ML20076C010

From kanterella
Jump to navigation Jump to search
Forwards Backup Calculations for Table D.4,CRBR Fuel Cycle Suppl.Related Info Encl
ML20076C010
Person / Time
Site: Clinch River
Issue date: 06/09/1982
From: Hill O
Battelle Memorial Institute, PACIFIC NORTHWEST NATION
To: Lowenberg H
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
Shared Package
ML20076B704 List:
References
FOIA-82-290 NUDOCS 8210070256
Download: ML20076C010 (86)


Text

{{#Wiki_filter:r (@ OBattelle Pacific Northwest Laboratories P.O. Bos 999 Richland, Washington U.S.A. 99352 Telephone (509) 376-3476 Telen 15-2874 June 9, 1982 Homer Lowenberg, Chief Engineer Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Dear Homer:

BACXUP CALCULATIONS FOR TABLE D.4, CRBR FUEL CYCLE SUPPLEMENT Enclosed are 5 copies of ny calculations for the two Fuel Fabrica-tion Plants and the Reprocessing Plant as developed for the sub-ject table. These may help you track my calculations from the text and other source data (e.g., WASH-1248) in preparation for the hearing (s). Please telephone if there are questions. Sincerely. Y Orville F. Hill 0FH:edg. Enclosures bec: CA Geffen RF McCallum IC Nelson < PT Reardon RJ Sorenson DL Strenge File /Lb I' 8210070256 820716 ~ ~ ~ i PDR FOIA ~ J WEISS 82-290 PDR s

CONVERSION FACTORS USED IN DEVELOPMENT OF TABLE D.4 1 kWh = 3.6 N 1 MWH = 3600 N 3 ~ 1 Btu = 1.05 x 10 J = 1.05 x 10-3 y 1 N, = 1.08 x 10~4 MT equivalent coal

  • 3.6 x 10-2 MT S0x per MT equivalent coal **

~1 x 10-2 MT NOx per MT. equivalent coal 2.3 x 10-4 MT C0 per HT equivalent coal -1 x 10-4 MT Hydrocarbons per MT equivalent coal ~1 x 10-2 MT Particulates per MT equivalent coal I ha = 2.5 acres s Assume 1200 Btu /lb coal 1 MJe=3Nt 3 N /N 1N t e 8 1.05 x 10-3K1/ Btu x 12000 Btu /lb coal x 2200 lb/MT coal t .=,.1.08 x 10-4.MT equivalent coal Emmission factors were calculated from data presented in Atmospheric Emissions from Coal Combustion, An Inventory Guide. Pub 11shed by U.S. Department of Health, Education and Welf are Service, Tables 2-2 and 2-3 i (date unknown, but before 1974). r I l e i y c

3'. D.4 DATA CALCULATED FOR'UOp FUEL FABRICATION (BLANKET) PLANT: Basis: 11.1 MTU for CRBR fuel cycle. Ratio of ~1/3 (11.1 MTU-CRBR to 35 MTU-LWR) to data presented in WASH-1248, column E, Table S-3A. 0.2 acres (WASH-1248) x 11.1/35 = 0.03 2.5 acres /ha 0.16 x 11.1/35 = 0.02 2.5 0.04 x 11.1/35- = 0.005 2.5 5.2 x 106 gallons x 11.1/35 = 1.6 x 106 gallons ~1/3 x 1.7 x 103 MWh x 3600 MJ/MWh = 2.0 x 106m ~1/3x 0.62 x 103 MT equivalent coal = 200 MT ~1/3 x 23 MT S0 = 7 MT S0 x x ~1/3 x 6 MT N0 = 2 MT N0 x x ~1/3 x0.06 MT Hydrocarbons = 0.02 MT Hydrocarbons ~1/3 x0.15 MT CO = 0'.05 MT CO ~1/3 x 6 MT Particulates = 2 MT Particulates ~1/3 x 0.005 MT F- = 0.002 MT F-(But see calculation from Westinghouse EIA (NR-FM-013) - below) ~1/3 x 23 MT NO - = 7.3 MT NO ~ 3 3 ~1/3 x 4.1 MT F- = 1.3 MT F- ~1/3 x 10 MT NH3 = 3.2 MT NH3 11 MT CaF2 (~Should read 35 MT CaF1 MT CaF /MTU as per text. Note that Column E is 2 incorrect. 2 rather than 23 MT CaF *I 2

t ' WASH-1248 reports 2 x 10-4 Ci Uranium released to atmosphere in support of model LWR. CRBR uranium contains 99.8% U-238, 0.2% U-235. For each 100 g U: 99.8 g U-238 x 3.33 x 10'-7C1/g = 3.32 x 1-5Ci/100 g (98.8%) 0.2 g U-235 x 2.14 x 10-6Ci/g = 4.28 x 10-7Ci/100 g ( 1.3%) 3.36 x 10 T,1/100 g ~1/3 x 2 x 10-4Ci U x.988 = 6.6 x 10-5 C[U-238 ~1/3 x 2 x 10-4 Ci U x 0.013 = 8.5 x 10-7 Ci U-235 Thermal: ~1/3 x 9 x 109 Btu = 3.0 x 109 Btu x 1.05 x 10-3 MJ/ Btu = 3.15 x 106y USNRC 1977b (NR-FM-013), p. 3-11 .0286 gF /sec x 3600 sec/hr x 24 hr/da x 365 da/yr x 11.1 MTU (CRBR) T6DIT MTU (Westing-house thruput) = 6.3 x 103 grams = 0.006 MT/yr 31.18 g NH /sec x 3600 x 24 x 365 x 11.1 = 6.7 x 106 3 g Tsor = 6.7 MT/yr i

p. 3-10 1.19 x 10-4 pCiU/sec x 3600 x 24 x 365 x 11.1 = 26pCi/yr i

T5DIT (less conservative than above) rY

i 0.4 DATA FOR MIXED OXIDE (CCRE FUEL) FABRICATION: Using DdE data from Table 5 7 - 1, Amendment XIV 750 gallons / day x 365 gays /yr = 274,000 gal /yr round to 0.3 x 10 gal /yr. (This should be noted - discharge to ground, since according to DOE /EA-0116, nondischarged to river. Water is from wells. 9 x 103 MWh x 3600 MJ/MWh = 3.2 x 107 10 3.6 x 103 MT eq. co'al 50 :

3. 6 x 103 2=

x 3.5 x 10 2 = 126 (round to 130) x Particulates & N0 : x1 x 10 4 = 36 (round to 35) x HC : x1 x 10-x 2.3 x 10-4 = 36 (round to 0.4) CO : 83 (round to 0.9) U releases (DOE /EA-0116) = 1.1 x 10-10 Ci/yr (natural U) at thruput of 6 MT/yr 0-Activity of natural U is 0.993 x 3.33 x 10-7 = 3.31 x 10- Ci U-238/g U 0.0072 x 2.14 x 10-6 = 1.54 x 10-.Ci U-235/g U 3.31 x 10- Ci U-234/g U I = T57 x 10-Thus,' Tor 3.2 x 11 Ci U-235 released (Amend. XIV, Table 5.7-1) from natural U, there should be 3.31 x 10-7 x 3.2 x 10-11 = 6.9 x 10-10 Ci U-238 released. 1.54 x 10' And, for 0.2% U-235, the U-235 released would be 0.2 x 3.2 x 10-11 Ci = 8.89 x 10-12 Ci Tl~TE 3. 3 Thermel: 1.0 x 10g x 10 MT coal x 2200 lb/MT x 12000 Btu /lb x 1.05 x 10-3 MJ/ Btu = MJ

D.4 DATA FOR REPROCESSING Per Conceptual Design Report for DRP, as noted in CRBR EIS Supplement: 90 acres = 36 hectares 10 acres = 4 hectares 80 acres = 32 hectares 215,000 gpd water to effluent pond x 300 days /yr = 6.45 x 10I gallonslyr for DRP CRBR requirements, then are 6.45 x 107 gallonslyr x 11.86 MTHM (CRBR) = 5.1 x 106 gal /yr 150 MIHM (DRP capacity) 202,000 gpd cooling water blow-down x 2 (estimate for evaporation) x 300 days /yr x 11.86 = 9.58 x 100 gal /yr N Total = (9.58 + 5.1) x 106 = 14.7 x 106 gallons /yr 20 MVA x 24 hr/da x 200 da/yr x 3600 MJ/MYA*hr x 11.86 = 4.1 x 107 MJ 150 4.1 x 107 MJ x 1.08 x 10-4 MT eq. coal = 4.43 x 10-3 MT eq. coal Plus: 2 boilers at 3.5 tons /hr = 7.0 tons /hr x 24 hr/da x 300 dalyr x 11.86 = 3.98 x 103 tons W = 3.62 x 103 MT Total = (4.43 + 3.62) x 103 = 8.05 x 103 MT S0 : 8000 MT x 3.5 x 10-5 MT/MT = 280 MT x NO x1 x 10-H d: 80 MT = x1 x 10-4 0.8 MT = CD : x 2.3 x 10-4 2 MT = Particulate: x1 x 10-2 80 MT = 4

To calculate weight of water treatment sludge '(DRP) Assume: silldge aver. density = 1.5 g/mi sol. ids density = 3.0 g/mi 'Then weight fraction of solids.in sludge = 0.25 25,000 gpd sludge (Conceptual. Design Report) x 3.7851/ gal x 300 da/yr x1.5 kg/l x 0.25 x 10-3 MT/kg x 11.86 = 842 MT/yr. W Thermal: 8000 MT coal x 2200 lb/MT x 12000 Btu /lb x 1.05 x 10-3 MJ/ Btu = 2.2 x 108 m d 0 l l 9 4 9 a c w--

!7bs'Fu: y d'E-f=p A fs~ A 4a d4nsk a s~y ( W, g 1 l n w quaa j 3 /8Alu & x y A_ pad g e% by msM - y p an, a n . mx,a 3). 9 4 L e y. a, q d 4 u u. 2 p p p y tL M y d a<aa 4 4 edea aa.d + dw& A pp 4 2 lw -ra6.o.+ Mna p n pa,9 -A, 4~ w- - p p M d A o.eibt pcaa kc n j?' @

  • N ' U 'l"**

- ~% u 6 ke %fM h W a w. 5

s. 3 i / i ^ Pyes D-2. J D-4 I ~lable D.I Ce. D-i) ud d& st for & {

f. D-Y we.ce calen.la.4e.d ba. sed n

R y<re 4.3 ) a4 %e,el melt ft & A PshR, a.s butikJ{ l h b.G. Gaff,0CUL, 4. H. Lower,bers, v/r/ezl l 9

    • 88

.me e g enuss e e.es. t l 4 l l I I l e i 4 i i (

  • * - - + + -

S I i l 1 l l D-2/4. /

r c a o/ c) / / 0 5 / / M l / y / t ? u / s ~ 156 FUEL ASSEMBLIES 6 ALTERNATE FUEL BLANKET O ASSEMBLIES Q 76 INNER BLANKET ASSEMBLIES Q 15 CONTROL ASSEMBLIES Q RADIAL BLANKET ASSEMBLIES l. 386 RADIAL SHIELD ASSEMBLIES 31 1 l L Figure 4.31 Clinch Riser Breeder Reactor Core La.s out '*3 S3g e : MM AG.O b alm ,f t_. Lg 4.3-150 D -1/'l 2-l Y. ~ N, 'g... - ~\\. Y.?-\\ E:*T.. YNAD*" A' '***I__~~_.Q _ __,,,. 7.t. ___. w - ' ' ~. ' ~ ~ ~ T ' ~~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ _

i i D l Pa.7es D-C a,d-D lo i 1o~.I,le D.2. is ~ Ltuni 910 M %. e+ l 4rurM&J w 4.G. cat's ,I j 77dle lo as i i (e.tler h H. L o w w %, 1 / w la t. ~}3 L. o.2 js h n & re-gro L J r o+. a I-.. Table s", as auwechel, as -trwt; d is. A. G. GaftG fek 4.

11. I-o a k,,

V/w /s2._ .1.} l 4 i 6 l I 1 i }- D-f f, [ t e l t

e. Table 6. Physical characteristics of CRBR fuel assemblies Core and Inner and axial blanket radial blankets Assembly component lengths, cm Upper end hardware 30.4 29.2 Cas plenum 124.5 124.5 Upper axial blanket 35.6 Core or radial blanket 91.4 162.6 Lower axial blanket 35.6 ~ Lower end hardware 109.2 109.2 overall total 426.7 426.7 ~ Fuel element total 290.6 290.6 Assembly shape hexagonal hexagonal Assembly flats, cm 11.62 11.62 Fuel element arrangesant triangular t riangular Fuel elements per essembly 217 61 Fuel element OD, em 0.584 1.285 P'uel pellet OD, cm core 0.491 Axial blanket 0.483 Inner and radial blanket 1.194 Fuel pellet density, % of theoretical. Core 91.3 Axial blanket 96.0 Inner and radial blanket 95.6 Fuel element pitch, em 0.731 1.378 Cladding thickness, em 0.038 0.038 Channel thickness, em 0.305 0.305 Channel height, cm 314 314 Circumscribed volume / assembly, m3 0.0607 0.0607 Heavy metal / assembly, kg 60.35 100.85 b M02 assembly, kg 68.45 114.39 Stainless steel / assembly, kg 135.5 122.6 Assembly total weight, kg-204 237

  • Based on data in ref. 10.

(Pu,U)O2 in the core and UO2 in the ' axial, inner, and radial blankets. gg - d $,b.O b N-A bfA] S D-s/6.2-

C. Table 5. Summary characteristics for the Qtat Fuel region (s)e Pa ramete r Fuel AB Fuel + AS IB R3b Fuel + A8 + D + RS Electric power W(e) not 267.4 6.1 273.5 46.9 29.6 350.0 Thermal power W(t) 745.0 17.0 762.0 130.5 82.5 975.0 Average specific power,C 140.9 3.95 79.4 16.4 6.49 32.21 HV(t)/MTIR Average fuel burnup, 76,031 2133 42,870 8693 7977 22.600 mwd /HTI R Effective irradiation dura = 540 540 550 330 1229 tion, full power days Refueling cycle length, 275 275 275 ,275 275 275 full power days Average number of 81 81 81 41 28.2 assemblies charged per cycle Average charge, aC kg/refueltag cycled gT

  • 2350 3.6 4.4 w 8.0,f 8.3 5.7 22.0 3,

Total uranium 1805.5l 2189;t 349+r6, 4134.9 2843.9 10,97K. Fissile plutonium *. 783.0 0 9* h 783.0 0 0 783.0 Total plutonium 889.4. 0 889.f. 0 0 889.4 Total (U + Pu) 2694.9 2193.5 4888.4 4134.9 2843.9 11,867 Average discharT*, kg/ refueling cycled 2350 2.6 3.6 6.2 5.9 4.0 16.1 Total uranium 1715.8 2149.0 3864.8 3960.2 2726.9 10,552". Fissile plutonium

  • 627.2 38.5 665.7 131.6 89.1 886.4 Total plutonium 766.7 39.6 806.3 138.3-94.9 1039.5 Total (D + Pu) 2482.5 2188.6 4671.1 4098.5 2821.8 11,591

' Fuel = 36 in.'(Pu.U)02 region AB = 002 axial blankets associated with fuel, IB = entire inner blanket, RB = entire radial blanket. beighted average of inner radial bisaket (4 cycle tusidence) and outer radial l blanket (5 cycle zweidence). " Based on rated power level. Averaged over & cycles. l

  • 239Pu + 241p, + 21Sy,

p d w p.s.aA 6 a W% D-s~6.3 t

i 4 e I. t ] l l 1%e B -s %Iea.res -fro ~ Ltet Fuc{ Asse-hly -ke.: {;

bued e~ Colum e, T4ie s-3s of tdAsH-ane,orcapt t

' as neled 'an Tal>le .D. Y, F M Al H gjearer bar$d ~ 3

on Nft-FN-oI3 ( A[Rd '19 770,
p. 3-12.,

l l I 1 1 l T' 9 G l i I e iT a-9_g, g l

-(- l l;' u N d . e. 9 F t

p I-i.

? o-j Li l

!I

'f ,j TABLE S-3A b o Summary of Environmental Considerations for Nuclear Fuel Cycle Normalized to Model LWR Annual Fuel Requirement L, p .p }i A B C D E F C H I.; }. h Waste ) h tural Resource Use Mining Milling UF Fr d. Enrichment Fuel Feb. Reprocessing Management Transportation Total [( 6 Land (Acrea) .a 4

d y Temporarily Committed 55 0.5 2.5 0.8 0.2 3.9 63

}5,, V Undisturbed Area 38 0.2 2.3 0.6 0.16 3.7 45 i Disturbed Area 17 0.3 0.2 0.2 0.04 0.2 18 ? l e7 Permanently Committed 2 2.4 0.02 0.0 0.0 0.03 0.2 4.6 O I overburden moved (millions of HT) 2.7 2.7 W ter (millions of nat.) W Discharged to air 65 3.3 84 4.0 0.13 f '156 { ')! j Discharged to water bodies 23.0 11,006 5.2 6.0 0.13 11,040 Discharged to ground 123 12) l Total Water 123 65 26.3 11.090 5.2 10.0 C.26 11.319 l ~lif . Fenett ruel L? .l ,) .) Electrical energy (thousand HW-hr.) 0.25 2.70 1.70 310 1.7 0.45 .0077 317 q'a j Equivalent Coal (thousand HT) 0.09 0.97 0.62 113 0.62 0.16 .003 115 I. Natural Cas (alllion acf) f j' 68.5 20.0 3.6 92 .f q

),

e' a j he : OWFI-I2-Y6 [AEC.I97d lj 1 4 ll l-l 1 14 '4 {'., L

  • -' k:

8 ) y I; 3 TABLE 5-3A (cont.) 3 f Semusary of Environmental Considerations for Nuclear Fuel Cycle Normalized to Mod 71 IMR Annual Fuel Requirement A B C D E F G H Waste Natural Resource Use Mining Hilling UF Prod. Enrictament Fuel Fab. Reprocessing Management Transportation Tots! 6 F (! Effluents

1 i

Chemical (HT) I .I.?' Case (s (MT) f I) 50 8.5 37.0 29.0 4,300 23 6.2 4,400 No" 5.0 15.9 10.0 (3) 1,130 6 7.1 (4) 2.6 1,177 Ily5rocarbons 0.3 1.3 0.8 (2) 11 0.06 0.02 13.5 l CO 0.02 0.3 0.2 28 0.15 0.04 28.7 g Particulates 9.7 7.6 1,130 6 1.6 1,156 i / I f Op er Cases } e ,q (A) F-0.11 0.5 0.005 0.11 0.72 ,t. q fj h Liquids I; So'= 4.5 5.4 0.4 10.3 h No " 0.1 2.7 23 0.9 26.7 3 Fluoride 8.8 4.1 12.9 ] (d Ca 5.4

5. 4

!I l C1~ 0.2 8.2 0.2 t 8.6 7 h Na* 16.9 I 3.9 (5) 8.2 5.3

)

N!! 10.0 11.5 ? Ta21tngsSolutions(thousands) 240 1.5 240 e: ,} j Fe 0.4 0.4 lA l' (i solide 91,000 40 26 91,000 [] e !t (1) Estimated Effluents Based Upon Combustion of Equivalent Coal for Power Ceneration, ] (2) Combir ed Ef fluents f rom Combustion of Coal and Natural Cao and process tankage 6 contains 0.2 HT of Hemans (3) 252 from natural gas use

)

k (4) 77Z from process .L (5) Cortains about 801 Potassium 3 l .I

t J

t 5 y JL.Fa: alMtl-12%9 ( DEC /97y4) ? . f..t ,g, D

.,4 i e% J s

  • },:,. pt e

t C:j S.,' dt iIN .h. [ : .. :s.* .4 TABLE S-3A (cont.) Summaary of Environmental Considerations for Nuclear Fuel Cycle /\\ Noanalized to Hodel iMt Annual Fuel Requirement ,[J2 t 4 ?)g A B C D E F C H us.t. 2 c. , l'f /, Natural Resource Use Nintag Milling UF Frod. Enrichment Fuel Feb. Reprocessing Management Transportation Total 6 li;.{. a. Ef fluents (cont.) y Radioloalcal (curies) rf.. D = 1 Cases (including entrainment) P Rn-222 74.5 74.5 fif 4 Ra-226 0.02 0.02 0.02 0.02 'N Tn-230 1.'[)$ Uranium 0.03 0.0015 0.002 0.0002 0.032 Tritium (thousands) 16.7 16.7 ',', e( .,5 Kr-85 (thousande) 350 350 y 1-129 0.0024 0.0024 g

  • pj I-131 0.024 0.024

, gg, Fission Froducts 1.0 1.0 a!r ' O.004 ' *1 Transuranics 0.004 'b ~jP Liquids ') 2.1 I:% Uranium & Daughters 2 0.044 0.02 0.02 {f j pa-226 0.0034 0.0034 ,,T.8 ~ 0.0015 Th-230 0.0015 Th-234 0.01 './ 0.01 Tritium (thousands) 2.5 2.5

; {;

7.tl 0.15* Ru-106 0.15 Soll la (burir.1) Other than higli level 600 0.86 _ 0.23 601 Thermal (billinna of ned 69 20 3200 9 61 1.0 0.03 3,360 Ih9 q.3 t

  • Co-137 (0-075 C1/AFR) and Sr-90 (0.004 C1/AFR) are also ceitted.

Coa.ae.' idAtfM -12 W (A R 197Vb \\*)I

  • 1

. k e a.

~. - u . 45 f '3-12 Table 3.4 Average and maxistsu emission rates (g/sec) of process gases t . Average ~at' Maximise at. l 400 MTU 1600 MTU 400 MTU-

1600 MTU Annonia (NH )

6.49-25.96 7.80 31.18 4 3 Fluorides (F') 0.006 0.0238 0.0072 0.0286 4 ~ "he D FB process does not require the use of assonia; therefore, sh' uld this process, whdh is o sn scvanced development, be adopted to replace the ADU process, the ansonia effluent would be

is:antir.ued.

\\\\ a

.3.1.3 knitorino orocedures
ac. release stack conitortd is equipped with a device that continuously draws a sample through a 1:w-porosity filter. The filter paper is then renoved periodically and analyzed for uranium.

~ ne past analysis of air concentrations and flow rates have been utilized to give the total slease rate at the present capacity (400 MTU). - These calculations were then entrapolated to - estimata the releases at the projectec capacity of 1600 MTU. A scaling factor of 4 was used

  • cr the enemical process areas. Lower values (2.2 and 1.6 respectively) were used for the

'ur-ace exhausts and cal;iner conbustion gases. The emissions from the air congressor room, toiler room, and UFs bay rest room are assuand to remain unchanged. Waste gases fmm chemical

ro
essing are also periodically. analyzed for annonia and fluorides. Using a scaling factor :

if 4. the average and maximum apponia and fluoride gaseous effluent twieases for the present coerating load of 400 MTU have been utilized to estimate the values to be expected at the

rojected capacity of 1600 MTU.

\\s \\ , 3.3.2 Liouid effluents 'N\\ i-Liquid wastes consist of two components: : sanitary wastewater fndustrial wastewater generated by the manufacturing process. generated by plant employees and Both ADU and DCFB process wastes, nica Ay contain uranium, art processed through ion-exchange colunris and circulated through car riage filters. The fluoride.containing wastes are treated with lime to form a slurry of CaF:. wnich is then distilled.to remove the asnonia for reuse. The slurry is then discharged

3 the east or west lagoon r settling of the solids.

\\ ~ 1e total annual flow rates are 47 million gallons for the 400'-MTU capacity and are estimated .3 te 69 million gallons' for the 16^0-MTU-captcity plant. A schematic diagram of the waste system is -shown in Fig / 3.5; the conponents are identified in Table.3.5. [ \\ 3.3.2.1 P.adioactive liquid effluents \\ / 's Tie-raw waste streams are sonitored for radioactivity before leaving the plant conversion area. If tne uranium concentration exceeds a specified level, the stream is diverted for additional 3 ocessing/ Liquid wastes from the process scrubbers, the scrap-recovery if ne, and the DCFB

rocess are stored in quarantine tanks on a. batch basis and then saseled before release. Only uranius.cencentrations in liquid-weste streams below the specified level of 30 pC1/ml (the PFC ftr-U-234 given in 10 CFR Part 20) are permitted to leave the plant area.

N f In tidition to the isotopes of uranium, the liquid-waste streans contain small amounts b the caug1ter products Th-231. Th-234, and Pa-234m. These radionuclides account for the presence of

te beta-ga na activity in the liquid-waste stream.

N ~ e sverage discharge concentrations and the total annual release of radioactivity _to the-ri \\ f:r -he present 400-MTU operation in addition-to-estimated-values. fer-ttigaront.td.16 J.:aretion-v{owrc; art-dven 1h~TabTe 3~6.NR-F&ol3 (AIRC 19170 e \\ e! ( J).-e. f +

  • w v

,.-,%.,4,d, .cu,. --,,.,..c..- m.._.-,. ,,~.m. sm.. .~.-,.e .....r ....,,i.,~,,,..- .-~--e,. --rr

3-10 Table 3.2. Estimated airborne uranium releases Release rate (uC1/sec) at Effluent release point 400 MTU 1600 MTU Furnace exhausts 1.76 x 10-s 3.87 x 10-5 DCFB'8 emergency exhausts 5.35 x 10-s 2.14 x 10-5 Corr:ersion process exhausts-1.01 x 10-s 4.05 x 10-5 Calciner combustion gas 2.18 x 10-5 3.49 x 10-s Air compressor room 2.74 x 10-4 2.74 x 10-5 Boiler room exhaust. 4.70 x 10-5 4.70 x 10-5 e UFs bay rest room exhaust 3.30 x 10-s 3,30 x jo-s Chem lab exhaust 2 2.98 x 10-7* 1.19 x 10-5 Chem lab exhaust 6 9.58 x 10-7 3.83 x 10-5 HP lab exhaust 2.15 x 10-7 8.59 x 10-7 Incinerator exhaust 3.65 x,10-7 1.46 x 10-5

  • 1 5

Totals 4.45 x 10-5 [1.19 x 10N '* Direct-conversion fluidized-bed. Source: ER77able3.3-3. e ES-3016 ~* .... OPEN DITCH 1 N SANITARY WEST f eN^

LAGOON, LAGOON

/ 1.500.000N GA((on$ 50.000 FT2 ./ 1,$o0,000 GALLONS MACHIN SWP e \\ ~

  • a d'

\\l d12 I i I / 415 d Q, ' O O Jh Ih LIFT STATION '- v3 3 3 = 3 = r--- 2 o- - g a g=! .;. 1 -'t a, a i i >+ i i I l. lda 1 i -4 8 t 8. t, i* -3 52'.-QO.812 ' 8 d1 AMmN!A' } 'I3 9 l 1 GE L---a d1l l STILL e5 e6 '8 I dIO s 3 - ;i*O o ^ i -.m EAST LAGOON..'- WASTETREAIMENT 500.000 : Bu!LDING 5 -414 -- t GALLONS CHEMICAL 5 5 CONVERSION AREA O-

3 g

a 5 = S E PICKLING &. g 5 g PLATING e d = +-- d2 --Q - f 1 E \\- / G FINAL ASSEMBLY d Fig. 3.5. Building and siqi.la-waste-creat:ent flow sheet. Source: ER Fig. 3.3-2. D 8-b i d h

I C l _Pn7 eD-9. t c l IAkke u.s e. is 6ased on Don's hdd xiy 7^ble..m 1, uka qds 7.co g& }Q, -i MewJ rele.sc. becJ ~ Doe i are e m e d e f Xt v, M /e_ 4 7-/, ahd 9ovfs. -fla y,p.fek cod use_ a+ %oo ar/ : 7 l 3sco ar a/y n noo M/ur r ro. wo W /AL- ~

L x t. o.r po -3 n r / et i
I.o F lo # NT/t.

l i D HEPA Mr & Fide.ctes laxd n 00 e fat.'s ; l ~ & a italed G I+es-Its-n (enen!n.. tOb] ~ e rs I i 1 .i -. i D9.1 1 I

TABLE 5.7-1 CRBRP - SUHHARY OF ENVIRONMENTAL CONSIDERATIONS FOR FUEL CYCLE Eucl_Eabrication______ -Mixed Oxide Uranium Dioxide *** Natural _Besource_tise ICore_Eucll iDla0ketl _ BcDracess10g**** Management Transportatio0 Total Waste Land _lacrest Ta:porarily Committed Undisturbed Area 0.0fj 10.0 1.3 0.0 E' 9.0 11.37 Disturbed Area 0;01 1.0 9.05 Par anently Committed 1.01 2.3 Water.l.gallonsidayl 2.3 D1 charged to air 0 2 4.2x10 2.7x10 6 Diccharged to water bodies 4.2x10 4 ...e. 1.3x10 7.5x102 ) 1.3x100 Diccharged to ground i 3 / 2.2x10 2 4 2.95x103 . Total water _7.._5 x) 0 j 3,3,3o 4.2x10' 3 2.47x10 8 E0ss11_Euci 4.2x10 Electrical Energy (MW-hr/yr) 9.0x10 ** 4.2x10 3 2 ,,). 2 -m 5.3x10 3 j Equivalent Coal (MT/yr) 9.9x10 3 2 3.6x10 ** 1.6x10 1.3x103 2' 2.0x10 3 ELLlucDts 5.26x10 t)i Chs=lcals 4 Ganes* (MT/yr) Sox 133 5.8 0.4 6x10-2 1.2 140 NO, 35.2 1.5 3.9 9.1x10~ 15.4 56.1 Ilydrocarbons 0.36 1.5x10-2 5.1x10~3 1.6 1.98 g,* CO 0.86 3.8x10-2 0.13 2.7x10~2 9.4 10.5 i Particulates 35.2 6.5x10-2 F~ 0.6 '35.9 1.7x10~3 1.7x10-3 4

~ t \\ I c) Both ends of the Tyce "C" and "D" filter shall be fitted with a ~- ,I.f. smooth continucus gasket 1/4" thick by 5/8" wide. d) Cn all types, the gaskets shall be saaled to the filter frame ever the entire contact area, e) The edes of the gasket shall -not project beycnd the outside edge or tne trame. f) If joints in casket material occur, they shall be located at the fiitar frame corners and matino surfaces shall be cemented. Joints shall be notched or rabEeted in a manner that assures no air leakage as determined by test specified in subsection 5.2 of. this specification. There shall be no more than four gasket joints par gasket. 5.0 FUNCTIONAL REOUIREMENTS 5.1 FILTER EFFICIENCY (?ENETRATICN) ANb FLOW RESISTANCE a) All Type "A", "C" and "D" filters (in all sites) shall have a minicum efficiency of 99.97% at rated ficw; i.e., the penetration of 0.3 micron diameter, hemoggneous particles of dioctyl phthalate (DOP) thall not exceed 0.03 as detarmined by test specified in -p subsection 6.1 of this specification. All Type "B" filters (in all sizes) shall have a minimum efficiency of 99.95'; at rated flow; i.e., the penetration of 0.3 micron diameter, homogeneous particles s of dioctyl phthalate (D0p) shall not exceed 0.05% as determined by test specified in subsection 6.1 of this specification. b) The initial pressure drop for Type "A", "C" and "D'3 filters (in all sizes) shall not exceed 1.0 inches w.g. at rated flow. (See sub-section 1.2 of this specification.) The initial pressure drop for Type "B" filters (in all sizes) shall not exceed 1.20 inches of w.g. at rated flow. (See subsection 1.2 of this specification.) c) Al_1 Tyce "A" "r" and "D" Mitm, size 24" x 24" x 11-1/2" shall also have a minimum efficiency of 99 97% at 20% rated flow. d) _ All Tvoe "B" H1tm size 24" x 24" x 11-1/2" shall also have a minimum efficiency of 99.95% at 20% of rated flow. ~ 5.2 FIRE R5SISTANCE Type "A", "C".and "D" filters shall maet the " Heated Air Test" and the " Spot Flame Test" re 'rements of UL-586. 4 Rev 4-15-76 HpS-151.M &rce: H\\ - (EgoA/RL 19*7 & p _9. 2

I Pa.ge D - 10, -fnl>le. D.s i ( %a NR.C sG[f baes aa.>a, c.dealabed & w &dk. p:ded ha A.G. Ca t ;, le. % -to it. L Le m, ~ v/zoIst,, eycept -We. An-uI c.c M d -PueIcae ~'~~T~~ ~ t Mntdios t4 A s cul3ur k d 4 o x a.rfum e:L ge 'af h ~ it core. O rte d.W. gart %le. e 1,././: m ~<9,s P-z2s,,o,,r,.o y o-G x ~d 3o,00 0 g P4 M j j. { Ye DOC OSSvwe b(L3e 5 We A e.n h'Yh l -L Re snF Gar ~dJ tsid (xoe ned) i d I --...s e t i l l D wo.1 i s. j l -9

s Table 4. Initial compositions of.1000 kg of CRBR heavy metal Material type Nuclide Fuel Blankets No decay 4 y decay U-234, g 0 6" U-235, g 1,340 1,372 2,000 U-236,'g -0 16 U-238, g 668,660 -668,660 998,000 Total uranium, g 670,000 670,054 1,000,000 ~ Np-237, g 0 4 Pu'-236, g 0.005 0.002 Pu-238, g 198 192 Pu-239, g 283,932 283,900 Pu-240, g ,3,8,610 38,594 Pu-241, g 6,600 5,444 Pu-242, g 660 660 Total plutonium, g 330,000 328,790 Am-241, g 0 _ _. 1,15%. Total heavy metal, g 1,000,000 1,000,000 1,000,000 ( Swcce: Le & A. G. C u " -A, H. h v Ybh- / D - t o.b J {..,..

{. ~ -6 236 8'x 10 2 Pu l 38 0.5% Pu i 239 '72% Pu 240 20.0% Pu 241 6.0% Pu M- ~ r%69% $? / 242 -1.5% Pu t, Fw./ W, used in RiEF, including SAF, The annual amount of in-process Pu02 storage capacity for radio'- -ill be approximately. uy Mgimumvault active caterial including PuC, mixed oxides, uranium. and scrap will.not 2 In addition, SAF vill add approximately 600 kg of change from 3120 kg. in-process storage, principally mixed oxides. The f acility is designed to totally contain all radioactivity in the -6 of the design basis tornado and design basis earthquake (both 10 event A special analysis was performed to confirm this probability per year.) Because of the additional fuel fabrication activities for the SAF progra=. incorporated into the combined f acility, material saf eguards have been up-graded substantially. The esticated binder / lubricant usage for FMEF has been increased by approx-i=ately 100 gallons with the SAF addition. G" 32CMW fp}G fg/thttn91M 4 3, MJc/ %/> dom) -(tcs <9 era) } g. D -/0. 3 _4_ ~ .' : ;. C.c -1,.' g,.. Ngy,?f,.,-' ;.. - _ ~

ak TABLE 2A: ENVIRONDTDJ, RELEASES FIO! tJOINAL IHEF SAF OPERATIO?S 3 Environmental 1 Belease I h Thoughput (MP) 2 Release Factor 3 3 Isotope Cleanup (C1/Yr) 4. 236 -6 -8 -8 vf Pu . 32 x 10 .001 1.25 x 10 . 2 x 10 238

g. Y

-8 j x '10-5 Pu .02 .001 1.25 x 10 fJy/o* 2.8 239 -8 -5 P 4u .001 1.25 x 10 .22'x 10 k 240 4 -8 Pu ,7,77pjg .8 .001 1.25 x 10 .22 x 10-5 O d Pu tl 2,y .24 .001 1.25 x 10 .30 x 10 241 -8 -3 242 e T) Pu 3,7WD .06 .001' 'l.,25 x 10 .30 x 10 -8 -8 3* n 01 { ) fabrication.Istopic composition (typical) of plutonium dioxide (Pu0 ) feed material used fo'r fuel 2 3 ) Annual amount of in process Pu0 estimated to be used during SAF operations. 2 2

3) Exhaust gases will pass through a seri.es of three High-Efficiency Particulate Absolute (HEPA) filters Q, before reaching the environs.

The llEPA filters will have an efficiency of at least 99.95 percent each. fMGf g), q

3. n

~" f^ "?

  1. " #l( SA O h b"b O h W g f

&s ca & yp ed 4 at sam j'sYab unic W"- h / k Mm ma-a ce.su scceefass.T ( s i L - p 2 73 g i 3ie t {n so.~ SD 7.h fDZo W7

i Page 0 -10, 71/e. D.b l 7L NRC Jb[f edimhe.. utaf dektm!*ed. -hoW '$e. ut % bildhhow.Assu.med % -$ NEC SQ( l NiGel in ~~GLle D.[,-f.r- -tL c.Rst? d, I %.ofe Lied.du4 ~ ' l-I by.lo* CF-2sg 6,AQ x. seg kg (cg22 gbg T~~ P xi?.Y &/p. 238 x to p/kg x o.cor (MN R ~ .j x /.2s x <o-* (% bl.,-) = /. 2. po

  • o F -sse /g l

[N.k.: '7fe. tRC. stJ(l e wd -IL w e&su ~ s . % % a % w ~ 4 a-- -.I % v o e) '7fe Doe 9%r ame.adjaskJ f ~ % Fnel= re ( rela.as ' *_poded h 00E-C. Dot! 19h) fd1(, CRSRP l reyauw&; J.e., Jhf-ed L, -fte ek:o A o.sss urP (b1L%Q-) Mr% 0'nEP ), exejt-da~ k l l . Pu-z2.s,ny=bl b coE m correoled b o,31//oif 3 C/ -lo 0.43 po#G/. [on1prP-159yt7.<tafPNtte 7 7 po'gfotr y 0.oct (uLu %) y1.25tro~"( M) = '/ 3 YIc' b &[y.) ,f &~Ie cJ.J A % : y.syto*C/ (FMEFAd.*)/.an wrMd j ? 4.o tHT CFM eF) i = 3.bVIO-IO/p M w - q *L -fL C.c6?.P D -f o. [ . ~..

s' S b f .R es D-Il d D-iz. .i i .i e ASSu.gubl $aAa.s % DR9 ev D w ;, . -Ilu 4wo equ aas ashada!.k A l.. % yM Dsig %p2 Cuoe est4 l

  • l' i

i t I l l I I I l l i 1 t .D- ///121 l

d T The Thorex process will be used for the thorium based fuels. Both processes j g utilize a tributylphosphate (TBP) extractant in a normal paraffinic hydro-carbon (NPil) solvent. In the solvent extraction and product conversion steps, the fissile material is always denatured with uranium-238; the final product has a minimum U-238/Pu or U-238/U-233 ratio of 3/1. Normally, core and axial blanket fuel is processed together. However, provisions are ~ made to segregate the axial blanket, which is then processed separately ~ from the core in special cases. Radial blankets'can also be processed J separately f rom the core. 9 a-The uranium, plutonium, and thorium fuel products are converted to oxides in a form to be used directly in fuel fabrication. Therefore, agreements must be reached with the responsible DOE and/or commercial groups that will receive the products. Specific requirements are that the process perform decontamination of plutonium with coprocessing of the products into the fol-lowing compositions: UO, Th0, mixed oxide consisting of up to 25 per-2 2 38 cent of pug and at least 75 percent UO, a'nd a mixed oxide consisting 2 2 233 238 of up to 25 percent of UO and at least 75 percent UO ' ~~ 2 2 s-Storage capacity for all oxide products is provided for 100 days of operation the maximum production rate for any of the four oxide products stated at above. Capacity to store liquid products temporarily for 30 days c,f opera-238 tion is also provided. The design for storage and shipment of UO -Pu0 and 2 j_ 23800 233UO is in accordance with the requirements of 10 CFR 70, 10 CFR 73, 2 2 and applicable Department of Energy Interim Management Directives or Manual Chapters. ~~ Reprotessing Capacity. The HEF is capable of operating at a nominal ^ throughput of 0.5 metric ton of heavy metal (MTHM) per day when processing ,urnpium plutonium fugls, and 0.2 MTIIM per day when processing thorium fuel 2 Evaluation of the design indicates that the process can operate effectively ct a throughput of 0.25 MT of uranium-plutonium fuel per day. $6arce : 0 R0l--fC FR ?- Bi { (D06 IDOI* l D - Il y 2,, y, / 4.1-8 k se.un ie

  • = =

My M'% Em M )yM[ %d.8*e. a W A. e a Po***{ dup G

L t. i. -l-2.0 BRIEF PHYSICAL DESCRIPTION OF PROJECT f The conceptual design of the HEF, as contained in this report, describes ) a pilot-scale reprocessing facility that is capable of demonstrating storage and reprocessing technology for typical breeder reactor and LWR j~ fuels, using either the uranium-plutonium or the_ thorium-uranium-plutonium fuel cycle. The HEF processes and equipment can be scaled up for use in production-sized plants. T-. This conceptual design includes the facilities, support functions, and equipmen,t required for HEF to function as an essentially independent plant. The project has been organized as shown in the work breakdown structure. (Figure 2.0-1). The site assumed for the conceptual design is on the Oak Ridge Reservation approximately two miles east of the proposed Clinch River Breeder Reactor ~ ' " (CRBR) and two miles west of Oak Ridge National Laboratory (ORNL). The site occupies approximately 90 acres. A new railroad spur is provided from the Oak Ridge Gaseous Diffusion Plant (ORCDP). Water and natural gas are rupplied from ORNL. Electrical power is supplied from both ORGDP and ORNL. t ~_..J The dominant feature of the HEF is the Process Building, which is about 400 by 800 feet in plan and stands about 175, feet above the surrounding grade. The major portion of this structure is of reinforced concrete construction designed for seismic, tornado pressure, tornado missile, and sabotage resistance. ~~ The demonstration of advanced reprocessing technology, remote maintenance techniques, and containment concept.4 will. be done within the Process Building. Both inside and surrounding the Process Building is an advanced safeguards system to provide both physical protection and nuclear materials control. SooRCG.* ORait /cFRP-s/ fy (Ooe /97'd D-t//[1. 3 2.0-1

u..

z. w.. -

u.- 1 i

  • 5 11.11.1x Electrical (Normal and Standby) (WBS 5121)

Purpose. The electrical' power system supplies power to the entire HEF during normal and abnormal conditions. The power system includes two I incoming-161 kV transmission lines, standby power generation,' power dis-g_ tribution equipment, and the 4.16 kV ' distribution system within the HEF.. The-emergency power system is described in Section 11.9.7.1.

G Description. The Facility Single Line Diagram, drawing 12-P-001, shows -

[ the conceptual design of the HEF plant distribution system. The Area t N Plan, drawing 11-A-001,'shows the routing of the 161-kV transmission lines and the Plot Plan, drawing Il-A-002, indicates the location of the outdoor substations. The HEF estimated electrical loads are summarized in Table 11.11-1. Normal power. Normal electrical power is supplied to. the facility from two dedicated 161 kV overhead transmission lines approaching the site i. i-from opposite directions. The transmission lines originate'at ORGDP sub- 'l . station K27'and ORNL substation X10,.and terminate at the primary breakers i. I of the-161 kV - 4.16 kV distribution transformers. Each transmission line. and associated primary' distribution transformer is rated to supply the entire HEF load of approximately 20 MVA. Outdoor substation No. 1 includes the 4.16 kV primary distribution switch-I* gear which serves the entire HEF f acility. The design of this switchgear I is such that operation of the HEF f acility is not inhibited when loss of I. power from one 161 kV source occurs. In this event, the normally open bus tie breaker closes and restores power to the deenergized bus section N and its associated distribution circuits. l The normal power supply characteristics are L e Capacity: 20 MVA (estimated) -.a 11.11-3 i c

s e ' Frequency: 60 Hz e Phase: Three N Under normal operating conditions with off-site power available, two types of electrical loads are served from Substation No.1: emergency loads Electrical distribution

(Class 1E) and normal loads (non-Class 1E).

from' Substation No. I will be in underground duct bianks.. Standby power is that power furnished to process-related Standby power.. c equipment which is not nuclear-safety-related but has been selected to. remain operational to meet availability objectives in the event of loss When off-site power is lost from both 161-kV of the main power source. lines, power to the main switchgear at substation No. 1 is provided from ' I the on-site standby generator-Gl. (The emergency switchgear at substations l 2 and No. 3 is supplied from emergency generators G2 and G3, which No. are described in Section 11.9.7.l.)- The standby generator starts automati-- cally, and af ter reaching. rated voltage and frequency, the supply breaker l closes and energizes the bus. To prevent overloading of the generators - 'aut'omatic load shedding and load reacceleration schemes are incorporated. l l In addition, the plant operator will be able to manually disconnect or energize equipment. so as not to exceed the capacity limits of the generator to satisfy operational requirements 'of the plant. Upon return of off-sate .I power, the generator is manually synchronized w' th the off-site system and l the normal power supply breakers manually closed to restore normal power to the entire plant distribution syst,em. i I The standby power supply charasleristics..of standby generator Gl' are: l t .e Capacity: 8,000 kW (estimated) e Voltage: 4.16 kV e Frequency: 60 Hz e Phase: Three & w ee: oen./cFR9-er/r (oag 19sia) 0-id2..C 11.11-4

gi, 'iO ., ** $ +.

  • 4

" k'n?.. ';f..tp I$ - 11.11.4 Diesel Oil System (WBS 5124) 7,.; Purpose. The diesel oil system provides fuel to the facility emergency and standby power sources.. The diesel oil system consists-of two completely independent diesel oil storage and transfer systems, one serving the emergency power generation system and the other serving the standby power generation system. L 11.11.4.1 Emergency diesel oil storage and transfer system Description. This system consists of two ind, ;endent and redundant storage and transfer subsystems, each serving one of the two redundant emergency 7 diesel generators. The major components of each emergency diesel oil stor-

== age and transfer subsystem are shown in Figure 11.11-1 and drawing 12-A-001, Each subsystem consists of a horizontal diesel oil storage tank, transfer w pump, day tank, and interconnecting piping. The emergency diesel oil stor-age tanks are located on the north side of the Process Building in two V separate underground concrete vaults. Each tank has a 30,000-gallon capa-city - the quantity required for uninterrupted operation for a period of 3: seven days. ~ L.:' The underground tank vaults are classified as Category I structures, and b access to the tanks is secured to meet the facility safeguards. require-The emergency diesel oil day tanks and transfer pumps are located ments. inside the hardened structure (Category I) of the Process Building in sepa-n. Each day tank has a capacity of.300 gallons of diesel oil, l l j rate rooms. providing a minimum of 60 minutes of uninterrupted operation at 110 per-1 cent of the rated capacity of the diesel-powered unit. One energency diesel oil transfer pump is used to transfer fuel from the eb storage tank to the day tank when the level in the day tank has dropped to t l a predetermined setting. Pumps are vertical, motor-driven, mounte'd on -6 the storage tank, and powered from the Class IE power source. Intercon-necting piping is run underground, properly anchored and protected to L L,ce-o flu-./cs:ap-er/v (90s/9 sis) l p - d42.6 I q ' ~ ~ ' 11.11-11 ..t.1

Normal cooling water is circulated through the heat exchange surfaces of~ - process closed-loop arid nonprocess heat-generating equipment, using any. two of the three installed 50-percent capacity pumps. Pumps are vertical ' f deep-well type, rated at 14,500 gpm at 150 feet of head ~each, and driven _ by 700 HP electric motors.. Electric power is supplied from the, normal and standby power sources. Each pump discharges into a 30-inch carbon' steel header, and all three headers are manifolded into a 36-inch cold water ' distribution main from- ~ which different branches feed heat exchangers in the Process and Utilities Buildings. The. cooling water is returned to the cooling tower in a 36-inch diameter header at 98 F and is pumped out of the tower 85 F. ~ A 30-inch self-cleaning strainer is provided at the discharge side of each cooling water pump. ~ Blowdown of the normal cooling water system is continuous in order to main-- tain proper water quality and is routed to the noncontaminated pastewater. treatment system described in Section 11.11.13. MakeupwaterforblowdoEn, evaporation, and _ drif t losses is provided by the primary water supply system. During standby operation, some of the cooling water uses will be discon-tinued. - The heat load on the cooling tower will decrease, and operation of three.out of the four fans will be adequate to dissipate the corres-ponding heat load. Technical uncertainties. Chemical treatment of the normal cooling water for corrosion and algae and slime control must be determined during detail design. %ae: oga-/cF99-st/v CooE-198! D-11

2. 7 11.11-18 N*

aim e ( 3 o m ~

'i l I 11.11.6 Steam System (WBS 5126) ..) Purpose. The HEF steam system comprises a steam generation plant and con-densate collection system designed to provide steam for the following users: I e Closed-loop process steam generation e Process jet steam generation ,I e Process hot water system Process Building heating, utility stations, decontami-e nation, and cold chemical makeup requirements ~~ Support Building heating j e -= e Winterization requirements. This system does not include steam distribution and condensate collection systems inside the Support or Process Buildings or the closed-loop process steam systems. However, parts of these systems are described here for clarity. Description. The major components of the steam system are shown on draw-ing 12-U-005, Steam System. The steam generation and condensate collection system consists of two coal-fired boilers, associated feedwater and combus-tion control systems, a boiler blowdown tank, two full-capacity feedwater i _., l pumps, and a deaerator, all located inside the Utilities, Building. Con-densate collection tanks and transfer pumps are provided in miscellaneous f-locations; a condensate storage tank and transfer pumps are also provided and located outside the Utilities Building. Makeup to the steam system is provided from the demineralized water system., -= !l- - The boilers are spreader stoker-fired type with continuous traveling grates and are capable of using natural gas as an alternate fuel to coal. Each boiler is sized to deliver 75.000 lb/hr of saturated steam at a pressure of 350 psig and is capable of meeting the maximum steam demand. I... jan.,te : 0%L/CFff-9[/4 '(005 198k l)-ti

1. 9

~~ ~ ~ 11.11-23 w T' 2 " "

At this capacity, each boiler's enn1 cons 3nption rate is approximately 3.5 tons /hr. Each boiler is. equipped with air pollution control devices to ensure that stack emission will meet EPA, State of Tennessee, and local code requirements. The boiler blowdown tank is a vertical steel tank with internals designed to separate vapor and liquid. The tank is six feet in diameter and eight feet high and is equipped with a vent stack. The tank is discharged to the noncontaminated wastewater treatment system (see Section 11.11.13). [ b The feedwater pumps are horizontal centrifugal type with 100 HP motor ( driver each. The pumps are capable of pumping water at an elevated tem-perature of 240 F with a total discharge head of 1,000 feet. [ L ~ l The deaerator is a spray / tray type steel vessel with a 150,000 lb/hr capacity, equipped with a steam heater to maintain feedwater temperature at saturation. Plant steam is furnished to supply heat for generation of process and jet steam in closed-loop systems. Plant steam condensate from these systems is collected and condensed in a process condensate flash tank located in f the Process Building at 146-foot elevation. The condensate is monitored " for contamination and returned to the condensate storage tank in the yard. If traces of contamination are detected,the condensate flow from the pro-cess condensate tank is then div'erted to the general-purpose concentrator. l All other condensate in the Process Building is collected in a separate vertical condensate collection tank located at the 76-foot elevation. i ~ Esa rce o wi-/cF '29 - 9 ll' (DOE '92! *b d I D - // (L 9 l 11.11-24 ( w w M.'y _ ;m. 3xq.; -~- ~ --

O 11.11.13 Noncontaminated Wastewater Treatment (WBS 5137) Purpose. The noncontaminated wastewater treatment system provides for the treatment of nonradioactive effluents except sanitary wastewater prior to their discharge to the effluent pond and ultimately to the environment. Description. The noncontaminated wastewater treatment system, shown sche-matically in Figure 11.11-10, consists of flocculation and citrification followed by media filtration. The system components are located outdoors 'I inside the Controlled Zone in the area adjacent to the cold chemical storage ' tanks, as shown in drawing 11-A-002, Plot Plan. 'Ihe surge holding basin, measuring 100 feet long by 50 feet wide by 10 feet A deep, receives all nonradicactive liquid effluents as shown in drawing 12-U-001, Water Use Diagram. Flows into the surge holding basin are j generally gravity-fed and, with the exception of the effluent from the demineralized water system, receive no prior treatment. Liquid effluents from the demineralizer regeneration and' rinse cycles are pH-adjusted in a pH adjustment tank prior to discharge to the surge holding basin. Frcm the surge holding basin, the vaste stream enters a flocculator/ clarifier, where chemicals (e.g., line) are added to precipitate some of the dissolved I inorganics such as calcium, magnesium, other metals, and alkaline substances. The removed sludge is passed through a thickener'where the solids are re-i moved and shipped off site. The liquid overflow from the flocculator/ clarifier, clarifier is passed through media filters for further purification before it is discharged to the ef fluenti pond. 1 hce : out/CFRP-&//y (pos. /9eth i I / D-l/ /2..(0 g / 11.11-40 g -h% =%:%=a. v. % C.....h.. w.w _m... _ .. mm... .z O4w,% ~, . m:'. g g

T.. l th*.'. A'."= Ee) .a f -= e-m COOLING TOi!ER BLOWDOWN BOlLER 8 LOWDOWN ' . _ am D LABORATORY DRAINAGE _ __. FIRE PROTECTION DRAINAGE g-- _E _-PRECIPITATION RUNOFF g-l H+ OW ~ l oh4 + 4 r o , REGENERANURWSE 10 g _ pH ADJUSTMENT GPD SPENT 9 BACKWASH CH EMICALS -, FLOCCULATOR/ 4 ..,,l } CLARIFIER O A y 239,000 =-m SURGE 215.000 GPD W MEDIA OMMGD / \\ HOLDING FILTERS 1- - BASIN TO MAX.) 25.000 GPD V U EFFLUENT POND o I sACKWASH g 7-9 Q ^ I L-.d SLUDGE N / l THICKENER SLUDGE OFF SITE-L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ _ _ _ _ _ lo_EF_F LU 7 I: Figure 11.11 10 NONCONTAMINATED WASTEWATER TREATMENT -a i %rce: O(lpL /CF RP-8//f (D DG 198 lo.b ~ l DLt/ g.R

i I

J 11.11-41 s ' ' ~ ~

  • I i

(. Mag es D-12a,J D-14 I ' ged _ 6,

p. G. gg

. Azsm%. ae .as in leurs -k K Mextem, L4d dr/az. I auJ vl>ofez. ~ I t O m$ g g I i l 4 t j. i i I i i t ....i i I G D-I3 NJ i.

A n OAK -RIDGE NATIONAL -LABORATORY CPERATED SY UNION CARBIDE CORPORATION NUCLEAR DIVISION s POST OFFICE sox X OAK RIDGE. TENNE 55EF 37830 April 20, '1982 _ Mr. H. Lowenberg ~ office of Nuclear Materials Safety and Safeguards U.S. Nuclear Regulatory Commission 7915 Eastern Avenue 1 - Silver Springs, MD 20910

Dear Homer:

Enclosed is the revised ORIGEN2 output for the CRBR that you requested during our recent meeting in Silver Springs. I have made the following changes in the calculations per your request: 1. altered the averaging procedures so tliat the ORICEN2 :nass flows agree with the physical masses, 2. assumed;'a 4 y pre-irradiation fuel decay period, 3. eliminated the output sections for the core assembly and the reprocessing outputs from the core + core axial blanket and the inner + radial blankets, and 4. added an output section decaying the entire annual batch of discharged spent ' fuel. Enclosed you should find the following items: 1. a summary ORIGEN2 cutput on paper for the CRBR and a table of contents for same, 2. a detailed ORIGEN2 microfiche output for the CRER and a table of,.ontents on paper for the same, and 3. a set of tables describing the revised CRER model. It will be 1 to 2 weeks before I can work on the graphs since I will not be back in town until April 26 and there are several alterations to be made to the input decks to accot=nodate the changes that you requested. D-/s/y.2-n A. G. 0 1 =

=

. = = 4

. +... v.-

b;,,-

2 ORIGEN2 Decay Calculation Parameters ~ The decay time's employed in the calculations are self-evident by in::pection :.L the column headings in the computer output and they will not be list ed here.. Major assumptions and parameters used are as follows: a. the fresh,7 undecayed fuel was assumed to be decayed for 2 years before irradiation, b. the spent fuel is assumed to be gprocessed 150 days af ter f discharge from the reactor, the~ parameters used during reprocessing are as follows: c. 1. 0.5% of the uranium and plutonium goes to the HLW, ii. 0.05% of the nonvolatile fuel material is retained with the cladding, 111. 0.69% of the fuel assembly structural caterial is assumed to dissolve and go to the HLW, iv. 0.1% or the halogen elements and none of the noble gases, t ritium, and 14C is; assumed to be in the HLW. j t d. the compositions of the ELW, structural material waste, plu tonium product, and uranium product are based on " blended" fuel, which is generated by weighting each of the fuel zones in p roportion to the rate at which it is charged to the reacter (see first column of Table 2). ORIGEN2 Output Description The ORICEN2 output is comprised of several segments for different materials r.nd/or decay times. The first two segments summarize the com-position of the charged and discharged fuel and structural material for each of the fuel zones on a 1.0 MIHM basis. 'Only masses (grams) are given and no decay times are provided. The next four segments decay core + core axial blanket, radial blanket, co re, and inner blanket fuel assemblies, respectively. Fu r these segments and all succeeding segments, only summary tables (defined below) are given. The table types provided are mass (grams), radio-activity (curies), thermal power (watts), inhalationJazard (m3 air to dilute to 10 CFR 20 values), ingestion hazard (m3 was M to dilute to 10 CFR 20 values), and alpha radioactivity for the actinides (curies) and neut ron production.- Decay times range from 60 days to 10 years. All of ? ~ hese segments are based on one fuel assembly, (not 1.0 MIHM). p' t D-a/M.3

  • ~ I5-/#, &

c AGG f5 A'L d x0

i x _.._)._ _.... /4/e-..D a, Py. D -13 j (. %5/e-P. 8, P.9< o i s-l .l. i e. - ODGGM co,'um iAlEe. odalncd bw!.. I e ML66# 2. PAintest b k 7 prodded k ~j AG. cae., kn v/= /sz. & 6,

s. L-% i a.4L ha k -trd alm nt p+.& e,A mpy udoe=

J sc, Me. exht-Sr ~ l de.m;av h&r, l 1fe.. Doe-dda-w ta-- ab%%ed d.;of(y, a.s [~ e ind:c.dcl, S c e l M J m f X W., 7 J /< I 7 3 1 (' Ye. k n Y E0a.vt.e Y in $fe O8 Ld62 l eGen. -ec~ 1a layW ca 4-%. mat i w3 p IVW h N A Et k -~ a A](t-oRtG69L c.clun er -t'a DOE-Ascucl f(V ' a 2 D/I3/6. I. i 5 s ( 1 1

? a e e .= e 1 - -.~.M 3 MenneN20 =etes.A-%esa ~ MM= Amee.o o OO-43===N%OOJOggNNaoO N 33o o, N o o o, g O o 4e* + e

    • 8+*f4 84 f***+84g 6+++

8

    • e e

WeJ'JJ44WWWa.JJumWswww a www - WJwwwJ W 1 O M-OS*9433AJO7440=oMMe O Dy@ NAMDN9 e l 4 = M e *d N 'J M ; = m O J 7 = = 3 A e J.e e d 3 4.e e 9A4769 i M.M M J A h.w 3.N A o 3 N e J a o 4 A J N 3 3 M o v e N 3 4 4 4 = N = e Mu=NN== ANN==MANN===sooOnO-==2=NN=MN. =e gg eoe ee. eoeeeeeee eeeeee eeeeee e eeee a N 2 t 2 A d e A A M N = %N h b d e 33== e A A J O 3

  • b A n ndC o d e' 3, 4

~~ t O O O 3 c o o o O O 3 J 3 3 D O a = O, O O, M M -4 4 0 0 e G J c o d @ ,3 0

  • +feelisisee***+8g

+ 8 lil*++4 +e**+, e W a auJu n J JWWaadu x yy JWWJa ddLJg *J-JsJaJ A + D N.en 3 = 3 4 ann dH* A w =4N e A A A ma n m e3 u w a.% = = 3, = =D=0*=DJe>>>AJN4}QOADNAedAAQ4=JC303 3 A eA344Mp3*eMSAsN4MO-43dNN3NNAh=com41+C e eoeeaoee g en-NNee=,eeeese ee ee eeoeee eo N n n N = :m No,e e o e e..o -= = = e e oA n - a,e :n NNNN e Q E *143bW=NN=N40AeNNAenAb>@M&nA%n4Nefe3 4 Q O o o O 3 0 3 O, O 3 o, O O 3 J O S D o 3,4 = = G = o O O N o O O O O 3 O. q 4 O

              • 18

++9*+009

  • 8888***0+4+**+

9 9 1

  • W44MdWUMQd4WWa#WWWWUMWWWWWuWeduddWM W Q M
  • =N=N4T==4NNJage==N7Jee944444N2N300 e

2 e = 3 S S N A = 3 = e e N N a r O 7 3 0 2 = N 3 7 Pe s = = M M N O S e e O 99M7}eM=OSMMN=3De4danNNAege? donee.47 3 IE ~ = eoeeeeeoeeseeeeoeeeeeeeeeoeee ~ eeeoeo e M deNNNN=M=@===MNNe==NNMe=JNN9===MNaN N e 99 y ~ m E M *NB AMM e==4 4D e MM*= A A AOOO P O D en bO

  • e@N k E

> 0oo0o00000u0000000o00==0000o o0CCoe O O $**+++++++++++++10**+38*1++,=4++++9+ + e WWWWWWWWWWWWWWWWW40WWD*JUWWWWMeVWWWJ d N' 3 7.4 M M 4 ed o A 7 o O M @ N S M N rJ N o @ C J s o Q W @ es ** N N e O N N P 4 m A N E N A N N N e c e o N =e e G e e r d se = =*N e 4 N e d O ne NueOo@OD&=44DOOOeeN#6*4&N@D==MD= NOM S

  • ..%(.,,,. N'.

i.. *#.% fe*.,,.?D A. a.,. D. *

== += =

  • -5 r=

oe ee eoeeeeeeeeee eeeoeeeeeeeseeeeeee e AeMMM=N=44N.MmeNM=NNNN==M===N==AMN== = (j T Me9Ade C o o o, o o, e S M M

  • 4 A e M M o m o d A 8 0 o, o, O, O, o"o o, o o $, M bo,o ONA44e eNe b

o, o o 5 o o, o, o, s, O, O, o o, O = o ( e o +++ +

  • +,*+

+ + e +i ++ 9 + 3 o MWWWWW4WWmW4WMWWWMuM4WJWWWWWWWWWWMU U ^( ,3 = Do4Jo=NN30eeNNehhQ M a *4 = = e 2 C n o e N D 9 4 N N 3 kneD3MNMNADQ4e@POeADeNQQaNN?heO4NND C ANNGODa=NeNNDDMDDOD343n3MD&MCAN=AGN e 3 N .. g. eeeeeeeeoeseeeeeeeeeeeeeeeeseeeeeee A e - d e e 4 M = 4 = = = M M -s e S 3 0.e 4 3 N N M a = N N M = = = M N = = g 3y. = ,.f. _..g U G MeebC@D@ee4DDeeeNNADANNM=44eMOMeehh k ' N * ' wop*,... ~. y N 00300030300 W O'*++++++++++000000C3oJO000000000CoQo 6[$ 3 W +++9++++++0094+++t***+++ + s s 4

  • WW4WWWWWWWWWWWWWWWWWJWWWJWNWWWWWWJW J N

= =434NotNQooOOMaedeQ&N&M4*oannoeDeDG M ~* MOONNNOe=7===MOdeNMNoodde==>OJ4NNAC D M A4N==eNOMDM9==3OJa==N44NdeeNONd=e=A A N 3 eoeeeemeeeeseoeeeeo eoeeeeeseeeeeeee e S,'deAMM=MacM4dNAMMN9M3Nd43= eve==NMN=N u N W. ,, a. .. f' K 4 MenDnboonAJedefeMAAAb= A=D4eO49 ten N

  • e 20 0 3 0 0 0 0 00 0 0 0 0 0 0,0 0 0 0 0 0 0 3, -2 0 0 0 0 G o 0 0 0 0 0 0 0

E g s '. '. A eo ++++++++++++e +++++++ e+++++++e+++- !M %e WaddWWWWouss$aWaWmWWWWJgumawmWumI- = ^w + vo g=eoNM=?n7 ann cen4ANe}3=4d4J7dNAe. j ...? -i, - * >.i.wa. A;. # G" ~ *- W Ae . o J. +..

?.

e. 40 3 ah a n 3M eNN>n as o>N e m e anunnaN N= a-q w.w;..n@r. Y ~w'w. u.g :.w; ?.n;-

  • N 5_

a e e e.e e. N e @e e'n. N N N A 4 N a. s e. N N a. n.M N O. @. ~e e @e =e =e e n e n a -. : % n w - ADNMMO=Nnn40Nn30Manskre=@dnNN=NMN=, M . t. .. ~=* A' e eeseee e ee ee e e - ~. o ..D AJ u. T Men A Aaaaaa aaae ee ee A A AMManaben be e rdh N 2 a4 .2 e -e N 3 C o Jo o s o O o o o o o o o o o o o s s o O o C o o o o, o o s o 3 0 M~ $ Y.t.S ;y~.,D M.{erh* M* ~ O RK WJ v a * {s z e

      • ++9++++9+++++++++++++++++

+++e++ + -qs .yA'* " 4"c Wa aWuWWauW ow uWWwWWW awWuWuawwW ou d uWW u J V O

  1. N e s A d o e N O 4 4 4 M N O N N A 3 M W = 4 4 @ 4 4.N Q 4 N @ =

N 3_=4 4 N J O N A MM NNd@ 3 e A d @NN N A 4 3N N4 a 3 - 7 3N M N a Tt = "O M _e >= 3 0 4 = = N.N. d. =. 3. A 4 5 4.N P M. o N N S.N. e s. p @ @ 4 = o N = A N N b N m ed eee ee ee ee eee e eeeeeeeee ee e qq AAann=N4==NNNA>>=Nns>==e=oca=NaMNat 9 ..g;. .V. .%.g..q; >s = neeAsaasonnaAeA D J O - 0,3 c o c, o, o, o o o c o, s, o o o,n e o p a s M M A M a c e N C o s e A N C ~ L.* az + ++ ee*+ ++ + M

  • n oo,ooooo k N w W W eW a a v u u a u a u s + + + +, o, o o o, o, o o o o o, o o o

s J muO r ++ e++e

  • +

en -me 9 z= Nos==seNONeveNna,aa$usuwWusaaWWJauuW Q.;

~.% -;.
,'.~ u.> ~. %.

W Q ~o uNo ao=senaannasoe =naamzaaaa amoe eo 4 -.wh ge een ~@@NN==NNnaaen MNaeanoanareasssaa = .c. a=

e. n e n e n :,o N a n n = = e < > N O a - a N A a
  • C o 9

4 eeoe ~ + %. M m., oeoeeoeeeeeeeea eeeee eeee eeeo ee e ,.r..."- M Q

  • CM

<J dA@MM=MN==hkNd==NMMSN4N@@NNJNN@MN=A @ M i +. ; - A-.

  • 3.., is '.-(J.F
  • w*iadl

^ D o* tt Me o A AnaN 34a ene nnech needep44ce449eah k .k / o coco ~ ~, ' M o. * + +, o, s o O o o, o o o o o o o s, C a O o o o o o o o, a o o o o o O

  • :e f*"*f O

e ze M ++++ +e+++++ +++++++++ + ++++++ + =ee - eN MsgauwgyWywWWWWyWgWWWWWWWWWWWWWWWWW g ~ 'a k o = N 0 =N C 3 N N e @ @ M @.v o o@N 8 =N.Q =O e m N N = e 3=G e M 4 3 Os soo

===e# h = mom==M S aemass3NA29e N eNNM o i 44 30* N = ) = = N d = C = % N A N d @ Q O O 9 2 4 = 4 = e e C a.= N = 4 N A e eoeeeeeoeeeeeeeoee. eeoee A. =3 <e eeeoeaeoee 37 3'

== M 4 4 =M Ma c a.f q D J N 4== N = e 4 N 4 = N = A C = = M N M N =N = N ..e /s ?, aps h. Meeenchho-e:newaopnoodnewoooooneeoo s +4 , e + + + + + + +, 5 J, o, c o a c s e s O o o J o o o c s o, o o o o, o o ., %,. T.Wo. a*, f y, da .: O OC30043cO, o 3 g + ++++++e++++++++ e++ ++

  • 2*

L. 2

  • t swaWWuuaWWWaWusuuwswuwwwxWWWWWWaWWW
  • g,

,.,.g.v..~. W e . Q g 4 3 @ 3 N=NN e y # =N= e ON O T Jd d o me e # 3 NON 4 SN N hg ,*B & JNA&he==N>nnoN>Mopa%14No*2D=epe@ t>A e p t Z3 N = e = = N O A

  • e. t e s N O = c e = r.1 & M 4 h = N.u.m o = M = 4 N o O

t, W eeveeoeee eeeeeeeoe e,e e e e eeeee.. e e i nN N F*' " d.*v.." " #,e=g.:..:.4-.. w., m anMMMd==ba@7 NANN =N#4NW@d@@@=NNeM4==

i...
9. e%.; ?rv--*r.' *- 3.

.w; Ag = = Me464NNNNNNhoedd4AAd@NNNNNNAd@@eeA$ @ ~ e f JW 4 o c o c, o, o O O o C o C, o. c. o o o O, o o o O u n o O o o, o o o o o o, o, o, .? 2 J4 +++ ++++++ +++ +++++++++ +++++ <N J W W W W W W m W W W W W 2 WW y gu m W W WW W W gty WW W W 4 4 ef W 2 M d e==nN24N44N4NSa7E&nNON=40=.)mAJ234-3= ? 44 3 C M M 3 M CM 3 =4 D D D D 4 3 = A t h A 4 3 =eNh y an G a & & N 3 N .'*t*'.,%'..,.- G4 f A N A N e 33 & N e o o J M.M O D e M A S==N N O O NN = = = & M A ' * *Q

  • a.

eoee oeeaeeeeee eeeeeoeoeeeeeeeoeeeee -f N 4 >M 4 AANMMm==NN==NON9Aae3NNNN====ON=MNaN N .O. un t t W2 Oj. a e o s r r u z ! r r = l O& Me ? S O = d A M n 4 4.A m > N *T7ekh3a=MeeeN%c=eM3 J a 2 3 * @ p ; O O O C N.I i d N fe.o ts MMM e e e e e e e e e e A.3 M" f= j CXX723J 3 -.. - = ;;.Q,,,m-..M..g.o s .... g

y. 4, -

.w:.

==========================K j 2 2

  • T > > 2
  • 3:3:C ou s 4W 3d e e < W 2Wa:

wam ~ z z 2 = c a-N-N N o u2 3 a v e.u z s z s s awa i N, 1 f A.7 p-y e,*,e d. c, ~ 6-13t.fv e // w ) ", 4, -/.

p +. - OuiPUT tetalf = 11 s= A tg ggs + DECAY uF A L t. SPEN 1 FutL bibCHaRLED A 8.* AJ A LLY eHOM ERbR AC 1 H N t uk se D ALK.H1 k MS PO WC H = 3.66b24sti +02 Mw. uu tea ue* = 2 0 8 260t.c ob MdD. FLUEm d.04C48b N/CM++2-5EC. 7

SUMMARY

F At6LE 8 HAulOACTIVITV. CUH IE S 38.bb7.3 nG INITEAL Nt.AVY Mt1AL Dl5CHAh6ED ANteuAL SF 60.00 100.0D IbO.0D th0.Du 24u.0D 1.0 VN... 3.SYR 2 0VR

3. 0 Y5r 5.0YH 10.044 U2 37 8.747h*06 3.74bE+03 8.030E*02 4.28bE403 4.tobC+08 4.830L*05 4.ob3C+ot 3.966C+01 3.u?2t*04 3.690t4u8 J.3 bat +01 2.634t+04

= PU2 3:n 3.44SE+04 5. bk o t + 04 4.bb9E*04 1.b i kt + 0e 3.63*L+ue n.670C+04 8.7tst+04

4. ib4 E + 04. 8. 7t>6 E + 04 3.7bbLeoe 8.fe3 eue 1.679040e Pu2 a9 S.397ti e 0e b.enbh*04 b.euot+0e b.=b6Eco* b.40t>E+0e b.ebut+04 b.406C404 S.4 0bE + 04 b.40nE+0. S.407r.40e b.eu7teb4 b.ebofeus Pu240 3.403C+04 3.goJE+0e

.S.4 03 C+ 04 3.403E404 3.403t+.,4 3.4b3C+04 3.4 03E+ 0 4 3.40&E*04 3.402E*Ge 3.4 02ti + 0 4 3. 4 0 s t. + 0 4 ;s.3WE + 04 l'u241 8.730C400 8.7eetebb I.71st+06 5.704E+0. 8.hv7t + 0 6 3.6 te m aa + 0 6 8.bboE + 06 8.63 7si40b 4.b76L*06 8.bo4C+uo 1.3 a,bt

  • 06 3.29.C e bt.

8.074 AM748 S.Il9E*04

1. 3 6
  • E e 0=
1. l a.4 ti + 04 a.232E+t,*

8.254 4.+ 04 8 2 94,t. + 0

  • 4. 3es9C + 0*

3.$16t +04 1.646E+0* 1.bsot+0e 2. 3

  • Ja. 4 09
6. + 0 =

LM244 7.043C+0b b.eboL+0:., 4.6 32 L* 0b 3. 7 4 bE + 0h 3.Jobt.e04 k.ba,0L+0h 4.bo bt

  • 05 6.992C +0e S.2b9E+04 7.6bt,E e 0 3 8.2 4 9L e03 as.we7E e u2 buMiul 4.30JC+06 2.392E*06 2.299L+0h 2.twbE+06 2 8440906 2.0b7t+06 8.926C+b6 8.bO7E+06 8 733E+06 1.b3bt*06 4.4bbt+0e 1.283E+06 TOTAL 7.9 eve. 0 2.3 bE* 06 2.2 7L+06 2.is.c.0. 2.it7L*0 2.06.L*0. i.92 e+ 04. i.6 s tt +06 i.736e+06

.b40E*06 a.4,9c.ob i.2 be+ 0u g g N. OUTPul UNIT

  • 11 P A4.0 226 39 AC T le dl Dk S* D AUGHT EN b

+ DECAY t# ALL SPtNT FUEL D I SLH AR LE D ANhualt.Y FROM Ce46H (,d Pu nt. H

  • 3 8,0b2 bt;
  • 02 MW.

.iuleauP= 2 08260t*0b mwd. PLux= 6.04E.+36 N /CM + + 2-S EC. 23 SUMMapV sA8LEt ALPHA H*.Olu ACT!vl1 Y CURIES 38 667.3 KG INSTIAL HEAVY MGTAL DthCHAHwEO ANNOAL bP 60.0D 10b.00 8,0.0D 360.00 240.00 l.0YR_..

1. SYN 2.0YR 3.UVR b.0YR 80.0VR Pu2 M t.44SE+04 4 5701.+ 04 4.bb9t+04 1. h t 2 t!
  • 04 3.t.3=E+ue 1.b7ut+04 1.759E*04 1.7b4E+04 8.7baL+04 3.76SLeot 1.743te04 8.6 79E + 04 Pu 2 J'e b.847C+04 b 4b6E+U4 b.40tt+04 b. 4 bt' t: + 04 b.4 0s.E+ 04 S.40s.t+04 S. 4 0t,t + 0 4 b.40eE+04 b.40bi+04 S.407t+0* 5.e07Lece b.4chtobe 6N 2 = 0 3.403L+04 3.=b3E+0*

3.e03E*04 3.403:1404 3.4 03E

  • 04 3.4 03ti+ 0 g 3.4b3E404.3.402t*b4 3 402E+04 3.402Leog 3.4 ba t + 64 3.3Whoot 3. I t.4 t + t,4 1.194t.+04 1.212k+04 8.454t404 8.26bk+04 8.JbvE*0* 8.bl9E+0e 3.bebE*04 4.o90C + 0ae 2.34JL404 3.2 wee +04 CM/=3
2. aia7t e u2 2.as26E+02 2.httiL+02 2.bobE+02 2.60aE+b2 2.75kt+02 2.70st+u2 2.73bt+ua 2.702E*02 2.637tece t.btit402 2.2 4* e:402 MI2 4 8 8.839w+ue CM/44 7.3430*u2 7. 400f 4 02 7.078 te b2 7.034 E
  • 02 7.utkE+02 6.96bl+02 6.b77L+02 6.74tC+02 6.ht9E+02 6.370E402 b.9olk+02 e.873t+02 hUMlut 1.lgbl+ub 8.8t0E*Db 8.467teDb 1 87bd*03 8.8bbE4Db 1. l b 43E + 0 h 1 401E+0h 3.21bE*0b 4 238t+0h 1.266E*0b 1 296L40b 4.3 bbt;e 0b T UI AL, 8.147E+0h 8.lblE+0S 1.lb6L+0b 1.176ti+ 0 S 3.teJE+0h 1 289E+Ch 8 202E+05 1 249E*05 8 232h*05 1 256E+0S 8 294L405 8.3a6L+0S e.

k 4 N co<= N ot 0 164D )."L M $ 6 srd - s f i ,Oy.- Y,* m.. ::t; y . Lg:, 3 w f. 3.. n g_

  • N-

=, t@r ..n w.m.a '{ .,..s. .g. e .n .c s .r-

  • 2

' q' a. * '. 4l.l ' '~; ii $.m "& f x. y' i ' , R.?: -, Q.,. t M %..q. p (; ; h ( -- '. t .y . l...,. :. 2; . :.~ '+ .x. 9.'.y.' e 4 3 .u ' , g.. - c ..n m ;- . : p. q. 7 .u .w W y J .- ;1 . li ' j(ij;. [

$c, '

j -7 - ':d j- { b..: N. I.f.$fj.'.l, ' 'y. ' h '.h Q,,, st.b g f I Jt i ( j. .3ip W X,E - V W i e 3 g. N- ,]: f. - 5,Y$ llj~g.) Q.",-l . \\.. G lt Q

f. s M. u..F.d an,..;v.cm. q a.,. 4;g. :,5%q%.'t Q

.i n ' y ' ~. n.. +C if .~ ,y y-i .. t' a c;. (.. ~. s .y ,.g c .s . s.m

, 6

+. .s. a

a. 2 v,

d i.c c ,.'.. %,p,. .\\. ;* y, Q .a., e c .,r .o ... g. g .j

a

= v df1 M 8* k f3 ORIG W. l$CAo e I l 3 O [C.)

  • H1 7

........,................................., >..,.e.c=,,a,ww e,ma e.w w s

a. a.

c., .e.4=.e c......... a.r e.e....... a. ........e.... e. = a w.e

m. e u..ne e.........

mma, e e. .e .s..s ~ ~ '. =..... au-y.. Se. i :.s .. 4 .# '.'4 e.v.e - .e - f un s. g eie... 4.e..,,.,.

  • use * * *n eve * -.e se -.
  • e-..e***.

.s m . s ee..e, sm ae s ur..e. s ur..e e s m-.e s w..e, sier.... s w..e e s ur-.e s w..e, nu.e 77,, - -,i.i-~..ie : ini 4, i in.i 4i 4 ",M 4e s.ibi4s 4.'i 4, 4.,.r-is',5,uQ-.'i..,. r4-.'i v.~ i-.'i,J,,.4 'i Ii",G.E',- - i y S. ce= 3cco g *sece s.*cer c e-c 5 ar-c 3 cce s. se-cssece . s.m.,..,.,.ar,,,. i.r c. 3 ce c ...,e,e...,,e...,s,e...,s,e... n...,e,s... u...,s,e...,s,e....s.e...,s,e..... es se .m e. .e .e . e .e es ee en ee se ee

i'i V,w '., i sia '.i i G ne.,,r - + 3. s r,w.c.,. u.,.m.c.. i. i.., 3-.,

i ii-.'l i.4.r c.'i '.',,i 'T i bri-7, i,i 'i i is. T iar 'T iR. ~,. i. 7.a, - - .e..c. s. i..re-c. 5. '.. r.c. 9 3.a sr s.1i .....,r c.. u..,e.c.. s. 3.,rw.c.. v.. . u.,,m,r.c.. =. r s. s. i.,.cas 13.e.e..s. 4 3..mrs.e i.. i.me.ss. u,,r, . v i.....m.., ..c u...c....,.,c.c.. n..,e. b.. e.e . u. i.r c w w.- iW., I .,n.r. ~.r,i.=e.. I 1...e i i~-..,' i.,,ec. I i=-3.iw-.e i 1... i i=... ; ".. 3.1.ien. 3. : ... u..r ... I '4..=e-.e " .c u. .e n...e,r.a,, -e.,,,, e.c s.., c.c n...e.,, ,.m,.c. -..... n 3,.3..m.c. I b,~ ....c, n. m -. 3..a.c.e.,, e.. n,..,c.c., i..w...c. 3...a.r..c. t. w.e..c..r.i i. w..,. e. u.. 4 een e 4.4.s,r3 - - _ i, n,. r. - -,. w_2.e u,,e.u,,c.,c.c,, n e w r- .u....,., .M.... ;;-.v ; p.x; p.t ; pt i px 4 ;.=.s (p.x ut=.v { pm { pv {pw ;pv,.. . m.e.r, - - %... i, m. 4.,,

4.,.... k - k..m. k..
k...,u. k,._.. k.. h...,3,. M.

rm ,, c.am.,..

n. ee e.e.,e

.x. ,,...m.,e....c. a, - -.... e..e....o.e r , m.. M.It-- -m -. NM MM f M34M3 f M?.* i M34 M3 4 U,"r3 4 43 iM3 iW3 MS - - -M. - - {. f..n",r.3 i.M,. 3.,4,M. 3,4.M..,2 4 4.,. 3.,4,,",,"4., t,M..3. 4 M.3. t. G.,.m,e..

4. tM.,#,.(M.. 3,,. i.M- -

3 4 4 ...n. ...c.,._.,.-,..,,,...m. ...m.... i.

1. e

..n... -2Fr --i M3 f M34 M3 tsA"iM34.434M3U' 3143fIMiM31M2-- 4 -Mm -- t., M.,,2,4.G,.. 2., t, M. 3, t., i.M.,. 4. W.,.,r3 4, M...... f G..,3... t,M3 t. M.,3. 1.M31, W 4 .m. .-..e., ...,+m..s.. 4..... m.. u... -2Si - - iG3 iW3 iM3 if.",4i (Gr3 HF.i U."o'r?.i O'Mi iM3 UF.i 043 4M3. - - -m - - H. m. i,M,. *1l, t,'.s,"c3 4, M. :3 i G31.J"t,R3 i.M.. 31. I.M.. i,,M..?.H.W.m.3 i.W. 3 im... -- M . o, J M -E 7 o.....K-4...M-.....N-.3M-..*,-m MM7 .. %. E. 7 5 W -. T. F -.1 T I W -. 7 y.GUE.. f 3 d .e. -W -- tim iM3 imi ! PM f Eli IM HS:H M:t iit:f imiim (N-- ,'M., ~ !.M. 3 !M.. 31.M,M.31M.,3 i.M...3. i T..,M.. H.M3. U_M. i.M.. i.M.. 2 iM_2.~LM... -- dL-a# JJ.JL12 J 3. ..,,......c 1 30...w..a,.. m.JL42 J J'st tf J J.Jt.:ta J J... .'rfJ4... J J Bt:4r J J.m. i

  1. JJ.st-U JJ 31-.A J 3
.a JJauer JJ,,sa ea..

.Lt M.............................. i i I .."......................................T'MJ*P.tf............"'8J'r*--.. - - - M."; C&.r-'r.'3"il'7/;"nE".M'.f'"Mr e n w o= ~ - - - - - 5 '"''"t ~ ~ - - ~ - - - wc, - a w %",ilMur'W.W '44 r,">

u. -
u. - u. ~ u. -
u. -.u. - -

l .a,n,r, - m, ~.,c o u.,..c o u.,.,.rc e m.,.,_c o n.,.,..o m m.,,. co m.,, en m.,.,.m..n n..ar n, w e l .m. -M ~ 4 M iM*<tiFr* 4M?&"n"r:H (M 1 P** 1 (*** } {-"iiv'* { F "i fm -- u. -2A-1.(.M..e,M.2 L. G3 4 G31. G31. t.M, t. G3 4.My.u {.M3.n.Ma tGa. {. c,.w.. 4 3 4 3 ..c.u..- m..m m.. .u... ..-m.. ~ -a, l - M -- NM t G3iM'iiM?! Ht3 4 MS LGG i M HEt iit" H'" {.1 --- ~ l - M,. -- 4. M. 4. G..u. 4, M,.. 3. i. M..m.31. M...e. U..M.. i. M5.. U,.r m

3. i, IM. i,M3 3

3 44 1% 3 J. %.T T 3. w 3. GE 3 *n - UI 3 W*L.I J% 3,G T Ed 3.,. M El 3 %..T - 3.m W -.I ). % 2 4,,*..J l. - M - - (M'Ea.EiM3 tM tM3 GM3 t M'e.4 m iM2 -- _ M - - i, C,03.. 3, r,.m 4, T,.m i, t,.m 4. Tm i. tm i. sm i. i.m i, t,** itm i. r".,i.t"-- \\, r.,4........ ..-m.,......,..s,..,....m, -m 5% -- 4 M3 4 M'M M3 t M2 4 M il'" i Y** i 4* H" ii"' i r"* u~' - - -m. - - i, m....,w.2. i, M..a. i. M..t. i, M. 2. i, M.,.2 i M. 3 iW2. i, M2 i. M._ i. M... (.M.... -- iM 3 5 ...e m m

  1. %. E.e. 4 4..T...

d... M... J %.R..

2. %.M

. J 4... ) oq. a.I J. 3.mT... 3,M.. I g.,. W 4 I 3 %.R 3 1 -st? ~ iM3 N' i t" i f**" i f" i t" i c' i f** i d*3 i t*- i t' i t a * - - -m. - - 4. M...,3.. 4. b... I, k.,,.. I. t r.e.a.. !. 6..n 4. 11..v,: (Wa.. t 6.... !, Ld...a. i. h... {.% a. !. h... - - l +r s . u... .a....~-..m..,.-..~..... .!.. m,.w . m. .s. ..a i C---IMiM 1M2iCO2 4M3iM2iCO2iG2imimIWiW2-- ~ H,,M,.., i, M. 2.., 4, M..,2. i, M. u, i, I.M., i, f.M2,, i, I.M2, i, M.,2.. i M2 i, M. ~. M.. a'.21,1_,&.. - 2 l -m,u., n \\ . a., u. a. +., n. . >. v u. ~, u. >. +... u v.., ..m+.u -.. +.... ..n. I -m -- 1M i We t 6.ttece 1 loca t loca f ha t !.aca tha !h4 t',,a 4 t',,., 4-- c_.,.- - - i. M... 1. h..h.tP..M....a t. k,,_,..a. l. h,, a. l. ia.o.n t. k.,.s. t. i.. H.... - l..t - - i. t.. - t. i_ oth m ......n. m. u .u...,,.o... r m..., .. m.n... .n..., ............,.w- -m -- ic'.2 imf W.M! imH M i@f imt imHM IMid.:3:t im -- -:2,.:r - - f. M.,.. t. h,..a.. t k.a. t. k..a.. t. ha. t h,.a., t.h....a., t. h,a, t,h...a.. t. h.a.. t.'.u.,

a. t.h..a. ~

.fse.. J Jin.s.S J J4JttJ J Je44J d J Jtti J J St"Gd J J d. a. M -.. "tS 4 Jet:8J J J LAEJ 48 3 a.. .v a.s .e., as 4. v... e a... e. -.. s. 9... ..e.I'.*d "..f ....f.g... 348d I.380 5 A J"Jte ats t. J J ssa ns.. .......................'.....'.ELtM--...-...-------*---..=....... o a y D - 12s/!.f

i. se

+ e.

  1. -3 frow ORIG @l 06S4 DATA en 4073 \\

........................................v.~em.>............s.sm... -- -:.W.TGM.Va.Mkn*D4". 'i" l?< x.a u-am '.W~~W - - - - - - - - - - - u.w o - a w "S. _... mi<* MrLiaV137/**,u-na-na -- u<- s u -

m. o s r - j y<4 yy4 ;y<m,n...ers j yre n..wm ; y<m n..we ; pre n..ue n..ve j j s u --

-tH-... .. y Id-- theth th4th# th+4% 44 th# tive lk# 1ka tWe-- .f 9 - - M..*..

  • H.,** H.." H..** H..** H.,** U.." H..** U.." U.." M.. ** i. t. ** - -

_ m. .. - ti"HMiF* t t** H** t4*

  • i r'w H --- it -- H -- it -- H -----

_ E s.t.- - i. k. e. H., - - - H.. - - - i. t. - - - H.. - - - (. t. - - - H.. - - - i. t. - - H.. - - - t.1. - - - H.. - - t..t -3 4--{ k.att-11. u-..tt--- U--.it--.It-- ft.-- .g y.. u..... u.,.... u.... u..... H..... H..... g 3.... g ;... g g... n(1 - ...g;...g;..... .g g.. u... u... u... H... g g... H... g i... u... u... u. ...g3...gg..... M 4 - - {. m,... i. t.,. .' l. l. - - i., t - - I. t. - - - I. t - - - I. I.,.-.,. t. t. - - - H.. - - - t. t. - - - (.1. - - - t. t. - - - m, 3 41- - - i t** i t'" H*** t f" H** t P" tP" H -- i t -- - it -- - I t - - t t - ---- -2 % - - t. M.... M., - - - t. t. - - - t3 q.. u.m u... u... ut. - - - M.

m.. n,

,. ~. ... u...u...n...n...n...gg...gg...g..g..... .g z,y.. U, 3H2 H.. - - - H.. - - - H.. -- - H.. - - - H.. - - f. t - - I t .g o.. Hj,gg g g... u... H... g t... t t... g g... g.. - - - i t - - - i t. 1 g...gg...g..g...gg...gg..... .3 4. - - {. ke... H.. - - - t.1. - - - i. t - - - H.. - - - (.1. - - - H. - - a t. - - - i. t. - - - l.t. a.. 54 #@KM H it .g g,,.. u..gga n.- - u..... - i t - - - i t - - - ( 1 - - H - - - i t - - H - - - S t - - - S t - - t t - - - . u..... u......g... u..... u.... u...gj...gg...gg..... .m.. w,c,. 4.. 44...s4.. 44...<J.. 14...s4... 34......... 4.. ..............................se.u.am.............................. 4 f;,..M.( if-3 ' need 4.# 2.se+2. g Ach<.A... R A - h. b. e. n /9, heAbl & C-14 l 1 l ) As. vbhu -k v. l l D-/M l l l

s. DATP fro O G&l2 MOso-$hAe on 0W \\ w/ ........................................vnn'..s.......s....m y... - -ED'iSIAY.%%25.W42.,.w. .u.c,.r u... -.... 5'n'n.~".",. -....... ... c..,,..

3.,... 3.,....,,.......M.,,.. A,NJ -*-2'.W., ',:./;;' w w -.. w n. w u-- M is ni W,M*.id-

..,,u.s eTY u .g.y..gt..m..gg.v.... { t... ; ;... g g... ; ;... g g... ; g... ; g... g ;... g g... g g.=. ' g g..... ..w. n 3 v. m.. y y y.g 14... I .v.1 1 T-( .y..gg...gg...qq...;g...;g...;;...gg...gg...;g...gg...;g...gg..... o. m. .g.)..;<...gg...;g...gg...ig...gg...gg...;g...;g...gg...gg...gg..... 4,_ *- - - t. h. o t. h.. u, - - - H.. -. - H.. - ~ n.. - ~ {. {. -.. t. t. - - - g g - - - i. t. - - - {, g - -. t. i. - - - - - 4 y.. n... n...gg... n... n... n...gi_.gg.- gt...gg.- gg. -gt.._.. . n...p.. n..,... n..,... n..... n..... n....E.

q g... ; g ~_ g g ~ g g ~. g g.. n. _. -

.cu..gi...gi...ii...gg...i v. w......,...., . n...ii...ii...ii... i...gi..... - M.., - ;.j --- j j -- j l-- j j ~ ]1%.1,yt,}d... ; %-d.. ',I D. ~ t j ---- ~ .u>..gg...gi...gi...ii...gg...n... ...ii...ii...ig,..(gi...gi..... m . { g.. i. i.... g i.... g i.... g i.... i. s.... g i.... i. i....... i. i.... g i.... g i.... g i...... .a n..gg...gi...ii...gi...ii... n... n... n... u---it- -it-- it----. .= u.. u..- H.. eve n.. - - - n.. - - - n..... n.. - n.. - - n.. - - - n. - - - n.. - - - n.. - - - n.. -. - - - .. =,.. n... n... n... n --- n --. n... n --- n --. n.. n - -- u. -. n.... .: n... n..... n..... n..... u.. - - - n.. - - n.. - - - n. - - - n.. - - - n.. - - - n.. - - - n.. - - - m, . y.. u. -. u.. - - n.. - n - - - n - - - n - - - n - - - n - - - n - - - n - - - n - n n n 2,.. n... - - n.. - - n.. - - - n.. - - - n.. - - - n. - - - n. - - - n. - - - n.. - - - n.. - -.. - ..,s..s .....s .....s ...ss...s ...s....s....s....s .ms. wo ........................................ew n'. s..'.......... m W..~.. - 4Zd*Y.M'N% 7 nW.R u'.". ~a'"..a w w ..m - - - - - - - - %'M'P" *W't - - - - - - - - ,m.... s. - - - ~ w..u ~ r w WJ 1,WW.m v. #'7,,.

u. ~ u. - u..
u. -.u. - -

.c 33... 33....,,...,1...,,...,.................................... . a . x..s4 s a sa w a u m .g.y.. uwv n... u.-. #.j p.. g a 4 ri. s 4 4 -. a 4 -< r. s e i.i.. 4 4w g g... ; g... ; g... n ~. g g... g g..ss < .m.s en...;g..4 w.s 1 m. 9.o. .. 1. - - 14. { { -. - { { - -. q q - -. u.. - - - 11.. - g I-.. u - - t t ~ - I t - - - t I - - g ( - - - ~ u u, .g.y..n m u...n...u...n...n...u...n...u...gg...n...n.... 3, .- N.. - - 4.h#.. H..v. t. k..4.;.v. 4. b..4. b.e t. I..w. 4 6.f b et b ef b n..ce-- - nF -- ;4 it--. g g-.- n---i t--- g g.. -i t". ; g--- n--- n --- g g -- ti~.~ n..,F - - g i.,... H,,,. n,.m- . H,.m... i. t..,.... g i,,.... i, t..... n,..., I, t....., l, i,.... f, f..... f, i....- a i e ,~ .. m.m.. 1 .c o.. u m n... n... n < n... n...gg...gg... n... n ~..gg...gg..... . c. o.... n..,,cu..... u..... g t.... g g... g g... g g... g g. - g g. - g g.. n.. _ g t.. _.. I i .n>..{ w,gg...gg--gg-.gg...gg...tg...gg...gg...gg...g.. g...gt.~.. - I n - - { { r r.c i. i. - - I. I. - ~ l. l. - - - g t. ~ l l. - - - I. I. - - - I. l - - - i. f. - ~ l. t. - - i. t. - ~ n.. - - - - - 2 n -- n v.cii--::~ -si-~ it--II --ti --li---it---li - -II- - n- - -- n - n. 3....

  • n..
  • h." *
  • It " It *
  • i.i e s.ti " !!. l :** h.* h.." - -

-I.3

  • 3 ;;

...u.. .:e.. g p m g g~.g g... g g... g g~. g g ~. g g... g g.- g g ~. g g... g g.~ gj-... 2 9... n. ~... n.....gg...gg.~ gg. ~ gg...gg...gg...gg...gg... n...~ gg... _ .u .m,.... ~..,.,... -2,, - - n.s..48 %,. ! k.3 ! {.sco f f - - I l - - i i - ~ .. g ggg g t.. ~ g g ~. g g... g g... g g. - g g... t t - - - t t - - - ( t - ~ t i - - t i - - - - - gg...gg m.gg...gg._ gj _... e..> ...ss...ss...ss...ss...s ...sa...s...s..... . u,.. .........................ms.u. m.............................. l . Q. [* j tj y ". c'$ QN Sffd('hek : 37 7 Olft g o., a.1 0. 8.p u.w)' d:)e.,cfy.(~,A M -n. Q, Q u e -! Q. gI. ; p. c % 7 M u '1 a (a y,c O.,.. 1

on TODIG -fro,. Og lGSJ2. 17hc4efic.$4 Ddo W83- .................................v. w..s............m.-v.... - -.n"{ t' M4% *427Ft.W4*4%e,, enm - - - 'i's>:.~~s s.......... s ...... m.,,.'.;; q 1g g +n; g g s.,,,..,.,...t,.. .,,x -

m.. <., we.. u..n, we.. w.,c n. m, w 3.o, 4.n. 4..w..w. t. w,,

.... ac... m.... -... m..........m....-... .yy.. ; t... ; t... ; t... ; t... { {... t l... t t... t t. -. g l... i t... l l... t t. -... U.,,. - 1, M,, 2 4 4. - - - 4 4. - - - i. t. - - - 4. _1 - - - 11. - 1 1. - - - {. {. - - - {. {. - - (.1. - - - i. t. - - (. t. - - - - EV--3M3 t%eiMi%%%.tleent %nt %e t% It-- i t---it--- e 3, %.,, - - i.M. 3 4.M.,,.2 4 M.,3 H..M3 t.M. 31443 4. t.,M3 t., M. a t., C. E2 t.M.,2 i. G. R ...z..m,.....,.. -*O --(M311--- 1t--- {t--- 11 -- 11--- 1I--- I t -- t 1 -- 1I--- t1--- t t----- ..c .m .E. 9. - - i, G3 4. t. - - - I. t. - - - t. t. - - t. t. - - - t. I. - - - 1. I.

I. i. - - - 1. i. - - - 1. I, - t. t. - - - 11. - - - -

.m.. I 19 -- 4 b it --- It -- 14--- { { --- 11 -- i t --- II--- ( t--- i t - ( t --- it ----- .E,. A - - t. h... t. t, - - - i. t. - - - I. t. - - - {. t. - - - 11. - - - I. t. - - I. I, - - - I. t. - - - (. t. - - - i. t. - - - i. t. - - - - - tW-- 4 M3 t t--- I t--- l l- - i t --- i t -- I t --- i t -- I t --- i t --- S t --- St----- -3 %,. - - (,M.m.2. 4 t./.~.M. i. f.43 4, G,.. 3. 4, M3. 1, M2. 1, s'#3. 4, l'}3.. i. t.'1.:01. I.M. 3.. {, c.tc.t. i.c.. ..u ..o ..m o o,, -EF-- 4 M3 ti'A* ti'^* t t'J"8 t i"* ii"* l l**' I t** ti*'3 t f'A$ t t -- - t t ----. -?,t. - - i. t.,n,,3 t. t. - - i. t. - - - i. t. - - - i t. - - - i..t - - - i. t. - - - i..t - - - i. t a - t. t. - - t. t. - - - t. t. ,....tt---it---it --it---it---(t---it---it --it---St---ti ---- .'t:t - 1%s t.t.... g g... I.1.... g 1.... g g... g g... g g... g _g... gt.... g (... g t.. 3.:.q..1. pn. -ED -- tM3 t t --- I t --- it -- - i t -- - i t --- i t - - - i t - - i t - -- it --- t t - - t t -- --- .t.:a - - W.f i.f_53,1,8, 4.:.:I. t.M. :h. t. i.t:M.m C!.h..U. l. l.... l..t... I, t.. -... i. t.....- t. t. - - - !1. - I ,..,..,,.4-.. > ~,..-.m.,2 - > ~,.. o... ......n,.,.. .u==.............................. i 3 _ n 9 7 m mitt / & M k~A,G b f a $$ W a ro N-3-/3 /f 7

4 Protect Number + ~ C4BaHelle ..,o....- Facific Northwest Laboratories KR Byers RF McCallum om 23 June 1982 FP Roberts RJ Sorenson To Iral Nelson LB r,o= P. T. Reardon subi"*. Bibliography for EIS Update ~ To date, the materials we made extensive use-of are as follows: U.S. Department of Energy.1979. DOE Order 5632.E, Office of Safeguards and Security, Washington, D.C. U.S. Department of Energy. 1979-1981. DOE Order 5630, Parts 1 through 7, Office of Safeguards and Security, Washington, D.C. Code of Federal Regulations, Part 10, Sections 50, 70, and /3.1981. Project Management Corporation.1975. Clinch River Project Preliminary Safety Analysis Report. Washington. D.C. Hanford Engineering Development Laboratory. October 1979. Fuels and Materials Examination Facility Preliminary Safety Analysis Report, Richland, Wa. 4 McSweeney, T.I., et al. 1975. Imoroved Material Accounting for Plutonium Processing Facilities and a 4Jbu-HTGR Fuel Fabrication Facility. BNWL-2098, Richland, Wa. Dayam, H.A., et al.1978. Coordinated-Safeguards for Materials Management ir, a Nitrate-to-Oxide Conversion Facility, LA-7011, Los Alamos Scientific Laboratory, Los Alamos, N.M. U.S. NRC.1976. Environmental Survey of the Reprocessing and Waste Management Portions of the LWR Fuel Cycle. A Task Force Report. NUREG-0116. NRC, Washington, D.C. U.S. NRC.1978. Safeguarding a Domestic Mixed 0xide Industry Against a Hypothetical Subnational Threat. NUREG-0414. Washington, D.C. Hakkila, E.A., D.D. Cobb, H.'A. Dayem, R.J. Dietz, E.A. Kern, E.P. Schelonka, J.P. Shipley, D.B. Smith, R.H. Augustson, and J.W. Barnes, " Coordinated Safeguards for Materials Management in a Fuel Reprocessing Plant," Los Alamos Scientific Laboratory report ~LA-6881 (September 1977). Shipley, J.P. D.D. Cobb, R.J. Dietz, M.L. Evans, E.P. Schelonka, D.B. Smith, and R.B. Walton, " Coordinated Safeguards for Materials Management in a Mixed-0xide Fuel Facility," Los Alamos Scientific Laboartory report LA-6536 (February 1977). Fazzari, D.M., et al. Hanford Engineering Development Laboratory. 1981. Safeguards Instrumentation for Secure Adtomated Fabrication (SAF) of Breeder Fuels. HEDL-SA-2551. Richland, Wa. ..-i1.....,-,.. . e s r.ovin.cor==rac u a mi-m ma

C. A. GEFFEN . c l c NOTES FOR CALCULATIONS PERTAINING TO TRANSPORTATION IMPACTS FROM CRBR FUEL CYCLE Calculations for Transportation Accidents knvolving Radioactive Material I. Section 7.2 CRBR EIS From NUREG-0170 (p. 5-5): Probability of an accident -Ti>ck Train. -6 1.06 i T0 /km 0.93 x 10-6/km l Using Model II (p. 5-23, NUREG-01~d) all but category I accident severe enough to fail LSA for Type A containers; accident severity categories of 6, 7 or 8 required to fail Type B containers. From NUREG -0170 (p. 5-11, p. 5-15): Probability of category accident: Truck Train I 0.55 N/A 6 0.0011 1.3 x 10-4 7 8.5 x 10-5 6.0 x-10-5 8 1.5 x 10-5 1,0 x 10 1) Probability of accident that might fail Type A container is (Truck) (1 - 0.55) = 0.45 accident rate: = 1.06 x 10-6 acc x 0.45 = 4.77 x 10-7 acc km km = acc 2 million km -7 4.77 x 10 acc x 4000 km x 10 Type A shipments, km shipment yr 0.01908 accidents /yr = 50 years per accident 2) Probability of accident that might fail Type B container is (truck) [0.0011 + (8.5 x 10-5) + (1.5 x 10-5)} = 1.2 x 10-3 RECElVED JUN 221982 1RA.'. C. HEl. SON e .A

JS pune.g.oiyo ~ e A TABLE 5-1 ACCIDENT RATES Accident Rate Mode (per vehicle-kilometer) Reference -8 Aircraft 1.44 x 10 5-2 /' Tr k, Delivery van 1.06 x 10 5-2, 3-5 -6 ICV .46 x 10 5-5; 5-7 ........n--.-.- -6** D ~ Train .93 x 10 '5-2, 5-7, b 5-8 -6 Helicopter .63 x 10 5-9 Ship, Barge 6.06 x 10' 5-10 A. Soloman, " Estimate of the Probat.ility that an Also see K. Aircraf t Will Impact the PVNGS," NUS-1416, June 1975. Rail accidents are given as rai.lcar accidents per railcar-kilometer. e 5-5 a

O ,e ,} .? TABLE 5-8 (continued) RELEASE FRACTIONS I 0 f'l,- Model II m.. J., 7 1075 1985 Cask Cask i

f..

Severity I.SA Category Drum Type A No Pu Po Pu (exposure) (release) M i. { I O O O O O O 0 0 a j,. N',4 II 01 .01 0 0 0 0 0 0 sg r 01 0 0 0 .01 0 O! III 1 .1 IV i.0

  • 1.6

.1 0 0 0 .1 0 V 1.0 1.0

1. 0'
  • 0 0

0 1.0 0 -7 %.VI 1.0 1.0 1.0 .01 0 3.18x10 1.0 0 ~$ -hvII 1.0 1.0 1.0 .05 .01 3.1Bv10 1.0 0 t -3 - JVIII 1.0 1.0 1.0 .1 .1 3.12x10 1.0 4 .1 A D C 4 ro S I D V O ._m__.._..._.._._ ~ _ ~ ~

  • ~ * *. ~ ^

. ruu -.- ~~= = _-... g --. -. - -.. ..- -- u.,. -- ~ ~ ~ ~ -

9,'.ifes..'E d),.Ef,Ep.i'34*(..Yhjh'.$)[jh *{h 5 ) i.. * ~.s 5.'*. + s 4 TACLE 5 3 FRACTIONAL OCCUkRENCES FOR TRUCK ACCIDENTS BY ACCIDENT SEVERITY CATEGORY AND POPULATION DENSITY ZONE 1 Accident Fractional Occurrences According I Severity Fractional to Population Density Zones f Category,,.,,,,, Occurrences f Low Medium. High -..,] I .55 .1- .1 .8 II .36 .1 .1 .8 III .47 .3 .4 .3 m IV .016 .3 .4 .3 Y. 0028 .5 . 3. - .2 4 VI .0011 .7 .2 .1 -5 VII 8.5 x 10 .8 .1 .1 -5 VIII 1.5 x 10 .9 .05 .05 ~ ~ g 0verall Accident Rate (Ref. 5 5) = 1.06 x 10'0 accidents / kilometer (0.46 x 10-6 accidents / kilometer for ICV's) b' @O i O D

.. L. t, ,,sr.;.,. -...;c g.; g o.gj,g 1.* 1,T. t... i

  • . p.x Vj t

i 1; l TABLE 5-5 f., g FRACTIONAL OCCURRENCES FOR TRAIN ACCIDENTS BY ACCIDENT SEVERITY CATEGORY AND POPULATION DENSITY ZONE Accident Fractional Occurrences According i Severity Fr a'ct ional to Population Density Zones Category Occurrences Low Medium High I I .50 .1 .1 .8 II .30 .1 .1 .8 III i .18 .3 .4 .3 p IV .0,18 .3 .4 .3 N V .0018 .5 .3 .2 ' VI 1.3 x 10,- .7 .2 .1 -5 / VII ~ 6.0 z'10 s .8 .1 .1 -5 4 VIII 1.0 x 10 .9 .05 .05 ( ~. 0verall Accident Rate = 0.93 x 10-6 ralicar accidents /railcar-kilometer. E C

e PP 1

0 O

  • ~^

,_..w.4 _w 'r..~===+=.~* - = = * ~ * *

  • 4 accident rate:

=. 1.06 x 10 acc x (1.2 x 10'3) = 1.27 x 10-9 acc km-km 1 = acc/800 million km -9 1.27 x 10 acc x 4000 km. x 70--Type B' shipments km shipment ~ yr 3.56 x 10~4.acc/yr = 2800 years / accident = 3) Probability'of accident that might fail Type B i container is (Train) [(1.3 x 10~4) + (6.0 x 10-5) + (1.0 x 10-5)] = 2.0 x 10'4 i-accident rate: = 0.93 x 10-6/km x '(2.0 x 10'4) = 1.86'x 10-10 acc/km 5400 million km/acc = l'.86 x 10-10 ace x 4000 km x 34 shipments = 2.53 x 10-5 sh'ipment yr-acc/yr = 40,000 years' per-accident ~ $+ e e 4 e ~ % e. p ym -4 ,r- .,.,,y ..,,v--.

J. ' II. Contributions to Table D.4. Summary of Environmental Considerations for the CRBRP Fuel Cycle Annual Requirements - Total trip miles for CRBRP fuel cycle (from Tables D.12,13) TRUCK One way trips Miles Fresh fuel materials 28.3 2500 14 3000 14 -10 Wastes 39 2500 - RAIL 33.5 2500 Total round trip miles Truck: 420,780 Rail : 167,500 From NUREG-0116: a truck averages 4.9 miles / gallon of diesel fuel (p. 4-148). Contribution from 1 car within a train assumed negligible; thus, results are based on truck-miles. Emissions for diesel engines are based on the following per 1000 gallons of diesel fuel. C0 102 kg HC 16.8 kg 168-kg N0x S0x 12.3 kg Particulates 5.9 kg from NUREG-Oll6 (p.4-148) According to DOE (ER Amendment 14), we have 450,000 miles of total transportation. This is the number used in this analysis: 450,0 4 g mpg 91,836.73 gallons diesel fuel. 92,000 gallons of diesel fuel Emission yields are 91,840 x values in NUREG-0116 or: C0 102 kg x 91,840 9.4 MT = HC 16.8 kg x 91,840 1.5 MT = N0x 168 kg x 91,840 15.4 MT = S0x 12.3.kg x 91,840 1.1 MT = Particulates 5.9 kg x 91,840 0.5 MT = 9 e r e--, --e. .n- -~,,,,,~,---~w-. n,

e h)Q RE 6 - C>II 6 l* Radioactivity - The averaoe radioactivity of fuel cycle waste shipments is sumarized in Table 4.34 l i I Accident Rates - The accident rate for trucks is taken as 2.5 x 10-6 accidents per mile; for rail,1.5 x 10-6 accidents per railcar mile, and for barges, 9.4 x ' 0-6 1 accidents per barge mile, based on available data.10,H An analysis of accident e I rates as a function of accident severity is contained in Appendix B of WASH-1238 and j a more recent, tnore detailed analysis is.given ; " Severities of Transportation [ Accidents.10 for all modes but barge transport. J 4.9.4 Environmental Imnacts [ Veicht and Traffic Density - There can be as many as,18' waste shipments by truck [, on public highways for the annual waste requirements of facilities supporting a model ) LWR, but excluding waste from the LWR ltself (except for spent fuel in the no-recycle T case). The TRU shipments may involve, return of reusable shipping packages. Accordi g [ to the Federal Highway Administration, the average number of trucks per day on any J-Total truck h,; section of the U.S. highway system varies from about 100 t.o 10,000.12 l miles traveled on U.S. highways in 1974 were estimated to exceed 55 billion.j3 The f truck mileage associated with waste shipments related to a model LWR is, at most, 2." b 18.000 (Table 4.34), which is less than one millionth of total truck travel in 1974, g l j and thus is too small to have a ineasurable effect on the environment from the in- }'~ s crease in traffic density. The same conclusions hold true for rail shipments. T .x 2 .i,j The number of drums of waste per vehicle can be adjusted so that the truck can [ ; stcy within weight restrictions imposed on highway vehicles and railcars. Therefore, there need be no excessive loads on roadbeds or bridges. o injuries, Fuel Use, and Fuel E:nissions - The nonradiological environmental effects [ of the shipment of materials from the nuclear fuel cycle are similar to those characteris. ' y." j . g tic of the trucking industry in general, in terms of injuries, fatalities, fuel use, 7 y and emissions. Fuel cycle waste transportation adds about 18,000 miles of truck travel.

  • 'j I

including return of empty casks and protective overpacks. According to the American lf j Track'thg Association, an intercity truck averages 4.9 miles per gallon of diesel fuel. l N. !!i and, during 1970, trucks consumed more than 25 billion gallons of diesel fuel. The M-lh 3700 gallons of fuel that would be used to transport nuclear waste in support of a -f 1000-MWe nuclear reactor is less than 10-6 of the fuel used by the trucking industry h 'k i in 1970. Based on emission yields for diesel engines of 102,16.8.168; 12.3, and jh, I l 5.9 kg per 100_0. gallons of diesel fuel re..s.pec.ti.ve._ly fir C07hydroca.rbons7..N.u. x,,.g, and _ i ,. ~... f particulates, the combustion of 3700 gallons of diesel fuel would release about 0.38, yh 0.062, 0.62, 0.045, and 0.022 MT respectively, which are very small annual emissions.' {, ! l Using rates of 0.03 fatality and 0.51 injury per accident yields 1.3 x 10~3 I4 1 y fatality per reactor year (about one death per 740 reactor years), and 2.3 x 10 2 g.. I 1 3 injury per reacter year (about'one injury per 40 reactor years) as transportation risks y[, from comon causes. ((] Mi

  • " final Environmental Statement, LWBR Program." ERDA-1541, June 1976. Table II, G(A)-3.

I q 4-148 --4 i l f$ I Y v- ,5 <~- uM., ,+ d4*}C.;2El.M)}tg i'. } y *

  • . ~ U.

~.:.:.i t.a

k 4 [ The :value for heat generation during transportation includes contri-butions from the irradiated core and blanke.t assemblies -and high level ~ waste. These items account for most of the heat ' generated during transport. From Tables D.14 and D.15'. Watts' - Mate ri al ~- per-Shipment. . Number of . Days:per.- '.Shi pments /yr Trip Spent Corei 12 x 104 14-6 ~ 3

Spent Blanket 5.4 x 12 6

HLW 2.6 x 10 I 3" - 6 4 . Total. heat generated 'is: 4 [(2 x 10 w/ ship)(l4 ship /yr)(6' days)(24 'hr/ day)] = 4'.03 x' 107 wh/yr

+ [(5.4 x 103 w/ ship)(12' ship /yr)(' 6 days)(24 hr/ day)]'.= 9.33 x 10 wh/yr.

6 ~ h -+ [(2.6 x 104 w/ ship)(3 ship /yr)(6 ' days)'(24 hr/ day)] = _1.12 x 10 wh/yr - ~ 7 = 2.2 x 105 n) e f i h e e s. O e e 4 + 4 1 g i O . 4. W v g 9 y,., y y. ,-....-g- .-w- -e--+y y,., ,w-v .-w,.., w s,,.. -.-..m..

TRANSPORTATION DOSE CALCULATIONS. Population Dose Totals ' '.;.s. ' 3, l.; III. Shipment Fuel Fresh fuel 0.55597 Fresh blanket 0.00753 TRU (fuel fab) 0.31345 Spent fuel 0.73694 Spent blanket 0.63167 Radial Shield 0.00237 7 Pu0 0.66F.98 $~ f" 2 HLW - 0.l~.! ' Tru/ scrap 1.50451 LLW 0.12539 Plant Radwaste 0.50148 5.22 rems DOSE TO CREW MEMBERS Dose rate is computed from the following: D(d) = ke-ud B(d) d2

p. D-1, NUREG-0170 with d = 3 meters (10 feet) 3 Ir = 10 D(d) = 103 [e4(.00118)(10)b[(.0006)(10)+1]

2 = 10(0.98827)(1.00600) = 9.942 Thus, dose rate @ 10 feet = 9.942 mrem /hr. BUT Computed dose rate > 2 mrem /br. By regulation it cannot exceed this, so it is assumed that shielding is introduced to limit dose to 2 mrem /hr as required for exclusive use vehicles, j Then: with 1) 2 crew ~ members per truck 2 guards per rail shipment for spent fuel

2) crew exposed only during actual travel Duration of exposure =

distance average speed

Q g;p.m n -ls.x-w -< m n:, n' x 2_ ' NUREG -DI7O g_ T .i ! y' -r{.l T r r. APPENDIX D POPULATION DOSE FORMULAS FOR NORMAL TRANSPORT E The formulation for the assessment of population dose is based on an expression for dose [ rate as a function of distance from a point source of radiation. This point source approxi- [ l mation is acceptable for distances between the receptor and the source of more than two source characteristic lengths. At smaller distances, the point source approximation overpredicts ex-1 posure and, therefore, will provide a conservative estimate of dose. The dose rate formulation f is given by: l O(d) = "' pd B(d) (o~ ) 2 d e where D(d) = dose rate at a distance d (arem/hr) l d = distance from source'(ft) p = absorption coefficient _for air (.00118 ft'I) B(d) = Berger' buildup factor in air, where in this case B(d) =.0006d + 1 (dimensionless) (Ref. D-1) 2 K = dose rate factor (mree-f t /hr) 0.1 DOSE TO PERSONS SURROUNDING THE TRANSPORT LINK WHILE THE SHIPMENT IS MOVING An expression for the total integrated dose absorb'ed by an individual at a distance x from the path of a radioactive shipment with dose rate factor K passing at velocity V has been - derived (Ref. 0-1) from Equation (0-1) and is given by O(x)=2h!(x) (D-2) where V = shipment speed (f t/hr) i x = perpendicular distance of individual from shipment path (ft) [t e ~ e'E' B(r)dr g(,), r(r.,2)S 2 x By appropriate transformations, this integral can be expressed in terms of modified Bessel 2 . functions of the second kind of order zero, which can be evaluated. For a K of 1 mrem-ft /hr N a V of 1 mile /hr, the absorbed dose as a functon of x is as shown in Figure D-1. In order to cbtain integrated population dose in sectors of length L and wicth d on both sides of the roadway (Figure 0-2), Equation (0-2) is multiplied by the average population density and L and integrated over the width of the strip D-1 l

Duration of exposure for truck shipments: [*h+.0,.0 ] 2500 miles = 47.58 hr (57.09 for Pu0 ) 2 Duration of exposure for rai.1' shipments: [.9[ +.0 +.0 ] 2500 miles = 103.33 hr Dose to crewmen = 2 mrem /hr x ATship x Nc x SPY (mrem) 70-

h. f b Shioments Sy aT Dose Fresh fuel 14 47.58 2664.5 Fresh blanket 12 47.58 113.5 TRU (fuel fab) 5 47.58 951.6 Spent fuel 14 103.33 5784.8 Spentblanket(a) 12 103.33 17.9 Radial Shield (a) 4.5 103.33 6.7 Pu0 14 57.09 3197.0 2

I") HLW 3 103.33 4.5 TRU/ scrap. 24 47.58 4567.7 LLW 2 47.58 380.6 Plan,t Radwaste 8 47.5B 1522.6 19211.4 mrem 19 rem (a)For rail shipments with no guard requirements, dose is calculated using separation distance of 152 meters (500 feet) p,-(.00118)(5000)][.0006(500) + ll = 2.88 x 10-3 3

1) (d) = 10 2

500 mrem /hr -3 Then: Dose = 2.88 x 10 mrem x SPY x Nc x AT hr ship where Nc = 5 From NUREG-0170 (p. D-8): Dose to persons surrounding transportation link while shipment is moving: Dose (person-rem /yr) = 3.47 x 10-10(k) [## "* + (f +1.636f,)] r u x PPS x SPY x FMPS 4 3 y,_._4-

4 /U uREG oi 70 l 3 0.4 D0._S_E TO CREWMEN The annual dose to crewman is obtained directly from Equation (0-1) by using an average source-to-crew characteristic distance (d) for each transport mode: s ? pd 0I o)(TI)(PPS)(SPY)(N ) e B(d) AT (0-12) (Dose) crew 3 g ship where N = nuder M cman aboad C average distance to crew compartment (f t). d = '10'3 (res/ area) Q3 = + + FMPS' AT,g, average time required for a shipment = = r s u_ average distance (miles) per shipment FMPS = I ' 'f The values of ' pd. B(d) for the assumed values of 4 for the various modes are shown"below: d i.- b d e'E B(d) . l U 2 l Mode d(feet) d g M an ~7- = 2. 03 -x.10Y

  1. ^

Truck 10 9.94 x 10'3 . Pass,--Ai rcraf t -- -- 50 -- '-3.' 88' x~10 ~~~ \\, s ~ 3 - *~' ' Cargo Aircraft 20.. . 2.47 x 10 I -6 l Rail 500 2.88 x 10 -5 jl; Ship -- . -~. -. 200 w. -- -- - -~ 2.21 x 10 -- ~-- }l Barge .-150 - 4:06 x 10-5,,_,,,, Because of regulatory limits for dose rate in the crew compartment, 2 ares /hr is used as i l an upper limit for dose rate in this assessment. If the TI carried would cause this limit to i Il be exceeded, it is assumed that shielding would be introduced to reduce the dose rate to this f level. I. 0.5 DOSE TO PERSONS IN VEHICLES SHARING THE TRANSPORT LINK WITH THE SHIPMENT { 4 Figure 0-3 shows a truck carr3 ng,idioactive material. The truct is traveling at a speed i V along with other vehicles in the same lane. Occasicnally vehicles traveling in the opposite j direction pass the truck in the other lane. There are two separate doses to be computed: 4 l. The dose to persons traveling in the opposite direction from the snipment and s 2. The dose to persons traveling in the same direction as the shipment. i l T 0-8 s ;2 ' l; .e n ./ .g9 MW-2 qs ..c -M. M.E C M

..r Variables Shipment k fr PD Vr fs PD V fu PDu Vu' fo f-SPY FMPS r s s 1 Fresh Fuel 103 .90 15 55 .05 2000 50 .05 10000 30 .02 .98 14 2500 Fresh Blanket 10 .90 15 55 .05 2000 50 .05 10000 30 .02 .98 12-2500 3 TRU (fuel fab) 10 .90 15 55' .05 2000 50 .05 10000 30 .02 .98 5 2500 I 3 (R) Spent fuel ") 10 .90 15 25 .05 2000 25 .05 10000 15 O ID) 1 14 2500 3 (R) Spent Blanket 10 .90 15 25 .05 2000-25 .05 10000 15 0(D) 1 12 2500 (R) Radial Shield 10 .90 15 25 .05 2000 25 .05 '10000 15 0(b) 1 4.5 2500 Pu0 10 .90 15 55 .05 2000 50 .05

  • 10000 30

.02 .98' 14 3000 2 3 (R) HLW 10 .90 15 25 .05 2000 25 .05 10000 15 0 1 3 2500 3 TRU/ scrap 10 .90 15 55 .05 2000 50 .05 10000 30 .02.98 24 2500 - L 3 LLW 10 .90 15 55 .05 2000 50 .05 10000 30 .02

  • 98 2

2500 3 - Plant Radwaste 10 .90 15 55 .05 2000 50 .05 10000 30 .02.98 8 2500 (R) assume same method used for rail (a)per 0170, on link dose is negligible (b) assumed a F e I r

DOSE DURING SHIPMENT STOPS Dose = QK (SPY) [aT (PD ) + AT (PD ) + aT (PD )3 r r s 3 u u -9 = 2.54 x 10 K (SPY) [aT (PD ) + AT (PD ) + AT lPD,)] r r s 3 u Variables Shipment K SPY AT. PD AT PD ATu PD r r s s u 3 Fresh fuel 10 14 10 200 0 0-0 0-Fresh blanket 3 10 12 70 15 5 2000 0' 0 TRU (fuel fao) 10 5 70 15 5 2000 0 0. 3 Spent fuel 10 14 36 15 0 0 0 0 3 Spent blanket 10 12 36 15 0 0 0 0 Radial Shield 10 4.5 36 15 0 0 0 0 3 Pu0 10 14 12 200 0 0 0 0 2 3 HLW 10 3 36 15 36 65 0 0 3 TRU/ scrap. 10 24 70 15 5 2000

  • 0 0

3 LLW 10 2 70 15 5 2000 0 'O 3 Plant Radwaste 10 8 70 15 5 2000 0 0 P 3 e e F e

  • O F

e e

s \\ Dose to Persons'in Opposite Direction from Shipment Dose = 1.89 x 10-7.(K)(SPY)(FMPS)(P) x I I l j## N r I wy + 5[\\ f frh 2N s fn N s Ifwy} + l vzTr. /2)4 (Vts)4 / I + fu f frh 2N u I wy + fn N

  • u I wy\\

f f fwy l (JVfs/2)' (VTr)# / I 4g [f f rh 2N g fn N u I41 + \\ f ts/2)4 (VTs)# /g l N [ \\: I

  1. cg frh 2N u.Ics

+f f n + -( T 72')4 f fVTu)# j _, To simplify: assume all frh = 0, fn"le fcs = 0 Then we have: Dose = 1.89 x 10-7 (K)(SPY)(FMPS)(P) x I r(2.9x1[) I -2 f N f N s (2.9 x 10 /ft),, r s + + V#Tr VYs I -2 If N u (2.9 x 10 /ft) f Ny(4.8x10-2/ft)[ fwy 4g ( Vfr V 2 ), Ts Assume -P =- 2 (see PNL-3308) e O e e-

PN L-55of ' ~... x y. ,f-i.e -y s in-i \\ / ,e / i / N / is 2 N / i / 5 \\- l t , to s / 1 l 1 I io 4 ,'l I. } i ,,.s t 4 a to \\ to At avaste of nnectc occupants j g \\ \\ Estimated Total Number of Vehicle Occupants Involved in Heavy-FIGURE 10.2..' Truck Accidents Plotted as a Function of Accident Frequency ~ *, x~ TABLE 10.5. Estimated Fatalities of veh1cie occupants in an Accident with a Significant Release bpected Average Numoer Fraction of Accidents per Year Average Fatality Fatalities of People Total Accidents with Stonificant selease Rate in Fire Accidents per Year 0.20 14 0.4 1.12 2 0.65 14 0.4 3.64 3 0.04 14 0.4 0.22 e ~~ 4 0.003 14 0.4 0762 5, 0.007 14 0.4 0.0019 6" 0 0002 14 0.4 0.0011 7 0.00008 14 0.4 0.0004 8 0.00006 14 0.4 0.0003 i l response teams. Assuming that a group of from ten to fifteen firefighters will respond to an accident, and that, as in the highway environment, a fatality rate in a fire accident is forty percent, an estimate of the number of fire-fightert killed per year in propane train accidents may be derived. For the significant release event every 2 years from propane train transport, an ex.pected 1 to 2 firefighters may be killed in addition to members of the general public. 10-8 4

Dose to Persons Traveling in Opposite Direction from Shipment (see p. D-ll NUREG-0170) Variables Shipment K SPY FMPS fr Nl Vr f Ns f wy Nl I41 Vs fu T s T f p u 3 Fresh fuel 10 14 2500 .90 500 55- .05 800.- 50 .05 .98 3000 .02 LFrcsh blanket 10 12 2500 .90 500 55 .05 800 50 .05 .98 3000 .02 3 TRU (fuel fab) 10 5 2500 .90 500 55 .05 800. 50 .05 .98 3000 .02 3 Spent ~ fuel (R) 10 14 2500 .90. 3 3 Spent blanket-(R) 10 12 2500' .90 ' negligible ~Radialshield(R) 10 4.5 2500 .90 3 Pu02 10 14 3000 .90 500 55- .05 800- 50 .05 .98 3000 .02 3 HLW 10 3 2500 .90) negligible 3 ~ _TRU/ scrap .10 24 2500 .90 500 55 .05 800 50 .05 .98 3000 .02 3 LLW 10 2 2500 .90 500 55 .05.800, 50 .05 .98 3000 .02 4 3 . Plant Radwaste 10 8 2500 .90 500 55 .05 800 50 .05 .98 3000 .02 7 4 e i L r s .k O

^ -; '7 <-s :,.. ^ %l @ @ ':% ~ 4: W :.~-a n - c. l . -~c3 m .s.wn.s,..,. w - AluREG - O( 70 'i as 'C ':lt 9:- 2. The traffic count doubles during the commuter rush periods (applicable in urban and suburban population zones). ? t 4 3. The average speeds decrease by a factor of 2 during commuter rush periods (applicable i in urban and suburban population zones).. 4. Urban travel may be on freeways, four-lane roads, or city streets. Suburban and rural travel is all on freeways.

p

.i t' 5. Urban travel on freeways and four-lane roads during rush hour,is at half the average a suburban velocity. 6. Urban travel on freeways during no'n-rush hours is at the average rural velocity. ] Urban travel on four-lane roads during non-rush hours is at the average suburban velocity. Under these assumptions the following expression is obtained for the annual population dose in j person-rem / year to persons traveling in a direction opposite to the shipment for a given ship-ment type: ! t. (D-17) .l (Dose),pp = Q M,)(TI)(PPS)(SPY)(FMPS)(P)(F) where +f[f 2N'I f Y fwy N'I rh f fg n + F=f y (V /2)2 (y,)2 r 2 5 p 3 [f 2N I I Y fwy,

  • rh u fw n

+f f u fwy (V,/2)2 (y p)2 I N'I .ff 2N[I42 n 4g rh + + f"I(( (VTs/2)2 (y,)2 \\ Irh Yes I Yes n + f'S (VTu/2)2 I Tu) /_ ~ 1 In deriving this expression, the substitution K = KO'x TI x PPS has been made, where TI = TI/ package, and PPS = number of packages / shipment. Other symbols in this equation are as follows: f 'I ' u fractions of distance traveled in rural, suburban, and urban zones, respectively a r s s' fraction of distance traveled in rush hour traffic f = g fraction of distance traveled in normal traffic f = n fnction of travel on freeways or interstates f = gyy f42 = fracti n of travel on four-lane roads D-11 1

Dose to Persons Travelin9 in Same Direction.as Shipment. 3.79 x 10-7 (X)(SPY)(FMPS)(P) x Dose: l I I I fr N r (0.008) fs N s (0.008) 'l f,y N u (0.008) f N u (0.031)) f 41 + Vf V'Ts "\\ Tr VA + Y2 Tr Ts / Variables required are _same as those for opposite direction travel. GENERAL POPULATION Doses On-Link Persons To Pop Surrounding During Opposite Same Link (Mov.)~~ Shipment Stops Direction Direction OfS269 Fresh fuel 0.356 0.07112 0.04616 Fresh blanket 0.00305 0.00337 0.00071 0.00040 'TRU (fuel fab) 0.12709 0.14034 0.02953 0.01649 4 Spent fuel 0.71774 0.01920-Spent blanket 0.61521 0.01646 Radial Shield 0.00231 0.00006 Pu02 0.42702 0.08534 0.09923 0.05539 HLW 0.15374 0.02.195 TRU/ scrap ~ ' - 0.61002 0.67361 0.14175 0.07913 LLW 0.05084 0.05613 0.01181 .0.00659 Plant Radwas'te 0.50336 0.22452 0.04724 'O.02636 9 I e

IV. Sources of numbers for Tables' D.14 and D.15 UF : CRBR regm ts of 11.1 MTU/ year 6 Total needs over plant life = 492.6 MTUF 6 One 14-ton cylinder contains 12,500 kg product (PNL-2211). [ Depleted UF is stored in 14-ton cylinders (Breeder Briefs 3/82)]. 6 UF shipments are made mostly by truck, one 14-ton cylinder per 6 shipment (PNI-2211). 11.08 MT Ud required. '238 + 114 = 352 g/ mole UF '~ 6 6 11.08 x l'0 g g x ,9 46,640 moles U 46,640 x 6 = 279,330 moles Fx 190 = 5.3 MT F r mole Total = 11.08 +.5.3 = 16.38 MT UF ~ 6 Therefore, one cylinder contains: 11.1 MTUd X T E42 MTUF 12.5 MEF 6 6 = 8.45 MTU per cylinder 1 = 39.41 cylinder over life of plant. 45 / di r 39.41 = 1.31 shipinents/ year 30 y r E~eatgeneration: negligible ,. Estimated, activity ': negligible Average shipping distance: from DOE Amendment 14 = 2500 miles. UO2 Required: 4.02 MTUd as U02 to fuel fab plant / year UO2 can be transported in a double-stacked 55 gallon drum. 110 kg UO2 per package 64 packages per truck WASH-1535 one shipment _t,huwarries 7,040 kg 00 ~ 2 4.02 MTUd = ? 002 ~ ~~~ 238+2(16)=776 g/ mole UO2 L.

y PNL.- M .A ~q g .A c. _ghi .-l. n s p '- wh. . 'c. 1 feh? %"i%. :.:.. l'2:L -},. 1 ti i 2,b jMJ-p'. }!Q j . @hi.y: l ( 'f i k.:. 'fTii; MW 1 c

lp:h, <-

c( 29'. ' >.g u .v.. cs s 14 'q, tet y-( t'- 9 u W.,., ,.c W #. ' ' $?Y ' i$*,J {

.L :ss

' ~.. \\ L -Mw t = xb5%:??5\\nY ns.t%w na ~ - ;l h [ t UF.CylindjerModel48Y FIGURE A.4. Q . TABLE A.4. General Data fo'r UF Cylinder g' Modal 48YCtherDeskriptive Terminology Used :- 14-ton' T eminal Diamster 122cm (48 in.) N Nominal Length .381cm (150 in.) Wall Thickness c'

1.59cm (5/8 in.)'

'2359kg'(5,200 lb) , Nominal Tare Wei_ght- _ _..- 12,50lkg (27,560 lb) 7

. ' ~ Maximum Net Weight

... s Nominal Gross Weight' -14,860kg (32,760 lb) Minimum Vo'lurm 4.04m3 (142.7 cu ft) Basic Material'of Construction Steel b (200 psig) o 6 . Service Pressure 1.38 x 10 m- ' Hydrostatic Test Pressure 2.76 x 100 h (400 psig) Isotopic Content Limit 4.5". 235U Max With Modera-tion Cantrol A-5 e r# k

he.ede.C.S 'NSgs p t... .5. 5 . S. i.. pn.y p. 3...t H yg p, .g.. _

x..

,I [ s-m j i., s 4 p c =.,. . t 1.L..j L., !. 1 .),

,c--

e, j- / v. - ( m, +.J N r. g

7. y

.s. I i ,e \\.

Li 4,

s ; .s w .w

s ll*-

=~ -.c.sy.;.m_o-m;e w; :w m.um.g w nmm .....>. ear. m..w_ =w ...-.._,..._...,,m, .-..,.,,-.-.--.._..-..J t.. ., y.2:. ... j.L:.;.:

y

_.u . ~..... -..._..a. ... ~ MARCH 1982 Extensive Sodium Fire Tests Underway Oak Ridge Now Has Engineers at Atomics international (AI) At this temperature. however. fiquid .Over 4,500 in Canoga Park. California. have been . sodium will burn when exposed to the air U-238 Canisters - ctrefully studying the properties of liquid (oxygen). Sodium which as used as the enolant and The CRBRP design incNdes extensive " 64 500 canisters now lie in storh hett transfer agent in the Cimch River

  • features to mitigate ' consequences ge at the Oak Ridge Gascous Diffusion-Brseder Reactor P! ant (CRERP).

incurred by an extremely unlikely situa. Plant - canisters contammg uraneum, The basic properties of sodium are well tion such as a sndrum spill Some plant tails iuranium 2381. tr.e material that wdl known: at atmospheric tuessure et melts cells that have sodium.containing equip. breed new fuel in th9 LMFBR I et 207'F and boils at 1616*F; it reacts ment are lined with steel. and the atmos. Mo'e carusfe'Is aiF'Tf'ie'd~at uranium o with water or oxygen to form preoucts phere in these cells contams an inert gas enrichment plants at Paducah. Kentucky, such as hydroge n, sodium hydroude. and so that m the case of a spill, there would and Portsmouth. Ohio. sodium oxide. In CRBRP. it will enter the be no oxygen to support a sodium fire. A by product of the uranium enrich. terctor core at 730$F and Ic.sve at "S55F. Where sodium.containing equipment ment process. the combmedinventory of is located in an area that cannot be urt.nium tails r.ow in storage, if used in g inerted.' the CRBRP - design includes a breeders, represents the energy equiva. unique fire suppression system, conses. lent of $66 trillion of oil. Henny Piper.

  • f

~ ting of a catch pan and a fire suppression chief. CRBRP Project Office's Licensing deck. Branch. and David Hambright, chief of

  • ~

7, Continued on page 3 Continued on page 2 - f. & N

g /

1. 13 Contractors Attend Pre-Proposal Conference f, g :Mr. y,;,;g Thirteen potential proposers attended a pre proposal conference in Oak Ridge. Ten. Jd nessee. February 2 3. conducted by Stone & Webster Engineermg Corporation tSWEC).- The firms were studymg a request for propcsals for preliminary site preparation for the f,. g~ ~~-,_'.l-lJ' Clinch River Project. , ~.,. The U S. Department of Energy has filed a request under,Section 50.12. Code of .. Federal Regu!ations. Title 10, with the Nuclear Regulatory Commission (NRC) to begin f-clearing. grubbmg. and cucavation for the CRBRP site. The f"RC's decision on whether ( .k "-

$.h,. #

to grant permission to begm site preparation is scheduled to be announced early in k llr $ ? ':' V '.i.1;. March. fl

  • l.Q The Conference apprised potential proposers of licensmg procedures. the scope of a.. s - g h~'

.. P 7*\\ t '..hl0 7 work f or site preparation, and safety requirements, and enabled them to gather adde. I.. .':.*.'5--.~'' I-f t.onalinformation from the Project Office. .. C. ' *cd'..C.hU The Conference incluoed a demonstration of escavation sequencing by use of Sione 1~- & Webster's escavation model. Participams a!so visited the site and examined core A

6. GOO gallon sodaum balaong g

tank is li/ted o// t/.e truck to be Presidir g at the Conference for Stone & Webster were J. G Webster, procurement installed in the L sige scai, ,,,,,,,,,g,,g,c,,,n;,,,,,,,,,,,g,,,,,,,,,,;3,c,,,,,,,,,,,,,,,,,,,,,, St.dsum ine Tes't racd,ty at Ato,nic near, and J E. Karr. Quality assurance manager. !nter. sat lonars test fxu/ sty m Santa Richard Chidlaw. ess:stant director for CRBHP Construction. said. "The Conference Susana C.ddornia Sodnamis to be went very well. ur prospective bidders asked penetratar g questions and received trans/erre3 Irom 110 ES-ga//on responses We anticipate that SWEC wdl receive highly competitive beds on March 2 drurns to the lwlcong t.onk fach ES. from highly competent contractors.' gallon r! rum is f.e::rd ta a:: cit the sod; urn sc that n r.on!.e r:.or.s' erred Legislative Updat e ine Rman Adminisirai;on s budgetpropesaifor ento !!:e f.enA f.v!...m hem the f.C:!.,g tier A.s J/!,, e. ; t ed.nto a F4 cal Year 1083 w.rs a nnot.nced Febrt.ary 8 P.oi'esed nuclear f as.on f undmg is tae.s:w,ner non s uicm e.n ch I ,;cwn,e.,,n pe, cent. frcm s1 '?29 bdf.cn m FY 1982 to 51016 b.lf.cn m FY 1983, g simo!..tes C.USF n :vn5 Freposed fundmg for Ine Clinch River Protect es $252 million. I m-

assional Engineers Support:CRBRP U 238. Canisters .ly Site Prep Request in Storage n response to the opportunity to comment on the request by the Departrnent of Continued from p.ge 1 .ntgy (DOE) to begin early site preparation for the Cisnch River Plant. the National Technical Information for Project Man. oociety of Professional Engineers wrote the following letter to the Nuclear Regulatory agement Corporation. put it this way in a massen. recent article for the Januarv ssue of The National Society of Professional Engineers INSPE) wishes to state ots support for NRC Electric Perspectives: "A stack of one approval of the subject request. The engineering esperience. education. and certshcanon ot thousand 51.000 butls - a total of one NSPE's members places NSPE m a unique position from whoch to provode substantive and milhon dollars - tightiy pressed together ptrionent comments regarding the Clinch River Breeder Reactor Plant (CRBRP) and the es nporoumately 5 inches hugh. There-Department of Energy's iequest. fore, one trillien dollars would make a stack of $1.000 bills 79 miles hegh The The liquid Afetal fast Breeder Resctor (LMFBRIis this counsty s best prospect for generar. stack representung the equivalent dollar ing electricity alter the year 2000. To maontain a strong breeder reactor research end. value of Ihe tails based on the conserva. einslopment program. the Clinch River Project shouldbe cumpleted as soon as practicable Th2 construction and operation of thos essentual stepin cemonstrallng breeder technology rs tsve prece of $31.25 per barrel for oil would be 5.272 miles high.** als s erucialso the nation's abohty to h eep pace with foreign development s in thos technology By converting once useless uranrum . B1cause the previous administratson had allowed the CRBRP completion date to be tails to valuable fuel, a breeder can pro-del:yed to the point shere unavadabohty of LMfBR esperience might jeopardae the use of duce from the contentsgone 14-ton] / ' nucinar fossoon as a long term energy optoon, timely anc vigorous actoon by the federal vster m umeBEtu venM{* pro-Guv3rnment is necessary to complete the Chnch River Project and preserve this option. by 60 oil tankers. The canis ers fortunately. the Department of Energy has developed a plan to start site pre:;sranon activo-insww mOARig M & toes. pursuant to rpprooroate NRC environmentaireview andauthoraatson. more than a year and Portsmouth hold energy amuevalent 1 erther than would otherwise be possoble NSPE agrees with this acnon and cons.ders that to 600 years of forecgn oil,if impos:ed at

  • NRC approvalis warrantedby(11 the nationalprianty a ssignedro the Chnch Rover Project. (21 the present rate.

NRC's own determination that these set e pr eparation achvotoes was,ld not result m signihcant The term.. endless energy.. is no mis-envoronmental impacts. [31 DOE's ccmn~:Iment to redress the site of re uured by further nomer. for production of uranium fails is hcznsing activities. and(4 recognolion of the clear c ost advantage to the ranpayers olcorher 1 en acted to encrease by 500 meltsc tons sisrt and completoon of construcuan activines NSPE v.holeheartedly endorses the Icgiti-in Oak Ridge by the year 2000. That matz use of the 10 CFR 50.12 procedure in this case means that by the end of th'e century as. NSPE notes that the nation has already eapendee about si billion on the Chnch River many as 60.000 can:sters will be ready l'ropct. Further delays on thos Project would deler returns from this substannalinvestment in for use in Oak Ridge alone. breeder technology. A rnonetary cost of about $100 mahon couldbe assignedto one year's dc!erral of these returns fassummg a 10 percent annualinterest rates This would be on 7 p z p 4 !~. 3 addason to DOE's estimated savongs of $120 s:40 mahon of oncreased costs. However.

-~ M

., p 3. y q.)*'.- 9, } _}Z~.kQ,'.p* q:, ;; S ; ; Y, *.; NSTE beheves that such an aporoach to determine the cost of delaymg the benefits of this [..u. - ? *~ (.o y~Y? 's'd* #*** ^:.$~q?. &).T Po ojTct greativ understates the actualbenefits that would accrue, in terms af teestabhshing ~ R th2 Unoted States as a leader on the internationalnuclear cornmunsty and onsoring that the 'Y.[,,. potential for stretching our encreasongly short supolies of uranium is develo* ped m Iome to ,+..**,J 3r ...~ t avoed severe econc.moc consequences. The benefas of accelerating the CRBRP schedule by a r$ ~A ~$ ~W'N=%.' &$ 0 &ne year as proposed by DOE would thus be far greater than the hundreds of indlions of f dollars estomated obove. fog IHe.se ressons. (ve consider the grantmy ot an en emption for the yff f f 5 fE CRBRP to be in the pubhc onterest ,Q j f y Q. Approval of DOE's request would n:..' oerract from the CRBRP purpose of demonstrating ? 'h _._ lfl l .l } Q .-.f ;;4),.j m } y '/ y' hiensab;hty of breeder reactors because ile the 10 CFR 5012 pr ovosoons are an integralpart }n uf NRC's regulatoons.121 as noted on the Curn:nossion's mcmorandum and order fove such %gI e% \\. requests for LWRs ha,e Leen eonsidered over the years. nr.dl3ithe CRBRP Project wdlstal .R

  • l y

-c ,T be requ* red to comply wah the rest of NRC's environmentalar*d safety review regulatoons. mcluding pubhc hearmgs future LMFBRs would neother be pauctudedtrutn nor requored to . j' Q,.. )5.L Q's.NJ 5 unhoe the 10 CFR S0.12 procedure NSPE beheses that consideranon of DOE's request must 'd l Elso acknowledge the unusualC;rcumstances of the Chnch Rover Prorect that have evolved h om the delays dscratedb y the last administrabon innd the undue hardslup to stre Project and ,b ,h n:sroor:al cb cciames of further de!ays i In closong. NSPE stocngly recomn ends !!.e snuned. ale authovent:an for DOE to com no:nce H s*te pow.tranon actesnies for the Cl.nch Ruer Project .'e discern no hyal.;wrement to - % r % r%~ ~ deny thus recs.%st and are perss.:oded by the osernheimoreg benchts to the nstoon of pruct ed. J \\ '.\\ n r.'A

    • a.

mg enpeditoously wah these actu s,es and bree.fer reactor due:!O;,nsent C, w'3 n ~ , [rk t1 Thank you for alto. ong us to s4 nut thone L4non. ems on thos n.arter {\\ i "I HerMrs C KWe. P E Ct.;..r r.a n >,- g I L-g ste. a-d G:.erment /-%.rs C m mee " * ~. d:?. 7 * - - T ~ 2

. m.

t uium Fire Tests-Underway con %s,ro.,,w C nch River Facts The Catch pan accommodates the sodium to determine liquid dispersion r.animum' possible volume of sodium characteristics directed through a walk I e Plant. design: about 85 ' percent t%at can be spilled ~withm the cell.The fire gratmg simularmg _ those to be used m complete. i suppression deck attows the sodiurn to. CRBRP Because of its position, the walk. .: ram mio the catch pan while limiting gratmg played an important part during a Project research and development: 'Ine sodium surface area available to. the small scale tests in tietermir,ng how - ah h percent compete. rsact with the oxygen in the air.- a sodium spray would be dispersedJ . a Equipment completed and on. In defining parameters for the 14.rge-order totals: about 5610.8 million. '1 ...the /argeSt Such. tests. ever scale tests which will be completed in undertaken /n the U. S. Mch engmeers inir duced a number g, of other important tests, neluding tests s mg e sthson d Wum %. i WensMg acN% weW in The CRBRP design for such sodium fire lets up n c nerete, tests analyzing the 1977 but resumed in September - mitigation is based on extensive analysis tnd supporting experimental data To eHectmeess of magnesium oxWe insu, N verify that sodium fire suppression mes-lation, and a spray maximization,, test. s a Value of major components com-Before studying the way sodium be-sures taken in the CRBRP design willper-leted and in storage or under-ans den n es s aW e cWW' firm as expected on a large scale, tests' going testing: approximately . spray maximitation tests again used. tre beingconductedat Al These testsare 5248 million,

  1. *'"'
  • M ets the largest such tests ever undertaken in a Current est, mate of completion:

coming from a spray of l.iquid sodium. i the U. S and possibly the world. Water was sprayed onto a drum, and dependent on action by the Admin. Al is simulating the CRBRP design for codium spill conditions. complete with through photography techniques. engs-istration and Congress. The start of neers determined the size of the droplets plant operation will be about seven fire suppression decks. aerosol detectors. under the most severe spray conditions, years ' alter receiving regulatory crach. pans. and insulation, in in envi. g ranment that is not merted. Both small-g scale and large scale configurations and a Current total plant cost estimate:- acmah proWe inese mest severe their accompanying conditions have about s3.2 billion. s m way w.@m been tested in the finallarge scale test. tpproximately 6.600 galions of sodium will be released on a specially con. ... hands-on exper/ence W/th structed fire protection system ptototype. Sod /um [/reS. nozzles above and a fire suppression Such a system has been designed for deck. or O deck." below Below the O CRSRP to provide sufficient precautions To ensure that the concrete to be sub-deck is the catch pan, with magnesium 13 accept the conditions of the unlikely jected to these sprayings would be ade, omide insu!ation underneath sodium fire; heat load. gases, impinge-quatelyinsulatedduringlarge scaletests The Q deck is cesigned so that sodium ment of sodium on concrete. and as it will be in CRSRP. tqsts were per-is directed through drains, or "down. p ssurization, formed with magnesium oxide which is comers " Essent: ally, the O deck is ar-lo perform this function.' the test fac I-to provide an insulation barrier between. ranged to reduce' the surface area ity directs spilled sodium dows onto a fire the concrete floor and the catch pan con. available for combustion, thereby smoth. suppression deck andimo ahtch pan at.. tairing spilled sodium These tests con-ering the fire. Within 94 minutes the I cereme flow rates and it.speratures. firmed that magnesium oxide insulation, entire 6.600 gallons of 1000*F sodium The system is designed to suppress the when expcsed to catch pan sodium from the tank will be discharged into the fir 2 by limiting the oxyger upply to the temperatures ranging from 400'F to cell. sodium. 1650*F. would effectively prevent exces-Such procedures are expected to yield sive heating of the concrete. a great dest of valuable information. - All the data from the small scale tests. Primarily, the effect.veness of a generic ...in the case o[ a Spd./, there the spray rnanim;iai on iests. and the caten can fire suppression deck should - would be no oxygen to Support magnesium on de insutation tests were be borne out. and that is the major objec-a Sod /um [/re. collected so that realist c calcu!ations for five of the tests for CRBRP the large scale sodium fire tests could be In general, the tests will give CRBRP t The design configuration used to con-made. engineers harids on experience with duct the small scale tests employed a To perform large scale tests. Al had to sodium fires That mear's a chance to test oftensieled fire suppression deck contain-assemble large scale components As sorflum aercso! detection equipment, to mg 1% inch, drain pipes and vent pipes. part of these tests. 6.600 gallens of fiquid test prototypic sent closure devi:es and Subjected to a series of sedium spills and sodium, cor. tamed in a large holdmg lousers in the senti!ation system, and to sprays, the suppression da A and catch-tank, will be spi!!ed mio the test cell con-study sodium c' s.,p send d'sposal ..an tencath it w:thstood twe fast spills of taining a catch ran measuring 20' X 30'. technicues 15 gst: ens per rmnute (;pml of 1000'F The cell where the 94. minute Spill will Accordmg to PMC's Anthony Grar oe. sodium A 6:cw spit! at 15 gpm v.as also take p: ace has three foot thick walls who worked on the tests. "The tests will cor-ducted, en add.i.on to three tests m pictotypic uf tne p.' ant's cell v.afs. Those aho give us vali.able data on St.dium s wheen 1000 F so$um was sprawd or'to sarre v.al:s are ensu:ated w.tn a f.brous avecsois ano compesit,en and cata to en-th? fare su; press.on deck. In two of the mater:al. cal:ed "cerrab!anket." for con-hance our conf.dence m the computer 's;.rapirags..ater was used in lieu of crete protect on The cell has 24 spray cufe s used m the CRERP dvs.gn " 3

ER DA -q0 Table 4.5-3 ~ SHIPPING INFORMATION FOR URANIUM DIOXIDE Depleted UO aC 398 PecH1 cations 2 Type Double-stacked. 55-gal drum Height 74 in. Outer Diameter 24 in. Inner Container Diameter 11.5 in. Inner Container Height 63.5 in. Inner Drun Diameter-9.5 in. -} Inner Drum Height 9.75 in. Number of Drums per Package 6 ~ Tare _ Weight of Pa (NetweightU0,pe,qkage.- 135 kg r Package 110'kg g Shipping Requirements" Annual Production, uranium 16,048 kg NetWeightUperPackage 97 kg Powder Density, g U/cm 2.0 Packages.per_.Iear 165.44 (Packages per Vehicle 64 D Mi~pse' Hts peFYeaT ~~2.58 Radioactivity per Package 1.60 Cf Thermal Power per Package 0.0026 W Shipping Distance, one way 750 miles Shipping Time, one way 3 days aFor a single 1000-MWe LHFBR. Table 4.5-4 SHIPPING INFORMATION FOR. PLUTONIUM DIOXIDE Pu0,, Package Specifications Tfpe 55-gal drum Hejght 35 in. Diameter 22.5 in. Inner Container 4.81 in. ' Inner Container Height 18 in. 3 Usable Volume 0.16 ft Tare Weight of Packa 90.9 kg CNet'WeightJiOK ge 10 74Tg] h Shipping Requirements" ~ Annual Production, plutonium 1679 kg Pu Shipped per Package 9 kg ' Packages per Year 186.55 Packages per Veh'fi:le'~~ ~~~ ~'~~~~'64N hipnent's~~perfear - "~'---'~" 291 5 Radioactivity per Package 1.04 x 10 Ci Themal Power per Package 81 W = Shipping Distance, one way 750 miles Shipping Time, one way 1.5 days "For a single 1000-Ne UVBR. 4.5-10

4 6 4.02 x 10 9 Ud x mole U = 16890.76 moles U 238 g 16890.76 x 2 = 33781.51 moles 0 x 16 q = 540,504.2 9 0 mole. 4.02 MTUd = 4.02 MTU + 0.54 MT0 =-4.56 MTUO2 Since one shipment holds 7MTU0. it can all go on one. 2 ~ PUO2 CRBR requirements: 0.894 MTPu (as Pu0 ) per year. 2 6 HowmuchPud? 0.894Lx 10 g Fu x mole Pu 2 =l3694.21 moles Pu 242 g 3694.21 x 2 = 7388.41 moles 0 x 16 g = 118,214.88'g 0 mole Total Pu02 = 0.894.MTPu + 0.12 MT02 = 1.01 MT Pu0 2 Given: DOE shipments of 14/ year - Reasonable because: if using packaging in WASH-1535, contains 9 kg Pu/ container, 64 packages / truck. This would be 99 packages, or 2 shipments. If msing AGtJS. container (TTC-0027A, by Exxon) carries 0.028 MT Pu per container, 8 containers per truck. This would be 31.7 packages, or 4 shipmr.r.ts. If using canister with overpack, holding 32 kg Pu02 per package, 1 we'd need 31.56 packages. At 7 packages per shipment, this would require 4.51 shipments. Quantity / shipment derived by calculation; shipping distance from DOE =ER Amendment 14. 6

.. q. !. w.. ,u..%;.,. ..es... u....; 4 ,u,._ ,%m_ _ _ m ggg.p %ggggm,4 g,,,,,,,,,.,% l l' pf1E2.1-(Contir.uedl LWR FUEL CYCLE TRANSPORTAT10N SYSTEM EQUIPHENT PARAMETERS 4 E0u!PMENT PARAMETERS CAPITAL COST LEG 5-2(5) LEG 6 EG 7-182 LEG 8 LEG 9-182 LEG 10-1(2) Container Designation Truck Cask Rail CaskI3I 48Y AGNS Design 17H Drum 51032 Rail CaskI33 Cost ($) 750,000 2.500,000 3840 '7500~'? 20 8500 3,000,000 DesignLife(irs.) 10 i 10 20 10 1 20 10 % of Total U/Pu Carried 25 75 100 100 100 100 100 Usage Potential 801 80% 3 Cycles /Yr. 801 12 Cycles /Yr. 4 Cycles /Yr. 801 Procurement Lead Time (Months) 9 18 6 6 1 6 18 OPERATING COST e I4I.352/5.664I4I I4I Capacttf(HTHM) 0.832/0.708 5 8.4 0.028 0.38 . 0.73 3.122/3.186 f Containers / Truck l Loaded 1 NA NA 8 40 4 NA Empty 1 NA NA 8 100 6 NA i Containers / Rail Car Leaded NA 1 4 NA NA NA 1 y b Empty NA 1 4 NA NA NA 1 Turnaround Time (Hrs.) 1 Car / 2 Car 1 Car / 2 Car Originating Facility 20 48 72 NA 24/36(6) NA NA 48 72e Destination Facility 13 28 28 NA 48/72 NA NA 28 28 III III 1400 1500 320 '890-One-Way Olstance (Hiles), 600 320 890 800 1400 Travel 01 stance (MI./ Day) Loaded 850 360 360 NA 850 450 NA 360 360 Empty 850 36d 360 NA 850 450 NA 360 360 Tariff ($/Hf.) Loaded 1.72 46.25 24.65 3.00 5.15/7.42(6) 1.09 5.43/7.22(C)46.25 24.65 3, Empty 1.72 43.50 23.15 No Charge E.15/7.42 1.09 5.43/7.22 43.50 23.15 , N Decornissioning Cost ($/ Container) 35,000 60,000 NA 200 NA NA 60.000 o Maintenance Cost ($/yr.) Per Container 10,000 70,000 200 50 NA 100 70,000 0 h . ' Q NA Olsposable Container Cost NA NA NA NA NA t -,3 L i

s 9 Fresh Core Assembly CRBR requirements: 81 core fuel assemblies per year,4.889 MT HM/ year DOE says-6 assemblies per shipment,14 shipments /yr;1ooks reasonable (see-below ). Should be no criticality problem. Should be no thermal problem (maybe 0.2 w/g). Pu enrichment of 33.2 weight percent. Quantity shipped / year + 4890 MTHM/ year. Fourteen shipments (given ~ by DOE) translates to 350 kg HM perl shipment. But: At 60.35 k'g HM per assembly, 6 assemblies = 360 kg HM per' ~ shipment (full shipments). Fresh Fuel ~ Two LMFBR core or blanket fuel assemblies can be carried in an M-51032-1 container. "M0X fuel assemblies contain a " formula quantity" of strategic special nuclear material. Truck shipments must therefore meet the safeguards results of 49 CFR 73.26. ' A legal weight transporter designed to meet these safeguards requirements can carry four loaded M-51032-1_ containers." TTC-0026A' 1r 81 assemblies + 2/ container 4 container / shipment (also from WASH-1535) ,,=.11 shipments i 443#/ assembly + 24.35 # Pu 108.22 # U = 132.57 # HM per assembly (as M0X and axial blanket) 60.13 kg Hij = 0.06013 MTHM = Total: .89 MT Pu- + 16.3 MT of assembly per year 3.95 MT U - O 9 '

TTc-oo AG A / ! -r l 9 l U-235, it can be shipped in DOT Spec. 17-H'55 gallon drums or i i equivalent in a manner similar to U 0 ( The require-38 ments for these drums are contained in Paragraph 178.118 of Reference E-33. Each 55 gallon drum will hold approximately. 950 lbs.* of UO2 or 0.38 MTU(E-11) ~ Approximate?.y 40 loaded drums comprise a legal weight truck shipment and approximately 100 empties are carried in a shipment. Each drum can be cycled approximately t 12 times during its one year life, after which it would be r used to package low-level waste ( ~ } Since the drums are replaced annually, the cost of $20.00 per drum ( ~11) is .' handled'as an operating expense rather than a capital expense, g a Natural UO Will probably be shipped by private carrier. The 2 tariff is $1.09 per mile for loaded or empty shipments ( ' ) 2.9 Segment 9 - MOX Fuel Assemblies From Fabrication Facility to Reactors f 2.9.1 Shipment of MOX Fuel Assemblies L Two (2) PWR or BWR MOX fuel assemblies can be packaged in an ,M-51032-1 type container (See Paragraph 2.4.1) and transported E L in an exclusive use vehicle in order to meet the requirements 4 i h of Paragraph 173.393(J)ofReferenceE-33.jMoxfuelas-g semblies contain a " formula quantfEy" of strategic special ~~ l 3, nuclear material as defined in Paragraph 73.2(Y) of Reference E h (___E-35c_Truckshipmentsmust therefore meet the safeguards-- ,7. requirements of Paragraph 73.26(I) of Reference E-33. A legal } [c ?so [ V

  • The study assumes that natural UO will be shipped as Low Specific h

2 Activity material in exclusive use vehicles so that each drum can be filled beyond the 800 pounds sp,ecification limit. o 2-14 E , 4 I r._ h4

T TQ-Oc)as n f.- ,~ weight transporter designed to meet t.hese safeguards require- ~ ments can carry four loaded or six empty M-51032-1 containers (E- ] 21) / ( M0X fuel assemblies will probably be transported by private carrier. It is estimated ( ~ that the additional 6feguards requirements of Reference E-35 will add approximately 20% to the dost of the published tariff ( ~ ) This will result in a tariff of $5.43 per round trip mile (a 200 mile deadhe.d must i-i t be added to the actual mileage). Since a substantial portion of this cost is due to the two escort vehicles and guards l required by the regulations, a unit cost saving can be realized if two cargo vehicles are convoyed together. The tariff in this case uculd be $3.61 per round trip mfle, for each cargo vehicle. Economic parameters for the M-51032-1 container are given in Paragraph 2.4.1. 2.10 Segment 10 - Spent MOX Assemblies From Reactor to Reprocessing Plant-2.10.1 S_hipment of Spent MOX Fuel MOX spent fuel has considerably higb=>r thermal and radiation sources than UO spent fuel. An evaluation was made for trans-3 porting MOX spent fuel in similar casks as discussed in 5 Paragraph 2.5.1. 7j 5 s 2-15 4 2 t

L.

Fresh Blanket Assembly CRBR requirements of 69.2 assemblies per year (6.98 MTU) Distance and number of shipments given by DOE (6' assemblies per - shipment reasonable). 6980 kg/hr _ 582 kg'HNL 12 shipments - shipment at 100.g HM per assembly 6 assemblies' = 600 kg HM (assume f But: shipments). s. -r Spent Core Assembly _ - Fourteen shipments / year; CRBR information from DOE amendment 14.From OR shipping distance; by rail. heat output is 3.291 KW per assembly. -. 3 100 days after discharge: A cask is available to Thus, heat output per shipment is 19.75 KW. handle this level of heat;D0E specifies cask design limit of 26 KW. 20, 1982, discharge From Table 5, Oak-Ridge Origen 2 output of April fuel has 4671 kg U + Pu (also has fission products, which are not Since heavy metal content has changed, counted here as heavy metals). HM per shipment = 4671 kg- = 334 kg 14 l '~ Spent Blanket Assemb1y; CRBR information from 00E Amendment 14. 12 shipments /yr; shipping distance; by rail. 1 I 'From Table 5, Oak Ridge Origin 2 output of 4/20/82. This Discharge blankets have 6920 kg HM (total average per year). translates to 580 kg/ shipment. ~ From ORIGEN 2 runs (4/27/82) and Attachment B. dial) 100 days after discharge, heat output of blanket assembly (inner + = 5440 W. i g g g e7 - n

y _ y n \\ j \\ g I Table 5. Summary characteristics tor the QBR - Fuel region (s)a Pa rameter Fuel AB Fsel + AB IB Rab yo,1 + Ag + gg + gg Electric power,16T(e) net -267.4 6.1 273.5 46.9 21.6 350.0 Thermal power, W(t) 745.0 17.0 762.0 130.5 82.5 975.0' Average specific power C '140.9 3.95 79.4 16.4 6.49 32.21 W(t)/MIIlci Average fuel burnup, 76,031 2133 '42,870 8693 7977 22,600 Wd/MTIltt Effective irradiation dura-540 540 550 530 1229 ~ tion, full power days Refueling cycle length, 275 273 275 275 275 275. full-power days Average number of 81 41 81 41 28.2 assemblies charged per cycle Ave rage che rge. - d kg/ refueling cycle 2350 3.6 4.4 8.0 8.3 5.7 22.0 Total uranium 1805.5 2189.1 3994.6 4134.9 2843.9 10,973 Fissile plutoniua* 783.0 0 783.0 0 0 783.0 Total plutonium 889.4 0 889.4 O o 889.4 Total (U + Pu) 2694.9 2193.5 M/ 4134.9 2843.97 11,867 ~'~~ Average discharge, d kg/ refueling cycle 235U 2.6 3.6 6.2

  • 5.9 4.0 16.1 Total uranium 1715.8 2149.0 3864!8 3960.2 2726.9 10.552 e

627.2 38 5 665.7 131.6 89.1 886.4 Fissile plutonium .138 3 94.9~ 1039.5 {4671'.1806.1 ) d d98.5, 28i1.8) 11,591 Total plutonium 766.7 39.6 Total..(U,+ Pu) 2482.5 21881di

  • /uel = 36 in. (Pu,U)0g region, AB = 002 axial blankets associated with fuel, IB = entire inner blanket, RB = entire radial blanket.

'.Teighted average of inner radial blanket (4 cycle residence) and outer radial blanket (5 cycle residence).

  • Based r3 rated power level.

Averaged over 4 cycles.

  • 239Pu + 2% ! u + 2 39Np.

P 4 9 +1n/g> ~,

0 . g e

  • 9-e-..

g j f, f f f l*!" h 0 / ~ ,e ...y . ~ ~, ) s N ~ : } ~.

~

r) c-J Q 7 -L t i' o o.; 0D 0 -0 ( 4 + 4 4 4 + ~ WN j 44 lb Ib e-i N L e% n u l N 9 A

  • d S

m% ~- M N) < My q' (f '?.- b I \\\\ v. 3 ig ,a l i; -s..- t 5 On %\\ ti N x u

4. _

A

t. '

.~ ..e k

o. 4
a. o s

sw +,,.c

e

.o '.i nw Xk X >x .. L._. .pl -.?.'. + 39 a s.- 01 1 '- b% m.. 2 eg ,t n - - W tb ee s N,

'O x

x

, :y~>:t' Nh n>

c, c6 s* s:. Ve ~.. - 9. g e m 'v ,- - '.,, t - f t O .o s. n q~y o 3

t

-e l.;3 l n .,o o-gl 8L Q 4 y N 9 A Ob ~, - - ~. _. _ - _ -, +.. v.-.c...

~ 3 'TRU Waste: fuel fab from' DOE-ER Amendment # 14130 m is compacted.to fit 3 into 145 containers. The containers are 55-gallon' drums (.21 m each). 3 This translates to a shipped waste volume of.30 m. DOE specifies ship-ment by truck, about 30 containers per shipment,.five shipments a year, And shipping distance. These values appear reasonable (and conservative). TRU wastes must go in overpack (Type B) as '.'large quantity" shipments. A TRUPACT provides Type B protection, and can hold 36-55 gallon drums in one container (one TRUPACT per truck trailer). 3 From Table 5.7-4, DOE-ER #14. TRU has estimated ac-tivity of 64 ci/m, 3 This is applied to the volume before compaction (130 m ). The estimated 3 activity of the TRU waste is thus 8.3 x 10 ci. Divided among 5 shipments, this translates to = 1660 ci/ shipment. ~ LLW from CRBR Plant 3 DOE-ER Amendment 14 specifies transport by truck, 67 m, 320 containers (55-gallon drums), shipping distance, number of shipments per year, and destination. This is reasonable (and conservative). LLW is usually transported in 55-gallon drums. 40 drums per truck shipment is within truck loading limits. 2 3 According to DOE-ER #14, the estimated activity of LLW is < 10 ci/m, 3 3 If 67m is shipped in 8 shipments, then,8.4 m is shipped per shipment 3 (also co'rre5 ponds to 40 drums and 0.21 m each). So, estimated activity 2 per shipment is 8.4 (10 ) = 840 ci/ shipment. (' LLW from Reprocessing Plant 3 DOE-ER Amendment 13 specifies transport of 25 m LLW by truck in 2 ship-l nents over a distance of 2500 miles (4020 km). This appears reasonab1'e, sinca this is 120 containers,-60 drums per truckload, which is within l feasible limits. . According to DOE-ER #14, the LLW from reprocessing has an estimated 3 3 l activity of 10 ci/m ; transporting 25m in 2 shipments translates to 3 3

  • 12.6 m per shipment (also 60 drums of.21 m ea).

3 Thus, estimated activity per shipment is: 12.6 m 10_ci = 126 ci/ shipment ship mJ rounded up to 130. 6 mm y _, -m -r.-,-_7.---

y TRU Waste from ReprocessingiPlant (and Metal Scrap) 3 DOE-ER Amendment 14 specifies transport of 10 m / year by truck in 7.1 shipments. [TRU waste + metal scrap =.21.5 shipment / year] 7 containers / shipment for TRU 6 containers / shipment for metal scrap. 3 TRU: 10 m, 50 containers (55 gallon drums). 50 containers and 7/ ship 3 = 7.1. shipments. At O'.21 m per container, 50 containers can hold 10 m. Shipping system seems reasonable.and within current standards (see ~ previous discussion of TRU). 3 7 containers / shipment = 7(.21) = 1.4 m / shipment. Estimated activity of 3 6 3 5 3 TRU = 10 - 10 Ci/m, average of 5 x 10 ci/m. This translates to 7 x 5 10 ci/ shipment. 3 3 METAL SCRAP: 14 m,102 containers (cylinders) = 0.14 m / container. 3 102 containers at 6/ ship = 17 shipments. At 0.14 m per container, this 3 is about 0.84 m per shipment. Estimated activity of metal scrap = 5 3 5 4 x 10 ci/m. This translates to 3.36 x 10 C1/ shipment. High-Level Waste for Reprocessing Plant 3 From DOE-ER Amen'dment #14, HLW (1 m /ye,ar) is transported by rail in 3 shipments / year over 2500 miles. This translates to about 0.3 m / shipment 3 and appears reasonable (and conservative) since it will be shipped in'a cask similar to the~ spent fuel cask ( 2 containers per cask). From DOE-ER #14, estimated activity of HLW is 1.5 x -107 3 - ci/m. Thus, 3 6 at 0.33 m / shipment, we get 5 x 10 ci/ shipment. The heat load for HLW may be obtained from the ORIGEN'2 code run by Oak Ridge. Output of 4-27-82 (received from Ory Hill). HLW will be shipped at 1 year (from 00E-ER #14). The heat load of HLW at'l year is 6.605 KW x 11.87 MTIHM one MTIHM of core / blanket fuel = 78.40 KW total HLW/ year This translates to about 13 KW per container, or 26 KW per shipment (limit of the cask design). 4

3 3 ^ Noble Gases (Kr-85) and Iodine (I-129) from Reprocessing Plant From DOE-ER Amendment #14: 3 Kr-85: 0.01 m / year, 0.035 containers / year (1 container every 28 years). 3 = 0.3 m /11fetime of plant ~ 6 3 3 Estimated Activity of Kr-85 is 3.4 x 10 ci/m at 0.3 m / shipment, this 6 translates to 1.02 x 10 ci/ ship 3 I-129: 0.01 m / year, 0.05 container / year 1.5 container probably means 1 shipment /p1~ ant life (0.03 shipments / year)- 2 3 3 Estimated activity of I-129 is 1.4 x 10 ci/m at 0.3 m / shipment, this translates to 42 ci/ shipment. e e m.. - e l 's o O e._ -}}