ML20073D456

From kanterella
Jump to navigation Jump to search
Verification of Cecor Coefficient Methodology for Application to PWRs of Entergy Sys
ML20073D456
Person / Time
Site: Arkansas Nuclear, Waterford  Entergy icon.png
Issue date: 09/30/1994
From: Lang R, Shue S
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20073D447 List:
References
ENEAD-02-NP, ENEAD-02-NP-R00, ENEAD-2-NP, ENEAD-2-NP-R, NUDOCS 9409270215
Download: ML20073D456 (74)


Text

$ge$am$:ce$w$am$m%

$e ypwv%en %y 4we ~hMde w

f s

a;' Q. YEW. ?w%w%w.%. %ew >apegs&pwg%fQn q,whm.y ~e, magrW_,M,,

AR 4.

w gya w M4 pap u A

w 4 1

q%w ggs s ;x:4m/f ag pfdiurMG""yky

.Y We "+r D

w hy b ucA Q

r ggg@giamenaYsdFWFdWWW@MMMh6/kW hpI i -

f fT$a$w$w$@aw$n$w~$$$M+~i&N,ERIFICATIONDFu,COR!

d4 M

Q ICE

+&

-n

=.mnn nng i

M&gemWMLZ3sCOEREICIENTiMET~HODOEOGY6FORMg

%p m#$n@a@wan@am@m@w=rARPLIC,nnNtTO a

genewnn n n n w aa n s BRMM ME i

ATIO h

a mm nna u --.ma n.

m@$$%B M4 MWATER! REACTORS!OEsTHE?ENTERGNgO$N l

%% W 5M9jb _h@ ft P WP' @ t _$ Myp_%

i$$QdQ_W%_Rebilj$$$_h &fg$d '

_?d@ @p _MyEf W@$$s$5$PWW4W%@i@"W@%@$h MM a

R 4h $ e W R

es49 M P T O,@ rh 8,y% w U Wa nW W m,A n,y vy%namn,i,mam m.: mmmegv, S

W M U C.m M

rn ap ev engw an m

-n mi gn k

h$m$N$,@_@@.ld$

h M $ e$ w$ N N $ w g n a c w e w kMhh mem x

d m y,, m, m,wg p $y,j s,ea@y.@

n ~rym?,ee;E SMWuhh

,a $dGdMWE6JsshhM% ? *< W_ nZ'L i

f ms n

k+,;w;y

M -- < gy,c...w@n e?w g g ng s

m r

f4 gyK 97 p es-.g6 y-g -

qq yw --

@S IN$$($ff)$($)

k h

__... _ _ ~.

==

~~

ENTERGY VERIFICATION OF CECOR COEFFICIENT METHODOLOGY FOR APPLICATION TO PRESSURIZED WATER REACTORS OF THE ENTERGY

~~

SYSTEM ENEAD-02-NP REV 0 EDC FILE QR-038-42 REv 0 AUTHORS R.B.Lang S.G.Shue CENTRAL DESIGN ENGINEERING ENTERGY OPERATIONS, INC.

SEPTEMBER 1994

ACKNOWLEDGMENTS The authors gratefully acknowledge calculations done by Mr. R. E. Griffith, Mr.

B. A. Hawes, Mr. R. E. Machado, and Mr. K. B. Megehee that provide the calculational basis for the report.

1 ENEAD-02-NP REV 0 Page 2

IMPORTANT NOTICE This document was prepared by Entergy Corporation for the use of the United States Nuclear Regulatory Commission in matters regarding the operating licenses of Arkansas Nuclear One - Unit 2 and the Waterford Steam Electric Station - Unit 3. To the best of the issuer's knowledge, this document contains work performed in accordance with sound engineering practice and is a true and accurate representation of the facts.

J

  • l Any usage other than as described above is prohibited. Other than for the intended usage, neither Entergy Corporation, nor any of its employees or officers, nor any other person acting on its behalf:

I Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed herein would not infringe privately owned rights; or Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

l ENEAD-02-NP REV 0 Page 3

TABLE OF CONTENTS List of Figures List of Tables 1.0lntroduction.

.8 2.0ln-Core Instrumentation.

.9 1

3.0CECOR Power Distribution Calculation.

.15 l

3.1 General

.... 15 3.2 Flux-to-Power Conversion.

.15 3.3 Coupling Coefficients..

.16 3.4 Axial Power Synthesis..

.16 3.51-Pin Peaking Factor...

.17 3.64-Pin Peaking Factor..

.17 4.0CECOR Library Generation.

.18 5.0 Determination of CECOR Uncertainties...

.21 5.1 General..

.21 5.2 Box Power Measurement Uncertainty (Nodal Peaking Uncertainty).

. 21 5.3 Power Synthesis Uncertainty...

.27 5.4 Pin Peaking Calculational Uncertainty......

.35 5.5 Combination of Uncertainties.

.. 36 6.0 References.

..43 Appendix A: Definition of Terms..

.44 Appendix B: Power Distribution Measurement Statepoints.

.. 45 Appendix C: ANO-2 Representative Box Measurement Comparisons..

53 Appendix D: WSES-3 Representative Box Measurement Comparisons.

.57 Appendix E: ANO-2 Representative Power Synthesis Comparisons..

.61 Appendix F: WSES-3 Representative Power Synthesis Comparisons.

..68 ENEAD-02-NP REV 0 Page 4

LIST OF FIGURES Figure 2.1. ANO-2 Instrument Pattern.

.10 Figure 2.2. WSES-3 Instrument Pattern..

.11 Figure 2.3. Typical Neutron Detector and Detector Assembly.

. 12 Figure 2.4. Rhodium Emitter Decay Scheme.

. 13 Figure 2.5. In-Core instrumentation Wiring Diagram.

.14 Figure 4.1. Schematic of CECOR Library Generation.

.19 Figure 4.2. Assembly 18 Coupling Coefficient vs Burnup for ANO-2 Cycle 10.. 20 Figure 5.2-1. ANO-2 Fxy Box Measurement Error vs Normal Histogram.

.24 Figure 5.2-2. ANO-2 Fr Box Meesurement Error vs Normal Histogram.

.24 Figure 5.2-3. ANO-2 Fq Box Measurement Error vs Normal Histogram.

.25 Figure 5.2-4. WSES-3 Fxy Box Measurement Error vs Normal Histogram.

.25 Figure 5.2-5. WSES-3 Fr Box Measurement Error vs Normal Histogram..

.26 Figure 5.2-6. WSES-3 Fq Box Measurement Error vs Normal Histogram.

.26 Figure 5.3-1. ANO-2 Fxy Power Synthesis Error vs Normal Histogram.

.32 Figure 5.3-2. ANO-2 Fr Power Synthesis Error vs Normal Histogram.

.32 Figure 5.3-3. ANO-2 Fq Power Synthesis Error vs Normal Histogram.

.33 Figure 5.3-4. WSES-3 Fxy Power Synthesis Error vs Normal Histogram.

. 33 Figure 5.3-5. WSES-3 Fr Power Synthesis Error vs Normal Histogram.

.34 Figure 5.3-6. WSES-3 Fq Power Synthesis Error vs Normal Histogram..

.34 Figure C.0-1. ANO-2 Cycle 2 BOC Box Power Measurement Differences.

.54 Figure C.0-2. ANO-2 Cycle 2 MOC Box Power Measurement Differences...55 Figure C.0-3. ANO-2 Cycle 2 EOC Box Power Measurement Differences.

.56 Figure D.0-1. WSES-3 Cycle 3 BOC Box Power Measurement Differences. 58 Figure D.0-2.

WSES-3 Cycle 3 MOC Box Power Measurement Differences.. 59 Figure D.0-3.

WSES-3 Cycle 3 EOC Box Power Measurement Differences.. 60 Figure E.0-1.

ANO-2 BOC-2 Fr Power Synthesis Differences.

.62 Figure E.0-2.

ANO-2 BOC-2 Fq Power Synthesis Differences.

.63 Figure E.0-3.

ANO-2 MOC-2 Fr Power Synthesis Differences.

.. 64 Figure E.0-4.

ANO-2 MOC-2 Fq Power Synthesis Differences.

.65 ENEAD-02 NP REV 0 Page 5

Figure E.0-5.

ANO-2 EOC-2 Fr Power Synthesis Differences.

.66 Figure E.0-6.

ANO-2 EOC-2 Fq Power Synthesis Differences....

....... 67 Figure F.0-1.

WSES-3 BOC-3 Fr Power Synthesis Differences.

... 69 Figure F.0-2.

WSES-3 BOC-3 Fq Power Synthesis Differences.

.. 70 Figure F.0-3.

WSES-3 MOC-3 Fr Power Synthesis Differences..

.71 Figure F.0-4.

WSES-3 MOC-3 Fq Power Synthesis Differences.

.72 Figure F.0-5.

WSES-3 EOC-3 Fr Power Synthesis Differences..

..73 Figure F.0-6.

WSES-3 EOC-3 Fq Power Synthesis Differences...

.74 l

l i

i I

i

(

l ENEAD-02-NP REV 0 Page 6

d LIST OF TABLES Table 5.2-1.

Observed (Box Power Measurement) Uncertainties.

.22 Table 5.3-1.

ANO-2 Power Synthesis Uncertainty Components.

.30 Table 5.3-2.

WSES-3 Power Synthesis Uncertainty Components.

.30 Table 5.3-3.

ANO-2 Power Synthesis Uncertainty vs % Failed Detectors.. 31 Table 5.3-4.

WSES-3 Power Synthesis Uncertainty vs % Failed Detectors.31 Table 5.5-1.

ANO-2 CECOR Peaking Factor Uncertainty Components.

.39 Table 5.5-2.

WSES-3 CECOR Peaking Factor Uncertainty Components.. 40 Table 5.5-3.

Combined Uncertainties for ANO-2.

.41 Table 5.5-4.

Combined Uncertainties for WSES-3.

.41 Table 5.5-5.

ANO-2 CECOR Reliability Factors vs % Failed Detectors.

.41 Table 5.5-6.

WSES-3 CECOR Reliability Factors vs % Failed Detectors.. 42 Table 5.5-7.

95%/95% CECOR Reliability Factors vs % Failed Detectors.. 42 Table B.0-1.

ANO-2 Cycle 2 Statepoints.

.45 Table B.0-2.

ANO-2 Cycle 3 Statepoints.

.45 Table B.0-3.

ANO-2 Cycle 4 Statepoints.

.46 Table B.0-4.

ANO-2 Cycle 5 Statepoints.

.46

- " ~

Table B.0-5.

ANO-2 Cycle 6 Statepoints...

.47 Table B.0-6.

ANO-2 Cycle 7 Statepoints.

.47 Table B.0-7.

ANO-2 Cycle 8 Statepoints.

.48 Table B.0-8.

ANO-2 Cycle 9 Statepoints.

..48 Table B.0-9.

ANO-2 Cycle 10 Statepoints.

.49 Table B.0-10.

WSES-3 Cycle 1 Statepoints.

.49 Table B.0-11.

WSES-3 Cycle 2 Statepoints.

.50 Table B.0-12.

WSES-3 Cycle 3 Statepoints.

.50 Table B.0-13.

WSES-3 Cycle 4 Statepoints.

. 51 Table B.0-14.

WSES-3 Cycle 5 Statepoints.

. 51 Table B.0-15.

WSES-3 Cycle 6 Statepoints.

.52 ENEAD-02-NP REV O Page 7

1.0 INTRODUCTION

The CECOR program (Reference 1) is a computer program that synthesizes l

detailed three-dimensional assembly and peak pin power distributions from fixed incore detector signals. The purpose of this report is to re-quantify the CECOR power distribution uncertainty of the CECOR libraries generated with CASMO3/

l SIMULATE 3 physics methods. The methodology used in the report for the generation of CECOR libraries is based on the previously NRC approved CECOR Topical Reports (References 3,4) which have been expanded and modified to work with the CASMO3/ SIMULATE 3 computer code system. In the text SIMULATE 3 is referred to as the nodal code and CASMO3 is referred to as the lattice physics code.

Section two of this report describes the incore instrumentation for Arkansas Nuclear One - Unit 2 (ANO-2) and Waterford - Unit 3 (WSES-3). Section three describes the algorithms used by CECOR to synthesize the three-dimensional power distribution from the incore detector readings and the coefficient library.

A precalculated library of coefficients is used in the power synthesis. Section four describes the generation of the coefficient libraries from data generated from the Entergy reactor physics methods described in Reference 2.

Section five provides a quantification of CECOR uncertainties using Entergy generated libraries. The measurement data was taken from cycles 2-10 of ANO-2 and cycles 1-6 of WSES-3.

/

ENEAD-02-NP REV 0 Page 8

=

2.0 IN-CORE INSTRUMENTATION The incore instrumentation at Arkansas Nuclear One - Unit 2 and Waterford Unit 3 consists of fixed self-powered rhodium detector strings, movable self-powered rhodium detectors and background detectors.

Figures 2.1 and 2.2 give the layout of incore instrumentation for ANO-2 and WSES-3.

Each fixed incore detector string consists of five detectors equally spaced axially over the active fuel height. Each detector string is centered in the large center water hole of an assembly.

The CECOR power distribution is based only on the fixed incore detector readings. The movable detectors were designed for detector cross calibration and the background detectors are used periodically to determine a background correction for the fixed self-powered rhodium detectors. The movable detectors have never worked.

A typical rhodium detector consists of a rhodium emitter, insulation, a collector sheath and signal lead wire as shown in Figure 2.3.

The emitter consists of 99.9% rhodium-103 which is surrounded by a Al O insulator which is enclosed 23 in an inconel sheath. The detectors are ~40 centimeters in length and are centered approximately at locations as presented in Figure 2.3.

When the rhodium-103 in the detector absorbs a neutron, rhodium-104 is produced which decays through beta emission. The complete rhodium decay scheme is shown in Figure 2.4. The escape of beta particles from the emitter produces a low-level current. A measuring resistor is Ltilized to produce a measurable voltage as shown in Figure 2.5.

The voltage is amplified, then j

j digitized by an analog to digital converter for use by the plant computer.

ENU.J-02-NP REV 0 Page 9

Figure 2.1. ANO-2 Instrument Pattern

-- FUEL ASSEMBLY

~~ INSTR.

1 2

3 4

5 6

7 8

9 to 11 12 13 14 1

2 3

A 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 as 5

6 7

8 9

10 39 40 41 de 45 46 47 48 49 50 SI 52 53 se e5

./

sa s9 f0 si s2 m

64 e5 es 11 12 13 14 15 16 17 67 68 li0 70 71 72 73 74 75 76 77 78 79 80 81 18 19 s2 s3" sa as as as se s0 et s2 sa os e5 s6 s7l 20 21 122 23 24 25 37 98 99 100 101 1C2 103 10s 105 106 107 108 109 110 tit 26 27 11 2 tt3 114 115 117 11 6 119 120 121 122 123 124 125 125 28 30 31 32 33 34 c

527 128 129 1#

131 132 135 134 135 13E 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 132 35 36 37 38 39 40 153 154 155 156 157 158 159 180 161 162 10 i

164 165 166 167 168 1110 170 171 172 41 42 43 44 173 174 175 13!

177 I

ENEAD-02-NP REV O Page 10

Figure 2.2. WSES-3 instrument Pattern

-- FUEL ASSEMBLY 2

3 4

~ INSTR.

5 6

7 8

9 to 11 12 13 1

2 3

4 5

14 15 16 17 18 19 20 21 22 23 24 i

25 26 2r 25 29 30 31 32 33 34 35~

36 37 6

7 8

9 10 11 12 38 3

40 41 42 43 44 45 46 47 as 49 50 51 52 53 54 35

$6 57 58 SGI g) 61 62 O

84 85 66 67 13 14 15 16 17 18 19 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 l

20

^

21

.7 3,

,o s2 s3 e4 95 se e7 es so 22 23 24 25 26 27 28 102 103 104 106 106 107 108 10p 110 111 112 113 114 11 5 116 11 7 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 29 30 31 32 33 34 35 i

136 137 138 130 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1541 156 156 157 158 150 180 161 162 in 164 185 38 39 40 41 42 43 44 l

166 157 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191-132 Ig3 45 46 47 48 49 50 Si i

1ba 195 196 197 198 199 200 201 202 203 204 205 205 207 208 209 210 211 212 213 52 53 54 55 56 214 215 216 217 ENEAD-02-NP REV 0 Page 11 1

Figure 2.3. Typical Neutron Detector and Detector Assembly S. S PEPELEX BACKGROUto DETECTOR SHEATH f

\\

s hik 2-h._

,/

OuTteT x

THERMOCCUPLE,_\\

TOP OF FUEL ASSEM3LY 5 RHODIUM DETECTORS CENTERED AT 10,30,50, 70 AND 90% CORE HEIGHT TYPICAL INSTRUMENT ASSEMBLY Al O3 2

Coaxial Cable

\\

\\

  1. ^$

/ Nnconel Sheath Rhodium Emitter TYPICAL RHODIUM DETECTOR 1

ENEAD-02-NP REV 0 Page 12

Figure 2.4. Rhodium Emitter Decay Scheme (0 128)

" p3 0 077 MeV 4 4 non e 5 2 (0 051) 104 p 1

45 0 051 Mew Y

nn 10.

46 g1 1,

Og Og Og 0

0

'1

  • 1
  • 1 11 6 139 e 2 ad MeV 188 Mov 0 se Mov rs,

.rs, s>

o.,

m is, r1801 108

4. Pd 1.24 MeV I

f0 851 10s 42 ses a %g 0ss u.a

'" Rh 45 10' Pd t

ENEAD-02-NP REV 0 Page 13

}

Figure 2.5. In-Core Instrumentation Wiring Diagram MULTIPLEXER s

... - e

....~, _ __

t j " ' " ~ ' '

i

@Ru' O N i

o N i

(..

. -.. -. ~.. _,

M h N}

j t

r.. -.

M O \\:

i

$R I

i 0N i

C- -- ' ~

A i

R y

~?

' m l

C-

+

- g

{; I O

N.

i e--*

i f

0 N; l

i w

i O

CA THERMOCOUPLE l

i i

'TO GND BUS

--.j

' ~ - - - - - -

TO SHIELD AND JACKET THAT TO INDIVIDUAL SHIELDS ENCLOSING EACH ENCLOSES ALL THE ABOVE PAIR OF TWISTED SIGNAL LEADS (ALL 6 CABLES SHIELDS ARE CONNECTED TOGETHER)

CIRCUlf PER DETECTOR N

l Rl

)

0 f g

G l

C R

R V

E g

y C

a. 9 com O

Rg = CABLE LEAKAGE R

  • DETECTOR MEASURING RESISTANCE y

R3

  • SPECIAL RESISTOR ENEAD-02-NP REV 0 Page 14

3.0 CECOR POWER DISTRIBUTION CALCULATION 3.1 General The CECOR program synthesizes 3-D power distributions from fixed incore detector readings. The first step in the process is to convert the signals from the five axially spaced detectors in a string to powers. Coupling coefficients are next used to calculate pseudo-detector powers at each of the five detector levels in uninstrumented assemblies or assemblies with failed detectors. A five term Fourier fit is used to construct assembly axial shapes based on the five detector level powers. Calculation of the maximum 1-pin and 4-pin assembly peaks are done using 1-pin and 4-pin peaking library coefficients. Libraries are a function of burnup, control rod position and axial detector location. Separate library coefficients are used at each of the five axial detector locations. The following sections present the Entergy methodology for determining the flux-to-power conversion library, coupling coefficient library and 1-pin peaking factor libraries.

3.2 Flux-to-Power Conversion The flux-to-power conversion factors are used to convert from background and depletion corrected instrument flux to assembly power integrated over detector length. The equation used is:

R, = I,,,

  • IV (3.2-1)

Where P,, is the power for assembly i at detector level n and I,,, is the background and depletico corrected incore detector flux reading, and IV is the flux-to-power conversion factor.

ENEAD-02-NP REV 0 Page 15

1 The flux-to-power factors (W) are updated for each reload and are defined as j

the assembly power integrated over detector length divided by the rhodium 1

reaction rate per rhodium atom.

The details of the F calculations are described in Reference 2.

The F coefficients are fit by cubic expressions in assembly burnup.

Separate W' coefficients are produced at each of the five axial detector locations.

3.3 Coupling Coefficients Coupling coefficients relate the detector powers in instrumented assemblies to pseudo-detector powers in uninstrumented assemblies. Coupling coefficients are obtained from the nodal depletion calculations. The coupling calculation is done prior to the axial synthesis described in Section 3.4.

The coupling coefficient for assembly j is defined as:

N y CC,=

P /(N,

  • P )

(3.3-1) j Where N, is the number of assemblies neighboring assembly j P are the powers in the neighboring assemblies at a specific detector level, and P, is the power in assembly j at the same detector level.

Coupling coefficients are generated for both rodded and unrodded core configurations and are fit by cubic expression versus assembly burnup.

Separate ce;pling coefficients are produced at each of the five axial detector locations.

1 3.4 Axial Power Synthesis The axial power distribution synthesis converts the fise incore detector level readings into a 51 node axial power shape using a Fourier fit as described in ENEAD-02-NP REV 0 Page 16 l

Reference 1.

The choice of the input variable (wave number Bj) is the only required calculation. Entergy uses a location and burnu;; dependent value of Bi based on 3-D nodal calculations. The wave number, Bj, is chosen to minimize the axial differences between CECOR and the 3-D nodal calculations.

3.5 1-Pin Peaking Factor The 1-pin peaking factor is defined as the ratio of the maximum pin power in an assembly to the average pin power in the assembly. The 1-pin peaking factors are obtained from 3-D nodal calculations with pin power reconstruction. The 1-pin peaking factors are input to CECOR as polynomial fits as a function of assembly burnup for each assembly and rod configuration.

Separate 1-pin peaking coefficients are produced at each of the five axial detector locations.

3.s 4-Pin Peaking Factor The 4-pin peaking factor is defined as the ratio of the maximum channel power in an assembly to the average power in the assembly. CECOR used to use the results of the 4-pin peaking calculation to pass to another program to calculate DNBR.

Currently however, the 1-pin peaking information is used for this purpose. Entergy, therefore, supplies dummy data for the 4-pin peaking factor.

If in the future the 4-pin peaking data is needed, the methodology will be identical to that for the 1-pin factors as described in Section 3.5.

ENEAD-02-NP REV 0 Page 17

i

)

4.0 CECOR LIBRARY GENERATION

\\

All of the information necessary to generate the CECOR data library comes from three dimensional, quarter core, full power, nodal code depletion calculations and lattice physics calculations. A schematic of the CECOR library generation methodology is shown in Figure 4.1.

Inputs are generated by the nodal code and the lattice physics code (Reference 2)

The outputs include the CECOR cycle dependent data libraries as well as files used for quality assurance of the library. Output also includes graphs of the evaluated polynomial fits of the coefficients. Figure 4.2 is an example of the coupling coefficient for an assembly of ANO-2, Cycle 10. These graphs serve to verify a smooth, well behaved fit between the input points.

i ENEAD-02-NP REV 0 Page 18

Figure 4.1. Schematic of CECOR Library Generation INPUTS OUTPUTS ASSEMBLY BURNUP DISTRIBUTION ASSEMBLY POWER

+ CECOR COEFFICIENT p

DISTRIBUTION LIBRARY FILE CECOR ASSEMBLY 1-PIN PEAK

-> EXPOSURE FILES FOR QA DISTRIBUTION LIBRARY GENERATION INSTRUMENT TUBE

-> TEST SIGNALS FOR QA FLUXES RH C'10% SECTIONS

-> GEOMETRY FILE DATA BETA ESCAPE PROBABILITY ENEAD-02-NP REV 0 Page 19

Figure 4.2. Assembly 18 Coupling Coefficient vs Burnup for ANO-2 Cycle 10 1.02 LEvEti LE'dL 2 0

1 LEVEL 3 b

LEVEL 4 p

U.98 LEVEL 5 0

O 0

0

$ 0.96 c

D 8

0.94 0.92 15,000 20,000 25,000 30,000 35,000 BURNUP (MWD /MT)

THE LARGEST FIT ERROR AND ITS OCCURENCE FOR LEVEL 1:.0 % & AT 23084.0 MWD /M'r LEVEL 2.0 % & AT 19719 0 MWD //MT LEVEL 3:.0 % & 27245.0 MWD /MT LEVEL 4

.1 % & AT 25136 MWD //MT LEVEL 5 :.0 % & 17255.0 MVS/MT ENEAD-02-NP REV 0 Page 20

5.0 DETERMINATION OF CECOR UNCERTAINTIES 5.1 General The CECOR power distribution uncertainties relating to Fxy, Fr and Fq which are defined in Appendix A of this report is composed of three components which are discussed in detail in the following sections. The three are identified as the Box Power Measurement Uncertainty, Power Synthesis Uncertainty, and Pin Peaking Calculational Uncertainty. The Pin Peaking Synthesis uncertainty as mentioned in the previous CECOR topical (Reference 3) is eliminated because the nodal code is capable of constructing detailed 3-D Pin Peaking distributions.

Thus the Power Synthesis Uncertainty includes both the Box Power Synthesis and Pin Peaking Synthesis Uncertainties of Reference 3.

5.2 Box Power Measurement Uncertainty (Nodal Peaking Uncertainty)

The Box Power Measurement Uncertainty (SM) is the uncertainty associated with the measurement of power at the five detector levels.

It includes uncertainties in the measured signals in instrumented locations and the uncertainties in the signal-to-power (W) conversion. The Observed Uncertainty between measured powers and predicted powers consists of the Box Power Measurement Uncertainty (measurement) and Box Power Calculational Uncertainty (model) and is related as shown in Equation 5.2-1 taken from Reference 2.

One can conservaSvely set the Box Power Calculational Uncertainty (model) equal to zero and assume that the Observed Uncertainty is due entirely to the Box Power Measurement Uncertainty.

Si,,a =SL _ +S[,

(5.21)

The process for calculating the Box Power Measurement Uncertainty then consists of comparing CECOR measured instrument powers using actual measured detector signals from fifteen cycles of reactor operation to powers ENEAD-02-NP REV 0 Page 21

i calculated by the nodal design code. These comparisons were carried out in Reference 2. The results of the comparisons are summarized in Table 5.2-1.

i

)

Table 5.2-1. Observed (Box Power Measurement) Uncertainties unit Parameter s.a f

Mean ANO-2 Fq 0.01966 11806 0.00484 Fr 0.01333 3482 0.0 Fxy 0.01703 19761 0.0 WSEs-3 Fq 0.01959 14251 0.00391 Fr 0.01149 4344 0.0 Fxy 0.01550 23694 0.0 1

The statistics above are based on the differences calculated using Equation 5.2-2.

(5.2-2)

DIFFERENCE = Xm-Xc where:

Xm is the measured power from CECOR.

and Xc is the calculated power from the nodal design program.

The variable X is defined differently for Fq, Fr, and Fxy. For the purpose of quantifying Fq uncertainty, the variable X is defined as the power in any instrumented segment. For Fr the variable X is defined as the sum of five detector segments in any assembly. For Fxy the variable X is the power at any instrumented segment within a core level. For each calculation the powers X are converted to relative power distributions by a normalization to the true average power density which is approximated by the CECOR calculation.

Nine cycles of data for ANO-2 and six cycles of data for WSES-3 were analyzed.

Appendix B lists the CECOR cases used to calculate the Box Power Measurement Uncertainty.

Absolute differences were converted to relative differences by dividing by the minimum measured peaking factor Examples of ENEAD-02-NP REV 0 Page 22

l the comparisons of measured and predicted detector powers for representative cycles are provided in Appendix C and D for ANO-2 and WSES-3 respectively.

The distribution of the nodal Fq, Fr and Fxy observed differences between measured and calculated instrument powers were tested for normality. The D' test was used for testing of normality because of the large number of samples.

The results indicated that some of the observed differences did not pass the D' test for normality at the 5% significance level, but histograms of the data were bounded by the normal distribution in the area of interest. Figures 5.2-1 through 5.2-6 give comparisons of the sample box power measurement difference.

distributions and the normal distributions with the 95%95% normal tolerance limits. As can be seen in the figures, the normal distribution tolerance limit bounds the sample difference distributions except for very small percents shown in the figures, indicating that the normal assumption and standard deviations are conservative.

l i

i s

ENEAD-02-NP REV 0 Page 23 f.

.x

+

nn.

,.e

i Figure 5.2-1. ANO-2 Fxy Box Measurement Error vs Normal Histogram l

A2 Fxy Box Measurement Error vs Normal Histogram tse w m%ms tem s

+

94.8% of Meeswed Dutrihneen

+

2400 -

+

A2 Fry Dets 2100 '

Normel D' tributen j

s 1800 -

95%I95% RF Limit 5

1500 -

+

[1200-000 -

/

.00 -

300 -

O t-+-t + *

"'+

11 10 0

8

-7 6

-5 4

3 2

1 0

1 2

3 4

5 6

7 8

9 Measured Predicted *100 Figure 5.2-2. ANO-2 Fr Box Measurement Error vs Normal Histogram

?

A2 Fr Box Measurement Error vs Normal Histogram 700

+

+

A2 Fr Data

+

600 500 Normal Distribution 2.39 Normal

+

+

95%95% Limit E 400 95%I95% RF Limit Bounds 94.7% of Measured Data 300

+

-200 l

+

100

/

+y 0 -

+-

+^

~

10

-9 8

7 6

5 4.

3 2

1 0

1 2

3 4

5 6

7 8

9 10 Measured Predicted *100 ENEAD-02-NP REV O Page 24 e

1 Figure 5.2-3. ANO-2 Fq Box Measurement Error vs Normal Histogram A2 Fq Box Measurement Error vs Normal Histogram (Levels 2 through 4) 4.21 Normal 95%I95%

1400 T Limit Bounds 94.9% of easure s ution

+

A2 Fq Data

++

1100-

+

I Normal Distribution

+

3 800 -

l. 700 -

95%I95% RF Limit

+

2 600 -

500 -

+

f 400 -

['

+ +

300 -

200 -

r'

+(

+

100 -

+-

+'*"++++:

0

++++#

0-15 10 5

0 5

10 15 Measured. Prodicted *100 i

Figure 5.2-4. WSES-3 Fxy Box Measurement Error vs Normal Histogram i

W3 Fxy Box Measurement Error vs Normal Histogram 3200 I W3 Fry Data

++

+

2.94 Norivial 95%I95% LM 2800 g,,,,,,4,,g,, y,,,,,,,

+

2400 Normal Distribution Detr*ution p 2000

- 95%I95% RF Limit

+

=

l.1600 t

/

  • 1200

+/

+/

4 800 400-

/

+

0

-t-w

+' % -+-+-

11 10 9

-8

-7 6

-5

-4

-3 2

1 0

1 2

3 4

5 6

7 8

9 Meesured. Predicted *1DO l

i l

ENEAD-02-NP REV 0-Page 25 1

l

Figure 5.2-5. WSES-3 Fr Box Measurement Error vs Normal Histogram W3 Fr Box Measurement Error vs Normal Histogram 900 -

+

W3 Fr Data 800 700 Normal Distribution

+

2.23 Normal N

95%95% Limit

+

600 B 500 95%I95% RF Limit Bounds 95.5% of i

g Measured Data f400~

^

300

+

200 100 4

/

h+' *

-+

0 -

  • +

10 9 8

7

-6 5 4

-3

-2 1

0 1

2 3

4 5

6 7

8 9 10 Measured Predicted

  • 100 i

i Figure 5.2-6. WSES-3 Fq Box Measurement Error vs Normal Histogram W3 Fq Box Measurement Error vs Normal Histogram (Levels 2 through 4) 4,35 Normal 95%l95% Limit 1600 -

Bounds 95.0% of Measured 0' *ti'a 1400 W3 Fq Data g+

+

5 1200~

Normal Distribution

+

  • 1000 -

E 95%l95% RF Limit

+

l. 800 -

+

[

+

.2 600 -

)

+

+x 400

+

f N

200 -

..+

0

^ + + * + + ' '

+=+-+

0 12 10

-8

-6 4

2 0

2 4

6 8

10 12 Measured Ptsdicted *100 ENEAD-02-NP REV 0 Page 26 t

s.3 Power Synthesis Uncertainty The Power Synthesis Uncertainty (SPS) is the uncertainty associated with the construction of pin powers from detector powers.

The Power Synthesis Uncertainty includes uncertainties associated with coupling coefficient synthesis, pin-to-box synthesis and axial fitting. The Power Synthesis uncertainty also includes uncertainty associated with the number of operable detectors.

t The Power Synthesis differences are obtained by re-running the same CECOR cases used to derive the Box Power Measurement Uncertainty in Section 5.2 but using pseudo signals derived from nodal design calculations. The CECOR results are compared to the results of the nodal design calculation with pin power synthesis turned on.

For the Fr Power Synthesis uncertainty, the relative axially integrated peak pin powers for all assemblies from CECOR and the nodal design calculation are compared. The differences in Fr are defined as:

DFRi = (Pni - Pci)/Pci (5.3-1) where Pni is the peak pin relative power for each assembly (i) from the nodal design program (truth).

Pci is the peak pin relative oower from CECOR.

For the Fq Power Synthesis uncertainty, the relative axial peak pins in all assemblies from CECOR and the nodal design calculation are compared. The differences in Fq are defined as:

DFQi = (Pnik - Pcik)/Pcik (5.32)

ENEAD-02-NP REV 0 Page 27

where Pnik are the axial peak pin (k) for each assembly (i) from the nodal design program.

Pcik are the axial peak pin (k) for.each assembly (i) from the CECOR calculation, i

i For the Fxy Power Synthesis Uncertainty, the planar pin peaks for each axial plane from CECOR and the nodal design calculation are compared. Consistent i

with the use of CECOR in monitoring the reactor core, only planes between 15 and 85% of core height were compared. The differences in Fxy are defined as:

{

DFXYk = (Pnk - Pck)/Pck (5.3-3) where Pnk is the planar peak pin peak to planar average pin from the nodal

.l design program for each axial plane (k) between 15 and 85% of core height.

j Pck is the planar peak pin to planar average pin from the CECOR calculation

.l Difference distributions are generated by comparing Fxy, Fr and Fq from the nodal calculations to Fxy, Fr and Fq generated by CECOR using CECOR

[

libraries generated from the nodal calculations and pseudo detector signals also generated from the nodal calculations. The differences were assembled for each cycle and the statistics for (NODAL-CECOR)/CECOR were calculated.

?

.The difference distributions shown in Figures 5.3-1 through 5.3-6 were found to f

be non-normal by observation and by the application of the'D' test, so a non-q parametric approach was used to set-the 95%95% reliability factor limits.

Conservative estimates for the mean and standard deviations were estimated-from the reliability factors. Appendix B gives a list of the cases used in the development of the Power Synthesis Uncertainties.

Appendices E and F contain - comparisons of Fq and Fr Power Synthesis differences for i

representative cycles of ANO-2 and WSES-3 respectively. The statistical results ENEAD-02-NP REV 0 Page 28 2

.n

.u

i for the Power Synthesis Uncertainty with zero failed detectors are given in Tables 5.3-1 and 5.3-2.

Finally, a parametric study was done of Power Synthesis Uncertainty as a function of the percent of failed incore detectors. It is anticipated that as the number of operable detectors is reduced, the Power Synthesis Uncertainty will increase as the power distribution is constructed more based on the coupling coefficient library than on actual detector readings.

In these parametric studies, off nominal nodal calculations were run at BOC, MOC and EOC for several cycles.

The off nominal cases were full core calculations with large power tilts (8-10%). Signals for CECOR were generated from the nodal calculations as in the base Power Synthesis Uncertainty study.

Next multiple CECOR calculations were run with 0,12.5, 25, 37.5 and 50% of the detectors failed. Detectors were basically failed randomly but in such a manner as to not violate any technical specification requirements, except the percent failed limit. This was done to provide a foundation for increasing the allowed percent failed detectors in technical specifications in the future. The output of the CECOR cases were compared to the original tilted full core nodal calculations.

Statistics for Fq, Fr and Fxy were compiled on (NODAL-CECOR)/CECOR.

The statistics were used to calculate a normal reliability factor using the equation: RF=D+ko.

Reliability factors were tabulated vs percent failed detectors. The reliability factors were normalized to the overall reliability based on nominal operating conditions from the base Power Synthesis Uncedainty calculation. The normalized reliability factors were used with the means and 95%/95% k factors from the base Power Synthesis Uncertainty calculation to calculate F.n equivalent standard deviation that conserves the reliability factors from the failed detector study. The calculations are summarized in Tables 5.3-3 and 5.3-4.

ENEAD-02-NP REV 0 Page 29

Table 5.3-1. ANO-2 Power Synthesis Uncertainty Components PARAMETER MEAN(%)

STANDARD N

F RF K

)

DEVIATION

(%)

Fry 0.0318 0.3202 1822 1728

.0058 1.712 Fr

-0 0048 0.4819 16638 16544 0.0080 1.670 Fq

-1.7533 1.4331 16638 16544 0.0064 1.670 i

Table 5.3 2 WSES-3 Power Synthesis Uncertainty Components PARAMETER MEAN(%)

STANDARD N

F RF K

DEVIATION

(%)

Fry 0.0542 0.8488 1275 1200 0.0152 1.727 Fr

-0.0186 0.2267 16275 16200 0.0036 1.670 Fq

-1.7223 2.2110 16275 16200 0.0197 1.670 i

i 1

l i

ENEAD-02-NP REV 0 Page 30

l Table 5.3-3. ANO-2 Power Synthesis Uncertainty vs % Failed Detectors l

Failure Rate Parameter Mean (%)

Standard N

F RF Deviation (%)

0 Exv

-0.0649 0.7960 528 504 1.3360 Fr 0.0867 0.9180 4248 4224 1.6399 Fq 1.4035 1.8566 4248 4224 1.7378 12.5 Fxv

-00203 0.8605 5280 5040 1.4263 Fr 0 0800 1.0062 42480 42240 1.7604 Fq

-1.3997 1.8840 42480 42240 1.7466 25.0 Fxv 0.0659 0.9818 5280 5 410 1.7163 Fr 0.0711 1.I718 42480 42240 2,0280 Fq

-1.3913 1.9359 42480 42240 1.8416 37.5 Fxv 0.1509 1.0789 5280 5040 1.9645 Fr 0.0629 1.3481 42480 42240 2.3141 Fq

-1.3973 1.9852 42480 42240 1.9179 50.0 Fxv 0.3116 1.1529 5280 5040 2.2496 Fr 0 0504 1.5883 42480 42240 2.7028 Fq

-1.3908 2.0651 42480 42240 2.0579 Table 5.3-4. WSES-3 Power Synthesis Uncertainty vs % Failed Detectors Failure Rate Parameter Mean (%)

Standard N

F RF Deviation (%)

%)

0.0 Fxv

-0 1240 0.5993 308 294 0.9548 Fr 0.0430 0.8499 3038 3024 1.4811 Fq

-1.5690 1.8943 3038 3024 1.6362 12.5 Fxv

-0.0640 0.7064 3080 2940 1.1312 Fr 0.0371 0.9110 30380 30240 1.5585 i

Fq

-1.5639 1.9026 30380 30240 1.6134 25.0 Fxv

-0.0320 0.7635 3080 2940 1.2599 Fr 0 0323 1.0050 30380 30240 1.7107 Fq

-1.5782 19582 30380 30240 1.6921 37.5 Fxv

-00311 0.7728 3080 2940 1.2764 Fr 0.0250 1.0994 30380 30240 1.8611 Fq

-1.5910 1.9924 30380 30240 1.7363 50.0 Fxv 0.0781 0 8449 3080 2940 1.5076 Fr 0 0185 1.2892 30380 30240 2 1715 Fq

-1.5788 2.0107 30380 30240 1.7790 ENEAD-02-NP REV 0 Page 31

Figure 5.3-1. ANO-2 Fxy Power Synthesis Error vs Normal Histogram A2 Pooled Fxy Power Synthesis Error vs Normal Histograrn 700 7 Non-Parametric Ststistical Limit 800 '

.0058 Bounds 95.39% of Data 550 -

500 -

450 -

[400-E 350 -

+

A2 Fry Data K

.:: 300 Normai o,atneunon 250 -

200 -

150 -

100 50 -

0

'M

+

-0.03

-0.02

-0.01 0

0.01 0.02 0.03 13tMULATE CEC 0fulCECOR Error Bins Figure 5.3-2. ANO-2 Fr Power Synthesis Error vs Nomtal Histogram A2 Pooled Fr Power Synthesis Error vs Nonnal Histogram 3:00 -

7500 -

7000 -

Non Parameinc Stetistr.at Limit

+

6500 -

.008 Bounds 99.77% of Data 6000 -

5500 -

5000 -

E4500-(4000-

+

A2 Fr Data E

[

N rmal Distnteon O

2500 -

sr 2000 -

s

+

1500 -

_\\

+

+

4.03 0.02 0.01 0

0.01 0.02 0.03

(!!MULATE CECORllCECOR Error Bins ENEAD-02-NP REV 0 Page 32

Figure 5.3-3. ANO-2 Fq Power Synthesis Error vs Normal Histogram A2 Pooled Fq Power Synthesis Error vs Normal Histogram 3500 '

Non Perametric Ststistical limit.0064 Bounds 96.95%

3000 -

of Date 2500 -

+

[2000-

+

A2 Fe Data a

3

+

f1500-x

+

1000 -

+

500 -

h

^

0

= : ~~~+ ^

0.08 0.06 0.04

-0.02 0

0.02 0.04 (SIMULATE. CECOR llCECOR Error Bins Figure 5.3-4. WSES-3 Fxy Power Synthesis Error vs Normal Histogram W3 Pooled Fxy Power Synthesis Error vs Nomial Histogram 700 l

650 600 Non Parametric Statistical (imit 550 -

.0152 Bounds 90.06% of DLts 500 -

450 -

[ 400 -

E[350,

W3 Fry Data 250 Normal Dstrtution 200 sp

\\

150 -

'l:

+\\

5 0

~=2-+

  • +

^-'

0.05 0.04

-0.03 0.02 0.01 0

0.01 0.02 0.03 0.04 0.05 (SIMULATE CECOR)lCECOR Error Bins 1

ENEAD-02-NP REV 0 Page 33

b Figure 5.3-5. WSES-3 Fr Power Synthesis Error vs Normal Histogram W3 Pooled Fr Power Synthesis Error vs Nomial Histogram 7000 -

8500 -

Non.Perametric Statsticellimit 6000

.3038 Bounds 98.44% of Data

+

5500 -

+

5000 4500 -

y4000 (3500-

+

W3 Fr Data c 3000 -

Normat Distnbution 2500

+

SF 2000 1500 -

1000 -

i 500 f

(*

0

+ - +

-0.03 0.02

-0.01 0

0.01 0.02 0.03 (SIMULATE CECORJICECOR Error Bins Figure 5.3-6. WSES-3 Fq Power Synthesis Error vs Normal Histogram W3 Pooled Fq Power Synthesis Error vs Normal Histogram i

Non. Parametric Statstical Limit.0197 Bounds 99.98%

+

4000 of Data 2

3500 3000 2500 -

+

W3 Fq Data E 2000 Normal Distnbution j

+

b

+

8 1500 4 l

1000

+

+

500

-+** -

0 0.086 0.066 0.048 4.026 0.006 0.014 0.034 0.054 0.074 (SIMULATE CECOR)lCECOR Error Bins l

ENEAD-02-NP REV 0 Page 34

5.4 Pin Peaking Calculational Uncertainty Since the local pin power cannot be measured directly in the operating reactor, the pin power synthesis process must rely on calculated values of pin-to-box factors. The pin peaking calculational uncertainty is the uncertainty associated with the nodal code calculation of pin-to-box peaking factors. The Entergy pin peaking calculational uncertainties were based on the nodal code comparisons to critical experiments. The Entergy pin peaking calculational uncertainties were documented in the physics methodology report (Reference 2). The pin peaking calculational uncertainty established in Reference 2 was cr,y =.01261 and pin peaking calculational bias was D,,, =0.00, corresponding to a sample size of 124.

i ENEAD-02-NP REV 0 Page 35

1 5.5 Combination of Uncertainties In order to determine a reliability factor for the random error in pin peaking factors Fq, Fr, and Fxy as measured by CECOR, it is necessary to statistically combine the three uncertainty components described in Sections 5.2 through 5.4. The method of combination is the same as that presented in Reference 4, except the Pin Peaking Synthesis Uncertainty has been combined with the Box Synthesis Uncertainty into the Power Synthesis Uncertainty.

The three components of uncertainties are Measurement (M), Power Synthesis (PS),and Pin Peaking Calculations (PPC). Since the error components are due to entirely different and unrelated factors, they are independent and uncorrelated random variables, and one may write:

p = p,, + pp, + ppw (5.5-1) and d=d,+8,+O (5.5-2) 2 3

7 pm Using the sample means and variances from Sections 5.2 through 5.4 as estimates of the true bias and variance, one can write:

=D=5+D,+D (5.5-3) e gy and d = S = S,S, S (5.5-4) 2 2

2 2

The sample statistics D and S from Equations 5.5-3 and Equation 5.5-4 are estimates of the true parameters and cr and are therefore subject to a random distribution of their own. The one sided lower tolerance limit can be calculated such that the uncerta nty in the CECOR power can be estimated on a 95%/95%

1 probability / confidence level.

l l

ENEAD-02-NP REV 0 Page 36

Tables 5.5-1 and 5.5-2 list the estimates of D and S and the number of degrees of freedom of the three components of CECOR pin power uncertainty. If one expresses the sample variance as being proportional to a y distribution, one

)

may write:

S=N 2

(5.5-5)

/

or substituting in Equation 5.5-4, one can write:

X'd X'du + X* des +%'d ex gg,55;

=

f fu frs free and taking the variance of both sides gives

= "+

P'+

(5.5-7) f fu frs frrc Using the sample variances as approximations for the true variances, one can write:

S'

\\

f = S,,g___,,,.

(5.5-8)

,pc fu frs frrc where all measured variances are known. The number of degrees of freedom is used to determine the one-sided tolerance limit for the 95%/95 %

probability / confidence interval. The results for Fq, Fxy and Fr are given in Tables 5.5-3 and 5.5-4.

f 1

The analysis in this section was repeated for the Power Synthesis Uncertainties l

based on 12.5, 25, 37.5, and 50% failed incore detectors. The impact of failed i

detectors is included in the overall CECOR uncertainties given in Table 5.5-5 l

ENEAD-02-NP REV 0 Page 37

Thus it was decided to use the more limiting reliability factors between ANO-2 and WSES-3 for both reactors as presented in Table 5.5-7.

These tolerance limits ensure that there is a 95% probability that at least 95% of the true Fxy, Fr and Fq will be less than the Fxy, Fr and Fq measured by CECOR plus the percents shown in Table 5.5-7 with the specified percentage of i

failed detectors. For example, for 25% failed detectors there is a 95%/95%

confidence / probability that the true Fxy, Fr and Fq will be less than the CECOR measured value times 1.0393,1.0345 and 1.0414 respectively.

P

\\

l ENEAD-02-NP REV 0 Page 38 i

l

Table 5.5-1. ANO-2 CECOR Peaking Factor Uncertainty Components ANO-2 PARAMETER UNCERTAINTY COMPONENT D(%)

S(%)

f k

D+kS(%)

Frv Measurement 0 0000 17030 19761 Power Synthesis 0 0318 0 3202 1728 Pin Power Calculation 0 0000 1 2610 124 Combined 0 0318 2 1431 1013 1.7270 3 7329 Fr Measurement 0 0000 1.3330 3482 Power Svnthesis

-0 0048 0 4819 16544 Pin Power Calculation 0 0000 1 2610 124 Combined

-00048 18972 60R 17520 3 3190 Fa Measurement 04840 1 9660 11806 Power Svnthesis

-1.7530 1 4331 16544 Pin Power Calculation 0 0000 1 2610 124 Combined

-12690 2 7403 2573 17030 3 3977 ENEAD-02-NP REV 0 Page 39

Table 5.5-2. WSES-3 CECOR Peaking Factor Uncertainty Components WSES-3 PARAMETER UNCERTAINTY COMPONENT D(%)

S(%)

f k

D+kSt %)

Ftv Measurement 0 0000 15500 23694 Power Synthesis 0.0542 0R4RR 1200 Pin Power Calculation 0 0000 1.2610 124 Combined 0 0542 2.1710 1054 1 7270 3 8035 Fr Measurement 00000 1 1490 4344 Power Synthesis

-00190 0 2267 16200 Pin Power Calculation 0 0000 1 2610 124 Combined

-0 0190 1 7210 422 177R0 3 0400 Fo Measurement 03910 19590 14251

'ower Synthesis

-1.7220 2 2110 16200 Pin Power Calculation 0 0000 1 2610 124 Combined

-1 3310 3 2119 464R 16920 4 1015 i

ENEAD-02-NP REV 0 Page 40

Table 5.5-3. Combined Uncertainties for ANO-2 Parameter D(%)

S(%)

f k

D+kS(%)

Fry 0.0318 2.1431 1013 1.7270 3.7329 Fr 4 0048 1.8972 608 1.7520 3.3190 Fq

-1.2690 2.7403 2573 1.7030 3.3977 Table 5.5-4. Combined Uncerta?. ties for WSES-3 Parameter D(%)

S(%)

f k

D+kS (%)

Fry 0.0542 2.1710 1054 17270 3.8035 Fr

-0.0190 1.7210 422 1.7780 3.0409 Fq

-1.3310 3.2119 4648 1.6920 4.1035 Table 5.5-5. ANO-2 CECOR Reliability Factors vs % Failed Detectors Parameter Failure Rate (%)

RF=D+kS i

t l

l Fsy 0

3.7329 12.5 3.7476 25 3.8093 1

37.5 3.8791 l

50 3.9773 Fr 0

3.3190 12.5 3.3534 25 3.4450 37.5 3.5649 50 3.7601 Fq 0

3.3977 12.5 3.4024 25 3.4539 37.5 3.4963 50 3.5764 l

1 l

""EAD-02-NP REV 0 Page 41

Table 5.5-6. WSES-3 CECOR Reliability Factors vs % Failed Detectors Paratneter Failure Rate (%)

RF=D+kS Fry 0

3.8035 12.5 3.8758 25 3.9329 37.5 3.9405 50 4.0520 Fr 0

3.0409 12.5 3.0528 25 3.0826 37.5 3.1199 50 3.2207 Fq 0

4.1035 12.5 4.0876 25 4.1426 37.5 4.1738 50 4 2041 Table 5.5-7. 95%/95% CECOR Reliability Factors vs % Failed Detectors Parameter D+kS (%)

D+kS (%)

D+kS (%)

D+kS (%)

D+kS(%)

0% Detector 12.5%

25% Detector 37.5 %

50% Detector Failures Detector Failures Detector Failures Failures Failures Fxy 3.80 3.88 3.93 3.94 4.05 Fr 3.32 3.35 3.45 3.56 3.76 Fq 4.10 4.09 4.14 4.17 4.20 1

4 ENEAD-02-NP REV O Page 42

6.0 REFERENCES

1

1. CECOR 2.0 General Description, Methods and Alcorithms. NPSD-103-P, Combustion Engineering,6/80.
2. Qualification of Reactor Physics Methods for Aeolication to Pressurized Water Reactors of the Enterav System. ENEAD-01-P Rev 0.
3. INCA /CECOR Power Peakina Uncertainty. CENPD-153-P Revision 1-P-A, Combustion Engineering,5/80.
4. Verification of CECOR Coefficient Methodoloav for Application to Pressurized Water Reactors of the Middle South Utilities System. MSS-NA3-P,8/84.
5. American National Standard Assessment of the Assumption of Normality, ANSI N15.15 - 1974.
6. W. J. Conover, Practical Non-Parametric Statistics. John Wiley and Sons, New York,1980.
7. R. E. Odeh and D. B. Owen, Tables for Normal Tolerance Limits. Samplino Plans. and Screenino. Marcel Dekker, Inc., New York,1980.

ENEAD-02-NP REV 0 Page 43

APPENDlX A: DEFINITION OF TERMS 1.0 F,: The maximum 3-D power. One value for the core; i.e., the maximum for a nodal power (i.e., the maximum of any of ( 177 / ANO-2, 217 / WSES-3 ) XY assembly power values on any of the 51 Z planes) times the appropriate pin to assembly factor.

2.0 F,

Calculated for each axial plane as follows:

Let there be 51 axial nodes ( i = 1, 51 )

Let there be 177 assemblies ( j = 1,177 ) (WSES-3 = 217 assemblies) a) Search for maximum P, within that plane i P,,,, = Max of [P, P, P.

.P ]i i 2 3 in b) Find the average power for that plane i 1

P=

e 177 c) increase P,,,, as defined in a) by the pin to assembly ratio to account for local peaking, i.e.

P,,,, to,,,y,,,,, = P,,,,* (pin to assembly ratio) d) Then, define F for that plane i y

_ Pt man localPeaked p 't n

Pp e) F,, is the maximum of F,,

3.0 F,:

Defined for any assembly as follows:

F,, = h[ P, where P, is nEximum pin power in assembly j at level i ENEAD-02-NP REV 0 Page 44

1 APPENDIX B: POWER DISTRIBUTION MEASUREMENT STATEPOINTS Table B.0-1. ANO-2 Cycle 2 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

08/03/81 19 0 785 100.0 100.0 1000 99.8 2

08/31/81 38.3 730 99.15 100.0 100 0 100.0 3

09/11/81 48 4 702 100.0 100.0 100.0 100 0 4

09/24/81 60.9 708 77.70 100.0 100.0 94.5 5

10/28/81 75.8 626 100.0 100.0 100 0 100.0 6

11/18/81 92.6 571 99.58 99.5 99 5 99.5 7

12/10/81 113.2 510 99.81 99.5 99.5 99.5 8

01/30/82 142.1 425 100.1 99 5 99.5 99.5 9

02/24/82 170.8 340 99 63 99.5 99.5 95.5 10 03/30/82 199.0 255 100.2 98.9 98 9 98.9 11 04/15/82 214.0 200 99.94 99.1 98 9 98.4 12 05/14/82 225.0 206 84.55 98.9 98.9 97.3 13 06/29/82 252.4 79 99.49 98.6 98.1 95.8 14 07/18/82 273 2 26 99.30 98.1 98.1 96 6 15 08/17/82 290 5 22 76.12 98.1 98 1 98.1 1

1 Table B.0-2. ANO 2 Cycle 3 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(porn)

(%)

PLR Group 5 Group 6 1

01/06/83 28.21 794 100.0 100 0 100.0 100.0 2

02/07/83 33.44 757 99.34 100 0 100 0 100 0 3

03/16/83 62.03 657 99 66 100.0 100 0 100.0 4

04/19/83 96.16 552 100.1 99 5 99.5 99 5 ENEAD-02-NP REV 0 Page 45

I Table B.0-3. ANO-2 Cycle 4 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 l

1 03/20/84 43.14 1057 97.24 100.0 100.0 100.0 2

05/29/84 101.8 847 99.97 99.5 99.5 99.5 3

06/15/84 118.8 785 99.29 99.5 99.5 99.5 4

07/19/84 150.8 678 99.75 99.5 99 5 99.5 5

08/10/84 161 6 626 99.66 99.5 99 5 99.5 6

09/24/84 198.8 484 99.72 99.0 99.0 99.0 7

10/08/84 212.5 446 100.1 99.0 99.0 99.0 8

11/21/84 248.6 318 99.69 99.0 99 0 99.0 9

12/05/84 262.0 275 99.97 99.0 99.0 99.0 10 01/16/85 304.0 140 99 55 99.5 99.5 99.5 11 03/13/85 353.6 7

89.86 99.5 99 5 99.5 Table B.0-4. ANO-2 Cycle 5 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

07/30/85 43 00 895 99.87 99.3 100.0 99.7 2

08/30/85 69.64 816 99.48 100.0 100.0 100.0 3

10/14/85 94.98 748 99 62 99.5 99.5 99.5 4

11/25/85 129.1 638 99 95 99.5 99.5 99.5 5

12/23/85 146.1 582 99 47 99.5 99.5 97.5 6

01/31/86 185.1 462 99.79 99.0 99.0 99.0 7

02/28/86 210.8 383 99 99 99 0 99.0 99.0 8

03/25/86 235.3 314 100.1 99.0 99.0 99.0 9

04/11/86 252.4 261 100.1 99.0 99.0 99.0 10 05/22/86 290.1 145 99.60 98.5 98.5 98.5 11 06/05/86 304.2 99 100.2 98.5 98.5 98.5 i

l ENEAD-02-NP REV 0 Page 46 l

Table B.0-5. ANO-2 Cycle 6 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

11/15/86 45.28 1050 99.89 100.0 100.0 100.0 2

01/21/87 112.0 899 99.55 99.5 99.5 99.5 3

03/20/87 169.2 762 100.0 99.5 99.5 95.5 4

04/18/87 197.9 688 99.60 99.0 99.0 99.0 5

06/30/87 234.7 569 99.47 99.0 99.0 99.0 6

07/30/87 254.0 506 99 91 99.0 99.0 99.0 7

08/31/87 286.1 433 99 60 98.6 98.6 98.6 8

09/30/87 314 6 345 99.72 98.5 98.5 96.0 9

10/22/87 336 4 295 99.82 98.5 98 5 98.5 10 11/21/87 361.6 224 100.1 98.8 98.5 98.5 11 12/29/87 399.3 107 99 08 98.5 98.5 98.5 12 01/29/88 430.3 23 99 66 98.5 98.5 98.5 Table B.0-6. ANO-2 Cycle 7 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

07/20/88 54.27 976 99.38 100.0 100.0 100 0 2

10/19/88 121.3 815 100.1 99.5 99.5 99.5 3

11/30/88 163.2 724 99.62 99.5 99.5 95.5 4

01/31/89 212.5 570 99.83 99.0 99.0 99.0 5

02/28/89 240.3 493 99.79 99.0 99.0 99.0 6

05/12/89 292.7 351 99 46 99 0 99.0 99.0 l

E?<EAD-02-NP REV 0 Page 47

Table B.0-7. ANO-2 Cycle 8 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Grouc 6 1

12/20/89 25 8 970 99.89 100 100 100 2

12/11/90 351.9 155 99 83 98.5 98.5 98.5 3

1/17/91 388.7 50 99.98 98.5 98.5 98.5 I

i l

Table B.0-8. ANO-2 Cycle 9 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(Dom)

(%)

PLR Group 5 Group 6 1

05/07/91 13 88 1050 99.90 100.0 100.0 100 0 2

05/28/91 34 51 1007 100.0 100.0 100.0 100 0 3

06/19/91 56 45 965 100.1 100.0 100.0 100 0 4

07/10/91 77.03 927 99.65 100.0 100 0 100.0 5

07/31/91 97.11 875 99.70 99.5 99 5 99.5 6

08/28/91 124.8 818 99.68 99.5 99.5 99.5 7

09/25/91 153.1 739 99.97 99.5 99.5 99.5 8

10/23/91 176.9 656 99.67 99.5 99 5 99.5 9

11/22/91 201.7 602 100.2 99.5 99,5 99.5 10 12/17/91 225.8 540 99.89 99.0 99.0 99.0 11 01/12/92 252.5 480 99 96 99.0 99.0 99.0 12 02/02/92 272.9 432 100.3 99.0 99.0 99.0

)

13 03/02/92 301.4 350 99 85 99.0 99.0 99.0

]

14 05/22/92 326.7 271 99.85 99.0 99.0 99.0 15 06/18/92 352.4 201 99 68 98.5 98.5 98.5 16 07/10/92 374.5 141 100.0 98.5 98.5 98.5 l

17 08/07/92 402.4 72 99.89 98.5 98.5 98.5

{

1 1

ENEAD-02-NP REV 0 Page 48

Table B.0-9. ANO-2 Cycle 10 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

11/12/92 20.09 1113 99.97 100.0 100 0 100.0 2

12/01/92 37.69 1098 99.81 100.0 100.0 99.9 i

3 12/07/92 49 11 1089 99.68 100 0 100.0 100.0 I

4 12/17/92 53 99 1072 99.68 100.0 100.0 100.0 5

12/31/92 68 65 1051 99.54 100.0 100.0 100.0 6

01/19/93 87.38 1009 100.1 100.0 100.0 100.0 7

01/25/93 92.61 983 99 62 100.0 100.0 100.0 I

8 03/12/93 138.73 888 99.54 99.5 99.5 99.5 9

04/16/93 173.36 809 99.95 99 5 99.5 99.5 l

10 06/18/93 219.47 676 99.99 99 5 99.5 99.5 11 06/25/93 226.65 661 99.80 99.4 99.4 99.4 12 06/30/93 232.18 648 100.1 99.0 99.0 99 0 13 08/01/93 263.13 580 99.91 99.0 99.0 99 0 14 08/08/93 270 46 563 99.94 99.0 99.0 99.0 15 08/26/93 288.26 514 99 88 99.0 99 0 99.0 Table B.0-10. WSES-3 Cycle 1 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

10/24/85 49.02 475 99.84 100 100 100 2

12/30/85 99 24 465 99 70 99 99 99 3

02/27/86 156 59 420 99.10 99 99 99 4

04/07/86 171.43 390 99.60 98 98 98 5

06/16/86 236 30 300 99.77 98 98 98 6

07/22/86 261.30 261 100.04 100 100 100 l

7 08/07/86 276.97 225 99.92 100 100 100 8

09/22/86 320 00 131 99.44 98 98 98 9

10/31/86 354.80 47 99.38 94 98 98 l

ENEAD-02-NP REV O Page 49

Table B.0-11. WSES-3 Cycle 2 Statepoints CEA Position (% withdrawn)

Map Exposure Baron Power Date (EFPD)

(pom)

(%)

PLR Group 5 Group 6 1

02/11/87 1.42 1235 68.48 100 100 100 2

02/18/87 7.18 1195 84.61 100 100 100 3

02/24/87 12.34 1137 99.94 100 100 100 4

03/31/87 42.83 980 99.73 100 100 100 5

05/20/87 90.35 866 99.52 99 99 99 6

07/31/87 159.26 684 99.85 99 99 99 7

08/10/87 167.45 640 99.80 99 99 99 8

08/31/87 187.83 582 99.93 98 98 98 9

09/17/87 201.83 554 99.59 98 98 98 10 10/26/87 221 86 494 99.56 99 99 99 11 11/19/87 245.10 407 99.50 9e 98 98

~ 12 12/22/87 275 91 323 99 93 98 98 98 13 01/31/87 309 70 222 99 68 99 99 99 14 02/29/S8 338.79 124 100 02 99 99 99 15 03/31/88 366.44 47 99.80 98 98 98 Table B.0-12. WSES-3 Cycle 3 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Group 6 1

06/27/88 17.45 1010 99.97 99 99 99 2

07/15/88 38.13 976 99.35 100 100 100 3

08/17/88 68 46 907 99.37 98 98 98 4

09/01/88 83.38 880 99.89 98 98 98 5

09/16/88 97.38 874 90.00 98 98 98 6

10/07/88 114 80 829 90.60 100 100 100 7

12/01/88 140.77 737 99.37 98 98 98 i

8 12/22/88 160.36 685 99.87 99 99 99 9

03/31/89 253.33 454 99.73 99 99 99 10 06/02/89 315.95 318 99.21 99 99 99 11 06/30/89 343.54 240 99 65 99 99 99 12 09/01/89 399.05 84 99 60 100 100 100 13 09/15/89 414.01 43 99.48 100 100 100 14 09/22/89 420 95 22 99.50 100 100 100 ENEAD-02-NP REV 0 Page 50

Table B.0-13. WSES-3 Cycle 4 Statepoints CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)-

PLR Group 5 Group 6 1

12/06/89 13.25 996 99.56 99 99 99 2

12/14/89 21.20 985 99.70 99 99 99 3

04/10/90 117.05 797 99.71 100-100 100 4

05/02/90 139.00 758 99 98 100 100 100 5

06/01/90 168.93 677 99.81 100 100 100 6

06/25/90 192.87 629 99.81 99 99 99 7

07/31/90 228.67 541 99.75 100 100 100 1

8 10/23/90 299.49 361 99.85 100 10C 100 9

11/12/90 319.67 297 100.04 100 100 100 10 12/17/90 354.53 213 99.74 95 100 100 11 01/10/91 378.18 151 99.86 100 100 100 12__

02/22/91 420.57 40 99.85 100 100 100 13 33/12/91 438.39 43 96.36 93 100 100 t

Table B.0-14. WSES-3 Cycle S Statepoints 1

CEA Position (% withdrawn)

Map Exposure Boron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Gruup 6 1

06/07/91 8.45 1030 99.84 100 100 100 2

06/21/91 22.19 995 99.74 100 100 100 3

07/09/91 38.31 999 99.75 100 100 100 4

08/02/91 60.49 945 99.90 100 100 100 5

09/10/91 99.06 873 99.77 100 100 100 6

10/09/91 128.91 800 99.83 100 100 100 7

11/11/91 160.86 736 99.94 100 100 100 8

02/07/92 245.25 507 99.86 100 100 100 9

03/18/92 277.47 425 99,84 99 99 99 10 04/16/92 303.71 365 99.69 100 100 100 11 06/02/92 349.21 258 99.82 99 99 99 12 07/30/92 405.87 103 99.80 100 100 100 13 08/05/92 411.72 87 99.89 100 100 100 i

l ENEAD-02-NP REV 0 Page 51

Table 8.0-15. WSES-3 Cycle 6 Statepoints CEA Position (% withdrawn)

Map Exposure Baron Power Date (EFPD)

(ppm)

(%)

PLR Group 5 Grouc 6 1

11/20/92 8 77 1089 99.53 100 100 100 2

12/10/92 28.68 1043 100.07 100 100 100 3

12/23/92 41.46 1021 100.15 100 100 100 4

01/15/93 64.34 986 99 44 100 100 100 i

5 02/12/93 92.16 946 99.86 100 100 100 6

03/17/93 122.94 893 99 78 100 100 100 7

04/16/93 152.00 829 99 66 100 100 100 8

05/18/93 184.98 746 99 76 99.5 99 5 99.5 9

06/11/93 209.22 685 100.26 99.5 99.5 99.5 10 07/20/93 246.83 595 100 03 99.0 99.0 99.0 11 08/12/93 269.10 540 99 76 100 100 100 i

ENEAD-02-NP REV 0 Page 52

APPENDIX C: ANO-2 REPRESENTATIVE BOX MEASUREMENT COMPARISONS l

1 ENEAD-02-NP REV O Page 53 l

l l

1

t H 46 HHO CO N2 an O H==

M. O Nm Q

e O tl *-

w OO fl M

>=

to e e

  • C aAJ D

>-e-

,,.s N p-6~

2 De E

w U e HHN N

E2 e

w=

U U

"e.O

>=

w sA O

N2M O

  • )>-

e N

3== W W

.cc..e.t.

6 N

~

gg tg wa ain ay e

fn e-e-w (L 4k dL eC e

.ed O W

w e=

O 6

H>O E

gc Haw a

4e et to a et C

HE M

aC o y

eb.

A Hw W

Z 2 f4 4

H t4 4 tb 4 dg at.4 E

-d E

N so w e w6 ow

  1. 4EE ab RMW g

8'"

3 es d

e e

MOO 05 D

O O

O O

  • OO (f) ed en-e-

4 400 C

80 CA

  • =

N * -

e e

a=

N O

O e=

o u) 5:

6 O

O O

06 O

N O

O O

    • 8 O

O e 4 O N&N O O

O Q

O w

O N

  • ON O'h N'

O an' O

6 O

M M

M O sO 000 O

10 e

N't W

M M

e e *

  • a.

o

-U U

C O

O Cee O

e",

e e

e N

O in O

M O

O O

O O

O

- "e O O m

o eOO O Ne O

N M Q M

O 400 O.

g N

e s00 e

e e

e e

e e

e e00 pg in NOO O tOO 06 4 O O*

4 O 80

  • - 0 0 M 4

.e

  • N C>

e e O

N *

  • M sA e a 4

e O

N M e a eA 0

m O

O O

Op O

O e

e e

e e

e g

M 4

O O

O O

O O

O O

O O

O O

O

==

0 O.

O.

O.

O O

O.

O.

O.

O.

O.

O.

O.

U e

e M

00 M

N O

N N

O 4

=t 4

Ch M

E0 e-N M

4 4

N Oh O

N M

an 4

P=

O O

O O

O O

O e

e*

n=

N 4

O O

4 0

4 O

N O

Ch o

0406 O O G Oh O

e-N M o N 4 O MMeto o M Min O W O LA e

e20 e

e NO g

  • 00 e

e O

+

e trie-e e

O e

M e-O M to O 10 N C> O N N e00 N N Oh o 4 Ch Ck o e-P e-O e

y e-e e N

M e e 4

@ e

  • N 06 a
  • O N *
  • M ee e e e Oee O

O 4

O O

O O

e e

a e

e a

e ce U

O O

O O

O O

O O

O O

O O

O O

O O

O O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O N

e e

e e

to N

N 4

N 4

e*

6A 80 O

O N

O O

o-N M

4 N

06 O

N M

=#

N N

O O

O O

O O

O O

==

e-e 2

s O

M O

c3 O

6A O

M O

O 80 O

O MO C

ONW O 044 O.

o-40 o

NOO O MMO O MOO O we O

e e e-O e

  • NO e Oh N e

e 00 e

  • NO

=

eCO eNe e

N.e *O e

O 06 Ok e-O 4 4

  • =e-O e-M Oh O 4 00 0 en OOO en 80 0 4 O
    • *
  • N M + e Q

e

  • N 06 *
  • O s e e M

=

  • in c**

N O

C***

O O

O O

O e-

=

e-e= e-e=

y d.

O O

O O

O f

C O

O O

O O

O O

O O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O O.

O.

O e

O M

O O

N to 06 4

Ch 4

06 M

=O 00 eb gn O

e N

M 4

4A N

40 O

e-M

=d M

=6 N

f C

O O

O O

O O

Q e

e e

e e

e e

3 O

N O

k O

mt O

N O

O O

k O

N O

,,,,g C.

- 04M O O&N O.

e.Nd O.

NON O MNM C Mom O.

v. 4 & C De e

eNO Oh N N

  • cQ O e

eCN qN e

m300 M m3 O M 000 N aA C O N N.Oe-O. @

N Ck e-O Oh

== Oh O

.r b

O O s e e-M e e

.t M e e N

03 e

  • O
    • *
  • M 4

4

  • in

=

N O

C o-e o

O O

O O

O e

e-

      • =
  • =

e= e=

  • =

0 O

O O

O O

O O

O O

O O

O O

O O.

O.

O.

O O.

O.

O.

O.

O O

O O

O.

O.

O e

e e

e e

e N

N N

  • =

4 4

M e--

c0 so O

M N

N.

M' st 4A N

O e

M

  • J to h

40 O

e-O O

O O

O O

O e

  • =

e e-a=

O O

M O

e-O Ok O

4 O

004 O Q aA M Q

    • tO =f O

NMN O NM c=

Q M Cb e O

4NN 40 M i

  • 4N e en ea e

e Ok O e Me e

M Ch o 6A i M e-e 40 e

460 0 NGO N Oh CF O N 4 0h D e-C Ok o.

O in e-O.

w=

+

M

-4 e e iA 4 e O e e e

N e a W

IA

  • e N

eg

  • e O

Q ** e O

O e

O O

O O

e

  • = * -

==

e-e-O O

O O

O O

O O

O O

O o

O.

8 O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O w

- 80

  • =

aA O

4A O

en Ch N

-r

.f

/

O

.~

N

-r en N

40 O

e-N

.t en w

{}j O

O O

O O

O O

e e

e-e-

O to O

N O

O O

80 b.

M. O O b.

4A e-N eA O.

N. O,. sa O.

N e0M O.

C. O O O.

00 a_

Ce o

O 00

. O *-

.O e,,- C, D-M N C. O.

O, 2 Oh O.

N

=# 0' O Oh

-e to to z

in

  • e e

e e

N M

O O

O O

e O

O e

  • =

e

  • ~

v=

e O

O 80 0

O O

O N

8 O.

O.

e-N O O N e04 O O

O Q

i

  • Ne
  • e-O

=

e i

c Ch M

m e-O M CO e-O M

N O

C N

M M

4 + e W

g *** * **

N 4

O O

O Op O

e e

O O

O O

e"O O O.

O.

O.

O.

e-e OO NOO N N

N N

s*8 8

8 tu i

I igure C.0-2.

ANO-2 Cycle 2 MOC Box Power Measurement Differences 001-00 002-00 003-00 004-00 005-00 Statistics for Integral Powers ANO-2 CYCLE 02 FLUX MAP # 8 5.446 GWD/MTU 006-00 007-01 008-00 009-02 010-00 011-03 012-00 013-04 014-00 1.053 1.064 1.067 1.067 i

.032

.010

.007

.018 1

015-00 016-00 017-00 018-00 019-00 020-00 021-00 022-00 023-00 024-00 025-00 1

026-On T7-05 028-00 029-06 030 00 031-07 032-00 033 08 034-00 035-09 036-00 037-10 038-00 000

.970

.990

.982

.9 73

.000

.000

.006

.008

.000

.003

.000 039-00 040-00 041-00 042-00 043-00 044-00 045-00 046-00 047-00 048-00 049-00 050-00 051-00 052-11 053-00 054-12 055-00 056-13 057-00 058-14 059-04 060-15 061-00 067-16 063-00 064-17 065-00 066-00

.000

.989

.983

.945

.934

.996

.005 l

.000

.002

.018

.019

.008 067-00 068-18 069-00 070-00 071-00 072-00 073-00 074-00 075-00 076-00 077-00 078-00 079-00 080-19 081-00 i

1.0 73 1.045 l

.006

.022 082-00 083-00 084-20 085-00 086-21 087-00 088-22 089-00 090-23 091-00 092-24 093-00 094-25 095-00 096-00

.994

.937

.871

.000

.930

.990

.003

.004

.016

.000

.003

.007 097-00 098-26 099-00 100-00 101 00 102-00 103-00 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 1.074 1.046

.006

.022 112-00 113-00 114-28 115-00 116-29 117-00 118-30 119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.001

.959

.930

.920

.954

.987

.000

.009

.005

.003

.006

.011

.004

.000 127-00 128-00 129-00 130-00 131-00 132-00 133-00 134-00 135-00 136-00 137-00 138-00 139-00 140-00 141-35 142-00 143-36 144-00 145-37 146-00 147-38 148-00 149-39 150-00 151-40 152-00

== PICTURE FORMAT==

.000

.986 1.008

.000

.980

.000 ASSEMBLY # - INSTRUMENT STRING #

.000

.009

.026

.000

.004

.000 MEASURED POWERS M-P 153-00 154-00 155-00 156-00 157-00 158-00 159-00 160-00 161-00 162-00 163-00 PEAKS MEASURE 0 CALCULATED Fr 1.09 1.09 164-00 165-41 166-00 167-42 168-00 169-43 170-00 171-44 172-00 NORMAL DISTRIBUTION = YES 1.088 1.086 1.076 1.076 STANDARD DEVIATION

=

.01221

.003

.012

.002

.009 BIAS

=

.00000 173-00 174-00 175-00 176-00 177-00 ENEAD-02-NP REV 0 Page 55 A

L i

e n%

eiO 4O Iz NO i =e 06 O e ed O

CO li >-

w OO MM

>=

M e e 8

.t.a Om a

saJ 3

6->=

<z 30 E

EW W

  • H H is wK s e=

M c

03 eC 2

e g

3

  • M U

O2 O

Q e

== O w sa m.==.e C

M cr. x m o

nw M

D = GC w

CD 4

{,;,

ce

>=

e=

a Ue c0 cc ll>

gg es.

  • =
  • =

0 *= w h

  • =

(L M

< e EA O

=

<a w e=

  • =

c um a.a w O

z 00 n

u es e e'd 34 41 d'o CBC d aC

  1. E3 C

O to aC O ww w

zzm n

cL ct<

u m < CL <

u < et 6

E

-- E N sn w a w 4-O *- =

m si et x z

c.
  • z co m

{l tM O

O O

O 4

3 U.ID e

O O

O MOO O

e.a e

e e

e00 m

ww e

4 e

400 c

4 co O'

==

N *

  • d

=N O

O O

e e

W D

LO at L

O O

O 06 O

N O

O O

E OW O

O O

eNe O NON O O

O.

Q e

e e M e=

e e 4,-

e e

w..s e

==

m C00 4A 000 in 06 N

O U

EO fA >

M nn 4

O e

  • Oh

== a e N

M aA Q

3 uW O

O O

O e= t O

e= o-e e=

s=

e-e c.

o se O

O O

N O

sn O

m O

O O

b un O

eOO O eOe O N sn N O M

e O

400 O e00 e

ee-N e

eCO e

e O.-

e e c0 0 e

e o

e eOO M e

NCO O C0 m 440 &

4 O O g

  1. O N

M e e an

  • N

& a

  • O N *
  • M an e e o

e.e x o

O O

C e-O O

e e

w e

e m

to et O

O O

O O

O O

O O

O O

O 8

s e

e e

O O

O O

O O

O O

O O

O O

O e

e e

e e

e e

e e

O 4

W 06 M

90 M

so M

N O

N N

e" N

M 4

VJ N

0%

O N

M nn 4

f'=

W D

O O

O O

O O

e-

==

e-

==

==

e=

N 4

O Ch O

ese O

d O

N O

Ok O

O w e=

0 0 e0 4 O e= O O O N NIA O

M oh N O M e= tp o W M oh

==g3 e coea 4

e cO O e

e00 e

eMO e

e 4 --

e e Oh o e

e 80 0 MOO M aA Om O 80 NCO N N Ok o N N Oh o 06 Ch o e

    • C O La

==

  • e N

M e a w

@ *

  • N Ok e
  • O N *
  • M V e e 4

N **

Oe e o

O O

O O

O e

e-e=

e e-

==

e-e= e-e O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O.

N e

e s

e e

e e

e e

e e

e e

e e

e an N

N 4

N e

4 e

4 4A

$3 O

O N

O O

e-N M

4 N

Ok O

N M

w 4

N N

O O

O O

O O

O O

e-e=

e=

e=

e=

e-

==

2 s

O M

O CD O

in O

M o

  • =

0 10 O

M O

'4.

O COO O O M *= Q eO@ O NOO O M40 O.

MOO O doe o eOO No e

e40 e

  • OO e

e N e=

eCO e

e40 e

5 e

e e

4

  • - 0 0 e-M D6 C 4 O ch o an COO aA C 0= O 4 NGO Om 060 0 4 e e O

N e e M

q e e in

@ e e N

O

  • = e e N

M e e 4

4 e e N Qe e

rp C

O O

O O

O O

O

==

  • =

e **

e+

e=

e-e=

e-he O.

O.

O O

O O

O O

O O

O O

O O

O O

O O

O O

4 O

O O

O O

O O

O O

w M

O O

e e

e e

e e

e e

e a

eg e

N an Os W

Oh 4

06 M

4 40 c0 in e

e O

e-N M

4 in N

to O

==

M 4

tA 4

N O

O O

O O

O O

O e-e-

  • =

e-

  • =

==

e-3 O

N O

N O

w O

N O

O O

N O

N O

O COe O OMO O eOO O NMd O M4M C Meo O w&O O

,3_

e eMO e

e On e e

e Ce e

e e an O e

e cO *=

e e OO e

ece N

060 0 06

  • - Oh O 4 cO O O M a0 04 0 M dD O6 0 N 66 0$ O Pe-NCO 4 U

O O e o e-M e e 4 sn e e k e

@ e e N

e e O

e-e e M

4 e e sA O

C e=

  • O O

O O

O O

e=

e-e e-e=e-e-

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

e e

e e

e e

e e

e e

e e

e e

e M

N N

N N

N 4

4 4

M 00 50 O

e O

O e

M W

en N

to o

e-M d

sA 4

N O

O O

O O

O O

O e-e-

e-

  • =

==

  • =

==

0 O

M O

O Oh O

O e-0 410 O C44 O e-N4 O

N40 O N eO M O M4N O WON e N e=

e e cO O e

e A s-e

  • MO e

e v e-e e cd C e

a co ca NOO N Ok um o N 4 06 O *=

4 0$ O e-400 O p= O6 0 to an O O O e * **

N e e 4

in *

  • N 80 e e O

== e a M

4 e e sA eo e O e-e O

O O

O O

O e-e-

e

  • =

e-

  • =

e w-e O

o O

O O

O O

O O

O O

O O

8 O

O O

O O

O O

O O

O c

O e

e e

e e

e e

e e

e e

e e

4 c3 an O

m O

4A Ch N

d N

a m

k 80 O

  • =

N 4

an O

O d

O O

O e=

==

e-e-

e-O m

O N

O O

O O

O m

O

0. 0 0 e
  • - 8 0 00 O O

NOC O N d iA O

MOO O O

o,,

e e00 ego e

  • = C O M e00 e

e N G O.

O 4 0$.O.

Ch WOO dwo 80 an z,

N e 4

.n e

80 e e e. e N

, e e m

  • =

O O

O O

e O

O e-a-

e

==

O O

O O

e O

O O

N 8

e e

e e

e a

N4N O O

O O

O

  • = N O e an o e

e e

C' 4

M COO M COO M N

O i

N M

4A

@ e e 80 06 * * **

N W

O O

O O-O Oe e

4 O

O O

O e-C O O O

O O

W e00 e

e e

e NOO N N

N N

4 eQ Ok v=

an e e O

O O

O

APPENDIX D: WSES-3 REPRESENTATIVE BOX MEASUREMENT COMPARISONS i

i ENEAD-02-NP REV O Page 57

Figure D.0-1.

WSES-3 Cycle 3 BOC Box Power Measurement Differences 001-00 002-00 003-00 004-00 Statiatics for Integrat Powers WSES-3 CYCLE 03 FLUX MAP # 2 1.445 GWD/MTU 005-01 006-00 007-02 008-00 009-03 010-00 011-04 012-00 013-05

.406

.000 1.078 1.181

.415

.007

.000

.024

.031

.015 014 00 015-00 016-00 017-00 018-00 019-00 020-00 021-00 022-00 023-00 024-00 025-06 026-00 027-07 028-00 029-08 030-00 031-09 032-00 033-10 034-00 035 11 036-00 037-12

.419 1.226 1.263 1.271 1.271 1.230

.418

.009

.021

.010

.004

.002

.025

.009 038 00 039-00 040-00 041 00 042-00 043-00 044-00 045-00 046-00 047-00 048-00 049-00 050-00 051-00 052-00 053-00 054-13 055-00 056-14 057-00 058-15 059-00 060-16 061-00 062-17 063-00 064-18 065-00 066-19 067-00 1.292 1.142

.940 1.159

.950 1.176 1.290

.011

.013

.028

.020

.018

.021

.008 D68-00 069-00 070-00 071-00 072-00 073-00 074-00 075-00 076-00 077-00 078-00 079-00 080-00 081-00 082 00 083 20 084-21 434

.431

.016

.013 085-00 086-22 087-00 088-23 089-00 090-24 091-00 092-25 093-00 094-26 095-00 096-27 097-00 098-28 099-00 100-00 1.249 1.083 1.119 1.0 71 1.150 1.117 1.241 101-00

.017

.029

.049

.038

.019

.005

.009 102-00 103-00 104-00 105-00 106-00 107-00 108-00 109-00 110-00 111-00 112-00 113-00 114-00 115-00 116-00 117-00 118-00 119-00 120-29 121-00 122-30 123-00 124-31 125-00 126-32 127-00 128-33 129-00 130-34 131-00 132-35 133-00 134-36 1.246 1.085

.000 1.068 1.131 1.129

.000 135-37

.000

.014

.027

.000

.041

.038

.017

.000

.425

.000

.007 136-00 137-00 138-00 139 00 140-00 141-00 142-00 143-00 144-00 145-00 146-00 147-00 148-00 149-00 150-00 151-00 152-38 153-00 154-39 155-00 156-40 157-00 158-41 159-00 160-42 161-00 162-43 163-00 164-44 165-00 1.296 1.170

.939 1.166

.948 1.149 1.278

.014

.014

.029

.013

.020

.006

.003 l

166-00 167-00 168-00 169-00 170-00 171-00 172-00 173-00 174-00 175-00 176-00 177-00 178-00 179-00 180-00 181-45 182-00 183-46 184-00 185-47 186-00 187-48 188-00 189-49 190-00 191-50 192-00 193-51

== PICTURE FORMAT==

.417 1.222 1.277 1.282 1.283 1.222

.420 ASSEMBLY # - INSTRUMENT STRING #

.008

.017

.005

.007

.011

.016

.010 MEASURED POWERS M-P 194-00 195-00 196-00 197-00 198-00 199-00 200-00 201-00 202-00 203-00 204-00 PEAKS MEASURED CALCULATED Fr 1.30 1.28 205 52 206-00 207-53 208-00 209-54 210-00 211-55 212-00 213-56

.407

.000

.000

.000

.417 NORMAL DISTRIBUTION = NO

.008

.000

.000

.000

.017 STANDARD DEVIATION

.01981

=

BIAS

=

.00000 214-00 215-00 216-00 217-00 ENEAD-02-NP REV O Page 58 C

_m i

J HM HHO MO H2 EO O H me MO H QC O

o= O L

II >

W OO HW W

O e -

e:C O 2

>-e-JM

  • lC 2 D*

Zw y +=

H HH (c T J

O5 eC 2

wm W

.O Oz e-

"3 WM ta==e N2 O

3 D-

  • =

E D = GC w

G3 (

>=

g e=

== eme u*

Q m

DM or >

(A e e-w JO CL %

aC e=

O H>O K

==E4 O w

OO wO H Jw og N

H G3 m J gC e-HED M

eg Q W

M HWM M

Z2M U

L N in aC Q.

elC t-E et eC p**

b H 1A w

  • wh O *- -

W 34 H aC K K Gem Z in tD w

0 e

o O

N g

CL %

N Ok t0 O e,,,

  • MO

=

O M M==

eMO es~=

-.* CL 4 %t. O.

e s')

in %f.O.

g es; og O

e=

p.3 C

4-7.

O e

e=

e tn "C

kW O

O O

O O

O O

O O

    • p g

C.J c.

O O

O O

O O

O O

e

+

+

s.= u-N N

=

M e

U 4

M O

an O

E M

nn e

e e-M Q

O O

O e=

e-e e-00 b

+-

N O

06 O

CO O

en O

=#

O e

3 w

e-N 4 O

  • NO
  • OO a

e (O e e NO (A

to.J eNO e

e-eO N O 19e086 O MOO O st %f 4 O.

an c3 tn

  • Ch O

+

.u u N %t o e

@NO e

CO N O an NGO Om NO MVC M e a en 50 = a to CA 4.a u O

O O e= e O

Ora e e-M =

  • 4

=

  • Om e e e=

e-e-

e- *- e e

e-

"E-

-. M.

Q O.

O.

O.

O, O,

O.

O.

O.

O.

O.

O.

O.

q)

  • G 88 D

O O

O O

O O

O O

O O

O O

O i,,

m

  • e M at
  • O O

in O

f%

wt 3

Mw N

M 4A 4

EO Ch e-a3 M

to N

st O

M

%t

  • O N

O=

O OM O

O O

O O

O e

e e

N g

o 02 1

o, tn O

e O

.EO O

N O

%f O

M O

O O

e O. M N O M40 e

e-e- eO O.

-W eO O NOW O M %t ch O 41006 O an tO an o an M e Ne e M e=

  • Ne
  • No e

O e-O.

N g

  • M e-e s %t O

+

  • wo

+

M40 e N **

an N O.

Ch g

C e

M M e

%f

%,0f e-O.

06

=O e.O.

M C

N M

N e-O.

  • N. O.

e e N

e N

O M.

e.

N O

O e-O Ce Q

Qe O

Ce e

em e

ees e

ew N

N O

O O

O O

O O

O O

O O

O O

O O

O O

O.

O.

O.

O.

O O.

O.

O.

O O

O.

O.

O.

O.

O e

e n

N N

st 10 m

to an N

Os

  • O e

=0 O

N N

V e

N M

st

'O k

O' e

N 3

'O k

Os O

  • =

d O

O O

O O

O O

==

e-e~

N N

O 4

O O

O N

O

=0 O

M O

N O

06 O

en g

OOD O ekN O eeN O NGO O MDO O.

4 C 4.-

O 4kk O.

DOC e eO "

e e in O e

ece e

o ine-e e M e*3

< gne e

s %Q 0

= OO

.,,,,,,g

.e e O e

MNO N Nmo N 4eo e meo e.F OSOe ONO e

eOO

-= *

  • N 881 *
  • st
  • O
  • N Om = * **

N *

  • M O

O" O

Oes O

O e

O Owe e

ces

=

=0 e

CO + e O

e-e e e

e a

e ew N

N O

Q O

O e

O O

O O

O O

O O

O O

O O

O O

O

+

(*)

%f O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O, N

e O

==

U,)

O eO O

N

=0

  • ~

wo M

O N

=t 06

  • t CO O

O N

N Q

N M

st

  • O N

Os e

N in N

to o

O O

O O

O O

O

+-

e-e-

==

  • =

w N

N O

O O

+

M O

06 O

4 O

en O

N O

e-O eO O

4

=O M

OM4 Oh m O e-O **

O.

N. O C O

. MMe O st N 4 O

%t O N O anO O 50 O.

C an o O

e sc e-e e cO e 00 e

i P% M i

e cO O e

No e

a 00 e

Q O$ 0 0 Om e* N O in O e-O in NOC 05 400 M EO e o M NNO Oh Ch C O N O

e M *

  • st
  • O e e N

Ok e e O

N a

  • 4 6A *
  • N 80 =
  • Om oa - O g

O *-

O Ces O

C e=

  • O O

==

==*=a

  • -**e e-e s*
  • =

N N

O e

O O

O O

O O

O O

O O

O O

O O

O g

N O.

O O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

to O

e e

O 80 to O

%f O*

4 e

eO in N

f%

N EO to N

O e-M 4

in N

06 O

N

=*

an N

eO On O

O O

O O

O O

O O

==

e~

e e=

==

e~

w N

O O

O b

a COO O O cD e=

0 w%f Ok O

NeN O MOO O

%f Ne Q 4NM Q an O O

%f N

O 40 O

to o

%t C

==

0 O

O N

O M

e 3

e

.,g O

i00 e

  • 4**

,me e

e M oni e

  • OO e

a ann e

  • wO o e

e00 e

N C O.

O N

ONO M

CO ch o O

==

N

  • e

%t in e - M O *= O f%

400 **

  • 0 06 O *=

nn N O N NCO N b

N 05 e e O

N * *

=#

nn *

  • N CD e
  • On O +
  • o O

O ** e O

O e

O C e= #

w=

==

e

==

e-**

N O

O O

O O

O O'

O O

O O

O O

O O

O, O,

O.

O.

O.

O.

O.

O.

O.

O O.

O.

O.

O.

O.

i

=0 4

to N

N N

Om

=0 M

o to O

4 4

=0 O

e N

st in N

- 00 O

N 4

an N

to 0%

O O

O O

O O

O O

  • =
  • =

e-

  • =
  • =

N

  • =

0 N

O O

M C

O O

DA C

O N

OWN O.

O. N e-C eme O N. o v-O MOO O M N =0 0

%t M O O en an d de eo e

e4e s

(1m N e

eOO e

eNw

  • N e=

=

  • eo P% N O.
  • O e-O.

O00 en NOC O*

t ** O Om MNO to ensf o m@O en e-8.e N

%g an.

N c0 e e O

N - e M

an * *

+0 to e

  • Os O *
  • O De.

O O e-o O

C e= e

  • =

e-

  • =

e s=

e-

  • -e-

==

N O

O O

O O

O O

O O

O O

O O

o O

O O.

O.

O.

O.

O.

O.

O 2

O.

O.

O.

O e

e

=O O

en O

N 4

to e*4 EO N

4 e

N at an P%

cn O

N M

in NO EO D6 O

O O

O O

d e=

ea

==

  • ~
  • =
  • O O

M O

N O

On O

to O

e O to tn o e-M M O N Ob =O O.

N. M e-

=O M O M eO N O W N st eNO a

eOO e

  • Me e

eCO

  • NO 1

in 4 0 Om d rei. o.

06

=O N O.

O N. O.

NM O.

N M

N w %t.o.

N M

e z,

an oe O

N M

in *

,0 O

O O

Oe O

O-e ee e

w e-e O

O O

O O

O O

O O

N O.

O.

O.

O.

O.

O.

O.

O.

O.

o, W

M q

e N

=O e.-

=O M

in v

c0 C

e M

en C

  • O O

O O

O e

4 O

O O

4

..a N %f M O,

O OO WJ M. O O e W e=

e M %f o O tw=

400 80 e - O M

O e

e=

e-i

\\

l

-i i

,1 H%

HHO NO H2 OO H=-=

mO NN O

    • O
  • 1>=

w OO dM

>=

M e e WM w e= e-JM M

b HH H b

2 mm Oz j

e..o e-a i

wM az O

3>

j 3.-

o 3-M w

co. a=

= d E

e-W M *t U e "R DM M 3e em O

M e a-w db % A aC e-Mo w

H>O E

==

OO

.s N JW cc c

H CD cc

.J aC M

Ch HE3 M

  • C O e

HWM M

Z2M g

m H M *C EL (L

h 4 aC U

HMw.

ww

>=

e C

nCEE c.

zMm e-L =t ap e=

e-O O

N I

24 NOM O.

O.

MMW gI a&N o

eOw D

Aa eco e

W mWO

=C eO e e O

  • =

M e e Q

Z O

e c=

,=

e-e i

40 ese

6. W O

O O

O O

O O

O O

C Cn, 3,,s O.

O.

O.

O O.

O.

O.

O.

O g,

e e

gI

  • n.s N

N N

  • O M

O m

O E

.C to

  • O 80 e

M m

40

=M o

O O

e=

e=

c e=

e-94 O

e=

6 N

O Ch O

80 O

m O

=#

C e= P* m N Oh eO O MOO O

=t O N O e D eO 3

Ow e.- N **

O.

O.

g

.o=.,,a sO N e***=

eMO i

e00

  • eN e

a du e U

NVQ e MO e

40 e 0 m OC Ch MO O=

MWO N.1 H

m>

M e - e e

e

  • r a
  • N On a +

e gO Om e e

  • =

Q q

uu o

e O

Oea o

O Q e= e e-e=

e=

n= e= e e

e e

2 O

O O

O O

O O

O O

O O

O O

e. m.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

c) w-

[

M

    • cn W

=0 O

in O

N 4

  • =

M M

40 N

d O

N M

to 4

EO e-M t

=0

>=

0 6

g g

.de. w 8

t-

.M O

O O

O O

e=

e N

O M :s Q.

m o

e o

a0 O

e O

e O

M O

O O

O b

Q S.

O.

e.- M m O e= O 4 O.

N. e= M O.

MNM O

=# 4 N O.

no w- 03 O.

an. M *=N e=

aP Om o e

eNw M e=

s 4-t o

. N c*

  • -,O O ee M

N N e= O N M

nn e-O Ok e-O

@e O M O e* O.

=O M

M wt O O

M me..

M *

=t 4

e e b=

06 e e O

  • == * -

==

N M e e Ok

  • *=

g O

e Q

Oe o

Oe o

Oe e

we e

we e

een N

N s

O O

O O

O O

O O

O O

O O

O O

O 0

o.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

l l

n

=er N

N

-t 10 M

eO N

O*

c e-SO O

N N

W

  • =

N M

=t N

N

=a

  • O N

05 O

e l

O O

O O

O O

O e=

e e=

e-e-

  • =

N N

l 4

O O

O N

O

  • O O

M C

N O

Ok O

nn i

.#.3 O. N O O.

e..06 e O

e-80 m O NMM O.

MMN O

      • =e-O.

<>-P.*

O OC in. N -

. 4e e

Ne tO e

a e e=

e e4N i N e=

e

. 00 N.t NCO N

    1. e-O e-00 *= O m COOa na ON e-O e

e- *= O Q

= ia O *

M e-O

  • O e a N

Ok e e e=

N e e ma 4 e N

to a

  • O
  • = e e c=

e N

M e e M

O C e= a O

C e= a O

C ea O

O s=

  • =

e- *= e *=

  • * * =

e-

  • -e=

N Ne= e O

O O

O.

O O

O O

O O

O O

O O

O O

O O

O j

f1

  • r O

O.

O.

O.

O.

O.

O.

O.

O O

O O

O.

O.

O.

N e

O e

e l

gf3 O

O O

N e

e e

m O

t=

.e e

e e

Os s

eO O

O N

l e

N M

~t

  • O k

Om

,N et an N

CO O

==

W O

O O

O O

O O

O

  • =

=

e*

  • =
  • =

e=

N N

O N

O O

M O

Ch C

4 O

m O

N O

e-O 80 0

=#

M 0 00 =t O

C4M O e *0 4 o NOC O.

mot O.

-t e ar O.

400 O MOO

=O O

e we e

eNo e

e Ne s

sOO e st e-

. N e=

.OO e

eCO e-CNO NOO C6 wC O O tO N O M P-C O O$ 0 0 N O

Ok e= O Ch e-e- O Mt mt mo a Or an s e k

gO e e O e a e e O

N e e O e e e-M e e e

o Oe O

D e=

0 O w=

0 C

e-e= e= e e=

e* e=

,=

==

N O

(*)

O O

e e

O O

O O

O O

O O

O O

O O

O O

O e

O O.

O O.

O.

O.

O.

O.

O.

O.

M C3 N

O O.

O.

O.

O.,

O e

e e

C e

in N

N N

.g

<0

.O N

d O

e 80 O

O

  • =

M o

en N

04 O

N an N

w Os O

l C

C O

O 6

O O

O

  • =

e=

==

==

N O

k O

O e

N O

80 O

en O

4 O

o-O O

O N

O M

a 3

COO O ONM O wNN O NNN O MOO O dmN O MM O MOO 4 an o

=t O a

8 NN e

e MO aOO e

O

+

e e OO *=

..=@

O e00 0

P= O O.

N Ch e= O.

M.t 10 0, 0 M O *= O N

  • t O O==

0 O *

an s-O N P= C O N O e e

N.

in e

N 0% e e O

N e e

.e en e e N

30 e

  • Ok O e s g

O O

C e= a O

O *=

Q O *= e e-

  • = * *=
      • =
  • =

N O

O O

O O

O O

O O

O O

O O

O O

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

en O

-t

  • O C

90 80 N

N N

Ok

  • O M

O.s en N

O 06 O

i e-N

  • t e

N to O

N 1

O O

O O

O O

e-e e=

e e=

e-e-

N I

==

O N

O

=.2 O

M O

O O

Ch O

=0 O

N I

O N,O e O.

Q w-M O,

== O64n O.

N. M e-O.

M. O O M. M N e

. Om o a N -

ON O

an e=

0 4 4 =O O

an NN N

l 00

  • Om o e

eNe

  • O *- O **

O,- O m NOO Ch

=#,- O On M *= O en4 0 an %t O en N e= O

.e-en e e k

e3 e e O

N e e M

nn e e s0 80 e -

O e

O e e e-N e e O

e Q

O w=

0 O **

O C o=

  • =
  • =

e=

e=**

==

  • =v=

e=

N e 8 O

O O

O O

O O

O O

O O

O O

o O.

O.

O.

O.

O.

O.

O O.

O.

O.

O.

O.

O

[

e a

e o

m O

N

~t e

M a0 N

~e l

e=

N

-t e

>=

a0 0

N M

m

%O 40 06 O

O O

O O

O e*

e e-e=

e-e-

M C

N O

06 O

80 O

e D. e ee @

Nm O.

N. N e O.

N..Nm O.

M. M O O.

d. e, e@

a.

eMe O

eMO

.n -

no C

m wt.O.

Ch W M.O.

Ok 4 *- O.

M O e-O N N.nM. O. N e= d. o.

Z, N

M m

e so e O

N e e M e

m O

e o

Oe O

O e=

e ce we

  • =

e O

O O

O O

O O

O N

8 O.

O.

O.

O.

O.

O.

O.

O.

o C'

80 M

80 in N

Oh ao e'-

  • Q M

en 4

eO O

e M

in iu O

O O

O e-e

==

e O

O O

e N. N s=

0 O.

M. O O OO wa De O

P=

-t 0 0 M in Oe O

  • =

M e a eQ e

O 6

e=

e=

w=

l APPENDIX E: ANO-2 REPRESENTATIVE POWER SYNTHESIS COMPARISONS t

i l

ENEAD-02-NP REV 0 Page 61

Figure E,0-1.

ANO-2 BOC-2 Fr Power Synthesis Differences 0.7282 GWD/MTU 8

9 10 11 12 13 14 15 89-00 90-23 91-00 92-24 93-00 94-25 95-00 96-00 0.710 0.882 1.224 0.966 1.372 1.070 1.234 1.309 H

0.710 0.883 1.226 0.967 1.374 1.069 1.243 1.307 0.000 0.001 0.001 0.001 0.001

-0.001 0.008

-0.002 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 0.882 1.108 0.942 1.028 1.055 1.267 1.205 1.311 K

0.883 1.108 0.942 1.031 1.057 1.266 1.205 1.310 0.001 0.000 0.000 0.003 0.002 0.000 0.000

-0.001 119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.224 0.942 1.294 1.023 1.393 1.076 1.233 1.155 L

1.225 0.941 1.297 1.024 1.396 1.075 1.236 1.154 0.001

-0.001 0.002 0.001 0.002

-0.001 0.002

-0.001 133-00 134-00 135-00 136-00 137-00 138-00 139-00 0.967 1.024 1.021 1.202 1.062 1.283 1.319 M

0.967 1.027 1.021 1.199 1.062 1.285 1.320 0.000 0.003 0.000

-0.002 0.000 0.002 0.001 146-00 147-38 148-00 149-39 150-00 151-40 152-00 1.372 1.052 1.390 1.054 1.211 1.125 1.157 N

1.374 1.052 1.393 1.054 1.212 1.128 1.160 0.001 0.000 0.002 0.000 0.001 0.003 0.003 158-00 159-00 160-00 161-00 162-00 163-00 1.070 1.268 1.077 1.281 1.124 1.128 O

1.069 1.267 1.076 1.283 1.127 1.127

-0.001

-0.001

-0.001 0.001 0.003

-0.001 168-00 169-43 170-00 171-44 172-00 1.234 1.211 1.232 1.318 1.155 P

1.243 1.209 1.235 1.319 1.159 0.008

-0.002 0.002 0.001 0.004 175-00 176-00 177-00 1.309 1.310 1.155 O

1.307 1.309 1.153

-0.002

-0.001

-0.002 172-00 FC Assy # - Detector #

1.155 CECOR Fr 1.159 SIMULATE Fr 0.004 Difference (SIMULATE-CECOR)/CECOR ENEAD-02-NP REV 0 Page 62

Figure E.0-2.

ANO-2 BOC-2 Fq Power Synthesis Differences 0.7282 GWD/MTU 8

9 10 11 12 13 14 15 89-00 90-23 91-00 92-24 93-00 94-25 95-00 96-00 0.826 1.018 1.408 1.101 1.587 1.211 1.414 1.537 H

0.817 1.008 1.408 1.101 1.590 1.213 1.416 1.536

-0.011

-0.010 0.000 0.000 0.002 0.002 0.001

-0.001 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 1.018 1.265 1.069 1.188 1.201 1.449 1.370 1.537 K

1.008 1.264 1.073 1.186 1.203 1.454 1.379 1.539

-0.010

-0.001 0.004

-0.002 0.001 0.003 0.006 0.001 119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.408 1.068 1.491 1.162 1.609 1.220 1.433 1.349 L

1.408 1.072 1.492 1.162 1.617 1.223 1.431 1.354 0.000 0.003 0.001 0.000 0.005 0.002

-0.002 0.004 133-00 134-00 135-00 136-00 137-00 138-00 139-00 1.101 1.183 1.158 1.362 1.202 1.484 1.543 M

1.101 1.181 1.158 1.362 1.204 1.481 1.547 0.000

-0.002 0.000 0.000 0.002

-0.002 0.002 146-00 147-38 148-00 149-39 150-00 151-40 152-00 1.587 1.198 1.605 1.192 1.379 1.284 1.355 N

1.590 1.198 1.613 1.194 1.388 1.285 1.362 0.002 0.000 0.005 0.002 0.006 0.001 0.005 158-00 159-00 160-00 161-00 162-00 163-00 1.211 1.451 1.220 1.481 1.282 1.303 O

1.213 1.455 1.223 1.479 1.284 1.310 0.001 0.003 0.002

-0.002 0.002 0.005 168-00 169-43 170-00 171-44 172-00 1.415 1.376 1.431 1.541 1.352 P

1.416 1.384 1.429 1.545 1.361 0.001 0.006

-0.001 0.002 0.006 175-00 176-00 177-00 1.537 1.536 1.349 O

1.536 1.538 1.353

-0.001 0.001 0.003 172-00 FC Assy # - Detector #

1.352 CECOR Fq 1.361 SIMUI. ATE Fq 0.006 Difference (SIMUt. ATE-CECOR)/CECOR ENEAD-02-NP REV 0 Page 63

l Figure E.0-3.

ANO-2 MOC-2 Fr Power Synthesis Differences 5.4459 GWD/MTU 1

8 9

10 11 12 13 14 15 l

89-00 90-23 91-00 92-24 93-00 94-25 95-00 96-00 1

0.809 0.944 1.267 0.992 1.341 1.057 1.225 1.232 H

0.810 0.943 1.265 0.991 1.338 1.058 1.230 1.233 0.002

-0.001

-0.002

-0.001

-0.003 0.001 0.004 0.001 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 l

0.944 1.162 0.984 1.068 1.C49 1.275 1.187 1.241 l

K 0.943 1.162 0.983 1.069 1.049 1.281 1.191 1.243

-0.001 0.000

-0.001 0.001 0.000 0.005 0.003 0.001 119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.267 0.984 1.302 1.028 1.346 1.059 1.198 1.118 L

1.265 0.982 1.300 1.027 1.344 1.059 1.193 1.121

-0.002

-0.002

-0.002

-0.001

-0.001 0.000

-0.004 0.002 133-00 134-00 135-00 136-00 137-00 138-00 139-00 0.992 1.064 1.026 1.204 1.053 1.251 1.271 M

0.991 1.066 1.025 1.204 1.053 1.252 1.273

-0.001 0.002

-0.001 0.000 0.000 0.001 0.002 l

I 146-00 147-33 148-00 149-39 150-00 151-40 152-00 1.341 1.047 1.345 1.049 1.215 1.116 1.147 I

N 1.338 1.046 1.342 1.049 1.214 1.117 1.152

-0.002

-0.001

-0.002 0.000

-0.001 0.001 0.004 158-00 159-00 160-00 161-00 162 00 163-00 1.057 1.277 1.059 1.250 1.115 1.139 O

1.058 1.283 1.059 1.251 1.117 1.142 0.001 0.005 0.000 0.001 0.002 0.002 168-00 169-43 170-00 171-44 172-00 1.225 1.195 1.197 1.270 1.145 P

1.230 1.198 1.192 1.273 1.151 0.004 0.002

-0.004 0.002 0.005 175-00 176-00 177-00 1.232 1.241 1.119 0

1.233 1.243 1.121 0.001 0.002 0.002 172-00 FC Assy # - Detector #

1.352 CECOR Fr 1.361 SIMULATE Fr 0.006 Difference (SIMULATE-CECOR)/CECOR l

l I

ENEAD-02-NP REV O Page 64

=

Figure E.0-4.

ANO-2 MOC-2 Fq Power Synthesis Differences 5.4459 GWD/MTU 8

9 10 11 12 13 14 15 89-00 90-23 91-00 )

92-24 93-00 94-25 95-00 96-00 0.917 1.056 1.468 1.116 1.563 1.205 1.430 1.465 H

0.900 1.036 1.416 1.088 1.506 1.166 1.373 1.402

-0.019

-0.019

-0.035

-0.025

-0.036

-0.032

-0.040

-0.043 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 1.057 1.303 1.110 1.203 1.190 1.461 1.377 1.476 K

1.036 1.283 1.078 1.181 1.158

'.427 1.329 1.414

-0.020

-0.015

-0.029

-0.019

-0.027

-0.024

-0.035

-0.042 119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.468 1.110 1.512 1.160 1.571 1.210 1.407 1.327 L

1.416 1.077 1.457 1.128 1.515 1.170 1.336 1.275

-0.035

-0.029

-0.036

-0.028

-0.035

-0.033

-0.050

-0.039 133-00 134-00 135-00 136-00 137-00 138-00 139-00 1.116 1.199 1.159 1.365 1.193 1.464 1.508 M

1.088 1.177 1.126 1.332 1.162 1.400 1.447

-0.025

-0.019

-0.028

-0.024

-0.026

-0.044

-0.040 146-00 147-38 148-00 149-39 150-00 151-40 152-00 1.562 1.187 1.568 1.138 1.402 1.309 1.361 N

1.506 1.154 1.513 1.156 1.364 1.239 1.313

-0.036

-0.028

-0.035

-0.027

-0.027

-0.053

-0.035 158-00 159-00 160-00 161-00 162-00 163-00 1.204 1.463 1.210 1.463 1.308 1.347 O

1.166 1.429 1.170 1.398 1.239 1.295

-0.032

-0.023

-0.033

-0.044

-0.053

-0.039 168-00 169-43 170-00 171-44 172-00 1.430 1.385 1.405 1.507 1.358 l

P 1.373 1.336 1.335 1.446 1.313 1

-0.040

-0.035

-0.050

-0.040

-0.033 l

175-00 176-00 177-00 1.464 1.474 1.327 O

1.402 1.413 1.274

-0.043

-0.041

-0.040 172-00 FC Assy # - Detector #

1.352 CECOR Fq 1.361 SIMULATE Fq 0.006 Difference (SIMULATE-CECOR)/CECOR ENEAD-02-NP REV O Page 65

l Figure E.0-5.

ANO-2 EOC-2 Fr Power Synthesis Differences 11.1326 GWD/MTU j

8 9

10 11 12 13 14 15 89-00 90-23 91-00 92 24 93-00 94-25 95-00 96-00 0.876

- 0.959 1.240 0.983 1.288 1.040 1.225 1.194 H

0.868 0.962 1.248 0.986 1.297 1.036 1.226 1.202

-0.009 0.003 0.006 0.003 0.007

-0.003 0.001 0.007 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 0.965 1.149 0.990 1.059 1.031 1.252 1.184 1.210 K

0.962 1.148 0.986 1.054 1.032-1.239 1.175 1.214

-0.003

-0.001

-0.004

-0.005 0.001

-0.011

-0.008 0.003 119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.242 0.986 1.264 1.011 1.296 1.048 1.229 1.120 L

1.248 0.986 1.273 1.014 1.306 1.045 1.229 1.120 0.005 0.000 0.007 0.003 0.008

-0.003 0.000 0.000 133-00 134-00 135-00 136-00 137-00 138-00 139-00 0.989 1.058 1.014 1.181 1.046 1.264 1.257 M

0.986 1.051 1.013 1.169 1.045 1.266 1.267

-0.003

-0.007

-0.001

-0.010 0.000 0.001 0.008 146-00 147-38 148-00 149-39 150-00 151-40 152-00 1.289 1.027 1.295 1.041 1.215 1.160 1.168 N

1.297 1.030 1.305 1.042 1.219 1.161 1.177

'O.006 0.003 0.008 0.001 0.004 0.001 0.008 158-00 159-00 160-00 161-00 162-00 163-00 1.042 1.255 1.050 1.265 1.153 1.167 O

1.036 1.240 1.045

.1.266 1.160 1.169

-0.006

-0.012

-0.004 0.000 0.006 0.001 168-00 169-43 170-00 171-44 172-00 1.225 1.191 1.230 1.267 1.168 P

1.226 1.182 1.229 1.266 1.177 0.001

-0.008

-0.001

-0.001 0.008 175-00 176-00 177-00 l

1.193 1.207 1.116 Q

1.202 1.214 1.120 0.007 0.006 0.003 172-00 FC Assy # - Detector #

1.352 CECOR Fr 1.361 SIMULATE Fr 0.006 Difference (SIMULATE-CECOR)/CECOR I

i l

ENEAD-02-NP REV 0 Page 66

Figure E.0-6.

ANO-2 EOC-2 Fq Power Synthesis Differences 11.1326 GWD/MTU 8

9 10 11 12 13 14 15 89-00 90-23 91-00 92-24 93-00 94-25 95-00 96-00 1.072 1.141 1.446 1.184 1.508 1.253 1.490 1.407 H

1.036 1.140 1.442 1.172 1.510 1.229 1.439 1.375

-0.033

-0.001

-0.003

-0.010 0.001

-0.019

-0.034

-0.023 104-00 105-00 106-00 107-00 108-00 109-00 110-27 111-00 1.149 1.359 1.189 1.283 1.242 1.517 1.426 1.428 K

1.140 1.348 1.167 1.249 1.222 1.455 1.380.

1.390

-0.007

-0.008

-0.019

-0.026

-0.016

-0.041

-0.033

-0.027 -

119-00 120-31 121-00 122-32 123-00 124-33 125-00 126-34 1.447 1.183 1.486 1.219 1.515 1.260 1.458 1.313

~

L 1.442 1.167 1.482 1.203 1.512 1.234 1.417 1.279

-0.004

-0.014

-0.003

-0.013

-0.002

-0.020

-0.028

-0.026 133-00 134-00 135-00 136-00 137-00 138-00 139-00 1.192 1.282 1.222 1.414 1.248 1.507 1.474 M

1.172 1.246 1.202 1.377 1.232 1.466 1.448

-0.017

-0.028

-0.016

-0.026

-0.013

-0.027

-0.017 146-00 147-38 148-00 149-39 150-00 151-40 152-00 1.509 1.236 1.513 1.244 1.433 1.378 1.357 N

1.510 1.219 1.511 1.229 1.421 1.353 1.332 0.001

-0.014

-0.001

-0.012

-0.008

-0.018

-0.019 158-00 159-00 160-00 161-00 162-00 163-00 1.256 1.518 1.261 1.509 1.368 1.366 0

1.229 1.456 1.233 1.465-1.353 1.332

-0.022

-0.041

-0.022

-0.029

-0.011

-0.025 168-00 169-43 170-00 171-44 172-00 1.489 1.435 1.459 1.487 1.357 P

1.439 1.388 1.416 1.447 1.332

-0.034

-0.033

-0.030

-0.027.

-0.018 175-00 176-00 177-00 1.407 1.426 1.313 0

1.375 1.389 1.278

-0.022

-0.026

-0.027 172-00 FC Assy # - Detector #

1.352 CECOR Fq 1.361 SIMULATE Fq 0.006 Difference (SIMULATE-CECOR)/CECOR ENEAD-02-NP REV O Page 67

APPENDIX F: WSES-3 REPRESENTATIVE POWER SYNTHESIS COMPARISONS I

ENEAD-02-NP REV O Page 68

Figure F.0-1.

WSES-3 BOC-3 Fr Power Synthesis Differences 1.445 GWD/MTU 9

10 11 12 13 14 15 16 17 109 @

110-00 111 00 112-00 113-00 114-00 115-00 116 00 0 818 1.120 1.432 1.179 1.376 1.266 1.396 1.084 9

0.819 1.119 1.438 1.176 1.378 1.263 1.403 1.084 118-00

O.001

-0.009 0.004

-0.003 0.001

-0.002 0.005 0.000 1.073 126-32 127-00 128 33 129-00 130-34 131-00 132-35 133-00 1.07 1.120 1.198 1.161 1.398 1.087 1.355 1.255 1.295

-0.003 10 1.119 1.197 1.158 1.403 1.085 1.352 1.253 1.298 135 37

-0.001

-0 001

-0.003 0.004

-0.002

-0.002

-0.002 0.002 0 64 143-00 144-00 145-00 146-00 14740 148-00 149-00 15CK)0 0.639 1.432 1.160 1.1 31 0.928 1.35 1.291 1.318 1.331

-0.002 11 1.438 1.157 1,129 0 929 1.353 1.287 1.314 O.004

-0.003

-0.002 0.001 0.002

-0.003

-0.003 Ora 0 158-41 159-00 160-42 161-00 162-43 163 00 164-44 165-00 1.179 1.398 0.934 1.195 1.155 1.181 1.356 1.252 12 1.176 1.403 0.934 1.193 1.152 1.179 1.358 1.252

-0.003 0.004 0.000

-0.002

-0.003

-0002 0.001 0.000 173-00 17400 175-00 176-00 177 00 178-00 179-00 18MX) 1.377 1.087 1.354 1.165 1.343 1.163 1.207 0.651 13 1.378 1.086 1.356 1.161 1.346 1.163 1.211 0.652 0.001

-0 001 0.001

-0.003 0.002 0.000 0.003 0 002 187-48 188-00 189-49 19CM)0 191-50 192-00 193-51 1.266 1.357 1.292 1.184 1.165 1.215 0 651 14 1.263 1.354 1.289 1.182 1.165 1.217 0.651

-0 002

-0 002

-0.002

-0.002 0.000 0.002 0.000 199-00 200-00 201-00 202-00 203-00 204-03 1.396 1.256 1.319 1.357 1.208 0.653 15 1 403 1.254 1.316 1.361 1.213 0.651 0 005

-0002

-0002 0.003 0.004

-0.003 209-54 210.00 211-55 212-00 213-56 1.084 1.295 1.331 1.251 0 653 16 1.084 1.299 1.332 1.253 0.651 0 000 0.003 0.001 0.002

-0.003 216-00 217-00 1.073 0.639 17 1.070 0.640

-0.003 0.002 213-56 FC Assy # - Detector #

0.735 OECOR Fr 0.732 SIMULATE Fr

-0004 Difference (SIMULATE-CECOR)/CECOR ENEAD-02-NP REV O Page 69

i Figure F.0-2.

WSES-3 BOC-3 Fq Power Synthesis Differences 1445 GWD/MTU 9

10 11 12 13 14 15 16 17 109-00 110 00 111-00 112-00 113-00 114-00 115-00 116-00 1

0.924 1 264 1.624 1.325 1.555 1.433 1.595 1.239 9

0 920 1.269 1.630 1.33 1.557 1.436 1.602, 1.242 118-00

-0.004 0.004 0 004 0.004 0.001 0.002 0.004 0.002 1.243 126-32 127-00 128-33 129-00 130-34 131 00 132-35 133-00 1.246 1.263 1.352 1.306 1.579 1.211 1.539 1.426 1.490 0.002 10 1.269 1.357 1.310 1.584 1.214 1.541 1.428 1.495 135-37 0.005 0.004 0.003 0.003 0.002 0.001 0.001 0.003 0 732 143-00 144 00 145-00 14640 147-00 148-00 149-00 150-00 0.732 1.623 1.305 1.270 1.030 1.529 1.462 1.502 1.533 0.000 11 1.630 1.309 1.274 1.034 1.533 1.464 1.505 1.537 0.004 0.003 0.003 0.004 0.003 0.001 0.002 0.003 158-41 159-00 160-42 161-00 162-43 163-00 164-44 165-00 1.325 1.579 1.036 1.351 1.306 1.344 1.557 1.448 12 1.330 1.584 1.040 1.353 1.309 1.345 1.559 1.452 0.004 0.003 0.004 0.001 0.002 0.001 0.001 0 003 173 00 174-00 175-00 176-00 177-00 178 00 179-00 180-00 1.555 1.211 1.533 1.317 1.533 1.326 1.389 0.744 13 1.557 1.215 1.537 1.32 1.537 1.33 1.393 0.746 0 001 0.003 0.003 0.002 0.003 0.003 0.003 0.003 187-48 18840 189-49 190 00 191-50 192 00 193-51 1.432 1.540 1.464 1.346 1.328 1.396 0.739 14 1 436 1.543 1.467 1.348 1.331 1.399 0.74 0 003

?002 0.002 0.001 0 002 0.002 0.001 199-00 200 00 201-00 202-00 203-00 204-00 1.594 1.426 1.502 1.556 1.391 0.741 15 1.602 1.430 1.507 1.562 1.395 0.741 0 005 0.003 0.003 0.004 0.003 0.000 209 54 210 00 211-55 21240 213-56 1.238 1.489 1.534 1.448 0.747 10 1.242 1.496 1.538 1.453 0.746 0.003 0 005 0 003 0 003

-0.001 216-00 217-00 1.243 0.731 17 1.246 0.733 0 002 0 003 213-56 FC Assy # - Detector #

0.735 CECOR Fq 0.732 SIMULATE Fq

-0.004 Difference (SIMULATE-CECOR)/CECOR 1

l ENEAD-02-NP REV 0 Page 70

=

Figure F.0-3.

WSES-3 MOC-3 Fr Power Synthesis Differences 6.078 GWD/MTU 9

10 11 12 13 14 15 16 17 109-00 110-00 111-00 112-00 11300 114 00 115-00 116-00 0.807 1.093 1.452 1.186 1.400 1.206 1.394 1.088 9

0.810 1.095 1.448 1.185 1.400 1.205 1.395 1.088 118-00 0.004 0.002

-0.003

-0.001 0.000

-0.001 0.001 0.000 1.091 126-32 127 00 128-33 12N)0 130-34 131-00 132-35 33-00 1.089 1.095 1.169 1.149 1.432 1.067 1.272 1.190 1.310

-0.002 10 1.095 1.169 1.150 1.426 1.064 1.270 1.189 1.306 135-37 0.000 0.000 0.001

-0.004

-0.003

-0.002

-0.001

-0.003 0.670 143-00 144-00 145-00 14M)0 147-00 145-00 149-00 150 00 0.668 1,452 1.148 1.108 0.930 1.351 1.21 8 1.248 1.303

-0.003 11 1.448 1.149 1.109 0.927 1.348 1.216 1.241 1.295

-0.003 0.001 0.001

-0.003

-0002

-0.002

-0.006

-0.006 158-41 159-00 160 42 161-00 162 43 163-00 164-44 165-00 1.185 1.431 0935 1.169 1.130 1.142 1.351 1.237 12 1.185 1.425 0.931 1.168 1.129 1.140 1.352 1.237 0 000

-0.004

-0.004

-0.001 0.001

-0.002 0.001 0.000 173-00 174-00 175 00 176-00 177 00 178-00 179-00 180-00 1.399 1.066 1.354 1.138 1.363 1.154 1.230 0.672 13 1.400 1.065 1.350 1.137 1.364 1.156 1.233 0.673 0 001 0.001

-0.003

-0.001 0.001 0.002 0.002 0.001 187-48 188-00 189-49 190-00 191-50 192-00 193-51 1.205 1.273 1.218 1.144 1.156 1.238 0.674 14 1.205 1.271 1.217 1.142 1.158 1.238 0 6'?

0.000

-0.002

-0.001

-0.002 0.002 0.000

-0.004 199-00 20N)0 201-00 202-00 203 00 204-00 1.394 1.191 1.249 1.354 1.231 0 674 15 1.395 1.189 1.242 1.354 1.234 0.671 0 001

-0002

-0.006 0.000 0.002

-0.004 209-54 210-00 211-55 212 00 213-56 1.087 1.308 1.301 1.236 0.674 16 1.088 1.306 1.295 1.237 0.672 0.001

-0.002 0.005 0.001 4 003 216-00 217-00 1.090 0 667 17 1.089 0 668

-0.001 0.001 213-56 FC Assy # - Detector #

0.735 CECOR Fr 0.732 SIMUI. ATE Fr

-0.004 Difference (SIMULATE-CECOR)/CECOR ENEAD-02-NP REV 0 Page 71 I

1 Figure F.0-4.

WSES-3 MOC-3 Fq Power Synthesis Differences 6.078 GWD/MTU 9

10 11 12 13 14 15 16 17 109-00 11400 111-00 112 00 113-00 114-00 115-00 116-00 0.886 1.184 1.628 1.291 1.569 1.322 1.572 1.202 9

0 859 1.171 1.580 1.273 1.524 1.295 1.534 1.183 118-00

-0.030

-0.011

-0.029

-0.014

-0.029

-0.020

-0.024

-0.016 1.253 126-32 127-00 128-33 129-00 130-34 131-00 132-35 133-00 1.218 1.185 1.284 1.249 1.602 1.162 1.420 1.308 1.489

-0.028 10 1.171 1.254 1.231 1.550 1.130 1.376 1.280 1.446 135-37

-0.012

-0.023

-0.014

-0.032

-0.028 4 031 4 021

-0.029 0.739 143-00 144-00 145-00 146-00 147-00 148-00 149-00 150-00 0.727 1.628 1.248 1.217 0.998 1.503 1.338 1.415 1.500

-0.016 11 1.580 1.230 1.181 0.979 1.458 1.304 1.368 1.440

-0029

-0 014

-0.030

-0.019

-0.030

-0.025

-0.033

-0.040 158-41 159 @

160-42 161 00 162-43 163-00 164-44 165-00 1.290 1.600 1.002 1.288 1.231 1.258 1.535 1.430 12 1.273 1.549 0.984 1.253 1.21 0 1.230 1.493 1.385

-0013

-0.032

-0.018

-0.027

-0 017

-0.022

-0027

-0.031 173-00 174 @

175-00 176-00 177-00 178-00 179-00 180 00 1.569 1.160 1.505 1.238 1.531 1.281 1.403 0.743 l

13 1.524 1.131 1.460 1.217 1.495 1.255 1.365 0.732

-0 029

-0 025

-0030

-0.017

-0.024

-0020

-0 027

-0 015 187-48 188-00 189-49 190-00 191-50 192-00 193-51 1.323 1.422 1.339 1.260 1.282 1.407 0.737 14 1.295 1.377 1.305 1.232 1.256 1.366 0.723

-0.021

-0.032

-0.025

-0.022

-0.020

-0.029

-0019 199-00 200-00 201 @

202-00 203-00 204-00 1.573 1.310 1.417 1.538 1.405 0.739 15 1.534 1.281 1.368 1.494 1.366 0.723

-0 025 0.022

-0.035

-0029

-0028

-0.022 209-54 21 N)0 211-55 212 @

213-56 1.202 1.488 1.499 1.429 0.745 16 1.183 1.447 1.441 1.386 0.731

-0 016

-0.028

-0039

-0.030

-0.019 216-00 217-00 1.253 0.736 17 1.21 8 0.727

-0.028

-0 012 213-56 FC Assy # - Detector #

0.735 CECOR Fq 0.732 SIMULATE Fq

-0.004 Difference (SIMULATE-CECOR)/CECOR ENEAD-02-NP REV O Page 72

Figure F.0-5.

WSES-3 EOC-3 Fr Power Synthesis Differences 15.954 GWD/MTU 9

10 11 12 13 14 15 16 17 109-00 110-00 111-00 112-00 113 00 114-00 115-00 116-00 0,801 1.034 1.461 1.156 1.415 1.112 1.378 1.082 9

0.803 1.034 1.462 1.154 1.417 1.112 1.379 1.081 118-00 0.002 0.000 0 001

-0.002 0.001 0.000 0 001

-0.001 1.106 126-32 127 00 128-33 129-00 130-34 131 00 131-35 133-00 1.104 1.035 1.100 1.108 1.469 1.037 1.157 1.102 1.333

-0.002 10 1.034 1.100 1.108 1.470 1 038 1.157 1.1 01 1.334 135 37 4 001 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.744 14300 144-00 145-00 14640 147-00 14840 14940 15(KX) 0.742 1.481 1.108 1.077 0.948 1.349 1.101 1.165 1.285

-0.003 11 1.462 1.107 1.077 0.951 1.350 1.098 1.165 1.285 0 001

-0.001 0.000 0.003 0.001

-0.003 0.000 0.000 158-41 159-00 160-42 161-00 162-43 16340 164-44 165-00 1.156 1.469 0.949 1.116 1.070 1.075 1.341 1.214 12 1.154 1.470 0.951 1.114 1.070 1.075 1.341 1.212

-0.002 0.001 0.002 4 002 0.000 0.000 0.000

-0.002 173-00 174-00 175-00 176-00 177-00 17540 179-00 180-00 1.415 1.037 1.350 1.076 1.353 1.120 1.269 0.734 13 1.417 1.039 1.351 1.075 1.352 1.119 1.271 0.733 0 001 0.002 0.001

-0 001

-0.001

-0.001 0.002

-0.001 167-48 158-00 189-49 190-00 191-50 192-00 193-51 1.112 1.157 1.100 1.075 1.121 1.262 0.736 14 1.112 1.157 1.098 1.075 1.119 1.260 0.733 0.000 0.000

-0.002 0.000

-0.002

-0.002

-0.004 199-00 200 00 201-00 202-00 20340 2C4 00 1.377 1.102 1.1o4 1.340 1.269 C.737 15 1.379 1.101 1.165 1.341 1.271 C1.733 0.001

-0 001 0.001 0.001 0.002

-0 005 209-54 210-00 211-55 212-00 213-56 1.082 1.331 1.284 1.212 0.735 16 1.081 1.334 1.285 1.212 0.732

-0 001 0.002 0.001 0.000

-0.004 216-00 217-00 1.106 0.743 17 1.104 0.742 0002

-0001 213-56 FC Assy 8 - Detector #

0.735 CECOR Fr 0.732 SIMULATE Fr

-0004 Difference (SIMULATE-CECORyCECOR ENEAD-02-NP REV 0 Page 73 e

Figure F.0-6.

WSES-3 EOC-3 Fq Power Synthesis Differences 15.954 GWD/MTU 9

10 11 12 13 14 15 16 17 109 00 110-00 111-00 112 00 113-00 114-00 115-00 116-00 0.885 1.139 1.662 1.278 1.612 1.220 1.569 1.202 9

0.862 1.098 1.609 1.237 1.556 1.181 1.511 1.160 118-00

-0026

-0.036

-0.032

-0.032

-0.035

-0.032

-0 037

-0.035 1.280 126-32 127-00 128-33 129-00 130 34 131-00 132-35 133-00 1.216 1.14 1.229 1.227 1.675 1.131 1.288 1.200 1.514

-0.050 10 1.098 1.177 1.183 1.619 1.112 1.243 1.173 1.464 135-37

-0037

-0.042

-0.036

-0.033

-0.017

-0.035

-0.027

-0.033 0.816 143-00 144-00 145-00 146-00 147-00 148-00 149-00 150 00 0.800 1.664 1.228 1.208 1.047 1.523 1.206 1.316 1.464

-0.020 11 1.609 1.182 1.154 1.016 1.476 1.170 1.272 1.415

-0.033

-0037

-0.045

-0030

-0.031

-0.030

-0.033

-0.033 15841 159-00 16042 161-00 162-43 163-00 164-44 165-00 1.278 1.675 1.046 1.244 1.177 1.186 1.528 1.404 12 1.237 1.619 1.016 1.195 1.136 1.145 1.475 1.340

-0032

-0.033

-0.029

-0.039

-0.035

-0.035

-0.035

-0.046 173-00 174-00 175-00 176 00 177-00 178-00 179 @

180-00 1 613 1.131 1.524 1.182 1.545 1.256 1.460 0.807 13 1.556 1.112 1.478 1.140 1.481 1.206 1.400 0.794

-0035

-0.017

-0.030

-0.036

-0 041

-0.040

-0.041

-0.016 187-48 188-00 169-49 190-00 191 50 192 00 193 51 1.22 1.289 1.206 1.187 1.257 1.450 0.809 14 1.181 1.243 1.170 1.145 1.206 1.385 0.791

-0.032

-0.036

-0.030

-0.035

-0.041

-0.045

-0.022 199-00 200-00 201-00 202-00 203-00 204-00 1.569 1.206 1.31 6 1.528 1.461 0.812 15 1.511 1.173 1.272 1.475 1.400 0.791

-0037

-0027

-0 033

-0.035

-0.042

-0.026 209-54 210 00 211-55 212-00 213-56 1.203 1.512 1.464 1.402 0.809 16 1.16 1.464 1.415 1.340 0.792

-0.036

-0.032

-0.033

-0.044

-0.021 216-00 217-00 1.281 0 814 17 1.216 08

-0.051

-0 017 213-56 FC Assy # - Detector #

0.735 CECOR Fq 0.732 SIMULATE Fq

-0.004 Difference (SIMULATE-CECOR)/CECOR r

ENEAD-02-NP REV 0 Page 74 i

_ _ _. _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _. _ _. _ _. _ _.. _.. _ _... _ _ _