ML20237A639

From kanterella
Jump to navigation Jump to search
Evaluation & Disposition of Flaws at Quad Cities Nuclear Power Plant Unit 1 (1987 Outage)
ML20237A639
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 12/09/1987
From: Cofie N, Froelich C, Sheffield J
NUTECH ENGINEERS, INC.
To:
Shared Package
ML20237A601 List:
References
CWE-15-203, CWE-15-203-R, CWE-15-203-R00, NUDOCS 8712150142
Download: ML20237A639 (69)


Text

{{#Wiki_filter:CWE-15-203 Revision 0 December 1987 CWE015.0203 EVALUATION AND DISPOSITION OF FLAWS AT QUAD CITIES NUCLEAR POWER PLANT UNIT 1 (1987 OUTAGE) Prepared for: Commonwealth Edison Company Prepared by: NUTECH Engineers Reviewed by: Issued by: N. G. Cofie, Ph.D. J. R. Sheffield, P.E. Sr Project Engineer Project Manager Approved by: 04<$ N.5utMAAd0 Dae , Dsc.S>L367 C. H. Froehlich, P.E. Engineering Manager en 2 Dast Easkha a nutech

REVISION CONTROL SHEET TITLE: Evaluation and DispositionDOCUMENT FILE NUMBER: CWE015.0203 of Flaws at Quad Cities Nuclear Power P1' ant Unit 1 (1987 Outage) N. G. Cofie/Princioal Consultant MC-NAME / TITLE iniy:Agg C. H. Froehlich, P.E./ Staff Engineer ON N AME / TITLE INITI A LS NAME/ TITLE INITI ALS NAME / TITLE INITIALS NAME / TITLE INITIALS AFFECTEL DOC PREPARED ACCURACY f CRITERIA PoGE(3) REV 8Y / OATE CHECX BY / DATE CHECK 8Y / OATE REMARKS i-viii 0 C1V) '99[gg n4e afq/py y,, ,,jg,,y 1.1 - 1.14 0 1 2.1 - 2.6 0 3.1 - 3.8 0 4.1 - 4.12 0 5.1 - 5.14 0 6.1 - 6.2 0 lf 7.1 - y 7.3 0 C$jlNg goc /z/9/py g4e .2/9/g7 PAGE OF l CEP 3 31,1 il

CERTIFICATION BY REGISTERED PROFESSIONAL ENGINEER I hereby certify that this document and the calculations l contained herein were prepared by me or under my direct supervision, and to the best of my knowledge are correct and complete. I further certify that, to the best of my knowledge, design margins required by the original Code of Construction have not been reduced as a result of the activities addressed ( herein. I am a duly Registered Professional Engineer under the I laws of the State of California and am competent to review this document.

                       . q@HSSlg                                     Certified by:
q. ,
               /co                            I C. H. Froehlich, P.E.

t No. 7862 {8' I* M

                                            %                       Registered Professional Engineer
                 &        Em    3                                   State of California p)        C/vtl.                              Registration No. C 027862 Of CA03 Date:             OGC+9>1067 I hereby certify that this document and the calculations contained herein were reviewed by me .and to the best of my knowledge are correct and complete. I further certify that, to the best of my knowledge, design margins required by the original Code of Construction have not been reduced as a result of the activities addressed herein. I am a duly Registered Professional Engineer under the laws of the State of Illinois and am competent to review this document.
                ,,i,,,,,,                                         Certified by:

f5;59,.A.."f,'ks, f .

           / 062 040931 *. 4 5 Jf A.

O_ /h Brown

    !     ! REGISTERED i                i                      /egistered Professional Engineer 5    i PROFESSIONAL I                 E                      State of Illinois i%* i. ENGINEER /*5                                           Registration No. 062-040931
      % %,**. .. O F. . . #. . ./
         '<<,h,,L,,,lNO,,I#  \     f                              Date:                /2. 87 CWE-15-203                                                                       111 Revision 0 nutech

TABLE OF CONTENTS 1 Pace LIST OF TABLES V LIST OF FIGURES vil

1.0 INTRODUCTION

                                      \

1.1 2.0 REPAIR DESCRIPTION 2.1 3.0 EVALUATION CRITERIA 3.1 3.1 Stress-Improved Weld Evaluation 3.1 3.2 Conventional Weld Overlay Repair 3. 2 Evaluation 3.3 Weld 028-S7 Overlay Repair 3. 4 Evaluation 4.0 APPLIED AND RESIDUAL STRESSES 4.1 4.1 Primary Stresses 4.2 Secondary Stresses 4.1 4.1 5.0 EVALUATION METHODS AND RESULTS 5.1 5.1 Stress-Improved Welds 5.2 5.1 5.3 Conventional Weld Overlay Repairs 5. 2 Weld 028-S7 Overlay Repair 5. 3 6.0

SUMMARY

AND CONCLUSIONS 6.1

7.0 REFERENCES

7.1 CWE-15-203 iv Revision 0 nutech

LIST OF TABLES Number Title Pace 1.0-1 Comparison and Description - Flaws 1.4 Overlay-Repaired 1984 Outage / Built-up 1986 Outage - Quad Cities Unit 1 1.0-2 Comparison and Description - Flaws 1.5 Overlay-Repaired 1984 Outage / Built-up 1987 Outage - Quad Cities Unit 1 1.0-3 Comparison and Description - Flaws 1.6 Overlay-Repaired and Pipe Clamped 1984 Outage - Quad Cities Unit 1 1.0-4 Comparison and Description - Flaws IHSI- 1.7 Mitigated 1984 Outage / Overlay-Repaired 1987 Outage - Quad Cities Unit 1 1.0-5 Comparison and Description - Unmitigated 1.8 Flaws Overlay-Repaired 1987 Outage (

            - Quad Cities Unit 1 1.0-6     Comparison and Description - Flaws                 1.9 MSIP-Mitigated 1987 Outage - Quad Cities Unit 1 2.0-1      Quad Cities Unit 1 - Built-Up Weld overlay        2.5 Repair Details - 1986 and 1987 Outages 2.0-2      Quad Cities Unit 1 - New Weld Overlay             2.4 Repair Details - 1987 Outage 2.0-3      Quad Cities Unit 1 - Pipe Clamped Weld            2.5 Overlay Repair Details - 1984 Outage 3.2-1      Expanded Allowable End-of-Evaluation              3.6 Period Flaw Depth-to-Thickness Ratio for Circumferential Flaws - Normal Operating Conditions 3.2-2      Leak Barrier Repair Criteria for Axial            3.7 Flaws 4.1-1      Quad Cities Unit 1 - Primary and Thermal          4.4 Expansion Axial Stresses                                  '

4.2-1 Quad Cities Unit 1 - Total As-Built Weld 4.5 Overlay Shrinkages k!hisfokh V nutech

LIST OF TABLES (Concluded) Number Title Page 4.2-2 Quad Cities Unit 1 - Weld Overlay Repair 4.6 Axial Shrinkage Stresses 5.1-1 Stress-Improved Flawed Welds - Pipe and 5.4 Flaw Geometric Details 5.1-2 Stress-Improved Flawed Welds - Predicted 5.5 End-of-Fuel Cycle Flaw Depths 5.1-3 Stress-Improved Flawed Welds - Predicted 5.6 End-of-Fuel Cycle Flaw Lengths 5.1-4 Stress-Improved Flawed Welds - ASME 5.7 Section XI Table IWB-3641-5 Predicted vs. Allowable Flaw Depth Ratios 5.2-1 Circumferentially Flawed Overlay-Repaired 5.9 Welds - Pipe and Flaw Geometric De tails { 5.2-2 Circumferentially Flawed Overlay-Repaired 5.10 Welds - Applied vs. Allowable Stress Ratios 5.2-3 Axially Flawed Overlay-Repaired Welds 5.11

                          - Pipe and Flaw Geometric Details 5.2-4                   Axially Flawed Overlay-Repaired Welds      5.12
                          - Applied vs. Allowable Stress Ratios 5.3-1 Weld 02B-S7 - ASME Section III Code        5.13 Results CWE-15-203                                      vi Revision 0 nutech

LIST OF FIGURES Number Title Page 1.0-1 Quad Cities Unit 1 - Flawed Weld 1.10 Locations - Reactor Recirculation System Loop "A" 1.0-2 Quad Cities Unit 1 - Flawed Weld 1.11 Locations - Reactor Recirculation System Loop "B" 1.0-3 Quad Cities Unit 1 - Flawed Weld 1.12 Locations System - Residual Loop "B" Heat Removal (RRR) 1.0-4 Quad Cities Unit 1 - Flawed Weld 1.13 Locations - Core Spray System Loop "A" 1.0-5 Quad Cities Unit 1 - Flawed Weld 1.14 Locations - Core Spray System Loop "B" 2.0-1 General Weld Overlay Repair Details

             - 1987 Outage                                            2* 6 3.1-1 NUREG-0313 Stress-Corrosion Crack                        3*5 Growth Rates 3.2-1 Source Equations for Allowable End-of-                 3.8 Evaluation Period Flaw Depth-to-Thickness Ratios for Circumferential Flaws 4.2-1 Quad Cities Unit 1 - Thermal Transients                 4.7 4.2-2 Quad Cities Unit 1 - Through-Wall                       4.8 Temperature Gradients 4.2-3     NUREG-0313 Original Butt-Weld                          4.9 Through-Wall Residual Stress Distribution 4.2-4 EPRI Post-IHSI Through-Wall Residual                  4.10 Stress Distribution 4.2-5 Post-MSIP Through-Wall Residual Stress                4*11 Distribution 4.2-6 Under-the-Overlay Through-Wall Residual               4.12 Stress Distribution CWE-15-203                       "

Revision 0 nutech

LIST OF FIGURES (Concluded) Number Title Page 5.1-1 IGSCC Crack Growth Correlation 5.8 5.3-1 Weld 02B-S7 Finite Elemen t Model 5.14 CWE-15-203 viii Revision 0 nutech

1.0 INTRODUCTION

This report summarizes analyses performed by NUTECH to evaluate flaw indications in the Reactor Recirculation, Residual Heat Removal (RHR), and Core Spray systems at Commonwealth Edison's Quad Cities Nuclear Power Plant Unit 1. Ultrasonic (UT) examinations of welds in these systems since 1984 have identified flaws judged to be intergranular stress corrosion cracking (IGSCC) in the vicinity of a total of thirty-one welds. Seventeen flawed welds in the Reactor Recirculation system were identified prior to and/or after Induction Heating Stress Improvement (IHSI) mitigation of this system during the 1984 outage. Fourteen additional flawed welds were identified during the 1987 outage. Of these fourteen welds, six flawed welds were discovered in the Core Spray and one flawed weld was discovered in the RHR systems not previously mitigated by a stress improvement process. Of the remaining seven welds, five welds in the previously IHSI-mitigated Reactor Recirculation system were discovered to have only axial flaws. The locations of all these welds are shown in Figures 1.0-1 through 1.0-5. Tables 1.0-1 through 1.0-6 present descriptions of the IGSCC flaw indications at Quad Cities Unit 1. Table 1.0-1 describes flaws in three Reactor Recirculation system welds which were overlay-repaired during the 1984 outage and built-up to " standard" overlays during the 1986 outage. Table 1.0-2 describes flaws in twelve Reactor Recirculation system welds which were overlay-repaired during the 1984 outage and built-up to

           " standard" overlays during the 1987 outage. Table 1.0-3
  • describes flaws in one Reactor Recirculation system weld which was " leak barrier" overlay-repaired in 1984 and CWE-15-203 1.1 Revision 0 nutech

has had a pipe clamping device on it since that time. l Table 1.0-4 describes flaws in eight Reactor Recircula-tion system welds IHSI-mitigated during the 1984 outage and overlay-repaired during the 1987 outage. Only one of these welds had reported IGSCC-indications prior to IHSI mitigation. Table 1.0-5 describes flaws in six unmitigated Core Spray system welds that were overlay-repaired during the 1987 outage. Table 1.0-6 describes flaws in one RHR system weld that was mitigated by the Mechanical Stress Improvement Process (MSIP) during the 1987 outage. The fifteen flawed welds in Tables 1.0-1 and 1.0-2 having " standard" weld overlay repairs have been surface finished to permit volumetric inspection of the weld overlay repair and part of the original pipe wall. The one " leak barrier" overlay-repair with the pipe clamping device in Table 1.0-3 was ultrasonically t inspected for bonding between the overlay and original pipe wall surface in 1984. The fourteen overlay-repaired welds in Tables 1.0-4 and 1.0-5 have been surface finished to permit an ultrasonic bonding inspection of the overlay to the original pipe surface. The design of previous weld overlay repairs and the analysis of IHSI-mitigated weld flaws discovered during the 1984 outage at Quad Cities Unit 1 are described in NUTECH Report COM-96-202 (Reference 1). The evaluation of three weld overlay repairs built-up during the 1986 outage and of the effectiveness of one previously IHSI-mitigated flawed weld re-examined during the 1986 outage at Quad Cities Unit 1 is described in NUTECH Report CEC-47-100 (Reference 2). The purpose of this report is to demonstrate that the ' original design margins of safety for the flawed welds at Quad Cities Unit I have not been degraded by the CWE-15-203 1.2 Revision 0 nutech

presence of IGSCC flaw indications or repairs. In addition, it will be demonstrated that all the overlay repairs initially installed during the 1984 outage and built-up to " standard" designs during the 1986 and 1987 outages are adequately sized to meet anticipated changes to regulatory requirements. Section 2.0 presents a general description of the overlay repairs and build-ups \ performed at Quad Cities Unit 1 during the 1987 outage. Sections 3.0 and 4.0 present the evaluation criteria and loads used in the analysis of overlay-repaired and stress-improved weld flaws. Section 5.0 presents the evaluation methods and results. Sections 6.0 and 7.0 present a summary of. conclusions and the references used in the evaluation. O CNE-15-203 1* 3 Revision 0 , nutech

E

                                        =

W

                                                  =

D m EE

                                                                                 ==

5 t E EO E E dd

                                          .      .                                  m 3        d          $"

e = m y =W 5

                                 =     a         -

a CW-" 4 " 4 L3w E ," hE 25 - o A da" W3

  • e
                                                   .       d o

O O O 5 2 E 2 3 . . N. 5 2 R "3

                                            ,a             4                        4 5        W         W                     WW
                                       =
                                       =

m 3 33 b W E E EE N 7 W 3 * = = D W

          <                     0 b d                     =                        d Z h                   g-      -

m - am a 2 - O o bE gam- Es (- v

          =

W g 0 -GEE En s a E sa EE u ~e < u

  • g EW= ,

u - 5 " * ~ k. PM m o o C 2 g o W w a A J JJ

     . O %, e                        E         E          E                    EE m                  E         h          a a 4- =m m a          s                    kk a~*

m k b M p 2, Z $ a Mu E WW WWWWWWW WWWWW b o p, og

                                     =        as          ma=amaa mamma g                  Q        gg          ggggggg ggggg s  j g 4                      "

EC EZEEEEE ECEEE W 0

       < y"       C a

x o

             $,                      J m       v" nun
                                                . s w.wwwvu nunnnna
                                                               . . . . . s"   w.uvu . . . s" O

U m Eg e cacc n a

                                  !EW        c
                                             -          M " c= g
                                                        ~5          = c=      M===
                                                                  .c          ~~~~

J J J g .E N .* b b b a* E LNb* g g . _ seaaawg asss. Egg a

                                                                                             =

1

                               -E'm! eI                E e                     E
                                                                             -               N
                                                                                             =

f;=!E - E e E E W WWl. . EGl= c . h

                                 .   .       ,          ,                   O,               d WR         H a          A a                                     *
                                                                            .M                                                         .

CWE-15-203 1.4 Revision 0 nutech

E E E E EE EEE E E EE E E E E EEE Q r c e E rE e ce Efri r Er rr er Er er Er BN eE r cere r er j . . g .. . . = 5 g = W gg afw! !u  !) = =; g w= We w a

                    )=.                  u      -

u un a , ,, cu=a. u- -

                                                                                               ,= = -- == mu .= ,m 8                                                                                                                      ,

g%a- s s as  ; a a ss s a a s

                    -gs                  m      a        L um           asks a                 uu a As as k u IE                           2 hk           2 shdh     b          hh ss eh O sh Uh                                           d bs g8-             h       h 3               s       s              sa             e s                                                          s a       a              JJ          J J J              JJ J            J                            J                J e        a       a        s as          . ana a              na a As as                                              -
                                                                                                                                                      ~     a E       b a

r s 2 hk as 2 sk 2 h h s hh ab 2 h se a 2 sh 2 ba N a w = 0 Q \

         <                     ~       '

z e o o o m u n . .. .. . 6 y w 5w eu c G u c e C e e e e

                                                                                                                                                     ==

U " u IN u u e m

       $ e <

e e E fe E I

                                              -         II
                                                        - -           N
                                                                      -            -I        I
                                                                                             -        - -                          -I u
                                                                                                                                                     -II u

g u

  • c w g 11 li fi li li li a
    !  m C o z                                                        11                     li                                    11                11 ri O   w g w p o
     *   % m m               a Q H m w
         <                    a
       -       w              e 3   2 $ ~ab 4   z % o u c  o *i i a
                              =       wm um ma    uw E ,ma-       wwM EM   ==           ww        .E w w w- a                                             w ww b                                                                              mm                 5 55 5 m    e o a                 Q       re pr E rrE E5                              rr        r"8 r        r er e 5 55 e a;  aa s j
              <               ~

cc er e tre de cc e r er r r 2 x 2 2 k w> w o . . . . . . . . . g 5 58 nu at cu 5 a and can an cu at n d 98 5 M as o yg - - cu a a nu u~ a ca-O - - . - u m E 3 Ej gg g- - g.- g. g- . . g. - - g-5 w - s.E I

                             .                              .a.                       - . -  .        .                              .
                                                                                 .a
                                          .                              .                          -                          ~                                      -

Se c.= .c, a a a . 5 s-- sn, 6s sn- -- c c 33 - n, As3 g n-A es A.

                                                                                                                                                   .                  w e
                     -1l 5

e E e I E E e E

                                                                                 -        E e

E E E e E S a E B tu 5rr e r r r g e r r E e r d g I e r r grr E g E.Eln

                             . -            A
                                            -         ~ u
                                                      - -           n
                                                                    -            n        n u

u -

                                                                                                                              ~-                   h      L, 8

IN .A N

                                            .         hA    .       k
                                                                    .            .        .k        =
                                                                                                    . h.                 N.

h Yg E CWE-15-203 1.5 Revision 0 nutech

_ T _ N - _ E - - E I B G R E A O T T E U E O P S 7 G R 8 N T I N 9 1 MS Ii A t E T M E I R L H T N E L N O TI A C O L T. N E E i I B P K T R O T E I E N P U 0 E P O 6 6 B NT N S I I T D  ? IN E N T P NA GE 1 IM MS W I EI RL R A 3 C D T T E U I

           -  S          N                      H E    R O   U                      T 0         I                            N D                                 E A 4   S                      L 1

D P 8 E 9 E e N I A R 1 l - T N O K b I N Y D C I T 1 a O A E A K E T S L P D L P I I RM A P R E T A V L U T

                                                 .           S L

POCO M ER N E I A A GG O S A T 3 C W D U A 4 L 9 9 T N F 1 P I K

                                                                .            2 H              I                0 T

N M 0 1 E ' L l K O T B

                                -.MEM   -                                  E E               1 E O T RP              S L8 S

I SS A F n o C - E M O N T S H

                                -                         B              P
                                - IFR      T S             E L

K EE P Z I I 2 M L P S 1 F L 3 A

                 ~                 D                    5                I L          .            -             I E

WM f f A 2 0 I ntnb wawo"

t
                             .m mS< EnoD                  ,
                                                                                 ) C oeG O "3
     ,li
                                                            **                 E **wwww
                                                                       *E            umama. M ww              amwwww wwwww
                                                   !                                                                                                  w
                                                   =

5 umam umamurram _. E! EE E !!!!!! ! !! !!!! =E!!e!.i.i.s.! -- E is. as s gis===ssvn..., = = 5s555s 5,!s,!!s,s,!!!!!!!!!

                                           -t..

e

                                           ~EE             EE EE E =EEEEE a as sans sassaggga e        u.-          .           ....

m m m-

                                                                     .n.
                                                                     ~        -     an==~u.s
                                                                                    --assa         .

un ..u. as -a u ~n . ---

                                                                                                                                       . ,.,u ,. --..
                                                                                                                                                   -n s                -
                                                  !                                                                            www m,mEE w                g C
                                < w IEE r emerrr-
        ~                       g C O
        -                       o g<             m.

O gs

  • g g go MMMMM e

o - m =E C w w

                                                                                                                              -oemo w

c:

  • t- p E

Em  :  : IE; -5! - --$

   ,    u                   -     m  -          a      y            ir      a n                   g g                g       au      =,

i m m z .

                                                                                                                             ~~m-~

o g o - o

     .                      w o                a
  -                         b w      m         w
       ,a                            w         -                                                                             . . -. . .

e -- a< s -x;

  -    <                  ~ ~z p
  .o                      e       < w e   2                          a y          !                                                                             g g    o                  g W            5                                                                             mE*

m r, z o w

  • i < E r r-x > c E R g g g err a < O, i =

e

                                                                  =

a

                                                                           = =                  -
                        ~         a           -

gs s a 3 ... I x i E E -lEE E MMM o e W g  :  : g u , > g w w g g w w gg Q o Eg g g = ,; a a a w w w w w E - sc= x w s-- II li 11 m jr E w . .. 5 *" w9 5 e . -

                                          $N -e E          E e

EE e e e r w W r r g rwi r,lh u u u . .

                                                                                             = n                  .

n k 9 9 2 2 - - - w" e.w* e 4 A

                                                                                                      +           e       9
                                                               -          - -                GG                   R
                                                                                                                  -       n e

CWE-15-203 1* 7 Revision 0 nutech

UD O R 7 O 8 N 9 - N 1 EI 1 2 1 1 1 1 1 1 A P 3 6 9 2 I 1 1 1 2 0 7 4 1 I 0 5 4 P( K 2 1 3 2 1 1 1 I 1 2 1 H

  • T E

4 6 3 5 3 3 4 5'

  • 4 3 5 * * *
  • M 5 5 4 E 4 0 1 0 0 0 L 0 0 0 0 0 0 E

G 0 N A l T - K l A U L O _ 7 . r f _ T T A 8 N E T R B T D 9 I E C R E B E R _ N O 1 MW i t u R I K T C E P T E r 8 T C E P T C E P E M I F I D O 7 S N E O S N S N N 8 T E 6 0 N A 0 f I I I u 8 P R 1 9 i 1 r . O B. f O T R E I I K B. 3 R A TI I L K 5 C P

        -    S E N 0      E R U                   N

_ . D - 'E 1 Y S E N _ D A E L e N L I _ l A R T b E I N a N V C 8 T OO i a ' S D K I S A L R W U _ A A O . _ P L T N - M F _ E T D _ O ERI R T E T C T T D E i t B E G O i f C D A T E D C E C E C E K t E P P P D E N K S S S P _ T 4 . N I I N N I K S N I 9N . A S. T T T T G 9 I 1 P I O N = D N B. I O N _ I K T I M N N I S U N E _ L

                          -   uE
                                -   M        E F

N N E E 5 uN O G P F

t. eI iD S A

S N I L I L I P A S E M 0 B L E E E K S M E E E u C E u

                          -   PE UT
                                -            P I

P V L A PI e i P I 0 B

                          -         S                             P         L            P           L V                 E                        E EE P Z I I PS
                                                         '0 1
                                                                  '0 1

6 0 0' 1 1 1 2 1 8 1 I F 2 I 1 5 5 F S L . - F - - E o 4 - - WN 4

                                                            -     A         A            8           9 4        4         4
                       .                     1           4        1         1 4

1 4 1 1 n . st', .o i[8 7 Hb e<$r@ o l

7 3 N 9 I 1 1 1 P 8 0 K 1 2 N

  • T
  • 5 N

E S. 1 4 7 L t l O I T A E L E G T A -- NE  : N T E M I E T _ O U M C E I O T U P S T 8 N P 7 1 6 9 H I T _ I 8 9 T 1 P = R 9 T E I _ 6 C 1 I _ - S N _ 0 E D U D E N _ 1 T S I _ D A E M E e N G I L l A I T b T I T a N I OM C O I N S - D T A - I P A K _ R I U L A S O P M . _ M T N . O S _ E  : E CW EMI T C A A . E T P _ u L p S N P 4 I 9 M T 9 T 1 P M K H T N E L

                          - isE
                            .l M          5 0

B G eT L l B S E E M 8 E C - P FE I T I P S EE P Z

  • I &

I P S 1 3 1 B 5 L - KM. 8 8 0 1

w 7e ntNmm@hS eo
(

C 02).s3 02H s3 f  ; 3 C

                                           ~

OW S4 02K S4 02J S4 ' 02H-S4 ( v G .. v v

                                                                                     ?                         -'e h, -

1 i , _ ,_ w

                                       ~

s ========s - b FXCE84.0242 Figure 1.0-1

                                                                                                                                      )

OUAD CITIES UNIT 1 FLAWED WELD LOCATIONS REACTOR RECIRCULATION SYSTEM LOOP "A" (Reference 3) l I CwE-15-203 1.10 Revision 0 nutech

                                                                                                                        /

020 S3 02 E-S3 020 S3 (02F S3 02C S3 020 S4 3 , & 02FS4 01E S4 020.S4 02C S4 r , l O O O O O-(  ; 02DS10j 028 57 I .IO28 F1 En'$N5uf$0N 0285 S5 I

                                       ._.                    j

_ f 02BS59 hy . F XCEB4.0248 Figure 1.0-2 QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS, , REACTOR RECIRCULATION SYSTEM LOOP "B" (Reference 3) CWE-15-203 1.11 Revision 0 nutech 1

i SEE PlGURE 1.0 2 F0Q CONTINUATION M w ( w

                                        ^

I J i w V I. (r I I ' i 108 0-313 X 138 , ORYWELL i i RHR LOOP "B" 8 LO Figure 1.0-3 OUAD CITIES UNIT 1 ' FLAWED WELD LOCATIONS , RESIDUAL HEAT REMOVAL (RHR) SYSTEM LOOP "B" (Reference 4) CWE-15-203 1.12 Revision 0 , 1. l

1 A ' 14 A.$8 - P9 l 14A-F2 1 NSA

                                                                             -i q#         . NOZZLE l

i 14 A-89 . REACTOR BUILDING 14 A-F 11 ORYWELL l Figure 1.0-4 QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS

                                                                            *I l                      CORE SPRAY SYSTEM LOOP "A" (Reference 5)

S

 'kbisfok3                                   1.13 nutech   !
                                                                 .i NSB NOZZLE T
                     /    i48 52 l

_ i 4 j i i> i ORYWELL REACTOR BUILDING J l Figure 1.0-5 OUAD CITIES UNIT 1 FLAWED WELD LOCATIONS CORE SPRAY SYSTEM LOOP "B" (Reference 5) CWE-15-203 1.14 Revision 0 nutech

2.0 REPAIR DESCRIPTION The weld overlay repairs implemented at Quad cities Unit 1 can be placed into three categories.- The first category is made up of previous weld overlays.from the 1984 outage that were built-up during the.1986 and 1987' outages to meet " standard" (full-structural) design requirements and to enable adequate surface finishing for nondestructive examination (NDE) of the overlays. The second category consists of new weld overlays that were applied during the 1987 outage. The third category is a " leak barrier" overlay repair that was applied , during the 1984 outage and has had a pipe clamping device on it since that time. For all these categories, repairs have been made by increasing the pipe wall thickness through the deposi-tion of weld metal 360 degrees around and to either side of the existing weld. The weld-deposited band provides additional wall thickness to restore the' original Code safety margin. In addition, the welding process pro-duces a strong compressive residual stress pattern on the inside portion of the pipe wall (as discussed in the Reference 6 paper), which prevents'further crack growth. The deposited weld metal is either Type 308L or Type 309L with controlled delta ferrite content so as to be resistant to the propagation of IGSCC. As-built information for all weld overlays is shown in Figure

2. 0-1 and Tabics 2. 0-1 through 2. 0-3.

The nondestructive examination (NDE) of each weld overlay repair applied at Quad Cities Unit 1 consisted of the following:

  • CWE-15-203 2.1 Revision 0 nutech
1. Surface examination of the existing pipe surface at.

new weld overlay repair locations.by the liquid-penetrant testing (PT) technique in accordance with ASME Section XI.

2. Delta ferrite content measurement of the first l layer of new. overlays or the first layer to increase the length of an existing overlay.
3. Enhanced visual examination of the first weld -

overlay layer for evidence of IGSCC flaws for new l and built-up overlays (discoloration, porosity, etc.). .I

4. Surface examination of the completed weld overlay by the PT technique in accordance with ASME Section XI.
5. For the " standard" weld overlay repairs listed in Table 2.0-1, volumetric examination of the ]

completed weld overlay repair and part of the original pipe wall by the ultrasonic testing (OT)

                                                                               ,i l

technique developed by EPRI.

6. For the weld overlay repairs listed in Tables 2.0-2 and 2.0-3, UT bonding inspection of the overlay to the original pipe surface in accordance with Commonwealth Edison Special Process Procedures-utilizing a straight beam technique.

All UT examinations were performed by EPRI-qualified examiners. . CWE-15-203 2. 2 Revision 0 nutech-

Table 2.0-1 OUAD CITIES UNIT 1 BUILT-UP WELD OVERLAY REPAIR DETAILS I 1986 AND 1987 OUTAGES

                                             A' SIDE               '8' SIDE          TOTAL   FIRST
                                        .................. ........... .......           WOR   LAYER WELD       PIPE WOR (1) COMPONENT DIMEN.           COMPONENT DIMEN.        THICK. THICKNESS NO.      $1ZE TYPE         TYPE        'A'(2)      TYPE          '8'(2)  't'(3) *tf'(4) 02C S4      12'           1   Pipe        2.125'      Elbou         2.125'  O.424'  O.080' 020-S4      12'           1   Pipe        2.125'      Elbow         2.125'  O.374'    N/A'
                                                                                                              -l 02E-S4      12'          1    Pipe         2.25'     Elbow           2.25' O.346'     N/A             l 02F-54      12'          1    Pipe         2.0'      Elbow           2.0'  O.347'   O.073' 028-83       12'          1    Elbos       2.312'     Pipe          2.312'  O.380'  O.150' 026-54       12'          1    Pipe         2.25'     Elbow           2.25' O.331'     N/A I

02H-53 12' 1 Elbos 2.25' Pipe 2.25' O.434' N/A  ! 02H-54 12' 1 Pipe 2.25' Elbou 2.25' O.330' 4/A 02J-F6 12' 1 Sneepolet 1.50' Pipe 2.0' O.260' N/A 02J-S3 12' l 1 Elbow 2.25' Pipe 2.25' O.397' N/A l 02J-S4 12' 1 Pipe 2.375' Elbou 2.375' O.390' N/A 02K-C3 12' 1 Elboe 2.25' Pipe 2.25' O.345' N/A 02K-S4 12' 1 Pipe 2.25' Elbow 2.25' O.315' N/A 028-87 22' 4 Cross N/A Pipe 2.50' O.559' O.102' 028-S10 22' 1 Pipe 3.375' End Cap 2.375' O.507' N/A  : NOTES: 1

1. SeeFigure2.0-1formeldoverlayrepair(WOR)detailtypes.
2. 'A' and '8' disensions are within 0.125' accuracy.
3. Total WDR thickness on flawed side of weld. ,
4. First layer thickness, tf, if low delta ferrite was seasured.

CWE-15-203 2.3 Revision 0 nutech i l l - .

Table 2.0-2 OUAD CITIES UNIT 1 NEW WELD OVERLAY REPAIR DETAILS 1987 OUTAGE

                                             'A' SIDE                     'B'$1DE                TOTAL
                                      ... .. ......... ....................                       WOR WELD      PIPE NOR (1) COMPONENT DIMEN.               COMPONENT DIMEN.            THICK.

NO. S!!E TYPE TYPE 'A'(2) TYPE 'B' (2) 't' 14A-F2 10' 3 Pipe 2.250' Safe End N/A 0.200' 14A-F11 10' 3 Valve N/A Elbow 1.250' O.191' _l l 14A-SB 10' 2 Pipe 1.75' El'aos 1.75' O.236' 14A-59 10' 2 Elbon 1.375' Pipe 1.375' O.187' 148-F2 10' 3 Pipe 2.00' Safe End N/A 0.194' 148-$8 10' 2 Elbos 1.50' Elbow 1.50' 0.154' i 02C-S3 12' 2 Elbes 2.25' Pipe 2.25' O.!.60' j 02D-S3 12' 2 Elbos 2.005 Pipe 2.00' 0.185' l 02E-S3 12' 2 Elbow 2.125' Pipe 2.125' O.179' 02F-S3 12' 2 Elbon 2.125' Pipe 2.125' O.309' 02M-S4 12' 2 Pipe 2.00' Elbos 2.00' O.321' 028-Fi 22' 3 Pipe 4.375' Valve N/A 0.185' 02BS-SS 29' 2 Pipe 1.50' Tee 1.50' O.216' 0236-S9 28' 2 Pipe 4.75' Elbow 4.75' 0.172' NOTES:

1. SeeFigure2.0-1formeldoverlayrepair(NOR)detailtypes.
2. 'A' and 'B' disensions are within 0.125' accuracy.

CWE-15-203 2. 4 Revision 0 nutech

                                                          .                                                1 l

Table 2.0-3  ! OUAD CITIES UNIT 1 PIPE CLAMPED WELD OVERLAY REPAIR DETAILS l i l 1984 OUTAGE j l

                                             'A' SIDE                  'B' SIDE             TOTAL WOR WELD     PIPE WOR (1) COMPONENT DIMEN.             COMPONENT DIMEN.           THICK.

11 0 . S!!E TYPE TYPE 'A'(2) TYPE 'B'(2) 't' { 02M-$3 12' 1 Elbou 1.625' Pipe 2.25' O.137' - NOTES: l

1. SeeFigure2.0-1formeldoverlayrepair(WOR)detailtypes. I
2. 'A' and 'B' dimensions are within 0.125' accuracy.

l

                                                            '                                                1 l

l l CWE-15-203 2. 5 Revision 0 nutech

A 8 450 MIN. " TYP o

                            , _ - - - - _ _ _ _ _ .-                    ^                1986 or 1987

((#y;igjT^*ygf "si46"j(?g ---- - .g;fsijjj ggg4 vr M M M M M A s s a s s s a s_ "

                                                                                        -t t

q WELD Type 1 I

                                                                                                          )

A B 450 MIN. p " TYP.

                                -^
                            =,          ..
                                                '3
              ,            !$!!$i!!'"7 l '                10$$-jij%{jj$sii'lijk     ,

w a s s // r // A s / s s s s a r s -

                                                                                       -t q, WELD Type 2 l                                    A 450 MIN  p                    -~

l l TYP. I e p

                           !! UM; $kk$h?b                                          ,

V//////////////lll///////A//////////////////////////A '

                                                                                       -t                 I

( WELD Type 3 l l l_ A I' 450 MIN o

                /J X m it hw J:                                                 -t

( WELD Type 4 Figure 2.0-1 GENERAL WELD OVERLAY REPAlR DETAILS 1987 OUTAGE (U.S. Patent No. 4,624,402) l CWE-15-203 ' 2.6 Revision 0 nutech

l i I 3.0 EVALUATION CRITERIA 3.1 Stress-Improved Weld Evaluation For the Quad Cities Unit 1 1987. outage, NUTECH has performed flawed pipe evaluations for Welds 10BD-S13, 02B-F1, 02BS-SS, and 02BS-S9 to justify continued j operation. Weld 10BD-S13 (see Table 1.0-6) was MSIP-mitigated during the 1987 outage. Welds 02B-F1, 02BS-S5, and 02BS-Q9 (see Table 1.0-4) were' stress- I i improved during the 1987 outage through the use of i 1 residual stress improvement " leak barrier" overlay repairs (see Table 2.0-2). The following criteria were used in the evaluation: 1 l 1 i l 1. The beginning-of-fuel cycle (evaluation period) bounding flaw size used in.the crack growth analysis was the as-measured flaw depth by 360 degree circumferential , length (conservative). I

                                                                        )
2. The prediction of end-of-fuel cycle (evaluation l

period) flaw depth was based upon a conservative IGSCC crack growth correlation from NUREG-0313 l (Reference 7) as shown in Figure 3.1-1 for a combination of dead weight, internal pressure, differential thermal expansion, and weld overlay shrinkage stresses (caused by weld overlay repair i of other welds in the piping system).

3. The calculation of IGSCC flaw growth was based upon conservative original butt-weld, post-IHSI, post-MSIP, and under-the-overlay axial through-wall' residual stress distributions. -

E"8Af-20g 1 3.1 nutech i

l l

4. The prediction of end-of-fuel cycle (evaluation period) flaw length was based upon the crack length extension guidelines of NUREG-0313.
5. The predicted end-of-fuel cycle (evaluation period) flaw geometry was compared to Table IWB-3641-5 (Reference 8) allowable flaw size values for a combination of dead weight, internal pressure, seismic, differential thermal expansion, and weld l

overlay shrinkage stresses. For Welds 02B-F1, 02BS-SS, and 02BS-S9, the thicknesses of the residual stress improvement " leak barrier" 1 overlay repairs were included in the overall pipe wall ' thickness used in the flawed pipe evaluations. Because i these three welds also contain axial flaw indications, the overlay repairs applied to these welds were  ; evaluated in accordance with the axial flaw criteria 1 described in Section 3.2. , i 3.2 Conventional Weld overlay Repair Evaluation The following criteria were used by NUTECH to design / evaluate all of the weld overlay repairs shown in Tables 2.0-1 through 2.0-3 (except circumferential flaws in Welds 02B-F1, 02BS-SS, and 02BS-S9) that have been implemented or built-up at Quad Cities Unit 1:

1. For welds with circumferential flaws, the circumferential flaw depth was assumed to equal 100% of the original pipe wall thickness by a conservative 360 degree length.
2. For welds with axial flaws, the axial flaw depth was assumed to be a minimum of 100% of the original CWE-15-203 3. 2 Revision 0 nutech

pipe wall thickness with a depth' equal to the greater of 1.5 times the pipe wall thickness or its measured length. If an axial flaw was drawn up into the overlay due to a steam blow-out, the' actual flaw depth was used.

3. Credit was taken for the first layer if the delta ferrite content was at least 7.5 FN. If the ferrite content was below this value, any. circum- 1 ferential or axial flaws were assumed to extent through the first layer.
4. Under-the-overlay repair fatigue crack growth for ]

circumferential and axial flaws was calculated for l a 30 year design life based upon a conservative fatigue crack growth correlation derived from data presented in EPRI Document NP-2423-LD (Reference 9) . l I

5. For circumferential fla,ws, the weld overlay repair strength for a combination of dead weight, internal pressure, and seismic stresses was compared to the l net section plastic collapse criteria of ASME Section XI, Table IWB-3641-1. Because this table-has an arbitrary cut-off point at a stress ratio of 0.6, NUTECH has developed an expanded version (Table 3.2-1) based upon the Table IWB-3641-1 source equations shown in Figure 3.2-1.
6. For axial flaws, the weld overlay repair was.

compared to " leak barrier" weld overlay repair criteria presented in Table 3.2-2 from NUTECH Document COM-76-001 (Reference 10). CWE-15-203 3. 3 Revision 0 nutech

i l 3.3 Weld 028-S7 overlay Repair Evaluation All of the weld overlay repairs shown in Table 2.0-1 have a center of original butt-weld-to-overlay shoulder length approximately equal to the square root of the original pipe wall thickness times mean thickness radius I 1 except for Weld 02B-S7 (this simple rule-of-thumb for i 1 acceptable weld overlay repair length has been demon-strated both analytically and experimentally by NUTECH - and others). Because of a branch line that would not i permit the automated welding machine application of a d full length overlay at Weld 02B-S7, an overlay length to the pipe side of this weld of only 2.5" was achieved.

                                                                                                                        ]

Therefore, in addition to the weld overlay repair thickness evaluation criteria discussed in Section 3.2,

                                                                                                                           )j the stress intensity results of an axisymmetric linear elastic finite element analysis were compared to ASME Section III (Reference 11), Subsection NB allowable stress intensity criteria.                         ,

l I I i 1 I l CWE-15-203 3.4 Revistor. O nutech. L i

           'O    -

1 I l l l 1

                 -                              .",0 CURVE                                S                       -

1inlyr /_" 10-d -

                                              ,                e                                                 -

A$t' 6 g 30-5 e [,/ /' ,g/ uw,n n w , . . , -.i

                                                         , ., . . p) ,.-   ..

A ..u. .,, u. u. . uw,n n - c _ O o.:(tm.isu. o,i r3,g .i uwene n

                                                                     .iusu
        +                                             .a                                                         -

is o ..: e,i. o,. iu. i

        @                                       O e m e a won.w as tirvne a e [Q-6
                 -                                        .r             g.iro, is
                                               + . .l,=. u . ., i. .

g - 0.04 inlyr 3 on- .ie,im. in.iu..n <.mlimi eno.;c l l -l l - 6 e p. (twr/to e 8 '"'n)

                                                                   '  (tm 8 d .' '4III'I*'I'8 u.8) "i"I                   ~

l 2

                                                      . (twrne a) (tm ' 4 Oc.I) 10-7  -

6 , O y, 7, ,;, ,ti, (i,,,.,,,,,;,3 l .( l @ $ es.84t*f/757 0 3 ****''*8 8 8m) (tM*i'I IIIII*'I . IS$U Oc.I) l . (e.2t*Fnst n) (tm e is u.Il m l 8sN(iA!*.N5: iter /i.n CATA i p ,.,;. u.8) F . ... m. I x e - e,i . iu.w .i im in n j l pm,.,; u.8) < . .. u. j 8 If l I l l l l 0 10 20 30 40 50 60 70 i STRESS INTENSITY,K (ksid.) t i Figure 3.1-1

               ,                         NUREG-0313                                                                                     l STRESS-CORROSION CRACK GROWTH RATES                                                                                l (Reference 7)

CWE-15-203 3. 5 Revision 0 - nutech i _. . -- _ -__ - Q

r 974 17383835 5o ) ) 1 2344556677

                                  .M   44        .   .   . .      .
                          ]     0      ( (   00000000000
                          )         r S     3         o W     (

A e L t F o N L [ D A I e 4 ) ) 22219855555 23455677777 O T c 4 4 . . . I n 0 ( ( 00000000000 R NE e E R r P E e f N F m O M S u I U N c T C O r 5701335 55555 A R I i 3 ) 124567777777 I C 4 . . U C T 0 ( 000000000000 L I e A R D p _ V O N i . 1 E O P F

      -        -       C   o 2        F O     O  G  t

_ 3 - I N 196355555555 D TA I g

                             ,     2   )   235777777777

_ 4 . . w _ e N R T A 0 ( 000000000000 a l E A l . b R , f e a E S E h w l _ T L SE P t g ae b a B O l c A N n f a s W K L e f s O C A L 055555555555 er i cu ms L I 1 ) 477777777777 H M w . 4 . as rss L R a 0 ( 000000000000 fb A T - O N l F ru us ee pre t D O T f s a sst E i D - o a s e N I rsnngg I o roeoanid A I i 555555555555 f ni r i P t 0 ) 777777777777 ktbdes X H a 4 f T R 0amnda E P 0 ( 000000000000 nal l ee E a2hombe t p D = r y l err W h at aa A L t p nnmm iiiil F ) ) ) e m r

                                   ]                         555         d      orpPam
                                   )                         ( ( (              na 2                                      w        e=

P b ( 6 a =n

                               , e     5432109876543                  : l         i ,
                                                 . .                  SF        tLPPS
                           #S       t  111111 0000000                 E o                                T)              )
                            ,       N                                 O1              2 P         (

N( ( t mIo s P' a oznUsO:td No< 3 c 3

1 Table 3.2-2 l LEAK BARRIER REPAIR CRITERIA l FOR AXIAL FLAWS (Reference 10) NONDIMENSIONAL FLAW LENGTH STRESS 4//TT RAT 10 0.00 0.25 0.50 1.00 2.00 ..... j s  ! s 0.40 . . . . z 0.50 . .

  • a 2 0.80 . . * . a 0.70 * .
  • e 2
                                                                                                                                                        - IWS-3640 0.8)                                      *          .                 *                 *                                        =

0.90 * *

  • z I 0.96 *
  • 1.00  ;

s

  • LEAK 8ARRIER ONLY REQUIRED ""

STRESS RATIO = PO /2 T Sm P = MAXIMUM PRESSURE FOR NORMAL OPERATING CONDITIONS O = NOMINAL OUTSIDE DIAMETER OF THE PIPE T = NOMINAL THICKNESS 4 = END.OF EVALUATION PERIOD FLAW LENGTH R = NOMINAL RADIUS OF THE PtPE CWE-15-203 3.7 Revision 0

ror a + 8 < 1800 8 = 1s-o 8 6 2 (radians) 2.773 (SR) -0.5-h(2 sin 8-{sina) = 0 For a+8 > 1800

                          # (

8= h-f)(radians) 27 i

                                                                                  )

l 2.773 (SR) - 0.5 - f (2 - {} sin 8 = 0 wh.r.:  ! { o = half-crack length (radians) 8 = neutral axis location angle (radians) a = flaw depth (inches) t = pipe thickness (inches) SR = stress ratio = Pm + Pb Pm = primary membrane $Iress Pb = primary bending stress Sm = allowable stress intensity l (per ASME Section III Appendices) 1 l l a 0

                                                     \

N- - - N A NA = Neutral Axis R = Mean Radius Figure 3.2-1 SOURCE EQUATIONS FOR ALLOWABLE END-OF-EVALUATION PERIOD ' FLAW DEPTH-TO-THICKNESS RATIOS FOR CIRCUMFERENTIAL FLAWS CWE-15-203 3.8 Rev,isfor 0 nutech

4.0 APPLIED AND RESIOUAL STRESSES . Various stress combinations are used in evaluating IGSCC l flaws and repairs as explained in Section 3.0. The purpose of this section is to present the stresses acting on the weld locations discussed in this report. ) i 4.1 Primary Stresses  ! Primary stresses include the effects of dead weight, j internal pressure, and seismic loads. The design pressure of 1,250 psi was obtained from the original piping design specification (Reference 12). The dead weight and seismic stresses applied to each weld were ) obtained from References 13 and 14, respectively. The  ! primary stresses associated with these various loads are I shown in Table 4.1-1. l l 4.2 Secondary Stresses i l  ! l Secondary stresses include piping system differential thermal expansion stresses and through-pipe wall thermal I gradient stresses caused by piping system thermal transients; weld overlay shrinkage-induced stresses; and original butt-weld, post-IHSI, post-MSIP, and under-the-overlay through-wall reside.1 stresses.

1. Thermal Stresses and Transients The piping system differential thermal expansion stresses for each weld were obtained from Reference 13 and are shown in Table 4.1-1. i
                                                                                     * \'

l Reference 1 defines the design transients for the ' recirculation systems for Quad Cities Unit 1. gg7Ejp-20] 7 4.1 rititeac:ti i

                                                                ._______________-___a

These transients were conservatively' grouped into three composite transients. .The first. composite transient is a startup/ shutdown transient with a heatup or cooldown rate of 100 degree F per hour. The second composite transient consists of a 50 degree F step temperature change with no change in i system internal pressure. The third composite I transient is an emergency event with a 416 degree F step temperature change and a system internal pressure change of 75 psi. Figure 4.2-1 presents the number of cycles conservatively postulated during a 30-year balance-of-plant life design. l These transients cause the through-wall temperature , gradients detailed in Figure 4.2-2.- i

2. Weld Overlay Shrinkage-Induced Stresses I Each weld overlay causes a small amount of axial shrinkage underneath the overlay. This shrinkage j induces bending stresses in the remainder of the piping system. These shrinkage-induced stresses are calculated using NUTECH computer program PISTAR (Reference 15). The actual as-built shrinkages as l shown in Table 4.2-1 are used in the analysis. The resulting shrinkage stresses are included in the IGSCC crack growth ant;. lysis of stress-improved 1 welds and are shown in Table 4.2-2. l
                                                                                 '1
3. Residual Stresses Figure 4.2-3 presents the original butt-weld axial through-wall residual stress distribution from NUREG-0313 (Reference 7) used in the IGSCC crack 'l growth evaluation of Welds 10BD-S13, 028-F1, 02BS-SS, and 02BS-S9. Figure 4.2-4 presents the CWE-15-203 4. 2 Revision 0 l

_ _ - - __ __ _-_- _ - - - _ - - Q

i l post-IHSI through-wall residual stress distribution ^ from EPRI Document NP-2662-LD (Reference 16) used for Welds 028-F1, 02BS-SS, and 02BS-S9. Figure 4.2-5 presents the post-MSIP through-wall axial residual stress distribution from an O'Donnell and Associates document (Reference 17) used for Weld 10BD-S13. Figure 4.2-6 presents the under-the-overlay through-wall axial residual stress distributions used for Welds 028-F1, 02BS-SS, and 02BS-S9. These distributions were determined using the WELDS II 1 computer program (Reference 18). j 1 l I CWE-15-203 4.3 Rovision 0 nutech

                                                                                                                                                   )

3 3( 5 2 t 7 s 1 4 4 1 3 6 5 ! 1 t 1 2 t 7 3 1 0 3 0 9 4 7 9 e 8 3 EES i 1 4

                                              !                                                                    1          3         2          0          3          2                                2 2                                             4         1 B t5 P(
                       )

1 ) 2 a A a g ( L ( / / / A a a a s 6 2 0 a A R m g /g / N / / s/ / 6 2 6 4 MS 5 $ ti s m m 3 3 3 9 7 4

                                                                                                                                                                                     /

s 9 2 6 6 S EEP ( T T 3 S E S l a lgs 1 0 2 4 F 3 3 2 3 S Sl 3 3 2 8 1 & 3 4 2 2 7 8 2 4 4 1 e 9 9 8 E EEs t i P f 1 9 3 1 3 1 0 nl R E t T S E R l 1 6 8 1 2 2 9 9 2 1 2 9 4 3 3 1 3 U l 8 91 7 8 3 2 4 2 9 7

                               $    E 1)             3                             9         4          1        4          4        8         9 4         2           0          4          8 3         4        1                                                                         4         4 L        S R 5 E T P RS (

4 4 4 3 3 6 4 4 3 4

                                                                                                                                                                                             ?

2 6 A P I X t E P l l 2 2 1 A  ! I P 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 6 2' 2 2 2 2' 2 9 2 9 2 T N S 3 8 8 4 4 f 8 3 4 1 3 1-4 3 4 3 1 i 7 6 S 1 I O L E8. M 5 M J 2 J 5 1 1 5 F- 8 1 1 S-1 5

              -  N   I                              2 4

2 4 2 6 2 8 4 2 3 0 t 2 6 5 2 0 R 2 8 0 0 0 9 2 3 2 5 2 9 5 5 3 1 U S 1 4 4 6 2 9 2 4

               . N                                                                                                                                                                                                    le 4    S   A                              7         O        2         e b

a ,. E P EE I E S ) 3 7 S I 2 3 3 1 4 3 4 3 3 1 3 8 2 1 4 o t 4 4 4 3 0 8 7 1 6 3 1 1 li c i. e I X A R S STS P( 1 1 1 2 1 2 2 3 1 p p l T E a e I .e b C r e a L L 1 2 A A A A 4 A A h e . e A A i( 4 A a il / / / / / / / / / / / / /m / /t / 4 A s T D M Mt S N N t N t E N t t 3 t N A N 4 4 t s s A R Ea T t ( t P e n . S k e U E c i O I I T d aS 5 1 3 1 t 1 3 e h t T luE5l E t 7 3 2 2 $ f 3 3 4 1 t h 2 2 2 2 8 6 7 2 1 2 1 2 2 0 1 1 6 7 7 1 0 7 1 8 6 i r a p . . 8 A ST P( e s D E S r s y ne .

                                                                                                                                                                                                                                    ,e N                                                                                                                                                                                                  lak       c  .

A ES 2 4 7 8 8 7 3 4 7 9 4 4 3 2 1 3 r ehi v t . U S ) 2 0 8 2 3 3 4 0 9 3 1 6 1 3 S E 1 3 3 9 4 ,e 4 4 3 4 2 1 1 0 2 7 4 4 o l Y S R $ ES T r 4 4 3 3 3 4 0 3 1 4 6 4 7 1 4 9 d l la , R P t 4 3 e m ,. m e e A EE l t p ip M P ! I ! t 0 i u e I P$ i 1 t i 1 9 O t' 2' 2 2 2 2

                                                                                                                                                                 *           *          *
  • t l a e.

I i 1 1 1 1 1 2 2 2 2 2' - s a ,e R 1 1 1 1 1 a ng .

                                                                                                                                                                                                                                   .        i.

P S 2 4 1 1 8 9 2 8 3 4 3 n r . L 4 5 5 4 40 5 5 5 4 1 4 3 4 3 .io ., E5. 4 4 4 4 A 4 4 4 8 4 4 C 2 C 3 0 5 E 5 E 1 F 1 F 8 4 5 d e s s u

                                                                                                                                                                                                                                             .e 1          1        1        1          1         1         8 2

0 2 8 2 0 2 4 2 0 2 8 2 t 6 2 0 5 2 S E al B p ,.e a m 8 T C . . . N t 2 3 n% ssmiMO(4 m$ ~ En O3 O NhO7 lll1' l,l ll

Table 4.2-I OUAD CITIES UNIT 1 TOTAL AS-BUILT WELD OVERLAY SHRINKAGES l AIIAL AxJAL WELD SHRINKAGE WELD SHRINKA6E NO. (!N.) NO. (IN.) 14A-F2 0.102 026-S4 0.309 14A-Fil 0.063 02H-S3 o,239 14A-$8 0.174 02H-54 0.389 14A-S9 0.140 02J-F6 ' 198 148-F2 0.083 02J-S3 0.367 148-S8 0.112 02J S4 o,313 02C-S3 0.203 02x-S3 0.480 02C-S4 0.316 02x-S4 0.220 020-$3 0.148 02#-53 0.173 02D-54 0.197 02M-S4 0.265 02E-S3 0.195 028-F1 0.097 02f-S4 0,242 028-97 0.110 02F-53 0.231 028-S10 N/A 02F-84 0.319 023S-S5 0.032 028-S3 0.270 02BS-S9 0.088 8 Total of axial shrinkages recorded during 1984, 1984, and 1987 cutages.

                                                                                                     $%Q CWE-15-203                                                       4.5 Revision 0 nutech

Table 4.2-2 OUAD CITIES UNIT 1 WELD OVERLAY REPAIR AXIAL SHRINKAGE STRESSES WOSI WELD STRESS NO. (PSI) 10BD-S13 692 028-F1 860 028S-S3 76 0288-59 172 iWeldoYeflayshrinkage(WOS)atstress-faproved flamed welds only. CWE- 15-2 0 3 4.6 Revision 0 nutech

1 1 1 i i E  % U NORMAL OPE R ATING~~ 4 7I w E I 1

                   =

3 l' AM8 TENT - 100 200 CYCLES CYCLES 1 CYCLE 30 YEAR BALANCE-OF PLANT DESIGN LIFE TIME Figure 4.2-1 QUAD CITIES UNIT THERMAL TRANSIENTS CWE-15-203 4.7 Revision 0 nutech

PIPE PIDE PlPE PIPE I O 0. l.0. 0.0. l.0. H u p # #a T g g , EaaT i i .n 1 " ' W} AT, NO b  ; l

                                                                                                        }

0 FOR 304SS AT TNO = 550 F

          ~

E = 28.3 = 106 g a = 9.11 1 10 6/op j PIPE PIPE PIPE PIPE 0.0. _ s.o. o.o. t.o. l u

                                                             # #a T 2 o           y o       .EaaT2 k                               07 2                                                      '"

NO AT2 h ' H l l

                                                     ' Thermal _ Transient Cycles                        l l

Pipe Start-up/ 50*F Step 416*F Step  ! Diameter Parameter Shutdown Change Change 10" & 12" aT 1 2'F 32*F 265'F aT 2 0*F 8*F 64'F' l 20" to 28" aT 1 6*F 36*F 302*F AT 2 0'F 9'F 75*F Figure 4.2-2

                                                                                                     ~

OUAD CITIES UNIT 1 i THROUGH-WALL TEMPERATURE GRADIENTS CWE-15-203 4.8 Revision 0 nutech

i l l l l INSIDE WALL OUTSIDE WALL 50 i

                                                                                       ;     ;       ;    ;        ;    ;      i o GE 26                                                  i 40 Q

f' o GE 26 (4 azimuths) A

                                                                                                                                   ~

ANL 26 (2 ozimuths) 30 o ~~~ o ANL 26(IN-SERVICE FROM XRB) 6

  • ANL 20 t

20 - a g - 5 10 - oo e

                                            ;                                                                   o o  * @ca
                                              $                           0 -s--         3----           aoJ e@- - fg 5                                      a       o                 e8            o   e
                                              * -10                                  o                                           E oo        8@       e                a
                                                                       -20  -
  • y, --
                                                                       -30  -

e e - e

                                                                       ~

0 0.2 O.4 06 0.8 1.0 o/t Figure 4.2-3 - NUREG-0313 ORIGINAL BUTT-WELD IHROUGH-WALL RESIDUAL STRESS DISTRIBUTION (Reference 7) CWE-15-203 4. 9 Revision 0 g

i l l W Po M Pe 300 200 -40 0 0 10 0 200 300 -300 -200 -100 0 100 200 300 400 MLD i

                             .g       _3 (35 6cm)              3        3              f
                                                                                                                         /
      - MLD + IHet g u

hMOd g / l { - 10-

                                                                    .                              l0-K                                         FLowtme WATER W
                                                              -4 3in43.3cm)
                                                                                                                     )
                                      '* e /               - Ret 3.Oin(33 02 cm)               $           e        f
                      /
                                /                                                              g       y/                              c
               /                                                                                 /

E / ( E -

                                                                                        /

O S. g 0,3 e , [ e i i g

                                      -8 g       -s                             ;

{ 1

                                                                                      ,        a 6
    .       . J       ,
                                      \,              .                 ,                   ,                     ,        ,

60 +40 20 0 20 40 -40 +40 -20 0 20 40 RESIDUAL AxlAL STRESS, kol RESIDUAL CIRCUWERENTIAL STRESS, bei I l 1 Figure 4.2-4 EPRI POST-IHSI THROUGH-WALL RESIDUAL STRESS DISTRIBUTION (Reference 16) l l CWE-15-203 4.10 Revision 0 g i

gm 1.0 0 0.9 " 0.8 " O.7 " 0.6 " O5 J 0.4 ' [ - [0.3 l 0.2 -

                                         */           0.1      -
                                     ',,/

n_n

                   -50    -40       -30  -20    -10          0-  10 20     30       40          i stress (ksi) l i

Figure 4.2-5 POST-MSIP THROUGH-WALL RESIDUAL STRESS DISTRIBUTION (Reference 17) s CWE-15-203 4.11 Revision 0-nutech ,


m-30 -

30 - \ fJ - so -

                                                                        ...                                    l-d 2

I i a 3 i s ** i t i 2 i 3 a 4 i i i e i i t g 40 , , 9 8 7 8 8 10 811 ' i 02 04 0s e sg so 10 -. 10 - i 30 = l

                                                                      .so .                                    1 30 -                                                                                                  }

1

                                                                      .m -

1 22" PIPE TO VALVE 28" PIPE TO ELBOW  ! l 1 l l s- i I 7-1 e- 1, 1 s-4- 1 s-h ..., - i

                           .                 ,    i    i   i   i    i     i   i  i
                                        .i   a    3    4       s   .f      a .e :o sit 4-3-

4-4- 28" PIPE TO TEE Figure 4.2-6 UNDER-THE-OVERLAY THROUGH-WALL RESIDUAL STRESS DISTRIBUTION CWE-15-203 4.12 Rsvision 0 nutech

5.0 EVALUATION METHODS AND RESULTS This section presents the evaluation methods and results used to assess the acceptability of the overlay-repaired and stress-improved weld flaw indications at Quad Cities Un it 1. 5.1 Stress-Improved Welds

1. Flawed Pipe Analysis Table 5.1-1-presents the pipe and flaw geometric details needed to calculate applied. stresses and .;

credict crack growth in the stress-improved flawed welds at Quad Cities Unit 1. NUTECH's NUTCRAK computer program (Reference 19)-.was used to predict crack growth. The conservative crack growth corre-lation shown in Figure 5.1-1 from NUREG-0313 (Reference 7) was used where: da = differential crack size (in ches ) dt = differential time (hours) K

                     = applied stress in tensity _ f actor (ksi 3/ in . )

l Table 5.1-2 presents the predicted end-of-fuel cycle (evaluation period) flaw depths for the stress-improved flawed welds for the'various through-wall residual stress distributions discussed in Section 4.2. Table 5.1-3 presents the predicted end-of-fuel cycle flaw lengths based upon the predicted flaw depth growth and the flaw length extension guidelines discussed in Section 3.1. CWE-15-203 5.1 Revision 0 nutech

i

2. Flawed Pipe Evaluation I

As discussed in Section 3.1, the predicted end-of-fuel cycle flaw geometries were compared to the requirements of ASME Section XI (Reference 8), Table IWB-3641-5. The results of this evaluation are shown in Table 5.1-4. 5.2 Conventional Weld Overlay Repairs

1. Circumferential Flaw Weld Overlay Repair Evaluation Table 5.2-1 presents the pipe and flaw geometry details needed to calculate the applied and allowable stress ratios for all the circumfer- l 1

entially flawed overlay-repaired welds at Quad l l Cities Unit 1 except Welds 02B-F1, 02BS-SS, and { 02BS-S9 which are addressed in Section 5.1. l Applied stresses are fo.und in Table 4.1-1. Table 5.2-2 presents a comparison of stress ratios due to applied loads versus the allowable stress ratios  ! for the circumferential flaws detailed in Table j 5.2-1. As discussed in Section 3.2, the allowable l stress ratios shown were calculated using the source equations of ASME Section XI Table IWB-3641-1.

2. Axial Flaw Weld Overlay Repair Evaluation Table 5.2-3 presents the pipe and flaw geometric details needed to determine applied and allowable stress ratios for all the overlay-repaired welds at Guad Cities Unit 1 with axial flaws. Table 5.2-4 -

presents a comparison of stress ratios for the axial flaws given in Table 5.2-3. The allowable CWE-15-203 5. 2 Revision 0 nutech

l

                                                                             \

t stress ratios shown were determinedLusing-the leakage barrier criteria presented in Table 3.2-2. ' 5.3 Weld 028-S7 Weld overlay Repair Figure 5.3-1 presents the.axisymmetric linear elastic finite' element model used to evaluate the acceptability. of the overlay repair length for Weld 02B-S7 at Ouad-Cities Unit 1. This model contains a 100% through original pipe. wall plus low delta ferrite first layer crack depth with a 360 degree length. The ANSYS computer program (Reference 20) was used to perform this 1 analysis for the applied loads corresponding to the

                                                                            ]

stresses shown in Table 4.1-1. A comparison of the maximum applied stress intensities acting through the weld overlay repair over the assumed crack with ASME Section III (Reference 11), Subsection NB allowable stress intensities is-presented in Table 5.3-1.

                                          '                                  i l

l l J I i i, i CWE-15-203 5.3 ' Rev..sion 0 nutech 1

Table 5.1-1 STRESS-IMPROVED FLAWED WELDS PIPE AND FLAW GEOMETRIC-DETAILS NOMINAL ai(4) SUSTAINED NELD 0.D.(1) tp(2) to(3) ---------------------- L(5) STRESS (6) 1 NO. (IN.) (IN.) (IN.) (1 tp) (IN.) (DE6REES) (PSI) 1 1080-S13 16.0 0.722 N/A 20 0.144 360 13,230 029-Fi 22.0 1.12 0.19$ 26 0.291 360 8,169 l 0288 S5 28.0 1.24 0.231 25 0.31 360 9,520 l 0298-S9 28.0 1.22 0.172 44 0.$37 360 7,207 l NOTES: l

1. 0.D. = outside dieseter.
2. tp = pipe wall thickness.
3. to a weld overlay repair thickness. ]
4. al =beginning-of-fuelcycle(initial)flawdepth.

5.L = crack growth evaluation flau length.

6. Sustained stress = deadweight + internal pressure + theraal expansion +

meld overlay shrinkage stress'ee free Tables 4.1-1 and 4.2-2. 1 l e CWE-15-203 5.4 l Revision 0 nutech

                                                                                                                       -I i

1 Table 5.1-2 STRESS-IMPROVED FLAWED WELDS PREDICTED END-OF-FUEL CYCLE FLAW DEPTHS I 1 af(2) i NURES-0313R.S.(3) POSI-S.I.R.S.(4) POST-WORR.S.(5) ED al(1) ---------------------- -- ------------------- - - - - - - - - - - - - - - - - - - - NO. (IN.) (IN.) (%(tp+to)) (IN.) (I(tp+to)) (!N.) (1(tp+to)) i 1090-S13 0.144 0.535 74 0.144 20 N/A N/A l 1 028-F1 0.291 0.486 37 0.291 22 0.293 22 1 029S-65 0.31 0.674 46 0.31 21 0.337 23 - j l 0298-99 0.537 0.709 51 0.537 39 0.537 39 i N(TTES: I

1. ai = beginning-of-fuel cycle (initial) flaw depth.
2. af = end-of duel cycle flaw depth.

3.NURES-0313residualstress(R.S.) distribution (seefigure4.2-3).  ! 4.EitherIHS!(seeFigure4.2-4)orMSIP(seeFigure4.2-5) post-stress  ! improvement (S.I.) axial residual stress (R.S.) distribution. 5.Under-the-overlayresidualstress(R.S.) distributions (seeFigure , 1 4.2-6). l I l 1. l CWE-15-203 5. 5 Revision 0 nutech  !

Table 5.1-3 STRESS-IMPROVED FLAWED WELDS-PREDICTED END-OF-FUEL CYCLE PLAW LENGTHS NURt6-0313 R.S. (5) Post-8.1. R.S. (5) PO$f-e0R R.S. (5)

                                                             $ NAPE            --------------------------           ------------- --------       l MLS       CMMNT        al (1)    Li (2)      L1/ai                             Lf(6)

FACTOR Lf(6) Lf(6) I NO. $1M (IN.) (IN.) (3) (f.F.) (4) af/41 (!N.) af/al (IN.) af/41 (IN.) 1080-813 UPSIMM 0.144 6.23 43.4 1 3.72 23.2 1 6.25 N/A N/A De6TREM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Lf(total) 23.2 4.25 N/A 029-Fi IPSTNEM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3 DN57 REM 0.211 3.0 10.3 af/ai 1.67 8.37 1 3 1.007 3.04 ) Lf(total) 8.37 3 3.04 02M-55 UPSTEM 0.31 9.0 29 2.17 1 19.6 1 f.0 1.H7 f.78 DNSTEM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Lf(total) 19.6 9 f.78 02M-59 UPSTREM 0.537 11.0 20.5 1.32 1 14.5 1 11.0 1 11.0 DNSTMM 0.4M 12.25 25.1 1 1.45 17.8 t 1 12.25 12.25 Li(total) 32.3 23.25 23.25

                                                                          \

NOTII

1. al
  • beginning-of feel cycle (initial) flee depth, af = end-of-fuel cycle fles depth.

l

2. Li = beginning-of fuel cycle (initial) flas length. l
3. Lilai
  • initial flee siae aspect ratio.
4. Per NUREH313 (Reference 7):
a. If Li/ai ( 20, shape factor (S.F.) e af/ai
6. If Lilal >= 20, 8.F.
  • 1.0.
5. See idle 5.12 NOTES for definitions.
6. Lf a (af/al) I Li 8 5.F.

CWE-15-203 5. 6 Revision 0 nutech

                                                                                                                                   )

Table 5.1-4 STRESS-IMPROVED FLAWED WELDS ASME SECTIOt1 XI TABLE IWB-3641-5 PREDICTED VS. ALLOWABLE FLAW DEPTH RATIOS NURES-0313 RESIDUAL STRESS POST-S.I. RESIDUAL STRESS I POST-WOR RESIDUAL STRESS PREDICTED ALLOWA3LE PREDICTED ALLOWABLE PREDICTED ALLOWABLE ! NO. S.R.(1) 'FLR(2) af(I)(3) af(1) FLR(2) af(I)(3) af(1) FLR(2) af(!)(3) af(1) 1080-$13 0.718 0.46 74 60 0.12 20 60 N/A N/A N/A 028-Fi 0.488 0.12 37 60 0.04 22 60 0.04 22 60 0295-S5 0.498 0.22 46 60 0.10 21 60 0.11 23 60  ; 0288-99 0.433 0.37 51 60 0.26 39 60 0.26 39 60 i CTES: i

1. S.R. = M f t(deadweight + internal pressure + seisaic stresses) + I (therealexpansion+meldoverlayshrinkagestresses)/2.77)/Sa.

Used erst M = 1.08 for SMAN weldsent eith 28' outside diaseter. Se s 16,950 psi for 304 stainless steel pipe and fittings at ' 550 degree F cperating temperature. ,

2. FLR = flan length ratio = predicted end-of-fuel cycle flan length, Lf, divided by nominal pipe circumference.
3. Predicted end-of-fuel cycle flau depth, af, free Table 5.1-2.

CWE-15-203 5. 7 Revision 0 nutech

I d 10 - l M-.vs K for intergranular Stress Corrosion Cracking 150 x 104 K 2.161 i l

                         ~

j i l 1 1 i 1 - 1 k5 l l 104 l 1 l l l

                                                      '                   I          I      I       '       '    I      I ' ' I 3 x 104                                                                                                                                  i' 10                           15            20               25     30      40      50   60 70 80 90100 Ki (ksi . 4 Figure 5.1-1 l

IGSCC CRACK GROWTH CORRELATION (Reference 7) CWE-1.5-203 5.8

 -Revision 0 nutech

Table 5.2-1 i CIRCUMFERENTIALLY FLAWED OVERLAY-REPAIRED WELDS j PIPE AND FLAW GEOMETRIC DETAILS NOMINAL NELD 0D.(1) tp(2) to(31 tf(4) t(5) a(6) L(7) NO. (IN.) (IN.) (IN.) (1N.) (!N.) (IN.) (DE6REES) 14A-$8 IM5 .632 .236 N/A .868 .637 360 02C-S4 12.75 .586 0.424 0.088 .842 .591 360 020-54 12.75 .600 .374 N/A .974 .605 360 02f-54 12.75 .611 .346 N/A .957 .616 360 02F-83 12.75 .593 .309 N/A .902 .598 360 02F-54 12.75 .584 .294 .073 .880 .664 360 028-53 12.75 .606 .380 0.150 .986 .611 360 028-S4 12.75 .679 .331 N/A 1.010 .684 360 02H-53 12.75 .598 .434 N/A 1.032 .603 360 02H-S4 12.75 .687 .330 N/A 1.017 .692 360 02 H 6 12.75 .584 .260 N/A .843 .589 360

                                                                                                         )

02J-S3 12.75 .601 .397 N/A .998 .606 360 l 02J-$4 12.75 .599 .390 N/A .989 .604 360 1 02X-53 12.75 .588 .365 N/A .953 .593 360 02K-54 12.75 .584 .315 N/A .899 .589 360 028 S7 22.0 1.073 0.559 0.102 1.632 1.179 360 023-510 22.0 1.019 .507 N/A 1.526 1.024 360 NOTIS:

1. 0.0.
  • outside diaseter.
2. tp a pipe wall thickness.

3.to a neld overlay repair thickness.

4. tf a los delta ferrite first layer thickness (if applicable).
5. t a tp + to.
6. a e evaluation flas depth
                   = greater of itp + tf + 0.005' bounding fatigue crack growth or                                                 -

tp+to-(resainingligaaent)+0.005'.

7. L = evaluation flaw length.

15-20:' 5.9 hWEevision 0 nutech

il

                                                                                                                 )

Table 5.2-2 CIRCUMPERENTIALLY FLAWED OVERLAY-REPAIRED WELDS APPLIED VS. ALLOWABLE STRESS RATIOS 1 WELD IWB-3641-1 PREDICTED WELD !WB-3641-1 PREDICTED NO. FLR(1) S.R. (2) FDR(3) FDR(4) NO. FLR(1) .S.R. (2) FDR(3) FDR(4) j 14A-58 1.0 0.27 0.75 0.73 02H-S3 1.0 0.24 0.75 0.58 l l l l 02C-54 1.0 0.26 0.75 0.70 02H-S4 1.0 0.24 0.75 0.68 020-S4 1.0 0.25 0.75 0.62 02J-F6 1.0 0.31 0.75 0.70 02E-S4 1.0 0.26 0.75 0.64 02J-S3 1.0 0.25 0.75 0.61 02F-S3 1.0 0.29 0.75 0.64 02J-S4 1.0 0.25 0.75 0.61 02F-S4 1.0 0.24 0.75 0.75 02K-S3 1.0 0.26 0.75 0.62 026-S3 1.0 0.26 0.75 0.62 02K-S4 1.0 0.27 0.75 0.66 026-S4 1.0 0.24 0.75 0.68 028-S7 1.0 0.29 0.75 0.72 NOTES: ,

1. FLR = flaw length ratio = 1.0 for 360 degree assueed flas length.
3. S.R. = dead weight + internal pressure + seissic stresses froe free Table 4.1-1 divided by allowable stress intensity, Se, defined in NOTES of Table 5.1-4.

3.FDR=allowableflawdepthratio(a/t)froeASME Section II (Reference 8), Table IW8-3441-1.

4. Predicted FDR = bounding evaluation flau depth, a, free Table 5.2-1 divided by pipe +

overlay thickness, t, free Table 5.2-1, 4 CWE-15-203 5.10 Revision 0 g

1 Table 5.2-3 AXIALLY FLAWED OVERLAY-REPAIRED WELDS l PIPE AND FLAW GEOMETRIC DETAILS  ! APPLIED ALLOWABLE STANDARD PREDICTED APPLIED ALLOWA8LE STANDARD PREDICTED to(3) tr(4) l WELD STRESS STRESS WELD STRESS ETRESS to(3) .tr(4) NO. RAi!O(1) RAi!O(2) (!N.) (IN.) NO. RAi!0(1) RATIO (2) (IN.) (IN.)

                                                                                                                                                              .. ~ ........... .

144-F2 0.67 0.90 0.125 0.185 026-S4 0.692 0.80 0.125 0.305  ! i

                                                                                                                                                                                    \

14A-f11 0.63 0.90 0.125 0.175 02H-83 0.786 0.90 0.125 0.415 144-$8 0.63 0.80 0.125 0.225 02H-S4 0.684 0.80 0,125 0.315 14A-69 0.66 0.90 0.125 0.175 02H6 0.005 0.00 0.123 0.245 i 148-F2 0.70 0.90 0.125 0.175 02J-53 0.782 0.90 0.125 0.355 l 1 148-S8 0.68 0.90 0.125 0.135 02J-64 0.785 0.80 0.125 0.315 02C $3 0.78 0.90 0.125 0.145 02K-53 0.800 0.90 0.125 0.335 , 02C 54 0.00 0.80 0.125 0.385 02K 84 0.805 0.80 0.125 0.305  ! 02D-$3 0.79 0.90 0.125 0.175 0.787 l'

                                                                                                                         *2M-S3                    0.90          0.125      0.125 02D-54         0.78           0.80          0.125     0.355           02M-54    0.726           0.80          0.125      0.305 02E-63         0.78           0.80          0.125     0.165           02'8-F1   0.741           0.90          0.125      0.175 021-54         0.77           0.80         0.125      0.335           028-97    0.756           0.90          0.125      0.345 l

02F-S3 0.79 0.90 0.125 0.295 028-910 0.796 0.90 0.125 0.435 02f-54 0.00 0.80 0.125 0.355 02BS-95 0.830 0.90 0.125 0.205 026-53 0.78 0.80 0.125 0.365 0286-S9 0.838 0.90 0.125 0.155 NOTES:

1. Applied stress ratio is calculated for internal pressure of 1,250 psi us Dg geooetric properties free fable 5.2-3 eed f**ula presented in Table 3.2-2 footnotes.
2. Allowable stress ratio per Table 3.2 2,
3. Standard leak barrier overlay repair einieve thickness.
4. Predicted tr a tr' froe Table 5.2 0.015' bounding fatigue crack growth.

CWE-15-203 5.11 Revision 0 nutech

                                                                                                                                                                                                                                    ]

Table 5.2-4 AXIALLY FLAWED OVERLAY-REPAIRED WELDS APPLIED VS. ALLOWABLE STRESS RATIOS APPL![D ALLONAlt,E STANDAO PREDICTED APPLIED ALLONAlli STANDARD. NELD STRESS STRfSS to(3) tr(4) NELD STRESS STRESS to(3) NO. RAi!O(1) RATIO (2) (IN.) (IN.) NO. RAi!O(1) RAi!O(2) (IN.) 1 1 14A-F2 0.67 0.70 0.125 0.185 028-54 0.692 0.80 0.125 i 14A-Fil 0.63 - 0.90 0.125 0.175 02H-53 0.704 0.90 0.125 14A-58 0.63 0.00 0.125 0.225 02H-S4 0.684 0.00 0.125 14&St 0.66 0.90 0.125 0.175 02J-F6 0.005 0.00 0.125 141-F2 0.70 0.90 0.125 0.175 02J 83 0.782 0.90 0.125 148-$8 0.68 0.90 0.125 0.135 02J-S4 0.795 0.00 0.425 02C-S3 0.78 0.90 0.125 0.145 02K-53 0.000 0.90 0.125 02C-84 0.80 0.80 0.125 0.385 02K-84 0.005 0.80 0.125 02FS3 0.79 0.90 0.125 0.175 02M-53 0.787 0.90 0.125 l 02FS4 0.78 0.00 0.125 0.355 02M-84 0.726 0.80 0.125 l 1 02f-53 0.78 0.00 0.125 0.165 029-F1 0.741 0.90 0.125 I 02E-64 0.77 0.00 0.125 0.335 029-S7 0.754 0.90 0.125 , 1 02F-53 0.79 0.90 0.125 0.295 021-510 0.796 0.90 0.125 02F-64 0.80 0.00 0.125 0.355 0288-85 0.030 0.90 0.125 026-53 0.78 0.80 0.125 0.365 0286-S9 0.838 0.90 0.125 NOTES:

1. Applied stress ratio is calculated for internal pressure of 1,250 pst using geoestric properties free table 5.2-3 and formula presented in fatte 3.2 2 footnotes.
2. Allowable stress ratio per Table 3.2-2.
3. Standard lest barrier overlay repair einious thickness. -
4. Predicted tr a tr' free Table 5.2 0.015' bounding fatigue cract growth.

CWE-15-203 5.12 Revision 0 nutech 1 1 _____._.____._______.m.__ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ . _ . _ . _ _ _ _ - _ . _ _ _ _ _ - . . _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ -

1 Table 5.3-1 WELD 028-S7 ASME SECTION III CODE RESULTS APPLIED ASME STRESS STRESS USAGE SECTION !!! CATE60RY INTENSITY FACTOR ALLOWABLE PL(1) 12,770 psi N/A 25,425 psi PL+0(2) 21,820 psi N/A 50,850 psi j PL+0+F(3): N/A l Cycle 1(4)- 13,700 psi . O. l N/A Cycle 2(5) 35,770 psi 0.0003 l N/A  ; l Cycle 3(6) 219,000 psi 0.0059 COMBINED USAGE FACTOR: 0.0062 1.0 NOTES: l

1. PL = primary local seebrane st'ress intensity.

l

2. 0 = discontinuity bending stress intensity.
            ,3. F = peak stress intensity.
4. Cycle 1 = normal startup/ shutdown thereal transient. '
5. Cycle 2 = 50 degree F step change thereal transient.
6. Cycle 3 = 461 degree F step change thereal transient.

l l , l l l CWE-15-203 5.13 Revision 0 nutech 1

                                                                                                                                          'i i

I i t

                                                                                                                                         !e c

l l l l 1 L L' m --- l. ', m' / J '

                                             .          -                  ,            \,                                                 \
                                            .m,         #

g l I m: A \ I i 1 i i i i

                                                                                                                                             )

1 ( i s  !  !  !  !  !  ! l t h . t . A E ., 5

                                    .    .~                          .
                           '   ^    ~                 ~              ~
                    . -      5   !    !       R             E      E
              --e- ?
                -       -?     ?    e    !            E        i     !

a 4 a g  :

                                                            ~                                                                                i
              ?                f - ;  - ;             O        i   ~1 M            J 2Jo ~! ~ l                                                                                     l m            !

i i X i e a f, , f ,

                               . i, H. E.,,. E ., E.

[. : 5 . i f , 2 . 2 . i l N< Na i i

              -*       2T    t   E    E      R                     k                                                                         1
                - i        i   1    2   1           1 8    )R    i    i Figure 5.3-1 WELD 02B-S7 FINITE ELEMENT MODEL CWE-15-203                       5.14 Revision 0 nutech

a 6.0

SUMMARY

AND CONCLUSIONS Ultrasonic (UT) examinations performed duringLthe 1984 , outage at Commonwealth Edison's Quad Cities Nuclear Power Plant Unit 1 identified flaws judged to be IGSCC in the vicinity of seventeen welds. Fifteen welds were overlay repaired , one weld was shown to be acceptable with only IHSI mitigation, and one weld was both overlay repaired and covered by a pipe clamping device. i During the Quad Cities Unit 1 1986 outage, three of the i l original fifteen overlay-repaired welds were built-up to 1

                    " standard" design thicknesses and volumetrically inspected by the UT technique developed by EPRI.         The:

previously IHSI-mitigated weld was also inspected and j found to be acceptable for continued operation. None of the other overlay-repaired welds were inspected. l i i l During UT examinations perfo,rmed during the Quad Cities j Unit 1 1987 outage, fourteen new welds were identified  ! 1 as possibly containing IGSCC. Seven of these welds were { in systems not stress-improved prior to the 1987 l outage. Of the remaining seven welds which were IHSI- l mitigated during the 1984 outage, five welds contained only axial flaws which have proven difficult to detect j in the past. The last two welds contain relatively i i minor circumferential indications. 1 l i Evaluations presented in this,., report of the thirty-one j Ouad Cities Unit I welds believed to contain IGSCC  ! demonstrates that the applied stress levels are I acceptable for all design conditions. The analy'es s performed in the evaluation demonstrate that the welds I J CWE-15-203 6.1 Revision 0 ' nutech i

having " standard" weld overlay repairs are acceptable for the balance-of-plant life while all the other flawed welds are acceptable for a minimum of one additional fuel cycle based upon conservative NUREG-0313 (Reference 7) criteria. l l. l l l l CWE-15-203 6. 2 Revision 0 ~ nutech

                                                                                                   .i

7.0 REFERENCES

1. NUTECH Document COM-96-202, " Evaluation and Disposition of IGSCC Flaws at Quad Cities Nuclear Power Station Unit 1", Revision 0.
2. NUTECH Document CEC-47-100, " Evaluation and Disposition of Indications at Quad Cities Nuclear l Power Plant Unit 1", Revision 0.
3. Sargent & Lundy Drawing No. ISI-103, " Inservice Inspection Class 1 - Nuclear Boiler & Reactor Recirculation Piping - Quad Cities Station Unit 1",

Revision A. l

4. Sargent & Lundy Drawing No. ISI-105, " Inservice Inspection Class 1 - RHRS Piping - Quad Cities I Station Unit 1", Revision A.
                                                                                                   \
5. Sargent & Lundy Drawing No. ISI-104, " Inservice Inspection Class 1 - Core Spray Piping 'Ouad Cities Station Unit 1", Revision D.
6. Kulat, S.D., Pitcairn, D.R., and Sobon, L.J.,
                                         " Experimental Verification of Analytically Determined Weld Overlay Residual Stress Distributions", Transactions of the 8th International Conference on Structural Mechanics in Reactor Technology (SMiRT), Paper D2/1, Brussels, Belgium, August 19-23, 1985.
7. NRC Document NUREG-0313, " Technical Report on Material Selection and Processing Guidelines for '

BWR Coolant Pressure Boundary Piping", Draft Revision 2. 9Silfs20g 7.1 nutech

8. ASME Boiler and Pressure Vessel Code (BPVC) Section XI, 1983 Edition with Addenda through Winter 1985.
9. EPRI Document NP-2423-LD, " Stress Corrosion Cracking of Type-304 Stainless steel in High-Purity Water: A Compilation of Crack Growth Rates", June l 1982.
10. NUTECH Document COM-76-001, " Weld Overlay Design Criteria for Axial Cracks", Revision 0, March 1984.
11. ASME BPVC Section III, 1983 Edition with Addenda through Winter 1985.
12. Sargent & Lundy Document R-2330, " Specification for Piping System - Quad Cities Units 1 and 2", with all supplements through Supplement 25.
13. EDS Nuclear Report No. 04-0591-0047, "IGSCC Evaluation for the Piping System of Quad Cities Nuclear Station Unit 1", Revision 0, August 1982. )
14. IMPELL Letter, W.F. Tecudi to A.K. Rao (NUTECH),
             " Data for IGSCC Evaluation, Quad Cities Unit 1",

April 19, 1984. l

15. NUTECH Computer Program PISTAR, Version 3.3.1 l User 's Manual, Volume 1, TR-7 6-00 2, Revision 10, NUTECH Corporate File No. OASJO. SOFT.2.036.00.
16. EPRI Document NP-2662-LD, " Computational Residual Stress Analysis of Induction Heating of Welded BWR ,

Pipes", December 1982. CWE-15-203 7.2 Revision 0 nutech-

                                                                                         )

i

17. Porowski, J.S., et. al., " Mechanical Methods'of  ;

Improving Resistance to Stress Corrosion Cracking in BWR Piping Systems", Transactions c: SMiRT Post Conference Seminar No. 2, Davos, Switzerland, August 24-25, 1987.

18. Computer Program WELDS II, . Version 1.0.0,' July 1983, NUTECH Corporate File No.

CASJO. SOFT. 2.052.00.

19. NUTECH Computer Program NUTCRAK, Revision 2.0.2, December 1983, NUTECH Corporate File OASJO. SOFT. 2.049.00.

8

20. Computer Program ANSYS, Swanson Analysis Systems, Version 4.lB, NUTECH Corporate File OASJO. SOFT.2.001.01.

I CWE-15-203 7.3 Revision 0 Ilutech

     . . , _ - _ - - - - - = - - , -         - _ - - - - _ - - - _ - _ - _ . - - - _ - _ - _ _ _ - - _,;_                  .
                                                                                                                                       . .= --              - _ , - . =-              . _ -

.p;, , d

   ,    t    4
                                                                                                                                                .y          <1                                                       3 <
                          ,                                                                                                                            id' o                 1 i                                                <

s ,g, t;

                                                                                                                                     ,\E s

r i 9 7 i.l. , i <

                                                                                                                                <.-                                                    +
                                                                                                                                                                                            ~         .

n-an j

                                                                                                                                                                                                                           ,I
                                                                                                                                                                                                                         ~j
           . Corporate Office                                                                                                                                                                                                I

. NUTECH, INC. . ) 145 Martinvale Larie ' ' l [ San Jose, CA 95119

          - Phone. (408) 629-9800 Telex (RCA): 278971 NUTC UR L                                                                                                                                                                                                                         :
           - Operating Subsidiaries:                                                                                                                                                            i NUTECH Engineers, San Jose                                                     NUTECH International, Inc.                                                                                                         ,

145 Martinvale Lane 145 Martinvale Lane d

          . San Jose. CA 95119                                                           - San Josef CA 95119 -

Phone: (408) 629-9800 Phone; (408) 629-9800 Telex (RCA): 278371 NUTC UR Telex (RCA): 278971 NUTC UR.'

                                                                                                                                                                                                                             ]

NUTECH Engineers Atlanta l NUTECH International Madrid , q 1301 Hightower Trarl Edificio Windsor 1 ., l Suite 205 Raimundo Fdet..Villaverde,65 ' .) Atlanta, GA 30338 Madrid 28003, Spain - "l Phone (404) 642-8215 Phone: 011-341;456-5062 - Telex: 49229 NUTX-E : t

NUTECH Engineers Bethesda Three Bethesda Metro Center NUTECH international Rome Suite 430 ..

Via Emihn'de Cavalen,11 Bethesda, MD 20814 00198 Flomo, italy : Phone: (301) 6521610 Phone: 011396-844 9976

                                                                                                ' Telex: 613489 SERFIN I NUTECH Engineers Chicago                                                                                 .
                                                                                                                                     .                                                                                       s 225 N. Michigan Avenusf 16th Floor                                            NUTECH international Seoul Chicago, IL 60601 .                                                           Korea Paint Buikfing. Roorn 401
                   . Phone: (312) 565-2900                                                         204 6 Nonhyun-Dong Kangnam-Ku
                                                                                                 ' Seoul 135, Korea .

NUTECH Engineers Minneapolis Phone: 01182 2-547-5887 J <. s ,331 Second Avenue South Suito 560. ' Telex: K28143 NUTEKSL L Minneapolis, MN 55401, i Phone: (612) 339-1100 NUTECH international Taipel - - R

                                                                                                 .14th Floor,147 Chien-Kuo-North Road                                                                                        j
           ,.NUTECH Testing Corporation '                                                          Section 21
          . 6830 Via, del Oro . .                                                                ;Tarpei, Taiwan ROC '                                                                                                       i
          <  San Jose, CA 95119 -                                                                  Phone: 011-886-02-5316226 .                                                                                             1 Phone: /408) 629-9800'                                                            . . Telex: 28514 :                                                                                                        j
                                                                                                                                                                                                                         ~d Of . .                            .      .

l}}