ML20154N121

From kanterella
Jump to navigation Jump to search
Summary of Quad Cities Unit 1 1986 Refueling Outage Flaw Evaluations & Dispositions
ML20154N121
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 03/12/1986
From:
NUTECH ENGINEERS, INC.
To:
Shared Package
ML20154N120 List:
References
NUDOCS 8603170207
Download: ML20154N121 (51)


Text

{{#Wiki_filter:. f 'W j >

SUMMARY

OF QUAD CITIES UNIT 1 1986 REFUELING OUTAGE FLAW EVALUATIONS AND DISPOSITIONS Prepared for: _ Commonwealth Edison Company Prepared by: NUTECH Engineers 8603170207 860312 PDR ADOCK 05000254 G PDR QCl-86 1

.g. TABLE OF CONTENTS Page i c 1.0 FLAWED WELD DETAILS 3 2.0 REPAIR DETAILS 9 3.0 EVALUATION CRITERIA 12 4.0 APPLIED AND RESIDUAL STRESSES 21 5.0 EVALUATION RESULTS 29 6.0

SUMMARY

AND CONCLUSIONS 48

7.0 REFERENCES

49 G QCl-86 2

~

nutagh

k t

1.0. FLAWED NELD DETAILS Tab'le 1.0-1 presents details of the indications detected
                                     ~

during the 1984 refueling outage at Quad Cities Unit 1. g, Table 1.0-2 presents details of indications observed l' during the 1986 refueling outage. Figures 1.0-11and 1.0-2 present the locations of the flawed welds in the recirculation system piping. o, h

         -4.

>*t. - OCl-86 3

  '-1 M

r Table 1.0-1 QUAD CITIES UNIT 1 FLAWED WELD DETAILS 1984 REFUELING OUTAGE Weld Pipo Config- Indications ID Size uration Description 02C-S4 12" P-E 4" int. x 44% cire. (P.S.) 3 - 1" max. long axials (P.S.) 02D-S4 12" P-E 0.5" long axial-(P.S.) 0.875" long axial (P.S.) 02E-S4 12" P-E 0.8" x 65% circ. (P.S.) 8 - 1.125" max. long axials (P.S.) 02F-S4 12" P-E 3 - 0.8" max. long axials (E.S.) 02G-S3 12" P-E 0.75" x 50% circ. (P.S.) 7 - 1.125" max. long axials (P.S.) 0.875" long axial (E.S.) 02G-S4 12" P-E 1" x 18% circ. with 0.125" long axial (E.S.) 02H-S3 12" P-E 3" x 21% circ. (P.S.) 3 - 0.75" max. long axials (P.S.) 02H-S4 12" P-E 4 - 0.75" max. long axials (P.S.

                                                         & E.S.)

02J-F6 12" P-SW 7- 1.25" max. long axials (P.S.) 02J-S3 12" P-E 0.6" x 12% cire. with 0.5" long axial (P.S.) 02J-S4 12" P-E 4.25" x 55% cire. (P.S.) 0.6" x < 30% circ. (P.S.) 2.0" x < 30% cire. (P.S.) 1.8" x < 30% cire. (P.S.) 1.6" x < 30% circ. (P.S.) 3.0" x < 30% circ. (P.S.) , I 9 - 1.1" max. long axials (P.S.) l OCl-86 4 nutqqh

r

 .e Table 1.0-1 (Concluded)

QUAD CITIES UNIT 1 FLAWED WELD DETAILS 1984 REFUELING OUTAGE Weld Pipe Configu- Indications ID Size ration Description 02K-S3 12" P-E 1.6" x 25% circ. (P.S.) 0.2" x 25% circ. (P.S.) 0.8" x 15% circ. (P.S.) 8.0" x 24% circ. (P.S.) 5 - 0.625" max. long axials (P.S.) 02K-S4 12" P-E 2 - 0.25" long axials (P.S.) _ 02M-S3 12" P-E 3 - 1" max. long axials (P.S.) 028-S7 22" P-X 0.125" long axial (P.S.) 028-S10 22" P-EC 2" x 10% cire. with 3 - 0.5" max. long axials (EC.S.) 02BS-S9(3) 28" P-E 1.5" x 18% cire. (P.S.) 0.5" x 15% circ. (P.S.) 4" x 0.050" circ. (E.S.) NOTES:

1. Axial flaw lengths from weld centerline to maximum extent of axial flaw along pipe inside diameter surface.
2. Percent flaw depths based upon original pipe wall thickness.
3. For Weld 02BS-S9, 4" x 0.050" cire. is slag indication from original construction.
4. P - Pipe P.S. - Pipe Side E - Elbow E.S. - Elbow Side SW - Sweepolet EC.S. - End Cap Side X - Cross EC - End Cap QCl-86 5 nutgsb

9 Table 1.0-2 00AD CITIES UNIT 1 FLAWED WELD DETAILS 1986 REFUELING OUTAGE Weld Pipe Config- Indications ID Size uration Description 02C-S4(1) 12" P-E 4 axials (P.S.): 0.619" max. depth (0.480" min. remain-ing ligament)

0. 5" max. length 02J-S4(1) 12" P-E 16 axials (P.S.):

0.615" max. depth (0.340" min. remain-ing ligament) 0.5" max. length 02K-S3(1) 12" P-E 4 circs. (P.S.): 0.190" max. depth (0.770" min. remain-ing ligament) 1.5" max. length 1 axial (P.S.): 0.540" max. depth (0.420" min. remain-ing ligament) 0.75" max. length 02BS-S9(2) 28" P-E 1" x 15% cire. (P.S.) 1.5" x 24% circ. (P.S.) 1" x 23% circ. (E.S.) 1" x 15% circ. (E.S.) 2.5" x 20% circ. (E.S.) NOTES:

1. Maximum flaw depth measured from pipe inside diameter surface.
2. Percent flaw depths based upon original pipe wall thickness.
3. P - Pipe P.S. - Pipe Side E - Elbow E.S. - Elbow Side OCl-86 6 nutggb

02M S3 o7g 33 02H 53 Da, % D b d02JS3Doh 02J $4 > 02H $4 02K $4 [ - D .

                                                                 -r
                                                                         ,g
                                    -t                                                _

I i - l 1] 4 C

               \

J F xCE p4.02 02 i Figure 1.0-1 QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS RECIRCULATION SYSTEM LOOP "A" OCl-86 7 nutggh

02G43 02G $4 g 02F S4 02E S4 020 $4 02CS4 O O O O ' ( l 02ssiO j 02ssr / . I n --

                            /

_f 02e5 S9 F MCE84 02 Of Figure 1.0-2 OUAD CITIES UNIT 1 FLAWED WELD LOCATIONS RECIRCULATION SYSTEM LOOP "B" QCl-86 8 nutg_qh

2.0 REPAIR DETAILS Table 2.0-1 presents as-built details of weld overlay repairs implemented during the Quad Cities Unit 1 1984 refueling outage. Table 2.0-2 presents as-built details for weld overlay repairs built-up during the 1986 refueling outage.

Weld 02BS-S9 was' treated by Induction Heating Stress Improvement (IHSI) during the 1984 refueling outage. 6 4 QCl-86 9

AS. BUILT ~ 45 MIN. LENGTH TYP. p 1

                                                               -- AS BUILT i                              THICKNESS q WELO Patent applied for Weld                        As-Built ID                        Thickness              As-Bul'l{2)

Length 02C-S4 0.225"(1) 4.21" 02D-S4 0.216" 3.60" 02E-S4 4.56" 02P-S4 0.282"(1) 2.85" 02G-S3 0.090"(1) 0.228" 4.63" 02G-S4 0.379" 4.38" 02H-S3 0.300" 4.65" 02H-S4 0.198" 4.25" 02J-F6 0.316" 3.20" 02J-S3 0.222" 4.37" 02J-S4 0.239" 4.68" 02K-S3 0.237" 4.65" 02K-S4 0.207" 3.39" 02M-S3 3.67" 02B-S7 0.136"(1) 0.240" 2.37" 02B-S10 0.219" 3.15" NOTES:

1. Thickness does not include low delta ferrite first layer.
2. As-built length at design thickness.

Figure 2.0-1 QUAD CITIES UNIT 1 WELD OVERLAY REPAIR DETAILS 1984 REFUELING OUTAGE OCl-86 10 nutggh

AS BUILT 45 MIN. LENGTH TYP. p r. [f.  !!!kk!!!!  !!ik fffffff///////k///////////////A - AS.8UILT THICKNESS q WELO 1 Patent apolied for Weld As-Built As-Builg2) ID Thickness Lonath 02C-S4 0.424"(1) 4.21" 02J-S4 0.370" 4.68" 02K-S3 0.375" 4.65" NOTES:

1. Thickness does not include lov delta ferrite first layer.
2. As-built length at original design thickness.

Figure 2.0-2 QUAD CITIES UNIT 1 WELD OVERLAY REPAIR DETAILS 1986 REFUELING OUTAGE QCl-86 11 nutg.gh

3.0 EVALUATION CRITERIA 3.1 Flawed Pipe Analysis The following criteria were used by NUTECH to justify further operation of Quad Cities Unit I with the detected flaws in Weld 02BS-S9:

l 1. The beginning-of-fuel cycle (evaluation period) flaw size used in the analysis was the as-measured flaw depth by a conservative 360* circumferential < length.

2. The prediction of end-of-fuel cycle (evaluation period) flaw size was based upon a conservative IGSCC crack growth correlation which closely agrees with the NRR curve presented in Figure 3.1-1 from  ;

NUREG-1061, Volume 1 (Reference 4) using a com-I bination of dead weight, internal pressure, differential thermal expansion, and weld overlay shrinkage stresses. I

3. The calculation of IGSCC flaw growth was based upon conservative butt weld through-wall residual stress distributions.

j 4. As currently required by USNRC Generic Letter 84-11 (Reference 2), the predicted end-of-fuel cycle (evaluation period) flaw size was compared to 2/3 I of the ASME Section XI (Reference 3) Table IWB-3641-1 allowable flaw depth values for a combina-tion of dead weight, internal pressure, and seismic stresses. I OCl-86 12 l 4 1

o

5. Because the allowable flaw sizes in ASME Section XI Paragraph IWB-3640 are currently being revised to take account of the low fracture toughness associ-ated with flux welds, the predicted end-of-fuel cycle (evaluation period) flaw size was compared to Table IWB-3641-5 (Reference 6) allowable flaw depth values for a combination of dead weight, internal pressure, seismic, and differential thermal expansion / weld overlay shrinkage stresses. This table has been adopted for inclusion into the Winter 1986 Addenda to ASME Section XI.

3.2 1984 Weld Overlay Repair Evaluation NUTECH Document COM-96-202 (Reference 1) discusses the evaluation and design criteria used for the flawed welds which were overlay repaired during the 1984 refueling outage. The following criteria were used by NUTECH to justify an additional fuel cycle of operation:

1. For nominal pipe sizes less than or equal to 12", a circumferential flaw was assumed to have a 100%

through-wall-b/-as-measured length geometry.

2. For nominal pipe sizes greater than 12", a circum-forential flaw was assumed to have a depth of twice the maximum ultrasonically measured flaw depth over its as-measured length.
3. For flaws assumed to have a 100% through-wall depth, a bounding fatigue-induced flaw growth of 0.010" into the overlay material was used based upon the NUIECH design report for recirculation safe end and elbow repairs at Monticello (Reference 7) for a 5 year design life.

OCl-86 13 nutggh

4. The weld overlay repair strength for a combination of dead weight, internal pressure, and seismic stresses was compared to the net section collapse criteria of ASME Section XI, Table IWB-3641-1.
5. Because the allowable flaw sizes in ASME Section XI Paragraph IWB-3640 are currently being revised to take account of the low fracture toughness associ-ated with flux welds, the weld overlay repairs implemented in 1984 were also evaluated using the following criteria:
a. Circumferential flaws were assumed to have a 100% through-wall-by-360 length geometry.

The overlay repaired flaw was then compared to ASME Eection XI Table IWB-3641-1 allowable flaw a depth values for a combination of dead weight, internal pressure, and seismic stresses. This approach eliminates the need to evaluate these weldments relative to the proposed ASME Section XI code committee changes to IWB-3640 (Reference 6). Table IWB-3641-1 arbitrarily stops at a minimum stress ratio of 0.6, there-fore NUTECH has developed Table 3.2-1 based upon the Table IWB-3641-1 source equations shown in Figure 3.2-1. This expanded table presents allowable flaw depth ration for flaw length ratios greater than or equal to 0.5 with stress ratios less than 0.6.

b. For those overlay-repaired welds requiring some credit for the uncracked portion of the flux weld, the criteria of Section 3.1, Paragraph 5 were used. The use of these criteria conservatively assume that the weld 0C1-86 14

overlay repair material has the same low fracture toughness as the flux weld. All welds with only axial flaws detected in 1984 were evaluated using the following criteria:

1. An axial flaw was assumed to have a 100% through-wall-by-as-measured length geometry.
2. The weld overlay repair implemented in 1984 was compared to the leakage barrier criteria presented in Table 3.2-2 f rom NUTECH Document COM-76-001 (Reference 8).

3.3 1986 Weld Overlay Repair Evaluation

                                                                             .' elds 0 2C-S 4, 02J-S4, and 02K-S3 required surface finish grinding to allow Generic Letter 84-11 required ultra-sonic examinations during the 1986 refueling outage.

Because it was anticipated that this grinding might reduce the thicknesses of the overlay repairs on these welds below the existing minimum design thicknesses, - these overlays were built-up to new design thicknesses based upon the following criteria:

1. Existing flaw depth was assumed to equal 100% of the original pipe wall thickness by a conservative 360* circumferential length.
2. Under-the-overlay repair fatigue crack growth was calculated for a 30 year design life based upon a conservative fatigue crack growth correlation derived from data presented in BPRI Document NP-2423-LD (Reference 9).

OCl-86 15

3. The weld overlay repair strength for a combination of dead weight, internal pressure, and seismic stresses was compared to the net section collapse criteria of ASME Section XI Table IWB-3641-1.

OCl-86 6 nutgg)]

10 3 , 1 I I I I 1 in lyr NRR 4 _ C 10 0 e _- _ G _ 2 7 O C

        'e 10-5    _

[ _ / J -

                                                    , e , - e, ,, ,,6 ,        ,,,.,..a.,.                        -

4 6 *e . g c y.3. Cg E 4 3 2 **w 2, st%sie rto ar isto*s t= Z = t ** * *e t e=I- Ce ~ W 3 2 3 2 m 3g 14%s#'tt0 at site's1em Ce

                   ~~
                                                    . 3 2    **u og $3.gegg,gg%560283
        @ 10'O                                      ; e ***' se ss*S f too a' t'eir**14=                       ~~

c "

                                                            . es           .     ,sen.

2 CamE3 1 444 " M 3 CEC *O u 0.04 in / yr e e == s, is**** so e. assois.a -

                          ,                            . *l af 932*8 fem geen                  m y          "

l 3 0 88w fo II*IPIII "' 39f 8 'e usse ~

                                                       . 03fe ta=. goe 4 C e=I.
                          !                        :. e = o8 is s.r.roo .e in re.e ..

l - eIt * ,4-. eue . e e t. 10'y -

                                                       . . , . -. . . e w                          l           -

g

                                                  'J e **w og lettentt0 af s'2pge seg e es
                                .                           . r. ,, . . . . . .c       >,

l . e ,c, ,,,

                                                   . e - e,          . e,.. . . .. r. ,e    .. ja    ,

I . ests 719 se isse . escw3' Data

                                                   . e ==e,is nrioarince..e.

I 894 30 C'oe3 e .e gas we e o g og i I I e 8848 og 1448st'280 af 'f9f*8 8e= I l goe

  • 7e C ra3' ' .s os as a .e M j l
                         !!          I       l                 I               l           I           l 0           10      20      30                40              50          60          70 STRESS INTENSITY, K (ksi M Figure 3.1-1 NUREG-1061, VOLUME 1 STRESS-CORROSION CRACK GROWTH RATES (Reference 4)

QCl-86 17 nutgegh

                                                                                        ..   .e Table 3.2-1 h                   EXPANDED ALLOWABLE END-OF-EVALUATION PERIOD E           FLAW DEPTH III-TO-THICKNESS RATIO FOR CIRCUMFERENTIAL FLAW m

NORMAL OPERATING CONDITIONS P, , Pb Ratio of Flaw Length, E g, to Pipe Circumference (Note (3)] S, 0.5 (Note (2)1 0.0 0.1 0.2 0.3 0.4 or More 1.5 (4) (4) (4) (4) (4) (4) 1.4 0.75 0.40 0.21 0.15 (4 ) (4 ) 1.3 0.75 0.75 0.39 0.27 0.22 0.19 1.2 0.75 0.75 0.56 0.40 0.32 0.27 1.1 0.75 0.75 0.73 0.51 0.42 0.34 1.0 0.75 0.75 0.75 0.63 0.51 0.41 0.9 0.75 0.75 0.75 0.73 0.59 0.47

 -    0.8             0.75       0.75        0.75        0.75
  • 0.68 0.53 0.7 0.75 0.75 0.75 0.75 0.75 0.58 0.6 0.75 0.75 0.75 0.75 0.75 0.63 0.5 (5) 0.75 0.75 0.75 0.75 0.75 0.68 0.4 (5) 0.75 0.75 0.75 0.75 0.75 0.73 0.36 (5) 0.75 0.75 0.75 0.75 0.75 0.75 NOTES:

(1) Flaw depth = a n for a surface flaw 2a for a subsurface flaw t= nominal thi0kness Linear interpolation is permissable. (2) P,= primary membrane stress Pb " Primary bending stress S , = allowable design stress intensity (in accordance with Section III) (3) Ctrcumference based on nominal pipe diameter. (4) IWB-3514.3 shall be used. g (5) Derived using source equations.

Table 3.2-2 LEAKAGE BARRIER REPAIR CRITERIA FOR AXIAL FLAWS (Reference 8) NON0lMEN$10NAL FLAW LENGTH STR ESS RAT 10 4//WT 0.00 0.25 0.50 1.00 2.00 ..... s s 0.40 * * * *  :- 0.50 * * * * - 1 0.80 * * * * ;_ 0.70 * * *

  • z 0.80 * * * * =

0.90 * *

  • z 0.96 *
  • 1 1.00 =

s

                                                                                                                                        'CO*#
  • LEAK BARRIER ONLY REOulRED STRESS RATIO = PO / 2 T Sm P = MAXIMUM PRESSURE FOR NORMAL OP'.r4ATING CONDITIONS 0 = NOMINAL OUTSIDE OlAMETER OF THE PIPE T = NOMINAL 1HICKNESS 4 = ENO4F EVALUATION PERICO FLAW LENGTH R = NOMINAL RAOlus OF THE PIPE OCl-86 19 nutggh

4 For 2 od < 1800 1,-2

  • 8=--* (radians) 2 2.773 (SR) - 0.5 - h (2 sin 8 -{ sin 2) = 0
 ;                                             For                            a
                                                                                 + 3 1 1800                                                                                                     i
                                                                                   , ($ I3
  • 3 d = (radians) 27
2.773 (SR) -0.5 6 (2-{} sin 6 = 0 .

Where 4 = flaw length (inches) J r = pipe radius (inches) s = half-crack length (radians) 8 = neutral axis location angle (radians) a = flaw depth (inches) . i t a pipe thickness (inches) j SR = stress ratio = Pm + Pb Pm a primary membrane 5fress . + Pb = primary bending stress Sm a allowable stress intensity J_ (per ASME Section !!! Appendices) l l J e i i ' u . . A MA

  • Nental Anne n - 9..n sa n a j Figure 3.2-1

, SOURCE EQUATIONS FOR ALLOWABLE END-OF-EVALUATION PERIOD FLAW DEPTil-TO-TilICKNESS RATIO FOR CIRCUMFERENTIAL FLAWS i t i i 0C1-86 20 l ,

f S

 .. 4.0    APPLIED AND RESIDOAL STRESSES 4.1    Primary Stresses Table 4.1-1 presents the dead weight, internal pressure, i           and OBE seismic stresses acting on the as-built overlay-repaired welds and Weld 02BS-S9.

4.2 Secondary Stresses l Table 4.1-1 presents the piping system differential thermal expansion stresses acting on the as-built overlay-repaired welds and Weld 02BS-S9. Table 4.2-1 presents the as-built weld overlay shrinkages which cause the shrinkage-induced stress at Weld 02BS-S9 shown in Table 4.2-2. - l Figure 4.2-1 illustrates the design thermal transients used to perform a fatigue crack growth analysis. These transients cause the through-wall temperature gradients shown in Figure 4.2-2. Figure 4.2-3 presents the post-IHSI through-wall residual stress distributions used in the IGSCC crack growth analysis for Weld 02BS-S9. Figure 4.2-4 presents the under-the-overlay through-wall residual stress distributions used in the fatigue crack growth analysis of the overlay repairs built-up during the 1986 l refueling outage. l 0C1-86 21

Table 4.1-1 QUAD CITIES UNIT 1 PRIMARY AND THERMAL EXPANSION AXIAL STRESSES (PSI) Primary Secondary Weld Dead Internal OBE Thermal ID Weight Pressure Seismic Expansion 02C-S4* 222 3,949 239 424 02D-S4* 117 4,974 64 619 02E-S4* 112 4,596 111 1,331 02F-S4* 243 5,208 224 1,258 02G-S3* 186 4,412 251 1,779 02G-S4* 69 4,133 137 759 02H-S3* 60 4,502 251 232 02H-S4* 64 5,089 208 205 02J-F6* 263 4,422 342 254 02J-S3* 117 4,937 283 249 02J-S4* 69 4,172 128 95 - 02K-S3* 132 4,150 199 366 02K-S4* 52 5,031 188 105 02M-S3* 936 5,526 398 606 02B-S7* 26 4,831 362 117 028-S10* 0 5,240 0 0 02BS-S9 90 6,439 128 676

  • Based upon as-built weld overlay repair thickness plus original pipe wall thickness.

OCl-86 22

S . <

                .                                                                                       Table 4.2-1 l

QUAD CITIES UNIT 1 s AS-BUILT WELD OVERLAY SHRINKAGES Axial Weld Shrinkage l ID (in.) ,

)                                                                             02C-S4                                           0.316*

02D-S4 0.157 02E-S4 0.242 02F-S4 0.160 02G-S3 0.256 02G-S4 0.278 i 02H-S3 0.239  ! ! 02H-S4 0.219

!                                                                             02J-F6                                           0.148 02J-S3                                           0.279
!                                                                             02J-S4                                           0.300*
,                                                                             02K-S3                                           0.480*

J 02K-S4 0.139 ,

02M-S3 0.173 '

) 02B-S7 0.043 ' 02B-S10 0.030 d 1984 shrinkage measurements bound 1986 measurements. I i  : r , r I i i . 1 i l i ,

1 i,

i 0C1-86 23 1 l 1

   . _ _ . - _ _ _ _ , _ , _ . _ _ , _ _ _ _ _                _ _ _ . _ . _ _ _ . . _ _ _ , _ . _ _ . _                         ,_ _                _,-_,,,_m-,_-

r Table 4.2-2 00AD CITIES UNIT 1 WELD OVERLAY SHRINKAGE-INDUCED STRESSES Wold Stress ID (pgt) 02BS-S9 900 OCl-86 24 nutggh

NORMAL E I

                  ~

OPE R A flNG* l b 5 - 5 c b avait N r . JM fvrtig _ J%cyckt t tvCLI PL ANT (1F5

                  ,_              _g,p aR n aioo              ,       ye A r 6 vs An st oist Nrs _

flMt Figure 4.2-1 QUAD CITIES UNIT 1 THERMAL TRANSIENTS 0C1-86 25

1 PIPE PIPE PIPE PIPE O D. I O. O D. 1.0 U

                                                                     *8                                                                E d A T, y         y                                 aT g                           o                         .
     ;                         0 7,     -T
                                               /                        "

FOR 304SS AT TNO *OE E E

  • 28.3 a 100 mi a
  • 911 = 10 0/0 F PIPE PIPE PIPE PIPE O 0. _

_ l D. O D. l. D. . y p aT 2 4a7 2 p

                                                                        '                                               o,.      -
      ,             3          ,,,        17,    f                        -
     ,NO                                    h h

NORMAL START UP SMALL TEMPERATURE EMERGENCY j PIPE DIAMETER PARAMETER CYCLE (CYCLE 11 CH ANGE ICYCLE 21 CYCLE (CYCLE 31 EQUIVALENT LINEAR 12" TEMPERATURE a 7, 1 F 38 F 318* F PEAK ! '2~ TEMPERATURE a 72 00 F 100 F #F Figure 4.2-2 QUAD CITIES UNIT 1

THROUGil-WALL TEMPERATURE GRADIENTS I

QCl-86 26 I l

u .. " r*

                                                                        =o       >"           a                 '"     **
              ..     . no       o     .. ==     =                                       ?           ?
                                                                                                        '" /
      .,oo Oum su a
                                                                                                              /

MLD _ _ .<. . a u 3 l 1_ - 135 Semi r--i - i. 3

                                                                                                            /

8

                                                      --    !                              eo-           i
                             ,o_
                                                                                                                    ~
                          ,                                                      En w                              -8 3 43 3cml                                      )

N / - R el3 0sd33 02 cal b p# s 1

                /r

( E os- [/- O'~ f -'

                   )              _,

i g

                           !                                                   l E

E s tenen Supiram

    .       -         -           N. o
                                                .o              ..o
                                                                           ..o
                                                                                    .,o         o ao
          "*kSig          AMIAL SMSS. het                                     MI'WE E            I      '        '

Figure 4.2-3 PRE- AND POST-IllSI TilROUGil-WALL RESIDUAL STRESS DISTRIBUTIONS (Reference 14) QCl-86 27 nutggh

g y y v v , y y y y

                                                   - OUT(R $URF ACf
                            /                                                                       E
                            -                                                                       3 V                                                                       E a                   P                                                   7
                            ]    - f4                           -

d - 60 E - - -

                                                                    . al                            E     {

y i, a g - 40 - 40 dL 3 ()

  • 5 y< - 20 ,

20

                            '                                                                       N r                                                                         ;

Cd , INNf 4 StJHf ACE 6 n n n a a e n n n j (d i 40 10 0 ;PO 40 ed) 40 20 0 20 40 Nf S11)U A L AulAl 5fRF$$ bu RI $ll)lJ AL CIRCUMf ( RE Nfl AL $1N[*,$ h o

                    > HIII He f48 I 15'                                                    iHf f f ME NCf 161 Figure 4.2-4 UNDER-Tile-OVERLAY TilROUGil-WALL RESIDUAL STRESS DISTRIBUTIONS QCl-86                                                   28 nutgg).)

5.0 EVALUATION RESULTS 5.1 Weld 02BS-S9 5.1.1 IGSCC Crack Growth Analysis , Table 5.1-1 presents the pipe and " law geometric details and sustained stress combinations needed to predict IGSCC crack growth in Quad cities Unit 1 flawed Weld 02BS-S9. NUTECH's NUTCRAK computer program ( Reference

17) was used to predict radial crack growth using the following conservation crack growth correlations da = 3.58 x 10-8 g2.161 dt where da = differential crack size (inches) dt = differential time (hours)

K = applied stress intensity factor (ksi /In) As discussed in Section 3.1, this crack growth correla-tion closely agrees with the NRR curve presented in Figure 3.1-1 from NUREG-1061, Volume 1 ( Re f erence 4). Table 5.1-2 presents the predicted end-of-fuel cycle flaw depth for Weld 02BS-S9. As seen in the table, no growth is predicted during the next 18-month fuel cycle. In addition, the evaluation indicates that no further IGSCC crack growth is expected for the balance-of-plant life. OCl-86 29

t 5.1.2 Flawed Pipe Evaluation As discussed in Section 3.1, the predicted end-of-fuel cycle flaw depth for Weld 02BS-S9 was compared to two different evaluation criteria. Table 5.1-3 presents flaw geometric details and primary stress combinations needed to evaluate the requirements of USNRC Generic Letter 84-11 (Reference 2) and ASME Section XI (Refer-ence 3) Table IWB-3641-1. Table 5.1-4 presents flaw geometric details and primary plus secondary stress combinations needed to evaluate the requirements of proposed ASME Section XI Table IWB-3641-5 (Reference 6). 5.2 1984 Overlay-Repaired Welds 5.2.1 Circumferential Flaw Weld Overlay Repair Evaluation - Table 5.2-3 presents the pipe, weld overlay, and flaw geometric details needed to evaluate the weld overlay repairs applied to circumferential1y flawed welds during the 1984 refueling outage. Table 5.2-2 presents the flaw geometric details and primary stress combinations needed to evaluate these welds in accordance with USNRC Generic Letter 84-11, ASME Section XI Table IWB-3641-1, and Section 3.2, Paragraphs 1 through 4. Table 5.2-3 presents this data for the assumed 100% through-wall-by-360* length circumferential flaw geometry discussed in Section 3.2, Paragraph Sa. For those overlay-repaired welds needing some credit for the uncracked flux weld, Table 5.2-4 presents the flaw geometric details and primary plus secondary stress combinations needed to evaluate these welds in accordance with proposed ASME Section XI Table IWB-3641-5. QCl-86 30 nutggh

F 5.2.2 Axial Flaw Weld Overlay Repair Evaluation Table 5.2-5 presents the pipe and flaw geometric details needed to determine applied and allowable stress ratios for the axially flawed overlay-repaired welds at Quad Cities Unit 1. Table 5.2-6 presents a comparison of stress ratios due to applied loads versus the allowable stress ratios for the axial flaws given in Table 5.2-6. The allowable stress ratios shown were determined using the leakage barrier criteria presented in Table 3. 2-2. 5.3 1986 Redesigned Overlay-Repaired Welds 5.3.1 Fatigue Crack Growth Analysis Tables 5.3-1 and 5.3-2 present the pipe, weld overlay, and flaw geometric details and cyclic stress combina-tions needed to predict fatigue crack growth in Quad Cities Unit 1 Welds 02C-S4, 02J-S4, and 02K-S3. NUTECH's NUTCRAK computer program was used to predict radial crack growth for axial and circumferential flaws using the following conservative crack growth correlation: qa = 2.84 x 10-8 g 2.57 cN Where: da = differential crack size (inches) dN = differential stress cycle K = applied stress intensity factor (ksi /In) As discussed in Section 3.3, this crack growth correlation is derived from fatigue crack growth data presented in EPRI Document N P- 24 2 3-LD (Reference 9). OCl-86 31 nutagh

~. Table 5.3-3 presents the predicted fatigue crack growth depth for a 30 year design life. 5.3.2 Circumferential Flaw Weld Overlay Repair Evaluation Table 5.3-4 presents the pipe, weld overlay, and flaw geometric details and primary stress combinations needed to evaluate the weld overlay repairs applied to circum-ferential flaws in accordance with USNRC Generic Letter 84-11, ASME Section XI Table IWB-3641-1, and Section 3.3. 5.3.3 Axial Flaw Weld Overlay Repair Evaluation Table 5.3-5 presents a comparison of stress ratios due - to applied loads versus the allowable stress ratios for the axial flaws given in Table 1.0-2. The allowable stress ratios shown were determined using the leakage barrier criteria presented in Table 3.2-2. QCl-86 32 i

Table 5.1-1 8 y WELD 02BS-S9 $ PIPE AND FLAW GEOMETRIC DETAILS AND SUSTAINED STRESS COMBINATIONS Nominal Sustained Weld O.D. III t(2) a(3) Stress (5) ID (in.) (in.) (in.) L I4) (psi) 02BS-S9 28 1.359 0.326 360* 8,105 NOTES:

1. O.D. = ou tside diame ter w

w 2. t = pipe wall thickness

3. a = beginning-of-fuel cycle flaw depth
4. L = evaluation flaw length
5. Sustained stress = dead weight + internal pressure + thermal expansion + weld overlay shrinkage stresses from Tables 4.1-1 and 4.2-2.

3

F-

  ,                              Table 5.1-2 WELD 02BS-S9 PREDICTED END-OF-FUEL CYCLE FLAW DEPTHS Weld          Beginning-of-Fuel Cycle        End-of-Fuel Cycle ID            Flaw Depth Ratio III          Flaw Depth Ratio ( 2) 02BS-S9                     0.24                       0.24 NOTES:                                                                -
1. Beginning-of-fuel cycle flaw size used flawdepthratio(()

from Table 5.1-1 and 360' circumferential length. -

2. Predicted end-of-fuel cycle flaw depth based upon combination of dead weight, internal pressure, thermal expansion, weld overlay shrinkage and post-IHSI residual stresses.

OCl-86 34 nutggh

Table 5.1-3 , Q Y WELD 02BS-S9

  $                                       GENERIC LETTER 84-11/ TABLE IWB-3641-1 PREDICTED VS. ALLGWAB LE FLAW DEPTil RATIOS Weld             I,III                                           IWB-36gl    GL 8   1 Predged ID                           FLR            SR g3)              FDR        FDR          FDR (in.)

02BS-S9 4.5 0.05 0.39 0.75 0.50 0.24 j NOTES: ' l 1. Flaw length, L, is maximum combination of circumferential flaw lengths on either side of weld from Table 1.0-2. w 2. FLR = flaw length ratio = flaw length, L, divided by nominal pipe circumference.

3. SR = dead weight plus internal pressure plus seismic stresses (Table 4.1-1) divided by allowable stress intensity, S . From ASME Section III (Reference 18) Appendix I, Table I-1.2, S = 16,'350 psi for 304 stainless steel pipe and fittings at 550*F operating temp,rature.

e

4. FDR = flaw depth ratio (*) from ASME Section XI (Reference 3) Table IWB-3641-1.
5. Allowable flaw depth ratio (' x 2/3) per USNRC Generic Letter 84-11 (Reference 2).
6. Predicted end-of-f uel cycle flaw depth ratio from Table 5.1-2.

i i

Table 5.1-4 8 7 WELD 02BS-S9 m

  • PROPOSED TABLE IWB-3641-5 PREDICTED VS. ALLOWA BLE FLAW DEPTH RATIOS Weld L III IWB-36gI 1 Pred ed ID (in.) FLR(2) SR(3)

FDR FDR _ 02BS-S9 4.5 0.05 0.49 0.6 0.24 NOTES:

1. Flaw length, L, is maximum combination of circumferential flaw lengths on either side of weld from Table 1.0-2.

$ 2. FLR = flaw length ratio = flaw length, L, divided by nominal pipe circumference.

3. SR = M [(dead weight plus internal pressure plus seismic stresses) + (thermal expansion plus weld overlay shrinkage stresses divided by 2.77)] diviaed by allowable stress intensity, S,, defined in Note 3, Table 5.1-3. Used worst M= 1.144 for SAW weldment greater than 24 inches in diameter.
4. FDR = flaw depth ratio (#) from proposed ASME Section XI Table IWB-3641-5 (Reference 6).
5. Predicted end-of-fuel cycle flaw depth ratio from Table 5.1-2.

3

Table 5.2-1 8 T' 1984 OVERLAY-REPAIRED WELDS $ PIPE, OVE RLAY, AND FLAW GEOMETRIC DETAILS CIRCUMFERENTIALLY FLAWED WELDS Nominal Wold O.D. III L(2) t (3) t I4) a(5) Design p 9 ID (in.) (in.) (in.) (l"*) (in.) PDR I7) 02E-S4 12.75 0.8 0.585 0.282 0.595 0.69 02G-S3 12.75 0.75 0.585 0.318 0.675(6) 0.75 0 2G-S 4 12.75 1.0 0.585 0.379 0.595 0.62 02H-S3 12.75 3.0 0.585 0.300 0.595 0.67 w 0 2J-S 3 12.75 0.6 0.585 0.222 0.595 0.74 4 02B-S10 22.0 2.0 1.093 0.219 0.219 0.17 NOTES:

1. O.D. = ou tside diameter.
2. Flaw length, L, is maximum combination of circumferential flaw lengths on either side of weld from Table 1.0-1.
3. t g
            = original pipe wall thickness.
4. t g
            = weld overlay repair thickness from Table 2.0-1.
5. a = design flaw depth per Section 3.2 evaluation criteria.
6. Includes low delta ferrite first layer assumed to be 0.090" thick.
7. Design flaw depth ratio, FDR, is design flaw depth, a, divided by (to + tp),

Table 5.2-2 1984 OVERLAY-REPAIRED WELDS GENERIC LETTER 84-ll/ TABLE IWB-3641-1 DESIGN VS. ALLOWABLE FLAW DEPTH RATIOS Weld IWB-3641-1 Design ID FLR III SR(2) FDR(3) FDR I4) 02E-S4 0.02 0.28 0.75 0.69 02G-S3 0.02 0.29 0.75 0.75 02G-S4 0.02 0.26 0.75 0.62 02H-S3 0.07 0.28 0.75 0.67 02J-S3 0.01 0.31 0.75 0.74 02B-S10 0.03 0.31 0.75 0.17 - NOTES:

1. FLR = flaw length ratio = flaw length, L, from Table 5.2-1 divided by nominal pipe circumference.
2. SR = dead weight plus internal pressure plus seismic stresses (Table 4.1-1) divided by allowable stress intensity, S,,

defined in Note 3, Table 5.1-3,

3. FDR = allowable flaw depth ratio (f) from ASME Section XI (Reference 3) Table IWB-3641-1.
4. Design FDR from Table 5.2-1.

OCl-86 38 nutggb

  .                                      Table 5.2-3 1984 OVERLAY-REPAIRED WELDS GENERIC LETTER 84-ll/ EXPANDED TABLE IWB-3641-1 100% X 360* VS. ALLOWABLE FLAW DEPTH RATIOS
;                                                    Expanded Weld                                     IWB-3641-1       Design ID          FLR(1)         SR(2)          FDR(3)        FDR(4) 02E-S4          1.0           0.28              0.75        0.69 02G-S3          1.0           0.29              0.75         0.75 02G-S4          1.0           0.26              0.75        0.62 02H-S3          1.0           0.28              0.75         0.67 02J-S3          1.0           0.31              0.75        0.74 02B-S10         1.0           0.31              0.75        0.84  NA(b)

NOTES:

1. FLR = flaw length ratio = 1.0 for 360* assumed flaw length.
2. SR from Table 5.2-2.
3. FDR = allowable flaw depth ratio (f) from Table 3.2-1.
4. From Table 5.2-1, design FDR = (tp + 0.010")/(tp v to).
5. Not acceptable for conservative 100% x 360* flaw assumption.

OCl-86 39

Table 5.2-4 1984 OVERLAY-REPAIRED WELDS PROPOSED TABLE IWB-3641-5 DESIGN VS. ALLOWABLE FLAW DEPTH RATIOS Wold IWB-3pj}-5 Des {g ID FLR III SR(2) FDR FDR 028-S10 0.03 0.33 0.6 0.17 NOTES:

1. FLR from Table 5.2-2.
2. SR = M[(dead weight plus internal pressure plus OBE seismic stresses) + (thermal expansion stress divided by 2.77)] -

divided by allowable stress intensity, S defined in Note 3, Table 5.1-3. Used worst M = 1.08 for SAE,weldment less than 24 inches in diameter.

3. FDR = flaw depth ratio (8) from proposed ASME Section XI Table IWB-3641-5 (Refere ce 6).
4. Design FDR from Table 5.2-1.

QCl-86 40 nutagh

    .                               Table 5.2-5 1984 OVERLAY-REPAIRED WELDS PIPE AND FLAW GEOMETRIC DETAILS AXIALLY FLAWED WELDS Nomi Weld            O.D.gg}             L(2)                           t  (3)

ID (in.) (in.) (Sn.) 02D-S4 12.75 0.875 0.585 02E-S4 12.75 1.125 0.585 02F-S4 12.75 0.8 0.585 02G-S3 12.75 1.125 0.585 02G-S4 12.75 0.125 0.585 02H-S3- 12.75 0.75 0.585 02H-S4 12.75 0.75 0.585 02J-F6 12.75 1.25 0.585 02J-S3 12.75 0.5 0.585 02K-S4 12.75 0.25 0.585 -- 02M-S3 12.75 1.0 0.585 028-S7 22.0 0.125 1.093 02B-S10 22.0 0.5 1.093 NOTES:

1. O.D. = outside diameter.
2. Flaw length, L, is maximum single axial flaw length on either side of weld from Table 1.0-1.
3. t p = original pipe wall thickness.

+ 1 1 0C1-86 41 I MN .

Table 5.2-6 1984 OVERLAY-REPAIRED WELDS APPLIED VS. ALLOWABLE STRESS RATIOS 2 AXIALLY FLAWED WELDS  ; Applied Allowable Stagggrd Actyg} Weld Stresq Stresy2) t t (in.) ID Ratio LI) Ratio (Sn.) 02D-S4 0.80 0.90 0.125 0.216 02E-S4 0.80 0.80 0.125 02P-S4 0.80 0.90 0.125 0.282(5) 0.180 02G-S3 0.80 0.80 0.125 0.318(5) 1

02G-S4 0.80 0.95 0.125 0.379 02H-S3 0.80 0.90 0.125 0.300 02H-S4 0.80 0.90 0.125 0.198 02J-F6 0.80 0.80 0.125 0.316 02J-S3 0.80 0.95 0.125 0.222 02K-S4 0.80 0.95 0.125 0.207 02M-S3 0.80 0.80 0.125 028-S7 0.74 0.95 0.125 0.136-(5) 0.330 028-S10 0.74 0.95 0.125 0.219 NOTES
1. Applied stress ratio is calculated for internal pressure of 1,250 psi using geometric properties from Table 5.2-5 and i formula presented in Table 3.2-2 footnotes.
2. Allowable stress ratio per Table 3.2-2.
3. Standard leak barrier overlay repair minimum thickness.
4. As-built weld overlay repaic thickness.
5. Includes low delta ferrite first layer assumed to be 0.090" thick.

[ QCl-86 42

Table 5.3-1 b 1986 OVERLAY-REPAIRED WELDS PIPE, OVER LAY, AND CIRCUMFERENTIAL PLAW GEOMETRIC i I:ETAILS AND CYCLIC STRESS COMBINATIONS Weld Noming{I O.D. t (2) t (3) t(5) 3(6) Cyclic Stress (8) ID (in.) (kn.) (in.) (in.) (in.) LI I (psi) ! 02C-S4 12.75 0.585 - 0.514 I4) 1.099 0.675 360* 4,373 02J-S4 12.75 0.585 0.370 0.955 0.585 360* 4,267 02K-S3 12.75 0.585 0.375 0.960 0.585 360* 4,516 j Bounding 12.75 0.585 0.235 0.820 0.585 360* 5,404 I9) i Case a NOTES: w f 1. O.D. = ou tside diame ter .

2. t p = original pipe wall thickness.
3. tg = weld overlay repair thickness from Table 2.0-2,
4. Includes low delta ferrite first layer assumed to be 0.090" thick.

1

5. t =t p +t o.
6. a = evaluation flaw depth = 100% x tp (conservative).
7. L = evaluation flaw length.

EI 8. Cyclic stress = internal pressure + thermal expansion stresses from Table 4.1-1.

9. Cyclic stress increases to 5,890 psi during emergency cycle due to 75 psi increase in internal pressure. '

t

                                                                                               . e*

Table 5.3-2 b 1986 OVERLAY-REPAIRED WELDS

  • PIPE, OVERLAY, AND AXIAL FLAW GEOMETRIC DETAILS AND CYCLIC STRESS COMBINATIONS Weld *"ik)

O.D. t(2) a(3) L(4) Y Stress (5) ID (in.) (in.) (in.) (in.) (psi) 02C-S4 12.75 1.099 0.619 1.0 7,898 02J-S4 12.75 0.955 0.615 1.1 8,344 0 2K-S 3 12.75 0.960 0.540 0.75 8,300 Bounding 12.75 0.955 0.619 (6) 8,344 I7)

  ' Case NOTES:
1. O.D. = ou tside diame ter.
              =t    +t
2. t g o from Table 5.3-1.
3. a = beginning of evaluation period flaw depth from Table 1.0-2.
4. L = maximum axial flaw length from Table 1.0-1 and 1.0-2.
5. Cyclic stress acting on axial flaw is hoop internal pressure stress =

2 x Table 4.1-1 internal pressure stresses.

6. Evaluation flaw length = infinitely long axial length.
7. Cyclic stress increases to 8,845 psi during emergency cycle due to 75 psi increase in internal pressure.

I

i I Table 5.3-3 1986 OVERLAY-REPAIRED WELDS PREDICTED 30 YEAR FATIGUE CRACK DEPTHS Crack Beginning-of-Evaluggjon End-of-Evaluation Orientation Period Flaw Depth Period Flaw Depth (2) Circumferential 0.585" 0.590" Axial 0.619" 0.640" NOTES:

l. Bounding beginning-of-evaluation period flaw depth from Table 5.3-2.
2. Predicted end-of-evaluation period flaw depth based upon combination of internal pressure, thermal expansion (for _

circ. flaw), through-Wall temperature gradient, and under-the-overlay residual stresses. 9 QCl-86 45 nutggb

o. Table 5.3-4 1986 OVERLAY-REPAIRED WELDS GENERIC LETTER 84-ll/ TABLE IWB-3641-1 DESIGN VS. ALLOWABLE FLAW DEPTH RATIOS Weld FLR II) SR(2) IWB-3pj{-1 FDR Predigd FDR ID 02C-S4 1.0 0.26 0.75 0.54 02J-S4 1.0 0.26 0.75 0.62 02K-S3 1.0 0.26 0.75 0.61 NOTES:

1. FLR = flaw length ratio = 1.0 for 360* assumed flaw length.
2. SR = dead weight plus internal pressure plus seismic stresses (Table 4.1-1) divided by allowable stress intensity, S,, -

defined in Note 3, Table 5.1-3.

3. FDR=allowableflawdepthratio(f) trom ASME Section XI (Reference 3) Table IWB-3641-1.
4. Predicted FDR = bounding end-of-evaluation period circumferential flaw depth from Table 5.3-3 divided by "t" from Table 5.3-1.

l QCl-86 46 nutggb

l ) ) Table 5.3-5 1986 OVERLAY-REPAIRED WELDS APPLIED VS. ALLOWABLE STRESS RATIOS AXIALLY FLAWED WELDS Applied Allowable Staggyrd Remaining Weld t Ligamenti4) ID Stresq Ratio ll

                                                       )       Stresy2)

Ratio (?n.) (in.) 02C-S4 0.80 0.80 0.125 0.459 02J-S4 0.80 0.80 0.125 0.315 02K-S3 0.80 0.90 0.125 0.320 NOTES:

1. Applied stress ratio is calculated for internal pressure of 1,250 psi using geometric properties from Tables 5.3-1 and _

i.3-2 and formula presented in Table 3.2-2 footnotes.

2. Allowable stress ratio per Table 3.2-2.
3. Standard leak barrier overlay repair minimum thickness.
4. Remaining ligament = t +t from Table 5.3-1 minus bounding end-of-evaluation period axEal flaw depth from Table 5.3-3.

QCl-86 47 nutggb

   ?*
      . 6.0    

SUMMARY

AND CONCLUSIO1S Quad Cities Nuclear Power Plant Unit I has recently completed its first fuel cycle of operation with flaws identified during its 1984 refueling outage. Ultrasonic examinations performed in 1984 detected flaws judged to be IGSCC in the vicinity of 17 recircu.'.ation system welds. Evaluations documented in NUTECR's 1984 flaw evaluation and disposition report (Reference 1) deter-mined the need for weld overlay repairs at 16 of these welds and the acceptability of Weld 02BS-f.9 with IHSI only. During the 1986 refueling outage, ultrasonic examina-tions were performed on 4 of the 17 flawed welds as required by Generic Letter 84-11 (Reference 2). To _ allow for required surface finish grinding, the overlay repairs on Welds 02C-S4, 02J-S4, and 02K-S3 were built-up to design thicknesses required for a 30 year design life. The crack growth analyses and flawed pipe / weld overlay repair evaluations presented in this report demonstrate that the original design margins of safety inherent in the Code for the flawed welds have not been degraded and that these overlay-repaired and IMSI-r.itigated welds arc acceptable for a minimum of one additional fuel cycle. i QCl-86 48 O

                                              ~
   \

7.0 REFERENCES

1. NUTECH Document COM-96-202, " Evaluation and Disposition of IGSCC Flaws at Quad Cities Nuclear Power Station Unit 1," Revision 0.
2. USNRC Generic Letter 84-11, " Inspections of BWR Stainless Steel Piping," April 19, 1984.
3. ASME Boiler and Pressure Vessel Code Section XI, 1983 Edition with Addenda through Winter 1983.
4. U.S. Nuclear Regulatory Commission Document No.

NUREG-1061, Volume 1, " Investigation and Evaluation of Stress-Corrosion Cracking in Piping of Boiling Water Reactor Plants," April 1984, Second Draft . attached to SECY-84-301, dated July 30, 1984.

5. USNRC Document, " Safety Evaluation by the Office of Nuclear Reactor Regulation - Inspection and Repair of Reactor Coolant System Piping at Quad Cities Unit 2," attached to J. A. Zwolinski (USNRC) letter to D. L. Farrar (CECO), dated January 7, 1986.
6. ASME Section XI Task Group on Pipe Flaw Evaluation Document, " Proposed IWB-3640 Change for Evaluation of Flux Weldments," presented at March 1985 ASME meeting, Palm Springs, California.
7. NUTECH Document NSP-81-105, " Design Report for Recirculation Safe End and Elbow Repairs -  !

Monticello Nuclear Generating Plant," Revision 2.

8. NUTECH Document COM-76-001, " Weld Overlay Design Criteria for Axial Cracks," Revision 0.

OCl-86 49

          \

og 9. EPRI Document NP-2423-LD, " Stress Corrosion Cracking of Type-304 Stainless Steel in High-Purity Water: A Compilation of Crack Growth Rates," Interim Report, June 1982.

10. Sargent & Lundy Document R-2330, " Specification for Piping System - Quad Cities Units 1 and 2," with all supplements through Supplement 25.
11. EDS Nuclear Report No. 04-0591-0047, "IGSCC Evaluation for the Piping System of Quad Cities Nuclear Station, Unit 1," Revision 0, August 1982.

j 12. Letter, W. F. Tschudi (Impell Corp.) to A. K. Rao j (NUTECH), " Data for IGSCC Evaluation, Quad Cities Unit 1," April 19, 1984. _

13. NUTECH Computer Program PISTAR, Version 2.0, Users Manual, Volume 1, TR-76-002, Revision 4, NUTECH Corporate File No. 08.003.0300.
14. EPRI Document No. NP-2662-LD, " Computational l

Residual Stress Analysis for Induction Heating of Welded BWR Pipes," December 1982.

15. RPRT Document, " Continued Service Juntification for
Weld Overlay Pipe Repairs," Final Draft, May 25, 1984.
16. NUTECH Document HLG-84-001, " Weld Residual Stress
Data Base for IGSCC Crack Growth Calculations,"

January 10, 1984.

17. NUTECH Computer Program NUTCRAK, Revision 2.0.2, December 1983, NUTECH Corporate File 08.039.0005.

L QCl-86 50

                     - - . -  --m__.-
                                                            - _ -_, . . , ,                                 - _ . .               -.--.r--em-,      .r-r ,-m   ,_y_ r _ . _ , , _ _ - , - . _ . _ - . - , - . _ - - - - - _ - . - - . . _           , -_w-e

F

 \

t

18. ASME Boiler and Pressure Vessel Code Section III, 1983 Edition with Addenda through Winter 1983.

QCl-86 51 nutggh}}