ML19317F534

From kanterella
Jump to navigation Jump to search
Evaluation of Compliance W/App I to 10CFR50.
ML19317F534
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 09/30/1976
From:
TOLEDO EDISON CO.
To:
References
NUDOCS 8001150848
Download: ML19317F534 (59)


Text

_. _. .

11

. ,v .

q,q pg DOCKET 50-346 + d s g5 e

l S

DAVIS - BESSE NUCLEAR POWER STATION UNIT NO.1 EVALUATION OF COMP _ LANCE WITH l

l APPENDIX I TO 10 CFR 50 i

JUNE 4,1976 l

9?59 TOLEDO 2;li'&"" ie'7e EmSON 8001150((8 M

  • 9 =?

DAVIS-BESSE NUCLEAR POWER STATION UNIT 1 APPENDIX I EVALUATION I.

SUMMARY

AND CONCLUSIONS The Davis-Besse Nuclear Power Station Unit I has been evaluated with respect to its ability to meet the requirements set forth in Section II of Appendix I to 10CFR50. Specifically,Section II of Appendix I sets forth the following design objectives: ,

A. The calculated annual total quantity of all radioactive material above background to be released from each light-water-cooled nuclear power reactor to unrestricted areas will not result in an estimated annual dose or dose commitment from liquid effluents for any individual in an unrestricted area from all pathways of exposure in excess of 3 millirems to the total body or 10 millirems to any organ.

B.I. The calculated annual total quantity of all radioactive material above background to be released from each 11cht-water-cooled nuclear power reactor to the atmosphere will not result in an estimated annual air dose from gaseous effluents at any location near ground level which could be occupied by individuals in unrestricted areas in excess of 10 millirads for gamma radiation or 20 millirads for beta radiation.

2. Notwithstanding the guidance of paragraph B.1:

(a) The Commission may specify, as guidance on design objectives, a lower quanti,ty of radioactive material above background to be releases to the atmosphere if it appears that the use of the design objectives in paragraph B.1 is likely to result in an estimated annual external dose from gaseous effluents to any individual in an unrestricted area ,

in excess of 5 millirems to the total body; and  !

(b) Design objectives based upon a higher quantity of radioactive material above background to be released to the atmosphere than the quantity specified in paragraph B.1 will be deemed to meet the requirements for keeping i

l l

9 levels of radioactive material in gaseous effluents as low as is reasor.ioly achievable if the applicant provides reasonable assurance that the proposed higher quantity will not result in an estimated annual external dose from gaseous effluents to any individual in unrestricted areas in excess of 5 millirems to the total body or 15 millirems to the skin.

C. The calculated annual total quantity of all radioactive iodine and radioactive material in particulate form above background to be released from each light-water-cooled nuclear power reactor in effluents to the atmosphere will not result in an estimated annual dose or dose commitment from such radioactive iodine and radio-active material in particulate form for any individual in an unrestrict-ed area from all pathways of exposure in excess of 15 millirems to any organ.

This evaluation shows that the doses associated with proposed operation of Unit 1 meet these objectives. Maximum individual doses have been estimated under normal operating conditions using typical meteorclogical characteristics . These doses from liquid effluents are:

0.032 mrem whole body and 0.041 mrem to the liver (maximum dose to an organ).

Table 1 presents the detailed pathway results from liquid releases.

From airborne releases, the doses are:

0.97 mrad / year gamma air dose at the site boundary, 3 .1 mrad / year beta air dose at the site boundary, 0.39 mrem / year whole body to the maximum individual, 1 1.2 5 mrem / year skin to the maximum individual 9 .2 mrem / year to the thyroid from radioactive iodine and radioactive material in particulate form.

Table 2 presents the detailed pathway results for the airborne seleases.

2 Rev1 Sept 1976

9 ,,

Radioactive source terms were calculated in a manner consistent with Regulatory Guide 1.112. Specific data used are given in Appendix A.

Also shown in Appendix A are flow diagrams of the primary waste pro-cessing and the miscellaneous waste processing systems. Meteorological infonnation used in the calculation of doses was consistent with Regu-latory Guide 1.111.

Dose calculations were done in a manner consistent with Regulatory .

Guide 1.109. (4) The NRC IADTAP and GASPAR computer codes were used.

These calculations indicate that the maximum radiation dose from all radiation sources as calculated for off-site individuals is well within the requirements of Appendix I to 10CFR50. Similarly, the integrated dose from all radiation sources as a result of normal operation of Unit I will have a negligible effect on population radiation burden as summarized in Tables 3 and 4 for liquid and gaseous releases.

I

~

3 l

.t o 4

II . RADIATION EXPOSURE FROM LIQUID EFFLUENTS When it is necessary to discharge liquid radioactive wastc from Davis-Besse Unit No.1, the liquid waste will be injected into a dilution flow consisting of: 1) the normal cooling tower blowdown flow and 2) an extra dilution flow of at least 10,000 gpm. The annual average cool-ing tower blowdown flow is expected to be 8,125 gpm. Thus, the average total dilution flow into which radwaste will be released amounts to ar.

estimated 18,125 gpm. This dilution flow rate and an assumed mixing .

factor of 0.8 have been used to calculate the doses. The estimated annual activity releases for liquid radioactive dose analysis are pre-sented in Table 5. A recycle time of 0.313 hours0.00362 days <br />0.0869 hours <br />5.175265e-4 weeks <br />1.190965e-4 months <br /> for a recirculation fraction of 0.08 has been used in the IADTAP analysis.

A. Estimated Liquid Effluents and Concentrations The maximum potential individual for liquid radioactive exposure is con-servatively located approximately 0.6 miles NNE of Unit 1. Also of con-cern is the total integrated population exposure due to liquid' releases.

Since the population groups affected are at relatively large distances from the site, it is ne.cessary to obtain some estimate of the maximum radioactivity concentrations due to Unit I as a function of laN transport distance and direction.

The modified Fickian dispersion model provides an adequate mathematical approach for predicting minimum dispersion effects in Lake Erie as a function of distance and direction. It yields the following equation for predicting the plume centerline concentrations:

-3 1.59 x 10 gg C(x) =

x 4

where:

C(x) = average centerline concentration, gC1/cc, Q = point source continuous release source term, gCi/sec, x = the downstream distance, centimeters, f = frequency of surface flow in the direction of interest.

The concentration predictions must be weighted by an assumed frequency of flow in the direction of interest. Annual average wind directional frequencies, presented in Table 6, have been used to establish the -

necessary values of the parameter "f". Winds out of the SSE, SE, ESE, and E directions are assumed to produce a lake current lake flow towards Toledo and Oregon. Winds out of the ENE, NE, NNE, N, and NNW are assumed to produce surface currents towards Erie Industry Park, Camp Perry, and Sandusky. Thus, the frequency of flow towards Toledo, after accounting for calms,'is about 19.5%,

and about 23.0% towards Erie Industry Park and Camp Perry.

Effective dilution factors have been obtained for the locations of concern by taking the ratio of the annual average discharge concentration for tritium (1.90 x10' pC1/cc) and the concentrations predicted by the model . The predicted tritium concentrations, affected populations and derived dilution factors at the locations of interest are presented in Table 7. The derived effective dilution factors are then utilized to predict the annual average radioactivity concentrations for the given loca-tions . The affected population at each location was calculated by ratio-ing the 1970 populations affected by the increase in segment population which included the affected municipality.

5

i

., .. l B. Estimated Radiation Exposure The maximum individual for liquid exposure was assumed to be located at the nearest residence located on the shore of Lake Erie, The residence is located 0.6 mile NNE of Unit 1 and 0.6 mile NW of the submerged discharge. The maximum individual usage factors are given in Table 8.

The data for commarcial fish and sportfish catches within 50 miles were taken from the Unit 1 FSAR. They are summarized in Table 9. .

Recreational usage (boating, swimming, shoreline use) was based on cou obtained from References 8 and 9. Table 10 summarizes the data.

For dose calculations, it was assumed that each user would partake in l

four hours per visit in swimming and four hours in shoreline activities.

It was also assumed that all those that visited Magee Marsh boated eight hours per visit.

The results, in terms of maximum inuividual doses from liquid effluents, are 0.032 mrem / year to the whole body, and 0.041 mrem / year to the liver.

The liver is the organ receiving the maximum dose. The child thyroid dose is calculated to be 0.034 mrem / year, and the doses to other organs are less than 0.001 mrem / year.

In terms of integrated population dose from liquid effluents, the results l are whole body, 0.64 person-rem / year, and the thyroid, 0.41 person-1 i thyroid-rem / year.

6

- r w

III. DOSES FROM GASEOUS EFFLUENTS

. Doses from radioactive gaseous effluent releases have been calculated, considering both the maximum dose received by an individual and the integrated population dose to persons within 50 miles of the site. Source terms were calculated using the GALE computer program and input data as l presented in Appendix A. Radioisotopic source terms are shown in Table

11. The dose calculations were performed by the NRC GASPAR code, using the models of Regulatory Guide 1.109.

Dose contributions from the follow.ing pathways were calculated:

1. Immersion in the plume
2. Ground contamination
3. Inhalation
4. Co..Tumption of vegetables, meat and m' ilk The location of the maximum individual depends on the pathway being considered. For plume immersion, t:.2 nearest residence was located 0.6 mile NNE of Unit 1. For exposure to radioactive iodines and particu-lates, the radioactive exposures were evaluated at the nearest residence associated with a vegetable garden 0.7 mile W of Unit 1 For calculation of the integrated population doses, the 50-mile region was divided into 160 subregions (segments) formed by sectors centered on the 16 cardinal compass points and annuli of 0-1, 1-2, 2 -3, 3-4, 4-5, 5-10,10-20, 20-30, 30-40 and 40-50 miles. For each of these segments the estimated population for the year 2010 was input, as was data on meat, milk and vegetable production. Grazing was assumed for six months of the year.

7 l

i

~

Appendix A details the meteorological methodology and calculation. In summary, the data were based on a full year of field measurements, taken at 9 reduced in accordance with Regulatory Guide 1.23.Q0) . Straight-line X/G 's were used, with appropriate depletion and terrain correction factors, in accordance with Regulatory Guide 1.111. Because of the location and characteristics of the release points, ground level releases were assumed. Table A3 lists and describes the release points.

Data on population, milk, meat and vegetable production in each subregion .

are shown in Table 12. The production data are based on county-by-county

}

production information. '

The results of the dose calculations indicate that the maximum individual whole body doses from noble gas effluents will be 0.39 mrom/ year and a y skin dose of 1.25 mrem / year. These doses would b,e accrued by a resident NNE of Unit 1.

The maximum individual thyroid dose would be 9.2 mrem / year. This dose would be accrued at the nearest residence with a garden. Maximum air I

doses at the site boundary are calculated to be 0.97 mrad / year gamma and 3.1 mrad / year beta.

These results are within the guidelines of Appendix I to 10CFR50.

The integrated population doses from airborne effluents are:

Integrated whole body dose 0.41 person-rem / year from noble gases 1 Integrated thyroid dose 4.86 person-rem / year from radiciodines and particulates Integrated whole bocy dose 0.54 person-rem / year from radiciodines and particulates 8

Rev 1 Sept 1976

TABLE 1 MAXIMUM INDIVIDUAL DOSES From Liquid Effluents

  • mrem / year Pathway Whole Body Dose Liver Dose Thyroid Dose Fish .025 .034 .005 Drinking Water .007 .007 .929 Total .032 .041 .034
  • Other pathways each contributing less than 0.001 mrem / year include boating, swimming.

9

TABLE 2 MAXIMUM INDIVIDUAL DOSES Ff om Airborne Effluents mrem /vr Pathway Whole Body Dose Skin Thyroid Dose Noble Gases

  • Plume 0.39 1.25 0.39

, Radiolodine and Particulates**

Ground 0.046 0.054 0.05 .

Vegetables Adult 0.38 0.36 6.96 Child 0.91 0.88 8.78 Inhalation Adult 0.064 0.063 0.37 Child 0.036 0.035 0.37 a

  • Location is nearest residence,NNE of Unit 1 *
    • Location is nearest residence and garden,W of Unit 1 This location does not have a cow either for meat or milk. Doses include tritium and carbon-14.

l 10 Rev 1 Sept 1976

TABLE 3 POF"!aTT.ON DOSES FROM LIQUID RELEASES t l Whole Body Dose Thyroid Dose Pathway Person-Rem Pers on-Rem l

Fish Consumption 0.51 0.061

. Drinking water 0.13 0.35 1

' . Shoreline Use, 0.00098 0.00098 Boating 0.000001 0.000001 j Swimming 0.000011 0.000011

! 0.64 0.41 i

i a

9 e

, 11

9

  • TABLE 4 POPULATION DOSES FROM GASEOUS RELEASES Whole Body Dose Thyroid Dose Pathway Pers on-Rem Person-Rem Noble Gases Plume immersion 0.41 0.41 Radiciodine and Particulates Ground contamination 0.026 0.026 Inhalation 0.22 *

. 11 1

Vegetable Consumption 0,066 0.90 Milk Consumption 0.18 2.70 Meat Consumption 0.045 0.090 TOTAL FOR RADIOIODINE AND PARTICUIATES 0.54 4.86

3 12 Rev 1 Sept 1976 l

-em-  %~ 4 TABLE 5 RADIOISOTOPIC SOURCE DATA FOR UQUID RELEASES NUCUDE CURIE / YEAR H3 5. 50E + 02 I

Cr 51 1.10E - 04

! Mn 54 1.00E - 03 Fe 55 1.00E - 04 Fe 59 6.00E - 05 Co 58 5.00E - 03 Co 60 8.80E - 03 Br 83 4.00E - 05 ,

Rb 86 2.00E - 05 Sr 89 2.00E - 05 Sr 91 2.00E - 05 Y 91m 1.00E - 05 Mo 99 3.20E - 02 Tc 99m 2.20E - 02 .

Te 127m 1. 30E - 05 Te 127 3.00E - 05 Te 129m 9.00E - 05 Te 129 6.00E - 05 Te 131m 6.00E - 05 i

Te 131 1.00E - 05 Te 132 1.20E - 05 I 130 1.40E - 04 I 131 5.70E - 02 I132 2.30E - 03 I 133 3.80E - 02 I 134 1.00E - 05 I 135 6.80E - 03 Ca 134 2.10E - 02 Cs 136 2.70E - 03 Cs 137 3.00E - 02 Ba 140 1.00E - 05 Np 239 6.00E - 05 13

- _ __ -,_ - - - . . - _ . _ _ _ . _ , _ . - . . _ _ _ _ ~ . _ _ . ...

t TABLE 6 ANNUAL AVERAGE WIND DIRECTION FREQUENCIES AT THE DAVIS-BESSE SITE j Direction Frequency, %

NNE 4.10 4

NE 6.04 .

ENE 5.90 E 7.70 ESE 3.99

SE 3.81 i

i SSE 3.96 S. 6.28 SSW 11.25 SW 12.65 WSW 10.11 W 7.92 WNW 3.88 NW 5.28 NNW 3.85 N 3.15 L ALM 0.13 l

-14 l

? , . - , . . ., . . . - , - . , . - . . . . . . - . - . . . - - - - , . - - , . - - . - . . - - - - - - - - - - - - - - - - - -

. ~_

TABLE 7 APPLICABLE DILUTION FAC'IORS FOR POTABLE WATER INTAKES WITHIN 50 MILES Estimated Predicted H-3 Potable Water Location Relative Affected Frequency of Surface Concentration , Derived Intak e to Davis-Besse Population

  • C1/cc Flow Towards Inth Dilution Factor Erie ind. Park 3.6 mi SE 900 0.230 1.10-8 1,700 Camp Perry 4.6 mi SE 490 0.230 8.62-9 2,200 Port Clinton 8.6 mi SE 14,700 0.230 4.61-9 4,100 Toledo 12.0 mi W 661,000 0.195 2.80-9 6,800 Oregon 12.0 mi W 25,000 0.195 2.80-9 6,800 g Sandusky 21.0 mi ESE 69,000 0.230 1.89-9 10,100 Monroe 27.0 mi NNW 68,300 0.195 1.25-9 15,300 Huron 30.0 mi ESE 11,200 0.230 1.32-9 14,400 King sville 36.0 mi NNE 2,800 0.295 9.33-10 20,400 Vermilion 38.0 mi ESE 13,400 0.230 1.04-9 18,300 Leamington 41.0 mi NE 19,800 O.127 5.34-10 35,700 Lorain 48.0 mi ESE 145,400 0.230 8.26-10 23,10e ,

Wheatley 50.0 mi NE 2,100 0.127 4.38-10 43,600 Nearest residence 0.6 mi NW of 0.195 5.60-8 300 discharge s

i

  • Based on extrapolated 1970 data

TABLE 8 MAXIMUM INDIVIDUAL USAGE FACTORS FOR LIQUID EXPOSURES Activities Adult Teenager Child Infant Pathway hr/ day hr/yr br/ day hr/yr hr/ day hr/yr br/ day hr/yr Boating 1 90 2 180 2 180 0 0 Swiraming 1 90 2 180 2 180 0 0 Shoreline 1 90 2 180 2 180 1 90 Incestion (ko/vr)

Adult Teenager Child Infant Fish 21 16 6.9 0 Invertebrate 5 3.8 1.7 0 i VVater 730 510 510 0 16

a. ..

TABLE 9 4 COMMERCIAL FISH AND SPORTFISH CATCH Amount Caught Type of Catc;; Landing (lbs) DF*

Commercial Lake Erie 8.420x10 5000 Commercial Port Clinton 5.897x10 4100 Commercial Sandusky Bay 2.869x10 10100 Sport Lake Erie 1.298x10 5000 4

  • DF of 5000 was assumed for Lake Erie. For Port Clinton and Sandusky Bay a DF identical to the drinking water DF was used.

17 l

l

I I

  • . .. l TABLE 10 1

PUBLIC RECREATIONAL USES OF LAKE ERIE Swimming and Shoreline Activities Annual Attendance Crane Creek State Park 64,284 users (2.5 miles W of site)

Boating Magee Marsh 8,000 users (3 miles W of site) 4 l

18 l

l TABLE 11 RADIOISOTOPIC SOURCE DATA FOR GASEOUS RELEASES Nuclide Ci/Yr H3 5.50E + 02 C 14 8.00E + 00 Mn 54 4.40E - 04 Fe 59 1.50E - 04 Co 58 1. 50E - 03 .

Co 60 6.80E - 04 3.30E - 05 Sr 8]

Sr 90 6.00E - 06 Cs 134 4.40E - 04 Cs 137 7.50E - 04 Kr 85m 4.40E + 00 1 Kr 85 4.00E + 02 Kr87 1.00E + 00

, Kr 88 9.00E + 00 I 131 2.20E - 01

j I 133 1.40E - 01 Xe 131m 4.50E + 01 1 Xe 133m 3.90E + 01 Xe 133 5.20E + 03 Xe 135 2.00E + 01 i
19 l

l- Rev 1 l Sept 1976 l

e TABLE 12 50 MILE POPUIATION, VEGETABLE, MIIX & MEAT PRODUCTION

  • DAVIS 6 ESSE b=1T t SPtCIAL LeCafl0NS l Sift PDPOLATIng Da7A

'I D19 0.0=1. 1.=2 2.=1 3.=e. e.=5 S.=10 in.=20 20.=50. 30.=40 40.=50. IDiaL

'l 4 1.000E+0! 0 O. O. c. c. O. 1.210t+0? 6.Pt7t*04 7.620E*0S 8.243E+05 Nvt 2.800L+0L 0 O. C. O. O. O. l.156t+03 3.0t?L+04 3.6tet+04 6.769t+04 NE 4.000E*00 6 O. c. O. O. c. O. 1.5 50 E

  • 0 4 2.229L+04 3.759t+0e E tt D. O. O. O. O. 6 6.200E+02 0 O. O. 6.200L+02 E 4 O. O. O. O. O. l .9S$t + 01 1.430t+9F 0 l.761L*04 1.975t+04 t ESE e. c. O. O. O. 6 1.3ect+0e 6.16/t+04 2. 389t
  • 0 4 2.69 7t
  • 05 3.14 7t+05 SE 0 O. O. D. t.700E+02 s.244t+05 7.707E+03 8.92tt+03 7.913t*04 1.256L+04 6.649E+04 556 c. 4.400E+01 g.700t+0! 8.6J0E+01 9.70eE*01 1.129L+03 e.713t+03 1.677E+04 5.910" + 0 3 2. t h 7t + 0 4 S.066L+ve S t.100E+0! 4.400t+01 6.S00L*01 5.iO0E+01 7.%00E+0i 9.410L+02 3.3est+0e ce ll6L+ul 5.30st*04 6.109L+01 8.429E+04 55r 1.800E+01 5.700t+01 3.70 0t + 01 5 6 0 0 E + 01 8.10 0t
  • 0 3 4.5 72L+ 0 3 5.5 n9L + 0 3 5.0 5 5L+ 0 5 2.716t + 0 e 1.0 67t+ 0e 5.14 7t + 0 a

$d 1.600L+0! 0 3 tn0E+0L S.300t+01 5.900E+01 1.12SL+05 1.056t+04 1.792E*04 1.758t+04 7.S28E*04 1.126t+05 d$a 0 1.000k+01 1.000L+01 3 700F+01 5.300E+0i 7.900t+02 9.299t+03 1.696L+0e S 92tt+04 1.S62L+04 1.020t+0S a 1.600L+01 5.600t+08 3.1006.+01 S.000L+01 a.100t+91 7.720E+02 1.878t+04 3.18 7t + 05 5.54 t t + 04 2.176t + 0 4 a.176E+05 d15 0 1.100L+11 1.520E+02 6. O. O. 1.5 06t + 04 2.S70L+0S S.502E*04 1.407[+04 S.413E+05 Nd 4.000E*00 1.430E+02 3.700E*01 0 O. O. O. 6.SSIL+04 2.123L+0e 2.871L*04 1.156t+0S NNw '.900E+0! 1.400t+01 0 O. 0 O. O. /.557E+0e 4.t l2t +04 1.18 0 E

  • 0 5 1.8 4 7t + G5 7074L '.660E+02 5.750t+02 4.100t+02 3.iSot+02 S.h10L*02 1. 7 76t . oe 1.216E *05 8.02 7t + 05 a.7 35F + 0S 1.e36t+06 2.sS3t+06 DEN 5!?ff /*++2) a 1.43E*04 511t VEGLTAftDN PenDurftDN. nGR 014 0.0=1. 1.=2 2..l. 5. e. 4.=S. S.=to. 10.=/0 20.=30 30.=40 40.=50. Infat 4 0 0 O. O. O. O. O. C. 1.#07L+06 1.SSot+06 2.757L+06 NNE 0 9 D. O. D. O. O. 3.445E+0e 1.titt+04 1.5$0E+06 2.716E*06 NE 0 6 O, n. O, n. O, c. 1.3elt+0S 7.566t+05 9.4e7t+0S J E Nt O. O. O. O. O. O. c. O. O. o. O.

j E 0 6 O. O. O. o. 3.049t+04 0 O. l.519E+05 1 824L+05

', F5L o. O. O. O. O. O. 1.059t+0S 3.a4St+us 6.403L+0S 1.511L+06 2.802t+06 SE 0 4.909t+0i 5.169t + 0 3 5.424E + 0 3 7.75 t t + 01 9.17)t + 0 4 S.168E + 0S 6.613t + 0S 1.206E*66 1.5 Sot +06 4.249t+06 SSE 0 5.167t+03 8.615t+05 1.#0SF+0e 1.55 0L+ 0 e 1.297E + 05 S.16 At + 0S 8.613L+0S 1.206t+06 1.550L+06 a.505E*96 S c. S.167E*03 8.htSE*05 1 205t+0e 1.550t+04 1.297E + 0S S. I n8E + 05 8.6 8 3t + 05 1.20 6t + 0 6 1.550E+06 4.305L+06 55* 8 S.167E+03 8.6tSt+03 1 205t+0e t.S50E+04 1 292L+05 5.168L+0S 8.613L*0S 1.7 0 6t + 0 6 1.550t+06 4.30$L*06

, Sd 6 S.167E+03 8.615t+05 1 205E+04 8.550t+04 1.292t + 05 5.168t + 0S 8.6 t it + 05 1.2 06t + 06 1.$50t+06 4.30SL+06 asa 0. 5.167E+05 8.6tSt+03 1 205t+04 1.5 Sot +04 t.292t+05 5.168E+0S 8.611t+05 1.206t+06 1.550L+06 4.30$L*06 a 0. 5.167E+05 a.61SE+03 1 205E+04 1.550L+0h 3 297L+05 S.lbeL+0% 8.611L+0S t.706E+06 1.5 Sot +06 a.305E*06 WNb 0. S.167E+01 7.754L+01 9.643E+01 9.30lE+05 6.666L+04 3. A19t + 05 8.268E + 05 1.206E + 06 1.5S0t+06 3.985E+06 Na 0 2.842t+03 0 O. O. O. O. 5.5t2L+0S 1.206E+06 1.55CL+06 1.310t+06 Nga 0 6 O. C. O. O. O. 3.445E+0S 1.206t+06 1.550t+06 3.tutE+06 70faL 0 4.597E+04 6.46tt+04 8.759t+04 t .t o tt + 0S 9.3 SSE* 05 s.256L+06 8.13tE+06 1.522t+0? 2.103t+07 4.958t+07 8

DENSITVt /M*+21 s 2.49E=05

\

20 p .

TABLE 12 (Conunued) 50 MILE POPULATION. VEGETABLI MILK & MEAT FRODUCTION

  • i i DAVIS.BESSE UNIT 1 SPECIAL l.0 CATIONS i

i SITE MILK PRODUCTION, LITLRS l DIR 0.0=1. 1.=2 2.=1 3.=4 4.=S. 5.=t0 10. 20 20.=30 30.=40 40..SO. 10 Tag N 0 O. O. D. C. O. O. D. 9.856E+06 l.ll2E+07 2.097t+07 NNE 6 O. O. D. O. O. O. O. 1.377E+07 2.06tt+07 3.418t+07 i NE 0 O. O. O. O. C. O. O. 2.44eE.06 9.2 0L.06 i.i7st+07 ENE 0 O. O. O. O. O. O. O. O. O. O. .

E 0 O. O. O. O. O. 8 G. O. S.4snL+0S 4.488E+0S ESE 0 D. O. O. c. D. 2.074t*06 1.83tt+06 3.646t+06 1.094t+07 1.e49t+07 SE 0 O. O. 4. O. 3.074L*05 2.477t+06 3.elet+06 S.953E+c6 7.959L+06 2.05tE+07 SSE 0 3 O. O. O. 4.64tE*05 2.785E+06 4.304t+06 6.2b9f*06 6.56tt+06 2.040t+07 3 0 C. O. 6. O. 4.020t+05 1.667t+06 4.444t+06 S.S90L*06 5.045t+06 3.784t+07 SSW 0 O. '. D. O. 4. 730E + 05 1. 3 34t + 06 4.6 72t + 06 4.952t+06 4.13tt+06 1.7S4E*07 Sd O. O. O. O. O. S.205t+05 #.617E+06 S./9SE+06 n.30$L+06 7.564t+06 1.0 Sot +07 85= 0 O. 2.554t+0S 0. c. 5.dd3t+0S t.517L+06 1.190t+06 1.257t+06 5.2tSL+0e 7.735E+06 m O. C. O. o. C. 4.730t

  • 3S 1.490t+06 1.127L+u6 1.644L*06 7.717t+06 1.264t+07 WNW 0 O. O. D. O. 6.306L+14 5.4tSt+05 1.148t+06 4.665t + 0 6 1. 5 7 5t+ 0 7 2.0 t SL+ 0 7 Nd O. O. O. 8 O. 2.5dlE+)5 4 1.1FIE+06 9.764E+06 9.St9h+06 1.2e4L+07 NNp 0 D.

O. O. O. O. O. S.507F*05 1.537t+06 1.548E+06 S.43tt+06 TO7AL 0 O. P.534E*05 0, p. 3.47At+36 I.829E+01 2.727t+ui 6.482L*07 1.163E+08 2.304L+08 DENSITY ( /9++2) a t.15t=02 Slit ANhuaL mea 7 PRODUCilGk. MGR DIR 0.0=1. t. 2 2.e3 5.*4. 4. S. S.*lo, 10. 40 20.=30 30. 40 go.=50 IrlaL M 0 O. O. D. 6 O. c. C. 9.203E+0S 1.036t+06 1.936t + u6 kNL 0 O. p. O. O. Q. O. O. 1.287t+06 1.976L+06 1.212E+06 NE 0 D. O. C. 6 O. c. O, 2.284t*0% M.678t+0S 1.096t+06 ENE 0 O. C. D. O. 4. O. O. G. O. O.

E 0 O. O. O. O. O. 0 O. O. 5.116L+04 S.176L+04 ESE 0 O. O. O. G. p. l.31/t+05 2.eett+0S 5.860t+05 1.706t+06 d.409t + 06 SE 0. O. O. O. O. S.01eL+04 a.54tt+05 6.597t+05 1.dS4L+06 1.634L+06 4.05tt+06 3

SSE 0 p. O. p. c. 7.S92t+04 v.66tE*05 1.12/t+06 1.S04t+06 2.476t+46 S.944E+06 3 0 O. O. c. O. 6.562t+04 0.58 7t + 0S 1.17$E+06 l.467t+06 2.498L+06 5.664t+06 SSa 0, 0, 0 O. 6 1.1 tot +04 9.175t+0S 1.2$6t+06 1.497t+06 2.032t+06 5.7e ct + 06 Sd O. p. C. 6. O. 8.492f+04 6.547t+0S 1.564L+06 1.teet+06 2.096t+06 S.383E+06 WSW 0 O. O. O. O. 8.492L+04 3.058t+05 1.09tE+06 1.136t + 06 1.90tE+06 4.Sd2t+06 4 0 O. O. O. 0 7.120E+04 S.f Sit +0S 6.29 7t + 0S S.12PL + 05 S. 350k + 06 7.075L+06

=No 0 c. O. G. O. 1.029t + 04 1.506E+05 2.472L+05 4.772t+05 9.753t+05 1.eS9E+06 44 0 O. O. O. O. 4.tt?E+04 0 1.6 t 9L + uS /.59 3t + 05 6.43 5t + 0S 1.10!L*06 NNa 0 O. C. c. D. c. O. 6.097t+ue 2.057E+0S 5.A30L+05 4.697ke05 7074L 0 O. O. O. O. 5.674L e V, ,544t+06 8.07%F+06 8.752L+07 2.487t +0 7 5.0 SOL +07 DENSITY ( /a+*2) a 2.53E=03 21

APPENDIX A RESPONSES TO REQUEST FOR INFORMATION (Enclosure 2)

Request 1 Provide the information requested in Appendix D of Draft Regulatory Guide 1.BB or 1.CC, as appropriate.

Response

This information is given in 'Iables Al through A6 and in Figures Al through A8.

Request 2, Provide, in tabular form, the distances from the centerline of the first nuclear unit to the following for each of the 22 } degree radial sectors centered on the 16 cardinal compass directions.

a. Nearest milk cow (to a distance of 5 miles)
b. Nearest meat animal (to a distance of 5 miles) t
c. Nearest milk goat (to a distance of 5 me s
d. Nearest residence (to a distance of 5 mils)
e. Nearest vegetable garden graater thar. 500 ft so a distance of 5 miles)
f. Nearest site boundary For radioactive releases from stacks which qualify as elevated releases as defined in Draft Regulatory Guide 1.DD, identify the locations of all milk cows, milk gcats, meat animsls, residences, and vegetable gardens, in a similar manner, out to a distance of 3 miles for each radial sector, t

I 22

J

Response

Table A 7 presents the requested information.

Request 3 Based on considerations in Draft Regulatory Guide 1.DD, provide estimates of relative concentration (Y/Q) and deposition (D/Q) at locations specified in response to item 2 above for each release point specified in response to item 1 above.

Response

i Tables A8 and A9 present the X/Q and D/Q for each location specified in response to item 2 above. -

These values were based on the straight-line method in accordance with Regulatory Guide 1.111 guidelines. Terrain correction factors based on open terrain were used for all onshore flow comrsutations.

Request 4 Provide a dotalled description of the meteorological data, models and parameters used to determine the X/Q and D/Q values. Include informa-tion concerning the validity and accuracy of the models and assumptions i for your site and the representativeness of the meteorological data used.

23

Response

Annual average atmospheric dilution factors (Y/Q) were based on Davis-Besse site data for the August 4,1974, through August 3,1975, period.

The following equation which assumes a uniform horizontal distribution within a 22.5 degree sector and a ground-level release was used for the calculations. (3) fX) =

m p I 2.032

  • { S 11 4

1

) '

i=1 z "U ave i

where:

= relative ground level concentration (X)

(Y/Q))

normalized to source s rength (Q) for sector j, seconds per cubic meter S = effective vertical dispersion parameter z

i for stability class 1, meters "1j ave = average inverse wind speed for stability i

class i and sector j, seconds per meter F

g

=

fraction of time (based on all observations) that stability class i occurs within sector j j x = downwind distance, meters m = number of stability categories, seven (A through G) 24

= _ _ _

An effective vertical dispersion parameter, S , is used to account for zt building wake effects as follows:

. 8/2 2 1/2 S

Z

={ + cH -

i ( Zi n with the constraint that (Ref.1) zg #z where o = vertical dispersion parameter for stability class 1, meters -

c = building shape factor (0.5), dimension-less H = height of the reactor building = 73.5 meters Stability was based on AT 250'-35, data and wind data used were from the 35-ft level. These data sets are representative of surface meteoro-logical conditions for ground-level releases. Calms were distributed within each stability class emong the secters in proportion to the dis-tribution of winds in the 0.6 to 1.5 mph range and were assigned a speed of 0.25 mph.

Since the annual average X/Q values were calculated using a straight-line Gaussian model, conservative adjustment factors were applied based on the guidance of Regulatory Guide 1.111. All X/Q and D/Q values pre-l sented contain these adjustment factors. The adjustment factors used are 25

as presented in Regulatory Guide 1.111 for sites in open terrain.

Although the Davis-Besse site is located near the shore of Lake Erie, the effect of short term changes in wind trajectories due to lake / land breeze circulations (see Response to No. 7) is small enough, when averaged over a one year period, to be comparable to an inland, open terrain location. This is shown when com-paring annual onsite wind distributions with distributions from Toledo Express Airport (20 miles inland from Lake Erie, far enough to be out of the lake / land breeze regime during normal inland .

penetrations) . The two locations do not show any significant differences in wind distributions.(14) Lake Erie has the only significant topographic affect on site meteorology.

A discussion of the representativeness of the meteorological data used was provided to the Nuclear Regulatory Commission on February 23, 1976. ( A description of the data was provided in References 14 and 15.

Request 5 If an onsite program commensurate with the recommendations and intent of Regulatory Guide 1.23 exists; a) Provide representative annual and monthly, if available, joint frequency distributions of wind speed and direction by atmospheric stability class covering at least the most l

26

recent one year period of record, preferably two or more years of record. Wind speed and direction should be measured at levels applicable to release point elevations and stability should be determined from the vertical tem-perature gradient between measurement levels that represent conditions into which the effluent is released.

f b) Describe the representativeness of the available data with respect to expected long-term conditions at the site.

Response

a) These data were provided to the Nuclear Regulatory Commission on October 24, 1975.

b) A discussion of the representativeness 'of the meteorological data used was provided to the Nuclear Regulatory Commission on February 23, 1976.

Recuest 6 Not applicable.

Request 7 Describe airflow trajectory regimes of importance in transporting effluents i

to the locations for which these calculations are made.

i 27 l

Response

The major local influence on site meteorology is Lake Erie, which induces

lake (onshore) and land (offshore) breezes generally during periods when <

gradient winds are light and insolation relatively strong. In spring and summer, solar radiation heats the land surface more rapidly than the water surface. The air above the land is warmed more than that above the water and rises, causing an inflow of air from over the water. There may be a compensating return flow at higher levels completing a cellular-type circulation. The trajectory of the wind during a lake breeze, which begins nearly perpendicular to the shoreline, is deflected due to the earth's rotation (Coriolis force) and becomes more nearly parallel to the shore by late afternoon or early evening. The opposite phenomenon, the land breeze, amy occur during fall and early winter or during summer nights, times when the water is warmer than the land. Land breezes, however, are generally weaker and less frequent than lake breezes. As noted I

in the response to No. 4, these variations in wind flow trajectories near the lake shore are small enough when averaged over a one year period that the use of site data for determining effluent trajectories to alllocations for dose calculations is valid. There are no cther significant topographic influences on wind flow trajectories in the site region. Figures showing monthly, seasonal and annual average wind flows are presented in Refer-ence 11.

I Recuest 8 Provide a map showing the detailed topographical features (as modified by the plant) on a large scale, within a 10-mile radius of the plant and a plot of the maximum topographic elevation versus distance from the center of the plant in each of the sixteen 22} degree cardinal compass point sectors (centered on true north), radiating from the center of the plant, to a distance of 10 miles.

28 l

I

Response

4 The attached Figures A9a through A9d contain plots of the topographic elevation versus distance from the center of Unit 1 on each of the i f sixteen cardinal compass points out to 10 miles. Due to the very flat terrain, this method of displaying the topographic elevations was selected.

For each sector, the maximum elevation is within 20 feet of the elevation

displayed. A map showing the topographic features within 10 miles is shown in Figure 2-1 of the Unit 1 FSAR.

Recuest 9 Provide the dates and times of radioactivity releases from intermittent sources by source location based on actual plant operation and, if available, appropriate hourly .neteorological data (i.e., wind direction and speed, and atmospheric stability) during each p'eriod of release.

1

Response

There have been no releases as Unit 1 is not yet operational.

i

! 29 I

(

. , . , , . ..v._ ._

- P =O0@ O04 WNNN-COmMmW9WaOOOO*COOOOm

  • O 4 aO-=cceO OCOOOOOOOOOaOOONMOOOcoN O *P O O O
  • 1 h* Osa O O *n cc O O O O O O N N O O O O O O O N ee N tr o s= @ N O in O O O W OOOOOOO t=" o w O, O O. O. O. O. O.

O C O O O M N O O O O O O O to O O M O N O O M C C O en N.

O. C. O. O O. O. O. O. O. O. C. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

O M

C "" OOOOOOO OCOOmacOOOOCOOOWOOOOOOODOO *P 6 e OOOOON O O0COOOOOOOOOOOOOOOOOOOOOO M C u x$ Q-OOwec C000000 OCOOOgCOOOOOOOOOOOOMOe*CO N w

.t*>Qgw e- O. O. O. O. O. O. O. 0 0C.0O.0O.OO.'.*. C O. O. O O. O O. OO. O O O.

O. O. O O.O O.

O O. OO. OO.OO.OO.- O. CO N O.

O. O. O O.

C O. O.

e O

}, **8 em $ we N O @ ** N te *P N N N s N se e M m ed er @ se ga f% up CD ** to N en nn N pe *P M

%

  • O == O O s= 0 C O O O O M .= O O O O - O O N ** M N O CD N W N M O O *P e$

5

-i ow O O O O C00000O

-e OO OOOOONNOOOOOOOWs=NtoON@ N an en O O COOOOMNCOOOOOOuCOMOOOOOOO O M

m O. O. O. O. O. O. O. O. C. C. O. O O, O. O. O. O. C. O. O. O. O O. O. O. O. O. O. O. O. O. O. O.

e 1

4 t

P i O N as CD N *e me O O O O m M C s.e N ** M s= O 4e8 .=u M (D O M M (D ta (O O .* M I

7.^ *m* O O O O pe OO OOOOOOO O O O O Oc0C C O O OO O O M N'Pm O*PNMP O Cn O O O O O O O en *P O O O O O O O O O O @ O ** ** O ** O O O

  • P 4"9 8
  • O OOOOOOO O O O O O O O O O O O O O 6 .= O O O O O O O O O O O M 3w o O. O. O. O. O. O. O. C.C.0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O. O.

e >*

t 6

8 g

[ acaa Maa OOOO=OO M OOOOmWOOmma=OmwNOOmMcMNO a O O O O O W CD C O O O O O O m a N ** O M @ -NNO O N

N (0 O OOOOOOO O OO OO A M C O O CO O O*=O O N O O O O OO O O e un p Q OOOOOOO OCOOOOOOOOOOOOOOOOOOOOOOO O **

g g

, , k., w C.0 0 0 0 0 0 0000000000000000000000000 O. O.

W cu la l

.DI C 6

6 38 sa N

a h >

= s t 3 dI fh 8888888 8888888888888888888888880 8 8 2 e -

8888888 8888888888888888888888888 8 8 M

a 4

&,m C.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 O. O.

t3 *g U

.4 **f=

  • t* 9 g Z

D 3e m W d 3 m -* O - C .n - O O O O O O O m O O O O N O O m e% ~N omCweeO O w L

] gg 4

-- O 000000O OOOOOOO COCOON *COOOOOOOONmOO@ OOOO O m OOOOOOOOOOOOOOCDCO"POOOOOOO O =P

.? a,50

. 8888888 8888888888888888888888888 8 s.

3 k c ' :;-

C e4 0

t I

e i E,,,, OMCOOOO O O O O O O O O O O O O O O <D O O *= O 'P O m in ** O O O C ** OOOOOOO O O O O O O O O O O O O O O N O O O O O O N f% f% O O -

I oQ OOOOOOO OOOOOOOOOOOOOOOOOOOmOOOOO O M vww OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOO O O 1

O C. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. C. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

e I @

b 3

w a ee my\ eE mOeOemO O-O-CO- m O O O O f% P* OOmomOONmmNeeP DmmO f%

O6 -e - - - 0 0 - - C - C - - 0 0 0 0 0 0 0'= <0 0 0 - O to O g

[

CC e e e e e e 1 e e e a i se e e e a 6 e I e e e a e e e 3 0u ** o N <D N M P- M in o

n m e. m 0% C M M Mr% N cc M m *P to En P= N e

Os .g

w. . N. m. N. w. o. to to es an
m. C. . O. w.M c.JN a.c.n. .M. -. e%

M. M. O. O. ,n. a. to. w. n. . .n. M. .n. sn. w.

ee3 m. m u h t/3 C

    • M s=. N ** ** @ N me M gr N to N en en ce e ce N @ N es en N N M e. es N m s'* N M o O

O

    • O C an 9 sn O M eP M MNMM M 4P er er gp og N ur er M M M M M en N esem N N ee N N N W pe O 8eDE *C000000 e e e i e e C000000000000000000000000 e e e e i e e e e e e e a e e a C e e e i e e a e e C

+

o ~ 8 v." m*e

  • * **N* ***C * ** * **C *
  • O .E . O. N. o. e. w.

NMNmMNM

m. o. v. .n' C"

. . o.* w N. N. o.M" e". "o.

M "w.*M.

. ".e". Ce O". ". ". N. o. m. m. e.

wM wNMmWMmmMNNmMMM wwMNmNmN M m t

c 0

e **

  • N N ** re M C ** ** a ** N O ee N s.e ce N ** O N O O N m N N m s=* . p M -

3g3 e. O C 0 0 0 00

+ + + C O O O O O O O O O. T C 0000000000000 i ++ e e + e + e e + e + + i e e + e + + 4
  1. g = m s"5O O M Nen O f% P6 m O O.

8%. O. en. en. as. m. M. m C. <D. N. Mw.Nf%.

men. O C.mm.N*P.1%.

O m re.

P*N.toN.wO.inN.to e in f* m m C O N N e.= 8 M g g**N M e w N ~ N in. N. @. 9P. f%. M. e. . .

~

m c

f, ~ ~ m w M N N e M M w e n e m M e e M N N e m m e u"m E

23 D .n g 0

e a a &M o g

  • b .=

.y E es P- m e N NM,'M.MM r *N NO b 23 e

-o- es8M M

.c. g.n .neOoa 2.m m m,mE8mNNNN m MM M Mw o m u, zs sm---,O 0 e --

= 004rrOO2 r cil d m o,,,p ,.a,o,,

o e g e s s gs ,M, , , M, ,

i s ., s

,M, M,,

.,.e n, o,,.M,

.,. , ea e

. O o m m,

,o.

,.e oc e

. TABLE A2 .

DAVIS-BESSE UNIT 1 GASEOUS EFFLUENTS Gaseous Release Rate - Curtes Per Year Primary Secondary Gas Stripptra Building Ventilation Coolart Coolant Blowdown Air Elector (Microcl/GM) (Microcl/G M) Shutdown Continuous Reactor Auxiliary Turbine Vent Offgas Exhaust Total Kr-83M 2.025-02 7.135-09 .0 .C .0 .0 .0 .0 .0 .0 Kr-85 M 1.058-01 3.801-08 .0 .0 1.0+00 2.0+00 .0 .0 1.0+00 4.0+00 32-85 7.428-02 2.653-08 3.1+01 3.2+02 4.6+01 2.0+00 .0 .0 .0 4.0+02 FJ-67 5.791-02 1.970-08 .0 .0 .0 1.0+00 .0 .0 .0 1.0+00 FJ-88 1.927-01 6.758-08 .0 .0 2.0+00 4.0+00 .0 .0 3.0+00 9.0+00 Kr-89 4.833-03 1.726-09 .0 .0 .0 .0 .0 .0 .0 .0 Xe-13 t h! 8.438-02 3.033 +- 1.0+00 4.0+00 3.7+01 2.0+00 .0 .0 1.0+00 4.h+01 Xe-133M 1.999-01 7.186 .. .0 .0 3.2+01 4.0+00 .0 .0 3.0+00 3.9+01 Xe-133 1.531+01 5.423-06 4.0+00 5.0+00 4.7+03 3.2+02 .0 .0 2.0+02 5.2+03 Xe-135 M 1.256-02 4.437-09 .0 .0 .0 .0 .0 .0 .0 .0 Xe-135 3.345-01 1.182-07 .0 .0 9.0+00 7.0+00 .0 .0 4.0+00 2.0+01 Xe-137 8.700-03 3.082-09 .0 .0 .0 .0 .0 .0 .0 .0 Xe-138 4.252-02 1.479-08 .0 .0 .0 .0 .0 .0 .0 . 0' Total Noble Gases 5.7.+03 w

- I-131 3.413-01 2.032-07 .0 .0 1.3-01 5.4-02 1.1-03 .0 3.4-02 2.2-01 I-133 4.380-01 2.566-07 .0 .0 2.8-02 7.0-02 1.4-03 .0 4.4-02 1.4-01 Tritium gaseous release - 550 curies / year, C-14 release 8 curies / year, AR-41 release 25 curies / year.

.0 appearing in the table indicates release is less than 1.0 curies / year for noble gi s 0.0001 curies / year fM I.

Airborne Particulate Release Ra'e - Curles per Year Waste Gas

" "9 "" * "

Nuclide System Reactor Auxiliary Total Mn-54 4.5-05 2.2-04 1.8-04 4.4-04 Fe-59 1.5-05 7.5-05 6.0-05 1.5-04 Co-58 1.5-04 7.5-04 6.0-04 1.5-03 rn p .Co-60 7.0-05 3.4-04 2.7-04 6.8-04 rn m Sr-89 3.3-06 1.7-05 1.3-05 3.3-05 3#* Sr-90 6.0-07 3.0-06 2.4-06 6.0-06

- C s-134 2.2-04 1.8-04 4.5-05 4.4-04 cn Cs-137 7.5-05 3.8-04 3.0-04 7.5-04

+

1 . . .

TABLE A3 1' REIIASE POINT DESCRIPTION Source Pelease Reight Locatica of fatinated Flow Stae and Exit Fotat Above Grade Adjacent Structures Discharge Rate Shape of Flow Veloetty Femperature (CFM) Oriftee (ft/see)

Geseoue station el 83k'6* Eskausted vertically 120*F 0.1* 7' OD pipe 4" Weste Vent upward 10 feet above wall thiehness System ase 79 feet svar with 10' see.

from the shield tion of 3/8" contata= building roof center. 120"F 50.000 wall thil'****

aent Itae. 142'2" above or 38 ft Furge turbine building (37.8 ft2g roof. 17h'6* above the restrie.

Aus111a. the auxiliary build. 10k*F 80.000 tion).

ry Build. ing roof ins Red.

4 waste Areas Ventilla.

tion .

8 Steas Jet 71.5 F 60 Air Ejee.

tore Station 10k*F to 80.060 to 35.1 to Vent To. 110*F 130.060 57.0 tais Turbine Auxilla. el 65k' West of and stjacent 110*F 55.000 62* x 62* 3k.3 Su11 ding ry Build. to turbine bu1141ag square open.

Ventila. lag Roof tion Sys.

which rises 37 7 feet above release point tal *' '

ft tes Turbine el $93' There are no adja. 110*F 700 16" x 16* 13 0 Build. eent buildings la

  • opening with ing this area other thaa louvre.assue.

North the turbine bu1141ag ing 505 open 0.9 ft 2 Wall Ok5 02k.1 Tur- el 688' The shield building 110*F 55.000 70* a 70" 27.0 bine is 33 f t away and square open.

Building Roof rises 136.5' above this release point in!*-

ft c24 2 Tur- el 688' The shield building 110*F 55.000 70" x 70* 27.0 b1ne is 33 ft away and sguare open.

Building rises 136.5' above in! *' -

Roof this release point ft c2k.3 Tur- el 688' The shield building 110*F 55.000 70' x 70" 27.0 bine is 43 ft away and square open.

Building rises 136.5' above in! *' '" '

Roof this release point ft 02k.h Tur- el 688' The shield builitag 110*F 55.000 70" x 70* 27.0 blae is 135 ft away and square open.

Bu1141ag rises 136.5' above ingor34.0 Boof this release point ft C2k.5 Tur- el 688' The shield building 110*F 10.000 45" x kS" 11.8 blae is 187 ft away and eguare open.

Building rises 136.5' above in5 ' 2 Roof this release point ft Turbine el 669' Release point is 110*f 11.250 21' x 3' 6.0 Builolog 11 feet above of. opentag with East flee building louvre.assua.

Wall c47 tas 505 open 31.5 ft 2 e T..rir A,. rage 32 Rev1 Sept 1976

TABLE A4 QUANTITIES OF SOLID WASTES PER YEAR -

Waste Input to Solid Waste Volume Source Solid Radwaste System Shipped from Station Comments Spent Bead Resins 3 600 ft gross displace- 600 ft The 600 ft shipped volume includes ment volume (includes 60 ft3 of evaporator bottoms and 150 ft3 35% void space) of solidification agent.

Powdex Resins 600 ft 800 ft Shipped volume based on a 3:1 volume ratio of waste to solidification agent, w

Evaporator Bottoms 3305 ft 4327 ft Shipped volume based on a 3:1 volume ratio of waste to solidification agent.

2 60 ft3 of bottoms used to solidify resins was not taken into account.

Filter Cartridges 29 cartridges 29 drums (214 ft ) One (1) cartridge per drum. ,

Miscellsneous Paper, 4960 ft 3 992 ft 3 A volume compaction ratio of 5:1 in Cloth , etc . baler.

i

TABLE A5 ESTIMATED TOTAL QUANTITY AND ACTIVITY OF SOLID WASTE Sources of Solid Vnte Spent Bead-Type Spent Powdered Evaporator Resins Spent Filter Paper. Clothing.

Resins Bottoms Cartridges etc.

Annual 600 fc 3 1000 ft 3 Quantity 600 ft 3 3305 ft Maximum 29 cartridees (es sacted) 8 Paxirnim I Average Maximum

  • Average Favinun l Averare  ! Maximum l Averare l Averaea l l Corrosion Product s* l l l l

l Cr-51 313.07 313.07 0.44 0.44 Mn-54 35.83 I 313.07 l 313.07 313.07 l 313.07 3.69x10-4 ! 3 .69x10-4 35.83 0.06 0.06 35.83 35.83 Fe-55 1237.97 ! 1237.97 1.74 l 1.74 1237.97 g 35.83 l 35.83 4.23x10~5I4.23x10-5 1237.97 1.46x10-3 1.I.6x10-3 Fe-59 35.83 l 35.83 0.06 l 0.06 35.83  ! 35.83 1237.97 l 1237.97

, Co-58 1830.76 l 1880.76 2.65 l 2.65 1880.76 l 1880.76 35.83 1880.76 g 35.83 1880.76 4.23x10-5ll4.23x10-5 g Co-60 10.08 l 10.08 0.02 0.02 10.08 l 10.08 10.08 l 10.08 2.22x10-3 l 2.22x10-3 1,19xgo-5 Zr-95 2464.03 1.19x10-5 g 2464.03 3.47 3.47 2464.03 2464.03 l 2464.03

Ionic Radionuclides !

I l 2464.03 l l 2.91x10-3! 2.91x10*3 1

l 3 l l l l w l g Rb-88 635.45 l 63.55 321.95 32.20 690.46  ! 69.05 l l A

g Sr-89 87.57 8.76 l - -

0.27 2.70x10-2 l 0.54 0.06 1.16 l 0.12 -  ! 4.51x10

Sr-90 4.51x10-5 19.66 l 1.97 0.02 1.74x10-3 0.04 l 3.74x10~3 -

l -

1.46x13-5 1.46x10-6 3 Sr-91 10.66 1.07 3.40  ! 0.34 7.29 g 0.73 -

l - 2.85, '.0-3 l 2.85x10 #*

& Sr-92 2.37  ! 0.24 1.04 l 0.11 2.24 0.23 - -

8.7200- l 8.72x10*5 g Y-90 19.40 l 1.94 1.21 0.13 g l l 59 0.26 - -

O Y-91 12.96 l 1.30 6.75 0.68 e. 20 I 1.45 g 1.01x10' l 1.01x10*#*

O r:a-99 97.92 l - -

5.66x10' 5.66x10

I-131 979.17 l 491.28 g 49.13 1052.96 l 105.30 -  ! -

0.41 l 4.12x10-2 9954.04 995.41 385.15 38.52 825.97 l 82.60 l E I-132 3185.53 318.56  !

0.33

';; 1-133  !

268.30 26.83 575.68 l 57.57 -

l -

0.23 l 3.23x10-2 2.25x10-2 2033.27 203.33 450.73 l 45.08 966.65 96.67 -

l - 0.38 3.78x10-2

% 1-134

" 1-135 111.71 l 11.13 54.62 l 5.47 117.38 11.74 - -

4.58x10-2 l 4.5ax10-3 625.51 l 62.56 l l 226.56 l 22.66 435.92 ! 48.60 - -

0.19

? Cs -1 M 3925.06 l 392.51 487.70 48.77 1052.96 l 105.30 - I -

0.41 l 1.90x10-2 -2 l

g Cs-134 200.80 g 20.08 88.24 g 8.83 189.88 l 18.99 - l - 7.40x10-2 g 4.G9x107,4cxto-3 u Cs-137 8900.00 890.00 1514.36 151.44 3245.16 l 324.52 -

l -

1.27 I

% Cr-139 279.76 27.98 87.53 l 8.76 188.16 18.82 - - 7.34x10-2 l 0.137,34 ,3o-3 l

8900.00 ! 2994.49 l Ba-137m 890.00 1395.12 l 139.52 299.49 Ba-139 19.15 l

1.17 l 1.92 9.07 l 0.91 19.51 ! 1.96 - - 5 l 0.12 B a-140 26.81 l 2.69 0.68 l 0.07 1.45 l 0.15 -  ! - 7.60x10 5.63x10- 6 l 7.60x10-6 12 -140 2.74 0.27 0.03 2.25x10-5 g2.25x10-7 5.63x10*7 Ce-144 27.36 l 25.92 2.60 0.58 l 0.06 -  ! -

g 0.07 6.18x10~3 0.14. , l 0.02 -

l - 5.18x10-7 5.18x10-8 l t n

  • Due to the difficulty of determining a realistic digitribution of crud in solid waste.

the same activity is assigned to more than one source.

TABLE A6 (Page 1 of 8)

DRAFT REGULATORY GUIDE 1.BB APPENDIX D QUESTIONS Item No. Quantity Value Reference

  • 1.a. Maximum Core Power 2772 Megawatts Thermal l1) Subsection 15.1 1.b.11 Total mass of Uranium 178262 lbs. ---

in equilibrium core Total mass of Plutonium klh lbs. of fissionable ---

in equilibrium core Plutonium 1.b.2) Percent enrichment of 2.21% ---

Uranium in reload fuel ,

1.b.3) Percent fissile Plu- 0% ---

tonium in reload fuel 1.c. Lisc items which are The methods and parameters ---

ndt consistent with used in this analysis are Regulatory Guide 1.BB aa described in Regulatory tiuide 1.BB; however, Chap-ter 11 of the FSAR has not been changed to reflect Reg-ulatory Guide ,1.BB 1.d. Quantity of Tritium 1108.8 ci/yr 2) Page B103 released 2.a. Total mass of primary 463850 lbs. 1) Tables 5-3, coolant excluding 5-4, 5-5, 5-6, the volume in the 5-7 and sub-pressurizer and the section'11.1.2.1 make-up and purifi-cation system 2.b. Average letdown rate h6.7 gpm 1) Tables 9-10 and 11-lh 2.c. Average flow through 4.7 gpm 0.1 letdown flow cation demineralizers assumed to go through cation demineralizer 2.d. Average shim bleed 1.65 spm <

1) Table 11-14 flow and (2) Page B21 3.a. Number of Steam Gen- 2 1 1) Page 5-1 erators Type of Steam Genera-tors Once through 1) Page 5-1 Carry over factor for 1.0 1 2) Page B56 Iodine and nonvola-tiles 35

TABLE A6 (Page 2 of 8)

Item No. Quantity Value Reference" 3.b. Total steam flow in 11.76 x 106 lbs/hr (1) Table 10-1 secondary system 3.c. Mass of steam in each 5100 lbs. Equipment supplier steam generator at full. power 3.d. Mass of liquid in each 49,900 lbs. Equipment supplier steam generator at full power 6

3.e. Mass of coolant in the 2 93 x 10 lbs. ---

secondary system at -

full power

3. f. Primary to secondary 100 lbs/ day (2) Page B57 leakage used in the evaluation 36 Description of steam not applicable ---

generator blowdown 3.h. Fraction of feedwater 0.67 (1) Page 11-16 processed through -

the condensate de-mineralizers Condensate Deminera- Anion 10 (2) Page B23 lizer DF's Cs 2 other 10 3.1.1) condensate Deminera- 1 96 x 10 6 lbs/hr average Items 3.b., 3.h.

lizer average flow flow through each of h and 3.i.3) and rate demin. Note only 3 are in (1) Page 10-22 service at one time.

3.1.2) Demineralizer type Powdered resin Equirnent manual 3.i.3) Number of demineralizers 4(3 inservice +11nstandby ) (1) Page 10-22 Size of deminerali- 37h ft.3 filter Equipment manual zers volume 12 ft.3 resin (1) Page 11 bh volume 3.1.4) Regeneration frequency aot applicable ---

3. i . 5) Is ultrasonic resin no ---

cleaning used

3.1.6) Regeneration volume not applicable ---

and activity h.n For shim bleed **

1) Pource shim bloed ---

l Flow rate 2380 cpd (1) Tabic 11-lh 36 l

l

s TABLE A6 (Page 3 of 8)

Item No. Quantity Value Reference

1) Fraction of primary in GALE code (2) Page B29 coolant. activity
2) Collection time 20.8 days Item h.a.3) & (2)

Page B37 - B39 Processing time 1 9 days Item 4.a.3) & (2)

Page B37 - B39 Discharge time 0.& days Item 4.a.3) & (2) ,

Page B37 - B39

3) Capacity of tanks Clcan vaste receiver (1) Table 11-12 tank 103,000 cal. .

Clean vaste monitor (1) Table 11-12 tank 23,200 gal.

2quipnent flows Boric acid evaporators (1) Table 11-12 21,600 gpd each Primary demineralizers (1) Table 11-12 201,600 gpd each Clean vaste polis.hing (1) Table 11-12

demineralizers 57,600 Epd each Discharge flov 100,800 (1) Page 11-62 Epd h) Decontamina'. ion Anion 10 5 (2) Page B35, B108 factors Cs,Rb 2 3 10 (2) Page B35, B108 Other 100 (2) Page B35, B108
5) Fraction discharged 0.28 (1) Table 11-lh i 4. a. For Equipment Drains ** ,***

, 1) Source E qu ipmen t drains ---

Flow rate 1573 spd (1) Table 11-lh

, Fraction of primary 1.0 (1) Table ll-lh coolant activity

2) : Collection time 20.8 days Item 4.a.3)

Processing time 1 9 days Item h.a.3)

Discharge time 0.2 days Item h.a.3)

3) Capacity of tanks clean vaste receiver (1) Table 11-12 tanks 103,000 gal.

Clean vaste monitor (1) Table 11-12 tanks 23,200 gal.

Equipment flows Boric acid cynporators (1) Table 11-12

21 600 gpd each Primary demineralizers (1) Table 11-12 201,600 gpd each l

l 37 i

TABLE A6 (Page 4 of 8)

Item No. Quantity Value Reference

  • k.a.

, 3) Clean vaste polishing 1) Table 11-12 (cont. ) demineralizers 57,600 gpd each Discharge flov 100,800 gpd 1) Page 11-62 h) Decontamination Anion 2.6 x 10 2) Page B35, B108" factors Cs,Rb 3.0 x 10 6 ) age 5, 08f Other 2.6 x 10 '2) Page B35, B108

5) Fraction discharged 0.14 1) Table ll-lh ,

k . a. For clean vaste. not applicable ---

regeneration vaste.

and blovdown vaste h.a. For dirty vaste**

Flow (gpd) FPCA

1) Sources Sample drains 35 1 l2) Page B33 Auxiliary 200 0.1 l2) Page B33 building floor drains Laboratory 400 0.002 l2) Page B33 drains Misc. vaste 700 0.01 (2) Page B33 Deborating 130 0.25 (1) Tables 11-15, demin resin 11-16, 11-17 waste Condensate 1336 0.0156 (1) Table 11-15 demin backwash Page ll-kh vaste Demineralizer 3h.25 1 (1) Tables 11-15 sluicing 11-16,11-17 Containment h0 1 (2) Page B33 sump Flow rate 2875 gpd Item 4.a.1) source Fraction of primary 0.066 Item h.a'.1) source coolant activity and (2) Page B3h
2) Collection time 1.9 days Item h.a.3) & (2)

Pages B37 - B39 Processing time 0.25 days Item h.a.3) & (2)

Pages B37- B39 Discharge time 0.035 days Item 4.a.3) & (2)

Pages B37 - B39

3) Capacity of tanks Misc. vaste drain tank (1) Table 11-13 13,h00 gal.

Misc. vaste monitor tank (1) Table 11-13 l 8,'(00 gal, i

! 38 i

TABLE A6 (Page 5 of 8)

, Item No. Quantity Value Reference

  • h.a.
3) Equipment flows Misc. vaste evaporator (1) Table 11-13 (cont.) 21,600 spd Waste polishing deminer- (1) Table 11-13 alizer 57,600 gpd Discharge flov 100,800 (1) Page 11-69 gpd h) Decontamination Anion 10 (2) Page B35, B108 factors Cs,Rb 10 5 (2) Page B35, BloS Other 105 (2) Page B35, B108 -
5) Fraction discharged 1.0 (1) Page 11-76 h.a. For detergent vaste**
1) Source Detergent vaste ---

Flow rate 450 gpd (2) Page B33 h.a. For turbine buildingue drains

1) Source Turbine building drains ---

Flow rate 7;!00 gpd (2) Page B33 h.a.6) Condensate deminer- not applicable '

alizer Regeneration data i

k.a.7) Liquid source term See Table Al ---

by radionuclide in ci/yr. for normal operating occurrences h.b Provide piping and See Figures A1, A2, A3, A6 ---

instrumentation dia- and A7.

grams and process flow diagrams for the liquid i radvaste processing systems 5.a Volume of gases stripped 50,000 ft 3/yr. (2) Page Bhl i

from the primary cool- (1) Page 11-120 ant 5.b Description of process The gases are removed from (1) Page 11-123, used to hold up gases the primary system by a 11-119, Fi-i stripped from the pri- degasifier and are sent gure 3, and mary system to a low pressure tank drawing 77h5 (vaste gas surge tank). M-038 Using a compressor the 39 l l 1 I

. . - - - - - . - , . - _ ,m , . - . , . . , , - - _ -

TABLE A6 (Page 6 of 8)

Item No. Quantity Value Reference

  • gases are sent to a vaste gas decay tank where they are held for a minimum of 30 days. The gases are then released through the station vent after passing through a HEPA and char-coal filter. Figure 3 is a flow diagram of the system.

5.c Describe the normal This system contains three ---

operation of the high pressure storage system tanks. One tank is used ,

to collect gases, one tank is used for decay, and the third tank is used as part of the clean vaste receiver tank cover gas system.

What is the fill 56.7 days Ref. (2) Pages Bh1 time and Bh2, Ref.

(1) Table 11-3h What is the mini- 56.7 days used in evalua- Ref. (1) Table 11-mum hold up time tion. 34, Ref. (2)

Pages Bhl and Bk2 Note: 30 days is the mini- Ref. (1) Pages 11-mum hold up time required 117 and 11-123 to meet ref. (1) commitment on pages11-117 and 11-123 5.d DF for HEPA 100 for particulates lef. (2) Page B87 filters 5.e Describe charcoal not applicable ---

delay system 5.f Provide piping and See Ficnres A4 and A8 ---

instrumentation diagrams and flow diagrams

6. For gaseous vaste processing vent a) What provisions are HEPA and charcoal filters Pigure A8 incorporated to reduce radioac-tivity releases b) DF assumed 100 for particulates Ref. '2) Page B87 10 for iodine 1 for others 40

I TADLE A6 (Page 7 of 8)

Item No. Quantity Value Reference *

. 6. For containment purge

, a) What provisions are in- HEPA filter -- -

.{ corporated to reduce radioactivity re-

~

leases b) DF assumed 100 for particulates Ref. (2) Page B87 1 for others

6. For auxiliary building ventilation a) What provisions are HEPA filter ----

incorporated to re-duce radioactivity releases b) DF assumed 100 for particulates Ref. (2) Page B87 1 for others

6. For turbine building ventilation a) What provisions are none -

incorporated to re-duce radioactive releases b) DF assumed 1 ---

6. For steam jet air ejectors a) What provisions are Charcoal and HEPA filters ----

incorporated to re- can be placed in the flow duce radioactive path however, none assum-releases ed for this evaluation b) DF assumed 1 6.e. Gaseous re2aase see' Table A2 ----

rates in C1/yr.

6.d Release point descrip- See Table A3 ----

tion including height above grade, height, above and relative'lo-cation to adjacent structures, relative temperature differ-ence between gaseous effluent and ambient, flow rate, velocity, and size and shape of the flow orifice 41

.g- ,

TABLE A6 (Page 8 of 8)

Item No. Quantity Value Reference'

, 6.e. Containment free volume 2.83h x 10 6 ft3 Ref. (1) Page 6-5 Describe internal clean- not applicable ---

up system Purge and venting 20 purges / year at power opera- Ref. (1) frequencies and tion and 4 purges / year at shut- Pg.11-103,104 y

duration down. This number of purges is Ref. (2) assumed for dose analysis only. Pg. B81 7.a. Provide in tabular form See Tables A4 and AS - the Ref. (1) Table 11-the following infor- bases are 1.0% failed Sh and 11-55 and nation concernin5 all fuel for maximum and subsection 11 5 inputs to the solid 0.1% failed fuel for vaste processing sys- average concentrations.

tem: source, volume, The other bases are de-activity and bases scribed in subsection 11.5 of reference (1) 7.b. Onsite storage pro- The solid vaste handling Ref. (1) Page 11-visions aren has shielded stor- 166 age space for a number of 55-gallon drums and 5 full casks Expected onsite stor- None assumed Ref. (1) Page 11-age times 173 7.c Provide piping and See Figure AS instrumentation diagrams for the solid radvaste syste=

  • Reference (1) DAVIS-BESSE NUCLEAR POWER STATION UNIT I, FINAL SAFETY ANALYSIS REPORT Reference (2) NUCLEAR REGULATORY COMMISION, Draft Regulatory Guide 1.BB

" Calculation of Releases of Radioactive Materials in Liquid and Gas-eous Effluents from Pressurized Water Reactors."

    • Upon discharge these vaste streams are diluted with a minusum 20,000 spm.

(reference (1) pages 11-61, 11-69, and 11-73)

      • Wastes other than shim bleed collected in the clean radvaste receiver tank

, are listed as Equipment Drains. Since these have different fractions of PCA for different isotopes the PCA used is 1.0 and the DF's have been modified ,

to indicate the different PCA's for different isotopes. Rev 1 f 42 Sept 1976 I l

1

TABLE A7 DISTANCE OF NEAREST COW, MEAT ANIMAL, MILK GOAT, RESIDENCE AND GARDEN Distance In Miles To The Nearest Meat Milk Vegetable Direction Cow Animal Goat Residence Garden N NA NA NA 0.6 NA NNE NA NA NA 0.6 NA .

NE NA NA NA NA NA ENE NA NA NA NA NA E NA NA NA NA NA ESE NA NA NA NA NA SE NA NA NA NA NA SSE NA NA NA ,1. 0 1.2 S NA NA NA 0.9 1.1 SSW NA NA NA 0.7 1.2 SW NA NA NA 0.9 0.9 WSW 2.7 2.7 NA 0.7 0.7 1 -

W NA NA NA 0.7 0.6 WNW NA NA NA 1.1 1.8 NW NA NA NA 1.4 1.5 NNW NA NA NA 0.8 NA NA - Not applicable; nearest point >5 miles.

B 43

TABLE A8 8

X/Q AND D/Q FOR ITEM 2 LOCATIONS

~

f sec/m m Direction Location X/Q* D/O" N Residence 9 . 05 (-6) 5 .43 (-8)

NNE Residence 1. 03(-5) 9 . 73(-8)

SSE Residence 7. 45 (-7) 1.02(-8)

SSE Garden 4.99 (-7) 3.30(-9)

S Residence 2 . 5 2 (-6) 1.13(-8)

S Garden 1.01(-6) 6.60(-9) ,

S$W Residence 1. 73(-6) 2 . 71 (-8)

SSW Garden 5 . 31(-7) 3. 51(-9)

SW Residence and Garden 1.58(-6) 2.17(-8)

WSW Residence and Garden 2 . 69 (-6) 3.89(-8)

WSW Cow / Meat Animal 1. 35 (-7) 1. 3 0 (-9)

W Residence 3 . 70 (- 6) 5.08 (-8)

W Garden 4 . 62 (-6) 6. 66 (-8)

WNW Residence 9. 71 (-7) 8.3 6 (-9)

WNW Garden 4. 40 (-7) 7. 05 (-9)

NW Residence 6 . 62(-7) 4. 36 (-9)

NW Garden 5 . 72(-7) 3. 63(-9)

NNW Residence 3.13(-6) 1. 86(-8)

  • Includes terrain correction factor l

l l

44 l

l 1

l l

TABLE A9 SITE BOUNDARY DISTANCES, X/Q AND D/Q

~

sec/m m Direction Distance (meters) X/O* D/O*

N 720 1.4 (-5) 8. 88 (-8)

NNE 730 1. 5 (-5) 1. 57 (-7)

NE 825 1.2 (-5) 1. 44 (-7)

ENE 960 6.4 (-6) 8. 90 (-7)

E 1210 3 . 6 (- 6) 4. 67 (-8)

ESE 1565 7. 8 (-7) 1.14 (-8)

SE 1075 2 . 2 (- 6) 3 . 90 (-8) .

SSE 915 2 . 2 (- 6) 3 . 64 (-8)

S 880 2 .1 (- 6) 3 .14 (-8)

SSW 900 2 .4 (-6) 3 . 94 (-8)

SW 965 3 .4 (- 6) 5. 2 9 (-8)

WSW 830 4. 0 (- 6) 6. 66 (-8)

W 815 6. 0 (- 6) 8. 85 (-8)

WNW 835 4. 0 (-6) 4. 3 8 (-8)

NW 870 4.4 (- 6) 3 . 84 (-8)

NNW 740 7.6 (- 6) 5 . 34 (-8)

  • Includes terrain correction factor -

l I

45

. . - - - _= . - . .

g  :

g

E  :

0 D@Q$ }

$w a

l M f2d R y n $h N  !.

!~

G L E", 4 4

hi-} .

ss z3 W

m o

N 5 e z

& 2 5 5

- ' = I

  • i = t . & .  ! . l 5

dW  ! ' "

    • C.h ~"2 ,

' !!'. IihJ ldi !lL g ul ,l" -

,%lE f-" j-5',,,, h%d I ,,, b f mrv ..:-.F--*'"- 3 b-_y!. j ! lh 19" l $" N hl

!*i o" hI j -

b f.!A 3 *dOjf.Q]r-'!].N.:!!n f

  • fdg I8 gr ' 4 R . lld.$ ,! c4--fh tc l L4 a; o

ggn gg j$r -

2 5 1

j l it c

f ra;;ltv; 9

w;g),

da T>4 P'i %.. .,c Jg

n. 4gr-pp n:

%4 isj .A

!;ini@o$Hil.4...t > in,, m7 ,,

!! Ell,lA;;w-i*4 I

!9 ,

v.,

',~f - " { I y s == ew. L r ru, pS .I ,I6 tlr:r:%. c 1

.w-- C -:---

l 4 ..~

a&g

I m.m.

- i 1 . -

N 0,y,e gh y I ' + 1 .,,.d._  !.

y 4

o . 4 -

I < >.

<*r .  % .~ --

8.:r-I

,t g.

21

  • 8 s]*,j - - - - n_%a ~ ~-r; . . .

t,.: :cn.'; n;}

' 'l-

.g h. (. lli, )3 ;i

s s .

s )[y g n l g1 g)**hlbi 4l "i!' ML's, I: h g _, "G :.

r .d-.t

[g l .l , f.t!j C L. : Et -

g = ,,i h+4 it l!!!if NiWj,k ny .,f f j qo l i - w' s -

i n m((l

... .%h;; 4 -

u 94.!)hgqp. 4, -

1- p

x. :,r.. ri ca f b----q;,pa% oa w h.<. fd ; -

,d!

4-l,p.,.~,a,-*e, c~ , y= ;_'e.-' _Ll 2 '#13; b5.d. q g ,f . . .

.J

' t f = htI 0ilg'-"#i m *1,1, *'J 8 -

I '

N !!1y fi,*I'AdL 3: i 8 i a 'i 15 I

-- a N ._.- -

st; %. O
q.

li AL #* }l p! m*rg[ 9 Fl: J. r!.,- rt.2. I h. , '. 1 !

n 4 g:*- -[g . --gL WC!

g 3 4 ,_ ,

M ;su! ~

il?f,  ? E' fG N

.,u (k -n .M

'l '

l-

! e1 1- e z. er f

,l '

1"l ;h"jj y! f,j45 ;gp;q j e

9l.h ,gtl1it  % +'-= '.--.qr'.J,yr-P

. py.

l 3 iI

, n rN E~ 1 .m *! -hh5'd,!. M. s s d d; p3,:f ..

1y m{i.id-

-h f*g[~ ;l l . ;l 1,e: i cia W - M n%p r 43 , t M [,  : b

%. r ) ., U,h,'. l f , [,i

- '  ?[

.n  :. t # .g. y

, > ~ . .

,W

-- r. , ,,; , --

g c=L,y7, ,_

-.aq- p.

p,., = ,_

m_.;, ...- - . . ~- -9,77; t r4M

, 1

,U . Nj,I h "'b'iE  %-

~ . t; f N  ! Ih E~

  • NM slt Fy, LmI J

, l da{ a.f n a -a ,e N p in m.

h. 'I--  ; h u1' w #, , , .v ,, qie

. x i_

s.

, ibq,.g**t.

q ,1r 4 cij a . 7_. g<

1; oo .e. o rj e- er i NA., yI

, il ***

=wrf

e. *. ._ . 3 v9 i

p.! t a

p' we- i 9 M w

. ]

.a l, ,e. pte, y s .

y.

.I . .,1 e -- ,

3

g' q ".

kg

  • Rjf-W ? ,'M hU Y ~'_i g4 .2* &. t .1.[ h l:

.i t h~ .. lid 5' .

,, h_.'l I.

g.:) b  !,5;,f.&a 'it e. \ is -  !,,j si .=3 3 ' . " .' _,

N=h' g b,CI'p' t ' Y 9 .f '

Nebm h[E l f f 3h[ a'1h.2.*?j

c. *

.y.rp ;

n'e,.M,,

i s q hv"b -

q%, ;,l'h' '..k.,

r r*- '

I 9 j , .: a.,p'a*:

i % -,* Sh

}%g 7~

a  ;'r; -+,_ j..] '

W, ;, ; N- fq-

. .e ,

-y

.%.y-'.ei, n .ry.h .

( g11gl N R t *--

Q- h as D 't! n ' ~- ?j;! g .--.p. :'

Jl.d 4N'*a lit',g . . ,Q "'M rgj al.*w' # t'V."

1 . .

V;.h- -

5 t si a cv&. 52o J; %yTry --4,.'.:

gtt2 . . . "

c~~~~ r's , '..d, ;a ****yh }Q e--

is .  ?$

gr Ir i g4 ::;,!C- ;u 'l ; H N w, n , . . ;. . t oI .a w rr~ ' %"'- W '

'f in i %M, ', ~~

~'

M ; -l 14fl,y O h--N3 '..'S ~~

4 :4 t ji

_1; tb ~%- "

-,jljg r

! j

'. -i gjl. 4' L d'.a' rF Ngu

_- n.sWhj"'.t ,.; {6 6, .c1.g v.4.:n

,j n

ig 'e,, - ;F .4%.  !!.d, ,8~

5- g] p'; 1,.n+. . .e

. . F'h q'. ;tF$,

Af a 'g,i;W1 ,

l

,4 A.p.

ytA _

5'Nh.. SR 1 n ti- w W....r,. J,4' "5 4 :!I2!h 1  ;

' i t , hgtd 'r

  • n p c , g!!g it --

i sf .-e. si i l- ' 38 ' ~

,r- *- *W3 f(h r.-

e A *i g F- .e. '

it " et L.,,14 J -- .f M r .fy ' ![~'A k T lfr'.l 7) 4 ms&ye' ,i 41 -

flt l3 i

. pljl i s1 e e - ~ t.:q a .o .n

7a

- b Q g

<vv-

  • 9 5 5 5 -

1 0 @' 1 [D . . m

= ,

r b '- y

- Ql C ll mo  ;: a 2 1 D A 62 y ~

AU I u( d I b gze t- yo lr;;

s 2 o

v z 3 a W O-N

. 8 e i

  • ' * '
  • I e i ._ ; ,  ; , y y U e I h.

-g,. W. gpq p as**N h g E h -e g[h,a-!.

W G

.",- .. ;a -

1.: , l-ly= jp h{ j a,h."*I e ;; p

y .7 ,

4) ls , ,dl lj;;d, :;

~

eU A 4,,j' l 3 fg m

ji ); HV." ' e ,. tiers N il'Ij!!go;jiij,g4 h !in

.igl e nD 4 & !. g m u =n Y. n ! g #v unge:cq..ijg;_-

3 n ai

  • a p <,g r ' " -

.+ +- --e!=g* .j!I,d llyl;$ %mk.t ji ,I - $.p!M

% lj - . ~%A,_, ep.-a g. pV

  • af) (%r !m -

- - . , .!y q

14 e t _

4 !Rw2'o.(f.-g g,g y m! g, 3 I:qq,*laj .:

  • is :, 9..l l';pg;_n}-+

gj p., :1 i

of i'U,ttu, pe ab, u d_

,~ y.

r,1 4 . . . .

!}iM, _'bw- i N 'I N P' l Illill3 h.. 7 j

% " d j,d... nw/335fg Nhi $f2r Nm h el!y!m!k{

pM?H.m1  !!!!

9 ucv,e..,cm m w,3 s p ,an tj ,a m, ., Y, ga (Y ) -) .ll reW li;b : ,

li , dt $'g% s w 4'

  • :ii$ ;.g'Y ur g ,

I !% $m'M"

.% y- wm ~ -

,UE;T'M'py'%n,nge i e pEr.

--t.4,iM.#.b jk p .e= 1 94n y eW @n o

.am an:l t3 w

> r. . ,3 ..

f;

.. , p  ; q:

O 5

h: d .$ n q.p % ,. -Md h b -[? N *[!,b y.e " :E' .

e E

3. i

-~

%_ r-@m)f 4 r _hIf =. :- . . ._4

- ~

a l 'l l  !

6 iR(y"yTi'![3 aiy f g S .!j,'I

= --

r!!T, I

- y

%h p .g. d.lJ:

M;-Ji:, g~

p%

4 l

-r- - pm f "- v '.

4

= -%

. .i  ;

- . 3- S. 3i _'.; ".'e v j 5[ g  ?"2 d e Jjl . n d i

!*c.,,, . .1

~

v %w 3' 2gn

  • y' '=' g' '..,.3lW, *;jV f.iA'g. .. f .

r% .'

,; EfRi M.nl

~

t

. W. m m- m; n J -

. . . .. e g.. L,n,m.

y o .

I; -f ,

a! .yg S :.. ,

v ._  !',@ .h:u

'~

'j ___ ,j(, j[,pf h. . N O I, r- --- - .... .........____. -

1 ;,,

w w a,.s

.,~ f . Rn a . 1- 4. - .3. .7g 4

gb,' $.- ;,;. .,c, .s N4 f. 4 g P '

q

  • > q ,d 4 ei;

'.,7 a2 ' '* - ,.. E - --- ~~

I , g.a rc; - I, I E {3 '* a . M q 4 Ng* . C.y FI - '$- a mr'-

.. M,i ! N  :

2i i n

T-0~

ag&.

y,,~Q;, . - . a[4$g");>,N'N'.I:

..~-- - - . . . .

-1 a 3 gj  ;;- - 3q2.7 -

-e.-.

-gL } ..,. CI ,I_, 3;- e. y

,. =

a It , , ,

. - g "qqq. g..  :

.. :ry,d4L14., ' '

-. .y v u..

n n :n4 r.[;.0h, n

+i ,~.c. .
.

la 4 pe,i

~

- a ; d...a , n.

-! s

+ 4 e  ;... ,

.g'IL G - ..-- ; s:-- . - . 4

' 4 ._ ....._ .. . jt*y!'

l: - l- - - -1 ' "

_ g;-  % 4 4-i (d-EI 3b j, C  ;

jNi:. l~* k. kir-. - [ " "IiI"'" Y * ,

'I ' .,

I3. M #-f, tN h 4 s. ,-(.<1  : a

,a 4, - -- --- .y ,- 2!

- -; . . i a. ,

g

. i. , .

2'---

y 4 d . II fq ;'"' + 4 j 1 l 's:s i  :

1 . ,3

.. @ ',!f,,,p _ .:..f piv li j #

6 ,4 * .

+

4, g"Lg L a-.

  • h JW. t k -

' -49 s ;I .L*t,q};g'4

' s-- - >) ..q.4 4 C- ....___....,

. * ~ = -

. g I I l i . ,

I i = i ,

i .

+

2 =

0PoKn i d J JL .

E o

0J c, A  : <

_ dj j d- e s:

@z 8 e mD Z

s -

es

= 8 n -

- i

. M.

e -:

b N

< 5

  • I e I w I o 1 . 4 . I e t O 4

..--g_ y, t ,

' T-g a = #i 2

" 3 gI Z

!!Iv t ,.:O 8

s -;

E p.g-r.i ih i

l 1 iti i

y"n.I'8

!i. "{.5 8lla!

D. 1, ---

  • %- r

=

t p } -'j 5-Na f*,.,h .fNM]. 4- 3 8

jj '8

  • f

+..@4 7 ll! liih3 I!;l!!!

,3 l.f 1

b}ljt,i!r!:

!. - .Os~

t;, 4 ,&. ,C4..iy!!I  ; cjh,i,n;,5a).

I o yai,ha . a. p a . g!ig de t2,EfP,'Ws!4 m '3 C H c .

!j g.,j,

. a .

'-,f nd l55' ._

!j4- f;I "; flQ  ; g I

]t,1g.4---.- F~;{ - --* N .+

< ., wl . s -

4i s' )'a e ,hyL - - -h As[

k' ' '& 9 8

  • a 1

4 ,!.g.g. (Ti n  ! j'

% a G

Iw !)l E ' f I.t " gds _.h gi - i-.

. ]2 y fiI!l g+W r-w 2( .a t '., g~t y 41 -

' =-[ .111,,1 ; g !

,jpJw#

, gp N-g(j Q s ,

io

- .+

p, d ' *-E 4 .A :it

. ;o=4g._ i .h..l ; 9 . "fs

-~

=

4 J ;i 9 ,h u_2 9

e. mq ng 2. ,j-

'q 9

' w,..,r - n ,rd =f ,

'-----i qij' -

:ii . j b.sfir.+p=qli ud4- ,- m -

m wi 4 mm +PIrI . . _ , .n~ 4 t ii .

L d fl.i. b,. .LM

.i

.t i. .

f rh s a e I- y.  ! Dr;g b:d.l2"' . * ~ i N -' , .p M N

{

w rw fr,7, w r11a %c.:say;u iu -

?)

71, m! & &l .gt g

n. 7 ; 4 " 3:y o;y., A+jr,:f: 4 gg_rg4 x

.e n 9,9 mi

-p

  • w

,I U'.sI h,1 j

jf tp,, 4 9.- g gt f,,. - 9 s IN , 7.:. l bi Ii fI$#.^Qkc f r 7 .. . - Y 3 -'

q' .,'jj p.

t, r ;

.s .J

_ ,i 7 ~.g,~p..,m_A}J

- .1 g

.i 4

3. '![5. a o... j,---

m :<.. ,

. 't._t h' epitw:, a. ..

' wn.i,.,."- u m 4., a 91 1,._.-- .ma w-Ie.in..p- -

_. t 8' lj ,[;l' a

, 7 t ghd u., =/ c C ' j' si I=,... r

--- r- . ! 'at-=.'I

' " ~ '

i p ip  : n ?j}i P C=

i g -W j. %E.

' 4 O -

3. NG.I3 f ++

n m, 'l +OIf? d'dfh li o a drd+4 G.m!-#.3ME, I g

f, v t- g.i i

ps;e,c .i! m

t. 8:1 ?; mp-ij, We~?.<..y y:m '#..

!\j;q z.J. .. ,;\ h.

g;)sy 4 _. -

i y!

9~ . e1 '. L},; av n

c  :

t.._e..

p% a.

_ q-- y

._ c

,Ij,4I i

[M ,

' ' l ', , , ,,y'~---'~9 th.. '3.-%: ._n.e3 rdM

.I )!*; f ll j k IE -b? .[ d -g

.:. 3. -Yh:w

- . 4 y.,

tn [v@ w a t < nn g . - . ", n.

-- , n,1

!'I 4;q8i *Iq p:[a,5 d hl ) II!ih(

P l j

~"

3 ' FI - - '

st lF .t C e '##

,61 gi 14-t-ri 5 I 4 h j,g:li el $.4* 4 $ ~f e.T.. ..L..i,

--x = -

i ' C. 4- j!'? r - 1* l ?t *-

f  !  ! kil -j  ; .~ ,

I hges q' d [k !pd I t

'2 ,8 Il61 ig Me#s 6 m-w:i -

f.

.ijnI' ' '

a!

' 5l qI i4 di f .9.l i- k -j 4).3h! k. .s

o. y (_$ 3 ;hT;ii s b.-O e/. n g g! ____

~'

g  ! $+, MII 'A

,u INN' .. .. Sh h pr,l q l n. .,f . . .. r :i dif hN liIt ' mdi f J.!v.h

' r.1 u

. a r ==== == .c ------- -

qyg :an 3 ..'s tM m .

'g - -- -

1 ,.

.T ag _ ,I ch)y li %e f 4

j!h%f fis_ i . . .,, . .y I , .r. . r. , ,. . . ' 'i, r*%-M:'._ ,y M_Q E' h I e pas48 8h.

f.3 4 M*.3 5

g 4' 3.'ilp!'p % (ep4j ,h.rp1 l{ 91l :l h' d$ ,~ y

.[ --

a;

. i . . . , . , . i -

. . 5

< 5 t; e 700 0 0 5

s 5

2. 1 o a jlJ s 3 mI

<  ;: e e v .

a g  ;;

. - 3

'? =

n 3

. . . i o r .  ; .  ; . i . r o .

j . g fi'l!g

,.........,....__.7......; , ,

-5 pil [ I fr y r

-- l., ,, DAi: 7 "t>t~ ~7'E -

. n s

i I, ,l,

_.  : ( ! 4.R. s -t j.., d jpg t 8;ghdd ,, j h.m.,-s ya eg ; .2 m 1. I l!I'l;!

M m 3,ll ggt [. g[a gb

= -

..h.$: Ig d t . @ hil y a

o. .

Ja niti!!D i!id,I iiso ili ..h~

{ - .

i t..

'Q i

y y If gg,, fif1,l rn. ailuilala:

, hi jl {ll5:si.j.

ny

  • t 1.u"e . t i d .

.r it (T t i , wQ[G.y..

i sh! $ -

-~ ""'

v 8

! 4  ; it

-'d.t%l4,t - 18' '

- s--, --

.- :- -- - 3 5} %.fi-4***-Q

i3 }  %'e ' , '

^

...'4'. ...? + %,%It 'I . .id4@u '.'3 I ** Qy "r -

! .'b--" 'T "tj l '5 J

~p:'

w 4.l

+- -

3

t. i 4-J- r e '

.- i:*I 7' . J- k .

kd I *

~ '

f II '

Q '

=

k ;c% a4 . 4 4

fi

,r)y,dej o

f

p. "' 4 _i,. nw, t 4. . .. u.... K+. l r,

ylii i J.

=.1 %s .u . n -~ 3 ,  ;

w .0 iq

  • tr .:e.. . -

iM,, j!.

f

,i ,' E,ti.G. $. fy1 C

_il b.i ~ ~J 3 .b:, .I l .

71 5 fs ~ 2) o -

l.- .

l. . .

E.:t. %. a4 y h+4 J,c 4. %,2...f. ~p: - .s .4 p-,

5 e,0 ,ti- f. -

s. 4 v.

s!.-. .s';.l "-~ & Aw

g. t p9 1 P

@j y -- . '.:ff' J G ga ' 1 ~3 -. #

L'7. rs: ~

.I i,

' re

,t

~

L kai,-i hee'  % sl . i.M=.

g  ;.  ;

4 8- 4.i[j 2 k,- ,-.

hNc"s m, , --

e . de L,.. .- .,., h 4 a i ::)*- l g , ,--MI:

d- -

PJ ' y - %,4 re

. n. 1 t- 4. g l. .A 4 t ,[ d,l

, --s

,, s l' ~ :;

. - ,y ,. g- .M... I.

It ! !; , - >. .. .-

_,~ ' .,

t t: ..._.

kg.d 4 *-' T.r,. ,; u. 5 ;ia;, - 41 M "

.- a p ~ *d"%

p).3 [T,

~ '

t

- [' -

,  ?

lh 9 f.

[4 ' ji."'$bf ' >, 24 1.1, i s-

_dy!j},Ll  !. ,

g T- -

Mr. ,tI!I, A,.

@m -

4 gs a 39 _

Y

-g ^

jA A, n.m,,r

.. 't pl.--.._;r[ [- .t- 4S 7' -

,N' s vg. Il 2%.Ts *'^',t t.-

,(*y'

' ~

. . s 1 4 - -t" ,..;- , -

-..~.

e i

l 7 ,,%. Mfl

,[rI.i 5

'.g,.N',[pM.l g ,, r !

, , j!

k d..'[g 4

[Us a

4

,r.-fin

n. I '

3 J - . i. ,-p .. .

2 .1 l et 4 4  :=-Ji?. ;f -

".%. -*I d y 4 - {f, 4', . 4 -j g. *.r.-- i*d ..'.: : - 8 l

+{ Ia, :g  :- r.@

!j 'l - v ,4 4 e q ' 21 l 4?  : '-d 4 Jt -i--ef.**3 ta e l"m '

+--(_

'-(._ M, -i ;j7)'d i4'! M  :. h--ya .T tj' .e.J'iNb:

lI, KW ;l;y!.j,}.11 it'

. J t,. . , -- - c 21 . -

1egK{.g., .. p 4., !g? &x*"N

  • 4' - N r; - * .

i ,y ,' g- ..( .

,;.7. 2.,,' %,$.h, . '2DU_-'_%-- q - -Q j' ' ' 7

'~

.-- I e* ~.:.n. 1,8 A-& q L, 4 e .

. d".m . _} ..

4.11T. !.--J. gi-..A>5=: "3? "1M Jf . ., "' 4 ;  :

f i. .,3.IQ3 j-( : b n /;j - -' um -h d'7. ;r-' y:- --

% p. 4i-- <

%. i} k- '

k zii],. $,iy3 If d.3.p g A }[$a, 2 2I b

~

d d', g, - 1" m a .u 4 Nb  ?... h. yl h .i ,, A :a., d, 3 81 ,

4i ,i. isc'hi If M S: -

d- {;ig h. f s-:.h., . -- .14

, s ji i Jdy l _ . .

PhP_ , .t u cih 2, ;

Ib

.1 3 j U.;

S dipfd h -

l 1 ~ Ti idl hi i e i!!!! $ @!

~l !'1 d.. l.i*1 d AN ii;h/ lb,

  1. i!pl h; '

i' PI# 1

~

a = . .. .

l 1 i- - ,  ; a ( ,

j .

t - _. _ - . -

5

$ ~5 1 5 5 M

  1. $kU D i h
  • E 3 a
o U Q v JLi  % 5 m 2

e gE $

. , . , o i . , - + . . . i o

g

  • g sg  : tu iar u l $1 f kb i i b' E ij!!!;h:li!! itigj "E,'Hi d >! is"i m

li!s.l lr i

.lIl..!-

d, b.l dl, l vi' ,, ,

4 os af g'lu[_

=

[- .. a, w+: I; f -

i!i!,. I!i!'.g,

- i Mkid-M4! -

in . __._ ,

i=--y

.4i .4t 4 ip t  !

& --- 1 9 1; _ i ? .aietsly 3

_. , . --i . 2.,

~ ~~

/

lih i .v =

t & -- o z!

p 7 y

il n 4 gn 3

'4 . _ . . ) $r1)It ksIF~jiT -@!2

' f!r ,

% : 'I Ll ,.! 8,! 'i}e m i) .. ")m lh di fsr 4.t . fl il 4 lNer Q,F 9I c :[j iN7 i "i lr,

~

,4 il -

L a, n i .-p = nq) ""

(j),y

!i 1

9:-s y,.

l s,f2 . I [4f @N8:(* ' '# - - ,, .

,. {

~

r _j j ,r*.4 '.4 li' %y 4lj% ) -",,,

s w .r~ b l d

1

  • 444 A4,4i

.e a u y"it Y !!!

M *

=

' i P ga s)

' 'y 1 sg r gg

" o i  ? l { I I O

17~~b ,I.

li!a,-.l%, ja f11 in4 L @iig 2 x .d. at l 'pn ti). u,g in b

&" q t ti _

ll .

1 1 4 i

,' T 't*

t -

i l fr [ lI =

. e

[

i t thj 2; u -

i

- i - i . . -

t . . . , ,

, .- g

. ~ . - _ - - . _ - - ..

+ 0" $ gr 8k E-b H

2

$h b E f

~

m o O

  • E D E g5 c. "c

' 6 MIXED BED 3 g NZ 70 GPM F y

RC DRAIN TANK G

MAKE UP TANK MIXED BED

!5 '

G% GAL. 4.4Bo GAL. 70 GPM

_3r c

  • g g CATION BED S ,,.,3 140 GPM 0pr4 o w

if 8

5h O%

3 ih g *P G 2O O a)

. ^

y -

2Oo LEAN WAST CENER 'TK.

5,000 GAL.

MlYED BED 140 GPM

_ e- *-- +

N m o@

LEAN WASTE

[RECEWER TK. E MnED BED

._ p 5 _

k3.000 GAL M$ 140 GEM 26a C f  :

g ,

5 LEA 4 VsAST MNED BED MONITDR TK. 40 gpy 23,200 GAL.

e-- e-o O C 49 W MI

[7 73f .g Og g" O MONITOR TK. MI)CED @

, g x

md c og zg mpW 8 z u oo GAL. y mgn gg x o er Icmp g oZ e L m Im c jgg km i* m-S lo

% Cg C$

y o I N m V

%m

= E

$l  ?

as  : -

E' M

!! en y,

3 c

35

-> $Nm

- z a e pl g.j g li!= i 2

og -

I" 9

b

$ 3 E E 4  :

I- E!

Ty 13 0 ~

=

n ga i I

82 =$ $

z2 Id

. y 5

% 5 2

E o

OW ~

r 39WH")SIG S ONibOQ NClin1tG_ 5 Wd9 000'C2 N n WINlrF

  • bb ea eW k

?H j'

!? sE 26 w2 is CD nd9Oy '7VS CC1']9 C30 Q3Xin 3fghC N 1

3 5

a whIa-n

] O

>9 w

n

(

  • O Mh HNV1 NIVbd

~749 CC M1 Nfebo 3 31SW %ig , in3933t 1 s 3 0e

. y 2

$ $ 8

% .N w

  • g

' W a sa 4,

i

_ --~~x_,-- --

I GAS INPUT 1

1 I

ort AASTE G%

a --->COMPRE5500

@m .-

FROM CLEAM WASTE WCO E RECENER TANK COVER GAS SYSTEM ,q I Ujp IP

/[f y2)= /a,g) / y CESIGN PRE %URE I50 PSG Y

gdn ,,43, *${*

M AXINUM OPERATING

,,, eE t- k PRE %'JRE I4O P51G f;,le F Ee~n s4NS;($s&e Ss sk w/ ~J s TO CLEAN WASTE 4 RECEIVER TAMK COVER GAS SNSTEM TO STATION VENT

+ > b WASTE GAS W%TE GAS HEPA CHARCOAL

'\LTER FILTER DAVIS-BESSE NUCLEAR POWER STATION UNIT NO.1 WASTE GA$ $YSTEM SYSTEMS FLOW OtAGRAM FIGURE AS 53 W ~ _

o . .

3 3 T' *

! g I Q

ti d b

W

.. I i ss i a  :

. . . . -e 5 8

8 - c

=3 5 w g 1 .

=

=

T E e a

. . . - . O

. . - a t

i

}

t i i a a t 4

a a a =  !

= . -

.E I i i  !

:5  : -

l 5

1 5 e

e O O O W

W k Y @ k a.i..,.6.n

, n.

.,ii.n..o.n... . . n- , , , u.,. .,. ,. . u i i.;..;., a...n.,3-

. . . , . . . us

- 5 ro-p ms. - - - -

2 2- 2 $

5 0 0 E E 2 i  ;

e. E a

. . . . N3 w

5 E $

g g gz3 - c z g M 2 m 5 4 5

. . . . E o

1

/

a a a

. .i .. . ,! e .

1 -

i i i

s

- I a  !

D k,.

111555511s! i f!*!s t9 H!

.......m I f. .! .$.h

. . . .H

. . 151

.. .m,....i. I f. f. .t .!. $. . 513.s

- I'

-e.w-.--w ce. -

. a  ::

e vs .

E o 2- I g m-  % <

SE ae *2 $

gz 3 # 2

~

2 w

a a s.

w 3

E

. . . . O

. . . ~

e a .

a a I i i a.

i I i i I I I 5 I  !  !

3 *

. . - 3 .

6 e o e e I

k k hh $ h$ $ h

........... ..........., ....,.......h I $

t

  • f .

N- - ..s , , ,

e _# *

2 3

( *

>- U

" c z o

  • E g" o

.~ <

E l

( w w a N

. . e e a 3 en a t" s W5 2

. 2 O w 4

. e e e C

. . . a d

i e

f e 9 *

  • I 1

t

. e 8 e d

i i a i

! I I

. . . I. . . . s 3 .

. I.

. 9 9 3 3 3 5

. . . . . . = .

i I I

  • e * *
  • 4 4 e 0 e * *
  • O e o e
  • 40 II I I

........u.h. h..........,I<-

3 I.......s.

..I i

h

......h $I

..u i 4

  • e e rr <-s,-

y

. O, REFERENCES l

1 Title 10 Code of Federal Regulations Part 50, Appendix I, U.S.

Nuclear Regulatory Commission (April 1975).

2 " Calculation of Releases of Radioactive Materials in Liquid and Gaseous Effluents from Pressurized Water Reactors (PWR's)," Regulatory Guide 1.112, U. S. Nuclear Regulatory Commission (April 1976).

3. " Methods for Estimating Atmospheric Transport and Dispersion of l '

Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Regulatory Guide 1.111, U. S. Nuclear Regr.latory Commission (March 1976).

4. " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, '

Appendix I," Regulatory Guide 1.109, U.S. Nuclear Regulatory Com-mission (March 1976).

5. Environmental Report.Operatino License Stace, Davis-Besse Nuclear Power Station - Unit 1, Docket No. 50-346, Appendix AS,Section IV.A.
6. Environmental Report Operatino License Stace, Davis-Besse Nuclear Power Station - Unit 1, Docket No. 50-346, Appendix AS, Table XV.
7. Final Safety Analysis Report, Davis-Besse Nuclear Power Station, Docket No. 50-346, Revision 19 dated May 1976, Table 2-12.
8. U.S. Atomic Energy Commission, Final Environmental Statement, Con-struction Permit Stace, Davis-Besse Nuclear Power Station - Unit 1, Docket No. 50-346, March 1973
9. Ohio Department of Natural Resources, Division of Parks and Recreation -

Fiscal Year Attendance Figures July 1,1972 to June 30, 1973

10. "Onsite Meteorological Programs (Safety Guide 23), " Regulatory Guide 1.23, U.S. Atomic Energy Commission (February 1972).

11 Unpublished information obtained from Mr. Paul V. Hurt of the U.S.

Department of Agriculture Statistical Reporting Service.

12 County Estimates - Livestock issued May 1976 by Michigan Crop Reporting Service, Cattle and Sheep, and Michigan Swine and Chickens.

58

v

~

REFERENCES 13 Van derHoven, Issac, " Atmospheric Transport and Diffusion at Coastal Sites," Nuclear Safety, Vol. 8, No. 5, Sept. - Oct.1967.

14.- Letter from Mr. Iowell E. Roe to Director of Nuclear Regulation Attn: W. R. Butter, Docket 50-346, dated February 23, 1976.

15. Letter from Mr. Lowell E. Roe to Director of Nuclear Reactor Regulation, Attn: Mr. George W. Knighton, Docket No. 50-346, dated October 24, 1975.

16 Munn, R. E. , Descriptive Micrometeorology, Academic Press, New York, Chapter 19, 1966.

59

-a