ML20079C162

From kanterella
Jump to navigation Jump to search
Analysis of Moderator Temp Coefficients in Support of Change in TS of EOC Negative Mtc Limit
ML20079C162
Person / Time
Site: Waterford Entergy icon.png
Issue date: 05/31/1993
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY, ASEA BROWN BOVERI, INC.
To:
Shared Package
ML20079A936 List:
References
CE-NPSD-911, NUDOCS 9501090348
Download: ML20079C162 (72)


Text

. . . .-

' 5 c= %

hO COMBUSTION ENGINEERING OWNERS GROUP CE NPSD-911 ANALYSIS OF  !

MODERATOR TEMPERATURE COEFFICIENTS i

IN SUPPORT '

OF A CHANGE IN THE TECHNICAL SPECIFICATION i END OF CYCLE NEGATIVE MTC LIMIT 1

FINAL REPORT CEOG TASK 764 ,

prepared for the C-E OWNERS GROUP May 1993 ABB. Combustion Engineering Nuclear Power -

~

j!A'Z880!!a886 ""

i

Analysis of Moderator Temperature Coefficients in Support of a Change in the Technical Specification of End-of-Cycle Negative MTC Limit.

Table of Content Page I. Introduction 2 II. Summary 3

!!!. Methodology 4 IV. Data Base and Data Reduction 5 IV.a. Rod Insertion Technique 6 IV.b. Power Trade Technique 10 V. ITC Predictions 11 VI. Results ,

11 VI.a. Confidence Interval and Prediction Interval 17 VII. Normality and Poolability 19 VII.a Normality Test 19 VII.a.1 X3 Test 19 VII.a.2 Kolmogorov-Sairnov Test 20 VII.b Poolability Test ., 21 VIII. Deviation from Norinal Operation 22 IX. Conclusions 24 Appendix A. Power Coefficients A.1 Appendix 8. Data Reduction B.1 Appena1x C. No Significant Hazard Report C.1 Appendix D. Technical Specification Markup D.1 4

1 .

Analysis of Moderator Temperature Coefficients i

in Support of a Change in the Technical Specification of End-of-Cycle Negative MTC Umit.

l. Inkoduction The accurate knowledge of the moderator temperature coefficient (MTC) at end of cycle is of prime importance in the fuel management of long reload cycles.

The designer must ensure that the most negative MTC will always be conservative to the Technical Specification limit. The required amount of conservatism ,

depends on the accuracy of the ' calculational model, and on the uncertainty 4

attached to the knowledge of the true MTC. If enough reliance can be placed on l the calculational models and on the end of cycle predicted NTC, a surveillance  :

test becomes unnecessary.  !

I

~

The calculational a curacy of the analytical models and the confidence assigned to the knowledge of the true MTC are established by comparing calculated and measured values. A moderator temperature coeff1cient design margin (uncertainty) is established such that if the best estimate design MTC is ,

conservative relative to the Technical Specification limit by an amount equal to or greater than the design margin, then the Technical Specification limit will  !

not be violated. The best estimate value is defined as the calculated value using the current ABS-CE methodology augmented by a bias tene. Although the Technical Specification limit on negative NTC must be satisfied at end-of-cycle, 4 it is shown that the design margin applies to all times in life. It is also established that if the measured beginning-of-cycle moderator temperature coefficients agree with the predictions within the design margin, then all measured coefficients for that cycle are expected to pool with the data base presented in this report, including the end-of-cycle MTC. Thus if the end-of-cycle MTC is expected to fall within the design margin, its measurement is not required.

In the analysis, isothermal temperature coefficients (ITC) are used since they are the measured quantities. The measured ITC is assumed to represent the

true value. The impact of systematic errors in the measurements is reduced by combining values obtained on several plants by several utilities using different techniques. The accuracy of the model is expressed as a bias representing ,

systematic differences between measured and calculated values, and the uncertain- l ty is expressed as the random fluctuations between these values. The uncertainty l can be viewed as a limitation in the search for the true value. Thus, to ensure l compliance with the Tech. Spec. with a high confidence level, the most negative  !

raw calculated design MTC at EOC must be less negative than the Tech. Spec. MTC  ;

by an amount equal to the bias plus total uncertainty. l

11. Summarv l

In order to ensure that the moderator temperature coefficient will not exceed the Technical Specification limit with a confidence / tolerance of 95/95%,

the cycle must be designed, using the ABB-CE methodology, such that the best estimate MTC is:

i

a. more negative than the BOC Technical Specification limit by the design margin, and i
b. more positive than the E0C Technical Specification limit by the ,

design margin. ,

The design margin is determined to be 0.16*10Ap/*F at all times in life.

The analysis of a data base of measured and calculated MTC's has estab- ,

lished that if the measured beginning-of-cycle moderator temperature coefficients  !

fall within 0.18*10%/*F of the best estimate prediction, them it can be  ;

assumed that the end-of-cycle coefficient will toe and its measurement is not required.

. j The measured data reduction must be based on the current AB8-CE methodology as described in this report. l t

If the beginning-of-cycle fails the acceptance criteria of t0.16*10*'ap/*F ,

and the discrepancy cannet be resolved, then the end-of-cycle surveillance test )

must be performed.

l

)

3 -

4 Ill. Methodoloav 1 l

The determination of the design margin and the justification for removing  ;

the end-of cycle surveillance test are outlined below:

l 1.- Measured isothermal temperatura coefficients (ITC) are collected for several plants and cycles under various operating conditions.

1

2. The ITC measurements are analyzed with the same calculational  !

methods used to design future cycles. Care must be exercised to use j consistent definitions of temperatures in the measured data reduc- l tion and in the analytical predictions. Predictions are made at the exact operating conditions of the measurements. q

3. A statistical evaluation of the differences between measured and l calculated values is performed. The mean of the distribution of differences establishes the bias, and the standard deviation of the distribution, when adjusted by the tolerance limit factor k, !

establishes the uncertainty. The bias covers both systematic

alculational and measurement errors, which cr.nnot be separated.

The possibility of large systematic measurement errors contributing to the bias is reduced by incorporating into the data base measure-ments taken on many cycles and many plants operated by different utilities. The uncertainty is due to randos components in the measured values and to correlating variables Ghich are not included in the bias ters. This uncertainty limits our ability to know the precise value of the true ITC, and therefore to calculate a best estimate coefficient.

4. The bias and uncertainty are correlated against a variable to which the ITC dependence is strong, i.e. the soluble boron concentration. ]
5. Statistical tests are perforised on the residuals of the correlation to verify the assumption of normality, to verify poolability of various subsets of data and to verify the goodness of fit (correla- '

. tion against boron concentration).

6. Poolability tests indicate that the residuals at 90C, high boron concentrations are part of the same population as end-of-cycle low boron concentration residuals, and that if the first subset falls I

4 .

L within the design margin, one can expect that the second subset will too and therefore does not have to be measured.

7. The best estimate ITC is then equal to the calculated value plus the bias. The same bias and urcertainty is assigned to the MTC. Using the relationship:

ITC = MTC + FTC and assuming that MTC and FTC are statistically independent:

I ITC "# MTC

it is conservative to assign the same uncertainty to the MTC and to assume that no additional uncertainty is introduced by the fuel temperature coefficient (FTC). To ensure that the true ITC or MTC will never exceed the Technical Specification value, the best estimate coefficients must be less negative than the Tech. Spec.

limit by an amount equal to the design margin, defined as the absolute value of the uncertainty.

The most negative calculated MTC,,,, must therefore satisfy the relation-ship:

MTC.,j, + bias - lunce: t.l 7 MTC%, ,, at E0C IV. Data Bana and Data Reduction In analyzing moderator temperature coefficients, a distinction must be made between zero power and at-power measurements. Zero power measurements are well j characterized since the core is isothermal, and since the reactivity changes are  ;

measured with the reactivity meter. At power, however, the core average '

moderator temperature is not defined by the inlet and outlet temperatures only, but is affected by the axial power and temperature distributions. These axial distributions change for three reasons during the ITC measurement: control rod motion, change in inlet temperature and change in power level. These changes, which impact the core average temperature and its reactivity, are characterized by the changes in axial shape index taking pince during the measurement. This information is not altsays available, but it was established that it can be obtained from calculations.

5-l 1

l, 9  :

The data base analyzed here contains 71 data points from 26 cycles ~and 10  !

reactors. It contains 43 zero power data points, 6 of which measured at end-of- l cycle, and 28 at power points, 23 being measured with the rod insertion method and 5 with the power trade method.  ;

The end of cycle data measured at Calvert-Cliffs Unit 11 cycle 5 is worth l noting. This set of experiments consisted of moderator temperature coefficient [

measurements performed at full power followed by ITC and rod worth measurements  ;

at zero power, low boron concentration, during the xenon transient following the ,

end of cycle shut-down. Seven data points were thus added to the data base, {

providing a good definition of the end of cycle bias and uncertainty.  :

Each data point in the data base is identified by the unit and cycle, the'  :

core average exposure, the moderator temperature, boron concentration, power, rod insertion and core average enrichment. ,

Zero power temperature coefficients were obtained from the startup reports of each unit and cycle. They were used without further interpretation.

i At power measured coefficients were also reported in various startup and operating reports, but the raw site data was reinterpreted for consistency. The data reduction differed between the rod insertion technique and the power trade ,

technique.

IV.a. Rod Insertion Techniaue In this technique, the reactor is stabilized at or near full power with the lead control bank inserted approximately 205., Then a temperature  ;

reduction of about 3*F is induced by inserting the rod bank, and a new i steady state condition is obtained. The power is maintained constant. i I

idhen the power and tagerature readings are stable, they are recorded and a temperature increase of about 6*F is induced by withdrawing the rod bank., This operation is repeated 3 or 4 times. If a power coefficient measurement is aise desired, a few more rod motions are performed, maintaining the reactivity constant by adjusting the power level.

For each swing, the inlet and outlet temperatures, the power and the control rod position are tabulated. The core average temperature and inserted rod worth are calculated as follows:

9 9

6-j

~

v w - -- - - - - - -. , - - ,____

i 1

A. Core averaae temperature:

i The core average temperature has traditionally been defined as:

(

T,, = ( T,, + T, )/2 (1)

This definition does not reflect the change in axial temperature distribution resulting from the change in inlet temperature and i underestimates the change in core average temperature. Therefore it leads to excessively large negative coefficients, and can erroneous-ly imply non conformance with the Tech. Specs.

The core average moderator temperature can be expressed as a linear i function of the axial offset (ASI).

T,, = (T,, + T,)/2 + 7

  • ASI
  • P/P. (2) in which y is precalculated.

I The change in ASI and the ensuing change in temperature during the test are due to both the control rod motion and the change in inlet '

temperature. The former is part of the rod worth and the latter is part of the temperature coefficient. The two components of the ASI change cannot be separated experimentally, and one has to rely on a calculation to relate T,,, T, and T .

The ability of the calculational model to predict the change in ASI and the change in core average temperature, during the test was i verified by performing a simulation of the St-Lucie Unit 2 cycle 5  ;

and-of-cycle measurement. In this simulation, the ROCS reactivity l was maintained constant by trading the reactivity loss due to the rod insertion against the reactivity gain due to the inlet tempera- i ture reduction. Measured and calculated changes in shape index due

- to both centrol red motion and inlet temperature changes between the two critical states are shown in Figure 1.

' The good agreement between measured and calculated ASI justifies the use of ROCS to infer the change in axial power and temperature distributions, and hence in core average moderater temperature for

. a given change in inlet temperature.

The change in core average temperature can be obtained from the change in inlet temperature at constant rod position and constant power by using the following expression:

-7 -

AT,, o (1.0 - a o P/P,)

  • AT,, (3) or:

AT,, = (1.0 + b

  • P/P,)
  • A[\(T,, + T,,)] (4)

The a and b coefficients are precalculated as part of the test ,

predictions. In the current data reduction presented in this report, the second expression was used, using the measured T,, and T , temperatures. a and b were found to be a weak function of exposure, but a strong function of core height.

ST- LUCI E UNIT l l CYCLE 5 .

1 ASI vs. Bare: 5 insertion 0.15 0.14 -

0.13 - ,

0.*2 - 5

0. 9 - ++

0.1 -

0.09 -

0.08 -

0.07 -

0.06 - +

0.05 -

0.04 -

0.03 - + Wees. 9 &lt.(Poe, Tin) ,

0.02 - - Calc. 9 &lt.(pos, Tin) 0.01 -

0 , , , , , , , ,

90 100 110 120 130 antec 5 inches vittursen Figure 1 8-

)

B. Rod Insertion Worth The rod insertion curve is calculated by a three-dimensional neutronics code, in which the initial conditions correspond to the-reactor initial- conditions. Thermal-hydraulic and xenon feedback are included in the initial conditions. Then, without changing the xenon distribution and level, but maintaining the thermal-hydraulic feedback, the . rod insertion curve is calculated _ by a series of insertion steps corresponding to axial planes of the nodal three- l

. dimensional model, so as not to be affected be interpolation schemes I for partial plane insertion. Curve fitting or interpolation is then used to determine the worth at the insertions recorded during the test. From this curve, for each one of the rod positions recorded during the test, the rod worth is tabulated.

1 When the data collection is completed,' a reactivity balance is written  !

between each consecutive step: l l

a,* AP + a,

  • AT + 4-0 (5)  !

l in which:

a, is the power coefficient  :

AP is the change in power level i e, is the isothermal moderater temperature coefficient 1 AT is the change in core average moderator temperature due to the l change in inlet temperature , l 4 is the change in reactivity due to the control rod motion. l l

If the power swings are large enough se as to infer a power coefficient, a two dimensional regression leads to ar and e,. If the power swings are  ;

two saali, a precalculated best estimate power coefficient is used in the teris og

  • AP and a one dimensional regression is used to define e,. -

e l

i 9

l l

]

1 IV.b. Power Trade Technioue in this measurement, the control rods are not moved, and the reactivity is i maintained constant by compensating the effect of an inlet temperature i increase by a power reduction. The reactivity balance is: l a,

  • 6P + a,
  • AT = 0 (6)

A best estimate power coefficient is used in this equation to infer the temperature coefficient. Since relative errors in power coefficients are  ;

directly translated into relative errors in temperature coefficients, it l 1s important to have confidence in the best estimate the power coeffi-cient. Appendix A presents the analysis of a power coefficient data base, and defines the bias applicable to the calculated power coefficient to transform it into a best estimate.

The core average moderator temperature used in the above equation must l also reflect the change in axial shape taking place during the test. A )

test simulation provides the relationship between T,,, P and Tg and a  !

regression is performed to express the core average temperature as a i linear combination of inlet temperature and power: l T,, - a

  • T,, + b*P (7)

This linear relationship, which is valid over a narrow range of the  :

variables, is applied to each pair of measured T,, and P to infer T,,,.

I It is interesting to note that this definition of' T leads to lower i values of AT,, than the use of %(T,,+T ), thus to more negative values of the measured ITC, in better agreement with the predictions.

The da,ta reduction of all at power measurements is summarized in Appendix B. The format of the tables is comparable for all sets. First, the calculated rod insertion curve is given and fitted to a cubic polynomial. The fitted values are compared to the calculated values to provide a visual check of the fit.

Then, the measured data is tabulated for each swing, and the measured lead bank insertion transformed into an inserted worth by use of the cubic fit. The change in core average moderator temperature is obtained from equation (4). If the power changes are saali, the associated reactivity changes are obtained with the help of the best estimate power coefficient, and a one-dimensional regression is performed to defined the measured ITC. If the power changes are large, a two-

, dimensional regression provides both the ITC and the power coefficient.

3 10

i V. ITC Predictions ITC predictions have all been made at the measured critical conditions, so that no adjustments were needed. The test initial conditions (power level, exposure, inlet temperature, soluble boron concentration and lead bank insertion) were simulated, taking into account all thermal-hydraulics and xenon feedbacks. .

Then, without changing the xenon distribution, a change of 13*F was applied to the inlet temperature, keeping the thermal-hydraulics feedback effects active.

The core average temperature was obtained from edited output, and the ITC calculated.

VI. Results A complete list of all measured and calculated ITC's is given in Table 1.

This table lists the plants and cycles, the core enrichment and exposure, the operating conditions (PPM soluble boron, power and moderator temperature), the measured and calculated ITC and the difference (M-C) in units of 104/*F. At -

the bottom of the table, the results of a regression analysis of C-M vs PPM is l provided. This table indicates that the ITC error is best fitted to the i expression:

4 AITC = M-C = -0.0138 - 0.913E-04

(8)

The standard deviation of the fit is 0.077, and the one-sided 95/95 4

confidence /tolerancelimitis 20.153*10 4/*F. This means that there is a 95%

chance that 955 of the dsta points will display an error smaller than 10.153 104/*F from the best fit.

The residuals of the fit [(C-M) values - fitted values] are plotted in Figure 2 vs. soluble boron concentration. This figure indicates a fairly uniform distribution of points, with no obvious PPM dependence.

Two points in the figure seen a little outside the range. They are two full power measurements for:

St-Lucie II cycle 5 at 789 PPM Palo Verde !! cycle 3 at 456 PPM

< a i

TEMPEAATURE COEFFICIENT RESIDUALS C E-4/ 9 03-0 02-

% O 0 O

}" 0.1 - gg O O 0 O O 0 0 O I no ,, O #0 0E nOU 9.,

j O B

C O O a C 0 0 0

$ N 090 g

j O a ok a '

- 0 .1 - O S O

- 0 0

-0. 2 -

-0. 3 -

0 0.2 0.4 0.0 0.0 1 1.2 1.4 1.8 1.5 (Thousanes)

Sotele coron Concentration CM40 Figure 2 Prior to performing more rigorous statistical tests to verify normality and poolability of the data, some simple visual inspection is beneficial. The residuals of, the fit are plotted vs. Various parameters, to demonstrate indepen-dance of the residual against these parameters, and to.show that no significant variables were omitted in the model, i.e. that the soluble boron is really the only correlating variable. The residuals are plotted vs. core exposure, enrichment, power, moderator temperature, fitted error and calculated ITC, in Figures 3 to 8. i In all Figures, the scatter of the residuals appears randon, indicating that there is no correlation of the residuals against any of the chosen variables. One possible exception is Figure 4, which shows a slight upward trend  :

.of the residuals vs. enrichment. As shown later, the enrichment dependence of the residuals has an impact on the normality of the distribution, but can be l

- 12 -

ignored because its onission leads to more conservative (more negative) best estimate MTC at end of cycle in the range of enrichments currently used.

The results of the regression given at the bottom of Table 1 constitute the definition of the design margin for temperature coefficients. The end-of-cycle j MTC monitoring procedure in the absence of a measurement is as follows:

If the isothermal temperature coefficients measured at zero power '

during the cycle startup program, and at power during the first power ascension, fall within the design margin (acceptance criteria) of t0.16*10@/*F, then the end-of-cycle best estimate prediction ,

will also be within to.16*104/*F of the true MTC. To establish  !

comp't s ance with the Technical Specifications, the best estimate end-  !

of-cycle NTC must be less negative than the Tech. Spec. value by i 0.16*104/

  • F. j t

8' 13 -

.. e i i

?

TEMPERATURE COEFFICIENT RESIOUALS e . Cor. Averse. tecer .

I

0. 3 - i 0 1
0. 3 -

a h 0 0 0.1 -

E D D O O

1 30 h r,

! 3 o 0

  • O g E" gO O i .. , p li 0 o O .

M )

o i o

0.7 =

E

. O. 3 =

0.4 , , , , , , , , , , , , , ,

0 4 5 13 18 as 34 3e cw c.r. e .r - cimarn Figure 3 TEMPERATURE COEFFICIENT RESIDUALS j

...c.r.a - ere.m =

0. 3 =

a S.3 -

C I

ae ga S.1 o a o e

E , a *. ; i U % *a .

3 3 e . o. a = a eP . /,

5

, .e.1 g N e e a

.S.3 =

8

8. 3 -

.O.4 , , , , , , , , , , , , , , ,

3.0 3.0 3 3.3 3.4 3.8 3.8 4 4.3 Figure 4 l i

- 14 -

l i

+

TEMPERATURE COEFFICIENT AESIOUALS ve. we w 04

0. 9 -

O I O3- l n

h I 0.1 -

o O

I

-o - . e h

- o ', C l O

0. 9 -

a !I .

,, a

0. 3 -

I 0

o. 3 -

0.4 . . . , , , , , , , ,

10 10 30 50 7tP 90 110 co o awareas mouer Ctc Q Dr Ace imeerties 3 by mome" frees Figure 5

, TEMPERATURE COEFFlClENT RESIDUALS vs. W. Temerstare

0. 3 -

o 0.5 -

O e o 4 0.1 0 S8a a

2 ,il _ S. E a E s ., m.

SB 8

jo o E8 I .o.1 -

a E

. a

8. 3 =

0

.S. 3 =

  • 0.4 , , , , , , , , , , , , ,  !

M 355 e00 eee des M See 800 l o== = reserew. cra Figure 6 1

=

j l'

15 -

TEMPERATURE COEFFICIENT RESIDUALS .

vs. 8sttes 9 ror C W C 0e 03-a

~

02-m 0 o h m f

O ~

o ob a

Js." oa o-~~ Od on S [

l a "*

88"

% 8 g o a oa o u

B o 0o o a 0.1 - g "

M o

- . o

.c.a - ,

t a

0.9 -

0.4 , , , , , , , , , , , , , , , ,

0.10 -0.16 0.14 -0.13 0.1 0.08 0.08 0.04 0.08

'pittas carer Cas C3 C8 4#P3 .

1 Figure 7 ,

TEMPERATUAE COEFFICIENT RESIDUALS

. nii ire 0.4 .

l

0. 3 = l

)

g 4 l

C as 8 8' o a

}- 0.9 , , ,

s . . . =. . 9.. .

.d\e m.e_

j o

e e u a on a o n Ma-

=e me R . O o a .S.1 = g 3 o

- o .

-e.a =

E

.e. 3 -

  • 0. 4 , , , , , , , , , , . , , ,

3.8 3.3 1.8 1.4 1 8.8 -0.3 8.3 0.0 onseuseese etc CD erF3 Figure S

. is - l i

i

VI.a. Confidence Interval and Prediction Interval Because the range of fitted residuals vs. boron concentration is finite, and because the sample size is also finite, the best fit has an uncertain-ty which is larger near the ends of the range. It is interesting to know whether the increased uncertainties of the fit at the end of the range, in particular at very low boron concentrations, is significant. If it is, an extra conservatism should be built into the best estimate EOC MTC. The 95% - 100(1-a)% confidence interval of the fit is given by:

l l

1 xi i

  • Cx-a.ela * (9) l p*{x (x5) i i

in which s is the standard deviation of the distribution of residual 5 x, and t is the t-distribution. The prediction interval of arty futerr l observation is: j

  • Uma,s/s 8 1+ +

x (10)

$ {(x5) r These calculations are presented in Table 2, and plotted in Figure 9.

In these calculations, the two outlier points have' been removed.  !

The confidence interval of the fit is indeed larger near the ends of the range, which affects the accuracy of best estimate values. But more 3 important is the prediction interval which is fairly parallel to the best i fit. This interval represents the range within which any future observa-tion is likely to fall with a 955 confidence. The interval varies from ,

0.1295 to 0.1270 (see Table 2), thus is nearly constant over the operating i

. range. This prediction interval is a little smaller than the design margin quoted above. This is due to the removal of the outlier points. ,

No credit will be taken for it.

i

l l50 THERMAL TEMPERATURE COEFFICIENT 8IA5 i

(Mess-Cale) (E-4/ F) 0.2 o.1 - g ietton totW"'

% i b0 a' o

o

,~ # ,, 1 g -

O

~

g Fit rc '

k O b

D  ? .'

.o.1 - h10sege O 0, O o 2 0

  • O o 0 O%0

.o.2 - o C u , O 0

O 5 .o.1 - '

-0. 4 -

-0.5 , , , , , , , , , , , , , , , , , , ,

0 0.2 0.4 0.6 0.8 1 1.2 1.4

  • 1.6 1.8 2 (Thouesnes)

Baron Concentration (PPic O

Figure 9

- 18 -

j 1

Vll. Normality and Poolability Tests f Statistical tests are performed on the distribution of residuals in order to establish that they are normally distributed and that any subset belongs to  !

the total population. Residuals are the difference between the observed error in temperature coefficient (M-C) and the fitted error. The normality test ensures that the residuals are truly randomly distributed, and that no correlat-ing variable is missing. A successful test lends confidence in the model and in "

its application to future observations. The poolability test ensures that the variability of the data is the same for all subsets, a subset being defined as a range of boron concentrations or a particular plant.

VII.a Normality Tests Two normality tests were performed, i.e. the X 8test and the Kolmogorov-Smirnov test. The first application of the X2 test on the distribution of '

residuals listed in Table 2 failed, indicating that the model (PPM dependence of the residuals) was not satisfactory. Using the information provided by Figure 4, an enrichment dependence was added to the fitted residuals, as shown in Table 3. Here again, the two outlier points were removed. The best fit becomes:

AITC = M-C = -0.271 + 0.0754

  • e -

0.0001046

  • F) (11)

The standard deviation of the fit is 0.0572 and the 95/95 confidence band (uncertainty) is t0.114*104/*F (K = 1.993). This reduced value is due to the better fit, and the transfer of some uncorrelated residual compo-nents to an enrichment correlation. No credit will be taken for this lower uncertainty.

VII.a.1 va Test 8

The residuals X, of the two dimensional fit were entered into the x test. This test compares the measured distribution to a normal distribution and evaluates the differences. The sorted residuals were distributed into 13 bins to produce an " Observed" distribution.

The ' Expected" distribution is defined as:

19 l

r,  ;

7,, dz  !

(E) = N = Pj = N * [ e (12) z ., M s

i with:  ;

z=3s The quantity:

' ' (13) 2 must be less than a critical X value.

The results of the test are given in Table 4. The test passes well, l which indicates that the assumption of normality cannot be rejected.  ;

i VII.a.2. Kolmoaorov - Smirnov Test This test orders the residuals X,, calculates 5, = 1/N, Zi = X i/S 6 where S equals the standard deviation of the distribution Xi , then  :

calculates lF, - 5,l and lF, - 5,,,l , in which F (Z,)

i is the cumula- l tive standardized nonnal distribution. The maximum of the quanti- l ties lF, - S,l and lF, - 5,.,l must be less than a critical value. l The results given in Table 5 indicate that the assumption of normal- I ity is fully justified.

]

These tests confirm the random nature of the residuals, as was suggested l by Figures 2 through 8. This means that no parameter was found, either in the measurement or the prediction, which could lead to an unexpected error in the best estimate MTC.

The next statistical test establishes "Poolability", i.e. that various 4

subsets of the data display the same variability, and are all part of the total population.

20 -

VII.b. Poolability Tests The data base was divided into two types of subsets, i.e. subsets at 1 various PPM levels, and subsets by plant.

I A. Goodness of Fit Test - Bartlett's Test for Homoaeneity of Variance at Various PPM levels  ;

The validity of combining data points from many plants and fitting  !

the errors is justified by the Bartlett's test for homogeneity of  !

g variances. Eight data sets at various PPM levels including 69 data points are defined, and the test shows that each subset is part of the total distribution. The subsets are given in Table 6. The test consists of evaluating the quantity:

r 8

v, in S - [* v, in Sj

%!r-x = ", (14)

~

1

  • 3 (K-1)  :.

in which K subsets have each v, degrees of freedom and a variance S,3, with a pooled variance:

r a v, si S8=

~

and a total degree of freedom: ,

.. - p,  ;

1 l

l 1

3 The X value of the data (13.79) is lower than the critical X at the 55 significance level (X*m,,f 3-16.01),indicatingthatwecannot reject the assumption of linear fit. ,

I 21 -

l

l

.. .. 1 B. PoolabilitY of Data from Various Plants - Bartlett's Test This test.is comparable to the previous one, but here the subsets i are defined by plant. Nine subsets including 68 points were used. l 2

Table 7 shows the test results. The X of the data is lower than I the critical X at 2

the 5% significance level, indicating that the j assumption of poolability cannot be rejected. Thus all plants exhibit the same variability in the data and can correctly be  !

pooled. l The successful results of the normality and poolability tests indicates i that BOC and near EOC temperature coefficients display the same uncertain- l ty, i.e. that the calculational models show equal performance in the j predictions of these quantities. Thus, if the startup test program has  ;

established that the core is operating as intended, and if the beginning of cycle temperature coefficients fall within the design margin, then the end of cycle MTC must also be within the design margin and its measurement l is not required. .

l Vill. Deviation from Normal Operation ,

l l

All the points included in the data base were obtained from plants operating under normal conditions. Various plant parameters characterizing the l operating conditions near end-of-cycle can vary within their Technical Specifica-tion limits and impact the NTC. A complete study of the MTC sensitivity to the l EOC operating conditions of every plant is beyond the scope of this report and only a lietted set has been evaluated for a given cycle. It must also be pointed out that, in case of deviation from normal operation, it is always possible to do a best estimate NTC calculation under the exact operating conditions. The accuracy of. the models is not impacted by off-nominal conditions. The results of this calculation are then checked against the Tech Spec. NTC.

Deviations from normal operation or deviations from the typical unrodded conditions of thh data base have for the most part a very small impact on the end-of-cycle NTC. The following deviations have been investigated:

1. Deviations in boron letdown curve
2. Rodded operation
3. Shift in axial power distributions I

Palo Verde Unit 2 cycle 4 was used to calculate some derivative rules. .

The boron concentration has a strong impact on the MTC. The MTC becomes more negative, and therefore closer to the Tech. Spec. limit, if the boron concentration is reduced. However it cannot be reduced beyond its end of cycle value where the MTC is the most negative. Thus measured boron concentrations which are lower than expected are not a concern. On the other hand, if the baron  !

concentration is higher than expected, the cycle can run longer and an increased -

burnup will drive the MTC more negative. At constant PPM, the burnup derivative of the MTC is very small:

AMTC / ABU = .04*10Ap/'F / 1000 MWO/T ,

Thus a cycle should be substantially longer than designed for the MTC to  :'

be affected. If in doubt, an explicit calculation can be performed.

A rodded operation will also drive the MTC to be more negative. For a lead bank insertion to the PDIL, the combined effect of the rod insertion and of the reduced boron concentration will reduce the MTC by about 0.08*10ap/*F. ,

A shift in axial shape has a very small impact on the NTC. The derivative i

rule is- ,

AMTC / AASI = -0.08*10Ap/*F / ASI unit at constant rod insertion Within the allowable ASI band, the MTC will not show substantial changes.

Based on past experience, it is recognized that any departure from normal '

operation will manifest itself first in the power distributions, then in the reactivity or critical boron concentrations. The end of cycle moderator temperature coefficient is very insensitive to abnormal operation. Since power - .

distributions and boron concentrations are monitored routinely, it is deemed that this monitoring is sufficient and that it is unnecessary to extend the monitoring requirements to other parameters in the absence of a 2/3 cycle MTC surveillance test.

- 23 -

i

--- ~

I l

IX. Conclusions l

. I The analysis of a data base of measured and calculated moderator tempera-ture coefficients has established a design margin of i0.16*10b/*F. This i design margin is applicable to all operating conditions throughout the entire  !

cycle of any ABB-CE plant designed with the current ABd-CE methodology.

i The successful results of normality and poolability tests on the data base indicated that BOC and near EOC temperature coefficients display the same uncertainty, i.e. that the calculational models show equal performance in the  ;

predictions of these quantities. Thus, if the startup test program has established that the core is operating as intended, and if the isothermal >

temperature coefficients measured at zero power during the cycle startup program, and at power during the first power ascension, fall within the design margin (acceptance criteria) of 10.16*104/*F, then the end-of-cycle best estimate ,

prediction will also be within to.16*104/*F of the true MTC. To establish compliance with the Technical Specifications, the best estimate end-of-cycle MTC  ;

must be less negative than the Tech. Spec. value by 0.16*10b/*F.

t 4

- 24 -

i

. . . . -~ - . . . _ . . - . - - -. . . .

~a Table 1 MODERATOR TEMPERATURE COEFFICIENTS Core Av Core Avg PWR Tmod ITC ITC MC Burney PPM (5) (F) MEAS CALC E 4/F PIANT CYCLE Enrich E.4/F E 4/F 3.95 10971 1750 0 532 0.265 0.422 0.157 CC.I 10 10 3 95 10971 1735 0 532 0.200 0.452 0.252 CC.1 3 95 27443 285 97 570 1.844 -1.781 0.063 CC.! 10 CC.1 9 3.77 16502 1398 0 532 0.064 0.187 0.123 CC 1 9 3.77 24783 275 97 570 l.865 .l.870 0.005 CC 1 8 3.81 14526 1600 0 532 0.344 0.417 0.073 CC 1 8 3.81 14526 1330 0 532 0.560 0.408 0.152 CC.I $ 3.81 24723 310 97 570 1.782 1.801 0.019 CC.2 9 4.15 13895 1801 0 532 0.370 0.544 0.174 CC-2 9 4.15 13895 1389 0 532 0.470 0.338 0.132 CC.2 8 3.93 12937 1496 C 521 0.200 0.387 0.187 CC.2 8 3.93 27120 297 97 570 1.810 -1.779 0.031 OPPD 12 3.73 15738 1507 0 $23 0.240 0.433 0.193 OPPD 12 3.73 14520 1050 91 565 4.516 0.448 0.068 OPPD 12 3.73 25771 309 92 565 1.711 1.804 0.093 OPPD 13 3.72 14835 1543 0 521 0.310 0.506 4.196 OPPD 13 3.72 15209 1113 92 565 0.461 0.341 4.120 OPPD 13 3.72 25531 325 92 565 -1.680 1.728 0.088 OPPD 14 3.60 14542 1178 0 523 0.090 0.035 0.125 OPPD 14 3.60 14916 768 38 564 4.912 0.789 4.123 PV 1 1 2.65 0 1055 0 320 4.128 0.038 4.090 PV.I 1 2.65 0 824 0 320 4.3# 0.208 4.161 l PV 1 1 2.65 0 1025 0 565 4.442 4.223 4.219 i PV.!  ! 2.65 0 893 0 565 4.972 4.M9 0.243 l

PV 1 1 2.45 82 825 23 Sad 4.587 0.303 0.085 PV.I 2 3.15 11289 14e 0 545 0.150 0.308 4.158 PV t 2 3.15 182 9 1178 0 565 4.422 0.244 4.178 ,

PV 1 3 3.M 9727 1739 0 545 0.133 0.256 0.123  :

PV 1 3 3.M 9727 1438 0 545 4.445 0.24 4.183  ;

PV 1 3 3.M 9727 1653 0 565 0.130 0.003 4.133  :

PV-1 3 3.M 11209 1170 100 595 4.813 0.811 0.008 PV 1 3 3.M 22404 444 100 595 4.291 4.184 4.107 PV-2 2 3.77 9123 1452 0 565 4.088 0.080 4.128 PV 2 2 3.32 9123 1140 0 545 4.468 4.295 4.173 PV 2 3 3.M 12101 1595 0 595 0.005 0.209 4.144 )

PV-2 3 3.M 12108 1315 0 565 4.83 4.535 0.158  !

PV4 3 3.M 146 8 1039 100 395 1.144 4.961 4.185 4.338  ;

PV4 3 3.M 23088 454 100 595 -2.495 4.157 PV 2 4 3.73 13088 1741 0 565 0.174 0.338 4.154 Pv4 4 3.75 15516 11M 100 395 4.972 4.881 4.000 ,

PV 2 4 3.73 24121 455 100 395 4.352 4.2M 4.082 i PV 3 1 2.45 0 805 0 565 4.837 4.617 4.220 PV-3 2 3.26 84 5 1479 0 545 0.061 0.218 4.157  :

PV-3 2 3.26 Sem 1200 0 545 4.434 4.231 4.192 .

PV 3 2 3.26 19015 411 99 305 4.054 -2.083 4.011

, PV-3 3 3.47 238M 330 100 395 4.HL -2.437 0.204 PV 3 4 3.41 143N 1584 0 545 0.000 0.183 4.143 ,

30NOS2 4 3.75 Self 1798 0 545 0.077 0.23 4.301 0 0.364 4.205 4.139 l SONOS2 4 3.75 Sett 1563 545 30NOS2 5 3.95 11355 1615 0 545 4.081 0.071 4.153 ,

SONOS2 5 3.95  !!355 1208 0 545 4.800 4.755 4.105 '

37 L4 5 3.45 14397 IMS 0 $35 0.300 0.310 4.142 ST-L 2 5 3.65 20035 789 100 572 4.958 .t. ale 0.163 j ST&2 5 3.45 2e80 280 100 571 4.184 -2.036 4.088 i 87 L4 6 3.85 18034 1784 0 532 0.219 0.372 4.153 l 87 L4 6 3.85 225M 781 100 571 l.203 .t.2M 0.031 .

283 100 572 -2.033 -2.084 0.061  !

. 87 L-2 6 3.85 28462 CC4 5 3.42 24423 44 0 $30 1.610 -1.530 4.000 CC-2 5 3.42 24423 44 0 530 1.740 -1.670 4.070

. CC-2 5 3.42 24423 44 0 530 1.930 -1.950 0.000 i CC-2 5 3.42 24423 44 0 530 -2.080 4.110 0.030 i CC 2 5 3.42 24423 330 0 .530 1.000 1.000 0.040 i

- 25 -

~ _ _ - . - - . -

l

, , i

. l j

Table 1 (Cont'd)

MODERATOR TEMPERATURE COEFFICIENTS l Core Av Core Avg FWR Tmod ITG ITG M.c PLANT CYCLE Enrich surnap PPM (%) (F) MEAS CALC E4/F '

E 4/F E 4/F cc.g 5 3.42 24423 330 0 330 .l.110 1.050 0.030 3.42 24423 69 100 572 2.089 2.058 0.031 CC 2 5 l' ANO.2 9 3.98 28367 276 95 582 -2.251 2.296 0 045 WS ES.3 4 3.82 14074 1540 0 545 0.074 0.065 4.139 I WsEs.3 4 3.82 14211 1077 92 582 4.957 0.855 0.102 l WsES 3 4 3.82 25206 370 95 582 -2.114 -2.049 0.065  !

WSES.3 5 3.91 14898 1530 0 545 0.097 0.003 0.100  !

WSES3 5 3.91 15040 1066 91 582 0 912 0.913 0.001  !

W5ES 3 5 3.91 25907 404 93 582 -2.119 2.017 0.102 i

i i

i Fit Of (M-C) vs PPM (E-4/F)

Regression Output:  ;

Constant

-0.01356 Std Err of Y Est 0.07703 '

R Squared 0.31264 No. of Observations 71 Degrees of Freedom 69  ;

X CoefHcient(s) -9.13E-05 '

Std Err of Coef. 1.63E4)5 ,

K (71) = 1.987 K 41gina = 0.153 E-4/F s

D O

- 26*- ,

n

. CALCULATION OF CONF./ PREDICT. BANDS i 0F DISTRIBUTION OF (M-C) ITC ERRORS (E-4/F)

NUMBER OF PTS N= 69 N-2 = 67 X= reser X Move Y MEAS = Y-Yev = YCALC YCALC PREDICT YCALC YCALC PPM (5) a MC y MEAS Y CALC REstD CONFID CONFl .CONelo INTERV +rRED .PRED CC-2 44 0 4 57 GA3e e.lMS 4 0127 0.0427 eA299 e.0172 4 0425 0.1295 0.1169 4.1422

CC.2 44 0 4 57 0.000 8.0085 4 0127 e.6827 e.0299 0.0872 4.0425 0.1295 0.1169 4.1422
CC4 44 e 857 dest 8.0045 4 6827 4.M73 e.0 3 9 e.0872 4 0425 0.1295 0.1169 4.1422 CC4 44 e 4S7 4 Ale 8.e45 4 6827 4.0573 e. sapp 8.3872 4 0425 0.1295 0.18 # 4 1422 t CC4 80 000 4 03 ANI SA735 4 4t51 4 Alm e.e33 eAl42 4.0M4 0.12M e.1143 4.1445 CC 1 275 97 736 4.m5 S.tes 4.eMe SAsse e.es47 4 eles d esp 6 0.1285 0.opM A 1633 sat $ 4 8309 eAppp SA347 4Alet 4. esp 6 e.1285 0.0935 .e.1634 AMo4 273 95 4 25 G.MBS ST.L-2 200 tm 4 28 AM G.0N5 4 e353 4AS27 e.eM6 4 0187 4.0999 0. 284 0.0931' 4 1637 ST.L-2 283 let 4 88 0.e68 S.Ied$ 4 0356 e.eB06 0.0H6 A elle r edel 0.1284 0.0928 4 1640 CC 1 285 97 784 4.063 e. MIS 4A358 4 572 0.0345 4 0t13 40E03 e.1284 0.0926 A t642
CC-2 297 97 les 4 038 SA735 4039 0.00N e.8343 4.0127 r est2 0.1284 0.0914 -0.1653 orro 30s 92 .w2 8.ees e.apF5 r essi e.13t
a.e:40 .e.014 4 0621 0.12:3 0.0002 41664 CC-1 330 97 -det e.089 0.1235 4 e302 0.e572 0.eNe 40142 4 0622 0.1283 0 0901 A4665 -4 325 92 4M 0.005 8.1925 4.0386 S.12M 4. 5 37 4 e140 4 0633 0.1283 0.0se6 4.1679 m OrrD i

M CC-2 33e e 478 4e30 S.sMS 4 0008 e.elet GAIM 4 8165 40637 0.1282 0.0881 .e.16s3 E l

4 4.24 4W95 Astet 4 1639 0.etM 4 0865 4.0637 e.1282 0.0881 4 1683 3 i PV-3 330 les 471 e CC-2 330 e 471 e.000 e.8445 4 0008 0.4808 SAtM 4 0965 4 0637 0.1282 0.0881 4.1683 b3 i WSEs-3 316 95 4 31 4.885 4AISS 4.0439 Amtl SAI28 4 0212 4 0567 e.1281 0.0842 4 1720 404 93 N7 435 0.6 4 4072 4.e548 eAtti 4 0251 4 0003 0.120e 0.0008 .e.1752 l WSes-3

. rY 3 4t to see e.est e.e35 4ess e. eses e.asse team a sses e.12s0 e.tect 4.175:

4 rV4 455 les -546 4 882 sat 2$ 40521 tend e.etti t este 4 0732 0.1278 0.0757 4.1799 est les 587 4 887 4Ast5 4 e549 4esat Sages 4 e343 4 8755 e.1277 0.0728 4 1826 i tv-l orpp 788 as 4 33 4t23 4 Ale 5 4 8828 4.eIN e.0164 4.0657 4 0985 e1271 0.0450 42002 782 let 4 89 8.58 e.3355 40835 0.8845 SAlas 4 8672 4 0097 0.1271 0.04M 42106 ST-L-2 e 196 4 238 4 4155 40B57 4 8343 4A168 4096 4 8017 e.1278 0.0414 42127 PV-3 805 i 4.368 4A565 " 4 8875 4 8735 SAls 4 8716 AleM e.1271 0.0396 0.2145 PV.I 334 0 377

.lM 4 885 0A095 4 GEM SAaB6 S.elN 4 8717 4.1035 0.1278 0.0395 4 2146 tv-l 825 23 PV-1 893 0 3e8 4.263 4 1585 4.8941 ANS e.0855 48787 Alep6 0.1270 0.0329 4 2211 4 289 4 1845 4 8088 4 1122 0.6852 4 8986 4.1220 e.1270 0.0202 42337 i rY-l 1825 e 24 0.019s 4.2341 rV-2 1839 leB 20 4 885 4 0005 4 8872 ASTM e.0152 4 8p30 4 1223 0.1270

  1. 4GES e.e365 4 1092 0.0482 4.el52 4 0939 4 1244 e.1270 0 0178 0.2361 OrrD leSO 91 0.0173 4.2366 1055 0 54 4 090 0.0845 4 1096 OAlt6 0.0152 4 0044 4.1249 0.1270 I PV-1
  • 65 e.001 0.1455 .e.lle7 e.lli? 0.0153 4 0954 4 1240 0.1270 0.0163 42377 WSES-3 1066 98 76 -0.102 0 OOD 4.1118 0.0008 e.el53 4 0964 4 1271 0.1270 0.0152 4 2381 l WSES-3 1077 92 0.120 4.0lfi 0.1152 0.0048 0.0155 4097 4 1307 0.1270 0018 0 2422 OrrD lil3 92 112 0 0106 '02435 PV.2 l126 100 125 4 000 0.0145 4 1165 0.0265 0.0t55 4.1000 0.1320 0.1270 i

er-- -

e w- -m .wie-. -,*mvv iwt-'y-.', -ee'ei-~.-c-e-.:W..w-r re-* - - ----..*w- -e ttw wi-1.----'s +we -t-t-eptreva-.-+-tee-'e*+=etM*wis*-v+hw-*a--1Vs-e4.Mtw e-e+**a-----'e* e+-e.---- -W al-

PV.2 1840 0 139 -0.173 4.0685 4 1178 4 0552 0.0156 0.1022 4 1334 0.1270 0 0092 4 2448 PV.I 1810 100 160 0.008 0.1125 4 1207 0.1287 0.0158 0.1048 4.lM5 0.1210 0.0064 4 2477 OPPD 1878 0 177 4 125 4.0385 A l214 400M 0.0159 4 1055 4 374 0.1274 0.0056 -0 2485 PV 8 IIM e 177 4.178 4 0735 4.1214 4.0546 0.01M 4.1055 4.1374 0.1271 0.0056 4 2485 PV 3 1200 0 199 4.192 4 8875 4.12M 4.0884 0.0161 4 1075 4 1396 0.1271 0.0035 4 2506 i SONOS 1208 8 307 4.105 4.8005 4.1243 0.0193 0.0162 4 1082 4.1403 0.1271 0 0028 4 2514 PV-2 1385 4 384 4 I58 4 8535 4.1346 4.8234 0.0874 4.1172 4 1520 0.1272 -0 0013 -0 2615 ,

CC I 1330 4 339 - 4.152 4.8475 4.13de 4.9840 0.017*. 4.1185 4.15M 0.1273 -o 0088 -0.2633

+

CC-2 1309 8 m 4 832 4.8275 4.8417 S.0097 0. elm 4.1233 A lcol 0.1274 0 0143 0.269 CC-l 1398 9 NF 4 123 4.8885 4.le S. elm e.0185 -4.1340 4.1618 0.12M 0.015I 4 2700 PV-l 14M S 437 4.183 4 5185 4.1464 4.0386 0.0892 4 1272 4 1656 0.'.275 4 0189 -0.2739 i PV.1 1452 9 458 4 128 4.W35 4.1477 0.0997 0.0lM 4.1283 41672 0.1275 -0 0202 0.2753 '

PV-l 1462 8 468 4 158 4 8535 4 8487 4 8893 8. elm 4.1291 4 1683 0.12M 0.0211 02763 PV-3 5479 4 418 4 157 AM25 4.1583 4 8867 0.0199 4 8304 4 I102 0.12M 4.0227 0 2779 CC-2 8496 S SS 4 887 4 525 4 I538 4.83SS 0.0302 4.1388 4 8721 0.1277 0.0243 -0.2796 OPPD 1537 9 NS 4 893 46 4.1530 4.0000 S.8304 4.1326 Al7M 0.1277 4 0253 -0.2007 WSES-3 1538 6 539 480B 0.0005 4.85S2 0.08S2 e.e308 4.I344 4 1760 0.1278 4 0275 0.2830

WSEE-3 1548 9 539 AIN 4.GM5 4.1562 0.0872 S.stle 4 1352 4.1771 0.1278 4 0284 4 2840 30180s 1543 9 Set Als 4 eles 4 8504 4.0M6 0.0214 4.1370 4 1798 0.1279 -0 0305 4 2562 OPPD 1563 8 SE2 4 196 ASIS 4.1584 403M e.0284 4.1310 -0.1798 0.1279 4 0305 -0 2s62 j PV-3 1586 0 585 4 843 4.8385 4 3406 e. elm e.8218 4.1387 4 1834 0.1279 4 0326 4.2885 g y

PV-2 1595 0 594 4 144 4 8305 4.1644 S.9IM 0.8230 4.1394 4.1835 0.1280 4 0335 -0 2894

  • CC.I 1400 0 599 4.073 0.0315 4 8619 0.8809 0.8221 4.1398 4 1840 0.1280 4 0339 42899 sONOS 1615 0 654 4.153 4.0085 4.1634 0.9004 0.0224 4.1409 4 1858 0.I280 4.0353 4 2914 N y ^ '

m PV-1 1653 0 6S2 4 133 4 8385 4.1410 0.8340 0.8232 4.14M 4 1902 0.1282 4 0388 4 2952 ST-l. 2 CC-1 1105 1735 0

0 104 7M AIG 4.251 4.8575 4 8475 4.17N AIMD 4.0100 4 8F78 e.e43 4.1477 0.lM3 0.RM9 41500 4.1998 0.1284 0.1285 404M 0 0464

-0 3004

-0.30 M h

3 PV-8 I?M e 738 4 823 -4.0185 4.1753 8.0523 0.0250 4.1503 42082 0.1285 -0 0468 4 3038 c+ ,

, PV-2 IMI e NS 4.154 4 4095 4 8755 0.8385 0.0250 - 4 1504 4 2005 0.1285 -0 0669 -0.3040 c2, CC l 1730 0 MD 4 157 A SSIS 4.lMS 9.4893 0.0252 4 1588 4 2015 0.1286 4 0478 4 3049 i ST-8.-2 1784 0 783 4.153 4.0005 48796 0.W86 e.8259 8.15M 4.2055 0.I287 4.0$0s 0.3083 308108 1798 8 197 4.300 4. 5 85 Alte 4.8308 0.8262 4.1547 4 3sF2 0.1288 4 0522 4 3097 re -2 8888 8 888 4.lM 4.835 4 3812 8.85F2 8.8363 4 8549 4 3075 0.1288 -0 0524 0.3100 h

6 A

Table 3 MODERATOR TEMPERATURE STATISTICS l l

Regression of (M-C) i PLANT Enr. PPM Power (M-C) vs. Enrichment and PPM l (w/o) (E-4)

CC-2 3.42 44 0 0.030 Regression Output:

CC-2 3.42 44 0 0.000 Constant -0.2712 '

CC-2 3.42 44 0 -0.060 Std Err of Y Est . 0.0572 CC-2 3.42 44 0 -0.070 R Squared - 0.5395 ,

3.42 69 100 -0.031 No. of Observations 69 CC-2 66 CC-1 3.77 275 97 0.005 Degrees of Freedom  :

ANO-2 3.98 276 95 0.045 Enricn. PPM ] '

ST-L-2 3.65 280 100 -0.088 X Coefficient (s) 0.075406 -0.0001046 3.85 283 100 0.081 Std Err of Coef. 0.019126 0.0000124 ST-L-2 l CC-1 3.95 285 97 -0.063 '

CC-2 3.93 297 97 -0.031 OPPD 3.73 309 92 0.093 CC-1 3.81 310 97 0.019 OPPD 3.72 325 92 0.088  ;

CC-2 3.42 330 0 -0.030 l PV-3 3.47 330 100 -0.204 CC-2 3.42 330 0 0.040 WSES-3 3.82 370 96 -0.006 WSES-3 3.91 404 93 4.102  :

PV-3 3.26 411 99 -0.011 PV-2 3.73 455 100 -4.002 -

PV-1 3.68 484 100 -0.107 88 -0.123  ;

OPPD 3.6 768 4 ST-L-2 3.85 782 100 0.031 PV-3 2.65 805 0 -0.220 )

PV-1 2.65 824 0 -0.161 l l

PV-1 2.65 825 23 -0.008 0 -0.283 I PV-1 2.65 893 i

PV-1 2.65 1025 0 -0.219 '

PV-2 3.78 1029 100 -0.105 OFPD 3.73 1060 91 -0.088 ,

J PV-1 2.65 1088 0 -0.000 WSES-3 3.91 1006 91 0.001 WSES-3 3.82 1077 92 -0.102 OPPD 3.72 1113 92 -0.120 PV-2 3.73 1130 100 -0.000 PV-2 3.32 1140 0 -0.173 PV-1 3.08 1170 100 0.000 OPPD 3.8 1178 0 -0.1l15 PV-1 3.15 1178 0 -4.178 PV-3 3.28 1200 0 -0.192 SONGS 2 3.95 1200 0 -0.105

.. PV-2 3.78 1315 0 -0.158 CC-1 3.81 1830 0 -4.152 CC-2 4.15 1300 0 -0.132 CC-1 3.77 1890 0 -0.123 PV-1 3.66 1438 0 -0.183 PV-2 3.32 1452 0 -0.128 PV-1 3.15 1482 0 -0.158 PV-3 3.28 1479 0 -0.157

. CC-2 3.93 1498 0 -0.187 OPPD 3.73 1507 0 -0.193

~

Table 3 (Cont'd)

WSES-3 3.91 1530 0 -0.100 1 WSES-3 3.82 1540 0 -0.139 SONGS 2 3.75 1563 0 -0.159 -

OPPD 3.72 1563 0 -0.196 PV-3. 3.61 1586 0 -0.143 PV-2 3.76 1596 0 -0.144 ,

CC-1 3.81 1600 0 -0.073 SONGS 2 3.95 1615 0 -0.153 PV-1 3.66 1653 0 -0.133 ST-L-2 3.65 1705 '0 -0.162 CC-1 3.fr5 1735 0 -0.252 PV-1 3.66 1739 0 -0.123 PV-2 3.73 1741 0 -0.154 CC-1 3.95 1750 0 -0.157 '

S7-L-2 3.85 1784 0 -0.153 SONGS 2 3.75 1798 0 -0.201 CC-2 4.15 1801 0 -0.174 8%

f 1

i i

r

. i 30 .  !

a

Tabla 4 1

NORMALITY TEST CHI SOUARE TEST N= 69 SORTED BINS Xi Observed Expected (0-E)^2/E RESID. Distrib Distrib (E-4/F) from to O E ,

-0.160 - mf -0.200 0 0.069 0.0690 1

-0.098 -0.200 -0.130 1 0.759 0.0765 ,

-0.097 -0.130 -0.060 7 9.315 0.5753 J

-0.090 -0.060 -0.045 4 4.692 0.1021  !

-0.083 -0.045 -0.035 8 3.795 4.6593 l

-0.064 -0.035 -0.025 6 4.278 0.6931 i

-0.063 -0.025 -0.010 5 6.762 0.4591 l

-0.061 -0.010 0.010 7 9.680 0.7325 l

-0.060 0.010 0.020 8 4.554 2.6078

-0.056 0.020 0.030 4 4.416 0.0392

-0.052 0.030 0.050 7 7.590 0.0459 i

-0.045 0.050 0.100 9 10.350 0.1781 l

-0.045 0.100 0.180 3 2.691 0.0355

-0.043 0.180 + int 0 0.069 0.0690

-0.043

-0.042 SUM 10.340

-0.042 CHI square (11) = 21.290

-0.041 .

-0.040 PI =

-0.037 Zi=XIIS FI F1-F(5-1) i

-0.033 -3.4945 0.001 0.001

-0.033 -2.2714 0.012 0.011

-0.029 -1.0483 0.147 0.135 '

-0.028 -4.7883 0.215 0.068

-0.027 -0.6115 0.270 0.065 ,

-0 025 -0.4388 0.332 0.082 ,,

-0.024 -0.1747 0.430 0.000

-0.021 0.1747 0.570 0.140

-0.013 0.3496 0.634 0.000

-0.011 0.5248 0.700 0.084

-0.011 0.8738 0.810 0.110

-0.007 1.7472 0.960 0.160

-0.006 3.1480 0.999 0.039

-0.000 l

-0.008

-0.003 CH1'2 > SUM

-0.001 CHl*2 Test passes  !

0.006 0.010 CHM (k-1-2,alphalt) = 21.92 0.011 k = 14 0.012 Since mean and variance were eselmated.

0.014 we must remove 2 degrees of freedom 0.018 0.018 F = cummutative standardized ,

0.018 normal detribution 0.018 Ref.48, page 228 0.021 S = 0.0572 from Table 3 0.022

- 31 -

~

Table 4 (Cent'd)  :

0.023 0.029 0.032 Sorted Residuals 0.035 (Cont'd) 0.035 0.038 0.045 0.045 0.048 0.054 0.057 0.071 0.073  ;

0.078 0.088 0.089 .

0.092 0.094 '

0.113 O.115 0.128 m

e l'

6

- 32 -

t

Table 5 l

\

l KOLMOGOROV - SMIRNOV GOODNESS OF FIT TEST Residuals i Sn(ti) Sn(ti-1) zi-tilstd Fi ABS ABSi ti (Fi-Si) (Fi-Si-1)

-0.160 1 0.01449 0.00000 -2.795 0.0030 0.01149 0.00300

-0.098 2 0.02899 0.01449 -1.716 0.0427 0.01371 0.02821

-0.097 3 0.04348 0.02899 -1.698 0.0446 0.00112 0.01561

-0.090 4 0.05797 -0.04348 -1.567 0.0590 0.00103 0.01552

-0.083 5 0.07246 0.05797 -1.457 0.0730 0.00054 0.01503 i

1

-0.064 6 0.08696 0.07246 -1.126 0.1310 0.04404 0.05854

-0.063 7 0.10145 0.0869$ -1.097 0.1360 0.03455 0.04904 i

-0.061 8 0.11594 0.10145 -1.069 0.1420 0.02606 0.04055 1

-0.060 9 0.13043 0.11594 -1.048 0.1470 0.01657 0.03106

-0.058 10 0.14493 0.13043 -0.973 0.1660 0.02107 0.03557

-0.052 11 0.15942 0.14493 -0.911 0.1810 0.02154 0.03607

-0.045 12 0.17391 0.15942 -0.794 0.2150 0.04100 0.05558

-0.045 13 0.18841 0.17391 -4.778 0.2100 0.02959 0.04409 l

-0.043 14 0.20290 0.18841 -0.755 0.2250 0.02210 0.03659 l

-0.043 15 0.21739 0.20290 -0.750 0.2280 0.00881 0.02310

-0.042 16 0.23188 0.21739 -4.738  !

0.2310 0.00088 0.01361  !

-0.042 17 0.24838 'O.23188 -0.731 0.2320 0.01438 0.00012 l

-0.041 18 0.20087 0.24838 -0.718 0.2300 0.02487 0.01038

-0.040 19 0.27538 0.28087 -4.708 0.2410 0.03438 0.01987

-0.037 20 0.20008 0.27538 -0.853 0.2550 0.03488 0.02036

-0.033 21 0.30488 0.28908 -0.575 0.2830 0.02135 0.00686

-0.033 22 0.31884 0.30438 -0.573 0.2840 0.03484 0.02035

-0.029 23 0.33333 0.31884 4.508 0.3000 0.02733 0.01284

-4.028 24 0.34783 0.33333 -0.497 0.3100 0.03783 0.02333

-0.0Y? 25 0.38332 0.34783 -0.478 0.3180 0.04832 0.03183

-0.03 28 0.37801 0.38232 -0.439 0.3300 0.04881 0.03232

-0.024 27 0.38130 0.37881 -0.428 0.3340 0.05730 0.04281

-0.021 28 0.40800 0.30130 -0.388 0.3500 0.04900 0.03530

. -0.013 29 0.43029 0.40500 -0.225 0.4110 a 0.00929 0.00520

-0.011 30 0.43478 0.42029 -4.187 0.4300 0.00878 0.00571

-0.011 31 0.440 5 0.43478 -4.184 0.4200 0.02120 0.00678

-0.007 32 0.48877 0.44928 -0.124 0.4800 0.01377 0.00072

-0.008 33 0.47838 ~0.48377 -4.100 0.4570 0.02120 0.00677 -

-0.005 34 0.09378 0.47828 -0.093 0.4830 0.03078 0.01626

-4.003 35 0.867 5 0.48278 -4.080 0.4700 0.03125 0.01875

-0.002

  • 38 0.83174 0.50725 -0.038 0.4800 0.03874 0.02125

-0.001 '37 0.83033 0.52174 -0.010 0.4980 0.04023 0.02574 0.008 38 0.50073 0.53823 0.091 0.5300 0.01472 0.00023 0.010 39 0.88833 0.55072 0.177 0.5700 0.00478 0.01928 0.011 40 0.879F1 0.58622 0.184 0.5740 0.00871 0.00878 0.012 41 0.58430 0.57971 0.215 0.5000 0.00820 0.00629 0.014 42 0.00870 0.59420 0.253 0.8000 0.00870 0.00580 0.018 43 0.82318 0.80870 0.309 0.8200 0.00319 0.01130 ,

0.018 44 0.83708 0.82319 0.311 0.8220 0.01588 0.00119 '

O.018 45 0.85217 0.83788 0.312 0.8240 0.02817 0.01368 0.018 48 0.88887 0.85217 0.315 0.8250 0.04187 0.02717 0.021 47 0.88118 0.88867 0.361 0.8410 0.04014 0.02567 0.022 48 0.89585 0.88116 0.382 0.6500 0.04585 0.03116 ,

0.023 49 0.71014 0.69565 0.403 0.8570 0.05314 0.03865 i 0.029 50 0.72484 0.71014 0.500 0.6920 0.03284 0.01814 !

Table 5 (Cont'd) ,

9- 0,.

0.032 51 0.73913 0.72464 0.555 0.7100 0.02913 0.01464 l .

0.035 52 0.75362 0.73913 0.614 0.7310 0.02262 0.00813 0.035 53 0.76812 0.75362 0.617 0.7550 0.01312 0.00138 .

0,036 54 0.78261 0.76812 0.636 0.7586 0.02461 0.01012  !

0.045 55 0.79710 0.78261 0.781 0.7830 0.01410 0.00039 O.045 56 0.81159 0.79710 0.785 0.7850 0.02659 0.01210  !

0.048 57 0.82609 0.81159 0.836 0.7990 0.02709 0.01259 0.054 58 0.84058 0.82609 0.946 0.8280 0.01258 0.00191  ;

0.057 59 0.85507 0.84058 1.002 0.8420 _ 0.01307 0.00142 ,

0.071 60 0.86957 0.85507 1.248 0.8940 0.02443 0.03893 0.073 61 0.88406 0.86957 1.269 0.8980 0.01394 0.02843  !

1.367 0.9140 0.01545 0.02994 i 0.078 62 0.89855 0.88406 0.088 63 0.91304 0.89855 1.534 0.9380 0.02496 0.03945 i 0.089 64 0.92754 0.91304 1.552 0.9400 0.01246 0.02696 ,

0.092 65 0.94203 0.92754 1.602 0.9450 0.00297 0.01746  ;

0.094 66 0.95852 0.94203 1.636 0.9490 0.00752 0.00697 0.113 67 0.97101 0.95852 1.968 0.9750 0.00399 0.01848  ;

0.115 64 0.98561 0.97101 2.013 0.9780 0.00751 0.00699  ;

0.126 69 1.00000 0.98561 2.194 0.9880 0.01400 0.00049 1 Dmax = 0.05854 l

CRITICAL VALUES n>35 Dn = k/SQRT(N)

Alpha k On 0.15 1.14 0.137 0.10 1.22 0.147 l 0.05 1.38 0.184 l 0.01 1.83 0.198 _

p J 34 -

)

l I

' ^ ' ~

Table 6

' ~

l BARTLETT'S TEST FOR HOMOGENEITY OF VARIANCE Subsets by PPM Level l PPM RESID i nu Si'2 In(S*2) nu'in(S*2) nu'S*2 44 0.048 1 5 0.001727 -6.36120 -31.80601 0.00864 44 0.018 44 -C.042 44 -0.052 69 -0.011 275 0.021 2 12 0.006681 -5.01153 -60.13838 0.07993 276 0.045 280 -0.063 l 283 0.071 285 -0.060 ,

297 -0.025 300 O.115 310 0.035 325 0.113 330 0.018 330 -0.160 330 0.008  !

370 -0.043 3 5 0.002938 -5.03339 -29.10005 0.01464 404 -0.083 411 0.067 455 -0.048 484 4 081 708 -0.043 4 4 0.006801 -5.13001 -30.81003 0.03520 702 0.004 805 -0.004 824 -0.003 825 0.073 893 -0.000 1025 -0.040 5 12 0.003003 -5.54600 -48.86070 0.04484 1029 4 000 4 1050 0.032 1068 0.008 p1000 0.000 1077 -0.00s 1113 4 013 1128 0.018 1140 -

-0.033 1170 0.1M 1170 4M 1178 -0.021 1200 -0.041 4 11 0.001101 -4.01120 -74.03316 0.01212 1200 4 005 1315 -0.033 1330 -0.029 1300 -0.028 1300 0.010 1438 -0.037 1452 0.045 1442 0.029 1479 0.023

, 1498 -0.054

-35.

Table 6 (cant'd) 1507' -0.045 7 to " 0.001400 -6.57124 -65.71244 0.01<00 1530 0 036  ;

1540 0.005  !

1563 -0.007 1563 -0.042 1586 0 022 ,

i395 0.011 1 1E% 0 078 l 1615 -0.011 j 1653 0.035 ,

0,01610 l 1705 0.012 8 8 0.002012 -6.20850 -49.66800 1735 -0.097 1739 0.054 1741 0.018 1750 -0.001 1784 0.014 1798 10.024 1801 -0.027 Sp*2 =

Sum = 69 0.003298 -408.7817 0.2275 CHisquars = 13.80 CHiaq crit 16.01

)

e

- 36 -

Table 7 l

. . i BARTLETT'S TEST vs. PLANT Test of Poolability between Plants Plant Resid i nu Si 2 In($*2) nu'in(Si'2) nu'Si'2 CC-1 0.021 1 8 0.003078 -5.78355 -46.26842 0.02462 CC-1 -0.029 CC-1 0.010 CC-1 -0.097 CC-1 0.035 CC-1 0.078 CC-1 -0.080 CC-1 -0.001 CC-2 -0.025 2 11 0.002008 -8.21085 -68.31719 0.02200 CC-2 -0.058 CC-2 0'.088 CC-2 -0.027 CC-2 -0.042 CC-2 -0.062 CC-2 -0.028 CC-2 0.048 CC-2 0.018 CC-2 -0.011 .

CC-2 0.018 OPPO -0.013 3 8 0.004383 -5.43011 -43.44082 0.03808 OPPO -0.048 OPPO 0.113 OPPO -0.042 OPPO 0.115 OPPO -0.043 OPPO -0.002 OPPO 0.032 PV-1 0.002 4 12 0.004804 -5.40270 -84.83234 0.05408 l PV-1 -0.037 PV-1 4 040 PV-1 -0.081 1 PV-1 0.084 PV-1 0.128 -

PV-1

]

-0.003 i PV-1

  • 0.038 PV-1 -0.088 PV-1 0,05 PV-1 0.073 PV-1 -0.021 PV-2 -0.038 8 8 0.001922 -8.25441 -50,03420 0.01538 PV-2 -0.033 PV-2 -0.048 PV-2 0.018 PV-2 0.018 PV-2 0.011 PV-2 -0.000 PV-2 0.048 PV-3 -0.180 8 8 0.006259 -5.0T380 -30.44280 0.03755 PV-3 0.022 PV-3 0.023 l

l

y

~ Table 7 (Cont'd)  ;'

I PV-3 -0.041 PV-3 -0.064 PV-3 0.057 SONGS 2 -0.007 7 4 0 000076 -9 49053 -37.96210 0.00030 SONGS 2 -0.011 SONGS 2 -0.005 SONGS 2 -0.024 j ST-L-2 0.071 8 5 0.003711 -5.59636 -27.98180 0.01856 ST-L-2 0.012 ST-L-2 0.014 ST-L-2 -0.063 ST-L-2 0.094 WSES-3 -0.043 9 6 0.003621 -5.62090 -33.72537 0.02173 WSES-3 -0.083 WSES-3 0.036 WSES-3 0.006 WSES-3 -0.006 WSES-3 0.089 Sp'2 =

Sum = 68 0.003373 -403.0062 0.2293 CHisquare = 15.12 CHisq crit 17.53 e

h

}

e 4

b

. . f Appendix A.

Power Coefficient Bias and Uncertaintv l 1

The analysis of measured moderator temperature coefficients obtained with the power trade technique requires the. knowledge of the best estimate power coefficient at the time of the test. To define a bias term which must be  ;

combined with the calculated power coefficient to obtain the best estimate, a data base of power coefficient was analyzed. This data base contains 17 points from 11 cycles, and is given in Table A.I. A linear regression of the difference  ;

between measured and calculated coefficients vs. power level results in a bias equal to: l AP.C. - M-C = 1.186E 2.983E-7

  • P(%) l l

l 84 e

a

- A.1 -

I

. , l l

l l

Table A.1 i

POWER COEFFICIENT BIAS & UNCERTAINTY UNIT / POWER COEFFICIENT CYCLE % POWER DelRho/%P (M-C) (M-C)/C CALC MEAS (%)

BGE .. , 97 -7.870E-05 -9.960E-05 -2.090E-05 26.56 BGE1,9 97 -7.590E-05 -9.550E-05 -1.960E-05 25.82 BGE 1,10 96 -8.056E-05 -9.950E-05 -1.894E-05 23.51 BGE 11,8 95 -7.913E-05 -9.480E-05 -1.587E-05 19.81 BGE 11,8 97 -8.200E-05 -1.126E-04 -3.060E-05 37.32 PV I,1 20 -1.211 E-04 -1.180E-04 3.141E-06 -2.59 PVl.1 47 -1.053E-04 -1.045E-04 8.299E-07 -0.79 PV l.1 80 -9.179E-05 -9.860E-05 -4.811 E-08 7.42 PVI,1 97 -6.256E-05 -9.210E-05 -9.544E-08 11.56 PV11,1 48 -1.062E-04 -1.070E-04 -8.000E-07 0.75 PV lli,1 98 -G.804E-05 -9.250E-05 - 4.457E-06 5.06 St-L ll.5 98 -7.297E-05 -8.775E-45 -1.478E-05 20.25 OPPD 12 88 -8.890E-05 -1.135E-04 -2.460E-05 27.67 OPPD 12 93 -9.350E-05 -1.164E-04 -2.290E-05 24.49 OPPD 13 92 -8.380E-05 -9.630E-05 -1.250E-05 14.92 OPPD 13 92 -4.800E-05 -9.130E-05 -3.300E-06 3.75 OPPD 14 88 -9.870E-05 -1.200E-04 -2.130E-06 21.58 i

STATISTICS Pit of(M-C) vs. Power Reposelon Output:

Constant 1.186E-06 Std Err of Y Est 7.499E-06 R Squared 4.664E-01 No. of Observellons 17 Depees of Freedoen 15 K

  • Sigma 1.924E-05 x coemalern(s) -2.963E-07 Std Err of Coef. 8.239E-08

- A.2 -

--n-, ,

Appendix 8.

Data Reduction of At-Power Moderator Temoerature Coefficients The following Tables present the data reduction of at-power coeffi-cients, as described in Section IV.

e s

- B.1 -

'"t l ANO2 CYCLE 9 328 EFPD,276 PPM CALCULATED ITC,. POWER COEFF Taeg- Tavs Tim Power Tavg asect Tim Fined Fit of Calculated TIC, Pwr Coeff Fil of Tavg vs. Tin,Pwr SW 92 575.05 0.004864 26.98 575.01 Ragsessmen Oespet: Regresswa Output:

557 92 582.87 0.082385 25.87 582.87 P- 0.14383 Constaat 3.95542 5# M 577.13 0.00336 28.13 577.83 See Ber of Y Est 0.00003 Sed Err of Y Est 0.01000 557 M 584.97 0.808380 27.M 584.M R Sepassed 0.99984 R Sqnered 1.00000 90s. af Olisessessoas 4 No. of Observations 4 Depees of Freedoen 1 Degrees of Freedoes I X Coeniciese(s) -8.284E-05 -2.296E-04 x Caerlicica:(s) 0.981 0.35167 Sad Err of Cost. 4.452E-06 3.286E-06 Sad Err of Coer. 0.001 0.00167 i

Pwr Coeff DE l aest Est. Pwr Coe -9.7868-05 i l

MEASURED ITC, PWR COEFF Dens Tim BDT Test Tavs Tin + Test BDT Sec Timoest Dehe Dehe Deise Por Cet /2 Teve Pwr React Pwr Fined #2 552.48 M.84 403.87 579.43 STlLIS M.84 95.27 Regression Output: ,

550,23 97.78 403.31 578.23 576.77 97.75 M.45 -1.# -1.20 2.87 2.81E-04 Constant 0.00000t 555J6 98.40 404.86 588.04 580.88 98.40 98.32 3.54 2.88 -6.38 -6.18E-04 Sad Err of Y Est 0.000023 550.08 M.83 403.30 578.20 576.40 M.e3 M.75 -3.63 -2.85 6.63 6.# E-04 R Squared 0.9988R 98.73 404.78 580.99 579.99 98.73 91.81 3.# 2.80 -6.30 -6.17E-04 No. of Observations Ig' 555.19 550.11j p " 403.38 578.26 576.78 M.12 M.88 -3.47 -2.74 6.39 6.25E-04 Degrees of Freedose 0 '

555.17 * ' !s 404.72 500.97 579.95 91.71 91.71 3.43 2.71 -6.41 -6.27E-04 550.10 97.93 603.32 578.18 576.71 97.93 98.66 -3.43 -2.79 6.22 6.09E-04 X Coefficient (s) -2.251E-04 = ITC '

$55.27 91.67 604.93 581.05 580.10 91.67 91.89 3.59 2.87 -6.26 -6.13E-04 StJ Err of Coef. 2.716E-06  !

i I

BG&E I CYCLE 8 ITC TEST 310 PPM 10176 MWD /T c=wanw rrC, Pwr Cecif .

F(5) Tsand Ranct 97 566.93 0.002268 Calc.!TC = -I.801E-04 97 572.77 0.001216 Calc.

93 570.27 0.001981 Pwr Cook = -7.866E-05 93 572.77 0.001531 CALCULATED BANK 5 WORTH BANK 5 BANK 5 REACT BANK 5 BANK 5 Fit of Bank 5 Worth 5 insert in wthdr winuir*2 wtluir*3 (5) ASI Tave WORTH WORTil

(%) FrtTED Regression Output:

0.00 136.70 18687 2554498 0.2630 -0.024 569.2 0.0000 Constant 0.35530 2.56 133.20 17742 2363292 0.2579 -0.020 569.2 -0.0048 Sad Err of Y Est 0.00034 5.12 129.70 16822 2181874 0.2497 -4.013 569.4 -0.0126 -0.0124 R Squared 0.99996 7.68 126.20 15927 2009986 0.2388 -0.004 569.5 -0.0230 -0.0233 No. of Observations 7 10.24 122.70 15056 1847371 0.2260 0.006 569.6 -0.0343 -0.0344 Degrees of Freedoni 3 1424 117.23 13744 1611239 0.2079 0.021 569.9 -0.0523 -0.0522 20.00 109.36 11960 1307903 0.1881 0.043 570.2 -0.0778 -0.0776 X Coefficient (s) -1.691 E-02 1.717E-04 -4.873 E-03 25.76 101.49 10299 1045248 0.1565 0.061 570.4 -0.1012 -0.1015 Sid Err of Coef. 5.032E-03 4.481E-05 1.323E-05 30.00 95.69 9157 876193 0.1393 ,0.073 570.6 -0.1175 -0.1174 100.00 0.00 0 0 -0.0691 -0.010 569.4 -0.3155

MEASUREMENTS BG&E I CYCLE 8 SWING BK5 Moss Mens Mees BDT laserted ITC TEST 310 PPM in weber Tim Tout ASI Pwr Worth 10176 MWD /T 0 106.50 545.65 592.27 97.30 -0.000865 1 112.50 546.37 592.6C M.32 -0.000675 2 100.50 544.20 590.95 97.50 -0.001043 3 114.00 547.32 593.52 97.02 -0.000627 4 99.75 544.32 590.95 97.02 -0.001065 5 114.00 546.10 593.02 M.57 -0.000627 6 99.75 543.85 590.30 96.65 -0.001065

.I 7 117.00 546.80 592.87 96.42 -0.000529 8 113.25 545.42 598.97 97.07 -0.000651 9 113.25 544.45 St.40 97.05 -0.000651 10 113.25 545.M 9 8.97 95.05 -0.000658 11 113.25 544.30 St.22 97.77 -0.000651 12 113.25 545.05 9 8.72 95.60 -0.000651 13 113.25 543.97 500.87 97.70 -0.000651 14 113.25 545.30 591.27 95.97 -0.000651 15 113.25 543.67 590.60 97.52 -0.000651 '

16 113.25 544.05 590.60 96.95 -0.000651 Best Faan= Power CoefEcient: 0.00 E-41%P Use 0.0 for 2-D 6t, best essmen. value for 1-D fit DELTA DELTA Irta ofITC and Power Coeff SWINGS DELTA DELTA REACT DELTA REACT (E-4)

Teve FWR sit 5 XENON Tsent Regression Output:

i.e e.3es e. sue i.uss -i.uss Conssent -0.242 2-1 ~- l.958 1.13 -3.600 3.6ee See Err of Y Est - 0.605 38 2.847 0.400 4.165 4.165 R Squared 0.966

  • 4.377 No. of Observations 14.000 43 -2.784 0.000 -4.377 54 2.3M 0.4Se 4.377 4.377 Degrees of Freedoma 11.000 65 2.808 0.000 4.377 4.377 5.352 -5.352 X Coefficiens(s) -i . ist -u.yyo 74 2.758 0.230 S.7 -1.938 0.650 -I.219 1.219 Se4 Err of Coef. O.103 0.I46 0.798 0.700 0.000 0.000 ITC Pwr Coeff 94 10 9 1.004 -2.000 0.000 0.000

-1.255 8.938 0.000 0.000 11 10 1.063 2.170 0.000 0.000 12 11 13 12 .l.416 2.100 0.000 0.000 14 13 0 897 -1.730 0.000 0.000 15 14 .l.193 1.550 0 000 0.000 10 15 0.197 0 570 0 000 0 000

~

~

BG&E I CYCLE 9 ITC TEST 275 PPM 8247 MWD /T l t'=tr=leaed nC, Per Caef .

F(5) Tand Rasst n Sm.99 0.00sn cele.rre- -I.810s-04 w 572.n 0.misti cels.

93 510.32 0.0emse r.,ceear- -7.592s-05 93 Sn.e 0.00tt:5 .

'l CALCULATED BANK 5 WORTH

BANK 5 BANK 5 BBACT BANK 5 BANK 5 Fit of Bank 5 Worth l D insert in wober wehdr*2 weber *3 (5) ASE Teve WORTH WORTH l (5) FrtTED Regression Owpm.

0.00 136.70 18687 2554498 0.33G -0.025 59.2 0.0000 ca .e 0.422825798 2.56 133.20 17742 23G292 0.3309 -0.030 540.2 -4.0050 Sed Err of Y Est 0.000392499 5.12 129.10 16822 2888874 0.3223 -0.083 569.4 -0.0132 -0.0130 R Squared 0.999956917 7.68 126.20 15927 2009906 0.31 9 -0.004 549.5 -0.0240 -0.0243 No. of Observessoas '7.

10.24 122.10 15056 1847371 0.2904 0.007 549.7 -0.0359 -0.0361 Degrees of Freedoen 3 i 14.24 187.23 13744 1688239 0.27 0 0.023 549.9 -0.0550 -0.0548 l

20.00 109.36 81960 1307903 0.2500 0.046 510.2 -0.08!9 -0.0816 X Coeniciese(s) - 1.912E-02 1.926E-04 -5.48 t E-01 0.2348 0.065 510.5 -0.8065 -0.1000 Sed Err of Coef. 5.746E-03 5.117E-05 1.511E-0:

25.M lot.e 18839 1645348 30.00 95. 9 9857 SMl93 0.20s0 ,0.079 510.7 -0.1237 -0.1235 100.00 0.00 0 0 -0.0008 -0.080 549.4 -0.3278

o MEASUREMENT soaE I CYCLE 9 awuvu un a aseos asses aseos sua sessen s eu ITC TEST 275 PPM '

in weber Teve Test Power Pwr WORTH 8247 MWD /T 4

(MW) (A)  :

u sus.uu aes.u enz a.m yi.us -v.uuusoe -

1 114.00 5 9 .53 2683.90 96.81 -0.000659

2 99.75 567.30 2623.30 97.00 -0.001121 1

3 115.50 5 8.74 2625.40 97.24 -0.000608

-0.001 21 4 99.75 567.16 2621.10 97.0s i 5 115.50 Sep.8L 2622.30 97.14 -0.000608 '

6 99.75 SG.13 2621.00 97.m -0.001 21

. 7 115.50 5 8 .75 2624.40 97.21 -0.000608 ,

8 102.00 568.50 2d24.40 M.2I -0.000062 9 108.00 568.82 2656.40 M.39 -4.000062 10 308.08 58.17 2592.20 96.01 -0.000062 II 808.00 567.99 2659.20 M.S -0.000062 12 108.00 5 9.40 2578.80 95.51 -0.000062 13 108.00 567.M 2656.80 M.40 -0.000062 14 108.00 500.">8 2579.40 95.53 -0.000062 15 108.00 567.92 2655.50 98.35 -0.000062 16 108.00 568.53 2626.50 97.28 -0.000062 Seat Esenes. Power Caeticaset: 0.00 E-41%P Use 0.0 for 2-D Et, best sessen. value for 1-D 61

~

DELTA DELTA Fit OfITC and Power Coeff

! SWINGS DELTA DELTA REACT DELTA REACT (E-4)

Teve PWR sit 5 XENON Toast Regressica Ouspw:  ;

-v s.43a -e.sau 4. usa -z.uea C* O.037  ;

2-1 -2.458 0.274 -4.688 4.618 Sed Err of Y Est 0.130 3-1 2.675 0.159 5.132 -5.132 R Squared 0.999 l 4-3 -2.675 -0.867 -5.132 5.132 No. of Observations 16.000  !

5-4 2.748 0.063 25.832 -5.132 Degrees of Freedose 13.000 6-5 -2.779 -0.067 -5.132 5.132  ;

7-6 2.717 0.133 5.132 -5.132 X Coef5cies (s) - .so) -u.yn 8-7 -3.296 0.000 -2.540 2.540 Sed Err of Coef. 0.019 0.021 i 9-8 -0.498 1.178 0.000 , 0.000 ITC Pwr Coeif 30-9 1.193 -2.378 0.000 0.000 10 -1.224 2.481 0.000 0.000 32-11 1.462 -2.978 0.000 0.000  :

13-12 -1.524 2.809 0.000 0.000 14-13 1.504 -2.867 0.000 0.000 15-14 -1.514 2.819 0.000 0.000 ,

16-15 0.633 -1.074 0.000 0.000 5

______ ______ ___._.______.___.a_ _ _ _ _ _ _ _ _ m __ __ _____._____ _ _ m_ _ _ _ . _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _______ . _ _ _ ,

BG&E II CYCLE 8 ITC TEST 297 PPM 14125 MWD /T calculased rrc, rwr cadr .

P(%) Tseod Rasct 97 567.01 0.000138 Calc.!TC = -1.779E-04 97 572.84 -0.000899 Calc.

93 570.35 -0.000128 Pwr Coef = -8.202E-05 93 572.84 -e.00057o CALCULATED BANK'S WORTH BANK 5 REACT ASI Tave BANK 5 BANK 5 Fit of Bank 5 Worth BANK 5 in wituir wiimir*2 wthdr 3 (%) WORTH WORTH 5 insert (5) FITTED Regression Output:

-0.025 569.1 0.0000 Constaat 0.458951077 0.00 136.70 18687 2554498 0.0657

-0.021 569.2 -0.0056 Sad Err of Y Est 0.000337930 2.56 133.20 17742 2363292 0.0601

-0.014 567.3 -0.0146 -0.0144 R Squared 0.999976969 5.12 129.70 16822 2181874 0.0511

-0.004 569.5 -0.0266 -0.0269 No. of Observations 7 7.68 126.20 15927 2009986 0.0391 0.0W 560.6 -0.0399 -0.0400 Degrees of Freedoin 3 10.24 122.70 15056 1847371 0.0258 13744 1611239 0.0041 0.024 569.9 -0.0616 -0.0614 14.24 117.23

-0.0276 0.044 570.2 -0.0933 -0.0931 X Coefficient (s) -2.232E-02 2.33 t E-04 -6.875E-0 20.00 109.36 11960 1307903

-0.0577 0.070 570.5 -0.1234 -0.1237 Sad Err of Coef. 4.947E-03 4.405E-05 1.30lE-f1 25.76 101.49 18299 1045248 876193 -0.W90 , 0.085 570.7 -0.1447 -0.1446 30.00 95.69 9157 0.00 0 0 -0.3370 -0.012 569.3 -0.4027 100.00

J .

l 1

MEASUREMENT BG&E 11 CYCLE 8 l SWING BK 5 Mene Mees Mens BDT laserted ITC TEST 297 PPM IN WTHDR Tis _

Tout ASI Pwr Worth 14125 MWDfr a sua.uu aga.eu sys.22 vi.us -v.vuisus .

I i14.00 547.25 593.15 97.37 -0.000744 2 M.75 544.32 590.40 97.25 -0.001302 3 114.00 547.35 593.32 97.12 -0.000744  ;

4 W.75 544.25 590.47 97.32 -0.001302  :

5 114.00 547.37 503.27 97.15 -0.000744 6 M.75 544.32 500.42 97.17 -0.001302 7 114.00 547.30 593.25 97.50 -0.000744 8 105.00 545.67 5D8.67 97.M -0.001103 ,

. 9 108.75 545.45 9 8.97 98.25 -0.000955 le 100.30 546.82 9 8.27 95.50 -0.001274 11 80s.75 545.30 9 8.95 98.60 -0.000955 12 100.50 545.97 9 8.30 95.65 -0.001274 13 108.75 545.45 392.02 98.25 -0.000955 14 100.50 546.00 2 1.40 95.77 -0.001274 15 105.00 545.65 98.65 97.32 -0.001 03 Best Esanen. Power CoeSicaset: 0.00 E-41WiP Use 0.0 for 2-D St. best assion. value for 1-D rd i DELTA DELTA Fit ofITC and Power Coeff-SWINGS DELTA DELTA REACT DELTA REACT (E-4)

Tave PWR Bit 5 XENON Total Regression Ouapua.

-v s.ra s.saw J.aaa -J. ass Consteet 0.030 2-1 -3.022 -0.130 -5.577 5.577 Sed Err of Y Est 0.158 3-1 ~3.845 -0.130 5.577 -5.577 R Sqeered 0.999 4-3 -3.145 0.200 -5.577 5.577 No. of Observations 15.000 5-4 3.149 -0.110
  • 5.577 -5.577 Degrees of Freedoen 12.000 6-5 -3.139 0.0?9 -5.577 5.577 7-6 2.985 0.330 5.577 -5.577 X Coefficione(s) - 1.u iu -i. zo 8-7 -I. del -0.430 -3.588 3.588 Sed Err of Coef. 0.020 0.024 9-8 0.043 1.180 1.400 -1.480 ITC Pwr Coeft 10-9 -0.050 -2.750 -3.192 3.192 11-10 -0.021 3.100 3.192 -3.192 12-11 0.011 -2.950 -3.192 3.192 13-12 0.106 2.600 3.192 -3.192

-0.037 -2.480 -3.192 3.192 .I 14-13 15-14 -0.053 1.550 1.712 -1.712 d

i i

OPPD CYCLE 12 ITC TEST 1050 PPM  ;

452 MWD /T . l PREDICTIONS j ITC and 5 Pwr Teod React Regression Output: l Power Coefficient 93.2 568.48 0.003903 Constaat 0.0376878 93.2 560.77 0.004257 Std Err of Y Est 0.0000082 89.0 567.29 0.004338 R Squared 0.9997761 89.0 559.57 0.004676 No. of Observations 4 Degrees of Freedove  !

Pwr Coef ITC X Coeffisient(s) -8.895 05 -4.48845 Std Err of Coef. 1.93E 06 1.07E 06 Rod 4-1 Ir.sertion Curve Rod 4-1 Rod 41 l Red 41 Rod 4-t .

5 taches REACT ASI Teve Wonk Wenh Fit of Rod 4-1 Worik INSERT WTHDR (5) (5) Fiend Regreamse Outpst.

0.03 128.00 0.4140 0.061 565.5 0.0000 Coenset -0.1079105 1.25 126.40 0.4133 4 060 565.5 0.0007 sed Err of Y Est 0.0004060 3.75 123.20 0.4116 4.059 565.5 A 0024 0.0017 R Squased 0.9998790 6.25 120.00 0.4092 4 057 565.5 A 0048 A00# No. of cheerveness 13 8.75 116.00 0.4063 4055 565.6 A 0077 4.0002 Degress of Freedom 9 12.03 112.64 0.4018 4 051 565.6 A 0122 4.0126 i 17.00 106cM 0.3944 A044 565.7 A0tM 4.0197 Xt* N d 3.7595 45 1.3615 05 5.118E 0 23.00 98.56 0.3855 4 000 565.8 4 0285 A0284 Se6 Ear of Cast. 1.5525 06 2.0135 06 8.223E 0 30.00 89.60 0.3747 A 033 565.9 0.0393 4 0388 37.00 80.44 0.3HS A039 SE0 40495 4.0893 43.00 72.M 0.3559 0.036 566.0 A0581 4 0501 50.00 64.00 0.3440 A025 546.0 0.0600 4.0000 57.00 55.04 0.331n 4 027 SEO 4.07M 4.0773 )

63.00 47.36 0.3297 A 030 565.9 0.0843 0.0844 70.00 38.40 0.3215 A035 545.9 0.0925 0.0922 MEASURRME 4TS delee.= E8 nas e.1 assesses d

SWINo inehes Mass PWR Wasch Teve WTHDR Tin (5) His Her (Have) Heat Tese(Hee 0 i t i13.04 540.37 93.18 4.0123er 535.35 Sm.15 567.3 80s.95 392.67 2 76.50 530.47 93.as 4.05e064 523 98 557.e $58.se St.as 5e4.43 3 113.31 540.67 93.19 4.011916 535.72 5 # .52 547.67 80s.32 592.M 4 76.18 530.00 93.33 4.054431 523.73 557.58 558.M Nt.43 584.25 5 113.5s 540.2 ft.e 4.011636 535.16 ses.M 567.0s 40s.35 392.M 6 113.22 539.e5 91.41 4.01313 SM.M 567.92 SE 43 St.0F $91.32 7 53.ft SN.85 E16 407RM5 SM.73 565.98 564.93 397.23 588.51 8 13.3 53s.a4 9t.t3 4 011916 SM.72 567.77 SEsa 400.s2 591.13 9 56.08 539.37 E36 4075442 SM.15 565.43 544.50 396.71 508.13 10 133.49 5 9.71 90.9F 4 011723 SM.54 567.55 S E 15 000.55 500.M BestEsema.PeuserCaefEmeme 0.00 E-4/SP Use 0.0 Asr 2-D At, best estia. value for 1-D fit Fsom Delta 7esscens Reast DELTA Fit ofITC and Peeper coeff SWINOS DELTA DELTA Ha66-1 DELTA REACT (54)

Teve PWR (54) XENON Tend Reyessies onepen:

21 9.3M 0.100 4.106 4.186 Commes A3 32 9.636 Asse 4.215 4.215 Sed Bar of Y Est 0.6 4-3 9.652 0.140 4.251 4.25i R Sqesse6 09 54 9.056 A710 4.230 4.200 No. af cheeressises 9.0 65 A645 1.210 0.030 0.036 Depens of Prendem 60 74 .t.457 5.250 4.657 6.657 87 1.342 4.910 6.667 4.667 X Cassisines(e) -0.m> - 1.1.

  • 94 .t.785 4.000 4 353 6.353 Sed Err of Cost. 0GH 0C 10-9 1.616 4.730 6.372 A372 ITC Pwr Coe

.OPPD CYCLE 12 . l ITC TEST 309 PPM 9691 MWD /T .

PREDICTIONS j ITC and  % Pwr Tanod React Regression Output:

Power 93.2 569.35 0.003342 Constant 0.114786026 Coefficient 93.2 56i.54 0.004764 Std Err of Y Est 0.000012902 89.0 567.99 0.003993 R Square 4 0 999930540 39.0 560.17 0.005391 No. of Observations 4 Degrees of Freedom i Pwr Coef ITC X Cosmesset(s) 9.35E 05 1.004E44 See Err of Coef. 3.12E 06 1.65lE 06 Rod 4-1 Insertion Curve Ra4 41 Roe 41 Roe 41 Red 41 i 5 Insbes REACT ASI Tm Wore were Fit of Rod 4-1 Worth NSERT WTHDE (5) (5) Fiued 0.00 128.00 0.4034 0.014 566.2 0.0000 Ceemmat 0.1146132

. 1.25 126.40 0.4019 0.013 566.3 0.0015 See Err of Y Est 0.0004723 3.75 123.20 0.3992 0.011 SM.3 0.0042 0.0033 R squared 0.9998267 0.3957 0.008 566.3 0.0077 0.0000 No. af Obessveniens 13 6.25 120.00 l 0.3916 0.006 566.4 0.0118 4.0125 Degnes ef Freedom 9 8.75 116.80 12.00  !!2.64 0.3P57 0.001 SM.5 4.0177 0.0182 ,

106.24 0.3768 0.005 546.6 0.0266 0.0266 X Cosmsesse(s) 4.814544 2.278E 06 9 308E- :

17.00 23.00 98.56 0.M71 0.011 SM.7 0.0363 4.0361 Se6 Err of Cost. 1.306E 04 2.342E 06 9.566E. :

30.00 89.60 0.3564 0.018 566.8 4.0410 -0.0465 ,

37.00 80.64 0.3471 0.022 566.8 0.05 4 4.0561 43.00 72.96 0.3397 0.025 566.8 0.0437 0.007 i 50.00 64.00 0.3314 0.025 :i46.9 4.0720 4.0720 17.00 55.04 0.3240 0.034 566.8 4.0794 0.0797 63.C7 47.36 0.3179 0.021 566.8 0.0855 0.0857 70.00 38.40 0.3100 0.016 5M.7 4.0925 4.0922 MEASURRMENTS Daten K- II.S nos e.i means.

BWING lashes Mens BDT Westh Teve WTHDR Tim PWR (S) His Her Gloss) Hem Tous(Heat) l 1 114.75 540.37 95.11 4.015306 535.35 Se.85 567.93 404.35 593.6s 2 35.26 535.23 95.46 0.0M397 529.20 Sc.m Sc.25 598.45 5e9.41 3 115.47 540.40 95.23 4.084315 535.39 549.93 567.99 404.47 593.77 4 35.10 535.29 95.55 4.004506 529.27 563.93 50.33 598.58 509.50 5 115.38 540.36 95.05 4.014439 535.32 59.79 567.88 408.27 593.63 6 540.23 90.19 4.008254 535.19 547.90 SM.43 400.48 590.98 43.96 7 115.47 539.99 M.M 4.014315 534.90 569.21 567.44 403.55 593.11 8 48.28 540.23 39.72 4.085004 535.19 567.73 546.2s 400.27 590.73 9 115.47 539.76 94.72 4.014315 5M.42 568.97 567.25 40s.33 592.95 Best Estlan. Poiser coeNiciset: 0.00 E-4/SP '*

Use 0.0 for 2-D fit, best estaan. value for 1-D fis Free Delta Teescels Roast DELTA Fit ofITC and Posper CoeN SWINOS DELTA DELTA ram.t DELTA REACT (54)

Teve PWR (54) XENON Teest Reyessise Output.

7.909 7.909 Conness 0.

21 4.911 0.350 o.

32 4.9M 0.230 8.008 4.008 See En of Y Em 4.019 R Squases 0.

43 4.091 0.320 8.019

4. .

54 4.784 4.500 8.007 4.007 No. af Obamressises 7.382 DepeesofPrestess 3' 65 .l.430 4.860 7.382 74 0.985 4.450 7.394 .7.394 7.0H 7.069 -1 87 l.114 4.930 X Cosmaimue(s)

. 94 0.912 5.000 7.069 7,049 See Eer of Cost. .

-1.Il1 0 039 l 0 ITC : Pwr C4 1

1

OPPD CYCLE 13 ITC TEST 1113 PPM 373 MWD /T PREDICTIONS ITC and 5 Pwr Teod React Regressica Ousput:

Power Coefficient 94.7 569.05 0.003779 Conment 0.0311425 94.7 561.35 0.004055 Std Err of Y Eat 0.0000130 )

89.0 567.54 0.004321 R Squared 0.9995167 89.0 559.72 0.004575 No. of Observations a Degrees of Freedom 'l Pwr Coef ITC )

X Coefficient (s) 4.38E45 3.41545 )

Std Err of Coef. 2.34E 06 1.685 06 l Rod 4-1 Insertion Curve Rod 41 Rod 41 Rod 4-1 Red 4-1 5 laches REACT ASI Teve Wonk Wonk Fit of Rod 4-1 Worth INSERT WTHDR (5) (5) Fined l

Regressies Ouspat-O.00 128.00 0.4023 4.013 565.6 0.0000 Comment -0.1122714 1.25 126.40 0.4015 4.011 565.7 0.0008 Sed Err of Y Est 0.0004440 3.75 123.20 0.3998 4.005 565.7 0.0025 4.0017 R Squased 0.9998224 i 6.25 120.00 0.3974 4.006 565.8 4.0049 4.0050 No. ef ohservenness 13 l 8.75 116.80 0.3M4 4.003 565.8 -0.0079 4.0084 Depees of Freedosa 9 12.00 112.M 0.3899 0.002 565.9 0.0124 - 0.0130 17.00 106.24 0.3824 0.009 Sei6.0 0.019e 4.0200 X Cosmeisen(e) 2.1815 04 9.8925 06 3.552E 01 23.00 98.56 0.3735 0.016 566.1 4.0288 4.0287 sad Err etCaet. 1.4515 04 2.400E 06 9.803E 0(

30.00 89.40 0.3620 0.024 546.2 4.0394 4.0380 37.00 30.H 0.3531 0.029 546.3 4.0892 4.0400 43.00 72.M 0.3447 0.032 566.3 0.0576 4.0575 50.00 M.30 0.3351 0.032 566.4 0.0671 4.0671

$7.00 55.04 0.3265 0.031 546.4 0.0758 4.0762 63.00 47.36 0.3191 0.037 546.4 4.0831 4.0835 70.00 38.40 0.3106 0.031 546.3 4.0917 4.0913 MEASUREMENTS nos e.

assenes Dabni- as .

SWING . Imehas biens FWR Wenk Tese WTHDR Tim (5) His Her (Hesep Heat Tene(Hein)

I 110.25 538.48 94.06 4.015380 533 2 567.30 566.05 # 1.30 391.43 2 64.10 52S E 93R 4.087004 521.12 555.06 556.34 589.00 582.44 3 110.25 538.72 94.30 4.015930 533 E 567 E 586.16 # 1.77 391.02 4 64.10 528.46 93A 4.067006 521.48 555.46 556.46 589.43 582.77 5 110.25 53s m M.30 4.015500 533.19 567.36 546.00 ml.51 391.e4 6 110.45 538.49 94.30 4.015950 533.09 567.22 565.89 401.35 591.52 7 63.85 535 3 80.06 4.087385 532 E 565 2 544.38 397.58 588 77 8 110.25 538.08 94.15 4.015330 532.53 ses.es $45.47 800.83 Sta.44 9 63.89 538.32 89.33 4.057365 532.e5 568.08 564.30 397.45 588.48 to t10.25 537.08 93. 8 4.015930 532.00 546.06 566.98 800.00 580.54 Best Eselua. Ptreer CoefRename: 0.00 E-WSP Use 0.0 for 2-D At best estum. value for 1-D At Press Delen Teencais Ramat DELTA Fit of HC and Pouver coeff SWINOS DELTA DELTA Rede l DELTA REACT (54)

Teve PWR (54) XENON Tsed Reyessism Oiepet:

21 10.064 4.470 5.141 5.141 Communa 0.lt 32 10.140 0.730 5.141 5.141 sed Est of Y Est 0.34

- 43 9.834 0.630 5.141 5.141 R Sgessed 0 99 54 9.455 0.530 5.141 5.141 No. ef oteereatises 9.0C 65 0.104 0.100 0.000 0.000 Depens of Freedse 6.0C 74 .l.486 .$.040 5.168 5.168 87 1.027 5.000 5.168 5.168 X Ceemaisen(s) -0.461 -o.90 94 .l.214 4.830 5.168 5.168 sad Ear et cesf. 0.01i 0.0:

10 4 0.715 4.290 5.168 5.168 ITC Pwr Coe'

, .- .- . . . - _ .. _ . _ ~ . _._ _ _ . _ _ _

OPPD CYCLE 13 ,

ITC TEST 325 PPM 10694 MWD /T PREDICTIONS ,

ITC and 5 Pwr Teod Roset Regression Outpac Power Coefficient 94.7 569. 3 0.003si2 consest 0.1106:1940  :

94.7 562.01 0.005182 Std Err of Y Est 0.000018863 89.0 567.97 0.004654 R Squared 0.999854070 89.0 560.14 0.005988 No. of Observations 4 Degrees of Freedoes I Pwr Cast ITC X Coeffisiest(s) 4.50E.05 1.728E.04 Sed Err of Coef. 3.40E.06 2.4tE46 Rod 4-1 Insertion Ciarve Rod 41 Rod 41 Red 41 Red 41 (5) laches REACT Asl Teve Wonk Wonk Fit of Rod 4-1 Worth  !

INSERT WTHDR (5) (5) Fimed Regreamse Om9st-O.00 128.00 0.4467 0.013 565.6 0.0000 Commest 4.1273167 1.25 126.40 0.4652 0.011 565.7 A0015 Sed Err of Y Est 0.0006023 0.9997752 i 3.75 123.20 0.4634 A000 565.7 4.0043 0.0032 R squared 6.25 120.00 0.4586 0.006 565.8 A0081 0.0083 No. of Cheeressises 13 116.90 0.4542 4.003 545.8 4.0125 4.0133 Depose of Fremdess 9 8.75 12.00 112.64 0.4477 0.002 565.9 0.0190 4.0197 17.00 106.34 0.4377 0.000 544.0 0.0290 4.0390 X Ceedlesem(en 5.0965 06 3.It0E46 7.556E. .

23.00 98.M 0.43 8 0.086 546.1 4 0399 4.0W7 Sed Ear of Casi. 33544 2.986E 06 1220E.

30.00 89.40 0.4148 1.036 546.2 A0519 0.0513 37.00 80.M 0.4045 J.039 546.3 40622 4.06N 43.00 72.M 0.3961 0.032 546.3 4.0106 0.027 50.00 64.00 0.3867 0.032 566.4 0.0000 4.0000 l 57.00 55.06 0.3785 0.031 SM.4 0.0882 4.0006 '

63.00 47.M 0.3716 0.037 546.4 0.0958 4.0054 70 m 38.40 0.MM Omi 566.3 A iO31 A :0:7 l

MEASURRMMTS g m 3,3 mes ,4 seassues Tees a SWING Lebes biens FWR Wenh WTHDR Tim (5) His Her (Hes) Heat Tem 0Eems)

I 114.46 539.31 M.M 4.084619 SM.33 Sem 567.5 403.08 SD2.75 2 35.32 533.77 M.M 4.108107 527.47 561.90 568.M Sp6.M $87.M 3 lle.M 539.43 M.99 4.0lM19 SMm '%S 567.5 803.13 592.80 4 35.31 533.85 M.88 4.198807 527.M W. '* Mt.7F 596.M 587.87 5 Il4.M 53D.35 SSR 4.014619 SM.13 W il SM.77 403.38 992.41 6 ll4.M 530.23 94.M 4.014689 533.97 c.b Ses.75 set.e Set.M 7 56'46 538.98 9 .38 4.087393 533.08 SMS 568.00 388.47 509.43 8 Il4.M 538.M ME A0lMit 533.M 567.M 5e6.46 ees.36 set.iB 9 56.46 538 2 S .73 4.W7393 533.30 SM.5 566.98 $983 S8D.51 10 114.66 538.88 ME 40lM19 533.30 567.73 SM.3B 401.M SDt.M Best Esehn, Posuer CosNicisme 0.00 E-4/SP Use 0.0 ter 2-D At, best estesa. vales for 1-D At ,

l Pnse Daten j TessCais Reest DELTA Pit of FIC and Power Coeff SWINOS DELTA DELTA rem.I DELTA REACT (54)

Tese FWR (54) XENON Teest Reyessies Omeyst.

4. nee B.se - Ceemass 0.

21 5.5ss 0.30s 32 5.5M 0. M B.888 4.8# Sed Ese etT Esa 0.

43 5. Set 4.lu 4.see B.se a agesses 0.

4.am N efonessessions 9.

54 5.2s3 4.ase B.see 6.

65 4.0M 0.3M 0.000 0.000 Depuss of Pseedes, 74 .l.7M 5.430 7.M7 7.067 87 1.425 5.230 7.067 7.067 X CesRI=i==f4 -1.64I i -0.1 94 .l.4SD 4.380 7.M7 7.057 sad Ear of Cest. .0 10 9 1.277 4.600 7.067 .7.067

  • O ITCGs6 l Pw

i

.. . \

OPPD CYCLE 14 ITC TEST 768 PPM ,

355 MWD /T PREDICTIONS ]

ITC and  % Pwr Teod React Regression Output:

Power 90.3 565.57 0 005536 con.iani 0.059063592 Coefficient 90 3 555,92 0.006309 Std Err of Y Em 0.000011788 86 0 564.29 0.006073 R Squared 0.999837917 86.0 554.62 0.006824 No. of Observeions 4 I Degrees of Freedom i $

Pwr Conf ITC X Coeniciest(s) 9.875 45 7.895 45

ui Err of cost. 2.77E.06 1.22E46 Rod 4-1 Insertion Curve Re4 41 Rod 41 Rod 4-1 Rad 41 ,

5 Isches REACT ASI Teve Worth Warik Fit of Rod 4-1 Worth  ;

NSERT WTHDR (5) (5) Fined l Resr= =se o m ps:  :

0.00 12s.00 0.5599 4.011 5M.3 0.0000 coesses 4.16947:5 1.25 126.40 0.5545 4.010 5E4 4.0014 and Err of Y Em 0.0005519 i 3.75 123.20 0.5559 4.008 566.4 4.0040 4.0031 R Squased 0.9998940 6.25 120.00 0.5523 4.005 546.4 4.0076 0.0078 No. ef ohearvasions 13 8.75 II6.80 0.5400 4.002 SM.5 0.0119 4.0126 Depose of Pseedom 9 12.00 112.64 0.5416 0.003 She 4.0183 4.0189 17.0C 106.24 0.5300 0.011 SE7 0.0290 0.0301 X Ceemeises(ab 4.037E.04. 1.4625 05 5.624E.C 23.00 M.56 0.5ist 0.019 SE8 4.0417 4.0416 Sad Esr et cesf., 2.110E44 2.736E.06 1 118E4 ! '

30.00 89.40 0.5038 0.029 546.9 4.0571 4.05M 37.00 30.M 0.4884 0.0M 567.0 4.0715 4.0714 43.00 72.M 0.4750 0.000 567.1 4.08e0 4.0848 50.00 M.00 0.4612 0.068 567.1 0.0007 4.0085 57.00 55.04 0.4400 0.040 567.1 4.1119 4.1134 63.00 47.M 0.4347 0.035 567.0 4.1232 4.12M 70.00 38.40 0.42N 0.02B 546.9 4.1340 4.1356 MEASURRM ENTS gggge 3,3 mes e maassee .

BWINO Isshes Mens SDT Westi Tove l' WTHDR Tim PWR (S) His Her (Hese) Heat Taus(Man)

I 114.57 540.95 90Jt 4.015988 SEOS 548.48 567.12 401.57 591.67 2 57.0t $39Jt 90.90 4.109M5 522.45 515.42 556. 0 508.30 581.M 3 114.57 540.58 90.75 4.015902 535 H 568.52 544.90 801.42 591.57 4 76.01 540.e0 E t$ 4.s790s3 SM.c 546.es 5e5.63 5s8.13 589.17 ,

5 114.57 5e0.18 98.33 4.0150 8 535.13 567.96 SE47 400.00 591.12 j Sast Eselm Posper CoefRossac 0.00 E-4/SP Use 0.0 Gar 2-D As, best est's. value for 1-D At ,

From Psee Dates '

TousMass founcels Ramst DELTA Pit ofITC and Posser coeff SWINOS DELTA DELTA rem l DELTA REACT (54) i Teve Teve PWR (54) XENON Tesel Reyessies Ousput.

21 10.004 0.554 4.342 9.M2 Censsen 00'

' 0.4 :

3-2 10.833 4.170 9.382 4.342 and Est of Y Est 43 1.235 4.500 4.30P 6.309 R Sqessed 09!

54 0.785 4.300 6.309 4.300 No. of Chessweises 40l Depass of Pseedens 1.0 j i i X Cesenhan(sp -0.914 ~ - I .ZL Sad Est of Cast. 0 030 00 ITC ' Pwr Coe

J PALO VERDE I CYCLE 3 ,

ITC TEST 1170 PPM 41 EFPD eANK 5 SAMK 5 SAMK 5 R$ACT ASI Teve SAMK 5 WORTH Fit of Beek 5 Worth 5 54 SERT WFIWR THDE"2 WTWIR*3 (S) WORTH FITTED i tal L .- - Owput S.e9 ISS.e3 22See.N 3373MEe8 S.SSN 4.se3 25.0 0.0e00 Comanet 0.1029379s 2.37 346.=5 2M46.M 3HesN.e &Sem Ase! 395.0 4. 8 89 Sed Err of Y Est 0 000234373 4.75 142. 5 3e483.27 3 98545.35 S.SeSS ReDI 3DS I 4.e053 4.0058 R Squared 0.999981055 7.M BN.N 393 5.88 300538.85 S.Sem 4.806 23.2 4.0405 4.0837 m. af oteervensene 9 9.98 335.SB 38333.30 308N85.68 8.5R59 RSI2 25.3 4.98 # 4 987i Depees of Feoedose 5 15.23 327.s6 seses.m seasse.se a.see5 Ree5 Sp5.5 4.am 4.o323 39.98 12.5' McW.B B7BNLER N G.898 2 5.7 4.0088 4.9479 X Costseisme(s) 4.84 t E43 7.291E-05 .2.396E-07 34.73 182.98 32387.54 14M35.5 9.4e57 S.53 25.9 4 9058 4 0649 Sed Err of Cest. 9.085E-04 7.884E-06 2.254E.08 29.90 15.5 INST.30 I198647.53 8.4883 0.006 386.2 4 0806 4 0547 ,

,- 35.23 97.M 9839. 5 9155.88 8.4403 S.579 586.4 4 3006 4 1948 i 39.98 SS.e5 8845.40 7373D.34 S.43e8 S.8W 26.5 4 1228 4 1227 l

SWING BK 5 Mene teams Mens swa F.,.meu nu .i I4 WTllDR Tim Test ASI Por WORTM e 135.97 567.62 620.81 9s.2e r eests5 I 181.83 568.37 684.99 97.9e reessM >

. 2 IM.93 567.37 430.7e 98.3e r eesiss '

3 112.38 568.29 684.95 98.3e r eses 47 l ss.m A sastes

4 iss.es $67.SI eBS.'M 5 112.88 561.87 684.39 98.88 e.csses7 6 348.M 367.42 638.87 98.2 4e80E00
  • 7 827.38 584.48 688.83 98.3B 4eggelt h us. Power C - ^-

-0.90 E-4 TSP Ues 0.0 for 2-D Et, best seeien. vales for I-D At rme -

Tauntenes DELTA DIiLTA Pit ofITC and Power Coeff SWINGS D$t.TA DELTA REACT DELTA REACT (E4)

Tees FW3 Sk 5 XWo0N Toast engsam Osayet i.e .e.mo .e.Jue -3.aea 4.wis ceasemat .0.090 2-1 6.ese 0.4e8 5.2 08 4.841 sed Ear of Y Em 0.126 32 4.122 4 209 -5.16 4.9M R squared t.000 43 6.220 0.3e9 5.58i 5.31I m. of Observenisme 6 000 54 4.520 44e9 -5.581 n 5.221 Degeese of Freedese 4.000 6-5 6.536 0.5C3 5.875 5.425 76 -3.033 0.000 2.415 2.415 X Coefficicas(s) -c 314 Sed Err of Coef. 0 00s ,

ITC Pwr Coeff

_____m. _ _ __ -_ _ ___.____. .-_m- - - - _ . _ _ . _ - ---e.-w-e.m-s i e-- *-- ..- .m.iv.e- .-4 ew .--+4,--e.+.y -, e- w e -*.ewir.w-qsr . - mw w a= --t +-e-i-s.g

M

}

PALO VERDE I CYCLE 3 ITC TEST 484 PPM 336 EFPD -

SANK 5 BAME 5 BAME 5 SkACT ASE Teve SANK 5 WORTH Fit of Beek 5 Wortti .

i E StS3RT WTIIDE THDR*2 WTWR*3 (5) WORTH Fl?TED 8.00 150.00 22508.e0 3373888.e8 eDei 4.013 509.4 0.0$ Ceasemat 0.204594126 t M6.45 21446.M Sim6W.m SDSF 4.888 Sep.5 4.8835 Sed Err of Y Est 0.000824607 2.37 4.75 M2.m 30413.27 9 84045.33 SDe3 4.885 23.5 4.est 4.0008 a sqserad 0.999ssl449 7 3m3NI.85 8204 e. m Ste.7 4. elm 4.0304 No. of Observessoas 9

. 7.M IM.96 19309.N 5

9.94 835.m 18233.It 3e m el 4.Se5 0.012 35.9 4.8387 4.0325 DepeneesFneedman 15.23 127.86 86MB.N SEREMI.M S.53 9 0.094 See.3 4.0153 4.0582 19.98 133.e5 McWF.3B 372336.M e.5882 e.M3 3 0.7 4.e830 4.8823 X Commcissa(s) .l.389E42 1.434E.04 .3.963E47 82M7.34 M30300.5 8.4SM 4.0FI SDB.e 4.ledS .e.le63 Sed Err e(Ceef. 3.197E43 2.774E-05 7.932E.08 34.73 II2.98 29.98 105.8B 19031.38 18 2 687.53 S.4em 9.m8 Spl.2 .e.13M 4.8388 35.23 #F.M - M39.09 917 5 5.88 em e.IN 398.5 4.1542 4.1549 N.98 98.45 8605.40 729F29.24 e.435 0.182 Spl.6 4.1734 4.1729 ,

SWING BK 5 Mass Mass Mass sui iivamme su I4WTHDR Tim Test ASI Per WDETH 0 140.70 566.48 689.88 99.43 4.000151 ,

, I 96.48 See.N 614.32 99.20 4.e085e2 2 MS.43 566.32 619.52 99.32 4.850855 3 MD See.16 604.M 99.23 4.008582 4 648.68 346.15 689.M 99D 4.809456 5 97.06 500.20 6M.17 99.99 4.0985S2 6 MSR 346.07 689.52 99.48 4.88D854 i 7 125 2 $64.28 687.8B 99.46 4.010633 i

Best Ese m. Power C _ - .

-0.90 E-415P i Ues 0.0 for 2-D E8, test estaan. veas for 1-D At reuse i

TeesMens DIiLTA DELTA Pit of FTC and Power Coeff SWireGE DELTA DEiLTA REACT DIiLTA REACT (E.4)

Tese FWR Ek 5 XENON Tenel Raysemen Oespot e.us .se.eurs ni.use Consness -0.131 i.e .e. sea S.IN M.0F3 13.965 Sed Err of Y Est 0.192 21 5.921 1.000

' 31 4.192 4.0B0 .M.873 13.992 R squared

.l3.752 No. of oteenvasions 6 000 43 6. elf 0.350 14.957 4.390 13.612 Degress of Fresdean 4.000 54 5.926 13.963 65 5.969 0.290 13.981 13.720

.l.862 4.020 4.794 4.776 X Coemeient(s) -2.29I 74 0 013 Sed Err of Coef.

ITC Pwr Coeff

__.m__.__..___-___.___.._.___.m_m_ . . - _ _ _ _ _ _ _-..- . _ _ . . _ . _ _ _ _ _ _ _ _ _ _ _ -____e - __ .-----a_u. _-' _--- a m VIC9-'e m_ se. w ee** .- =*e m+.m e- .-n>ee ->W-'e u_ * -

. PALO VERDE ll CYCLE 3 ITC TEST 1029 PPM 43 EFPD 2

eAME3 BANK 5 BANK 5 $5ACT ASE Torg BANK 5 WORTH Fit of Beek 5 Worth a WesEst w7sIDa TuDR-2 wruca*3 (5) inceTH PfffED tus Regressene Oueput 0.00 130.00 22SM.00 337emmaan 9.092 de36 394.4 0.0008 Coesamma 0002559818 2.37 146.45 21446.14 3540519. S ES$30 4.834 SM.5 4eW2 Sed Err of Y Est 0.000419579 '

4.75 M2.as 3sel3.27 misse5.3s Esse amt See.5 r eest .o.005s a siy.=ed 0.999947109 7.M 135.96 3935.N SWINE.IS ESS 4.85 St.6 4 0123 4 0126 No. af Obeervesione 9 l 9.98 138. 5 38333.10 30 M 61 SSW3 4.019 St.s 4e19e 4 0303 Depees of Fresessa 5  !

15.23 127.84 16MBE MM G.885 4 88 305.e 4.8377 4 0377 19.N 330. 5 Mep.M IN il5 GAISE 8.000 25.3 4 8554 4.8510 X Caesacious(s) -7.60SE-03 9.377E-05 2.865E.07 24.73 II2.98 12?47.S4 143803.5 4 0004 em6 25.5 4 0F36 -0.07M Sed Err of Coef. l.626E 03 1.4llE45 4.0%E.08 29.M 1 5 .85 13858. 3 1830607.33 4 806 E800 25.8 4 8938 deMS 35.23 97.84 943.s 98MS5.18 4 0046 8.853 25.9 4 1138 4 1142 M.M 90.03 8105.40 729K9.34 4 8834 8.863 SB6.1 4 1386 4 1384  ;

aw am 3 sonne asses asses suas -

a ses ,

, in weber Tim Tout AM Post WORTII t i

0 132.11 366.97 621.42 W.N 4 e08365 I 152.80 342 2 617.27 N.30 480W55  ;

! 2 130.23 367.M 432.27 N2 4GESMS 3 182.06 383. 5 617.71 Nm 488W56 4 137.68 $67.44 632.84 W.se 4 00 BIS 2 5 112.e8 363.93 687.35 N.2 4eBN55 6 435.28 367.68 832.8 95.98 4GOBIN -;

7 119.53 $$4.57 619.3s W.00 ANWG West Estus. ressor C - -

-c.30 E-406F Use 8.0 for 2-D St, best aseien. vakse for 1-D At

. FeedB '

Teustamos DELTA DELTA Pit of TIC and Ptsuser Coeff '

SWWIGS DSLTA DEiLTA REACT DSLTA REACT (E4)

Teve FWa Bk 5 XEMON Tasmi Reyeeseen Oesynt.

-4.eus W.aus -4 me 3.uus Comanat -0.004 14 0.235 2-l 5.588 Ages 4. 46 4.236 sed Err of Y Est 4.9M ASSO 4 37 6.037 a squesed 0.999 32 6.000 43 4ml 8.759 En39 -5.4 M No. of Observetsons 54 4 989 4.480 4 433 5.553 Depose of Freedess 4.000 65 4.932 4 300 5.55s -5.7se 74 -3.006 0.300 -3.635 3.795 X Costeciese(s) .i.ies ,

sed Err of Coef. 0 019 ITC Pwr Coeff

- . , , -, .,r .. -

+ ____ .- L l -

PALO VERDE il CYCLE 3 ITC TEST 456 PPM 290 EFPD -

BAFEE 3 BANK 3 SANK 5 hEACT ASt Teve SANK 3 WORTH Fit of Bank 5 Wordi E St3ERT WFISR THDR*2 WTlWR*3 (S) WORTH FITTED gwp N Owyw S.00 ISS.e8 22500.e8 3375 m et 8.3459 AMI SM.6 e.0005 Caesammt 0.198922850 2.37 M4.45 2H46.M 3MOSN.S 3.3463 4.839 304.6 4 8336 sed Err of Y Est 6.000850981 4.75 Mt.SS M483.27 3 I6045.33 0.3NT 4 53 394.7 4. Stet 4 0093 K Sqmmeed 0.999664693 7.36 B38.M 1935.N 2A338.tS 6.337 4 806 M9 4 GIER 4 83E3 No. af Observetenes 9 9.98 135.03 3e335.M 30 m G.3IM 4 006 S05.0 4 e323 4 e33I Depees of Fremdess 5 15.23 137.M 164 S 2 MM 4381 tale 25.4 4em 4e586 i

19.N IN.SB 8400F.3 87N38.2 63878 8. M 25.7 AME 4 0828 X Ceedliessma(s) -1.314E42 1.330E44 -3.589E-07

! 34.73 182.98 83387.54 MNam.3 0.3083 9.ee 26.8 A lef6 4.3052 and Err of Coef. 3.299E43 2.862E45 S.186E-05 29.M 1 5.05 38898.38 182687.33 0.3318 0.008 26.3 4.82W 4 1293 35.23 97.M MW.S 91155.N S.3906 S. SIB 26.5 AINI 4 1510 30.M 90.e3 Sles.# 739739.34 8.8819 9.56 M6 AM00 0.16M  ;

a m.vo un s meses asses mamme auss r smu le W dier Tim Test ASI For MIRT*J

! 0 140.55 567.04 421.49 180.28 4egele ,

I 105.45 563.00 647.56 99.9 4 808381 2 140.53 567.98 el.39 300.19 Amtle 3 105.43 Se.82 687.56 99.e 4 51288 4 148.57 566.95 et.32 Im.23 4 880068 5 085.48 Set.98 687.44 99.S d eBI2B2 6 MS.53 $$6.98 el.45 103.38 4eEDIS 7 138. 2 $85.8F 619.53 99.73 .*aseens

^*

Best Bet us. Fesper R - -0.59 Ei-4/Mr use e.e Amr 2-D 5t, heet estion. valme far 1-D Et reean TowMuse DELTA

  • DELTA Pit of TIC and 1%4per Cook SWINGS DELTA DELTA BEACT DELTA BEACT (R4)

Tese FWR sk5 XENON Teest Ragseemse ousynt.

14 4.zia .e.375 -31.BF3 35.555 Comster" 0.108 21 4.23I S.SGS 11.B87 -10.883 Sed Err Y Est 0.368 j 38 4.299 ASW -18.992 10.679 R 3quared 0.999 4-3 4.336 S.680 18.283 10.655 Me. of observesians 7.000 54 4.352 4.558 -11.200 10.785 Degrees of Fremdeen 5.000 65 4.338 S.630 II.lM -le.HI 74 -2.953 ASee 4 426 5.904 X Caenicisme(s) -2 e n Sed Err of Coef. 0 034 ITC Pwr Coeff

._. _. . . . . _ . m._,_ - . . _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____._e -

-. _ - -_.-_ _ _ - _m_.. .

1 4

i PALO VERDE ll CYCLE 4 ITC TEST 1126 PPM t 40 EFPD BAWK 3 J '

BANK 5 BANK 5 BEACT ASI Teve SANK 5 WORTH Fit of Bank 5 Worth ,

E 30 SERT WTHDR THDR1 WIME*3 (5) WORTIE FITTED t=1 , Ouspea.

4 0.00 190.08 22508.00 33 m S.4212 4 945 24.3 S.8800 Ceassent 0 070334s22 2.37 146.45 28406.84 3 MAS 1p m S.4BM AM3 394.3 4 0008 Sid En of Y Est 0.000442533 4.75 542.08 30413.27 M44845.33 S.4148 AMI 394.4 4 en52 4 0048 R squared 0.9999:s7ts 7.M 138.N 19309.M 2083508.85 telet 4 816 24.4 A tlet 4 0181 Me.ofobservensene 9 ,

9.98 ISS.S 18233.18 samanau S.m em isse.6 delM 4 8881 Dessene of Fsende. 5

) 15.23 327.M 3648 2 MEMS.M 4.N36 4 906 28.8 ASSM 4 0335 19.98 IMSB 1448F.N IM SE22 AM M5.4 4 8058 4 8887 X CaeKaciosa(s) -7.928E43 8.922E45 2.615E47 112.98 12M7.54 MNRS.B S.3506 S. m N5.2 4 8606 4 0643 Sed En of Cesf. l.715E43 1.449E45 4.257E45 34.73 .

29.98 1 5.85 808B8.2 18N617.53 S.3ND S.88 25.4 4 583 4 0815 35.23 97.16 9439. 5 981085.18 S.3337 4.e52 395.6 4W75 A ce7p 30.98 98.e3 8905.40 7297 3.34 9.3886 S.839 305.7 4 1116 .S.1113 aw am 3 asses samme asume sus -

isu I 4 WTRIDE 'l'as Teus AM Pur WORTM S 132.23 567.78 Gl.98 S.eSO4 99.44 4 eOEl34 362.M &lf.M 8.882 99.19 4 005p48 I 808.11 2 130.55 567.42 Gl.57 S.057 99.53 AM 3 008. 5 582.48 616.98 S.887 99.S AGESND

4 1R55 367AD el.45 9.e565 99.58 AM S 908.13 582.48 666.98 0.34 99.58 488508 i 6 130JS ~ SG.SB St.51 S.5 05 99.# 488508 7 107.98 503.41 616.88 N.e 4eeW58 l 8 IR22 365.3B GIDAD 99.35 4 8500E2

^

Best Eelan. Feuper - -0.W Ii-4/NF Use 0.0 for 2-D Et, heet eslama. valms for 1-D Et DELTA DEiLTA Filof fTC and Posser CosK SWWIGS DELTA DELTA REACT DELTA REACT g4)

Teve FWR Ek5 XEN006 Taast ha s,sessman Oelyut.

u.szu 3 mor ceassama 0.024 Im 3.e n -3.ser 4 300 4.388 -5.836 Sed Err of Y Est 0.095 2-1 5.816 4.895 m squared 1.000 32 -5.ml S.000 4.823 7.000 4-3 4.995 4IIS 4.823 -4.911 No. of observessoas 54 4.958 9.aos 4.st4 4.sl4 D.sne.of yse.de. 5.000 65 4.995 9.ese 4.soe 4.732 4.853 .o.y u 74 5.084 0.020 4.337 X Ceessciese(s) -

87 2.324 0.270 2.688 -2.904 Sed Err of Coef. 0 007 ITC Pwr Coeff t

?

PALO VERDE il CYCLE 4  :

ITC TEST 455 PPM 267 EFPD -

a sAsut 3 SANK 5 SANK 5 ' REACT ASE Teve SANK 5 WORTH Fit of Beak 5 Wasili 5 30 SERT WTIIDE THDR*2 WFIIDR*3 (5) WORTH FITTED .-

pe) Regressies Ostpet i S.00 150.00 22900.88 33 yemen am S.13M S.006 595.1 0.eDOS Conseest 0 075293292 2.37 846.45 28406.M 3040SNA S.8275 S.804 395.2 4.8032 Sed Err of Y Est 0 000696440 j 4.75 Mt.80 2 483.27 3 86805 2 4.8265 S. m 25.3 4.0892 4.00B5 R squesed 0.999870s23 73 IM.M 1935.m saneams.Is glI23 S.S M 95.4 4.8804 4.0190 No. of Observessoas 9 9.98 135. 5 38235.38 308385.41 &ISI? 9.56 25.4 ASNS 4.857 Depene of Feesdess 5 15.23 127.84 8688 2 MM 4.83W 8.882 25.9 4.4688 4.0586 ~-

39.98 1 3.85 140W.2 172362 &W Smf 26.2 4M18 4.0712 XC "e) 4.384E43 8.654E-05 2.235E.07 ,

24.73 182.98 82367.54 MNSSM S.0000 SMB 2 6.4 4.5 06 4.9903 Sad Err of Coef. 2.700E43 2.343E45 6 699E48 29.98 3 5.83 19831.38 183 617 A S.mee 8.54 26.6 4.IGH 4.1300 35.23 97.06 9439. 5 981055.88 0.8M5 0.896 396.8 4.1272 4.1278 39.90 M.83 8385.40 72M W.34 4 8882 8.988 396.9 4 8489 4 485 l awsevu M3 BEsse BEsos seems seas reasesa ssas H WTIIDE Tim Tese AEI Por WORTH 0 IN.79 566.10 689.52 9P.e 4 00Dl67

  • 8 90R 561.08 614.82 95:.27 ASDMIS .

3 98.85 Sea.96 6M.M W.3B 4000415 4 W 0844 i 4 le.65 3d6.08 689.43 99.35 5 98.5 Sde.M 6M.S 99.28 400MM I 6 448 R Se&W 689. # 99.56 40EBM4 7 1 2.38 563.98 687.49 99.30 4035N7

- ^

Best Estan. Peuer - -0.90 E-415F j Use 0.0 for 2-D Et, best esissa. vales for I-D El ,

i DELTA L DELTA Pit ofITC and Power Cast SWINGS DELTA D3LTA REACT DIiLTA RE#CT (E4)

Teve FWR Ett 5 XENON Tenel ". Ouspot.

1-s -3.zas .e.vis -sz.e73 12.ma cessanat -0003 31 4 830 9.000 4 004 S.883 Sed Err of Y Est 0.241 43 528 S.218 12.185 -12.465 R sgeesed 1.000 54 -5.3N 4.388 82.188 12.422 No. of Cbestvetimes 6 000 ,

65 5.306 S.338 12.WF -12.419 Dessess of Fremdese 4.000 74 -2.171 4 388 -5.6 M 5.396 X Coeftscient(s) -z. m '

Sed Err of Coef. 0.022 ITC Pwr Coen '

1 2 .

PALO VERDE Ill CYCLE 3  ;

ITC TEST 330 PPM

301 EFPD mann 5 BANK 5 BANK 5 BEACT ASE Teve BANK 5 NORTH Fit of Beak 5 Wortin l

E WesERT WTIIDE TMDR*2 WTIIDR'S (5) WORTH FITTED '

m Regresesse Oueps em IRGB 22500.00 3375808 m 0.5N6 4.063 Sea.s 0.0000 Cenement 0.314361282 ,

5 646.45 23446.14 3540SNA S.5028 4 839 508.9 4.8005 Sed Err of Y Est 0.000564715 2.37 4.75 142.8B 30413.27 Spid845 m &SBN 4 833 580.0 4.0127 a steered 0.999954265 7.3s imm 93se.m 3ss33es.35 e.stse rees See.2 r eaes 4.0244 No. of Cheervenssee 7 '

9.98 335.88 38233.08 3083B85.68 4.NM 4 863 539.4 A sset 4 0338 payens of Fremdess 3 l 55.9 4ml5 4 0716 i 15.23 827.M MMB.B MSMS.M E4758 S. Sit 89.98 12.e5 840W.B B73336.M e.44N 0.8B3 St.2 4 8088 4.8004 X Cessseines(s) .l.73tE42 1.687E44 4.439E 07 82M7.34 MNONS 4.4883 453 N o.6 4834 4 1283 Sed Err of Coef. 4.957E.03 4.230E-05 1.194E-07 34.73 152.98 29.98 105.5 11031.38 88M587.53 S. Net GMI 28.9 4 8545 4 1543 35.23 97.M 9439. 5 9I1055.88 S.3644 8.m6 St.t 4 1821 A ls3e 39.9e M.83 8185.48 73M39.34 0.3838 S.086 St.3 4.2035 SWING EK 5 Mass Beens asses more Essessed .

in weber Tie Test AE Por Weesh 0 120.06 564.75 619.83 Nm 4081003 I IM.64 567.27 622.85 M.St Aseg3M 2 lot.se 562.37 687 D 99 3 40e1577 l

'3 Inge 567.42 EI2 m M.3t recens 4 los.es 5st.28 617 3 99.48 4808577 5 INE 567.M GE2 m M.93 4 850333 c ses.1s Sat.38 687.e 99.58 restsN l

7 IEN 367.23 ett.M 99.85 4 805325 e ses.m Set.m 687.05 99.53 4ee8577 9 IEST 567.25 ett.N 99.13 AM se 189. 5 564.73 689.3B 99.3B 4001017 ,

Best Esi sa. Pseper CesdEcsset: -0.90 E-4/5F Uso 0.0 for 2-D Es, best estima. value for 1-D Et DELYA DELTA Fit of ITC and Ptsurer Coeff i SWINGS DELTA DELTA REACT DELTA REACT (E.4)

Teve PWR M5 XENON Toast magneesses oespot.

2.33p .s.aus e.est 4.y13 Cenesent 0.012 14 21 4.854 S.500 -12.429 12.951 Sed Err of Y Est 0.286 31 ' 4.M5 -1.eN 12.531 -13.494 R Squared 1000 43 5.047 1.090 32.531 13.512 No. of Observesions 8.000 5.004 -0.480 12.449 12.88i Degrees of Freedose 6.000 5-4 6-5 5.041 0.500 -12.456 12.978 76 4 956 -0460 12.530 -12 944 X Coefficicash) - 7 54:

3.7 4 375 0480 12.517 12.949 Sad Err of Cocf 0 020 98 4 875 0400 12.583 12.873 ' ITC 1%r Coeff 10-9 2.486 0 070 -6.919 6.982

l ST-LUCIE il CYCLE 5 1 ITC TEST 280 PPM .

8795 EFPH sArsuL 3 SANK 5 SEACT ASE Teve SAMK 5 WORTH Fit of Beek 5 Wortti i SAME5  ;

5 WesERT Wr3IDR THDR*2 WINDR*3 (S) WORTH FITTED

" ,. - Ouepet t=7 4.4807 0.012 SM.63 0.0000 0.0005 Conseest 2.016012522 .

0.00 - 13m.M 80806.09 25584FF.86 '

SA055 0.009 SM.7 4 8052 4 0055 sed Err of Y Est 0.00:094 Iso 2.56 133.28 17Mt.37 236338.91 aJest e.es SM.78 a sses r onze R seemed 0.999si465 4.M IM.1e last.e9 223aan.ss ACM5 h.of cheerveasons 9  :

7.36 12L37 1288.23 M11838.8 4. 3 06 0.57 SM.M 4 0361 4 0005 40ett DepensofFsendose 5  !

3&GB 123. 5 B5836.M 30833 3.96 E335 teep 575.t8

$4.28 187.73 13383.M 96812 5.48 E3836 S.SF3 575.56 4 0883 4W71  !

-4.742E-02 6.534E44 -1.96 t E.06 -?

335305.M SJW6 0.006 SM.88 4 85F3 4 8872 X Canticisen(s) 28.5 B5.36 199 9.61 4 8461 Sid Err of Coef. 9.02tE43 7.787E.05 2.226E47 i 25.M 300AS IWAR 198 9 88.28 S.2W G.lM SMAS 4 8448 38.00 95. 5 9856.5B SMt93.77 E236 0.856 SM.M 4 1783 -0.17e6 sgens gases gemas E3 met s mas e .,a m3 I 4 WTIIDR Tin Tout ASI Fest W D ETIE i 0  !!6.19 549.13 599.30 0.061 les.375 4 808723 I 145.31 546.25 SF7As e.304 99.925 4 888272 2 115.e0 549.20 599.50 9.830 188 4 088748 3 196.88 546.10 SF7.00 0.134 , 305.8 4 001302 4 186.25 549.28 509.28 0.873 388.8 4 00BF30 5 105.44 Sa6.20 397.28 8.112 100.2 4 083278 '

6 117.75 549.28 389.00 0.SN 99.97 4 000646 7 138.38 SepAS SBD.N 0.0 68 N.7 4500M S les.G 509.00 SF7.00 0.333 M.7 4 800455 ,

9 8 3.56 Sep.N SSD.M S.453 35.8 4 000582 i

' assa mesa. Passer ce e m4rur time 0.4 Ser 2.D Sas, best assian. for I-D fin l ,

j j

reeen l Teusteens DELTA DELTA Fia of RC and Pouver Coeft SWB0GS 9M.TA DELTA BEACT DELTA REACT (E4)

Teve FWR Ett 5 XEM006 Tesel Bayeeseen Omeyes.

s. Mas Caesames -0.101 34 -a.w .e.ess -3.3es 0.478 21 2.683 S.875 5.197 -5.2FF Sed Err of Y Est S.Ist -5.544 5.544 R squared 0.996 32 -1.808 9.000 i 4-3 2.M3 0.000 5.835 -5.825 h.ofcheerveeione

-5.583 5.583 Depees of Fremdess ' 6.000 [

54 -2.308 S.3GS 65 2.484 4 238 6.256 43 -5.956 SA66 4 270 0.548 -4.548 X Casticiens(s) .z. u4 .i.i w  ;

74 0.073 0.067  :

87 -1.553 -5.000 4 639 46 9.239 sad Err of Coef.

9-8 1.449 5 400 9 431 0.2 9.231 RC Pwr Coeff

-i

_ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ ___a_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - _ _ _ . , _ _ _ - - - _~_. - - <,, .-=u = _ . , _ _ _ _ _ . - , _ . - . _ . - --.-v - _ _ - _ _-_ _.-

.- 1 1

ST-LUCIE ll CYCLE 5

i. ITC TEST 789 PPM j 4226 EFPH~ .

BANIL 3 SAME 5 BANK 5 R$ACT ASE Teve SANK 5 WORTII Fit of Scak 5 Worth 5 DISERT WTIIDE THDR*2 WI3IDE*3 (5) WORTH FITTED tal P ,. Querut i s 8.0B IM.M 88606 M 2554W7.36 4. # 18 e 5M.41 0.0000 0.0004 Comesse 1.317:40007 2.56 133.M 17M2.37 2363 3 8.93 0.3887 e.085 SM.45 4 8831 4 0032 Sed Err of Y Est 0.00062461I 4.35 138.M 11 M I.19 seament tu e3es S. m SM.58 4. ewe desm R squeeed 0.999s99s70 7.M 836.37 8288.23 WIM33.8 S. 2 06 RSIS SM.46 49d72 401M No. af Observensene 9 le.m 823. 5 15tM.38 1883338.M &3963 kW SM.SI 4 8I75 .e.GIM Depees of Freedom 5 N.34 ; II7.23 13343.M - 168122.68 4.MSB E087 575.1 4 8085 4 9477 30.80 ISD.M 319 9 .68 13813W.91 8.Ei35 45P5 575.52 ASN3 4 0792 X Ceesocisee(s) 4.707E42 4.726E.04 .l.454E46 25.M 101. 4 IM.O 1903308.28 SMI4 S.C? 575.98 4 8106 A llI2 See Err of Coef. 5.150E43 4 445E45 1.270E-07 30.00 95.9 9856.M SMI93.77 8.3N7 S.82 n S36.16 4.8331 4 1327

. . - aut 3 seems aseen asses susesT e ume 4 4 WTIIDE Tim Tom AS Por WDETE 0 115.6 548.5 999.8 0.037 99.65 4.coales i 107.9 545.3 396.4 S.0638 ISB.89 4.000852 2 115.3 548.6 399.2 0.0828 99.98 4 000552 3 telp.I 545.1 396.25 0.005 99.85 -S.00EBOS 4 184.3 548.4 399.3 0.005 99.M AGENI 5 105.6 544.7 595.5 GMt 99.90 AM 6 Il6.I 505.8 29A S.0 64 N.W 4.M Mll West Ed E liiWWE C -

^

-9.57 7.-415F Use 0.0 ist 2-D St, heel seeien. vetse for I-D 5t.

DELTA DELTA Filof NC only SWWIOS DELTA DELTA REACT DSLTA REACT (E4)

Tese FWR Mt5 EEIGON Teest Reyeeseen Oespot.

34 -3.gse W.zza -3.333 3.43E Casseest 0.015 28 3.i$7 4.000 3.000 -3.WB and Err of Y Est 0.570 32 -3.338 4GN -2.ND 4.2 2.446 R sques.4 0.900 4-3 3.ls3 4.lse 2.185 -2.3e5 n.. of Onservessa.e 6.c00 54 -3.G 3 0.338 -3.556 3.730 Depose of Freedom 4.000 65 3.985 AMS 4.382 4 309 X Costasises(s) .c.95 and Err of Coef. 0.067 WC t

. . - . . . _ _ . ._ m __ ..mm._____m.__ _ _ . . _ _ . _ _ _ . . _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ . _ _ _ _ _____________________.______n - -i._ _ -_ . - . - _ , . . . . = . ~ , . .

ST-LUCIE 11 CYCLE 6 ITC TEST 283 PPM 9380 EFPH sArest 3 SAMK 5 REACT ASE Teve RANK 5 WORTH Fit of Beek 5 Worth SANK 5 WTHDR THDR"2 WFEDE*3 (5) WORTH FITTED 5 WISERT t=1 Resresemos o wew 0.5M6 4 012 SM 2 0.0000 Consenet 1.241094101 S.00 IM.10 18d46.80 2554W7.86 0.5306 4 806 5M.3 4.0000 Sed Err of Y Est 0 000s14485 2.M 133.20 17M2.37 23E358.92

e. Sale e.tel SM.4 relM -0.0131 a signered 0.9999405:s 4.M 138.10 11Mt.39 2233833.53 7

KN.e 0.3834 S.416 SM.6 4 0322 .e.e331 No. of Observe 1ione 7.56 IM.37 15988.23 4 e503 Degrese of Freeden 3 0.00 123.83 ~ 158M.38 lash 28.M SAS43 0.58 5M.9 40$e3 '

117.23 33M3.19 341823B.68 SA500 9.8N 575.3 AaBM 40831 14.M 4 1305 X CoefGeisme(s) 4987E42 4.997E44 -I .507 E-06 30.00 IW.M 19999.61 13W983.98 SAWB e.W7 575.9 4 1305 lelspA3 0.328 0.133 SM.4 AIM 5 -0.1772 sed Err of Coef. l.088E42 9.644E45 2.835E47 25.M 101. # letSMS.21 M.00 95. 9 9tM.SB SMl92.77 4.3357 0.157 SM.8 4 3000 42006.,

.a uut 3 assee - asene esmeT -_ , mas j t i4 WTalDR Tim Test AEI Pwr 1 NORTH O 114.6 548.30 399.1e S. set 99.40 A cesses i 105.5 544.65 306.23 8.W8 99.98 4 895537 2 116.5 548.37 399.35 0.058 99.08 4000BM 3 105.1 544.58 396.25 0.305 300.05 ASSIMI 4 116.8 548.45 399.43 0.061 99.88 4e888N 5 105.3 544.65 396.33 8.lle les.80 4 8985 #

6 116.6 548.35 M9.18 0.057 93.82 4WMdB Best Eelsen. Ptpuper 09-*-

-0.39 E-4INr Use 0.0 for 2-D Et, best estism. vales for t-D fie DELTA DELTA Fit ofITC and Power Coolf SWW405 DELTA DELTA REACT DELTA SEACT (E4)

Teve FWR ett 5 XEMON Tseal Regvession ovipse.

l G.I 7.335 Consenet 0.072 34 .J.351 W.355 4.553 l e 6.793 sid Err of Y Em 0.248 21 3.547 .e.let 6.633 0.999 32 -3.572 0.298 4 878 48 7.194 R Squared e.1 -7.478 No. of Observatione 6.000 43 3.655 A3M 7.048 4.000 54 -3.5M e.330 -6.938 41 7.384 Dessess of Fseedoes 65 3.3p6 .e.las 6.all e.1 -7.e72 X Cosfracisen(s) 2.033 Sid Err of Coef. 0.029 ITC Pwr Coeff

1 ST-LUCIE ll CYCLE 6

, ITC TEST 782 PPM '

4879 EFPH -

BAN 3 BANK 5 BANK $ BSACT A38 Teve SANK $ WOItTH Fit of Bank 5 Worth

, 5 56 SERT WFWDR THDR*2 WIMIR*3 (S) WORTH RTTED 4 t=1 A owyn-e.es 1118 IMe6M 2554WF.86 0252 rest SR4 e.eese 0.e005 Ceemmet 1.7c5506574 '

2.56 133. 2 ITM2.37 2M3Bl.92 82WF 9. M SM.4 4 8845 4 0045 Sed Err of Y Est 0 000s17012 42 IRM B1 W 2.39 2233 3 3.73 4.MN 4.40 SM.5 4934 A tle2 R Sqeered 0.999894797 7.56 826 37 nensa 11 20 m .S 6.2721 S.832 SM.7 4E31 4 8235 No. of Observessoas 9 .

i (DW 123m 15836.M ISSIE94 0.2N7 4.58 SM.9 4 8B85 4 8363 Deesess of Freedman 5  !

N.as 117.23 Ine32 astsa m es S.33I9 emis 575.3 r es33 A ss23 ,.

i RW IW.36 3I9 9.68 im S. IBM t.98 575.8 Alabt 4.13t3 X CeeKaciese(s) 6.034E42 6.022E44 . .e44E.06 '

25.M ISI A tm.42 - SI S.8535 S.IM SM.3 4MI7 4.1427 Sed Err of Conf. 6.736E43 5.815E45 1.662E47 mes SSE Data es 3 Mist.17 c.122r1; 8.15 SE4 4 I100 4.l#5 a ._ a M3 Besse secos E === ElemeT s uma [

1 I 4 witIDE Tim Tess AM Per WORTII 0 113.4 548.2 599.5 0.0504 99.73 Aege8M l I 885.3 544.2 595.95 0.052 300.2 4 891235 '

2 112.7 548.I 599.1 0.057 99.6 4 800B30 3 804.7 544.05 396.2 S.887 99.9 4513E5

4 113.4 548.25 359.4 0.e565 99.9 ASEBBM I 5 ta.s 543.as Ses.73 a.eps 99.6 A m13tl 6 AM 548J 39.5 S.e505 98.7 m I seat use si. riswer <'- -c.59 E-4(NF Use 0.8 for 2-D St. best essen. value for I-D 6 DELTA DELTA Pit ofITC and Power coeff SWINGS DELTA DELTA REACT DELTA REACT (E4)

Teve FWR R5 XENON Teest Itagpeanne ousym.

34 -3.yWF 5 475 4.M 4.5 4.75B c- 0.008 21 3.648 Am 3.883 9 4C, and Err of Y Est 0.148 32 -3 E 7 S.3BB 4.858 4.1 4.5 s. R Sgessed 0.999 43 3.839 4.000 4.518 0.1 4 630 No. of chearveensee 6.000 54 4.lM 4 300 4.9 8 41 4.8st Dessess of Fremdese 4.000 ,

i 65 4.357 8.300 3.2M e.1 5.385 X Coenicines(e) -1. m Sed Err of Coef. 0.015 TTC Pwr Coeff

^

i WATERFORD CYCLE 4 137 MWD /T,1076 PPM CALCULATED ITC, POWER COEFF

! Tows- Tavs Tim PWeer Tevg Itaan Tim Pined Fit of N Trc, Pwr Coeff Fit of Tavg vs. Tin,Pwr 549 93 577.37 0.0NSW 28.37 577.37 Reyeesion Oelpet: Regressaos Output:

557 93 585.M t.0N887 28.04 585.04 c- 0.06052 c==e 21.13687

, 549 M 579.80 8.ONSF2 30.08 579.00 See Err of Y Est 0.00001 Sed Err of Y Est 0.004999 557 M 586.46 j 0.00D34 B.46 586.M R Sqessed 0.99975 R Separed 0.999999

! Ito, of 08eerveensee 4 No. of Observations 4 i

Degsess of Pseedoes  ! Degrees of Freedoes i X c % s) -8.22E-05 -4.55E-05 X Coefficient (s) 0.958125 0.325 Sed Err of Coef. 2.75E-06 1.75E-06 Sed Err of Coef. 6.25E-04 1.00E-03 Pwr Coeft trC nest Est. Per Coeff -9.815E-05 MEASURED ITC, PWR COEFF Tim BDT Test Tavg lost BUT Sec. Dek- Delta Deisa Pwr Fisted Pwr Pwr CalPwr Tava Pwr React 548.46 96.73 603.25 578.07 96.73 N.73 . M.82 Regression Output:

556.78 90.38 407.85 583.91 98.83 90.38 90.77 5.84 -6.35 -6.23E-04 Constant -0.0000$

548.18 96.H 402.65 577.70 KH 96.H EH -6.28 6.26 6.14E-04 Sad Err of Y Est 0.000035 557.11 89.94 607.76 584.15 90.14 89.94 89.93 6.45 -6.~l0 -6.58E-04 R Squared 0.997525 548.04 96.97 602.32 577.45 96.07 M.07 95.70 -6.70 6.13 6.02E-04 No. of Observations O 556:92 89.38 667.26 583.78 89.f5 89.38 89.35 6.33 -6.69 -6.57E-04 De8rees of Freedoes G 548.08 95.28 408.97 577.21 95.28 95.21 95.18 -6.58 5.83 5.72E-04 556.73 89.08 607.01 583.50 89.28 89.08 89.09 6.30 -6.13 -6.02E-04 X Coefficient (s) -9.569E-05 = ITC 94.86 601.66 576.81 94.86 94.86 94.94 -6.70 5.78 5.67E-04 Sid Err of Coef- 1.95E-06 -

$47.78 a.-_-.- . .- - - - - - . _ _ - _ - - - - - - - - _ _ . - - - - - - - - _ . .

i

~

2 WATERFORD CYCLE 4 295 EFFD,370 PPM CALCULATEDITC, POWER COEFF I y rg y,yg. T.,g Tim Powe. Tevs Reest Tim Pins 6 Mt af N ITC, Pwr Coef Fit of Tavg vs. Tim,Pwr *l SS 93 377A2 SM 28.4 577A2 Reyession Oespet: Regresseos Owps:

557 93 595.28 m 38.3 385.28 r====* 0.1314 ca- a -e Sed Err of Y Est 3.3j Se M SW.38 & # 4868 30.38 5 9 .38 Sed Esr of Y Set 0.0000 0.0g 0.9999 R sqeeral 1.01 l 557 N 587.84 ml 38.86 587.86 R Spesed

!I bl.d TEL see. of Observatens 4 No. of Observeanoes Depees of Pseedman 1 Degrees of Freedoes X t w asei a(s) -8.17B-05 -2.049E-04 x Coefficiens(s) 0.981875 0 Sed Err of Cost. 4.43E-06 2.740E-06 Sad Err of Coef. 6.25E-04 1.00E MM '.E assa sea. rwr coesi 9757s-es MEASURE..D ITC, PWR COEFF 30T See Dales Debs l Dehe Tim Test Tavs ~ Inst PDT Per React For Pined Pwr ' Per Cet Tavs ~

98.m 98es 95.0 Regressson oespw.

552.35 98.48 607.16 ~ 582.82 585.52 93.00 92.82 92.46 2.70 -5.78 -5.64E-04 Constant 0.000E 557.32 93.82 4 9 .32 98.64 M.57 -2.8 5.82 . 5 GSE-04 Sed Err of Y Est 0.000E 552.35 98.44 408.06 582.M 98.64 92.M 93. 6 92.45 2.72 -4.15 -6.00E-04 A Separed 0.9961

$57.48 92.# dW.# 585.56 M.52 M.52 M.53 -2.66 6.03 5.88E-04 No. of Observetsons 552.46 98.52 8 8.34 582.90 92.54 92.61 2.s -5.98 -5.83E-04 Degrees of Freedoms

$57.50 92.54 409.72 535.m 93.15 583.05 M.52 98.52 98.63 -2.55 5.98 5.83E-04 552.68 M.52 808.11 92.93 609.77 585.91 93.21 92.93 92.71 2.86 -5.59 -5.45E-04 X Coefficicat(s) -2.ll4E--04 = Til 557.67 98.42 98.42 98.78 -2.72 5.49 5.36E-04 Sad Err of Coef. 4.87E-06 552.79 98.42 608.34 583.19 l '

e WATERFORD CYCLE 5 .

90EFPH,1066 PPM CALCULATED ITC, POWER COEFF Tavg Tavg Tim Power Tava React Tim Fiumi Fit of s'alculaard frC, Pwr Coeff Fit of Tavg vs. Tin,Pwr 549 93 576.85 0.005642 27.85 576.86 Regr==== Output: Regression Output:

557 93 584.55 0.004952 27.55 584.55 Comeneet 0.06613 Constant 18.9968 549 M 378.48 0.005088 29.48 578.44 Sed Err of Y Est 0.00001 Sad Err of Y Est 0.0100 551 98 586.16 0.004373 29.16 586.17 R Squared 0.99978 R Squared 1.0000 No. of Observatanas 4 No. of Observations C Degrees of Freedoes i Degrees of Freedom I X Coef&imma(s) -8.37E-05 -9.135E-05 X Coefficient (s) 0.96125 0.324 Sad Err of Coef. 2.74E-06 1.744E-06 Sad Err of Coef. 0.00125 0.002 Pwr Coeff TFC Best Est. Pwr Coeff -9.962B-05 MEASURED ITC, PWR COEFF i

Tim BDT Tout Tava las:. BDT Sec. Detta Delta Delta l

Pwr Fissed Pwr Pwr CalPwr Tavs Pwr React 548.39 96.15 602.80 577.29 96.15 ,

Regression Output:

90.59 5.49 -5.56 -5.54E-04 Constant _o,00005 555.98 90.59 606.96 582.78

$47.97 95.62 602.06 576.71 95.62 -6.07 5.03 5.01E-04 Std Err of Y Est 0.000034 556.50 39.52 606.70 582.94 39.52 6.22 -6.10 -6.08E-04 R Squared 0.999334 547.36 95.35 601.41 576.04 95.35 -6.90 5.83 5.81E-04 No. of Observations 8 88.90 606.19 582.55 88.90 6.51 -6.45 -6.43E-04 Degrees of Freedom o 556.31 547.76 94.25 600.94 576.07 94.25 -6.49 5.35 5.23E-04 556.24 87.85 605.53 582.15 87.85 6.08 -6.40 -6.38E-04 X Coefficient (s) -9.119E-05 = frC 93.28 60030 575.49 93.28 -6.65 5.43 5.4tE-04 Std Err of Coef. 0.000000803S 547.49

WATERFORD CYCLE 5 291 EFPD,404 PPM CALCULATED ITC, POWER COEFF

' ~~'

~ Tavs Tav8 Tim Power Tavs React -Tim Fieasd Pit of s'N rFC, Pwr Coeff Fit of Tavg vs. Tin,Pwr 5# 93 571.32 0.001743 28.32 577.33 *g- "= output: Regressica Output:

557 93 585.19 0.002878 28.19 585.1$ Casseest 0.12786 Constant 2.% s 549 98 579.21 0.002973 30.21 579.28 Sed Err of Y Est 0.00002 Std Err of Y Est 0.010' 557 98 587.06 0.001367 30.06 587.06

~

RS W 0.99984 R Squared 1JM No. o(Observetacas 4 No. of Observations Degrees of Penedomi I Degrees of Freedom X C-s-7" ^'s) -8.2268-05 -2.017E-04 X Coefficient (s) '- 0.9825 0.37 Sed Err of Coef. 4.630E-06 2.865E-06 Std Err of Coef. 0.00125 0.00 Pwr Coeft ' rrC Best Est. Pwr Coeff -9.817E-OS l

MEASURED ITC, PWR COEFF Tim SDT Tout Tavg last BDT Sec Deise Delse Delta Pwr Fisted Pwr Pwr Cal Tav8 " Pwr React 552.04 95.21 606.05 581.14 95.21 95.21: 95.01 Regression Output:

557.29 88.30 607.59 583.89 88.81 88.30 88.77 2.75 -6.41 -6.29E-04 Constant 0.00000 551.15 96.67 605.67 580.82 96.67 96.67 96.58 -3.07 7.87 7.73E-04 Std Err of Y Est 0.00001 557.46 39.08 607.76 584.16 39.08 89.08 88.72 3.35 -7.59 -7.45E-04 R Squared 0.99157 551.11 96.26 605.88 580.62 96.26 96.26 96.38 -3.54 7.18 7.05E-04 No. of Observations 88.89 607.80 584.09 89.17 88.89 88.86 3.47 -7.37 -7.24E-04 Degrees of Freedom 557.46 551.29 96.35 605.88 580.83 96.35 96.35 96.47 -3.26 7.46 7.32EW 557.65 89.33 608.11 584.44 89.33 89.33 88.87 3.61 -7.02 -6.89E-04 X Coefficient (s) -2.II9E-04 = ITC 551.32 96.29 606.09 580.84 96.29 96.29 96.49 -3.60 6.96 6.83E@ Std Err of Coef. 0.0000079741 l ,

1 I

)

Appendix C. l f

i No Sionificant Hazard Reoort l

4 The standards used to arrive at the determination that a request for amendment involves no significant hazards consideration are included in the-Commission's regulation 10 CFR 50.92, which states that no significant hazards  ;

considerations are involved if the operation of the facility in accordance with the proposed amendment would not (1) involved a s'ignificant increased in the probability or the consequences of an accident previously evaluated; or (2) create the possibility of a new or different kind of accident from any accident previously evaluated; or (3) involve a significant reduction in a margin of safety. Each standard is discussed as follows: l (1) Operation of the facility in accordance with the proposed amendment would not involved a significant increased in the probability or the conse- '

quences of an accident previously evaluated.

Under the proposed change, the compilance with the Technical  !

Specification is maintained by measuring the beginning of cycle l temperature coefficients, and monitoring the plant operating l conditions. Explicit calculations of the tarporature coefficients I can be performed under exact operating conditions to ensure further l compliance.

The consequences of an accident previously evaluated will not be increased because this change does not require the modification of

' any assumptions used in the input to the safety analyses. The 4 current safety calculations will remain valid because the allowed range of MTC values will not change.

(2) Use of the modified specification will no*. create the possibility of a new or different kind of accident from any accident previously evaluated.

Plant operation and plant parameters Technical Specification limits will remain unchanged, therefore no new accident can be initiated under the proposed changes.

4

- c.1 - )

. I

(3) Use o.f the modified specifications will not involve a significant' reduc-tion in a margin of safety. ,

The margin to safety will not be reduced because the range of allowed temperature coefficients will not be changed. The serveil-lance program consisting of beginning-of-cycle measurements, of plant parameter monitoring and of explicit end-of-cycle MTC predic-ti_ons will ensure that the MTC remains within the range of accept-able values.

p i

65 e

i 1

l

- C.2 -

)

E

s. . .

l I

Appendix D.

Technical Snecification Markuo i SURVEILLANCE REQUIREMENTS - 4.1.1.3.1 The MTC shall be determined to be within its limits by r.:enfirmatory.

measurements. MTC measured values shall be extrapolated and/or compensated to permit direct comparison with the above limits.

4.1.1.3.2 The MTC shall be determined at the following frequencies and. THERMAL '

POWER conditions during each fuel cycle:

a. Prior to initial operation above 5% of RATED THERMAL POWER, after each fuel loading.
b. At greater than 155 of RATED THERMAL POWER, prior to reaching 40 EFPO i l.'

core burnup. .

c. At any THERMAL POWER, within 7 EFPO of reaching two-thirds of expected core burnup.

i The MTC determination of paragraph 4.1.1.3.2.c is not required if l the results of the tests required in surveillance 4.1.1.3.2.a and l 4.1.1.3.2.b are within a tolerance of to.16*104 4/*F from corre- ,

l sponding design values. I i

. /

O

- D.1 - ,

)