ML20203L687

From kanterella
Jump to navigation Jump to search
Software Reliability Assessment of Radiation Monitoring Sys
ML20203L687
Person / Time
Site: San Onofre  Southern California Edison icon.png
Issue date: 02/24/1997
From: Chien S, Hook T, Moieni P
SOUTHERN CALIFORNIA EDISON CO.
To:
Shared Package
ML20203K553 List:
References
NSG-97-001, NSG-97-1, NUDOCS 9803060174
Download: ML20203L687 (34)


Text

. . . . _

ENCLOSURE 11 SOFTWARE RELIABILITY ASSESSMENT OF .4 RADIATION MONITORING SYSTEM FEBRUARY 24,1997 i

9803060174 980302 PDR ADOCK 05000361 P PDR L -

J

-~ ~ - -- ---------;--- . _ _ _ _ . . . . . ,

e e

'g.' Qmvw ,3 y

'f,,

mry'-- .s.i ._. .., , .. , .. .. -

e

~f. ,m,-T p .

- - 'l'. -

1,-

_y .. , , . [gq3.;Qgg c'3 [.';, ', , ' . ' ., _4py;

..y  : , . ( ;,'. - '

,,%.. }

. >. ..r

. y.

c . . . ,
. .

. ..  ; a n-

. .,. d ;,f ,L .h . .- e . , . . .. . .

w

. . . , , ;q y - ~e 3 ;4 n -

e-

r. .

. .' *.<-';- 4.a g/ .

..v.

. . na n 1. 2 a u . .

'_n. . ..

. n, . v.. . . , . , .

~.W . .: . s ;d

- . + .. ';, . --;.:; .,,'..c-

,Q .n .. . . - ~

._.,...sn. . .: '4,6_:.. L

. . - ., ,s..,..c.,. T. + - ,,

SOFIWARE RELIABILITY ASSESSMENT OF RADIATION MONITORING SYSTE,M r

FEBRUARY 24,1997 0 I

REPORT NSG-9.-001 Prepamlby : -

( S. H. Clien )

Reviewed by: ,

N Mo;W (P. Moleni)

Approved by: I b_ L--~1 .

( T. G. Hook )

1.OBJ3CTIVE Perferm reliability assessment to compare failure probabilities between the digital / software based radiatica monitoring system and the analog based radiation monitoring system.

0

2. WORK SCOPE

' 'Ibe purpose of this study is to perfonn a reliability assessment to establish a quantitative baseline for the SONOS radiation monitadng systems. Specific plant g-.. ==ts included in this analysis are radiation monitoring systems of the C*alamaat purge isolation signal (CPIS),

Control Room isolation signal (CRIS), and the Puel Handling Building isolation signal (FHIS).

Figure 1 provides a :lmplified diagram of the digital / software based radiation monitoring syste for the F}DS. *Ihe definition of Acronyms and Abbrevia*.lons referred by this study is given in Anachment One.

'Ibe major effort of this study is to quantify the software reliability of the radiadon monitoring system supplied by the MGPL i

3. ASSUMPTIONS:
a. 'Ibc assessmert of software reliability remrins in a state-of the-art status and significant research and development efforts are currently being devoted to this subject (Ref 1 and 2). Due to the lack of proven methodology and comprehensive data base, there are large uncertainties in the results of softwar, failure mtes.
b. " Software defects"in this analysis is defined as: software anomalies identified during the Operating phase of the radiation monitoring system and with criticality in the " Jamming" or "Non >== lag" level. The inclusion of "Non-ja== lag"is conservadvs.. Software verification and validation records are based on vendor inputs given in Ref 3 (Note 1). i
c. No credit la given for train radaadawy in the software reliability assessment. All software failures are conservatively modeled equivalent to a hardware system common cause failure such

) that a defect in one train has the same effects an the opposite train.

I Note 1: An (Draft) updated MGPI vedfication and validation report (Ref 6) with additional software operating history was rrade available. ; 'er congletion of thl: study. The latest vendor inputs confirmed that the data provided by Twf 3 is conservative. Software failure rate is

  • expected to be further reduced if more nuclear power plant operational data can be incorporated by ftture analysis.

1 T w

._ _ C _Z T -~~~ ~~~

d. Software error density reaches an asymptotic constant state after the software is :eleased to the end. users.
e. It 1. assumed MTBF- MTIF in this software reliability assessment. This is based on (i) the MTBFs of all software modules analyzed by this study are greater than 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, (ii) relationship betw e reliability parameters is: MTBF = MTTP + MTTR, and (iii) if a software problem disables the radmonitor system, it is expected that MTTR a MTTP. (Per vendor inputs, none of the software defects documenied in Table B led to system shutdown.)
f. PHIS, CRIS and CPIS radiation mon'toring systems exminad by this analysir have a one out-of two logic and either train (Train A or B) can genaste the required isolation signal.

SONOS Tech Spec allows the radiation monitoring systems to operate with a one.out-of one logic during power generation. ' Ibis study compares reliability of digital and analog radiation  ;

monitoring systems in both logic configurations.

l

g. In the CPIS digital radiation monitoring system design, the isolation function is generated by the LPU/SAS only. Based on vendor suggestions, failure contributions from LPU/ PIPS of the CPIS are also included in the fault trees to ensure conservatism.
h. Failure of LDU hrdware will not affect the generation of an isolation sigrial fer CPIS, CRIS andFHIS.

L Output of the RDU produces the control relay contact opening to initiate the system isolation function.

J. Reliability data of the analog radiadon monitoring systent is based on the corrrtive maintenance records given in Attachment 3 of Ref 4. This reliability data represents all components (pumps, switches, etc.) in each loop of the analog radiation detection system.

The assessment of hard- ne common cause failure for ca::h radmonitoring system is based on the averaged failure rates of trains A and B. Failum rate for each train of the analog syst.:m is derived from Ref 4 and listed in Table 2.

k. Reliability data of the digital rr.diation monitoring system is based on vendor inputs provided in Ref 5. This MOPI supplied reliability data includes both hardware and software inducui failures. It is .a.ssumed that the hardware failures provided by vendor only represent unavailability of the corrective maintenance. Plant opera *lon related unavailabilities (e.g. system surveillance, preventive maintenance, and support maintenance ) are not accounted for by the vendor data. *
1. A mission timu of one houris used for calculating the failure probabilities of the analog and digital rt 18ation moni:oring systems. Hence, the appro::im* expression of F(t) = At - A is 2

4

,,,a,,, wm . _ - ,--n-.---.., - - < - . . - - - , , - - , . . , ,.v,-m,.-nm- - . . - - - - ,,. ,-e

t used for the basic event probabilities in the system fault trees.

4. APPROACH 4.1 CoBection of software operaths record

' First fully tested MGPI radiation muitoririg system software was delivered to the end-users in April 1995. By Juus 1996, this software package has been operadng at eight nuclear power stadons worldwide. A breakdown of cgeing history of LPU/ Base, DU/ Base and Applications l and LPU/(radladon detector) is given in Table A.

4.2 W=ml==*taa of software defects Based on the software defect definition given in Sec 3.b. a review of software anomalies and resolutions provided by MOPI's veri 3cadon and validation report (Ref 3) was gfw-ed. '!his evaluation concluded that there are five software defect recor6 to be accountui for in this software reliability asses = mar.t A ri==a'y of these r,oftware defects are provided below and a detailed list of these defects is given in Table B.

- One defect in LPU/ PIPS

- iwo defects in LPU/SAS Two defects in DU/ Base & Application

-One defectin LPU/ Base & Applicadon 4.3 Assessment of software MTBF and thilare rate Using the software operating histoty generated in Sec 4.1 and the cm.wpor, ding softw:.re defects identified in Sec 4.2, the software module MTBF and failure rate can be establishet A step-by-step calculadon of the software failure results is presented in Table C. Result for MTBF and 1 failure rate of the software modules is sn==ad=4 in Table 1.

Per results of Table C and th: CPIS, CRIS and PHIS fault trees (Attehment Two), the software MTBF and failure rate of the three SONGS radmtmitoring systems can be quantified and the results are listed below:

CPIS software failure rate: A - 1.8E-5/hr, MTTF-55,000 hr FHIS software failure rate: A - 1.2E 5/hr, MTTF-81,000 hr CRIS software frilure rate: A = 0.92E-5/hr, MTTF-110,000 hr E

3-

_ _ _ a

i

], ' 4.4 Assessment of digital and analog radiadou monitoring naoduleSoop MTBF and faDure

. rate

{

' 1his step assembles results of Sec 4.3, and the digital radiation monitoring system reliability data of Ref 5 to generate softwars and hardware MTBF and failure rate for each digital radiation monitoring system modules. A summary of the calculation results for the software and baniwars .

' system !: provided in Table 1. Details of quantification process fu u. . rdware failure rate, i j

including the derivation of hardware common cause failure rates for bom .he digital and analog radmonitor systems, is given in Table D.

j The analog radiation monitoring system reliability data was generated by an interns 1 calculation nd can be locr.:M in Menchment 3 of Ref 4. Result.J of the analog system MTBF and failurs i e te ( A) based on records of corrective maintannar* are provided in Table 2. Reliabil!ty L prameters in Tables 1 and 2 form the basis for fault tres quantificadon.

4 l

f TABT.E It Software and hardware reuabulty parameters of the digital radiation monitoring system 2

Radmonitor Software Hardware

, Components MTBF(Hour) A (/ Hour) MTBP(Hour) A (/ Hour)

. LPU/SAS 176,000 5.7E-6 25,000 4.!E-5 i

LPU/ PIPS 113,000 8.9E-6 29,000 3.5E-5 LDU 451,000 2/d.6 24,000 - 4.2E-5

, g RDU 451,000 2.2E-6 28,000 3.6E-5 TABLE 2: Reliabuity parameters of the analog radiation monitoring system based on corrective maintenance data (Ref 4) hDIE A Cm'ala'=at Tm A airborne (loop 7804): 290hr\ 3.5E 3/hr Cm'ala=t Tm B airborne (Loop 7807): 380hr\ 2.6E 3/hr Puel Handling Tm A airborne (Loop 7822): 510 hr\ 2.0E 3/hr Puel Handling Trn B airborne (Loop 7823): 510 hr\ 2.0E-3/hr -

, Control Room Tm A airborne (Loop 7824): 1,200 hr\ 8.1E-4/hr Car. trol Room Tm B airbome (14cp 7825): 370 hr\ 2.7E-3/hr 4


.-=+,-,-,.en-.',>,a-- ~

-n,-m---- -,,--,-a,,-emn- - , , . , . - - . . , , - ,

+ - - ~ ,,,r-,-m---,-, ,,--,,,m,,,,,~ , - s- ar ,r-,,-.v-n

l l .

5. COMPARISON OF SYSTEM RELIABIL rn' AND CONCLUSIONS Comparison of reliability between the digital and analog based radiation moni:oring s,e ,tems enn i be performed by developing fault trees to combine the reliability parameters given in Tables 1 and 2, and quantification assumptions listed in Sec 3. Six separate fault trees wue developed and analyzed to assess the reliability of CPIS, CRIS and PH1S for both the digital and analog radiation nionitoring systems.(Attman=mt Two)

- Inputs of the faul' .ree calculation are based on niodule/ loop reliability parameters expressed in terms of failure mtes (A) with a one-hour mission time (Sec 3.1). Result of the fault tree analysis is ior ted by the integrated system failure probability and is summarized in Table 3.

Review of the fault tree results given in Table 3 shows that an Lev 4 in the system reliability can be expected if the digital radiation monitoring system is chosen to replace the analog radiation monitoring system. By imphaentation of this radiation detr.etion system renovarion, the faDure probability of the CPIS could be reduced fkom about 2.2PA to 2.6E-5 (a nine times reduction), the PHIS fauure probability could be reduced Dom about 1,4E-4 to 1,7E-5 (rduced by a factor of eight), and that of the CRIS fauure probability could be decreased frorn 1.2PA to 1.5E-5 (an eight times reduction). If mission time chosen for fault tree quantification is not one hour (Sec 3.1) then the failure probabilities given in Table 3 will be different. But the ratio of system fauure probabilities between the analog and digital radiation =

  • dog systems will be maintained and the conclusions described above rammin unchanged.

It should be noted that the results in Table 3 is based on the one-out of-two design logic of the radiation monitoring systems and a one-hour system mhslon time. As the SONOS Tech Spec allows the radiation monitoring systems to operate in a one-out-of-ane logic during power .

generation, another set of calculations has been i L ed to compare system reliability under the separate configuration. ' Ibis study shows that, consistent with Andings of the one-out of-two logic, under the one-out of-one logic the digital radiation monitoring systems exhibit significantly higher reliability than that of the analog radiation monitoring system. Results and fauh trees of this assestment are provided in Ae +==t three.

However, it should also be pointed out that although this conclustoa is based on a set of ca systive assumptions (e.g. Sec 3. b and c), there are large uncertainties in the software reliability ===*==nent ' Tbc quantification of software reliability remaine in a state-of-the-art statunnd there is lack of pmven methodology and a need for a comr4cnsive data base to reduce uncertainties associated with the software fauure rates.

. l 5

anm _

_.----.m.- - - , _ . . - .

S

  • TABLE 3: Comparison of syrem reunbuity between analog and digital systems (Based on one-out of-two design logic)

R6diadon Monitoring System Fauure Probabuldes (Mission time one hour)

! Analog CPIS 2.2E-4 l

Digital CPIS 2.6E-5 Analog FHIS 1.4E-4 Digit alFIES 1.7E-5 Analog CRIS 1.2E 4 Digital CRIS 1.5E-5

References:

1. NUREG/CR-6465 " Development of tools for safety analysis of control softwart in advanced reactors" April 1996.
2. SCE calculadon J SPA 279 "FHIS radiation monitor software mode failure evaluation" Dec 1996
3. SCE VFL No. S0123-606-1 367 0 " Software Verification and Validadon Fmal Report" June 1996 Rev A <
4. SCE VPL No. 50123-606-1 5 "Radiadon Monitoring and Sampling System Engineering Evaluadon" Aug 1993
5. MGPI letter from J P Guillemot to D Beauchene of SCE dated Feb 20,1996
6. " Software Verification and Validation Fmal Report"(Draft) of MGPI, January 1997 Rev B 6

TABLE At Software operation history (Ref 3) .

1 SOFTWARE MODULES i LPU/ Base LPU/ PIPS LPU/SAS LPU/Si LPU/Ib' DUBase and App 11 CUMULATED 32,678/ 4695/ 14,677/ 12,160f 515/ 37,609/

EXPERIENCE 784,2*2 112,680 352,248 291,840 12,360 902,616

(# of days / # hours)

TABLE B: Software defects pertinent to this analysis (Ref 3) l Affected Module Defect description Vendor log No.

DU/ Base & Common problem if 2 links are used 349 LPU/ Base DU/Appilcation A DU that reports only channel B initializes 398 itself on channel A LPU/SAS Spectrum storing overlapping in the 400 database LPU/SAS Single mode distal input invertion for 401 portable SAS LPU/ PIPS Problem on Beta algodthm if uCi/cc and no 418 filter advance reset TABLE C: Assessment of software failure rate 1.LPU/ PIPS MTTF-112,680 hrs /l - 112,680 hr 1 - 8 88E-6/hr

2. IJU/SAS MTTF - 352,248 hrs /2 - 176,124 hrs A - 5.68E-6/hr 7

e . _ - . . . . _ . . _

3. DU/ Base & Application

, MTIF- 902,616 hrs /2 = 451,308 brs A - 2.22E-6/hr 4.LPU/ Base & Appilcation MTrF-784,277. hrs /1 - 784,272 brs A - 1.28E-6/hr i

5. Other software modules do not have failure data

- LPU/S1: Based on the cumulative operational hl: tory of this module is similar to that of LPU!SAS (Table A) and has no record of defect, it is conservative to use failure rate of LPU/SAS

! to represent this module:

l A - 5.68E-6/hr

- LPU/lO: Based on the cumulativo operational history of this module is similar to tha of LPU/ PIPS (Table A) and has no record of defect, it la conservative to use failure rate of LPU/ PIPS to represent this module:

A - 8.88E-6/hr I

Per attached CPIS, PHIS and CRIS fault trees, results of the software failure ratas are:

I CPIS software failure ra'c: 1 - 1.81E-5/hr, MTrF-55,000 hr FHIS softw.ue failure rate: A - 1.24E-5/hr, MTW80,600 hr CR13 software failure rate: A - 0.92E-5/hr. MTG109,000 hr TABLE P: Digital Radmonitor Module (Ref S)

Hardware & Software:

MDI A LPU/SAS: 21,657 HR/ 4.62E-5/hr LPU/ PIPS: 22,791 HR/ 4.39E-5/hr LDU: 22,408 HR / 4.46E-5/hr RDU: 26,036 HR / 3.84E-5/br Hardware:

MDI A LPU/SAS: 24,691 HR / 4.05E-5/hr(4.62E-5/hr - 5.68E-6/in-)

LPU/ PIPS: 28,571 HR / 3.5E-5/hr(4.39E-5/hr - 8.88E-6/hr)

LDU: 23,585 HR '

RDU: 27,624 HR / 4.24E-5/hr (4.46E-5/hr - 2.22E-6/hr)

/ 3.62E-5/hr (3.84E-5/hr - 2.22E-6/hr) 8

Hardware common cause faHure data

  • l Radmonitor Common cause faHare rate CPIS - digital (RDU A LPU/SAS + LPU/ PIPS) x BETA -

(3.62e-5 + 4.05e-5 + 3.5e-5) x 0.07 - 7.82e-&hr PHIS - digital (RDU + LPU/ PIPS) x BETA - (3.62e-5 + 3.5e-5) x 0.07 - 5e-&hr CRIS - digital (RDU + LPU/SAS ) x BETA - (3.62e-5 + 4.05e 5 ) x 0.07 - 5.4e-&hr CPIS - analog Averaged failure rate x BETA - (3.5e-3 + 2.6e-3y2 x 0.07 - 2.le-4/hr FHIS - analog Averaged failure rate x BETA - (2e-3 + 2e-3y2 x 0.07 - 1.4e-4/hr

CRIS - analog Averaged failure rate x BETA - (8.le-4 + 2.7e 3y2 x 0.07 - 1.2e-4/hr l BETA for electronic equipment is chosen at 0.07 (Per Fertal PRA)

)

4 A

4 9

4 9

Southem Califomia Edison J-SPA-279

- I Nuclear Engineering Design Org. Rev. O i r-----l-----

o o i

r-----

e o

' )

g E

l @. .. A l h B I I h A l g B I l FMS gFMS I lN lN ,

I _ _ Fuel Handling Building _ _ _ - - _ _ _ _

., p - Fuel Handling Building----------.i

___-__-----_-s -------------a UNIT 2 UNIT 3

-i i

11 Figure . .1 Recundant soRware ri.in n sei cor(girations for RMS Safety Functions l

4

) .

ATTACHMRNT ONE DEFINITION OF ACRONYMS AND ABBREVIATIONS i

MITF mean time to failure MTBF mean time between failures l MITR mean time to repair i

i FHIS Puel Hantfling Building isolation signal CPIS Cantalamant purge isolation signal .

LDU local display unit RDU remote display unit DU display unit LPU local processing unit PIPS passivatedimplanted planar silcon SAS spectrum analyzersystem 10 input output si sitcon I

l 1i N# * *

..2 a. -_-,_.=u .--aa ...m.m. a e. o e_._,, - aa-4 m.me g_, _ _ _ . _ _ _ . -._-.N ha_m.- ._.4 _ _ _ _~4*A-,.Ah.am..mam_ A..

G 4

5 9

ATTACimiENT TWO FAULT TREES OF CPIS. CRIS AND FHIS BAQIATION MONITORING SYSTEP' ~ DIGITAL & ANALOG (One-out-of twologic) e 4

I 7-1

__,,e-e m9 RAD,R1 .

,. W $HC }Caesman Des: 0ta 47 moveset 012347 i . ,

,M OF WIS 6 S FTWAAGas@ g

  • C fI L clA q t$d 2

3 (Pit h4DaADWTOR last 0, sevenant sty? Wang ,.

em 9 MARS p Wu0 54' Wupulw I o ,.

J.

8 Wupam emenw S

)

Afe A,9WGAf4:30 e

snn uw uw av,

%3p4BS t &ah>WS 1 SAB> SIS t $3peBS 1 6

18W8 8 1996 A 8

emoam anno w

=

mui .e, - =.

A

. M.ii. . ui .. -,.

. M,O .=. .

suns ~

ones was seum 64aa spea M 1 esteeBS 1 &asse6 1 M t 43 malt 9 &annet t C

opean enemmunu

.=

CPRAD.FTP "inMPRA 1.0 FILE : CPRAD.FTP NUREI4tCS Solution ENUS Env 1

Minimum Cut Set Solution for fault tree cprad , Serial no.= 17 Performed : 09:39 19 Feb 1997 Cut set Equation produced is : CPRAD. EON

~

RAD MONITOR PPA ~

Top ovent: GRADR112 r

Top cvent unavailability (r.ev. appr)= 2.589E 005f Cutcff value used =

1.00E 010 Number of Boolean Indicated Number of NCS i's equation file cut Sets = 1.$00000E+00 l =

i 14 MINIMAL CUT SETS SORTED SY UNAVAILABILITY

1. 8.000E-006 LPU2
2. 7.820E 006 CCTEW -
3. 5.680E 006 LPU3
4. 2.220E 006 DU1
5. 1.280E*006 LPU1
6. 1.640E 009 SASA SASB
7. 1.466E 009 RDUA SASB
8. 1.(66E 009 RDUB SASA
9. 1.418E-009 PIPSA SASB
10. 1.418E 009 PIPSB SASA
11. le310E 009 RDUA RDUB
12. 1.06'iE-009 PIPSS RDUA
13. 1.267E*009 PIPSA RDUB
14. 1.225E-00D PIPSA PIPSB l

f Page llt

4 6g ANL,OPIB ,

- men, * *

  • km== ome:ove n w ei ai.n crut %c c 2

Q 3

N car .

. { &tB8888 9

= . - - , , , , . . -

4

  • M I

. Sae>4E0 9 8 .

6 7

8 0

A m

- = = =

C m ess ee _

CPANL.FTP "jnNUPaA1.0 FILE : CPANL.FTP NURELMCS Solution INUS Env Minimum Cut set Solution for fault tree epani , Serial no.= 5 PCrformed : 08:37 21 Feb 19')7 Cut Set Equation produced is : CPAHL. EON

~

ANALOG CPIS RAD MONITOR Top cvent: GANLCPISO2 i Top cvent unavailability (r.ev. appr)= m2.191E 004 /

l Cuttif value used =

1.00E-010 l

i Number of Boolean Indicated Numb:r of MCS in equation file cut Sets = 2.000000E+00

=

i 2 MINIMAL CUT SETS SORTED BY UNAVAILABILITY

1. 2.100E 004 CCF
2. 9.134E 006 TRNA TRNB O

4 Page 16

) \

~ m-mo, m .

. - - . .m, - .. . .,

~'=~.r fH s ea9:,4.2 2

3

,a . u4_

.. as wn

. -W' C3 8 4

ems.ses empates S

ni

  1. e 4,PUCA11C3e tas.es

~, .anness

~

1 Sannes ~,

l . A A

_-g, g ,

g. - g, A

5 C

f. s,see .amosammau

.N

, _ ]

FERAD.PTP 3

, .agNUPRA 1.0 FILE : FMRAD FTP NURELNCS solution NNUS Env

)

Winimum Cut set solution for fault tree thrad , Dorial no.= 19 perfcrmed : 09:43 19 Feb 1997 cut set Equation produced is : FERAD. EON RAD MONITOR PRA Top event: GRADR112 ._.,

Top event unavailability (r.ev. appr)= $1.739E-63 Cutoff value used = 1.00E 010 Number of Boolean Indicated cut Sets = 8.000000E+00 Marber of WC2 in equation file = 8 WINIMAL CUF SETS SORTED BY UNAVAILABILITY

~

1. 8.880E 006 LPU2
2. 5.000E-006 C0rsN -
3. 2.220E 006 DU1 i
4. 1.200E-006 LPU1
5. 1.310E 009 RDUA RDUB
6. 1.267E-009 PIPSA RDJB
7. 1.267E 009 PIPSB RDUA
8. 1.225E 009 PIPSA PIPSB d-L 4

e 6

l Page 13

.+Lmaa. AJf,__aL._4_Mw -_--.i_.r . 4--2.- w---..-WAAA

- h-. .4.,mu- - ._,4.a mad a smA-_.4p.34Aw m.m.e,y Ah*hhM,& A ewa ash 4.s e4s... .,sa h J w _A; A4MaML,m as h -+w .W.h h5 4 J-bM mg.4 %A,,

S WhY 'Y -

g g y e

  • ]

l e

ANALOG PMC MN .

Aawr= =c 5 m. om.: =m47 nm, e 4 1 M, h I$ h

- A 8

4 8

emneu '

kNh 4

j tasemeber ser 4

(} .

=

Q) i M9EDRNB640P W) - a"* fan b

! ==* nue

, 18*asQ) i smwas Q} ,

I 1

e i

] 9 I

r d-B O

s i =

, a A

en

== ---

B C

sensa imunenssenu eO

FRANL.FTP 4

at. yppaA 1.0 FILE : TRANL.FTP NURELHC$ Solution RNUS Env 1

Minimum Cut Set Solution for fault tree thani , Serial no.= 7 P:rfrrmed : 08:41 21 Feb 1997 Cut Set Equation produced is : FRANL.EQN ANALOG FBIC Top event: GANuraIS12 l

' Top event unavailability (r.ev, appr)= L1.'439E00E Cut;ff value used

=

1.00E 010 Numb:r Numberof oftoolean NCE in Indicated equation cut file Sets = =2.000000E+002 MINIMAL CUT SETS SORTED BY UNAVAILABILITY 1.

1.400E-004 CCF *

2. 3.881E 006 TRNA ThdB ,

f 4

9 4

9 Page '3.0 1

' ~ - ~ ~ ' ~ ' ' ' ~ ' ' ~ ~

6........'- _% -

] , , _ , _ , , _

e 1%D, h1 .

Aamyot sHe lc,esman osas: otaer nonmee etact 4DPTusaAe ese seWoumaAg 1

C k l h GU t

e d

1 I Wtt N 8480 cP 8etRDusaAE SEFTupaA8 PE l eeJeupant l 0 l cm esmaam t

_"W' fT en ease

/d l Lawr=

ovraan l s

=

l

.,u.n .. - P.

Ase AppuonTOs

~

tm lpm empi M t M t Sa>GS 1 7

unn .

S 8

spone

.massnar

=

W k k

A IIe ,J l taas suman .

saan m t sanoens t sawes t aaneans t un C

game sumosaments e 0 ~~

'e s

CRRAD.FTP WitNUPRA 1.0 FILE : CRRAD.FTP NURELHCS Solution ENUS Env

,1 Minimum Cut Set Solution for fault tree crrad , Scrial no.= 16 P:rfctmed : 09:51 19 Feb 1997 Cut Set Equation produced is  : CRRAD. EON RAD MONITOR PRA Top cvent: GRADR112 Top cvent unavailability (r.sv. appr)= E Cutoff value used L1,17,00E-010. 4 5 9;E .005. -

Number of Number of Boolean Indicatedfile NCS in equation cut Sets = 0.000000E+00

=

8 MINIMAL CUT SETS SORTED BY UNAVAILABILITY

1. 5.680E*006 LPU3
2. 5.400E*006 CCFBW -
3. 2.220F.-006 DU1
4. 1.200E*006 LPUI
5. 1.640E 009 SASA SASB
6. 1.466E-009 RDUB SASA
7. 1.466E-009 RDU.% CASB
8. 1.310E 009 RDUA RDUB ,

l l

4 i

6 4

4 Page *1.*2 n 3

g. , , ,,;, ._

e e

ANL. OPIs .

Aneyst anc Wesmen nen: otan m ei si.e7 6M i

. , , C [.l $ M /Ad b

I 8

enatama otr

..a- ~e--

4 w me him 9 M 1 6

G 7

8 9

9

= = _ -

B C

anna annenpansa

.m

CRANL.?TP

    • 4 nNUPRA 1.0 FILE : CRANL.FTP

. NURELMCS Solution ENUS Env W121 mum Cut set solution for f ault tree cran 1 , serial no.= 6 P:rfrrmed 08:46 21 Feb 1997 Cut S:t Equation produced is : CRANL. EON ANALOG CPIS RAD MONITOR Top event: GASLCPIS12 Tcp event unavailability (r.ev. appr)= fl'.122E T60I#

Cut ff value used = 1.00E 010 Number of Boolean Indicated Cut sets = 2.000000E>00 Number of NCS in equation file = 2 MINIMAL CUT SETS SORTED BY UNAVAILABILITY

~

1. 1.200E 004 CCF
2. 2.206E-006 TRNA TRNB l

S e

4 Page "1,Q.

ATTACHMENT THREE FAULT TREES OF CPIS. CRIS AND FHIS DIGITAL RADIATION MONITORING SYSTEM I

l (One ent-of-one logic) 1 t

l lh

4 1

Comparison of system reHabuity beta een analog and digital systems (Based on one-out-of one logic)

Padiattan Monitoring Faunre ProbabDities System (note)

(=le=ta= time of one bour)

Analog CPIS 2.64E-3 Digital CPIS 13E-4 Analog FHIS 1.96E-3 DigitalFHIS 836E-5 Analog CRIS 8.11E-4 Digital CRIS 8.59E-5 t Note: Conservatively, the analog trains with lower failure probabilities were selected for comparison.

i

_ a_ m _ _ ' a w _,w a -nan- -,

e- 4 a. - , _ - , n--- a. 4__ S.,_4 <-,n, + + - + 2 &-1a a,a 4 .6-,e-aaw, a _aJ_ ,J, _m 0

MAD.R1 .

w sHe hemma osa os as47 no ees s er

'l . .

ww i M D fhb h 0 2 .

S

=

S 6085DPfumpment sommaREP.

4 empaut supaw

. n y

-w .a e

enanme macunes

- _ , . s ,.

3 ===

e - - -

LAn ws sme om MB84W 1 MhreBS Mapest ( M 9 1 t 7

i maamier

=

k A

suma enan wea Sapet 1 M 1 Meses t C

emni umwasmau mm

CPRA1.PTP n

w;rNUPRA 1.0 FILE : CPRA1.FTP NURELWCS Solution RNUS Env Minimum Cut Set Solution for fault tree cpral , Serial no.= 20 Perftraed : 10:03 19 %b 1997 Cut Set Equatiod produced is  : CPRA1. EON RAD MONITOR PRA

-Top event: GRADR112

-Top event unavailability (r.ev, appr)= T'298tTOT4' Cutoff value used = 1.00E-010 Number of Boolean Indicated cut Sets = 7.000000E400 Number of NCS in equation file = 7 HINIMAL CUT SETS SORTED BY UNAVAILABILITY

1. 4.050E 005 SASA
2. 3.620E 005 RDUA *
3. 3.500E 005 PIPEA
4. 0.880E 006 LPU2
5. 5.600E 006 LPU3
6. 2.220E-006 DU1
7. 1.200E 006 LPU1 I ,

4 Page *2S

9 e

.9 -

h4N RAD,R1 ..

AnasystsMc lcremenoms:ose47 A. mass 01s547 l

). -

  • N 8,9 l

~ g F# G of.M l

+

3 1

T

  • 0rSOP 64asig N pg WWip131 _

WIADR1m

- f\ h, M J F4 RJ FAL 4

_ WWuiset epomw I

&: [b i

-= - ,= i i -

'

  • ageunagatigm i

I 5

tan LAs l sui imp 4ES t th>GEB 1

, 4

' .h>488 4 1 l 75We A s _.

ewste

=

n 3 = . -

eun siran

_ q) .  ;; (.) ,

A W

4 Q

w C

,es w m unsiin a

=

-.3-N

FERAL.FTP 4

"4nNUPRA 1.0 FILE : FERA1.FTP NURELMCS Solution ENUS Env  !

Minimum Cut Set Solution for fault tree fhral , Serial no.= 19 Perfermed : 10:16 19 Fan 1997 Cat S:,t Equation produced it. FERLl. EON RAD MONITOR PRA Top event: GRADRll2 Top event unavailability (r.ev, appr)= C3TdF!tf0Y cut:ff value used = 1.00E-010 Number of Boo'ean Indicated cut Sets = 5.000000E+00 Number of MCS in equation file - 5 MINIMAL CUT SETS SORTED BY UNAVAILABILITY

1. 3.620E-005 RDUA
2. 3.500E-005 PIPSA -
3. 8.880E-006 LPC2 l 4. 2.220E 006 DUl i 5, 1.280E-005 LPU1

)

e B '

Page .30 m o , m -

um.m c= . c>c::c % _ ~ _

,,. .f,e, , p 8%E WMTOR PIM

. RAD,R1 .

^;;, &HC W Dese: 014347 Assumen: 014H7

)_ .

N@N O 1 Mn.00 0 0g h 7f T$ .

A

= ,

3 Guns N

LDe4 OP eeuguesa M i

armanntM l

an.e .

. win C3 /d I -

W% ,

avem 4

ow3ner Wwrites j

i LPUtnN FE LPUSASF4 8EIL8enAE

. ffG APPULATHD6 LAn pus aui 1JameBS 1 &me40s 1 SJames t ne .

IIts A

  • 8 ennonier

/4 IRAITIts ACFCPUs pUgAs TnN A 0F C3tB A

SSD408 1 detr 38 1 m

f C

__pinAt Wienelupsenta

% e i . p -

w. . . . - -

' , . . c.

MAD,R1 .

Anspet:SHC W e Dese: 014347 AWeden:014547 M@ M M dommansme O M/$ 4f 1

nanouwe s maam w A

I 6

4 3

LDeSW Magunment gynmagg pg s 4

mADatat m annse s

-- .6 8

mannse mammes I

) --

e

^~ ~

tan u us eus 18888 1 &ande t $2 met 1 7

luesA

  • 5 mammer

=

841Ufrw WCNet &MsSAS T1ue A OF ENES A . m. ,

+ '

.. anna

_ 1 dats406 1 l

v ~

u

CRRA1.FIP

  • nNUPRA 1.0 FILE : CRRA1.FTP F.URELHCS Sclution HNUS Env ,

Minimum Cut Set Solution for fault tree crral , Serial no.- 18 Performed : 10: > 19 Feb 1997 Cut Set Equation produced is : CRRA1.EQN RAD MONITOR PRA Top event: GRADR112 Top event ; availability (r.ev, appr)= UCli88E-00M Cutoff val.. used -

1.00E-010 Number of Boolean Indicated Cut Sets - C.000000E+00 Humber of MCS in equation fi.le - 5 MINIMAL CUT SETS S'cATED BY UNAVAILABILITY

1. 4.050E-005 SASA
2. 3.620E-005 RDUA
3. 5.680E-006 LPU3
4. 2.220E-006 DU1
5. 1.280E-006 LPU1 O

Page 3')

_o