ML20155J523

From kanterella
Jump to navigation Jump to search
Rev 1 to Functional Design Requirement for Core Protection Calculator
ML20155J523
Person / Time
Site: Palo Verde, Arkansas Nuclear, Waterford, San Onofre, 05000000
Issue date: 05/31/1986
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML19298E013 List:
References
CEN-305-NP, CEN-305-NP-R01, CEN-305-NP-R1, NUDOCS 8605230291
Download: ML20155J523 (314)


Text

O 1

~

FUNCTIONAL DESIGN REQUIREMENT FOR A  !

CORE PROTECTION CALCULATOR CEN-305-NP REV.01-NP -

Nuclear Power Systems COMBUSTION ENGINEERING, INC.

Windsor, Connecticut O

May , 1986 l

O

.... eaa

~ 3f_. _ -~ ~ '---~.

O

~

FUNCTIONAL DESIGN REQUIREMENT FOR A CORE PROTECTION CALCULATOR CEN-305-NP REV.01-NP -

Nuclear Power Systems COM80STION ENGINEERING, INC.

Windsor, Connecticut O

May , 1986 O

O LEGAL NOTICE This report was prepared as an account of work sponsored by Combustion Engineering, Ir.c. Neither Combustion Engineering, nor any person acting on its behalf:

a. Makes any warranty or representation, express or implied including the warranties of fitness for a particular purpose or merchantability, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

O O CPC Functional Design Requirements CEN-305 Revision 01 Page II

- -. - - . - - _ _ _ _ . . . _ _ _ _ _ . _ _ _ _ _ , _ _ _ _ _ _ . . _ __ _ __ n _ _ _ _ _ _ _ _ _ _ _

Abstract

[v This document provides a description of the Core Protection Calculator (CPC) System functional design. The scope of this functional design description includes detailed specification of the reactor protection algorithms to be implemented in software and system requirement:; affecting the executive software and hardware design. The CPC System design bases are also presented.

System requirements are defined to assure that the hardware /

software configuration is compatible with the reactor protection algorithms. Requirements are specified in the areas of input / output, protection program interaction, operator interfaco, and initialization.

Algorithm functional descriptions are provided for the protection software. The protection software consists of four distinct programs and a subroutine accessible to any of the four programs.

() Detailed algorithm descriptions are provided for each program and the subroutine. The algorithm equations are written in symbolic algebra. All variables are defined, and units are specified where applicable. To complete the algorithm descriptions, the output variables and required constants are listed for each program.

Revision 01 incorporates all the changes described tand approved) in Reference 1.4.10.

It was intended that revisions would involve issuance of change pages only. However, revision 01 re-issues all the pages due to the significant number of pages involved.

O CPC Functional Design Requirements CEN-305 Revision 01 Fsge III

jg TABLE OF CONTENTS

  • Q Section No. Title Page No.

ABSTRACT -III TABLE OF CONTENTS IV 4

LIST OF TABLES AND LIST OF FIGURES VIII

.t LIST OF APPENDICES & LIST OF -

ACRONYMS AND DEFINITIONS IX

1.0 INTRODUCTION

1-1 i

1.1 PURPOSE 1-1

]

1.2 SCOPE 1-1 1.3 APPLICABILITY 1-2 1.4 REQUIRED REFERENCES 1-2 I

2.0 CPC DESIGN BASIS 2-1

! 2.1 SPECIFIED FUEL DESIGN LIMITS 2-1

() 2.2 ANTICIPATED OPERATIONAL OCCURRENCES (A00s) 2-2 l 2.3 POSTULATED ACCIDENTS 2-4 i

2.4 ADDITIONAL BASES FOR TRIP SETPOINTS 2-5 2.4.1 Relationship Between Monitoring and Protection 2-5 Systems i

2.4.2' CPC Timing 2-6 3.0 SYSTEM REQUIREMENTS 3-1 i 3.1 INPUTS AND OUTPUTS 3-1 3.2 PROGRAM STRUCTURE 3-6 1

3.3 PROGRAM TIMING AND INPUT SAMPLING RATES 3-8 l j' 3.4 PROGRAM INTERFACES 3-8 1 i

! 3.5 OPERATOR INTERFACE 3-10 i

l Lo

[ CPC Functional Design Requirements CEN-305 Revision 01 Page IV

_._...._ _.___ , _ ._,__ - . _ ., _ ,. ,_ _ , . _._,_._,._.,.~,,,.,m..-__ _. _ _ _ . . - . _ , - _ . , -

p TABLE OF CONTENTS (Cont'd.)

d Section No. Title Page No.

3.5.1 Alarms and Annunciators 3-10 3.5.2 Displays and Indicators 3-10 3.5.3 Operator Input 3-11 3.5.4 Failed Sensor Stack 3-11 3.5.5 Tripped CPC Channel Snapshot 3-17

. 3.6 INITIALIZATION 3-17 3.7 INTERLOCKS AND PERMISSIVES 3-21

-t 4.0 ALGORITHM DESCRIPTION 4-1 4.1 PRIMARY COOLANT MASS FLOW 4-1 4.1.1 Algorithm Input 4-1 4.1.2 Specific Volumes 4-3 4.1.3 Core Flow Calculation 4-6 4.1.4 DNBR Calculation 4-7 4.1.5 FLOW Output 4-8 4.1.6 FLOW Constants 4-9 4.2 DNBR AND POWER DENSITY UPDATE 4-10 4.2.1 Input to UPDATE 4-11 4.2.2 Temperature Compensation 4-19 4.2.3 Neutron Flux Power 4-21 4.2.4 CEAC Penalty Factors 4-22 4.2.4.1 Determination of RPC Status 4-23 4.2.4.2 CEAC Failure Check 4-25 4.2.4.3 Penalty Factor Calcuhtion for One or Two 4-26 Operable CEACs O

CPC Functional Design Requirements CEN-305 Revision 01 Page V

i TABLE OF CONTENTS (Cont'd.)

Section No. Title Page No.

4.'2.4.4 Penalty Factor Calculation for One or Two 4-30

-Inoperable CEACs 4.2.4.5 Total Penalty Factor Calculation 4-35 4 4.2.5 Heat Flux Compensation 4-36 4.2.6 Asymmetric Steam Generator Transient 4-46 Trip Function 4.2.7 Update of DNBR and Quality Margin 4-50 4.2.8 Compensated Local Power Density 4-55 4.2.9 Variable Overpower Trip Function (V0PT) 4-59 4.2.10- UPDATE Outputs 4-61 4.2.11 UPDATE Constants 4-63 4.3 POWER DISTRIBUTION ALGORITHM 4-69 4.3.1 POWER Input 4-69 4.3.2 Subgroup Deviation Penalty Factor 4-74 4.3.3 Planar Radial Peaking Factors and CEA 4-77 Shadowing Factors 4.3.4 Out-of-Sequence Conditions 4-92 4.3.5 Excore Signal Normalization 4-94 4.3.6 Power Distribution Synthesis 4-96 4.3.7 ASI-Dependent Parameters 4-109 4.3.8 Pseudo Hot Pin Power Distribution 4-111 4.3.9 Base Core Coolant Mass Flow Rate 4-113 4.3.10 POWER Output 4-113 4.3.11 POWER Constants 4-114 4.4 STATIC DNBR AND POWER DENSITY 4-119 4.4.1 STATIC Inputs 4-119 '

lh CPC Functional Design Requirements CEN-305 Revision 01 Page VI

, . . . ~ , . - . . , . . -

-y-, ._._%. -- , .~ .-_- ,,,--_.,,,g.,y,,_..-me,,.--. .,-,~%.m.,._i--.--.,.,_,.-,y,-..~,_,,,_--..--_.e.

TABLE OF CONTENTS (Cont'd.)

Section No. Title Page No.

4.4.2 Usgrade Power Distribution Data for Static 4-120 DNBR Calculation 4.4.3 Saturation Properties and Pressure Dependent 4-121

. Tenns 4

4.4.4 Calculation of Inlet Coolant Mass Flux 4-123 and Region-Dependent Parameters 4.4.5 Calculation of Linear Heat Distributions 4-124 4.4.6 Computation of Core / Hot-Assembly Fluid 4-126 Properties for Channels 1 and 2 4.4.7 Calculation of Buffer / Hot-Channel Fluid 4-133 Properties for Channels 3 and 4 4.4.8 Computation of Hot Channel Quality and Flow 4-137 Profiles 4.4.9 Hot Channel Heat Flux Distributions 4-138 g 4.4.10 Correction Factors For Non-Uniform Heating 4-140 V 4.4.11 Calculation of Static DNBR 4-142 4.4.12 Static Thermal Power 4-144 4.4.13 Definition of Volume Functions 4-147 4.4.14 Definition of Friction Factor Function 4-149 4.4.15 STATIC Outputs 4-155 4.4.16 STATIC Constants 4-156 4.5 TRIP SEQUENCE ALGORITHM 4-160 4.5.1 Input to The Trip Sequence Algorithm 4-160 4.5.2 DNBR/ Quality Trip 4-161 4.5.3 LPD Trip 4-162 4.5.4 Auxiliary Trips 4-163 4.5.5 CWP Signal 4-165 4.5.6 Trip Sequence Constants 4-165 O

CPC Functional Design Requirements CEN-305 Revision 01 Page VII

LIST OF TABLES O

V Table No. Page No.

Title 3-1 CPC Process Input Signals 3-2 3-2 CPC Output Signals 3-5 3-3 Program Execution Intervals and Input Sampling 3-9 Rates 3-4 Addressable Constants 3-12,13 3-5 Failed Sensor ids 3-14,15 3-6 Variables for CPC Channel Trip Snapshot 3-18,19,20 4-1 Correspondence of Index 1(=1, 12) to CEA 4-73 Groups 4-2 Core Spline Regions 4-107

? LIST OF FIGURES Figure No. Title Page No.

3-1 CPC I/O Configuration 3-3

(]

4-1 Schematic of Typical Primary System Showing 4-5 Approximate Location of Temperature Sensors 4-1A Power Dependent Uncertainty Bias Program 4-40 4-2 Cold Leg Temperature Difference Trip 4-49 Setpoint Bias vs. Power Level 4-3 Sample Planar Radial or Shadowing Factor 4-80 Lookup Table 4-4 Partition for Application of Addressable 4-81 Multipliers for Planar Radials (agj) and Rod Shadowing (a' j) Factors a-5 Partition for Appifcation of Density Slope 4-90 Table Indices (KDEN) at each Axial Node N 4-6 Normalized Core Inlet Moderator Densities 4-91 i

CPC Functional Design Requirements CEN-305 Revision 01 Page VIII

LIST OF APPENDICES' Appendix Title Page No.

A Parameters to be Displayed by CPC I/O Device Al-A6 B CPC Functional Block Diagram 81-82 4

LIST OF ACRONYMS AND DEFINITIONS Name Definition ANO-2 ARKANSAS NUCLEAR ONE - UNIT 2 A00 ANTICIPATED OPERATIONAL OCCURRENCE CEA CONTROL ELEMENT ASSEMBLY CEAC CONTROL ELEMENT ASSEMBLY CALCULATOR CEDM CONTROL ELEMENT DRIVE MECHANISM

() CMI CPC CEA MOTION INHIBIT CORE PROTECTION CALCULATOR CRT CATHODE RAY TUBE DISPLAY UNIT DNBR DEPARTURE FROM NUCLEATE BOILING RATIO LPD LOCAL POWER DENSITY j SONGS-2,3 SAN ON0FRE NUCLEAR GENERATING STATION - UNITS 2, 3 WSES-3 WATERFORD STEAM AND ELECTRIC STATION - UNIT 3 PVNGS-1,2,3 PALO VERDE NUCLEAR GENERATING STATION - UNITS 1, 2, 3 MAX (---) MAXIMUM VALUE OF THE FOLLOWING MIN (---) MINIMUM VALUE OF THE FOLLOWING RPC REACTOR PONER CUTBACK RSPT REED SWITCH POSITION TRANSMITTER SAFDL SPECIFIED ACCEPTABLE FUEL DESIGN LIMITS O

v CPC Functional Design Requirements CEN-305 Revision 01 Page IX

1.0 INTRODUCTION

1.1 PURPOSE The purpose of this docume'it is to provide a description of the latest approved Core Protection Calculator (CPC) functional design.

This document incorporates all the approved modifications made to CEN-147-(S) (Reference 1.4.1) as documented in References 1.4.2 thru 1.4.4 and as approved in References 1.4.5 thru 1.4.9. Revision 01 incorporates all the changes described (and approved) in Reference 1.4.10. This document is for NRC information only as it contains information that has already been reviewed and approved by the NRC Staff. This document will serve as the base reference for future modifications and is intended to be updated as future modifications are approved and implemented.

1.2 SCOPE O '" cac de='9" c "=4=t= er three Joe co po"e"ts: execotive software, application software, and hardware. This functional design requirements document provides the following:

1) A description of the reactor protection algorithms to be implemented as the application software and
2) The requirements on protection program interfaces, system

, interfaces, protection program timing, and system initialization.

b Items (1) and (2) establish functional requirements affecting the three major CPC components.

The Functional Design Requirements described in this document when implemented with appropriate data base and addressable constants meet the design bases for CPC given in Section 2.

CPC Functional Design Requirements CEN-305 Revision 01 Page 1-1

1.3 APPLICABILITY O ,

This document is a generic description of the CPC Functional Design Requirements, applicable to all C-E plants using the digital CPC system. It is intended to be initially implemented at SONGS-2 and 3 for cycle 3 and ANO-2 during cycle 5. Initial implementation or reference for WSES-3 and PVNGS-1, 2 and 3 is planned for cycle 2.

1.4 REQUIRED REFERENCES <

1.4.1 Functional Design Specification for a Core Protection Calculator, CEN-147(S)-P, January 1981.

1.4.2 CPC/CEAC Software Modifications for Waterford 3, CEN-197(C)-P, March 1982.

1.4.3 CPC/CEAC Software Modifications for System 80, LD-82-038, March 1982.

n U

1.4.4 CPC/CEAC Software Modification for San Onofre Nuclear Generating Station Units No. 2 and 3, CEN-281(S)-P, July 1984 1.4.5 Safety Evaluation Report related to operation of San Onofre Nuclear Generating Station, Unit 2 and 3, Docket Nos. 50-361 and 50-362, Southern California Edison Company, January 1982.

\

1.4.6 Safety Evaluation Report'Related to the Operation of Waterford Steam Electric Station Unit No. 3, Docket No. 50-382, Louisiana Power and Light Company, July 1981.

1.4.7 Safety Evaluation Peport Related to the Operation of Palo Verde Nuclear Generating Station, Units 1, 2 and 3, Docket Nos'.

STN-50-528, STN 50-529, and STN 50-530, Arizona Public Service Company, October 1984.

O CPC Functional Design Requirements CEN-305 Revision 01 Page 1-2

1.4.8 Safety Evaluation Related to Amendment No. 32 to NPF-10 and

() Amendment No. 21 to NPF-15 for San Onofre Nuclear Generating Station, Units 2 and 3, Docket Nos. 50-361 and 50-362, Southern California Edison Company, March 1985.

1.4.9 Safety Evaluation Related to Amendment No. 56 of Facility Operating License No. NPF-6, Arkansas Power & Light Company, Arkansas Nuclear One Unit 2. Docket No. 50-368, May 1985.

1.4.10 CPC/CEAC Software Modifications for the CPC Improvement Program, CEN-308-P-A, April 1986.

1 t

i 1

4 i

O CPC Functional Design Requirements CEN-305 Revision 01 Page 1-3 l

i

-- - , . . . . . . , _ . _ ,- , . _ . . .-,.._,,..._m_.... -. , - . . . .w__,_-,. __m____,_,___.,,. ,,,_m, v-_ . - __. - - . - -

/

2.0 CFC DESIGN BASIS l I_

The low DNBR and high local power density trips, (1) assure that the specified acceptable fuel design limits on departure from nucleate boiling and centerline fuel melting are not exceeded during l Anticipated Operational Occurrences (A00), and (2) assist the Engineered Safety Features System in limiting the consequences of certiin postulated accidants.

CPC shall meet additional design bases via auxiliary trip functions.

These auxiliary trip functions are:

Variable Overpower Trip (V0PT) which provides protection for sudd(n power increases.

Asynnetric Steam Generator Transient (ASGT) trip which provides prctection for instantaneous closure of the MSIV(s) to a single steam generator.

l (~')

Range trip on several parameters which assures the core conditions are within the analyzed operating space.

Pump Trip which precludes operation with less than two reactor coolant pumps running.

Hot Leg Saturation Trip which precludes operation with substantial voiding in the hot leg fluid.

Internal Processtr Failure Trip which provides trip signal '

whenever the CPC is in test, initialization, with memory unprotected, or when internal processor fault is detected.

These auxiliary trip functions can also aid in meeting the above i primary design bases.

O V

CPC Functional Design Requirements CEN-305 Revision 01 Page 2-1

2.1 SPECIFIED FUEL DESIGN LIMITS The fuel design limits used to define the subject trip system settings are:

a. The DNBR in the limiting coolant channel in the core shall not be less than the ratio where there is at least a 95%

probability, with 95% confidence, that DNB is avoided, l

b. The peak linear heat rate, in the limiting fuel pin in the core, shall not be greater than that value corresponding to the centerline fuel melting temperature.

2.2 ANTICIPATED OPERATIONAL OCCURRENCES (A00s)

Anticipated operational occurrences are defined in Appendix A of 10 CFR 50 (General Design Criteria for Nuclear Power Plants) as:

"...those conditions of normal operation which are expected to occur one or more times during the life of the nuclear power unit...".

l The anticipated operational occurrences that were used to determine the design requirements for the above trip functions are as follows:

A. Uncontrolled axial xenon oscillations.

9 B. Insertion or withdrawal of full-length or part-length CEA groups,II) including:

1. uncontrolled sequential withdrawal of CEA groups from j critical conditions, (1) A CEA group is any combination of one or more CEA subgroups which are operated and positioned as a unit.

O CPC Functional Design Requirements CEN-305 Revision 01 Page 2-2 1

1

2. out-of-sequence insertion or withdrawal of a single CEA O 3.

sre"a <ro crit'c ' co"d't'a" -

malpositioning of the part-length CEA groups,

4. excessive insertion of full length CEA groups.

C. Insertion or withdrawal of full-length CEA subgroups (2) including:

1. uncontrolled insertion or withdrawal of a single CEA I subgroup from critical conditions,
2. dropping of a single CEA subgroup,
3. static misalignment of CEA subgroups comprising a designated CEA group.

D. Insertion or withdrawal of a single full-length or part-length CEA(3) including:

1. uncontrolled insertion or withdrawal of a single CEA from critical conditions,
2. a single dropped full or part-length CEA,
3. a single CEA sticking, with the remainder of the CEAs in that group moving,
4. a statically misaligned CEA.

E. Excess heat removal due to secondary system malfunctions including:

1. excess feedwater flow,
2. excess steam flow caused by inadvertent opening of turbine bypass valves,
3. excess steam flow due to inadvertent opening of turbine control valves,
4. decrease in feedwater enthalpy.

(2) A CEA subgroup is any one set of four or five symmetrical CEAs.

(3) A CEA is a complement of poison rods connected to the same extension shaft and driven by the same drive mechanism.

CPC Functional Design Requirements CEN-305 Revision 01 Page 2-3

F. Change of forced reactor coolant flow including simultaneous

() loss of electrical power to all reactor coolant pumps at 100%

power.

G. Inadvertent depressurization of the reactor coolant system including actuation of full spray flow without proper performance of any pressurizer heaters.

H. Decrease in heat transfer capability between the secondary and reactor coolant systems including:

1. complete loss of main feedwater flow,
2. loss of external load.

I. Complete loss of AC power to the station auxiliaries.

J. Uncontrolled boron dilution.

t

() K. Asymmetric steam generator transients due to instantaneous closure of one MSIV.

2.3 POSTULATED ACCIDENTS The postulated accidents that are used to determine the design requirements for the subject trips are as follows:

a. Reactor coolant pump shaft seizure,
b. Steam generator tube rupture.

The CPC's are designed to provide a reactor trip when required for the above anticipated operational occurrences and postulated accidents when initi.ted from a power level greater than the CPC operating bypass power setpoint.

CPC Functional Design Requirements CEN-305 Revision 01 Page 2-4

2.4 ADDITIONAL BASES FOR TRIP SETPOINTS The subject trip systems in conjunction with the remaining Reactor Protective Systems (RPS) must be capable of providing protection for the design basis events given in Section 2.2, provided that at the initiation of these occurrences the NL. clear Steam Supply System (NSSS), its systems, components and parameters are maintained within operating limits and limiting conditions for operation (OL and LCO).

2.4.1 Relationship Between Monitoring and Protection Systems The designs of the monitoring and protective systems are integrated with the plant technical specifications (in which operating limits and limiting conditions for operation are specified) to assure that all safety requirements are satisfied. The plant monitoring systems, protection systems and technical specifications thus complement each other. Protection systems provide automatic action to place the plant in a safe condition should an abnormal event occur. The technical specifications set forth the allowable regions and modes of operation on plant systems, components and parameters.

The monitoring systems (meters, displays, and systems such as COLSS) assist the operating personnel in enforcing the technical specification requirements. Making use of the monitoring systems, protection system and technical specifications in the manner described above will assure that if, (1) the operating personnel maintain all protective systems settings at or within allowable values, (2) the operating personnel maintain actual plant conditions within the appropriate limiting conditions for operation, and (3) equipment other than *that causing an abnormal event or degraded by such an event operates as designed, then all anticipated operational occurrences or postulated accidents will result in acceptable consequences.

O CPC Functional Design Requirements CEN-305 Revision 01 Page 2-5

i 2 4.2 CPC Timing

- muumas i

O l

O CPC Functional Design Requirements CEN-305 Revision 01 Page 2-6

l l

q 3.0 SYSTEM REQUIREMENTS b

The following sections describe the system elements required for j performance of the CPC protection function. Section 3.1 describes the input and output signals that must be provided to the CPC protection programs. The structure and interaction of the CPC protection algorithms is described in Sections 3.2 through 3.4.

These sections provide information regarding the structure of the protection software, execution frequency of each protection program, sampling rates for input parameters, and communication among protection programs. Section 3.5 describes the necessary provisions for operator interaction with the CPC System. The requirements for initialization of the CPC algorithms are specified in Section 3.6. Interlocks and permissives required for the system are described in Section 3.7.

3.1 INPUTS AND OUTPUTS O Ta8ie 3-t iists the CPC Process input sisneis for eech che#nei.

Figure 3-1 is a system diagram that shows the allocation of input signals to each channel. Each CPC channel is required to have appropriate signal processing to provide four digital words accessible to the FLOW program (refer to Section 4.1). Each digital word must represent a value that is inversely proportional to the speed of one of the four reactor coolant pumps.

The temperature, pressure, excore detector, and CEA position inputs shall be analog signals proportional to the value of the respective measured process variable. The accuracy requirements in Table 3-1 establish the maximum allowable uncertainty introduced by the conversion of input signals to internal binary format. The accuracy requirements given in Table 3-1 are based on the total uncertainties attributable to the following:

O CPC Functional Design Requirements CEN-305 Revision 01 Page 3-1

Table 3-1 CPC Process Inout Sianals )

f~)s (s-Number Represen-per CPC tative Signal Accuracy Signal Channel Descriotion Range Type Required Reactor Coolant 4 Reactor coolant pump Pump Speed shaft speed Cold Leg 2 Temperature in 465*F analog :1.0*F Temperature primary coolant cold -615"F legs, 1 of tha 2 for each steam generator Hot Leg 2 Temperature in 525 F analog 21.0*F Temperature primary coolant hot -675*F

. legs 1 and 2 Pressure .1 Pressurizer pressure 1500-2500 analog :6.00 psia psia Ex-Core Neutron 3 Excore neutron 0-200% analog 20.5%

Flux detector signals f-'g Deviation 2 CEA deviation

\s_/ Penalty Factor penalty factor from - -

CEACs CEA Position 23 Target CEA position 0-100% analog withdrawal _ ,,

O CPC Functional Design Requirements CEft-305 Revision 01 Page 3-2

O P

=

5 a.

5 u-EB v

=

2 s

M E

5

' Ov t -

M v

A S

a.

t i

T en u

o S

u.

i

)

O CPC Functional Design Requirements CEN-305 Revision 01 Page 3-3

p 1) loading effects V 2) reference voltage supply regulation

3) electrical noise
4) linearity
5) A/D converter power supply sensitivity
6) quantization.

A digital word shall be received from each of two CEA calculators.

Each digital word shall contain CEA deviation penalty factors for the DNBR and LPD calculations. Application of the deviation penalty factors is described in Sections 4.2.4 and 4.2.4.3.

The output signals for each CPC channel are listed in Table 3-2.

The two trip outputs are required to be input to the Plant Protection System for use as ONBR and LPD trip signals. The CEA Withdrawal Prohibit (CWP) signals within the Plant Protection system shall be initiated by the Reactor Power Cutback flag or the DNBR pretrip or the LPD pretrip or a CEA misoperation condition (from CEAC or d- from POWER program). All six contact outputs must actuate operator alarms. The analog outputs for DNBR margin, LPD margin, and neutron flux power are required to drive analog meters that are monitored by the operator. The analog output for core coolant mass flow rate is required for comparison of CPC calculated flow to measured flow during startup testing.

In addition to the input and output capabilities discussed above, a device is required to allow the operator to modify a limited set of constant parameters and to interrogate a broad set of parameters within the software. The operator interface is described in more detail in Section 3.5.

O CPC Functional Design Requirements CEN-305 Revision 01 Page 3-4

Table 3-2 Os CPC Output Signals Signal Type Range Low DNBR Trip Contact Output low DNBR Pretrip Contact Output High LPD Trip Contact Output High-LPD Pretrip Contact Output Sensor Failure Contact Output CEA Withdrawal Prohibit Contact Output DNBR Margin Analog LPD Margin Analog Calibrated Neutron Analog Flux Power Core Coolant Mass Analog Flow Rate l

O l CPC Functional Design Requirements CEN-305 Revision 01 Page 3-5

I 3.2 PROGRAM STRUCTURE b

The CPC design bases require that the system calculate conservative, but relatively accurate, values of DNBR and peak linear heat rate.

However the algorithms required to achieve sufficiently detailed calculations cannot be executed rapidly enough to provide protection for those design basis events with the most rapid approach to the specified acceptable fuel design limits. In order to achieve a system time response sufficient to accommodate the limiting design basis events additional dynamic calculations of DNBR and peak linear heat rate are required. The dynamic calculations must provide conservative estimates of DNBR and peak linear heat rate based on changes in the process variables between successive detailed calculations of DNBR and peak linear heat rate. The detailed calculations of DNBR and peak linear heat rate must also be separated into different programs. The grouping of the detailed calculations must be such that the execution interval of each program reflects the time interval over which the dynamic C) adjustments to the parameters, calculated in that program, are valid.

The resultant protection software shall consist of four interde-pendent programs and one subroutine that is accessible by the first two programs:

1) Coolant Mass Flow Program (FLOW),
2) DNBR and Power Density Update Program (UPDATE),
3) Power Distribution Program (POWER),
4) Static DNBR and Power Density Program (STATIC),
5) Trip Sequence Subroutine (TRIPSEQ).

The FLOW program shall calculate the individual pump speeds, the number of pumps running, the primary coolant mass flow rate (absolute and scaled), and the flow adjusted DNBR for use in the CPC algorithms. In addition, the DNBR margin and flow are converted to analog form for meter display.

{

CPC Functional Design Requirements CEN-305 Revision 01 Page 3-6 l

1

The UPDATE program shall perform the following major computations:

1) Calibrated neutron flux power,
2) Total thermal power,
3) Core average heat flux,
4) Hot pin heat flux distribution,
5) DNBR and quality margin, updated for changes in input parameters,
6) Peak local power density,
7) Asymmetric Steam Generator Transient (ASGT) trip,
8) Variable Overpower Trip (V0PT)

The major computations executed in POWER shall include the following:

1) Core average axial power distribution,
2) Pseudo hot pin axial power distribution,
3) Three dimensional power peak, O 4) Average of the hot channel power distribution.

STATIC shall compute static DNBR, static hot channel quality, and average enthalpy at the core inlet and outlet.

In TRIPSEQ, minimum DNBR, quality margin, and peak local power density shall be compared to their respective pretrip and trip setpoints. Whenever a setpoint is violated, the appropriate contact output shall be actuated. In addition, trips shall be initiated for core conditions outside the analyzed operating space,less than two reactor coolant pumps running, hot leg saturation, V0PT, ASGT or internal processor faults including:

1) Fixed point divide fault (division by zero or quotient overflow),
2) Floating point arithmetic fault (overflow or underflow),
3) Memory parity error, O.

CPC Functional Design Requirements CEN-305 Revision 01 Page 3-7

g 4) Illegal machine instruction, V 5) Failure to meet the timing requirements of Section 3.3.

3.3 PROGRAN TIMING AND INPUT SAMPLING RATES Execution of the four programs described in Section 3.2 shall be scheduled on a priority basis. The execution frequency of each protection program shall be fixed, based on the requirad CPC time response. In addition, the more frequently executed programs shall be assigned higher priority. The required execution frequencies of the four protection programs are specified in Table 3-3. The Trip Sequence shall be called by FLOW and UPDATE.

Sampling of the input signals shall be initiated within the protection programs. Therefore the sampling rate for a given input is the same as the execution frequency of the program that reads that input parameter.

3.4 PROGRAM INTERFACES Communication among the protection programs must be controlled to ensure that the output of a program is based on a consistent set of inputs. Therefore it is necessary to ensure that the input to a program is not changed until after execution of that program is complete. One method of controlling comunication between programs is to assign exclusive input and output buffers to each program.

The output of a program is made available to other programs through its output buffer. The output buffer is updated only when execution of the program is complete. The executive must be prohibited from inter'rupting a protection program while it is reading input from the output buffer of another protection program.

In addition, no protection program may be interrupted while it is transferring data to its output buffer or while the Trip Sequence Subroutine is being executed.

CPC Functional Design Requirements CEN-305 Revision 01 Page 3-8

Table 3-3 Program Executice Intervals anc incut Samplino Rates Execution / Sampling Progr3m Inputs Sampled Interval

  • Remarks O

CPC Functional Design Requirements CEN-305 Revision 01 Page 3-9

3.5 OPERATOR INTERFACE The reactor operator shall be informed of the status of a CPC channel by three mechanisms:

1) The system generates alarms to alert the operator to abncrmal events,
2) The operator interrogates the system to determine the current value of a particular parameter,
3) The operator reads one of three meters driven by the CPC analog output.

3.5.1 Alarms and Annunciators Each channel must generate unique alarms for each of the fellowing events:

1) Failure of a sensor,
2) Failure of the CPC channel,

(*

\

3) Failure of a CEAC.

Indication of an alarm shall be visual. The executive should prohibit removal of the alarm indication unless the condition causing the alarm no longer exists. The alarm signals also must actuate the plant annunciator.

3.5.2 Displays and Indicators Each channel must have an input / output device that allows interro-gation by the operator. The device must enable the operator to initiate display of the significant parameters stored by the CPC programs, including system inputs, addressable constants and selected calculated variables. All parameters to be displayed are listed in Appendix A.

CPC Functional Design Requirements CEN-305 Revision 01 Page 3-10 ,

The three analog meters shal! provide the operator with a continuous indicatier of the DPER margin, LPD margir, arc calibrated neutron flux power calculated by each CPC channel. The three meters shall be calibrated in engineering units over the following ranges:

1) DNBR Margin 10,
2) LPD Margin 25 kw/ft,
3) calibrated neutron flux power 200%.

3.5.3 Operator Input The operator must have the capability to. change a limited set of program constants, called addressable constants, via the input / output device. Modification of addressable constants shall be permitted only when a manual interlock has been activated. In addition, means shall be provided to prevent modification of any constants not designated " addressable". The required addressable constants are listed in Table 3-4 b

A means shall be provided for automated reentry of addressable constants, via floppy disc, whose values are not expected to change or whose values are expected to change very infrequently during the fuel cycle. Those constants are designated as Type II in Table 3-4 All other addressable constants are designated as Type I.

3.5.4 Failed Sensor Stack V CPC Functional Design Requirements CEN-305 Revision 01 Page 3-11

l Table 3-4 O Addressable Constants Symbol Definition __

Range O

l

?

O CPC Functional Design Requirements CEft-305 Revision 01 Page 3-12

Table 3 4 (Cont'd.)

Addrassable Constants Symbol Definition Rance i

'O 1

i l

O l CPC Functional Design Requirements CEN-305 Revision 01 Page 3-13 l

l l . . . - . _

Table 3-5 O Failed Sensor ids Sensor Sensor Sensor Sensor ID Name ID Name l

O O CPC Functional Design Requirements CEN-305 Revision 01 Page 3-14

Table 3-5 (Cont'd.)

O Failed Sensor ids NOTES:

O 1

O CPC Functional Design Requirements CEti-305 Revision 01 Page 3-15

e w - s- x=- u- - -s-- - . ,m,m. c ,n A 2 a s I

iO CPC Functional Design Requirements CEN-305 Revision 01 Page 3-16 y ym,.- -- ,, -,-w,._--... - , w - - - - - - . .- ..._... ,.-,.- -..- --

l l

3.5.5 Tricoed CPC Channel Snaoshot V

When a trip signal is generated in a CPC chanrel, a snapshot of CPC j variables required for display shall be transmitted to a buf#er '

which shall be accessible by using a teletype.

Changing the constant from 1 to O could be used to clear the buffer.

3.6 INITIALIZATION The CPC System must be capable of initializ.ing to steady state operation for any allowable plant operating condition.

Initialization must be complete within five (5) minutes of initial CPC System startup or of restart following a channel failure or in-test condition. Until initialization of a chanrel is complete, all trip outputs must be set in the tripped state.

Initialization shall be considered to be complete when the following criteria are satisfied:

(

()\ CPC Functiona,1 Design Requirements CEN-305 Revision 01 Page 3-17 l

Table 2-6 Variables #or CPC Channel Trio Snaoshnt S_vmbol Definition Units 9

O enimumunu I

r CPC Functional Design Requirements CEN-305 Revision 01 Page 3-18 l

l E_ _ _ . _ _ _ _ _ _ - . . _ _ _ _ - _ _ _ _ . _ _ _ _ . . _ . . _ . _ _ _ _ _ , _ _ . _ ___ ._ _ _ ._.___ . _ __ _ _. _ _. _

Table 3-6 (Cont'd.)

O '/ariables 'cr CoC Channel Trio Snaoshot Symbol Definition Units 1

O CPC Functional Design Requirements Cell-305 Revision 01 Page 3-19

1 1

Table 3-6 (Cont'd.)

O .

Variables for CPC Channel Trio Snaeshot Symbol Definition Units i

W O

CPC Functional Design Requirements Cell-305 Revision 01 Page 3-20

O 3.7 INTERLOCKS AND PERMISSIVES A means is required to permit bypassing the trip and pretrip contact outputs for a CPC channel when reactor power indicated b.v the corresponding Plant Protection System (PPS) flux power signal is less than 10-4 percent. In addition, means shall be provided to adjust the bypass setpoint up to at least 1*. power to allow bypass of all CPC channels during low power physics testing. The bypass shall be implemented such that it must be manually initiated at the input / output device'for each CPC channel. A means, such as a key switch, must be provided to prevent initiation of the bypass by unauthorized personnel. The bypass must be automatically removed from each CPC channel when the respective PPS flux power signal indicates that reactor power is greater than the bypass setpoint.

CPC Functional Design Requirements CEN-305 Revision 01 Page 3-21

, w- , - ,

---,e - -

r , - -

-e.---4 ,, ,,

4.0 ALGORITHM CESCRIPTICN This section includes detailed descriptien of the functions tc be performed by the CPC protection algorithms. For each of the five programs described below, the sequence of computations required is described in sufficient detail to allow the software designer to specify the coding of the protection algorithms. To further assist the software designer, a functional block diagram, showing the information flow among and within the CPC algorithms, is included in Appendix B.

4.1 PRIMARY COOLANT MASS FL'0W 4.1.1 Alcorithm Input The FLOW algorithm requires the follo):ing process parameters frcm other CPC programs:

O O

O

(_/ CPC Functional Design Requirements CEN-305 Revision 01 Page 4-1

O l 1

i i

O l

O CPC Functional Design Requ. ements CEN-305 Revision 01 Page 4-2

l O

~

O

{

4.1.2 Specific Volumes Specific volumes for the primary coolant are computed from a curve l fit of specific volume versus temperature and pressure, l

)

I l

l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-3

l l

l O

I l

.O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-4 l

FIGl'PE 4-1 Schematic of Typical Prirary System Shewing Approximate Location of Temperature Senscrs IB, COLD LEG _ 2A COLD LEG n -

X SGI laHOT LEG 2 HOT LgG SG2 s 4 CORE M a l X = RTD LOCATIONS A Y IfCOLD LEG 13 COLO' LEG O

i CPC Functional Design Requirements CEN-305 Revision 01 Page 4-5

-+

  • e- -

ep -yep. -e-_-sy --- ----se- w -w -+ , e-r-w,e, -----=----va ---w- rw-

l O l l

4.1.3 Core Flow Calculation O

l l

1 f

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-6

,n.- , - - - - - -- - -- . . , , , - - , - - --,n .-,,.

4 O

O 4.1.4 DNBR Calculation 1

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-7

O 4.1.5 FLOW Outout O The rono 4#9 a#e#t4t4es ere tre"srerred to the "tnet "#<<er or the Primary Coolant Mass Flow Algorithm for use by other programs:

Variable Name Description Destination O

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-8

ICE-522(85A11)/jg 51 4.1.6 FLOW Constants O The constants required for the data base of the Primary Coclant Mass Flow Program are sumarized below.

O

)

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-9 1

v- - - -, m . , . ~ ~ . . , ,-- . - - ._ ----,-,,.-,-,n.,_ _. . - . , - . -

4.2 Otl8R AND POWER CENSITY UFCATE O

4 I

i O

4 8

f CPC Functional Design Requirements CElf-305 Revf sf on 01 Page 4-10 i .

4.2.1 Inout to UPDATE The UPDATE program recuires the followirg prccess parameters # rem other CPC programs:

O 1

i l

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-11

O v

O Each CPC channel monitors two cold leg temperature signals (from diagonally opposite cold legs), two hot leg temperature signals, one primary pressure signal, three excore neutron flux detectors and the two CEAC link inputs. The raw signals are first checked for nge

_ and then scaled appropriately. ,

O CPC Functional Design Requirements CEft-305 Revision 01 Page 4-12

t i

f

(

l t

J f

l I

i

.1 I

i i

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-13 i

O O

1 e

l l

j' CPC Functional Design Requirements CEft-305 Revision 01 Page 4 14

/

l

. . . . . - . - , . _ . . . - . _ = - , , , . _ _ , _ . - _ . - . - , - _ - , - _ - _ _ . _ _ , - , _ _ _ _ _ - - - . . , - _ _ _ _ _ . _ _ _ _ _ , . , _ , - - - . . . , . , - . . . _ - , _ , . - - , _ . . - _ _ -

4 1

d l

d i

I 8 .

4 I

1 1

f I

l l

l l

I i

i l

1 CPC Functional Design Requirements CEN-305 Revision 01 Page 4-15 1

k

. O 4

1 O

I 1

i

O CPC Functional Design Requirements CEff-305 Revision 01 Page 4-16

,_,.--._.._.._-._,..,_..,,..-..._,_.-,,_,-_....,-.,_m, - - , . _ . . - . . . . . . . _ . _ - . . . _ _ _ - _ ,

.. . . = _ . _ .- - - -- . _ _ _ . __ _. _.

O i

t i

O t

i I

i 1

e i

I CPC Functional Design Requirements Cell-305 Revision 01 Page 4-17 4

i I

i

. ~ . . - - - __ _ _ . . _ _ . - _ . - _ _ _ , - _ . _ . . . . - . _ _ _ _ _ _ . , . , _ _ _ _ _ _ _ - _ _ ___ __ ,_,,_ . _

. .a._. .. m , w-- a .-4 + A ~

O 1

4 O

1 I

4 1

CPC Functional Design Requirements Ceil-305 Revision 01 Page 4-18 r

.,. _ _ ___.,_ . _ ,-m.,,._,, , ,,,_, _ . __. . , _ .._,,_,y. , - - . _ _ _ _ _ _ _ _ . . - _ . . _

4.2.2 Temnerature Ccmoensation

.t

] '

I i

i J

1 l \

i 1

i l

i _

CPC Functional Design Requirements CEti-305 Revision 01 Page 4-19 I

--- - . . , ~ . , , . - . , , _ _ . - - _ - - - - _ _ . _ _ _ _ , . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ - - . . . _ _ - . . . , _ _ _ , - , . _ , _ _ _ _ _ _ . . . _ . _ . - _ . . . _ _ _ . . _ . - - _ . . _ _ - _ _ _ _ - . . . _ . - ~ .

O 1

O l

i CPC Functional Design Requirements CEN-305 Revision 01 Page 4-20

~ ~ - -,-,- _ . _.__ ,._ _ _,_,_, _ _

Swp- - - ,_

.. - - . _. . _. - - . - . = . _ .

i 4

I i

I 4.2.3 Neutron Flux Power t

i 4

i t

4 I

4.+

4 i

l l.

I CPC Functional Design Requirements CEN-305 Revision 01 Page 4-21 a

4 4

1

^ " ' ' ~ " " ~ " ' ' " ~ r-- -

O 4

4.2.4 CEAC Penalty Factors

, The DNBR and LPD penalty factors for control element assembly (CEA) deviation are transmitted to each CPC from two Control Element Assembly Calculators (CEAC). (See Section 4.2.1.) The values from the two CEACs are compared and conservative values are chosen based upon the operational state of the CEACs. If an alarm situation exists, a visual indication is produced at the CPC inout/ output device.

1 O I

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-22

1t 4 a ..-4 S m .s 4 h---- -* , _r.L _

.h_A A A _i- ..J_r - . -

b t

l 4.2.4.1 Determination of RPC Status l LO -

4 i

i S

f 1

1 i

l

?,

1

D i

i i

O CPC Functional Design Requirements CE!l-305 Revision 01 Page 4-23 1

O O

i 1

l lO CPC Functional Design Requirements Cell-305 Revision 01 Page 4-24 i

O  !

l 4.2.4.2 CEAC Failure Check '

l l

l I

O CPC Functional Design Requirements CErl-205 Revision 01 Page 4-25 l

l

a O ,

I 4.2.4.3 Penalty Factor Calculatien for Two Operable CEACs i

l l

O CTC Functional Design Requirements CEN-305 Revision 01 Page 4-26

O 4

Y l

l 4

f e - r O

i O CPC Functional Design Requirements CEft-305 Revision 01 Page 4-27

O 6

0 O

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-28

1 O .

I j

O l

I O

CPC Functional Design Requirements CE!!-305 Revision 01 Page 4-29 I

l

I '

O

-l 4.2.4.4 Penalty Factor Calculation for One or Two Inoperable CEACs.

i l

4 f

O cac '#"ct4e"e' oes'9" aea#4reme#ts cea-3os aev4s4e# oi a 9e 4-3o

. - - - - - _ _ _ . . - _ - - - - - - , - - - . - - - - - . - - - - - . - - - - - - - = - - - - - --- -- - - - - - - - - - - - - - - - - - - - ^ -

I l

O O

1 a

1 1

l CPC Functional Design Requirements CEH-305 Revision 01 Page 4-31 l

2 4 , + A.a4_

A _- _.,+__._.-.3 s. - .

i a

O 1

1 I

.)

b

'~W, o

.i e

i O cac r##ct4eeei oes4se aeseiremeets ceu.30s ae 4,4 , oi ,,,, 4 3, l

t O

1 4

i 1

O l

s

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-33

i

O, i

t i

O i .

l 1

1 .

s 1 J

i i

i 4

1 i

4 CPC Functional Design Requirements CEti-305 Revision 01 Page 4-34 i

i

, -.. - - _ - . __ - . . _ . , - = - - -

l l

4 O 1 4.2.4.5 Total Penalty Factor Calculation 1

O i

t 1

, CPC Functional Design Requirements Cell-305 Revision 01 Page 4-35 O

<.--.n- , - -----e,..., - p-,y~n--- . - ,- , . ,,-w.,--.,- - - - ,-c_.-~.,----- - - , - -, r-- --- ,- --,e-, , ,- ,,wv_,,mm ,- , m an, ,_~e-,-e- ~--e,---

l O

4.2.5 Heat Flux Comoensation O -

O CPC Functional Design Requirements CEff-305 Revision 01 Page 4-36

.---n- - ,

_ _ _ . _ - . - _ . . .. ._. . . _ - - . ._ =- --- - . .- - . . -

i l

I O

1 2

E f

.f 4

i i

j k

i i

1' i

I I

I i

1 l

l I

i i l l CPC Functional Design Requirements CEN-305 ,

Pevision 01 Page 4-37 I

s i

l 4

i

- - ~ . . . - .-. _ _ _ . - - _ _ . . _ . _ . . - _ _ - - . _ _ .

_ . _ . .- - - _ _ . - _ _ . . . - ._ =___ -.

.i i

W i

4 I

i i .

4 i

i I

i i

l l O i

(

i i

i i

I CPC Functional Design Requirements CE!i-305 Revision 01 Page 4-38 i

4

t -

1 i

i i

i i i I

i t

i 5 i 1

3 4

i .

r

)

1 i

i j

i i

~

l i

i i

i j CPC Functional Design Requirements Cell-335 Revision 01 Page 4-39 l

1 l

\

f

FIGURE 4-IA Power l'ecerdent Uncertainty Bias Program O

I I

a

!O k

4 l

l i

l I

l i

O cac ae ct4o i oe 4 9 aeae4re eet- cen-aos aevis<o" oi aese 4 4o 1

j 1

i

+

i i

I I

i i.

J P

i i

.i I

I l

1 I i l l

r l

I 1

i CPC Functional Design Requirements Cell-305 Revision 01 Page 4-41 l

1 l

1 i

, - - . - ,-----t-,. - - ,. - , , , - . - ~ ~ . - - - _ _ , _ . . , , -y-. -. ,,---c,

i O

O O CPC Functional Design Requirements CEff-305 Revision 01 Page 4 42

l i l

\

l i

2 O

O I i

O O

CPC Functional Design Requirements CEN-305 Revision 01 page 4 43

4 a

1 i

O i

i i

i I

i i

1 1 *

\

lO 8

i 1

i l

I l

l I

I j

!O j CPC Functional Design Requirements Ceil-305 Revision 01 Page 4 44 t

I .

t l

i i

f i

l l

l i

i i

I i

i i

1

)

1 1 l 1

l 3

l l

l

6
l 1

i I

! l l .

i i

O i

i i

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-45 i

l

. - - - - . _ - - - , - - _ _ ~ ~

l 4.2.6 Asymmetric Steam Generator Transient Tric Function O

L l

i i

l i

i i

lO i

}

1 O CPC Functional Design Requirements CEll-305 Revision 01 Page 4-46 u

O O

I O CPC Functional Design Requirements CEtl-305 Revision 01 Page 4.47

. , _ _ _ . - -. .. - .__- =. _ _ - - _ - . - -. .. .. ___.- .

i s

i 4

t i

2 1

1 J

i 1

1 l

a f

1 1 I

i i

f 1

1 1

I i

a n

1 i

i l

i 1

i

CPC Functional Design Requirements CEft-305 Revision 01 Page 4-48 i

i i

.l

FtGURE 4-2 .

Cold Leg Temperature O ._ -

)

enemmme ,

)

O i

i l

i O )

i CPC Functional Design Requirements CEff-305 Revision 01 Page 4-49 I

' ~ ~ * - ' - ' - - + - , , , - - , , _ _ _ , , _ _ _ , _ _ , _ _

~'*'"'"""MNm--m-- _ _ , _

1 4.2.7 UDdate of DNPD and Ouality Marcin O

i

)

4

()

l 0 -

I l

l 1

.O CPC Functional Desi9n Requirements cErl-30s Revision 01 page 4-so 0

J u.aw.ia L .

-4 mi 4 - e.a. _ a__._.,- .% ; m. .. m. __ma- m . _ _ .

4 1

i l

i i

1 i

)

f f

i 4

1 i

s 5

i i

l CPC Functional Design Recuirements CEN-305 Revision 01 Page 4-51 1

i L

_ _ _ , , . , _ . , _ _ _ . _ .a4mr.- L m w. _e _a, n ._ - -

l

O

)

I l

O 1

i i

i I

O cac reect4eeei oes4 9e aeae4remeets cen-aos aev4s4oe oi aese 4-s2 i

j m A.- - .m___

O T

I l

J e

O l

l 4

1 l

.l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-53 1

1

}

P L.  ;

y n w

?

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-54 ta s

V et s.

k

O O

O O

4.2.8 Comoensated Local Power Density The value of core average power used to compute local power density is biased to accommodate uncertainties and limited to a minimum value.

O cec re"c 4emei oe=49 " aea#4re e"ts cen-30s aev4 4 " oi eese 4-ss G --

...-_ _ _ .- - _. -, . . = . .

l l

i O

O I

I CPC Functional Design Requirements Celi-305 Revision 01 Page 4-56 i

O I

O CPC Functional Design Recuirements CEN-305 .

Revision 01 Page 4-57 i

I

- - - - -" -,m. _ s O

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-58

4.2.9 Variable Overpower Trio Function (V0PTi O

a lO l

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-59

W-"W - - - " '"- ~

' - m v-- - -rvyrwer--P rT-- T- ~ '"" - c' --# "

O f

O t

t

~

t O CPC Functional Design Requirements CEN-305 gevision 01 Page 4-60

O I I

l i

4.2.10 UPDATE Outouts The following quantities are transferred to the output buffer of the ONBR and Power Density update program for use by other programs:

Variable Name Description Destination l

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-61

l l

l O

O i

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-62 i

- - - - - - - - - - ___ __ . _ _ _ _ _ "' - - - - ~ . , . . , _ _ _ _

O 4.2.11 UPDATE Constants The constants required for the DNBR and Power Density Update are listed below.

O 1

I l

O I CPC Functional Design Requirements CEN-305 Revision 01 Page 4-63 i .

1 l

l I

l O

j i

~

O O

O 4

1 O CPC Functional Design Requirements CEft-305 Revision 01 Page 4-64 l

O l

O O

l i

i O

1 l

O CPC Functional Design Requirements CE!!-305 Page 4-65 Revision 01

O 1

1 O

t O

i i

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-66

---*"r==* * ' ^ -

-r - r -

m =m - -

w - - - -

l l

O O

1 O

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-67

- - - - - - - - . ~ . , . . . _ _

O l

l O

1.

l i

i O CPC Functional Design Requirements Cell-305 Revision 01 Page 4-68

4.3 POWER DISTRIBUTION ALGORITPM O The purpose of the power distribution is to ccmoute the ccre average axial power distribution, pseudo hat pin power distribution, and the three dimensional power peak from the excore detector signals and target CEA positions. [~

, }"'""""

r 4.3.1 POWER Inout The power distribution algorithm requires the folicw ng process i

parameter inputs from other CPC programs:

()

t il O

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-69

  • +.--mm -

e - - - --.s ..-e O

4 O -

I i

t i

4 i

O cac reect4eeei oes4,e aese4re eets ceu-30s aevis4ce o, e.,e 4 70 .

O l

l i

O f,

i J

1 l

l l O CPC Functional Design Reauf rements CEti-305 Revision 01 page 4 71

! _ _ - _ '-'-wwre--%.y . . _

1 l

1 O

\

O J

l l

l l

l I

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-72 ,

I l

l

ICE-522(85A11)/jg 115 TABLE 4-1 O Correspondence of Index f(=1,12) to CEA Groups

(

h O

4 3

4 l

e k

l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-73 E

l 4.3.2 SubgrouD Deviation Penalty Factor 4

O l

O i

l i

.l i

i O CPC Functional Design Requirements Ceil-305 Revision 01 Page 4-74

i l

O 1

e 9

1 O

f i

l 1

1 O cec re ct4eee, oes4 9 aea 4re eets cen-sos ae 4 4e# oi eese 4-7s

.l I

-- . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ *' ' weme-e- , - - _ _

. . ,k> A -- .a. - w - , - -- - - - - - _ - , . _ __

a ,,n _m--. -- -- _ . _

O

]

4 O

i

}

, CPC Functional Design Requirements CEN-305 Rufsion 01 Page 4-76

O O

4.3.3 Planar Radial Peaking Factors and CEA Shadowing Factors O CPC Functional Design Requirements CEft-305 Revision 01 Page 4-77

I l

I O

.i 4

O i

l O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-78

- _ - . - - . - _ . , . . . _ _ . - - - . . - - - - - - . . _ - . . , - - . - - - - . , - . ~ _

_m ..-.4 -m 4A. __ A e - h-- -- - - _ - .-_ 4..-. - a

.m. m _

O .

1 4

1 i

I O

e l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-79

1. . . _ _ - - - . - - - _ _ - . _ - _ . - - - - - _ _ . - - - - - . ----- - - - - - - --- -.

'i rs FIGURE 4-3 v

n Sample Planar Radial or Shadowing Factor Lookup Table for 1 PLCEA Group C

3 f)

O 3

a o

m.

l

, :o 5

) O a

i O >

1 i 3 *  ;.

r+

  • s

'! < M n

v; i rn (

Z e

,i . W o

U1 t

,s m I

Y I

O 3

b i

t T l

Os LO a

8 I

\

co O

i

FIGUDE 4-4 O _

1 l

l lO CPC Functional Design Requirements CEN-305 Revision 01 Page 4-81 i.

n y _,___m. ,, m,--w. .-,---.g w- - - -- , ---r-m- --e -

c - - --- - - -------- ------- - - - - - - - '

1 e >

/v G- ,#'

lA ,

4

/> < < /

.x

-: O l j

'*.. l

~ -

.. /: .

I

% v We+

a

,s t*

h 4.

. ~ - -

  1. T  %

s o- <

s f 5 A s, . .

.# 4d

-+ . .-%. -

4-V

-> N

/

I 69 1

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-82 d'

l

y_ ,----s 4 +- e a mn ._a. - a-. - --s -- ---

.O 4

O t

l i

)

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-83

n - _ _ _ _ - - - - - , - - - -

O

!O l

l I

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-84 l

+

4 0

4

(

1 1

l

. O -

4 e

f 4

1 i  !

v CPC Functional Design Requirements CEN-305 Revision 01 Page d-85

e- - - - - L e + .- - - , , - - .L O o I

1 O

o I

O cac reect4ee i oes49 aea 4re emts ceri-aos aev4 4e# oi e se 4-88

- , - - - - , , , , , , , - - - - - , e ,,7- - - - - . - - - -n------- ,, , , - - , ,, , - - , ,---,-- - , ._----_,- - ~ e- ,-,n n-e,,,a --,, -c-w--w.,-------s-

a -aa a m - - m & nm-4 a -

m - .._ , w a, -- --*-a -,-.sa N

'O 4

o .

i

!O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-87 i

, ..--,.-.._,n ,,-.-,--. . . .- - - , . . . . - - - , , . - . , _ , . - _ . . . - , . , , , . _ , _ , . , n,____. -----.,-,. ,- , , - , -,,,_ m._,,,,, ,nm a ev---

-4

, a-. . e era m.

O 4

!O I

l

?

I CPC Functional Design Requirements CEfi-305 Revision 01 Page 4-88

O O

O cec reect4eeei oes4,e aeoe4remeets cer 30s .. 4,4 ce oi ,,,e .e,

4 FIGURE 4-5 O - _

d 4

4 O

1 i

i i

1 1 ,

f O CPC Functional Design Requirements Cell-305 Revision 01 Page 4-90 i

.- ..- - _ _ __ - .=. . .-

i FIGURE 4-6

O f I i

i t O-1 i6 4

i O cec reect4emei oes4ee ae, 4,emeet,cEu.30s ae,,,,em oi ,,,e ,.,1

l l

l l

'.. l 4.3.4 Out-of-Seouence Conditions l i

~

O 1 I

i 4

i s

b O

l l

l CPC Fun *.ional Design Requirements CEti-305 Revision 01 Page 4-92

, _s s u--- A ,, ,_ a.s a. msh A. aa. -

n -a u- - - - -. _ -. - - . - - a -..

O  :

4 1

O I

I

, CPC Functional Design Requirements CEN-305 Revision 01 Page 4-93

a O

f 4

i 4.3.5 Excore Signal Normalitation 4

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4 94

O

(

O i

i i

i l

4 I

i I, CPC Functional Design Requirements CEN-305 Revision 01 Page 4-95 r

, . . - - _ - - , - _ , - - _ , , _ , ,,- --_,_n--------,, - . - - - - , .

O l l

d l g i

-()

4.3.6 Power Distribution Synthesis I

iO cac r##ctie ei oes4 9 aea 4remeets ceri-30s aevi,4ee oi ge,e 4-ee

i I

4 1

i 4

f 4

i

)

I t

3 1

i i

I t

i 4

1 I

J I

I i l l 4

4 1 I I

I i

j CPC Functional Design Recuirements CEN-305 Revision 01 Page 4-97 2

I

O i

i 3

O i

i

}

t l

f 4

lO CPC Functional Design Requirements CEN-305 Revision 01 Page 4-98 4

1

- . - - _ . . _ _ _ _ ~"**'-m. ,.. ,,

I i

i l

4 1

1 i

i 1O l

l i

i 1

l J

f I

O

' CPC Functional Desi 9n Requirements CEN-305 Revision 01 Page 4 99 1

i

.-- , - , - - , . . . . _ _ . _ - ~ . - - , , . . . . . . _ _ _ _ . _ _ _ _ . . , , . . -

-._ . _ , . _ _ ~ , . _

, O i

i a

't 4

i r

1 i I 4

t l

i i

O CPC Functional Design Requirements Cell-305 Revision 01 Page 4-100 I

i

, O i

O ,

i i

1 I

~ eumumum 1

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-101 i

1 l

_ _ , . _ , _ma ._,ia..__-s ___ *-2 ,.-_. _ _w .n2 AA AA_ a - --.-_ _ %. _ ,.----mi.,___um . _ m -

O ^

d l

O l

CPC Functional Design Requirements Cell-305 Revision 01 Page 4-102

' ~ " ~ ' a.s ,_

1

, O 4

i i

1 4

I 4

1 1

1 4

i O

i t

t l

l I

CPC Functional Design Requirements Cell-305 Revision 01 Page 4-103 i

4 l

l

~

1 0  ;

O

~

k O -

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-104

O o .

O CPC Functional Design Requirements Cell-305 Revision 01 Page 4-105

i f

i l

i I

i j

4 4

i a

4 l

1 I

1 i

i I

t 4

e l

i i

fl i

i

! CPC Functional Design Requirements CEN-305 Revision 01 Page 4-106 4

i f

- - - . -._--w.w-,-_------,.--,-~~-,._-..- , _ _ . . . . . . ,

i I

I I

TABLE 4-2 Core Solina Pegions Region Non-Zero Soline Function I

h

~

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-107

t l

1 1

. -~ . .

i i

i I

.i l

^

,4 i

.{~

, l 1

i 1

4 I

i

) o J

l 1

1 4,

t I

I i

i J

i 4

I i CPC Functional Design Requirements CEN-305 Revision 01 Page 4-108 i

..-.-----...-,--.--m _ , . , -

+. _y,-y-

O O

i I

O 4.3,7 Ast-Dependent Parameters 9

l l

CPC Functional Design Requirements CEU-305 Revision 01 Page 4-109  ;

I

O

~

l i

1 O.

L

.- i 1

> O CPC Functional Design Requirements Ceil-305 Revision 01 Page 4-110

O l

4.3.8 Pseudo Hot Pin Power Distribution The pseudo hot pin relative axial power distribution is calculated using the relative axial power distribution and the ad. justed planar radial peaking factors.

l O cac reectiona, Desien aeae4rements cen-30s Pe 4s4ee ai rese 4-111

_4%a se._ m *-_._a a . _ ,. m .__ a . -. 4 . _ _ _ - _ _ ,S O

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-112

O 4.3.9 Base Core Coolant Mass Flow Rate O

4.3.10 POWER Output The following values are transferred to the Power Distribution Program output buffer for use by other programs-l l

i l

l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-113

I Variable Mare Descr;tt'on Oestination i

4.3.11 POWER Constants The constants required .for the data base of the Power Distribution Program are listed below. Values of the constants CIC, and C2C' will be provided by the design implementation group. Values of the remaining constants will be provided by the functional design group.

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-114

.I n

O O

O cac ee"ct4e ei oesis" ae<#4re emts ce"-30s aev4 4e" oi eese 4-11s

,,,,.m_ __ __ , J - --- a ^ -"r "'~

O  :

1 l

10 s

l lO cac r##ct4emei oes49# aee#4re e=ts cen-sos ae<4s4e# oi eese 4-11e  !

L-_____ - - - - - - - - --


h a -h ,a -

O J

i O

l CPC Funct onal Design Requirements Cell-305 Revision 01 Page 4-117 I

t I

l l

- - sm- -- 2 a O

t 0

I CPC Functional Design Requirements CEff-305 Revisf on 01 Page 4-118

O v

4.4 STATIC DNBR AND POWER DENSITY The purpose of the Static DNBR and Power Density Program (" STATIC")

is to compute the static values of DNBR, hot channel quality,

(') primar'y thermal power and maximum hot leg temperature. In addition, this program establishes static values of the process variables that, in turn, constitute the baseline conditions for the DNBR update.

4.4.1 Inputs This program requires the following process parameters:

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-119

I 1

0  ;

4.4.2 Upgrade Power Distribution Data for Static DNBR Calculation .

O i

i

! CPC Functional Design Requirements CEN-305 Revision 01 Page 4-120

O 4.4.3 Saturation Properties and Pressure Dependent Terms The saturated fluid prcperties are obtained from the following polynomials.

T O

i Os CPC Functional Design Requirements CEti-305 Revision 01 Page 4-121

O I

- l l

4 l

I l

t O

l

- 1 I

a 4

O cec F""ctional Desf n9 Requirements cEN-30s Revision 01 page 4-122

,.v., .v- -

4.4.4 Calculation of Inlet Coolant Mass Flux and Recian-Decendent

) Parameters O

I i

, CPC Functional Design Requirements CEN-305 Revision 01 Page 4-123

1 O

i

~

O 4.4.5 Calculation of linear Heat Distributions 4

4 O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-124 c.-. , - _ _ - .. . . . - _ . _ . _ , , , . , . , , , , _ _ _ _ . . _ _ _ _ _ , . _ . , - , _ _

J--_a_ _ . - 2_--_ _- _ *.m>= +

O l

l

~

O I

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-125 i

I

-( }

l 4.4.6 Computation of Core / Hot-Assembly Fluid Properties for

[}

Channels 1 and 2 The calculations described in this section result in the enthalpy, mass flux, cross-flow and pressure drop axial distributions, for channel 1 and channel 2. The hot-assembly distributions will be used in subsequent calculations. (Section 4.4.7)

The properties at each node depend on the properties of the upstream and downstream nodes. The method of solution is a O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-126 1

_, ,,;_,,s . .eam2.u:-4*.

.a.. 5 a.aA. , ~. . _ w .h..+_m-A+eE & _m. ..M _ _.., .ns__.u ..s.aA...- __ A O

O t

e

,1 N 6 i CPC Functional Design Requirements CEN-305 Revision 01 Page 4-127 I

i i

.A- .+-e_ _ _ m a L-- - sa 6 a --n a _ _ _

O 9

O t

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-128

l O

1

~

O

)

i CPC Functional Design Requirements CEN-305 Revision 01 Page 4-129 c__ _ _ _ __.y.--.. 7, _, _ _ _ __ _. .,_,_ ,_.- _, . ___ _ __.__ - - . . . . . _ _ _ _ _ _ - , . - . _ - - . _ , ,

O 4

i O

t I

l

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-130 1

O O

1

!O -

CPC Functional Design Requirements CEN-305 Revision 91 Page 4-131

O l

l O

i i

O CPC Functional Design Requirements Cell-305 Revision 01 Page 4-132

/~'t

\- / ,

I 4.4.7 Calculation of Buffer / Hot-Channel Fluid Properties for Channels 3 and 4

'The calculations described in this section result in the enthalpy and mass flux distributions for channel 3/ channel 4 The hot channel distributions (channel 4) will be used subsequently in the

(~'s critical heat flux calculations.

V As in the preceeding section,' the properties at each node depend on the properties at both the upstream and downstream nodes. Again the method of solution is by The technioup is summarized below:

I t

)

/"'N CPC Functional Design Requirements CEN-305 Devision 01 Page 4-133 V

O

< O f

t l

I I

i CPC Functional Design Requirements CEN-305 Revision 01 Page 4-134 l

m,- , _ . . , . . _ _ _ _ - - . . _ _ . _ _ . . _ _ . _ _ . _ . _ . , _ _ _ . _ - _ - , - . , , _ _ _ , . . , _ _ , . - . _ _ _ . , . . . _ , . . . . _ _ _ _ _ _ , . _ _ _ _ . - _ _ _

O 1

1 O

1

\

1 l

O CPC Functional Oesign Requirements CEN-305 Revision 01 Page 4-135

-~

- - - - - - - . . - . - _ _ - _ _ . _ __ _ __ .w3 -

e

.I

~

O O .

I i

i O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-136 i

r

,,-,4 -~

, ~n- -


, ,-- - - , ---n - - - -

O O

4.4.8 Computation of Hot Channel Ouality and Flow Profiles The hot channel enthalpy and mass flux profiles are to generate the cuality and mass flux profiles.

4

'O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-137

--r,,- ,,, -,g - - - -- -- --- -- -

1 I I 4

l 0 -

(

I l

--~.

i

~

1 4.4.9 Hot \ Channel Heat Flux Distributions The calculations described in this section yield the hot-channel critical heat flux and actual local heat flux distributions.

t 0

l

(

l

, l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-138 S

! \

a. - .

O 4

O CPC Functional Design Requirements CEN-305 Revision 01 Page 4-139

O O

4.4.10 Correction Factors for Non-Uniform Heating l

The correction factors for non-uniform heating are calculated from:

1 O

CPC Functional Design Requirements Cell-305 Revision 01 Page 4-140

O l

l l

O 1

I O

CPC Functional Design Requirements CEN-305 -

Revision 01 Page 4-141

4.d.11 Calculation of Static DNBR The DN8 ratio at each bot-channel node is given by the fol'cwing:

O CPC Functional Design Requirements CEN-303 Revision 01 Page 4-142

O O

I 1

i 4

O CPC Functional Oesign Requirements CEN-305 Revision 01 Page 4 143 i

. . . _ _ _ _ _ _ . , _ . , . . _ _ , ,. ___.._____,____.,,_____..,_.,..-_-____m- . _ _ . . _ . _ . . . . _ . _ _ , _ _ _ _ . _ __

O 4.4.12 Static Thermal Power The enthalpy in both hot legs and both cold legs is computed from the measured temperatures and pressures. If the average hot leg temperatureisatitslowerrangelimit,{

O t

CPC Functional Design Requirements CEN-305 Revision 01 Page 4-144

i O

b I

e I

l I

1 4

e i

I CPC Functional Design Recuirements Ceil-305 Pevision 01 Page 4-145 a

l

.s'" .,.u M.- A a2 - -- -. - L ~ a. a w

. O l

O i

3 CPC Functional Design Requirer,7nts Cell-305 Revision 01 Page 4-146 I

J

-,-n---,.cw--.-.-----n.. , ,v,, ,,__. , ,-n,, . , .n,-._. . . , _ , . . , . . - . . . , _ , , , _ - , . . w-,.. -- --.,---,_,.._,,,,,,,-,-.-e,-- _ , . -

4.4.13 Definition of Voluma Functions A

The preceeding calculations make use of the VOLUME # unctions

  • defined in this section. The independent variables in these functions are pressure (P) and local specific enthalpy (h). The three specific volumes resulting from these calculations are:

6 O

m m

4 CPC Functional Design Requirements CEft-305 Revision 01 Page 4-147

.-_.,.r_,g , -- -,-- -- - - - , - - - -

ya Aaa m.u. # e - 4 ~ ,A._ a m a _.

O l

t I

O J

l l

l l

l l

t l

l i

1 CPC Functional Design Requirements CEN-305 Revision 01 Page 4-148 l

. . , . - - , . - , - . . , . _ . _ _ . .. - ... , .- ,,_ . _ . --- --- . _ - . . _ . . - . . - , . ~ . - - - . . . . . . . . _ _ . - .

O 4.4.14 Definition of Friction Factor Function

'M -

1 l

l l

l CPC Functional Design Requirements CEN-305 Revision 01 Page 4 149

_

  • a f

O O

4 O  :

CPC Functional Design Requirements CEft-305 Revision 01 Page 4-150 l

l i

-..,-__,,,,n..,-, -- - , - _ . - - , . . . - - - - --, , - - - ,

f O

5 r

)

4 l

l CPC Functional Design Requirements Cell-305 Revision 01 Page 4-151 l

3

I j

.l 1

1 1

(

f I

J j

l I CPC Functional Design Requirements Cell-305 Revision 01 Page 4-152 l

,-,---,.---..-,..m- ,--,r,,m,,--.- , ---. . - . - - . , . - -.- .--- ,--- --,, . - ..r_,--re-, ,. - - - - .

j l 1

l 4 l 1

't l l J l I

i, l

l 1.

)

i i

)

J i

e l

l CPC Functional Design Requirements Ceil-305 Revision 01 Page 4-153

4 i

i 1

1 i

i I.

f l

1 a

l i

i i

l i

i i

\

l 1

i I

l 1

l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-154 i

l i

i

t O

4.4.15 STATIC Outouts

, The following variables are written to the Static DNPR .and Power Density Program output buffer for use by other proorams:

Variable Name Definition Destination

O 4

d CPC Functional Design Requirements CEN-305 Revision 01 Page 4-155

O d

4.4,16 STATIC Constants The constants required for the Static DNBR and Power Density Program are given below. These constants will be provided by the functional design group. However, the design implementation group must verify that the constant l

1 CPC Functional Design Requirements CEN-305 Revision 01 Page 4-156 4

- - - - - - , . -, , . - - - _ _ , , _ . . - - . - _ . - , , - - - , - , - . . _ . , - - - - . , - - - , , - - . . - - - - - - - - - - - - - . - _ ~ , - - - . .

O O

O CPC Functional Design Requirements CEf!-305 gevision 01 Page 4-157 l

, 4 _ G-. - _ .a __ M_A _A. .e- + _ . _ - - - _ a-.- w-- a 4. m.1a - .a _ ____.m. a_ _ _-

4 O k

4 I

i 4

O O CPC Functional Des 19 n Requirements CEN-305 Revision 01 Page 4-158 1

-~..-.,,-..--_.,-~.,-n .. . - . - .._- - - . ,--,-.--_,._----._.,__--.-_--,-.._.n.._ . - - - - _ . - . _ , , _ _ _ _ . . . . _ , - - - - - . - - - - - , - - , _ _ , - . , _ -

y .,_a. L +-' - m - -La.J ..--a _ = -.'. - - .sa--. a_ ,, _ _ , ,,,_,u,,,, a -

- , a, ,a

, O l I

i i

O l

i j

i l

i l

2 l

, CPC Functional Design Requirements Cell-305 Revision 01 Page 4-159

4.5 TRIP SEQUENCE ALGORITHM The purpose of the Trip Sequence Algorithm is to issue trip outputs (contact output (C.O.) = logical "1") when computed variables within the program structure viniate predetermined setpoint values; otherwise reset outputs (cantact outout (C.O.) = logical "0") are generated. ,

4.5.f Input to the Trio Secuence Algorithm The trip sequence algorithm requires the following process parameters from other CPC algorithms:

O O

O CPC Functional Design Requirements Ceil-305 Revision 01 Page 4-160

O l

l l

1 1

d l

/

4.5.2 DNBR/Ouality Trip '

O i

If DNBR Trip or Pre-Trip limits are violated, or if Quality Margin Trip or Pre-trip limits are violated, issue a ONRR Trip ~or Pre Trip signal:

5 l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-16L

4 1

1 4

o 1

4.5.3 LPD Trip f

If Local Power Density Trip or Pre-Trip limits are violated, issue a Local Power Density Trip or Pre-Trip signal:

4 f

O cec reect4eeei oes49# aea#4re emts cen-30s aevis40e oi P.2e 4-1e2

O O

4.5.4 Auxiliary Trips l CPC Functional Design Requirements CEN-305 Revision 01 Page 4-163

f Y

l J

J i

i

/'

J j CPC Functional Design Requirements CEN-305 Revision 01 Page 4-164 e

1

I I

O 4.5.5 CWP Signal O

4.5.6 Trip Secuence constants The following constants are required for the Trip Sequence.

O CPC Functicnal Design Requirements CEN-305 Revision 01 Page 4-165

O .

i 1

O .

(

s s

l l

O cec reec 4eee, oe,42 , aeq 4,eme,1, csn.30s ,,,, , , o n 01 r, age 4-166

1 l

O i

APPENDIX A Parameters to be Displayed by CPC I/O Device O

l 9

O cec remct4e ei oe 4 9# aece4re emts ceri-3os ae 4 4o# oi aese at o< e

. - = . . ._. _ . - . . _ . - _ _ _ , _

Appendix A Parameters to be Displayea by C?C !/0 Device Symbol Section Reference Units of Disolayed Value 9

O -

O cac reect4e ei oes49# aes#4re e ts cen-aos aev4s4o oi eese 42 er e

Appendix A (Continued)

O Symbol Section Reference l' nits o# Disolaved Value O

O cac """ct4o" ' oes4 "9 aea#4reme"t= ce"-3os aev4=4e# oi a se ^3 or e

Appendix A (Continued)

O Symbol Section Reference linits of 01solayed Value 1

9 O

t O cec reect4eeei oes4,e ae2 4,emeets cen-30s ae 4 4e oi ge,e 4, e, e

Appendix A .' Continued)

Symbol Section Reference Units of Cisolaved '/alue O

CPC Functional Design Requirements CEN-305 Revision 01 Page A5 of 6 y -. , _ . - . - , . -. - -,r_ . . . . , , _ _ . _ . , _ _ . . - _ . _ . - _ , . , , ~

Appendix A (Continued)

O Svmbol Section Reference Units of Disclaved '/alue O

l CPC Functional Design Requirements CEN-305 Revision 01 Page A6 of 6

ICE-522(85A11)/jg 215 O

APPENDIX 8 CPC Functional Block Diagram O

i O CPC Functional Desi9n Requirements cEn-30s Revision 01 page 81 or 2 I

m ----e - -

w C

N CC 0

m e

G.

e F

O c

O w=

4#9 e

G E

W O

M I

E t4J U i e

aa +

C l m

we 3

W K

C vs e

o bi 0

Q C

  • O e

M U

. C l

3 6

W 6

W t

1 l

l l

I l

t

  • - , - - - , - - - - - - - w-.ee-, --- m-- r - - -. p w-- --