ML20206Q895

From kanterella
Jump to navigation Jump to search
Rev 0 to L36 990415 802, COLR for Sequoyah Unit 2 Cycle 10
ML20206Q895
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 05/05/1999
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20206Q883 List:
References
L36-990415-802, L36-990415-802-R, L36-990415-802-R00, NUDOCS 9905190255
Download: ML20206Q895 (13)


Text

. . .

I e s

ENCLOSURE l

l SEQUOYAH NUCLEAR PLANT UNIT 2 CYCLE 10 -

CORE OPERATING LIMITS REPORT REVISION 0 (L36 990415 802) 9905190255 990513 PDR ADOCK 05000328 P PDR

j;. ,

e ,

e L36 990415 802 COLR FOR SEQUOYAH UNIT 2 CYCLE 10

((@

SEQUOYAH NUCLEAR PLANT UNIT 2, CYCLE 10 REVISION O May 1999 Prepared:

S~4-95

~

M - I Nuclear Fuel V Date Reviewed:

A I 5- S~ 9 9 Reactor Engineerinf3upervisor Date 7 dw I N7 Operations M'ana# Date A 0 00 '

\

/

/ 6~f6fff

' / Date

< PORC Chairrnan l

l 1

Revision 0 l Pages affected Reason for Revision l

SEQUOYAH - UNIT 2 Page 1 of 12 Revision 0 f

9 COLR FOR SEQUOYAH UNIT 2 CYCLE 10 1.0 CORE OPERATING LIMITS REPORT This Core Operating Umits Report (COLR) for Sequoyah Unit 2 Cycle 10 has been prepared in accordance with the requirements of Technical Specification (TS) 6.9.1.14.

The TSs affected by this report are listed below:

TABLE 2.2.1 f t(Al) trip reset function for OTAT Trip (QTNL, QTPL) and rates of trip setpoint decrease per percent Al (QTNS, QTPS)

TABLE 2.2.1 f 2(AI) trip reset function for OPAT Trip (QPNL, QPPL) and rates of trip setpoint decrease per percent Al (QPNS, QPPS) 3/4.1.1.3 Moderator Temperature Coefficient (MTC) ..

3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference (AFD)  !

3/4.2.2 Heat Flux Hot Channel Factor (Fo (X,Y,Z))

3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor (Fm (X,Y))

{

2.0 OPERATING LIMITS

, The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in TS 6.9.1.14.

The following abbreviations are used in this section:

BOL stands for Beginning of Cycle Life l ARO stands for All Rods Out l HZP stands for Hot Zero THERMAL POWER l EOL stands for End of Cycle Ufe i

! RTP stands for RATED THERMAL POWER 2.1 Moderator Temperature Coefficient - MTC (Specification 3/4.1.1.3)

!: 2.1.1 The MTC limits are:

I The BOUARO/HZP-MTC shall be less positive than 0 Ak/k/*F (BOL limit). With the measured BOUARO/HZP-MTC more positive than 0 Ak/k/*F (as-measured MTC limit),

establish control rod withdrawal limits to ensure the MTC remains less positive than 0 Ak/k/*F for all times in core life. j SEQUOYAH - UNIT 2 Page 2 of 12 Revision 0

COLR FOR SEQUOYAH UNIT 2 CYCLE 10 The EOUARO/RTP-MTC shall be less negative than or equal to -4.5 x 10 4 Ak/k/*F.

2.1.2 The 300 ppm surveillance limit is:

The measured 300 ppm /ARO/RTP-MTC should be less negative than or equal to -3.75 x 104Ak/k/*F.

l 2.2 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be withdrawn to a position as defined below:

Cycle Bumuo (MWD /MTU) Steos Withdrawn 5 4,000 E 225 to d 231 l

> 4,000 to < 14,000 2222 to 5 231 1 14,000 1225 to 5 231 I

2.3 Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.

2.4 Axial Flux Difference - AFD (Specification 3/4.2.1) 2.4.1 The axial flux difference (AFD) limits (AFD") are provided in Figure 2.

2.5 Heat Flux Hot Channel Factor- Fn (X.Y.Z) (Specification 3/4.2.2)

Fo (X,Y,Z) shall be ilmited by the following relationships:  !

RTP Fo l Fo(X,Y,Z)s

  • K(Z) for P > 0.5 l P i i

p RTP Fo (X,Y,Z) s

  • K(Z) for P s 0.5 0.5 THERMAL POWER where P =

RATED THERMAL POWER l

SEQUOYAH - UNIT 2 Page 3 of 12 Revision 0 t

\

COLR FOR SEQUOYAH UNIT 2 CYCLE 10 2.5.1 F/" = 2.50 for Mark BW fuel F/'" = 2.40 for Westinghouse fuel 2.5.2 K(Z) is provided in Figure 3 for Mark BW fuel.

K(Z) is provided in Figure 4 for Westinghouse fuel.

The following parameters are required for core monitoring per the Surveillance Requirements of Specification 3/4.2.2:

)

2.5.3 NSLOPE" = 2.12 )

where NSLOPE" = Negative AFD limit adjustment required to compensate for each 1% that Fo (X,Y,Z) exceeds BQDES.

2.5.4 PSLOPE" = 1.36 where PSLOPE" = Positive AFD limit adjustment required to compensate for each 1% that Fo (X,Y,Z) exceeds BQDES.

2.5.5 NSLOPEN = 2.33 j J

where NSLOPE N Adjustment to negative OPAT f2(Al) limit required to compensate for each 1% that Fo (X,Y,Z) exceeds BCDES.

2.5.6 PSLOPE = 2.40 l

where PSLOPE W Adjustment to positive OPAT f2(AI) limit required to compensate for each 1% that Fo (X,Y,Z) exceeds BCDES.

2.5.7 BQNOM(X,Y,Z) = Nominal design peaking factor, increased by an allowance for the expected deviation between the nominal design power )

distribution and the measurement.

2.5.8 BQDES(X,Y,Z) = Maximum allowable design peaking factor which ensures that the Fo (X,Y,Z) limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement uncertainties.

2.5.9 BCDES(X,Y,Z) = Maximum allowable design peaking factor which ensures that the centerline fuel melt limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement uncertainties.

BQNOM(X,Y,Z), BQDES(X,Y,Z), and BCDES(X,Y,Z) data bases are provided for input to

, the plant power distribution analysis codes on a cycle specific basis and are determined l using the methodology for core limit generation described in the references in Specification 6.9.1.14.

SEQUOYAH - UNIT 2 ' Page 4 of 12 Revision 0

I I j

l i l l COLR FOR SEQUOYAH UNIT 2 CYCLE 10 i l

l 2.5.10 The increase in Fo" (X,Y,Z) for compliance with the 4.2.2.2.e Surveillance l l Requirements is defined as follows:

For cycle bumups s 3567 mwd /MTU 2.0%

l 1

For cycle bumups > 3567 mwd /MTU to 54121 mwd /MTU 3.0%

l For cycle bumups > 4121 mwd /MTU to 5 5455 mwd /MTU 3.8%

For cycle bumups > 5455 mwd /MTU to 5 5909 mwd /MTU 3.0%

For cycle bumups > 5909 mwd /MTU 2.0%

2.6 Nuclear Enthalov Rise Hot Channel Factor- Fm (X.Y) (Specification 3/4.2.3)

Fas (X,Y) shall be limited by the following relationship:

F6s (X,Y) 5 MAP (X,Y,Z) / AXIAL (X,Y) 2.6.1 MAP (X,Y,Z) is provided in Table 1 for Mark-BW fuel and Westinghouse fuel.

AXIAL (X,Y) is the axial peak from the normalized axial power shape.

The following parameters are required for core monitoring per the Surveillance Requirements of I Specification 3/4.2.3- 1 i

FAHR"(X,Y) 5 BHNOM(X,Y) where FAHR" (X,Y) = Fas (X,Y) / MAP" / AXIAL (X,Y)

Fis (X,Y) is the measured radial peak at lot,ation X,Y.

MAP" is the value of MAP (X,Y,Z) obtained from Table 1 for the measured peak. .

l 2.6.2 BHNOM(X,Y) = nominal design radial peaking factor, increased by an allowance for the expected deviation between the nominal design power distribution and the measurement.

2.6.3 BHDES(X,Y) = maximum allowable design radial peaking factor which ensures that f the Fas (X,Y) limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement uncertainties.

2.6.4 BRDES(X,Y) = maximum allowable design radial peaking factor which ensures that the steady state DNBR limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement uncertainties.

BHNOM(X,Y), BHDES(X,Y) and BRDES(X,Y) data bases are provided for input to the plant power distribution analysis computer codes on a cycle specific basis and are determined using the methodology for core limit generation described in the references in Specification 6.9.1.14.

SEQUOYAH - UNIT 2 Page 5 of 12 Revision 0

i COLR FOR SEQUOYAH UNIT 2 CYCLE 10 2.6.5 RRH = 3.34 when 0.8 < P $ 1.0 1 RRH = 1.67 when P 5 0.8

' where RRH = Thermal power reduction required to compensate for each 1% that F6s(X,Y) exceeds its limit.

P = Thermal Power / Rated Thermal Power )

l' 2.6.6 TRH = 0.0334 when 0.8 < P 51.0 TRH = 0.0167 when P 5 0.8 where TRH = Reduction in OTAT Ki setpoint required to compensate for each 1%

Fa(X,Y) exceeds its limit. .

{

I 2.6.7 All cycle bumups shall use a 2% increase in Fas" (X,Y) margin for compliance with the 4.2.3.2.d.1 Surveillance Requirement. ,

J 3.0 REACTOR CORE PROTECTIVE LIMITS 3.1 Trio Reset Term I fdAll 1 for Overtemperature Delta T-Trio (Specification 2.2.1)

The following parameters are required to specify the power level-dependent f i(AI) trip reset term limits for the Overtemperature Delta-T trip function:

3.1.1 QTNL = -20%

where QTNL = the maximum negative Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.

3.1.2 QTPL = +5%

where QTPL = the maximum positive Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.

3.1.3 QTNS = 2.50% {

l where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of Al exceeds its negative limit at rated thermal power (QTNL).

)

3.1.4 QTPS = 1.40%  !

where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each l percent that the magnitude of Al exceeds its positive limit at rated j thermal power (QTPL).

SEQUOYAH - UNIT 2 Page 6 of 12 Revision 0 I_

COLR FOR SEQUOYAH UNIT 2 CYCLE 10 3.2 Trio Reset Term i f,(AI) I for Overpower Delta-T Trio (Specification 2.2.1)

The following parameters are required to specify the power level-dependent f2(Al) trip reset term l limits for the Overpower Delta-T trip function:

3.2.1 QPNL = -25%

where QPNL = the maximum negative Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.

3.2.2 QPPL = +25%

where QPPL = the maximum positive Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.

3.2.3 QPNS = 1.70%

where QPNS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of Al exceeds its negative limit at rated thermal power (QPNL).

3.2.4 QPPS = 1.70%

where QPPS = the percent reduction in Overpower Delta T trip setpoint for each

! percent that the magnitude of Al exceeds its positive limit at rated thermal power (QPPL).

l l

l SEQUOYAH - UNIT 2 Page 7 of 12 Revision 0 l

l l

f... -

1 COLR FOR SEQUOYAH UNIT 2 CYCLE 10 Table 1 Maximum Allowable Peaking Limits MAP (X,Y,Z)

Mk-BW Fuel W Fuel i Elevation (fu AXIAL (X.Y) MAP (X.Y.Z) MAP (X.Y.Z) 2 1.1 1.970 1.899 4 1.966 1.897 6 1.958 1.893 I 8 1.945 1.881 l 10 1.917 1.851 2 1.2 2.208 2.135 4 2.197 2.131 l

6 2.180 2.119 8 2.150 2.092 10 2.072 1.991 l

l 2 1.3 2.453 2.378 l 4 2.434 2.372 l 6 2.406 2.339

)

8 2.315 2.219 j j 10 2.185 2.100 l

l 2 1.4 2.702 2.626 .I l 4 2.672 2.570 l

6 2.572 2.446 j 8 2.429 2.320 l 10 2.288 2.191 2 1.5 2.956 2.777 4 2.826 2.664 6 2.683 2.538 ,

8 2.529 2.405 1 10 2.381 2.269 l 2 1.7 3.162 2.911

. 4 3.007 2.804 6 2.850 2.685 8 2.690 2.542 10 2.542 2.413 2 1.9 3.283 3.004 4 3.133 2.916 6 2.982 2.805 8 2.821 2.659 10 2.685 2.532 i

SEQUOYAH - UNIT 2 Page 8 of 12 Revision 0 I

l

COLR For Sequoyah Unit 2 Cycle 10

(.605,231) 231 (Fully Withdrawn.Regionf ,' .

220 --

.----- @ am 200 -

180 -*--i-- .

--:-('*'"

c160 - -:-

0 8140 n.

B A N K C: - - *:'

  • gg . . . .

{

.e. . . . .

1 (O . . . .

l y (0,110) . . . .

{

g100 -- - - - i - - - -: - - - - . - -: - - -

l m  :  :  :  : 1 E 80 ----i----  :- -- --: ---

5  :  : BAN'K D  :

60 ------------:--:---

\

40 -- -- - -- - - -

20 -- - -

.Os,0) -

0 O 0.2 0.4 0.6 0.8 1 (Fully inserted) Fraction of Rated Thermal Power FIGURE 1 Rod Bank Insertion Limits Versus I Thermal Power Four Loop Operation

  • 1 Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the Interval of 1222 and 1231 steps withdrawn, inclusive.

Fully withdrawn shall be the position as defined below, Cvele Burnuo (mwd /MTUI Sten Withdrawn 14000 1225 to 1231

> 4000 to < 14,000 1222 to 1231 1 14,000 1225 to 1231 SEQUOYAH - UNIT 2 Page 9 of 12 Revision 0

COLR For Sequoyah Unit 2 Cycle 10 120 . . . . . . . .

)

110 - *

.. . . .. . . .. . . . s (.-11,1. 00) (7,10.0) 100 . . .

. s . . . . . ... . .

90 unac'ceptablar i -  :-- - -:

Unsce'eptable -

g Op;eratl4n

Ope, ration g so _. . .
. . . .:. . < . . .:. . . . . . . .:. . ; . . .:. . . .:. . .
n. .-

Acceptable. .

a 70 -.......,.

..,....pera ton.

E m

lC 60 --:- .

.g . . . . . . . .

g . . . . . . . .

~

  • 50 . -

.(28,50) -

m (-40,50) ;

Q -. . ... . . ... .

4 ... ...

4 . . . . . . . . . . . .

g .

...s.....

30 - . . . . . . . . ...,........

20 - - -:  : i-  : - -

--; - i 10 -- - - : - --; - -

-b --

0 40 20 -10 0 10 20 30 40 50 i Flux Difference (delta 1) %

FIGURE 2 Axial Flux Difference Limits As A Function Of Rated Thermal Power SEQUOYAH - UNIT 2 Page 10 of 12 Revision 0

r COLR For Sequoyah Unit 2 Cycle 10 1.2 . . . . .

3 1

2.5 0.8 - - - - l -

i-

- -l l-2 0 u.

a

:  :  :  : c tS O.6 x ----:-:-:-:--:---

1.5 a a

.a.

0.4 - -

- ' 'dibMIdlit'
  • kiK:' ' 'F'd * :' ' ' ' ' 1 C >o Q.000 ft : 1.000 :2.500 :
0.286 ft : 1.000 :2.500 :

0.2 - -

- 4.995 ft : 0.966 :-2.415 :

0.5

9.705 ft : 0.920 :2.300 :

12.000 ft : 0.858:2.146 :

0 O O 2 4 6 8 10 12 Core Height (Feet)

FIGURE 3 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height l

(Mark-BW Fuel)

SEQUOYAH - UNIT 2 Page 11 of 12 Revision 0

T 1

l l l l

COLR For Sequoyah Unit 2 Cycle 10 l

1.2 . . . . .

2.5 i  :  :  :  : .

2  !

0.8 -- - -

a j

:  :  :  : m
:  :  :  : en e

- . . . . . ~

1'5 yo.6 --

:  :  :  : n.

m

.. . . . . . . . . ... . . . . ... . . . . . . . . . . . . . . . .~ j Core Heiaht KlZ) FO  :

0.000:ft 1 .0.0 0 2 .4.0 0  :
6.000:ft 1 .0 0 0 2 .4'0 0  :

0.2 -- - - !IO.800!'ft 0.540 7.dS6 - -l - -

0.5 1

12.000: ft 0.92S 2.320 0 O O 2 4 6 8 10 12

, Core Height (Feet) 1 1

FIGURE 4

{

K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (Westinghouse Fuel)

SEQUOYAH - UNIT 2 Page 12 of 12 Revision 0