ML20029A059

From kanterella
Jump to navigation Jump to search
Feedwater Line Thermal Hydraulic Behavior During LOCA Conditions for Quad-Cities Nuclear Power Station.
ML20029A059
Person / Time
Site: Quad Cities  Constellation icon.png
Issue date: 11/21/1990
From: Freeman J, Ramsden K
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20029A057 List:
References
RSA-Q-90-03, RSA-Q-90-3, NUDOCS 9102010155
Download: ML20029A059 (44)


Text

- - A rrnc am an r L 4

FEEDWATER LINE THERMAL HYDRAULIC BEHAVIOR DURING LOCA CONDITIONS FOR QUAD CITIES NUCLEAR POWER STATION Document Number RSA Q.90 03.

November 21,1990 Kevin B. Ramsden John M. Freeman Nuclear Fuel Services

. 'K.yL{[M Commonwealth Edison Company 72 West Adams Street q.g Chicago, Illinois 60603 fg.-s ,

p s

Prepared by:

_ . ,y p -

Date: // 0 .,! 9 o r, Reviewed by: / M -

Date: ///36/10 f

aggreved by: 4 ,mrew. K m, oetc. , z.,/a/g.

F iR ii. >0 M p PDR

{- .. .

1 Statement of Disclaimer This report was prepared by the Nuclear Fuel Services Department for use internal to Com-monwealth Edison Company. It is being made available to others upon the express under-standing that neither Commonwealth Edison Company nor any ofits officers, directors, agents, or employces makes any warranty, representation, or assumes any obligation, responsibility with respect to the contents of this report,its accuracy, or completeness.

Disclaimer ii

1

  • e
  • j I

.. I Abstract This report documents best estimate analysis of the thermal hydraulic behavior of the feedwater lines during postulated design basis LOCA scenarios. The RELAP5 Mod 2 computer code was utilized to determine the amount of Huid retained in the feedwater piping inside containment subsequent to primary depressurization resulting frorn various postulated breaks. The retained Guid can then be credited as forrning a seal against leakage of radionuclides from the contain-ment, and acceptable leakage rates determined for plant testing.

Abstract iii

Table of Contents Chapter 1. INTRODUCTION ....................................... I i

Chapter 2. DESCRIPTION OF ANALYSIS METiiOD ...................-.2 Thermal Hydraulic Modeling Technique ......................._3 1

Selection of Piping System and Description of input . . . . . . . . . . . . . . 4 Boundary Conditions At The Vessel FW Nozzle ................. 5 .

FW Flow and Enthalpy ..................................-,6 Cha pt er 3. R ES U LTS . . . . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . ........7 D B A LO C A Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 8 i i Ft2 L ;ak Case .......... ............................. 9 4

1 Chapt er 4. CO N C LUSI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1

l Ch a p t e r 5. T A B L ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 -j TABLE I : Initial Conditions and Assumptions Used in the FW Line Analysis ....e... 11 1 TABLE 2 : Sequence of Events for the DBA LOCA Case ........................ 12, l

-TABLE 3 : Sequence of Events for the i Ft2 Break Case . . . . , . . . . . . , . . . . . . . . . . . . - -13 Cha pt e r 6. FI G U R ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . 14 Figure 1, Quad RELAP5 Nodalization for FW Line w/LOCA Analysis ............. 15 j I'

Figure 2. Vessel Pressure during a DBA LOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3, Sparger Flow during a DBA LOCA ..........................,...,. 17

t. Figure 4,12' Pipe Void Fraction during a DBA LOCA . . . . . . . . . - . . . ............18-Figure 5,18" Pipe Void Fraction during a DBA LOCA ......................... 19 Table of Contents iv l;

Figure 6, Vessel Pressure during a 1 Ft2 Break LOCA . . . . . . . . . . . . . . . . . . . . . . . . . . 20 21 Figurc 7, Sparger Flow during a 1 FT2 Break LOCA . . ........... ............

Figure 8,12" Pipe Void Fraction during a 1 Ft2 Break LOCA ... ..... .......... 22 Figurc 9,18" Pipe Void Fraction during a 1 Ft2 Break LOCA . .................. 23 Chapter 7. It EF ellen C ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Appendix A. INFUT DATA FOR FW LINE LOCA ANALYSIS ........... 25 LOFW List of RELAP5, M2 Quad FW Line input Deck ....... 26 Appendix 11. LISTING OF COMPUTER RUNS ........................ 34 FW Line Analysis MicroGehe List ........................... 35 1

l l

v Table of Contents I

l

Chapter 1. INTRODUCTION The purpose of this calculation is to evaluate the potential for fluid retention in the Quad Cities feedwater lines inside containment during postulated 1,0CA scenarios. This inforniation is re-quired to credit the ability of the retained fluid to act as a burier to radionuclide transport from the containment under accident conditions.

The determination of Guid retained in the piping during and subsequent to a LOCA presents a number of difficulties. During steady state operation, the feedwater is heated to approximately 341 F. Upon sudden depressurization, some fraction of this Duld will flash to steam and vent to the vessel. This Dashing reduces the temperature of the remaining Huid to saturation condi.

tions and leaves a colunm of warm fluid in the pipe. The principal difTicultics in this determi-nation rest with the prediction of Guid carryover occurring during vigorous flashing.

In the limit case ofinfinitely long periods of slow depressurization, equilibrium Hashing models would predict that relatively large quantities of fluid would be retained due to infmite phase separation capability inherent in such a treatment. The most conservative treatment is to con-sider 100% of the fluid to flash. This is currently the method used in determination of allowable leak rates.

The best estimate code RELAPS Mod 2 has been employed to provide an estimate of the Guid retention in the feedwater lines for a number of LOCA scenarios. The model developed for this-purpose utilizes the non-equilibrium capabilities of the code as well as the ability to characterize heat transfer from the feedwater piping itself. The results of this analysis demonstrate that a significant amount of fluid is retained for all break sizes considered, and that loop seal blockage of radionuclides is a reasonable assumption for containment leakage determination.

I Chapter 1. INTRODt)CTION

~

Chapter 2. DESCRIPTION OF ANALYSIS METHOD I

l 2

! Chapter 2. DESCRIPTION OF ANALYSIS METilOD

i Tliermal-Ilydraulie Modeling Teclinique Two approaches were investigated to determine the remaining liquid in the li W line after a LOCA. Iland calculations were donc but .wcre severely limited in their treatment of carryover

-in the dyntimic response. RI! LAPS M2 is a two fluid, non homogeneous, non equilibrium ther-mal hydraulic code developed under NRC auspices for the performance of best estimate LOCA analysis. It is recognized as a good tool for performance of best estimate transient hydraulic cualysis. l i

l i

1 1

3 Chapter 2. DESCRIPTION OF ANALYSIS METilOD l

4

^

Selection of Piping System and Description of Input The RELAP5 modelincorporated Loop A dimensions of the FW piping of Unit 1. Loop 11 and Unit 2 FW piping dimensions were examined and found to have about 3 cubic feet more addi-tional volume. The smaller volume was chosen to be consenative. An additional consideration in the selection of lines mode!!cd was that the llPCI system feeds into Loop II, cfrectively guarantecing that it would be water Giled for any scenario in which llPCI is available. As built isometric drawings were used to determine the nodalization which appears in Figure 1.

As can be seen in the diagram of the model, a relatively fine mesh was utilized. In general the piping is discretized into elements of approximately 3 4 feet long. This nodalization was se-lected to ensure adequate characterization of the liquid entrainment and two phase fluid be-havior. Preliminary calculations indicated that detailed nodalization is required particularly in the long horizontal sections.

The piping is all Schedu!: 120 except for the spargers which are Schedule 80 piping. The metal mass of the feed lines was modeled explicitly with the assumption of an insulated surface on the outside of the pipe. The model incorporates initial conditions which are listed in Table 1.

A listing of the RELAPS M2 FW line model for LOCA canditions can be found in Appendix A.

l i

4 Chapter 2. DESCRIPTION OF ANAIJSIS NIETilOD

Boundary Conditions At The Vessel FW Nozzle The model was primarily sensitive to the rate of vessel depressurization during the period when flashing just begins. The saturation pressure for initial feedwater temperature of 341 F is ap.

proximately 120 psia. The principal amount of mass loss occurs immediately after Dashing be.

gins for the larger break sizes, and is very sensitive to the derivative of the pressure with time.

Therefore, careful treatment of the pressure boundary condition is necessary for accurate pre-diction of water retention. An accurate boundary condition was based on NEDC 31345P,

" Quad Cities Nuclear power Station Units 1 & 2, SAFER /GESTR LOCA, Loss Of Coolant Accident Analysis," Jan 1988, Rev. I. Vessel pressure from the DBA LOCA case was used to specify this boundary condition. This pressure profile was combined with the containment pressure profile in the UFSAR, Figure 5.2.17. This is donc to provide a reasonable condition for the boundary pressure seen by the feedwater line. The vendor analysis performed to meet Appendix K typically uses a containment pressure of 14.7 as a conservative input value.

Therefore use of the containment backpressure is appropriate for this analysis, since the reactor vessel would not depressurize below the containment pressure.

5 Chapter 2. DESCillPTION OF AN ALYSIS METilOD

4 FW- Flow and Enthalpy Since the I.OCA occurs at 100% power concurrent with a loss of offsite power, the FW pumps trip simultaneously. Operational experience of station personnel shows that the FW Gow coasts down rapidly upon tripping of the pumps. FW Gow was modeled as 100% Gow at t=0.0 and linearly i: creasing to 0.0% Gow at t= 5.0 seconds as a conservative assumption. Since Hashing in the feedwater lines does not occur until 30 seconds or more depending on the size of the break, the coastdown of feedwater has little impact on the retained fluid mass.

l Chapter 2. DESCRil' TION OF ANALYSIS NIETIIOD 6 l

Chapter 3. RESULTS 7

Chapter 3. RESULTS

DBA LOCA Case >

The DBA case resulted in the least water remaining in the feedwater lines following the depressurization of the reactor. This is due to the vigorous Gashing and carryover that occurs.

The DBA case pressure boundary condition is shown in Figure 2, As can be seen, the rate of pressure decay is very rapid as the pressure decreases to 150 psi and then begins to moderate.

In Figure 3, the now rate of one sparger arm is depicted. The now peaks shortly after the pressure reaches the Hashing point and then decreases gradually. The peak is a combination of vapor and liquid now while in the declining portion, the now is primarily vapor. In Figure 4, the liquid void fraction of selected points in the upper 12 inch pipe are depicted. As can be seen in this plot, the Dashing begins in the higher elevations and progresses through the lower nodes of the 12 inch pipe relatively quickly. In Figure 5, the liquid void fraction of selected nodes in the 18 inch pipe is displayed. In the 18 inch pipe considerable variation ofliquid content occurs during the event. This is due to the entrainment and fallback ofliquid. Near i

the end of the Hashing period, the liquid fraction of the lowermost nodes of the 18 inch pipe tbnw an ir.:suse towards unity as the Guid falls back from higher elevations. Near the end of the Dashing period, the steam How is primarily associated with the heat transfer from the pipe wa!!s. This calculation is terminated at 300 seconds with approximately 101 gallons of Guid remaining in the system. The sequence of events for this case is provided in Table 2.

t B

Chapter 3. REStJLTS l

1 Ft2 Ilreak Case This case was performed to demonstrate the effect of reduced depressurization rates inherent in breaks smaller than the DilA case. The pressure boundary condition employed in this calcu-lation is depicted in Figure 6. Comparison with Figure 2 illustrates the more gradual depressurization that occurs. The now through one feedwater sparger arm is depicted in Figure 7 and demonstrates lower peak flow than occurs in the DBA case. in Figure 8, liquid void fractions of seiceted nodes in the 12 inch pipe are illustrated. The reduction in liquid content occurs more gradually'than the DilA case and the lowermost node shows several pulses of fluid content after the primary Gashing period. This is a result of more Guid being retained in the 18

- inch pipe, with the pulses caused by Gashing of Guid in the lower sections of piping. The dy-namic hehavior of the Dashing in the IS inch pipe is shown in Figure 9. The void fractions os-cillate as Guid is liRed and falls back repeatedly. This calculation was carried out to 600 seconds with approximately 144 gallons of Guid remaining in the system. The sequence of events is -

provided in Table 3.

A listing of the microfiche for all of the cases analyzed can be found in Appendix B.

L:

Chapter 3. RESULTS 9 1

~

Chapter 4. CONCLUSION A detailed calculation has been performed to characterize the behavior of the feedwater lines within the intoard check valve during postulated loss of coolant accident conditions. The cal.

culations performed demonstrate that considerable amounts of fluid are retained for the large break accident scenario, and even larger retention as the break size,(and depressurization rate),

decrease. The calculation was performed in a conservative manner, but with sufIicient detail to be considered a best estimate of the system performance.

I i

l l

i l

Chapter 4. CONCLUSION 10 l

l

e Chapter 5. TABLES TAllLE I initial Conditions and Assumptions Used in the FW Line Analysis Initial Reactor Power is 100%

Initial Reactor Vessel Pressure is 1020.0 psia Initial Food Flcw 100% (2722.2 lbm/sec)

Initial Food Water Temperature is 341.0 F Initial Feedwater Enthalpy is 309 btu /lbm Feed Water Pipo Inside Dia. to Vessel Inlot Nozzlo = 10.75" Food Water Pipe Inside Dia, at Check Valve Exit = 15.25" Feed Water Pipe Wall Thicknoss for 12" pipe i T= 1.0" Feed Water Pipo Wall Thickness for 18" pipo i T = 1.375" Feed Spargers are 6" Schedulo 80 pipe Loss of Offsite Power occurs at T=0.0 (concurrent w/LOCA)

Feed Wr.ter Pumps Trip and Coastdown after Loss of Offsite Power Food Water Pumps Coastdown assumed from 100% to 0% in 5.0 seconds Reactor Vessel Pressure Profile DBA LOCA (Suction with DG/HPCI failed) 11 Chapter 5. TABLES

TABLE 2 Sequence of Events for the DBA LOCA Case TIME (seconds) EVENT 0.0 Steady State Full Power Operation at Initial Conditions ,

0.0 Design Basis Accident LOCA with Loss of Offsite Power 5.0 FW Flow Terminated Due To Pump Coastdown 40.0 Feed Line Flashing Begins 180.0- Food Line Clashing Ends 300.0 Calculation Terminated Foodline Fluid Mass = 787.6 lbm (101 gal) l l

I~

12

! Chapter s. TABLES

1 TABLE 3 Sequence of Events for the 1 Ft2 Break Case TIME (seconds) EVENT 0.0 Steady State Full Power Operation at Initial Conditions .

0.0 Design Basis Accident LOCA with Loss of Offsite Power 5.0 FW Flow Terminated Due To Pump Coastdown 120.0 Food Line Flashing Begins 320.0 Feed Line Flashing Ends 600.0 Calculation Terminated Feodlino Fluid Mass = 1120.6 lbm (144 gal) 13 Chapter 5. TAllLES

Chapter 6. FIGURES e

14 Chapter 6. FIGURES

RELAP5 MODEL NOZZLES =

OF QC FEED LINE 5 ..

... y a *r" t a m LL A A it smRoERe 12" w -- --

LINE

't' 'n*

82o4-E .

ei.

UPPER

.u.

  • a DOWNCOMER l ,,,

lI -

r--- $::,.

r ". .

!T VESSEL 12' 3;.

LINE

[s!!* ano4-P  !:*

lT r

'~* '

  • ~ "' ~* ' ^ ' ^ ' ~~' ~'

CONTAINMENT 10" BOUNDARY LINE ano4 A ....

- sans sum Mete j ... g .. @ .... p

+.a-v.. [ [ -e] ,,,u, Figure 1. Quad RELAP5 Nodalization for FW Line w/LOCA Analysis 15 Chapter 6. FIGURES

U .D DBA LOCA Pressure Boundary Condition Reactorfessel Pressure 1,000-

-800-600- - P300 4001 200-0 , , , , , , ,

0 50 100 150 200 250 300 350 TIME (seconds)

Figure 2. Vessel Pressure (luring a DBA LOCA Chapter 6. FIGUllES 16

- . = - . .

1 DBA LOCA Sparger Flow FLg0(Ib/sec) 300-250-200-150- - FLOW 2132 100-50- ,

0-

-50 , , , , , , -- i 0 .50 100 150 200 25G 300 350 TIME (seconds)

Figure 3. Feedwater Sparger Flow during a DBA LOCA n

l l

17 Chapter 6. FIGURES l

DBA LOCA .

12" Pipe Vold Fraction Ltqu!q00 "

1 11 1

0.80- l ll 0.60-  : -- V2048 V2044 l

- V2041 0.40- j

)

0.20-0.00 ,

9q , , , , , ,

0 50' 100 :150' 200 250 300 350 TIME (seconds)

Figure 4. 12" Pipe Void Fraction (turing a DBA LOCA Chapter 6. I'lGURES 18

- .- -. - ~ - . . - . - . .- . .-

4 e

DBA LOCA 18" Pipe Vold Fraction Liquid v Id fraction 00 _

1 ./ [

0.60-

}

l'.

' '/

. . ' ' M, -- V2006 i l- / /

0.60-

-hr l.

  • ** / .

l V2005 f.* .,

(h,

- V2004

/ .,

[y,

. - -V2003 O.40- g (ll

- " V2002 T'.~ .

- V2001 0.20- ..

I \

f, 0.00 0 50

i. 4:i-c'N-100 150-200 250 i ,

300 350 TIME (seconds) j Figure 5. 18" Pipe Void Fraction during a DBA LOCA

.l l

1 Chapter 6. FIGURES U I

l

1 FT2 BREAK Pressure Boundary Condition Reantggessel Pressure _

800-600-

- P300 400-200-0 , , , , , , ,

O 50 100 150 200 250 -300 350 TIME (seconds)

Figurc 6, Vessel Pressure (luring a 1 Ft2 Break LOCA 4

Chapter 6. FIGURES 20

1 FT2 BREAK CASE Sparger Flow FLg0(ib/sec) i 300--

200, I

I- FLOW 2132 100-0-

-100 i i , , , .. .

0 50 100 150- 200 250 300 350 TIME-(seconds)

Figure 7. Feedwater Sparger Flow during a i Ft2 Break LOCA l

l l

i Chapter 6. F1GURES 21 4 __

i,

.- 1 1 FT2 BREAK Vold Fraction 12" Pipe Liquid Vo1d Fraction ,,

i i1 .

0.80-

\i -

k:\

\

\

0.60- . -- V2048

\ - + V7]44 0.40-

- V2041 0.20- 1 I '

0.00 , , , , , ,

0- 50 100 150 200 250 300 350 TIME (seconds)

Figure 8. 12" Pipe Void Fraction during a 1 Ft2 Ilreak LOCA Chapter 6. FIGURES 22 l


____________mm__.

1 FT2 BREAK Vold Fractions in 18" Pipe I

Llquido0 v id,. . .ction f ,

0.80- . *.

1 i 0.60- - ~ V2006

[ e.a fl: .

I

'i ld)l..

v2003 V2001 0.40- /f -

4

~

i}lv' h",

\ \ h\

tali7 0.00- , ,, , , ,

0 50 100 150 200 250 300 350 TlWE (seconds) t-Figure 9. 18" Pipe Void Fraction during a 1 Ft2 lireak LOCA Chapter 6. FIGURI3 23

Chapter 7, REFERENCES

1. ' Quad Cities Nuclear Power Station Units 1 & 2, SAFl!R/GliSTR LOCA, Loss Of-Cociant Accident Analysis." N!!DC 31345P, Rev.1, January 1988, p. x u.
2. Quad Cities Updated FSAR, Rev. 9.1990, Figure 5.2.17.
3. Sargent & Lundy Drawing M 15, Rev. AG.
4. Sargent & Lundy Drawing M 100, Rev. L.
5. Sargent & Lundy Drawing M 101, Rev. L. ,
6. Sargent & Lundy Drawing M 102, Rev. M.

7 Sargent & Lundy Drawing M 103, Rev. M.

S. Sargent & Lundy Drawing M 104, Rev. N.

9. Sargent & Lundy Drawing M 105, Rev. L.
10. Nutech Drawing M 3100, Rev. F.
11. Nutech Drawing M 3102 Sheet 1, Rev.11.
12. Nutech Drawing M 3102. Sheet 2. Rev.11.
13. Nutech Drawing M 3112 Sheet 1, Rev. C.
14. Nutech Drawing M 3112, Sheet 2 Rev.11.

Chapter 7. Illi Ell 0NCES 21

Appendix A. INPUT DATA "OR 17W LINE LOCA

. ANALYSIS d

Appendis A. INI'UT DA1 A l'OR I W I,1Nr. LOCA ANAIA' SIS 25 l

LOFW List of RELAP5, M2 Quad FW Line input Deck t

This section contains a listing of all the REl.APS input cards generated from the final case.

//NTSKR JOB (.S.F.001251).K. RAMSDEN. 0000000

// NOTIFY =NTSKR. 0000000

// CLASS =J. TIME =15. 0000000

// REGION #3500K. 0000000

// MSOCLASS*Q. 0000000

// MSOLEVELa(1,1) 0000000

// STEP 1 EXEC M2704

//INFUT DD M 00000800

=0 LOVER TW FLASHING PROBLEM DBA BREAK R '

100 NEW TRANSNT 5

M 102 BRITISit BRITISH 105 90. 100.

105 manuxmmuumvummummmmmunununumwnununuxuusunnununuunuunung

  • n TIME STEP CARDS n M amusumwunwananwununnmuunusuunnununumwanwnnmanvunusunnum x END DTMIN DTMAX OPT MIN MAJ RSTRT 201 10. 1.D-7 1.0 3 5 100 0000 202 40. 1.D-7 1.0 3 10 100 2000 203 100. 1.D-7 0.01 3 20 1000 2000 204 1000. 1.D-7 1.0 3 10 100 2000 m

WNRMMWENMMXWMNNNNMMENuRuMMMWWNNNMMMRNMMMMMENWMMMMMMWNKN N N M

N MINOR EDIT VARIABLES u x unwuunununnumummmmmmmmmuuuuuuuwwunnununuununuxummunuuma n

301 P 300010000 302 P 2i3010000 303 TMASS 0 304 VOIDF 200010000 305 VOIDF 200020000 306 VOIDF 200030000 307 VOIDF 200040000 308 VOIDF 200050000 309 VOIDF 200060000 310 V01DF 200070000-311 VOIDF -204010000 312 VOIDF 204020000 313 VOIDF 204030000 314 VOIDF 204040000 315 VOIDF 204050000.

316 VOIDF 204060000 317 VOIDF 204070000 318 VOIDF 204080000 319 VOIDF ~204090000 320 VOIDF 204100000 321 VOIDF 204110000 '

302 MFLOWJ 213020000 x15- R}!00J 351000000 M17 P 300000000 W18 P 301000000 M51 MFLOWJ 505000000 m

WMuRRRMWMWKMMMMNKNRuMkNuuMMMMMKNNMMMkMKMENEMMMMMMMMMMMMMMMMKNKNMM i x TRIP CARDS M

$ TRIP IDENTIFIER  !

M x

u W 550 < PROBLEM STOP M M 600 < CARD.1 26 Appendh A. INPllT DATA FOR FW LINE LOCA ANALYSIS

1

~

!ammmmmmmmuuumummmmmmmmawmmmmmmmmmmmu=mmmuummmmmanumanummmmmmmmm$

550 TIME O GE NULL 0 300.0 L 600 550 a

509 TIME O GE NULL 0 0.0 L ,

510 TIME O GE NULL 0 5.E5 L

$11 TIME O GE NULL 0 .25 L k

$mmmmmunuunnununummununmamanmuummuunnunummununumusummu u x n HYDRODYNAMIC COMPONENTS a m a munummusmannunummmanummuununumusumuummuunnumanuunmanum a

u a

muum aman muun 2000000 LINE18 PIPE a NV 2000001 7 m FLOWA NV 2000101 1.2684 7 m LENGTH NV 2000301 2.33 1 2000302 3.95 6 2000303 7.0 7 m INCLINE ANGLE NV 2000601 0.0 1 2000602 90.0 6 2000603 0.0 7 u D ELEV NV 2000701 0.0 1 2000702 3.95 6 2000703 0.0 7 m ROUGH HYD DIA NV 2000001 0.00015 0.0 7 m 901 FJUNF FJUNR NJ 2000901 0.26 0.26 1 2000902 0.17 0.17 2 2000903 0.0 0.0 5 2000904 0.26 0.26 6 m FE NV 2001001 00 7 m VCAllS NJ 2001101 10000 6 m FLAG P T X DUMMY NV 200120) 3 1200.0 341. 0.0 00 7 x FLAG twLBM/SEC 2001300 1 m LFLOW VFLOW INTERFACE FLOW NJ 2001301 1361.1 0.0 0.0 6 zuma ukME 2020000 LINEC2 BRANCH n NJ 2020001 3 1 x FLOWA L VOL AZI INCL DZ ROUGH HYD FE 2020101 1.2684 6. 0.0 0.0 0.0 0.0 0.0 0.0 10 m FLAG P T X DUMMY 2020200 3 1200. 341.

u 2021101 200010000 202000000 1.2684 0.0 0.0 00000 2022101 202010000 204000000 .6303 0.0 0.0 10102 2023101 202010000 206000000 .6303 0.0 0.0 00100 m LFLOW VFLOW INTERFACE FLOW 2021201 1361.1 0.0 0.0 2022201 680.55 0.0 0.0 2023201 680.55 0.0 0.0 Appendis A. INPUT DATA FOR FW LINE LOCA ANALYSIS 27

+

. pasa 2040000 LINC12D PIPE

  • NV 2040001 11
  • FLOWA NV 2040101 .6303 11
  • LENGTl! NV 2040301 3.0 1 2040301 2.5572 1 2040302 3.05 6 2040303 3.7 11 m INCLINE ANGLE NV 2040601 90.0 1 2040602 45.0 6 2040603 90,0 11 m D ELEV NV ,

2040701 3.0 1 2040701 2.5572 1 2040702 2.15660 6 2040703 3.7 11 E HOUGli HYD DIA NV 2040801 0.00015 0.0 11 m

u 901 FJUNT FJUNR NJ 2040901 0.2 0.2 1 2040902 0.0 0.0 5 2040903 0.2 0.2 6 2040904 0.0 0.0 10 m FE NV 2041001 00 11 m VCAlls NJ 2041101 10000 10 m FLAG F T X DUMMY NV 2041201 3 1200.0 341. 0.0 0 0 11 m FLAG 1*LBM/SEC 2041300 1

  • LFLOW VFLOW INTERFACE FLOW NJ 2041301 680.55 0.0 0.0 10 mman upNW 2060000 LINE12C PIFE
  • NV 2060001 10
  • FLOWA NV 2060101 .6303 18 m LENGTil NV 2060301 3.22 3 2060302 3.4722 9 206L303 3.479175 13 2060304 4.4000 la m INCLINE ANGLE NV 2060601 0,0 1 2060602 0.0 9 2060603 45.0 13 2060604 90.0 18 w D ELEV NV 2060701 0.0 1 2060702 0.0 9 2060703 2.46015 13 2060704 4.4 18 x ROUGil HYD DIA NV 2060801 0.00015 0.0 la h
  • 901 FJUNF FJUNR NJ 2060901 0.0 0.0 3 2060902 0.27 0.27 4 2060903 0.0 0.0 9 2060904 0.27 0.27 10 2060905 0.0 0.0 17 m FE NV
2061001 00 18 M VCAHS NJ Appendis A. INPUT DATA FOR FW LINE LOCA ANALYSIS 28

. . I l

l 1

2061101 00000 1 2061102 00000 9 2061103 10000 17 m FLAG P T X DUMMY NV 2061201 3 1200.0 341. 0.0 00 18 m FLAG 1=LBM/SEC 2061300 1 m LFLOW VFLOW INTERFACE FLOW NJ 2061301 680.55 0.0 0.0 17 muun 2070000 N0ZZLE BRANCH n NJ 2070001 3 1 m FLOWA L VOL AZI INCL DZ ROUGH HYD FE 2070101 0.6303 2.598 0.0 0.0 0.0 0.0 0.0 0.0 10 )

E FLAG P T X DUMMY ,

2070200 3 1200. 341.

x 2071101 204010000 207000000 .6303 0.27 0.27 00100 l 00101 2072101 207010000 208000000 .1810 0.0 0.0 2073101 207010000 709000000 .1810 0.0 0.0 00101 )

W LFLOW VFLOW INTERFACE FLOW 2071201 680.55 0.0 0.0 1 2072201 340.275 0.0 0.0 2073201 340.275 0.0 0.0 2100000 N0ZZLE BRANCH E NJ 2100001 3 1

  • FLOWA L VOL AZI INCL DZ ROUGH RYD FE 2100101 0.6303 2.598 0.0 0.0 0.0 0.0 0.0 0.0 10 m FLAG P T X DUMMY 2100200 3 1200. 341.

n 2101101 206010000 210000000 .6303 0.27 0.27 00100 2102101 210010000 211000000 .1810 0.0 0.0 00101 2103101 210010000 212000000 .1810 0.0 0.0 00101 m LFLOW VFLOW INTERFACE FLOW 2101201 680.55 0.0 0.0 2102201 340.275 0.0 0.0 2103201 340.275 0.0 0.0 n

2080000 SPARGER SNGLVOL 2080101 .1810 6.5 0.0 0.0 0.0 0.0 .00015 0.0 00 2080200 3 1200. 341.

m 2090000 SPARGER SNGLVOL 209010) .1810 6.5 0.0 0.0 0.0 0.0 .00015 0.0 00 2090200 3 1200. 341.

A 2110000 SPARGER SNGLVOL 2110101 .1810 6.5 0.0 0.0 0.0 0.0 .00015 0.0 00 2110200 3 1200. 341.

M 2120000 SPARGER SNGLVOL 2120101 .1810 6.5 0.0 0.0 0.0 0.0 .00015 0.0 00 2120200 3 1200. 341.

x 2130000 PLENUM BRANCH W NJ 2130001 5 1

  • FLOWA L VOL AZI INCL DZ ROUGH HYD FE 2130101 225.653 .0 3774.95 "

.0 0.0 0.0 0.0 0.0 10 W FLAG P X DUMMY 2130200 2 1000. i.

x 2131101 213010000 300000000 57.5958 0.1 0.1 20100 2132101 208010000 213000000 .1810 2.0- 2.0 20102 2133101 209010000 213000000 .1810 2.0 2.0 20102 2134101 211010000 213000000 .1810 2.0 2.0 20102 2135101 212010000 213000000 .1810 2.0 2.0 20102 MTRY A LARGE LOSS COEFFICIENT FOR SPARGER EXIT x2132101 208010000 213000000 .1810 4.5 4.5 20102 29 Appendis A. INPUT DATA FOR FW LINE LOCA ANALYSIS

+

x2133101 209010000 213000000 .1810 4.5 4.5 20102

  • 2134101 211010000 213000000 .1810 4.5 4.5 20102 v2135101 212010000 213000000 .1810 4.5 4.5 20102 xTRY NO LOSS COEFFICIENT FOR SPARGER EXIT 2132101 208010000 213000000 .1810 0.0 0.0 20102 2133101 209010000 213000000 .1810 0.0 0.0 20102 2134101 211010000 213000000 .1810 0.0 0.0 20102 2135101 212010000 213000000 .1810 0.0 0.0 20102 x LFLOW VFLOW INTERFACE FLOW 2131201 680.55 0.0 0.0 2132201 340.275 0.0 0.0 2133201 340.275 0.0 0.0 2134201 340.275 0.0 0.0 2135201 340.275 0.0 0.0 N

MKMN 3000000 CONTAIN TMDPVOL

  • FLOWA L VOL AZI INCL DZ ROUGH KYD TE 3000101 1.E6 1. 0.0 0.0 0.0 0.0 0.0 0.0 10 m EBT 3000200 2 x TIME PRESS TEMP NTRY VARIOUS DECAY RATES THROUGH FLASHING 3000201 0.0 1000.0 1.0 3000202 10,0. 130.0 1.0 3000203 110.0 30,0 1.0 x1 PSI /SEC 3000203 60.0 30.0 1.0 x2 PSI /SEC 3000203 210.0 30.0 1.0 M.5 PSI /SEC 3000203 30.0 30.0 1.0
  • SPSI/SEC N000203 410.0 30.0 1.0 N.25 PSI /SEC 3000204 560. 30.0 1.0 3000205 600. 30.0 1.0 MBLOUDOWN BASED ON NOMINAL DBA
  • TIME PRESS TEMP 3000201 0.0 1020.0 1.0 3000202 12.0 800.0 1.0 3000203 26.0 400.0 1.0 3000204 36.0 200.0 1.0 3000205 40. 160.0 1.0 3000206 42.6 140.0 1.0 3000207 46. 120.0 1.0 3000208 48. 110.0 1.0 3000209 54.0 80.0 1.0 3000210 56. 72.0 1.0 3000211 60. 60.0 1.0 3000212 64. 50.0 1.0 3000213 72. 40.0 1.0 3000214 80. 35.0 1.0 3000215 160. 20.0 1.0 3000214 80. 40.0 1.0 MMINIMUM DUE TO CONTAINMENT 3000215 160. 40.0 1.0 MMINIMUM DUE TO CONTAINMENT 3000216 600. 40.0 1.0 WMINIMUM DUE TO CONTAINMENT mALTERNATE COMP BLOWDOWN BASED ON GE DATA F-13B N3000201 0.0 1000.0 1.0 M3000202 100, 327.5 1.0 W3000203 130. 180.0~ 1.0 m3000204 150. 120.0 1.0 M3000205 160. 100.0 1.0 u3000206 170. 85.0 1.0 N3000207 .180. 75.0 1.0 m3000208 190. 65.0 1.0 m3000209 200. 60.0 1.0 M3000210 240. 40.0 1.0

! M3000211 600.0 40.0 1.0 wunx 4000000 FEEDLIN TMDPVOL M FLOWA L VOL AZI INCL DZ ROUGli HYD FE 4000101 1.E6 10. 0.0 0.0 0.0 0.0 0.0 0.0 10

' x EBT 4000200 3

  • TIME PRESS TEMP 4000201 0.0 1000.0 341.

30 Appendix A. INPUT DATA FOR FW LINE LOCA AN ALYSIS

  • 4000202 1.E6 1000.0 341.

NNNN NNNN 4010000 FILL TMDPJUN 4010101 400000000 200000000 1.2684 4010200 1 4010201 0.0 1361.1 0.0 0.0 N4010202 10.0 1361.1 0.0 0.0 MSTEADY STATE 4010202 5.0 0.0 0.0 0.0 4010203 1.E6 0.0 0.0 0.0 NNNN NNNNNENNNNNMMNNNNNNNNNNNNNNNNNMRMNNNANNNENNNNENNNNNNNWWNhMMMMMMMANNNNNNN NNNN NKNM 18 INCL! PIPE IIEAT SLABS N NH NP GEO SS LFT C00RD 12001000 7 5 2 1 0.6354 .

N 0L0 MES!! TORMAT TLG 12001100 0 2 N INTERVAL INT NUMBER 12001101 0.0286 4 N COMPOSITION INT NUMBER 12001201 1 4 N SOURCE INT NUMBER 12001301 0.0 4 N TEMP MESHPTNUM 12001401 341. 5 NLEFT VOLUME INC BC SUR CYL llT STRUC NUMBER 12001501 200010000 0 1 1 2.33 1 l'.001502 200020000 0 1 1 3.95 2 12001503 200030000 0 1 1 3.95 3 12001504 200040000 0 1 1 3.95 4 12001505 200050000 0 1 1 3.95 5 12001506 200060000 3 1 1 3.95 6 12001507 200070000 0 1 1 7.0 7 N RIGitT VOLUME INC BC SUR CYL HT STRUC NUMBER 12001601 0 0 0 1 2.33 1 12001602 0 0 0 1 3.95 2 12001603 0 0 0 1 3.95 3 12001604 0 0 0 1 3.95 4 12001605 0 0 0 1 3.95 5 12001606 0 0 0 1 3.95 6 12001607 0 0 0 1 7.0 7 N SOURCE MULT LDIRl!T RDIRitT STRUC NO.

12001701 0 0.0 0.0 0.0 7 NLEFT Citr ilYDDIA IITEQDIA CllLEN STRUC NO.

12001801 0 0.0 0.0 0.0 7 N RIGilT CilF llYDDIA IITEQDIA CHLEN STRUC NO.

12001901 0 0.0 0.0 0.0 7 N DPANCll HEAT SLAB- DEFEATED TOR NOW u NH NP GEO SS LFT COORD N12021000 1 5 2 1 0.6354 W TLG MESH TORMAT FLG n12021100 0 2 N INTERVAL INT NUMBER N12021101 0.0286 4 N COMPOSITION INT NUMBER N12021201 1 4 N SOURCE INT NUMBER N12021301 0.0 4 N TEMP MESilPTNUM N12021401 341. 5 NLETT VOLUME INC BC SUR CYL HT STRUC NUMBER N12021501 202000000 0 1 1 6.0 1 NRIGHT VOLUME INC BC SUR CYL HT STRUC NUMBER N12021601 0 0 0 1 6.0 1 N SOURCE MULT LDIRl!T RDIRitT STRUC NO.

N12021701 0 0.0 0.0 0.0 1 WLEFT CHF IIYDDIA itTEQDIA CitLEN STRUC NO.

M12021801 0 0.0 0.0 0.0 1 N RIGilT CHF HYDDIA llTEQDIA Cl!LEN STRUC NO.

M12021901 0 0.0 0.0 0.0 1 ExNN 12 INCH PIPE !! EAT SLAllS Appendis A. lNPU'I DATA FOR FW LINE LOCA AN ALYSIS 31 1

l

  • W NH NP GEO SS LFT COORD 12041000 11 5 2 1 0.4400 W FLO MESH TORMAT TLO

! 12041100 0 2

  • INTERVAL INT NUMBER 12041101 0.0208 4 W COMPOSITION INT NUMBER 12041201 1 4 1 m SOURCE INT NUMBER

, 12041301 0.0 4 5 TEMP MESHPTNUM i 12041401 341. 5 I mLEFT VOLUME INC BC SUR CYL HT STRUC NUMBER 12041501 204010000 0 1 1 3.0 1 12041502 204020000 0 1 1 3.05 2 12041503 204030000 0 1 1 3.05 3 ,

12041504 204040000 0 1 1 3.05 4 12041505 204050000 0 1 1 3.05 5 12041506 204060000 0 1 1 3.05 6 12041507 204070000 0 1 1 3.7 7 j 12041508 204080000 0 1 1 3.7 8 ,

12041509 204090000 0 1 1 3.7 9 12041510 204100000 0 1 1 3.7 10 12041511 204110000 0 1 1 3.7 11 ARIGHT VOLUME INC DC SUR CYL HT STRUC NUMBER 12041601 0 0 0 1 3.0 't 12041602 0 0 0 1 3.05 2 12041603 0 0 0 1 3.05 3 12041604 0 0 0 1 3,05 4 12041605 0 0 0 1 3.05 5 12041606 0 0 0 1 3,05 6 12041607 0 0 0 1 3.7 7 12041608 0 0 0 1 3.7 8 12041609 0 0 0 1 3.7 9 12041610 0 0 0 ) 3.7 10 12041611 0 0 0 1 3.7 11 w SOURCE MULT LDIRHT RDIRHT STRUC NO.

12041701 0 0.0 0.0 0.0 11 mLEFT CHF HYDDIA HTEQDIA CHLEN STRUC NO.

12041801 0 0.0 0.0 0.0 11

  • RIGHT Cl!F HYDDIA HTEQDIA CHLEN STRUC NO.

12041901 0 0.0 0.0 0.0 11 m

a NH NP GEO SS trT COORD 12061000 18 5 2 1 0.4480 W FLO MESH TORMAT TLG 12061100 0 2 m INTERVAL INT NUMBER 12061101 0.0200 4

= COMPOSITION INT nut 1BER 12061201 1 4 m SOURCE INT NUMBER 12061301 0.0 4 u TEMP MESHPTNUM 12061401 341, 5

  • LEFT VOLUME INC BC SUR CYL HT STRUC NUMBER 12061501 206010000 0 1 1 3.22 1 12061502 206020000 0 1 1 3.22 2 12061503 206030000 0 1 1 3.22 3 12061504 206040000 0 1 1 3.472167 4 12061505 206050000 0 1 1 3.472167 5 12061506 206060000 0 1 1 3.472167 6 12061507 206070000 0 1 1 3.472167 7 12061508 206080000 0 1 1 3.472167 8 12061509 206090000 0 1 1 3.472167 9 12061510 206100000 0 1 1 3.479175 10 12061511 206110000 0 1 1 3.479175 11 12061512 206120000 0 1 1 3.479175 12 12061513 206130000 0 1 1 3.479175 13 12061514 206140000 0 1 1 4.4 14 12061515 206150000 0 1 1 4.4 15 12061516 206160000 0 1 1 4.4 16 32 Appendis A. INPUT DATA FOR FW LINE LOCA ANALYSIS

e e 12061517 206170000 0 1 1 4.4 17 12061518 206180000 0 1 1 4.4 18 NRIGHT VOLUME INC BC SUR CYL HT STRUC NUMBER 12061601 0 0 0 1 3.22 1 12061602 0 0 0 1 3.22 2 12061603 0 0 0 1 3.22 3 12061604 0 0 0 1 3.472167 4 1E061605 0 0 0 1 3.472167 5 12061606 0 0 0 1 3.472167 6 12061607 0 0 0 1 3.472167 7 12061608 0 0 0 1 3.472167 8 12061609 0 0 0 1 3.472167 9 12061610 0 0 0 1 3.479175 10 12061611 0 0 0 1 3.479175 11 12061612 0 0 0 1 3.479175 12 12061613 0 0 0 1 3.479175 13 12061614 0 0 0 1 4.4 14 12061615 0 0 0 1 4.4 15 12061616 0 0 0 1 4.4 16 12061617 0 0 0 1 4.4 17 12061618 0 0 0 1 4.4 18 N SOURCE MULT LDIRHT RDIRHT STRUC NO.

12061701 0 0.0 0.0 0.0 18 WLEFT CllF HYDDIA HTEQDIA CHLEN STRUC NO.

12061801 0 0.0 0.0 0.0 18 MRIOHT CHF HYDDIA HTEQDIA CHLEN STRUC h0.

12061901 0 0.0 0.0 0.0 18 M

WMMMMMNEMMMMMMENNNNNNNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM M M M

M HEAT STRUCTURE THERMAL PROPERTY DATA M M MMMMMMMMMMMMMMMKNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNNMMMNNMM N M M

M COMPOSITION TYPE AND DATA FORMAT N M MMMMMMMMMMMMMMMMMMNNNMMMMMMMMmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM M M 20100100 C-STEEL M M MMMMNNMMWNWMMMMMNNMMNWWMMMMWNNNMMNNNNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM C NMMMMMMMMMMMMMMMMMMMMMMMMMMNNMMMMMMMMMMMMMMMMMM M M M END OF INPUT DECK - PROBLEM END M M M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMENWMMMMMMMM Appendix A. INPUT DATA FOR IM'1,1NE LOCA ANALYSIS 33

Appendix II. LISTING OF COMPUTER RUNS Appendis 11.1,lSTING OF CONIPUTER RUNS 34

FW Line Analysis Slicroficlie 1.ist

. This section contains a listing of all the IW1.Al'5 outlist Gles on micro 6che generated from the i various sensitivity studies and Gnal cases. l RELAP5 MICROFICHE IDENTIFICATION DESCRIPTION .

JOB JOB FICHE NAME NUMBER DATE l

NFSKRA 6416 20 NOV 90 Finni Case for ni Line w/DBA LOCA NFSKRC 5643 21 NOV 90 nf Lino 1.0 Ft2 .1 see timo steps NFSKRD 5644 20 NOV 90 D4 Line 1.0 ft2 1.0 see time steps NFSKR1 5964 20 NOV 90 FW Line 1.0 FT2 extended run 35 Appendit 11. LISTING OF COMPUTI-:R RUNS

l lijl il1 M .

i E

W Y

R D

E H

T E

D I

1 S

E N I

R U

C I

F B G 7

5-N I

0 P I

~

~

2 2 P 1

R E

Vfg s T e A s-0 W A

2 2

D 9 - E 1

E X-B F_

2 6

0 2

x*. y.

2 1 -

lL l

,o FIctra 7 i

NFROM FEEDWATER HEATERS MO-1-32O5An MO-1-3205B

/

4 1-220-598 o/

s ,

P 1-220-59A .

TO -

A N

4. RCIC 1-220-62A \ 4' " I

.x - TO f.

CLEAN-

- 1-220-62B X-98 .

X-9A .' '

FEEDWATER PIPING OUTSIDE THE DRYWELL t

]

1 u

4

.-j "_

r" I . I

    • '--61 3

I

( il -

1i f <u-- -

-]-4*-l GG ., .,_ s t

. I lli .

t

.,J }

y?qa*-*- a ?- ; g>-*g- -+>- L, , _ _ , i f I

_Il i^, ,

!. ,, [ l l 3 . s . ,_ ,- ,d > j

g e.t? L.,1 t? I i

r?

~7 lI __ i

}D I m __ ...

' 6?*9 ***

  • L: ~W**

. dy* - f / l n + la I -

I is sv (.r ( . :- -) ( x. !!

1,

-..J - e-dll w

(L!* L t,

's ""!,5

'-w>-<>..... .> >a (1- a aa

+: I

w a> + t M E

l l3.1 h p,.......,-.g--u> t y b. *

(. *

( .

  • L

+>

g

+ , - .......- a>-e -

'i G & GG

4. M C8 (8 (a

+ , . .......-  :.a ,-

h 1 hb bwt

(: (: (:

04 e m i l 1

1 4 4

< 1.

,1 .

19 sp m

i)

' r-<$ <a Y

o. x o. x m x I

I t$ i

i tf i p*M*} r p @% lI- o((e!ej {S j 3

r~~ M~

. .ng a = "r-

~

nt; i-

y L, -

?.

5

---< t:

.~ S k) l b -FF -

i w e l hI f EU i

% s. / .n % -

w 8  : @.

  • >==4

+E 3 aj L - -+f f,'E 5" n (- J N_v+,

t 4x llh

.I .

9

.> : j

! LN  !

r .

,. QC

. E .., 1 l l l l *o

/ -

i

/

/ g o-e

- 1 I /  :

- / -

g /3 C

l

= -

1  :

l m_l 8

l __

8

/

/ _

n O

N

_  : w

- o

-cu 4

W c n

o s

m w n <

O W

= =_

,3_

1 e P

=  :

=_

f a

ce i

_= _=

  • O l l l -

8 R: S: R R o. o (DISd) 3W. 93Wd .LNENNIY1NO3

_