ML20154H625

From kanterella
Jump to navigation Jump to search
Rev 0 to Sequoyah Nuclear Plant Unit 1 Cycle 10 Colr
ML20154H625
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 09/17/1998
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20154H623 List:
References
NUDOCS 9810140272
Download: ML20154H625 (14)


Text

'

s l

ENCLOSURE SEQUOYAH NUCLEAR PLANT UNIT 1 CYCLE 10 CORE OPERATING LIMITS REPORT REVISION 0 i l

I l

I l

l l

1 1

l l

l l

\

(

9810140272 981008 PDR ADOCK 05000327 P PDR

i L36 980911 801 l

e ..

COLR FOR SEQUOYAH UNIT 1 CYCLE 10 QA RECORD SEQUOYAH NUCLEAR PLANT UNIT 1, CYCLE 10 REVISION O September 1998 Prepared: i b4 A . 1% '

/ 6 .26-98 Nuclear Fuel 'd Date Reviewed:

! l 9 .2-92 Reactor Engineering Supervisor Date

/ i' 0 O Operations kidnage( " '

Date i OblW / 9 - I l-(I PORC C frma Date Ys Revision 0 Pages affected Reason for Revision SEQUOYAH - UNIT 1 Page 1 of 13 Revision 0 l

COLR FOR SEQUOYAH UNIT 1 CYCLE 10

{

~

1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Sequoyah Unit 1 Cycle 10 has been prepared in accordance with the requirements of Technical Specification (TS) 6.9.1.14.

The TSs affected by this report are listed below:

TABLE 2.2.1 f i(AI) trip reset function for OTAT Trip (OTNL, QTPL) and rates of trip setpoint decrease per percent Al (OTNS, QTPS)

TABLE 2.2.1 f 2(AI) trip reset function for OPAT Trip (QPNL, QPPL) and rates of trip setpoint decrease per percent Al (QPNS, OPPS) 3/4.1.1.3 Moderator Temperature Coefficient (MTC) 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference (AFD) 3/4.2.2 Heat Flux Hot Channel Factor (Fa (X,Y,Z))

3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor (F t.a (X,Y))

2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologles specified in TS 6.9.1.14.

The following abbreviations are used in this section:

BOL stands for Beginning of Cycle Life ARO stands for All Rods Out l HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.1 Moderator Temperature Coefficient - MTC (Specification 3/4.1.1.3) 2.1.1 The MTC limits are:

The BOUARO/HZP-MTC shall be less positive than 0 Ak/k/*F (BOL limit). With the l measured BOUARO/HZP-MTC more positive than 0 Ak/k/*F (as-measured MTC limit),

l establish control rod withdrawal limits to ensure the MTC remains less positive than 0 l Ak/k/*F for all times in core life, i

SEQUOYAH - UNIT 1 Page 2 of13 Revision 0 l

l

n

.,. ', ]

)

COLR FOR SEQUOYAH UNIT 1 CYCLE 10 i

+

The EOUARO/RTP-MTC shall be less negative than or equal to -4.5 x 10-4 AUVF.  !

2.1.2 The 300 ppm surveillance limit is:

f i

The measured 300 ppm /ARO/RTP-MTC should be less negative than or equal to -3.75 x i 10-4 A U V F.  !

\

2.2 Shutdown Rod Insertion Limit ' (Specification 3/4.1.3.5) l I

2.2.1 The shutdown rods shall be withdrawn to a position as defined below:

l Cycle Bumun (MWD /MTU) Steos Withdrawn ,

s 4,000 2 225 to 5 231 I

. > 4,000 to < 14,000 1222 to 5 231 l t 14,000 2 225 to $ 231 2.3 - Control Rod Insertion Limits (Specification 3/4.1.3.6) i 2.3.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.

  • t 2.4 Axial Flux Difference - AFD (Specification 3/4.2.1) l; 2.4.1 The axial flux difference (AFD) limits (AFDuinn) are provided in Figures 2a and 2b..

l 2.5 Heat Flux Hot Channel Factor- Fn (X.Y.Z) (Specification 3/4.2.2) l Fo (X,Y,Z) shall be limited by the following relationships: l p RTP Fo (X,Y,Z) s

  • K(Z) for P > 0.5 P ,

i a

p RTP Fo (X,Y,Z) s

  • K(Z) for P s 0.5  !

0.5 i THERMAL POWER where P =

RATED THERMAL POWER SEQUOYAH - UNIT 1 Page 3 of13 Revision 0

- - -.- . - - - - . - .- ... ~. - - - . . . - . - . - .

n .- - . . -

4 l  !

l -

l COLR FOR SEQUOYAH UNIT 1 CYCLE 10 I

~ 2.5.1 ' F/" = 2.50 for Mark-BW fuel l F/" = 2.40 for Wsstinhhouse fuel l 2.5.2 K(Z) is provided in Figure 3 for Mark-BW fuel.

l K(Z) is provided in Figure 4 for Westinghouse fuel.

l The following parameters are reqisired for core monitoring per the Surveillance l Requirements of Specification 3/4.2.2:

1

! 2.5.3 NSLOPE** = 1.21 l where NSLOPE^* = Negative AFD limit adjustment required to compensate for each l 1% that Fo (X,Y,Z) exceeds BQDES.

2.5.4 PSLOPE^* = 1.68 i where PSLOPE** = Positive AFD limit adjustment required to compensate for each l 1% that Fo (X,Y,Z) exceeds BQDES,  ;

l )

W) 2.5.5 NSLOPE'2 = 1.38 I

W) where NSLOPE'2 Adjustment to negative OPAT f2(AI) limit required to compensate i

for each 1% that Fo (X,Y,Z) exceeds BCDES.

W) l 2.5.6 PSLOPE'2 = 2.40 l

M where PSLOPE'2 Adjustment to positive OPAT f 2(AI) limit laquired to compensate l for each 1% that Fo (X,Y,Z) exceeds BCDES.

2.5.7 BQNOM(X,Y,Z) = Nominal design peaking factor, increased by an allowance for the expected deviation between the nominal design power distribution and the measurement.

2.5.8 BQDES(X,Y,Z) = Maximum allowable design peaking factor which ensures that the I l

l Fo (X,Y,Z) limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement 1 i uncertainties. )

2.5.9 BCDES(X,Y,Z) = Maximum allowable design peaking factor which ensures that the centerline fuel melt limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement uncertainties.

BQNOM(X,Y,Z), BQDES(X,Y,Z), and BCDES(X,Y,Z) data bases are provided for input to the piant power distribution analysis codes on a cycle specific basis and are determined ,

using the methodology for core limit generation described in the references in i
Specification 6.9.1.14. j i

l SEQUOYAH - UNIT 1 Page 4 of 13 Revision 0 q l

l

)

l l

, e COLR FOR SEQUOYAH UNIT 1 CYCLE 10 2.5.10 The increase in Fo" (X,Y,Z) for compliance with the 4.2.2.2.e Surveillance Requirements is defined as follows:

For cycle bumups 518569 mwd /MTU 2.0%

For cycle bumups > 18569 mwd!MTU 2.7%

2.6 Nuclear Enthalov Rise Hot Channel Factor- 9 F 6 (Specification 3/4.2.3)

F6s (X,Y) shall be limited by the following relationship:

Fan (X,Y) 5 MAP (X,Y,Z) / AXIAL (X,Y) 2.6.1 MAP (X,Y,Z) is provided in Table 1 for Mark-BW fuel and Westinghouse fuel. ,

AXIAL (X,Y) is the axial peak from the normalized axial power shape.

The following parameters are required for core monitoring per the Surveillance Requirements of Specification 3/4.2.3:

FAHR"(X,Y) 5 BHNOM(X,Y) where FAHR" (X,Y) = Fas (X,Y) / MAP" / AXIAL (X,Y)

F6s (X,Y) is the measured radial peak at location X,Y.

MAP" is the value of MAP (X,Y,Z) obtained from Table 1 for the measured peak.  !

- 2.6.2 BHNOM(X,Y) = nominal design radial peaking factor, increased by an allowance for the expected deviation between the nominal design power distribution and the measurement.  ;

2.6.3 BHDES(X,Y) maximum allowable design radial peaking factor which ensures that -

the F3s (X,Y) limit will be preserved for operation within the LCO limits, including allowances for calculational and measurement uncertainties.

2.6.4 BRDES(X,Y) = maximum allowable design radial peaking factor which ensures that the steady state DNBR limit will be preserved for operation within the

LCO limits, including allowances for calculational and measurement uncertainties.

l 1

BHNOM(X,Y), BHDES(X,Y) and BRDES(X,Y) data bases are provided for input to the j plant power distribution analysis computer codes on a cycle specific basis and are determined using the methodology for core limit generation described in the references in Specification 6.9.1.14.

2.6.5 RRH = 3.34 when 0.8 < P 51.0 RRH = 1.67 when P 5 0.8 i

I SEQUOYAH - UNIT 1 Page 5 of 13 Revision 0 I

e COLR FOR SEQUOYAH UNIT 1 CYCLE 10

! where RRH = Thermal power reduction required to compensate for each 1% that  :

i Fas(X,Y) exceeds its. limit, l

P = Thermal Power / Rated Thermal Power j 2.6.6 TRH = 0.034 when 0.8 < P < 1.0 TRH = 0.017 when P $ 0.8 l

where TRH = Reduction in OTAT K, setpoint required to compensate for each 1%

Fm(X Y) exceeds its limit.

2.6.7 ' All cycle bumups shall use a 2% .ncrease in Fas"(X,Y) margin for compi. ace with the  !

4.2.3.2.d.1 Surveillance Require ment.  ;

3.0 REACTOR CORE PROTECTIVE LIMITS

3.1 Trio Reset Term i f,(AI)1 for Overtemperature Delta T-Trio (Specification 2.2.1) l The following parameters are required to specify the power level-dependent fi(AI) trip reset term limits for the Overtemperature Delta-T trip function

3.1.1 QTNL = -20% )

i

! where QTNL = the maximum negative Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.  :

3.1.2 QTPL = +5%

where QTPL = the maximum positive Al setpoint at rated thermal power at which the trip ,

j setpoint is not reduced by the axial power distribution.

! . i l 3.1.3 QTNS = 2.50%

, where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each

! percent that the magnitude of Al exceeds its negative limit at rated thermal power (QTNL).

3.1.4 QTPS = 1.40%

I l

where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each j

l percent that the magnitude of Al exceeds its positive limit at rated i thermal power (OTPL).

+

3.2 Trio Reset Term i f,(at) 1 for Overoower Delta-T Trio (Specification 2.2.1) l l The following parameters are required to specify the power level-dependent f2(AI) trip reset term

.a. lits for the Overpower Delta-T trip function:

SEQUOYAH - UNIT 1 Page 6 of 13 Revision 0 l

l 4

1

l I

l i

COLR FOR SEQUOYAH UNIT 1 CYCLE 10 3.2.1 QPNL = -25%

where QPNL = the maximum negative Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.

3.2.2 QPPL = +25%

where QPPL = the maximurn positive Al setpoint at rated thermal power at which the trip setpoint is not reduced by the axial power distribution.

3.2.3 QPNS = 1.70%

where OPNS = the percent reduction in Overpowei Delta-T trip setpoint for each percent that the magnitude of Al exceeds its negative limit at rated thermal power (QPNL).

3.2.4 QPPS = 1.70%

where QPPS = the percent reduction in Overpower Delta T trip setpoint for each percent that the magnitude of Al exceeds its positive limit at rated thermal power (QPPL).

l i

i l

I l

SEQUOYAH - UNIT 1 Page 7 of 13 Revision 0

)

l l

4 r .

a COLR FOR SEQUOYAH UNIT 1 CYCLE 10 e -

4 Table 1 ,

1 l

Maximuni Allowable Peaking Limits MAP (X,Y,Z) .

I Mk-BW Fuel W Fuel Elevation (fo AXIAL (X.Y) MAP (X.Y.Z) MAP (X.Y.Z) 2 1.1 1.970 1.899 i' 4 1.966 1.897 -

I- 6 1.958 1.893 8 1.945 1.881 <

l 10 1.917 1.851 2 1.2 2.208 2.135 '

4 2.197 ' 2.131 6 2.180 2.119 8 2.150 2.092 10 2.072 1.991 2 1.3 2.453 2.378 4 2.434 2.372 6 2.406 2.339 >

8 2.315 2.219 10 2.185 2.100

-2 1.4 2.702 2.626 '

4- 2.672 2.570 -

6 2.572 2.446 8 '

2.429 2.320 10 2.288 2.191 l 2 1.5 2.956 2.777 4 2.826 2.664 6 2.683 2.538 8 2.529 2.405 l 10 2.381 2.269 I

l 2 1.7 3.162 2.911 4 3.007 2.804 6 2.850 2.685

l. 8 2.690 2.542 10 2.542 2.413 l 2 1.9 3.283 3.004 l 4 3.133 2.916 6 2.982 2.805 8 2.821 2.659 l

10 2.685 2.532 SEQUOYAH - UNIT 1 Page 8 of 13 Revision 0 l

l I

COLR For Soquoyah Unit 1 Cycle 10

(.605,231)

(Fully ' Withdrawn. Region)" , ( ,

220 --

. us;22i>-

200 -- -

180 -- - ---

e160 --

$140 n.

BANK C: -: - .-

2 .

2120 -- - - -

m .

y (0,110) .

g100 --

m '

E 80 -- --

BANK D 60 --

i 40 --

20 -- -- ' -

.08.0) i  ; j i  !

O i 0 0.2 0.4 0.6 C.8 1 (Fully inserted) Fraction of Rated Thermal Power FIGURE 1 i Rod Bank Insertion Limits Versus

! Thermal Power Four Loop Operation l Fully withdrawn region shall be the condition where shutdown and control banks are l at a position within the Interval of 1222 and 1231 steps withdrawn, inclusive.

Fully withdrawn shall be the position as defined below, Cvelo Burnuo (mwd /MTUI Sten Withdrawn 1 4000 1225 to 1231

> 4000 to < 14,000 1222 to 1231  !

1 14,000 1225 to 1231 l i l

SEQUOYAH - UNIT 1 Page 9 of 13 Revision 0 I

L ..

3 -

j. COLR For Sequoyah Unit 1 Cycle 10 l

120 . . . . . . . .

110 --: ----

.  :~- - - - -

J 11,100) (7,100) ' '

100 -

90 tinac'ceptabler i - ' -- . Unace'eptable L g Operatl6n  :  : Operation g 80 --: - -: -

L n, - .

Acceptable. . . .

Operation .

- l l l  :  :

a 70 - . . , . . ... . .

o E 6

! O .. . . . .

l Q 60 -; - --

l , . . . . . . . .

~

50

$ (-40,50) :  ;  ; .

(28,rg) .

o 40 --

L g .

30 --

20 -. ,

10 --: -: -  :-  : -

0 40 20 -10 0 10 20 30 40 50 l

l Flux Difference (delta 1) %

FIGURE 2a l

l Axial Flux Difference Limits As A Function Of Rated Thermal Power For Operation From BOC to 10000+/-380 mwd /MTU and For Operation From 18569+/-380 mwd /MTU to EOC 1.

SEQUOYAH - UNIT 1 Page 10 of 13 Revisio- 0

COLR For Sequoyah Unit 1 Cycle 10 120 . . . . . .

110 -,.-: - -

(7,100) '

-1 (.-10,100) 100 --

90 unac'ceptable- . - -- --

-Unacceptable g Operation ' '

Operation a

! 80 --

Acceptable -

  • :  : Operation .  :

E 70 -- -

w . . .

G . . . . .

  1. 60 --

a . . . . .

~

50 --(-40,50)

; (28,50)

O 40 --

g .

30 --: '

20 --

10 --

4- -:

\ \ \ \ \ , ,

\

n 40 20 -10 0 10 20 30 40 50 Fiux Difference (delta 1) %

FIGURE 2b Axial Flux Difference Limits As A Function Of Rated Thermal Power l'

For Operation From 10000 +/-380 mwd /MTU to 18569 +/-380 mwd /MTU J

I L SEQUOYAH - UNIT 1 Page 11 of 13 Revision 0 l

l

I ,

COLR For Sequoyah Unit 1 Cycle 10 l

1.2 . . . 3 1

2.5  :

. i 0.8 --

2 0 u.

s e C

g . . .

'y

- 0.6 M

1.5 m e

a E.

O.4 ^ ' '

' ^: ' Cd e'Reig t' ~KfZ ^ ~ PQ

^^

1 0.000 ft : 1.000 l 2.500

. 6.285 ft .1.000 : 2.500 0.2 --

l -7.995 ft ! 0.966 C.4 f 5 0.5

9.705 ft : 0.920 :2.300 12.000 ft : 0.858 '2.145 I ' ' '

0- O O 2 4 6 8 10 12 Core Height (Feet)

FIGURE 3 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (Mark-BW Fuel) l.

SEQUOYAH - UNIT 1 Page 12 of 13 Revision 0

i l

COLR For Sequoyah Unit 1 Cycle 10 '

I l

1.2 . . . . ,

)

'. )

2.5 '

1 -

. l 2

0.8 - - - - . -------

a

:  :  : LL.
: . c) c 1.5 h0.6 g

. . . CL.

!  : 3

~

0.4 - - - - - -- - -- - 1 0

Core Heiaht Kf7) FO

0.000:ft 1 . 0.0 0 2 .4 0 0 1
6.000:ft 1.000 2.4D0 0.5 0.2 -- - -

10.800.~ft ' ~ 0.940 ' ~2~.256 ,

12.000{ ft' O.9 2 6 2.2;2 0

l 1

0 0 0 2 4 6 8 10 12 Core Height (Feet) l lGURE 4 l l f

l K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height l (Westinghouse Fuel) l SEQUOYAH - UNIT 1 ' Page 13 of 13 Revision 0

- - , .;