GNRO-2014/00014, License Amendment Request for Revision of Five Technical Specification Allowable Value Setpoints

From kanterella
Jump to navigation Jump to search

License Amendment Request for Revision of Five Technical Specification Allowable Value Setpoints
ML14216A383
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 08/01/2014
From: Kevin Mulligan
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GNRO-2014/00014
Download: ML14216A383 (213)


Text

./

~

~Entergy Entergy Operations, Inc.

P. O. Box 756 Port Gibson, MS 39150 Kevin Mulligan Site Vice President Grand Gulf Nuclear Station Tel. (601) 437-7400 GNRO-2014/00014 August 1, 2014 u.s. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

SUBJECT:

License Amendment Request for Revision of Five Technical Specification Allowable Value Setpoints.

Grand Gulf Nuclear Station, Unit 1 Docket No. 50-416 License No. NPF-29

REFERENCE:

NRC Administrative Letter 98-10, "Dispositioning of Technical Specifications that are Insufficient to Assure Plant Safety" dated December 29, 1989

Dear Sir or Madam:

In accordance with the provisions of Section 50.90 of Title 10 of the Code of Federal Regulations (10 CFR), Entergy Operations, Inc. is submitting a request for an amendment to the Technical Specifications (TS) for Grand Gulf Nuclear Station, Unit 1 (GGNS). The proposed amendment would revise the TS to support correction of five non-conservative technical specification allowable values. The revision to the calculations did not result in setpoint changes, only the allowable values are required to be changed. Therefore, the functionality of the associated equipment is not in question since the actual plant setpoints are currently conservative with respect to the analytical limits.

  • Attachment 1 provides an evaluation of the proposed changes.
  • Attachment 2 provides the markup pages of existing TS to show the proposed changes.
  • Attachment 3 provides revised (clean) TS pages.
  • Attachment 4 provides calculation JC-Q1 B21-K114 "Instrument Uncertainty and Setpoint Determination for the System IB21-ADS System Initiation Time Delay"
  • Attachment 5 provides calculation JC-Q1E12-K093 "Instrument Uncertainty and Setpoint Determination for System E12 Containment Spray Actuation Timer"
  • Attachment 6 provides calculation JC-Q1R21-90024-1 "Division 1 & 2 Degraded Voltage Setpoint Validation"
  • Attachment 7 provides calculation JC-Q1P81-90024 "Division III Degraded Bus Voltage Setpoint Validation TIS 3.3.8.1)

GNRO-2014/00014 Page 2 of4 Entergy Operations, Inc. requests approval of the proposed license amendment by March 14, 2015 with the amendment being implemented within 90 days of receipt of the approved amendment.

I

~

GNRO-2014/00014 Page 3 of 4 In accordance with 10 CFR 50.91 (a)(1), "Notice for Public Comment," the analysis about the issue of no significant hazards consideration using the standards in 10 CFR 50.92 is being provided to the Commission in accordance with the distribution requirements in 10 CFR 50.4. In accordance with 10 CFR 50.91 (b)(1), "State Consultation," a copy of this application and its reasoned analysis about no significant hazards considerations is being provided to the designated Mississippi Official.

This letter contains no new commitments.

If you have any questions or require additional information, please contact James Nadeau at 601-437-2103.

I declare under penalty of perjury that the foregoing is true and correct. Executed on August 1,2014.

Sincerely,

'~-

r

./_---_ ------..._--~~

KJM/tmc Attachments:

1. Evaluation of Proposed Changes
2. Proposed Technical Specification Changes (Mark-up)
3. Revised Technical Specification Changes (Clean Copy)
4. Calculation JC-Q1 B21-K114 "Instrument Uncertainty and Setpoint Determination for the System IB21-ADS System Initiation Time Delay"
5. Calculation JC-Q1 E12-K093 "Instrument Uncertainty and Setpoint Determination for System E12 Containment Spray Actuation Timer"
6. Calculation JC-Q1R21-90024-1 "Division 1 & 2 Degraded Voltage Setpoint Validation"
7. Calculation JC-Q1P81-90024 "Division III Degraded Bus Voltage Setpoint Validation TIS 3.3.8.1)"

cc: (see next page)

GNRO-2014/00014 Page 4 of 4 cc: Mr. Marc L. Dapas Regional Administrator, Region IV U. S. Nuclear Regulatory Commission 1600 East Lamar Boulevard Arlington, TX 76011-4511 U. S. Nuclear Regulatory Commission AnN: Mr. A. Wang, NRR/DORL Mail Stop OWFN/8 G14 Washington, DC 20555-0001 NRC Senior Resident Inspector Grand Gulf Nuclear Station Port Gibson, MS 39150 Dr. Mary Currier, M.D., M.P.H State Health Officer Mississippi Department of Health P. O. Box 1700 Jackson, MS 39215-1700

Attachment 1 GNRO-2014/00014 Evaluation of Proposed Changes

GNRO-2014/00014 Page 1 of 6 1.0

SUMMARY

DESCRIPTION This letter is a request to the Nuclear Regulatory Commission (NRC) to amend Facility Operating License NPF-29 for the Grand Gulf Nuclear Station (GGNS). The requested change affects the Allowable Values listed in section 2.1 below. This request is submitted pursuant to 10 CFR 50.90 to correct a non-conservative TS and, consistent with the guidance of NRC Administrative Letter (AL) 98-10, "Dispositioning of Technical Specifications that are Insufficient to Assure Plant Safety", dated December 29, 1998 (reference 6.1).

As demonstrated in this submittal, the proposed changes do not adversely impact safety and is required by NRC AL 98-10. Entergy Operations, Inc. requests approval of the proposed license amendment by March 14, 2015. Once approved, Entergy will implement the amendment within 90 days.

2.0 DETAILED DESCRIPTION 2.1 Proposed Changes Revisions of setpoint Calculations listed below identified that five associated technical specification allowable values were non-conservative. The current setpoints remain conservative. The non-conservative allowable values are required to be revised in accordance with NRC Administrative Letter 98-10.

Calculation TS Table Descri ption Current AV Proposed AV TRM (function) Setpoint JC-Q1 B21-K114 3.3.5.1-1 ADS Initiation ~117 sec ~115 sec ~105 sec (4.c & 5.c) Timer JC-Q1E12-K093 3.3.6.3-1 Sys A & B ~11.44 min ~11.1 min ~10.95 min (4) Containment ~10.25 min ~10.6 min ~10.75 min Spray Timers JC-Q1 R21-90024-1 3.3.8.1-1 Div 1 & 2 ~3837.6 VAC* ~3837.6 VAC* 3790.5 VAC (1.c) Degraded 4.16 ~3744 VAC ~3764.25 VAC KV Bus Voltage JC-Q1 P81-90024 3.3.8.1-1 Div 3 Degraded ~3763.5 VAC* ~3763.5 VAC* 3661 VAC (2.c) 4.16 KV Bus ~3558.5 VAC ~3605 VAC Voltage JC-Q 1P81-90024 3.3.8.1-1 Div 3 Degraded ~4.4 sec* ~4.4 sec* 4 sec (2.e) 4.16 KV Bus ~3.6 sec ~3.68 sec Voltage Time Delay-LOCA

  • The upper allowable values for these functions do not need to be changed.

2.2 Need for Changes The discovery of non-conservative allowable values requires changes to the technical specifications. The changes are required to ensure that the TS is sufficient to assure nuclear safety.

GNRO-2014/00014 Page 2 of 6 2.3 TSTF-493 Considerations GGNS is aware of the NRC position to encourage Technical Specification Task Force (TSTF)-493 (Reference 6.3) adoption by requiring licensees to provide a determination for each instrumentation function proposed for revision, as to whether the function is a Limiting Safety System Setting (LSSS) that protects a safety limit.

Attachment A to TSTF-493, Revision 4, entitled "Identification of Functions to be Annotated with TSTF-493 Footnotes," identifies those functions that are LSSS.

Based on the Attachment A listing for NUREG-1434, "Boiling Water Reactor/6 Plants", none of the functions associated with the proposed technical specification changes require TSTF-493 Footnotes.

3.0 TECHNICAL EVALUATION

3.1 Inspection Manual Chapter (IMC) 0326 In NRC IMC 0326 (reference 6.2) and NRC AL 98-10 (reference 6.1), the NRC provided guidance for prompt corrective action to correct or resolve a degraded or non-conforming condition. In the case of non-conservative TS, this includes the evaluation of compensatory measures, such as administrative controls, in accordance with 10 CFR 50.59 and prompt actions to correct the TS. This section provides a description of the methodology used by Entergy to complete the evaluation for the requested TS allowable value change.

GGNS utilizes the methodology documente~ in JS-09 Rev. 1 "Methodology for the Generation of Instrument Loop Uncertainty & Setpoint Calculations." (reference 6.5) to calculate loop uncertainties and setpoints. This methodology is used coincident with the GE instrument setpoint methodology published in NEDC-31336. This method includes using the available uncertainty data along with the following general steps to generate an appropriate loop Allowable Value and Nominal Trip Setpoint.

  • Calculate the Loop Uncertainty (LU) by computing the SRSS of the Loop Device Uncertainty (Ad, the Loop Calibration Uncertainty (Cd, the Process Measurement Uncertainty (PM), and the Primary Element Uncertainty (PE).
  • Calculate the Loop Drift (Dd by computing the SRSS of the Device Drift (DR), the Temperature Drift (TO), and the Radiation Drift (RD) for each loop instrument as applicable.
  • Calculate the Total Loop Uncertainty (TLU) by combining the Loop Uncertainty, the Loop Drift and any applicable biases.
  • For process variables that increase to the Analytical Limit (AL), calculate the loop Allowable Value (AV) by subtracting the Loop Uncertainty from the Analytical Limit. For process variables that decrease to the Analytical Limit, calculate the loop Allowable Value by summing the value of the Loop Uncertainty and the Analytical Limit.
  • For process variables that increase to the Analytical Limit (AL), calculate the loop Nominal Trip Setpoint (NTSP) by subtracting the value of the Total Loop Uncertainty from the Analytical Limit. For process variables that decrease to the Analytical Limit, calculate the loop Nominal Trip Setpoint (NTSP) by summing the value of the Total Loop Uncertainty and the Analytical Limit.

GNRO-2014/00014 Page 3 of 6 The Calculations listed in section 2.1 determine the instrument loop uncertainty, limiting allowable values and setpoints. The revision to the calculations did not result in setpoint changes, only the allowable values are required to be changed. The functionality of the associated equipment is not in question since the actual plant setpoints are currently conservative with respect to the analytical limits. Therefore, the instrumentation can perform its specified TS safety function.

The TRM trip setpoints are not changed; therefore the systems remain capable of performing specified safety functions in accordance with applicable design requirements and associated analyses. Since the systems remain capable of performing specified safety function, no compensatory measures are required. This license application request (LAR) is submitted to request permission to revise the technical specifications to eliminate the non-conservative allowable values.

4.0 REGULATORY SAFETY ANALYSIS NRC AL 98-10 provides generic guidance to licensees on the type and time frame of any required corrective action for resolution of degraded and nonconforming conditions. As stated in the GL, whenever degraded or nonconforming conditions are discovered, 10 CFR Part 50, Appendix B, requires prompt corrective action to correct or resolve the condition. In the case of a deficient TS, this includes the evaluation of compensatory measures, such as administrative controls, in accordance with 10 CFR 50.59 and prompt actions to correct the TS. This request for license amendment provides the GGNS-specific actions to resolve the degraded or nonconforming condition. GGNS has determined that the proposed changes do not require any exemptions or relief from regulatory requirements, other than the TS, and do not affect conformance with any draft General Design Criteria differently than described in the GGNS UFSAR, as described below.

4.1 Applicable Regulatory Requirements/Criteria Regulatory requirement 10 CFR 50.36, "Technical Specifications," provides the content required in a licensee's TS. Specifically, 10 CFR 50.36(c)(3) requires that the TS include surveillance requirements. The proposed TS allowable value (AV) change continues to support the requirements of 10 CFR 50.36(c)(3) to assure that the necessary quality of systems and components is maintained, that facility operation will be within safety limits, and that the limiting conditions for operation are met.

The calculations listed in section 2.1 determine the instrument loop uncertainty, limiting allowable values and setpoints for TS instrument loops. The revisions to the calculations did not result in setpoint changes; only the allowable values were required to be changed.

This request for license amendment provides the GGNS specific calculation used to determine the setpoint and allowable value evaluation and provides a description of the methodology used by GGNS to complete the evaluation for the specific TS SR being revised.

In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

GNRO-2014/00014 Page 4 of 6 4.2 No Significant Hazards Consideration 10 CFR 50.91 (a)(1) requires that licensee requests for operating license amendments be accompanied by an evaluation of no significant hazard posed by issuance of the amendment. Entergy has evaluated this proposed amendment with respect to the criteria given in 10 CFR 50.92(c). The following is the evaluation required by 10 CFR 50.91 (a)(1).

Entergy is requesting an amendment of the Operating License for the Grand Gulf Nuclear Station (GGNS) to revise the Technical Specification (TS) Allowable Values (AVs) listed in section 2.1.

Entergy has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:

1. Does the proposed change involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No.

The proposed TS allowable value changes involve changes in the margin between the allowable values and the setpoints. The proposed TS changes do not change the trip setpoints. The proposed TS changes do not degrade ,the performance of, or increase the challenges to, any safety systems assumed to function in the accident analysis. The proposed TS changes do not impact the usefulness of the SRs in evaluating the operability of required systems and components, or the way in which the surveillances are performed. In addition, the the trip setpoints for the associated TRM functions are not considered an initiator of any analyzed accident, nor does a revision to the allowable value introduce any accident initiators. Therefore, the proposed change does not involve a significant increase in the probability of an accident previously evaluated.

The consequences of a previously evaluated accident are not significantly increased. The proposed change does not affect the performance of any equipment credited to mitigate the radiological consequences of an accident.

Evaluation of the proposed TS changes demonstrated that the availability of credited equipment is not significantly affected because of the reduction in margin between the allowable values and the trip setpoints.

Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed change create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No.

The proposed TS changes involves changes in allowable value settings to correct non~conservative values. The proposed TS changes do not introduce

GNRO-2014/00014 Page 5 of 6 any failure mechanisms of a different type than those previously evaluated, since there are no physical changes being made to the facility.

No new or different equipment is being installed. No installed equipment is being operated in a different manner. As a result, no new failure modes are being introduced. The way surveillance tests are performed remains unchanged.

Therefore, the proposed change does not create the possibility of a new or different kind of accident from any previously evaluated.

3. Do the proposed changes involve a significant reduction in a margin of safety?

Response: No.

The proposed TS change involves changes in the allowable value settings to correct non-conservative values. The impact of the change on system availability is not significant, based on the frequency of the testing being unchanged, the existence of redundant systems and equipment, and overall system reliability. The proposed change does not significantly impact the condition or performance of structures, systems, and components relied upon for accident mitigation. The proposed change does not result in any hardware changes or in any changes to the analytical limits assumed in accident analyses. Existing operating margin between plant conditions and actual plant setpoints is not significantly reduced due to these changes. The proposed change does not impact any safety analysis assumptions or results.

Therefore, the proposed change does not involve a significant reduction in a margin of safety.

Based on the responses to the above questions, GGNS concludes that the proposed amendment with respect to the TS AV change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c) and, accordingly, a finding of "no significant hazards consideration" is justified.

4.3 Conclusion In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commissions regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

5.0 ENVIRONMENTAL CONSIDERATION

The.proposed changes would change requirements with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, and would change inspection or surveillance requirements. However, the proposed changes do not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii) a

GNRO-2014/00014 Page 6 of 6 significant increase in individual or cumulative occupational radiation exposure.

Accordingly, the proposed change meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed changes.

6.0 REFERENCES

6.1 NRC Administrative Letter AL 98-10, "Dispositioning of Technical Specifications that are Insufficient to Assure Plant Safety" dated December 29, 1998 6.2 NRC Inspection Manual Chapter IMC 0326, "Operability Determinations &

Functionality Assessments for Conditions Adverse to Quality or Safety" Dated January 31, 2014 6.3 Technical Specification Taskforce Traveler Improved Standard Technical Specifications Change Traveler, TSTF - 493, Revision 4, "Clarify Application of Setpoint Methodology for LSSS Functions.

6.4 Calculation JC-Q1 821-K114 Rev. 2, ADS Initiation Timer Setpoint Validation 6.5 JC-Q1 E12-K093 Rev. 1, Containment Spray Timer Setpoint Validation 6.6 JC-Q1 R21-90024-1 Rev. 2, Div 1 & 2 Degraded 4.16 KV Bus Voltage Setpoint Validation 6.7 JC-Q1 P81-90024, Rev. 4, Div 3 Degraded 4.16 KV Bus Voltage Setpoint Validation 6.8 JS-09 Rev. 1 "Methodology for the Generation of Instrument Loop Uncertainty &

Setpoint Calculations."

Attachment 2 GNRO-2014/00014 Proposed Technical Specification Changes (Mark-up)

ECCS Instrumentation 3.3.5.1

'- Table 3.3.5.'-1 (pege 4 of 5)

Emergency Coro Cooling System Instrllllentation APPLICABLE COND I TlOMS MODES OR REFERENCED OTHEII REQUIREIJ FRCM SPECIFIED CHANNELS PER REQUIRED SURVEILLANCE ALLOWABLE fUNCTION COHOnlOHS FUNCTION ACTION A.1 REQUIREMENTS VALUE

4. AutDlftlltlc Oepresaud zat I on System (ADS) Trip syst. A
a. RelciorVes.el 1, Z(dl,:s(d) 2. F 'SR' '3.'3.5. L1 ~. ~lSt.5' lnc:hea Uater Level - Low Sit 3.3.5.1.2 Low Low, Level 1 sa 3.3.5.t.3 sa 3.3.5.1.5 511 3.1.5.1.6
b. Orywell 1,Z(d) ,l(d) Z 51 3.3.S.1.1 S 1.44 pail Pressure - High 51 3.3.5.1.2 51 3.3.5.1.3 Sl 51 3.1.5.1.5 3.3.5.1.6 I / 'S
c. M>S Initiation Timer 1,2(d) ,3(d) G SR SR 3.3.5.1.2 3.3.5.1.4 S IS8Conda 511 3.3.5.1.6
d. R.actor V...el 1,Z(d) ,3(d) 51 3.3.5.1.1 t 10.8 Inch..

W.ter Level - Low, SI 3.3.5.1.2 Level :5 5R 3.3.5.1.3 (CanU I'IlI8tory) SII 3.3.5.1.5 SI 3.3.5.1.6

- e. LPCS P....,

Discharge Pressure - High 1,Z(d) ,3(d) Z G SII SA 51 3.3.5.1.1 3.3.5.1.2 3.3.5.1.3 t 125 palg and

~ 165 paie

f. LPCI p~ A 1 ,Z(d) ,3(d) 2 G s.

51 Sit 3.3.5.1.5 J.3.5.1.6 3.3.5.1.1 t 115 paig and Discharge SR 3.3.5.1.2 S 135 peie Pressure - High SR 3.3.5.1.3 511 3.3.5.1.5 Sl 3.3.5.1.6

g. ADS Bypas. Ti ...r 1,Zed) ,3(d) 2 G Sit 3.3.5.1.2 s 9.4 lIirut..

(High Drywell 51 3.3.5.1.4 Pres.ure) Sl 3.3.5.1.6

h. Manual Initiation 1,Z(d) ,:sCd) 21syst. G Sit 3.3.5.1.6 itA (cant I nued)

(d) With reactor ste. . da8D pressure>> 150 pelt.

GRAND GULF 3.3-42 Amendment No. 120

ECCS Instrumentation 3.3.5.1 Tabl. 3.3.5.1-1 (page 5 of 5)

Emergency Core Cooling System Instrumentation APPLICABLE COHO I TIONS I400ES OR REFERENCED OTHER REQUIRED FROM SPECIFIED CHANNELS PER REQUIRED SURVE ILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTIOII ACTION A.1 REQUIREMENTS VALue

5. ADS Trip 5yst~ I
a. Resetar Vesael Water 2 SA 3.3.5.1.1 ~ '152.5 Level - Low Low La.., SA 3.3.5.1.2 inth..

Level 1 SR 3.3.5.1.3

-SR*--3.3.5 *.1..5--._. '"

SR 3.3.5.1.6

b. orywell Pressure - High 1,Z(d) ,3(d) 2 SR 3.3 .5
  • 1. 1 ~ 1.44 ps i 9 Sil 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.5 Sil 3.3.5.1.6
c. ADS Initiation Timer 1,Z(d'.3(d) G SIl 3.3.5.1.2 sa 3.3.5.1.4 SR 3.3.5.1.6
d. Resetar Vessel Wate, 1, Zed) ,3(d) Sil 3.3.5.1.1 t 10.8 Inch" Level - Low, Level 3 SJl 3.3.5.1.2 (Confi nnetory) 51 3.3.5.1.]

sa 3.3.5.1.5 5R 3.3.5.1.6

e. LPCI p~ 8 I C 1.Z(d) ,](d) 2 per pulp G 51 3.3.5.1.1 ~115psll Discharge sa 3.3.5.1.Z and Pres.ure - High sa 3.3.5.1.3 S 135 pait sa 3.3.5.1.5 sa 3.3.5.1.6
f. ADS Bype** Tilll8r (High 1,Z(d) ,3(d) 2 G sa 3.3.5.1.2 ~ 9.4 ",inutes Dryvel I Pressure) SR 3.3.5.1.4 SR 3.3.5.1.6
g. Manual Initiation 1,2(d),3(d) 21syat_ G SR 3.3.5.1.6 NA (d) With reactor ste... dome pressure )0 150 pait.

GRAND GULF 3.3-43 Amendment No. 120

RHR Containment Spray System Instrumentation 3.3.6.3 Table 3.3.6.3-1 (plge 1 of 1)

RHR Contalmenc Spray S~t. InltrUllentition CONDITIONS REQUIRED REFEReNCE!)

CHANNELS FROM PER TRIP REQUIRE!) SURVE I LLANCE ALLOWABLE FUNCTION SYSTEM ACTION A.1 REQUIREMENTS VALue

1. Orywell Pressure - High 2 B SR 3.3.6.3.1 $. 1.44 palg SR 3.3.6.3.2 5R 3.3.6.3.3 SR 3.3.6~3.5

~ 3.3.6.3.6._

2. Contalrvnent Pressure - High e SI 3.3.6.3.1  ! 8.34 pail Sit 3.3.6.3.2 SR 3.3.6.3.3 sa 3.3.6.3.5 sa 3.3.6.3.6
3. Roactor Vesael Wace" 2 I SR 3.3.6.3.1  ! *152.5 Inch..

Level - LCN LCN LOllI, 51! 3.3.6.3.2 Level 1 SI 3.3.6.3.3 3.3.6.3.5 SR SI 3.3.6.3.6 LO."

4. System A and 5yaCeM
  • C SR 3.3.6.3.2 l~ml~" and Time... SI 3.3.6.3.4 S~.inut.. I sa 3.3.6.3.6

\ I .1 GRAND GULF 3.3-66 Amendment No. 120

OJ,.::.,,'_!

LOP Instrumentation

,', ,:','::,:, 3.3.8.1 Table 3.3.8.1~~ (page 1 of 1)

Loss of Power Instrumentation REQUIRED CHANNELS PER SURVEILLANCE ALLOWABLE

,- FUNCTION, DIVISION REQUIREMENTS VALUE J",

1; Divisions 1 and 2 - "

'". 4 ~,16 kV Emergency Bus

" ~lid~rvol~age a .. Loss' of voltage- 4 SR 3.3.8.1.1 ~ 2621 V and ~ 2912' V 4.16 kV basis SIL .~..~.J. "l3.~;l,.,~ ..

SR 3.3.8.1.4 ,I.

b: Loss of Voltage - Time 2 SR 3.3.8.1.3 ~ 0.4 seconds and

" ',De~ay SR 3.3.8.1.4 ~ 1.0 seconds

~:rv and ~

c .. 'Degraded Voltage- 4 SR 3.3.8.1.1 3837.6 V "4.16. kV basis SR 3.3.8.1.2 SR 3.3.8.1.4 . 31' '1. 2 ,b. . I' .

, d. : Degraded Vol tage -Time 2 SR 3.3.8.1.3 ~ 8.5 seconds and Delay SR 3.3.8.1.4 ~.9.5 s,econds

2. Division 3-4.16 kV Emergency Bus Unde~oltage

,a.: Loss of Vol tage - 4 SR 3.3.8.1.3 ~ 2984 v and ~ 3106 V 4.16 kV basis SR 3.3.8.1.4

b. Los~ of Voltage - Time 2' SR 3.3.8.1.3 ~ 2. 0 aeconds and '

, Delay' SR 3.3.8.1.4 ~ 2.5 .seconds

c. Degraded vol tage '-

4.16 kv basis 4 SR SR 3.3.8.1.3 3.3.8.1.4 ~~50V~d !l: 3763.5 V

d. Degraded Vol tage' - Time Delay"No LOCA' 2 SR SR 3.3.8.1.3 3.3.8.1.4

~ 4.5 minutes and

~ S. 5 minutes ' , I

    • '  : ~: "I
e. Degraded Vc)lt;age - Time SR. 3.3.8.1.3 ~~ seconds 'i ....

and'3'19~'

Delay, .LOCA .

4 SR 3.3.8.1.4 ~ 4.4 seconds . . I

", ,I 3.3-79 Amendment No. Tie, 197

Attachment 3 GNRO-2014/00014 Revised Technical Specification Changes (Clean Copy)

ECCS Instrumentation 3.3.5.1 Table 3.3.5.1-1 (page 4 of 5)

Emergency Core Cooling System Instrumentation APPLICABLE CONDITIONS MODES OR REQUIRED REFERENCED OTHER CHANNELS FROM SPECIFIED PER REQUIRED SURVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREMENTS VALUE

4. Automatic Depressurization System (ADS)

Trip System A

a. Reactor Vessel 1,2(d) ,3(d) 2 F SR 3.3.5.1.1 ~ -152.5 inches Water Level- SR 3 . 3 . 5 . 1. 2 Low.Low Low, SR 3.3.5.1.3 Level 1 SR 3 . 3 . 5 . 1. 5 SR 3 . 3
  • 5
  • 1. 6
b. Drywell 1,2(d) ,3(d) 2 F SR 3.3.5.1. 1 $ 1. 44 psig Pressure - High SR 3 .3 . 5. 1. 2 SR 3.3.5.1.3 SR 3 . 3 . 5 . 1. 5 SR 3.3.5.1.6
c. ADS Initiation 1,2(d) ,3(d) 1 G SR 3.3.5.1.2 $ 115 seconds Timer SR 3.3.5.1.4 SR 3.3.5.1.6
d. Reactor Vessel 1,2(d) ,3(d) 1 F SR 3.3.5.1. 1  ;;:: 10.8 inches Water Level- SR 3 . 3
  • 5 . 1. 2 Low, Level 3 SR 3 . 3 . 5 . 1. 3 (Confirmatory) SR 3 . 3 . 5 . 1. 5 SR 3 . 3 . 5 . 1. 6
e. LPCS Pump 1,2(d) ,3(d) 2 G SR 3.3.5.1.1  ;;:: 125 psig and Discharge SR 3.3.5.1.2 $ 165 psig Pressure - High SR 3 .3 . 5 . 1. 3 SR 3.3.5.1.5 SR 3.3.5.1. 6
f. LPCI Pump A 1,2(d) ,3(d) 2 G SR 3.3.5.1.1 ~ 115 psig and Discharge SR 3.3.5.1.2 $ 135 psig Pressure - High SR 3 . 3 . 5 . 1. 3 SR 3.3.5.1. 5 SR 3.3.5.1. 6
g. ADS Bypass 1,2(d) ,3(d) 2 G SR 3.3.5. 1.2 $ 9.4 minutes Timer (High SR 3 . 3 . 5. 1. 4 Drywell SR 3 . 3 . 5 . 1. 6 Pressure)
h. Manual 1,2(d),3(d) 2/system G SR 3.3.5.1. 6 NA Initiation (continued)

(d) With reactor steam dome pressure> 150 psig.

GRAND GULF 3.3-42 Amendment No.

ECCS Instrumentation 3.3.5.1 Table 3.3.5.1-1 (page 5 of 5)

Emergency Core Cooling System Instrumentation APPLICABLE CONDITIONS MODES OR REQUIRED REFERENCED OTHER CHANNELS FROM SPECIFIED PER REQUIRED SURVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.l REQUIREMENTS VALUE

5. ADS Trip System B
a. Reactor Vessel 2 F SR 3.3.5.1.1 ~ -52.5 Water Level - Low SR 3 . 3 . 5 . 1 .2 inches Low Low, Level 1 SR 3 . 3 . 5. 1. 3 SR 3 . 3 . 5 . 1. 5 SR 3.3.5.1. 6
b. Drywell Pressure- 1,2 (d) ,3 2 F SR 3.3.5.1.1 ~ 1.44 psig High (d) SR 3.3.5.1. 2 SR 3 . 3 . 5 . 1. 3 SR 3 . 3 . 5 . 1. 5 SR 3 . 3 . 5. 1. 6
c. ADS Initiation 1,2 (d) ,3 1 G SR 3.3.5.1.2 ~ 115 secondsl Timer (d) SR 3.3.5.1.4 SR 3
  • 3 . 5
  • 1. 6
d. Reactor Vessel 1,2 (d) ,3 1 F SR 3.3.5.1.1 ~ 10.8 inches Water Level- (d) SR 3 . 3 . 5. 1. 2 Low, Level 3 SR 3 . 3 . 5 . 1. 3 (Confirmatory) SR 3.3.5.1. 5 SR 3.3.5.1. 6
e. LPCI Pumps B & C 2 per G SR 3.3.5. 1.1 ~ 115 psig Discharge pump SR 3.3.5.1.2 and Pressure C High SR 3.3.5.1.3 ~ 135 psig SR 3 . 3 . 5 . 1. 5 SR 3.3.5.1. 6
f. ADS Bypass Timer 2 G SR 3.3.5.1. 2 ~ 9.4 minutes (High Drywell SR 3.3.5.1. 4 Pressure) SR 3 . 3. 5 . 1. 6
g. Manual Initiation 1,2(d),3 2/system G SR 3.3.5.1. 6 NA (d)

(d) With reactor steam dome pressure> 150 psig.

GRAND GULF 3.3-43 Amendment No.

RHR Containment Spray System Instrumentation 3.3.6.3 Table 3.3.6.3-1 (page 1 of 1)

RHR Containment Spray System Instrumentation CONDITIONS REQUIRED REFERENCED CHANNELS FROM PER TRIP REQUIRED SURVEILLANCE ALLOWABLE FUNCTION SYSTEM ACTION A.1 REQUIREMENTS VALUE

1. Drywell PressureC 2 B SR 3.3.6.3.1 ~ 1. 44 psig High SR 3.3.6.3.2 SR 3.3.6.3.3 SR 3.3.6.3.5 SR 3.3.6.3.6
2. Containment 1 C SR 3.3.6.3.1 ~ 8.34 psig Pressure C High SR 3.3.6.3.2 SR 3.3.6.3.3 SR 3.3.6.3.5 SR 3.3.6.3.6
3. Reactor Vessel 2 B SR 3.3.6.3.1 ~ -152.5 inches Water Level C Low SR 3.3.6.3.2 Low Low, Level 1 SR 3.3.6.3.3 SR 3.3.6.3.5 SR 3.3.6.3.6
4. System A and System 1 C SR 3.3.6.3.2 ~ 10.6 minutes and B Timers SR 3.3.6.3.4 ~ 11.1 minutes SR 3.3.6.3.6 GRAND GULF 3.3-66 Amendment No.

LOP Instrumentation 3.3.8.1 Table 3.3.8.1-1 (page 1 of 1)

Loss of Power Instrumentation REOUIRED CHANNELS PER SURVEILLANCE ALLOWABLE FUNCTION DIVISION REOUIREMENTS VALUE

1. Divisions 1 and 2 - 4.16 kV Emerqency Bus Undervoltaqe
a. Loss of Vol tage - 4 SR 3.3.8.1.1 ~ 2621 V and ~ 2912 V 4.16 kV basis SR 3.3.8.1.2 SR 3.3.8.1.4
b. Loss of Vol tage - Time 2 SR 3.3.8.1.3 ~ 0.4 seconds and Delay SR 3.3.8.1.4 ~ 1.0 seconds
c. Degraded Voltage c 4 SR 3.3.8.1.1 ~ 3764.25 V and 4.16 kV basis SR 3.3.8.1.3 ~ 3837.6 V SR 3.3.8.1.4
d. Degraded Vol tage - Time 2 SR 3.3.8.1.3 ~ 8.5 seconds and Delay SR 3.3.8.1.4 ~ 9.5 seconds
2. Division 3c4.16 kV Emerqency Bus Undervoltaqe
a. Loss of Voltage- 4 SR 3.3.8.1.3 ~ 2984 V and ~ 3106 V 4.16 kV basis SR 3.3.8.1.4
b. Loss of Vol tage - Ti me 2 SR 3.3.8.1.3 ~ 2.0 seconds and Delay SR 3.3.8.1.4 ~ 2.5 seconds
c. Degraded Vol tage - 4 SR 3.3.8.1.3 ~ 3605 V and ~ 3763.5 V 4.16 kV basis SR 3.3.8.1.4
d. Degraded Vol tage - Time 2 SR 3.3.8.1.3 ~ 4.5 minutes and Delay. No LOCA SR 3.3.8.1.4 ~ 5.5 minutes
e. Degraded Vol tage - Time 4 SR 3.3.8.1.3 ~ 3.68 seconds and Delay. LOCA SR 3.3.8.1.4 ~ 4.4 seconds GRAND GULF 3.3-79 Amendment No. ~. ___

Attachment 4 GNRO-2014/00014 Calculation JC-Q1 B21-K114 "Instrument Uncertainty and Setpoint Determination for the System IB21-ADS System Initiation Time Delay"

DAND-l bJANO-2 ~GGNS bJ* IP-2 [J IP-3 DpLP OJAF DpNPS ORBS OVY OW3 DNP-GGNs-3 L]NP-RBS-3 CALCULATION (I) EC # ~ P)Page 1 of 62 COVER PAGE (3) Design Basis Calc. 0 YES ~NO (4) t8I CALCULAnON o ECMarkup (5) Calculation No: JC-QIB21-K114 (6) Revision: 002 (7)

Title:

InstrumeDt Uncertainty and Setpoint Determination for the (8) Editorial System tBll-ADS System Initiation Time Delay DYES ~NO (7) System(s): B21 (10) Review 01'1 (Department): NPE (I&C Design)

(il) Safety Class: (12. ComponentlEquipmentlStnleture TypelNumber:

~ Safety I Quality Related o Augmented Quality Program IB21CK114A,B,E,F IB21CKOO5A,B o Non-Safety Related (I.J) Document Type: J05.02 (14) Keywords (DeseriptionITopics}

Codes): setpoint, uncertainty REVIEWS (15) Name/SignaturelDate .(16) Name/SignaturelDate (11) Name/SignaturelDate Mary Coffaro I ~ Robin Smith I ~ Oreg Phillips /

/I I '1r~ U If I') See A/S 12/17/2013 Responsible Engineer ~ Design Verifier Supervisor/Approval o Reviewer IZI Comments Attached o Comments Attached

~ ENTERGY ~ CALCULATION SHEET SHEET 2 OF _62_

CALCULATION NO._-=-1C=.-..O-.. . . :;.1.=B=.21=---=-=K:.::.,.11=--4'--- REV. 002 o Issued for Use 1 General Revision EC 40337: General revision for formatting, addressed CR-GGN-2004-0038, 2

revised drift analysis and corrected accurac for K005 rela s.

-=::=- ENTERGY CALCULATION NO.

  • CALCULATION SHEET JC-QIB21-KI14 SHEET 3 REV.

OF 002 CALCULATION CALCULATION NO: JC-QIB21-Kl14 Rev 002 REFERENCE SHEET I. EC MARKUPS INCORPORATED (N/A to NP calculations): None II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc YIN No.

1. JS09 0 001 0 0 N
2. 169C9488 001 015 0 0 N
3. 169C9488 002 015 0 0 N
4. 169C9488 003 013 0 0 N
5. 169C9488 004 015 0 0 N
6. SDC-B21 0 003 0 0 N
7. 22A3856AA 0 012 0 0 N
8. EIOO.O 0 007 0 0 N
9. CR-GGN-2003-03577 -- 000 0 0 N
10. JI281 020 000 0 0 N II. JI281 021 001 0 0 N
12. JI281 039 001 0 0 N
13. JI281 040 000 0 0 N
14. EI161 005 004 0 0 N
15. J0400 0 018 0 0 N
16. J0401 0 014 0 0 N
17. AOOl4 0 009 0 0 N
18. AOl20 0 016 0 0 N
19. 06-EL-IB21-Q-000I -- 102 0 0 N
20. 164C5257 001 013 0 0 N
21. 164C5257 003 012 0 0 N
22. MPGE-86-107 -- 000 0 0 N
23. 865E278 002 003 0 0 N
24. 368X534BA 0 015 0 0 N
25. 169C9489 001 018 0 0 N
26. 169C9489 002 017 0 0 N
27. 169C9489 003 015 0 0 N
28. 169C9489 004 016 0 0 N

CALCULATION SHEET

-::::- ENTERGY SHEET 4 OF _62_

CALCULATION NO._....;;...lC=----"IO-.,.; ;I. =B.=2""-1-..; ;:;.:;K: .; ; .I. . ; . .14..:.-- REV. 002

m. CROSS

REFERENCES:

1. Asset Suite Equipment Data Base (EDB)
2. UFSAR 7.3.1.1.1.4
3. Technical Specifications, Section 3.3.5.1, Tables 3.3.5.1-1 and TR3.3.5.1-1
4. UFSAR 8.3.2.1.6.2 IV. SOFTWARE USED:

Title:

N/A VersioniRelease: Disk/CD No.

V. DISK/CDS INCLUDED:

Title:

N/A VersioniRelease Disk/CD No.

VI. OTHER CHANGES:

Related references removed from this calculation:

22A3856, EAR E90-0158, DL828E444BA, MC-QIEI2-K93, GGNS-1-905.0, lC-QIEI2-84015, all WOs, MI077C

~ ENTERGY

  • CALCULATION SHEET SHEET 5 OF _62_

CALCULATION NO._...::..JC::::..-...::.Q;,.;:;.I=B.=.,;21~-K=..,;II:;....:4:......- REV. 002 TABLE OF CONTENTS SHEET COVER SHEET 1 RECORD OF REVISION 2 CALCULATION REFERENCE SHEET 3 TABLE OF CONTENTS 5 SECTION 1.0 PURPOSE 6 2.0 DESIGN REQUIREMENTS 6

3.0 REFERENCES

8 4.0 GIVEN 9 5.0 ASSUMPTIONS 13 6.0 METHODOLOGY 15 7.0 CALCULATION 17

8.0 CONCLUSION

22 APPENDICES 1 Drift Analysis K114 Relay (19 sheets) 2 Drift Analysis K005 Relay (16 sheets)

ATTACHMENTS Design Verification Fonn (5 sheets)

~ ENTERGY

  • CALCULATION SHEET SHEET 6 OF _62_

CALCULATION NO._....::..JC:::::..-...::oQ;"..;:;.I=B=-21::--=K;.;:;,..II~4:..-- REV. 002 1.0 PURPOSE The purpose of this calculation is to detennine the instrument loop uncertainty, limiting allowable values and set points for instrument loops IB21CKI14A,B,E,F and IB21CK005A,B. The values generated by this c~lculation are in accordance with reference 3.1.1.

2.0 DESIGN REQUIREMENTS Safety/relief valves used for automatic depressurization (ADS) under assumed loss-of-coolant accident conditions shall automatically open and remain open below their preset closing pressure. The open signal is based on signals from both high drywell pressure and low reactor water level and confinnation of one low pressure core spray or low pressure core injection running. (Ref. 3.1.3) Initiation of signals does not need to be simultaneous.

By remaining open, the relief valves shall reduce reactor pressure to the point where the residual heat removal (LPCI mode) and/or the low pressure core spray systems can adequately cool the core.

Initiation of ADS is delayed a nominal 105 seconds (Timers IB21C-K5A,B) to allow the operator to tenninate ADS action if HPCS initiation and acceptable reactor level have been confinned (Ref. 3.1.3).

For events which result in low RPV water level, but do not pressurize the drywell, the ADS initiation signal is delayed by.the drywell bypass timers 1B21 CKI14A,B,E,F for a nominal 9 minute delay. If low water level persists when the bypass timer has timed out, the ADS timers, IB21CK005A or B is activated as before. (Ref. 3.1.3)

Adequate LPCI or LPCS pump discharge pressure to assure a low pressure ECCS pump is running and capable of delivering water to the vessel is a pennissive for ADS initiation.

(Ref. 3.2.1, p7.3-9)

The initiating event for ADS is a LOCA involving an RCPB breach either inside or outside the drywell. This could subject the equipment in containment to accident conditions. However the timers addressed by this calculation are located in panels in the control room where the accident environment is the same as nonnal (Sections 4.2 & 4.3).

Therefore, the timers will be required to function under nonnal environmental conditions.

The ADS System is part of the Nuclear Boiler System and is required to meet seismic category I requirements (SSE) (Ref. 3.1.4). Therefore the timers must function during and after a seismic event.

For instrument loops IB21CKI14A,B,E,F the analytical limit (AL) is 10 minutes (Ref.

3.1.19), the Technical Specification allowable value (AV) is::; 9.4 minutes (Ref. 3.2.2) and the TRM setpoint is ::; 9.2 minutes (Ref. 3.2.2).

~ ENTERGY ~ CALCULATION SHEET SHEET 7 OF _62_

CALCULATION NO ,_""",-1C=---"'O..;;;;.1=-B=-21"'---=K=..;11"'--4'--- REV, 002 For instrument loops 1B21CK005A,B the analytical limit is 120 seconds (Ref. 3.1.4), the Technical Specification allowable value is ~ 117 seconds (Ref. 3.2.2) and the TRM setpoint is ~ 105 seconds (Ref. 3.2.2).

CALCULATION SHEET

"=::=" ENTERGY

  • SHEET 8 OF _62_

CALCULATION NO._-=-1C=---""O..;;;;.I=.B=-21;:.. .;-K=.;:;..;II;:....;4'--- REV. 002

3.0 REFERENCES

3.1 Relationships 3.1.1 Standard No. 1S09, Methodology for the Generation of Instrument Loop Uncertainty & Setpoint Calculations 3.1.2 GE PPD169C9488P017, Sh. 1,2,3,4 3.1.3 SDC-B21, Nuclear Boiler System 3.1.4 22A3856AA, GE Design Spec Data Sheet 3.1.5 Standard EI00.0, "Environmental Parameters for GGNS" 3.1.6 CR-GGN-2003-03577 3.1.7 GE PPD 169C9489, Sh. 1,2,3,4 3.1.8 11281-020, Logic Diagram 3.1.9 11281-021, Logic Diagram 3.1.10 11281-039, Logic Diagram 3.1.11 11281-040, Logic Diagram 3.1.12 EI161-005, Schematic 3.1.13 10400, Control Room Panel Location 3.1.14 10401, UCSR Panel Location 3.1.15 AOOI4,PlanEl.I85',0" 3.1.16 AO 120, Control Room Plan 3.1.17 06-EL-IB21-Q-000l, Surveillance Procedure ADS Timers Functional Test and Calibration 3.1.18 GE PPD 164C5257, Sh. 1,3 3.1.19 GE Letter, MPGE-86-107, Dated August 12,1986 3.1.20 EDL 865E278, Sh. 2 3.1.21 EDL 368X534BA 3.2 Cross References 3.2.1 UFSAR 7.3.1.1.1.4 3.2.2 Technical Specification Section 3.3.5.1 and Tables 3.3.5.1-1 and TR 3.3.5.1-1 3.2.3 Asset Suite Equipment Data Base (EDB) 3.2.4 UFSAR 8.3.2.1.6.2

~ ENTERGY

  • CALCULATION SHEET SHEET 9 OF _62_

CALCULATION NO._..::..1C.=. --.: oQ;. .;:;.I.=B=-21;:;. .;-.=;,.=K;.;:;. II;:;. .;4=------ REV. 002 4.0 GIVEN 4.1 Instrument Loop Block Diagram Logic Diagram IB21CKI14A,B (TDR #1) IB21CK005A,B 3.1.8-3.1.11 IB21CKI14E,F (TDR #2) (TDR #3)

RPV Water TDR#1 OR TDR#3 -

Level Low Gate RPVWater Level Low and Drywell Pressure High RPV Water '---

AND Level -

TDR#2 Gate - ADS Low

~ OR I Initiate Logic RPV Water Level Low Gate and Dryw ell Pressure High

~ ENTERGY

  • CALCULATION SHEET SHEET--:l:...::.0_ OF _62_

CALCULATION NO._....::..JC=---::.Q"-'='I...:::::B=2.:::-1-...::..;:K::..::.l~14-=--- REV._....:::...;00=2:......-_ _

4.2 IB21CK005A,B ADS Timer Environment Description Data Reference Tag Number IB21CK005A,B Instrument Location:

Panel HI3-P628, H13-P631 3.1.12 Room OC703, OC504 3.1.13- 3.1.16 Environmental Conditions:

Normal: Zone N-028 3.1.5 Temperature 69-90°F 3.1.5 Pressure 0.1 to 1.0 inwc 3.1.5 Radiation (Gamma) 1.8E2 rads (40 yr TID) 3.1.5 0.5 mRads/hr dose rate Humidity 20-500/0 RH 3.1.5 DBE or Accident: same as normal 3.1.5 Seismic Conditions: N/A Assumption 5.7 Surveillance Intervals: 92 days 3.2.2 4.3 IB21CKl14A,B,E,F Bypass Timer Environment Description Data Reference Tag Number IB21C-KI14A,B,E,F Instrument Location:

Panel HI3-P628, H13-P631 3.1.12 Room OC703, OC504 3.1.13 - 3.1.16 Environmental Conditions:

Normal: Zone N-028 3.1.5 Temperature 69-90°F 3.1.5 Pressure 0.1 to 1.0 inwc 3.1.5 Radiation (Gamma) 1.8E2 rads (40 yr TID) 3.1.5 0.5 mRads/hr dose rate Humidity 20-50% RH 3.1.5 DBE or Accident: same as normal 3.1.5 Seismic Conditions: N/A Assumption 5.7 Surveillance Intervals: 92 days 3.2.2

~ ENTERGY

  • CALCULATION SHEET SHEET_1;;..=1_ OF _62_

CALCULATION NO ._-=-JC=--......:IQ-.....:1-=B.=.2.:-1-..:.:K=-=-1-=-14~ REV ._~00~2'---_ _

4.4 IB21CK005A,B ADS Timer Vendor Data Description Data Reference Tag Number 1B21CK005A, B Manufacturer AmeracelAgastat 3.1.18,3.1.20,3.1.21 Model ETR14D3 3.1.18,3.1.20,3.1.21, EGPDC2004 3.1.2,3.1.7 FTR14D3EC750 TR14D3EC750 Assumption 5.2 Timer Setting 100 - 105 sec 3.1.17 Repeatability (Assumption 5.1): +/- 5% setpoint at normal conditions*

+/- 100/0 setpoint at extreme conditions*

Defined Conditions:

  • Normal Extreme (limit)

Temperature: 70-104°F 40°F, 156°F Humidity: 40-90% RH 20%,99%RH Pressure: Atm 8.0 inwc Radiation: 5.3E2 Rads TID 1.7E5 Rads TID Voltage: N/A 94,143 VDC Operating Range 4-120 sec

  • worst case based on references 3.1.2,3.1.7,3.1.18 and 3.1.6

~ ENTERGY

  • CALCULATION SHEET SHEET-----=1::..=2_ OF _62_

CALCULATION NO._...::..JC.::::::..-.....::.Q~1..;:;::B=2~1-..:;,;:K~1~14..:......- REV._...=...;00::;.:2:.....--_ _

4.5 IB21CKl14A,B,E,F Bypass Timer Vendor Data Description Reference Tag Number 1B21CKl14A,B,E,F Manufacturer AmeracelAgastat 3.1.20, 3.1.21, 3.1.2 Model ETR14D3NC2004002 3.1.20,3.1.21,3.1.2 Timer Setting 8.7 - 9.2 min 3.1.17 Repeatability (Assumption 5.1): +/- 5% setpoint at normal conditions 3.1.2

+/- 10% setpoint at extreme conditions 3.1.2 Defined Conditions: 3.1.2 Normal Extreme (limit)

Temperature: 60-104°F 40°F, 120°F Humidity: 20-50% RH 95%RH Pressure: +/- 2 psig N/A Radiation: N/A 1.8E5 Rads TID Voltage: 80°,,10 min coil pickup Operating Range 1-30 min

CALCULATION SHEET

-=:::=- ENTERGY

  • SHEET------e;I::.=3_ OF _62_

CALCULATION NO._-=-JC=.-.....;:,Ot..::1.=B.=.2.=...1--=-=K:..;:;..I..:...14..:.....- REV._....;;;...00"'-=2'---_ _

5.0 ASSUMPTIONS 5.1 The Reference Accuracy includes repeatability. It can be seen below and in section 4.0 of this calculation that TE, HE, RE and PS can be included in the repeatability ~ince the nonnal operating conditions for the timer relays approximate the nonnal operating conditions of the plant and the conditions under which the loops must function.

The Temperature Effect (TE) can be considered zero since the operating range of the timers (FTR: 40°F - 156°F, ETR: 40°F - 145°F encompasses the DBE temperature range (69°F - 90°F) in the rooms where the timers are located.

The Humidity Effect (HE) is not applicable to these timers since the timers can maintain their accuracy within the range of the room environment where they are located.

FTR Range: 40-90% RH ETR Range: 20-50% RH Room environment DBE humidity: 50% RH The Radiation Effect (RE) does not affect the accuracy of the timers since their room environment will not exceed a total integrated dose (TID) of 1.8E2 Rads and the timers can maintain their accuracy up to 1.75E5 Rads for the FTRs and 1.8E5 Rads TID for the ETRs.

The minimum coil pickup voltage for the FTR timer relays is 94 VDC and for the ETR timer relays is 100 VDC. The nonnal operating range of the 125 VDC DIY I and DIY II battery bus is maintained between 105 VDC and 140 VDC (UFSAR section 8.3.2.1.6.2, reference 3.2.4). Since the lowest voltage that will be present on the bus is 105 VDC, and the timers coils can actuate at a voltage lower than this, the power supply effects (PS) will not hinder the repeatability of the timers.

The Static Pressure Effects (SPE) do not apply to the timers since this effect is a relationship between a high and low sensing port at a static pressure usually on differential pressure units.

5.2 Relay IB21K005A is a model number TR14D3EC750, which is assumed to be identical to FTR14D3EC750 in all aspects important to this calculation (Ref.

3.1.6).

5.3 Vendor documents list equipment perfonnance data without stating the statistical basis for the numbers. Although some vendor data is "worst case" it will be assumed that all such data is a 2 sigma value.

5.4 Per reference 3.1.1, the M&TE error is nonnally assumed to be equal to the reference accuracy of the sensor. Per reference 3.1.17, for the K005A,B relays the

~ ENTERGY

  • CALCULATION SHEET SHEET----.,;I:........:..4_ OF _62_

CALCULATION NO._-=-JC=--~Q,-=,I.=B.=.2~I-..:.::K:..:..I~I4..:.....-

  • REV._....;;;...00;;;..;;;;2'----_ _

test equipment used to determine the setpoint has an accuracy of"+/- 0.5 seconds.

Per reference 3.1.17, the actual trip setpoint can adjusted between 100 and 105 seconds. For this calculation we will assume the technician sets the time delay relay at the center of this band, which results in a setpoint tolerance of +/- 2.5 seconds. Therefore, for the K005A,B relays the conservative actual setting tolerance, +/- 2.5 seconds, will be used as input for the M&TE error.

Per reference 3.1.17, for the KII4A,B,E,F relays the test equipment used to determine the setpoint has an accuracy of +/- 0.5 seconds. The actual setting tolerance is +/- 14.0 seconds ((552-524)/2), per reference 3.1.17. Converting to minutes the result is +/-0.24 minutes. Therefore, for the KII4A,B,E,F relays the conservative actual setting tolerance of +/- 0.24 minutes will be used as input for the M&TE error.

5.5 No data regarding the Amerace/Agastat model FTR timer relay used for IB2ICK005A & B was available from the vendor. However there is historical calibration data available on drift. This data was used to calculate the drift based on the calibration interval. The drift analysis resulted in value of +/-2.28 seconds (Appendix 2). The drift values are for a three month period.

5.6 No data regarding the Amerace/Agastat model ETR timer relay used for IB2ICKII4A,B,E,F was available from the vendor. However there is historical calibration data available on drift. This data was used to calculate the drift based on the calibration interval. The drift analysis resulted in value of +/-5.38 seconds (Appendix 1). The drift values are for a three month period.

5.7 The timer relays are seismically qualified devices. Since the vendor does not identify any seismic effect error for the timer relays it is assumed that any seismic effects are included in the reference accuracy.

~,ENTERGY ~ CALCULATION SHEET SHEET------'1:...=:...5_ OF _62_

CALCULATION NO._...::..JC=---.::.Qc".;:;1~B:..=.2~1-~K:.,;:;.1~14~ REV._....:::....OO=2:.--_ _

6.0 METHODOLOGY 6.1 Device Uncertainties For each module, the uncertainty terms applicable to this application will be specified and combined into the following module errors:

RA reference accuracy L negative bias' uncertainty M positive bias uncertainty MTE - measurement and test equipment inaccuracies D drift 6.2 Loop Uncertainties The random and bias components of:

PE errors associated with the Primary Element PM errors in Process Measurement, and IR errors due to degradation in Insulation Resistance will be quantified, the loop error equation given, and the device and loop uncertainties combined to produce:

AL SRSS of all device random uncertainties except drift LL The sum of all negative bias uncertainties ML The sum of all positive bias uncertainties CL SRSS of all measurement and test equipment inaccuracies used for calibration.

DL SRSS of all drifts LUL SRSS( A L, C L, PE, PM) +/- IR - LL + M L 6.3 Total Loop Uncertainty The tota1100p uncertainty will be calculated using the reference 3.1.1 equation:

TLU=LU+D L 6.4 Allowable Value The allowable value for the loop will be calculated using the reference 3.1.1 equation:

AV=AL+/-LU

CALCULATION SHEET

"=:::=" ENTERGY

  • SHEET-----.;1;...;:;.6_ OF CALCULATION NO ._-=-JC-=---::.Q~1,-,=B~2..:...1-...:.::K=1..:...14..:......- REV._.----=-00=-=2~ _ _

6.5 Nominal Trip Setpoint The nominal trip setpoint will be calculated using the reference 3.1.1 equation:

NTSP = AL +/- TLU 6.6 Spurious Trip Avoidance The probability of a spurious trip during nonnal plant operation using the Tech Spec setpoint will be evaluated using the methodology of reference 3.1.1 and calculated loop errors. Per reference 3.1.1, a 95% probability of no spurious trip is acceptable.

6.7 LER Avoidance The probability of exceeding the Tech Spec allowable value without a trip at the tech spec setpoint will be evaluated using the methodology of reference 3.1.1 and calculated loop errors. Per reference 3.1.1, a 90% probability of avoiding LERs is acceptable. A Z of 1.28 corresponds to a probability of 900/0.

6.8 Nomenclature The nomenclature of reference 3.1.1 will be used. The calculation will perfonned for each loop, therefore the uncertainties and calculations will be uniquely identified.

6.9 Worst Case Loop The time delay logic is different for each loop so the uncertainties and allowable values for each loop will be calculated separately. This calculation will be perfonned for each loop for worst case component and worst case environment.

~ ENTERGY

  • CALCULATION SHEET SHEET-----'1;;...;...7_ OF _62_

CALCULATION NO._..;;...JC..;:;...--"O"-"1.;;;;;;B.=.2..;;;;...1-..=;;K;;.;;;.1..;;;...14-'--- REV._....:::...00::..;:;:2'---_ _

7.0 CALCULATION 7.1 Loop K005 Uncertainties The only device in this loop is the Amerace time delay relay. The accuracy of a time delay relay is determined by (1) the value initially set in, determined by calibration accuracy, (2) the repeatability, and (3) the drift:

An initial determination of the setpoint will be made for use in determining the loop uncertainty.

Setpoint = 105 secs 3.2.2 Using the error values from section 4.4:

RA K5 = +/- 5% setpoint (combined vendor value)

= +/- (0.05)*(105)

= +/- 5.25 secs The environment ranges are within the vendor data ranges, therefore:

TE Ks = 0.0 sec HE KS = 0.0 sec RE KS = 0.0 sec PS KS = 0.0 sec SE KS = 0.0 sec, per Assumption 5.7.

The relay vendor does not provide a drift error. Drift is determined using calibration data (Assumption 5.5).

DRK5 = +/- 2.28 secs Summarizing for the K005A,B loop:

A Ks = +/- SRSS(RA KS , TE Ks , HE K5 , SE KS RE KS , PS KS )

= +/- SRSS(5.25, 0.0, 0.0, 0.0, 0.0, 0.0)

= +/- 5.25 secs L K5 = - 0.0 secs M K5 = + 0.0 secs

= +/- 2.5 secs Assumption 5.4

= +/- 2.28 secs

~ ENTERGY

  • CALCULATION SHEET, SHEET------:l::..=8_ OF _62_

CALCULATION NO._-=-JC=--.....;:,QI;.".;:;1'-=B~2-=-1-..;:;,;:K=1-=-14..:..- REV._..::::...;00=2~_ _

7.2 Loop Kl14 Uncertainties The only device in this loop is the Amerace time delay relay. The accuracy of a time delay relay is determined by (1) the value initially set in, determined by calibration accuracy, (2) the repeatability, and (3) the drift:

An initial determination of the setpoint will be made for use in determining the loop uncertainty.

Setpoint = 9.2 min 3.2.2 Using the error values from section 4.5:

. RA Kl14 = +/- 5% setpoint (combined vendor value)

= +/- (0.05)*(9.2 min)

= +/- 0.46 min The environment ranges are within the vendor data ranges, therefore:

TE Kl14 " = 0.0 sec HE Kl14 = 0.0 sec RE Kl14 = 0.0 sec PS Kl14 = 0.0 sec SE Kl14 = 0.0 sec, per Assumption 5.7.

The relay vendor does not provide a drift error. Drift is determined using calibration data (Assumption 5.6).

DR Kl14 = +/- 5.38 secs

= +/- (5.38 secs) (1 min./60 secs)

= +/- 0.09 min.

Summarizing for the Kl14A,B,E,F loop:

A Kl14 = +/- SRSS(RA Kl14 , TE Kl14 , HE Kl14 , SE Kl14 RE Kl14 , PS Kl14 )

= +/- SRSS(0.46, 0.0, 0.0, 0.0, 0.0, 0.0)

= +/- 0.46 min

= - 0.0 min

= + 0.0 min

= +/- 0.24 min Assumption 5.4 D Kl14 = +/- 0.09 min

~ ENTERGY

  • CALCULATION SHEET SHEET-----:1~9_ OF _62_

CALCULATION NO._...::..JC:::::...-.....:.Q"'-'='1..;:::B;.=.2.;:;...1-..;:;.:K::.,;:;.1~14..:.....- REV._...;;..00;:;...::2:-_ _

7.3 Loop Uncertainty for K005 PE = +/- 0.00 secs (The loops do not employ a primary element.)

PM = +/- 0.00 secs (The loops do not measure a process)

IR = +/- 0.00 secs (No harsh environments exist at the mounting locations.)

LU KS = +/- SRSS(AKS , C KS )

= +/- SRSS(5.25, 2.5)

= +/- 5.82 secs 7.4 Total Loop Uncertainty for K005 TLUKS = LUKS + DKs

= 5.82 secs + 2.28 secs

= 8.10 secs 7.5 Allowable Value for K005 AV KS =AL-LUKS

= 120 - 5.82 secs

= 114.18 secs The Technical Specification allowable value of ~ 117 seconds is non-conservative with respect to the calculated AV. Per reference 3.1.1, section 7, statistical techniques may be considered to reduce margin. Because the ADS time delay setpoint is approached from only one direction and there is no decreasing setpoint, the setpoint errors (LU) have a single side of interest and may be reduced by a factor of 1.645/2 to maintain a 95% probability of a trip.

LU'KS = 5.82

  • 1.645/2

= 4.79 secs AV'KS =AL - LU'KS

=120 - 4.79 secs

=115.21 secs The re-calcu1ated AV'KS demonstrates that the Technical Specification AV is still not conservative.

7.6 Nominal Trip Setpoint for K005

~ ENTERGY

  • CALCULATION SHEET SHEET---=2=.:::.0_ OF _62_

CALCULATION NO._...::..JC=--~Q,-,=I~B:..::.2..;:;...1-..:.:K::..;:;.I..;:;...14..:-- REV._.....;;;...00;;:;..;;;;2'---_ _

NTSP K5 = AL - TLU K5

= 120 secs - 8.10 secs

= 111.90 secs The Technical Specification NTSP of::; 105 seconds is conservative with respect to the calculated NTSP.

7.7 Loop Uncertainty for Kl14 PE = +/- 0.00 secs (The loops do not employ a primary element.)

PM = +/- 0.00 secs (The loops do not measure a process)

IR = +/- 0.00 secs (No harsh environments exist at the mounting locations.)

LU Kl1 4 = +/- SRSS(AKl14 , CKl14)

= +/- SRSS(0.46, 0.24)

= +/- 0.52 min 7.8 Total Loop Uncertainty for Kl14 TLU Kl1 4 = LU Kl14 + DKl14

= 0.52 min + 0.09 min

= 0.61 min 7.9 Allowable Value for Kl14 AV Kl14 =AL-LU Kl14

= 10 min - 0.52 min

= 9.48 min The Technical Specification allowable value of::; 9.4 minutes is conservative with respect to the calculated AV.

~ ENTERGY

  • CALCULATION SHEET SHEET--..;;;2;;..;;;..1_ OF _62_

CALCULATION NO ._...;;...1C..; ;. .---'lO'--"1c.=B-=2.; ;. .1-..; ;.; K; .; ; .1. ; ;. .14-'-- REV._....;;;...00"'-=2'---_ _

7.10 Nominal Trip Setpoint for Kl14 NTSP Kl14 = AL - TLU Kl14

= 10 min - 0.61 min

= 9.39 min The Technical Specification NTSP of:S 9.2 min is conservative with respect to the calculated NTSP.

7.11 Spurious Trip Avoidance for K005 and Kl14 Not required.

7.12 LER Avoidance K005 n=2 Assumption 5.3 z = ABS(AV - NTSP) /1/n (SRSS(AKS,C KS , DKS )) 3.1.1

= ABS(117 - 105) / 0.5* SRSS(5.25, 2.5, 2.28)

= 3.84 This is above the Section 6.7 minimum acceptable Z value of 1.28 for 90%.

7.13 LER Avoidance Kl14 n=2 Assumption 5.3 Z = ABS(AV - NTSP) /1/n (SRSS(AKl14,CKl14, DKl1 4)) 3.1.1

= ABS(9.40 - 9.20) / 0.5* SRSS(0.46, 0.24, 0.09)

= 0.75 This is below the Section 6.7 minimum acceptable Z value of 1.28 for 90%.

CALCULATION SHEET

-:::::::::- ENTERGY

  • SHEET----=2=2_ OF _62_

CALCULATION NO ._-=-JC=.-.....:.Q-..=1-=B.=.2..::.-1-..;:;..:K::.:;;.1-=-14...:.-- REV._-"-00.;;",,;;;;2'---_ _

8.0 CONCLUSION

The Technical Specification Allowable Value for the K005A and B relays is not conservative with respect to the calculated Allowable Value. The Technical Specification NTSP is conservative with respect to the calculated NTSP. It is recommended that the Technical Specification Allowable value be revised to ~ 115 seconds.

SUMMARY

OF RESULTS SYSTEM B21 LOOP NUMBERS K005A,B TOTAL LOOP UNCERTAINTY +/- 8.10 secs LOOP UNCERTAINTY +/- 4.79 secs DRIFT ALLOWANCE +/- 2.28 secs M&TE +/- 2.5 secs SPECIFIED (secs) CALCULATED (secs)

Analytical Limit ~ 120 -

Allowable Value ~ 117 115.21

< 115*

Nominal Trip Setpoint . ~ 105 111.90

  • Recommended AV The Technical Specification NTSP and AV for the Kl14 relays are conservative with respect to the calculated values; therefore, they are acceptable.

SUMMARY

OF RESULTS SYSTEM B21 LOOP NUMBERS Kl14A,B,E,F TOTAL LOOP UNCERTAINTY +/- 0.61 min LOOP UNCERTAINTY +/- 0.52 min DRIFT ALLOWANCE +/- 0.09 min M&TE +/- 0.24 min SPECIFIED (min) CALCULATED (min)

Analytical Limit < 10.0 -

Allowable Value <9.4 9.48 Nominal Trip Setpoint < 9.2 9.39

CALCULATION SHEET ENTERGY SHEET------::2=-=-3_ OF _62_

CALCULATION NO._....::..JC.;::;..-.....;:,Q'-'=1:.=B:..=.2~1-...;:;.:K~1...;:.,.14-=-- REV._...:::...OO=2:....--_ _

Appendix 1 1821-K114A,8,E,F Drift Analysis 1.0 Purpose The purpose of this document is to calculate the drift uncertainty value to be used for the 1B21-K114A, B, E and F ADS Bypass Timer relays. The River Bend and Grand Gulf Nuclear Station Instrument Drift Analysis Guide (RBS/GGNS-002, Rev. 0), Reference 2.1, was utilized to determine the drift uncertainty value for these relays.

2.0 References 2.1 ECH-NE-08-00015, Rev. 1 , River Bend and Grand Gulf Nuclear Station Instrument Drift Analysis Design Guide 2.2 06-EL-1 B21-0-0001 , Rev. 101. Surveillance Procedure ADS Timers Functional Test and Calibration 2.3 ANSI N15.15-1974, Assessment of the Assumption of Normality (Employing Individual Observed Values) 3.0 Method of Analysis Statistical procedures from Reference 2.1 were applied to determine the drift uncertainty value assuming the calibration interval will remain at 92 days per Technical Specifications.

4.0 Drift Analysis 4.1 Excel spreadsheets were populated with As-Found and As-Left data from work order history over the time frame from 1995 to 2008. The calibration interval for each relay (1B21-K114 A, B, E and F) is every 92 days (Reference 2.2). See the "Work Order Data, Table 1" sheets for the data obtained.

4.2 The data was combined into one table for analysis since the model number and setpoints are all identical for these instruments. See the "Combined Raw I Final Data Results, Table 2" for the combined data.

4.3 The mean, standard deviation and count statistics were calculated from the Excel spreadsheets for the raw data from, Combined Raw I Final Data Results, Table 2.


~----------------------

CALCULATION SHEET ENTERGY SHEET-----"2~4_ OF _62_

CALCULATION NO._-=-JC=----::.Qt.,..;:;1-=B~2.::.._1-..:..:K=1.;:;...14..:__ REV._...=...;OO::;..=2~ _ _

The results were:

Raw Drift Data Statistics mean 0.06 std. dev. 2.04837 2.05 rounded sample # 212 4.4 The raw data was then reviewed for potential outliers and outliers removed based on a work order review. No potential outliers were identified that could removed based on a review of the work orders for the 1B21-K114A, B, E and F relays.

4.5 A t-Test was performed on the raw data to identify any obscure value that might be an outlier. One data point that exceeded the critical value threshold could be removed from the population. The calculation to perform the t-Testwas as follows:

The critical value from Table 2 (Ref. 2.1) is determined based on a sample count of 212. The critical value was 4.00.

The formula for the t-Test is:

t = IXi - X I s

t is the calculated value of extreme studentized deviate that is compared to the critical value of t for the sample size.

Where; Xi = An individual raw data point X = 0.06 (mean of all raw data points) s = 2.05 (standard deviation of all raw data points)

A raw data sample point that might be considered an outlier is selected and the t-Test performed.

An individual sample point (Xi) of (-9) was selected from the raw data for the t-Test Therefore, t = 1 .061 = 4.42 2.05 The result of the t-Test performed for -9 indicates the result is larger than the critical value (4.00); therefore, this point is removed from the sample data. The data remaining is now considered the final data.

4.6 The mean and standard deviation were re-calculated along with the variance for the final data. The final data can be found in the "Combined Raw I Final Data Results, Table 2".

CALCULATION SHEET ENTERGY SHEET------,o2;;;..;;;..5_ OF _62_

CALCULATION NO._. . :;.. JC.. ;;;;..---"Oo.. .;;l'-=B.=2..;;..1-..;;;;.;K;;..;;;.1. .::;.. 14-'--- REV._....;:...00;:;..;;;;;2'---_ _

The results were:

Final Drift Data Statistics mean 0.10 std. dev. 1.955347 1.96 rounded variance 3.823381 4.7 Normality testing was then performed on the final data to verify the data fits a normal distribution curve.

The 0' test was performed to determine if the final data samples fit the normal distribution curve. The formula for the 0' test is:

0' =TIS Where; T = Linear Combination of 0' Stat

=

S2 Sum of the Squares about the mean S =Square root of S2 The steps to perform the 0' test are:

Calculate T.

The formula for Tis:

T= L { (i - n + 1) 1< XI) 2 Where; xi =An individual final data point i = The number of the final data point n = Total number of final data points T is the Linear Combination of the 0' statistic for each final data point.

The 0' statistic for each point can be found in the Normality Test, Table II 3".

T = 23046 Calculate S2, The formula for S2 is:

Where; n = 211 (Total number of final data points)

S2 = 3.823381 (Unbiased estimate of the sample population variance)

CALCULATION SHEET ENTERGY SHEET----=2::....:::.6_ OF _62_

CALCULATION NO._...::...JC=---.::.Q",-,=,1.=B=2~1-..;:;,;:K::;.;:;.1..:::-14-=-- REV._...;;;..00;;.;;;;2'---_ _

52 =802.91 Then calculate S.

s::: ,15 2

=~802.91

28.34 To summarize the results were:

=

T 23046 5::: 28.34 J

Therefore, D is:

0' =TIS 0' = 23046 I 28.34

813.33 From Table 5 of Reference 2.3, for a sample count of 211 the following P values were interpolated:

P @ 0.025 ::: 850.32 P @ 0.975 874.9 =

The 0' calculated value (813.33) falls outside the boundaries set by the P values interpolated from Table 5; therefore, the final data distribution is not considered normally distributed.

4.8 Coverage analysis I sample counting will be performed to determine an acceptable normal distribution model. This included developing a Histogram of the data for a visual representation of the final data. A Histogram of the final data can be found in" Relay 1B21-K114A,B,E,F Histogram, Table 4".

Review of the Histogram from Table 4 indicates relatively high peaks in the plot. The kurtosis of the final data is calculated from the Excel spreadsheets.

kurtosis ::: 1.672596 As discussed in Reference 2.1 a positive kurtosis indicates a distribution with high peaks and is a good candidate for sample counting to obtain an acceptable normal distribution model.

Sample counting is performed by determining how many sample points would encompass 95.45% of the total sample data. If at 2 standard deviations 95.45 % of the samples are not encompassed, the standard deviation is enlarged until 95.45 % of the samples are encompassed.

The steps for performing sample counting:

CALCULATION SHEET

--=::::=- ENTERGY SHEET---=2=-:...7_ OF _62_

CALCULATION NO._....::...JC::::::...-.....::.Q'-'='1..;:::B=2~1-..;:;.:K~1~14..:......- REV._..:::...:OO=2:....--_ _

Calculate the percentage of points that encompass the final data at 2 standard deviations. The formula is:

std. dev. I< 2 Where; std. dey. =1.96 Therefore.

1.96

  • 2:: 3.92 The total number of final data points that encompass the sample count value of 3.92 is 195 points.

195/211 :: 92.4% of the total sample points.

This is below the required 95.45%. The standard deviation of the model will be enlarged using a NAF ( Normality Adjustment Factor) that will encompass the required 95.45% of the data points.

The steps for performing the NAF were:

% samples required:: total samples * .9545 Where; total samples - 211 Therefore,

% samples required = 211 ....9545 = 202 Reviewing the final data sheet. Combined Raw I Final Data Results.

Table 2 a maximum drift value of 5 will be required to meet the percentage of samples required (202).

Therefore, NAF = max drift value 2'" std. dey.

Where; max drift value = 5 std. dey. = 1.96 NAF = _5_

2 It 1.96

= 1.28 A NAF multiplier of 1.28 to the std. dev. is required to obtain an acceptable normal distribution model for the final data.

CALCULATION SHEET ENTERGY SHEET---,,2::;..;;;.8_ OF _62_

CALCULATION NO._...::..JC=--.....:oQ....,;:;1-=B~2~1-..::::..::K:::..:;.1~14-=-- REV._....;:;...00::;..=2'---_ _

4.9 A Drift Bias determination was performed on the final data to see if the data tended to drift in a particular direction. The formula for performing the Drift Bias was:

Xcrit = t x ..§

'.in Xcrit is the maximum value of non-biased mean for a given s & n, expressed in percent.

Where; t = 1.960 (Normal Deviate for at-distribution @ 0.025 for 95% Confidence from Table 4)

=

s 1.96 (standard deviation) n = 211 (sample count)

Therefore, Xcrit = 1.960 x 1.96 "211 Xcrit = 0.265 The mean of the final data (0.10) is less than the Xcrit value (0.265);

therefore. the final data drift is determined to be non-biased.

4.10 A 95%/95% TIF (Tolerance Interval Factor) is determined based on the sample size from Table 1 of Reference 2.1. The TIF from Table 1 for a sample size of 211 was 2.143.

TIF =2.143 5.0 Analyzed Drift Uncertainty Calculation The final analyzed drift value generally consists of two separate components, the random term and the biased term. As shown in Section 4.9 the final data was not biased; therefore, a bias term is not applicable to this calculation. The formula for calculating the drift uncertainty for the K114 relays was: )

DR K114 = TIF" std. dey.

  • NAF Where; TIF = 2.143 std. dev. = 1.96 NAF= 128 Therefore, DR K114 = 2.143" 1.96" 1.28 DR K114 = +/- 5.38 sec.

CALCULATION SHEET ENTERGY SHEET----:;2;;;..:;;..9_ OF _62_

CALCULATION NO._-"-JC~---",Q<...;;1-=B-=2",,,-1-..;;;;.;;K;;..;;;.1..;;;...14~ REV._-=-OO=2=----_ _

Appendix 1 Relay 1B21-K114A,B,E,F Work Order Data Relay 1B21-K114A Table 1 MAI# Date As-Found (seconds) As-left (seconds) Drift (sec) # Days WOO0151858 10/10/1995 533 533 WOOO155134 1/9/1996 531 531 -2.00 91 WOO0160044 4/8/1996 531 531 0.00 90 WOO0165823 7/8/1996 531 531 0.00 91 WOO0170714 10/8/1996 532 532 1.00 92 WOOO176444 112/1997 533 533 1,00 86 WOO0180956 3/10/1997 532 532 -1.00 67 WOO0184603 6/4/1997 534 534 2.00 86 WOOO189900 8/27/1997 533 533 -1.00 84 WOO0193733 11/20/1997 533 533 0.00 85 WOOO199133 2/9/1998 533 533 0.00 81 WOO0203552 4/8/1998 532 532 -1.00 58 WOOO207450 6/30/1998 533 533 1.00 83 WOOO211186 9/21/1998 532 532 -1.00 83 WOOO215266 12/14/1998 533 533 1.00 84 WOO0219792 3/8/1999 532 532 -'1.00 84 MAI00254592 6/6/1999 532 532 0.00 90 MAI00258714 8/23/1999 533 533 1.00 78 MAIOO264685 12/12/1999 532 532 -1.00 111 MAI00273216 3/6/2000 532 532 0.00 85 MAI00277385 5/30/2000 531 531 -1.00 85 MAlOO281834 8/21/2000 532 532 1.00 83 MAI00285661 11/13/2000 533 533 1,00 84 MAl00290448 2/8/2001 531 531 -2.00 87 MAl00294818 4/3/2001 532 532 1.00 54 MAI00298928 6/27/2001 534 534 2.00 85 MAlOO301461 9/19/2001 533 533 -1.00 84 MAI00304716 12/12/2001 534 534 1.00 84 MAl00308757 3/7/2002 531 531 -3.00 85 MAI00313636 5/29/2002 533 533 2.00 83 MAI00317848 8/21/2002 534 534 1.00 84 MAI00320384 11/13/2002 533 533 -1.00 84 MAI00324597 2/5/2003 532 532 -1.00 84 MAI00329547 5/1/2003 532 532 0.00 85 WO-50326472 *,/24/2003 533 533 1.00 84 WO-50336234 10/15/2003 534 534 1.00 83 WO-50613155 117/2004 533 533 -1.00 84 WO-50966962 3/31/2004 533 533 0.00 84 WO-50617623 6/21/2004 533 533 0.00 82 WO-50965503 9/16/2004 533 533 0.00 87 WO-50981 082 12/812004 534 534 1.00 83 WO-50988946 2/28/2005 533 533 -1.00 82 WO-50996036 5/2612005 532 532 -1.00 87 WO-51 003385 8/17/2005 534 534 2.00 83 WO-51010414 11/9/2005 533 533 -1.00 84 WO-510t7951 2/1/2006 534 534 1.00 84 WO-51 024944 4/26/2006 533 533 -1.00 84 WO-51 032497 7/1812006 533 533 0.00 83 WO-51 040011 10/11/2006 533 533 0.00 85 WO-51046721 1/312007 530 530 -3.00 84 WO-51 056437 4/13/2007 532 532 2.00 100 WO-51 089480 6/21/2007 535 535 3.00 69 WO-51206808 9/12/2007 535 535 0.00 83 WO-51546266 12/4/2007 533 533 -2.00 83 WO-51 564566 2/29/2008 533 533 0.00 87

CALCULATION SHEET ENTERGY SHEET---=3;....;:;.0_ OF _62_

CALCULATION NO'_...;;;..JC.=. ---"O'-"1'-=B.=2.=-1-..=K::.;;:.1-=-14.. ::.. .- REV._...:::..;00=2:.......-_ _

Appendix 1 Relay 1B21-K114A,B,E,F Work Order Data Relay 1B21-K1148 Table 1 MAI# Date As-Found (seconds) As-left (seconds) Drift (sec) # Days WOOO151076 9/28/1995 533 533 WOO0154815 12/13/1995 532 532 -1.00 76 WOO0159529 3/14/1996 531 531 -1.00 92 WOOO164155 6/1211996 533 533 2.00 90 WOO0169161 9/11/1996 534 534 1.00 91 WOOO175755 12/9/1996 535 535 1.00 89 WOO0179700 2/17/1997 531 531 -4.00 70 WOO0183531 5/1211997 534 534 3.00 84 WOO0187985 8/5/1997 535 535 '1.00 85 WOO0192537 10/28/1997 533 533 -2.00 84 WOO0198247 1120/1998 533 533 0.00 84 WOO0203516 4/1/1998 534 534 1.00 71 WOO0211191 9/30/1998 535 535 1.00 182 WOO0214937 12/2111998 533 533 -2.00 82 WOO0218492 3115/1999 533 533 0.00 84 MAl00254927 6/7/1999 534 534 1.00 84 MAl00259122 8/30/1999 535 535 1.00 84 MA100264677 12/11/1999 533 533 -2.00 103 MA100272732 2/2812000 533 533 0.00 79 MAl00277267 5/2212000 532 532 -1.00 84 MAI00281694 8/1412000 534 534 2.00 84 MAI0028340 1 11/6/2000 534 534 0.00 84 MAI00288963 1/29/2001 531 531 -3.00 84 MAI00294128 4/10/2001 533 533 2.00 71 MAI00298929 7/16/2001 535 5$5 2.00 97 MAI00302608 10/812001 534 534 -1.00 84 MAI00308065 12/3112001 532 532 -2.00 84 MAI0031 0460 3/25/2002 534 534 2.00 84 MAI00314285 7/1/2002 534 534 0.00 98 MA.100317691 9/9/2002 534 534 0.00 70 MAI00321243 12/4/2002 533 533 -1.00 86 MAI00325860 2/24/2003 532 532 -1.00 82 MAl00330399 5/19/2003 533 533 1.00 84 WO-S0327056 8/11/2003 532 532 -1.00 84 WO*50337684 11/3/2003 534 534 2.00 84 WO-50617624 1/2812004 532 532 -2.00 86 WO-50684662 4/19/2004 534 534 2.00 82 WO-50968183 7/1212004 535 535 1.00 84 WO-50975675 10/4/2004 534 534 -1.00 84 WO-S0982786 12/30/2004 532 532 -2.00 87 WO-50990724 3/2112005 532 532 0.00 81 WO-50998311 6/13/2005 534 534 2.00 84 WO-51 012037 121112005 533 533 -1.00 171 WO-51 019588 3/7/2006 531 531 -2.00 96 WO-51 026689 6/14/2006 535 535 4.00 99 WO-51 034555 8/2212006 535 535 0.00 69 WO-51042811 11/14/2006 536 536 1.00 84 WO-51 051 532 2/6/2007 530 530 -6.00 84 WO-51 084487 5/1/2007 535 535 5.00 84 WO-51190685 -'/23/2007 535 535 0.00 83 WO-51513014 10/1612007 535 535 0.00 85 WO-51551523 117/2008 534 534 -1.00 83 WO-51569592 4/15/2008 533 533 -1.00 99

CALCULATION SHEET ENTERGY SHEET---=3:.....::..1_ OF _62_

CALCULATION NO._-=-JC=.-. . . ;:,O<-::1:.=Bc=2..:;.. .1-.=K::.=;.1. :;.. .14.. :. . .- REV._...;:;...00;;;..;;;2'----_ _

Appendix 1 Relay 1821-K114A,B,E,F Work Order Data Relay 1B21-K114E Table 1 MAl # Date As-Found (seconds) As-left (seconds) Drift (sec) # Days WOOO151858 10/10/1995 543 543 WOOO155134 1/9/1996 542 542 -1.00 91 WOOO160044 4/8/1996 542 542 0.00 90 WOOO165823 7/8/1996 541 541 -1.00 91 WOOO170714 10/8/1996 542 542 1.00 92 WOOO176444 1/2/1997 546 546 4.00 86 WOOO180956 3/10/1997 545 545 -1.00 67 WOOO184603 6/4/1997 545 545 0.00 86 WOOO189900 8/27/1997 545 545 0.00 84 WOOO193733 11/20/1997 545 545 0.00 85 WOOO199133 2/9/1998 544 544 -1.00 81 WOO0203552 4/8/1998 546 546 2.00 58 WOO0207450 6/30/1998 544 544 -2.00 83 WOO0211186 9/21/1998 544 544 0.00 83 WOO0215266 12/14/1998 545 545 1.00 84 WOO0219792 3/8/1999 546 546 1.00 84 MAIOO254592 6/6/1999 547 547 1.00 90 MAI00258714 8/23/1999 547 547 0.00 78 MAI00264685 12/12/1999 546 546 -1.00 111 MAI00273216 3/6/2000 546 546 0.00 85 MAI00277385 5/30/2000 546 546 0.00 85 MAI00281834 8/21/2000 546 546 0.00 83 MAI00285661 11/13/2000 545 545 -1.00 84 MAI00290448 2/8/2001 545 545 0.00 87 MAI00294818 4/3/2001 545 545 0.00 54 MAI00298928 6/27/2001 545 545 0.00 85 MAI00301461 9/19/2001 544 544 -1.00 84 MAI00304716 12/12/2001 544 544 0.00 84 MAI00308757 3/7/2002 546 546 2.00 85 MAIOO313636 5129/2002 546 546 0.00 83 MAI00317848 8/21/2002 548 548 2.00 84 MAI00320384 11113/2002 549 549 1.00 84 MAI00324597 2/5/2003 547 547 -2.00 84 MAI00329547 5/1/2003 547 547 0.00 85 WO-50326472 7/24/2003 545 545 -2.00 84 WO-50336234 10/15/2003 548 548 3.00 83 WO-50613155 117/2004 549 549 1.00 84 WO-50966962 3/31/2004 547 547 -2.00 84 WO-50617623 6/21/2004 551 551 4.00 82 WO-50965503 9/16/2004 550 550 -1.00 87 WO-50981 082 1218/2004 551 551 1.00 83 WO-50988946 212812005 550 550 -1.00 82 WO-50996036 5/2612005 550 550 0.00 87 WO-51 003385 8/1712005 541 541 -9.00 83 WO-51010414 11/9/2005 546 546 5.00 84 WO-51 017951 2/1/2006 549 549 3.00 84 WO-51 024944 4/26/2006 552 552 3.00 84 WO-51 032497 7/18/2006 546 546 ~.OO 83 WO-51 040011 10/11/2006 552 552 6.00 85 WO-51 046721 1/3/2007 549 549 -3.00 84 WO-51 056437 4/13/2007 547 547 -2.00 100 WO-51 089480 6/21/2007 554 551 7.00 69 WO*51206808 9/12/2007 548 548 -3.00 83 WO-51546266 12/4/2007 549 549 1.00 83 WO-51564566 2/29/2008 551 551 2.00 87

CALCULATION SHEET ENTERGY SHEET--:3,-=2_ OF _62_

CALCULATION NO._-,,-1C.=. ---"O'--"l.=B.=.2. ; ; . .1-.=K;;.; .1. ; ; . .14-"--- REV._-=-00:::..=2:....--_ _

Appendix 1 Relay 1B21-K114A,B.E,F Relay 1B21-K114F Work Order Data Table 1 MAI# Date As-Found (seconds) As-left (seconds) Drift (sec) # Davs WOO0151076 9/28/1995 539 539 WOOO154815 12/13/1995 537 537 -2~OO 76 WOOO159529 3/14/1996 536 536 -1.00 92 WOO0164155 6/12/1996 538 538 2.00 90 WOO0169161 9/11/1996 539 539 1.00 91 WOOO175755 12/9/1996 540 540 1.00 89 WOOO179700 2/17/1997 535 535 -5.00 70 WOOO183531 5/12/1997 539 539 4.00 84 WOO0187985 8/5/1997 541 541 2.00 85 WOOO192537 10/28/1997 539 539 -2.00 84 WOOO198247 lf20/1998 538 538 -1.00 84 WOO0203516 4/1/1998 540 540 2.00 71 WOO0211191 9/30/1998 541 541 1.00 182 WOO0214937 12/21/1998 539 539 -2.00 82 WOO0218492 3/15/1999 539 539 0.00 84 MAl 00254927 6/7/1999 540 540 1.00 84 MAIOO259122 8/30/1999 540 540 0.00 84 MA100264677 12111/1999 539 539 -1.00 103 MAI00272732 2128/2000 539 539 0.00 79 MAI00277267 5/22/2000 540 540 1.00 84 MAI00281694 8/14/2000 540 540 0.00 84 MAI00283401 11/6/2000 540 540 0.00 84 MAI00288963 1129/2001 535 535 -5.00 84 MAI00294128 4/10/2001 538 538 3.00 71 MAl 00298929 7/16/2001 540 540 2.00 97 MAI00302608 10/8/2001 539 539 -1.00 84 MAI00308065 12/31/2001 537 537 -2.00 84 MAI00310460 3/25/2002 538 538 1.00 84 MAI00314285 7/1/2002 539 539 1.00 98 MAI00317691 9/9/2002 539 539 0.00 70 MAI00321243 12/4/2002 537 537 -2.00 86 MAIOO325860 2124/2003 537 537 0.00 82 MAI00330399 5/19/2003 540 540 3.00 84 WO-50327056 8/11/2003 539 539 -1.00 84 WO*50337684 11/3f2003 540 540 1.00 84 WO-50617624 1/28/2004 537 537 -3.00 86 WO-50684662 4/19/2004 540 540 3.00 82 WO-50968183 7/12/2004 541 541 1.00 84 WO-50975675 10/4/2004 540 540 -1.00 84 WO*50982786 12130/2004 537 537 -3.00 87 WO-50990724 3/21/2005 538 538 1.00 81 WO-50998311 6/13/2005 539 539 1.00 84 WO-51 012037 12/1/2005 538 538 -1.00 171 WO-51 019588 317/2006 537 537 -1.00 96 WO-51 026689 6/14/2006 541 541 4.00 99 WO-51 034555 8/22/2006 541 541 0.00 69 WO-51 042811 11/14/2006 540 540 -1.00 84 WO-51051532 2/6/2007 535 535 -5.00 84 WO-51 084487 5/1/2007 541 541 6.00 84 WO*51190685 7/23/2007 542 542 1.00 83 WO-51513014 10/1612007 542 542 0.00 85 WO-51551523 1/7/2008 540 540 -2.00 83 WQ*51 569592 4/15/2008 540 540 0.00 99

CALCULATION SHEET

-===- ENTERGY

  • Appendix 1 Relay 1B21-K114A, B, E, F Combined Raw I Final Data Results Table 2 Data Data - Outlier removed Raw Drift (sees) Days sample # Final Drift(sees) Days sample #

-2.00 91 1 -2.00 91 1 0.00 90 2 000 90 2 0.00 91 3 0.00 9'1 3 1.00 92 4 1.00 92 4 1.00 86 5 1.00 86 5

-1.00 67 6 -1.00 67 6 2.00 86 7 2.00 86 7

-100 84 8 -1.00 84 8 0.00 85 9 0.00 85 9 0.00 81 10 0.00 81 10

-100 58 11 -1.00 58 11 1.00 83 12 1,00 83 12

-1.00 83 13 -1.00 83 13 1.00 84 14 1.00 84 14

-100 84 15 -1.00 84 15 0.00 90 16 0.00 90 16 1.00 78 17 1.00 78 17

-1.00 111 18 -100 111 18 0.00 85 19 0.00 85 19

-1.00 85 20 -100 85 20 1.00 83 21 1.00 83 21 1.00 84 22 1.00 84 22

-2..00 8f 23 *-2.00 87 23 1.00 54 24 1.00 54 24 2.00 85 25 2.00 85 25

-100 84 26 -1.00 84 26 1.00 84 27 1.00 84 27

-3.00 85 28 <3.00 85 28 2.00 83 29 2.00 83 29 1.00 84 30 100 84 30

-1.00 84 31 -1.00 84 31

-1.00 84 32 -1.00 84 32 0.00 85 33 0.00 85 33 1.00 84 34 1.00 84 34 1.00 83 35 1.00 83 35

-1.00 84 36 -"1.00 84 36 0.00 84 37 0.00 84 37 0.00 82 38 0.00 82 38 0.00 87 39 0.00 87 39 1.00 83 40 1.00 83 40

-1.00 82 41 -1.00 82 41

-1.00 87 42 -1.00 87 42 2.00 83 43 2.00 83 43

-1.00 84 44 -1.00 84 44 1.00 84 45 1.00 84 45

-1.00 84 46 -1.00 84 46 0.00 83 47 0.00 83 47 0.00 85 48 0.00 85 48

-3.00 84 49 -3.00 84 49

~ ENTERGY

  • CALCULATION SHEET SHEET -.;;;;.......;..-

Appendix 1 Relay '1 B21-K114A, B, E, F Combined Raw I Final Data Results Table 2 Data Data* Outlier removed Raw Drift (sees) Days sample # Final Drift(sees) Days sample #

2.00 100 50 2.00 100 50 3,00 69 51 3..00 69 51 0,00 83 52 000 83 52

-2.00 83 53 -2.00 83 53 0.00 87 54 0.00 87 54

-1.00 76 55 -1.00 76 55

-1.00 92 56 -1.00 92 56 2.00 90 57 2.00 90 57 1.00 91 58 1.00 91 58 1.00 89 59 1.00 89 59

-4.00 (0 60 -4.00 70 60 3.00 84 61 3.00 84 61 1.00 85 62 1.00 85 62

-2.00 84 63 -2.00 84 63 0.00 84 64 0.00 84 64 100 71 65 100 71 65 1,00 182 66 1.00 182 66

-2.00 82 67 -2.00 82 67 0,00 84 68 0.00 84 68 1.00 84 69 1.00 84 69 1.00 84 70 1.00 84 70

-2.00 103 71 -2.00 103 71 0.00 79 72 0.00 79 72

-1.00 84 73 -1.00 84 73 2.00 84 74 2.00 84 74 0.00 84 75 0.00 84 75

-3.00 84 76 -3.00 84 '76 2.00 71 77 2..00 71 77 2.00 97 78 2.00 97 78

-1.00 84 79 -1.00 84 79

-2.00 84 80 -2.00 84 80 2.00 84 81 200 84 81 0.00 98 82 0.00 98 82 0.00 70 83 0.00 70 83

-1.00 86 84 -100 86 84

-1.00 82 85 -1.00 82 85 1.00 84 86 1.00 84 86

-1,00 84 87 *1.00 84 87 2.00 84 88 2.00 84 88

-2,00 86 89 -2.00 86 89 2.00 82 90 2.00 82 90 1.00 84 91 1.00 84 91

-1.00 84 92 -1.00 84 92

-2.00 87 93 . 2.00 87 93 0.00 81 94 0,00 81 94 2.00 84 95 2.00 84 95

-100 1(1 96 -1.00 171 96

-2.00 96 97 -200 96 97 4.00 99 98 4.00 99 98 0.00 69 99 0.00 69 99

CALCULATION SHEET

--===- ENTERGY

  • SHEET-...;;;;...,;;;,--

Appendix 1 Relay 1821-K114A,B,E,F Combined Raw I Final Data Results Table 2 Data Data - Outlier removed Raw Drift (sees) Days sample # Final Drift(sees) Days sample #

1.00 84 100 1.00 84 100

-6.00 84 101 -6,00 84 101 5.00 84 102 5,00 84 102 0.00 83 103 0.00 83 103 0.00 85 104 0,00 85 104

-1.00 83 105 -100 83 105

-1.00 99 106 -1,00 99 106

-1.00 91 107 -1,00 91 107 0.00 90 108 0.00 90 108

-1.00 91 109 -1.00 91 109 1.00 92 110 1.00 92 110 4.00 86 111 4.00 86 111

-1.00 67 112 -1.00 67 112 0.00 86 113 0.00 86 113 0.00 84 114 0.00 84 114 0.00 85 115 0,00 85 115

-100 81 116 -1.00 81 116 2.00 58 117 2.00 58 117

-2.00 83 118 -2.00 83 118 0.00 83 119 0.00 83 119 1.00 84 120 1.00 84 120 1.00 84 121 1.00 84 121 1.00 90 122 1.00 90 122 0.00 78 123 0.00 /8 123

-1.00 111 124 -1.00 111 124 0.00 85 125 0.00 85 125 0.00 85 126 0.00 85 126 0.00 83 127 0.00 83 127

-1.00 84 128 -1.00 84 128 0.00 87 129 0.00 87 129 0.00 54 130 0,00 54 130 000 85 131 000 85 131

-1.00 84 132 -1.00 84 132 0.00 84 133 0.00 84 133 2.00 85 134 2.00 85 134 0.00 83 135 0.00 83 135 2.00 84 136 2.00 84 136 1.00 84 137 1.00 84 137

-2.00 84 138 -2.00 84 138 0.00 85 139 0.00 85 139

-2.00 84 140 -2.00 84 140 3.00, 83 141 3.00 83 141 1.00 84 142 1.00 84 142

-2.00 84 143 -2,00 84 143 4.00 82 144 4.00 82 144

-1.00 87 145 -1,00 81 145 1.00 83 146 1.00 83 146

  • 1.00 82 147 -100 82 147 0.00 87 148 0.00 87 148

-9.00 83 149 5.00 84 149

CALCULATION SHEET

-===- ENTERGY

  • SHEET----=3:....:::..6_ OF _62_

CALCULATION NO._...::..JC=..---.::.Q.:....::l.=B=2.;:;,...1-..;::.:K::..::..l..;:;..14...:.-- REV ._....::;...OO=2~ _ _

Appendix 1 Relay 1B21-K114A, B, E. F Combined Raw I Final Data Results Table 2 Data Data* Outlier removed Raw Drift (sees) Days sample # Final Drift(sees) Days sample #

5.00 84 150 3.00 84 150 300 84 1St 3.. 00 84 151 3.00 84 152 -6.00 83 152

-6.00 83 153 6.00 85 153 6.00 85 154 -3.00 84 154

-3.00 84 155 -2.00 100 155

-2.00 100 156 7.00 69 156 7.00 69 157 -3.00 83 157

-3.00 83 158 1.00 83 158 1.00 83 159 2.00 87 159 2.00 87 160 -2.00 76 160

-2.00 76 161 -1.00 92 161

-100 92 162 2.00 90 162 2.00 90 163 1.00 91 163 1.00 91 164 1.00 89 164 1.00 89 165 -5.00 70 165

-5.00 70 166 4.00 84 166 4.00 84 167 2.00 85 167 2.00 85 168 -2.00 84 168

-2.00 84 169 -100 84 169

-1.00 84 170 2.00 71 170 2.00 71 171 1.00 182 171 1.00 182 172 -2.00 82 172

-2.00 82 173 0.00 84 1/3 0.00 84 174 1.00 84 174 '

1.00 84 175 0.00 84 1/5 0.00 84 116 -1.00 103 176

-1.00 103 177 0.00 79 177 0.00 79 178 1.00 84 178 1.00 84 179 0.00 84 179 000 84 180 0.00 84 180 0.00 84 181 -5.00 84 181

-5.00 84 182 3.00 71 182 3.00 71 183 2.00 97 183 2.00 97 184 -100 84 184

-1.00 84 185 -2.00 84 185

-2.00 84 '186 1.00 84 186 100 84 187 1.00 98 187 1.00 98 188 0.00 10 188 0.00 70 189 -2.00 86 189

-2.00 86 190 0.00 82 190 000 82 191 3.00 84 191 3.00 84 192 -1.00 84 192

    • 1.00 84 193 1.00 84 193 1.00 84 194 -3.00 86 194

~3.00 86 195 3.00 82 195 3.00 82 196 1.00 84 196 1.00 84 197 -100 84 197

-1.00 84 198 -3.00 87 198

-3.00 87 199 1.00 81 199

CALCULATION SHEET

--===- ENTERGY

  • SHEET----::3:....:..7_ OF _62_

CALCULATION NO._....::...JC=--.....::oQ'-'='1-=B~2~1-..;:;.:K:..::..l~14-=--- REV._...;:;;...OO;;..=2:.....--_ _

Appendix 1 Relay 1B21-K 114A, B. E, F Combined Raw I Final Data Results Table 2 Data Data - Outlier removed Raw Drift (sees) Days sample # Final Drift(sees) Days sample #

1.00 81 200 1.00 84 200 1.00 84 201 -1.00 17'1 201

-1.00 171 202 -1.00 96 202

-1.00 96 203 4.00 99 203 4.00 99 204 0.00 69 204 0,00 69 205 -100 84 205

-1,00 84 206 -5,00 84 206

-5,00 84 207 6.00 84 207 6.00 84 208 1.00 83 208 1.00 83 209 0.00 85 209 0,00 85 210 -2.00 83 210

-2.00 83 211 0,00 99 211 0.00 99 212

~ ENTERGY

  • CALCULATION SHEET SHEET--:3:....:;.8_ OF _62_

CALCULATION NO._...::..JC=----::.Q,;..;:l~B;.::.2.;;;,..1-...::..:K:::.::.l..;:..14_=__ REV._....;:;..00=2:....--_ _

Appendix 1 Relay 1821-K114A, B, E, F Normality Test Table 3 O' Normality Test O' Normality Test FinalOata Sample # 0' Stat Final Data Sample # O'Stat

-6.00 1 630 -1.00 50 56

-6.00 2 624 -1.00 51 55

-5.00 3 515 -1.00 52 54

-5.00 4 510 -1.00 53 53

-5.00 5 505 -1.00 54 52

-4.00 6 400 -1.00 55 51

-3.00 7 29/ -1.00 56 50

-3.00 8 294 -1.00 57 49.

-3.00 9 291 -1.00 58 48

-300 10 288 -1.00 59 47

-3.00 11 285 -1.00 60 46

-3.00 12 282 -1.00 61 45

-3.00 13 186 -100 62 44

-2.00 14 184 -1.00 63 43

-*2.00 15 182 -100 64 42

-2.00 16 180 -1.00 65 41

-2.00 11 178 -1.00 66 40

-2.00 18 176 -1.00 67 39

-2.00 19 174 -1.00 68 38

-2.00 20 172 -1.00 69 37

-2.00 21 170 -1.00 70 36

-2.00 22 168 -1.00 71 35

    • 2.00 23 166 -1.00 72 34

-200 24 164 -100 73 33

-2.00 25 162 -1.00 74 32

-2.00 26 160 -100 /5 31

-2.00 27 158 -1.00 76 30

-2.00 28 156 -1.00 77 29

.. 2.00 29 154 -1.00 78 28

-2.00 30 152 000 79 0

-2.00 31 150 0.00 80 a

-2.00 32 148 0.00 81 0

-2.00 33 146 0.00 82 0

-2.00 34 144 000 83 0

-1.00 35 71 0.00 84 a

-1.00 36 10 0.00 85 a

-1.00 37 69 0.00 86 0

-1.00 38 68 0.00 81 0

-'100 39 67 0.00 88 0

  • '1.00 40 66 0.00 89 a

-1.00 41 65 000 90 a

-1.00 42 64 0.00 91 0

-1.00 43 63 0.00 92 a

.. 1.00 44 62 000 93 a

-1.00 45 61 0.00 94 0

-1.00 46 60 0.00 95 0

-1.00 47 59 0.00 96 0

-1.00 48 58 000 97 0

-1.00 49 57 0.00 98 0

~ ENTERGY

  • CALCULATION SHEET SHEET----=3:....:;...9_ OF _62_

CALCULATION NO._-=-JC=.-. . .:.Q-.. . :l.=B.=.2.=. .1--=-=K::;.;:;.1-=-14-=--- REV._-,,-00.;;..;;;2,,-_ _

Appendix 1 Relay 1821-K114A,B,E,F Normality Test Table 3 Final Data Sample # D'Stat Final Data Sample # D'Stat 000 99 a 1.00 148 42 0.00 100 a 1.00 149 43 0.00 101 a 1.00 150 44 0.00 102 a 100 151 45 0,00 103 a 1.00 152 46 000 104 a 100 153 47 0.00 105 0 1.00 154 48 000 106 a 1.00 155 49 0.00 107 0 1.00 156 50 0.00 108 a 1.00 157 51 0.00 109 a 1.00 158 52 000 110 a 1.00 159 53 0.00 111 a 1.00 160 54 0.00 112 a 1.00 161 55 0.00 113 a 1.00 162 56 0.00 114 0 1.00 163 57 0.00 115 a 1.00 164 58 0.00 116 a 1.00 165 59 0.00 111 a 1.00 166 60 0,00 118 a 1.00 167 61 0.00 119 a 1.00 168 62 0.00 120 0 1.00 169 63 0.00 121 a 1,00 170 64 0.00 122 a 1.00 171 65 0.00 123 a 1.00 172 66 0.00 124 a 200 173 134 0.00 125 a 2.00 174 136 0.00 126 a 2,00 175 138 0.00 127 a 2.00 176 140 000 128 a 2.00 177 142 1,00 129 a 2.00 178 144 1.00 130 24 2.00 179 146 1.00 131 25 2.00 180 148 1.00 132 26 2.00 181 150 1.00 133 27 2.00 182 152 1.00 134 28 2.00 183 154 1.00 135 29 2.00 184 156 1.00 136 30 2.00 185 158 1,00 137 31 2.00 186 160 1.00 138 32 200 187 162 1.00 139 33 2.00 188 164 1.00 140 34 2.00 189 166 1.00 141 35 2.00 190 168 1.00 142 36 2.00 191 170 1.00 143 37 2.00 192 1(2 1.00 144 38 2.00 193 174 100 145 39 3.00 194 264 100 146 40 3.00 195 267 1.00 141 41 3.00 196 270

~ ENTERGY

  • CALCULATION SHEET SHEET_4~0_ OF _62_

CALCULATION NO 0_-=-1C=--.. . .:>O"-'=lc=B;.=.2. =-1-.. =. .:K: .;:;.1. =-14..:. . - REV 0_...;::;...00;;;..=2'---_ _

Appendix 1 Relay 1821-K114A,B,E,F Normality Test Table 3 Final Data Sample # D'Stat Final Data Sample # D'Stat 3.00 197 273 6.00 209 618 3.00 198 276 6.00 210 624 3.00 199 279 TOO 211 735 3.00 200 282 3.00 201 285 T = 23046 4.00 202 384 4.00 203 388 4.00 204 392 4.00 205 396 4.00 206 400 5.00 207 505 5.00 208 510

~ ENTERGY

  • CALCULATION SHEET SHEET_4.;...;;;.1_ OF _62_

CALCULATION NO ,_-=-JC=.--::.Q.:.,. ;:1.=B=2..:. .1-.. :.,:K: .;:.1. :. .14-=---- REV._....;;...00"'-=2'----_ _

Appendix 1 Relay 1821-K114A,B, E,F Histogram Table 4 Histogram 70 60-50

...c: 40 .

J l. [] Series1 I 8 30 20 10 0

7 -5 -3 -1 0 1 3 5 7 9 Drift (sec)

CALCULATION SHEET ENTERGY SHEET_4,,-=2_ OF _62_

CALCULATION NO._. .::.. JC.=.---'lO<-=1'-=B'-=2.=. . 1-.. .;:;.;K=1.. ::.. 14.. .:. . .- REV._....;:;.....00=-=2'----_ _

Appendix 2 1821-K5A,B Drift Analysis 1.0 Purpose The purpose of this document is to calculate the drift uncertainty value to be used for the 1B21-K5A, B ADS Initiate Timer relays. The River Bend and Grand Gulf Nuclear Station Instrument Drift Analysis Guide (RBS/GGNS-002, Rev. 0), Reference 2.1, was utilized to determine the drift uncertainty value for these relays.

2.0 References 2.1 ECH-NE-08-00015, Rev. 1

  • River Bend and Grand Gulf Nuclear Station Instrument Drift Analysis Design Guide 2.2 06-EL-1 821-0-0001, Rev. 101, Surveillance Procedure ADS Timers Functional Test and Calibration 2.3 ANSI N15.15-1974, Assessment of the Assumption of Normality (Employing Individual Observed Values) 3.0 Method of Analysis Statistical procedures from Reference 2.1 were applied to determine the drift uncertainty value assuming the calibration interval will remain at 92 days per Technical Specifications.

4.0 Drift Analysis 4.1 Excel spreadsheets were populated with As-Found and As-Left data from work order history over the time frame from 1995 to 2008. The calibration interval for each relay (1 B21-K5A, B) is every 92 days (Reference 2.2).

See the "Work Order Data, Table 1" sheets for the data obtained.

4.2 The data was combined into one table for analysis since the model number and setpoints are all identical for these instruments. See the "Combined Raw I Final Data Results, Table 2" for the combined data.

4.3 The mean, standard deviation and count statistics were calculated from the Excel spreadsheets for the raw data from, Combined Raw I Final Data Results,. Table 2.

CALCULATION SHEET ENTERGY SHEET_4.:..::;.3_ OF _62_

CALCULATION NO._-,,-1C=-----"O"--"1'-=B.=2..; ;. .1-.. .; ;. ;K; ;.; ;.1. ; ;. .14-'--- REV._....;;...00;;...;;;;;2'----_ _

The results were:

Raw Drift Data Statistics mean -0.01 std. dev. 1.068953 1.07 rounded sample # 106 4.4 The raw data was then reviewed for potential outliers and outliers removed based on a work order review. No potential outliers were identified that could removed based on a review of the work orders for the 1B21-K5A, B relays.

4.5 A t-Test was performed on the raw data to identify any obscure value that might be an outlier. One data point that exceeded the critical value threshold could be removed from the population. The calculation to perform the t-Test was as follows:

The critical value from Table 2 (Ref 2.1) is determined based on a sample count of 106. The critical value was 3.28.

The formula for the t-Test is:

t= IXi - xl s

t is the calculated value of extreme studentized deviate that is compared to the critical value of t for the sample size.

Where;

=

Xi An individual raw data point X = -0.01 (mean of all raw data points) s = 1.07 (standard deviation of all raw data points)

A raw data sample point that might be considered an outlier is selected and the t-Test performed.

An individual sample. point (Xi) of (-3.62) was selected from the raw data for the t- Test.

Therefore,

=

t 1-3.62 - (-.01) I= 3.37 1.07 The result of the t-Test performed for -3.62 indicates the result is larger than the critical value (3.28); therefore, this point is removed from the sample data. The data remaining is now considered the final data.

4.6 The mean and standard deviation were re-calculated along with the variance for the final data. The final data can be found in the "Combined Raw I Final Data Results, Table 2".

CALCULATION SHEET ENTERGY SHEET_4..:....,:.4_ OF _62_

CALCULATION NO._-=-JC=--~Q,;,..;:1;.=B~2..:...1-....:..:K:::..:.l..:...14...:.....- REV._-=-OO=2:....-_ _

The results were:

Final Drift Data Statistics mean 0.02 std. dey. 1.013462 1.02 rounded variance 1.027106 4.7 Normality testing was then performed on the final data to verify the data fits a normal distribution curve.

The D' test was performed to determine if the final data samples fit the normal distribution curve. The formula for the D' test is:

0' = TIS Where;

=

T Linear Combination of D'Stat 52 =Sum of the Squares about the mean S = Square root of S2 The steps to perform the D' test are:

Calculate T.

The formula for Tis:

T =L { (i - n +1 ) j\' xi]

2 Where;

=

xi An individual final data point

=

i The number of the final data point n = Total number of final data points T is the Linear Combination of the D' statistic for each final data point.

The D' statistic for each point can be found in the Normality Test, TableII 3".

T = 2995.41 Calculate 52.

The formula for 52 is:

52 = (n - 1)S2 Where; n = 105 (Total number of final data points)

S2 = 1.027106 (Unbiased estimate of the sample population variance)

CALCULATION SHEET

- ENTERGY SHEET_4.:..:;.5_ OF _62_

CALCULATION NO._-=-JC=::::..---::.Qc..,.;:;1..;:::B=2~1-~K::..;:;.1~14-=-- REV._...::...;OO:;.:2:......-_ _

S2 = 106.82 Then calculate S.

S =Y'S2

= ~'106.82

= 10.34 To summarize the results were:

T =2995.41 S =10.34 Therefore, 0' is:

0' = TIS Ot = 2995.41/10.34

=289.82 From Table 5 of Reference 2.3, for a sample count of 105 the following P values were interpolated:

P @ 0.025 = 296.3 P @ 0.975 =308.4 The 0' calculated value (289.82) does not fall inside the boundaries set by the P values interpolated from Table 5; therefore, the final data distribution is not considered normally distributed.

4.8 Coverage analysis I sample counting will be performed to determine an acceptable normal distribution model. This included developing a Histogram of the data for a visual representation of the final data. A Histogram of the final data can be found in" Relay 1B21-K5A,B Histogram, Table 4".

Review of the Histogram from Table 4 indicates relatively high peak in the plot. The kurtosis of the final data is calculated from the Excel spreadsheets.

kurtosis = -0.02135 As discussed in Reference 2.1 a negative kurtosis indicates a relatively flat distribution when compared to a normal distribution model.

Sample counting is performed by determining how many sample points would encompass 95.45% of the total sample data. If at 2 standard deviations 95.45% of the samples are not encompassed, the standard deviation is enlarged until 95.45% of the samples are encompassed.

The steps for performing sample counting:

CALCULATION SHEET ENTERGY SHEET_4.;....::.6_ OF _62_

CALCULATION NO ._,.;;.-JC..=. -. . . : oO"-=1.=B.=.2=--l--=-=K:.: . l-=-14..:. . . - REV._....;;;..00=2=---_ _

Calculate the percentage of points that encompass the final data at 2 standard deviations. The formula is:

std. dev. "42 Where; std. dev. = 1.02 Therefore.

1.02" 2 2.04 =

The total number of final data points that encompass the sample count value of 2.04 is 103 points.

103/1 05 =98.09% of the total sample points.

This is above the required 95.45%; therefore the data is considered normally distributed.

4.9 A Drift Bias determination was performed on the final data to see if the data tended to drift in a particular direction. The formula for performing the Drift Bias was:

Xcrit =t x ..§

,in Xcrit is the maximum value of non-biased mean for a given s & n, expressed in percent.

Where; t = 1.980 (Normal Deviate for at-distribution @ 0.025 for 95% Confidence from Table 4)

=

s 1.02 (standard deviation) n = 105 (sa mple count)

Therefore, Xcrit = 1 .980 x 1.02

..i 105 Xcrit = 0.197 The mean of the final data (0.02) is less than the Xcrit value (0.197);

therefore, the final data drift is determined to be non-biased.

4.10 A 95%/95% TIF (Tolerance Interval Factor) is determined based on the sample size from Table 1 of Reference 2.1. The TIF from Table 1 for a sample size of 105 is 2.233.

TIF =2.233

~ ENTERGY

  • CALCULATION SHEET SHEET_4.:...:.,.7_ OF _62_

CALCULATION NO._-=-JC=---.:::tQ'-=1-=B.=.2.=.....1--=-=K::.:..l-=-14~ REV ._....:::..;OO~2~ _ _

5.0 Analyzed Drift Uncertainty Calculation The final analyzed drift value generally consists of two separate components, the random term and the biased term. As shown in Section 4.9 the final data was not biased; therefore, a bias term is not applicable to this calculation. The formula for calculating the drift uncertainty for the K5 relays was:

DR K6 = TIF

  • std. dey.

Where; TIF =.2.233 std. dey. = 1.02 Therefore, DR K5 = 2.233 *1.02 DRK5 = +/- 2.28 sec.

CALCULATION SHEET

- ENTERGY SHEET_4.;..;:;.8_ OF _62_

CALCULATION NO ._....::....JC..:=;. ---"O<,. .: 1.=B.=. 2"'-1-..; :;.;K:;.; :.1. . : . . 14-'-- REV._...:;..00::;..=2'---_ _

Appendix 2 Relay 1B21-K5A,B Work Order Data Table 1 Relay 1B21CK005A MAf# Date As-Found (seconds) As-left (seconds) Drift (sec) # Days WOO0151858 10/10/1995 105 105 WOO0155134 1/9/1996 103 103 -2.00 91 WOO0160044 4/8/1996 104 104 1.00 90 WOOO165823 7/811996 103 103 -1.00 91 WOOO170714 10/8/1996 103 103 0.00 92 WOO0176444 1/2/1997 104 104 1.00 86 WOOO180956 3/10/1997 104 104 0.00 6?

WOOO184603 6/4/1997 103 103 -1.00 86 WOOO189900 8/27/1997 104 104 1.00 84 WOOO193733 11/20/1997 104 104 0.00 85 WOO0199133 2/9/1998 104 104 0.00 81 WOO0203552 41811998 103 103 -1.00 58 WOO0207450 6/30/1998 104 104 1.00 83 WOO0211186 9/21/1998 104 104 0.00 83 WOO0215266 12/14/1998 104 104 0.00 84 WOO0219792 3/8/1999 104 104 0.00 84 MAIOO254592 6/6/1999 104 104 0.00 90 MAI00258714 8/23/1999 104 104 0.00 78 MAI00264685 12/12/1999 104 104 0.00 111 MAl00273216 3/6/2000 104 104 0.00 85 MA100277385 5/30/2000 104 104 0.00 85 MAI00281834 8/21/2000 104 104 0.00 83 MAI00285661 11/13/2000 105 105 1.00 84 MAI00290448 2/812001 103 103 -2.00 87 MAl00294818 4/312001 104 104 1.00 54 MAI00298928 6/27/2001 104 104 0.00 85 MAI00301461 9/19/2001 104 104 0.00 84 MAI00304716 12112/2001 104 104 0.00 84 MAI00308757 3/712002 104 104 0.00 85 MAl00313636 5/29/2002 104 104 0.00 83 MAIOO317848 8/21/2002 104 104 0.00 84 MAI00320384 11/13/2002 104 104 0.00 84 MAl00324597 215/2003 104 104 0.00 84 MAl00329547 5/112003 104 104 0.00 85 WO-50326472 7/24/2003 104 104 0.00 84 WO-50336234 10/15/2003 105 105 1.00 83 WO-50613155 1/7/2004 106 104 1.00 84 WO-50966962 3/31/2004 105 105 1.00 84 WO-50617623 6/21/2004 105 105 0.00 82 WO-50965503 9/16/2004 105 105 0.00 87 WO-50981 082 12/8/2004 105 105 0.00 83 WO-50988946 2/28/2005 104 104 -1.00 82 WO*50996036 5/26/2005 104 104 0.00 87 WO-51 003385 8/17/2005 105 105 1.00 83 WO-51010414 11/9/2005 104 104 -1.00 84 WO-51 017951 2/1/2006 103 103 -1.00 84

~ ENTERGY

  • CALCULATION SHEET SHEET_4.;..;:;...9_ OF _62_

CALCULATION NO ._..:;..1C..; ; ;. -.O"-"1'

. . -=B-=2..; ; . .1-.. :; ;.;K; ;.; ; .1. ; ; . .14-'-- REV._-"-00;;...;::=2'---_ _

Appendix 2 Relay 1B21-K5A,B Work Order Data Table 1 MAf# Date As-Found (seconds) As-left (seconds) Drift (secj # Days WO-51 024944 4/26/2006 104 104 1.00 84 WO-51 032497 7/18/2006 104 104 0.00 83 WO-51 0400 11 10/11/2006 104 104 0.00 85 WO-51 046721 1/3/2007 104 104 0.00 84 WO-51 056437 4/13/2007 102 102 -2.00 100 WO-51 089480 6/2112007 104 104 2.00 69 WO-51206808 9/1212007 104.62 104.62 0.62 83 WO-51546266 12/4/2007 101 101 -3.62 83 WO-51564566 2/29/2008 103 103 2.00 87

CALCULATION SHEET

- ENTERGY SHEET------"S:....;:;.O_ OF _62_

CALCULATION NO._'~JC=---:::.Qt.,..;:1-=B:.=2..:....1-..:;.:K:.;:.1...:;...14...:...- REV._...:::...OO::..=2:..--_ _

Appendix 2 Relay 1821-K5A.B Work Order Data Table 1 Relay 1B21CK005B MAI# Date As-Found (seconds) As-left (seconds) Orift (sec) # Days WOO0151076 9/28/1995 103 103 WOOO154815 12/13/1995 102 102 -1.00 76 WOO01S9529 3/14/1996 102 102 0.00 92 WOOO164155 6/12/1996 102 102 0.00 90 WOOO169161 9/11/1996 103 103 1.00 91 WOOO175755 12/9/1996 103 103 0.00 89 WOOO179700 2/17/1997 103 103 0.'00 70 WOOO183531 5/12/1997 103 103 0.00 84 WOO0187985 8/5/1997 104 104 1.00 85 WOOO192537 10/28/1997 103 103 -1.00 84 WOOO198247 1/2011998 104 104 1.00 84 WOO0203516 4/1/1998 105 105 1.00 71 WOO0211191 9/30/1998 105 105 0.00 182 WOOO214937 12/21/1998 105 105 0.00 82 WOO0218492 3/15/1999 105 105 0.00 84 MAI00254927 6/7/1999 104 104 -1.00 84 MAIOO259122 8/30/1999 104 104 0.00 84 MAIOO264677 12/11/1999 103 103 -1.00 103 MA100272732 2/28/2000 104 104 1.00 79 MA100277267 5/22/2000 103 103 -1.00 ,84 MAI00281694 8/14/2000 103 103 0.00 84 MAI00283401 11/6/2000 104 104 1.00 84 MAI00288963 1/29/2001 102 102 -2.00 84 MAI00294128 4/10/2001 103 103 1.00 71 MAI00298929 7/16/2001 104 104 1.00 97 MAI00302608 10/8/2001 104 104 0.00 84 MAI00308065 12/3112001 102 102 -2.00 84 MAI0031 0460 3125/2002 104 104 2.00 84 MAr00314285 7/1/2002 103 103 -1.00 98 MAI00317691 9/9/2002 103 103 0.00 70 MAfOO321243 12/4/2002 104 104 1.00 86 MA.IOO325860 2124/2003 103 103 -1.00 82 MAIOO330399 5/19/2003 103 103 0.00 84 WO-50327056 8/1112003 104 104 1.00 84 WO-50337684 11/3/2003 103 103 -1.00 84 WO-50617624 1/28/2004 103 103 0.00 86 WO-50684662 4/19/2004 100.5 100.5 -2.50 82 WO-50968183 7/12/2004 103 103 2.50 84 WO-50975675 10/4/2004 104 104 1.00 84 WO-50982786 12130/2004 102 102 -2.00 87 WO*50990724 3/21/2005 104 104 2.00 81 WO*50998311 6/13/2005 105 105 1.00 84 WO-51 012037 12/112005 103 103 -2.00 171 WO-51 019588 317/2006 102 102 -1.00 96 WO-51 026689 6/14/2006 103 103 1.00 99 WO-51 034555 8/22/2006 104 104 1.00 69

CALCULATION SHEET \

"':::::=- ENTERGY

  • SHEET---::S,-=l_ OF _62_

CALCULATION NO._-=-JC=--......;::,Q~1'-=B~2-=-1-....:.:K::..:.l-=-14....:.....- REV._-=-00=2:....--_ _

Appendix 2 Relay 1B21-K5A.B Work Order Data Table 1 MAI# Date. As-Found (seconds) As-left (seconds) Drift (sec) # Days WO-51042811 11/14/2006* 103 103 -1.00 84 WO-51051532 216/2007 102 102 -1.00 84 WO-51 084487 5/1/2007 104 104 2.00 84 WO-51190685 7/23/2007 103 103 -1.00 83 WO-51513014 10/16/2007 104 104 1.00 85 WO-51551523 1/7/2008 103 103 -1.00 83 WO-51569592 4/15/2008 102 102 -1.00 99

CALCULATION SHEET

-===- ENTERGY

  • SHEET -""-=--

Appendix 2 Relay 1B21-K005A,B Combined Raw I Final Data Table 2 Data Data..Qutlier Removed Adjusted Drift (sec) Days Sample # Final Data (sec) Days Sample #

-2.00 91 1 -2.00 91 1 1.00 90 2 1.00 90 2

-1.00 91 3 ..1.00 91 3 0.00 92 4 0.00 92 4 1.00 86 5 1.00 86 5 0.00 67 6 0.00 67 6

-1.00 86 7 -1.00 86 7 1.00 84 8 1.00 84 8 0.00 85 9 0.00 85 9 0.00 81 10 0.00 81 10

-1.00 58 11 -1.00 58 11 1.00 83 12 1.00 83 12 0.00 83 13 0.00 83 13 0.00 84 14 0.00 84 14 0,00 84 15 0.00 84 15 0.00 90 16 0.00 90 16 0.00 78 17 0.00 78 17 0,00 111 18 0.00 111 18 0.00 85 19 0.00 85 19 0.00 85 20 0.00 85 20 0.00 83 21 0.00 83 21 1.00 84 22 1.00 84 22

  • ,2.00 87 23 .. 2.00 87 23 tOO 54 24 1.00 54 24 0.00 85 25 0.00 85 25 0.00 84 26 0.00 84 26 0.00 84 27 0.00 84 27 0.00 85 28 0.00 85 28 0.00 83 29 0.00 83 29 0.00 84 30 0.00 84 30 0.00 84 31 0.00 84 31 0.00 84 32 0.00 84 32 0.00 85 33 0.00 85 33 0.00 84 34 0.00 84 34 1.00 83 35 1.00 83 35 1.00 84 36 1.00 84 36 1.00 84 3/ 1.00 84 37 0.00 82 38 0.00 82 38 0.00 81 39 0.00 87 39 0.00 83 40 0.00 83 40

-1.00 82 41 -1.00 82 41 0.00 87 42 0.00 87 42 1.00 83 43 1.00 83 43

-1.00 84 44 -1.00 84 44

-1.00 84 45 -1.00 84 45 100 84 46 1.00 84 46 000 83 47 0.00 83 41 0.00 85 48 0.00 85 48 0.00 84 49 0.00 84 49

~ ENTERGY

  • CALCULATION SHEET SHEET---:;5:....=...3_ OF _62_

CALCULATION NO._-"-JC=.-......O'-=1-=B.=.2=--l-..::..;K=-=..1=-14""--- REV ._~OO=2=--- _ _

Appendix 2 Relay 1B21-K005A, B Combined Raw I Fina~ Data Table 2 Data Data-Outlier Removed Adjusted Drift (sec) Days Sample # Final Data (sec) Days Sample #

-2.00 100 50 -2.00 100 50 2.00 69 51 2.00 69 51 0.62 83 52 0.62 83 52

    • 3,62 83 53 2.00 87 53 2.00 87 54 -1.00 76 . 54

-100 76 55 0.00 92 55 0.00 92 56 0.00 90 56 0.00 90 57 1.00 91 57 1.00 91 58 0.00 89 58 0.00 89 59 0.00 70 59 0.00 70 60 0.00 84 60 0.00 84 61 1.00 85 61 1.00 85 62 -1.00 84 62

-1.00 84 63 1.00 84 63 1.00 84 64 1.00 71 64 1.00 71 65 0.00 182 65 0.00 182 66 0.00 82 66 0.00 82 67 0.00 84 67 0.00 84 68 *'1.00 84 68

-1.00 84 69 0.00 84 69 0.00 84 70 -1.00 103 70

-1.00 103 71 1.00 79 71 1.00 79 72 -1.00 84 72

-1.00 84 73 0.00 84 73 0.00 84 74 1.00 84 74 1.00 84 75 -2,00 84 75

-2.00 84 76 1.00 71 /6 1.00 71 77 1.00 97 77 1.00 97 78 0.00 84 78 0.00 84 79 -2.00 84 79

-2.00 84 80 2.00 84 80 2.00 84 81 -1.00 98 81

-1.00 98 82 0.00 70 82 000 70 83 1.00 86 83 1.00 86 84 -1.00 82 84

-1.00 82 85 0.00 84 85 0.00 84 86 1.00 84 86 1.00 84 8/ -1.00 84 87

-1.00 84 88 0.00 86 88 0.00 86 89 -2.50 82 89

-2,50 82 90 2.50 84 90 2.50 84 91 i1.00 84 91 1.00 84 92 -2.00 87 92

-2.00 87 93 2.00 81 93 2.00 81 94 1.00 84 94 1.00 84 95 -2.00 171 95

-2.00 171 96 -100 96 96

-1.00 96 97 1.00 99 9f 1.00 99 98 1.00 69 98*

1.00 69 99 -1.00 84 99

CALCULATION SHEET

--===- ENTERGY

  • SHEET-----.;;S;......;.4_ OF _62_

CALCULATION NO._...;;..JC=.--"'O(",.;;1'-=B-=2..;;:...1-....:;;.:K;;.;:;.1..;:;...14-'--- REV._-"-00;;...;;;;;2'---_ _

Appendix 2 Relay 1B21-K005A,B Combined Raw I Final Data Table 2 Data Data-outlier Removed Adjusted Drift (sec) Days Sample # Final Data (sec) Days Sample #

-1.00 84 100 -1.00 84 100

-100 84 101 2.00 84 101 2.00 84 102 -1.00 83 102

-1.00 83 103 1.00 85 103 1.00 85 I 104 -1.00 83 104

-1.00 83 105 -1.00 99 105

-1.00 99 106

.~ ENTERGY

  • CALCULATION SHEET SHEET-----=5;...:;..5_ OF _62_

CALCULATION NO._-=-JC=.-...;:,Ql:;...;':1c.;:::B:.::.2~1-...::..;K=1~14-=--- REV._...=..;OO=2:...--_ _

Appendix 2 Relay 1B21-K5A,B Normality Test Table 3 0' Normalitv Test 0' Normalitv Test Final Data Sample # 0' Stat Final Data Sample # 0' Stat

-2.50 1 130 0.00 . 50 0

-2.00 2 102 0.00 51 a

-2.00 3 100 0.00 52 a

-200 4 98 0.00 53 a

-2.00 5 96 0.00 54 0

-2.00 6 94 0.00 55 0

-2.00 7 92 0.00 56 0

-2.00 8 90 0.00 57 a

-tOO 9 44 0.00 58 0

-1.00 10 43 0.00 59 a

-1.00 1-1 42 0.00 60 0

-1.00 12 41 0.00 61 a

-1.00 13 40 0.00 62 a

-1.00 14 39 0.00 63 0

-1.00 15 38 0.00 64 0

-1.00 16 37 0.00 65 0

-1.00 17 36 0.00 66 0

-1.00 18 35 000 67 0

-1.00 19 34 0.00 68 0

-1.00 20 33 0.00 69 0

-1.00 21 32 0.00 70 a

-1.00 22 31 0.00 71 0

-1.00 23 30 0.00 72 0

-1.00 24 29 0.62 73 12.41

-tOO 25 28 1.00 74 21

-1.00 26 27 1.00 /5 22

-1.00 27 26 1.00 76 23

-1.00 28 25 1.00 77 24 0.00 29 a 1.00 78 25 0.00 30 a 1.00 79 26 0.00 31 a 1.00 80 27 0.00 32 0 1.00 81 28 0.00 33 0 100 82 29 0.00 34 a 1.00 83 30 0.00 35 0 1.00 84 31 0.00 36 a 1.00 85 32 0.00 37 0 1.00 86 33 0.00 38 a 1.00 87 34 a.oo 39 a 1.00 88 35 0.00 40 0 1.00 89 36 0.00 41 a 1.00 90 37 0.00 42 0 1.00 91 38 0.00 43 0 1.00 92 39 0.00 44 a 1.00 93 40 0.00 45 0 1.00 94 41 0.00 46 a 1.00 95 42 0.00 4r a 1.00 96 43 0.00 48 a 1.00 97 44 0.00 49 a 1.00 98 45

CALCULATION SHEET

-=:::=- ENTERGY

  • SHEET---=5o....;;..6_ OF _62_

CALCULATION NO._...;;;....JC=.---"O<.. =1.=B.=.2.=-1-..::..;;K;;..:;.1-=-14-'--- REV._-"'-'00"'-=2'---_ _

Appendix 2 Relay 1B21-K5A,B Normality Test Table 3 O' Normality Test FinalOata Sample # O' Stat 1.00 99 46 2.00 100 94 2.00 101 96 2.00 102 98 2.00 103 100 2.00 104 102 2.50 105 130 T = 2995.41 2005.41

~ ENTERGY

  • CALCULATION SHEET SHEET---:5:....;..7_ OF _62_

CALCULATION NO 0_-=-1C..=.---"='O"-=1:. =B;.:=.2-=-1-..=K=..: .1.=. .14.. :. . - REV0_-",-00;:;..=2:..-_ _

Appendix 2 Relay 1B21-K5A,B Histogram Table 4 Histogram 50 45 40 35

...c: 30

l 25 0

u 20 15 10 5

0

-4 -3 -2 -1 0 2 3 4 Drift (sec)

AnACHMENT1 JC~1B21~114JREV.OO2 DESIGN VERlflCAnOH SHEET 58 OF 82 Sheet 1 of 1 DESIGN VERIFICATION COVER PAGE o ANO-1 o ANQ-2 o IP-2 DIP-3 DJAF DPLP DpNPS OVY 181 GGNS ORBS DW3 DNP Document No~ JC-QIB21-Kl14 I Revision No. 002 I Page I of4

Title:

Instnunent Uncertainty and Setpoint Determination for the System 1B21-ADS System Initiation Time Delay 181 Quality Related o Augmented Quality Related DVMethod: 18] Design Review o Altemate Calculation o Qualification Testing VERIFICATION REQUIRED DISCIPLINE VERIFICAnON COMPLETE AND COMMENTS RESOLYEO mv Drint si2D. and date) 0 Electrical D Mechanical lZJ Instrument and Control Robin Smith/ //-Z/ /

/...,I/C/ - -

({irE//)

-v 0 CivillStnlctural ".

0 Nuclear 0

0 Originator:

(individual requesting Man Coffaro I '711 ~/JJu:J/Date After

~

11/lf/l3 cbmments Have Been Resolved' DV) ( / ;-** I. u ..

ATTACHMENT 1 JC-Q1B21-K114, REV. 002 DESIGN VERIFICATION SHEET 59 OF 62 Sheet 1 of 3 IDENTIFICAnON: DISCIPLINE:

Document

Title:

Instrument Uncertainty and Setpoint Detennination for the System 1B21-ADS DCivi IIStructural System Initiation Time Delay DElectrical Doc. No.: JC-QIB21-KlI4 R%OO2 QA Cat.: SR ~I&C Robin Smith /bAi#~ tr /(;-/(3 DMechanical Verifier: Print 'VV Sfg~ Date DNuclear Manager authorization for DOther supervisor perfonning Verification.

(gJ N/A Print Sign Date METHOD OF VERIFICATION:

Design Review [gI Alternate Calculations 0 Qualification Test 0 The following basic questions are addressed as applicable, during the performance of any design verification. [ANSI N45.2.1l - 1974J [NP QAPD, Part II, Section 3] [NP NQA-1-1994, Part II, BR 3, Supplement 38-1].

NOTE The reviewer can use the "Comments/Continuation sheet" at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.

1. Design Inputs - Were the inputs correctly selected and incorporated into the design?

(Design inputs include design bases, plant operational conditions, perfonnance requirements, regulatory requirements and commitments, codes, standards, field data, etc. All information used as design inputs should have been reviewed and approved by the responsible design organization, as applicable.

All inputs need to be retrievable or excerpts of documents used should be attached.

See site specific design input procedures for guidance in identifying inputs.)

Yes t8l No 0 N/A 0

2. Assumptions - Are assumptions necessary to perfonn the design activity adequately described and reasonable?

Where necessary, are assumptions identified for subsequent re~verification when the detailed activities are completed?

Yes t8l No 0 N/A 0

3. Quality Assurance - Are the appropriate quality and quality assurance requirements specified?

Yes t8I No 0 N/A 0

ATTACHMENT 1 JC-Q1B21-K114, REV. 002 DESIGN VERIFICATION SHEET 60 OF 62 Sheet 2 of3

4. Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met?

Yes ~ No D N/A D

5. Construction and Operating Experience - Have applicable construction and operating experience been considered?

Yes D No D N/A ~

6. Interfaces - Have the design interface requirements been satisfied and documented?

Yes D No D N/A ~

7. Methods - Was an appropriate design or analytical (for calculations) method used?

Yes ~ No D N/A D

8. Design Outputs - Is the output reasonable compared to the inputs?

Yes ~ No D N/A D

9. Parts, Equipment and Processes - Are the specified parts, equipment, and pr.ocesses suitable for the required appli,cation?

Yes D No D N/A ~

10. Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?

Yes D No D N/A ~

11. Maintenance requirements - Have adequate maintenance features and requirements been specified?

Yes D No D N/A ~

12. Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair?

Yes D No D N/A ~

13. Accessipi1ity for In-service Inspection - Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?

Yes D No D N/A ~

14. Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel?

Yes D No D N/A ~

15. Acceptance Criteria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?

Yes ~ No D N/A D

16. Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?

Yes D No D N/A ~

ATTACHMENT 1 JC-Q1B21-K114, REV. 002 DESIGN VERIFICATION SHEET 61 OF 62 Sheet 3 of3

17. Handling, Storage, Cleaning and Shipping - Are adequate handling, storage, cleaning and shipping requirements specified?

Yes 0 No 0 N/A [gI

18. Identification Requirements - Are adequate identification requirements specified?

Yes 0 No 0 N/A [gI

19. Records and Documentation - Are requirements for record preparation, review, approval, retention, etc.,

adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?

Yes [gI No 0 N/A 0

20. Software Quality Assurance- ENN sites: For a calculation that utilized software applications (e.g.,

GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN- IT-I04 or previous site SQA Program?

ENS sites: This is an EN-IT-I04 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?

Yes 0 No 0 N/A [gI

21. Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?

Yes 0 No 0 N/A [gI

22. Are the latest applicable revisions of design documents utilized?

Yes [gI No 0 N/A 0

ATTACHMENT 1 JC-Q1B21~K114, REV. 002 DESIGN VERIFICATION SHEET 62 OF 62 Comments / Continuation Sheet Question Comments Resolution InitiallDate I Comments provided by m~rkup. Comments incorporated. RS 11/28/12

Attachment 5 GNRO-2014/00014 Calculation JC-a1 E12-K093 "Instrument Uncertainty and Setpoint Determination for System E12 Containment Spray Actuation Timer"

gANQ..} OANO-2 ~GGNS OIP-2 OIP-3 DpLP OlAF DpNPS ORBS OVY OW3 Ll NP-GGNS-3 DNP-RBS-3 CALCULATION (I) EC ## 40337 (2) Page 1 of 47 COVER PAGE (3) Design Basis Calc. 0 YES ~NO (4)

~ CALCULATION DECMarkup (5) CaleulatioD No: JC-QIE12-K093 (6) Revision: 001 (7)

Title:

Instrument Uneertainty and Setpoint Determination for System (8) Editorial El2 Containment Spray AetuatioD Timer DYES [giNO (9) System(s): E12 (IU) Review Org (Department): NPE (l&C Design)

(11) Safety Class: (12) ComponentlEquipmentlStrudure TypeINumber:

[8J Safety I Quality Related o Augmented Quality Program lE12K093A lE12AKl16 o Non-Safety Related lE12K093B (U) Document Type: J05.02 (14) Keywords (Descriptiontropieal Codes): setpoiD~ uncertainty REVIEWS (t5) Name/SignatureIDate (16) Name/SignaturelDate (17) Name/SignaturelDate Robin Smith I P'&-

'II!

M;uy Coffaro I 719~fAI.D Greg Phillips /

Ifl.:)

Responsible Engineer 181 Design Verifier

" 0//3 See A/S 12/17/2013 Supervisor/Approval o Reviewer t8J Comments Attached o Comments Attached

~ ENTERGY

  • CALCULATION SHEET SHEET 2 OF _47_

CALCULATION NO._-=-JC=---,"Qo...;;;.l=E.;:;..;;12",---K~09;...;;;;.3 REV. 001 o Original Issue EC-40337, CR-GGN-2004-0038, CR-GGN-2002-0562, changed component numbers per CR-GGN-2003-01741, performed drift analysis, incorporated 1

revision to EIOO.O, updated calibration interval to agree with technical s ecifications.

~ ENTERGY

  • CALCULATION SHEET SHEET 3 OF _47_

CALCULATION NO._-=-JC=--~Q;...:;.1=E-,=-=12=--K::..::..;;.,;:09;...::;3 REV. 001 CALCULATION CALCULATION NO: JC-Q1E12-K093 Rev 001 REFERENCE SHEET I. EC MARKUPS INCORPORATED (N/A to NP calculations): None II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc YIN No.

1. JS09 0 001 0' 0 N 2.' J1271 007 001 0' 0 N 3.J1271 008 001 0' 0 N 4.J1271 044 000 0' 0 N
5. M1085A 0 069 0' 0 N
6. M1085B 0 062 0' 0 N
7. M1085C 0 018 0' 0 N
8. M1085D 0 004 0' 0 N 9.22A3139 0 005 0' 0 N
10. DL828E534BA 0 018 0' 0 N
11. CR-GGN-2003-03577 -- 000 0' 0 N
12. E100.0 0 007 0' 0 N
13. 22A3139AK 0 011 0' 0 N 14.06-EL-1E12-Q-0002 -- 100 0' 0 N
15. AOO14 0 009 0' 0 N
16. J0400 0 018 0' 0 N
17. J0401 0 014 0' 0 N
18. A0120 0 016 0' 0 N
19. 169C9488 001 015 0' 0 N
20. 169C9488 002 015 0' 0 N
21. 169C9488 003 013 0' 0 N
22. 169C9488 004 015 0' 0 N
m. CROSS

REFERENCES:

1. Technical Specifications Table 3.3.6.3-1, TR3.3.6.3-1 and Technical Specifications Bases B3.3.6.3.4
2. Asset Suite Equipment Data Base (EDB)

=::=- ENTERGY CALCULATION NO.

  • CALCULATION SHEET JC-Q1E12-K093 SHEET 4 REV.

OF 001 IV. SOFTWARE USED:

Title:

N/A VersionJRelease: Disk/CD No.

V. DISK/CDS INCLUDED:

Title:

N/A VersionJRelease Disk/CD No.

VI. OTHER CHANGES: Related references removed from the calculation: 164C5257, MC-Q1EI2-84015, MNCR-00652-83, 865E516-001, PMI-83/2-0207, EDP-32, 06-EL-lEI2-M-002, EAR-E90-0158

CALCULATION SHEET

-=::::=- ENTERGY

  • SHEET 5 OF _47_

CALCULATION NO._-"-JC=--......Q..,; ;.1=.E. ; ;. ; 12;; . . .;-K; ;.; ; ;0. ; ;. ; 9;. ; ; .3 REV. 001 TABLE OF CONTENTS SHEET COVER SHEET 1 RECORD OF REVISION 2 CALCULATION REFERENCE SHEET 3 TABLE OF CONTENTS 5 SECTION 1.0 PURPOSE 6 2.0 DESIGN REQUIREMENTS 6

3.0 REFERENCES

7 4.0 GIVEN 8 5.0 ASSUMPTIONS 11 6.0 METHODOLOGY 12 7.0 CALCULATION 14

8.0 CONCLUSION

21 APPENDICES 1 Drift Analysis, K093A (10 pages) 2 Drift Analysis, K093B & Kl16 (9 pages)

ATTACHMENTS 1 Design Verification Form (5 sheets)

~ ENTERGY

  • CALCULATION SHEET SHEET 6 OF. _47_

CALCULATION NO._...::..JC;::::"--.:::IQ~I.=E.;:;..:I2=--K~09:....:::3 REV. 001 1.0 PURPOSE The purpose of this calculation is to determine the instrument loop uncertainty, limiting allowable values and set points for instrument loops IEI2K093A,B. The values generated by this calculation are in accordance with reference 3.1.1.

2.0 DESIGN REQUIREMENTS Containment Spray is an operating mode of the RHR system wherein water discharged from the RHR pumps is directed through heat exchangers to spray headers located near the top of the containment. This spray passes down through the containment atmosphere condensing steam, removing energy from the atmosphere to limit containment pressure rise resulting from a LOCA or HELB inside containment, and promoting removal of iodine from the containment atmosphere (Ref. 3.1.2, p.6).

Containment Spray "A" is initiated by LPCS initiation (high drywell pressure or low water level) after about a 10 minute time delay (IEI2K093A) to permit the RHR system to operate in LPCI mode to recover core water level in the event of a LOCA (Ref. 3.1.2, p.6).

Containment Spray "B" is initiated by a LOCA detection (high drywell pressure or low water level in the reactor) coincident with high containment pressure after about a 10 minute time delay (lEI2K093B) followed by a short time delay of less than 5 seconds (lEI2AKI16). The system may also be initiated manually (Ref. 3.1.2, p.15; 3.1.7- 3.1.9)

The initiating event for equipment addressed by this report is high drywell pressure or low water level resulting from an accident - LOCA or HELB. However, the timers are located in the control room where accident conditions are no more severe than normal. Therefore, the timers will be required to function in normal environments as described in reference 3.1.20.

The RHR system which includes the Containment Spray Subsystem is designed in accordance with the requirements for Category I equipment and must function during and after a seismic event (Ref. 3.1.2, p.8).

For instrument loops lE12K093A,B the upper analytical limit (AL) is 11.7 minutes and the lower analytical limit is 10.0 minutes (Ref. 3.1.19). The Technical Specification allowable value (AV) is ~10.26 min :::;11.44 min (Ref. 3.2.1). The TRM setpoint is ~10.75 min :::;10.95 min (Ref. 3.2.1).

~ ENTERGY

  • CALCULATION SHEET SHEET 7 OF _47_

CALCULATION NO._-=-1C=--..;:oQ;..:;.1.=E-=-:12=---K::..:::.:::...;09:....::;3 REV. 001

3.0 REFERENCES

3.1 Relationships 3.1.1 Standard No. 1S09, Methodology for the Generation of Instrument Loop Uncertainty & Setpoint Calculations 3.1.2 GE Design Spec 22A3139 3.1.3 P&ID M1085A 3.1.4 P&ID M1085B 3.1.5 P&ID M1085C 3.1.6 P&ID M1085D 3.1.7 11271-007, Logic Diagram 3.1.8 11271-008, Logic Diagram 3.1.9 11271-044, Logic Diagram 3.1.10 GE EDDL DL828E534BA 3.1.11 10401, UCSR Panel Location 3.1.12 10400, Control Room Panel Location 3.1.13 A0014, Plan El. 185' 0" 3.1.14 A0120, Control Room Plan 3.1.15 Notused 3.1.16 GE PPD169C9488, Sht. 1,2,3,4 3.1.17 CR-GGN-2003-03577 3.1.18 06-EL-1E12-Q-0002, Surveillance Procedure ADS Timers Functional Test and Calibration 3.1.19 GE Design Spec 22A3139AK 3.1.20 Standard E100.0, "Environmental Parameters for GGNS" 3.2 Cross References 3.2.1 Technical Specifications Table 3.3.6.3-1 and TR3.3.6.3-1 3.2.2 Asset Suite Equipment Data Base EDB

~ ENTERGY

  • CALCULATION SHEET SHEET 8 OF _47_

CALCULATION NO._-=-JC=----.::oO-.. . =.I.=E.. ::..:12=--K=.::;..;;09:.. .::;3 REV. 001 4.0 GIVEN 4.1 Instrument Loop Block Diagram Containment Containment Spray"B" Logic Diagram Spray "A" Relay Relays lE12K093A lE12K093B, 3.1.3 -3.1.6 3.1.7 - 3.1.9 lE12AK116 Containment Spray "A" LPCS Initiation IE12K093A Spray Initiation Containment Spray"B" LOCA Detection IE12K093B Containment Spray AND lE12AKl16 Pressure H i g h - - - - - - - - - - - ; Initiation

CALCULATION SHEET

--=::::=- ENTERGY

  • SHEET 9 OF _47_

CALCULATION NO._-=--JC:::::..-.....::.Q;,.;:;.1=E~12:.....;-K~09:...::::3 REV. 001 4.2 lE12-K93A,B and lE12-Kl16 Containment Spray Timer Environment Description Data Reference Tag Number 1E12K093A, B; 1E12AKl16 Instrument Location:

Panel H13-P629; H13-P618 3.1.11; 3.1.12 Room OC703; OC504 3.1.13; 3.1.14 Environmental Conditions:

Normal: Zone N~028 3.1.20 Temperature 69-90°F 3.1.20 Pressure 0.1 to 1.0 in.wg. 3.1.20 Radiation (Gamma) 1.8E2 rads (40 yr TID) 3.1.20 0.5 millirads/hr dose rate Humidity 20-50% RH 3.1.20 DBE or Accident: same as normal 3.1.20 Seismic Conditions: N/A Assumption 5.7 Surveillance Intervals: 92 days 3.1.18 4.3 lE12K093A,B Vendor Data Description Reference Tag Number 1E12K093A,B Manufacturer Amerace/Agastat 3.1.16,3.1.17 Model ETR 3.1.10,3.1.16,3.1.17 Repeatability: +/- 5% setpoint (normal conditions) 3.1.16,17

+/- 10% setpoint (extreme conditions) 3.1.16,17

~ ENTERGY

  • CALCULATION SHEET SHEET-.;I;;....;;;.O_ OF _47_

CALCULATION NO._-=-JC=--~Qt,...;:;I-=E~12=--.;:;.:K::..:::..09;:;..:3::......-. REV._-"-OO:;..;:;I'---_ _

Defined Conditions: 3.1.16 Normal Extreme (limit)

Voltage: +/- 10% 80% min coil pick-up Temperature: 60-104°F 40°F, 145°F Humidity: 20-500/0RR 950/0RR Pressure: +/- 2 psig Radiation: 1.8E5Rads TID Seismic:  :<::;3 g Operating Range 1-30 min 4.4 lE12AKl16 Vendor Data Description Reference Tag Number lE12AK116 3.2.2 Manufacturer Amerace/Agastat 3.1.16,3.1.17 Model ETR 3.1.10,3.1.16,3.1.17 Repeatability: +/- 5% setpoint (normal conditions) 3.1.16,17

+/- 10% setpoint (extreme conditions) 3.1.16,17 Defined Conditions: 3.1.16 Normal Extreme (limit)

Voltage: +/- 10% 800/0 min coil pick-up Temperature: 60-104°F 40°F, 145°F Humidity: 20-500/0RR 95%RR Pressure: +/- 2 psig +/- 2 psig Radiation: 1.8E5Rads TID 1.8E5Rads TID Seismic:  :<::;3 g  :<::;3 g Operating Range 4-120 sec.

~ ENTERGY

  • CALCULATION SHEET SHEET------:l=-=.l_ OF _47_

CALCULATION NO._-=-JC=--~Qc.,.;:;I.=E~12=--..:;.:K:.:::..09:::...::3~ REV._...:::...OO:::...;::I _

5.0 ASSUMPTIONS 5.1 Not used.

5.2 The vendor provides a single 'repeatability' value for normal and extreme environmental conditions and voltages. Since these conditions include temperature, pressure, radiation and voltage specifications, it is assumed that RA, TE, HE, RE and PS are included in the repeatability value. Based on the vendor defined normal environment identified in sections 4.3 and 4.4 and the operating environment identified in section 4.2, the accuracy value given for normal environmental conditions (5.0% setting) shall be used.

5.3 Vendor documents list equipment performance data without stating the statistical basis for the numbers. Although some vendor data is "worst case" it will be assumed that all such data is a 2 sigma value.

5.4 Per reference 3.1.1, the M&TE error is normally assumed to be equal to the reference accuracy of the instrument. Per reference 3.1.18, for the K093A & B relays, the test equipment used to determine the setpoint has an accuracy of +/-0.5 seconds. The setting tolerance is +/-6.0 seconds for both loops (K093A alone and K116 + K093B together),

per reference 3.1.18. Therefore, for the K093A & B relays, the setting tolerance of

+/-6.0 seconds (0.1 min), will be used as input for the M&TE error. For the K116 relay, a setting tolerance of +/-O.O seconds will be used since the M&TE error is accounted for with K093A.

5.5 No drift data regarding the AmeracelAgastat model ETR timer relay used for lE12K093A was available from the vendor. However there is historical calibration data available. This data was used to calculate the drift based on the calibration interval. The drift analysis resulted in value of +/-8.81 seconds (Appendix 1). The drift value is for a 115 day period.

5.6 No drift data regarding the Amerace/Agastat model ETR timer relay used for lE12K093B & lE12AK116 was available from the vendor. However there is historical calibration data available for the loop which includes both the K093B and K 116 relays in series. This data was used to calculate the drift based on the calibration interval. The drift analysis resulted in value of +/-10.52 seconds (random), +1.43 seconds (bias) (Appendix 2). The drift values are for a 115 day period.

5.7 The timer relays are seismically qualified devices. Since the vendor does not identify any seismic effect error for the timer relays it is assumed that any seismic effects are included in the reference accuracy.

~ ENTERGY . .

CALCULATION SHEET SHEET--=1~2_ OF _47_

CALCULATION NO ._..:;..1C=----'"O'-=1.=E'-=12=--.;;;.;:K=..09;;...:3'--- REV._-=-OO=-=l'---_ _

6.0 METHODOLOGY 6.1 Device Uncertainties For each module, the uncertainty tenns applicable to this application will be specified and combined into the following module errors:

RA reference accuracy L negative bias uncertainty M positive bias uncertainty MTE - measurement and test equipment inaccuracies D drift 6.2 Loop Uncertainties' The random and bias components of:

PE errors associated with the Primary Element PM errors in Process Measurement, and IR errors due to degradation in Insulation Resistance will be quantified, the loop error equation given, and the device and loop uncertainties combined to produce:

AL SRSS of all device random uncertainties except drift LL The sum of all negative bias uncertainties ML The sum of all positive bias uncertainties CL SRSS of all measurement and test equipment inaccuracies used for calibration.

DL SRSS of all drifts LU L SRSS( A L, C L, PE, PM ) +/- IR - LL + M L 6.3 Total Loop Uncertainty The total loop uncertainty will be calculated using the reference 3.1.1 equation:

TLU=LU+D L 6.4 Allowable Value The allowable value for the loop will be calculated using the reference 3.1.1 equation:

AV=AL+/-LU

~ ENTERGY

  • CALCULATION SHEET SHEET-----.;I;;..;;;;..3_ OF _47_

CALCULATION NO ._...:;;....1C=--~Q,,-=I,-=E=.;12=---=K:..::.0.;:;...;93:::...-- REV._....;;;...OO;;;..;;;I'----_ _

6.5 Nominal Trip Setpoint The nominal trip setpoint will be calculated using the reference 3.1.1 equation:

NTSP = AL +/- TLU 6.6 Spurious Trip Avoidance The probability of a spurious trip during normal plant operation using the Tech Spec setpoint will be evaluated using the methodology of reference 3.1.1 and calculated loop errors. Per reference 3.1.1, a 95% probability of no spurious trip is acceptable.

6.7 LER Avoidance The probability of exceeding the Tech Spec allowable value without a trip at the tech spec setpoint will be evaluated using the methodology of reference 3.1.1 and calculated loop errors. Per reference 3.1.1, a 90% probability of avoiding LERs is acceptable. A Z of 1.28 corresponds to a probability of 90%.

6.8 Nomenclature The calculation will performed for each loop therefore the uncertainties and calculations will be uniquely identified. The nomenclature of reference 3.1.1 will be used with the following modification:

The terms associated for the system A loop are A, and the terms associated with the loop for the system B will be B. Terms associated with system B timer, K93B, will be subscripted with a "I". Terms associated with system B timer, K116, will be subscripted with a "2". Therefore, RA Bl refers to the K93B relay Reference Accuracy, RAB2 refers to the K116 relay Reference Accuracy, A B refers to the loop Accuracy.

6.9 Worst Case Loop Because there are two different loop arrangements under consideration in this calculation, the system "A" and "B" loop uncertainties and limiting allowable values and setpoints will be calculated separately.

Per section 4.2 all timing relay environments are identical.

CALCULATION SHEET

--=::::- ENTERGY

  • SREET------'1;........;.4_ OF _47_

CALCULATION NO._-=-1C=--.. . :>Ooo.. .; :lc.=E-=-12;:; ;.--..:; .; K: .: ;. 0.: . .;93::. -.- REV._....;;;.-OO;;;;..;;;l'---_ _

7.0 CALCULATION 7.1 System A Uncertainties The only device in this loop is the Amerace time delay relay. The accuracy of a time delay relay is determined by (1) the value initially set in, determined by calibration accuracy, (2) the repeatability, and (3) the drift:

An initial determination of the setpoint will be made for use in determining the loop uncertainty. Because this loop has upper and lower limits, the upper setpoint Technical Specification limit will be chosen since it will provide more conservative results.

Setpoint = 11.44 min 3.2.1 Using the error values from section 4.3 (Assumption 5.2):

RA A = +/- 50/0 setpoint (combined vendor value)

= +/- (0.05)*(11.44)

= +/- 0.58 min The environment ranges are within the vendor data ranges, therefore:

TEA = 0.0 min REA = 0.0 min REA = 0.0 min PS A = 0.0 min SEA = 0.0 min, per Assumption 5.7.

The relay vendor does not provide a drift error. Drift is determined using calibration data (Assumption 5.5).

DRA = +/- 8.81 sec

= +/- 8.81 sec

  • 1 min / 60 sec

= +/- 0.15 min Summarizing for the A loop:

AA = +/- SRSS(RAA, TEA, REA, SEA REA, PS A)

= +/- SRSS(0.58, 0.0, 0.0, 0.0, 0.0, 0.0)

= +/- 0.58 min LA =-O.Omin MA = + 0.0 min

= +/- 0.10 min Assumption 5.4

-=::::=- ENTERGY ~ CALCULATION SHEET SHEET------.:1:....=...5_ OF _47_

CALCULATION NO._-=-JC=--....;:,Q-..,;:;1-=E....:..:12=--.:.::K:.:::..09;:;....::3~ REV._....::::..;OO:::...::;l _

DA = +/- 0.15 min 7.2 System B Uncertainties There are two Amerace time delay relays in this loop with one of the relays presently set to minimum. The uncertainties associated for each relay will be calculated separately and then they will be combined to determine the loop accuracy values. The accuracy of a time delay relay is determined by (1) the value initially set in, determined by calibration accuracy, (2) the repeatability, and (3) the drift.

An initial determination of the setpoint will be made for use in determining the loop uncertainty. Because this loop has upper and lower limits, the upper setpoint Technical Specification limit will be chosen since it will provide more conservative results.

Overall Setpoint (K093B + Kl16) = 11.44 min. 3.2.1 K116 Setpoint alone = 10 sec. (0.17 min.)

Because the K116 lower setpoint limit is zero seconds (Ref. 3.1.18), the K093B setpoint will be taken to be the entire overall Tech. Spec. time limit for the purpose of calculating errors associated with K093B, while the K116 setpoint will be taken as the upper Tech. Spec. limit for that relay:

K93B relay = 11.44 min.

K116 relay = 0.17 min.

Using the error values from Section 4.3 and 4.4 (Assumption 5.2):

For K93B:

RA B 1 = +/- 50/0 setpoint (combined vendor value)

= +/- (0.05)*(11.44 min)

= +/- 0.58 min The environment ranges are within the vendor data ranges, therefore:

TE B1 = 0.0 min HE B1 = 0.0 min RE Bl = 0.0 min PS B1 = 0.0 min SE S1 = 0.0 min, per Assumption 5.7.

The relay vendor does not provide a drift error. Drift is determined using calibration data (Assumption 5.6).

DRs I = +/- 10.52, + 1.43 sec (Note 1)

= (+/- 10.52, + 1.43 sec.)

  • 1 min. /60 sec.

~ ENTERGY

  • CALCULATION SHEET SHEET-----'I:....:::.6_ OF _47_

CALCULATION NO._-=-JC=--...;:,O"'-=I'-=E:..;;:.:12=--.::.:K:.;:;.09::;...::3:...-- REV._....;:;....OO::;..;::I _

= +/- 0.18 min., + 0.03 min.

Note 1: The drift value for the K93B relay includes the K116 relay.

Summarizing for the K93B relay:

AS1 = +/- SRSS(RA s1 , TEs1 , HE s1 , SEBI RE BI , PS S1 )

= +/- SRSS(0.58, 0.0, 0.0, 0.0, 0.0, 0.0)

= +/- 0.58 min Ls ] = - 0.0 min MS1 = + 0.0 min

= +/- 0.1 min Assumption 5.4 Ds ] = +/- 0.18 +0.03 min For K116:

RA S2 = +/- 5% setpoint (combined vendor value)

= +/- (0.05)*(0.17 min)

= +/- 0.01 min The environment ranges are within the vendor data ranges, therefore:

TEs2 = 0.0 min HE s 2 = 0.0 min RE s2 = 0.0 min PS S2 = 0.0 min SE S2 = 0.0 min, per Assumption 5.7.

DRs2 = +/- 0.00 min (Note 2)

Note 2: The drift for the K116 relay is included in the drift for the K093B relay.

Summarizing for the K116 relay:

AS2 = +/- SRSS(RA s2 , TE s2 , HE s2 , SE S2 RE S2 , PS S2 )

= +/- SRSS(O.OI, 0.0, 0.0, 0.0, 0.0, 0.0)

= +/- 0.01 min LS2 = + 0.0 min

~ ENTERGY

  • CALCULATION SHEET SHEET-----.:l:....:..,.7_ OF _47_

CALCULATION NO._...:;..JC=.--..::oOt..=1.=E:.;:;..:12=--..:..::K:..:::..09::....;:3::...-- REV._....:::...OO:::...;:l'---_ _

M S2 = - 0.0 min

= +/- 0.00 min Assumption 5.4 DS2 = +/- 0.00 min Summarizing for the Bloop:

As = +/- SRSS(As1 , AS2 )

= +/- SRSS(0.58, 0.01)

= +/- 0.59 min Ls = - 0.0 min Ms =+ 0.0 min Cs = +/- SRSS(C S1 , CS2 )

= +/- SRSS(O.l, 0.0)

= +/- 0.10 min Ds = +/- SRSS(DRsl-random, DRs2 ) + DRsl-bias

= +/- SRSS(0.18, 0.0) + 0.03

= +/- 0.18 + 0.03 min 7.3 Loop Uncertainty for System A PE=N/A (The loops do not employ a primary element.)

PM=N/A (The loops do not measure a process.)

IR = N/A (No harsh environments exist at the mounting locations.)

LU A = +/- SRSS(AA, CA)

= +/- SRSS(0.58, 0.1)

= +/- 0.59 min 7.4 Total Loop Uncertainty for System A TLU A = LU A + DA

= 0.59 + 0.15

= 0.74 min 7.5 Allowable Value for System A

~ ENTERGY

  • CALCULATION SHEET SHEET_1;;...;:;..8_ OF _47_

CALCULATION NO._-=-JC~-...,;,Q,-=1,-=E;.:;..:12=--.=...::K~09;;...::3~ REV._....;;;...OO;;;..;;;l'---_ _

The analytical limits are 10.0 min. (Lower) and 11.7 min. (Upper). Section 2.0 AV A Upper =ALu-LUA

= 11.7 - 0.59

= 11.11 min AVA Lower =ALL+LUA

= 10.0 + 0.59

= 10.59 min Note: The Tech. Spec. allowable value is 2: 10.26 min, :::;11.44 min. 3.2.1 The Technical Specification upper and lower Allowable Values are not conservative with respect to the calculated AV's.

7.6 Nominal Trip Setpoint for System A Loop NTSP A Upper .= ALu - TLU A

=11.7-0.74

= 10.96 min NTSP A Lower = ALL + TLU A

= 10.0 + 0.74

= 10.74 min Note: The Tech. Spec. setpoint 2: 10.75 min :::;10.95 min. The Technical Specification setpoints are conservative with respect to the calculated NTSP A values. 3.2.1 7.7 Loop Uncertainty for System B PE=N/A (The loops do not employ a primary element.)

PM=N/A (The loops do not measure a process.)

IR = N/A (No harsh environments exist at the mounting locations.)

LUB = +/- SRSS(AB, C B)

= +/- SRSS(0.59, 0.10)

= +/- 0.60 min 7.8 Total Loop Uncertainty for System BLoop

CALCULATION SHEET

-===- ENTERGY

  • SHEET--,,1~9_ OF _47_

CALCULATION NO ._-=-1C=---.:>Qo;,..;:;l~E=.;12=--..:;.::K::.:::..09;::....:3::.-- REV._..=.OO=-=l'---_ _

+TLUB = LU B + DB + bias

= 0.60 + 0.18 + 0.03

= 0.81 min

-TLU B = LU B + DB

= 0.60 + 0.18

= 0.78 min 7.9 Allowable Value for System BLoop The analytical limit is 10.00 min. (Lower) and 11.7 min. (Upper). 3.1.19 AV B Upper =ALu-'LU B

= 11.7 - 0.60

= 11.10 min AVB Lower = ALL + LU B

= 10.00 + 0.60

= 10.60 min Note: The Tech. Spec. allowable value is 2: 10.26 min ~11.44 min. 3.2.1 The Technical Specification upper and lower Allowable Values are not conservative with respect to the calculated AV's.

7.10 Nominal Trip Setpoint for System BLoop NTSP BUpper = AL u - (+TLU B)

=11.7-0.81

= 10.89 min NTSP B Lower = ALL + (-TLUB)

= 10.00 + 0.78

= 10.78 min Note: The Tech. Spec. setpoint 2: 10.75 min ~10.95 min. 3.2.1 The Technical Specification setpoints are not conservative with respect to the calculated NTSP B values. Reference 3.1.1 allows the combination ofLU and DR by SRSS. Therefore, recalculating TLU:

+TLU B' = SRSS(LUB, DB) + bias

~ ENTERGY

  • CALCULATION SHEET SHEET_2;;;....;;..0_ OF _47_

CALCULATION NO._....:;..JC=----.:::lQ'-'=1-=E;.:.;12=--.:..::K~0;:....;:93::....._ REV._....;;...OO;;;...;;;;l _

= SRSS(0.60, 0.18) + 0.03

= 0.63 + 0.03 min

= 0.66 min.

-TLU B' = SRSS(LUB, DB)

= SRSS(0.60, 0.18)

= 0.63 min NTSP BUpper' = AL u - (+TLU B')

= 11.7 - 0.66

= 11.04 min NTSP BLower' = ALu + (-TLU B')

= 10.0 + 0.63

= 10.63 min The Technical Specification setpoints are conservative with respect to the calculated NTSPB'values.

7.11 Spurious Trip Avoidance for System A & B Loops Not required.

7.12 LER Avoidance System A Loop n=2 Assumption 5.3 Z = ABS(AV - NTSP) Il/n (SRSS(AA,C A, DA)) 3.1.1 Z Upper = ABS(AV Upper - NTSP Upper) Il/n (SRSS(AA,C A, DA)) 3.1.1

= ABS(11.1 0 - 10.95) I ~ SRSS(0.58, 0.10, 0.15)

= 0.493 Z Lower = ABS(AV Lower - NTSP Lower) Il/n (SRSS(AA,C A, DA)) 3.1.1

= ABS(10.60 - 10.75) I ~ SRSS(0.58, 0.10, 0.15)

= 0.493 These are below the Section 6.7 minimum acceptable Z value of 1.28 for 90%.

7.13 LER Avoidance System BLoop n=2 Assumption 5.3 Z = ABS(AV - NTSP) Il/n (SRSS(AB,C B, DB)) 3.1.1 Z Upper = ABS(AV Upper - NTSP Upper) /lIn (SRSS(AB,C B, DB)) 3.1.1

CALCULATION SHEET

-=:::::- ENTERGY

  • SHEET 21 OF _47_

CALCULATION NO._-"-JC..; :;. ---""O..,; ; .1=.E.; ;. ; ;12;; . . .;-K;; . ; ; c0..:; . ; ;9. .; ; .3 REV. 001

= ABS(11.10 - 10:95) / (~ SRSS(0.59, 0.10, 0.18) + 0.03)

= 0.438 Z Lower = ABS(AV Lower - NTSP Lower) /1/n (SRSS(AB,C B, DB)) 3.1.1

= ABS(10.60 - 10.75) / ~ SRSS(0.59, 0.10, 0.18)

= 0.480 These are below the Section 6.7 minimum acceptable Z value of 1.28 for 90%.

~ ENTERGY

  • CALCULATION SHEET SHEET--,,2=2_ OF _47_

CALCULATION NO._-=-JC=.-.....,;:,O"--=I'-=E;..;::;.;12=--...:.:K:.;;.0.;;;...:93=---- REV._..=.;OO:;....;:;I _

8.0 CONCLUSION

For system A, the Technical Specification Allowable Values are non-conservative with respect to the calculated values. The TRM setpoints are conservative with respect to the calculated values. It is recommended that the Allowable Values be revised to :::;11.10 and

~1 0.60 minutes.

SUMMARY

OF RESULTS SYSTEM E12 LOOP NUMBERS System A TOTAL LOOP UNCERTAINTY +/- 0.74 min.

LOOP UNCERTAINTY +/- 0.59 min.

DRIFT ALLOWANCE +/- 0.15 min.

M&TE +/- 0.10 min.

Upper Limits SPECIFIED (min.) CALCULATED (min.)

Analytical Limit < 11.7 -

Allowable Value  :::; 11.44 11.11

< 11.10*

Nominal Trip Setpoint < 10.95 10.96 Lower Limits SPECIFIED (min.) CALCULATED (min.)

Nominal Trip Setpoint ~ 10.75 10.74 Allowable Value ~ 10.26 10.59

~ 10.60*

Analytical Limit ~ 10.0 -

  • recommended allowable values

~ ENTERGY

  • CALCULATION SHEET SHEET----=2=-=..3_ OF _47_

CALCULATION NO._...::...JC=..-.-,;:,Q-....:1.=E....:..:12=--.:.,:K=.09;;;..::3::.-- REV._....:::...;OO:::....;:l'---_ _

For system B, the Technical Specification Allowable Values are non-conservative with respect to the calculated values. The TRM setpoints are conservative with respect to the calculated values. It is recommended that the Allowable Values be revised to ::;11.10 and 2:10.60 minutes.

SUMMARY

OF RESULTS SYSTEM E12 LOOP NUMBERS System B TOTAL LOOP UNCERTAINTY +0.66, -0.63 min.

LOOP UNCERTAINTY +/- 0.60 min.

DRIFT ALLOWANCE +/- 0.18 +0.03 min.

M&TE +/- 0.10 min.

Upper Limits SPECIFIED (min.) CALCULATED (min.)

Analytical Limit  ::;11.7 -

Allowable Value  ::; 11.44 11.10

11.10*

Nominal Trip Setpoint  ::; 10.95 11.04 Lower Limits SPECIFIED (min.) CALCULATED (min.)

Nominal Trip Setpoint 2: 10.75 10.63 Allowable Value 2: 10.26 10.60 2: 10.60*

Analytical Limit 2: 10.0 -

  • recommended allowable values

CALCULATION SHEET ENTERGY SHEET---=2:....:.4_ OF _47_

CALCULATION NO. JC-01E12-K093 REV. 001 Appendix 1 1E l2K093!\ Dritt Analysis JC-QIE12-K093 1.0 Purpose The purposc of this document is to calculate the drift unecl1ainty value to be llsed for the 1E 12-K093A Containment Spray A timer relay. '1110 River Bend and Grand (i-ulfNuclcar Station Instrumcnl Drin Analysis Guide, Reference 2.1, was utilized to determinc the drifl unccrtainty valuc f"or this relay.

2.0 R(~fen~lu:(~S 2.1 ECII-NE-08-0001\ Rev. 1, River r~end and (irand (JulfNuciear Station Instrument [)rift Analysis [)esign (Tuide 2.2 06-EL-IE12-Q-0002, Rev. 100, Containment Spray Time Delay Relay Calibration and Functional Test 2.3 ANSI N15J 5-1974, Assessment of the Assumption of Nonnality (Employing Individual Observed Values) 2.4 CR-GGN-2003-03577 3.0 IVlethod of Analysis Statistical procedures from Reference 2.1 were applied to detennine the drift uncertainty value assuming the calibration interval will remain at 92 days per Technical Specifications.

4.0 Drift Anulysis 4.1 Excel spreadsheets \vere populated with ,A.,,-Found

. and As-Len data from work order history over the time frame ti-om 2003 to 2010, sta.11ing with the calibration on 10/29/03, the tirst calibration aHcr the relays were verified to be model ETR. (Ref. 2.4). The calibration interval for the relay is every 92 days (Reference 2.2). See Table 1, "\Vork Order Raw Data" h)r the calibration data.

4.2 111e meau, standard deviation and count statistics for the raw data were calculated using the Excel spreadsheet, Table 2.

Rnw .Drift .Data Statistics mean 0.3103 std. dey. 2.5788 sample # 29 1 of 10

CALCULATION SHEET ENTERGY SHEET---=2=-=..5_ OF _47_

CALCULATION NO. JC-Q1E12-K093 REV. 001 Appendix 1 lE12K093A Dri.ft l\nalysis JC-QIE12-K093 4.3 The raw data was then reviewed f()r potential outliers based on calibration errors and the likc. No potential outliers were identified that could removed based on a review of the work orders for the 1E 12-K93 A relay.

'T1,e data wa." thtm analyzed to detect an outlier using the t-Test (Extreme Studentized Deviate) in accordance with Section 3.6 of Reference 2.1.

Because this ~ectioll allows only OIlC c",:pulsion ba'\ed on the 1-Test, only the largest data point is analyzed (8.0 seconds).

I Xi - mean I s

\Vhere:

t c:;;: calculated value of extreme studentized deviate Xi individual sample point mean mean of all sample points s shmdard deviation of all sample points For the data point Xj = 8.0 seconds:

t cce 18.0 0.31031! 2.5788 2.982

'The calculated deviate is compared to the critical value, obtained from

'l"ahle2 of Ref'crence 2.1. For this data. set, the critical value i~ 2.75.

Because the calculated deviate is larger than the critical value (2.982 :>

2.75), the 8.0 ~ec. datum i~ considered an outlier and is removed from the data set.

4.4 Since one outlier was identified and removed, the final data set now c01l1prises 28 sample points. 'llIe final data can bef~)Und in 'rable 3.

'rile mean, standard deviation and count statistics for the nnal data were c,tlculated lIsing the Excel spreadsheet, Table 4.

Fimtl Drift Datn Statistics mean 0.0357 std. dc\'. 2.1514 vanance 4.6283 2 of 10

CALCULATION SHEET ENTERGY SHEET_2;;;....,;;..6_ OF _47_

CALCULATION NO._-=-JC=--.....:::oQ-.....;:;1-=E....::..:12=--.:..:K:..=...09:;..:3~ REV._...;;...OO::;...;;:l'---_-'--

Appendix 1 lEl2K093A Drift Analysis JC-QIE12-K093 4.5 '111C final data set was then analyzed to determine if a normal distribution can be a<;sumed, mdng the W-test f()f' data sets comprising less than 50 samples. The procedure I~)r perfot1ning the \V-Test is referenced in Section 3.7.2 of Refercnce 2.1 and dctailed in Reference 2.3.

111e data set is 11rst sorted in order of ascending value (largest negative value to largest positive value). The order is thcn reversed and juxtaposed with the first ordering, such that the largest negative value is now paired with the hU'gest positive value. This creates a series of data pairs. See Table 5.

Using only the top half of the data pairs, the ordered pairs are subtracted from each other. For a data set comprising 28 points; this results in 14 values.

R(;~terring to Table 1 of Reference 2.3, nine coeJlicients are obtained, ordered ne>..1 to the nine subtracted values. Each coe.t1icient is then multiplied by its corTesponding subtracted value. The resulting nine numbers are then sUlnmed, with the sum labeled ,1S the 'b' value.

A '\\1' tcst statistic is then computcd as follows:

\Vhere:

b = the summed value from above S2 = the sample variance n = sanlplc count From 'rable 5, b : ;:;: 10.6386, n .:;;:c, 28 and s2 was determined above (4.6283).

\V (10.6386)2 <<28-1)*4.6283)

."" 0.9057

'Illis calculated \V statistic is then compared to a critical value obtained from table 2 of Reference 2.3. For 28 sample points and P 01'0.05 (corresponding to 95l?{\ probability), the critical value is 0.924. Because the calculated value is smaller than the critical value (0.9057 < 0.924), the assumption of a nonmll distribution is rejected and the datu s~t (:(\111101 be assumed to be normally distributed.

3 of 10

CALCULATION SHEET ENTERGY SHEET------,o2;;;...;...7_ OF _47_

CALCULATION NO. JC-Q1E12-K093 REV. 001 Appendix 1 1El2K093A Drin Analysis JC-QIE12-K093 4.6 Although the data cannot he assumed normally distributed, coverage analysis may be pcrfonl1ed if it is conservative to assume normality based on the actual data distribul ion. 'n,e procedure for this is {()lind in Section 3.7.5 of reference 2.1. Non-normal data distributions exhihiting a positive kurtosis are good candidates for coverage analysis. I11e final data set here has u kurtosis of 1.4707, using the kurtosis function of Excel, and therefore can he conservatively modeled llsing an appropriatenormaJ distrib,ution.

Sample counting is used to derive an acceptable nonnal distribution model. If 95'!i(. of the data points fall bel\veen limits defined by the sample 111ean plus or minus two standard deviations, then the data set C'U1 be described by nonna} statistics. If less than 95(~'l) of the data falls between those bounds, a Nonnality Adjustmcnt Factor (NAF) is cmployed to widen the boundc;until the 95~1o criterion is met.

Using asamplc mean ofOJl357 and a standard deviation of2.1514, the limiting bounds are detenllined and the number and pen..~entage of data points Hilling within the bounds are COllllted:

'vlean -+- 2SI) 4.338414 lvtcan 0,(>357

!vIeau ****2SD -4.266986

  1. within 26

~"O 'rvithin 92.8571

'Ine percentage of data points within the bounding limits is less tlUUl 950,"0, therefore, a NAF must be used. 'Ibe appropriate NAF is detennined by trial and error until the number of points within limits is suflicient to comprise 95%*.

(vlean + 2SD*NAF 5.00103 Mean 0.0357

~llcan - 2SD*NAF -4.929602 1------------.....- - - - - - 1

  1. within 27

% within 96.4286 Using a NAF of 1.154 provides coverage of greater than 950,'0 of the data sample. "I11e NAF will be incorporated into the I1nal drill value and the data Ci.U1 othenvise be considered nonllully distributed.

NAF = 1.154 4.7 A drill bias detemlination is perfonned on the timtl <.Jalata see if the gample mean tends to show drift in a particular direction. The procedure for perfonning the bias detenninatioll is found in Section 3.10 of reference 2.1. First, a maximum value of a non-hiased mean is computed:

Xcrir. ~ (t)(s) Yn 4 of 10

CALCULATION SHEET ENTERGY SHEET----.;;2::.;:;,8_ OF _47_

CALCULATION NO._...:::....JC::::..--.::oQ~1.=::E~12=--.,:;.:K:;..::::..09=::..:3::.....- REV._..:::..;OO:::....:;l _

Appendix 1 IE 12K093A Drift Analysis JC-QIE12-K093

\Vhcre:

, normal deviate for a i-distribution s standard deviation of the sample n sample count From Table 4 of Reference 2.1, the t-distribution at 0.025 for 951'%

confidence mId a sample size of 28 is 2.042. TIlcrefore:

Xed! = 2.042 X 2.1514 / \/28 0.8302 111e absolute value of the Incan of the tinal data sel is less than the Xed!

value (0.0357 < 0.8302). Theref()re, the final data drifl is detennined to he non-biased.

4.8 i\. 95~)o/95tt*o TIF (Tolerance Interval Factor) is detennined based on the sample size fi'om Table 1 of Reference 2. L TIle TIF f()f a sample size of 28 is 2.595.

TIF ""' 2.595 5.0 AnulJzcd Dlitl Unccl1aint)' Culculution

'111C final analyzcd drin valuc (DA) generall),.' consists ot'two scparate components, the random tenn and the bia..'sed tenn. As shown in Section 4.6, the tinal data was not biased~ therefore, a bias tcrm is not applicablc to this calculation. '111C formula for calculating the drift unccrtainty for the K93A. relay is:

DA;;:;. TIF x (s) x NAF

= 2.595 x 2.1415 x 1.154

""'*6.4425 scconds

'nlC analyzcd drift dcternlincd above was computcd ba<;ed on actual cal ibration intervals. To detemline DA based on the maximu111 allowed calibration interval, the drift c,m be cxtcnded depending on the assumed tiule dependency of the data set. Based on visual examination of a scatter plot (Chart 1), the data shows significant lime-depenc.k."llcy. Therefore~ per Scction 4.6.7 of Reference 2.1, lhe extended drill is computed as follows:

DAexlcuclcd= DA x (maximum cal interval I average data cal interval)

\Vhere:

5 of 10

,CALCULATION SHEET

-=:::=- ENTERGY SHEET--,=2;;..;;..9_ OF _47_

CALCULATION NO._-=-JC=.-.....:::IO--=1.=E=.:12=--.=....:K:..;:;.09::;...::3:.-- REV._-=-OO:::....=l _

Appendix 1 1E 12K093A Dritt l\nalysis JC-QIE12-K093 DA = the analyzed non-ex1endcd drift computed above max cal interval = 125l?-'o of the nomi nal 92 day cal interval avg cal interval  ;:;: 84.18 (from Table 4)

DAcxtcndcd +/-6.4425 x (1.25 x 92 / 84.1 R)

-1::8.8014 seconds 111crcfore:

01:8.81 seconds 6 oLIO

~ ENTERGY

  • CALCULATION SHEET SHEET---=3:.....:::.0_ OF _47_

CALCULATION NO._-=-JC=--.....:llQ-...:l.=E..;:;..:12=--..:..:K:..;:;,.09::....::3~ REV._..:::...OO:::...;:I'---_ _

Appendix 1. lE12K093A Drift Analysis JC-QIE12-K093 Table 1

\Vork Order Raw Data A..5-Found As-left Drift .i.l II-

\},;!O# Date (sec) (sec) (sec) Davs

\\/0-50327382 8/6/2003 654 654 N/A NJA WO-00027568 10/29/2003 655 655 1.00 84 VvO-50684842 1/21/2004 653 653 -2.00 84

\\10-50617663 4/14/2004 654 654 1.00 84

\"0-50684667 7/7/2004 655 655 1.00 84

\}';!0-50975022 9J27/2004 654 654 -1.fJ() 82

\VO-50982173 12/22/2004 655 655 1.00 86

\VO-S0990112 3/16/2005 653 653 -2. (JI) 84

\\/0-50997741 6/6/2005 654 654 1.00 82

\\/0-51004525 8/31/2005 656 656 2.00 86

\\/0-51011439 11/23/2005 655 655 -1.00 84

\V0- 51 0190 11 2/15/2006 654 654 -1.00 84 WO-51026068 5/10/2006 662 646 H.Of) 84

\VO-S 1033912 8/3/2006 646 646 0.00 85

\\/0-51041113 10/25/2006 646 646 f). ()f) 83

\~"O-S 1047869 1/18/2007 646 646 0.00 85

\\10-51083287 4/25/2007 648 648 2.01) 97 WO-51098827 7/5/2007 648 648 0.00 71

\VO-51511705 9/26/2007 647 647 -1.00 83

\\/0-51547691 12/19/2007 648 648 I. ()f) 84

\\/0-51566740 3/27/2008 645 645 -3.00 99 51652803 6/5/2008 651 651 6.0fJ 70 51664719 8/27/2008 648 648 -3.00 83 5167838] 1l/19/2008 646 646 -2.f}fl 84 51698025 2/12/2009 647 647 1.00 85 52024869 5/7/2009 652 652 5.00 84 52039916 7/29/2009 653 653 1. (Jf) 83 52200481 10/27/2009 651 651 -2.00 90 52218793 1/13/2010 650 650 -l.tH) 78 52232243 4/12/2010 647 647 -3.00 89 T'lble 2 Statistics, Raw Data Mean 0.3103 Slandm'd deviation (s) 2.5788 Count (n) 29 7 of 10

~ ENTERGY

  • CALCULATION SHEET SHEET----=3:....;:;.1_ OF _47_

CALCULATION NO._-=-JC=--......:.Q"-'=1c.=E:..=..:12=--==K:;..;:;.O~9?::....- REV._....:::...;OO:::....:l'---_ _

Appendix 1 IE l2K093A Dri.ft Analysis JC-QIE12~K093

'rable 3 Final Data Datn Da~'8

'1.00 84.00

-2.00 84.00 LOO 84.00 1.00 84.00

-1.00 82.00 1.00 86.00

-2.00 84.00 1.00 ~2.00 2.00 86.00

-LOO 84.00

-1.00 84.00 0.00 85.00 0.00 X3.00 0.00 85.00 2.00 97.00 0.00 71.00

-1.00 83.00 1.00 84.00

-3.00 99.00 6.00 70.00

-3.00 83.00

-2.00 X4.00 1.00 85.00 5.00 84.00 1.00 83.00

-2.00 90.00

-1.00 78.00

-3.00 89.00

'fable 4 Statistics, Final Data Mean 0.0357 Standard deviation (s) 2.1514 Variance (S2) 4.6283 Count (n) 28 A.varage Cal Interval 84.18 8 of 10

~ ENTERGY

  • CALCULATION SHEET SHEET----=3:..=2_ OF _47_

CALCULATION NO. JC-QIE12-K093 REV._....;;...OO.:;,..;;;;l _

Appendix 1 IE 12K093A Drift Analysis JC-QIE12-K093 Table 5 w-'rest (t)r Normality As\~eJl(Hng DeS(~ending Final Difference C'oetlicients Data Duhl aj - ZI Data (Zi = Yi - XI) (ai)

(Xt) Crt) 1.00 -3 6 9 0.4J28 3.8952

-2.00 -3 5 X 0.2992 2.3936 1.00 -3 '2 5 0.251 1.255 1.00 -2 2 4 0.2151 0.8604

-1.00 -2 .1 3 0.1857 0.5571 1.00 -2 1 :3 0.1601 0.4803

-2.00 -2 I 3 0.1372 0.4116 1.00 -1 1 '2 0.1162 0.2324 2.00 -1 1 2 0.0965 0.193

-1.00 -1 1 '2 0.0778 0.1556

-1.00 -1 1 2 OJJ598 0.1196 0.00 -1 1 2 0.0424 0.0848 0.00 0 0 0 0.0253 0 0.00 0 0 0 0.0084 0 2.00 0 0 0.00 0 0

-1.00 I -1 1.00 I -1

-3.00 1 -1 6.00 I -I

-3.00 1 -1 b 10.6386

-2.00 1 -2 s" 4.6283 1.00 1 -2 \V 0.9057 critical \V 5.00 1 -2 value 0.924 1.00 2 -2

-2.00 2 -3

-1.00 5 -3

-3.00 6 -3 9 of 10

CALCULATION SHEET

-===- ENTERGY

  • SHEET---::3;..;;;..3_ OF _47_

CALCULATION NO ,_-=-JC.=.-.......;::,Q"--=1'-=E;..;:.;12=--..:..:K:.=..0~93::....-- REV._....:::....00:;....;:1'----_ _

Appendix 1 1E12K093A Drift Analysis JC-QIE 12-K093 Chmtl Time dependency -K93A 7.00 6.00 5.00 4.00 3.00 2.00 1..00 0.00

-1.00

-2.00

-3.00

-4.00 0.00 50.00 100.00 150.00 Interval (Days) 10 of 10

CALCULATION SHEET ENTERGY SHEET---:3;..-:.4_ OF _47_

CALCULATION NO._...::..JC=--.....;:,Qt....:l'-=E~12=--..:.::K:.:::..0.::...::93::......- REV._....:::...;OO::::..:I'---_ _

l\ppendix 2 IE 12K093B+ KI.16 Drift AnaJysis JC-QIE 12-K093 1.0 flUl"(lOSe The purposc of this document is to calculate the drift uncc11ainty value to be w~cd for the 1E12-K093B and 1E12-Kl16 Containmcnt Spray timer relay combination. 'n10 River Bend and Grand CrulfNuclcar Station Instrumcnt Drift Analysis (ruide, Referencc 2.1, was utilized to dctCnlline the dri1t uncertainty value for this relay.

2.0 Referl~Ju~es 2.1 ECII-NE-08-00015, Rev. I, River r~end and (irand Gulf Nuclear Station Instrument Drift Analysis )csign (iuide 2.2 06-EL-IE12-Q-0002, Rev. 100, Containment Spray Time Delay Relay Calibration and Functional Test 2.3 ANSI N 15.15-1974, Assessment of the Assumption of Normality (Employing Individual Observed Values) 2.4 CR-GGN-2003-03577 3.0 1\Jlethod of Analysis Statistical proceduresfrolll Reference 2.1 \vere applied to ddennine the drift un(~crtainty value assuming the calibration interval will remain at 92 days p,"~r Technical Specifications.

4.0 Drift Anal)'sis 4.1 Excel spreadsheets were populated with A.,,-Found . and As-Left data from work order history over the time frame limn 2003 to 2010, stat1ing with the calibration on 10123/03, the first calibration allcr the rdays were vcrified to be model ETR. (Ref. 2.4) TIlC calibration interval for the relay is every 92 days (Reference 2.2). See Table 1, "\Vork Order Raw Data" t~)l' the calibration data.

4.2 1110 mean, standard deviation and count statistics t~)r the raw data were calculated using the Excel spreadsheet, Table 2.

Rnw Drift Data Statistks mean 1.0333 std. dev. 2.281 (,

sample # 30 10f9

CALCULATION SHEET ENTERGY SHEET-----.::3:....:::..5_ OF _47_

CALCULATION NO._....::...JC:::::..--.::oQi:,..;:;1..;:::E...;:..:12=--~K:.:::..09:::..:3::..-.- REV._...::::..;OO::..;:;l _

Appendix 2 iE 12K093B+ Kl16 Drill Analy,is JC-QIEI2-K093 4.3 Th0 raw data was th0tl revicwedtor pot0ntial outliers based on calibration errors and the like. No potential outliers were idcntified that could removed based on a review of the work orders for the 1E 12-K93IJ and KII 6 relays.

111e data was then review'ed for potential outliers based on using the i-Test (Extreme Studentizcd Deviate in accordance with Section 3.6 of Reference 2.1. Because this section allows only one expulsion bused on the t- Test, only the hU'gest data point should be analyzed (7.0 seconds). Tlowever, because there are two dahl points of7.0 seconds, it is deemed inappropriate to reject one of them and leave the other. Therefore, no duta points will be rejected as outliers.

4.4 Since no data point was removed us an outlier, the fitHll datu set is the saIne as the raw data set TIle tinal data can be {()Uud in Table 3.

TIle mean, st.mdard deviation and count statistics for the final data \vere calculated using the Excel spreadsheet, Table 4.

Finnl Dlift Data Stnt.istks meml 1.0333 std. dev. 2.2816 variance 5.2057 4.5 '111C final data set was then analyzed to determine if a ll0l111al distribution can he assumed, using the \V -test for data sets comprising less than 50 samples. '111e procedure tor pCrf0l111ing the \V-'1'05t is referenccd in Section 3.7.2 of Reference 2. I and detailed in Reference 2.3.

111e data set is first sorted in order of <L",cending value (largest negati ve value to largest positive value). 'l1,e order is then reversed and juxtaposed

)with the first ordering, such that the largest negative value is now paired with the largest positive vuluc. This creates a series of data pairs. Sec Tahle 5.

Using only the top half of the data pairs, the ordered pairs are subtracted from each other. For a data sd comprising 30 points, this results in 15 values.

Rt~felTing to Table 1 of Reference 2.3, liJteen coefficients are obtained, ordered nex1 to the .fifteen subtracted values. Each c()etlicient is then multiplied by its corTesponding subtracted value. The resulting fifteen numbers are then sumtned, with the slim labeled as the 'b' value.

201'9

CALCULATION SHEET ENTERGY SHEET----::3:.....:::.6_ OF _47_

CALCULATION NO._-=-JC=--....::l'Q;..;:..1=-E.:..::12::.....;-K~0.=..::9;..::,3 REV. 001 Appendix 2 IE 12K093B Kl16 DrittAnalysis JC-QIEl2-K093 A * \\I' test ~tati~lic is then computed a~ follows:

\Vhere:

b,"",

, the summed value from above s- the sample variuncc From Tnble 5, b 11.5695 and S2 \vas detennined above (5.2057).

\\1 (l1.5695i <<30-1)* 5.2057)

= 0.8866 TIlis calculated \\1 statistic is then CotllIxu'ed to a critical value obtained 1rom table 2 or Re.lcrence 2.3. For 30 sample points andP 01.'0.05 (co11'esponding to 95~'O probahility), the critical value is 0.927. Because the calculated value is smaller than the critical value (0.8866 < 0.927), the assumption of a not111al distribution is rejected and the da.ta set cannot be assumed to be nonnally distributed.

4.6 Although the data cannot be assumed n0I111ally distributed, coverage analysis may he perfonlled if it is conservative to assume normality based on the actual data distribution. 'l1,e procedure f()I" this is f()und in Section 3.7.5 of reference 2.1. Non-normal data distributions exhibiting a positive kurtosis arc good candidates for coverage analysis. 'n,e 1'1nal data set here has a kurtosis of 1.2933, using the kurtosis function of Excel, and therefore can be conservatively modeled lL<;ing an appropriate nonnal distribution.

Sample counting is used to derive an aCI.:eptable nomul! distribution model. If 95%, of the data points t~lll between limits detined by the sample mean plus or minus two standard deviations, then the data set C,Ul be described by nonnal statistics. If less than 95~/o of the dala tails between those bounds, a NOllnality AdjuStlllent Factor (NAF) is employed to widen the bounds until the 95(% criterion is met.

tJsing a sample meun of <),0357 and a standard deviation of2.1514, the limiting bounds are deteJ111ined and the number and percentage of data points falling within the bounds are counted:

rvlean + 2SD 5.596554619 Mean 1.0333 Mean -*2SD -3.529887953

  1. within 28 0.933333333 TIle percentage of data points within the bounding limits is less than 9YN),

therefore, a NAF must be llsed. The appropriate NAF is detennined by 30f9

CALCULATION SHEET ENTERGY SHEET----=3:....:..7_ OF _47_

CALCULATION NO._...:::..JC.::::..-~Q~1~E:..,;:;.;12=--..;:;,.=K~O.:::.....:93:::......- REV._..=...;OO~l _

Appendix 2 IE 12K093B + K 116 DritlAnalysis JC-Q1E 12-K093 trial and error until the number of points within limits is suffkient to comprise 95%). fkeause the two points excluded above are both 7.00 values, the NAF must be sufficient to cover the entire data set.

NAF 1.31

~Jeun + 2SD*NAf 7.011153218 MCUl1 1..0333 i\:fean - 2SD*NAF -4.944486551

  1. within 30

~-'O \\"ith in 100 Using aN AF of 1.31 provides coverage of greater than 9 Y~'-o of the data sample. 'The NAF will be incorporated into the final drift value and the data can otherwise be considered n0l111ally distributed.

NAF"'" 1.31 4.7 A drift bias detennimttion is perfbnned on the Hnal data to see if the sample mean tends to show drift in a particular dire(.1ion. The procedure f()f pert<'lnning the bias detennination is found in Section 3.10 of reference

2. l. First, a maximum value of a non-hiased mean is computed:

Xu-it = (t)(8) ;' '~n

\Vhere:

= normal deviate for a t-distrihution s = standard deviation of the sample n = sample count From Tahle 4 of Reference 2.1 ~ the t-distributiol1 at 0.025 for 95~/o confidence and a sample size of 30 is 2.042. '111erefore:

X '-Tit = 2.042 x 2.2&16 ;' ~30 0.8506 111e ubsolule value of the mean of the final data set is greater than the XciI value (1.033 <~ 0.85(6). ll1erefore. the final dutu drift is determined to contain a bias 'of 1.0333.

4.8 A 95'Yo/95 1?iCI TIF (Tolerance Interval Factor) is detennined based on the smnple size from Table .I ofRefcrence 2. L TIle TIT tor a sample size of 30 is 2.549.

'1'11" :c. 2.549 40f9

CALCULATION SHEET ENTERGY SHEET---,,3;.....;;.8_ OF _47_

CALCULATION NO._-=-JC=---..:.Q.:...;:;I-=E:..;:;.;12=--..:.:K:.::..09;:;..:3~ REV._....:;;;.-OO::....:;;I _

Appendix 2 IE 12K093B+ Kl16 Drin Analy~is JC-QIE l2-K093 5.0 Anal)'zed Dliff lhu~ert.aint"Y Cakulation

'111e final analyzed drift value (DA) generally com;igtc; of two separate componcnts~ the random lcm1und thc biased lcrm. As shown in Section 4.6, the final data contains a hia.<.;; theref{)rc, a bias term is considered separately. '111e fOl1l1ula for calculating the drift uncertainty for the K9JB + K116 relay combination is:

Til" x (8) X NAF 2.549 x 2.2816 x 1.31 7.6187 seconds sample mean

- 1.0333 seconds Th.c analyzed drift determined above was computed based on actual calibration intervals. To detemline DA based on the maximum allowed c,tlibration interval, the drill can be eh1.ended depending on the assumed time dependency of the data set. Based on visual exaluinatiotl of a scatter plot (ChaIt l), the data shows significant time-dependency, I'heretore. per Section 4.6.7 of Reference 2.1, the ex.1ended drift is computed as f~)llows: .

DAextended = D,A x (maximum cal interval! average <bta cal interval)

\Vhere:

DA = the analyzed non-ex.1.ended drift computed ahove max cal interval = 1250,/0 of the nominal 92 day cal interval avg cal interval = 83.3 (from Table 4)

[) Acxtmdccl-nmdorTl ~+/-7.6187 x (1.25 x 92/83.3)

=+/- 10.52 seconds D Aextended.hills 1.0333 x (1.25 x 92 83.3)

+/- 1.4266 seconds TIlcrefore:

=+.to. 52,+1.43 sCl,;onds 50f9

CALCULATION SHEET

--=:::=- ENTERGY

  • SHEET----"3;...:;..9_ OF _ 47_

CALCULATION NO. JC-QIE12-K093 REV._.....:::;O....:::...O.:...l _

Appendix 2 lE 12K093BI Kl16 Dlin AlmlYf:\is JC-QIE l2-K093 Tahle 1

\¥ ork ()rder Raw Data

./J As-Found As-lett Drift II

\\10# Datc (scc) (scc) (sec) Days

\\'0-50326390 7129/2003 652 652 NIl\. N/A WO-50337365 10/23/2003 653 653 1.00 86

\\10-50574340 1/14/2004 656 656 3.00 83

\;\1()-50617664 4/6/2004 654 654 -2.00 X3

\\10-50965506 7/1512004 656 656 2.00 100

\"/0-50974391 9/9/2004 659 657 3.()() 56 WO-OO051616 12/2/2004 657 _657 0.00 84

\\10-50981656 2124/2005 659 654 2.0{) 84

\VO-50995486 5/19/2005 656 656 2.00 84

\\'0-51002744 8/11/2005 657 657 1.00 84

\V()-51 009744 10/19/2005 656 656 -1.00 69

\VO-510 17371 1/26/2006 655 655 -1.00 99

"\10-51024172 4/4/2006 657 657 2. Of) 68 WO-51030010 6/27/2006 657 657 0.00 84 WO-51039444 9/19/2006 657 657 fl. ()f) 84

\\'0-51045160 12/12/2006 656 656 -1.00 84

\VO-SI054093 3/6/2007 655 655 -1.00 84 WO-510R6917 S/2W2007 662 653 7.00 X4

\\10-51202124 8/21/2007 657 657 4.00 84 WO-51522081 11/13/2007 657 657 fJ. ()(J 84

\VO-51561321 2/4/2008 656 656 -1.00 83

\NO-S1642340 4129/2008 657 657 1. (J(I 85

\VO-51657989 7/22/2008 664 647 7.00 84

\VO-51672021 10/29/2008 646 646 -I.()O 99 Vv'O-51694085 1/612009 648 648 l.OO 69

\VO-51797860 4/1/2009 647 647 -1.00 85

\\10-52033406 6/23/2009 645 645 -2. ()(J X3

\VO-52193698 9/11/2009 647 647 2.00 80

\VO-52209906 12/15/2009 647 647 fl. (J() 95

\\10-52227328 3/16/2010 647 647 0.0(1 91

\VO-52247452 6/1/2010 650 650 3.00 77 Table 2 Statistics, Raw Data Mean 1.0333

-Standard deviation (s) 2.2816 CQunt (n) 30 60f9

~ ENTERGY

  • CALCULATION SHEET SHEET_4.:..;:;.O_ OF _47_

CALCULATION NO._....::..JC-=--~Qr;,..;:1'-=E:...:.;12=--..::;.:K:.:::.O.;:;..:93~ REV._...:::...;OO::...:l _

Appendix 2 IE 12K093B+ K l16 DrinAIHtly~ig JC-QIE l2-K093

'fable 3 Final Data Data Davs 1.00 86 3.00 83

-2.00 83 2.00 100 3.00 56 0.00 84 2.00 84 2.00 84 1.00 84

-1.00 69

-1.00 99 2.00 68 0.00 84 0.00 84

-1.00 84

-1.00 84 7.00 84 4.00 84 0.00 84

-1.00 83 1.00 85 7.00 84

-l.00 99 2.00 69

-1.00 85

-2.00 83 2.00 80 0.00 95 0.00 91 3.00 77 Table 4 Statistics, Final Data l.eH33 Standm'd deviation (s) 2.2816 5.2057 Count (n) 30 Average Cal Interval 83.30 70f9

~ ENTERGY

  • CALCULATION SHEET SHEET_4.:....=;,.1_ OF _47_

CALCULATION NO._...::..JC=--.....::oQ.....,;:;1-=E....::..:12=--..;:;.:K:.::;.,09~3~ REV ._~OO~l'--- _ _

Appendix 2 IE 12K093B+ Kl16 Drittl\nalysis JC-QIE 12-K093 Table 5

\V-Testf\-w Normality Ascending Descending Final l)ilTerence Coenicients Data Datn ai-II Data (1.1 = Yi - Xi) (aj)

(XI) (y!l 1.00 -2 7 9 0.4254 3.X'286 3.00 -2 7 9 0.2944 2.6496

-2.00 -1

- - - - - f - - - - - - - - - - - - - - - - - - - -_._----

4 5 0.24&7 1.2435 2.00 -1 3 4 0.2148 0.8592 3.00 -1 3 4 0.187 0.748 0.00 -1

-_._-_. 1--------_.. ----------_....- ----_..._--- -------_.

,1 3 4 0.163 __ 0.652 2.00 2 3

~ - - --_--

0.1415 0.4245 2.00 -1 2 3 0.121~) 0.3657 1.00 -1 2 :3 0.1036 0.3108

-l.00 0 2 2 0.0862 0.1724

-1.00 0 2 2 0.0697 0.1394 2.00 0 2 2 0.0537 0.1074 0.00 0 1 I. OJ>381 0.0381 0.00 0 1 1 0.0227 (L0227

-1.00 0 1 1 0.0076 O.()(J76

-1.00 1 0 7.00 1 0 4.00 1 0 0.00 2 0

-1.00 2 0 1.00 2 0 30 7.00 2 -1 b 11.5695

-1.00 2 -1 Sl 5.2057 2.00 2 -1 \V 0.8866 critical \V

-1.00 3 -1 value 0.927

-2.00 3 -1 2,00 3 -1 0,00 4 -1 0.00 7 -2 3,00 7 -2 80f9

CALCULATION SHEET

"'=::=" ENTERGY

  • SHEET_4,,-=2_ OF _47_

CALCULATION NO. JC-Q1E12-K093 REV. 001 Appendix 2 lE12K093B + Kl16 Drift Analysis JC-QIE 12-K093 Chmtl Time dependency - K93B + K116 8.00 7.00 6.00

~ S.OO

'"0 c:: 4.00 ~

0 u 3.00 * '$

<lJ

~ 2.00 ~ $>

~ 1.00 -~-

0 0.00 ~ ~4t-

-1.00 ~~

-2.00

-3.00 a 50 100 150 Interval (Days) 90f9

ATTACHMENT 1 JC~1E12~093.REV.001 DESIGN VERIFICATION SHEET 43 OF 47 Sbeet I of I DESIGN VERIFICATION COVER PAGE o ANO-1 o ANO-2 o IP-2 OIP-3 DJAF DpLP DPNPS OVY t8J GGNS ORBS DW3 ONP Document No. JCooQIEl2-K093 J Revision No. 001 I Page 1 of4

Title:

Instrument Uncertainty and Setpoint Determination for System E12 Containment Spray Actuation Timer I8J Quality Related o Augmented Quality Related DV Method: t:8J Design Review o Alternate Calculation o QuaJification Testing VERIFlCAnON REQUIRED DISCIPLINE Electrical Mechanical Instrument and Control Mary Coffaro I Civil/Structural Nuclear Originator:

(individual requesting R biD Smith I DV) PrintlSignlDate After Comments Have Been Resolved

AnACHMENT1 JC-Q1E12~093,REv.OO1 DESIGN VERIFICATION SHEET 44 OF 47 Sheet 1 of3 IDENTIFICATION: DISCIPLINE:

Document

Title:

Instrument Uncertainty and Setpoint Dc:termination for System El2 Containment DCiviJJStruetural Spray Actuation Timer DElectricaJ Doc. No.: JC-QIE12-K093 Rev. 001 QACat.: SR l811 &; C Mary Coffaro 7IlV'JJI:iOM II f IBhg DMechanicaJ Verifier: Print Q t;ffJ* I 16ate DNuclear Manager authorization for DOther supervisor performing Verification.

~ NJA Print Sign Date I METHOD OF VERIFICATION:

Design Review 181 Alternate Calculations 0 Qualification Test 0 The following basic questions are addressed as applicable, during the performance of any design verification. [ANSI N45.2.J 1-1974] [NP] [QAPD. Part II, Section 3] [NQA*l-1994, Part II, BR 3, Supplement3s..1].

NOTE The reviewer can use the "Comments/Continuation sheet" at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.

1. Design Inputs - Were the inputs correctly selected .and incorporated into the design?

(Design inputs include design bases, pllllJt operational conditions, perfonnance requirements~ regulatory requirements and oommitments, codes, standards, field data, etc. All infonnation used as design inputs shouJd have been reviewed and approved by the responsibJe design organization, as applicable.

AU inputs need to be retrievable or excerpts of documents used shouJd be attached.

See site specific design input procedures for guidance in identifYing inputs.)

Yes 181 No 0 N/A 0

2. Assumptions - Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are assumptions identified for subsequent re-verifictrtion when the detailed activities are completed?

Yes~ NoD N/A 0

3. Quality Assurance - Are the appropriate quality and quality assurance requirements specified?

Yes 181 No 0 N/A 0

ATTACHMENT 1 JC*Q1E12*K09~RE~001 DESIGN VERIFICATION SHEET 45 OF 47 Sheet 2 of 3

4. Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met?

Yes [81 No D N/A D

5. Construction and Operating Experience - Have applicable construction and operating experience been considered?

Yes D No D N/A [81

6. Interfaces - Have the design interface requirements been satisfied and documented?

Yes D No D N/A [81

7. Methods - Was an appropriate design or analytical (for calculations) method used?

Yes [81 No D N/A D

8. Design Outputs - Is the output reasonable compared to the inputs?

Yes [81 No D N/A D

9. Parts, Equipment and Processes - Are the specified parts, equipment,and processes suitable for the required application?

Yes D No D N/A [81

10. Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?

Yes D No D N/A [81

11. Maintenance requirements - Have adequate maintenance features and requirements been specified?

Yes D No D N/A [81

12. Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair?

Yes D No D N/A [81

13. Accessibility for In-service Inspection - Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?

Yes D No D N/A [81

14. Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel?

Yes D No D N/A [81

15. Acceptance Crite'ria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?

Yes [81 No D N/A D

16. Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?

Yes D No D N/A [81

ATTACHMENT 1 JC-Q1E12-K093, REV. 001 DESIGN VERIFICATION SHEET 46 OF 47 Sheet 3 of3

17. Handling, Storage, Cleaning and Shipping - Are adequate handling, storage, cleaning and shipping requirements specified?

Yes D No D N/A ~

18. Identification Requirements - Are adequate identification requirements specified?

Yes D No D N/A ~

19. Records and Documentation - Are requirements for record preparation, review, approval, retention, etc.,

adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?

Yes~ NoD N/AD

20. Software Quality Assurance- ENN sites: For a calculation that utilized software applications (e.g., GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN- IT-104 or previous site SQA Program?

ENS sites: This is an EN-IT-I04 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?

Yes D No D N/A ~

21. Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?

Yes D No D N/A ~

22. Are the latest applicable revisions of design documents utilized?

Yes~ NoD N/A D

ATTACHMENT 1 JC-Q1 E12-K093, REV. 001 DESIGN VERIFICATION SHEET 47 OF 47 Comments / Continuation Sheet Question Comments Resolution Initial/Date I Comments provided by markup. All comments incorporated. MC 11/5/12

Attachment 6 GNRO-2014/00014 Calculation JC-Q1 R21-90024-1 "Division 1 & 2 Degraded Voltage Setpoint Validation"

ATTACHMENT 9.2 ENGINEERING CALCULATION COVER PAGE Sheet lof2 o ANO-l o ANO-2 ~GGNS o IP-2 o IP-3 OPLP OlAF OPNPS ORBS OVY OW3 o NP-GGNS-3 o NP-RBS-3 CALCULATION (1) EC # 33640 (2)Page 1 of 23 COVER PAGE (28 total pa~es)

(3) Design Basis Calc. ~ YES DNO (4) ~ CALCULATION D ECMarkup (5) Calculation No: JC-QIR21-90024-1 (6) Revision: 2 (7) .

Title:

Division 1 & 2 Degraded Voltage Setpoint Validation (tI) Editorial DYES ~NO

('J) System(s): R21 (IU) Review Org (Department): DE-I&C (11) Safety Class: (12) Component/Equipment/Structure Typ.e/Number:

~ Safety / Quality Related IH22P331 D Augmented Quality Program IH22P332 D Non-Safety Related (13) Document Type: J05.02 (14) Keywords (Description/Topical Codes):

REVIEWS (15) Name/Signature/Date (16) Name/S ignature/Date (17) Name/S ignature/Date Tim Bryant / see EC / 12-15-11 Al Sayre / see EC /12-15-11 Greg Phillips / see EC / 12-15-11 Responsible Engineer ~ Design Verifier Supervisor/Approval D Reviewer D Comments Attached D Comments Attached EN-DC-126 REV4

Calculation JC-Q 1R21-90024-1 Rev 2 Page 2 of23 ATTACHMENT 9.4 RECORD OF REVISION Sheet 1 of 1 Initial issue.

o Revised per CR 2008-1242 (closed to CR 2008-1789 CA#18)

Revised per CR 2011-0036 CA33 2

EN-DC-126 REV4

Calculation JC-Q 1R21-90024-1 Rev 2 Page 3 of23 ATTACHMENT 9.3 CALCULATION REFERENCE SHEET Sheet 10f3 CALCULATION CALCULATION NO: JC-Q1 R21-90024-1 REFERENCE SHEET REVISION: 2 I. EC Markups Incorporated (N/A to NP calculations) 1, 2.

3.

4.

5.

II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc YIN No.

1. see section 2.0 0 0
2. 0 0
3. 0 0
4. 0 0
5. 0 0 III. CROSS

REFERENCES:

I. See section 2.0 2.

3.

4.

5.

IV. SOFTWARE USED:

Title:

N/A Version/Release: Disk/CD No.

V. DISK/CDS INCLUDED:

Title:

N/A Version/Release Disk/CD No.

VI. OTHER CHANGES:

EN-DC-126 REV 4

Calculation JC-Q lR21-90024-1 Rev 2 Page 4 of23 TABLE OF CONTENTS SECTION PAGE 1.0 Purpose and Description 5 2.0 References 6 3.0 Given 7 4.0 Assumptions 11 5.0 Device Uncertainties 12 6.0 Loop Uncertainties 15 7.0 Conclusion 1 ******************************************* 22 Attachments (5 pages)

Calculation JC-Q 1R21-90024-1 Rev 2 Page 5 of23 1.0 PURPOSE AND DESCRIPTION 1.1 The purpose of this calculation is to validate the Setpoint and upper allowable value for the second level Load Shedding and Sequencing (LSS) 4160 V Division I & II bus undervoltage trips. The existing tech spec lower allowable value is unacceptable per CR 2009-1664 since it is equal to the analytical limit. A new tech spec lower allowable value will be determined in this revision.

1.2 The second level of bus undervoltage is defmed as degraded bus conditions as signified by the sensing of undervoltage bistables from the 4160 V buses set at 90% of nominal bus voltage, with a 9 second time delay. (Ref 2.3) 1.3 The second level bus undervoltage function protects equipment I motors from any adverse effects of sustained degraded voltage, and prevents spurious separation of offsite power sources from Class IE loads due to normal power transients (e.g. starting large motors) or from short duration power system disturbances. (Ref 2.3) 1.4 The second level voltage sensors automatically initiate via the LSS panel the tripping of the offsite power sources whenever the voltage setpoint and time delay limits have been exceeded and send a start command to the diesel generator. Once the diesel generator reaches rated speed and voltage and the diesel generator breaker closes, the LSS system sequences the required loads for loss of power.

(Ref 2.3) 1.5 The lower analytic limit is based on the capability to start required Class IE loads under accident conditions with degraded voltage levels present on the distribution system. Voltage sensing is performed by potential transformers located within the 4160 V switchgear for each division. Each potential transformer has 4200 VI 120V ratio. Calculation EC-Qllll-90028 results support the conclusion that the required loads will start with 3744 V available atthe respective 4160 V buses. This corresponds to 106.97 V on a 120 V base, at this location.

The upper analytic limit is based on prevention of unnecessary separation of the Class 1E buses, under anticipated minimum voltage conditions of the offsite sources. Per GIN 2011-00405, this correlates to 110.49 V on a 120 V basis.

The upper analytic limit for the degraded voltage time delay is based on the safe stall time of the motor loads. The motors are suitable for running at 90% rated voltage and have a safe stall time of 10 seconds, or more at rated voltage. Since the safe stall time of a motor is inversely proportional to the square of the applied voltage, operation at a reduced voltage will result in a corresponding increase in safe stall_ time. (Ref 2.3)

The lower analytic limit for the degraded voltage time delay is based on the start sequence of the LSS loads. The 5 second loading intervals ensure that the large motors will have reached rated speed and that voltage and frequency have stabilized before adding successive loads. (Ref2.3) 1.6 The design consideration for the subject instrumentation is: Degraded Grid Voltage

Calculation JC-Q 1R21-90024-1 Rev 2 Page 6 of23 1.7 This calculation is performed in accordance with the methodology ofGGNS-JS-09, which is based on the 'square root sum of the squares' (SRSS) technique for combining statistically independent uncertainty components.

2.0 REFERENCES

  • Designates a relationship 2.1 JS09, Rev. 1 - Methodology for the Generation of Instrument Loop Uncertainty and Setpoint Calculations 2.2 E100.0, Rev. 6- Environmental Parameters for GGNS 2.3 SDC16, Rev. 0- System Design Criteria Load Shedding & Sequencing System (R21-1) 2.4 06-EL-1R21-M-0001,'Rev. 103 - Surveillance Procedure 4.16 KV Degraded Voltage*

2.5 460000245 - Instruction Manual for Load Shedding and Sequencing Panel*

2.6 460003606 - Instruction Manual for Fluke 45 Multimeter*

2.7 E092.0-Q1H22P331-29.0-1-1, Rev. A - Qualification Report LSS Panel*

2.8 E092.0-Q1H22P331-1.4-005, Rev. 1 2.9 E092.0-Q 1H22P331-1.4-006, Rev. 1*

2.10 E092.0-Q1H22P331-1.4-007, Rev. 1 2.11 E092.0-Q1H22P331-1.2,-006, Rev. 1*

2.12 E0121 sheet 10, Rev. 5 - Summary of Relay Settings (ESF)*

2.13 EI039, Rev. 8 - Load Shedding & Sequencing Panel Logic Diagram*

2.14 A0630, Rev. 12 - Control Building Fire Protection Plan*

2.15 J-0501D, Rev. 1 - Control Building Plan at Elevation 111 '*

2.16 EC-Q 1111-90028, Rev. 6 - Load Flow and Voltage Drop Analysis*

2.17 GGNS Technical Specifications - Amend. 120, Section 3.3.8.1 2.18 AEIC-EEI-NEMA Standard for Instrument Transformers for Metering Purposes, 15 KV and Less (EEl PUB. No. MSJ-11 & NEMA PUB. No. EI 21-1973) GGNS 470009582-3 2.19 ABB Correspondence, Letter No. 2790-7200-1.1 (~ontained in rev 0 file documentation)

Calculation JC-Q1R21-90024-1 Rev 2 Page 7 of23 2.20 CR-GGN-2009-01664 No uncertainty allowance between tech spec lower allowable value and analytical limit for Div 1 and Div 2 degraded bus voltage setpoint 2.21 NEDC 31336P-A, September 1996 - General Electric Instrument Setpoint Methodology 2.22 Div. I LSS Surveillance WO's listed in attachment 1*

2.23 W052150 Replace 1H22P131 (Div 1 LSS) 24 and 15 vdc power supplies 2.24 WO 52636 Replace 1H22P132 (Div 2 LSS) 24 and 15 vdc power supplies 2.25 CR-GGN-2008-4711 Replacement LSS power supplies result in setpoint drift 2.26 GIN 2011-00405 Upper Analytical Limit for LSS Degraded Grid Setpoint/Reset*

2.27 GEXI 2010-00016, Data review LSS Bistable Setpoint Validation*

2.28 ISA-RP67.04, Part II, 1994 - Methodologies for the Determination of Setpoints for Nuclear Safety Related Instrumentation 2.29 E092:0-Q1H22P331-1.2-018, rev 1, AC Bistable Card number 1 Assembly*

2.30 E092.0-Q 1H22P331-1.4-054, rev 0, AC Bistable Card number 1 Schematic*

2.31 CR-GGN-2008-1242 CA 2, measure reset value for Div 2 LSS Bistable trip*

2.32 GEXI 2011-00032, Info on reset for LSS Bistable trip 2.33 EPRI report TR 103335 rev 1, Guidlines for Instrument Calibration Extension / Reduction using Statistical Analysis of Instrument Calibration Data 2.34 CR-GGN-2011-00036 CA469, measure reset value for Div 1 LSS Bistable trip 3.0 GIVEN 3.1 Bistable Logic Cards:

3.1.1 Manufacturer / model # - Vitro / 0423-2757 (Ref 2.9, 2.11, 2.12, 2.28, 2.29)

3.1.2 Location

(Ref 2.9, 2.13, 2.14, 2.15)

Component Room Panel

}

XA5 OC202 1H22-P331 XA13 OC202 1H22-P331 90% Bistables Div I XA21 OC202 1H22-P331 XA29 OC202 1H22-P331

Calculation JC-Q IR21-90024-1 Rev 2 Page 80f23 XA5 OC215 IH22-P332 }

XAI3 OC215 IH22-P332 90% Bistables Div II XA21 OC215 IH22-P332 XA29 OC215 IH22-P332

3.1.3 Environment

(Ref. 2.2)

Normal & Accident Environment (N-054, N-056)

Pressure: 0.1 to 1.0 in. wg.

Expected temperature: 104°F Temperature range: 58°F to 110°F, 58°F to 108°F Relative humidity range: 100/0 to 60%

Radiation: gamma (TID): 1.8

  • 102 Rads 3.1.4 Uncertainty Effects - Bistable Logic Cards: (Ref. 2.5,2.7)
  • Reference Accuracy (RA) +/-0.2 v - reference section 4.7 .
  • Reset deadband 0.6 v- reference 2.32 & section 4.9
  • Temp. Effect (TE) 0.06% for 8F change, 0.60/0 for 100F change- reference 2.27
  • Humidity Effects (HE) Negligible - Reference Section 4.8
  • Radiation Effects (RE) Negligible - Reference Section 4.8
  • Power Supply Effects (PS) 0.10/0- reference 2.27
  • Seismic Effects (SE) Negligible - Reference Section 4.3
  • Static Pressure Effects (SPE) N/A for instrument type

Calculation JC-Q 1R2l-90024-l Rev 2 Page 90f23

  • Overpressure Effects (OVP) N/A for instrument type
  • Drift (DR) See Attachment 1
  • Temp. Drift (TD) included in drift- reference Section 4.6 3.2 Time Delay - One Shot Card 3.2.1 Manufacturer/model # -- Vitro / 0423-2636 (Ref 2.10, 2.11)

3.2.2 Location

(Ref 2.10,2.13,2.14,2.15)

Component Room XA23-TDl OC202 lH22-P33l} 90%> Time Delay Div I XA23-TD2 OC202 lH22-P33l XA23-TDl OC2l5 lH22-P332.} 90% Time Delay Div II XA23-TD2 OC2l5 IH22-P332

3.2.3 Environment

(Ref 2.2)

Normal & Accident Environment (N-054, N-056)

Pressure: 0.1 to 1.0 in. wg.

Expected temperature: 1040p Temperature range: 58°P to 1lOoP, 58°P to 108°P Relative humidity range: 10% to 60 %

Radiation: gamma (TID): 1.8

  • 10 2 Rads 3.2.4 Uncertainty Effects - Time Delay One Shot Cards: (Ref 2.5, 2.7)
  • Reference Accuracy (RA) +/-O.l Seconds
  • Temp. Effect (TE) Negligible - Reference Section 4.2

Calculation JC-Q 1R21-90024-1 Rev 2 Page 10 of23

  • Humidity Effects (HE) Negligible - Reference Section 4.2
  • Radiation Effects (RE) Negligible - Reference Section 4.2
  • Power Supply Effects (PS) Negligible - Reference Section 4.4
  • Seismic Effects (SE) Negligible - Reference Section 4.3
  • Static Pressure Effects (SPE) N/A for instrument type
  • Overpressure Effects (OVP) N/A for instrument type
  • Drift (DR) N/A - Reference 2.5
  • Temp. Drift (TD) Negligible - Reference Section4.2 3.3 Loop Block Diagram: (Ref 2.8, 2.9,2.10)

XA5 X.A2t LOGIC CARDS Tum DE:UW

!..,oGIC Cl~S 90' 81 ~S(I'ABLE CARDS POTEN'1"IAL CARDS l'RANSFORl1EJlS

Calculation JC-Q 1R21-90024-1 Rev 2 Page 11 of23 3.4 Operating Limits (Ref. 2.3, 2.16,2.17,2.26)

Bistable Trip Upper Analytic Limit: 3867 V (110.49 V)

Upper Allowable Value: ::::; 3837.6 V (::::; 109.65 V)

Plant Setpoint: 3790.5 V (108.30 V)

Lower Allowable Value: ~ 3744 V (~106.97 V)

Lower Analytic Limit: 3744 V (106.97 V)

Time Delay Upper Analytic Limit: 10 seconds Upper Allowable Value: ::::; 9.5 seconds Plant Setpoint: 9.0 seconds Lower Allowable Value: ~ 8.5 seconds Lower Analytic Limit: 5 seconds 4.0 ASSUMPTIONS 4.1 Assume all uncertainties given are to two standard deviations (20) unless otherwise specified.

4.2 Assume Radiation Effects (RE), Humidity Effects (HE), Temperature Effects (TE), and Temperature Drift (TD) for the time delay cards are negligible. These components are located in a mild environment. (Ref. Sections 3.1.3 & 3.2.3). Note also that qualification testing per Reference 2.7 demonstrated satisfactory equipment performance with ambient temperatures from 4°C (39.2°F) to 50°C (122°F) and relative humidity to 900/0.

4.3 Assume Seismic Effects (SE) are negligible for the loop components since all are solid state devices.

4.4 Assume Power Supply Effects for time delay cards are negligible based on satisfactory qualification testing with power supply variations from 105 VDC - 140 VDC as documented in Reference 2.7.

4.5 Insulation Resistance Effects (IR) are assumed to be negligible since the loop cabling is located in a mild environment (control building).

Calculation JC-Q 1R21-90024-1 Rev 2 Page 12 of23 4.6 The drift analysis presented in Attachment 1 is assumed to be applicable for both Div. I and Div. II.

The equipment is identical and the ambient environment is almost identical for both divisions. The Div 1 max temperature is 110F and the Div II max temp is 104F. Only the calibration data taken after the new power supplies were installed in 2005 is included. This is conservative because the poor stability of the new power supplies is causing increased setpoint drift (reference CR 2008-4711).

Using the as-found and as-left calibration data to determine drift is extremely conservative since this drift value will also include all other uncertainties such as reference accuracy, temperature drift and M&TE.

4.7 Per the qualification report (ref2.7), the tolerance of the bistable trip is +/-0.05 V. Since the calibration procedure (ref2.4) specifies a tolerance of +/-0.2 V, this is the accuracy that will be assumed. The 1%

accuracy value specified in the vendor manual (ref 2.5) is overly conservative since it apparently includes a drift allowance (reference 2.27).

4.8 Assume Radiation Effects (RE) and Humidity Effects (HE) for the Bistable cards are negligible. These components are located in a mild environment. (Ref. Sections3.1.3 & 3.2.3). Note also that qualification testing per Reference 2.7 demonstrated satisfactory equipment performance with relative humidity to 900/0.

4.9 The maximum measured reset deadband for div 2 LSS is 0.6 V per reference 2.31. It is assumed that the max div 1 deadband will also be 0.6 V. This will be confIrmed via reference 2.34.

5.0 DEVICE UNCERTAINTIES -Ax(Ref. 2.1) 5.1 Bistable Card Uncertainties: (Ref Section 3.1.4)

Reference Accuracy - "RA" RAss = +/-0.2 V (setpoint)

Temperature Effects - "TE" Per reference 2.7 and 2.27, the temperature effect for a 40F to 32F (8F) temperature change is 0.06% and 0.60/0 for a 40F to 140F (100F) temperature change. Based on E100.0 the maximum temperature fluctuation is 58F-110F (52F). Using linear interpolation the temperature effect for a 52F temperature change is:

TE = 0.06% + (0.60/0-0.060/0) {(52F-8F)/(1 00F-8F) }= 0.320/0

=0.32%(109.65 v) = 0.35 V at upper allowable value However, this value is overly conservative. Based on PDS trends of computer points Z77N030 &

Zi7N031, the monthly fluctuation in room temperature is only about 20F (average). It is conservatively assumed that half of the above Temperature effect value needs to be considered and that the remainder is

Calculation JC-Q 1R21-90024-1 Rev 2 Page 13 of23 temperature drift captured in the drift value determined from the as-found and as-left calibration data.

Therefore, TE = 0.35 V/2 = 0.18 V Humidity Effects - "HE" Negligible - Reference Section 4.8 Radiation Effects - "RE" Negligible - Reference Section 4.8 Power Supply Effects - "PS" 0.1 %(109.65 v) = 0) 1 v at upper allowable value SSE Effects - "SE" Negligible - Reference Section 4.3 Static Pressure Effects - "SPE" N/A for instrument type Over Pressure Effects - "OVP" N/A for instrument type Total bistable card uncertainty - Ass:

Ass = +/-0.29 V

Calculation JC-Q 1R2l-90024-l Rev 2 Page 14 of23 5.2 Time Delay - One Shot Card Uncertainties: (Ref Section 3.2.4)

Reference Accuracy - "RA" RAID = +/-O.l seconds Temperature Effects - "TE" Negligible - Reference Section 4.2 Humidity Effects - "HE" Negligible - Reference Section 4.2 Radiation Effects - "RE" Negligible - Reference Section 4.2 Power Supply Effects - "PS" Negligible - Reference Section 4.4 SSE Effects - "SE" Negligible - Reference Section 4.3 Static Pressure Effects - "SPE" N/A for instrument type Over Pressure Effects - "OVP" N/A for instrument type

Calculation JC-Q 1R21-90024-1 Rev 2 Page 15 of23 Total Time Delay - One Shot Card Uncertainty - ATD :

AID = RAID ~ +/-0.1 seconds 6.0 LOOP UNCERTAINTIES (Ref. 2.1) 6.1 SRSS of all individual device uncertainties - "A L " (Ref. 2.1)

Bistable loop uncertainty:

Timing loop uncertainty:

At- ID = +/- ~ (Am) 2 + Bistable Response Time

~ ID = +/-0.1 seconds + .020 seconds At- ID = +0.12 seconds or -0.08 seconds 6.2 SRSS of all Measurement & Test Equipment Effects - "C L " (Ref. 2.1)

Per Reference 2.4, a Fluke 45 Digital Voltmeter (or equivalent) is used in the calibration of the bistable trip cards. The uncertainty data for a Fluke 45, taken from Ref. 2.6, will be used to estimate the M&TE effects. The reference accuracy of the Fluke 45 is:

RAF45 = +/-(0.2% reading + 0.1 V)

The reference accuracy above is for the 0-300V scale, medium resolution. This value is valid for ambient temperatures between 18°C and 28°C (64.4°F to 82.4°F). Since the expected temperature at calibration (l04°F, i.e. 40°C) is outside the given range, a temperature correction factor from Ref. 2.6 must be applied. This correction factor is stated as: '< 0.1 times the applicable accuracy specification per degree C for O°C to 18°C and 28°C to 50°C (32° to 64.4° and 82.4° to 122°F). The temperature correction factor for this application is : <0.1 (40-28) or 1.2.

The 'reading' will be conservatively assumed to be 109.65V (Upper Allowable Value). Since no other test equipment is used for the calibration, the loop calibration uncertainty is:

0.2 CL = +/- 1.2 -(109.65) + 0.1 J V= 0.38 V

( 100

Calculation JC-Q IR21-90024-1 Rev 2 Page 16 of23 Note, the M&TE effect is only applicable to the bistable trip point setting; no calibration is required for the time delay one shot cards.

6.3 SRSS of all individual device drifts - "DL.: (Ref. 2.1)

BistabIe Card Drift - DR Bs The drift will be determined from As- found / As-Left data presented in Attachment I. The results of this analysis support a drift term of:

DRss = +/-1.02 V Bistable Card Temperature Drift - TDBs Included in drift - Reference Section 4.6 Time Delay Card Drift - DRTo N/A - Reference 2.5 Time Delay Temperature Drift - TD To N/A for instrument type Bistable loop drift D LBS :

DLBS = +/-1.02 V Timing Loop Drift D LTO : Not Applicable

Calculation JC-Q IR21-90024-1 Rev 2 Page 17 of23 6.4 Process Measurement Uncertainty - "PM" No process measurement uncertainty is applicable to either the bistable trip or time delay.

6.5 Primary Element Uncertainty - "PE" The primary elements for each bistable loop are the potential transformers at the buses. Per reference 2.19, the accuracy class of the potential transformers is 0.3. Per Reference 2.18, the limits of transformer correction factor for a 0.3 accuracy class potential transformer are 1.003 to 0.997 (i.e. +/- 0.3%). Again assuming 109.65V nominal output (Upper Allowable Value), the potential transformer uncertainty is:

PE = +/-( 0.3 (109.65)) V 100 PE = +/-0.33 V No Primary Element Uncertainty is applicable to the time delay.

6.6 Insulation Resistance Effects - "IR" Insulation Resistance Effects for the bistable loops are assumed to be negligible (Reference Section 4.5). IR effects are not applicable to the time delay function.

6.7 Loop Uncertainty - Bistable:

LUBs = +/-~(0.29)2 + (0.38)2 + (0)2 + (0.33)2 + (0)2 LUBs = +/-0.58 V

Calculation JC-Q1R21-90024-1 Rev 2 Page 18 of23 6.8 Total Loop Uncertainty - Bistable:

TLUBS = +/-1.17 V 6.9 Loop Uncertainty - Time Delay:

LUTD = kTD = +0.12 seconds or -0.08 seconds Conservatively: LUTD = +/-0.12 seconds 6.10 Total Loop Uncertainty - Time Delay TLUTD = LUTD + D LTD TLUTD = LUTD + 0 seconds TLUTD = LUTD = +/-0.12 seconds 6.11 Allowable Values - Bistable Lower Allowable Value = Lower Analytic Limit + LU

= 106.97V + 0.58V = 107.55 The existing 106.97 AV is therefore not conservative and it will be changed to 107.55.

Calculation JC-Q 1R21-90024-1 Rev 2 Page 19 of23 Upper Allowable Value = Upper Analytic Limit - LU

= 110.49V - 0.58V = 109.91 V The existing 109.65 AV is therefore conservative.

6.12 Nominal Trip Setpoint - Bistable NTSP = Lower Analytic Limit + TLU

= 106.97 + 1.17 = 108.14 V The existing 108.3 V setpoint is therefore conservative.

reset = Upper Analytic Limit - TLU

= 110.49 - 1.17 = 109.32 V The existing 108.9 V reset is therefore conservative.

6.13 Deleted 6.14 Allowable Values - Time Delay Lower Allowable Value = Lower Analytic Limit + LU Lower Allowable Value = 5 seconds + 0.12 seconds Lower Allowable Value = 5.12 seconds Upper Allowable Value = Upper Analytic Limit - LU Upper Allowable Value = 10 seconds - 0.12 seconds Upper Allowable Value = 9.88 seconds

Calculation JC-Q 1R21-90024-1 Rev 2 Page 20 of23 6.15 Nominal Trip Setpoint - Time Delay NTSP: 2:(Lower Analytic Limit + TLU) & :SCUpper Analytic Limit - TLU)

NTSP: 2:(5 seconds + 0.12 seconds) & :S(10 seconds - 0.12 seconds)

NTSP: 2:5.12 seconds & :s 9.88 seconds 6.16 LER Avoidance Analysis - Bistable LER Avoidance probability is based on a number "Z" calculated as shown below. If the value ofZ is 2:

1.28 then the probability of avoiding an LER is 2: 90%, the acceptance criteria (Ref. 2.1).

Z = A_V_-_NT_S-----'-P

.:....-1 1 Where:

new Lower AV = 107.55 V, upper AV = 109.65 V NTSP = 108.3 volts, reset = 108.9 V 0"1 - Calculated as shown below With:

n = # of standard deviations used in specifying the individual uncertainty components For the lower AV 0"1 = 0.56 V 1107.55 -108.31 Z= = 1.34 0.56 This value of Z yields an LER avoidance probability of greater than 900/0.

Calculation JC-Q 1R21-90024-1 Rev 2 Page 21 of23 For the upper AV z = 1109.65 -108.91 = 1.34 0.56 This value of Z yields an LER avoidance probability of greater than 90%.

6.17 LER Avoidance Analysis - Time Delay Note, the margin between the upper and lower allowable values and the nominal trip setpoint are the same, LER avoidance probability will be determined using the upper allowable value.

z= A_V_-_NT_S--,-P

",--I I

(}j Where:

AV = 9.5 seconds NTSP = 9 seconds (Jl - Calculated as shown below With:

n = # of standard deviations used in specifying the individual uncertainty components (J\ = 0.06 seconds Therefore:

19 . 5 - 91 Z = = 8.33 0.06 From common statistical tables (Ref. 2.23), this value of Z yields an LER avoidance probability greater than 900/0.

Calculation JC-Q 1R21-90024-1 Rev 2 Page 22 of23 6.18 Spurious Trip Avoidance Analysis - Bistable No spurious trip avoidance analysis will be performed. Spurious separation from the off-site source is prevented by the selection of the upper analytical limit.

6.19 Spurious Trip Avoidance Analysis - Time Delay A spurious trip analysis is not applicable in this application.

7.0 CONCLUSION

Bistable Trip:

The existing setpoint and reset are conservative compared to the calculated values.

Note, the drift value used in the calculation was derived from as-found / as-left surveillance data. A drift value determined in this fashion will include the combined effects of reference accuracy, measurement and test equipment, and environmental influences (Ref. 2.28). For this calculation, reference accuracy and M&TE effects are accounted for individually. The drift term would therefore include inherent conservatism.

Time Delay:

The existing plant setpoint and allowable values are conservative with respect to the calculated values. The existing plant setpoint is acceptable.

SUMMARY

OF RESULTS - Bistable Trip SYSTEM 1R21 - Load Shedding & Sequencing LOOP NUMBERS XA5, XA13, XA21, XA29 TOTAL LOOP UNCERTAINTY +/-1.17V LOOP UNCERTAINTY +/-0.58V LOOP DRIFT +/-1.02V LOOP CALIBRATION +/-0.38V UNCERTAINTY EXISTING CALCULATED Upper Analytic Limit 110,49 V ***************

Upper Allowable Value 109.65 V 109.91 V reset 108.9 V 109.32 V Nominal Trip Setpoint 108.3 V 108.14 Lower Allowable Value >106.97 V 2:107.55 Lower Analytic Limit 106.97 V ***************

Calculation JC-Q 1R2l-90024-l Rev 2 Page 23 of23

SUMMARY

OF RESULTS - Time Delay SYSTEM 1R2l - Load Shedding & Sequencing LOOP NUMBERS XA23-TD1, XA23TD2 TOTAL LOOP UNCERTAINTY +/-0.12 seconds LOOP UNCERTAINTY +/-0.12 seconds LOOP DRIFT +/-O.OOV LOOP CALIBRATION +/-O.OOV UNCERTAINTY EXISTING CALCULATED Upper Analytic Limit 10 sec *************

Upper Allowable  ::::9.5 sec  ::::9.88 sec Value Nominal Trip Setpoint 9.0 sec  :::::5.12 and ::::9.88 sec Lower Allowable  :::::8.5 sec  :::::5.12 sec Value Lower Analytic Limit 5 sec *************

Calculation JC-Q 1R21-90024-1 Rev 2 Page 1 of 5 FORMULAS IMPLEMENTED IN SPREAD SHEETS DRIFT = (CURRENT AS FOUND)-(PREVIOUS AS LEFT)

DRIFT / 31 DAYS = 31DAYS( DRIFT ACTUAL #OF DAYS IN SURV PERIOD J

N I f1 (DRIFT /31 DAYS)

MEAN DRIFT = _i=_'- - - - - - -

N SAMPLE STANDARD DEVIATION=

2::1 fl[(DRIFT /31 DAYS) -(MEAN DRIFT)]2 N -1 WHERE: N = # OF SAMPLES Calculated drift = mean +/- K (STANDARD DEVIATION)

K = tolerance factor = 2.29 for 75 samples per table 6.1 of EPRI report TR 103335 rev 1

JC-01 R21-90024-1 rev 2 Attachment 1 Daa e 20' 5 PT1-A As-Found As-left Drift DRIFT/31 MAI# Date {secondsl {secondsl (sec) #days DAYS N W051009187 10/25/2005 111.18 108.28 N/A N/A N/A W051011443 11/22/2005 107.8 108.3 -0.48 28.00 -0.531428571 1 W051014355 12/20/2005 107.7 108.3 -0.6 28.00 -0.664285714 2 W051016828 1/3/2006 108.6 108.5 0.3 14.00 0.664285714 3 W051019016 1/17/2006 108.32 108.32 -0.18 14.00 -0.398571429 4 W051021238 1/31/2006 108.2 108.2 -0.12 14.00 -0.265714286 5 W051024180 2114/2006 108.22 108.22 0.02 14.00 0.044285714 6 W051 026697 2128/2006 108.2 108.2 -0.02 14.00 -0.044285714 7 W051028415 3/14/2006 108.3 108.3 0.1 14.00 0.221428571 8 W051030016 4/11/2006 108.4 108.4 0.1 28.00 0.110714286 9 W051030017 5/9/2006 108.5 108.5 0.1 28.00 0.110714286 10 W051030018 6/6/2006 108.3 108.3 -0.2 28.00 -0.221428571 11 W051030019 7/5/2006 108.8 108.3 0.5 29.00 0.534482759 12 W051 030020 8/1/2006 108.9 108.1 0.6 27.00 0.688888889 13 W051 030021 8/29/2006 108.3 108.3 0.2 28.00 0.221428571 14 W051 030022 9/26/2006 108.3 108.3 0 28.00 0 15 W051 030667 10/24/2006 107.7 108.3 -0.6 28.00 -0.664285714 16 W051 032505 11/21/2006 108.1 108.1 -0.2 28.00 -0.221428571 17 W051 033916 12119/2006 107.97 108.3 -0.13 28.00 -0.143928571 18 W051 035253 1/16/2007 108.3 108.3 0 28.00 0 19 W051036619 2113/2007 108.3 108.3 0 28.00 0 20 W051 037796 3/13/2007 108.2 108.2 -0.1 28.00 -0.110714286 21 W051 082651 4/1212007 108.2 108.2 0 30.00 0 22 W051085158 5/8/2007 108.4 108.4 0.2 26.00 0.238461538 23 W051 087534 6/5/2007 108.2 108.2 -0.2 28.00 -0.221428571 24 W051098112 7/3/2007 109.14 108.21 0.94 28.00 1.040714286 25 W051191385 7/31/2007 108.3 108.3 0.09 28.00 0.099642857 26 W051202901 8/28/2007 108.6 108.3 0.3 28.00 0.332142857 27 W051522490 9/25/2007 108.2 108.2 -0.1 28.00 -0.110714286 28 W051547225 10/23/2007 108.7 108.3 0.5 28.00 0.553571429 29 W051554386 11/21/2007 107.7 108.3 -0.6 29.00 -0.64137931 30 W051563195 12/18/2007 108.3 108.3 0 27.00 0 31 W051566550 1/14/2008 108.1 108.1 -0.2 27.00 -0.22962963 32 W051570925 2112/2008 107.8 108.2 -0.3 29.00 -0.320689655 33 W051644300 3/8/2008 108.3 108.3 0.1 25.00 0.124 34 W051650171 4/8/2008 108.5 108.5 0.2 31.00 0.2 35 W051655982 5/6/2008 108.6 108.3 0.1 28.00 0.110714286 36 WO-51658994 6/3/2008 108.8 108.3 0.5 28.00 0.553571429 37 WO-51664735 7/1/2008 108.3 108.3 0 28.00 0 38 WO-51669278 7/29/2008 108.12 108.12 -0.18 28.00 -0.199285714 39 WO-51673420 8/26/2008 108.5 108.4 0.38 28.00 0.420714286 40 WO-51678386 9/9/2008 108.3 108.3 -0.1 14.00 -0.221428571 41 WO-51680612 10/3/2008 107.8 108.4 -0.5 24.00 -0.645833333 42 WO-51689185 11/3/2008 107.8 108.3 -0.6 31.00 -0.6 43 WO-51695080 1212/2008 108.25 108.25 -0.05 29.00 -0.053448276 44 WO-51700866 12130/2008 108 108.3 -0.25 28.00 -0.276785714 45 WO-51797493 1/27/2009 107.9 108.2 -0.4 28.00 -0.442857143 46 WO-51803539 2/25/2009 108 108.3 -0.2 29.00 -0.213793103 47 WO-52026568 3/27/2009 108.53 108.5 0.23 30.00 0.237666667 48 WO-52032253 4/21/2009 107 108.3 -1.5 25.00 -1.86 49 WO-52036113 5/19/2009 109 108.3 . 0.7 28.00 0.775 50 WO-52186468 6/16/2009 108.46 108.46 0.16 28.00 0.177142857 51 WO-52192324 7/14/2009 108.8 108.3 0.34 28.00 0.376428571 52 WO-52197716 8/11/2009 108.5 108.5 0.2 28.00 0.221428571 53 WO-52205963 9/11/2009 108.4 108.4 -0.1 31.00 -0.1 54 WO-52201055 10/12/2009 107.8 108.3 -0.6 31.00 -0.6 55 WO-52201056 11/11/2009 108 108.35 -0.3 30.00 -0.31 56 WO-52221461 1218/2009 107.8 108.28 -0.55 27.00 -0.631481481 57 WO-00218882 1/11/2010 108.1 108.1 -0.18 34.00 -0.164117647 58 WO-52201057 2/8/2010 108.08 108.32 -0.02 28.00 -0.022142857 59 WO-52202330 2/24/2010 108.3 108.3 -0.02 16.00 -0.03875 60 WO-52243111 3/23/2010 108.3 108.3 0 27.00 0 61 WO-00230764 4/21/2010 108.4 108.4 0.1 29.00 0.106896552 62 WO-52227841 5/16/2010 108.8 108.29 0.4 25.00 0.496 63 WO-00237520 6nJ2010 108.6 108.2 0.31 22.00 0.436818182 64 WO-52265423 7/13/2010 108.4 108.4 0.2 36.00 0.172222222 65 WO-52232673 8/9/2010 108.2 108.2 -0.2 27.00 -0.22962963 66 WO-52276947 9nJ2010 108.4 108.4 0.2 29.00 0.213793103 67 WO-52282131 9/20/2010 108.2 108.2 -0.2 13.00 -0.476923077 68 WO-52284846 10/1212010 107.66 108.2 -0.54 22.00 -0.760909091 69 WO-52289042 11/9/2010 107.8 108.37 -0.4 28.00 -0.442857143 70 WO-52294771 12/7/2010 108.4 108.4 0.03 28.00 0.033214286 71 WO-52301518 1/11/2011 108.2 108.2 -0.2 35.00 -0.177142857 72 WO-52311449 2110/2011 107.9 108.3 -0.3 30.00 -0.31 73 WO-52312099 3/7/2011 108.8 108.3 0.5 25.00 0.62 74 WO-00269253 3/30/2011 108.5 108.5 0.2 23.00 0.269565217 75 WO-00271598 4/27/2011 108.5 108.5 0 28.00 0 76 WO-52312100 5/24/2011 108.9 108.3 0.4 27.00 0.459259259 77 WO-52312101 6/22/2011 108.4 108.4 0.1 29.00 0.106896552 78 WO-52324341 7/15/2011 108.4 108.4 0 23.00 0 79 WO-00284333 8/12/2011 108.5 108.5 0.1 28.00 0.110714286 80 WO-52361914 9/9/2011 107.9 108.4 -0.6 28.00 -0.664285714 81 WO-52368515 10/11/2011 108.2 108.2 -0.2 32.00 -0.19375 82 k- 2.290 Drift Mean STDEV mean + k*Stdev mean - k*Stdev

-0.040762514 0.43 0.936811139 -1.018336167

JC-Q1 R21*90024-1 rev 2 attachment 1 Daae 3 of 5 PT1-C As-Found As-left Drift MAI# Date (seconds) (seconds) (sec) #days DRIFT / 31 DA YS N W051009187 10/25/2005 110.99 108.28 N/A N/A N/A W051011443 11/22/2005 107.8 108.3 -0.48 28.00 -0.531428571 1 W051014355 12/20/2005 107.7 108.3 -0.6 28.00 -0.664285714 2 W051016828 1/3/2006 108.6 108.4 0.3 14.00 0.664285714 3 W051019016 1/17/2006 108.3 108.3 -0.1 14.00 -0.221428571 4 W051021238 1/31/2006 108.16 108.16 -0.14 14.00 -0.31 5 W051024180 2/14/2006 108.24 108.24 0.08 14.00 0.177142857 6 W051026697 2/28/2006 108.2 108.2 -0.04 14.00 -0.088571429 7 W051028415 3/14/2006 108.3 108.3 0.1 14.00 0.221428571 8 W051030016 4/11/2006 108.4 108.4 0.1 28.00 0.110714286 9 W051030017 5/9/2006 108.5 108.5 0.1 28.00 0.110714286 10 W051030018 6/6/2006 108.4 108.4 -0.1 28.00 -0.110714286 11 W051030019 7/5/2006 108.9 108.3 0.5 29.00 0.534482759 12 W051 030020 8/1/2006 108.9 108.2 0.6 27.00 0.688888889 13 W051030021 8/29/2006 108.7 108.25 0.5 28.00 0.553571429 14 W051 030022 9/26/2006 108.1 108.1 -0.15 28.00 -0.166071429 15 W051 030667 10/24/2006 107.1 108.3 -1 28.00 -1.107142857 16 W051 032505 11/21/2006 108.1 108.1 -0.2 28.00 -0.221428571 17 W051 033916 12119/2006 107.94 108.4 -0.16 28.00 -0.177142857 18 W051 035253 1/16/2007 108.3 108.3 -0.1 28.00 -0.110714286 19 W051036619 2113/2007 108.3 108.3 0 28.00 0 20 W051 037796 3/13/2007 108.2 108.2 -0.1 28.00 -0.110714286 21 W051 082651 4/1212007 108.2 108.2 0 30.00 0 22 W051085158 5/8/2007 108.41 108.41 0.21 26.00 0.250384615 23 W051 087534 6/5/2007 108.3 108.3 -0.11 28.00 -0.121785714 24 W051098112 7/3/2007 109.1 108.23 0.8 28.00 0.885714286 25 W051191385 7/31/2007 108.3 108.3 0.07 28.00 0.0775 26 W051202901 8/28/2007 108.8 108.3 0.5 28.00 0.553571429 27 W051522490 9/25/2007 108.3 108.3 0 28.00 0 28 W051547225 10/23/2007 107.7 108.3 -0.6 28.00 -0.664285714 29 W051554386 11/21/2007 107.8 108.3 -0.5 29.00 -0.534482759 30 W051563195 12118/2007 108.2 108.2 -0.1 27.00 -0.114814815 31 W051566550 1/14/2008 108.2 108.2 0 27.00 0 32 W051570925 2112/2008 107.8 108.4 -0.4 29.00 -0.427586207 33 W051644300 3/8/2008 108.5 108.5 0.1 25.00 0.124 34 W051650171 4/8/2008 108.8 108.2 0.3 31.00 0.3 35 W051655982 5/6/2008 108.5 108.5 0.3 28.00 0.332142857 36 WO-51658994 6/3/2008 109 108.3 0.5 28.00 0.553571429 37 WO-51664735 7/1/2008 108.3 108.3 0 28.00 0 38 WO-51669278 7/29/2008 108.11 108.11 -0.19 28.00 -0.210357143 39 WO-51673420 8/26/2008 108.7 108.3 0.59 28.00 0.653214286 40 WO-51678386 9/9/2008 108.5 108.5 0.2 14.00 0.442857143 41 WO-51680612 10/3/2008 108 108.3 -0.5 24.00 -0.645833333 42 WO-51689185 11/3/2008 107.8 108.1 -0.5 31.00 -0.5 43 WO-51695080 1212/2008 107.9 108.32 -0.2 29.00 -0.213793103 44 WO-51700866 12/30/2008 108.4 108.4 0.08 28.00 0.088571429 45 WO-51797493 1/27/2009 108 108.2 -0.4 28.00 -0.442857143 46 WO-51803539 2/25/2009 108.2 108.2 0 29.00 0 47 WO-52026568 3/27/2009 108.4 108.4 0.2 30.00 0.206666667 48 WO-52032253 4/21/2009 108.4 108.4 0 25.00 0 49 WO-52036113 5/19/2009 109.1 108.4 0.7 28.00 0.775 50 WO-52186468 6/16/2009 108.75 108.75 0.35 28.00 0.3875 51 WO-52192324 7/14/2009 108.4 108.4 -0.35 28.00 -0.3875 52 WO-52197716 8/1112009 108.5 108.5 0.1 28.00 0.110714286 53 WO-52205963 9/11/2009 108.5 108.5 0 31.00 0 54 WO-52201055 10/12/2009 108 108.4 -0.5 31.00 -0.5 55 WO-52201056 11/11/2009 108 108.28 -0.4 30.00 -0.413333333 56 WO-52221461 12/8/2009 107.6 108.3 -0.68 27.00 -0.780740741 57 WO-00218882 1/11/2010 108.2 108.2 -0.1 34.00 -0.091176471 58 WO-52201057 2/8/2010 108.13 108.3 -0.07 28.00 -0.0775 59 WO-52202330 2124/2010 108.3 108.3 0 16.00 0 60 WO-52243111 3/23/2010 108.6 108.4 0.3 27.00 0.344444444 61 WO-00230764 4/21/2010 108.2 108.2 -0.2 29.00 -0.213793103 62 WO-52227841 5/16/2010 108.8 108.4 0.6 25.00 0.744 63 WO-00237520 6/7/2010 108.8 108.3 0.4 22.00 0.563636364 64 WO-52265423 7/13/2010 108.5 108.5 0.2 36.00 0.172222222 65 WO-52232673 8/9/2010 108.3 108.3 -0.2 27.00 -0.22962963 66 WO-52276947 9/7/2010 108.6 108.3 0.3 29.00 0.320689655 67 WO-52282131 9/20/2010 108.1 108.1 -0.2 13.00 -0.476923077 68 WO-52284846 10/1212010 107.4 108.38 -0.7 22.00 -0.986363636 69 WO-52289042 11/9/2010 107.9 108.2 -0.48 28.00 -0.531428571 70 WO-52294771 121712010 108.4 108.4 0.2 28.00 0.221428571 71 WO-52301518 1/11/2011 108.2 108.2 -0.2 35.00 -0.177142857 72 WO-52311449 2110/2011 107.9 108.4 -0.3 30.00 -0.31 73 WO-52312099 31712011 108.8 108.3 0.4 25.00 0.496 74 WO-00269253 3/30/2011 108.5 108.5 0.2 23.00 0.269565217 75 WO-00271598 4/27/2011 108.4 108.4 -0.1 28.00 -0.110714286 76 WO-52312100 5/24/2011 109 108.3 0.6 27.00 0.688888889 77 WO-52312101 6/22/2011 108.3 108.3 0 29.00 0 78 WO-52324341 7/15/2011 108.5 108.5 0.2 23.00 0.269565217 79 WO-00284333 8/12/2011 108.2 108.2 -0.3 28.00 -0.332142857 80 WO-52361914 9/9/2011 107.7 108.4 -0.5 28.00 -0.553571429 81 WO-52368515 10/11/2011 108.1 108.1 -0.3 32.00 -0.290625 82 k= 2.290 Drift Mean SrDEV mean + k*Stdev mean - k*Stdev

-0.015426171 0.42 0.946901403 -0.977753744

JC-Q1R21-90024-1 rev 2 attachment 1 Daae 4 of 5 PT2-A As-Found As-left D,lft DRIFT/31 MAI# Date (seconds) (seconds) (sec) #days DAYS N W051009187 10/25/2005 110.9 108.35 N/A N/A N/A W051011443 11/2212005 107.9 108.3 -0.45 28.00 -0.498214286 1 W051014355 12120/2005 107.7 108.3 -0.6 28.00 -0.664285714 2 W051016828 1/3/2006 108.6 108.3 0.3 14.00 0.664285714 3 W051019016 1/17/2006 108.2 108.2 -0.1 14.00 -0.221428571 4 W051021238 1/31/2006 108.1 108.1 -0.1 14.00 -0.221428571 5 W051024180 2114/2006 108.1 108.1 0 14.00 0 6 W051 026697 2128/2006 108.1 108.1 0 14.00 0 7 W051028415 3/14/2006 108.3 108.3 0.2 14.00 0.442857143 8 W051030016 4/11/2006 108.3 108.3 0 28.00 0 9 W051030017 5/9/2006 108.4 108.4 0.1 28.00 0.110714286 10 W051030018 6/6/2006 108.3 108.3 -0.1 28.00 -0.110714286 11 W051030019 7/5/2006 108.7 108.3 0.4 29.00 0.427586207 12 W051 030020 8/1/2006 108.8 108.1 0.5 27.00 0.574074074 13 W051 030021 8/29/2006 108.3 108.3 0.2 28.00 0.221428571 14 W051 030022 9/26/2006 108.3 108.3 0 28.00 0 15 W051 030667 10/24/2006 107.6 108.29 -0.7 28.00 -0.775 16 W051 032505 11/21/2006 108.1 108.1 -0.19 28.00 -0.210357143 17 W051033916 12119/2006 107.97 108.3 -0.13 28.00 -0.143928571 18 W051 035253 1/16/2007 108.3 108.3 0 28.00 0 19 W051 036619 2113/2007 108.4 108.4 0.1 28.00 0.110714286 20 W051 037796 3/13/2007 108.2 108.2 -0.2 28.00 -0.221428571 21 W051 082651 4/1212007 108.1 108.1 -0.1 30.00 -0.103333333 22 W051085158 5/8/2007 108.4 108.4 0.3 26.00 0.357692308 23 W051 087534 6/5/2007 108.2 108.2 -0.2 28.00 -0.221428571 24 W051098112 7/3/2007 108.25 108.25 0.05 28.00 0.055357143 25 W051191385 7/31/2007 108.4 108.4 0.15 28.00 0.166071429 26 W051202901 8/28/2007 108.8 108.3 0.4 28.00 0.442857143 27 W051522490 9/25/2007 108.2 108.2 -0.1 28.00 -0.110714286 28 W051547225 10/23/2007 107.8 108.25 -0.4 28.00 -0.442857143 29 W051554386 11/21/2007 107.7 108.3 -0.55 29.00 -0.587931034 30 W051563195 12118/2007 108.2 108.2 -0.1 27.00 -0.114814815 31 W051566550 1/14/2008 108.1 108.1 -0.1 27.00 -0.114814815 32 W051570925 211212008 107.9 108.3 -0.2 29.00 -0.213793103 33 W051644300 3/8/2008 108.2 108.2 -0.1 25.00 -0.124 34 W051650171 4/8/2008 108.6 108.3 0.4 31.00 0.4 35 W051655982 5/6/2008 108.4 108.4 0.1 28.00 0.1107.14286 36 WO-51658994 6/3/2008 108.9 108.3 0.5 28.00 0.553571429 37 WO-51664735 7/1/2008 108.4 108.4 0.1 28.00 0.110714286 38 WO-51669278 7/29/2008 108.12 108.12 -0.28 28.00 -0.31 39 WO-51673420 8/26/2008 108.6 108.3 0.48 28.00 0.531428571 40 WO-51678386 9/9/2008 108.3 108.3 0 14.00 0 41 WO-51680612 10/3/2008 107.8 108.3 -0.5 24.00 -0.645833333 42 WO-51689185 11/3/2008 107.8 108.3 -0.5 31.00 -0.5 43 WO-51695080 12/212008 107.9 108.34 -0.4 29.00 -0.427586207 44 WO-51700866 12130/2008 108.4 108.4 0.06 28.00 0.066428571 45 WO-51797493 1/27/2009 108.1 108.1 -0.3 28.00 -0.332142857 46 WO-51803539 2125/2009 107.9 108.3 -0.2 29.00 -0.213793103 47 WO-52026568 3/27/2009 108.6 108.37 0.3 30.00 0.31 48 WO-52032253 4/21/2009 108.4 108.4 0.03 25.00 0.0372 49 WO-52036113 5/19/2009 109.2 108.3 0.8 28.00 0.885714286 50 WO-52186468 6/16/2009 108.38 108.38 0.08 28.00 0.088571429 51 WO-52192324 7/14/2009 108.7 108.4 0.32 28.00 0.354285714 52 WO-52197716 8/1112009 108.4 108.4 0 28.00 0 53 WO-52205963 9/11/2009 108.4 108.4 0 31.00 0 54 WO-52201055 10/1212009 108.08 108.3 -0.32 31.00 -0.32 55 WO-52201056 11/11/2009 108.15 108.15 -0.15 30.00 -0.155 56 WO-52221461 1218/2009 107.55 108.3 -0.6 27.00 -0.688888889 57 WO-00218882 1/11/2010 108.2 108.2 -0.1 34.00 -0.091176471 58 WO-52201057 218/2010 108.13 108.4 -0.07 28.00 -0.0775 59 WO-52202330 2124/2010 108.27 108.27 -0.13 16.00 -0.251875 60 WO-52243111 3/23/2010 108.6 108.3 0.33 27.00 0.378888889 61 WO-00230764 4/21/2010 108.2 108.2 -0.1 29.00 -0.106896552 62 WO-52227841 5/16/2010 108.8 108.25 0.6 25.00 0.744 63 WO-00237520 6/7/2010 108.7 108.3 0.45 22.00 0.634090909 64 WO-52265423 7/13/2010 108.6 108.4 0.3 36.00 0.258333333 65 WO-52232673 8/9/2010 108.4 108.4 0 27.00 0 66 WO-52276947 91712010 108.5 108.5 0.1 29.00 0.106896552 67 WO-52282131 9/20/2010 108.3 108.3 -0.2 13.00 -0.476923077 68 WO-52284846 10/1212010 107.7 108.3 -0.6 22.00 -0.845454545 69 WO-52289042 11/9/2010 107.9 108.4 -0.4 28.00 -0.442857143 70 WO-52294771 1217/2010 108.5 108.5 0.1 28.00 0.110714286 71 WO-52301518 1/11/2011 108.2 108.2 -0.3 35.00 -0.265714286 72 WO-52311449 2110/2011 108 108.4 -0.2 30.00 -0.206666667 73 WO-52312099 31712011 108.8 108.2 0.4 25.00 0.496 74 WO-00269253 3/30/2011 108.4 108.4 0.2 23.00 . 0.269565217 75 WO-00271598 4/27/2011 108.4 108.4 0 28.00 0 76 WO-52312100 5/24/2011 108.7 108.3 0.3 27.00 0.344444444 77 WO-52312101 6/2212011 108.3 108.3 0 29.00 0 78 WO-52324341 7/15/2011 108.5 108.5 0.2 23.00 0.269565217 79 WO-00284333 8/1212011 108.5 108.5 0 28.00 0 80 WO-52361914 9/9/2011 108.2 108.2 -0.3 28.00 -0.332142857 81 WO-52368515 10/11/2011 108.2 108.2 0 32.00 0 82 k= 2.290 Drift Mean STDEV mean + k*Stdev mean - k*Stdev

-0.014099489 0.36 0.807417881 -0.835616858

JC-Q1R21*90024-1 rev 2 a"achment 1 Dace 5 of 5 PT2-C As*Found As-left Drift DRIFT/31 MAI# Date (seconds) (seconds) (sec) #days DAYS N W051009187 10/25/2005 110.59 108.34 N/A N/A N/A W051011443 11/2212005 107.8 108.3 -0.54 28.00 -0.597857143 1 W051014355 12120/2005 107.7 108.3 -0.6 28.00 -0.664285714 2 W051016828 1/3/2006 108.5 108.5 0.2 14.00 0.442857143 3 W051019016 1/1712006 108.4 108.4 -0.1 14.00 -0.221428571 4 W051021238 1/31/2006 108.3 108.3 -0.1 14.00 -0.221428571 5 W051024180 2114/2006 108.4 108.4 0.1 14.00 0.221428571 6 W051 026697 2128/2006 108.3 108.3 -0.1 14.00 -0.221428571 7 W051028415 3/14/2006 108.4 108.4 0.1 14.00 0.221428571 8 W051030016 4/1112006 108.6 108.3 0.2 28.00 0.221428571 9 W051030017 5/9/2006 108.3 108.3 0 28.00 0 10 W051030018 6/6/2006 108.1 108.1 -0.2 28.00 -0.221428571 11 W051030019 7/5/2006 108.6 108.3 0.5 29.00 0.534482759 12 W051 030020 8/1/2006 108.8 108.2 0.5 27.00 0.574074074 13 W051 030021 8/29/2006 108.5 108.5 0.3 28.00 0.332142857 14 W051 030022 9/26/2006 108.3 108.3 -0.2 28.00 -0.221428571 15 W051 030667 10/24/2006 107.8 108.3 -0.5 28.00 -0.553571429 16 W051 032505 11/21/2006 108.1 108.1 -0.2 28.00 -0.221428571 17 W051033916 12119/2006 107.7 108.3 -0.4 28.00 -0.442857143 18 W051 035253 1/16/2007 108.3 108.3' 0 28.00 0 19 W051036619 2113/2007 108.3 108.3 0 28.00 0 20 W051 037796 3/13/2007 108.2 108.2 -0.1 28.00 -0.110714286 21 W051082651 4/1212007 108.1 108.1 -0.1 30.00 -0.103333333 22 W051085158 5/8/2007 108.3 108.3 0.2 26.00 0.238461538 23 W051 087534 6/5/2007 108.2 108.2 -0.1 28.00 -0.110714286 24 W051098112 7/3/2007 108.7 108.2 0.5 28.00 0.553571429 25 W051191385 7/31/2007 108.3 108.3 0.1 28.00 0.110714286 26 W051202901 8/28/2007 108.5 108.3 0.2 28.00 0.221428571 27 W051522490 9/25/2007 108.4 108.4 0.1 28.00 0.110714286 28 W051547225 10/23/2007 107.9 108.3 -0.5 28.00 -0.553571429 29 W051554386 11/21/2007 107.9 108.3 -0.4 29.00 -0.427586207 30 W051563195 12118/2007 108.2 108.2 -0.1 27.00 -0.114814815 31 W051566550 1/14/2008 108.1 108.1 -0.1 27.00 -0.114814815 32 W051570925 211212008 107.8 108.3 -0.3 29.00 -0.320689655 33 W051644300 3/8/2008 108.3 108.3 0 25.00 0 34 W051650171 4/8/2008 108.6 108.2 0.3 31.00 0.3 35 W051655982 5/6/2008 108.4 108.4 0.2 28.00 0.221428571 36 WO-51658994 6/3/2008 108.9 108.2 0.5 28.00 0.553571429 37 WO-51664735 7/1/2008 108.4 108.4 0.2 28.00 0.221428571 38 WO-51669278 7/29/2008 108.05 108.27 -0.35 28.00 -0.3875 39 WO-51673420 8/26/2008 108.8 108.3 0.53 28.00 0.586785714 40 WO-51678386 9/9/2008 108.4 108.4 0.1 14.00 0.221428571 41 WO-51680612 10/3/2008 108.1 108.1 -0.3 24.00 -0.3875 42 WO-51689185 11/3/2008 107.6 108.3 -0.5 31.00 -0.5 43 WO-51695080 121212008 107.9 108.37 -0.4 29.00 -0.427586207 44 WO-51700866 12/30/2008 108.4 108.4 0.03 28.00 0.033214286 45 WO-51797493 1/27/2009 108.1 108.1 -0.3 28.00 -0.332142857 46 WO-51803539 2125/2009 107.9 108.3 -0.2 29.00 -0.213793103 47 WO-52026568 3/27/2009 108.5 108.5 0.2 30.00 0.206666667 48 WO-52032253 4/21/2009 108.4 108.4 -0.1 25.00 -0.124 49 WO-52036113 5/19/2009 109.3 108.2 0.9 28.00 0.996428571 50 WO-52186468 6/16/2009 108.37 108.37 0.17 28.00 0.188214286 51 WO-52192324 7/14/2009 108.3 108.3 .. -0.07 28.00 -0.0775 52 WO-52197716 8/11/2009 108.4 108.4 0.1 28.00 0.110714286 53 WO-52205963 9/11/2009 108.3 108.3 -0.1 31.00 -0.1 54 WO-52201055 10/1212009 108 108.5 -0.3 31.00 -0.3 55 WO-52201056 11/11/2009 107.88 108.31 -0.62 30.00 -0.640666667 56 WO-52221461 1218/2009 107.7 108.3 -0.61 27.00 -0.70037037 57 WO-00218882 1/11/2010 108.3 108.3 0 34.00 0 58 WO-52201057 2/8/2010 108.15 108.3 -0.15 28.00 -0.166071429 59 WO-52202330 2124/2010 108.2 108.2 -0.1 16.00 -0.19375 60 WO-52243111 3/23/2010 108.7 108.3 0.5 27.00 0.574074074 61 WO-00230764 4/21/2010 108.3 108.3 0 29.00 0 62 WO-52227841 5/16/2010 108.8 108.24 0.5 25.00 0.62 63 WO-00237520 6/7/2010 108.7 108.3 0.46 22.00 0.648181818 64 WO-52265423 7/13/2010 108.5 108.5 0.2 36.00 0.172222222 65 WO-52232673 8/9/2010 108.4 108.4 -0.1 27.00 -0.114814815 66 WO-52276947 9/7/2010 108.5 108.5 0.1 29.00 0.106896552 67 WO-52282131 9/20/2010 108.4 108.4 -0.1 13.00 -0.238461538 68 WO-52284846 10/1212010 107.8 108.3 -0.6 22.00 -0.845454545 69 WO-52289042 11/9/2010 107.8 108.4 -0.5 28.00 -0.553571429 70 WO-52294771 1217/2010 108.5 108.5 0.1 28.00 0.110714286 71 WO-52301518 1/11/2011 108.3 108.3 -0.2 35.00 -0.177142857 72 WO-52311449 2/10/2011 108.1 108.1 -0.2 30.00 -0.206666667 73 WO-52312099 3/7/2011 108.4 108.4 0.3 25.00 0.372 74 WO-00269253 3/30/2011 108.7 108.3 0.3 23.00 0.404347826 75 WO-00271598 4/27/2011 108.3 108.3 0 28.00 0 76 WO-52312100 5/24/2011 108.6 108.3 0.3 27.00 0.344444444 77 WO-52312101 6/2212011 108.2 108.2 -0.1 29.00 -0.106896552 78 WO-52324341 7/15/2011 108.3 108.3 0.1 23.00 0.134782609 79 WO-00284333 8/1212011 108.5 108.5 0.2 28.00 0.221428571 80 WO-52361914 9/9/2011 108.1 108.1 -0.4 28.00 -0.442857143 81 WO-52368515 10/11/2011 107.9 108.2 -0.2 32.00 -0.19375 82 k= 2.290 Drift Mean STDEV mean + k*Stdev mean - k*Stdev

-0.021245998 0.36 0.81309187 -0.855583866

Attachment 7 GNRO-2014/00014 Calculation JC-Q1 P81-90024 "Division III Degraded Bus Voltage Setpoint Validation TIS 3.3.8.1)"

Total Pages: 1 of 51 OANO-l OANO-2 [8J GGNS o IP-2 o IP-3 OPLP OJAF OPNPS ORBS OVY OW3 o NP-GGNS-3 ONP-RBS-3 CALCULATION (1) EC # 50554 (2)Page 1 of 35 COVER PAGE (3) Design Basis Calc. [8J YES ONO (4)

[8J CALCULATION o ECMarkup (5) Calculation No: : JC-QIP81-90024 (6) Revision: 004 (7)

Title:

Division III Degraded Bus Voltage Setpoint Validation (T/S (8) Editorial 3.3.8.1) o YES [8JNO (9) System(s): P81 / E22 (10) Review Org (Department): NPE (I&C Design)

(12)

(11) Safety Class: Component/Equipment/Structure Type/Number:

[8J Safety / Quality Related lE22S004 lA708-127-1A o Augmented Quality Program lA701-162-1 lA708-127-1B o Non-Safety Related lA708-162-2 lA701-127-2A (13) Document Type: J05.02 lA701-127-2B (14) Keywords (Description/Topical Codes): diesel generator, loss of offsite power, setpoint, uncertainty REVIEWS (15) Name/Signature/Date (16) Name/Signature/Date (17) Name/Signature/Date Tim Bryant / see AS/6-6-14 Jerry Hixson /see AS/6-6-14 Greg Phillips /see AS/6-6-14 Responsible Engineer [8J Design Verifier Supervisor/Approval D Reviewer o Comments Attached 0 Comments Attached

Total Pa es: 2 of 51 CALCULATION SHEET ENTERGY SHEET--=2_

o Original issue.

1 General Revision 2 Added Reset Point Eval.

Extended calibration interval of relays to 24 months + 25%, incorporated results of drift calculations JC-QIIII-09004, JC-QIIII-09005 and JC-QIIII-09022. Updated M&TE for the time delay relay to agree with the current revision of the referenced document.

Added Doble F2250 specifications to attachments. Recalculated loop calibration errors 3 based on current revision of JS09. Incorporated new Analytical limits based on the current revision to the referenced documents. Provided recommended lower allowable values for undervoltage voltage trip and time delay based on calculated values and performed LER avoidance check using these values. Added TSTF section 7.0. Updated references and performed general maintenance.

4 Issued to correct errors identified in CR 2014-3683 and EC 50554

TIP ata aaes: 3 af 51 CALCULATION SHEET

-_-=_- ENTERGY SHEET 3 OF ~

CALCULATION NO. JC-Q 1P81-90024 REV. 004 CALCULATION CALCULATION NO: JC-Q1P81-90024 REFERENCE SHEET REVISION: 004 I. EC Markups Incorporated NONE II. Relationships: Sht Rev Input Output Impact Tracking No.

Doc Doc YIN

1. JS09 0 001 ~ 0
2. E100.0 0 007 ~ 0
3. 06-EL-1P81-R-000 1 -- 103 ~ 0
4. 07-S-12-71 -- 006 ~ 0
5. 07-S-12-83 -- 002 ~ 0
6. 460003606 0 300 ~ 0
7. SDC10 0 000 ~ 0
8. A0630 0 012 ~ 0
9. E0010 0 011 ~ 0
10. E0121 017 000 ~ 0
11. E1009 0 009 ~ 0
12. El188 017 009 ~ 0
13. J0501D 0 001 ~ 0
14. 304A3871 0 000 ~ 0
15. 945E475 001A 001 ~ 0
16. 169C9488 001 015 ~ 0
17. 169C9488 002 015 ~ 0
18. JC-Q 1111-09022 0 000 ~ 0
19. JC-Q1111-09004 0 000 ~ 0
20. JC-Q 1111-09005 0 000 ~ 0

\

21. EC-Q 1111-90028 0 006 ~ 0
22. JC-Q1P81-90027 0 002 0 ~
23. MPGE86-0031 -- 0 ~ 0
24. 3758 013 001 ~ 0
25. 3779 005 001 ~ 0
26. 3779 004 001 ~ 0
27. 3779 001 007 ~ 0
28. 0 0
29. 0 0
30. 0 0
31. 0 0
32. 0 0
33. 0 0

Total Paaes: 4 of 51 CALCULATION SHEET

-:::.--:::.-- ENTERGY SHEET----=-4_ OF ~

CALCULATION NO. JC-Q1P81-90024 REV. 004 III. CROSS

REFERENCES:

1. GGNS Technical Specifications, Section 3.3.8.1
2. Asset Suite Equipment Data Base (EDB)
3. AEIC-EEI-NEMA Standard for Instrument Transformers for Metering Purposes, 15KV and Less (EEl PUB. No. MSJ-11 & NEMA PUB. No. EI 21-1973)
4. ISA RP67.04, Part II, Methodologies for the Determination of Setpoints for Nuclear Safety Related Instrumentation
5. GGNS Technical Requirements Manual, Section TR3.3.8.1
6. IB 7.4.1.7 Instruction Bulletin for ITE Undervoltage Relays
7. C403~130322, M&TE # C403 (Doble F2253) Calibration Report
8. CR-GGN-2003-3577, Replacement of Obsolete 164C5257 (FTR) Relays with 169C9488 (ETR)

Relays without Addressing the Accuracy Difference

9. NEDO 10905-1 (RBS document number 6221.418-000-001C), High Pressure Core Spray System Power Supply Unit - Amendment 1
10. GEXI 2014-00017, email from ABB concerning 27N specifications IV. SOFTWARE USED:

Title:

-=.N...;.:./..:;..;A~ _ Version/Release: Disk/CD No. _

V. DISK/CDS INCLUDED:

Title:

-:,.N..:.:../;:;..;:A:....-- _ Version/Release- - - - -Disk/CD No. -----'--

VI. OTHER CHANGES:

Total Pa es: 5 of 51 CALCULATION SHEET ENTERGY SHEET----=:;.,5_ OF ~

CALCULATION NO. JC-01P81-90024 REV. 004 TABLE OF CONTENTS SECTION 1.0 Purpose and Description 6 2.0 References 10 3.0 Given 11 4.0 Assumptions 16 5.0 Device Uncertainties 18 6.0 Loop Uncertainties 21 7.0 TSTF Calculations 31 8.0 Conclusion 34 ATTACHMENTS 1 ABB manual for 27N and 59N relays (IB 7.4.1.7-7) 12 pages 2 Doble F2250 Specifications 4 pages

Total Pa es: 6 of 51 CALCULATION SHEET ENTERGY SHEET---=6_ OF ~

CALCULATION NO. JC-01P81-90024 REV. 004 1.0 PURPOSE AND DESCRIPTION 1.1 The purpose of this calculation is to validate the Technical Specification Allowable Value and TRM Nominal Trip Setpoint for the 4160 V Division III Degraded Bus Voltage trip function.

1.2 The incoming breakers for the Div. III switchgear are automatically tripped on a degraded bus voltage condition after a time delay. The degraded bus voltage condition is detected by sensors employing a one-out-of-two-twice logic. An undervoltage between 88% and 73% of nominal is considered a 'Degraded Voltage'. (Ref. 2.13) 1.3 The time delay for a bus 'Degraded Voltage' condition is long enough to provide for the preferred power source (offsite power) to recover. This time delay duration is dependent upon the presence (or absence) ofa LOCA signal. (Ref. 2.13) 1.4 The upper and lower analytic limits for the Division III degraded voltage setpoints and time delays are derived from the station specific load flow and voltage drop calculation (EC-Qllll-90028), BYron Jackson HPCS Pump Test Curve (#PC 741-S-1404), GE HPCS Motor Time Current Heating Curve (# 455HA550), GE HPCS Motor Efficiency and Power Factor Vs. Load Curves (# 455HA549), NEDO 10905-1, and GE HPCS Motor Outline Dwg. (#992C937CF).

The lower analytic limit for the voltage sensors is based on the capacity to start and operate required Class 1E loads under accident conditions with degraded voltage levels present on the distribution system. Voltage sensing is performed by potential transformers located within the 4160 V switchgear for the division, and each potential.

transformer has a 4200 V/ 120V ratio. The HPCS system is designed to start and accelerate the HPCS Pump with 750/0 of 4000 V motor voltage (3000 V), per NEDO 10905-1. In order to continue operation indefinitely at the lower analytic voltage limit, motor heating must be limited to that imposed by curve #455HA550, which equates to rated current of the motor @ 434 A. Per PC 741-S-1404, the maximum power point for the HPCS Pump is less than 3100 Hp. At this operating point, the efficiency is 0.935, and the Power Factor is 0.93, per Curve #455HA549. Therefore, at the maximum power point, with the motor drawing 434 A, the terminal voltage at the motor would be 3538 V. Per EC-Qllll-90028, the voltage drop is very conservatively calculated to be 5.41V. This places the 4160V bus at 3543.41 V for a sustained undervoltage condition limit. This correlates to a voltage of 101.24 V on a 120 V basis, and is the lower analytic limit (Reference 2.27).

The upper analytic limit for the voltage sensors is based on prevention of unnecessary separation of the Class 1E buses, under anticipated minimum voltage conditions of the offsite sources. Calculation EC-Qllll-90028, conservatively analyzed the Class IE loads with the 500kV Offsite source at 0.975 Per-Unit and the 115kV Offsite source at 0.9675 Per-Unit. It was determined that the Class IE system required loads would be adequately supported with 0.975 Per-Unit switchyard voltage available for the 500kV

Total Pa es: 7 of 51 CALCULATION SHEET ENTERGY SHEET 7 OF ~

CALCULATION NO. JC-OlP8l-90024 REV. 004 system and 0.9675 Per-Unit for the l15kV system. Therefore, it is appropriate that the upper analytic limit for the degraded voltage setpoint determinations be based on the corresponding voltage available at the respective 4160 V Class IE buses, with 0.975 Per-Unit 500kV system driving voltage or 0.9675 Per-Unit l15kV system driving voltage in each switchyard, under accident conditions. The lowest available transient voltage on the Division III 4160 V bus under these conditions has been calculated to be 3359.2 V, which occurs during the start of the HPCS pump, with bus voltage recovery to 3880.9 V within 5 seconds. This condition provides an initial terminal voltage at the HPCS pump motor of3329.25 V, with voltage increasing as the motor accelerates. The second lowest transient voltage step is 3846.34 V, with bus voltage recovery to 3904.16 V, within 5 seconds. This interval is after the HPCS pump motor is already started, therefore the acceleration time of this load is not a factor. All other bus voltage steps are calculated to remain above 3880.9 V. The recovery voltages referenced include the start demand of the next sequence interval, therefore actual recovery voltages at the end of each step following load acceleration and prior to the next sequence would be above these values. Therefore, if the HPCS motor can accelerate its load at the minimum transient voltage within the allowable time delay band, the recovery voltage predicted would form the upper analytic limit for degraded voltage considerations during the sequence when the HPCS pump motor starts. For all successive intervals, using the lowest available bus voltage step will ensure that other equipment sequencing will not inadvertently actuate the Division III bus degraded .

voltage sensors. As stated above, this correlates to a bus voltage of 3846.34 V. This value would bound all required conditions for the HPCS system to remain connected to offsite power, without prematurely separating from this source, provided that the time delay is set sufficiently to account for HPCS motor start time. Therefore, the overall bounding upper analytic limit is 3846.34 V (109.89 V on a 120 V basis), and the appropriate sensor time delay interval will also be based on this value (Reference 2.27).

Division III has two distinct time delays associated with degraded voltage sensing.

One time delay is active when no accident signal is present, and the other is active when a safety injection signal is present for Division III.

The lower analytic limit for the safety injection condition time delay is based on providing the capability to successfully start the HPCS pump at the lower analytic limit of the degraded voltage sensors without segregating from the offsite source. This requires that the time delay be of sufficient duration to allow for acceleration of the HPCS pump motor under these conditions. Using the previously established minimum HPCS motor starting voltage available from a viable offsite source of 3329.25 V, the acceleration time for the HPCS pump motor has been determined to be no more than 3.28 Seconds. This condition conservatively bounds the acceleration time required at the lower analytic limit bus voltage of3543.41 V. Therefore, 3.28 seconds is the lower analytic limit for the safety injection condition degraded voltage time delay.

Total Pa es: 8 of 51 CALCULATION SHEET ENTERGY SHEET 8 OF ~

CALCULATION NO. JC-OIP81-90024 REV. JillL The upper analytic limit for the safety injection condition degraded voltage time delay is derived from the required time response for the HPCS system to achieve necessary injection flow within 27 Seconds of accident initiation. This further requires that the HPCS system be connected to a viable power source within 10 seconds to achieve this goal. The limiting case for this upper limit is when offsite power is available but degraded (i.e, above the Loss of Voltage settings, but below the lower analytic limit for the degraded voltage sensors), with an accident signal present. This is because the degraded voltage function trips the incoming source only, therefore requiring the subsequent sensing and time delay from the Loss of Voltage function to connect the Emergency Diesel Generator (EDG) to the bus. The EDG receives a separate safety injection signal, so the EDG start time and the total voltage sensing sequence described will occur concurrently. This limits the allowed combined sense and actuate times for the degraded voltage and loss of voltage functions to no more than 10 seconds total. It is desirable that the degraded voltage time delay be of a longer duration than the loss of voltage time delay, based on original system design.

Therefore, a 6 Second upper analytic limit is allocated to the degraded voltage time delay. Correspondingly, a 4 Second upper analytic bound is thus established for the loss of voltage time delay by this selection.

For GGNS, the existing time delay settings are acceptable, provided that the degraded voltage remains sufficiently Qigh to start the HPCS loads. This correlates to a motor terminal voltage of 75°!<J of the motor base voltage for HPCS system motors. Review of calculation EC-Q 1111-90028, has determined that the bounding percent voltage drop from the offsite source to the HPCS pump motor is considerably less than 15%,

even under the motor start demand conditions. A 150/0 drop will be conservatively assumed for this discussion. The HPCS system motors are designed to start with 75%

of motor rated voltage. This is 3000 V for the HPCS pump motor. 3000 V is less than 73% of rated bus voltage (4160 V). Therefore, the HPCS pump motor would be expected to start for offsite source degraded voltage conditions down to 88% of rated offsite source voltage (730/0 + 15% = 88%). The remaining consideration for continued relay timing limitations would be the motor heating limits once the motor has started. Motor heating must be limited to that imposed by curve #455HA550. Per PC 741-S-1404, the maximum power point for the HPCS Pump is less than 3100 Hp.

At this operating point, the efficiency is 0.935, and the Power Factor is 0.93, per Curve

  1. 455HA549. Therefore, at the -maximum power point, with 3000 V available at the motor, the current would be 511.83A (1.18 PU) under these conditions.

Per the motor heating curve, operation at this current level can continue in excess of 600 seconds, which is significantly longer than the present time delay settings require.

Thus, the present settings are justified for offsite source degradation levels down to at least 88% of rated.

With these considerations, it would be appropriate to select 600 seconds (10 min.) as the upper analytic limit for the Division III Time Delay, No LOCA. For additional conservatism, this limit will be set at 360 seconds (6 min.). This provides adequate

Total Pa es: 9 of 51 CALCULATION SHEET ENTERGY SHEET 9 OF ~

CALCULATION NO. JC-01P81-90024 REV. 004 time for voltage recovery to above the degraded voltage set-point, while ensuring the continued automatic availability of the system, should a subsequent LOCA signal be received. The lower analytic limit for this parameter should be based on a reasonable period to allow time for recovery. It is to be selected to provide an equivalent margin from the nominal trip setpoint as the margin allowed from the setpoint to the upper analytic limit (i.e. 1 min.). Therefore, the lower analytic limit for the Time Delay, No LOCA is 4 minutes.

1.5 The design consideration for the subject instrumentation is: Degraded Grid Voltage 1.6 This calculation is performed in accordance with the methodology of GGNS-JS-09, which is based on the 'square root sum of the squares' (SRSS) technique for combining statistically independent uncertainty components.

2.0 REFERENCES

(*denotes EDMS relational References) 2.1 *GGNS JS09, Methodology for the Generation of Instrument Loop Uncertainty and Setpoint Calculations 2.2 GEXI 2014-00017, email from ABB concerning 27N specifications 2.3

  • GGNS E100.0, Environmental Parameters for GGNS 2.4
  • GGNS Technical Requirements Manual, Section TR3.3.8.1 2.6
  • 06-EL-1P81-R-0001, Surveillance Procedure 2.7 *07-S-12-71, General Maintenance Instruction Time Delay Relays 2.8 *07-S-12-83, General Maintenance Instruction Undervoltage Relays 2.9 *IB 7.4.1.7-7, Instruction Bulletin for ITE Undervoltage Relays (Attachment 1) 2.10 C403-130322, M&TE # C403 (Doble F2253) Calibration Report 2.11 CR-GGN-2003-3577, Replacement of Obsolete 164C5257 (FTR) Relays with 169C9488 (ETR) Relays without Addressing the Accuracy Difference 2.12 AEIC-EEI-NEMA Standard for Instrument Transformers for Metering Purposes, 15KV and Less (EEl PUB. No. MSJ-11 & NEMA PUB. No. EI21-1973) 2.13 *SDC 10, System Design Criteria ESF Div. III Power Distribution System 2.14 NEDO 10905-1 (RBS document number 6221.418-000-001 C), High Pressure Core Spray System Power Supply Unit - Amendment 1 2.15 *A0630, Control Building Fire Protection Plan

Total Pa es: 10 of 51 CALCULATION SHEET ENTERGY SHEET 10 OF ~

CALCULATION NO. JC-Q1P81-90024 REV. 004 2.16 *EOO 10, Sychronizing Diagram ESF Buses 15AA, 16AB, 17AC 2.17

  • E0121-017, Summary of Relay Settings 4.16 KV Bus 17AC & D.G. 13 2.18 *E1009, One Line Meter and Relay Diagram Bus 17AC 2.19 *E 1188-0 17, HPCS Power Supply Schematic 2.20 *J0501D, Control Building Plan at Elev. 111' 2.21 *304A3871, Equipment Summary E22-S004 2.22 *945E475-001A, Metal Clad Switchgear Assembly 2.23 *169C9488-001 and 169C9488-002, Purchase Part Drawing, Time Delay Relay 2.24 *JC-Q1111-09022, Drift Calculation For Agastat Time Delay Relays 2.25 *JC-Q1111-09004, Drift Calculation For ITE 211 T4175 Undervoltage Time Delay Relays (Undervoltage Function) 2.26 *JC-Q1111-09005, Drift Calculation For ITE 211 T4175 Undervoltage Time Delay Re~ays (Time Delay Function) 2.27 *EC-Qllll-90028, AC Electrical Power System Calculation 2.28 Not used 2.29 Not used 2.30 Not used 2.31 *3758 sheet 013, Performance Curve (PC 741-S-1404) 2.32 *3779 sheet 004, Time Current Heating Curve (455HA549) 2.33 *3779 sheet 005, Efficiency & Power Factor VS Load Curves (455HA550) 2.34 *3779 sheet 001, Outline Induction Motor (992C937CF)

Total Pa es: 11 of 51 CALCULATION SHEET ENTERGY SHEET 11 OF...li-CALCULATION NO. JC-Q1P81-90024 REV. JillL 3.0 GIVEN 3.1 Under voltage time delay relays:

3.1.1 Manufacturer / model # - ITE / 211T4175 (Ref. 2.17)

3.1.2 Location

(Ref. 2.15,2.18,2.20)

Component Room Panel 1A708-127-1A OC210 1E22-S004 1A708-127-1B OC210 1E22-S004 1A701-127-2A OC210 1E22-S004 1A701-127-2B OC210 1E22-S004

3.1.3 Environment

(Ref. 2.3)

Normal & Accident Environment (N-055) pressure: 0.1 to 1.0 in. wg.

expected temperature: 104°F temperature range: 58°F to 120°F Assumption 4.6 relative humidity range: 10% to 60%

radiation: gamma (TID): 1.8

  • 102 Rads 3.1.4 Uncertainty Effects - Undervoltage time delay relay (Voltage Setting):

(Ref. 2.9)

Reference Accuracy (RA) +/- 0.10% Setting Temp. Effect (TE) +/- 0.20% Setting - Reference Section 4.4 Humidity Effects (HE) Negligible - Reference Section 4.2 Radiation Effects (RE) Negligible - Reference Section 4.2 Power Supply Effects (PS) +/- 0.10% Setting Seismic Effects (SE) Negligible - Reference Section 4.3 Static Pressure Effects (SPE) N/A for instrument type Overpressure Effects (OVP) N/A for instrument type Drift (DR) +/- 1.460 VAC for 30 months - Reference 2.25 Temp. Drift (TD) +/- 0.200/0 Setting - Reference Section 4.4

Total Pa es: 12 of 51 CALCULATION SHEET

- ENTERGY SHEET 12 OF 2L CALCULATION NO. JC-OIP81-90024 REV. 004 3.1.5 Uncertainty Effects - Undervoltage time delay relay (Time Delay Setting):

(Ref. 2.9)

Reference Accuracy (RA) +/- 5% Setting - Reference Section 4.10

  • Device Uncertainty (A) 10% Setting - Reference 4.10 Temp. Effect (TE)Included in Device Uncertainty - Reference Section 4.10 Humidity Effects (HE) Negligible - Reference Section 4.2 Radiation Effects (RE) Negligible - Reference Section 4.2
  • Power Shpply Effects (PS) Included in Device Uncertainty - Reference Section 4.10 Seismic Effects (SE) Negligible - Reference Section 4.3 Static Pressure Effects (SPE) N/A for instrument type
  • Overpressure Effects (OVP) N/A for instrument type Drift (DR) +/- 0.327 sec for 30 months - Reference 2.26 Temp. Drift (TD) Included in Device Uncertainty - Reference Section 4.10 3.2 Time delay relays:

3.2.1 Manufacturer / model # - Agastat / ETRI4D3N002 (Ref. 2.17)

3.2.2 Location

(Ref. 2.15, 2.17, 2.20) component IA701-162-1 OC210 IE22-S004 IA708-162-2 OC210 IE22-S004

3.2.3 Environment

(Ref. 2.3)

Normal & Accident Environment (N-055) pressure: 0.1 to 1.0 in. wg.

expected temperature: 104°F temperature range: 58°F to 120°F Assumption 4.6 relative humidity range: 10% to 60%

radiation: gamma (TID): 1.8

  • 102 Rads

Total Pa es: 13 of 51 CALCULATION SHEET ENTERGY SHEET 13 OF -.l.L CALCULATION NO. JC-QIP81-90024 REV. 004 3.2.4 Uncertainty Effects - Time Delay Relay: (Ref. 2.23)

Reference Accuracy (RA)+/- 2.0% Time Delay Setting - Reference Section 4.8 Device Uncertainty (A) +/-10% Time Delay Setting - Reference Section 4.8

  • Temp. Effect (TE) Included in Device Uncertainty - Reference Section 4.8 Humidity Effects (HE) Negligible - Reference Section 4.2 Radiation Effects (RE) Negligible - Reference Section 4.2
  • Power Supply Effects (PS) Included in Device Uncertainty - Reference Section 4.8 Seismic Effects (SE) Negligible - Reference Section 4.3
  • Static Pressure Effects (SPE) N/A for instrument type
  • Overpressure Effects (OVP) N/A for instrument type Drift (DR) +/- 26.725 sec for 30 months - Reference 2.24 Temp. Drift (TD) Included in Device Uncertainty - Reference Section 4.8

Total Pa es: 14 of 51 CALCULATION SHEET

- ENTERGY SHEET 14 OF-.lL CALCULATION NO. JC-01P81-90024 REV. 004 3.3 Typical Loop Block Diagram: (Ref. 2.19) 127-1A (4 SEC)

/,------..",

/

< PT

\

127-lB (4 SEC) 162-1 AND 127-2A r::\

(4 SEC)

--~'-'\

\

\ PT ,/">-----+--D+-------, TThIE

\~/ ./'

DELAY RELAY

/-.~

127-2B (4 SEC)

OR \ ..__- - - - l OR ')f-_

TRlP

~./.)/

(--~\\ ' ...'-....

\ PT )1----+---III!!III'+------'

\~,/

POTEl'iTLU. 1J"N"DERVOLTAGE TRANSFORMERS TllilE DELAY RELAYS 10eA. SIGNAL 3.4 Operating Limits (Ref. 2.4, 2.5, Section 1.4)

Voltage Trip Upper Analytic Limit: 3846.34 V (109.89 V)

Upper Allowable Value: :S 3763.5 V (:S 107.53 V)

Plant Setpoint: 3661 V (104.6 V)

Lower Allowable Value: ~ 3558.5 V (~ 101.67 V)

Lower Analytic Limit: 3543.41 V (101.24 V)

Total Pa es: 15 of 51 CALCULATION SHEET

- ENTERGY SHEET 15 OF ~

CALCULATION NO. JC-QIP81-90024 REV. 004 Time Delay - LOCA Upper Analytic Limit: 6 seconds Upper Allowable Value: :s 4.4 seconds Plant Setpoint: 4 seconds Lower Allowable Value: ~ 3.6 seconds Lower Analytic Limit: 3.28 seconds Time Delay - No LOCA Upper Analytic Limit: 6.0 minutes Upper Allowable Value: :s 5.5 minutes Plant Setpoint: 5 minutes Lower Allowable Value: ~ 4.5 minutes Lower Analytic Limit: 4.0 minutes 4.0 ASSUMPTIONS 4.1 Assume all uncertainties given are to two standard deviations (20') unless otherwise specified.

4.2 Assume Radiation Effects (RE) and Humidity Effects (HE) for the undervoltage and time delay relays are negligible. These components are located in a mild environment.

(Ref. Section 3.1.3 and 3.2.3) 4.3 Assume Seismic Effects (SE) are negligible for both the undervoltage and time delay relays. The relays are seismically qualified per GGNS QP 425.00 Vol. 1, Rev. 1.

4.4 Per Reference 2.1, Temperature Effect (TE) is usually assumed to be applicable for temperature variations outside the assumed normal calibration temperature range of 65°F to 90°F and Temperature Drift (TD) is assumed to apply to temperature variations within the normal calibration temperature range. In this calculation, a calibration temperature range of 58°F to 90°F is conservatively assumed for the undervoltage relays. Since the maximum temperature the relays will be exposed to is 120°F (per 4.6), TE is assumed to apply from 90°F to 120°F. The vendor manual for the relays (Attachment 2) specifies a temperature effect of 0.2% setting for O°C to 40°C (32°F to 104°F) and 0.4% setting for -20°C to 55°C (_4°F to 131°F). Although 120°F is above the specified 104°F maximum temperature for the 0.2% setting TE, the

Total Pa es: 16 of 51 CALCULATION SHEET ENTERGY SHEET 16 OF 2L CALCULATION NO. JC-O 1P8l-90024 REV. J!QL expected delta T is only 62°F (120°F - 58°F) instead of 72°F (104°F - 32°F). The vendor test data in Reference 2.2 verifies it is conservative to assume a 0.2% setting TE. The vendor would not confirm that TE was linear with delta T. Therefore, the entire 0.20/0 setting error will be assumed to apply over the range of 58°F to 120°F. It will be divided between TD (58°F to 90°F) and TE (90°F to 120°F).

4.5 Insulation Resistance Effects (IR) are assumed to be negligible since the loop cabling is located in a mild environment (control building).

4.6 Per E100.0, the normal ambient temperature range ofOC2l0 is 58°F to 110°F. It is assumed that the cabinet temperature will be 10F above ambient or 120°F max (cabinet closed). The minimum cabinet temperature is assumed to be 58°F (door open for calibration with no heat rise). The ambient room temperature could reach l20F with greater than design basis outside air temperature, but this condition is not required to be considered here.

4.7 Per Reference 2.21 and 2.22, the potential transformers at the bus are G.E. type JVM-

3. This type of potential transformer has an accuracy class of 0.3 at Wand X burdens when operated at 580/0 of rated voltage. Based on the available burden information for the circuit components depicted on Ref. 2.16 and 2.18, the burden is assumed to be less than X and the accuracy of the potential transformers is assumed to be 0.3. (See file documentation for available circuit component burden data) 4.8 Reference 2.23 specifies time delay repeatability shall be within +/-5% of the delay time setpoint during normal plant operating cycle at normal environmental conditions and voltages. It specifies time delay repeatability shall be within +/-100/0 of the delay time setpoint during normal plant operating cycle at extreme environmental conditions and voltages. The accuracy of the ETR time delay relays is assumed to be 2% of the setpoint at fixed temperature/voltage based on Reference 2.11. The 2% value would, therefore, be the reference accuracy (RA) and the 5% or 10% values would be the device uncertainty (A). The device uncertainty is assumed to include power supply effects, temperature effects and temperature drift. Reference 2.23 specifies the "normal" ambient temperature range for the ETR relays is 60°F-90°F, the "abnormal" max temperature is 104°F and the "DBE" max temperature is 120°F. The 100/0 device uncertainty value must be used since the relays will be exposed to a temperature range of 58°F to 120°F per Section 4.6. The setting tolerance of the time delay relay was changed from 10% to 5% in Revision 24 (1994) of Reference 2.6. The setting tolerance was changed from 5% to 20/0 in Revision 103 (2014) of Reference 2.6.

4.9 Not Used.

4.10 The vendor does not specify a Temperature Effect, Temperature Drift or Power Supply Effect for the undervoltage relay timing function. It is likely that there is some effect.

Therefore, it will be assumed that the Reference Accuracy (RA) of the undervoltage relay timing function is 5% instead of 1oo~ as specified in Reference 2.9 (Attachment

Total Pa es: 17 of 51 CALCULATION SHEET ENTERGY SHEET 17 OF--.lL CALCULATION NO. JC-OIP81-90024 REV. JlliL 1). The device uncertainty will then be assumed to be 10(% and will be assUlned to include Temperature Effect, Temperature Drift and Power Supply Effects. The setting tolerance of the undervoltage relay time delay was changed fron1 10% to 50/0 in Revision 24 (1994) of Reference 2.6.

5.0 DEVICE UNCERTAINTIES - Ax (Ref. 2.1)

Ax = +/-)(RAx )2 + (TEg)Z + (HEx )2 + (SExF+ (REx )2 + (PSg)Z + (SPE.yr1 + (OllP'..,)2 5.1 Undervoltage Relay Uncertainties - Voltage Trip: (Ref. Section 3.1.4)

Reference Accuracy - "RA" RA v = +/- 0.1 00/0 afsetting RA v = + (0.10/1 00)(1 04.6) =::1: 0.105 V Temperature EfIects - "TE" TE v = +/- 0.20% afsetting

= +/- (~.~: (104.6) )V/(l20°F-58°F)

= +/- 0.209 V (l 2O°F-9O°FJ/(l 20°F-58°F)

= O.IOIV I-Iumidity Effects - "'I-IE" Negligible - Reference Section 4.2 Radiation Effects - "RE" Negligible - Reference Section 4.2 Power Supply Effects - "PS" PS v = + 0.10o~ (~lsetting

= +/- (0.10/1 00)(1 04.6) V

= +/- 0.105 V

Total Pa es: 18 of 51 CALCULATION SHEET ENTERGY SHEET 18 OF ~

CALCULATION NO. JC-QIP81-90024 REV. JlliL SSE Effects - "SE" Negligible - Ref. Section 4.3 Static Pressure Effects - "SPE" N/A for instnunent type Over Pressure Effects - "OVP" N/A for instrurl1ent type Total Undervoltage Relay Uncertainty (Voltage Trip) - A v :

Ail = +/-,/(RAvF + (TEv )2 + (HE1/)2 + (SEF)2 + (REvF + (PSV)2 + (SPEV)2 + (OVPV )2

=SRSS (0.105, 0.101, a, 0, a, 0.105, a, 0)

= +/- 0.180 V 5.2 Undervoltage Relay Uncertainties - Time Delay: (Ref. Section 3.1.5)

Reference Accuracy - "RA" RAT = ::1:: 5~o setting - Re:lerence Section 4.10 RA T = +/- (5/100)(4) sec RA T = +/- 0.20 seconds Temperature EtIects - "TE" Included in AT - Reference Section 4.1 0 Humidity Effects - "HE" Negligible - Reference Section 4.2 Radiation EfIects - "RE" Negligible - Reference Section 4.2 Power Supply Effects - "PS" Included in AT - Reference Section 4.10

Total Pa es: 19 of 51 CALCULATION SHEET ENTERGY SHEET 19 OF-.J..L CALCULATION NO. JC-OIP81-90024 REV. 004 SSE Effects - "SE" Negligible - Reference Section 4.3 Static Pressure Effects - "SPE" N/A for instnnnent type I

Over Pressure Effects - "OVP" N/A for instrurnent type Total Undervoltage Relay Uncel1ainty (Time Delay) - AT: Reference Section 4.10 AT = +/-~/ (RA T)2 + (TETF + (HEr )2 + (SET:? + (RE T)2 + (PSrf + (SPE T)2 + (OVP T)2 AT = +/- 0.40 Seconds 5.3 Time Delay Relay Uncertainties: (Ref. Section 3.2.4)

Reference Accuracy - "RA" RATD = +/- 2~/o setting- Reference Section 4.8 RA TD = +/- (2/1 00)(300) sec RATD =J:: 6.00 seconds' Telnperature Effects - "TE" Negligible - Reference Section 4.8 Hunlidity Effects - "HE" Negligible - Reference Section 4.2 Radiation EfTects - "RE" Negligible - Reference Section 4.2 Power Supply Effects - "PS" Negligible - Reference Section 4.8 SSE Effects - "SE" Negligible - Reference Section 4.3

Total Pa es: 20 of 51 CALCULATION SHEET ENTERGY SHEET 20 OF ~

CALCULATION NO. JC-QIP81-90024 REV. Jill+/--

Static Pressure Effects - "SPE" N/A for instrument type Over Pressure Effects - "OVP" N/A for instnunent type Total Time Delay Relay Uncertainty - A To : Reference Section 4.8 AyD=+/-\/(RATDr + (TE TD )2 + (HE TD )2 + (SE TV )2 + (RE TO )2 + (PSTDF + (SPE TD )2 + (Ol/PYof A TD = +/- 30.00 Second~'

6.0 LOOP UNCERTAINTIES (Ref. 2.1) 6.1 SRSS of all individual device uncertainties - "AI" (Ref. 2.1)

Loop Device Unceliainty (Voltage Trip):

A Lv =Av =+/-0.180V Loop Device Uncertainty (Time Delay - LOCA):

ALT! = +/-y,-.-.-"

(A r )"'" = +/-A T =+/-O.40 secon .s d

Loop Device Uncertainty (Time Delay - No LOCA):

A LT2 =SRSS (0.4 1 30.0) = +/- 30.0 seconds 6.2 SRSS of all Measurelnent & Test Eguipnlent Effects - "'C L (Ref. 2.1)

Per Reference 2.8, a Doble F2253 is used to nlonitor the trip point of the undervoltage relays during calibration. The uncertainty data for a Doble F2253, taken from Ref 2.10 and Attachlnent 2, will be used to estimate theM&TE effects. The reference accuracy of the Doble F2253 is:

RA F2253 = +/-O.5% Reading The 'reading' will be assumt:?d to be 104.6 V, the nominal trip setpoint.

RA F2253 = :t (0.5 *104.6/100) V = :t 0.523 V The M&TE uncertainty will be assumed to be equal to the F2253 reference accuracy:

CLV = :t O.523V

Total Pa es: 21 of 51 CALCULATION SHEET ENTERGY SHEET 21 OF.2L CALCULATION NO. JC-OIP81-90024 REV. 004 Per Reference 2.8, a Doble F2253 test set is used to measure the time delay for the undervoltage relays during calibration. Per Attachment 2 and reference 2.10, the timing accuracy of the F2253 is 0.0005% of reading plus one least significant digit plus 50 microseconds (0.00005 seconds). The 'reading' will be assumed to be 4 sec.,

the nominal setpoint. Since 4 seconds is within the 0-9999.99 millisecond range, one least significant digit is 0.01 millisecond or 0.00001 second.

RATF2253 = (0.0005/100)(4 seconds) + 0.00001 seconds + 0.00005 seconds

= :t 0.00008 seconds For conservatism, the M&TE uncertainty will be assumed to be equal to 2 times the F2253 reference accuracy:CLTl =:t 2(0.00008)= :to.00016 seconds Per Reference 2.7, a Doble F2253 test set is used ~o measure the time delay for the time delay relays during calibration. Per Attachment 2, the timing accuracy of the F2253 is 0.0005% of reading plus one least significant digit plus 50 microseconds (0.00005 seconds). The 'reading' will be assumed to be 300 sec., the nominal setpoint. Since 300 seconds is within the 0-9999.99 second range, one least significant digit is 0.01 second.

RATF2253 =(0.0005/100)(300 seconds) + 0.01 seconds + 0.00005 seconds

='+/-0.0116 seconds For conservatism, the M&TE uncertainty will be assumed to be equal to 2 times the F2253 reference accuracy: .:to.0116 seconds x 2 = :to. 0232 seconds Therefore, the total M&TE Uncertainty for the time delay function with no LOCA signal present is:

CL T2 = :tSRSS (0.00016, 0.0232)::::; :to.0232 seconds 6.3 SRSS of all individual device drifts - "DL~ (Ref. 2.1)

Undervoltage Relay Drift - DRv DR v = +/-1.460 VAC for 30 months Undervoltage Relay Temperature Drift - TD v TD v = +/-0.209 V (90°F - 58°F)/(120°F - 58°F) - Reference Section 4.4

=+/-0.108V

Total Pa es: 22 of 51 CALCULATION SHEET


ENTERGY SHEET 22 OF -.lL CALCULATION NO. JC-Ol P81-90024 REV. ~

Undervoltage Relay Time Delay Drift- DRT DR T = +/- 0.327 sec for 30 months Undervoltage Relay Time Delay Temperature Drift*- TD T Included in A - Reference Section 4.10 Time Delay Relay Drift - DRTD DR TD = +/- 26.725 sec for 30 months Tinle Delay Relay Ternperature Drift - TD To Included in A - Reference Section 4.8 Loop Drift (Voltage Trip):

= SRSS (1.460, 0.108)

= +/-1.464 V Loop Drift (Time Delay - LOCA):

D LT1 = +/-O.327 seconds Loop Drift (Time Delay - No LOCA):

DLTZ = +/-.../ (0.327)2 + (0)2 + (26.725)2 + (0)2 DLT2 = +/-26. 728 seconds 6.4 Process Measurement Uncertainty - "PM" No process n1easurenlcnt uncertainty is applicable to either the voltage or time delay setpoints.

Total Pa es: 23 of 51 CALCULATION SHEET ENTERGY SHEET 23 OF-.2L CALCULATION NO. JC-QIP81-90024 REV. 004 6.5 Primaty Elelnent Uncertainty - "PE" The primary elelncnts for each loop arc thc potential transfonners at the bus. Pcr Section 4.7, the accuracy class of the potential transfonners is 0.3. Per Reference 2.12, the limits of transfonner correction factor for a 0.3 accuracy class potential transfonncr arc 1.003 to 0.997 (i.e. +0.3%). Again assuming 104.6 V Ilmninal output, the potential transformer unce11ainty is: .

'03 PE =+/- (- . '- (104.6). ) V

.100 .

PE=+ 0.314 V No Primary Elenlent Uncertainty is applicable to the time delay.

6.6 Insulation Resistance Effects - "IR" Insulation Resistance Effect for the voltage trip function is assmned to be negligible (Reference Section 4.5). IR effects are not applicable to the time delay function.

6.7 Loop Uncertainty - Voltage Trip LU"" = +/-\/(ALV )2 + (C LV )2 + (PMv )2 + (PEvF + (JR ll )2

= + SRSS (0.180, 0.523, 0, 0.314, 0)

= +/- 0.636 V ~0.64 V 6.8 Total Loop Uncertainty - Voltage Trip TLU v = SRSS (LU v , D LV) rLUv = +/- SRSS (0.636, 1.464) V TLU v = +/-1.596 V ~1.60 V 6.9 Loop Uncertainty - Time Delay (LOCA)

L U n = + SRSS (0.40, 0.00016, 0, 0, 0)

L Un = + 0.4 seconds'

Total Pa es: 24 of 51 CALCULATION SHEET

- ENTERGY SHEET 24 OF...l.i-CALCULATION NO. 1C-01 P81-90024 REV. 004 6.10 Loop Uncertainty - Time Delay (No LOCA)

LUn = +/- SRSS (30.0,0.0232. O. 0, 0)

LUn = +/-30.0 seconds 6.11 Total Loop Uncertainty - Time Delay (LOCA)

TLU~n = SRSS (LU n ,DO'I)

TLUT] = SRSS (0.4. 0.327) seconds TLUT! = +/-0.52 seconds' 6.12 Total Loop Uncertainty - Titne Delay (No LOCA)

TLUn = SRSS (LUn , Den)

TLUn = SRSS (30.0,26.728) seconds TL Un = +/-40.18 seconds 6.13 Allowable Values - Voltage Trip Lower Allowable Value = Lower Analytic Limit + LU Lower Allowable Value = 101.24 V + 0.64 V Lower Allowable Value = 101.88 V The existing 101.67 V AV is therefore not conservative. A new AV of 103 V will be proposed.

Upper Allowable Value = Upper Analytic Limit - LU Upper Allowable Value = 109.89 V - 0.64 V Upper Allowable Value = 109.25 V The existing 107.53 V Av is therefore conservative.

Total Pa es: 25 of 51 CALCULATION SHEET ENTERGY SHEET 25 OF ~

CALCULATION NO. JC-QIP81-90024 REV. 004 6.14 Nominal Trip Setpoint - Voltage Trip NTSP: ~ (Lower An,alytic Limit + TLU) & :::; (Upper Analytic Limit - TLU)

NTSP ~ (101.24 V + 1.60 V) &:::; (109.89 V - 1.60 V)

NTSP: ~ 102.84 V & :::; 108.29 V The existing 104.6 V NTSP is therefore conservative.

6.15 Allowable Values - Time Delay (LOCA)

Lower Allowable Value = Lower Analytic Limit + LU Lower Allowable Value = 3.28 seconds + 0.4 seconds Lower Allowable Value = 3.68 seconds The existing 3.6 second AV is therefore not conservative. A new AV of3.68 seconds will be proposed.

Upper Allowable Value = Upper Analytic Limit - LU Upper Allowable Value = 6.00 seconds - 0.4 seconds Upper Allowable Value = 5.6 seconds The existing 4.4 second AV is therefore conservative.

6.16 Allowable Values - Time Delay (No LOCA)

Lower Allowable Value = Lower Analytic Limit + LU Lower Allowable Value = 240 seconds + 30.0 seconds Lower Allowable Value = 270 seconds (4.5 min)

The existing 4.5 minute AV is therefore conservative.

Upper Allowable Value = Upper Analytic Limit - LU Upper Allowable Value = 360 seconds - 30 seconds

Total Pa es: 26 of 51 CALCULATION SHEET

- - - - ENTERGY SHEET 26 OF-.lL CALCULATION NO. JC-OIP81-90024 RE V. --.ill2L Upper Allowable Value = 330 seconds (5.5 min)

The existing 5.5 minute AV is therefore conservative.

6.17 Nominal Trip Setpoint - Time Delay(LOCA)

NTSP: ~ (Lower Analytic Lirnit +- TLU) & :S (Upper Analytic Limit - TLU)

NTSP: ~ (3.28 seconds + 0.52 seconds) & :S (6.00 seconds - 0.52 seconds)

NTSP: ~ 3.80 seconds &:s 5.48 seconds The existing 4.0 second NTSP is therefore conservative.

6.18 Nominal Trip Setpoint- Titne Delay (No LOCA)

NTSP: ~ (Lower Analytic Limit + TLU) & :S (Upper Analytic Linlit - TLU)

NTSP: ~ (240 seconds + 40.18 seconds) &:S (360 seconds - 40.18 seconds)

NTSP: ~ 280.18 seconds & :S 319.82 seconds NTSP: ~ 4.67 minutes & :S 5.33 minutes The existing 5.0 minute NTSP is therefore conservative.

6.19 LER Avoidance Analysis - Voltage Trip LER Avoidance probability is based on a nUInber "Z" calculated as shown below. If the value of Z is ~ 1.28 then the probability of avoiding an LER is ~ 90%, the acceptance criteria (Ref. 2.1). The LER Avoidance Analysis will be performed using the Lower Allowable Value.

IAV - NTSPI z =-------~

at Where:

AV = 103.0 volts (Recornmended Value)

NTSP = 104.6 volts 0"1 - Calculated as shown below With:

n = # of standard deviations used in specifying the individual uncertainty cOlnponents

Total Pa es: 27 of 51 CALCULATION SHEET ENTERGY SHEET 27 OF -l.L CALCULATION NO. JC-OIP81-90024 REV. ~

(J/ = O. 5 *(SRSS(0. 180, 0.523, 1.464))

(J/ = 0.783 V Therefore:

Z = 1103 - 104.61 0.783 Z = 2.04 This is above the Reference 2.1 recOlnmended Z value of 1.28 for 900/0 LER avoidance and is therefore acceptable..

6.20 LER Avoidance Analysis - Time Delay (LOCA)

The nlargin between the recomnlended lower allowable value and the nominal trip setpoint is less than the margin between the upper allowable value and nominal setpoint and will provide the least LER avoidance: Therefore the LER avoidance probability will be detemlined using the lower allowable value.

IAl! - NTSPI z=-----

°1 Where:

AV = 3.68 seconds (Recolnmended)

NTSP = 4.0 seconds 0"1 .- Calculated as shown below With:

n = # of standard deviations used in specifying the individual uncertainty cOlnponents (Jj = 0.5 *(SRSS(O.4 0, 0.00016, 0.327))

O"j = 0.26 seconds

Total Pa es: 28 of 51 CALCULATION SHEET ENTERGY SHEET 28 OF ~

CALCULATION NO. JC-Q1P81-90024 REV. 004 Therefore:

z = 13.68 - 4.01 0.26 Z = 1.23 This is only slightly below the Reference 2.1 recomnlended Z value of 1.28 for 90%)

LER avoidance and is judged to be acceptable.

6.21 LER Avoidance Analysis - Time Delay (No LOCA)

Using the equationsfronl section 6.20 and the values derived for the Time Delay No LOCA:

Z = 1360 - 3001 0.5*(SRSS(30.0, 0.0232,26.728,0,0))

Z = 2.99 This is above the Reference 2.1 recomlnended Z value of 1.28 for 90% LER avoidanc,e and is therefore acceptable.

6.22 Spurious Trip Avoidance Analysis - Voltage Trip The most severe recoverable voltage transient postulated, is that of clearing a nearby translnission system or in-plant distribution systenl bolted fault. The bus voltage level during such an event could dip below the voltage trip setting and begin the relay timing. Therefore, no spurious trip avoidance analysis will be perfo fl11 ed for the voltage trip setting. Spurious segregation from the off-site source is prevented by the tinle delay function.

6.23 Spurious Trip Avoidance Analysis - Time Delay LOCA The probability of avoiding spurious trips is determined by calculating a value "z" as shown below. lfthe value of Z is 2: 1.645, the probability of avoiding a spurious trip is 2: 95%. (Ref. 2.1)

Where:

NTSP - Norninal Trip Setpoint X T - Lilniting Operating Transient Variation

Total Pa es: 29 of 51 CALCULATION SHEET ENTERGY SHEET 29 OF ~

CALCULATION NO. JC-Q 1P81-90024 REV. J2QL XT = X o - T - T e , if the process variable decreases to the Analytic Limit X o = lnaxilTIUm or minilnum steady state operating value T = nlagnitude of the lilniting transient variation T e = nlodeling bias or uncertainty (In - The standard deviation associated with the linliting operating transient, typically zero when the litniting operating transient is based on existing documented operating restrictions.

(Jj - The standard deviation associated with the loop uncertainty, calculated as shown below:

The nlost severe recoverable voltage transient postulated, is that of clearing a nearby transmission system or in-plant distribution systell1 bolted fault. The maximum fault clearing tilHe consideration for the applicable fault level circuit breakers would be 6 cycles. It is also prudent to assume an additional L0 cycles to allow for voltage recovery post-fault. This correlates to 0.267 seconds (16 cycles

  • 0.0167 seconds/cycle = 0.267 seconds).

Z= 14.0 - 0.2671 0.5*(SRSS(0.40, 0.00016, 0.327, 0, 0))

Z::::: 14.45 This is above the Reference 2.1 recommended Z value of 1.645 for 95% spurious trip avoidance and is therefore acceptable.

6.24 Spurious Trip Avoidance Analysis - Time Delay (No LOCA)

Using the equations from section 6.23 and the values derived for the Time Delay No LOeA:

Z= 1300 - 0.2671 0.5*(SRSS(30.0, 0.0232, 26.728, 0, 0))

Z= 14.92 This is above the Reference 2.1 recommended Z value of 1.645 for 95~/o spurious trip avoidance and is therefore acceptable.

Total Pa es: 30 of 51 CALCULATION SHEET ENTERGY SHEET 30 OF 2L CALCULATION NO. JC-QIP81-90024 REV. 004 6.25 Reset Point Evaluation The pickup (reset) point of the undervoltage relays should be such that under the worst case transient conditions the b~s is not spuriously segregated from the off site source.

As stated previously, with 0.975 Per-Unit switchyard driving voltage, the lowest transient voltage on the Division III 4160V bus has been calculated to be 3359.2V (95.80V on a 120V basis) which occurs during the start of the HPCS pump, with voltage recovery to 3880.9 V (110.88V on a 120V basis). This condition provides an initial terminal voltage at the HPCS pump motor of 3329.25 V. Assuming a constant terminal voltage of3329.25 V (i.e. no voltage recovery as the motor accelerates) the acceleration time of the HPCS pump motor has been determined to be no more than 3.28 seconds. Therefore, the actual recovery time to at least 3880.9 V would be no more than 3.28 seconds (the Lower Analytic Limit of the time delay setting).

The present pickup (reset) point for the under voltage relays is 105.65 V and the dropout (trip) point is established by the 990/0 tap setting at 104.60V. Assuming worst case performance of the relays, the trip could occur at 104.6 V + TLU = 106:46 V and the reset could occur at 107.52V (i.e. 1.01 x 106.46).

Given the above, the bus voltage would recover above the reset point of the relay 107.52 V (3763.2 V) to at least 110.88 V (3880.9 V) before the time delay times out (even with the worst case performance from the time delay). Therefore, the reset value will prevent spurious segregation from the preferred off site source and is acceptable.

7.0 TSTF CALCULATIONS (Ref. 2.1) 7.1 As-Left Tolerance ALTv - Undervoltage Relay (Voltage Trip) TSTF-493 Calculation ALT v RAy

+/- 0.10 V ALT T - Undervoltage Relay (Time Delay) TSTF-493 Calculation ALT T RAT

+/- 0.20 seconds ALT TO - Time Delay Relay TSTF-493 Calculation ALT To RA To

+/- 6.0 seconds

Total Pa es: 31 of 51 CALCULATION SHEET ENTERGY SHEET 31 OF 2L CALCULATION NO. JC-QIP81:-90024 REV. 004 7.2 As-Found Tolerance (AFT)

The drift values used in this calculation were derived by statistical analysis, therefore per Reference 2.1:

AFT=+/-DR AFTv - Undervoltage Relay (Voltage Trip) TSTF-493 Calculation DRv +/- 1.460 V for 30 months AFT v DRv

+/-1.460 V AFTT- Undervoltage Relay (Time Delay) TSTF-493 Calculation DRT +/-0.327 seconds for 30 months AFT T DRT

+/-0.327 seconds AFTTD - Time Delay Relay TSTF-493 Calculation DRTD +/-26.725 seconds for 30 months AFT TD DRTD

+/-26.725 seconds 7.3 Loop Tolerances

.ALT LV - As-Left Loop Tolerance Undervoltage Relay (Voltage Trip)

+/- SRSS (ALTv)

+/- SRSS (0.10)

+/- 0.10 V ALT LT - As-Left Loop Tolerance Undervoltage Relay (Time Delay) - LOCA

+/- SRSS (ALT T)

+/- SRSS (0.20)

+/- 0.20 seconds ALT LTD - As-Left Loop Tolerance Time Delay Relay - No LOCA ALTLTD +/- SRSS (ALT T, ALTTD)

+/- SRSS (0.20, 6.0)

+/- 6.0 seconds

Total Pa es: 32 of 51 CALCULATION SHEET ENTERGY SHEET 32 OF 2L CALCULATION NO. JC-Q 1P81-90024 REV. 004 AFT Lv - As-Found Loop Tolerance Undervoltage Relay (Voltage Trip)

AFT Lv +/- SRSS (AFT v)

+/- SRSS (1.460)

+/- 1.460 V AFT LT - As-Found Loop Tolerance Undervoltage Relay (Time Delay) - LOCA AFT LT +/- SRSS (AFTT )

+/- SRSS (0.327) seconds

+/- 0.327 seconds AFT LTD - As-Found Loop Tolerance Time Delay Relay - No LOCA AFT LTD +/- SRSS (AFT T, AFT TD )

+/- SRSS (0.327, 26.725) seconds

+/- 26.727 seconds

Total Pa es: 33 of 51 CALCULATION SHEET ENTERGY SHEET 33 OF ~

CALCULATION NO. JC-OIP81-90024 REV. ...QQL

8.0 CONCLUSION

Voltage Trip:

The calculated setpoint range and the Upper Allowable Value are conservative with respect to the existing plant settings. The existing Lower Allowable Value (101.67 V) is non-conservative with respect to the calculated value. A new AV of 103 V is proposed.

Time Delay - LOCA The existing plant setpoint was shown to be acceptable. The existing Allowable Value (3.6 seconds) is non-conservative with respect to the calculated Lower Allowable Value for the LOCA Time Delay. A new AV of3.68 seconds is proposed Time Delay - No LOCA The calculated setpoint and allowable values are conservative with respect to the existing plant setpoints and allowable values.

The spurious trip and LER avoidance criterion is met for all values except the time delay lower allowable value. LER avoidance is only slightly below 90% for the recommended lower allowable value.

SUMMARY

OF RESULTS - Voltage Trip SYSTEM P81 - HPCS Diesel Generator (Electrical)

LOOP NUMBERS 127-1A/B, 127-2A/B TOTAL LOOP UNCERTAINTY +/- 1.60 V LOOP UNCERTAINTY +/-0.64 V LOOP DRIFT +/- 1.460 V LOOP CALIBRATION +/- 0.523 V UNCERTAINTY EXISTING CALCULATED Upper Analytic Limit 109.89 V **************

Upper Allowable Value ~ 107.53 V ~ 109.25 V Nominal Trip Setpoint 104.60 V ~102.84 V and ~108.29 V Lower Allowable Value 101.67 ~ 101.88 V

~ 103.00 v*

Lower Analytic Limit 101.24 V **************

  • Recommended Lower Allowable Value

Total Pa es: 34 of 51 CALCULATION SHEET ENTERGY SHEET 34 OF 2L CALCULATION NO. JC-Q1P81-90024 REV. 004

SUMMARY

OF RESULTS - Time Delay (LOCA)

SYSTEM P81 - HPCS Diesel Generator (Electrical)

LOOP NUMBERS 127-1A1B, 127-2A/B TOTAL LOOP UNCERTAINTY +/- 0.52 seconds LOOP UNCERTAINTY +/- 0.40 seconds LOOP DRIFT +/- 0.327 seconds LOOP CALIBRATION +/- 0.00016 seconds UNCERTAINTY EXISTING CALCULATED Upper Analytic Limit 6 sec **************

Upper Allowable Value  :::;4.4 sec  :::; 5.60 sec Nominal Trip Setpoint 4.0 sec ~3.80 sec and :::;5.48 sec Lower Allowable Value ~3.6 ~ 3.68 sec

~3.68 sec*

Lower Analytic Limit 3.28 sec **************

  • Recommended Lower Allowable Value

SUMMARY

OF RESULTS - Time Delay (No LOCA)

SYSTEM P81 - HPCS Diesel Generator (Electrical)

LOOP NUMBERS 127-1A1B, 127-2A1B, 162-1/2 TOTAL LOOP UNCERTAINTY +/- 40.18 seconds LOOP UNCERTAINTY +/- 30.0 seconds LOOP DRIFT +/- 26.728 seconds LOOP CALIBRATION +/- 0.0232 seconds UNCERTAINTY EXISTING CALCULATED Upper Analytic Limit 6.0 min **************

Upper Allowable Value  :::;5.5 min  :::; 5.5 min Nominal Trip Setpoint 5.0 min ~4.67 min and :::;5.33 min Lower Allowable Value ~4.5 min ~ 4.5 min Lower Analytic Limit 4.0 min **************

Total Pa es: 35 of 51 CALCULATION SHEET ENTERGY SHEET 35 OF 2L CALCULATION NO. JC-OIP81-90024 REV. 004 Summary of Calibration Tolerances As-Left Undervoltage Relay (Voltage Trip) TSTF-493 (ALT v) +/-0.21 V As-Left Undervoltage Relay (Time Delay) TSTF-493 (ALTT ) +/-0.20 seconds As-Left Time Delay Relay TSTF-493 (ALT To ) +/-6.0 seconds As-Found Undervoltage Relay (Voltage Trip) TSTF-493 (AFT v ) +/-1.460 V As-Found Undervoltage Relay (Time Delay) TSTF-493 (AFT T) +/-0.327 seconds As-Found Time Delay Relay TSTF-493 (AFTTO) +/-26.725 seconds As-Left Loop Tolerance Undervoltage Relay (Voltage Trip) (ALT Lv) +/-0.21 V As-Left Loop Tolerance Undervoltage Relay (Time Delay) - LOCA +/-0.20 seconds (ALT LT) "-

As-Left Loop Tolerance Time Delay Relay- No LOCA (ALT LTo) +/-6.0 seconds As-Found Loop Tolerance Undervoltage Relay (Voltage Trip) (AFT LV) +/-1.460 V As-Found Loop Tolerance Undervoltage Relay (Time Delay) - LOCA +/-0.327 seconds (AFT LT)

As-Found Loop Tolerance Time Delay Relay - No LOCA (AFT LTD) +/-26.727 seconds

Total Pages: 36 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 1 OF 12 IB 7.4.1.7-7 Issue E INSTRUCTIONS Single Phase Voltage Relays Type 27N HIGH ACCURACY UNDERVOLTAGE RELAY Type 59N HIGH ACCURACY OVERVOLTAGE RELAY Type 27N Catalog Series 2'1 IT

  • Standard Case Type 27N Catalog Series 41 'I T
  • Test Case Type59N Catalog Series 2'1'1 U
  • Standard Case Type 59N Catalog Series 41" U
  • Test Case ABB POWER T&D COMPANY INC.

ALLENTOWN, PENNSYLVANIA, USA

Total Pages: 37 of 51 JC-Q'lP81-90024 ATTACHMENT 1 PAGE 2 OF 12 IB 7.4.1.1-7 Single-Phase Voltage Relays Page 2 TABLE Of CONTENTS Introduction .....**.......*... Page 2 Precautions ..*................ Page Z Placing Relay into Service .... Page 2 A.ppl i cat, on Data ****.****..*** Page 4 rest.! ng ..*.*.................. Page 10 INTRODUCTION These instruct.ions contain the information reqt,Jired to properly install, operate. and test certain single-phase undervoltage relays type 27N. catalog series 211T and 411T:

and overvoltage relaY5, type 59N, catalog series 211U and 411U.

The relay is housed in a case suitable for conventional semiflush oanel mounting.

All connectior's to the relay are made at the rear of the case and are clearly numbered. Relays of the 411T. and 411U catalog series are similar to relays of the 211T, and 211U series. Both series provide ~he same basic functions and are of totally drawout construction; however, the 411T and 411U series relays provide integral test facilities. Also. sequenced disconnects on the 410 series prevent nuisance operation during withdrawal or insertion of the relay if the normally-open contacts are used in the application.

Basic settings are made on the front panel of the relay. behind a removable clear clastic cover. Additional adjustment is provided by means of calibration potentio-meters inside the relay on the circuit board. 'The target is reset by means of a pushbutton extending through the relay cover.

PRECAUTIONS The following precautions uhould be taken When apPlying these relayu:

1. Incorrect wiring may result in damage. Be sure wiring a9~ees w1th the co~nection diagram for the particular ra*lay before energizing.
2. Apply only the rated control voltage marked on the relay front panel. The proper polarity must be observed when the de control power connections are made.
3. For relays with dual-rated control voltage, withdraw the relay from the case and check that.. the movable link on t.he pr*inted circuit board is in the correct posit.*jon for the system control voltage.
4. High voltage insulation test.s an! not recommended. See the section on testing for additional information.

S. The entire circuit assembly of the relay is removable. The unit should insert smoothly. Do not use excessive force.

6. Follow test instructions to verify that the relay is *in proper working order.

CAUTION: since troubleshooting entails working ",ith energized equipment. care shou1d be taken to avoid personal I$hoc:/f.. On1y compet.ant technicians Familiar ",itn good saf'ety practices should service these devices.

PlAC1NG THE RELAY INTO SERVICE

t. RECEIVING, HANDLING, STORAGE t)pon receipt of the relay (when notlncluded as part of a switchboard) examine fOr shipping damage. If damage or 10S5 is evident, file a claim at. once and promptly notify AGea Brown eoveri. use normal care in handling to avoid mechanical damage.

Keep clean and dr)l.

Total Pages: 38 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 3 OF 12 Single-Phsse Voltage Rela)'s 18 7.4.1.7-7 Page 3

2. INSTALLATION Mounting:

The outlina dimensions and panel drilling and cutout inform.ation is given in Fig. 1, Connectiona:

Typica' external connections are shawn in F i gvra 2. tnternal connect ions and contact. logic are shown in Figure 3. Control power must be connect.ed in the proper polar; ty.

For relays with dual-rated control power: before energizing. withdraw the relay from its case and inspect that the movable link on the lower printed circuit board is in the correct position for the system control voltage. (For units rated 110vdc. the link should be placed in the position marKed 125voc.)

These relays have an external resistor wired to terminals 1 and 9 whiCh must be in place for normal oporntlon. n'le resistor is supplied mounted on the relay.

These relays have metal front panels which. are connected through printed circuit board runs and connector wi r i n9 to atermi na 1 at t.he rear of the r'e 1ay case. The terminal is marked -G". In all applications this termlnal should be wired to ground.

3. SETTINGS PICKUP The pickup voltage taps identify the voltage level which the relay will cause the output contacts to transfer.

DROPOUT The dropout voltage taps are identified as a percentage of the pickup voltage. Taps are pro.... ided for 7011', 80". 90X. and 9911' of pickup, or. 30". 40%. 501\. and 60" of pickup.

Note: operating voltage values other than the specific values provided by the taps can be obtained by means of an internal adjustment potentl0meter. See section on testing for setting procedure.

TIMe OIAL The time dial tapsar'e identified as '.2,3,4,5.6. Refer to thet'ime-vo'ltage charac-teristic curves in the APplicat.ion section. Tinw dial selection is not provided on relays with an Instantaneous operating characteristic. The time delay may also be

\farled from that provided bytl'le fixed tap by using the internal calibrat'lon adjust-nwnt.

4. OPERATION INDICATORS The types 27N and 59N provide a target indicator that is electronically actuated at the time the out.put contacts transfer to the trip condition. The t.arget must be manvally reset. The target can be reset only if control power-is available. AND if the input voltage to the relay returns to the '"normal" condition.

An led indicator is provided for convenience in testing and calibrating the relay and to gi .... e operating personnel infor'mation on t.he status of the relay. See Figure 4 for the operation of this indicat.or.

Units with l'l M_t." suffix on the catalog number provide a gree-n led to lndlcate the presence of control power and internal power supply volt.age.

Total Pages: 39 of 51 JC-Q1P81-90024 ATTACHMENT 1 PAGE 4 OF 12 IB 7 .4 . 1 . 7

  • 7 Single-Phase Vol~age Relays Page 4 APPLICATION OAWA Single-phase undervoltage relays and over-voltage relays are used to provide a wide range of protective functions. including the protection of motors and generators, and to initiate bus transfer. The type 27N undervoltage relay and type 59N overvoltage relay are designed for those applications Where exceptional accuracy, repeatability, and long-term stability are reQuired.

Tolerances and repeatabi lity are given in the Ratings section. Remember that the accuracy of the pickup and dropout settings with respect to the printed dial markings is generally not. a factor, as these relays are usually calibrated in the field to ob-tain ~he particular operating value. for the application. At the time of field c~l i brat icm. the accuracy of thei nstruments used to sat the reI aye is the important factor. Multiturn internal calibr~tl0" potant1ometers provide means for accurate adjustment of the relay operating points, and allow the difference between pickup and dropout to be set as low as o.S.....

The relays are supplied with Instantaneous operating time, or with definite-time delay characteristic.

The definite-time units are offered in four time delav ranges:

0.1-1 second, 1~ 10 seconds, 2-20 seconds or 10-100 seconds.

An accur*ate peak detector is used in the types 27N and 59N. Harmonic distortion in the AC waveform can have a noticible effect on the relay operating point and on measuring instruments used to set th~ relay. An internal harmonic filter is available as an option for those applications where waveform distortion is a factor.

The harmonic filter attenuates a1l harmonics of the 50/60 HZ. input. The relay then basically operates on the fundamental component Of the lnput volt.age signal. See figure 5 for t.he typical filter response curve. To specify the harmonic filter add the suffix "-HF" to the catalog number. Note in the section on ratings that the addition of the harmonic filter does reduce somewhat the repeatability of the relay vs. temperature variation. In applications where waveform distortion is a factof', i t may be desirable to operate on the peak voltage. In these cases, the harmonic filter would oot be used.

CHARACTER!SllCS OF COMMON UNITS Time Delay (see note 1) Catalog Numbers PICKUP Range Dropout Rang$ PiCKUP Dropout Std Case Test Case 21N 50 -,110 v 70~ _. 99% lost lost 211TO 1)(5 411 T01)(5 Inst 1 - 10 sec 2111(1)(.5 411141)(5 lnst 0.1 - 1 sec 211T61xS 411T61x5 10 - 120 v 70~ - 99% Inst Inst 21 tT03x5 41H03x5 Inst 1 - 10 sec 211"f43x5 411143>:5 Tnst; 0.1 - 1 sec 211T63xS 411 T63)(5 60 - 110 v 30~ - 60~ Inst lost 21 tT02x5 411T02xS lnst 1 - \0 sec 211142>:5 41 H42)(5 Inst 0.1 - 1 sec 211T62x.5 411162)(5 59N 100 - 150 v 70% - 99 .... lost lnst 211UOlxS (1lUO I x5 1 - 10 S Inst 211U41)(5 411U41xS 0.1 - 1 S lnst 211U61X5 411U61x5 IMPORTANT NOTES:

L Units are available with 2,20 second and to*IOOseco!1d definite time delay ranges. The.se uniu are idemifled by calalog numbers that have the dig\! "5~ Or ~7" directly following me leller ;'T~ in, the catalQjt number.: Le.: c3tJ11<!f! numbcn l)f the form 41lT~,(l\" hIlS the 2,20 second time delay range and (he form 411'1'7/.\.\1 nas the 10- IO() second lime delay range, 2., Each of the listed catalug numbers I'm the \)'pes 21N ami 59N c.ontains an "!\ ~ for the: (:(lnlwl voltage: dcsignalion. To complete tbe carnlog number, replace: the .... ~ with the pf\;rper conuol voltage ,00e. digic:

481125 vd~ ..... , 1 2St) .,.de 5 220 v'de ., '2 411/110 'Ide 0

3. Ttl ,$poecify the addtl.ion (If lhe harmonic filter module. add the suffi!\ ~*HF~, For c:... ample: 411T417S*HF. Hamwnte filter not available on l.ypc27N wilh inSrntHlillCOUS delay limiIljl ;;haral:tcristic,

Total Pages: 40 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 5 OF 12 Single-Phase Voltage Relays Ie 7.4.1.7-7 Page 5 SPECIFICATIONS Input Circuit: Rating: type 27M 1S0y ma~imum continuous.

type 59N laov maximum continuous.

Burden7 less than 0.5 VA ~t 120 vac.

Frequency: 50/60 Hz.

Taps: available models include:

Type 27N: pickup - 60. 70, ao, 90, 100. ltO volts.

70, 80, 90, 100, 110, 120 volts.

dropout- 60, 70, 80. 90. 99 percent of pickup.

30. 40, 50, 60 percen~ of pickup.

Type 59N: pickup - 100, 110, 120, 130, 140, 150 volts.

dropout- 60, 70, 80, 90, 99 percent of pickup.

Operat.ing nme: See Time-Voltage characteristic curves that follow.

Inst.antane.ous models: 3 cycles or less.

Reset Time: 27N: less than 2 cycles; 59N: lea8 than 3 cycleS.

(lype 27N resets when input voltage goes above pickup settlng.)

[Type S9N resets when input vol~a9e. goes below dropout setting.)

Output Circuit: Each contact

  • 120 vac @ 125 vde @ 250 \Ide 30 amps. 30 amps. 30 amps. tripping duty.

S amps. 5 amps. 5 amps. continuous.

3 amps. 1 amp. 0.3 amp. break. resistive.

2 amps. 0.3 amP. 0.1 amp. break, inductive.

Operating Temperature Range: -30 to flO deg. C.

Cont,rol Power: Models available for Allowable variation:

48/125 vde

  • 0.05 A max. 48 voc nomi na 1 36- 58 vde 48/110 vde 0 0.05 A max. 110 vde 88-125 vdc 220 vde @ 0.05 A max. 125 vdc 100-140 vde 250 vdc @ 0.05 A max. 220 vde 116-246 voc 2~O vdc 200-280 vdc Tolerances: (without harmonic filter option, after 10 minute warm-up)

Pickup and dropout settings with respect to printed dial markings (factory calibration) = +/- 2~.

PiCkup and dropout settings. repeatability at constant temperature and constant control voltage:: +1- D.UL (see note belm,,)

Pickup and dropout settings, repeat.ability over "allowable" de control power range: +/- 0.1 *. (see note below)

Pickup and dropout settings, re~eatablility over temperature range:

-20 t~o.550C +/- 0.4" -20 to +70 o C +/-0.7'1(,

o to +40o C +/- 0.2. (see note below)

Note: the three tolerances shown should be conside~ed independent and may be cumulative. Tolerances assume pure sine wave input $1gna1.

Time Delay: Instantaneous models: 3 cycles or less.

Oefinite time models: +/- 10 percent or +/*20 mi l1isecs.

whiChever is greater.

Harmonic Filter: All rat.'ngs arathe same except:

{optional) Pickup and dropout. settings, repeatability over temperature range:

o to +55 0 C +1- 0.75" -20 to +70 0 C +/-1.5"

+10 to +40 o C +/- 0.40" Dielectric Strength: 2000 vac, 50/60 HZ .* 60 seconds, all circuits to ground.

Seismic Capability: More than 69 ZPA biaxial broadband multifrequency vibratlon without damage or malfunction. (ANSI C37.9S-1978)

Total Pages: 41 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 6 OF 12 19 7.4.1.7-7 Single-Phase Volt.age Relays Page 6

-+-+--- -1.-- -

II RON r '111;:\0\1 tlU .7J.!) OIA. HOLES 9.56 STUD NUMBERS IB.ACl( VJiiW~

- - - -...... OIMENSIONSARE  !~~t:!

Figure 1: Relay Outline and Panel Oril1ing S2

+

T c::aNTPDl.

",uwl!~

SDURCE 1

Figure 2: Typical External Connections

Total Pages: 42 of 51 JC-Q1P81-90024 ATTACHMENT 1 PAGE 7 OF 12 Single-Phase Voltage Relays IB 7.4.1.7-7 Page 7 Figure 3: INTERNAL CONNECTION DIAGRAM AND OUTPUT CONTACT LOGIC The fallowing table and diagram define the output contact states under all possible conditions of the measured input voltage and the control power SUpply. "AS SHOWN~

means that the contacts are in the atate shown on the internal connection diagram for the relay being considered. "TRANSFERRED" means the contacts Bre in the opposite state to that shown on the internal connection diagram.

Condition Contact State Type 27N Type 59N Normal Coritrol Power Transferred As Shown AC Input Voltage BeloW Setting Normal Control Power AS Shown Transferred AC Input Voltage Above Setting No Control Voltage As Shown As Shown 16D2Ut'I Std. ur Test C~s.

Pi~kup Voltage Level Dropout Voltage Level I r\pl!t Voltage Input Vol ta9C Off Inc.reasing Decreasing Start ~t,Ht Figure 11<1: n£-2]t4 Operatio'1of Fig,ire 4b: Ife:-59N Operation of l)ropO,Jt I,.,{li<;.athg light Pi c!<-.up I nd i r,<.H j ng Li ght Figure 4: Operation of Pickup/Dropout Light-Emit.ting-Diode Indicator

Total Pages: 43 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 8 OF 12 18 1.4.1.7-7 Page 8 TIME VOLTAGE CI1ARACTERiSTICS Ty~ S!lN OVliRliOl TAGfREtAY l'YI'E ;r1N UNO£RVOLTACS. RElAY DEFINITE TIME DEFINITE TIME

~~~: I I I

.,01----1'-..::.......,1_ _-+__-+__+ __..,

1

,.o!--.....,--.....,'---+---+-......-+---;

0.0 f---j---j---t---+---t----t I" 0,0

...  !-_.....,__--1f-_-+__-+_,.jA~

J i 0.'

I

~ Uf-_-i_ _--l +i' _ _-+_....;..-\

~ 0,' f--+---+--+---+---+--; l:

0:: <l..4}----f----1!---+---+---+---i 3

u}----f----i---t---+--=--t----j i o l.O-_..lO.-t_ _oJ;)'"'.--O.k,,- --'O"-,.,-_-L.._ _J I.' U U

..... _..,~I<Ut~,..n*lIIO* Illil.Tl..*.ll9 ** O"O.Ol,lt $*ttti,ul

~T'I~ ,~._t .. lf)q: '$."~-4I :l1,;!Vf:l.~:I!.tt'l~ "1~f.J** al: $~t nNc.~.~J;l" sa"" **, Jur.<<:t:~ ""0 -."r.u~

'~.tl(l(...,"'f"':;a. ~Irill H"~\'.$*~

wc::ot\itt ft"., <;'.t.~:-tt>9 ** ""~' ** 3~~;U*Uc*, .~ "\'V.X'*'~ ...t:GtiJM trwt e.t..~Q. 8.~*t"" '1 qt..)! ~' af H"lfUl:

.... fll'l,1 n~Oh.'" ~ 0" '0 1<iA'll'Lf H~ on., _ lit ,0

- '.. ,... t The time*voltage characteristic is dcJinitc*rime as sbown above. The time-delay values verses time..<Jial selection for the 2~20 sec. and the lO~ 100 sec, definite time models are as follows:

Time Dial Tap Nominal Delay Time (sec)

Pin Position 411T5x:xx 411T7xxx

  1. 1 2 seconds 10 seconds
  1. 2 4 20
  1. 3 6 30
  1. 4 10 50
  1. 5 14 70
  1. 6 20 100 figure 5: Normalized Frequency Response - Optional Harmonic Filter MOdule

Total Pages: 44 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 9 OF 12 Single-Phase Voltage Relays IB7 .4.1.7-7 Page 9 Control Voltage Selector Plug Pickup Voltage Calibration

' Pot.

27N; CCW to Incr.

59N: CW to Incr.

Dropout

'Voltage Calibration Pot.

CCW to Incr.

Figure 6: Typical Circuit Board l.ayouts, types 27N and 59N Figure 7: Typical Circuit Board Layout. - Harmonic Filt.er Module

Total Pages: 45 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 10 OF 12 18 7.4.1.7-7 Single-Phase Voltage Relays Page '0 TESTING

1. MAINTENANCe ANO RENEWAL PARTS No routine maintenance is required On these relays. Follow test inst.ructions to verify that the relay is in proPer working order. We recommend that an inoperative relay be returned to the factory for repair; however, a circuit description booklet C01.4.1.7-7 which includes schematic diagrams, can be provided on request. Renewal parts will be quoted by the factory on request.

211 Series Units Drawout circuit boards of the same cat.alog number are int.erchangible. A unit is identified by t.he catalog number st.amped on the front panel and a serial number stamped on the bottom side of the drawout circuit board.

rhe board is removed by using the meta*\ pull knobs on the front panel. Removing the board ""ith the unit in service may cause an undesired operation.

An 18 point extender board (cat 200X0018) is available for use in troubleshooting and calibration of the relay.

411 Series Units Metal handles provide leverage to withdraw the relay assembly from the case. Removing the unit 1n an application that uses a normally closed contact will cause an operation. The assembly is identified by the catalog number stamped On the front panel and a serial number stamped on the bottom of the circuit board.

Test connections are reaclily made to the drawout~elay unit by using standard banana plug leads at the rear vertical circuit board. This rear board is marked for easier identification of the connection points.

Important: these relays have an external resistor mount.ed on rear terminals 1 and 9.

In order to test the drawout unit an equivVlent resistor must be connected to terminals 1 & 9 on the rear vertical circuit board of the drawout unit. The resistance value must be the same as the resistor used on the relay. A 25 or 50 watt resistor will be su~¥icient for testing. If no resistor is available. the resistor assembly mounted on t.he relay case could be removed and used. I f the resistor from the case is /.Jsed. be S/.Jre to remount it on the case at the cone 1us ion of t;es t lng.

Test Plug:

A test plug assembly, catalog number 400X0002 is available for use with the 410 series units. This device plugs into the relay case on the switchboard and allows access to all e)(ternal circuits wired to the case. See Instruction Book fa 7."7.1.'1-8 for details on the use 0' this device.

2. HIGH POTENTIAL TESTS tli gh pot-entia 1 tests are not recommended. A hi -pot test was performed at the factory before shipp; n9. If a contro 1 wl ring i nsulati on test is requ 1 red. part i all y wi thdraw the relay unit from its case sufficient to break the rear connections before applying the test voltage.
3. BUILT-IN TEST FUNCTION Be sure to take all necessary precautions i f the tests are run with the main circuit energized.

The built-in test is provided as a convenient functional test of the relay and assoC-iated circuit. When you depress the button labelled TRIP, the mea.suring and timing circuits of the relay are actuated. When the relay times out, the output contacts transfer to trip the circu1t breaker or other associated circuitry. and the target is displayed. The test button must be held down continuously until operation is obtained.

Total Pages: 46 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 11 OF 12 Single-Phase Voltage Relays Ie 1.4.1.7-7 Page 11

4. ACCEPTANCE TESTS Follow the teet procedures under paragraph 5. For definite-time units, select Time Dial _3. For the type 27N, check timing by dropping the voltage to 50~ of the dropout voltage set (or to zero volts i f preferred. for simplification of the test).

For the type S9N Check timing by switching the Voltage to 105~ of pid'\up (do not exceed max. input voltage rating.) Tolerances Should be within those shown on page 5.

!f the settings required for the particular application are known, use the procedures in paragraph 5 to make the final adjustments.

5. CALIBRATION TESTS L~.§;~~C9nnections anQ.. It:!st Sources; Typical test circuit connections are shown in Figure 6. Connect the relay to a proper so~rce of dc control voltage to match its nameplate rating (and internal plug setting for dual-rated units). Generally the types 27N and 59N are used in applica-tions where high accuracy is required. The ac test source must be stable and free of harmonics. A test source with 1e8$ t.hliln O.3~ harmonic distortion. such as a "line-corrector" is recommended. 00 not use a voltage source that employs a ferroresonant transformer as the stabilizing and regulating device, as these usually have high harmonic content in their output. The accuracy of the voltage measuring lnst-ruments used muat also be considered when calibrating these relays.

If the resolution of the ae test source adjustment means ,s not adequate, the arrangement using two variable transformers shown in Figure 9 to give *coarse- and

.. fine" adjustments is recommended.

When adjusting the ac test source do not exceed the maximum input voltage ratrng of the re Tay.

u..Q......l.!1Qjt;:i.!t.Q..r...;..

A light emitting diode is provided on the front panel for convenience in determining the pickup and dropout voltages. The action of the indicator d.epends on t.he voltage level and the direction of voltage change, and is best explained by referring to Figura 4.

The calibration potentiometers mentioned in the following procedures are of the multi-turn type for excellent resolution and ease of setting. For cat.alog series 211 units, the 18 point extender board provides easIer access to the calibration pots. If desired. the calibration potentiometers can be resealed with a drop of nail polish at the completion of the calibration procedure.

~.et t i"9 Pi ckU12 and Dropout Vo 1 tIt9ft~t;,

Pickup may be ~aried between the fixed taps by adjusting the pickup calibration potentiometer R27. Pickup should be set first, with the dropout tap set at 99% (60%

on "low dropo.ut units'"). Set t.he pickup tap to the nearest vahH~ to the desired setting. The callbrat.ion potentiometer has approximately a +/-.5'" range. Decrease the voltage until dropout occurs, then check pickup by increasing the voltage. ~e adjust and repeat until pickup occurs at precisely the desired voltage.

Potentiometer R1B is provided to adjust dropout. Set the dropout tap to the next lower tap to the desir-ed value. Increase t.he input voltage to above pickup, and then lower the voltage until dropout occurs. Readjust R16 and repeat until the reQuired setting has baen made.

$.~ts,t.ng,wJjJ!!L ..Qi!.J.~

Similarly, the time delay may be adjusted higher or lower than the values shown on the tiMe-voltage curves by meanS of the time delay calibration potentiometer R41. On the type 27N, time delay is initiated when the voltage drops from above the pickup value to below the dropout value. On the type 59N. timir\g is initiated when the voltage increasee from beloW dropout to above the pickup value. Referring to Fig. 4, the relay is httming out when the led indicator is lighted.

M External Resistor valYM.':" The following resistor values may be used when testing 411 series units. Connect to rear connection point.s 1 & 9.

Relays rated 48/125 "de 4000 ohms (-HF models w th harmon c filter 4000 ohms) 48/110 "de 4000 Ohms (-HF models w th harmon c filter 32:00 ohms) 250 'Ide 10000 ohms (':HF models w th harmon c filter 9000 ohms) 220 ....de 10000 otJms {-HF models w th harmon c filter 9000 ohms)

Total Pages: 47 of 51 JC-QIP81-90024 ATTACHMENT 1 PAGE 12 OF 12 ABB POWef T&O Company, Inc.

Protac!iYG Ralay Diyision 7036 North Snowdrift Road A:!l.e.l')town, PA 18106 Issue E (5/96)

Supersedes Issue 0 TO AC Test Source DC Control Source See Fi9. 9

(-) {+)

Timer START Input T 0 6 o!>

GoO 006 ~,~"

TO Timer STOP Input Figure 8: Typ'ical Test Connections Tt, T2 Va,-; able Autotransformer's (1.5 amp rating)

T3 Ftlam~nt Transformer (1 amp secondary)

V Accurate AC Voltmeter x

...--....--ev LINe:

120 VAC CORRECTOR LIN!

11KVAI I---L--'---t:..:.=:::::::=:.-.J----.z Tl T2 T)

COARSE FINE Figure 9: AC Test Source Arrangement These instructions do not purport to cover all details or variations in equipment. nor to provide for every possible contingency to be met in conjunction with installation, operation, or maintenance. Should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to ABB.

I

~

Total Pages: 48 of 51 JC-QIP81-90024 ATTACHMENT 2 PAGE 1 OF4 F2253 is the only F2250 POWER SYSTEM SIMULATORS product offered General Specifications by Doble in Accuracy: FlorYI CY' to fiO" C, F2250 series. SPflCfic"lli<::ns include all m-rors iO,(!f.)f6'Ji, lx :t5PPM:

60Hz

,,~1 Le'" '~FUl.ll;(*"U by vddahon~',in powor lin~:

voilagEJ, lead n:¥;:;ula[ion, sltlbHity, and F2251 and F2252 tHlnp(Ir<)U~f:), up to lull output poww. SWblEI are no longer a (,O\1rCI1 opemhnn in fOUl quadrants: k\1C1 power faclz){ irelTI 1 to 0, lending or lngging.

Manual Ranges: dG: de: base frequency of U)/fjO Hz, up to 20th and part of Doble TIle F2250 rar-nly is supplied with a Gi~rlifi* (htl 100lh harmonic cate ot Ceiibralion Ir8ceat)le to the National product line. institute of Standards and Techfm!ogy. F2010 Minicontroi!er/Automation Ranges and Resolutions:

Source Power: Range: 0.1 109999.9 Hz May be IONsr Hmn the rnax]mum rating <1t freclueflcies other than 50/60 Hz or DC. Range is dependent on the frequency se~${>

lion on the sinJu!e.tor. \linen Ihefrequency Electrostatic Discharge Immunity.: GelectkJn on the Eirnukllor is 60 (50) Hz, rEG gOl*2: lEG. perkXlTlanCe ievell @ i~; 0.1 Hz to 99.999 Hz. witt. 0,001 Hz 10 1<11: nom1;a1 pDrformance vvithin spocTeR \/\/hen a higher ~ev1 of harrnank; lions.. I.E,C. perfonlH~nce 18'1J'.(~t 2 4Y 20 KV~ is Ht*.l!tlcled the sl!1lul.nkx, lht~n the range no pennanent darnage. is H'le base (O.! ' 99.9F}9 Hz} rnulti, Surge Withstand Capability: plied le\/el of hl.lrrllOnic, and ANSi/IEEE CSt .90. Tt,8 F2250 functions as a the is equal 10 the order of the source during surge withstand c.aPflbiiilY tests, harrnonlc \lrnes (0.001 Hz),

'Nner; the specified isolating circuit is inter" Example 1: if the :::8se frequency sel&,;\lol\

posetl betNB81the F2250 and lhe lest relay. isl 20 {or 100) Hz, 'Nhich is the second AC Amplitude Accuracy: harmonic, then he range is 0.2 Hz to 199.99 From 20" 10 30' G, ;1;0.4'10 of reading r!1"i)(i" Hz with a resolution of 0.002 Hz.

rrtufll at 50/60 Hz From 0" to 50~ C, +/-0.5% Example 2:11 the base frequency selection is of reading absciule fnt\x.imum TvplcaHy 0,2% 300 (or 2SG) Hz, \vhich is the fifth harmonic.

of reflding. Ihen is 05 to 49999 Hz win) a Hz-Distortion:

Low distortlcn sine ,VfiVes; total harrncnic RAMP/SET:

rJ!stDrlbn: 0.2% typical: 2'}6n1axirnurn at RAMP: Continuous!" increments/deeIB' 50/60 Hz. rnenls voltage, curren!. 2nd phase angle at different ranlp rates. insures srnooHl, linear Noise:

dlanges value carriE!:d to no:.:! signircant 80 dB ofmnge diqit, bV()langhg th:~ le<.lst significant digit, Phase Angle: Ramp Rates: >> Leas! Signiileant Digits p()[

Range: o 10 + :359.go iUJad) i Q to S~jc(xld (LS.D/s).

<159,9" (Lag)

Amplitude:t .5;*j. 0, '100 and: 000 L,S.D.!s Accuracy: .:to.25" at 50/60 Hz Phase Angle: 125; 360 L.SD./s.

Resolution: .:tG.t" nt 50/60 Hz SET: fndivkJualty sets fXlCh dlqiL ';NitI, nE)xt Frequency: significant digii cJrry ovor, Range: de: ae !rom 0.1 Hz totO kHz

Total Pages: 49 of 51 JC-QIP81-90024 ATTACHMENT 2 PAGE 2 OF 4 General Specifications -- contirmed Mu[IJ*Mooe Digit.a.r Timer: Battery Simulator (optlunal}:

A<<lJrlle~ Range: f<1} V. 126 'v: 2i';{)

Ptwrot: 60w Rt$olution:

Switching mer:

input Voftagc,

  • 1 A, !<.win;rnurilty

','it)riiL<in canyCOmlOO OporWI 'flntu:

kg Operating Temperature: h) StY C Aud!btl:i ~Ji)iYi6.

MollSul'Od 312 tlll1mts; }lJJS: lyrK!

Storage Tempemtllfe:25' to C Witlcally: hont: 625 d8A Ut:6"d8A.

Colliool $e1l$0 Moda, Ittt dryCOlltae:tll:

nlsp!3l!s: n.?;"' H'oh Intel1si!y fiI!!\1w*; tEO 0PC/'l Circuit Test Voltage:

Sl'lortCirouli T(lS1 Curroot: Interfaces:

TllroihOO:l: ,icC Oil!H:,';i'.llTin,HI HS232 i\ynolo tVlntn;): iQ PC:

voltago 5e1l$0 Mm, tor tiC and de yoltagoo:

Itlpm Voftago:

/'

Total Pages: 50 of 51 JC-QIP81-90024 ATTACHMENT 2 PAGE30F4 f2253 VOLTAGE AND CURRENT SOURCES MOUE 1: Source 1 Voltage SOllrce 2 Currant SoUftC 1 AI'; Vtllt!liJO C".{~{;:t;nw\.ti.t PtJVlur SoUftC 1 [)I'; Voltstc C<.(~{d?f'H.A)ijg PO:t-1,(~l SoUftC 2 AC ~mlttl 1.5 mJc:ond Thir:;r~t(~n1 eT5 V,t!,*rrm.i 1.5.. ~~~ ..l.~<, $0, 90 1ao A,*,nnj {f} i ~~J

'C:~f>(I~rnU(Rl~i POV>i't}f t~60 "V.A**nn~.) 7.5. 15~ 2.2.5,  ::1.}~ 46 [O.Den?'}l t;({>~,.:rtns \(},rt~.A. ~.

SoUN:tl 2 DC Curront b}"f.j 'W(Mt~~ r;:JOA"dC 450 'w~)lt~~ BOft,dc MonE 2: Sourca 1 Current Sourc' 2 Current

'1:6 s;~)tx}f)d 'rr-an;r~;*lnt 225V.:l,*nn:;

C;(':{!~inl~:RAs PO":IlvGr l~OVA'Ill'\;

SoUftC 1 DC Current

~ .~~; ~);ttc(1nd TfHr'~~';:'f)nt Ct>n1inu~;)t.t" Pt}~Nor SOiJftC2AC

<;urreflt 1.. 5 1:;.&c'(Jnd 'haIK.,::~)n! 4:50 '\/.A.:*fnm:~ 15, 30. 00 120 Ann:; lp.ll')

(*;'::>{!~k~l¥Jt.mi Pcri!Vor  ::;;-;;)() 'V.A*'*HlH~ '/".5-: '15., 30, f:-() ;A*'*rr~'~~

Sourec2DC 1S,3f160 tO .20, I

f2252 VOLTAGE AND CURRENT SOURCES MODE 1; Soun::e 1 Vo.ltage Source 2 Current Power 5OJ6O/liz & DC StJLital 1 AC VO!tll90 L" , ,om ,,,uc;', Ptr,,";or 7.5.1-E(}.

StJiJftC 1 DC Voltaflll Pc~~'V'or 1Ch; 212.

SoUftC 2 DC Carrunl

';hOwJ!t!, 1:::,

~:>G(l v/aH ~~ :5. ~,O,' 20, j

Total Pages: 51 of 51 JC-QIP81-90024 ATTACHMENT 2 PAGE 4 OF 4 MODE 2:: SOl.lrc~ 'I Current Sllun:e 2 Cmrtlfd Powor 5OI6Mlz& DC Source 1 At Current 1.5 &'%:X)lld "jJftflSk;\nt 2:~:~5 VA¥1i"nS

()CtilifhJOw.i* Pov>jet --;50 ~lA'*{fn;8 Source 1 DC Current 1.6 8')Ct)fld *r~;Hf\:~j.ont

():):(t!inU('H.z.) F\,r,.v$

Source 2 AC Current 1)) ,i~:i(;Ofx'i 225 VA**nrth ,5, :!~O, 6(; ,A*m:", 'O/j),A" C~::J{HhlUf)i.iB-p(i~~j()f ~ 60 VA*{ifHb  ? .S. 15 l sD ,A.**tln:~> ((;.CX) 1A.}

Sourco 2 DC Current 1S.. tJO A-*de 5! 1:0,20 ,G,vd(: !r}.Or}1,~;}

F2251 VOlIAGEAND CURRENT SOURCES Power 5OI001H::& DC Soul'Cll1 AC VoIlatJtl (JdntirMJOll(k* F\Y~;'j(i)~

Source 1 DC VOIlaQll O~fltfnUOtit.t P&~~j(M Sourco 2 At Cumnt 1 ,5 :f~(lC{;n(:j

(;'~-~~nlinuouG P~j:"V(;l;r Source 2 DC Current 1,,5 :~Aeor~d 22f; *..van.~::;

<::{:g'llkhj(~U$ P<::f~",f::r ~50 '~vsns

~

.i

~

ffi

~ Doble E'I1gln&erlng Company

'W *:.5 V',c<=lni.v4. Strs-et

~ Wat~!ti.Jwn, MA 1'J4/J USA rt:

tEiI.1 61 r it.!:H <~!¥JIJ [loban i.s CtHtHiod ISO 9001:2000 i

g OQuis IS an £SeQ Technologies Cl}ff1p:my J