, and instrument sensitivity.

The requirement is that LTOP cicuitry set point be reached at the same time or before the T.S. limiting pressure is reached. With this approach, surveillance tests should never find an LTOP set point in excess of the T.S. limit. 3> WHY IS PROTECTION OF THE SOC SYSTEM NO LONGER PROVIDED BY THE PORVS? The LTOP set point which would be necessary to protect the SDC system would be too low. SOC is designed for SOO psig

  • The LPSI pumps can add as much as 197 psi to the system pressure
  • The LPSI pump discharge is elev *
  • Pzr pressure CLTOP pressure input> is measured elev *
  • Elevation difference adds psi to indicated system pressure
  • Potential pressure error of LTOP instrumentation (narrow range> is psi EA-FC-809-13 page 3 of 2 '!> R*v 1 The set point of LTOP to protect SDC system would therefore have to be C500 psig + 15> -197 24 = 260 psia. Actual operating pressure would have to be reduced below this value to prevent inadvertent opening of PORVs, and to keep alarm <LTOP> cleared. SDC system RVs will provide adequate protection against charging without letdown <133 gpm> in coincidence with PCS heating 40 deg/hr C2S gpm) and Pzr heating 60 deg/hr <9 gpm>. RVs are 3164 <133 gpm>, 3162 gpm>, 0402 <15 gpm>, and 0403 <1S gpm>. ER-PAL-89-040 will resolve their set points to account for elevation head and ensure SDC overpressure protection without ralianca on the PORVs.
  • 4> LTOP limit is shown a single curve for he*ting and cooling. Which is limiting?

Based on revised App*ndi><

G limits <through 1a8E19 nvt>, and on permissable rate of change, tha LTOP limit is sat by cooling constraints below dag F, and by ha*ting straints above "'290 deg F. The exact crossov*r point depends upon wet'her or not instrument error *llowances are included, and is also affected by the assumed heating or cooling rate. For the rates assumed <maximum p*rmissabl*

rates for the PCS temperature>, all pressure limits were from the 1/4t Appendix G calculations.

Future changes in permissable rates, or in Appendix 6 limits could result in the 3/4t values being more limiting.

Tharefora, any change in permissable heating/cooling rates, or in vessel fluence, should prompt investigations into the posiblity of the 3/4t values being more limiting, and into a shift in the sover point in which values are limiting <heating or ing>. Part I -Pressure Increase Rates for Various PCS H*ating Rates and Pump Start Combinations Objective:

  • oetermine the rate of Pressurizer pressure increase for inadv*rtant pump starts when PCS is water-solid as input to calculate Pzr presssure overshoot during LTOP actuation tima. Analysis Input: a> Pzr heating rate = 200 degrees/hour.

b> PCS heating rates = 20 deg/hr up to 170 deg F. <raf 4> 40 deg/hr from 170 to 250 deg F. 60 deg/hr from *2so to deg F. 100 deg/hr from 350 to 532 deg F.

  • EA-FC-809-13 Poart I R*v 1 pa.ge 4 of %. ) c> Ra.t* of Pzr pr .. ssure incre*se, psi/sec = KS<-dV/V),

ref 1, where V =PCS volume= 10,311.7ft3, from ref 2 & 3, .and dV = Swell and ma.ss additions, converted to ft3/s9C, .and K = Bulk modulus of elasticity for wa.ter <see attacment 1> d) dV is calculated for Swell from the rela.tionship dV = <Vf-Vf')/VfSVpcs/t or <Vf-Vf')/VfiVpzr/t , where Vf = fluid specific volume temp of interest, .and Vf'= fluid specific temp of interest + 10 deg, and Vpcs, or Vpzr = the affected volume, and t = the elapsed time for the temper*ture change, in seconds Vpcs = PCS volume -Pzr volume = 8,80Sft3, from ref 2 Vpzr =Pressurizer volume= 1,503.7, from ref 3 e> dV is calculated for ma.ss additions from the rela.tionship dVchg, or dVhpsi = gpm I gal/ft3 I siK:/min = ft3/sac, where dVchg = charging flow = 133gpm, and dVhpsi = High Pressure Sa.fety Injection Flow fro* ref 6, and gal/ft3 = 7.48, and sec/min = 60 f> HPSI pumps delivery as a function of Pzr pressure is ta.ken from reference

6. g> Constants used in the .analyses are: A= Vpcs/t = 8,80811,800

= 4.8933 *** ft3/sec over the range of 50 to 170 deg F = B,808/900

= 9.7866 *** ft3/sec for 170 to 250 deg = 8,808/600

= 14.68 ft3/sec for 2SO to 350 deg = B,808/360

= 24.466 *** ft3/sec for 350 & up B = Vpzr/t = 1,503.7/180

= 8.3539 for .all teap*ratures c = K/V = 305,000/10,311.7

= 29.S780S2 psi/ft3 deg F. [C is recalculated each 10 deg F from 50 to 200 deg F, then @ SO deg C interv.als; se. .attachment 1] K = Bulk modulus of elasticity for w.ater; see .att.achlDltllt 1 ----------r

  • Assumptions:

EA-FC-809-13 P.art I Rev 1 page 5 of 2. l a) All HPSI pumps are PCS temperatures

<260 deg F <ref 4>. b> Steam Generator tuba plugging will not reduce PCS volume below. 10,311.7 ft3, which corresponds to 29.3% average fraction of tubes plugged <ref 2>. [PCS volume with 23.68 24.49% SG 1 2 plugging respectively

= 10,403.95ft3l c> Inadvertent start of charging is in coincidence with isolation of letdown, maximum Pzr heating rate, and m.aximum PCS heating rates. d> Inadvertent start of HPSI is in coincidence with inadvartent gtart of charging, maximum Pzr he.ating, and PCS heating. &!) PCS is w.ater-solid at beginning of tnansient.

f) PCS heating rates are the m.aximums permitted

<ref 4). g> No reduction in mass addition riite is tt1kGin tilS Pzr pressurei rises above initial pressure.

h> Initial pressures .ara t.aken as equal to the shutdown cooling LTOP set point from SO to 350 d99rees, then t.aken as over 80 psi l*ss th.an expected LTOP set points, to maximize HPSI deliv*ry.

i) Pressurizer fluid is takmn as being in equillibrium with tha PCS until both are heated to 200 deg F; then, Pzr fluid is t.akan as b*ing near saturation, to maximize volume change from Pzr heating. j) Delivery from two HPSI pumps to the PCS is twice that from one HPSI pump.

  • * *

-EA-FC-809-13 Pilrt I Rq,IJ J_ P*9* .'-of :_;5 Con!5tants on tflt* P*lil**

'.::-. '11> 1 /")-, 'r r

___

___ _ PCS tempeature Vf

=

F*zr Vf @

=

'vf '@_:. __ & ___ psi a = dVhps1 =

=

dVchg = 133qpm/7.48/60

.2963ft3/sec dVPC:S

= -*P.!].!_ft3/sec dvp::r = .12100'?_.l/.

0..f,.!,L*B

=

RATE of Pzr Press rise= dVtot+C =

= 1 Jti.!JS.._p-=.1 I sec

=

ft3/sec PCS tempeature Vf @)L_fl_psiil

=

P::r temp Vf@

-----Vf'@ ___ & ___ psia = dVhosi

= ______ +t3/sec dVchg = 133gpm/7.48/60

= .2963ft3/sec RATE of Pzr Press r!se= dVpcs = .

=

f t3/sec dVtot*C =

""c = dVp::r = . 000e.L 1* 0

= t 3 I sec 'Z.:J .... zyJ_::i:isi

/sec dVtot --

ft 3/ sec PCS t-:moeati.Jre lq_ Vf @ 7_!g_psia

=

Vf

  • =

F::r temp ..h-, Vf e __ psia = -----Vf**@ ___ 8c ___ psia = -----jVhpsi =

2 _:: ___ ft"5isec d\)chg = 1339pm/7.

48/69 :z

  • 2963ft3/sec dVpcs =

=

RATE of Pzr Press rise= dVtot*C =

dVp::r

  • 0Q!0q]/.

= .!£'.!.:C.f_ft3/sec

/Q * .P_'lr.f_psi

/sec dVtot =

ft3/sec NOTES: r

  • *
  • x; J_ -"""..!. -a EA-FC-8"-13 P.ilrt I o I P*Q* of Const.-nts an th2* Pata** A-_'!._&_c;_]_1, C* 11."1'1'3'1 1<a '3'2.'/1 t-i;r. JI.

-,2. o' '3 , v PCS tempeature

£Q_ Vf

=

Pzr temp ta_*vf 4i! ___ psia = -----Vf'@ ___ ___ psia = dVhpsi =

= _-====..ft3/sec dVc:hg = 133qpm/7.48/60

= .2963ft3/sec RATE of Pzr Press rise= dVpc:s = .12100EY.

=

dVtot*C =

  • C dVp;:r =

=

ft3/sec

/Se'= dVt::it = :.2:.'!:b_

ft3/sec PCS tempeature Jp_t? Vf @

ii =

Vf

i =

Pzr temp

___ psiil = -----Vf'8 ___ & ___ psia = dVhpsi =

= __ -=::::_ft3/sec dVc:hg = 133gpm/7.48/60

.2963ft3/sec dVpc:s

=

dVpzr =

RATE of Pzr Press dVtot*C =

=

/sec: dVtot = 1..l.3-.L.f/_

ft3/sec i=*cs temoeature Vf @ )_(p_psi a = ,g§.../.l_

Vf a Fzr temp l..e.t.J."Vf

  • ___ psia = -----Vf'@ ___ & ___ psia =

=

=

dVc:hg =

  • 133gp*/7.

48/6e_ * . 2963ft3/sec dVpcs = .00li!IQ.tl.01(/J_*A

=

dVpzr =

=

dVtot =

Equivalent gpm =

=

RATE of Pzr Press rise= dVtot*C =

= -----------------------------------------------------------------------

NOTES: r

  • EA-FC-809-13 Part I P*G* _a of Constants on 1:M*

__

C*_l2.at;YS.-

3 /, ,;z7 '!2 .'J'C.'71

r 1 l, '1B PCS tempeature ljg:_ Vf @ .7-(..P-_p!Si a = ,g,!/_,-Z,.-::_-Vf a Pzr temp l_f_y_" Vf @ ___ psi a. = -----Vf '@ ___ ___ psi a dVhpsi =

=

dVchg = 133gpm/7.48/60

.2963ft3/sec dVccs

=

dvp=r =

=

= .!.'lJJj_

ft3/sec RATE of Pzr Press rise= dVtot*C =

= PCS tempeature @

=

P=r Vf@ ___ psia = -----Vf'@ ___ & ___ psia = dVhpsi =

= .::... ____ ft3/sec dVchg = 133gpm/7.48/60

.. 2963ft3/sec dVpcs

= ._o...f_?:-L_ft3/sec dVp=r = .

=

dVtot =

ft3/sec RATE of Pzr Press dVtot*C =

=

__ psi /sec F=*cs 1!?: Vf @

a =

Vf '@ ___

a = .o/6 2.8 Fzr temp Vf

  • ___ psia = _____ Vf'@ ___ & ___ psia = jVhpsi =
  • __ :::_ft3/sec dl)'=hg =
  • 133gpm/7.48/60

.2963ft3/sec dVpcs

=

dVpzr =

..:.Pl:.£2':ft3/sec dVtot = ..:1]3.Lft31sec Equivalent gpm

=

RATE of Pzr Press dVtot *C = :_1_13-J_

  • C =

/ sec

\

  • * *=-. . >> -EA-Fc-eaq-13 P*rt PAQ* ..1. of "3_] Const*nts on P*Q**

Ca l/.8/2 I

r :JI. 'l.-2 3r;. t 0, t
  • 3J. 2. 'J 122. 08'-

PCS tempeatur*

Vf@

=

Pzr Vf@ ___ psia = -----Vf'@ ___ ___ psia = dVhps1 = !/Jl_gpm/7.

48/60 = ___ "'::=='ft3/sec:

dVchg = 133qpm/7.48/60

= .2963ft3/sec:

dVccs =

=

dVpzr =

=

RATE of Pzr Press rise= dVtot*C = ... :t:r_Q*C =

i I sec dVtot =

t3/sec ,..,..,"1..,...

1Li; "J EqLtivalent gpm =

___ gpm PCS tempeature

= .c;1/GZS -----Pzr temp

___

Vf'@ ___ & ___

dVhpsi

= ______ ft3/sec dVc:hg = 133gpm/7.48/60

.2963ft3/sec RATE of Pzr Press r1se= dVpc:s = . 000q_(! . 01t;f1 *A

ft3/sec dVtot*C = :..l}fr$*C

= dVp::r = .000e.s'.7.0Lt.!l*B

=

t 3 I sec:

/sec:

=

ft 3 /sec 0 PCS ty_o_0 vf@ i'.J.2.psia F::r temp 9 ___ psia = -----Vf'@ ___ & ___ psia =

______ ft3/sec dVchg

  • 133gp*/7.48/60

.2963ft3/sec dVpcs

dVpzr =

=

dVtot =

RATE of Pzr Press rise= dVtot*C =

=

/sec Equivalent gpm =

I I r

  • i) * *----

.... EA-FC-809-13 P*rt I R.c.11 / pa;* of Ccnstmants an* ...... PA9**

B*

C*.Jo,'f'l6.'>

I<*_ J 17 1 11 I .,10. '-

] It;,. , I J '-----------------------------------------------

_____

___ _ PCS tempeature Vf *

=

=

Pzr temp 1J::;_*vf@

___ psia = -----Vf'@ ___ ___ psia = ____ _ dVhps1 = L1{&gpm/7.48/60

= _::=__ft3/sec dVchg = 133gpm/7.48/60

= .2963ft3/sec dVpcs = . 000f'P.

= _.g2-Jl_ft3/sec

=

RATE of Pzr Press rise= dVtot*C =

dVpzr = dVtat =

Equivalent gpm =

/sei:: PCS tempeature Pzr temp

___ psi*=-----

Vf'@ ___ & ___ psia = dVhpsi =

= ______ ft3/sec dVchg = 133gpm/7.48/60

r .2963ft3/sec dVpcs =

=

oVpzr =

=

RATE of Pzr Press dVtot*C =

=

s i /sec dVtot = .. :.J.1_3_}ft3/sec PCS temoeature Vf@

Pzr temp Cjp_*vf

  • ___ psia = -----Vf'@ ___ & ___ psia = dVhpsi =
  • ___ _:::::Tt3/sec d\)Chg = 1339P*/7.48/611

-.2963ft3/sec RATE of Pzr Press rise= dVpcs = .

I.

=

dVtot*C = *}.f._1=/__

  • C =
  • dVpzr = .

0

+B = ..:.!2!£1_

ft3/sec (q..:.!f-'...i:psi

/sec dVtot =

f t3/sec Equivalent gpm =

  • EA-FC-809-13 P*rt I f11.11 j P*Q* J./_ cf 3-' Constants on P*rJ** .....

2c;.4131'

.]QJ, 2.)7 PCS tempeature Vf

  • lj'g_psia

=

=

Pzr temp 'W...L* Vf @ :r_!'_psia

=

= :..<2dl.2.5 dVhps1 = = _ _:-___ ft3/sec dVchg = 133qpm/7.48/60

= .2963ft3/sec RATE cf Pzr Press rise= dVpcs = .12100qrt.

=

dVtct*C =

dVpzr =

  • 000L0;

=

/sec

= . d . PCS tempeature Vf

=

Pzr temp Vf @ .1(.Qpsia

=

=

dVhpsi =

= ______ ft3/sec dVchg = 133gpm/7.48/60

= .2963ft3/sec

dVpcs

=

RATE cf Pzr Press dVtct*C =

= dVo::r . = .

= t 3 /sec //

/sec dVt.ct =

ft3/sec , PCS Vf @

a =

Vf a.=

F z r temp Vf e a = L.<UJJ.i'-1' Vf .

i a = ..!g.fpj :? dVhpsi

  • __ """.::':::::::f3/sec dVchg = 133gpm/7.48/60

.2963ft3/sec RATE of F'z r Press dVpcs

  • 000!_°!1.

=

dVtot*C = _;_'f_!J'_

  • C dVpzr = . 000ltf.

= /sec dVtct = f t3/sec Equivalent gpm = <7.48*a0*_:.<:f£.12_ft3> NOTES: rise= =

    • -

__.....,,,. EA-FC-809-13 I Rcvi P*Q* of Const.ant* an"l:Mw pages A- ... _________ _____ _ PCS = = Pzr temp :f{q_vvf @ = = dVhpsi = = _____ _:Tt3/sec dVchg = 133gpm/7.48/60 = .2963ft3/sec dVocs = . 01!f!l.*A = dVpzr = = dVtot = ft3/sec RATE of Pzr Press rise= dVtot *C = _._'l'25-=l

  • C se'= PCS tempeatul'."'e Vf @ ::'.2_psi a =

Vf

  • a =

Pzr Vf

a

.;..QL§_'i'J dVhpsi

= ______ ft3/sec dVchg = 133gpm/7.48/60

.2963ft3/sec dVpcs

= dVpzr = = dVtot = _ ... Y.!'J.}_ ft3/sec RATE of Pzr Press dVtot*C = = PCS temoeature Vf 9

a

= Pzr temp '!.c.P_: Vf 8 lf_o_psi a = Vf a = / dVhpsi =

______ ft3/sec dVchg

  • 133gp111/7.

48/60 :a

  • 2963ft3/sec

.1) dvpcs = dVpzr = = dVtot = Equi valent gpm =

__ gpm RATE of Pzr Press rise= dVtot*C

= /sec ----------------------------------------------------------------------- NOTES:

  • *-

EA-Fc-eaq-13 Part I P*Q* Const*nt:s on ..... P*9** A-B* C* _2..J..:..CJ!2.!._ I<=- .. 1-J!i PCS tempeatur* Vf 9 a = ,_p_!]E'!-Vf a = F'zr temp ttf'p_! Vf @ a = Vf a = dVhpsi = = dVchg = 133qpm/7.48/60

.2963ft3/sec dVccs

= RATE of Pzr Press rise= dVtot*C =

.-dVp::r =

= __ /ser:: * = Equivalent gpm = PCS tempeature = = P::r temp Vf@ :ztp_psia = = dVhpsi = 48/60 = dVchg = 133gpm/7.48/60 = .2963ft3/sec dVpcs RATE of Pzr Press = . = ft3/sec dVtot+C = dVp::r = . 000(.>_/. 0.!.§'..t£-B = t 3 /sec /sec dVtot = = PCS temoeature. Vf 9 .2(.Q.psi a = .qB-_¥::," Vf a =. F::::r temp Vf

  • U'.P-PSia

= 1,2L@te Vf = .3 dVhpsi a d\lchg = 133gpm/7.48/6a dVpcs = = _.,.. = . = dVpzr .2963ft3/sec ..!!.Cf£'_ ft3/sec RATE of Pzr Press rise= dVtot+C = = '; 2. / sec dVtot = Equivalent gpm = NOTES: l) 8o'f"H "IPS1 f'<rtifS ore .. ab/e : p1t7e. lo +.,. r,\1.c.s o.f. P2r i t'\C' r c.ll>c.. c./o /-1 f' S.1 .f"r*"""' o f;e1 J S'O 0

  • .... 91wr._.

. ..;z;r.,.*z

....... EA-FC-899-13 P.;art I e<<.¥ 1 P*Q* l'i.. "Qf 3} Consti&nts on tlft. P*9** ___ _ PCS tempeature Vf * = F'zr temp 'ti.ti: Vf@ = dVhps1 = = dVchg = 133gpm/7.48/60

.2963ft3/sec dVccs

= dVp=r = = dVti::it = ft3/sec RATE of Pzr Press rise= dVtot*C

PCS tempeature Vf @ J _(_q_psi .;a

Vf a =, Pzr tempi("'_:- Vf @ = Vf = dVhpsi = dVchg = 133gpm/7.48/60

.2963ft3/sec dVpcs RATE of Pzr Pre:sLJse

= . = f t3/sec dVtot*C = c dVpzr = = t3/sec 'f t:JJ.9-_psi /sec PCS

  • vf@ .2(-"_psia

= F' z !"' temp Vf * ]L-'?-PS i a = Vf . s i a =

3. dVhpsi =

= dVchg = ' 133gpm/7. 48/60 =

  • 2963ft3/sec dVpcs =

= dVtot = l.i11C°f t3/sec _. '1.1'c.+I Equivalent gpm = __ gpm RATE of Pzr r-1se= dVtot*C = = /sec 0 C ".S K .{N1.._ Jo 1, 'l..77 i-c 2.Cf"l, >-I 7 0 . . EA-FC-809-13 P*rt I 1_ P*Q* /.£ of Con st .ant* A-_/_{f'!___ a*?_*J£..!J_ c-K* PCS tempeatur* vf = Pzr temp Vf * ,W_psia = Vf = dVhpsi = = dVchg = 133gpm/7.48/60

.2963ft3/sec dVccs

= dVpzr = = dVtot = RATE of Pzr Press rise= dVtot*C = = PCS tempeature Vf @ l.CQJ>si

  • Vf a =

Pz r temp Vf = = dVhpsi = = dVchg = 133gpm/7.48/60

.2963ft3/sec dVpcs

= dVtot = 3-.JrJ.:t_ ft3/sec RATE of Pzr Press dVtot*C = = /sec PCS tempeature l_cp_" Vf

  • S_(-"'_psi a =-

Vf

  • a =

Pz temp Vf 8 1L'2_psi a = :J?Lflt.f> Vf i a =

I' jVhpsi =

=- dVchg = , 1334Jp*/7. 48/611 =-* 2963ft3/sec dVpcs = = -dVpzr = = dVtot = RATE of Pzr Press rise= dVtot*C = = /sec c;1ol Equivalent gpm .., *c7.48*60*_-!-J.f.L8_ft3> ='1 J.,:]_'_gpm


NOTES: EA-FC-8Ql9-13 P*rt I R.c.11 f P*Q* l£ of Constants an i;llt.* P*ra** 1_) PCS tempeature 9 = = F*zr temp Vf

  • a =

Vf =

2) dVhps1 =

=

1) 1) dVchg dVpcs dVp=r dVtot = 133gpm/7.48/60

=-.2963ft3/sec = = = = = '1 EqL1ivalent gpm =

IJit:..!_!gpm RATE cf Pzr Press rise= dVtct*c

= I sec PCS tempeature Vf @

  • = *2Lao-'l.

Vf =- .. L-C. Pzr Vf@ = dVhosi = lf2c2gpm/7.48/60 = dVchg = 133gpm/7.48/60

.2963ft3/sec dVpcs

= dVpzr = =

1. '"" Equivalent gpm =

RATE of Pzr Press r!se= dVtot*C = = PCS

  • a =
  • Vf a = .-E' .. Fzr temp Vf * '-1-CS!.PSia

= Vf = dVhpsi =

  • dVchg dVpcs =
  • 1334;ap11117.4S/60

=-.2963ft3/sec = .000.lJ!.01f!l*A = _._!J£3_ft3/sec dVpzr = . 000Jy. = _._fJ._'t.1_ ft3/sec dVtat = Equivalent gpm = RATE of Pzr Press rise= dVtct*C. = = 'l 10 (' l {-a i.) ,i-dPs:Z -tL.. -t.,,..,r .


  • *

-EA-FC-eaq-13 Part I ecvl page !..r of

  • Const*nt*

on pav-1 B* c-_V ,.)-1 t<* 1 Pcs tempeatur* " = Pzr temp

  • a = :3_':.!.!;9 Vf a = ..!.9.3.+/-ES:-

dVhpsi = = dVchg = 133gpm/7.48/60 ,.. .2963ft3/sec RATE of Pzr Press dVpcs = *

.:...!.ri_7=ft3/sec dVtot*C

dVpzr =

  • 000Ji/.

= t3/sec /sec dVt-:Jt = .l.:..I!£{..ft3/sec* .

  • Io Equivalent gpm =

= rise= = PCS tempeature °3J£: Vf @ l1_7'_:1£psi a = Vf

1. =

Pzr temp5_h_0 Vf = !..9_i...=!i Vf t) dVhpsi = _ _Q_gpm/7.48/60 = ______ 'ft3/sec dVchg = 133gpm/7.48/60 2 .2963ft3/sec dVpc:s = . 000Ll/. = _*.!J-.J_j_ ft3/sec dVpzr = . 000jf./. = _.:..0..:.!.l ft3/sec dVtot * {,


"'¥ "3 Equivalent gpm =

__ gpm RATE of Pzr Press dVtot*C = = /sec >='CS Vf 2 Vf = Fzr Vf a = Vf =

  • jVhpsi =

48/68

  • _=:::::_ ft3/sec dlJc:hg = 1339p .. 17.4816a ..
  • 2963ft3'/sec dVpcs dVpzr RATE of Pzr p,V. = . 000j-j1. 0t@ft*A =

dVtot*C = .!..f.:f.]- -*C = = . 0000. = _*lff.S!_ ft 3/ sec /I J sec dVtot = ft 3 /sec NOTES: 1) Pttc.-!>.) >/-/PSI >4 ... f..o{+ h&dic.1 ... c ..... tv-."bc.l".,,..,_ t' .. o N. r s. ..!... 2) C r o.., *,, n.S /\. .(;."""" < ld., <:>' l7 '6-c.-I 'ii 6 ,CJ '-1 '3

  • * --. ,,,. ..... --EA-FC-809-13 Part I /(rz.vJ. P*CJ* of :3 Constants on tMs P*CJ**

dVhps1 = = -______ ft3/sec dVchg = 1 3.3gpm/7. 48/60 = .2963ft3/sec RATE of P'Zr Press dVccs =

_._Jj.7:_o_f t 3 I sec dVtot*C

dvp:::r = . 000..:tv. ... e = f t3/sec /sec dVti:it = PCS tempeature !_1=1: Vf = Vf = ,o/9?2. P:::r temp = = dVhpsi = _9 __ gpm/7.48/60 = __ ..::::.ft3/sec dVchg = 133gpm/7.48/6121 = .2963ft3/sec RATE of F'zr Press dVpcs = . 12100

  • 1211 'fl'r.A = t 3 I sec dVtot*C =

dVp::r = . I. = _._f ft 3 I sec lf__::jj_'{'7_psi /sec dVtot = t3/sec Equivalent gpm = = PCS tempeature = = F:::r* temp Vf e a = ._p_L.J!.'!.. Vf a = dVhpsi = _Q __ gpm/7.48/69

__ -:::-__ ft3/sec rise=

dlJchg = 133gpm/7.48/60.

.2963ft3/sec dVpcs = = dVpzr = = RATE of Pzr Press rise= dVtot*C =

dVtot

I c;c;otJ Equivalent gpm = __ gpm NOTES: /sec

  • _a;r a --

---PCS tempeature "i.:i!.1 Vf

  • a = *.£Q..='::L Vf
  • a* =

Pzr temp Vf @ = Vf = ..... dVhps1 = _q __ gpm/7.48/60 = _ _:-____ ft3/sec dVchg = 133qpm/7.48/60 = .2963ft3/sec dVpcs = .0001'_'t1.01z£i*A = dVp=r = = RATE of Pzr Press rise= dVtot*C = = /sec dVti:Jt = .J..]-_'(<!j_ ft3/sec Equivalent gpm = (7.48*60*_...:..ti".7'_ft3l PCS tempeature 'f2'!!: Vf a = Vf

  • a =

Pzr Vf = = dVhpsi = = ______ ft3/sec dVchg = 133gpm/7.48/60

.2963ft3/sec RATE of Pzr Press dVpcs

= dVtct*C = ...!_}_)_7_o_

  • C . 1.2.3 -= .

= ft3/sec __ psi /sec ------dVp::r dVtot = "> . Eau1valent gpm = __ gpm PCS temoeature Vf

  • ___ psia = -----Vf*@ ___ ___ psia = F::r temp ___ Vf e __ p5ia = -----Vf'@ ___ &: ___ psia = dVhpsi = ____ gpm/7.48/69

= ______ ft3/sec dVchg = ' 133cjip111/7.48/69 = .2963ft3/sec RATE of F'zr Press dVpcs = .000 /.01 +A = ---ft3/91!C dVtct*C = *C ------------dVpzr = .000 1.0 *B = ft3/sec ______ psi/sec ------dVtot = ft3/sec ------Equivalent gpm = <7.48*60* _______ ft3> = _____ gpm r1se= = rise= =

  • EA-FC-81119-13 Part I fq,_v { P*Q* of Constants on tJl't*

__ _____ _ ____ ____ _ PCS tempeatur* Vf * = Pzr temp il.P.! Vf

  • 3_!'..Q_psia

= = dVhpsi =

  • dVchg = 133gpm/7.48/60
  • .2963ft3/sec dVpcs =

= dVp=r = = dVtat = RATE of Pzr Press rise= dVtot*C = = Equivalent gpm.., <7.48*60* _ =11!.: __ gpm PCS tempeature Vf @l.!E_psia = = Pzr temp Vf @ = Vf a = dVhpsi = = ______ ft3/s*c dVchg = 133gpm/7.48/60

  • .2963ft3/sec dVpcs =

= dVp=r =

  • dVtot ...!._Y_<l_p_o_

ft 3 /sec RATE of Pzr Press r!se= dVtot*C = = /sec PCS Vf *lL£_psia = = F z r temp '2..:. Vf

  • 1-"'psi a =

Vf a = J .jVhpsi = HAgpm/7. 48/68

  • dVchg = 133gpm/7.4B/69

= .2963ft3/sec dVpcs = .001at2i1.01?.!-[*A = -dVp=r = .

_:P_'}_=tf t3/sec dVtot

2.11J' Equivalent gpm =

l'fJ.:. ___ gpm NOTES: RATE of Pzr Press rise= dVtot*C .

=

  • .. I":"" .. ,..... "'."..-l4.i

---µI_ *. 2 a. a ' -EA-FC-889-13 Pu-t I Rc.v l. pAQ* 2 I of '2 J ---,-K=-Jo> '27f 2 n y '" ___ :../ ______ _ PCS tempeature ?Jg_" Vf @ a = Vf a = . o/;z.'i' 3 Pzr temp Vf = Vf = dVhpsi =

  • _:::=:::-_ft3/S@C dVchg = 133gpm/7.48/60

-.2963ft3/sec dVpcs

= dVpzr = . 000.(}1. = dVtat = Equivalent gpm = = RATE of Pzr Press rise= dVtot*C = = I /sec '7" . " ., PCS tempeature Vf@ = = P:zr temp Vf @ =- Vf = _-;PL.11.J.J. dVhpsi = = __ :::=::ft3/sec dVchg = 133gpm/7.48/60

.2963ft3/sec dVpcs

= dVpzr =

  • dVtct =
  • Cl'l':f1.

ft3/sec ------ Equivalent gpm = .. RATE of Pzr Press r!se= dVtot*C = = /sec PCS temoeature 3_12:: Vf @ ]f.,q_psi a =- Vf a*= Y Pzr temp Vf a = Vf = dVhpsi =

  • ______ ft3/sec dVchg 133gp*/7.48/69
  • .2963ft3/sec dVpcs =

= -dVpzr = = dVtot = ...:_t.l_).:..aL. ft3/sec -2.'199 Equivalent gpm = __ gpm RATE of Pzr dVtot*C = /sec ----------------------------------------------------------------------- NOTES: 1) 1 ,.-(' .., ,, 1* r r, ..,. , {t"' 1 _ /7 ("' "7 .., .., c::c ..!.. .., r, 1 c; "" .... <:-0" '"'> , >o->,,, .. // c.-o ,.,"', s*,/

Part P*Q* 2 ... cf Ccnst*nts on tttt

  • pa9*1 A-B*

C* I<=- 7 ----------------------------------------------------------------------- PCS tempeature 9 = F*zr* temp 'i.&_* Vf @ a = = dVhpsi = = ______ +t3/sec dVchg = 133gpm/7.48/60

.2963ft3/sec dVocs

= dVpzr = = dVtot = _._tr'_s.:Y.).:ft3/sec RATE of Press rise= dVtct*C = = /ser:: Equivalent gpm =


PCS tempeature = = Pzr temp = dVhpsi = = dVchg = 133gpm/7.48/60

.2963ft3/sec RATE of F'zr Press r se=

_,f22LO_ft3/sec dVtct*C

dVpcs dVpzr

= /sec dVtot = Eou1 val ent gpm =


PCS temoeat*.Jre Vf.@ a Vf a = Fzr temp '(/p_*vf @J,.c2_psia = 0 dVhpsi = = dVchg = 133gpm/7.48/60

.2963ft3/sec dVpcs

= -dVpzr = = dVtct = Equivalent gpm = RATE of Pzr Press rise= dVtct*C = _,._<:_..[12"tC = / sec ----------------------------------------------------------------------- NOTES: i) 3.;.-o" e\ Abo,,,C?1 1-1 es z ffAn1 a ... e orcr-A6 c.. .

  • ++o

Conclusions:

EA-FC-809-13 Rev 1 Part I p.age U of t1 Rev 1 Pressurizer pressure rat& of. change is d*fined for the Assumptions taken.

References:

1> FLUID MECHANICS, Daugherty and Franzini, 7th edition, c. 1977 2) ANF-88-107, Palisades LOCA-ECCS Analysis for 2530 """'t Oper*tion with Increased R*dial Peaking and 29.3% Ste*m Gen*rator Tub* Plugging 3) Palisades Plant Functional Description M10, Pri**ry Cool.nt System, rev 1 4> Palisades Plant Technic*l Specifications Ch*ng* Request, 1989, affecting HPSI Operability Requirements, and PCS He-ting and Cooling Rates

  • 5) ASME Steam Tables, 4th edition, c. 1979
  • 6) Letter to DJVandeWalle, CPCo, from WDMeinert, CE, 1 Jan 79, P-CE-4538; Attachment 1, HPI SYSTEM DELIVERY -ONE HPI PUMP Tt-ROUGH FOUR HPI VALVES I
  • @) consumers Power AUIClaA#"S J AiiUU 0 Original Issue I PAL:SADES NUCLEAR PLANT ENGINEERING ANALYSIS WORKSHEET By Date A IT r d.. ru EA -P. c. *eoc; -1 "'!.. ( Sheet _ _.___ of 1-C4, c"t:..A ,-._ r&4 Bct1..1<.

MoD"'-".J "" 1ry 4 r /t> ;-..V vA c:. .s _, /! ro -l. oo 0 /Z / AN 1> .4 r >o

  • c. , ,.v 11/11( """ c..J ,,: .z. 00 * /2 ro it . .11 c;)
  • r . F 1111:.

II fl r(,I z.,o* fl, 4".J A-l'e. (, ( a.C F#r 2.vv 0 p rll '($" o

  • p 1111 (cc -e..J " ,. 41:. CA I c"' 1..1-J' {:,.,,.._

j '* f.J, .,' i .. 1, La. / C. Z. o..f S', I./ 11 le '"4-' {o-t" 3 2.

  • ts* 120° tc.-o* so ) "'-le ... Ad I.vi:""' 1 I I ) .J ,-, ;.,,, .(,,. IO" -t...,,,,1.1, I. I AA.1. ! vcll 15 f' :If)/ Mi.J2 ISOOfr:a/

S* .';, (c..,.t=W',..f;r--,.'

1 r "fct r -<k -r 10 Is-;4 . 71, e t /."" le'l',./°"'IJ Afr4.I-/-,* t tf."I' n ; {e.;o ,A f'I' >".e * .f VtJt (4..tt, ?o t" !

... ".(:' ,* >-.. f.e,.91{-, 3 /0 f S ;if

  • /? S '1-df "the -{",.,.._

/s-1 s ,'f# -f.o /S'()o ( '1.10 -1.J.-j/ ( -1r) :? * /1Br C"' J.1wA.c.. V4L'-'IL.S pt-1(.tJ"'°' r4/1t..4. /./ p. Q (.. '-cJ """ * : ilLPlf (Y IS' " <Y "cce r..,,,, (l

  • eorrn 3619 9-87
  • PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET A ,/ 4c. ,.+"J ,i.; ' i. r.:;, EA -P. c -

-1 3 i Sheet 2. of 2-Rev# ______ _ s ... o t>>o "J t:1CJO 'Jc::>,, 000 11'00 "3 ;Jo CJt;I 0 "' J'l.P 1 O(JC) "l 13 I ] O'OJ 0'1CI l l.O_.. 00(.) l' 3 11> I J]D* /$....,,0 -;.o iii,ooo

l. 1.10)000 'l lO "f(,, t "l.Z <./<i'j I l 1.(:1, °" 0 l J z, ooo

'+'7 I "'52.'f -I '1 0 071 3:Z.1-,o'y lZ.+J 385-ll;,111 " //O "!l.'f,,c;t l :l T 'j i. J 3'3 I, ,1-J 12..0 l'Sl, 1 OO() J "1J.1 uoo JlJ,..7sr (Jo JaSJooo 100 ooo 11'1;,ooo 13/1 01t.. /% :u.,, ooo l 3'1 l I >'o 'lZ oo t. '33>, 'J4oJooo 1 1-o J. 11-" "":. 'l<1, "3 ";Ii I I l?J 0 :J '"1 "" 0 '3 3/, j (lf, I 'I 0 J 11, 0 0 () "3 -z.1, 81-.s;' 3 '311' I 2.10 '1 l1J "oo 3/0 1 /&f;, Jr::. ('l"'""' re+s C..i_ (<.* P. -P\ /(( V, .. ) (".a i**p.t.a,.c. .;. f ,*._) ... .. c.l, "'""J. l{. v11/<"1tt.S et.f-t/,e rtltll.c...f."V.-t:. 5 1 1:-o ("/.503 '1'138 /Oo 0 C.,.. I< (z>--, @ .. otJ'iJ8* '*"'1'1r'J/1.o&'i18)l.1"1.:to'1r.,:tl 2..¥1.,St? 1<, .. -lf-C, l>'"?:> *c ,, .t:: r: -1.."oA( /.l. v q -/. l.I / I. '-'l'icu) II./ . .)C:> 1 ! 11 'J 1 "-Form 3650 6-89 Reference C.:imrr,;"; v l

  • EN0INEERIN6 ANALYSIS EA-FC-809-13 Part II Rev 1 paag* 1 of 4 Title: Pressure Response Effects of VLTOP with Repleacement PORVs Part II -PORV FLOW versus TIME for NEW PORVs <Target Rock> Objective:

Determine the water flow aft&r reaching full stroke position for the new PORVs, as input to calculate pressurizer pressure overshoot during LTOP actuation. Analysis Input: a> PORV Cv = 219 at full stroke Cref 1> b> PORV main disc slew <stroke> tima = 0.20 seconds <ref S> c> PORV solen.oid and pilot chamber reiiction time = 1.68 seconds <r*f d> Instrument channel reaction time = .2 seconds <ref 3> e) PORV full stroke effective area= 5.7732 squeare inch*s <r*f 2) f) PORV lift and effective areea versus time from reference S

  • g> PORV flow = Cv*Sqrt dP Assumptions:

a> Available dP = Pressurizer pressure -Quench Teank pressure b> Quench Tank pressure = 100 psig C90 psig RuD setting +10 psi margin> c> PORV stroke time will lessen with increasing subcooling; ie, longest response timeCl.68 seconds> with associated stroke time C0.20 onds> from the computer model will envelope times with lower surizer temperatures. That is, time for full valve stroke will be less with sufficient subcooling of the fluid in the PORV control chamber. Calculations: Begin of page following ( (

  • II R*v 1 2 of 4 PORV FLOW versus TIME <From Reference 5> 1) 2) 3> 4) 5) 6) 7) :GraphlLift IEffect.IEff.ct.

Area: Cv ISqrt dP :sqrt Time: milsl Area l/F.S.Eft Ar.

9) 10> IAdjustedlTotall Flow= Cv*Sqrt dP ----> : Time : Time: = 5) S 6) = 5> I 7> -------------______ =_5>_1_8>
1) 2> 3) 4> 5> . IGraphlLift lEffect. :Effect. Areal Cv Time: mils:

l/F.S.Eft Ar.1<219*

9) 10) IAdjustedlTotall Flow : Time : Time: = ----> = 5> = 5> > 11) 13) 7) 8) .Sqrt dP :sqrt dP :sqrt dP > :a310 s.p 11> 12) 13) FlON 310 spl700 spl900 sp _s_8> ____________________

2> 4) 5) 6) 7) 8) :GraphlLift IEffe * :Effect. Area: Cv :sqrt dP :sqrt dP :sqrt dP Time: mils: Ar.* l/F.S.Eft Ar. 1<21914>>1@310 s.p:a700 s.pl@900 9.p 9) Flow = CvtSqrt dP ----> : Time: = 5>

  • 6> = 5)
  • 7> 11> 12) 13) FloN 310 spl700 spl900 sp -------------______ =_5>_1_8>

____________________


2) 3) 4) 5) 6) 7> 8) :GraphlLift IEffect.IEffect.

Area: Cv :sqrt dP :sqrt dP :sqrt dP Time: mils: AraA l/F.S.Eft Ar.I s.p NIA 11,0001 S.77321 1. 0 219 9) 10) 13.96 11> 12> 13) IAdjusted:Totall Flow= CvtSqrt dP ----> Flow

Time : Time: = S> t 6> 310 spl700 spl900 sp 1 ' 880 : 2' 080 : = s)
  • 7) 3' 057 ________ : ___________

=_S>_*_B> ________________ GPM_I ______ ------------

  • +o PORV FLOW versus TIME RESULTS Part II Rev 1 page 3 4 TIME :STROKE:EFFECTIVE AREA:Cv IVdP lflow lVdP :flow :VdP :flow msecl miis : Cinterp sq in) ICfromlPzr lCgpm> :Pzr@ l Cgpm>lPzr lgpm -----------lAre*>l 310 ZOO l900 2,080 1,000 5.7732 219 13.96

<----not evaluated----> CONLY FULL VALVE STROKE CONSIDERED IN THIS REVISION>

Conclusions:

EA-FC-809-13 Rav 1 P*rt II pag* 4 of 4 The expected PORV flow versus dP identified above is conserv*tively calculated due to the *ssumptions made.

References:

1> Target Rock Test Data, Fascimile Transmitted 11 July 1989, 1345 2> Target Rock Test Oat*, Fascimile Transmitted 26 July 1989, 1453 3> Combustion Engineering Propos*l for V&riable Set Point LTOP, posal #88-240-AIA, Section II.4, page 6 4) Palisades Instrument Index, M-311, sha2t 01-31 5) Letter, L. E. Demick, MPR Ase. Inc, to J. L. Topp9r, CPCo, 12 tember 1989, #98-108-07, COMPUTED STROKE TIMES forPALISADES REPLACEMENT 6> Letter, L. E. Demick, MPR Ase. Inc, to J. L. Topper, CPCo, 18 tember 1989, #98-108-09, VALIDATION of DYNAMIC MODELING APPROACH &nd PROGRAM for the REPLACEMENT PORVs at PALISADES NUCLEAR POWER PLANT * --...:-:: MPR ASSOCIATES. INC. Mr. James L. Topper Consumers Power Company 1945 West Parnall Road Jackson, Ml 49201 September 12, 1989 98-108-07

Subject:

C011Puted Stroke TI11es for Palisades Replacement Power Operated Relief Valves

Reference:

GWO 8304, File -011, -317.0

Dear Mr. Topper:

In accordance with our telephone conversation of September 12, 1989 and my subsequent discussion w1th Mr. Ashworth of CPCo, we have computed the expected opening stroke t;llMls for the Palisades replacement Target Rock Power Operated Relief Valves {PORY) for several LTOP set points assum;ng saturation cond1t1ons in the pressurizer. These computations included the effects of the RCS pressure ramp rates that have been calculated by CPCo personnel at these LTOP set points. The follow;ng su11111arizes the results of the computations and identifies the conditions analyzed. Co11 Pressure Pressur1zer Energize Deprassur1za Slew Total Set Point Tap Ramp Rate Tim T1* T1me T1me (psia) (*f) (psi/sec) (sec) (SIC) {sec) (sec) 330.0 426.1 93.0 0.23 l.45 0.20 1.88 500.0 467.1 93.0 0.26 1.41 0.16 l.83 1000.0 544.6 63.0 0.32 0.97 0 .10 1.39 These analysis assume no subcoo11ng in the fluid at the LTOP set point and, therefore, represent an upper li*it on the temperature cond;tions of the pressurizer when the satpoint pressure is reached. We consider this assumption to be very conservative yet the analyses indicate that the valve will open within 2 seconds. As indicated in prior analyses any subcooling of the fluid will reduct the total valve response time. This 1nfor111t1on will be included in the final report. If you have any questions or require further info,..at1on please give me a call. L. E. Demi ck 1050 CONNtCTIC.UT AVl!:NUI'.:. N.W. WA&Jo;tNGTON. C.C. <!0036 202.*6 !59.1320

  • 3E::: !S '3S 1S:47 NUCLEAR *_'.C ..cP 18 '99 19 r'FR D. C. MPR ASSOCIATES.

INC. Mr. J111es L. Topper Con1W111rs Pow.r Co.piny 1945 West P1rn111 Road Jackson, MI 49201 Septlllber 18, 1989 98-108*01 SubJ1ct: Ya11dat1on of Oyn .. 1c Mode11ng ind Pragraa for the Replac ... nt Power Operated Re111t Valves at Pal111d11 Nuclear Power Plant

Reference:

GW08304, F1l1 *011, -317.0 In accordance w1th our t1l1phon1 conversation af Septellblr

18. 1989, the purpose of thts 11tt1r 11 to conft,.. our confidence 1n the accuracy and validity of the ca11put1r progr .. and th* approach, which havt bltn used to calculate the opening and clo1t"9 t1 ..
  • for tht replac ... nt PORV's to bt 1n1t111ed in Palt11d11 thta fall. Tht1 con,1d1nc1 1s based tn part on the results of calculatton1 of th* stroke t1 .. a of s1m11ar v1lv11 in tests p1rforllld by EPRI at fact11tt11 1n Norco, Caltforn1a.

Th1s1 calcul1t1on1, reported tn a 11tt1r to CPCo datad Septtllbtr 15, 1989 (98*108-08), showed good corrtlatton with the test data. Variations bltwe1n the and t11t data vert also g1n1ralty in th* con11rv1t1v1 d1rtctton, 1.g., calculatld opening ti11es for the water tests ..,.. 91n1rally slower than the t11t data. W1 hav* also calculated th1.r11pon11 of the P1lisad11 r1plac1111nt valves over a w1dt range of f1u1d condtt1on1 and consider th1 var1at1ons to bl con11stent 1xpectatfon1 for thts valve d11tgn. e.g., 110rt rapid response for 1t1* condttions than for sub-cooled water al\d lllOrt d1l1ytd response for saturated water cond1t1ons. These data w1r1 reported to CPCo in l1tt1r1 d1tld S1ptlllber

7. 1911 (98-108*01) and S1ptlllbtr 12, 1989 (98-108*07).

' We 1nt1nd to include cQllpltt* doc:11111nt1tton of the va11dat1on b1sis 'or the CQllPUtlr progr .. and thl valvt inodels tn our final report on tht r1pl1c191nt v1lv1 stroke t1 .. 1n1l1111. In the m11nt1111 if you have any qu1stion1 conc1rn1ng th111 .. tt1r1 or requir* further infort11tion, p111s1 giYI .. I Clll. *-* -** .........

  • * ++o EN6INEERIN6 ANALYSIS EA-FC-809-13 III Rev 1 1 of 4 Title: Pressure Response Effects of VLTOP with Replacement PORVs Part III -Recommended LTOP Set Points for Variable LTOP Protection Objective:

Determine the LTOP set points to preclude exceeding Appx. 6 Limit9, considering

  • Permissable heating/cooling rates
  • Signal processing time
  • PORV response time
  • Instrument inaccuracies, calibration errors,* Mld drift . Potential Quench Tank backpressure Analysis Inputs: a> Pressurizer temperature rate of change is 200 degrees F/hr b> Primary Coolant System temperature rate of change is: 20 deg/hr when < 170 degrees F 40 deg/hr when 170 to 250 degrees F 60 deg/hr when 250 to 350 degrees F 100 deg/hr when 350 degreas F and greater c> Appendix G limits from EA-A-PAL-89-98 d) Instrument inaccuracies, calibration errors, and drift are less than 5 degrees and 30 psi <reference S> e> Volume change, equivalent gpm, Bulk Modulus of Elasticity, and pressure increase rates from Part I of this analysis f) Time for PORV flow to equal equivalent gpm from Part II of this analysis g> Appendix 6 Limit Equations from reference 4
  • *
  • Assumptions:

EA-FC-809-13 P*rt II I Rav 1 page 2 of 4 a> Signal Processing D*l*y is 200 milliseconds <reference

3) b> PORV response time is 1680 mill.iseconds

<reference 6> c> PORV full stroke opening time is 200 milliseconds <reference

6) d) PORV Cv at partial stroke is proportion*!

to effective

  • rea e> Quench Tank pressure will not exceed 100 psig HPSI pumps are inoperable when shutdown cooling is onstre*m g> HPSI pumps are inoperable when PCS is < 260 deg F Calculations:

Equation 1, Heating Limited Plim = C17.206xC26.78+Cl.233xExpC.014Sx<T-86-dT114>>>>>-B4 Equation 2, Cooling Limited Plim = <17.206xC26.78+Cl.233xExpC.0145xCT-86+dT114>>>>>-<5.85xdTmax>-84 Where Plim = set point in PSIS before allowance for shoot, T = PCS temperature, degrees F dTl/4 for 20deg/hr 40deg/hr 60deg/hr 100deg/hr He*ting 6.3 12.4 18.2 30.0 Cooling 4.4 9.0 13.9 23.6 dTm*x for Cooling 10.1 20.s 31.8 54.0 <---from Part !---------------------> <Part II>C7x8> p.s1&-ps/A. 1 2 3 4 5 6 7 8 9 10 11 PCS lHtg/ClglPumpsldV/seclEquivl K lR*te oflTima forlPresslAppx GlM*x Temp:Rate

oper-:Cu.ft
Press IPORV flolO'shtlLimit
Perm degFldeg/hr labia: :Incra*s:=Equival:

psi :-Temp&lSat 110 ll..O . 'lO"/(, . lo"/&. '3 'l.11 * '3121'

  • 3210 .'32'if .l'Z'li
  • 3 l 'to /37-'"" l'IO 141./ t11a t '18 I 'f8 :psi/sec:

gpm :Press :Pnt lin sec'sl _____ .ii 4:ii;ij--&.1 ,, 311 ii-, S,1,1, 'f.lZYt zo 313. 51"° SU., 10.ott ot l I .3 3 '-J 2 f ttf. ,,8$'13 z f 3 3 8 3 3/ lfJ./81'f l f "31./1.. 3 35' Z9, /() *'SI Zt> 2 2. S' 3 3 331,<.1' I() SS':J'C. l 2 3 SO 3 'I Z. 333,11 1q *" z. a 3 s-s 3 v-:r I r

  • * + 1 PCS Temp degF <---from Part !----------------------->

2 3 4 6 7 Htg/ClglPumpsldV/seclEquivl K :Rate of Rate lOper-:Cu.ft lgpm I :Press deg/hr lable : : l llncreas I psi/sec EA-FC-809-13 Part III page 3 of 4 Rev 1 <Part II> <7x8> 8 9 10 11 Time for Pr*sslAppx 61Max PORV flo O'sMt Limit :Perm =Equival psi -Temp&ISet gpm Press IPnt ____ -----------------------____ -------in sac's -----Errors f'3o 2,c:> 3C'4.J I . ""J.'J.';/ I /<;,'/ /<:1,82.1/

2. .1 2 3 3,/ /C(<.;, I _

I 1328 /"* 1-2.o":f 2 3 l'>"o I , 'llG'f l f5'/ '"*'1 o3 l I(,

  • __

.!!!.!

2. 38 '{ -, '"'1¢ 110 : .3s-1>-:
311,t11:tc.P.8'l?-r z.:. 33, --o I l 1'-B :J",13':

Z.'1 l!io-,,o: 1 : 1 : .'JGl..' : 1(,?.. :J1J,,,;:

--r-: 23 : 1.DO ! ! ! . 't<J 2. : Jfl I l3 I01l8': IZ' l>-PJ r: : 2. i:;. I 3 e 3 'L.to: I : I : .'1QqC>l 1&1

"*88'1'): I : ZS" : 't'03 22.0: : : .<tD11fl 181 : I :

Z '5" l '1'l. z.10: I : : . '-to9:5 : te'f : : z. 5" 1 z. a.C{o: __ 'r :____ '.'{o'f3:

1 c/ * 'z. -' B .z.,-o: E>O l l ."/ 31./ l I Cf'( l I Z I '11-f l.lo 2'° 2:1-o 2SO 230 2.'io I 1.cto I '"o: l*o* 'Jto 110 l.1.o 1'1.o Ho .H6 Jew l"fo .h'OI f 00 l'o: . J'l"l 4(10: '110 : "IJ*: 'f'/Ql )°#l 3 c"'s : . e : I : 12.-9.s:is,- I : l -:r : v l. u.nr : 3 . / 5' 18: /,<./I e. : . : "2 . 'i' I I I f 9 : -I 1c.i.3 : *"'"oo: *1c;-:r: I : '"'"1 I : l-:r 1 s's-+2UPrt: l.1.s.-av: 1,1/olr I : 'iZ.e7811

1'1S' : S'S" le"°! s 1'ir: I : n.t3 :
  • 1 : it--: 'z".!>: c.10 I** : 'f<.BB,31 1 l'J>-I ! 'rl2. 13'"' 1 .v391..:*,.,?-1 I:

_:_z_"Fi-'-'il: l,'111-1 : I /'!5' : (,'i/ i !>-lo 1.5 C'-! : . '1**11-'1..: z.o 1 : I : 13 j : ze 1 .,,."° : -:ri.r-lrZHl'u: 3./6.!!i>-l'ol l,'/'2./ I "' : 'Jl,flOl : /'i" : 1-'-IO : S-5'&, :3 '"' : , 11 l.o'f

10. ?"lc;r: l : z. : ,-, : _;t_ e_g

'l./1--'.b1 l,4L4l I l I f£r l 1--'7" ! 'S-3 130.9 : .'f}-CJ>4 20<1 I I I /O',,f.'fl: I I 22. : Sf :+z11Pu:l.11i.9: 1,42t.{: *: 1-"l.,1301

/":>-+, 1 8'2. 1 1-f7 :3,1,9 :

Z.u'f: I : 10.1"1-?-S: I : 2'2. I CJ37-l 92'} :+ 2.'IPr.n 1 . r;.'L'f I Ul1.'l l 1 ':/-4.

I 51-1 '3 r 1 7 <t :1 C:'-9 : * 't'S-3¥1 z.o 3 : I : /o. ,,3.1 I : 2 2. : 11 0 't..s:": I "Ir
11. 11"18l /)'il..'/I
°1'1,.,"113
1s+ : ,,

1 FJ82. 1,1't'1: I : I : (32. 1 1,60B: &'io Z, 309 I I 1 '73(;: :

  • lo'i!I : I ./ '/ : 7 1 1 o 1 ! /, o "t-1,eu.1 Bt81 : : 'lo: f) l,1'1'f .
  • I , l &S' f I '-Z l l I '-8 I f l '-l { 2.lj 8 , 'U,. r: l f. 'j : ' I '3 f l f J <.( l (I "{ fJ ';f-l * ' l.: z 'i o : ,.,, ,o't'3: : 2 3 I /, ' e o : I, tr 7 f l.tG. ( -, -I /1.-zc.j9:).f -r I Z'I : f} e 8'/ : I, 81-'f 302. I : //. 'i8'1'1: : VI : z.' f 9 : 2' .fO
  • 1-ff,,& : l t z.: I I f 2. l. '1 l-o1 I : l : z' "3 ti::> : 3 1-B 33'?,1 : 12*'"1:
Z"1-2.C.l:J( *1-3Cfol 3Ji..: 'V: 11 .. 111.S': I Z7-:3,04'e:3_,o!>_.>_
  • *

Conclusions:

EA-FC-809-13 Part III p*g* 4 of 4 Rav 1 Attachment 1 graphs the results of these calculations, *nd illustrates values <Actual S*t Point> which will envelope these calculated values.

References:

1) Target Rock Test Data, Fascimile Transmitted 11 July 1989, 1345 2> Target Rock Test Data, Fascimile Transmitted 26 July 1989, 1453 3> Combustion Engineering Proposal for Variable Set Point LTOP, posal #88-240-AIA, Section II.4, p&ge 6 4> EA-A-PAL-89-98, Palisades Pressure and Tamper&tur*

Limits S> EA-FC-809-19, LTOP Temperature and Pressure Loop Errors 6) Letter, L. E. Demick, MPR Ase. Inc, to J.L. Topper, CPCo, 12 tember 1989, #98-108-07, COMPUTED STROKE TIMES for PALISADES MENT PORVs 7> Letter, L. E. Demick, MPR Ase. Inc, to J.L. Topper, CPCo, 18 tember 1989, #98-108-09, VALIDATION of DYNAMIC MODELIN6 APPROACH .and PROGRAM for the REPLACEMENT PORVs at PALISADES NUCLEAR POWER PLANT

  • 3,000 2,800 2,600 L TOP SETPOINTS

.. * ... * .. * .. ; . ; .. * ... * .. * ..........

  • , . * .. ; .. * ... * .. * .. ; . ; .. * ... * .. * .. : .. * ... * .. * .. ; . : .. * ... * .. * ..... : .. . * .. * .. * .. *.:. ' .. * .. ' .. * . .'. * .. * .. * .. * .. *.:. * .. * .. * .. ' -: . * .. * .. * .. *.:. * .. * .. * .. * .. *.: .... * .. ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  • o*
  • o * *o * ..,
  • o * .,. * * * * * * ** * *
  • r * *' * * * ** * -. * * * *' * * * "* * ...
  • o * -* ** * ' * '* * * * ,. * ** * * * * * * -* * * -* '* * * * ** * ,. * *
  • o* * .................................

' ..... . *.* *.* *.* *.*:.: *.* *.* *.* * .. : *: *.* *.* * .. : *: *.* *.* *.*:.: *.* *.* *.* * .. : *: ... *.* ... :.: *.* *.* *.* * .. : *. *. * .. . * * * * * .* . ! * *. . ** . * . * .. * .* . *. . '. . '. . * . .* * : . '. . * * . * . ** . : * .. . '. . * . .. . .' . . *. . * . " . ** * : . *. . *. . * . .* . .' . . . * . . . . . . . . . . . . . . . . . . . . . * ................ . .............. -. .. . . . .. . .. . . . .. . .. .. . .. . . . .. . . . .. . .. . . . .. . .. . . . .. . .. . . . .. . .. .. . .. . . . .. . .. . . . .. . .. . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *: *.* *.* ... : *; *.* *.* ... * .. : *: *.* ... *.*: ... *.* *.* ... : *; *.* *.* ... * .. : *.* *.* *.* ... ; *: *.* *.* *.*:.: *: * . . 2,400 *:* *:* *:* *:*: *:* *:* *:* :* '.*:* *:* *:* *:* *:*: *:* *:* *:* *:*: *:* *:* *:* *:* :*:* *:* *:* *:* *:* '. *: *:* *:* *:* :* .* .. *

  • o* "*' 'o * 'o *.
  • _. * *' *,* '* * .. *, * ,* '*' "o' ., *I'*'.,.'*'

'o *. * .. * *' '*** .. *I**'*,*'***,* .. *,**,**,* .. *'* o' *, 2 200 .............................. ' ........ . 2:000 * ** *** <: '. : ** ** ** *: : * ** *** *<: : ****.. : : : *** *** ** *: : P

  • : Actual S P .. * ... * .. -. . : . ; .. -... * .. *, . : .. * ...... " . : .. * ...... * .. : . : ...... * .. * .. : .. * ...... * .. : . : . . . . . . . * .. : .. * .. 1,800 1,600 1,400 200 . *--** ...... '. * .. '* **--*., ...... -** *'* ..... *--** **-........ *-... -*., .... *-*'* .............

-** . , .... ._ .* ...... ' ................................ . ',* *,* 'o' 'o *I',*",'*,**,\*;",* 'o* "o *',*I' o" *,* *,**,*I*,**,**,*',*'*'*,**,**,' 'o' 1 * .' 'o' * '.' \ *' "." *, .... ' ' ' ....................... ' .. . . . * ... * .. -. . : . : ...... * .. * .. : .. * ... * .. " . : .. * ... * .. * .. : . : .. * ... * .. * .. : .. * ...... * .. : . : . . . . . * .. " . : .. * .. . '* ......... ' ....... *'* ... , .........

  • '* ..........
  • ' .................. , .........
  • '. *'. ' ................... . ................................. . ,* .,. .,. *,.' . .-. "*,* *,. '. r." *,* *,*-.. '. ,* *,* *,* ". '. ,*." *,* ". '.:. ,* *,* *.* *,. ' . .-,. *,* ". '. r." *, . * ....... .' . : . * .. * ..... * . : . : . * ..... * . .' . : . * ....... : . : . * ........ * . : . : . * ....... : . : . . .......... . .........

' ..................... . ..................................... .* * *** * ..... : ...... *** " ........ * *** *,. * *. i ... *,*-.. * *. i ..... * *** * ** -..: .* * *** ... *,.; .* * ... *** * ........ . . * ..... * .. * . : . * .. '. .... * . : . '. . * ..... * .. * . ; ....... ' . : . ; . ._ . * ..... * . : . * .. *. '. ... * . : . '. . . . . . . . .. 0 O O 0 O o , o o o 0 I 0 o o I I I 0 I t I o o o ' 0 o ' I I 50 90 140 190 240 290 340 390 430 Degrees F "Tl ni ;= z ' l> .,, :i ,..,. ' to co ..1) 0 .. ...0 IN ' u. -)> 1..14 >< p-0 lo .; -j ...-

  • 2,400 2.200 2.000 1,800 1,600 1,400 1.200 1,000 ct 800 -600 (I) a.. 400 200 0 50 L TOP SETPOINTS . : -; . . . . . . -. . . . . . . . *. . *. . : . : . : . .-.. * . . . . . . . . . *. . *. . *. . . : . ; .. * . . . . . . . . . . . . . . . *. . *. . ; . : . : . : .. * . . . . 'o' ',* ',* *,* *,* *,* *,* *,*'I* f ' ( ",* * ,* '1' *,* *,* "**"\*\'I*

I*,*",**,**,**,**,*'**\* I* I' I*,"*,**,* , .................................... . ... . .. ... ... ... ... .. . .. . .. . . . . . . . .. . .. . .. ... .. . .. . .. . .. . . . . . .. . .. . .. ... ... ... ... .. . .. . . . . . . . .. . .. . . ,, . * .. * .. * ............. .' . .' . : . : . ' .. * .. * .. * ..... ' ... * . : . : . : . : . '. . * .. * ...........

  • .. * . : . : . : . * .. ' .. ' . ' .. . . : .. * .. * .........
  • .. * .. * .. : . ; . ; . : . .-.. * ... * .. * ..... * .. : . : . : .. * .. * .........
  • .. * .. * .. : . : . : . . ... . ",* * *' ",' "*' ",* *,* '*'",'\'I*

f ',* ',* '*', "*' *, * 'o **,I.' I 0 f

  • r * ,* *** *.* "*" *** *,**,*-.*I*

I* t ,* * .-* ,* *, . *-. * .. * *. * .* * .. ' .. * .. *.:.:. ! * * *. * .* * ** * *. * .. * .. * .. *.:.:.: .... * .. * .. * .. * .* * .. * .. * .. *.: : . * .. * .* * .. * .. * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -......................... . ............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; -.* .. * ............

  • .. -. . : . : . : . ; . : .. * ... * .. * .. * ..... : . : . : .. * ...............
  • ..... ; . ; . : . : .. * .. * .. . .* . . . . . . . . . . . . . . . . . . .. . *. . . : . : . .. . . . . .. . . . -. . .. . *. . -. . ; . ; . .-. . . . .. . .. . . . . . . .. . .. . .. . . : . : . ; . . . . . . . . * .t' ' o" " o' ' o * ' * ' "o " ', ' "o ' ' t
  • I ' , * .t' ' o' " o' "* ' 'o " 'o * 'o ' .. " I ' I " I " o* ' o" * , * * * * * , * *, * *, '
  • I
  • I ' * .t' ' .' * *' " o . . ............................. . 90 130 180 230 280 330 380 430 Degrees F * *'1 I
  • 2,200 2, 100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1, 100 1,000 900 800 Cl: 700 -600 UJ 500 a.. 400 300 200 100 ACTUAL LTOP SET POINTS w/SDC ISOLATED *.**,**.*
  • .**.**,*
  • .**.**.*

-.*.**,**.* :*.**.**.*

  • .**.**.* *.**.* . * .* * .. *.: : * .. * .. *.:. * . .' .. '. .*.: : . * .. * .. *.: : * . .' . .' .. *. . * .. '. .* . .' : . * . .' .. -.1: ... .'. -.* -.-". : : ... ".' * .. *. . .-.. * .. . : .. * .. * ... *. : : -.. ".' "... . .* ... *.. : ..... --.r *. . : . *. _. .. * . : . : . * . .' .. '. . " _. .. *. : . : . ._ .'. " . : . : . * . .'. *" * .. *. _. .. * . : . . * .. ._ .'I .-. . *. . : .. * *,. * .. : . : ... *.* * .. *. . : .. * ... * .. : .. * .. * * .. -.. : . ; .. * .. * * .. *. : .. * .. * * .. * .. ; . : .. -1.-* ..... : . : . '. . '. . . . .' . : . *. . . . . . .

.* . .' . *. . '. .' . .' . : . '. . '. . . . .' . : . *. . ... '. .' . : . .. . '. . . . .' . : . '. 1*. . ... * . : .... '. .. * . . . . . .

  • . . : . ; . . .

._. *. . -, : .. * .... * . *. . . : . . . . . .

  • .. : . : ...... *. . . : . _. . . . ._ . : . I . " " . " . . : . : . *-...... : : .... * ....... : .. .' ....... : : . * .. * .. *. : : . * ..... *. : : . * ...... -.1: ... .'. .. . ... ... ... ". " . .. : ; .. * -.' " . *. : . : ". " -.. : ... ". " . : ; .... .' " . .. : ...... * .. 6 . ; ... '. .... . " ... .' . .'. : . " . * . .' .. '. : .... * .. " .' . .'. : .' .. * .... : . : . " .' .. '. : . : . . :/.' .. * . .'. : . * ..... '. : .. ' ...... . . . . . . .. * .. . ... ; .... .' " . .. : . : ... " . *. ': . : .. * ... * .... . : ... *. . ; .. * ". " . .. . .' . .' .... : . .. .... .'. : . .' . .' .. * . .'. : .' . .' .. * . .'. .. .. *. -Yo.'. : . .' . .' .. * . .'. . *. . .. : . * .. *. *: ... *.* ........ *: ...... *.* *: *,* *.* *.* ..... *.-*.* ...... , ... *,* ...... *: *.* ...........
    ..... . . * ..... * . : . ' .. ' . .' . . * .. * . .' . . * ..... * . : . * .... .' . . * ..... * . . '. .. * *.* *.. . .* *.* *.. . .* *.* *.* .. * *.* *.* *. -: ... *.* *.* *.... . .* *.* *.. . .* Q 1 I I I I I I I I I I I I I I I I I t I i I I I I I I I I I I I I I I I I I I I j 50 90 140 190 240 . 290 340 390 430 . Degrees F * '"" rn ;:: :.:. i Tl I"\ W* ...0 Q) -o \H ..J> -..... "' '° ""Q n .. < .....
  • fO ENGINEERING ANALYSIS EA-FC-809-13 Part IV Rev 1 page 1 OF 4 Title: Pressure Response Effects of VLTOP with Replacement PORVs Part IV -Limiting Pressures versus Temperatures for Tech Specs Objective:

Calculate the pressure at which PORVs must be actuated as a function of PCS temperature to prevent exceeding the applicable Appendix G limit. Analysis Inputs: 1) Pressure overshoot during LTOP from Part III of lysis 2> Appendix G limits from reference 1 Assumptions: ll PCS heating and cooling rates will be limited to -20deg/hr at PCS temperatures < 170 deg F 40deg/hr at PCS temperatures from 170 to 250 deg F 60deg/hr at PCS temperatures from 250 to 350 deg F 100deg/hr at PCS temperatures of 350 F and greater 2) Pressurizer heating and cooling rates will be 200deg/hr for all PCS temperatures Calculations: The following equations define the Appx G as corrected for elevation difference between the limiting RPV weld and the and for the dP created by operation of the Primary Coolant Pumps. a) Heating Limited -Plim = (17.206xC26.78+(1.233xEXP(.0145x(T-81-dT1/4))))J-54 I

  • b) Cooling Limited -EA-FC-809-13 Part IV Rev 1 page 2 of 4 Plim ==

Where T == PCS temperature, and dT1/4 for heating ;i)20deg/hr 40deg/hr 60deg/hr lOOdeg/hr == 6.3 12.4 18.2 30.0 dTl/4 for cooling == 4.4 9.0 13.9 23.6 dTma>: for cooling == 10.i 20.5 31. 8 54 The above equations indicate that cooling is more limiting than heating for temperatures at or below 285 deg F; ie, calculated values from 280 to 290 deg for 60deg/hr rate of change are as follows: Heating Cooling 280 698.6 685.6 281 702.9 692.4 282 707.2 699.2 283 711. 6 706.2 284 716.07 713.3 285 720.5932 720.5719 286 725.1 727.8 287 729.8 735.2 288 734.5 742.7 289 739 .. 3 750.4 290 744.1 758. 1 Therefore, limiting values will be calculated with the heating equation from 290 degrees and greater, and with the cooling equation from 280 degrees and less. 1 PCS Temp 2 eqLI. b "".!' .... Rate: Limit equ. a 4 from Part III 5 6 Limit : Overshoot LTDP T.S. Limit w/HPSI w/o HPSI w/HPSI 7 Comments de F si si A si A ____ >'"'"""O ,, 35'1-'C/ 2. 0 3 .>£3 1-4/ z. 4 0 80 ,., Z.4 3 C> II <<-t" s lt.oo i f. * ., ccf *""' ; )\ ; ii a/ Par tP_.uJ r; f '3 to rs Jft EA-FC-809-13 Par-t IV Rev 1 page 3 of 4 o equ. b equ. a from Part III 1 2 3 4 5 6 7 PCS :Ratel Limit : Limit :overshoot

LTOP T.S. Limit: Comments Temp: of :cooling:heating:w/o HPSil w/HPSilw/o HPSI w/HPSI: degFlChng:

psiG psiG psi psi psiA psiA If.IC> : '31-?-l 10: 3ez. 12..o: l8"1-/3o: <f I 'to: "'to I '!>(): '109 I (,o: i( I 'l I ;.o l ft>j'};,. 3 S" I Sol 388-/ 90 _!_ ___ -: ----'t.e_'t____ -2.ool

!Ya*"-: __ _ 2. to: ..,., z. 3o: 'l . __ 'Z z. Z'Z. 'Z. 2.. z '3 z '!> z ?. 2. > Z3 z. 't z '!> 2.G. z. 'i .. *- 2S 3b' 3_:; 'f l 37-7 l : : 3/:;)s-: I --***-*-. ""--*----**------L 31z -. l__ ____ 'l_C!__{ __ : ______ : '110 t "°: : 5'2. 'I 5'& !J-2. s."O: (,cl/J,r : S" Z?. 5'Cj G. i y;--------]Uo: 5'C.? Z.1-


i..l_ L .. -*------Leo: 'es ' :

________ .

'31<.J: 8 !>-8 l ,28 '33o :__ __ '1-o o'f _ .L ..

  • 3c.w: * : t, l>o 1, 101 .3.>"0 l I J 1 1 08 JGo : : / , n S 1, I If I l1o: l,llc./

1, '*' '-.!J -----* 'iCIO: 1 1 908 'itt>l 2.,oZ'l 'IZo: i., 't&o _"/-23-.l___

2. I '( 80 'tt6: 2, !>-10 __ <It.,: I 2., S'f_ I 4301 ,,.,too I. I 19'.i" 1'1> l'Jf ____ _ ( 'i y {tr, ( ':>'1-l 1:>' r I f 3 z. ( ., 'f 90 -z. 3-------2. i.f 2. 'f _'II( 1.. ';) --*------.. " f ';j _:_ 1-fS

... .. c. .. fil',. 8 q '<> 1 .. 1i:"lr, ... s asi",.,J roo ("!i.o\ 1 1 O't. f , n ., 1, 2 39 .* /I '-/Of f;. ,O'Z. " 1, 1110 I, 1.<10 " I 1 1-'l <t c i.....,c. K ; r>" u:" f.o 1;> oo , i.-q 2.Jo1'1-Z., aro p.,. ........ t-. /c.ao . ' . __ J_ __ -- Pt<oTlc.T i-o I B 00 f ; 2. '" _L3 c 0 0 i. t. i; 2 I """'° p'f" &.-* I ._! - NOTE: EA-FC-809-13 Part IV Rev 1 page 4 of 4 3/4 t values are not limiting for the rates of change of being higher in every instance, for the rates of temperature change assumed, and for the RPV fluence through 1.8E19 nvt.

References:

1) PCS Pressure Temperature limits, August 89 revision, EA-A-PAL-89-98 L TOP LIMIT CURVE 2,800 ........... , ...............

.. ....... *-.*-__ ....... *.-................ . . . . . . . . . . . . . . . . . . . . . . . . . 2,400 . . . . . . . .... -.. -... ':. .... -...... * .. -.........

  • .... -....... * ..... -...... * ............

' ... -....... : ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,000 . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . -. . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . T 1.600 . . . . . . .. -. --......... -............. -.... --.. -.... -................... -............ -...... -.... . ii 1,200 . . ' . . . . . . . . . --. . . . . . . . -. . . . . *-. . . . . -. . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .* . . . . . . . . . . ,/ . . . . . . . I ' 0 o ' ' : . . . . . . . . . . . . r. 800 . . . . . . . . . . -..... , ....... --... --...........

  • ..........
  • .* ..........
  • .*... . ....... " ...... . > a 511 400
,..;..* . .;...;..* . ..;..,;.* ;,...;_ .. .;...;.* ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

......... . ! A z 0 . 50 100 150 200 250 300 350 400 PCS Degrees F}}