ML20095C690

From kanterella
Jump to navigation Jump to search
Draft Sequoyah Nuclear Plant Integrated Containment Analysis, Technical Rept
ML20095C690
Person / Time
Site: Sequoyah, 05000000
Issue date: 07/31/1984
From:
INDUSTRY DEGRADED CORE RULEMAKING PROGRAM
To:
Shared Package
ML20095C674 List:
References
23.1, NUDOCS 8408230105
Download: ML20095C690 (152)


Text

_ ___ ___ _ __

(

Il>COR Program Report DRAFT Technica2 Report 2u SEQUOYAH NUCLEAR PLANT INTEGRATED CONTAINMENT ANALYSIS D DOC 00 27 P PDR The Industry Degraded Core Rulemaking Program, Sponsored By the Nuclear Industry

~ - l- _. __,_ ._._, .

SEQUOYAH NUCLEAR PLANT (~

4 h

INTEGRATED CONTAINMENT ANALYSIS IDCOR TASK 23.1 TENNESSEE VALLEY AUTHORITY HUCLEAR ENGINEERING BRANCH KNOXVILE. TENNESSEE JULY 1984 J

. 1

.u .- --

. ~ . . . ,

r, u a a, . .. ;,;,_ 3 y _

TABLE OF CONTENTS Acknowledgement Abstract Executive Summary Section Page 1.0 Introduction . . . ........... . . . . . . . . . 1.1-1 1.1 Statement of the Problem . . . . . . . . . . . . . . 1.1-1 1.2 Relationship to Other Tasks . . . . . . . . . . . . . 1.2-1 2.0 Strategy and Methodology . . . . . . . . . . . . . . . . . 2.0-1 2.1 References ....... . . . . . . . . . . . . . . 2.1-1 3.0 Descriptions of Models and Major Assumptions . . . . . . . 3.0-1 3.1 Plant Description . . . . . . . . . . . . . . . . . 3.1-1 3.1.1 Reactor Coolant System Description . . . . . 3.1-1 3.1.2 Reactor Core . . . . . . . . . . . . . . . 3.1-2 3.1.3 Reactor Vessel . . . . . . . . . . . . . . 3.1-4 3.1.4 Steam Generator . . . . . . . . . . . . . . . 3.1-4 3.1.5 Reactor Coolant Pumps . . . . . . . . . . . . 3.1-5 3.1.6 Pressurizer . . . . . . . . . . . . . . . . . 3.1-5 3.1.7 Containment Description . . . . . . . . . . . 3.1-7 3.1.8 Containment Heat Removal System . . . . . . . 3.1-15 3.1.9 Emergency Core Cooling Sys tem . . . . . . . . 3.1-17 3.1.10 Auxiliary Feedvater System . . . . . . . . . 3.1-20 3.2 Modular Accident Analysis Progran (MAAP) . . . . . . 3.2-1 3.2.1 MAAP Nodalization . . . . . . . . . . . . . . 3.2-1 3.2.2 Fission Product Release from Fuel . . . . . . 3.2-4

3.2.3 Fission Product Release and Aerosol Generation Resulting From Core-Concrete Attack . . . . . 3.2-7 3.2.4 Description of the Natural Circulation Model . 3.2-8 3.2.5 Fission Product Deposition . . . . . . . . . . 3.2-9 3.3 References .. ... . . . . . . . . . . . . . . . 3.3-1 4.0 Sequences Analyzed . . . . . . . . . . . . . . . . . . . . 4.0-1 4.1 Sequence No. 1 - S 2D . . . . . . . . . . . . . . . 4.1-1 4.1.1 Accident Sequence Description . . . . . . . . 4.1-1 4.1.2 Reactor Coolant System Response . . . . . . . 4.1-1 4.1.3 Containment Response . . . . . . . . . . . . . 4.1-2

-i-IDCDR.T2 NEB - July 11, 1984

N

',) ,]:I."~ ? 7; ; - -  % g.,

$ l ' '

d ~~~~3-:~~sua '-

aLsl}'

TABLE OF CONTF.NTS (Continued) 4.2 Sequence No. 2 - S H . . . . . . . . . . . . . . . 4.2-1 2

4.2.1 Accident Sequence Description . . . . . . . . 4.2-1 4.2.2 Reactor Coolant System Response . . . . . . . 4.2-1 4.2.3 Containment Response . . . . .. . . . . . . . 4.2-4 4.3 Sequence No. 3 - 5 EF . . . . . . . . . . . . . . .

2 4.3-1 4.3.1 Accident Sequence Description . . . . . . . . 4.3-1 4.3.2 Reactor Coolant System . . . .. . . . . . . . 4.3-1 4.3.3 Containment Response Response (Drains Blocked) 4.3-2 4.3.4 Reactor Coolant Sys tem Response (Drains Open) 4.3-5 4.3.5 Containment Response . . . . . . . . . . . . . 4.3-6 4.4 Sequence No. 4 - TML3' . . . . . . . . . . . . . . 4.4-1 4.4.1 Accident Sequence Description . . . . . . . . 4.4-1 4.4.2 Reactor Coolant System Response . . . . . . . 4.4-1 4.4.3 Containment Response . . . ... . . . . . . . 4.4-2 4.5 Sequence No. 5 - T PL . . . . . . . . . . . . . .

23 4.5-1 4.5.1 Accident Sequence Description .. . .. . . . 4.5-1 4.5.2 Reactor Coolant System Response .. . . . . . 4.5-1 4.5.3 Contain=ent Response . . . . .. . . . . . . . 4.5-2 4.6 Sequence No. 6 - AD (Later) . . . . .. . . .. . . . 4.6-1 i

4.6.1 Accident Sequence Description (Later) . . . . 4.6-1 4.6.2 Reactor Coolant Syste= Response (Later) . . . 4.6-1 4.6.3 Containment Response (Later) . . . . . . . . . 4.6-2 5.0 Plant Response with Recovery Actions (Later) .. . . . . . 5.0-1 -

6.0 Fission Product Release, Transport and Deposition i

6.1 Introduction . . . .... . . . . ... . . . . . . 6.1-1 6.2 Modeling Approach . ..... . . . .. . . . . . . . 6.2-1 6.3 Sequences Analyzed 6.3.1 S2 KF (Drains Blocked) . . . . . . . . . . . . 6.3-1 6.3.2 S EF (Drains Open) . . . . . . . . . . . . . 6.3-4 6.3.3 TkL3' With a seal LOCA . . . .. . . . . . . . 6.3-7 6.4 References . . . . ............ , . . .

6.4-1 7.0 Summary of Results (Later) ..... . . . . . . . . . . . 8.0-1 i

l 8.0 conclusions (Later) . . . . . . . . . . . . . . . . . . 9.0-1 1

l -ii-IDCOR.T2 NE3 - July 11,1984 8

. ..: ,e a - . .

3:j-3" .a. .:.:a .---

TABLE OF CONTENTS (Continued)

Appendices Appendix A - Computer Code Inputs A.1 MAAP Parameter File . . . . . . . . . . . . . . . . . A.1-1 A.2 MAAP Input Listings . . . . . . . . . . . . . . . . . A.2-1 A.3 FPRAT and RETAIN Listings . . . . . . . . . . . . . . A.3-1 Aroendix 3 - Description of Plant Logic . . . . . . . . 3.1-1 Appendix C - Accident Signatures . . . . . . . . . . . . C.1-1 Appendix D - Release Tractions for Sequences . . . . . . . D.1-1 Appendix E - Accident Sequence Description . . . . . . . . E.1-1

)

i i

't W

-lii- '

IDCOR.T2 NEB - July 11, 1984

)

t * ) **g == ** :****==+ .* y.

.-gy

,,& ... , *i !.

f... './ d m '. . db ,

LIST OF ACRCNYMS BWR Boiling Water Reactor CK3M Control Rod Drive Mechanism CST Condensate Storage Tank CVCS Chemical and Voltane Control System ECCS Emergency Core Cooling System TSAR Final Safety Analysis Report LOCA Loss of Coolant Accident MAAP Modular Accident Analysis Progran MSIV Main Steam Isolation valve i

MSLB Main Stean Line Break PORV Power-Operated Relief Valve PWR Pressurized Water Reactor RCS Reactor Coolant System RRR Residual Heat Removal RWST Refueling Water Storage Tank UHI Upper Head Injection j

i, 4

1 i

l l

l~

-iv-IDCDR.T2 NE3 - July 11,1984 i

r

. . . . . ._ m .. _ _. - . . . . -

..,......-.......,...7,j u a a : :..o . . J. d 1.0 Introduction 1.1 Statement of the Problem The main objective of this investigation is to calculate the thermal hydraulic and radiological response of the Tennessee Valley Authority's

.. Sequoyah Nuclear Plant primary system and containment for postulated severe accident sequences, i.e., those which have been identified as potentially leading to core degradation and melting. These sequences will be addressed on a realistic basis and vill include assessments of the results of operator intervention in these sequences. Similar studits have been performed for three other reference plants: Zion, Grand Gulf, and Peach Bottom. _

The results of the containment analysis are incorporated into an assessment of the fission product release and deposition within the l various regions of the contal= ment building. For sequences in which cont ainment integrity is violated, the release of fission products to the surrounding environment is calect ated for inclusion in a separate evaluation of the potential health effects associated with those specific accident sequences.

1.2 Relationshin to Other Tasks The cortainment analyses of IDCOR Subtask 23 are dependent upon the primary system and containment response models developed in Subcask 16.2 and 16.3, " Executive Analysis Program," (Reference 1.1) and the

ficolon product release, transport, and retention models developed in

[ IDCOR Subtask 11, "Tission Product Behavior" (Reference 1.2) . The i

l I

i IDCOR.1 1.2-1 -

NER - July 11, 1984 l

l l l

- -r - .--_~m.m, . . . -

. . . _ . _ . - - ,,,_.-..,.._,,_,,.-___,_,,,,,,,..-,..,,_,-,,,.._---,g__.,..-.-.

.-3: .. . . -

.i'd.* * :* '. :lh .'l .,. 0{.t*;% *j U

)

~

a - . m ~ u L .: 4 t

dominant accident sequences used for the analyses along with the operator interventions were developed by considering the relevant or key acciden't sequences presented in Subtask 3.2 (Reference 1.3).

The ultimate structural capabilities of the reference plant containments and other typical designs were assessed in IDCOR Subcask 10.1 (Reference 1.4). These analyses define the contaiment f ailure pressure and failure mode assumed in this analysis. For the Sequoyah containment this failure was identified as a breach at the contaiment spring line.

Calculations of the rate and amount of fission products released from the containment, for those sequences which result in containment f ailure, were supplied to IDCOR Subtask 18.1 (Reference 1.5) to formulate assessments of,the health consequences associated with these postulated accident sequences. These health consequence analyses were then supplied to IDCOR Subtask 21.1 (Reference 1.6) to evaluate the risk reduction potential for possible additional mitigating devices considered for the Sequoyah Nuclear Plant.

Potential operator interventions were developed and applied to the specific ac:ident sequences in the Sequoyah analysis to determine those potential actions which could terminate the accident sequence and result in a safe stable state. This was considered as part of IDCOR Subtask 22.1, (Ref erence l'.7), "Saf e Stable States ," which discusses potential means of terminating the various core damage sequences considered for the Sequoyah Nuclear Plant.

IDCOR.1 1.2-2 NEB - July 11, 198!.

. . - . . . ,j r'

J 1' JTl, 4

-. '. l. . .: . . . . a .

Finally, it should be noted that the analyses developed as part of IDCDR Subtaska 16.2 and 16.3 involve the detailed consideration of many different phenomena which are themselves considered in separate IDCOR subt asks . These include: hydrogen generation, distribution and combustion (subcasks 12.1,12.2, and 12.3), s team generation (subtask 14.1), core heatup (subtask 15.1), debris behavior (subtask 15.2), and core-concrete interactions (subtask 15.3) as discussed in Reference 1.1. Detailed discussions of these topics can be found in the final reports submitted for that specific task. Individual issues vill be addressed only as required to understand the specific behavior obtained for the accident sequences considered and the specific design characteristics of the Sequoyah Nuclear Plant.

p i

r IDCDR.1 1.2-3 NER - July 11, 1984 l

, . - . - _ . . . . .- - - - - . - -- . - - - . - - - - - - ~-

=*

- : " :. n .s 5'd ,j s'.11 d w:' sil, s; ?y;.,:d W . dJ y .n -\

1.3 References 1.1 "MAAP, Modular Accident Analysis Progran," Technical Report on IDCOR Subtasks 16.2 and 16.3, June 1983.

1.2 " Fission Product Transport in Degraded Core Accidents," Technical Report on IDCOR Subtask 11.3, December 1983.

1.3 Technical Report on IDCOR Subtask 3.2.

1.4 Technical Report on IDCDR Subtask 10.1.

1.5 Technical Report on IDCOR Subtask 18.1.

1 1.6 Technical Report on IDCOR Subtask 21.1.

1.7 Technical Report on IDCOR Subtask 22.1.

1 i

l i

l l

l l

IDCDR.1 1.3 NE3 - July 11,1984 l

1

....o.__ . . . . . . . . . . . . . . . . . . . . . . .

i *g t 3 *.',' f( K } J h ,$. s :. .

Y f

i 2.0 Strateev and Methodology t

j The basic strategy is to analyse some of the relevant or key accident 1

sequences laading to a degraded core state. These analyses will first consider whether such sequences lead to core uncovery and damage and

then determine the progression of the accident for those sequences in which core degradation and melting is calculated. This analysis includes the performance of the ICCS and the containment engineered safety systems, such as the URI, ice condenser, containment sprays, hydrogen igniters, RHR system, etc.

4 The principal tool used to perform the containment thermal-hydraulic

! response analyses is the MAAP code (reference 2.1). This code considers the major physical processes associated with an accident 1

progression, including hydrogen generation, steam formation, debris coolability, debris dispersal, core-concrete interactions, and hydrogen combustion. The FPRAT module for MAAP, as adapted from reference 2.2 was used to evaluate the fission product release from the fuel.

i Natural and forced circulation within the primary system is modeled both before and after vessel failure and is integrated with the fission product release model to determine the transport of vapors and aerosols throughout the primary system and containment. Tission product 1

deposition processes modeled include vapor condensation, steam condensation, and sedimentation.

t With the defined accident sequences, analyses were carried out for the best estimate path of the accident progression including the fission

! product transport before and after reactor vessel failure and also IDCOR.2 2.0-1 NER - July 11, 1984 l

c

- i

!P 1 -' J P. . rt h3. y W,Y..:.?il]7:y*

. ~ . . m 1,%.a ',' . .mi.'<-a

,,, 2 ; i after containment failure. This path is designated as B-C on Figure 2.0-1. Flows between the primary system and containment and natural circulation flows within the primary sytes are included in this analysis. The primary system response following vessel failure '

including heacup of the reactor vessel and its structures, is evaluated through the natural circulation models for both primary system and containment. Tission product transport of both vapors and aerosols is determined by these density driven flows. Included in this evaluation' is the containment pressurization which would be imposed upon the primary system, and would determine the magnitude and direction of flows between the primary system and contairunent.

In addition to the containment analyses discussed in this report, two other cases s.re considered as part of the uncertainty and sensitivity analyses. The first is shown as Fath 3-D on Figure 2.0-1 and represents the uncertainty associated with chemical reactions between chemicals such as cesium iodide and cesium hydroxide and stainless  !

steel structures in the primary system. Irreversible plateout has been observed to some excent in recent experiments (reference 2.3). Hence, the influence of such processes should be considered in the uncertainty analyses. In general, these reactions would reduce the effective vapor pressure of the sacerials, thus reducing their release. These results

! are reported in reference 2.I.. Figure 2.0-1 also indicates evaluations which might be performed relating to containment bypass and failure to

( isolate scenarios. These are reported under IDCOR Task 23.5 (reference 2.5).

, IDC01.2 2.0-2 NEB - July 11, 1984

l

...- . . . - - . . . . - . . 1 (PD.c W. mt r. y.> .?

- -a - a L s . . ;, s -

w . ! w a :;r.p :w.!.y,t 1 u .

s

(

I 3 6 i i I i , i l

!, 1, i I I ' "

i i I l- i l . i I g i 1 3

e  :

I g i I g i a, g _g i

g

  • i , ': I i ,

I I l i l

, , .- , I, I, I

i I

I l

' u' 2 ,

,i

  • I i2 I i l i 3

, a i i i

l i

l

-r at h.i ml, 2 l i

i .=i.., i i e i ,

, u i

i

...i F , , -

i.

, , t

, u'i ,i i i , i, =. e i . i

, q. , m.

l l l l 1,  ;

i, i, , _o .

, , .4 .

i i .

3q^--

e,' F,l

'(- -i - i i

i l 3 r i , i (3 1 I  :;, ,

i

.s i-l

.sJl, ;u i l_

, .3 I '

i = 1 , .

4, z i ,i l Lu E

- -  ; i i 1{- i -i L.

._- =

t; i i i I e

e i -- =

i i e .

" g i L..s - .s.

l l 4 M

- g 1 e

i i

i g

i 1

8 t.-

Y*igl

.*)

8 23 e

e i O i {j ,j,,f,, ,y i I 3

8 s

i i i

i i '

8 b] ii e j I i -l I ts.

i I

' i I 8

t g

I I k.

ljt I I I

l

  • , t i. J ,i g i i

4e i g g 8 : I g i 8 I

, i j 18, i t

l l  : l  :

, i i i I

i g I I 1

, e t 8 L

  • 1 8 l 0 i
  • g 1 8 1 e

, i e, i i , -

i i i , . _

i i

i , ;! Ma{.1 8

218 -  ;!

a 8

!!j li:-!

3 l 1-liH q: ,!

!!g S

i; a[ p,i!$..l!

, , 4 s. ua lj.l:18 i- . 1 l:l i

1:

m?? a it-

.a i

2.0 - 3 1

_ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ ___m__ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ - . _ _ . _ _ _ . _ _ _ - . . _ _ _ . _ _ _ _ _ _ _-

. . ~

.S" Y r*; . , ,: g n 3 ., .

'P ;p:'.! M o "; .4 d u:ln:a a .o g g ;., . j ,Q 3 g The second supplemental analysis is shown as Path A in Figure 2.0-1 and is reported in reference 2.4 as a sensitivity analysis. This calculation assumes that the liberated fission product inventory is

. released at the time of reactor vessel failure. A comparison of this assessment with the best estimate analysis presented herein illustraces the influence of prima 7 system retention of fission products.

For each of the accident scenarios selected for analysis, thermal-hydraulic calculations.were performed both with and without operator

, intervention during the accident. The " base case" analyses, which

, assume only minimal operator reponse during the accident, establish a reference system response during each of the accident scenarios. The "operatar action" analyses are branch esiculations of the base cases.

i These operator intervention cases demonstrate the effect of a realistic 4

operator response on the progression of an accident and provide a 1

measure of the time available to the operator for such action.

! Uncertainty and sensitivity analyses have been performed on several -

key parameters associated with the accident response. These are I

reported in reference 2.4.

i In the analysis of the containment response for the ice condenser l containment design two features have been observed to provide t

substantial accommodation for energy deposition and fission product source terms for a wide range of accident scenarios. These are the igniter system for hydrogen combustion at low concentration levels and the ice condenser which condenses steam released from the RCS. The IDcoR.2 2.0-4 NER - July 11, 1984 i

1

. - , , - - - ~ -

, , - - , .n. , --.. , , - , - - - - - - . , . - - - - , - - - - - - - - - , . . . , - . . - - . - - -

- - - - . , ~ , , . = - , , - . . . . . - .

"To r : s .'s

' U E E % :p 3 :-

t e n : L L' h : , . N. 4ef-1asuser j

1 igniter system is modeled in terms of the number of igniters and their location throughout the containment compartmenta.

yor the Sequoyah Nuclear Plant, the ice condenser has a dominant influence on the accident progression from several different response charact erizations . First, overpressurization of the containment by steam can only occur if the ice bed has completely melted, which requires substantial energy deposition and insuf ficient heat renoval by the RER system and containment sprays. Secondly, the total water inventory in the lower compartment and cavity will quench the core debris which would lead to core-concrete attack if not covered.

Lastly, the ice bed can retain substantial quantities of fission product material, specifically cesium and iodine, which would be released from the fuel during a core selt-down event. All gases evolved from the vessel would be forced through the ice bed to the upper compartment either by differential pressures or by the air rer. urn fans.

These features are included in the MAAP analyses carried out for the Sequeyah Nuclear Plant. These vill be presented in the following sections starting with the description of the plant and its systems, the accident analysis models and the major assumptions associated with the models, followed by the plant response, recovery actions, and the influence of selected mitigating features.

IDCOR.2 2.0-5 NEB - July 11, 1984

= . . .

nDMn w,1bud!L F 5 P 9 2,.g D

@m 2.1 References 2.1 "MAAP, Modular Accident Analysis Program, User's Manual," Technical Report on IDCOR Tasks 16.2 and 16.3, May 1983.

2.2 '7 PRAT User's Manual".

2.3 Richard K. McCardell, " Severe Tuel Damage Test 1-1 Quick 1.cok Report,"

EC&G Idaho, October 1983.

2.4 IDCOR Technical Report on Task 23.4, " Uncertainty and Sensitivity Analyses for the IDQ R Reference Plants," to be published.

i 2.5 IDCOR Technical Report on Task 23.5, " Evaluations of Containment Bypass and Tailure to Isolate for the IDCOR Reference Plants," to be j published.

J f

4 i

l l

l IDCOR.2 2.1-1 ,

NER - July 11, 1984 i

I i

-. - QD:...;.

..  ? p;py,,

~ '.'e.':. g.,

3.0 Description of Models and Major Assumptions This section of the report describes the plant model and major assumptions used in the IDCOR Task 23.1 analysis of the Sequoyah plant using the MAAF computer code.

3.1 Plant Description -*

  • The Sequoyah Nuclear Plant is a two unit plant consisting of Westinghouse-designed reactor coolant sys tems with a rated thermal po'ver of 3423 MWt. An ice condenser pressure suppression containment is employed along with several other unique plant systems and features that determine the overall thermal hydrsulic and fission product response l

l characteristics to degraded core events. As a basis for understanding the results presented later in this report, a description of the important geometric and system details is given in the following section. A review of the salient features of the MAAF code is then presented in conjunction with a discussion of input parameter 3 determinations.

1 1 .

i 3.1.1 Reactor Coolant Systes Description The RCS consists of four similar heat transfer loops connected in '

parallel to the reactor pressure vessel. Each loop contains a reactor I

coolant pump, stame generator, and associated piping. In addition, the systen includes a pressuriser, a pressuriser relief tank, and interconnecting piping. All the above components are located in the  ;

containment building. yigure 3.1-1 indicates a typical reactor coolant loop cross section. The high elevation and U-tube design of the steam generator creates the potential for condensation refluming i

IDCDR.3 3.1-1 NER - July 11, 1984 4

)

1r i,3.T'i'.l

. . ",.3 .: %,.X..A:- aF ..

5./

9 L . aw;J s;,; s; j.. a w ,'A s ;. d

's d

a i i

t--) MI m-~Si/ I N

3 ,

! I 2 '

3 g = =

I $ .Y , l -

G w

2 g

u l pg_/l

\ II g a gi E

I g

d g

s ,c , ,-  ;

.C 5 a t

~' -

uf gr

  • =

5 '~ I J

bl sg g .? l 2 s

N" ",

~ ~ ~ -

A  !

u t I'- *

  • a l;" 3

' ^

, e %P rs s

~

(el t -

!m -

>/

\ V . j g g

/

N i G u g

8  %

l .__

('e t

) l v u ,

I. -

  • \

L e, g I

n p

m ,',

! i

,y

~~'

\ i

./

Y =

=

l .

8 a

W ~

h l

I d

6

~

FIGURE 3.1 1 CROSS SECTION OF REACTOR COOLANT SYSTEM 3.1 2

t . .. .. .. . _ ._ . ...-.-. . . . . . . - . .

icy r e 7 r. .

i s

u A;;GUlM%; .$. Tj I

f q and countercurrent het les flow during seguances with Inadequate primary system sakeup.

b t

  • 3.1.2 Reactor core Two-hundred sixty-four gods are mechanically joined in a square array to form a fuel assembly. One-hundred ninety-three assemblies make up the Sequoyah core. The fuel rods are supported at interv'ais ggn : -- . along their length by grid assemblies which maintain the lateral .

t 07 . --

'~

spacing between the rods. ,The grid assembly consists of an " egg-

,, crate" arrangement of interlocked straps. T-straps contain spring 4.* fingers and disples for fuel rod support as well as coolant sizing vanes. The fuel rods consist of slightly enriched uranium dioxide

= <.u <.. ... . 2. , .

ceramic cylindrical pellets contained in Zircaloy-4 tubing which is plugged and seal welded at the ends to encapsulate the fuel. A total mass of 222,645 lbs of uranium dioxide is used in a typical fuel .

loading. The approximate Zircaloy v'aight of the fuel assemblies is 47,000 lbs. Fotestially, couplete oxidation of this sitconium could result in the release of over 2000 lba hydrogen. All fuel rods are

pressurised with helium during fabrication.

The core is cooled and moderated by light water at a pressure of 2250 lb/in2a. The coolant contains boron as a neutron poison. Boron concentration in the coolant is varied as required to control relatively slow reactivity changes including the effects of fuel burnup. The CRDM are of the magnetic latch type such that upon a loss of power to the coils, the rod cluster control assembly is released and f alls by gravity to shutdown the reactor.

IDC01.3 3.1-3 NER'- July 11, 1984

_ - _ - . _ - _ . _ - . - - _ - - ~

_ _ _. =_ _

.. .. . .. =. -

j._

- ~ k s.,.bd3cDt ?*

.i =

,. z ;]

.) !e 3.1.3 Resetor vessel

. The reactor vessel is cylindrical with a welded hemispherical botton head and a removable hemispherical upper head. The reactor vessel

  • t

, closure region is sealed by two hollow metallic 0-rings. The vessel contains the core, core support structures, control rods, and other parts directly associated with the core. The reactor vessel closure head contains CRDM and UNI adaptors. The bottom head of the vessel

[ contains penetrations for connection and entry of the nuclear in-core I. instrumentation. Each in-core instrumentation tube is attached to the t .

4 inside of the bottom head by a partial penetration weld. It is this s .

  • t

, , weld that is projected to fail under corium attack for the Sequoyah vessel.

l 3.1.4 Stess Cenerator The stems generator is a vertical shell and U-tube evaporator with l i

Integral moisture separating equipment as shown in Figure 3.1-2. The i

, reactor coolant flows through the inverted U-t.ibes, entering and 1

leaving through the naastes located in the hemispherical bottom head

., of the steam generator.

l Feedveter at ap;1rominately 430*F flows directly into the annulus l

i formed by the shell and tube bundle wrapper before entering t's boiler l section'of the steam generator. Subsequently, water-steam mixture flows upward through the tube bundle and into the steam drum section.

A set of centrifugal noisture separators, located above the tube

, bundle, removes most of the entrained water free the steam. Steen l dryers are employed to increase the staan quality to a sinimum of 99.75 persent (0.23 percent meisture). Recirculating flow from the IDCDR.3 3.1-4 Mg8 - July 11, 1984 l

l

_ . . . ...m ,. _.

. ~ . . . . - -- - -. -- . . . . . . _ .. . . . . . . -

We8TDE W?LITMM Mp

.,1.j)hh'[h[{Y

1, x -

l s ry u (P- .

$.. Y,

SA1AKT1# /,y ;l J

ii Iq i i* .)

L A L

g. . .

m - .. - Ing

( g ,

,  ! _!p!'~1#[ [ [ " "

NI k

~

l 4 ,:;:::=f E :708 4 ]C:#0.LANT1 PW t. *

. du SAAM E 101.

  • l.

g ' ,.!./(696.0 f 1 ~]

j ACC:#'WLATQ4-==

j. A i

4 lir-- ap '

frj '*jpl

,[t ~ L G' tut L _ _ _.}j t. g; wag 7qng

, ....... 1 C00LIR

  • ' , k*

M

,4 79. 71 l I'

< 1 l RCAC108 1 E"I

.A -

  1. ?

W.  %,,

l (*.7 .

/.y 7 4 i

\ omfAthatNT C

(L841.69' (gestnCT

i. SWMP

.. 7t

  • PlGUME 3.13 CCNTAINMENT CMOSS SECTION 3.19 .

l t ,

  • _ , .. . . .. -=

' ' T *M .mn  %

U 2 ~f . J }h M 3 Jb;.)d;.]) Q h

,,'4 h* e$ i # .

)

I 1

1

- RNR $7tAf Mr.ADtR r

s i i

r:

k C.17Almm(NT $PGAf M DO(I .

=

M PCLAA CAAnt

) 17$ TON CAPACITY ypptt PL!Ntm tu*

  • j L10:04 I s=

7;p 0F ICg w"" g {

gagg,gng C00L!h4 unif l l ,. . . . . . _ _ . . . ..

taff w 8C2. EL 780'*0"" " ,'A ms',' '

I L

  • J ' , .

Cr C:=:tasta- - m site Cnturen f

DC.' 01uAt f I at \l= -

1 Nett:3UA!!!R f / man!PULAf04 CAMt

-sw i _ _)I tt m..n

, . . , t J, '

a.f%

P"g"5 g - 4, stacca yt!!!L g ,i ] ,-q][L",

..,, e S iinua I

g .

STCMGC i, A , . . 3 .,

y . " " ' "' *==

CAA t (L 7 1.0 , y - I

_ p 3 N *

! ,,7 0' **

\_./ ,4^i 1Di TAIL 1= " / i.

,j, L.

.D

,I

,N q - rttL fie ttta a i $tsttm

,+ ,

, i

,. apC704 '*'

1 .

, i

.. M. .'{ ,, { l9

.,, "a .e.,

'. ? s *

.e.

I y

, ,. :

  • f Pel!!Us!!!I '. ( %ue,:  ::ctut RIk!!F TAa" g,3g gan,

{ Ano PV'*

..g .e

\ tierut in::ar FLut Mcattos fLet FIGUME 3.14 CCNTAINMENT CRCSS SECTION 3.1 10 O

s' ,

S4 6@

. o

' )

AUXILIARY SLDG s, ,

g

s
a t:. /0 ', -

,~

i t a f ..ef. ;'. n 3r
  • ef;. Oh! M . :, . a I

- r +- t  ;,

AIR RETUI)N pyf: :M-l i

> j),'

' FAN '

a,  : EQUIPMENT llATCil PE SONNEL j 5

.jg ,e a fJ Al flETURN FAN

\

g ll RECOMDINER -

D' I'

^ CRANE Wall

- fl RECOM81NER y

w , .'.

.. R

~

h** j 's 3

p Y

{g " %

STEEL C f CONTAINMENT \*
n --

trl VESSEL ICE IIED 's ,

y * /

j, c' 23 ^

h

,,,,,,,, i- - SillELD

u. -----

\ BulLDING

> g p y '

f z El. U8.69

. E A ""' 'g' . g REACTOR

"" ie i , i k

' l t,

?. 3 I s O ll l w' 2 ' - ~ ~ ~,

i I I

$ 14) STEAM p

C y

un GENERATORS-

,s

{, ,j.'. 3 .

O

- 14) COOLING UNIIS

't .s(.:.)

e e I 4 ' <

., /

}<** L d 2.] y 5 { s'- * ,,.

Ll= :

D i

z \y w- 14) ACSPUMPREMOVAL IIATCllES a

)

PRESSUnl2ER ' --1flCE

- '- BED E"'.' '

y '"  !

M[.= -

it$ .

NOTE: -

UNIT I ASSHOWN.11NlT2 OPPOSITE  :)/,.*Lp ,%

t

' llAND  :

l,

. -

  • I

+

1 '

. .!If

t. . #l , -  : ,. . i-i
!* aI i

k.

c

  • t F '. ~~

/.

e

~4 J'a

. ), a * . 1-

~-

.)

8 I ," 'IE' , 6 6 t' yi}':6; sgc

- )

. - P4 G e N

_ - _ U I T$ t

- NY E

c S R

S O O MC C

- - L E NIE N

Mis T

A N AG Os L A Tf l

, RN U N! n CU P.

t OM4 un ,

W 0

R CE - _ u 1 4

1 C

I N __ _ =. A

. O ,. . -

C g

e o,.mO! -

, 3 RK EN Z A R 0- a , IRI E .

.s UF T 3 SE S

N A

- Ti / [7 -

SI EL RE PR flM T

E

. - f,

  • E -

,r .

L I j

- L ES UY FS x .- I

/

~

-\

\ 3 A

y pyq.

U

[y

~

- # t A

% ., ~ y  : ,i ..

v i. .

E S

@j q.~ -

^

'- - . 5 -N

- ~ _ -

,*, )* d ak e

, 1 e ,

=

I. 1 V.# '

a s

m -

R E

2 i

t s

e r

<' II l u.

N ER e l

sn O'

l RIt M U uaa w G ll l

O. .

l 5 OP , . E oNl 5 os m a

T T , . EG DAl E ase C  : VN Tl A I sE A N

_ E l P I

E A l

Y Al CE As

=- ]- Ai t

XN ses eos t O RC SEE S D t

lO - *

' - ,, X neeu i

lC S R

1

[

T - E NE ET ETI CA XE aet e O n5 T Al i GA EI I

EE

- A rN Ri l MR w MU o

AE M R CG EN TE .

A E

E T

RIN SG T A fL

  • 1 S W wO 4

1 N I D oO tC A E s

E M F e

l

- mGc3m ) 3

(*J.O p

og g '

n a'8M mm .

_o pe$

t 1

i

, ' . ,' i! ,;  ; i"  :  ! ,

l l

-- ._._ , -. l i

. -.- _ . .. .. .. . . -- . . . . . . - . . - ---. l l

- * '4

.a!49 J w-. - a t,# ;!. .i .;Jrt u s. u::n J.

~

SEL2SmL::IE 1 l

l C:In:MEDIT2Fl.

(FMICCIDaaIt f4: W c2AMEyALL m m.y -

y- ,.

m-. ,,7o.3 o I~ L_ 7- g M l.

, Ci -

i:

1 whf $

f,5 .

3 l'.5

  • 5 g

fr- .

  • 9)j omammm d -

. V(

i 3

'.., :l a^= a:

l',; t . 7

.- j ,

J t p.

r'.% e = f,. s.iyis i. . ICE!A2ET .

k;i a  ;.

I:E w rt ,, .,,

i la

y', ' '$.

c

6 . .

h,., . . _

.~.

/ p.

h . - -

~._A L.; .

.%:b

. . . u- ..

L..j z.:.

..i :. ,. . ,

- s g.,

rf n.

i.E. a$

t.:.;.

- \ t

\.  ;

t- i I .'_ ,

v - .

.3

.... i.

c..' :#

m, iiib i

s 5.:

R $q

,, s a .f.,

I 1 -. .

t..

g,'g,I;

- -h ,

w l

r/

  • 1;;.

l

. 4

) /

r

+

! l \

cY.5..

s.

l I l

< tanoa.troaan .

.U.

  • mAE EDGAM l
  • .1 J <a t:g 1Wsusurn  :'.:

FIGURE 3.17 ICE CONDENSER CUTAWAY 3.1-13

l i .

1:.x.mJaau hw'M*[

!Yh y l

j .

compartment. In the event of a LOCA, the lower inlet doors will open .

due to the pressure rise in the lower compartment caused by the release of the reactor coolant to the lower compartment. The differential pressure vill then cause air, entrained water, and steam to flow from the lower compartment into the ice condenser. An _ _

operating deck separates the upper and lower compartments and ensures that steam and air flow resulting from a LOCA is directed through the ice condenser to the upper compartment rather than through ~'

uncontrolled bypass paths. The resulting pressure rise, due

. principally to the increased air mass in the ice condenser at the start of an accident will cause the doors at the top of the ice l .

condenser to open and allow the air to flow from the ice condenser to the upper compartment. Steam vill be condensed as it contacts the ice contained in the baskets in the ice condenser com'artment p and therefore does not appear in the upper compartment until the ice is depleted. Virtually complete steam condensation is assured because of

.- the ice mass and geometrical arrangement of the ice columns. It is anticipated that substantial fission product retention will occur in-the ice condenser.

, A hydrogen igniter system consisting of electrically operated heaters is used in the reactor building containment to control hydrogen accumulation following severe accidents. A total of 68 igniters are currently used in the upper, lover, annular compartments and ice condenser upper plenum for this function (64 were conservatively assumed in this analysis based on an earlier plant configuration).

Design basis accident hydrogen concentration is controlled by two

, safety grade permanent hydrogen recombiners. Each recombiner IDCOR.3 3.1-14 NEB - July 11, 1984 l

l 1

l l

  • 1

. . .l

.- . . . .. . . .~ . . . . . . . ... .. . .. .. . . . . . . . . . . - . - . . . . - . . . . - . . .

r d

- *4J td d si 3 'Jf,*.- Q g

/ DY i e

i

) processes 100 scfm of c'ontainment atmosphere. The recombiners are l

",- located in the upper compartment. '

J s;  ;

~-

The reactor cavity, illustrated in Figure 3.1-8, is divided into a J

. region directly below the reactor vessel and a region between the vessel and the instrument tunnel. The former region is approximately 15 feet in diameter and 20 feet high. The latter region is 35 feet in

length and 23 feet in width. This unique design has important

.', consequences in the behavior of Sequoyah for degraded core accidents in that the geometric configuration precludes corium dispersal into the lower compartment. Fortunately, the cavity has a relatively large floor area for debris cooling. The in-core instrumentation passes through an instrument tunnel starting at the seal table and intersecting the rectangular region at an angle of approximately 60 degrees and 5 feet above the cavity floor. A personnel access hatch is located at the upper end of the instrument tunnel opening into the lower compartment. There are two pathways for water to spill over into the cavity from the lower compartment. The first pathway is through the reactor vessel nozzle penetrations in the reactor shield wall. , The second pathway is for water to acetanulate above the personnel access hatch flooding tne cavity via the instrument tunnel.

3.1.8 Containment Heat Removal System The energy released to the containment following an accident is absorbed by the ice condenser. However, after the ice bed has melted, I

, mass and energy will continue to be released to the containment. The l

containment spray systems are designed to maintain the containment pressure, in the long term, below the containment design pressure, and IDCDR.3 3.1-15 NEB - July 11, 1984 i'

. . . - -. - - - , , - - -- . . - , , , . . - - - ~ . . . . - - . ,

a e.- s ._ i- .

s, .. _. ___..... .. _._. . . . . _ _ _ _ __ . . _ _

8- is 9 r q s := e i e a -

t- . , y 4'  : .*';

i h d s L As2i J'lA d -101}. ':'."r':t 1

7 ).Cs a "

E. '

.I

. Stai.

$ ~4&wC ,

t a

-p t*10'eeC.

%e

  • : &* 33 aarDe

. .g,

% *g p'i \.

?

Y s ,e .* t* w C.691o 2

\' \ , ...

., \ \ f 3**.....**

., \ n l

, nace . ..** .. *.. I

.- \ . El. 679 75 l

. l l

l

?** N A

/ a.uta. svtzsc.,.

i.

N c. m o c

q weu.a e -

N.ifoi: 5

.\\ - 'i .  ;

C

. , .=

'.J.

r.ac wru.y .

l mr_

,a N a c. m a .,

I

! yegg- -

s l .

f i

- l 1 ,

l 'l FIGURE 3.18 PEACTOR CAVITY CUTAWAY 3.114-1 9

es

m, S "* "; 1:

E * * . he n *! *l:  ?. **? i ;;),1) N 4

. '.! a .:.J.u .: d 2 21+U.:.*d e -1 u.. ,

eventually reduce the containment pressure to about atmospheric pressure.

The containment spray for the Sequoyah Nuclear Plant is provided by two redundant spray trains, each designed to provide the cooling capacity required to maintain the peak pressure at less than design pressure for the full spectrum of design basis events. Each of the redundant containment spray train pumps delivers 4750 gallons per minute to the containment. Additionally, 2000 gallons per minute may be diverted from one RHR pump and heat exchanger through a RHR spray header. The containment spray pump is started by a containment pressure signal set at 2.81 lb/in2 ,g and containment spray starts at about 30 seconds after a large LOCA. Containment spray from the RHR pu=p may be manually initiated.

The containment is equipped with a redundant air return fan system.

Each of the two air return fan systems uses a 40,000 cubic feet per minute fan to force air from the upper compartment back to the lover compartment. The air return fans are started by the containment isolation signal, but the fan startup is delayed for 10 minutes to provide increased backpressure during the large LOCA core reflood.

3.1.9 Emergenev Core Cooling System The ECCS is designed to provide core cooling as well as additional shutdown c pability for accidents that result in significant loss of water inventory from the reactor coolant system. The design basis is 1

to limit clad damage due to excessive temperatures and cladding metal-water reactions. Important systems are diagrammed in Figure 3.1-9.

l IDCOR.3 3.1-17 NEB - July 11, 1984

_ _ . _ _ . --v -

e.s - - ,.

.. m'b.ko d.,*u s m. ti.f

  • l  : . .

.31.:

2: .

=

.. [ t 9

t i

(

. f M: oC i

' {1 5 '

sia

~~' i

$: o-',

x -e.

5 { -

. { 221 (m.t.

.. a i . s

,, y,1s:1

, .#.Lk.,.- .

-J -i re ! E

........9............q..g..g.g.=gg.h...g......q......d!.-

ji...!E f I w

s1 I a-r-( E 8 . ,

=

! _. a .

_ 2__

1 1 _

l i e ,

c .,

y ,,, ...

=

s ,

e q= .

v- o

, = .c E s y

E l

~ '

l Es Eis f )

1.

15

  • )

FIGURE 3.19 EMERGENCY CORE CCOLING SYSTEM FLOW DIAGRAM 3.1-18

~_.,.,3 ,. -

- - . _ - , _ -m- y

E?.E "~4 3?"3p w s ,.

i b $b? Y$ Y The ECCS consist of both passive and active systems. The URI.and low

pressure accumulator tanks are passive systems that are actuated when the i.

reactor coolant pressure falls below 1255 lb/in2a and 415'1b/in2 ,,

respectively. The active components of the ECCS are high head (charging), medium (safety injection), and low pressure (RKR) pumps that" - "-~ ~-

are actuated by a safety injection signal. Following a postulated ..

accident, the passive and active injection systems may be called to . _

~~~

operate, and after the water inventory in the RWST has been deplaced, the long-term re:irculation mode vill be activated. The ECCS, incorporates

two subsystems which serve other functions. The RER system provides for

_ decay heat removal during reactor shutdown. At other times the RER system is aligned for emergency core cooling operation. The centrifugal charging pumps are utilized during normal operation for maintaining the required volume of primary fluid in the RCS. Given an ECCS actuation signal, the system is aligned to emergency core cooling operation and the CVCS function is isolated.

The UHI system consists of a borated water-filled tank connected to a nitrogen tank that is pressurized. When the RCS pressure falls below 1255 lb/in2a, water vill be injected into the top of the reactor vessel. This system provides potential for top down quenching and upper plenum cooling during degraded core events. Nominally, 1839 cubic feet of 120*T water is available for injection into the upper head region using this passive system.

l 1

Each of the four low pressure accumulator tanks contains approximately l

, 1000 cubic feet of borated water pressurized with nitrogen gas to i

IDCDR.3 3.1-19 NEB - July 11, l'984 l

-l

..u I

n ,. .

Yn.yi b ,h N M.'I E(

, ,?'

il b c.i.
d=37.fCghygg y'[

F approximately 415 lb/in2a. When the RCS pressure falls below that in the accumula6or tanks, water is forced into the four cold legs.

1 1

The HPI mode consists of the operation of two high head centrifugal  !

pumps, rated for 150 gym at 2300 lb/in23 , which provide high I pressure injection of boric acid solution into the reactor coolant system, upon actuation by a safety injection signal. Also part of the high pressure injection mode are two safety injection pumps, rated for 425 gym at 1100 lb/in2 g, which take suction from the RWST.

Low pressure injection consists of two RRR pumps which take suction

, from the RWST. The pump performance is 4500 gym at 125 lb/in2g ,

Switchover from the injection to recirculation phase is accomplished manually with automatic backup, i.e., automatic switching of RER pump suction from the RWST to the containment sump at a level 40,000 gallons below the lov level set points in the RWST. (Approximately l 350,000 gal are injected from the RWST.)

3.1.10 Auxiliarv 7eedvater System The auxiliary feedwater syste= is designed to supply unheated water to the steam generators for RCS sensible and decay heat removal.

l This need would occur when the normal feedvater system is not available. Therefore, the auxiliary feedvater system will be '

utilized during certain periods of normal startup and shutdown, in the event of malfunction such as loss of offsite power, and also, in

'the event of accidents.

I 1

. IDCOR.3 3.1-20 NES - July 11, 1984 l :

, , . -_m._ . . . . ,,,,- . , . . . - - - . - - , - - - .

. . . . . _ - :. - - . . . . .-- -i

. . . .-- ----... .. ~ ... . . . . - - . . .. .. -- .. j l

D m- r_*.y> . J

- j;y.m '* n 9 7 - p.1.;3.

i:u .:r e; e .~; ni:i:.m.is'DH M.; ../ar.:2 The auxiliary feedvater system contains two motor-driven pumps and one turbine-driven pump. Each motor-driven pump has a capacity of 440 gallons per minute, at 2900 feet head, which is sufficient for safe cooldown. The motor-driven pumps are connected to separate emergency power buses. The turbine-driven pump has a capacity of 880 gallons per minute at 2600 feet head.

Steam supply to the auxiliary feedvater turbine is taken from one of two main steam lines at a point upstream of the MSIVs. ' Separate remote operated isolation valves are provided for these connections.

~ '

Nor= ally, the auxiliary feedvater pumps take suction from tvo CSTs. -

Each tank has a capacity of 397,700 gallose of which 190,000 gallons is reserved for the auxiliary feedvater system by means of a standpipe in the tank. The CSTs are not designed to seismic Category 1 requirements; however, the essential raw cooling water system provides an alternate source of water. All three auxiliary feedvater pumps will start automatically in the event of a safety injection signal, loss of offsite power, tripping of both main feedvater pumps, or tripping of one main feedvater pump if plant load is greater than 80 percent. In addition, the motor driven pump starts automatically in the event of a two-out-of-three low-lev vater level signal in any steam generator. The turbine-driven pump also starts automatically in the event of a two-out-of-three low-low water level signal in any steam generator. Auxiliary feedvater flow will be adjusted by remote-operated flow control valves.

IDCOR.3 3.1-21 NES - July 11, 1984

U

- . I

- - ~ ~ . . . - - . . - ~ - . . . . .......' . . -... ... . . . . . - - . . . . . . .

l

.=:g~ ~ ' -

, . :, r .

hv c...:*

  • *t 4 4 <v.,d 2 .'s:p 1 g;... n .., y c. ;;# -[

n._ sos-The valves associated with the turbine-driven pump are served by both electric and control air subsystems. The turbine-driven pump receives control power from a third direct current electrical channel that is distinct from the channel serving the electric pumps. Except for the co:mnon supply line from the CSTs, the two reactor units have separate auxiliary feedvater systems.

P l

l IDCOR.3 3.1-22 NEB - July 11, 1984

- + , -- - - -

l

~

4 b .h 1 V

. iJ U bd:d[d.} $ U3-1EC.1 3.2 Modular Accident Analysis Prettram (MAAP)

Within the IDCOR Program, the phenomologi:a1 models developed in Tasks 11,12,14, and 15 have been incorporated. into an integrated analysis code (MAAP) (reference 3.2) to analyze the major degraded core accident scenarios for both PWRs and BWRs. MAAP is designed to provide realistic assessments for severe core damage accident sequences, including fission product release, transport, and deposition, using first principle models for the major phenomena that govern the accident progression. The following sections describe the primary system nodalization and containment nodalization. the safety systems modeled in the MAAP-PWR code as applied to the Setuoyah ice condenser centainment design, the fission product release model and the fission product deposition models. A complete Sequoyah parameter file is given in Appendix A.1.

3.2.1 MAAP Nodalization The MAAP plant model for a ice condenser containment is divided into several nodes as shown in Figure 3.2-1. Nodes exist for the upper compartment (compartment A), lower compattment (compartment B),

annular compartment (compartment D), reactor cavity (compartment C),

3 ice condenser, ice condenser upper plenum, quench tank (pressurizer relief tank), and primary system. This nodalization provides detailed j tracking of containment gas temperature, wall temperatures, and steam / hydrogen concentrations as shown in Figure 3.2-1.

The primary system is divided into ten nodes as shown in Figure 3.2-2.

Nodes exist for the core region, upper plenum, downcomer, broken loop cold leg, broken loop hoc leg, unbroken loop cold leg, unbroken loop IDCOR.3 3.2-1 ,

NEB - July 11, 1984

)

. I

,, ._., ,, , . . . .. . - . . . . . - . - - - - . . . -- -~ ~

1 1

. . .. .v. . .. . r....

, , ,, Om.,

' ./ . y 4:1A 4 d *i n iE .

4 ,'j0 ,,r .f i..;y*,J j ',,ph,g) ,y[,  ;

i i

\

s.

t ,

y

  • ~ ~  ; i. ,

l . . = . ... ,

gl

.~'=

es s - ,

, s

, I

( =.  ;

    • .+a+**

h.:

. Lu _- - -

n

..,  : u s

m u , . . .. .. . a,3 , 7

,= l

...rtil I9 f- .

S -

I

.a.

..... ,.]

tm

,.<==r*'

.. ,  ? -

y ,.,

JI -.,. \,. ; a . <

u' .

I. r u

dy u c. , _-s.-.='.n -

- - Qvfr,..,..,-

4i

',_^,Q.*

u,

gi

,'s,

. .'.,' u .., / .;,

I l l ur*1a co.seastusar taa .

i l 31 8/4 .

. e

[ .. ...... . . .,) .;

. :*=

2 co=v.,==e nt a antum somoe E

~

p n

le.. a.=... l ..... ,.. r

'o '*

p r -

a

,,t  :#wi

...,u...... . ......

1 ...-  ;

. av ve=1 . . ,

Lowna compamTwsuf Is3 '#"'" ' ..

. .:{!

3-'.  :  ::.  :

{ =. "......... . ;i:

4.

= -

L.  : :.:

l cavity scs j >

a s y:

0

  • 3 rt A es l w . warra M*sev0mocem 4.Ga888 1

in g,og ,co.co, t

e . cas,um I

l Tig. 3.2-1 Ice condenser containnent nodalization 3.2-2

I I

I l I

i i

COLD LEG STEAM (

[I HOT LEG gSTEAM A I i

GENERATOR

- SilELL @f i GENERATOR SilELL PRESSURIZER %

f * -

i

\ l / ., \  ! /

I i 1

I p l

  • I .

) ' I HOT I l .

LEG \M l L

3 UPPER t I

d w COLD ' PLENUM' y LEG  ;---;

u

(

)

( CORE nme l -

. 3 1

DOWNCOMER -

e o e >

3'UNDROKEN" LOOPS l*DH0XEN" LOOP i .

(NODALIZATION SAME r g ;i j

~

AS UNBROKEN LOOP) c' a ~:

j .. i

,n -

i Fig. 3.2-2 IIAAP-Westinghouse PWR primary system nodalization .-

7,* . ., .,

a

.'..b . . *

)  ; -. -a

. s W- tsE j

%d .

.. . ~ . . ~ ... . . .

- . . ~ , . p ,7 7,..;f.

.. P,r?

. = : . . .. .r C a .j y f.a, n ',g.f 4

hot leg, pressurizer, and both the broken or unbroken loop steam generator secondary side. This primary system nodalization permits a detailed accounting ~ of the water which is available for cooling the mee and for reacting with the Zirealoy fuel claddin;;. In addition, this scheme follows the user to track hydrogen and fission product concentrations through the primary system and thereby calet$1 ate release rates to the containment. The core is further divided into a user selected number of subnodes; a 7 radial x 10 axial nodalizafien ~

is used for the Sequoyah analysis. -

3.2.2 Fission Product Release from Fuel The FPRAT module for MAAP, as adapted from reference 3.3 was used to calculate the release rates of fission products from the fuel matrix.

These rates are dependent upon the fuel temperature history during heatiup an upon characteristics of the atmosphere within the vessel I

which ef fect saturation of the chemical species as discussed in IDCOR l

task 11.1 (reference 3.4). Fuel temperature histories for the 70 regions in the core were tracked to decermire the release characteristics for the fission products and inert materials. The inicial inventories of the various fission products were obtained from l reference 3.5 and are given in Table 3.2-1.

I The FPRAT calculation considers evaporation and condensation characteristics of various chemical species. Several key assumptions, consistent with the reconcnendations of IDCOR Task 11.1 were made i

j regarding the physical form of release fission products. These are:

i ,

l l

l IDCDR. 3 3.2-4 NEB - July 11, 1984 l

i

4

i. . - r - n . ~..? '

Tablo 3 1-1  ;. ., : , ; ,t .. .,;.~

y, e m. , .6

, . . ,,; f . ,

U .'. ;::a d .. ',' J a 'd .!}'a s *.[ ,

au.IM IIiVDTORIES OF FISSION PRODII"2S AG S':'RLWA.L PATERIALS ?"MSD AS AIROSOLS FI S SI O N PRODUCTS INITI AL INVENTCRY (KG)

Kr 17.0 ,

Xe 330 Cs 1 66 -

1. 15.2 To .

31.7 Sc 60.9 Ru -

132 Le 79.2 W 197 Sn 332 W 202 Ag 2287 In. 421 Cd 1 u.

l I

l a

3.2 - 5

. . . . . . .. . . . . . . .............:. . ............. , . . . . . ~ . - - - -

r/.. r *. m , ,,

p w .f Wri.'. ,%i--.; : ',' .5 :s ; l.

e W. gi 4 .*.: 9 L*

d =a.:c auuaL..J. a5.J$J .

,;. .2. u s

1. Cesium and iodine combine to form CsI upon entry to the fission product release pathway. The excess cesium forms Cs0R. Both ,

chemical species exhibit similar physical behavior, hence the source rate for the Cs, I fission product group is assumed to be the sum of the Cs and I release rates. The form of this source is assumed to be vapor.

2. Tellurium is assumed to enter the release pathway as vaporized Te02 -
3. Inert aerosol generation rate is the combined release rates for volatile structure materials (Cd, In, Ag, Sn, and Mn).

4 Cesium, iodine, and tellurium are completely released during fuel heatup.

5. Strontium and ruthenium are assumed to represent their respective
  • nonvolatile fission product groups as defined WASH-1400. Both we're assumed to enter the release pathway in aerosol form. The melt release for strontium and ruthenium was assumed to cease upon vess'el f ailure because the portion of the fuel hot enough to release these species would drop to the lower cavity. Releases in the cavity are calculated separately (see next section).

l l

IDCCR.3 3.2-6

~

NEB - July 11, 1984

< ~~"f~ "* ' ' * ? D 7 a. e ,3.

' ' .'m

.., , -y

  • L

b - W C h .e. 's U d i.; d .*:1I

-l 3.2.3 Fission Product Release and Aerosol Generation Resulting from Core- i 1

Concrete Attack The' release of aerosols due to core-concrete attack was determined using a model based on the concrete ablation rates from MAAP. The mass of low volatility fission products and inert aerosols released from core debris is based upon a vapor stripping model assuming the melt constituents follow Raoult's law. This calculation is dependent upon the amount of gas sparging through the core debris, the molar concentration of fission products in the core debris, the vapor pressure of the chemical species of interest, and the temperature of the core debris.

The key assumptions are:

1. The masses of CO 2 and water vapor released per cubic meter ablated for the limestone concrete used at Sequoyah are 484 kg and 108 kg, respectively.

4

2. Stripping only occurs when the corium is molten.
3. The gases released by the downward attack pass.through the molten pool and cause stripping. Cases generated by sidewall attack are assumed to bypass the pool.
4. The predominant form of Sr is Sro, of Ru is elemental Ru, and of La is La203 IDCOR.3 3.2-7 . NE3 .Tuly 11, 1984

.;. : . . . _. ._..L.. . . . . . . . . _ .. ... ._._ .. . . _ . . ... . . . ._ . ' . . . . . . .

? , :e  ;

.. *a .

".,7rn *. *, %?

fl ,.  :.,q;

._:M.! _ . 3 J 11 '4

5. Inert aerosols of Cao may be generated during core-concrete attack. This chemical form is used as a surrogate for the various concrete melt constituents that could be added to the corium pool.

3.2.4 Description of the Natural Circulation Model MAAP models the primary system thermal-hydraulics, prior to and after vessel failure, including the effects of volatile fission product

, release. If large amounts of volatile fission products are retained in the primary system af ter vessel failure, which is generally the case, the feedback mechanisms between fission product behavior and the thermal-hydraulics sazst be modeled.

l The natural circulation model calculates the primary system fission product transport and thermal-hydraulics af ter reactor vessel failure, and includes models for the following phenomena:

i 1

a. Natural circulation flows due to temperature and concentration i

! (cesium iodide) differences around the primary system,

b. Heat transfer between gas and structures in the primary system.

t l c. Heat transfer between the primary system and the steam generator i

shells.

d. Heat transfer to containment through reflective insulation. This treatment includes degradation of insulation perfor=ance due to long-term oxidation of the stainless steel sheets in the insulation.

IDCOR.3 3.2-8 NEB - July 11, 1984

(

. D ' M .T.M ; m g

'4 "R 0-.!!!. '10,jT,Q d

e. Fission product transport due to re-volatilization and subsequent condensation and sedimentation in cooler nodes.

The chemical state of the fission products reprerents an uncertainty in the calculations. IDOCR Subcask 11.1 (reference 3.4) identified the dominant chemical species for cesium and iodine to be cesium iodide and cesium hydroxide. Recent experiments (reference 3.7) show

~

this may characterize auch of the material, but significant quantities have also been observed to be irreversibly placed-out on steel surfaces above the fuel region. For these analyses, the cesium iodine and cesium hydroxide fission products are assumed to have a vapor pressure characteristic of cesium iodide. In the uncertainty analyses discussed in reference 3.8, the influence of a suppressed vapor pressure due to chemical bonding between settled fission products and stainless steel consistuents is considered. In this latter case, the bonding essentially prevents subsequent transport and the potential for melting the associated structure was evaluated. These modeling differences reflect the considerable variation in ehemical state which has been observed in experiments performed to date.

3.2.5 Fission Product Deposition IDCOR Task 11.3 applied state-of-the-art fission product behavior models to' produce the RITAIN code, which describes the aerosol 1

agglomeration and deposition processes for both vapor and aerosol forms of fisson products (reference 3.6). These removal processes reduce the magnitude of radionuclide release to the environment. The corresponding .M P models depict physical mechanisms for vapor condensation on structures and aerosol retention due to steam IDCOR.3 3.2-9 NEB - July 11, 1984

.~ . . . . . - . . . . . _ . . . . _ . _ _ . . . .. .... ............... . . . . . . . - -

i . .- .

' ' ? c; .s .

. i' J' ;.*e;-c.:.:d%*'.;r=.j3l/

j [ Q.'.g _

l f

condensation and gravitational settling. The agglomeration and sedimentation are represented as a removal rate than can be correlated as a function of the aerosol cloud density (reference 3.9). This formulation is consistent with the available large scale experi= ental results. Vapor retention is governed by vapor condensation / evaporation on aerosol surfaces and walls. Mechanisms considered for aerosol retention are steam condensation and sedimentation. The MAAP nodalization scheme for fission product transport is identical to that used for the thermal-hydraulic models in MAAP.

l

.i

-{

l i

l

[

i I

l l

l l

l IDCOR.3 3.2-10 NEB - July 11, 1984

    • '~' .~ -

s

'3*'.,..

N

    • .' ' Q [] ,'{,

~ ~ 4- *.- .; _.i .i *)i

  • f$ y 3.3 References 3.1 " Containment Structural Capability of Light Water Nuclear Power Plants," Technical Report IDCOR Subcask 10.1, July 1983.

3.2 "MAAP, Modular Accident Analysis Program Users' Manual," Technical Report on IDCOR Tasks 16.2 an 16.3, May 1983.

3.3 " Analysis of In-Vessel Core Melt Progression," Technical Report on IDCOR Subtask 15.15, September 1983.

3.4 EPRI/NSAC, " Technical Report 11.1, 11.4, and 11.5, Estimation of Pission Product and Core-Material Source Characteristics," October 4

1982.

3.5 J. A. Gieseke, et al., "Radionuclide Release Under Specific LWR Accident Conditions, PWR Ice Condenser Containment," Draft Report BMI-2104, July 1983.

3.6 IDCOR Technical Report on Task 11.3, "Pission Product Transport in Degraded Core Accidents," December 1983.

3.7 Richard K. McCardell, " Severe Puel Damage Test 1-1 Quick Look Report," EG&G Idaho, October 1983.

3.8 " Uncertainty and Sensitivity Analyses for the IDCOR Reference Pla'nts," IDCOR Technical Report on task 23.4, to be published.

1 IDCDR.3 3.3-1 NEB - July 11, 1984

i I

. . . . . . . . . . . . . . . . . ....-.o....... . - .

. . ... . . . . . ... ... . . . . . . ... .... . _ . . i l

P.1 g .m .

7 p., . g s. ,g  % 9 ,

'.3' *  ;/

.t .%*;., , } a l 8.

  • .i e *

.h ' .,g e'*

.I y,..n .n - ,'e .f fJ a l'b c d a ., a s a * ' a u, : ,l. is 3.9 " Fission Product Deposition Models in MAAP," FAI Report, to be published.

l t

~

IDCOR.3 3. 3'-2 NE3 - July 11, 1984 L

m *- . * - '$ " :* n .* .- uy G ,,&.'.s't :i;*?.t..h., l,'4 ',23 3'

,5

$ :,;'lla a 2J .' d '.' M y d.'.$.,;? i.fi J 4.0 Secuences Analv2g Considerations of the dominant accident sampling sequences leading to potential core damage as given in the draf t report of IDCOR Task 3.2, resulted in six small LC.hs and two transient initiators, comprising 94.4 percent of the likely core damage initiators. These sequences were developed by reviewing the Sequoyah RSSMAP study with some regrouping of sequences. The AD accident sequence was added to determine the plant response to a 10 inch diameter LOCA. Translation of these sequences into the Sequoyah reference plant input model include the following assumptions:

1. All LOCA sequences incorporate manual reactor coolant pump trip via operator action subsequent to reactor sce m.
2. Credit is taken for the full complement of emergency safeguards for accident sequences where they are available unless otherwise specified.

Table 4.0-1 illustrates the status.cf both primary and containment systems for each accident sequence used in the analysis. The sequences analyzed ara:

1. 5D 2 - Small LOCA with loss of ECCS injection,
2. 5H 2 - Small LOCA with loss of ECCS recirculation,
3. S2HF - Small LOCA with loss of ECCS and containment sprays in the recirculation mode, 4 TMLB' - Loss of all AC power and auxiliary feedvater,
5. T23HL - Transient with loss of auxiliary feedwater and loss of charging pumps, and
6. AD - Large LOCA with loss of ECCS injection.  !

IDC01.4 4.0-1 ,

NES - July 11, 1984

Table 4.0 1

,())h-&- ]:-].]

d a[,\3 A D "[.

2 .

sua PRIMARY SYSTEMS STATUS

.~.

EVENT S2H S2D S2HF TMLS' T22ML AD RCP CCASTDCWN X X X X X l lX UPPER HEAD X X X X X X I NJ ECTl ON CHARGI N G X X PLMPS SAFETY INJ X X PUAPS RHR PUAPS X X COLD LEG X X X X X X

, ACCLMULATORS ECCS REClR C l

ECCS HT XCHNG l l NRIN FEEDWATER l l AUX FEEDWATER X X X X CONTAINMENT SYSTEMS STATUS EVENT S2H S2D S2HF TMLS' T23ML AD AIR RETURN X X X X X FANS SPRAY X X __ . X X l l lX SPRAY REC 1R C X X X lX SPRAY HT. XCHNG X X X l l lX I GNIT ORS X X X X l l l l lX j l l l l

k.052

pt. . . . . - , e,

':.9 r.w .i :,-;) i {;a } ;;'s- - ..-i-. .. ,. m.

i h M du J d $ 3 .J ".h h d ,

4.1 Secuence No. 1 - $2D

~ ~" ' ~ =_.... _ _ __ . . . .

4.1.'1 Accident Secuence Description

- ~ ~ ~

$2D consists of a small LOCA initiator with subsequeEfEl'u're of"the

~' ~

ECCS in the injection mode. The ECCS continues to be univ ~ii'labfe T6 Ee'~ ~

recirculation mode. Containment safeguards systems (1ce condenser, ,,, , , _ _ _

sprays, air raturn fans, and. igniters). are available throughout tre accident. --- - --

4.1.2 Reactor Coolant System Response Upon initiation of a 0.0218 f t2 cold leg break, the ' reactor is amned, followed by reactor pump coastdown and auxiliary f eedvater

_ . . . . _ . startup at five seconds. Figures C.1-1 through C.1-5-i-11ustrace-the --_ -

variables of interest. Immediately following break--initiatico r -th*---- -

.. . primary system pressure decreases to approximately-1250-lb/in2a- Ar-- ---

this time (approximately 0.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />) the UBI rupture" disk fails and ---

relatively cool water injection is initiated. The rate of inventory lo.ss out of the break is partially of fset by the injection of UHI vater. The primary system depressurization continues as decay heat is being l

transferred to the steam generators and lost through the break. This gradual depressurization continues until 0.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> at which time the core uncovers. A slight pressure increase is indicated'ss"th'e~ reactor vessel

~

gas temperature increases and superheated steam is ilberated from the ~~

core. As the water level in the core continues to drop, the cladding temperature begins to increase. Approximately 0.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> after core uncovery the metal-water reaction initiates hydrogen generation.

The primary system pressure continues to decrease as the remaining water from the UHI is injected (UBI water depletes at 1.99 hours0.00115 days <br />0.0275 hours <br />1.636905e-4 weeks <br />3.76695e-5 months <br />). At approximately 2.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, the primary system pressure has dropped below IDCOR.4 4.1-1, NEB - July 11, 1984

. . . . . . . . . . . . . . . - - . . . . . . ... =. .L ~.:;;;; ;.T. : .. . . . . . . . . . .

.Ih e.k.l. $ .1," " ' .r.]. " ",;

~

,r*.

J', . n.,n

,s, ,

    • g U. .,d a M.i 3 .; 6%,,a j s.

the 415 lb/in2a set point for the cold les accumulators and cool water injection begins. At the time of injection initiation the reactor vessel water level is about 9 feet which indicates the bote2m of the active core is uncovered. The effect of this " bottom to top " reflood is to initially quench the lower nodes of the core. However, this quenching is not maintained and the heat-up of the injected water supplies steam to the cladding-water reaction and hydrogen production is restarted. As core nedes reach the melting temperature, the mass of moltett core ---- - - - - - - -

collecting on the core support increases until about 110,000 lba (40 percent of the original core mass) have accumulated at 2.60 hours6.944444e-4 days <br />0.0167 hours <br />9.920635e-5 weeks <br />2.283e-5 months <br />. At this time, the lower core support plate fails and the molten core material falls into the lower plenum of the reactor vessel.

Approximately one minute later (2.62 hours7.175926e-4 days <br />0.0172 hours <br />1.025132e-4 weeks <br />2.3591e-5 months <br />), the molten core material fails one of the penetrations in the bottom of the vessel and the melt is discharged through the hole into the reactor cavity. Tollowing the molten core, the remaining hydrogen, steam, and water is discharged into i

che cavity along with the remaining accumulator water. The core nodes remaining in the vessel continue heating adiabatically. As each node reaches $144cT it then falls into the cavity. The corium discharge race after vessel failure decreases with the final core node reaching the melting temperature at 7.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. Total hydrogen production from in-i vessel Zircaloy oxidation is 677 lbs. The average rate is 0.12 lb/see i

and the reaction is equivalent to a total core average clad oxidation of 32.9 percent.

4.1.3 containment Resoonse Immediately following the accident initiation, the lower compartment pressurines as RCS inventory is discharged. At 61 seconds the containment spray pressure set point is reached. The containment sprays IDcon.4 4.1 NEB - July 11, 1984

. d d. ,

vn-..,,.,

p na .q:,.; ,, ? '

l ~ ...e z .. , , ,, h AhMB120{. a&mv,:. "--

J w

. . ~take sued on from the RWST until recirculation realignment occurs at 0.4 Nours. At 2.62 hours7.175926e-4 days <br />0.0172 hours <br />1.025132e-4 weeks <br />2.3591e-5 months <br /> the vessel fails causing a pressure spike to about l' '

20.8 lb/in2a. The available air return fans, ice, and containment sprays rapidly decreas'e the pressure to approximately 18 lb/in2a.

Since che' ice' ha)~not been depleted at this time, the temperature response in the upper compartment remains relatively constant. Pressure suppression is effective is anticipated. As the ice continues to melt m

and RCi'~ inventory is lost from the break, the water level in the lower compartment,exceedsth=\necessarycurbheightrequiredforspillingwater into the cavity at approximately 0.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. Therefore, by the ti.:e reactor' vessel failure occurs, the cavity is flooded. This flooded condition limits core-concrete ablation to the " jet" attack resulting in a 0.13 ft penetration. depth. The flooded cavity results in imediate quenching of the corium.

1

The re
naining ice mass at time of vessel failure is approximately 9.1x105 lbs (about 57 percent melted) . At 4.96 hours0.00111 days <br />0.0267 hours <br />1.587302e-4 weeks <br />3.6528e-5 months <br /> all of the ice i

has melted and containment pressurization begins. Following ice

[ depletion, the ice condenser..and ice condenser upper plenum temperatures immediately increase to approximately the lower compartment te=perature. ,

The containment sprays continue to remove heat from the containment atmosphere with the continued molten corium discharge from the vessel and the decay heat frcalquenched debris generating steam. This heat removal rate matches the decay heat at approximately 7.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> when the maximum containment preessre reaches 'about 20 lb/in2a. Afterward, the containment spray heat removal race exceeds that of decay heat and the 4

containment pressure continues to decrease, thus precluding containment failure. E uiCOR.4 ,4.1-3 ,

NEB - July 11, 1984

~

F 'g*

w

.i gs g.

-yyh e o +n, b.- .k ,,w--,-yw , ,

-+.[ s. . - , - -ir-,,.r,----g r e---g-,w.--- e cim--+- - e--r-- ww -e--- v-Tw+- T- --w-

l ' * .,*.,' . .= u .?.5... 0 ?).if s u . QpQ g Table 4.1-1 S2D S1MAAP SEC l HR EVENT DESCRIPTION CODE 0.0 0.00 REACTOR SCRAM 13 0.0 0.00 MSIV CLOSED 156 0.0 0.00 PS BREAK FAILED 209 0.0 0.00 HPI FORCED OFF 216 0.0 0.00 LPI FORCED OFF 217 0.0 0.00 MANUAL SCRAM 227 0.0 0.00 CHARGING PWPS FCRCED OFF 232 60.7 .02 WIN COOLANT PWPS OFF 4 60.7 .02 CONTMT SPRAYS ON 103 60.7 .02 MCP SWITCH OFF OR Hi-VIBR TRIP 215 1459.0 .41 RECIRC SYSTEM IN CPERATICN 181 1459.0 41 RECIRC SWITCH:' MAN ON 220 1469.0 .41 C$~PLMPS INSUFF NPSH 183 1469.0 .41 HPI PWPS INSUFF NPSH 185 2987.4 .80 FP RELEASE ENABLED 14

! 4648.7 1.29 BURN IN PROGRESS IN 1/C UPPER PLENUM 141 5085.2 1.41 BURN IN PROGRESS IN UPPER CMPT 102 5153.5 1.43 BURN IN PROGRESS IN ANNULAR CW T 122 7170.9 1.99 UHI ACCLM EMPTY 190 7365.8 2.05 SURN IN PROGRESS IN LOWER CMPT 75 8218.0 2.28 NO BURN IN LCNER CMPT 75 9291.5 2.58 BURN IN PROGRESS IN LOWER CMPT 75 9365.8 2.60 SUPPCRT PLATE FAILED 2 9383.5 2.61 NO BURN IN LCWER CMPT 75 9423.8 2.62 RV FAILED '3 9438.5 2.62 BURN IN PROGRESS IN LOWER CMPT 75 9518.3 2.64 ACCLM.".ATOR WATER DEPLETED 188 9525.1 2.65 NO BURN IN I/C UPPER PLENt.M 141 9531.3 2.65 BURN IN PROGRESS IN 1/C UPPER PLENLM 141 l 9543.4 2.65 NO BURN IN LCWER CMPT 75 10907.5 3.03 NO BURN IN UPPER CMPT 102 10926.7 3.04 BURN IN PROGRESS IN UPPER CMPT 102 l

10970.6 3.05 NO BURN IN UPPER CMPT 102 11032.6 3.06 BURN IN PROGRESS IN UPPER CuPT 102 l 11052.6 3.07 NO SURN IN UPPER CMPT 102 1

11076.2 3.08 BURN IN PROGRESS IN UPPER CMPT 102 4.1-4

-v--e a w- e.y-+w v-y--w- .* --,-----.c ,,-e- - . --

.---w--ev - - - - - - - - - - - - - . - ee -9v'-

. l

,' 7 7 "" , . 3 ,,

7.jlS'.l.i;h h* ). h1 '

i Table 4.1-1

^

S2D S1MAAP _ CONT.-

~

SEC HR EVENT DESCRIPTION CODE.

11095.1 3.08 NO BURN IN UPPER OAPT 102 11339.5 3.15 BURN IN PROGRESS IN UPPER CMPT 102' 11356.2 3.15 NO BURN IN UoPER CMPT 102 11376.2 3.16 NO BURN IN ANNULAR CWT 122 11380.8 3.16 BURN IN PROGRESS IN ANNULAR GPT 122 11403.7 3.17 NO BURN IN ANNULAR CWT 122 11428.9 3.17 BURN IN PROGRESS IN ANNULAR CW T 122 11481.3 3.19 NO BURN IN ANNULAR CWT 122 11487.2 ~3.19 BURN IN PROGRESS IN ANNULAR GPT 122 11493.1 3.19 NO BURN iN ANNULAR GPT 122 11500.9 3.19 BURN IN PROGRESS IN ANNULAR CW T 122 11544.2 3.21 NO BURN IN ANNULAR GPT 122 11551.3 3.21 BURN IN PROGRESS IN ANNULAR OPT . 122 11558.5 3.21 NO BURN IN ANNULAR GPT 122 -

11567.6 3.21 BURN IN PROGRESS IN ANNULAR GPT 122' 11603.8 3.22 NO BURN IN ANNULAR OPT -

122 11606.9 3.22 BURN IN PROGRESS IN ANNULAR OFT 122

. 11639.8 3.23 NO BURN IN ANNULAR GPT 122 11649.5 3.24 BURN IN PROGRESS IN ANNULAR CWT 122 11682.5 3.25 NO BURN IN ANNULAR GPT 122 11698.0 3.25 BURN IN PROGRESS IN ANNULAR GPT 122 11723.8 3.26 NO BURN IN ANNULAR OPT 122 11746.1 3.26 BURN IN PROGRESS IN ANNULAR GPT 122 11751.9 3.26 NO BURN IN ANNULAR CWT 122 11763.3 3.27 BURN IN PROGRESS IN ANNULAR C W T 122 11776.8 3.27 NO BURN IN ANNULAR OPT 122 11780.8 3.27 BURN IN PROGRESS IN ANNULAR GPT 122 11817.B 3.28 NO BURN IN ANNULAR OST 122 11827.0 3.29 BURN IN PROGRESS IN ANNULAR CWT 122 11836.2 3,29 NO BURN IN ANNULAR CWT 122 11840.8 3.29 BURN IN PROGRESS IN ANNULAR CW T 122 11857.2 3.29 NO BURN IN ANNULAR GPT -

122 11868.9 3.30 BURN IN PROGRESS IN ANNULAR GPT 122 11898.7 3.31 NO BURN IN ANNULAR CWT 122 11908.7 3.31 BURN IN PROGRESS IN ANNULAR CW T 122 11940.3 3.32 NO BURN IN ANNULAR GPT 122 1

~

4.1-5 gw,.-_,.e.,.y_ _q-,,_ ,,+w.- , ,p.,,,._,7_.-_,.,.y,_, ,,_y.,. _,y._, _, , ,_7,c7. _9,,._pm_m,,, a _ - , _ . -

i P R- E i a.a E~ .u:..s l B Va3 w Tabla 4.1-1 S2D S1MAAP CONT . -

~

SEC H3 EVENT DESCRIPTION CCDE

~

11955.2 3.32 SURN IN PROGRESS IN ANNULM GPT 122 11984.7 3.33 NO BURN IN ANNULAR GPT 122 11996.2 3.33 BURN IN PROGRESS IN ANNULAR GPT 122 12025.8 3.34 NO BURN IN ANNULAR CWT 122 12035.8 3.34 NO SURN IN 1/C UPPER PLENW 141 12044.3 3.35 BURN IN PROGRESS IN ANNULAR GPT 122 12052.8 .3.35 BURN IN PROGRESS IN 1/C UPPER PLENW 141 12061.2 3.35 NO SURN IN ANNULAR CWT 122 12061.2

. ~3.35 NO SURN IN l/C UPPER PLENW 14!

12069.7 3.35 BURN IN PROGRESS IN 1/C UPPER PLENW 141 12077.5 3.35 NO SURN IN 1/C UPPER PLENW -141 12080.2 3.36 BURN,, .IN PROGRESS lN ANNULAR CWT 122 12093.3 3.36 BURN IN PROGRESS IN 1/C UPPER PLENW 141 12101.3 3.36 NO BURN IN I/C UPPER PLENW 141 12109.A 3.36 NO SURN IN ANNULAR GPT ~122 12109.4 3.36 . BURN IN PRCGRESS IN 1/C UPPER PLENW 141 12113.8 3.36 BURN IN PROGRESS IN ANNULAR CM:T 122 12113.8 3.36 NO BURN IN 1/C L9PER PLENW 141 12120.5 3.37 SURN IN PROGRESS IN 1/C UPPER PLENW 141 12125.0 3.37 NO BURN IN 1/C UPPER PLENW 141 12142.6 3.37 NO BURN IN ANNULAR CWT 122 12142.6 3.37 BURN IN PROGRESS IN 1/C L9PER PLENW 141 12150.5 3.38 NO BURN IN 1/C UPPER PLENW 14' 12155.0 3.38 BURN IN PROGRESS IN ANNULAR CW T 12 12180.3 3.38 NO BURN IN ANNULAR CWT 122 12191.5 3.39 BURN IN PROGRESS IN ANNULAR GPT 122 12212.7 3.39 NO SURN IN N'NULAR CWT 122 12219.7 3.39 BURN IN PROGRESS IN ANNULAR CW T 122 12226.8 3.40 NO BURN IN ANNULAR GPT 122 12238.5 3.40 BURN IN PROGRESS IN ANNULAR GPT 122 12265.4 3.41 NO BURN IN ANNULAR CW T 122 12284.2 3.41 SURN IN PROGRESS IN ANNULAR CWT 122 12318.4 3.42 NO BURN IN ANNULAR CWT 122 12325'.3 3.42 BURN IN PROGRESS IN ANNULAR GFT 122 12335.6 3.43 NO SURN IN ANNULAR CWT 122 12342.5 3.43 BURN IN PROGRESS IN ANNULAR G FT 122 l

4.1-6 i

l. - _ _ _ ,, l

l 3,'5"7'.15F.;"'.3-l $ h = s.l.*d.:a w h $ .

Table 4.1-1 L S2D S1MAAP CONT. l l

l -- - - - ~

SEC HR EVENT DESCRIPTION CCOE

! 12356.3 3.43 NO SURN IN ANNULAR GPT 122 l 12370.0 3.44 BURN IN PROGRESS IN MNULAR GPT 122 12384.5 3.44 NO BURN IN ANNULM GPT 122 12388.8 3.44 BURN IN PROGRESS IN ANNULAR CW T 122 12401.4 3.44 NO SURN IN ANNULM GPT 122 12413.9 3.45 BURN IN PROGRESS IN ANNULAR OFT 122 12420.1 3.45 NO BURN IN ANNULM GPT 122 12426.4 3.45 BURN IN PROGRESS IN ANNULAR OFT 122 ,

12432.6 '3.45 NO SURN IN ANNULAR G9T 122

~

12437.1 3.45 BURN IN PROGRESS IN MNULAR GPT 122-12458.9 3.46 NO BURN IN ANNULM GPT 122 12474.4 3.47 BURN, IN PROGRESS ' IN MNULAR GPT 122 12497.9 3.47 NO BURN IN ANNULAR GPT 122 12512.9 3.48 BURN IN PROGRESS IN ANNULAR G PT 122 12519.9 3.48 NO BURN IN ANNULAR GPT 122 12529.7 3.48 BURN IN PROGRESS IN ANNULAR CWT 122 12552.7 3.49 'NO BURN IN ANNULAR CWT 122 l 12574.6 3.49 BURN IN PROGRESS IN ANNULAR GFT 122 12604.7 3.50 NO BURN IN ANNULAR GPT 122 12615.5 3.50 BURN IN PROGRESS IN ANNULAR GPT 122 12639.1 3.51 NO BURN IN ANNULAR GPT 122 12655.6 3.52 BURN IN PROGRESS IN ANNL1_AA GPT 122 12661.8 3.52 NO BURN IN ANNULAR GPT 122 12674.1 3.52 BURN IN PROGRESS IN ANNULAR GPT 122 12680.2 3.52 NO BURN IN ANNULAR GPT 122 12687.7 3.52 BURN IN PROGRESS IN ANNULAR OFT 122 12695.1 3.53 NO SURN IN ANNULAR GPT 122 12705.4 3.53 BURN IN PROGRESS IN ANNULAR OF7 122 12735.7 3.54 NO BURN IN ANNULAR CWT 122 12751.9 3.54 BURN IN PROGRESS IN ANNULAR CW T 122 I

12798.3 3.56- NO BURN IN ANNULAR CW T 122 12805.4 3.56 BURN IN PROGRESS IN ANNULAR O FT 122 12929.7 3,56 NO BURN IN ANNULAR CWT 122 12852.6 3.57 BURN IN PROGRESS IN ANNULAR GPT 122 12885.3 3.58 NO BURN IN ANNULAR GPT 122 12893.4 3.58 BURN IN PROGRESS IN ANNULAR GFT 122 e

4.1-7

,. -- . - - . ~ . , . - - - , - , , . - , _ , , - , . , _ _ . - , , - - , . - , - -

m..-- .,,.._.-_._.__-,u-...,,., ,.__,__,_,_ ,,,,-.,, ,- ~,-- w-. ,.,-.,

l E -(( $ ) 5 E -5 D ',y 2;)21$:i:.: .'Ud" j ]d12lL 2 Table 4.1-1 S2D S1MAAP CONT. '

~~

SEC l HR EVENT DESCRIPTION l CODE

~

12931.6 3.59 NO SURN IN ANNULAR ChPT 122 12935.0 3.59 BURN IN PROGRESS IN ANNULAR OFT 122 12967.9 3.60 NO BURN IN ANNULAR CAPT 122 12980.4 3.61 BURN IN FROGRESS IN MNULAR GFT 122 13055.6 3.63 NO BURN IN ANNULAR GPT 122 13063.0 3.63 BURN IN PROGRESS IN ANNULAR GFT 122 13080.7 3.63 NO BURN IN ANNULAR OST 122 13089.3 3.64 BURN IN PROGRESS IN ANNULAR GFT 122 -

13097.1 ' 3 .' 64 NO BURN IN ANNULAR GFT 122 13101.6 3.64 BURN IN PROGRESS IN ANNULAR GPT 122 13165.2 3.66 NO BURN IN ANNULAR GPT 122 13170.0 3.66 BURt{, IN PROGRESS 'IN MNULAR OFT 122 13311.0 3.70 NO BURN IN ANNULAR ChPT 122 13315.8 3.70 BURN IN PROGRESS IN ANNULAR GFT 122

~

1333S.1 3.71 NO BURN IN ANNULAR GPT 122 l' -

13345.0 3.71 ,5 URN IN, PROGRESS IN MNULAR GPT 122 13351.8 3.71 NO BURN 1N ANNULAR OST 122 13355.1 3.71 BURN IN PROGRESS IN ANNULAR OST 122 13389.3 3.72 NO BURN IN ANNULAR GPT 122 13392.8 3.72 BURN IN PROGRESS IN MNULAR GFT 122 13415.8 3.73 NO BURN IN ANNULAR GPT 122 13422.2 3.73 BURN IN PROGRESS IN MNULAR ChPT 122 13500.1 3.75 NO BURN IN ANNULAR GPT 122 13503.3 3.75 BURN IN PROGRESS IN ANNULAR GPT 122 13639.1 3.79 NO BURN IN ANNULAR OST 122 13645.8 3.79 BURN IN PROGRESS IN ANNULJR OST 122 13656.0 3.79 NO BURN IN ANNULAR GPT 122 13661.1 3.79 BURN IN PROGRESS IN ANNULAR G FT 122 i 13858.2 3.85 NO BURN IN ANNULAR OST 122 l 13866.0 3.85 BURN IN PROGRESS IN MNULAR OST 122 I 13877.6 3.85 NO BURN IN ANNULAR OST 122 13883.3 3.86 BURN IN PROGRESS IN MNULAR OFT 122 13939.0 3.E7 NO BURN IN ANNULAR OST 122 13945'.0 3.87 BURN IN PROGRESS IN ANNULAR OST 122 14240.0 3.96 NO BURN IN ANNULAR OST 122 14258.4 3.96 BURN IN PROGRESS IN ANNULAR GFT 122 i

4.1-8 j

p. -,,.

if  :

'- - t .N Table 4.1-1 S2D S1MAAP _

CONT.

' ' ' ~ ~ '

SEC HR EVENT DESCRIPTION ' CODE '~ "~

14378.2 3.99 NO SURN IN ANNULAR QST 122 14383.5 4.00 BURN IN PROGRESS IN ANNULAR OST 122 14393.5 4.00 NO BURN IN ANNULAR OST 122 14409.4 4.00 BURN IN PROGRESS IN ANNULAR O#T 122 14418.3 4.01 NO BURN IN ANNULAR O#T .

122 14425.B 4.01 BURN IN PROGRESS IN ANNULAR O#T 122 14432.1 4.01 NO BURN IN ANNULAR O#T 122

' ~

.. 14440.5 4.01 BURN IN PROGRESS IN ANNULAR OST-

- 122 .

14480.3 4.02 NO BURN IN ANNULAR OST  : ~

122  : ,

14495.7 4.03 BURN IN PROGRESS IN ANNULAR O#T -

122 14501.5 4.03 NO BURN IN ANNULAR O#7 122 14515.6 4.03 BURN IN PROGRESS IN ANNULAR'O#T 122

~

14542.1 4.04 NO BORN IN ANNULAR OST .. . 122 14549.7 4.04 BURN IN PROGRESS IN ANNULAR OST 122

~~~

-14500.3 4.05 NO BURN IN ANNULAR O#T  : ~122  :

14607.2 4.06 BURN IN PROGRESS IN ANNULAR' O#T 122 14618.4 4.06 NO BURN IN ANNULAR OST 122 14629.7 4.06 BURN IN PROGRESS IN ANNULAR OST 122 14636.7 4.07 NO BURN IN ANNULAR O#T 122 14641.3 4.07 BURN IN PROGRESS IN ANNULAR O PT 122 14647.2 4.07 NO BURN IN ANNULAR OST 122 14660.8 4.07 BURN IN PROGRESS IN ANNULAR OST 122 14687.B 4.08 NO BURN IN ANNULAR GPT 122 14695.5 4.08 BURN IN PROGRESS IN ANNULAR O E7 122 14723.2 4.09 NO BURN IN ANNULAR GPT 122 14731.5 4.09 BURN IN PROGRESS IN ANNULAR OST 122 14745.4 4.10 NO BURN IN ANNULAR C#T 122 14751.2 4.10 BURN IN PROGRESS IN ANNULAR O#T 122 14760.7 4.10 NO BURN IN ANNULAR OST 122 14774.9 4.10 BURN IN PROGRESS IN ANNULAR.OST 122 14784.3 4.11 No BURN IN ANNULAR O#T 122 14789.B 4.11 BURN IN PROGRESS IN ANNULAR OST 122 14798.1 4.11 NO BURN IN ANNULAR OST 122 14885.6 4.13 BURN IN PROGRESS IN ANNULAR OPT 122 14894.8 4.14 NO BURN IN ANNULAR O#T 122 14927.3 4.15 BURN IN PROGRESS IN ANNULAR O#T 122 i

~

4.1-9 e'

- . . - . . . . -..- . , ,- - . - - , ,,,_.,,...,,--_...n, , - . _ - , , , ~ , , . , , , , , , . , , , . - - , -

1 1

U{pa . - - - - . m ; : w. .i d:

Table 4.1-1 S2D S1MAAP . CONT. -

~ ~

SEC HR EVENT DESCRIPTION l CODE ~ ' ' ~ ~

14933.8 4.15 NO BURN IN ANNULAR OPT 122

14953.9 4.15 BURN IN PROGRESS IN ANNULAR OFT 122 14961.0 4.16 NO BURN IN ANNULAR OPT 122 14964.6 4.16 SURN IN PROGRESS IN ANNULAR GPT 122 14971.7 4.16 NO SURN IN ANNULAR OPT 122 14983.1 4.16 BURN IN PROGRESS IN ANNULAR G9T 122 14999.5 4.17 NO BURN IN ANNULAR GPT .

122 15042.1 4.18 BURN IN PROGRESS IN ANNULAR CWT-. 122  ;.

15049.0 '4.18 NO BURN IN ANNULAR CW T -

122 15062.5 4.18 BURN IN PRCGRESS IN ANNULAR GPT 122 15078.3 4.19 NO SURN IN ANNULAR OPT 122 15120.2 4.20 BURN IN PROGRESS IN ANNULAR GPT 122 15126.9 4.20 NO BURN IN ANNULAR C#T 122 15139.2 4.21 BURN IN PRCGRESS IN ANNULAR GPT 122 15145.5 4.21 NO BURN IN ANNULAR GPT -

122 15240.2 4.23 BURN IN PROGRESS IN ANNULAR OFT 122 15246.6 4.24 'NO BURN IN ANNULAR GPT 122 15270.4 4.24 BURN IN PROGRESS IN ANNULAR GPT 122 15277.3 4.24 NO BURN IN ANNULAR GPT 122 15295.1 4.25 SURN IN PROGRESS IN ANNULAR G FT 122 15312.5 4.25 NO BURN IN ANNULAR OST 122 15329.6 4.26 BURN IN PROGRESS IN ANNULAR OST 122.

15348.7 4.26 NO BURN IN ANNULAR OST 122 4 15350.9 4.26 BURN IN PROGRESS IN ANNULAR OST 122 l

15359.6 4.27 NO BURN IN ANNULAR GPT T22 15364.0 4.27 BURN IN PROGRESS IN ANNULAR GPT 122 15371.2 4.27 NO' BURN IN ANNULAR GPT 122 15415.0 4.28 SURN IN PROGRESS IN ANNULAR OST 122 15420.7 4.28 NO BURN IN ANNULAR GPT 122 15491.8 4.30 BURN IN PROGRESS IN ANNULAR OPT 122 15512.9 4.31 NO BURN IN ANNULAR O#T 122 15531.3 4.31 BURN IN PROGRESS IN ANNULAR OST 122 15540.1 4.32 NO BURN IN ANNULAR GPT 122 i

1554'6.0 4.32 BURN IN PROGRESS IN ANNULAR GPT 122 15555.6 4.32 NO SURN IN ANNULAR CWT 122 15590.8 4.33 BURN IN PROGRESS IN ANNULAR OST 122 1

I 4.1-10

. ~ , _ _ , , , . _ . . . . _ , . - . _ . , . _ . - . - .

7 . f* , ". "

2 .-

, , .7.y, ,1

. \

d 1:-iw a a .! ..ay j i ,. j ,

Table 4.1-1 S2D S1MAAP CONT.

SEC HR EVENT DESCRIPTlON l COOE. -

15612.4 4.34 NO BURN IN ANNULM GPT 122 15635.2 4.34 BURN IN PROGRESS IN ANNU1 AR CST 122

, 15652.4 4.35 NO BURN IN ANNULAR OPT 122 15676.6 4.35 BURN IN PROGRESS IN ANNULAR CM:T 122 15698.1 4.36 NO BURN IN ANNULM O#T 122 15777.8 -4.38 BURN IN PROGRESS IN ANNULM OST 122 15783.4 4.38 NO BURN IN ANNULAR GPT 122

~

15854.8 4.40 BURN IN PROGRESS IN ANNULAR CW T 122 15898.5 '4.42 NO BURN IN ANNULAR GPT 122 15929.4 4.42 BURN IN PROGRESS IN MNULAR GPT 122 15956.3 4.43 NO BURN IN ANNULAR GPT 122 15966.2 4.44 BURN IN PROGRESS' IN ANNULAR CWT 122

. 15984.6 4.44 NO BURN IN ANNULM OST . 122 15989.0 4.44 BURN IN PROGRESS IN ANNULAR GPT 122 ,

15997.7 4.44 NO BURN IN ANNULM O#T 122 16003.5 4.45 BURN IN PROGRESS IN ANNULAR OST 122 i 16023.0 4.45 NO BURN IN ANNULAR O#T 122

, 16060.4 4.46 BURN IN PROGRESS IN ANNULAR OST 122 l 16067.2 4.46 NO BURN IN ANNULAR O#T 122 16074.0 4.47 BURN IN PROGRESS IN ANNULAR O ST 122 16082.7 4.47 NO BURN IN ANNULAR O#T 122 16114.3 4.48 BURN IN PROGRESS IN ANNULAR OST 122

16124.0 4.48 NO BURN IN ANNULAR O#T -

122 16176.3 4.49 BURN IN PROGRESS IN ANNULAR OST 122 16200.5 4.50 NO BURN IN ANNULAR OST 122 16215.1 4.50 BURN IN PROGRESS IN ANNULAR GPT 122 16244.7 4.51 NO BURN IN ANNULAR GPT 122 16252.9 4.51 BURN IN PROGRESS IN ANNULAR OST -

122 1 16261.2 4.52 NO BURN IN ANNULVI OST 122

16296.8 4.53 BURN IN PROGRESS IN ANNULAR OPT 122 16305.6 4.53 NO BURN iN ANNULAR C#T 122 16316.6 4.53 BURN IN PROGRESS IN ANNULAR OPT 122 16326.6 4.54 NO BURN IN ANNULAR GPT 122 i- 1635725 4.54 BURN IN PROGRESS IN ANNULAR O#T 122 16364.6 A.55 NO BURN IN ANNULAR O#T 122 16369.4 4.55 BURN'IN PROGRESS IN ANNULAR OST 122 1

4.1-11' I

l

$,?.~ ? ' l , '. ] .3,] ? ?, '. s 4

6 r-a.d.;L:nlygi'j Table 4.1-1 S2D S1MAAP CONT.

. . . . . --- ~~ -

SEC HR EVENT DESCRIPTICN CODE , . .

16402.6 4.56 NO SURN IN ANNULAR CWT 122 i

16431.2 4.56 BURN IN PROGRESS IN ANNULAR CWT 122 16444.4 4.57 NO BURN IN ANNULAR CWT 122 16446.6 4.57 BURN IN PROGRESS IN ANNULAR CWT 122 16475.3 4.58 NO SURN IN ANNULAR CWT 122 16477.5 4.58 BURN IN PRCGRESS lN ANNULAR CW T 122 16486.3 4.5B NO BURN IN ANNULAR CWT -

122

..- _" 16488.7 4.58 SURN IN PROGRESS IN ANNULAR CWT 122 .

~~

16498.1 '4.58 NO BURN IN ANNULAR CWT 122 ,

16502.8 4.58 BURN IN PROGRESS IN ANNULAR CWT 122 16520.3 4.59 NO BURN IN ANNULAR CAPT 122
16581.9 4.61 BURN, IN PROGRESS IN ANNULAR CWT 122 16590.3 4.61 NO SURN IN ANNULAR CWT 122

..- 16595.3 4.61 BURN IN PROGRESS IN ANNULAR OFT ~ ~ ~

122 --

16603.0 4.61 NO BURN IN ANNULAR CWT 122 16669.2 4.63 , BURN IN PROGRESS IN ANNULAR GFT 122 16679.3 4.63 NO BURN IN ANNULAR CW T 122 16698.7 4.64 BURN IN PROGRESS IN ANNULAR CWT 122 i 16706.3 4,64 NO SURN IN ANNULAR GPT 122 16731.1 4.65 BURN IN PRCGRESS IN ANNULAR G FT 122 i

16740.8 4.65 NO SURN IN ANNULAR CWT 122 16767.8 4.66 BURN IN PROGRESS IN ANNULAR GFT 122 16781.4 4.66 NO BURN IN ANNULAR ChPT 122 16899.1 4.69 BURN IN PROGRESS IN ANNULAR O FT 122 16909.9 4.70 NO BURN IN ANNULAR CWT 122 16950.9 4.71 BURN IN PROGRESS IN ANNULAR CNFT 122 16957.4 4.71 NO SURN IN ANNULAR CWT 122

17066.4 4.74 l

BURN IN PROGRESS IN ANNULAR C W 122 17073.0 4.74 NO BURN IN ANNULAR CWT 122 17076.3 4.74 BURN IN PROGRESS IN ANNULAR ChPT 122

~

17082.9 4.75 NO SURN IN ANNULAR CW T 122 17124.3 4.76 BURN IN PROGRESS IN ANNULAR GFT 122 17134.5 4.76 NO BURN IN ANNULAR CWT 122 17246.2 4.79 BURN IN PROGRESS IN ANNULAR CP T 122 17252.5 4.79 NO SURN IN ANNULAR CWT 122 17279.7 4.80 SURN 'lN PROGRESS IN ANNULAR GFT 122 4.1-12 .

- -- _-------.-,,e ,,,.,e --.-,e , - - - - . . . - - - - - ,

6

- r : e n.

P. ,,, . . ., :

N ig 3. '.;

,!iY

' ; ; ii , '.

!! :;J- w ,a:..~.'.".is;4 J. '1 F:A d Table 4.1-1 S2D S1MAAP CONT.

~

SEC HR EVENT DESCRIPTICN  : CODE

~~

17267.9 4.80 NO SURN IN ANNULAR CNPT 122 17630.0 4.90 BURN IN PROGRESS IN ANNULAR ChPT 122 17638.4 -4.90 NO BURN IN ANNULAR CAPT 122

. 17641.8 4.90 SURN IN PROGTtESS IN ANNULAR CAPT 122 17651.9 4.90 NO BURN IN ANNULAR ChPT 122 17795.9 4.94 BURN IN PRCGRESS IN ANNULAR ChPT 122 17805.3 4.95 NO BURN IN ANNULAR CNPT 122 ,

17858.3 4.96 ICE DEPLETED '

132 17863.2 ~4.96 BURN IN PROGRESS IN ANNULAR ChfT 122 17890.9 4.97 NO BURN IN ANNULAR OPT 122 6 e m e

4.1-13,

'. "p r * " *! 7 9 7 3 *= *

.a ry. . -

k.i if,'d 4.i(th *' U

""""~~~"""d

' 1 F,.' i J Il 4.2 Sequence No. 2 - 52 H EU A S j 4.2.1 Accident Sequence Descrintion 52 H consists of a small LOCA initiator with subsequent failure of the ECCS in the recirculation mode. Emergency core coolin.g ,in_the injection,_ ,, ,

mode is successful and the containment safeguards systems (ice condenser, sprays, air return fans, and igniters) are available throughout the accident.

4.2.2 Reactor Coolant System Resnonse .

Upon initiation of a 0.0218 f t2 cold leg break, the reahter is ~

scrammed, followed by reactor pwsp coastdown, and auxiliary feedvater startup at five seconds. Figures C.2-1 through c.2-5 illustrate the variables of interest. Immediately following break initiation, the primary system pressure decreases to approximately 1250 lb/in23 ,

During this depressurization period (0.0-0.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) high pressure injection charging pumps and safety injection pumps started and UHI initiatied injection at 1255 lb/in2 a This introduction of cool water into the reactor vessel results in initially cooling the primary system water. The primary system water mass continues to increase until 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br /> when the recirculation switchover point is reached. This incr' esse in primary system inventory and cooling results in decreasing the secondary side temperature and pressure. Since the primary system pressure is continually decreasing after unsuccessful recirculation switchover, the UHI continues to inject past 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />. This continued

injection cools the primary and secondary side until a minimum pressure of about 900 lb/in2a is reached in the pri=ary system. At this point, the primary side pressure begins to increase due to secondary side

, heating. The primary side pressure increase results in termination of l

UBI injection. Since heat removal through the break is less than the j IDCOR.4 4.2-1 NES - July 11, 1984 L

4 e* *? *t e j g og 13 ,et sa y. ; y s ,. J. +

, j .-} '! .  ! ..,f f

t.

a : . . :, u . w i, 52 d 2 *2 decay heat, hoch primary and secondary pressurize to the secondary side relief valve set point of approximately 1100 lb/in2a With no more -

water available for injection, reactor coolant inventory starts decreasing within the primary system. The primary system pressure remains somewhat constant until about 1.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />. At this time, the reactor vessel water level falls below the top of the core and superheated steam begins to exit the core. As the water level in the core continues to decrease, the cladding temperature increases.- -- -

Approximately 0.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> after core uncovery, the cladding metal-water reaction initiates significant hydrogen generation. The increasing void in the primary system coupled with the increased flow out of the break causes a depressurization at a relatively constant race until 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />.

t At this time, the pressure has decreased enough for UHI initiation. UBI continues to inject until depletion occurs at 2.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />, after which the injected water is quickly heated to reactor vessel conditions. During this period (1.5-2.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />), the URI is insuf ficient to quench the fuel resulting in continued hydrogen production. I:mnediately following UEI depletion, regions of the core reach melting temperature.

At approximately 2.45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br />, the primary system pressure has decreased to the cold leg accumulator set point (415 lb/in2 a) and bottom-to-top

. reflood is initiated. This results in providing additional water for steam production and further oxidation of the cladding as indicated by the continued hydrogen production. Continued accumulator discharge causes the vessel water level and mass to increase as the pressure

^

decreases to approximately 350 lb/in2a. As the core continues to heat up, the first node reaches the melting temperature of $144cF at 1.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br />. Increased heating and node melting results in the molten core IDCOP.4 4.2-2 NEB - July 11, 1984

-- . - - - - . . - - - . - , - - , , - - - - - - - - ~ . . -

M M f'

  • 2 & :- V 't U ?. YN T, J

[# 4d OD-.:.L.;uOh u 1 *'! E .g

  • M t,3.{.y1:

collecting on the core support place until about 110,000 pounds have accumulated at 2.74 hours8.564815e-4 days <br />0.0206 hours <br />1.223545e-4 weeks <br />2.8157e-5 months <br />. At this time, the lower core support plate fails and the molten core material falls into the lower plenum of the reactor vessel. Within one minute, the molten core material fails one of the penetrations in the bottom head of the vessel and the molten core material is discharged through the hole into the reactor cavity.

Following the molten core, the remaining hydrogen, steam, and water is discharged into the cavity along with the remaining accumulator water.

The core nodes remaining in the vessel continue heating adiabatically with each node draining into the reactor cavity when it reaches $14407.

The corium discharge race af ter vessel failure decreases, with the final core node reaching the melting temperature at 7.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. A total hydrogen mass of 662 lbs is generated with an average hydrogen production rate of 0.14 lb/sec. This corresponds to an overall Zircaloy clad oxidation of 32.1 percent.

4.2.3 Containment Response I:mnediately following the accident initiation, the lower compartment pressurizes as RCS inventory is discharged. At 61 seconds, the pressure set point for the containment spray is reached. The containment sprays take suction from the RWST until the recirculation alignment occurs at 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />. At this point the sprays recirculate water from the containment sump. At 2.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> when the vessel fails the lower compartment pressure increases to about 23 lb/in 2a. However, the air return fans, containment sprays, and available ice reduce this pressure to approximately 18 lb/in2a. The water level in the lower compartment exceeds the necessary curb height required for spilling water into the cavity at approximately 0.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. Therefore, by the time the reactor 1

vessel failure occurs, the cavity is flooded. This flooded condition l IDCOR.4 4.2-3 .

NES - July 11, 1984 i

l t

.%.q y % ..s:i :p : T~-:  :

~

.8, ~q n .7 U ti r--

O ;. :. 'i.2 ;; 1 i limits core-concrete ablacion to the jet attack only resulting in a 0.16 ft penetration depth. The flooded cavity results in the immediate quenching of the corium.

The ice remaining at the time of vessel failure is approximately 7.2x105 lbs. At 4.66 hours7.638889e-4 days <br />0.0183 hours <br />1.09127e-4 weeks <br />2.5113e-5 months <br /> all the ice has been melted and the containment pressure rapidly increases due to loss of the passive ice heat sink. The containment sprays continue to remove heat from the containment atmosphere, but lag the input decay heat energy until 7.0 ~

hours, at which time the containment pressure of about 20 lb/in2, is reached. Afterward, the containment spray heat removal rate exceeds that of decay heat and the containment pressure continues to

  • decrease, thus precluding containment failure. '

f IDCOR.4 4.2-4 NES - July 11, 1984

Q ka{'.?.?3~.l,'.1~2?,7.*'7 51M).i :0fisi 3 Table 4.2-1 S2H S2MAAP SEC HR EVENT DESCRIPTION CCOE '

O.0 0.00 REACTOR SCRAM 13 0.0 0.00 MSIV CLCSED 156' O.0 0.00 PS BREAK FAILED 209 0.O O.00 MANUAL SCRAM 227 47.5 .01 CMARGING PWPS ON 11 60.7 .02 MAIN COOLANT PWPS CFF 4 60.7 .02 CONWT SPRAYS ON 103

] 60.7 .02 MCP SWITCH CFF CR HI-VIER TRIP 215 161.9 *

.04 HP l CN 5 j 1341.2 .37 HPI OFF 5 1341.2 .37 CHARGING PWPS OFF 11 1341.2 .37 RECIRC SYSTEM IN CPERATION 181

1341.2 .37 HPI FORCED OFF 216

, , 1341.2 .37 LPI FORCED OFF 217 1341.2 .37 RECIRC SWITCH: MAN ON 220 1341.2 .37 CHARGING PWPS FORCED OFF 232 l 1343.2 .37 CH PLMPS INSUFF NPSH 183 i

1343.2 .37 HPl PLMPS INSUFF NPSH 185 4463.2 1.24 FP RELEASE ENABLED 14 f

6054.9 1.68 BURN IN PROGRESS IN 1/C UPPER PLENW 141

, 6290.2 1.75 BURN IN PROGRESS IN LOWER CMPT 75 6430.1 1.79 BURN IN PRCGRESS IN UPPER CMPT 102

] 6489.7 1.80 SURN IN PROGRESS IN ANNULAR CM'T 122 6578.6 1.83 NO BURN IN LOWER CMPT 75 8232.1 2.29 UHI ACCLM EMPTY 190

! 9320.0 2.59 BURN IN PROGRESS IN LOWER CMPT 75' 9711.5 2.70 NO BURN IN LOWER CMPT 75 9735.6 2.70 BURN IN PROGRESS IN LOWER CMPT 75 9849.4 2.74 SUPPCRT PLATE FAILED 2 J

9858.4 2.74 NO BURN IN LOWER CMPT 75 9873.1 2.74 BURN IN PRCGRESS IN LOWER CAPT 75 9911.0 2.75 RV FAILED 3

.9917.5 2.75 NO BURN IN LOWER CMPT 75 9920.8 2.76 BURN IN PROGRESS IN LCWER CMPT 75 9971.9 2.77 NO BURN IN LOWER CMPT 75 9987.1 2.77 NO SURN IN l/C UPPER PLENW 141 i

4.2-5 '

.. e. .... .- .

e . *

. ..- _. 2 . . ---

S2H S2MAAP CONT.

SEC HR EVENT DESCRIPTION l CODE 10007.1 2.78 SURN IN PROGRESS IN 1/C UPPER PLENLM 141 10015.3 2.78 ACCLMJLATOR WATER DEPLETED 188 10876.6 3.02 BURN IN PROGRESS IN LOWER CMPT 75 11104.4 3.08 NO BURN IN LOWER CMPT 75 11114.4 3.09 BURN IN PROGRESS IN LCWER CMPT 75 l 11124.4 3.09 NO BURN IN LCWER CMPT 75 t

11124.4 3.09 NO BURN IN UPPER CMPT 102 11164.4 3.10 . BURN IN PROGRESS IN UPPER CMPT 102

~

11184.4 '3.11 NO BURN IN UPPER CMPT 102 11428.9 3.17 BURN IN PROGRESS IN UPPER CNPT 102 11452.3 3.le No BURN IN LPPER CMPT 102 11495.3 3.19 BURN IN PROGRESS'lN UPPER CMPT 102 11579.6 3.22 NO BURN IN LPPER CMPT 152 11614.5 3.23 BURN IN PROGRESS IN LFPER CNPT 102 ,

11631.6 3.23 NO BURN IN LPPER CMPT 102 11647.5 3.24 BURN IN PROGRESS IN UPPER CMPT 102 11670.0 3.24 NO BURN IN UPPER CNPT 102 11689.2 3.25 BURN IN PROGRESS IN L9PER CMPT 102

11707.9 3.25 NO BURN IN UPPER CMPT 102 i 11726.0 3.26 BURN IN PROGRESS IN UPPER CMPT 102 11747.5 3.25 NO BURN IN UPPER CMPT 102

. 11762.8 3.27 BURN IN PROGRESS IN UPPER CMPT 102 11751.2 3.27 NO BURN IN UPPER CMPT- 102 i

11864.9 3.30 BURN IN PROGRESS IN L9PER CMPT 102 j 11883.2 3.30 NO BURN IN UPPER CMPT 102 11977.7 3.33 BURN IN PROGRESS IN UPPER CMPT 102

! 11993.9 3.33 NO BURN IN UPPER CMPT 102 j 12018.7 3.34 NO BURN IN ANNULAR CNFT 122

! 12039.3 3.34 BURN IN PROGRESS IN ANNULAR CNPT 122 12090.6 3.36 NO BURN IN ANNULAR CAPT 122 12092.7 3.36 BURN IN PROGRESS IN ANNULAR OPT 122 l j 12214.3 3.39 NO BURN IN ANNULAR CAFT 122 i 12220.5 3.39 BURN IN PROGRESS IN ANNULAR CST 122 i

12232.5 3.40 NO BURN IN ANNULAR ChPT 122 l- 12234.B 3.40 BURN IN PROGRESS IN ANNULAR C #T 122

]

12319.7 3.42 NO BURN IN ANNULAR ChPT 122 1

1 4.2-6 r-- - --- r- , . ,, -+-,-,--.---,,,-e.----,-- n,,v---- ----v.--, nr. .mn,- ,,,.w,n-------~n,--_n-,- . . - , - . . ,,-.w- r , a,-,-.-,,,,-,_~r--- --

-c..

. .-. . .s .

r. : . .

Tabla 4.2-1 4'. .... ; J4 1- - 2 S2H S2MAAP . CONT.

SEC HR EVENT DESCRIPTION CODE 12325.6 3.42 BURN IN PROGRESS IN ANNULAR OFT 122 12544.7 3.48 NO BURN IN 1/C UPPER PLENt,M 141 12560.B 3.49 NO BURN IN ANNULM GPT 122 12574.9 3.49 BURN IN PROGRESS IN ANNU AR O FT 122 12581.0 3.49 NO BURN IN ANNULAR GFT 122 12589.3 3.50 BURN IN PROGRESS IN ANNULAR O9T 122 4

12640.1 3.51 NO BURN IN ANNULM GPT . 122

~

12670.4 3.52 BURN IN PROGRESS IN ANNULAR GPT_ . .122  ;-

12711.2 '3.53 NO BURN IN ANNULM GPT  : . . 122 12719.0 3.53 BURN IN PROGRESS IN ANNULAR GFT 122 i

12750.5 3.54 NO BURN IN ANNULAR GPT 122 12755.4 3.54 BURb(, .IN PROGRESS IN ANNu AR OFT 122 12770.3 3.55 NO BURN IN ANNULAR G9T 122 12788.6 3.55 BURN IN PROGRESS IN ANNU AR OFT 122 ..

12798.3 3.56 NO BURN IN ANNULAR CWT *

-122 l

12804.7 3.56 BURN IN PROGRESS IN ANNULAR G9T ~ 122 12813.7 3.55 'NO BURN IN ANNULAR GPT 122 12834.2 3.57 BURN IN PROGRESS IN ANNULAR GPT 122 12S44.9 3.57 NO BURN IN ANNULAR GPT 122 12848.6 3.57 BURN IN PROGRESS IN ANNULAR GPT 122 i

12875.9 3.58 NO BURN IN ANNULAR GPT 122 12886.0 3.58 BURN IN PROGRESS IN ANNULAR CWT 122 12913.6 3.59 NO BURN IN ANNULM GPT 122 12924.8 3.59 BURN IN PROGRESS IN ANNULAR G9T 122 12933.9 3.59 NO BURN IN ANNULAR GPT 122

! 12935.7 3.59 BURN IN PROGRESS IN ANNULAR OPT 122

! 12976.5 3.60 NO BURN IN ANNULAR OPT 122 I

12983.4 3.61 BURN IN PROGRESS IN ANNULAR opt 122 i

13013.9 3.61 NO BURN IN ANNULAR G9T 122 l 13042.5 3.62 BURN IN PROGRESS IN ANNULAR OPT 122 13069.2 3.63 NO BURN IN ANNULAR CWT 122 13074.0 3.63 BURN IN PROGRESS IN ANNULAR GPT 122 -

e i 13088,.2 3.64 NO BURN IN ANNULAR GPT 122 4

13133.3 3.65 BURN IN PROGRESS IN ANNULAR OFT 122 13143.2 3.65 NO BURN IN ANNULAR GPT 122 13151.7 3.65 BURN IN PROGRESS IN ANNULAR OPT 122 4.2-7

~

i i

_ _ , _ . . - - . . - - - ~ ~ . y , . , - -__ - - . - .

y g wj i .. - + 3 . m.t e  ! .*1 + * **

'[

e '. . .s u s a . . .- - . . . '

.a S2H S2MAAP CONT.

SEC MR EVENT DESCRIPTION _ CODE .

13158.3 3.66 NO SURN IN ANNULAR GPT 122 13167.4 3.66 BURN IN PROGRESS IN ANNULAR CW T 122 13194.9 3.67 NO BURN IN ANNULAR GPT 122 13199.1 3.67 BURN IN PROGRESS IN ANNULAR OFT 122 1322S.7 3.67 NO BURN IN ANNULAR CWT 122 13237.5 3.68 BURN IN PROGRESS IN ANNULAR GPT 122 13244.1 3.68 NO BURN IN ANNULAR GPT 122 13246.1 ~

3.6B . BURN IN PROGRESS IN ANNULAR CW T 122  ; '

13267.5 3.69 NO BURN IN ANNULAR OPT 122 13289.2 3.69 BURN IN PROGRESS. IN ANNULAR CW T 122 13306.3 3.70 NO BURN IN ANNULAR CWT 122 13322.5 3.70 BURN IN PROGRESS

  • IN ANNULAR GPT 122 13350.9 3.71 NO BURN IN ANNULAR CWT -

122 13381.8 3.72 BURN IN PROGRESS IN ANNULAR CWT 122 13391.8 3.72 NO BURN IN ANNULAR OPT 122

~

13397.5 3.72 BURN IN PROGRESS IN ANNULAR CWT 122

, 13403.2 3.72 NO BURN IN ANNULAR CWT 122 13448.6 3.74 BURN IN PROGRESS IN ANNULAR CWT 122 13456.O 3.74 NO BURN IN ANNULAR GPT 122 13463.4 3.74 BURN IN PRCGRESS IN ANNULAR CWT 122

. 13470.7 3.74 NO BURN IN ANNULAR OPT' 122 13481.3 3.74 BURN IN PROGRESS IN ANNULAR OFT 122 13497.2 3.75 NO BURN IN ANNULAR GPT 122 13502.5 3.75 BURN IN PROGRESS IN ANNULAR CW T 122 13513.0 3.75 NO BURN IN ANNULAR CWT 122 13528.8 3.76 BURN IN PROGRESS IN ANNULAR CW T 122 13536.5 3.75 NO BURN IN ANNULAR OPT 122

, 13538.5 3.76 BURN IN PROGRESS IN ANNULAR CWT 122 1

13562.5 3.77 NO BURN IN ANNULAR CW T 122 13567.5 3.77 BURN IN PRCGRESS IN ANNULAR CWT 122 13575.9 3.77 NO BURN IN ANNULAR CWT 122 13587.1 3.77 BURN IN PROGRESS IN ANNULAR GPT 122 13597.1 3.78 NO BURN IN ANNUL:AR CWT 122 1 13656.0 3.79 BURN IN PROGRESS IN ANNLLAR CW T 122 4

13655.5 3.50 NO BURN IN ANNULAR CWT 122 '

13739.6 3.22 BURN 'lN PROGRESS IN ANNULAR OFT 122 l

1 l

4.2-s l 9

-%- c-- y ..w-me,. -y = , - - , - - , - , - -- -

+rr- r -- - - - - e-e e, ow w =- e-.-e--ee~ r ms - r-w = uee+ r-e, w w ----e w -m--------=--te-v-tv

-~~nyI

.;. ., . . . . .. . . _-. . . \. . :

Table 4.2-1 S2H S2MAAP CONT.

! SEC HR EVENT DESCRIPTION CODE

~ ~

13748.2 3.82 NO BURN IN ANNULAR oft 122 13753.8 3.82 BURN IN PROGRESS IN ANNULAR OFT 122 13766.6 3.82 NO BURN IN ANNULAR GPT 122

_, 13798.4 3.83 BURN IN PROGRESS IN ANNULAR CWT 122' 13819.7 3.84 NO BURN IN ANNULAR GPT 122 13845.1 3.85 BURN IN PROGRESS IN ANNULAR OFT 122 i

13855.2 3.85 NO BURN IN ANNULAR GPT 122 13860.2 ~

3.85 BURN IN PROGRESS IN MNULAR OFT - 122 13870.1 3.85 NO BURN IN ANNULAR CWT 122 13909.1 3.86 BURN IN PROGRESS IN ANNULAR GFT 122 13923.6 3.87 NO BURN IN ANNULAR CW T 122 14082.1 3.91 BURN, IN PROGRESS IN ANNULAR GFT 122 14102.8 3.92 NO BURN IN ANNULAR CWT 122

. . 141J7.6 3.92 BURN IN PROGRESS IN ANNULAR CW T 122 14142.7 3.93 NO BURN IN ANNULAR CWT

'122' 14173.9 3.94 BURN IN PROGRESS IN ANNULAR O FT 122 I

14181.2 3.94 'NO BURN IN ANNULAR CWT . 122 1 14200.8 3.94 BURN IN PROGRESS IN ANNULAR CW T 122 14208.4 3.95 NO BURN IN ANNULAR CWT 122 14213.5 3.95 BURN IN PROGRESS IN ANNULAR GFT 122 14219.5 3.95 NO BURN IN ANNULAR GPT 122 14236.9 3.95 2 URN IN PROGRESS IN ANNULAR CWT 122 l 14253.4 3.96 NO BURN IN ANNULAR GPT 122 l 14279.4 3.97 BURN IN PROGRESS IN ANNULAR G FT 122.

142S7.5 3.97 NO BURN IN ANNULAR CWT 122

, 14320.0 3.98 BURN IN PROGRESS IN ANNULAR CWT 122 14329.0 3.98 NO BURN IN ANNULAR GPT 122 14423.7 4.01 BURN IN PROGRESS IN ANNULAR O FT 122 14431.9 4.01 NO BURN-IN ANNULAR CW T 122 7 N ANN L GP 12

! 14476.0 4.02 BURN IN PROGRESS IN ANNULAR G9T 122 14491.6 4.03 No BURN IN ANNULAR CWT 122 14525.5 4.03 BURN IN PROGRESS IN ANNULAR G PT 122 14535.5 4.04 NO BURN IN ANNULAR G9T 122 14611.4 4.06 BURN IN PROGRESS IN ANNULAR CWT 122 i

l l

4.2-9 -

I t

---~-, . - _ , , . - , - - , . , . - , .- -

..~-,,,.,-._-..,--.,---,-----,,-------..,,-w_,-,7-

.., p *~ : .*',-**:

  • P, ' .'*

Vd.

s s '. 4. . . , . . . :.s'. . .s 4 S2H S2MAAP CONT.

SEC 'iR EVENT DESCRIPTION CODE 14620.3 4.06 NO SURN 1N ANNULM GFT 122 14643.6 4.07 BURN IN PROGRESS IN ANNULM GFT 122 14653.4 4.07 NO BURN IN ANNULAR GPT 122

, 14659.1 4.07 BURN IN PROGRESS IN ANNULM GPT 122 14664.7 4.07 NO BURN IN ANNULM GPT 122 14682.1 4.08 BURN IN PROGRESS IN ANNULM GFT 122 14691.5 4.08 NO BURN IN ANNULAR OPT 122 14742.6 4.10 BURN IN PROGRESS IN ANNULM GPT 122 14751.0 ~4.10 NO BURN IN ANNULAR GPT 122

14804.8 4.11 BURN IN PROGRESS IN ANNULAA C W T 122 14514.1 4.12 NO BURN IN ANNULAR GPT 122 l 14822.3 4.12 BURN IN PROGRESS'IN ANNULAR O #T 122 14830.5 4.12 NO BURN IN ANNULAR GPT 122

~

14836.3 4.12 BURN IN PROGRESS IN MNULAR GPT 122 14850.8 4.'3 NO BURN IN ANNULAR GPT 122 14869.0 4.13 BURN IN PROGRESS IN MNULAR GFT 122 14824.0 4.13 NO BURN IN ANNULAR GPT 122 14966.4 4.16 BURN IN PROGRESS IN ANNULAR CWT 122 14979.0 4.16 NO BURN IN ANNULAR OPT 122 15019.2 4.17 BURN IN PROGRESS IN ANNULAR GFT 122 15032.4 4.18 NO BURN IN ANNULAR CWT 122 15055.1 4.18 BURN IN PROGRESS IN ANNULAR G PT 122 15064.3 4.18 NO BURN IN ANNULAR CWT 122 15065.9 4.19 BURN IN PRCGRESS IN ANNULAR CWT 122 15077.4 4.19 NO BURN IN ANNULAR CWT 122 15139.3 4.21 BURN IN PROGRESS IN ANNULAR GPT 122 15149.7 4.21 NO BURN IN ANNULAR OFT 122 15188.7 4.22 BURN IN PROGRESS IN ANNULAR GPT 122 15195.0 4.22 NO BURN IN ANNULM CWT 122 15231.0 4.23 BURN IN PROGRESS IN ANNULAR GPT 122 15239.3 4.23 NO BURN IN ANNULAR OPT 122 15265.0 4.24 BURN IN PROGRESS IN ANNULAR CWT 122 15282.5 4.25 NO BURN IN ANNULAR GPT 122 15336.8 4.26 BURN IN PROGRESS IN ANNULAR GPT 122 15343.3 4.25 NO BURN IN ANNULAR GPT 122 15374.4 4.27 BURN IN PROGRESS IN MNULAR CWT 122 4.2-10

.,.3.. .. .

, fqvf

,?: **

. s .

- $fa

. . . , . . . . .. a l .

Table 4.2-1 S2H S2MAAP CONT. ,

~ ~ ~ ~~

15391.1 SEC 4.28 HR l EVENT DESCRIPTION CODE "..

NO SURN IN ANNULAR GPT 122 15416.2 4.28 BURN IN PRCGRESS IN ANNULAR GPT 122 15425.2 4.28 NO' BURN IN ANNULM O CT 122 15505.8 4.31 BURN IN PROGRESS IN ANNULAR GPT 122 15525.9 4.31 NO SURN IN ANNULAR CNPT 122 15556.1 4.32 BURN IN PRCGRESS IN ANNULAR OPT 122 15568.9 4.32 NO BURN IN ANNULAR GPT ,

122

. 15586.7 4.33 BURN IN PROGRESS IN ANNLLAR GPT ~122

  • 15606.8 ~4.34 NO BURN IN ANNULAR GPT 122 15644.4 4.35 BURN IN PROGRESS IN ANNULAR GPT 122 15654.4 4.35 NO BURN IN ANNULAR CAPT . 122 15700.3 4.36 BURN,IN PROGRESS IN ANNULAR G FT 122 15706.S 4.36 NO BURN IN ANNULAR GPT 122 15719.3 4.37 BURN IN PRCGRESS IN MNULAR GPT 122 , , _ .

15725.5 4.37 NO SURN IN ANNULAR CAPT 122 15738.7 4.37 BURN IN PRCGRESS IN ANNULAR GPT 122 15762.9 4.38 'NO BURN IN ANNULAR CAPT 122 15790.9 4.39 BURN IN PROGRESS IN ANNULAR GPT 122 15801.2 4.39 NO BURN IN ANNULAR GPT 122 15828,1 4.40 BURN IN PROGRESS IN ANNLLAR GFT 122 15834.0 4.40 NO BURN IN ANNULAR GPT 122 15861.1 4.41 BURN IN PROGRESS IN ANNULAR GFT 122 15878.3 4.41 NO BURN IN ANNULAR *CAPT 122 15887.9 4.41 BURN IN PROGRESS IN MNULAR CNFT 122 15896.6 4.42 NO BURN IN ANNULAR CNPT 122 15904.6 4.42 BURN IN PROGRESS IN ANNULAR GPT 122 15914.5 4.42 NO BURN IN ANNULAR CNPT 122 15927.3 4.42 BURN IN PROGRESS IN ANNULAR OPT 122 15936.2 4.43 NO BURN IN ANNULAR CNPT 122 15940.7 4.43 BURN IN PROGRESS IN ANNULAR GFT 122 15949.7 4.43 NO SURN IN ANNULAR GPT 122 15954.1 4.43 BURN IN PROGRESS IN ANNULAR CLPT 122 15966.1 4.44 NO BURN IN ANNULAR CAPT 122 15988.6 4.44 BURN IN PROGRESS IN ANNULAR GPT 122 160!3.0 4.45 NO SURN IN ANNULAR ChPT 122 16018.1 4.45 SURN IN PROGRESS IN ANNULAR ChPT 122 4.2-11 .

+

.,_y ,

.t $

' ** "'~''''''; E

% 4.24 S2H S2MAAP -

CONT.

SEC HR EVENT DESCRIPTION CODE 16024.5 4.45 NO SURN IN ANNULAR CWT 122 16040.5 4.46 BURN IN PROGRESS IN ANNULM CWT 122

~

16060.6 4.46 NO BURN IN ANNULAR CWT 122 16086.2 4.47 BURN IN PROGRESS IN ANNULAR Q #T 122 16095.7 4.47 NO BURN IN ANNULAR CWT 122 16100.5 4.47 BURN IN PRCGRESS IN ANNULAR OST 122 16110.0 4.48 NO BURN IN ANNULAR CWT 122

~ 16119.6 4.48 BURN IN PROGRESS IN ANNULAR CWT 122 16129.1 *4.48 NO BURN IN ANNULAR CWT 122' 16134.1 4.48 BURN IN PROGRESS IN ANNULAR CWT 122 16157.6 4.49 NO BURN IN ANNULAR CWT 122 16173.2 4.49 BURN IN PROGRESS IN ANNULAR CW T 122 4

16182.5 4.50 NO BURN IN ANNULAR CWT .

122 16195.6 4.50 BURN IN PROGRESS IN ANNULAR CW T -122 .

16205.3 4.50 NO BURN IN ANNULAR CWT T22

~

16210.2 4.50 BURN IN PROGRESS IN ANNULAR CWT 122 16219.9 4.51 NO BURN IN ANNULAR C W 122 16229.6 4.51 BURN IN PROGRESS IN ANNULAR OFT 122

16237.3 4.51 NO BURN IN ANNULAR CW T 122 16240.1 4.51 BURN IN PROGRESS IN ANNULAR CWT 122
16248.6 4.51 NO BURN IN ANNULAR ' CWT 122 1

16256.6 4.52 BURN IN PROGRESS IN ANNULAR CWT 122 16276.4 4.52 NO BURN IN ANNULAR CW T 122 j 16291.4 4.53 BURN IN PROGRESS IN ANNULAR OPT 122 16310.5 4.53 NO BURN IN ANNULAR CWT 122

16324.2 4.53 BURN IN PROGRESS IN ANNULAR CWT 122 16340.3 4.54 NO BURN IN ANNULAR CW T 122 16349.3 4.54 BURN IN PROGRESS IN ANNULAR CWT 122 i

i 16355.8 4.54 NO BURN IN ANNULAR CWT 122 16357.3 4.54 BURN IN PROGRESS IN ANNULAR CW T 122 16373.7 4.55 NO BURN IN ANNULAR CWT 122 16395.7 4.55 BURN IN PROGRESS IN ANNLfwAR CWT 122 16415.5 4.56 NO BURN IN ANNUkAR CWT 122 16428.7 4.56 BURN IN PROGRESS IN ANNULAR CW T 122 16436.6 4.57 NO BURN IN ANNULAR CWT 122 1644 1.9 4.57 BURN IN PROGRESS IN ANNULAR CWT 122 i

)

4. 2-1,2

, -_ ,_w-.. .-m m_ _ , _ . , . , _ -.m,,.,,m,,37, , , _ , , - ,.r,.., ,..,,,.....,.,-..-..-,-.-m,_,. ,.,,._..m , , _ . .._.,%,_r,_,_.,.mm..

~ ~~

, ~; ,

^

v, . ., . . . . . . -, y.

,,t.s

. - 9...a..;..J E;.!'. c Table 4.2-1 S2H S2MAAP CONT.

SEC HR EVENT DESCR1PTlON l CODE 16447.6 4.57 NO SURN IN ANNULAR GPT 122 16461.2 4.57 BURN IN PROGRESS IN ANNULAR OPT 122

16493.8 4.58 NO BURN IN ANNULAR CWT 122

' 16498.8 4.58 BURN IN PROGRESS IN ANNULAR C W 122 16517.0 4.59 NO BURN IN ANNULM CWT 122 16543.9 4.60 BURN IN PROGRESS IN ANNULAR GPT 122 4

16552.9 4.60 NO BURN IN ANNULM CWT 122 165,64.6 4.60 BURN IN PROGRESS IN ANNULM CWT 122  ;-

2 16570.5 4.60 NO BURN IN ANNULAR CWT 122 16573.6 4.60 BURN IN PROGRESS IN ANNULAR CWT 122 16605.6 4.61 NO BURN IN ANNULAR CW T 122 16613.S 4.61 BURN IN PROGRESS IN ANNULAR CWT 122 16651.2 4.63 NO BURN IN ANNULAR CW T 122 16668.2 4.63 BURN IN PROGRESS IN ANNULAR CWT 122 -

16677.1 4.63 NO BURN IN ANNULAR CW T 122 16681.5 4.63 BURN IN PROGRESS IN ANNULAR OPT 122 1

16688.2 4.64 ' NO BURN IN ANNULAR CWT 122 16702.2 4.64 BURN IN PROGRESS IN ANNULAR CWT 122 16709.6 4.64 NO BURN IN ANNULAR CWT 122 16721.9 4.64 BURN IN PROGRESS IN ANNULAR G FT 122 16732.5 4.65 NO BURN IN ANNULAR CWT 122 16743.0 4.65 BURN IN PRCGRESS IN ANNULAR CWT 122 16749.5 4.65 NO BURN IN ANNULAR CWT 122

16760.3 4.66 BURN IN PROGRESS IN ANNULAR G FT 122 16787.6 4.66 NO BURN IN ANNULAR GPT 122 16789.7 4.66 BURN IN PROGRESS IN ANNULAR CW T '22 l 16789.7 4.66 ICE DEPLETEO 132 16B38.1 4.68 NO BURN IN ANNULAR OPT 122 k

i 4.2-13

' ~

4.3 Sequence No. 3 - 52E *- - *

.. t..

4.3.1 Accident Sequence Descriotion S2 HF consists of a small LOCA initiator with subsequent failure of the ECCS and containment spray system in the recirculation mode. Emergency --

core cooling and containment sprays are available during the injection phase only and the containment safeguards systems (ice condenser, air return fans, and igniters) are available throughout the accident.

The following sections will present two scenarios for this accident sequence. The first sequence (4.3.2, 4.3.3) postulates that the drains between the upper and lower compartments are either closed or blocked resulting in the spray water accumulating in the refueling pool thus preventing the normal flowback from the upper compartment to the lower compartment sump. The second sequence (4.3.4, 4.3.5) presented postulates an equipment failure preventing the accumulated water in the lower compartment sump from being recirculated back into the upper compartment.

4.3.2 Reactor Coolant Svstem Reneense (Drains Blocked)

I Upon initiation of a 0.0218 gg2 cold leg break, the reactor is scrammed, followed by reactor pump coastdown and auxiliary feedvater startup at five seconds. Figures C.3-6 through C.3-10 illustrate the primary system variables of interest. Immediately following break

( initiation, the primary system pressure drops to saturation pressure followed by the initiation of ECCS injection at 0.01 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> te replace the mass of primary coolant lost out of the break. The ECCS supplies water l

to the RCS between the time of 0.01 and 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />. During this time period, the RCS pressure decreases at a slower rate. The UHI begins to IDm R.4 4.3-1 NEB - July 11, 1984 3 .

l 1

l

l

. . . . . . .....s... . . . . . . . , . . .. . ,- .. . . . .

+ .....l. ... . ..4 inject water when the primary system pressure drops below 1255 lb/in2e.

This addition of cool water depresses the primary system pressure to a minimus. of about 950 lb/in2a at about 0.4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> af ter which the reactor coolant pressure and temperature increases due to the heat trans fe rred from secondary side. Continued loss of primary system inventory leads to core uncovery at 1.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> accompanied by initiation of the cladding metal-water reaction producing hydrogen at a significant rate around 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. Total hydrogen production is 890 lbs at an average rate of 0.18 lbs/sec. This corresponds to an average clad oxidation of 43.2 percent.

At approximately 2.6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> the primary system pressure decreases below 415 lb/in2a and the cold les accumulators begin to dump water into the reactor vessel. The core eontinues to heat up until sufficient molten fuel accumulates leading to failure of the core support plate.- The molten corium falls into the lower plantaa at approximately 2.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br />.

At 2.77 hours8.912037e-4 days <br />0.0214 hours <br />1.273148e-4 weeks <br />2.92985e-5 months <br />, the vessel fails and the remaining water, hydrogen, remaining accumulator water, and molten corium is discharged into the cavity region.

4.3.3 Contain:nent Response (Drains Blocked)

  • Immediately following the accident initiation, the lower compartment pressurises as the RCS inventory is discharged. At 61 seconds the pressure set point for the containment spray is reached. The containment spray takes suction from the RWST until recirculation switchover is attempted unsuccessfully occurs at 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />. At 2.77 hours8.912037e-4 days <br />0.0214 hours <br />1.273148e-4 weeks <br />2.92985e-5 months <br /> the vessel fails and the containment pressure increases to about 30 lb/in2a The 4

[ forced circulation of the air return fans and remaining ice reduce the pressure to approximately 19.5 lb/in2 a At the time of vessel failure, the water level in the lower compartment is approxitately 6 feet, which IDCOR.4 4.3-2 NES - July 11, 1984

?, - ; '* . .-*--,: s-... .

.................(

f4 less than the 10 feet necessary for spillover into the cavity.

Although the containment sprays have delivered all the RUST water prior recirculation switchover at 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />, all of this inventory is trapped in the upper compartment due to the failure to remove upper to lower compartment drain plugs. Therefore, the molten corium is released into a dry cavity. Ismaediate concrete ablation occurs due to " jet" attack during the corium blowdown, resulting in an initial penetration depth of about 0.2 feet. ..

~

To11owing reactor vessel failure, the water level in the lower compartment increases due to accumulation from the selted ice but never reaches the necessary 10 foot spillover height. Therefore, once the

  • water discharged during vessel blowdown (cold leg accumulators and remain'ing vessel inventory) is evaporated by decay heat, the corium in

' the reactor cavity reheats and thermally. attacks the concrete basemat generating noncondensible ga,ses. The , sass of ice remaining at the time of vessel failure is approximately 6.5x105 lbs. The air return fans in d'onjunction with thN remaining ice provida contain9ent pressure .

suppression until 3.'3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />, at which time all the ice has melted. With no method of removing decay heat from the containment, and the continued g

generation of noncondensible gases from the core-concrete attack, the i

containment failure pressure of 65 lb/in2a is reached at 23.68 hours7.87037e-4 days <br />0.0189 hours <br />1.124339e-4 weeks <br />2.5874e-5 months <br />.

At this time, the conta* ment depressurines through the assumed 0.1 f t2 containment failure hole.

4.3.4 R_eector oolant.$ystes Response (Drains Coen)

Upon initiation of & 0.0218 f t 2 cold les break, the reactor is scrammed, fo114 wing by reactor pump coastdown and auxiliary feedwater IDCOR.4 / 4.3 Nt3 - July 11, 1984 J'

. s _. .. . . . . . . . 3 , . , , ,

startup at five seconds. Figures C.3-1 through C.3-5 illustrate the variables of interest. Immediately following break initiation, the primary system pressure drops to saturation pressure followed by the t initiation of ICCS injection at 0.01 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> to replace the mass or primary coolant lost out of the break. The ECCS system supplies water to the RCS between the time of 0.01 and 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />. During this time period, the RCS pressure decreases at a slower rate. The UNI begins to inject water ,

when the primary system pressure drops below 1255 lb/in2a. This addition of cool water depresses the primary system pressure to a minimum of about 900 lb/in2a at about 0.4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> af ter which the reactor coolant pressure and temperature increases due to the heat transferred from secondary side. Continued loss of primary system inventory leads to core uncovery at 1.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> accompanied by initiation of the cladding metal-water reaction producing hydrogen at a significant rate around 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />.

1

! Total hydrogen production is 857 pounds with an average rate of 0.17 lbs/sec, which corresponds to an average clad oxidation of 44.6 percent.

At approximately 2.6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> the primary system pressure decreases below 415 lb/in2a and the cold les accumulators begin to dump water into the i

reactor vessel. The core continues to heat up until sufficient solten fuel accumulates to failure of the core support plate with molten corium flowing into the lower plenum at approminately 2.76 hours8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br />. Vessel failure occurs about one minute *.ater and the remaining water, hydrogen,

, remaining accumulator water, and solten corium is discharged into the j reactor cavity region.

i 4.3.$ Containment Response (Drains _Not Blocked)

Immediately following the accident initiation, the lower compartment

~

pressurises as the RCS inventory is discharged. At 61 seconds the 1000R.4 4.3-4 NEg - July 11, 1934

_-._- _ _ - - - _ _ _ - . _ - _ - - - _ . . _ - - . - - _ _ - - - . - _ . . _ - -.___.____.________.__.m__m-- _ _ . _ - _ _ _ _ - - -.

m .

..%- ,s

_ p..

~~

\

  • 4 .

[

pressure setpoint for the containment sp' ray is reached. The containment

. 1, .4 spray takes suction.from Oie RWST until recircualtion switchover is attempted unsuccessfully at 0.37 hours4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br />. At 2.78 hours9.027778e-4 days <br />0.0217 hours <br />1.289683e-4 weeks <br />2.9679e-5 months <br /> the vessel fails causing a containhent' pressure increase to 29 lb/in2 a The forced circulation of the air' return fans and the remaining ice reduce the pressuretoapproximahaly17.5lb/in2a. The water level in the lower compartment h'as eqEAled the height required for spillover into the cavity 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> befoie"the vessel fails. Therefore, the molten corium is release

~

into a floAded' ea'vity. I:mnediate , concrete ablation occurs due to " jet" attack during the corium blowdown, resulting in an initial penetration depth of 0.11 = feet. 'ssvever, af ter the debris is quenched, no more concrete attack occurs and the containment pressure remains low until the ice melts. Subsequently, the contain=ent pressurizes due to steam formation and fails at 9.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br />.

\

4 1

2 gA l

IDCOR.4 4.3-5 NEB - July 11, 1984 l

.s.

^

  • ' * *m-- =+* = .-*e m., , , _ , , ,

Table 4.3-1 i ~ < '

4 S2HF S7MAAP SEC HR ~

EVENT DESCRIPTION CODE 0.0 0.00 REACTOR SCRAM 13'"

0.0 0.00 MSIV CLOSED 156 0.0 0.00 PS BREAK FAILED 209 0.0 0.00 MANUA1. SCRNJ 227 0.0 0.00 VAKEUP SWITCH OFF 242 0.0 0.00 LETDOWN SWITCH OFF 243 47.5 *

.01 CHARGING PGAPS ON 11 60.7 .02 h%IN COOLANT Pt.MPS OFF 4 .

60.7 .02 CCtCMT SPRAYS ON 103 60.7 .02 MCP SWITCH OFF OR Hi-VIBR TRIP 215 170.5 .05 HPl CN -

5 1337.1 .37 HPI CFF 5 1337.1 .37 CHARGING PUAPS OFF 11

. 1337.1 .37 CON'DAT SPRAYS OFF 1'03 1337.1 .37 HPI FORCED OFF 216 1337.1 .37 LPI FORCED CFF ,

217 1337.1 .37 SPRA'r3 FORCED OFF . 222 1337.1 .37 CFARGING PLMPS FORCED OFF 232 4276.3 1.19 FP RELEASE ENASLED '4

6080.3 1.69 BURN IN PROGRESS IN I/C UPPER PLENUA 14 6375.9 1.77 BURN IN PROGRESS IN LOWER OAPT 75 6448.2 1.79 BURN IN PROGRESS IN UPPER CMPT 102 6515.4 1.81 BURN IN PROGRESS !N ANNULAR Chf2T 122 6646.0 1.85 NO BURN IN LOWER CMPT 75 5594.1 2.39 UHI ACCLM D/PTY 190

{ 9296.9 2.58 BURN IN PROGRESS IN LOWER CMPT 75 9917.9 2.75 SUPPCRT PLATE FAILED 2 9977.4 2.77 RV FAILED 3 9984.0 2.77 NO BURN IN LOWER O.GT 75 10020.3 2.78 NC BJRN IN I/C (JPPER PLENOA 141 10021.6 2.7S BURN IN PROGRESS IN 1/C UPPER PLENLM 141 10025.7

  • 2.78 SURN IN PROGRESS IN LOWER OAPT 75 10051.4 2.79 No BURN IN LOWER CMPT 75 10079.3 2.80 BURN IN PROGRESS IN LOWER CMcT 75 10086.8 2.80 ACCUdJLATOR WATER DEPLETED 18S 10093.2 2.80 NO BURN IN UPPER CMPT 102 4.3-6' '

~

Tabi. 4.3-1 ' .. . . . , 2. J

. ,[f , ,,'

S2HF S7MAAP CONT.

SEC HR EVENT DESCRIPTION CODE .

10150.3 2.82 NO SURN IN ANNULAR CWT 122 10273.4 2.85 NO BURN IN 1/C UPPER PLENW 141

~

10274.4 2.85 NO BURN IN LOWER CMPT 75 10291.2 2.86 BURN IN PROGRESS IN 1/C UPPER PLENW 141 10603.6 2.95 BURN IN PROGRESS IN UPPER CMPT 102 10653.6 2.96 BURN IN PROGRESS IN ANNULAR CW T 122 11954.9 3.32 NO BURN IN ANNULAR CWT 122 .

12004.9 3.33 NO BURN IN UPPER CMPT 102

'.' 12034.9 3.34 BURN IN PROGRESS IN UPPER CMPT 102 12054.9 3.35 NO BURN IN. UPPER CMPT 102 12104.9 3.36 BURN IN PROGRESS IN UPPER CMPT 102 12124.9 3.37 NO BURN IN UPPER CMPT , 102 12212.8 3.39 BURN IN PROGRESS IN UPPER CMPT. 102

. 12232.8 3.40 NO BURN IN UPPER CMPT . 102 12262.8 3.41 NO BURN IN 1/C UPPER PLENW 141 12332.B 3.43 ICE DEPLETEO 132 33308.1 9.25 BURN IN PROGRESS IN LOWER CMPT 75 33390.9 9.28 BURN IN PRCGRESS IN 1/C UPPER PLENLM 141 33801.0 9.39 BURN IN PROGRESS IN UPPER CMPT 102

. 33886.8 9.41 BURN IN PROGRESS IN ANNULAR CWT 122 35099.2 9.75 NO BURN IN LOWER CMPT 75 35109.2 9.75 BURN IN PROGRESS IN LOWER CW T 75 35119.2 9.76 NO BURN IN LOWER CMPT 75 3$129.2 9.76 BURN IN PROGRESS IN LOWER CMPT 75 35139,2 9.76 NO BURN IN LONER CMPT 75 35159.2 9.77 BURN IN PROGRESS IN LOWER CMPT 75 35169.2 9.77 NO BURN IN LOWER CMPT 75 35189.2 9.77 NO BURN IN I/C UPPER PLENW 141 35199.2 9.78 BURN IN PROGRESS IN 1/C UPPER ALENLM 141 35209.2 9.78 BURN IN PROGRESS IN LOWER CMPT 75 35209.2 9.78 NO BURN IN 1/C UPPER PLENW ~141 35219.2~ 9.78 NO BURN IN LCWER.CMPT 75 35229.2 9.79 BURN IN PROGRESS IN 1/C UPPER PLENW 141

, 35239.2 9.79 NO BURN IN 1/C UPPER PLENW 141 35259.2 9.79 NO BURN ~IN UPPER CMPT 102 35259.2 9.79 NO CURN IN ANNULAR CWT 122 4.3-7 -

, -. , , - , , _ , , . - . - , , - - , . .,,--m.---m,- - - , - - - , , , - e,,7 a ----,--,.---.----,--,-,-,y ,,~-.-m m-

G**"*" **

Table 4.3-1 - -

S2HF S7MAAP CONT.

SEC HR I EVENT DESCRIPTION ' CODE 85240.i">3.68 CONTMT FAILED 104 e

  • . . .=

D e

  • Oe* e e

t . . .

9 9 9

e

'l e

4 e

I i

i t

i l

l l

4.3-8

  • I

( .. .

.j u s, s n

.i R .b :., L 2...:2 . u :. j Table 4.3-2 S2HF S3MAAP SEC l HR EVENT DESCRIPTION- . CODE - - - -

0.0 0.00 REACTOR SCRAM 13 0.0 0.00 MSiv CLOSED 156 0.0 0.00 PS BREAK FAILED 209 0.0 0.00 MANUAL SCRAM 227 0.0 0.00 MAKEUP SWITCH OFF 242 0.0 0.00 LETCCWN SWITCH CFF 243 47.5 .01 CHARGING PWPS ON 11 60.7 .02 MAIN COOLANT PWPS OFF 4 60.7' .02 CONTMT SPRAYS ON 103 60.7 .02 MCP SWITCH OFF CR Hi-VfBR TRIP 215 170.5 .05 HPI ON 5 1341.9 .37 HPI OFF -

5 1341.9 .37 CFARGING PWPS OFF 11 1341.9 .37 CONTMT SPRAYS OFF .103 1341.9 .37 HPI FORCED OFF 216 1341.9 .37 LPI FORCED CFF 217 1341.9 .37 SPRAYS FCRCED OFF 222 1341.9 .37 CHARGING PWPS FCRCED OFF 232 4253.9 1.18 FP RELEASE ENASLED 14 6086.0 1.69 BURN IN PROGRESS IN 1/C UPPER PLENW 141 6357.6 1.77 BURN IN PROGRESS IN LCWER CMPT 75 6459.0 1.79 BURN IN PROGRESS IN UPPER CMPT 102 6529.4 1.81 BURN IN PROGRESS IN ANNULAR CW T 122 6643.7 1.85 NO BURN IN LCWER CMPT 7.5 8601.7 2.39 UHI ACCLM EMPTY 190 9314.9 2.59 BURN IN PROGRESS IN LCWER OST 75 9943.2 2.76 SUPPCPT PLATE FAILED 2 10002.1 2.78 RV FAILED 3 10008.2 2.78 NO BURN IN lower CMPT 75 10012.7 2.78 BURN IN PROGRESS IN LOWER OPT 75 10035.8 2(79 NO SURN IN LOWER CMPT 75 10039.8 2.79 SURN IN PROGRESS IN LOWER CNPT 75 10044.0 2.79 NO BURN IN 1/C 4.;PPER PLENLM 141 10047.5 2.79 BURN IN PROGRESS IN 1/C UPPER PLENW 141 10108.B 2.81 ACCLMJLATOR WATER DEPL:: i::.D 188 g 10112.9 2.81 NO BURN IN LOWER CM?T 75 4.3-9

, , ,. , - - - - , , - , , . . . .v, , -n, ,,-..-,,.,n.. . - - , - - , - ~ , . .-- ,---..------..,,,-,...,n.- . ,,

~ - '

, .  ;.n a . ~) ",:

v^"-'""~~~~~*-";
c ;' qi . t .. .

Table 4.3-2 1 S2HF S3MAAP .

CONT.

SEC HR EVENT DESCRIPTION _ _

CODE _

10113.3 2.81 SURN IN PROGRESS IN LOWER CMPT 75 10139.4 2.82 NO SLRN IN LOWER CNPT 75 12346.6 3.43 NO BURN IN ANNULAR O,PT 122 12376.6 3.44 NO BURN.lN UPPER CMPT 102 12385.7 3.44 SURN IN PROGRESS IN UPPER CMPT 102 12399.3 3.44 NO BURN IN UPPER CMPT 102 12411.7 3.45 BURN IN PROGRESS IN UPPER CMPT ,

102 ,

12427.4 3.45 NO SURN IN UPPER CMPT -

102 ~~

12452.S' 3.46 SURN IN PROGRESS IN UPPER CMPT 102 12468.0 3.46 NO BURN IN UPPER CMPT, 102 12504.4 3.47 BURN IN PROGRESS IN UPPER CMPT 102 12520.1 3.48 NO, BURN IN UPPER CMPT 102 12575.7 3.49 EURN IN PRCGRESS IN UPPER CMPT 102 12593.0 3.50 NO EURN IN UPPER CMPT 102 -

l 12694.6 3.53 SURN IN PROGRESS IN UPPER CMPT 102 12715.7 3.53 NO BURN IN UPPER CMPT 102 12786.7 3.55 NO BURN IN 1/C UPPER PLENW .

141 12789.4 3.55 BURN IN PROGRESS IN 1/C UPPER PLENt.M 141 12000.1 3.56 NO SURN IN I/C UPPER PLENW 141 12810.1 3.56 BURN IN PROGRESS IN 1/C UPPER PLENLM 141 12818.5 3.56 NO BURN IN 1/C UPPER PLENW 141 13036.6 3.62 BURN IN PROGRESS IN UPPER CMPT 102 13053.2 3.63 NO BURN IN UPPER CMPT 102 13446.9 3.74 BURN IN PROGRESS IN UPPER CMPT ,

102 13468.0 3.74 NO BURN IN UPPER CMPT 102 13833.6 3.84 BURN IN PROGRESS IN UPPER CMPT 102 l

13851.2 3.85 NO BURN IN UPPER CMPT 102

, 14221.8 3.95 BURN IN PROGRESS IN UPPER CNPT 102 l

14242.5 3.96 NO SURN IN UPPER CMPT _

102 14572.9 4.05 BURN IN PRCGRESS IN UPPER CMPT 102 14592.9 4.05 NO BURN IN UFFER CMPT 102 14520.7 4.06 BURN IN PROGRESS IN 1/C UPPER PLEN(.M 141 14630.7 4.06 ICE DEPLETED 132 1463'O.7 4.06 NO BURN IN 1/C UPPER PLENW 141 35499.4 9.86 CONTMT FAILED 104 l

4.3-10 ,

4

u. , . , , . .. ....cm s
  • _', a

'{

.5 s u ......-...- : a 4.4 S equ enc e No. 4 - TMI.3 '

4.4.1 Accident Secuence_tieseription ,

TM:.3' consists of a transient sequence initiated by loss of of f-site -

AC power with subsequent loss of on-site AC power. Due te lack of cooling, the reactor coolant pmp seals fail resulting in a small LOCA (50 gpm/ pump). In this sequence, several potential sequences are Imped together. These include inanediate f ailure of main and ,

auxiliary feedwater as well as sequences involving no interruption of main feedvater but subsequent f ailure of the power conversion system and f ailure of the auxiliary feedwater. For the base case analysis, both main and auxiliary feedwater are both assumed lost at the time of the initiating event. Emergency core cooling, containme t sprays, air return fans, and hydrogen igniters are not available due to loss of all AC power.

4.4.2 Reactor Coolant System Reseense This sequence is initiated by loss of of f-site AC power with subsequent loss of on-site AC power, reactor trip, reactor pump coastdown, and loss of both main and auxiliary f eedwater. Figures C.4-1 through C.4-5 illus trate the variables of interest. Due to lack of injection and cooling, the reactor coolant pump seals f ail at 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> resulting in a total 200 gal / min leak. The RCS water mass continues to decrease as RCS inventory is depleted through the pump seals. The primary system maintains a relatively constant pressure of about 2000 lb/in2a as the steam generator provides a heat ' sink.

However, the steam generators are losing mass through the secondary side relief valves with no make-up from feedwater.

IDCOR.4 4.4-1 NEB - July 11, 1984

~;'., ',"*. ; * '

g. -

' ".,.L,'

j

,.! a . i . . .'.: . . . . - .'. c. .i e The primary system pressure starts to rapidly increase between 1.2 and 1.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> due to the loss of the secondary side steam. generator heat sink. The pressure continues to increase to the set point of the pressurizer relief valves. Continued blowdown to the quench tank results in f ailure of the tank rupture disk at 1.40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br />. Complace steam generator dryout occurs at 1.41 hours4.74537e-4 days <br />0.0114 hours <br />6.779101e-5 weeks <br />1.56005e-5 months <br />. During this time of high pressure RCS blevdown, the water level in the reactor vessel rapidly decreases with core uncovery around 1.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> and initiation of hydrogen production occurring at approximately 2.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />. The total hydrogen mass production is 762 lbs. at an average rate of 0.19 lbs/sec. This corresponds to an overall oxidation of 37 percent. The primary sys tem _

continues to remain at high pressure and suf ficient molten corium is accumulated to fail the core support plate at approximately 3.11 hours1.273148e-4 days <br />0.00306 hours <br />1.818783e-5 weeks <br />4.1855e-6 months <br /> as evidenced in the vessel pressure spike and slight level swell in the i

vessel. About one minute later, the vessel f ails and the remaining

~

water, hydrogen, and corium are discharged frc"xs the vessel into the cavity at high pressure. Due to the elevated RCS pressure, no water is l injected by either URI or cold leg accumulators until the time of vessel failure. 'w* hen UHI does inject , it results in cooling of the upper structures in the vessel, thus providing cooler regions for fission i

product deposition.

4.4.3 Containment Response

. The containment pressure increases to 17.0 lb/in2a following f ailure of the pump seals and then increases further to approximately 28 lb/in2a j following quench tank rupture disk f ailure. At 3.13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> the vessel f ails, increasing the contairsment pressure to approximately 35 lb/in2a.

At the time of vessel failure the water level in the lower compartment is IDCDR.4 4.4-2 NEB - July 11, 1984 l

.;3 7. p .

.;? .'

.:  ;..s.a .- ..aa i approximately 2.5 feet which is less than the 10 feet necessary for spillover into the cavity. Therefore, the molten corium is released into a dry cavity. Immediate concrete ablation occurs due to " jet" attack during the corium blowdown, resulting in an inicial penetration depth of about 0.20 feet.

Following reactor vessel failure, the water level in the lower compartment never reaches the necessary 10 foot spillover height.

Therefore, once the water discharged during vessel blevdown (cold leg accumulators and UHI) is evaporated by decay heat, the corium in the reactor cavity reheats and decomposes the concrete, thua generating noncendensible gases. The mass of ica remaining at time of vessel failure is approximately 1.55x106 lbs., but this has melted by 5.69 hours7.986111e-4 days <br />0.0192 hours <br />1.140873e-4 weeks <br />2.62545e-5 months <br />. With no method of removing heat from the containment , and the continued generation of noncondensible gases frem the corium-concrete attack, the containment failure pctssure of 65 lb/in2a is reached at approximately 27.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. At this time, the containment depr es surizes through the assumed 0.1 f t2 containment failure hole.

1 l

l l

l l

IDCOR.4 4.4-3 NE3 - July 11, 1984

. n.. . .

m . 4.4-1 .l Z ?, .:., ,.

.>7 TMLB' S4MAAP

~

SEC HR I EVENT DESCRIPTION l CODE 0.0 0.00 NAIN COOLANT PWPS OFF 4 0.0 0.00 REACTOR SCRAM 1 "3 0.0 0.00 MSIV CLCSED 156 0.0 0.00 POWER NOT AVAILABLE 205 0.0 0.00 N%KEUP SWITCH OFF 242 0.0 0.00 LETDCWN SWITCH CFF 243 2707.1 .75 PS BREAK FAILED 209 5046.7 1.40 O/T RUPTURE DISK FAILED . m- -~

92 - .

5068.9 1.41 BROKEN S/G DRY 151 5068.9 1.41 UN8KN S/G DRY 161 6730.9 1.07 FP RELEASE ENASLED 14 11213.9 3.11 SUPPCRT PLATE FAILED 2 11273.1 3.13 RV FAILED -

3 11289.6 3.14 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11329.1 3.15 NO BURN IN 1/C UPPER PLENW ~ 141 11336.0 3.15 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11373.5 3.16 BURN IN PROGRESS IN LOWER CMPT 75 11382.7 3.16 NO BURN IN 1/C UPPER PLENW 141 11385.5 3.16 SURN IN PROGRESS IN 1/C UPPER PLENW 141 11386.6 3.16 NO BURN IN 1/C ' UPPER PLENW 141 i 11390.9 3.16 BURN IN PROGRESS IN I/C UPPER PLENW 141 11391.8 3.16 NO BURN IN 1/C UPPER PLENW 141 11392.4 3.16 ACCUAJLATOR WATER DEPLETED 188 11393.2 3.16 NO SURN IN LOWER CMPT 75' 11393.9 3.16 BURN IN PRCGRESS IN 1/C UPPER PLENW 141 11429.4 3.17 BURN IN PROGRESS IN LOWER CMPT 75 11450.1 3.18 NO BURN IN I/C UPPER PLENW 141 11452.9 3.18 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11454.7 3.18 NO SURN IN LOWER CMPT 75 11510.0 3.20 UHi ACCLM EMPTY 190 11515.S 3.20 NO SURN IN I/C UPPER PLENW 141 f.1519. 3 3.20 SURN IN PROGRESS.IN 1/C UPPER PLENW 141 11535.3 3.20 NO BURN IN 1/C UPPER PLENW 141 11543.6 3.21 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11559.2 3.21 NO BURN IN 1/C UPPER PLENW 141 11568.0 3.21 SURN IN PROGRESS IN 1/C UPPER PLENW 141 4.4-4

--r. . . , - - - - , -

, , , s ,., ,. ..- - . - . .

.' L ! J p j - ..

Table 4.4-1 3 .2.wL,.. ... . -8 TMLB' S4MAAP CONT.  !

~

SEC HR EVENT DESCRIPTION l CODE 11584.4 3.22 NO BURN IN 1/C UPPER PLENW 141 11593.4 3.22 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11610.3 3.23 NO BURN IN 1/C UPPER PLENW 141 11620.5 3.23 BURN IN PROGRESS IN I/C UPPER PLENLM 141 11637.1 3.23 NO BURN IN 1/C UPPER PLENW 141 11650.0 3.24 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11666.5 3.24 NO BURN IN 1/C UPPER PLENW :- 141 11678.8 3.24 BURN IN PROGRESS IN l/C UPPER PLENW 141

~

11695.1 3.25- NO BLRN IN I/C UPPER PLENW 141 11705.2 3.25 BURN IN PRCGRESS IN 1/C UPPER PLENW 141 11722.2 3.26 NO BURN IN 1/C UPPER PLENW 141 11731.7 3.26 BURN"lN PROGRESS IN 1/C UPPER PLENUM 141 11748.7 3.26 NO BURN IN 1/C UPPER PLENLM 141 11756.8 3.27 BURN IN PROGRESS IN 1/C UPPER PLENW 141 -

11773.5 3.27 NO BURN IN 1/C UPPER PLENW 141 11780.1 3.27 BURN IN PROGRESS IN 1/C UPPER PLENW 141 11795.5 3.28 NO BURN IN 1/C UPPER PLENW 141 11801.5 3.28 BURN IN PROGRESS IN 1/C UPPER PLENW 141 12261.9 3.41 NO BURN IN i/C UPPER PLENW 141 20471.7 5.69 ICE DEPLETED 132 38111.6 10.59 BURN IN PROGRESS IN LCWER CMPT 75 38138.7 10.59 NO BURN IN LOWER CMPT 75 38365.0 10.66 BURN IN PROGRESS IN LOWER CNPT 75 38392.0 10.56 NO BURN IN LOWER CNPT 75 38677.5 10.74 BURN IN PROGRESS IN LOWER CMPT 75 38703.1 10.75 NO BURN IN LOWER CMPT 75 39116.3 10.87 BURN IN PROGRESS IN LOWER CMPT 75 39143.5 10.87 NO BURN IN LOWER CMPT 75 39742.8 11.04 BURN IN PROGRESS IN LOWER CMPT 75 39768.7 11.05 NO BURN IN LOWER CNPT 75 40499.6 11.25 BURN IN PROGRESS IN LOWER CMPT 75 40526.5 11.26 NO BURN IN LOWER CMPT 75 98885.'6 27.47 CONTMT FAILED 104 i

c 4.4 1 l

L

. . ...- ....._.~ . . . . ... _- - . -.. ..... . . . . . - . . . - . . . . . . . . . . . - - - -

11.Y $ ', . . .

4.5 Sequence No. 5 - T g3ML a ,'2.L:a a ... .. . .-

4.5.1 Accident Secuence Description T23ML consists of a transient initiator other than less of off-site power with automatic reactor trip and loss of main and auxiliary f ee dwat er. AC power is available and, therefore, emergency core cooling and containment safeguards are available throughout the accident.

Although sufficient time exists for operator action, the base case assumes human or equipment failures prevent proper charging and safety system operation. It, therefore, is a very low probability event.

Higher probability sequences are discussed in section 5.0.

, 4.5.2 Reactor Coolant System Response . -

This sequence is initiated by loss of both main and auxiliary feedwater, followed by reactor trip and reactor pump coastdown. -

. 1 Figures C.5-1 through C.5-5 illustrate the variables of interest.

Following loss of all feedwater and reactor scram, the primary system I pressure decreases momentarily followed by the actuation of the J

pressurizer heaters which maintain the pressure at approximately 2270 i

lb/in2 The water level in the pressurizer increases during heat up 1

and volumetric expansion causing the pressurizer to go solid arouni )

i 1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> af ter accident initiation.

The primary system pressure starts to increase a'ter 0.87 hours0.00101 days <br />0.0242 hours <br />1.438492e-4 weeks <br />3.31035e-5 months <br /> due to the loss of the secondary side steam generator heat sink. The pressure continues to rise to the set point of the presssurizer safety valves.

. However, blowdown through these valves decreases primary system inventory and with no makeup available both the primary system pressure and level begin to decrease. Therefore, the primary system pressure stablizes at IDCDR.4 4.5-1 NE5 - July 11, 1984

. . - _ . - - . ~ _ _ , _ _ _ , . _ . _ _ . _ , , , .--__--,,,e,v-**"---+

i>- in ?*y

.eur'%) g , .

.e d UA1sI! ...... . .4 l

the PORV set point of 2350 lb/in2a with continued inventory dep1,etion and core uncovery occurring at 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. As the water level in the core ,

continues to drop, the cladding temperature begins to increase. At approximately 1.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br />, the fuel nodes begin to approach 19440F and the metal-water reaction initiates significant hydrogen generation and further core melting. Total hydrogen production from in-vessel Zircaloy oxidation is 772 lbs. The average production race is 0.195 lbm/see and

)

the reaction is equivalent to a total core average clad oxidation of 37.5 I i

i percent. The primary system continues to remain at high pressure and sufficient molten corium is accumulated to fail the core support plate at 2.98 hours0.00113 days <br />0.0272 hours <br />1.62037e-4 weeks <br />3.7289e-5 months <br />. At 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> the vessel fails and the remaining water, hydrogen, and corium core discharged from the vessel.into,t,he,_ cavity a_t _ , _ , _

high pressure.

4.5.3 containment Response The centainment pressure remains at about 15 lb/in2a until quench tank rupture disk f ailure at 1.16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />. The containment pressure rapidly increases to 19.5 lb/in2a but is suppresssed as the containment sprays, air return fans, and ice are availa' ale. The containment sprays take suction from the RWST until successful recirculation realignment occurs at 1.55 hours6.365741e-4 days <br />0.0153 hours <br />9.093915e-5 weeks <br />2.09275e-5 months <br />. This pressure suppression reduced the pressure to about 17.5 lb/in2a until vessel failure occurs at 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> with a i corresponding pressure increase to 27 lb/in2a which is quickly suppres sed. As the ice continues to melt and RCS inventory is lost from the pressurizer relief valves, the water level in the lower compartment exceeds the necessary curb height required for spilling water into the cavity at approximately 1.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. Therefore, when the vessel fails the cavity is flooded. This flooded condition limits core-concrete ablation i IDCOR.4 4.5-2 NE3 - July 11, 1984

~

.$" a.'l d'!

to the " jet" accack resulting in a 0.14 foot penetration depth. The flooded cavity results in imediate quenching of the corium.

The remaining ice at time of vessel f ailure is approximately 1.3x106 lbs. At 5.30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />, all of the ice has melted and containment pressurization begins. Following ice depletion, the containment pressure rapidly rises to about 19.5 lb/in2a However, the containment sprays continue to remove heat from the containment atmosphere. This heat removal rate matches the heat decay at approximately 7.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />.

Therefore, the contai ment spray heat removal rate is more than adequate to remove decay heat and the containment pressure continues to decrease,

~

thus precluding containment failure.

t i

r l

l i

l =

l IDCOR.4 4.5-3 NE3 - July 11,1984 t

-- . - - . - . . _ . . . . . .1 e

..g..,,.,. . . . )

Table 4.5-1 P .1.

'.i __

9 . :2. .. . . .

. . 2 T23ML S5MAAP SEC HR EVENT DESCRIPTION l CODE 0.0 0.00 REACTOR SCRAM 13 0.0 0.00 MSIV CLOSED 156 0.0 0.00 HPI FORCED OFF 216 0.0 0.00 LPI FORCED OFF 217 0.0 0.00 AUX FEED WATER FORCED OFF 224 0.0 0.00 MANUAL SCRAM 227 0.0 0.00 MAIN FW SHUT OFF 228 0.0 0.00 CHARGING PWPS FORCED OFF 232 -

3128.1 .87 BROKEN S/G DRY 151 3148.1 .87 UN8KN S/G ORY 161 4176.1 1.16 Q/T RUPTURE DISK FAILED 92 4187.0 1.16 MAIN COOLANT PWPS OFF 4 4187.0 1.16 MCP SWITCH OFF OR Hi-VIBR TRIP 215 4187.1 1.16 CONTMT SPRAYS ON '

103 5583.3 1,55 RECIRC SYSTEM IN OPERATION 181 5583.3 1.55 RECIRC SWITCH: MAN ON 220 5585.3 1.55 CH PWPS INSUFF NPSH ,

183 5585.3 1.55 HPl PWPS INSUFF NPSH 185 6267.1 1.74 FP RELEASE ENABLED 14 10725.9 2.98 SUPPORT PLATE FAILED 2 10741.0 2.98 BURN IN PROGRESS IN LCWER CMPT 75 10768.6 2.99 BURN IN PROGRESS IN 1/C UPPER PLENLM 141 1 10785.4 3.C0 RV FAILED 3 10789.9 3.00 NO BURN IN LOWER CMPT 75 10827.2 3.01 BURN IN PROGRESS IN LOWER CMPT 75 10837.3 3.01 NO BURN IN I/C UPPER PLENW 141 10038.3 3.06 8 URN IN PROGRESS IN I/C UPPER PLENW 141 1 10839.1 3.01 NO BURN IN 1/C UPPER PLENW 14i l

10840.5 3.01 BURN IN PROGRESS IN l/C UPPER PLENW 141 10341.7 3.01 NO BURN IN 1/C UPPER PLENW 141 10843.0 3.01 BURN IN PROGRESS IN l/C UPPER PLENW 141 10844.2 3.01 NO BURN IN 1/C UPPER PLENLM 141 10845.0 3.01 NO SURN IN LOWER CMPT 75 10845.5 3.01 BURN IN PROGRESS IN I/C UPPER PLENW 141

,10847.4 3.01 NO BURN IN 1/C UPPER PLENW 141 l 10847.6 3.01 SURN IN PROGRESS IN 1/C UPPER PLENW 141 l l

e 4.5-4'

_ _ . _ _ . . _ . _ . . .__._ _. . . ~ . _ _ _ _ _ . . . _ _ . ___ _,._,_ .__ . _ _ . _ _ _ . _ . .

-~

'a '.;

  • s -

Table 4.5-1  ! a 4 .-- .2 - -- J T23ML S5MAAP CONT.

- ~ ~

SEC l HR EVENT DESCRIPTlCN CCOE 10854..:. 3.02 SURN IN PROGRESS IN LCWER CMPT 75 10878.7 3.02 NO BURN IN 1/C UPPER PLENW 141 10879.1 3.02 BURN IN PROGRESS IN 1/C UPPER PLENt.M 141 10900.9 3.03 ACCU.i>LATOR WATER OEPL::.it.0 188 10925.6 3.03 NO BURN IN I/C UPPER PLENLM 141 10929.9 3.04 BURN IN PROGRESS IN 1/C UPPER PLENt.M 141 10950.5 ,3.04 BURN IN PROGRESS IN UPPER CMPT 102 10981.0 3.05 NO BURN IN LCWER CMPT 75 - -

10982.0 3.05 BURN IN PROGRESS IN ANNULAR GFT 122 10987.0 3.05 BURN IN PROGRESS IN LCWER OST 75 10995.4 3.05 NO BWRN IN LCWER CMPT 75 11020.4 3.06 UHI ACCLM EMPTf 190 12185.5 3.39 NO SURN IN UPPER CMPT 102 -

12431.7 3.45 BURN IN PROGRESS IN UPPER CNPT 102 12457.8 3.46 NO BURN IN UPPER CMPT 102 12500.3 3.47 NO BURN IN ANNULAR GPT 122 12516.8 3.48 BURN IN PROGRESS IN ANNbtAR G9T 122 12523.0 3.48 NO BURN IN ANNULAR OST 122 12529.0 3.48 BURN IN PROGRESS IN ANNULAR GFT 122 12595.4 3.50 NO BURN IN ANNULAR O#T 122 12601.7 3.50 SURN IN PROGRESS IN ANNULAR OST 122 12608.1 3.50 NO BURN IN ANNULAR CNPT 122 12611.0 3.50 BURN IN PROGRESS IN MNULAR CNFT 122 12574.2 3.52 NO BURN IN ANNULAR ChPT 122 l 12680.7 3.52 BURN IN PROGRESS IN MNULAR GPT 122 12599.4 3.53 NO BURN IN ANNULAR OST 122 12701.9 3.53 SURN IN PR"JGRESS IN ANNLLAR OET 122 13016.5 3.52 NO BURN iN ANNULAR OST 122 13022.7 3.62 BURN IN PROGRESS IN ANNULAR OST 122 13084.9 3.63 NO BURN IN ANNULAR OST 122 13091.3 3.64 5'JRN IN PROGRESS.IN ANNULAR C#T 122 13220.2 3.67 NO CURN IN ANNULAR OST 122 13223'2 3.67 EURN IN PROGRESS IN ANNULAR OST 122 l 13452.4 3.74 NO BURN IN ANNULAR OST 122 13454.5 3.74 SURN IN PROGRESS IN ANNULAR CAFT 122 13718.3 3.81 NO BURN IN ANNULAR OST 122 4.5 _ _

J .! k .L . . . ....

~

T23ML S5MAAP CONT.

SEC HR EVENT DESCRIPTION CODE 13724.5 3.81 SURN IN PROGRESS IN ANNULAR GFT 122 13730,6 3.81 NO BURN IN ANNULAR CNFT 122 13733.7 3.81 BURN IN PROGRESS IN ANNULAR GPT 122 13793.1 3.03 NO BURN IN ANNULAR OFT 122 13799.0 3.83 BURN IN PROGRESS IN ANNULAR OFT 122 13810.8 3.84 NO BURN IN ANNULAR CW T 122 13814.1 3.84 BURN IN PROGRESS IN ANNULAR GPT 122 -

14112.1 3.92 NO BURN IN ANNULAR CAFT 122 14128.7 3.92 BURN IN PROGRESS IN ANNULAR CNFT 122 14134.3 3.93 NO BURN IN ANNULAR CNPT 122 14140.0 3.93 BURN IN PROGRESS 'IN ANNULAR G PT 122 14145.7 3.93 NO BURN IN ANNULAR GPT 122 14147.7 3.93 BURN IN PROGRESS IN ANNULAR O FT ,

122

~

14228.2 3.95 NO BURN IN ANNULAR CNPT -

122-14236.6 3.95 BURN IN PROGRESS IN ANNULAR GPT 122 14293.9 3.97 NO BURN IN ANNULAR GPT - 122 14301.1 3.97 BURN IN PROGRESS IN ANNULAR GFT 122 14307.9 3.97 NO BURN IN ANNULAR ChPT 122 14311.4 3.98 BURN IN PROGRESS IN ANNULAR CWT 122 143111.6 3.98 NO BURN IN ANNULAR CNPT 122 14344.3 3.98 BURN IN PROGRESS IN ANNULAR GFT 122 14373.3 3.99 NO BURN IN ANNULAR GPT 122 14379.7 3.99 BURN IN PROGRESS IN ANNULAR CNPT 122 14414.3 4.00 NO BURN IN ANNULAR GPT 122 ,

14416.4 4.C0 BUPN IN PROGRe~SS IN ANNLLAR GFT 122 '

14449.1 4.01 NO BLEN !N ANNULAR CNPT 122 14462.9 4.02 BURN IN PROGRESS IN ANNLLAR OPT -

122 14493.2 4.03 NO BURN IN ANNULAR ChFT 122 14501.0 4.03 NO BURN IN 1/C UPPER PLENW 141 14505.8 4.03 BURN IN PROGRESS IN 1/C UPPER PLENLM 141 14515.4 4.03 BURN IN PROGRESS IN ANNULAR GPT 122 14515.4 4.03 NO BURN IN I/C UPPER PLENLM 141 14522.8 4.03 BURN IN PROGRESS IN 1/C UPPER PLENLM 141 14548.4 4.04 NO BURN IN ANNULAR ChPT 122 14558.0 4.04 NO SURN'IN 1/C UPPER PLENLM 141

'14563.1 4.05 BURN IN PROGRESS IN ANNULAR ChPT 122 4.5-6

I

-.(. #

. .. ,,,..a Table 4.5-1 3 ** " ~''

~

- T23ML S5MAAP .

CONT.

9 SEC HR EVENT DESCRIPTION l CODE 14570.7 4.05 8 URN IN PROGRESS IN I/C UPPER PLENW 141 14576.8 4.05 NO EURN IN 1/C UPPER PLENW 141 14582.8 4.05 BURN IN PROGRESS IN I/C UPPER PLENW 141 14592.8 4.05 NO SURN IN ANNULAR OPT 122 14602.5 4.06 NO BURN IN 1/C UPPER PLENW 141 14626.2 4.06 8 URN IN PROGRESS IN ANNLLAR GPT 122

. - 14646.2 4.07 BURN IN PROGRESS IN I/C UPPER PLENW 141 14653.5 4.07 NO SURN IN 1/C UPPER PLENW 141 14669.3 4.07 NO BURN IN ANNULAR GPT 122 14673.5 4.08 BURN IN PROGRESS IN ANNULAR GPT 122 14682.1 4.08 BURN..IN PROGRESS IN I/C UPPER PLENW 141 14686.3 4.08 NO BURN IN 1/C UPPER PLENW 141 i . 14699.2 4.08 BURN IN PROGRESS IN 1/C UPPER PLENW 141 14706.2 4.09 NO BURN IN l/C UPPER PLENW - - : 141  :

14713.2 4.09 NO SURN IN ANNULAR GPT 122 14718.0 4.09 BURN IN PROGRESS IN ANNLLAR 0+'T 122 14727.5 4.09 MO BURN IN ANNULAR OST 122 14729.7 4.09 BURN IN ?ROGRESS IN ANNULAR GPT 122 14765.4 4.10 NO BURN IN ANNULAR OPT 122

'14701.S 4.11 SURN IN PROGRESS IN ANNULAR OST 122 14800.8 4.11 NO BURN IN ANNULAR GPT 122 14825.1 4.12 BURN IN PRCGRESS IN ANNLLAR OST 122 14851.6 4.13 .

NO BURN IN ANNULAR GPT 122 14963.7 4.13 BURN IN PROGRESS IN ANNULAR GPT 122 14874.2> 4.13 NO BURN IN ANNULAR GFT 122 14881.0 4.13 BURN IN PROGRESS IN ANNULAR GFT 122 i 14890.6 4.14 NO BURN IN ANNULAR GPT -

122 14895.4 4.14 SURN IN PROGRESS IN ANNULAR GFT 122 15002.9 4.17 NO EURN IN ANNULAR OST 122

~

15019.9 4.17 BURN IN PROGRESS IN ANNULAR OPT 122 15049.6 4.18 NO BURN IN ANNULAR C#T 122 15064.7 4.18 SURN IN PROGRESS IN ANNULAR GPT 122 15074,1 4.19 NO BURN IN ANNULAR OST 122

( 15083.2 4.19 SURN IN PROGRESS IN ANNULAR OFT 122 l 15090.9 4.19 NO SURN IN ANNULAR OST 122 l 15100.7 4.19 BURN IN PROGRESS IN ANNULAR OST 122 4.5-7

  • s,.4 7 .p ., ,

a.ps 5 E. *.A :. ; .

Table 4.5-1 -

T23ML S5MAAP CONT.

SEC HR EVENT DESCRIPTlCN CODE 15181.9 4.22 NO SURN IN ANNULAR G9T 122 15197.6 4.22 BURN IN PROGRESS IN ANNULM OST 122 15204.6 4.22 BURN IN PROGRESS IN UPPER C#T 102 15237.4 4.23 NO SURN IN UPPER CMPT 102 15318.6 4.26 NO SURN IN ANNULAR OST 122 15405.9 4.28 BURN IN PROGRESS IN ANNULAR OST 122 -

.. 15433.4 4.29 NO BURN IN ANNULAR OST -

1-22 15457.4 4.29 BURN IN PROGRESS IN ANNULAR OPT 122 -

15466.7 .4.30 NO SURN IN ANNULAR OST 122 15480.7 4.30 BURN IN PROGRESS IN ANNULAR OST 122 15495.5 4.30 NO BURN IN ANNULAR O#T 122 15502.9 4.31 BURN IN PROGRESS IN ANNULAR OST .

122 15535.6

~

. ._. . 4.32 NO BURN IN ANNULAR O#T 122 15594.4 4.33 BURN IN PROGRESS IN ANNULAR GPT 122 15643.3 4.35 NO BURN IN ANNULAR O#T 122 15653.1 4.35 BURN IN PROGRESS IN ANNULAR GPT 122 15660.6 4.35 NO BURN IN ANNULAR OST 122 15675.4 4.35 BURN IN PROGRESS IN ANNULAR GPT 120 15665.2 4.36 NO BURN IN ANNULAR OPT 122 15718.1 4.37 BURN iN PROGRESS IN ANNULAR OPT 122 15728,1 4.37 NO SURN IN ANNULAR OST 122 15779.3 4.38 BURN IN PROGRESS IN ANNULAR OST 122 15796.4 4.39 NO BURN IN ANNULAR O#T 122 15826.3 4.40 BURN IN PRCGRESS IN ANNULAR GPT 122 15844.5 4AO NO BURN iN ANNULAR O.FT 122 15861.5 A.41 BURN IN PROGRESS IN ANNULAR OPT 122 15871.2 4.41 NO BURN IN ANNULAR O#T 122 15898.5 4.42 BURN IN PROGRESS IN ANNULAR OST 122 15918.0 4.42 NO BURN IN ANNULAR OST 122 15945.0 4.43 BURN IN PROGRESS IN ANNULAR GPT 122 15955.3 4.43 NO SURN IN ANNULAR C#T 122 15960.5 4.43 BURN IN PROGRESS IN ANNULAR OST 122 15970.9 4.44 NO BURN IN ANNULAR OST 122 15981.3 A.44 BURN IN PROG 9ESS IN ANNULAR GPT 122 15989.4 4.44 NO SURN IN ANNULAR OST 122 i 16014.8 4.45 BURN IN PROGRESS IN ANNULAR OST 122

~

4.5-8 l.

1 l

..p.

Table 4.5-1 $ .[. ..

T23ML S5MAAP CONT.

~~

SEC HR l EVENT DESCRIPTION CCDE 16039.8 4.46 NO SURN iN ANNULAR OFT 122 16067.3 4.46 BURN IN PROGRESS IN ANNULAR OFT 122 16080.1 4.47 NO SURN IN ANNULAR OST 122 16101.0 4.47 BURN IN PROGRESS IN MNULAR GFT 122 16117.2 4.48 NO BURN IN ANNULAR OPT 122 16144.0 4.48 BURN IN PROGRESS IN ANNULAR GPT 122 16158.6 ,4.49 NO BURN IN ANNULAR GPT 122 16185.7 4.50 BURN IN PROGRESS IN ANNULAR GFT 122 16194.5 4.50 NO BURN IN ANNULAR GPT 122 16200.4 4.50 BURN IN PROGRESS IN ANNULAR GPT 122 16206.2 4.50 NO BURN IN ANNULAR GFT 122 16253.3 4.51 BURN IN PROGRESS IN ANNULAR GFT 122 16268.4 4.52 NO BURN IN ANNULAR CNPT 122 16287.2 4.52 BURN IN PROGRESS IN ANNULAR OPT 122 I

16311.2 4.53 NO BURN IN ANNULAR ChPT 122 j 16333.9 4.54 BURN IN PROGRESS IN ANNULAR GFT 122 16355.5 4.54 NO BURN IN ANNULAR GPT 122 16361.5 4.54 BURN IN PRCGRESS IN ANNULAR GPT 122 16308.2 4.55 NO BURN IN ANNULAR GPT 122 i j 16419.7 4.56 BURN IN FROGRESS IN ANNULAR O FT 122 16451.0 4.57 NO SURN IN ANNULtR CNPT 122 16451.1 4.57 BURN IN PROGRESS IN ANNULAR ChPT 122 l 16492.9 4.56 NO BURN IN ANNULAR GPT 122
16524.1 4.59 BUPN IN PROGRESS IN ANM.A.AR GPT 122 ,

i 16531.3 4.59 NO EURN IN ANNULAR GPT 122 16541.5 4.59 BURN lh PROGRESS IN ANNULAR GPT 122 16560.6 4.60 NO BURN IN ANNULAR CLPT 122 16587.2 4.61 BURN IN PROGRESS IN ANNULAA G9T 122 16595.2 4.61 NO BURN 6N ANNULAR GPT 122 16598.9 4.61 BURN IN PROGRESS IN ANNULAR GPT 122 16610.2 4.61 NO BURN IN ANNULAR ChPT 1,22 16621.9 4.62 BURN IN PROGRESS- IN ANNULAR OFT 122 16631.4 4.62 NO BURN IN ANNULAR ChPT 122 16660.6 4.63 BURN IN PROGRESS IN ANNULAR ChPT 122 16686.4 4.64 NO BURN IN ANNULAR ChPT 122 16703.9 4.64 BURN IN PROGRESS IN ANNULAR ChFT 122 l

4.5-9

  • s., -.

3 ..,....,.7

, * ,s , .. .

Table 4.5-1 j j ., ;_, , , , , ,, ;,

~

T23ML S5MAAP .

CONT.

SEC HR EVENT DESCRIPTICN l CCCE , ,

16712.8 4.64 NO SURN IN ANNULAR GPT 122 16726.0 4.65 BURN IN PROGRESS IN ANNULAR GPT 122 16735.6 4.65 NO BURN IN ANNULAR GPT 122

, 16750.3 4.65 BURN IN PROGRESS IN ANNULAR GPT 122 16760.3 4.66 NO BURN IN ANNULAR OST 122 16766.9 4.66 BURN IN PROGRESS IN ANNULAR GPT 122 4.66

~

122

~

16776.9 NO BURN IN ANNULAR OPT -

. - - 16812.2 4.67 BURN IN PROGRESS IN ANNULAR GFT 122 ,

16831.5 4.68 NO BURN IN ANNULAR GPT 122 16838.8 4.68 BURN IN PRCGRESS IN ANNULAR OST 122 16848.3 4.68 NO BURN IN ANNULAR GPT 122

! 16857.2 4.68 BURN IN PROGRESS IN ANNULAR OFT 122

~

16867.0 4.69 NO BURN IN ANNULAR GPT - }. 122 .,

2 16879.5 4.69 BURN IN PROGRESS IN ANNULAR O PT 122  :-

i

, 16887.2 4.69 NO BURN IN ANNULAR O#T 122 j 16894.1 4.69 BURN IN PROGRESS IN ANNULAR GFT 122 l 16918.7 4.70 NO BURN IN ANNULAR GPT 122 i

16929.5 4.70 BURN IN PROGRESS IN ANNULAR GPT 122 16959.8 4.7? NO BUPN IN ANNULAR GPT 122

16963.2 4.71 BURN IN PROGRESS IN ANNULAR GFT 122 '

16978.6 4.72 NO BURN IN ANNULAR GPT 122 16998.1 4.72 BURN IN PROGRESS IN ANNLt.AR GPT 122 ,

16995.3 4.72 NO DURN IN ANNULAR OST 122 16997,6 4.72 BURN IN PROGRESS IN ANNULAR G PT 122 17023.0 4.73 NO SURN IN AWNULAR O#T 122 17042.7 4.73 BURN IN PROGRESS IN ANNULAR OPT 122 17053.0 4.74 NO BURN IN ANNULAR O#T 122 17069.8 4.74 BURN IN PROGRESS IN ANNULAR OST 122 17102.2 4.75 NO BURN IN ANNULAR OST 122 17117.1 4.75 BURN IN PROGRESS IN ANNULAR GPT 122 17122.8 4.76 NO BURN IN ANNULAR OPT 122 17128,6 4.76 BURN IN PRCGRESS IN ANNULAR O#T 122 17134.4 4.76 NO BURN IN ANNULAR OST 122 ,

17147.9 4.76 BURN IN PROGRESS IN ANNULAR GFT 122 j 17167.0 4.77 NO BURN IN ANNULAR OST 122 17186.0 4.77 BURN IN PROGRESS IN 4NNULAR GPT 122 4.5-10"

.,,, ., of *.g v, , .

w - l]. If

'i.yt ' ; . '.

_ ; '; i.. . : ..

j . . . - - -

Table 4.5-1 T23ML S5MAAP CONT.

~

SEC HR EVENT DESCRIPTION CODE 17202.0 4.78 NO SURN IN ANNULAR OST 122 17207.4 4.78 BURN IN PROGRESS IN ANNULAR OFT 122 17217.4 4.78 NO BURN IN ANNULAR GPT 122 17235.4 4.79 BURN IN PROGRESS IN ANNULAR O.FT 122 172A8.9 4.79 NO SURN IN ANNULAR O#T 122 17263.0 4.80 BURN IN PROGRESS IN ANNULAR GFT 122 .

~

17277.6 4.80 NO BURN IN ANNULAR OPT 122 .

17296.3 4.80 BURN IN PROGRESS IN ANNULAR OFT 122 17312.1 4.81 NO SURN IN ANNULAR O FT 122

, 17342.4 4.82 BURN IN PRCGRESS IN ANNULAR GPT 122

] 17352.1 4.82 NO BURN IN ANNULAR GPT 122 17389.1 4.83 BURN IN PROGRESS IN ANNULAR GFT - 122

, 17395.6 4.83 NO BURN IN ANNULAR CM T 122 .

17412.6 4.84 BURN IN PROGRESS IN ANNULAR GPT 122 17423.7 4.84 NO BURN IN ANNULAR OFT 122 17434.4 4.84 BURN IN PROGRESS IN ANNULAR OFT 122 17442.9 4.85 NO BURN IN ANNULAR GPT 122 17447.2 4.85 BURN IN PROGRESS IN ANNULAR GPT 122 1745S.4 4.85 NO SURN IN ANNULAR GPT 122 17495.7 4.86 SURN IN PROGRESS IN ANNULAR OFT 122 1 17506.7 4.85 NO BURN IN ANNULAR GPT 122 17563.0 4.88 BURN IN PROGRESS IN ANNULAR O FT 122

. 17591.2 4.89 NO SURN IN ANNULAR GPT 122 l

17611.6 4.89 EURN IN PROGRESS IN ANNULAR OFT 122 17629.2 4.90 NO BURN IN ANNULAR O#T 122 -

17656.8 4.90 BURN IN PROGRESS IN ANNULAR OFT 122 17685.0 4.91 NO BURN IN ANNULAR GPT 122 17717.5 4.92 BURN IN PROGRESS IN ANNULAR GFT 122 17733.0 4.93 NO BURN IN ANNULAR GFT 122 17749.7 4.93 BURN IN PROGRESS IN ANNULAR GPT 122 17760.3 4.93 NO SURN IN ANNULAR O#T 122 17786.6 4.94 BURN IN PROGRESS- IN ANNULAR GPT 122 17804.1 4.95 NO SURN IN ANNULAR OST 122 17840.2 4.96 BURN IN PROGRESS IN ANNULAR GPT 122 17847.4 4.96 NO SURN IN ANNULAR O,FT 122 i 17872.7 4.96 8 URN IN PROGRESS IN ANNULAR GFT 122 l

=

l 4.5-11

_ h ._ ..._.-:

Table 4.5-1 T23ML S5MAAP CONT.

SEC HR EVENT DESCRIPTION CODE 17878.5 4.97 NO SURN IN ANNULAR OST 122 17B84.4 4.97 BURN IN PROGRESS IN ANNULAR OST 122 17890.2 4.97 NO BURN IN ANNULAR O#T 122 17941.4 4.98 BURN IN PROGRESS IN ANNULAR OPT 122 17959.4 4.99 NO BURN IN ANNULAR O#T 122

. 17964.0 4.99 BURN IN PROGRESS IN ANNULAR GPT 122 17977.8 4.99 NO BURN IN ANNULAR O#T 122 18003.5 5.00 BURN IN PRCGRESS IN ANNULAR OPT 122 18009.6 5.00 NO BURN IN ANNULAR OPT 122 18047.2 5.01 BURN IN PROGRESS IN ANNULAR O#T 122 18070.1 5.02 NO BURN IN ANNULAR OPT 122 18099.8 5.03 BURN IN PROGRESS IN ANNULAR OST 122 18124.3 5.03 NO BURN IN ANNULAR OPT 122

-- 18144.0 5.04 BURN IN PROGRESS IN ANNULAR OPT 122 ,

18164.7 5.05 NO BURN IN ANNULAR GPT 122 18194.0 5.05 BURN IN PROGRESS IN ANNULAR GPT 122 18200.4 5.06 NO BURN IN ANNULAR OST 122 18239.2 5.07 SURN IN PROGRESS IN ANNULAP GPT 122 19249.1 5.07 NO BURN IN ANNULAR OPT 122 18259.9 5.07 BURN IN PROGRESS IN ANNULAR GPT 122 18259.1 5.07 NO BURN IN ANNULAR OPT 122 18275.2 5.08 BURN IN PROGRESS IN ANNULAR OFT - 122 182S4.8 5.08 NO BURN IN ANNULAR OPT 122 18292.0 5.08 BURN IN PROGRESS IN ANNULAR G FT 122' 18308.7 5.09 NO EURN IN ANNULAR OST 122

. 18317.9 5.09 BURN IN PROGRESS IN ANNULAR OPT 122 18326.3 5.09 NO BURN IN ANNULAR OST 122 i 18335.1 5.09 BURN IN PROGRESS IN ANNULAR OPT 122 18340.6 5.09 NO BURN IN ANNULAR OST 122 18367.2 5.10 BURN IN PROGRESS IN ANNULAR OST 122 18390.6 5.11 NO BURN IN ANNULAR O#T 122 18455,2 5.13 BURN IN PROGRESS IN ANNULAR OPT 122 18471.7 5.13 NO BURN IN ANNULAR OST 122 18488.0 5,14 BURN IN PROGRESS IN ANNULAR C#T 122 18507.5 5.14 NO BURN IN ANNULAR OPT 122 18528.9 5.15 BURN IN PROGRESS IN ANNULAR OPT 122 ,

1 i *

~

4.5-12

,w, . - . - - - - - ~ - -

l l

._ ___ . . . _ _ _ . .. . . .. s

,..,s. .

"~"

Tab le 4.5-1 ,[ -

[ .

T23ML S5MAAP - CONT.

~

SEC l HR l EVENT DESCRIPTION CODE 18537.7 5.15 NO ERN IN ANNULAR OFT 122 18549.5 5.15 BURN IN PROGRESS IN ANNULAR GFT 122 18559.5 5.16 NO BURN IN ANNULAR CAPT 122 18605.6 5.17 BURN IN. PROGRESS IN ANNULAR GPT 122 18617.5 5.17 NO BURN IN ANNULAR GPT 122 18634.2 5.18 BURN IN PROGRESS IN ANNULAR GPT 122 18654.3 5.18 NO BURN IN ANNULAR GPT 122 18682.0 5.19

~

BURN IN PROGRESS IN ANNULAR GFT 122 18702.1 5.20 NO BURN IN ANNULAR GPT 122 18731.1 5.20 BURN IN PROGRESS IN ANNULAR OFT 122 18761.5 5.21 NO BURN IN ANNULAR GPT 122 18772.1 5.21 BURN IN PROGRESS IN ANNULAR OFT - 122 18782.6 5.22 NO CURN IN ANNULAR CNPT 122 18809.0 5.22 BURN IN PROGRESS IN ANNULAR GFT 122 18818.9 5.23 NO BURN IN ANNULAR CM:T 122 18852.7 5.24 BURN IN PROGRESS IN ANNULAR GPT 122 18862.3 5.24 NO BURN IN ANNUt.M GPT 122 19892.5 5.25 BURN IN PROGRESS IN ANNULAR G9T 122

, 18907.e 5.25 NO BURN IN ANNULAR GPT 122  :

18935.5 5.26 BURN IN PROGRESS IN ANNULAR OFT 122 18942.4 5.26 NO SURN IN ANNULAR GPT I 122 18945.9 5.26 BURN IN PROGRESS IN ANNULAR GPT 122 16956.2 5.27 NO Et'RN IN ANNULAR CNPT 122 18970.2 5.27 BURN IN PROGRESS IN ANNLLAR GPT 122 18984.3 5.27 NO BURN IN ANNULAR ChPT 122 i

19010.7 5.28 BURN IN PROGRESS IN ANNULAR GFT 122 19016.7 5.28 NO BURN IN ANNULAR GPT 122 19028.9 5.29 BURN IN PROGRESS IN ANNULAR GFT 122 19038.9 5.29 NO BURN IN ANNULAR CNPT 122 19081.0 5.30 BURN IN PROGRESS IN ANNULAR GFT 122 19064.7 5.30 ICE DEPLETED 132 19129.9 5.31 NO BURN IN ANNULAR CNPT 122 1

4.5-l'3'

~

, r . --s. ~

..~* *. **.'..: ..

., ; c ,

.'.3 J J.-=*

6.0 Fission Product Release. Transport, and Desosition 6.1- Introduction ,

a The phenomena of fission product release from the fuel matrii,"Its transport within the primary system, their release from the primary

' sys tem into the containment, their deposition within the containment and the subsequent release of some fission products from the containment are '

treated through the use of MAAP (Reference 6.1) . Release of fission -

products from the fuel matrix and their transport to the top of the core are treated by a subroutine in MAAP which is based on ch'e FPRAT code (Reference 6.2). Transport of fission products outside the core boundaries is created by fission product models in MAAP described in_ .

Reference 6.3. Tission product behavior is considered for the best .

estimate transport, deposition, and relocation processes. The influence of surf ace reactions between chemically active subs tances like cesium

! hydroxide and other uncertainties are considered in Subtask 23.4 The best estimate calculation, assuming cesium iodide and cesium hydroxide j are the chemical state of cesian and iodine, is discussed below.

i i

4 IDCDR.6 6.1-1 NE3 - July 11, 1984 I

ed lA .....a a

.s 6.2 Modeling Aeproach Evaluation of the dominant chemical species in Reference 6.4 show the states of the radionuclides (excluding noble gases) which dominate tha-- - - - . .

public health risk to be cesium iodide, cesium hydroxide, tellurium, and strontium oxide. These and others are considered in the code when calculating the release of fission products from the fuel matrix.

i l Vapors of these dominant species form dense aerosol clouds in the upper I

! plenum, in some cases approaching 100 g/m3 for a very short time, which agglomerate and settle onto surfaces. Depending upon the chemical compound and gas temperature, these deposited aerosols can be either -

j ,

solid or liquid. At the time of reactor vessel failure, some material remains suspended as airborne aerosol or vapor and would be discharged from the primary system into the containment. The rate of discharge is determined by the gaseous flow between the primary system and contain:nent which is sequence specific. (It should be noted that some fission products can be discharged into the contai==ent before vessel i

' f ailure through relief valves or through br eams in the primary system.

l his is also sequence specific.) This set of inter-related processes are treated in EULP and essentially result in a release of all airboree i '

aerosal and vapor from the primary syster, into containment i==ediately following vessel failure.

f ,

As a result of the dense aerosols formed when fission products are released from the fuel, considerable deposition occurs within the primary system prior to vessel failure. For some accident sequences, the primary system may be at an elevated pressure at the time of core slump and reactor vessel failure. Resuspension of these aerosol j deposits during the primary system blowdown is assessed in Ref erence 6.5

. IDCDR.6 6.2-1 NEB - July 11, 1984 l

L i

,, - _ - . - . - - . . _ = -. - . .

.,-- ,. /

~

s.e,.....-..... . . . . . . . , _ . . . . . - - . . . . . . . . .

te.

8

!l).j') r?

s . .-

7:4 '

, in terms of the available experimental results and basieumodelso.. It. i.s. . aa 1

, concluded that resuspension immediately' following reactor vessel failure would not be significant, less than 1 percent of the deposited

~

materials, even for depressurizationa initiated from the nominal operating pressure. For delayed containment failure, this small fraction of material is depleted by in-containment mechanisms.

Therefore, a major fraction of the volatile fission products are retained within the primary system following vessel failure, the distribut,ie'n being determined by the MAAP calculations prior to vessel fai13re.' Natural circulation through the primary systen af ter vessel f ailure is analyzed using MAAP which allows for heat and mass transport in various nodes of the reactor vessel and the steam generators including heat losses from the primary system as dictated by the l reflective insulation. Material transport as aerosols and vapors af ter vessel .f)ilure is governed by the heatup of structures due to ,

4 _

i radioattive decaf of deposited fission products. .This hearup is

. prindipally determined by the transport of cesium idiode and cesium l hydroxide by the natural cifeulation flows. In this regsrd, the vapor a

pressure of tesiam iodide is applied to both the cesium iodide and cesium hydroxide chemical species. In essence, this assumes that the solution of cesium. iodide and cesium hydroxide has a vapor pressure 4

j close to that of cesium iodide, which is in agreement with the recommended vapor pressures in Reference 6.4. In carrying out these calculations, the pressurization of the primary system is dependent upon I

the pressurization of the containment and the heating within the primary

, s j system. These determine the in ,and out-flows between the primary 4

system and containment.'. . .

i' IDCOR.6 '~' 6.2-2 NE3 - July 11, 1984 e#

,~./"

a

. , - _ ._ . ._ , .,. , , , . , - . . .- . , , . . . . _ . , . , _ _ . _ . , . _ - _ , , - _ _ . . , . , . , _ . , ~ , , _ , - , . _ _ _ . , ,.m._.- . , -

. . . . .. .. . ..g ., g , , ,

3 *

.,C.

s..

g3

, ,,s a h:..:. .. ......a a Deposition within the containment is calculated using thermal-hydraulic conditions determined by MAAh. The major aerosol sources are the releases prior to vessel failure (sequence specific), the airborne aerosols and vapors transferred from the primary system at the time of vessel failure, the subsequent releases from the primary system due to long-term heacup, and concrete attack. At the time of containment f ailure, the remaining airborne aerosol and vapor can be released to the environment. .ssessments of the potential for resuspension of deposited aerosols following containment failure (Reference 6.5) show this is .

negligible.

i i

l l

IDC01.6 6.2-3 NZB - July 11, 1984 i

i

(

n. ..

w

. . . - - . . . . . . .......a... . . . . - . . . . . . ... ...% . . ....o.. . -. .--

T

, ,4 w. . - - ~

  • l

. ai '.) ,, , l '

' r

.! a ju l

m m%

6.3 Sequences Analyzed N' 6.3.1 52HF (Drains 315cked) t( '

Referring to Table 6.3.1-2, the majority of the fission products remain in the primary system following vessel f ailure. As the volatile fission products are released to the containment, the aerosols agglomerate and are subject to the depletion mechanisms m.adeled in MAAP. This results in deposition of most of the .

fission products released into the contaiment. Following containment f ailure, a flow from the primary systen to the containment develop $a However, only that fractism of mateEial available as airborne aerosol and vapo'r plus the small amount revolatilized during containment

- , depressurization is released to the containment. Since the heat losses from the primary system equal or exceed the decay heat generated by these fission products, only a small fraction of the t

material would exist in vapor form.

Ref erring to Table 6.3.1-1, the releases to the environment following, containment failure are very small. The containment will depressurize following f ailure which will lead to an extended release with the possibility of slightly increased releases from the primary system as deposited material heats up and is swept from the primary system by depies'surization induced flows. This effect is offset by continuing

~

in-containient depletion mechanisms. Long-term releases subsequent to containment depressurization will occur but at extremely slow races.

The amount of released material will also be very slow since the depletion mechanism inside the _de, pressurized containment will continut to be effective. -

IDCOR.6 6.3-1 NEB - July 11, 1984 1 h = -w- --wr-=,n.tv-e, en=* -w---m---~ " w- -

gev--y-~- -*m-e-- -Tw--es++g*T e' '**P

l

- ,- ~ - -

TABLE 6.3.1-1 .

( .a.:

. ;'. .' - . . . - =

S2HF (DRAINS BLOCKED) RElf.ASE FRACTIONS _  ;

Contain:nent f ailure time: 23.7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> Containment failure area: 0.1 f t2 Time: 0.35 hrs af ter containment failure Fission Product Release Fraction Grous to Environment Cs, I 0.00008 2

Te, Sb 0.00002 Sr, Ba

  • Negligible Ru, Mo
  • Negligible
  • Release fraction less than 10-5 J

J i

IDCOR.6 6.3-2 NEB - July 11, 1984 i

( .

l I.)..s.. ?..: ". .: . .

TABLE 6.3.1-2 j 1 i t -. . .. . - - d S2HF (DRAINS BLOCKID) Cs, I OCRE INVENTORY FRACTIONS l Time (hrs) Primary System Containment Environment 3.00(1) 0.644 0.274 0.0 23.67(2) 0.707 0.285 0.00008 (1) 0.23 hours2.662037e-4 days <br />0.00639 hours <br />3.80291e-5 weeks <br />8.7515e-6 months <br /> after vessel failure (2) 0.35 hours4.050926e-4 days <br />0.00972 hours <br />5.787037e-5 weeks <br />1.33175e-5 months <br /> after containment failure IDCOR.6 6.3-3 NEB - July 11, 1984

- - - , , . - - ,n , ,--.,,,,,w,, .,a .. .,-. , w

r._

' m. n ...: - ' -

.sJ .1 .

J ....s ..

6.3.2 S2RF (Drains Open)

Referring to Table 6.3.2-2, the majority of the fission products remain in the primary system following vessel failure. As described in section 6.3.1, the fission product depletion mechanisms modeled in

~

. MAAP are very effective in depositing almost all of the fission products released to the containment.

Referring to Table 6.3.2-1, the released fission products to the enviroment are very small. The process described in section 6.3.1 are very effective in removing the fission products in the containment.

This results in similar release fractions as the S EF 2 (drains blocked) case described in section 6.3.1 even though the containment fails almost 18 hours2.083333e-4 days <br />0.005 hours <br />2.97619e-5 weeks <br />6.849e-6 months <br /> earlier.

i IDCOR. 6 6. 3 -4 NEB - July 11, 1984 l

\

l 1

i i

i 1

g3u-TABLE 6.J.2-1 J 4

.1 .N..1 8. -.,* , . -- - a 52HF (DRAINS OPEN) REI.IASE FRACTIONS Containment failure time: ~9.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> Containment failure area: 0.1 f g2 Time: 0.64 hrs af ter containment failure

~

Fission Product Release Fraction

,, Group to Environment Cs, I _ 0.00012 -

Te, Sb 0.00001 Sr, Ba

  • Negligible Ru, Mo
  • Negligible
  • Release fraction less than 10-5 IDCOR.6 6.3-5 NEB - July 11, 1984

- ,4 -- r, , ,,- r , , ,--

r n 1

  • + * .m . a ., . ~

j TABLE 6.3.2-2 $Na k ! ' ' . * ' ..'- i 3 31 L,h ..;, _ .4.; _4 5 lj S2HF (DRAINS OPEN) Cs, I CORE INVENTORY FRACTIONS Time (hrs) Primarv System Containment Environment 3.00(1) 0.633 0.269 0.0 10.51(2) 0.720 0.275 0.00012 (1) 0.22 hours2.546296e-4 days <br />0.00611 hours <br />3.637566e-5 weeks <br />8.371e-6 months <br /> after vesiel failure (2) 0.64 hours7.407407e-4 days <br />0.0178 hours <br />1.058201e-4 weeks <br />2.4352e-5 months <br /> af ter containment failure i

! IDCOR.6 6.3-6 NE3 - July 11, 1984

. - . - . . - ~ -%- - - - - - - - , - - - . . _ , - , , - . - - - - - _ -

'~j

..p , j . s., " -

., .; J a ; -

.l j'i f, .. L - " q g 6.3.3 TMI.3' With A Seal IDCA Referring to Table 6.3.3-2, almost all of the fission products remain in the primary system following vessel failure. Only a very small fraction is released to the containment. As described in section 6.3.1, the fission product depletion mechanism modeled in MAAP are very effective in depositing almost all of the fission products released to the containment.

Referring to Table 6.3.3-1, the released fission products to the environment are very small. Almost all of the fission products released are deposited in the primary system and remain there following containment f ailur e. Although some of these deposited -

fission products in the primary system may heat up and be transported into the containment, the amount of released material to the environment should be minimal because of the continuing depletion mechanism inside the depressurized containment.

1 I

1 IDCOR.6 6. 3-7 NEB - July 11, 1984

,-r-~r- --n r--,, - - ,4 - w w

- - - - - - - - ---e ,e -n- --

. . . _ . - . _ _ . . . . . ~ . . _ . . . . . . . - - _ _ _ . . _ ~ . . . . . . . . . . . . ..

TABLE 6.3.3-1 . . .. ,3 TI.T RELEASE FRACTIONS .;

.c . .

.1.4 4, _ a . . - -2 d

~

Containment failure time: 27.7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> Containment failure area: 0.1 f t2 Time: 0.26 hrs af ter containment failure Fission Product Release Fraction Group to Environment

. Cs, I 0.00018 Te, Sb 0.00013 Sr, Ba

  • Negligible Ru, Mo
  • Negligible
  • Release fraction less than 10-5 i
l l

l t

IDCOR.6 6.3-8 NE3 - July 11, 1984 I

TABLE 6.3.3-2 . , ' ,e .. .

.J f '. .'u . i : . . .. . . . 1 d TMI.B' CORE INVENIORY FRACIIONS Time (hrs) Primarv System Containment Environment 4.00(1) O.952 0.009 0.0 28.01(2) o,964 0.026 0.00018 I

t (1) 0.87 hours0.00101 days <br />0.0242 hours <br />1.438492e-4 weeks <br />3.31035e-5 months <br /> af ter vessel failure (2) 0.26 hours3.009259e-4 days <br />0.00722 hours <br />4.298942e-5 weeks <br />9.893e-6 months <br /> af ter containment failure IDCOR.6 6.3-9 NEB - July 11, 1984 l

l

.. __ . _ . . . ~ . . . . - - _ _ , . . . _ . . . _ . . . . . . . . . _ . . _ . _ _ _ _ _ , . _ . . _ _ . . _ . _

. r. . .. ,

6.4 References a

..u._e...... . . . .. a 6.1 "MAAP, Modular Accident Analysis Program User's Manual," Technical Report on IDCOR Tasks 16.2 and 16.3, May 1983.

6.2 FPRAT Users Manual.

6.3 " CIRC User's Manual."

6.4 EPRI/NSAC, " Technical Report 11.1, 11.4, and 11.5, Estimation of Fission Product and Core-Material Source Characteristics," October 1982.

6.5 TMI-2 IDCOR.6 6.4-1 NEB - July 11, 1984

.s* .

.. (
;.; ea

) a .s w .: . . . .s . . 2 .e J C.0 Accident Signatures Accident signatures are presented for each of the base cases analyzed in this report. These signatures are generated directly from.the MAAP program plot files using programs developed at TVA. Figures are arranged according to case number as described below. In all figures, the lef t axis is used in conjunction with the solid curve whereas the -

right axis, if present, is used with the dashed curve. An attempt has been made to group multiple plots on each plate to show transient interelationships between variables of interest. Cases are identified as described in the report body.

Case 1 -

SD 2 (SIMAAP)

Case 2 -

SB 2 (S2MAAP)

Case 3 -

S2HF (S3MAAP)*

S2HF (S7MAAP)**

Case 4 -

TMI.3' (S4hnaT)

Case 5 -

T23MI. (S5MAAP)

Case 6 -- AD (S6MAAP)

  • Drains open
    • Drains blocked l

1 l

IDCOR.C C.0-1 ,

NEB - July 11, 1984 I

r Figure C.1-1 _ _ . .

S2D SiMAAP e<

S' m<,

9 . +

!!:! \

C$: N- -

it . . w s

!g-,!

e.

\ x .

3: \

l a l!

t E'

. .. m u' u u 2. is ao M Olf)

.g j! c.

g. l.

tE;;

/ _.....

I

/

3 l sr 84 e

t O . <: .

oA. '

C

./ -

E*: ,'

"E o

  • ' l < *N l

. ./ .

'... u w u a n u u a T N F. (Pr) l O

C.1-1

j t

1 Figure C.1-2

}

S2D S1MAAP

_I, 3 i -5

---y  ? .

j' -

c 4

- .t. .R

=l 1 hiij 9:: i

/ .,

.g 8..

s .e- . .._. .. . . . . . . . . .  :; g. .

8_.

g. .. .. .! :gs 3,k '. ,-

99

..R - --.

re v i

L, $..--.

, .g ...-

> f . .

le e

.- - ' $ .- F8

. "N

.,._.s .e ... ... . . . .

2' l '

u M

4 M AS LO E4 7.3 33

, M Ov) r ye *

.A a k'

g;

'. o.

H,

  • .o

\ l *

'I*

. I. \ r

.g**

~ * *

  • s g,< ..l...

5 X .:g hh. \ '

3'

x N i

I i N N .:

N 31 u u M 3 u u re s.a u u- u T'MC Qir) c.1-2

r Figure C.1-3 S2D S1MAAP

,. g..;

a g g

........ l q e, x. e g ...

E

e. ,' l
  • o

..C

-e en a< .*

g3; <

r .

' o. ;E 1

s l 1 :, N .. .n.

.'.2- -

n< . . . - _ . . . .

e 1

r. < .. .. .. .. .
a. -

.e

.  ; -~

3 ,

.o 2 '.I

. . . =~

as se e,a s.e to a.o 44 74 84 sa na isa n.o TME Or)

E

  • . ,g l

4 o< if 'g n .I w

C l 'e i $g: i

@r

! l:aF h

c. a . 3 --- -

t b  !! "h

{# .

,Ig s u

,s l '.  ::

4 ,

O 3'

e

,. e 8

i, 0.8 18 2.A 3A 4.0 6A A0 74 SA 94 WA tte SA i

TIMC Qtr)

\

c.1-3

. .. _.. . . . . . - . - .. . .. . . .- = . . . - - -

Figure C.1-4 S2D S1MAAP e

. . - . ~ . .

K i 4

p wnm 1

9, m . #M I ' % '

W .. . . .

  • -e

.< ,,, *e .

v.

j ', .

sy ,?g a a J . .h e * *'5 A

. . . . ._. . Ig,' , ,.

1

~ ~ ... .. . . - . .

3' u ie u u <A u a u .a u .A n, ,,

M Old D. I .

4 1

h, N( 1 s

E' .

p.

3 N

n \

- i n

e e:

4.0 to 24 3A <A SA A8 7A S4 9A WA she sA M (Jtd C.1-4

= - - - - - - -- .

Figure C.1-5 S2D SNAAP y: .

L -.

y ,p q

uem R, .- w . . , -.

l ** 's,.. .. f.... .

.- --- ------ ,~ . ..J...... - .. L. . ...

  • E=,e :  : \  !

a m. .

=l  !

d:  : -

, '- , p . . >_.

9.: { ,s *a . t . *

- ~ ~ ~ ~

.....2 ..s . . -

9:  :

I< f.

lR 9

l *(W.A CW . . - .. _ _ ...._ .

n, .

o. *%  !?

,y g; ,-

j s JCE CD@

~A

.. s: _ _ -- - 4 _ _

": ,/m.d :__

F-JW R D4./W -

l

.: y ,

g  ; -----}--- g d

's.o to 22 24 44 to a.o im s.c se ma ,so n.o TDAE Otr) e 8

s<

O i

C*"

h W: _ . . _ _ . . _ _

gl.

3.

a: <

4 < .

be,  ;

g8,

v. a

,SFRP% o I. ,w==._.*

,t 'mDN ru 4

_m7r w-~g, i ,

~ - -

e

} . . . .. . l. . . .. .- . T . P~CNP 1 ---~ * ~l -

ee to 3.a sa is s.a s.a ja es en na ,sa as l T W E (nr) l I

l

=

1 C.1-5 1

Figure C.2-1 )

S2H S2MAAP 1 .

A .<

R' A-

]\

,, 2 . . .

. . ~

le2: -

106 .

p

. _ . . _ _ .._... I; g Ea y x .._. . ._ _ _ ._ _

El.: .

A, . ~ ...-. .. . . . . - .

- - _ _ . _ _ - . . . l; .

_....= .

... ... e 6 = u s. u o M Otr)

I, at m,

e

.,e ' .

r' D,. ge i

  • Y c, j 1

a C3< - 8 S.  :

I.l. '

/

v Cj' e ' $

h

e E.. <

. e-

.g

< ,i .

O e

  • < l .e, g- .

l ,e .

1 I' '

! e e

0*O 00 W 1S M 2.5 10 3.6 M TIM E QF)

I e

C.2-1 l

1 Figure C.2-2 S2H S2VAM

. . . _ . . . . .. . ..i . . . . . . . .

g - . . - - - - -

. n . .. .. .

3.  ; ,o FR ..

. .o .

- z g,  ; -g >

y . . . .

.5 3  ; .

4

=-- S. .

5  ; . . . . .... . . . - --

jt-1 .- .

,.Q g

  • 9< "

I. .. =

$A<  :.5 9.

1. n!q .

._- -s u ..

1 .1 . g __

4n

g. . ..

1

l. . - - -

9<  ! . .

. g.  ;

i

) .

, we w>

w.~ _

,! l N I  ;:,

s.

R .

.c a :.

3

\

e..

fs;; \ >l F:

s. (I .:s

..g i .

a:

I \ .s

~5

,  :: I I I ..

08 to 2.0 3,8 A0 kg u 7A em WC W) l .

e C.2-2

. , - , - - . . . . . - . , - - - , - - - , ,-,,-.-.,,,.-.,e.--.r--. -,--,,,,..n-, , . . , , . , , , --,-......e,. ,,_.e - . . - - - - . , .

Figure C.2-3 S2H C4MAAP .

g._

s--

p o i

.g . . ..

/ i o

1 w

~e <.

j

..e. .=,, -

..c

.g - -

- m,- ,. 1

% s

. , . .. ,,E -

. ..__.. _ . . . _._ 3< ~ .f

.,a . .,p-

.j a . & ,. ..4; a< .j .

.-- A -8 m y g

.. 6 . . .. . . - .

.I ,

y *

.i

e. .

I- f *

.l Lo-9, 4b 3lI :o o

.. t. 24 3 4A M L. 74 .4 .4 15 4 d. 5.

M E Oid E .

sl I d, e gl .

e..

8 3

, *C

3. :. '.

_. t 4.

- gu g$l l  : =#

9a. "! . ....

. .: ... , . .$si .!

! y

  1. 8>

g: .

'g6 s

B*: - i .5 gi .o a g

g.  ;- .
  • e 9:
e. -

e

-e B: <

d, ,...... . . . . . . . . . . . .

... ,. o o a . .4 . ,,. .

TIME Or)

C.2-3

~ ~ . . . . . . .

Figure C.2-4 S2H S2MAAP

= . . - _ . _ . . .

g 4

E, .

A ~

" w

  1. y _ -

1

.fb

=; r x

/ y

~ -

/ . . _ __ _ _

66

.~. .

--- --. . - l i .

- - . _ . ._ _ . . g. ___ _ _ _ _ ._

F' 40 te 2A 3a 4J M gg ya g4 84 WA Ito 13 0 D E Q)d

t. N .

82 s

Q .

"$l .

&G I, g d *1 tr.:

e'

^

N. N

- u 6 14 s.a a u u u en ,a u ,s, u TIME Chd e

C.2-4

Figure C.2-5 S2H S2MAAP 4

3< A .. . . .

A. - "-

T

, . . . . . . ,, ...,s ('-

..~. . . ~ . . . - . .. . . . . . . .. . . . ,. . . . .. . .

E a. < ,

I . .

_ . . -  : .,i. u ..

- - g4 .

. u 5: ua -

( .: at u e 2. -

  • I

_ _ __.._ _ . . . . _. c. , . ._. .... ..

bd om coq .

3!  ! .

'V i_

= -_

Y J2 ccM '
hJ -. 4 _
P. J 3

. ;j %

r , .. -I JN Pt.EN44 i I 6 I

es t. 2.o 24 *A sa am u sa s'A WA 40 5.0 TNC %r) k El' I

ks:

. gA; . . . . _ . . . __._ ..

=,

a:

I.

m.

8 y,.

  • ' ~ue Ky_. 2 ?w -- - 1 1

..s - .e

.m ..

s_ .

~u

_J L p _  : ,,

g<

-l-.-,f..........- .....T......(......,.....,......,...........a 6 CT' u u

.. t. - ... u .,

., .4 ... ...

i TNC mr) f C.2-5 1

I

_ ,-- 4 ,. _ , - - . - , _, .r_ ,r---, +-,-~.,-p.-- .,-%,, e .--

. i Figure C.3-1 S2hF S3MAAP 3

. .. .. . a; - . _ . .

. .. g: ,.. ...

4;

) ., .* .',

.. g,

( ,

@g:! m S

gg j

.. ._.___ g: . _. _ . ._

E. .

Q . . . . ._

A] : . - - . . . .. - ._

l - . 3 , ,

i se e.s u ts ze as se u u -

DE W)

! -w

=,

.I . .

! 4 9, s' l .

l 3 '

Y 3,

l i ..  :

, l ' .. *g 5.

i

/ 1 E. ..  ! '.

j .

"e

3. ,-

e E. .

/ .,

S.

g... - '

l *u e e

e e 9

f O t [

h,  ! e

  • ' l

,,,1 l l e, 8

l ..

J. .o O'O O0 N kb M 2.$ &$ 34 Q Y.MC (hr) 6 e

j C.3-1

s Figure C.3-2 ne g'

l -N

  • ' l ..

'N

. . . . . . Ws: i -

_ .. . ;l . . . _ . .

B E.. ..

.o.

g.: 1 ,

Ag_.

. . fI 3 ). t . .

3

,O4 3:._ _ _

g'

  • a***- ,- O E - --.

4 . 3 .. .

g ,{ ,

- . _ _ , ol . ,;

' l l.

'E .

s

_. -_. . g .. ..! .v..;. __.

5=--

.i i

. . . .._. { *

._

  • k, I

.. . . i g :' .- Q g..  ; I. _ . . . . .

l U M O M 1h q D E Old te o en, -

g 4.

\ ..

=

q; R.

\ '

e a

\ -

p.S eq .

E.. .e 3:

g .;.

_ \  ;,$ .,

W g: I ' n* ..

N ,:

N '-

N

  • l

\ '3

~

I u n u - -

h ,, .  ::.

we m C.3-2 1

l l

Figure C.3-3 S2HF WAAP

-3... ..-

=*: ,.-f..

m 4

.g. ~ . _ . .

}% ~e * ,

, .* . ,g

.g "3'

  • / . ---

3, .

g e << r pd.

..e5 <

6 . . -

t , - p

'F '

. t'. 1 ,

3 .- ;t .

,. o< .

. . _ . . ^ . ..- - . - .-

j f *

'e

,< l [

  • _ . .. ..= n .

l .

l l 'e e<? . e.s g: '$

se is a so 4.s s4 ,

gg iA to SA 18 8 3%8 " '

. TMC 9,)

6, 4

l o

.:, 5 . .

C g :, l '

em l

b g'8:3< ,

r

._ . e. ,

n l.B _ _ . . _ . .

8 .< '

, eu.

, s: .s

'o i a: :l

l a l

e,

. 3: .

e. -

.e E <, >

i e. . . . . . . . . . . . .... e I! I l~ l l l 4.0 48 M 10 4.0 8.0 4.4 7A E6 9A 10.0 fte .2.0 13 o we tu

I.

M (#td

~ C.3'-3

Figure C.3-4 S2HF S3.A. MAP

- . . . . . . . . . . .g _. . _ _ _ ___ _ _

.: I /,\

. 3. . . . . . _ .

g '- l x, . . _ . _ ._

/ \ . _ . . _ . . _

^

M : , N

.g*':

j

. .;_1 f

W .,1 *e-

  • g t

< j -3..*.

Y n, j d -

==. . - .. .... .-_. . .

lW '

f g

lia a u 2. u u u u .. u o *

n. o m. .. ,a M OF)
t. ~2 ,

+

h.

}:

58, 3

$.;,:< N

\ ,

N en

- \

i a.

\

e 0.8 44 10 4.8 4.4 4.0 7A LO 94 10.0 its t1.a 40 we &

M or) c.3-4 l 1

1

_ _ + - . , , , -- - - - - - r.- - - ,,- . . . _ . . . . _ - _ ._._.--__.--_..-e . - _ _ ,,m__ _. .. . .~.__,. -. - . . . - - . . _ - , - - ~ . . , ,

Figure C.3-5 S2-F N

._ . . _ . _ . . . ,S , >

.a.l

' 8 s e

  • ' -=

i e ,' .s . . ._. ... '

. . _ g: ,

4: . .. .. ,< <

g,!

I

    • ...., ..- posts cod

. . . . . . 2 . . . . _ ._

.- I -

..gg: .,

'.' s l ..

9: f - -- =

\.,.

-..l-15,  !

1 ,

1.: <

q:  !' ' -

.i h\

f

]: $

g "g J

l -~ 2="

h

,__=.

w I

3,, / "I h., . - /_ ' . ,,- N  % . _ _ . . . . . . .._

i

e..s--- jma P e.w ^

.i %

)l j l j ]' --

= = -

D_ __

a u u u u u u u u ., ,s. ., 6. 4. ,o <
Tuc or) .

4 8

O l <

I CS-Lgl I

j . . - . _ . <

d I

l d

te e w , y a c:u" M c m ), " w "

f:yn=sW~

s' I I  !

u u u u a.a u ... u u u ,a ,s , a., ,u - u ME (hr) i C.3-5 t

ww.-i.e.-e--.%w-

,.y .

?&

,, s.s -y

_. /

r

/ .

Figure C.3-6

/

S2HF S7MAAP

_ 1 ....._......_..

g. f l

~ll

e. g -

g_:' ,..... .

9 3 . . **

' .d -

. , s g

_. _. . . ._. . . n . . . . .

);al; ' s.

.,_ . . . g -_ . .

9

_. _ ll .

n .

4 ...

h_

G0 14 IA 3A Ao da f4 IJ de SA TAME b)

. +g

. / E g

. s..

l ,

w. I i a f'

y.. I. e*

1

  1. 2. =$

! 5 g

I

3. g o
  • 'W
- N o

El. .

f

  • 5 -

.t .,  ; , a

'.  ;.I en w

u I

sa se u

's

.a u s, ,,

. *%E W) r ,5 e

C.3-6

l 1

Figure C.3-7 S2HF S7MAAP

.. . ... . . . . ;R '

.. ,e t, g_.....__

3 1 - ,e

1 TR , .. . ...

i ,o=

2 t . "A >

d....

kt{:

cn

. . . . . .. - - ,,5

} -.

em

. - 1': . . _

7a M*

3_

%. 4

~

j ._

1 .

.. i.-.- .

. .5 p' '

- . _ . . . . . . g g.

g* . ;

d j l ,. .

.- .. .. . .. ,A ,

l .,

)

2 es na u u se u u

sa u en TM E 0v)

t. eR s 2;!

-\ -

?*

( ~~ -  ;

.o

a. \.t .9

]e:

~m' \  ;

vI d.

\

N .'".-

. . . . e

'\  : . g ._.

!g;:. \ '15 5

g .e .

3 .'

i Nx l ':

N g \ ' !!

si n - .. - -

h ,, ..

.a Tut or) e C.3-7

. - - - - . . . .. . . c;,~ . . . ... . . . - - . . - .. - .

~

. e. c Figure C.3-8~ '

SMF 57MAAP gA

. , ;e

. . .<-----*< ~ - - - ' *" ***"" " " * *" * * * * * " * * * * *****=

n , .

- ..g g . - . . .-

P F9.' .. .. "W ....

N -

. . . .s -

l

p l ,= ^

e.t $@

. . u u n :. .

t ..g E <

g , _ .. , _ - ..

. ,i@

,4 9

. .. .. . . -=

e , >g "N

. o

+ #

>e e e' :

  • n .
  • b e .

. , . . , 4

&O 24 E4 74 1ELS 13 4 EO 94 3&D 2L3 2LO 27 5 XIA TNE Ov) e a

4 .

I

/ .. . .

C C*' ,

an 3

i / 't .

-/ .! -It h.

i - 1

/ ' '

.. .- -- ., , =

il l ' ' * * ' -.

' l.

a

/

.. . ."* -- -.~. -... . . . ....

a 1 /

. 5 5:  !!  ! . .5

p .

.o < e l 1 l *

,  ; ... 4 2' . <

-3

. . - . . . e d 1 . , -

4.0 24 k4 74 1a 0 12 4 . , ,E0 CJ 20.0 22J 2La 274 20 4 TJJE Or)

C.3-8 i

i l

--- - - - , - -n-- - . - . - - ,  % v ,,,,,,-s- , - . , , , ~ - --,n-n,,,-n-, e--,-, ,,w ,.,.r, . , - ,,,,n.,e r-,-v w- ,-,,wv--.

Figure C.3-9 S2-F S7MAAP

. - - - ~ .

f

/ \

g\

, / \ -..

  • / \\

e: A /

S i r 7i f i ... ..

3 J t U.!

ES, f -

l \ . . - -

,s. .a ,-

q,

8. -

. . . sa:

1.

4. -
  • ! ( 2 .

Ag -

k I!

o.o z.s u u no n.s so 6.s ano zu ao 27.s no TME tlhr)

'J 0 ,

l A.

+

o-I s '

t l

k ' _ . . . _ . . _ _ . .

.d e '

y r=

W l 4 e'

e l I M

I i

tw ~

l 4.0 2a M 7J EO G.* Es f7J 240 22.5 2ko 27.5 aoA ME (br) e C.3-9

Figure C.3-10 S2HF S7MAAP

-- ~ ~ - -

g ,

Jpcca coun A. ( l i .:

  • q :< (% '.  ;. :: L.

E- .

. g

t.  !

g . - - -

I- .

. ". ~.

i . .._

. S: i, -

.2.. .:., _ . . . . .- -

y _

l. '..

__ _, 2; g ..

, e .

Y' ,. I kW 4,

\ .

's,

" " ~

.= - _ _ _ _ ,o : /""""' \* _

u cc cm N j H . L . .-- .

~ >~ '

N i

r-. -

.1  ; i

x. .._

j O.0 N 30 7.3 e na da 64 M N RO N.S MA i W E Oid f.

C '

t.a o .

+

w..

.$(

$ 2. k a-:

I; i

. .~ k.

, ,-- v ~ . , = ._ . .

i ,.

...------t-----

{.

l

,:...- w ... %.....l..... I .....l..

_ .y

,..m I

.; - g W

O.0 26 $A 74 10.3 12J ED ff4 20.3 22J 25.0 27.5 30A TiVE (Md C.3-10

_ , , , , , _ m._,-m--- m . - , _ _ - - _ , , _ . - . - , , , , _ . _ , m,, , , -,_--.,,._,,-9_w_, ,,-y...

Figura C.4-1 TMLS' S4MAAP

. *!i

. _ l .. _ . . _ . . . . . .

I< pa m

! \ '

~

x _ . . . . _ . . .

_ _ . . - _ _ _ Ih.j -

y, = . .

. .... . . . w. .

' ..C $ <.

c}: .. . . . . . . . . - .

g .,:. ,

g: .

- . 1 .

  • M. N g o.o o.s u is
  • as u u as to is ao

. TIME Or)

" 'J.

D 9

g< v

.: 4

/l ,3 .

el::,

. i 5- 3 w /  :

.~

=

g 1 8'

i

' 'p 3:

i  ;

3: ,!  ! .

. m. , . . -

e _ ..._..

4 e g-  ? .

p E *. :  :  :

a

.* 5

.; l l g< .

e. t l l
  • o l $ "N
i ll
,

0.0 04 Le LS 2.0 24 2.0 M 4.0 4.3

'o 5.4 0

TM E Or)

C.4-1

Figure C.4-2 TMLS' S4MAAP g .. . . _. _ _ ..

g,  ;  ; u

,R

  • l 5 A I< .i

! ' o

4= .

Z <

. FR A <

' j  :.

. E >

-o A:

5 <

Id Q< l -

.eg---

e.:

C*

n J

,, / .

a a a.

a- -- -- . . ..g _ _ _ _..

'., j -a

'. ('

h g, '

...., y j Iv

'~

q , :< -

,,k._._.-

gk.

g .

~: .

9<  ; r.

E,  ; . . .. -

,7 SA 0.0 LA 13 10 2.5 24 3J 4.0 4J S.0 SJ AD Aa 7.D TIME Oy) o

4. a9 -

,9 g g 9 l l 4,

i .I m:

R

\ e j re 1l'k w

.e 1

n

.S C.

A

~< t , e s ,* , . . ...

l

)' { Fe l  :. _ _ .

re 3

,'O h el a,

FW p ,

e \ le g e <l \ "a i x  :

.i 4

I \ -:

.l N s l le 0.0 CJ O LA 2.0 2.b 34 3J 4.0 4J 5.4 SJ 4.0 64 7.0 TNE Cnr)

C.4-2

. Figure C.4-3 l

TMLB' S4MAAP

-- q. . ...L.. .. . . . . . ......'.... - . - - - - - . - - - - - - - - - . - -

g: l e

p. ._

1 3 .i  :.o~ =... .

e '

s .

i m

. g a :, .. . .

M* l

'= ***. , . i. . <

.-.-. an,  ;

_. . n. %

6 d. .

n

- . .. . . a .

l l n .

.  : .s

.. -.l

s. . . .

0.0 24 S4 7.4 idLO t14 MLS T13 20.0 224 23.0 27 3 30 0 32J rut or)

~- '

I

/

- / .

/-

e..

s /

c, o e .; e ' s .c i:: ..

.. .i  : .

@" :i

/

N. . . ..., g .... . . - - .-

.j-

" / ....- .... . . ....... .-

i: 4

/  :.v -.

b  !

>g:'  !!.

. 8

/

/ '

F, 5

. j i. .!  ;.5 .

t -

3  :

!  :.-...I .

g'  ! / 'I l

I f g

/ .

l e - ,

l

'0 4 ,- -

2J ko 74 Wll 12.8 EO f14 20.0 22.S 26.3 27.5

' 30.0 32.5 TIME Qtr)

?

C.4-3

Figure C.4-4 TML8' S4MAAP

- - . . . . g . . . . . . -

[ .. . _ . . _ . . .

/ . .. -. .._

v; /

. ._ .. - - / .. . . . . = _

- /

_~ .

_... Q / i 4

. . . . . . . _ . . .. l ...

\ \

~

*

A.. .. .

s-a -

__ :). .-

0.0 24 EO 7J 1ELO 1lLS 1La T.S 20.0 m 2A0 274 30.0 315 M Q1r)

%$8, M.

m

\

t.: s ad. . . .

9' t n

y .

4 4

o 0.0 24 O 7J 10.4 12J 16.0 f74 20.0 D 2ka 77J 20J 22J TIME Chr)

[

l 1 .

! C.4-4 l

l

Tigure C.4-5 TMLB' S4MAAP 3 .

M.

1 .. ... . . _ . . . _ ._

. w.

a 4

s

, ., O.. .e

_ _ .... ..... . ~~.

J,

~

~ *-

E,

, .~.

g< g g .~ . - . . . .. . . , . . . . ...... . . . . ,

v O g: .! ' -. ,

$ k s'

t

( / %f

_,,&cr o:e

,.asmabazwy --

3:

00 2J M

e- -

7.5 15 4 12 4

-r d.3 1h3 234 22.3 2ka N _c .

2h.S 30.0 22.5 TM E Cr) 9

.. a 4

4 4

4 4

e .

, c 4:

e. . <

2 g-M N, y.d "* . ,,

4 i

a:

( ), <

t O'

W

e. <

i j

e d

an steg g Li _ low 9 Coup J C CONO j gl, ,...= ..... ...... ..

~ i i I ,3.........................

c=--

3:

~ u u u ,u c.s ,. n., au m ,,., n., ,n ,

I T.ME (br)

I r

l

' C.4~ 5

1 Figure C.5-1 T23ML S5MAAP si ,J W gigf . ..

I

,4 4

_ , _ _ _ _ _ , ,j , - . . . . ** . .: - - . . --..

j j ; ,, . <. a i ... *- "

.,g: - - _ - - . . .

-l:

E:

e. .

,,, _ A: .

a m h <

1

.epe 2: - -

Se d.: a 6 = u u u o TME Oy)

Ek 5i A

/ ,i ,.

$ Q ~h n .

E t,o.< ,e i

  • P y,

a<

e J.

-g l:

4

< l

. e 9 w n <

e np >

g , . s M

l .

hf o-g.

l R ll 9: . '

g<  : o e

&S 0.5 LA LS 3,a 3.S 3,0 y g TIM E O'tr)

C.5-i 1

l l

e Figura C.5-2 T23ML S5MAAP '

l, , , , ri ' - - - - -

i ,

$5.' l l. 3

u. .

l  ! r8 gg:  ;

. g < s

.,- :o

, .g =

' 3

!  ! / -

- -- @g: .

g 7 ,

.g g

l j --

, , g-8- ; } S 1.

9; t ,./

{ .g
  • g(
  • t g

l- >O W.'

. e

  • ^

l

. __. r a . ._ . __ _.

A. i  :.

l {

f -

"o --

g,  ;

S, ,

, i ,

!,  :=

. .o 80 LA 2A 3.8 4A

~

M M 7.0 34 34 16 4 TA4F. 0id t af.r . ,9 a.i \ ..

3:

\ .

i

\

1 Mt \

.--.s W C5 ,

,.W D , **

  • v et , i es ,

-i __.  ;. . .

m \

___ k C8, go: I

.a l

S, q<

a.

l P'M .

N.  :. -

3 ..

i i w N; I I :s

j l N s; l l
s.

'0

8. 1.0 2A 3.8 44 M M 7.0 80 M ".M TDw8E (hd C.5-2

l l

Figura C.5-3 T23ML S5MAAP a ...

D. e , ,

e i o e :x ... .

. . . . ., _ [ ,,

< ,.*... d o' l o e c ..

w p <

, . . . .... .. ,g ..

ea "

.:. s .

._i vi ,

e a ' r'.', _. .s, ...

2.. .

'o.f, l

i

-- -- - 3, . _ . . . . . . .g . . _

P a

  • a h

-- - - - kM'  ?

-. . U <

e

.: I / '.

,* ~~

- e 3 ,'

l ...

'o t

e. * ,,

-. . d

0.0 LS 2A 3J 44 ga g4 7, g, TME0r)

  • o
  • , 8

< ,3 1

3' ,

0 ij 8 l l

,8 C .  ?

C D-

' ED 4

2- {!

M, . .

E'

.. y,;

I j

o ' '. I ~' '-

e' .

i 1 -

,e

> l l

.$w gg- '

a

.Mg 5 *: <

l. i '.5

'go .

g< a

  • i.. . . , .. .

2.. .

.r.. .. . . . .. .T .. . .....

. . ..... ........ .......s l

)

4. .

t o.o to 2A 3.s se u 44 7.o s.o na w TME (ne) 1 C.5-3 I

l i .

l

t Figure C.5-4 T23ML S5MAAD

g. . . . . . . . ..

4 X, .

Os x a

- ,' J ., ..  : .... ....

t. .

m- g a R'

fi ed \'- v- . .

~"

} { --- ... .-- -..---

r J et l 3

i 00 La im u 'e u M 7.0 EO ta no M Dd 4 <

I 4 4

m.

4 4

O<

l d l l \ . . . .

4:

o N

] ._ . . _ _

i m*< I l

i l

h' -

5M*

en b

i e

- \

! Nx u u a u u u u 7 ... u ,o T.ME Chd C.5-4

l 1

1 l Figure C.5-5 i

T23ML S5MAAP ie a: 1 fi,

~, A CCup l

,,; . . . . . . . . ..f..PP ..g......7..... . . . . . . ....

h t.

Ei!

cf ,

' l ' ' *

/ jg.

iI':

, .. =

  • e' t t<' t

$ '9, -*

8 :' * = "'

!! / __

g! <

l e e.-

s l --

_ s n s.

F c~ _

I , .

f I

e.o Le 24 2.s e4 u u 7.s a.o sc is.o TIME (Mr) l l e

4 4

4 4

C '

L :

I3:

  • R.

$I

1. .

e<

g2<

v2' s-

+ JCpG q j,p,ggg;y, O

.J. . - . .. ., gj mW e.

,o .- - - . . . . . - - . . . . . . .

's s .

14 2A 2.tP 44 u u 7.0 e.o u ias T N E C*r)

C.5-5 l l

\

. l l

..,__,.,._.,,-_,_m , . _ _ _ _ , _ , - . , _ , - . _I