GNRO-2020/00020, Core Operating Limits Report (COLR) Cycle 23, and Pressure and Temperature Limits Report (PTLR) Update for Grand Gulf Nuclear Station, Unit 1 (GGNS)

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report (COLR) Cycle 23, and Pressure and Temperature Limits Report (PTLR) Update for Grand Gulf Nuclear Station, Unit 1 (GGNS)
ML20126G289
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 05/05/2020
From: Emily Larson
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GNRO-2020/00020
Download: ML20126G289 (73)


Text

-==--Entergy Entergy Operations, Inc.

P.O. Box 756 Port Gibson, Mississippi 39150 Eric A. Larson Site Vice President Grand Gulf Nuclear Station Tel: 601-437-7500 GNRO-2020/00020 May 5, 2020 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

SUBJECT:

Core Operating Limits Report (COLR) Cycle 23, and Pressure and Temperature Limits Report (PTLR) Update for Grand Gulf Nuclear Station, Unit 1 (GGNS)

Grand Gulf Nuclear Station, Unit 1 Docket No. 50-416 Renewed License No. NPF-29

Dear Sir or Madam:

In accordance with 10 CFR 50.36 GGNS is required to provide to the Nuclear Regulatory Commission (NRC) any updates to the COLR and PTLR. Specifically, GGNS is required to inform the NRC under Technical Specification Sections 5.6.5.d and 5.6.6.c respectfully. The Updated GGNS Cycle 23 COLR and PTLR are attached to this letter.

This letter contains no new Regulatory Commitments. Should you have any questions concerning the content of this letter, please contact Jim Shaw, Manager Regulatory Assurance at 601-437-2103.

Sincerely, Eric A. Larson EAL/fas Attachments: 1, Core Operating Limits Report (COLR) Cycle 23 2, Pressure and Temperature Limits Report (PTLR)

GNRO-2020/00020 Page 2 of 4 cc: NRC Senior Resident Inspector Grand Gulf Nuclear Station Port Gibson, MS 39150 U.S Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 U. S. Nuclear Regulatory Commission ATTN: Ms. Jennifer Bridges 1600 East Lamar Boulevard Arlington, TX 76011-4511

GNRO-2020/00020 Page 3 of 4 Attachment 1 Core Operating Limits Report (COLR) Cycle 23

Grand Gulf Nuclear Station Core Operating Limits Report Cycle 23 Re ision 0 COLR Page 1 LBDCR 2020-026

CORE OPERATING LIMITS REPORT REASON FOR REVISION The Cycle 23 core operating limits are updated to provide cycle-specific MCPR and LHGRFAC 111.1ltiplier values for the GNF2 and GNF3 fuel type. Figure 1-1 and 1-2 provides the APLHGR limits for the GNF2 and GNF3 fuel types, respectively.

Figures 2-1 through 2-9 are updated with new MCPR limits and Figures 3-1 through 3-7 are updated with new LHGRFAC limits. No other core operating limits are changed. These limits are based on a core power of 4408 MWt.

TABLE OF CONTENTS 1.0 PURPOSE 3 2.0 SCOPE 3

3.0 REFERENCES

4-5 3.1 Current Cycle References 4 4.0 DEFINITIONS 6-7 5.0 GENERAL REQUIREMENTS 8-10 5.1 Average Planar Linear Heat Generation Rates 8 5.2 Minimum Critical Power Ratio 8 5.3 Linear Heat Generation Rate 9 5.4 Stab1 I 1ty 9 5.5 Applicability 9 5.6 Li mi ta ti on s and Condi ti ans 10 Table 1 OPRM Upscale CDA Amplitude Discriminator 10 Setpoint Table 2 BSP Endpoints for Normal Feedwater Temperature 10 Table 3 BSP Endpoints tor Re uced Feedwater 11 Temperature Table 4 ABSP Setpoints tor the Scram Region 11 Table 5 Margin to Thermal Overpower and Mechanical 11 Overpower Limits Table 6 Application Conditions 11 F1 gure(s) 1 APLHGR Operating Limits 12 Fi gure(s) 2 MCPR Operating Limits 13-21 Figure(s) 3 LHGR Operating Limits 22-28 Figure 4 Backup Stability Protection Region Boundaries 29 for Normal Feedwater Temperature Figure 5 Backup Stability Protection Region Boundaries 30 for Reduced Feedwater Temperature COLR Page 2 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1.0 PURPOSE The C0LR is controlled as a License Basis Document and revised accordingly for each fuel cycle or remaining portion of a fuel cycle. Any revisions to the C0LR must be submitted to the NRC for information as required by Tech Spec 5.6.5 and tracked by Licensing Commitment 29132. This C0LR reports the Cycle 23 core operating limits and stability setpoint confirmation and regions.

2 .0 SCOPE As defined in Technical Speci fi cation 1.1, the COLR is the GGNS document that provides the core operating limits for the current fuel cycle. This document is prepared in accordance with Technical Specification 5.6.5 for each reload cycle using NRC-approved analytical methods.

The Cycle core operating and stability limits included in this report are:

  • the Average Planar Linear Heat Generation Rate (APLHGR),
  • the Linear Heat Generation Rate (LHGR) limit, and
  • the DSS-CD stability setpoint confirmation and regions.

COLR Page 3 LBDCR 2020-026

CORE OPERATING LIMITS REPORT

3.0 REFERENCES

This section contains the cycle-specific references used in the safety analysis of Grand Gulf Cycle 23.

Methodology references are documented in Technical Specification 5.6.Sb 3.1 Current Cycle References 3.1.1 ECH-NE-20-00009 Revision 0, Supplemental Reload Licensing Report for Grand Gulf-1 Reload 22 Cycle 23, dated February 2020.

3.1.2 ECH-NE-10-00021 Revision 5, GNF2 Fuel Design Cycle-Independent Analyses for Entergy Grand Gulf Nuclear Station, dated February 2020.

3.1.3 ECH-NE-20-00010 Revision 0, Fuel Bundle Information Report for Grand Gulf-1 Reload 22 Cycle 23, dated November 2019.

3.1.4 NEDC-32910P, Revision 1, Grand Gulf Nuclear Station SAFER/GESTR-LOCA Accident Analysis With Relaxed ECCS Parameters, dated October 1999.

3.1.5 GGNS-NE-12-00022 Revision 0, Grand Gulf Nuclear Station MELLLA+ Task T0407, ECCS-LOCA Performance, dated September 2012.

3.1.6 GGNS-SA-09-00002 Revision 1, Grand Gulf Nuclear Station GNF2 ECCS-LOCA Evaluation, dated December 2009.

3.1.7 NEDC-33173P-A, Revisions, Applicability of GE Methods to Expanded Operating Domains (with Supplements SP-A Rev. 1,*and 6P-A Rev. 1),

dated October 2019 3.1.8 NEDC-33006P-A, Revision 3, GE BWR Maximum Extended Load Line Limit Analysis Plus, dated June 2009 3.1.9 ECH-NE-20-00012, Revision 1, GGNS Cycle 23 GESTAR Assessment, dated March 2020.

3.1.10 ECH-NE-20-00006 Revision 0, GNF3 Fuel Design Cycle-Independent Analyses for Grand Gulf Nuclear Station, dated February 2020.

3.1.11 GGNS-SA-19-00002 Revision O Grand Gulf Nuclear Station GNF3 ECCS-LOCA Evaluation Revision 1, dated October 2019 3.1.12 GEH-GGNS-AEP-632, GGNS MELLLA+ Final DSS-CD Settings Report, dated October 23, 2013.

3.1.13 NEDE-24011-P-A-29, General Electric Standard Application for Reactor Fuel (GESTAR-II). dated October 2019, (KGO-ENO-GEN-19-087).

3.1.14 Not Used.

3.1.15 NED0-33612-A, Revision 0, Safety Analysis Report for GGNS Maximum Extended Load Line Limit Analysis Plus, September 2013.

3.1.16 NEDC-33292P, Revision 3, GEXL17 Correlation for GNF2 Fuel, June 2009 (RA-ENO-GEN-10-034).

3.1.17 NEDC-33880P, Revision 1, GEXL21 Correlation for GNF3 Fuel, November 2017 (KGO-ENO-GEN-20-031).

COLR Page 4 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 3.1.18 NEDC-33840P-A, Revision 1, The PRIME Model for Transient Analysis of Fuel Rod Thermal - Mechanical Performance, August 2017.

3.1.19 GGNS-NE-10-00076, Revision O (GEH 0000-012101122-RO), GGNS EPU Option°B Scram Times, dated September 2010.

3.1.20 NEDC-33270P, Revision 9, GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR II), Dec 2017. (KGO-ENO-JBl-18-068).

3.1.21 NEDC-33879P, Revision 2, GNF3 Generic Compliance with NEDE-24011-P-A (GESTAR II), March 2018. (CIN2018-00052).

COLR Page 5 LBDCR 2020-026

CORE OPERATING LIMITS REPORT

4. 0 DEFINITIONS 4.1 Average Planar Linear Heat Generation Rate (APLHGR) - the APLHGR shall be applicable to a specific planar height and is equal to the sum of the linear heat generation rates for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the specified height.

4.2 Average Planar Exposure - the Average Planar Exposure shall be applicable to a specific planar height and is equal to the sum of the exposure of all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the specified height.

4.3 Critical Power Ratio (CPR) - the ratio of that power in the assembly, which is calculated by application of the fuel vendor's appropriate boiling correlation, to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

4.4 Core Operating Limits Report (COLR) - The Grand Gulf Nuclear Station specific document that provides core operating limits for the current reload cycle in accordance with Technical Specification 5.6.5.

4.5 Linear Heat Generation Rate (LHGR) - the LHGR shall be the heat generation per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length.

4.6 Minimum Critical Power Ratio (MCPR) - the MCPR shall be the smallest CPR which exists in the core.

4.7 MCPR Safety Limit cycle specific SLMCPR, known as MCPR , is the minimum value of the CPR at which the fuel could be operated to ensure that 99.9%

percent of the fuel in the core is not susceptible to the boiling transition.

4.8 Oscillation Power Range Monitor (OPRM) - Provides automatic detection and suppression of reactor core thermal-hydraulic instabilities through monitoring neutron flux changes.

4.9 Backup Stability Protection (BSP) Scram Region - The area of the core power and flow operating domain where the reactor is susceptible to reactor instabilities under conditions exceeding the licensing basis of the current reactor system. An immediate manual scram is required upon entry.

4.10 Backup Stability Protection (BSP) Controlled Entry Region - The area of the core power and flow operating domain where the reactor is susceptible to reactor instabilities. Compliance with at least one alternate stability control is required upon entry.

4.11 Automated Backup Stability Protection (ABSP) Scram Region - An automated reactor scram region that bounds the BSP Scram Region and is initiated by the APRM flow-biased scram setpoint upon entry.

4 .12 End of Rated (EOR) - The Cycle exposure corresponding to all rods out, 100%

power, 100% flow, and normal feedwater temperature [3.1.1].

4.13 Middle of Cycle (MOC) - The Cycle 23 MOC Core Average Exposure (CAE) is MOC

= EOR-2,862 MWd/ST [3.1.1].

4.14 End of Cycle (EOC) - The Cycle 23 EOC CAE is 30,594 MWd/ST [3.1.1].

4 .15 Maximum Extended Load Line Limit Analysis Plus (MELLLA+) - The GGNS MELLLA+

operating domain is depicted in Figure 4.

4 .16 Maximum Number of OPRM Cells Along an Instability Symmetry Axis (M ..l - An OPRM configuration constant representing maximum number of OPRM ce1ls along an instability symmetry axis. It is used to calculate the number of unresponsive OPRM cells. Per [3.1.12] the GGNS specific value is five (MH = 5).

COLR Page 6 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 4.17 Application Conditions - The combination of equipment out of service conditions for which LHGRFAC and MCPR limits are determined [3.1.1]. The Application Conditions are specified in Table 6.

4.18 MCPR Safety Limit - Cycle-independent Technical Specification (TS) 2.1.1 SLMC~ensures there is a 95 percent probability at a 95 percent confidence level that no fuel rods will be susceptible to transition boiling.

COLR Page 7 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 5.0 GENERAL REQUIREMENTS 5.1 Average Planar Linear Heat Generation Rates Consistent with Technical Specification 3.2.1, all APLHGRs shall not exceed the fuel type and exposure-dependent limits reported in Figures 1-1 and 1-2 [3.1.1].

5.2 Minimum Critical Power Ratio For Cycle 23, the cycle-specific MCPR Safety Limit (MCPR ), is 1.12 for Two Loop 9

Operation (TLO), and 1.12 for Single Loop Operation (SLOJ° [3.1.l].

Consistent with Technical Specification 3.2.2, the MCPR shall be equal to or greater than the limits reported in Figure(s) 2 as functions of power, flow, exposure, and scram speed. [3.1.1, 3.1.2, 3.1.10, 3.1.19]. For operation at powers

~35.4%, the power-dependent MCPR shall be determined based on scram time surveillance data as follows. [3.1.19]

1) If the average scram time (rm:) satisfies the following:

TJIF~TH, then the power dependent MCPR shall be equal to or greater than the Option B limits reported in Figure(s) 2 as a function of exposure.

2) If the average scram time r iu > r 8 and r  ::=; 0.2 ,

then the power-dependent MCPR shall be equal to or greater than the Tau 0.2 limits reported in Figure(s) 2 as a function of exposure,

3) If the average scram time r 11 F > r 8 and r>0.2, then the power-dependent MCPR shall be equal to or greater than the Option A limits reported in Figure(s) 2 as a function of exposure.

In the above equations:

r.iu: = average scram time to the 20% insertion position as calculated by equation 1 of Reference 3.1.19, r8 = adjusted analysis mean scram time for 20% insertion as calculated by equation 3 of Reference 3.1.19 and r = T .*./l'F. - TR TA -TR where COLR Page 8 LBDCR 2020-026

CORE OPERATING LIMITS REPORT rA the technical specification limit on core average scram time to the 20 percent insertion position (0.503 seconds).

The limits determined above support operation with Turbine Bypass Valves Out of Service as described in Technical Specification 3.7.7. Additional MCPR operating limits are provided to support operation with EOC-RPT inoperable as described in Technical Specification 3.3.4.1.

5.3 Linear Heat c-.eneration Rate Consistent with Technical Specification 3.2.3, the LHGRs for any GNF2 or GNF3 fuel rod at any axial location shall not exceed the nodal exposure-dependent limits reported in Reference 3.1.3 (by reference reported in [3.1.20] for GNF2 and

[3.1.21] for GNF3) multiplied by the smaller of either the power-dependent or flow-dependent LHGR factors reported in Figures 3-1 through 3-6 and 3-7, respectively

[3.1.l]. The limits determined above support operation with Turbine Bypass Valves Out of Service as described in Technical Specification 3.7.7.

5.4 Stability The OPRM Upscale Confirmation Density Algorithm (CDA) Amplitude Discriminator setpoint is reported in Table 1.

The Backup Stability Protection (BSP) regions boundaries are reported in Figures 4 and 5 [3.1.l]. BSP measures support operation with the OPRM upscale trip function inoperable as described in Technical Specification 3.3.1.1 Condition J. The endpoints for the BSP region boundaries are provided for normal (NFWT) and reduced (RFWT) feedwater temperature operations in Tables 2 and 3, respectively. Figures 4 and 5 depict the BSP region boundaries for NFWT and RFWT operations. Note that Figures 4 and 5 also depict the MELLLA+ and MELLLA domains, consistent with feedwater temperature operating limitations.

The ABSP APRM Simulated Thermal Power (STP) setpoints associated with the ABSP Scram Region are provided in Table 4. The ABSP setpoints are applicable to TLO and SLO, and to both normal and reduced feedwater temperature operations.

The BSP Boundary and Manual BSP region boundaries for normal feedwater temperature operations are valid for reductions in normal feedwater temperature as much as (and including) -10. O °F.

5.5 Applicability The following core operating limits are applicable for operation in the Maximum Extended Operating Domain (MEOD), with Feedwater Heaters Out of Service (FWHOOS),

Turbine Bypass Out of Service (TBVOOS), EOC-RPT inoperable, and Pressure Regulator Out of Service (PROOS). For operation with one of the previous conditions mentioned, the alternate MCPR limits described in Section 5.2 above must be implemented. Table 6 provides an applicability condition list of events related to the Figures. For SLO, the following additional requirements must be satisfied.

1. THE APLHGRs shall not exceed the exposure-dependent limits determined in accordance with Section 5.1 reduced by a 0.83 SLO multiplier for GNF2 fuel bundles, and reduced by a 0.90 SLO multiplier for GNF3 fuel bundles.

[3.1.1].

2. THE LHGRs shall not exceed the smaller of the nodal exposure-dependent limits determined in accordance with Section 5.3 above or the nodal COLR Page 9 LBDCR 2020-026

CORE OPERATING LIMITS REPORT exposure-dependent limits reported in Reference 3.1.3. During SLO operation the SLO values will be used from Figures 3-7 [3.1.1].

3. The MCPR shall be equal to or greater than the limits determined in accordance with Section 5.2 above increased by 0.00 to account for the difference between the two-loop and single-loop MCPR safety limits for the allowable range of single-loop operation [3.1.1].

5.6 Limitations and Conditions As required by Limitation and Condition 9.10/9.ll of licensing topical report NEDC-33173P-A [3.1.7], the limiting Thermal and Mechanical Overpower results are reported in Table 5. The results are summarized as a percent margin to both of these limits. The results are confirmed to meet the required 10% margin to the design limits [3.1.l].

As required by Limitation and Condition 12.10.b of licensing topical report NEDC-33006P-A [3.1.8], the off-rated limits assumed in the ECCS-LOCA analyses are confirmed to be consistent with the off-rated LHGR multipliers provided Figures 3-1 through 3-7. These off-rated LHGR multipliers provide adequate protection for MELLLA+ operation.

As required by Limitation and Condition 12.5.c of licensing topical report NEDC-33006P-A [3.1.8], the plant specific power/flow map specifying the GGNS licensed MELLLA+ operating domain is included as Figure 4.

As required by Limitation and Condition 12.5.b of licensing topical report NEDC-33006P-A [3.1.8], operation with Feedwater Heaters Out of Service (FWHOOS) is prohibited while in the MELLLA+ operating domain [3.1.l]. In addition, as required by Limitation and Condition 12.5.a of licensing topical report NEDC-33006P-A

[3.1.8], and described in GGNS TS 3.4.1 LCO, SLO is prohibited in the MELLLA+

operating domain [3.1.l].Therefore, operations with RFWT and/or SLO must adhere to the operating domain shown in Figure 5.

Table 1 OPRM Upscale CDA Amplitude Discriminator Setpoint Amplitude Discriminator Trip 1.10 Table 2 BSP Endpoints for Normal Feedwater Temperature Endpoint Power(%) Fl~~) Definition Al 72.3 44.2 Scram Region Boundary, HFCL Bl 34.2 25.2 Scram Region Boundary, NCL A2 67.3 50.0 Controlled Entry Region Boundary, HFCL B2 26.4 24.4 Controlled Entry Region Boundary, NCL LBDCR 2020-026

CORE OPERATING LIMITS REPORT Table 3 BSP Endpoints for Reduced Feedwater Ten-perature Endpoint Power(%) Flow(%) Defin, tion Al' 65 .9 48.3 Scram Region Boundary, HFCL Bl' 28.5 24.6 Scram Region Boundary, NCL A2' 68.8 51.8 Control led Entry Region Boundary, HFCL B2' 26 .4 24.4 Controlled Entry Region Boundary, NCL Table 4 ABSP Setpoints for the Scram Region Parameter Symbol Value Slope ot ABSP APRM tlow-biased trip linear segment 0.77 mTDTD ABSP APRM flow-biased trip setpoint power intercept. p 31.0% RTP 1 Constant Power Line for Trip from zero Drive Flow to BSP-TRIP Flow Breakpoint.

ABSP APRM flow-biased trip setpoint drive flow intercept. Constant Flow Line for Trip.

w BSP-TRIP 39 .0% RDF2 Flow Breakpoint value w BSP-BREAK

7. 5% RDF2
1. RTP - Rated Thermal Power 2. RDF - Rec1rculat1on Drive Flow Table 5 Margin to Thermal Overpower and Mechanical Overpower Limits Criteria GNF3 GNF2 Thermal Overpower Margin 54.74% 51.02%

Mechanical Overpower Margin 55 .03% 55 .03%

Table 6 Application Conditions Application FWH OOS EOC-RPT PROOS TBVOOS Condition l;', X 2;',: X X 3 X X 4 X X X 5 X X 6;',: X X X 7 X X X 8;',: X X X X

  • These are the limiting conditions evaluated 1n [3.1.1] and the only ones monitored.

COLR Page 11 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 15 0 00 13 78 17 52 13 78 14 13 12 i::::. 11 10

~

C)

J: 9

...J 0..

<( 8

!?

7 6

5 4

0 10 20 30 40 50 60 70 Average Planar Exposure (GWdtsn Figure 1-1 GNF2 Maximum Average Planar Linear Heat Generation Rate Note: Actual Limits described in Sections 5.1 and 5.5 15 000 14 14 13 12 i::::. 11 10

~

C) g J:

...J 0..

<( 8

!?

7 6

5 4

0 10 20 30 40 50 60 70 Average Planar Exposure {GWd/Sn Figure 1-2 GNF3 Maximum Average Planar Linear Heat Generation Rate Note: Actual Limits described in Sections 5.1 and 5.5 COLR Page 12 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 , ?. 50% Core Flow 2.3 22 21 8 2 29 218.219

/ 35 4 2 13 2.1 2.0 35 4 2 00 a: 1g

~

0.. Option A 0 1.8

E 1.7 16 35 4 1 65 40 1 65 50 1 65 I

1.5 14 13 12 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-1A Cycle 23 GNF2 Power-Dependent MCPR Limits, EIS BOC to MOC 25 2.4 t I 1 > 50% Core Flow 2.3 2.2 21 8 2 27 21 8 2 19

/

35 4 2 11 2.1 2.0 35 4 2 00 a: 1.9

~

0.. Option A 0 18

E 1.7 50 1 60 I 1.6 15 1.4 35 4 62 40 62

' 42 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated}

Figure 2-18 Cycle 23 GNF3 Power-Dependent MCPR Limits, EIS BOC to MOC COLR Page 13 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 2.3 21 8 2 29  ;- 1 > 50% Core Flow 2.2 21 8 2 19 35 4 2 13 2.1 2.0 < 50% Core Flow 35 4 2 00 a:

~ 1.9 0..

0 1.8

ii:

40 1 66 50 1 66 u 35 4. 66 1.6 15 1.4 13 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power(% Rated)

Figure 2-2A Cycle 23 GNF2 Power-Dependent MCPR Limits with FWH OOS BOC to MOC 25 2.4 1 .:::. 50% Core Flow 23 22 21 8 2 27 21 8 2 19 I

35 4 2 2 1 20 35 4 2 00 a: 19

~

0.. Option A 0 1.8

ii:

17

/

40 62 50 61 35 4 1 62 16 15 1.4 1.3 12 0 10 20 30 40 50 60 70 80 90 100 Core Power(% Rated)

Figure 2-2B Cycle 23 GNF3 Power-Dependent MCPR Limits with FWH 00S BOC to MOC COLR Page 14 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 1 .:: 50% Core Flow 2.3 21 8 2 29 I

2.2 21 8 2 19 2.1 50 1 94 2.0 0: 1.9 iE' a.

354 200 0 1.8

ii: Tau= 0.2 1.7 1.6 1.5

/

1.4 13 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power(% Rated)

Figure 2-3A Cycle 23 GNF2 Power-Dependent MCPR Limits with PR+FWH 00S BOC to MOC 2.5 2.4 i .:: 50% Core Flow 23 21 8 2 28 /

22 I

21 8 2 19 2 1 Option A 20 0: 1.9 iE'

a. 85 1 70

(.) 18

E 17 1.6 1.5 100 1 45 1.4 1 00 1.3 12 0 10 20 30 40 50 60 70 80 90 100 Core Power(% Rated)

Figure 2-3B Cycle 23 GNF3 Power-Dependent MCPR Limits with PR+FWH 00S BOC to MOC COLR Page 15 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 25 24 2.3 21 8 2 29

-, > 50% Core Flow 2.2 21 8 2 19 2.1 2.0 0
354.200 ir' 1.9 a.

0 1.8

~

Tau= 0.2 u

1.6 15 14 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-4A Cycle 23 GNF2 Power-Dependent MCPR Limits with PR+EOC-RPT+FWH 00S BOC to MOC 2.5 2.4 / ~ 50% Core Flow 2.3 21 8 2 28 22 21 8 219 2.1 _..., Option A

< 50% Core Flow ---

20 0: 35 4 2 00 ir' 19 a.

0 1.8

~

Tau= 0.2 1.7 1.6 85 1 56 1.5 1.4 42

.,Jlf 1.3 Options/

12 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-4B Cycle 23 GNF3 Power-Dependent MCPR Limits with PR+EOC-RPT+FWH 00S BOC to MOC COLR Page 16 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 21 8 2 3.5 2.3 21 8 2 27 2.2 35 4 2 17 2.1 35 4 2 05 2.0 a: 1.9 ii' a.. Option A 0 1.8

iE 1.7 35 4 72 I

1.6 1.5 1.4 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-5A Cycle 23 GNF2 Power-Dependent MCPR Limits, EIS MOC to EOC 2.5 24 I ~ 50%) Core Flmv 2.3 218 2 /

22

..,:tr 35 4 213 2.1

< 50~o Core Flow . /

20 35 4 2 02 a: 1.9 ii' a.. Option A 0 1.8

iE 35 4 66 40166 50166 1.7 1.6 1.5 14 13 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-5B Cycle 23 GNF3 Power-Dependent MCPR Limits, EIS MOC toEOC COLR Page 17 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 21 8 2 35 2.3 21 8 2 27 2.2 354217 2.1 35 4. 2 05 2.0 ci 1 9 IE' El.

u 1.8 40. 1 72 50 1 72

iE Tau= 0.2 35 4 1 72 1.7 I 1.6 1.5 1.4 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power(% Rated)

Figure 2-6A Cycle 23 GNF2 Power-Dependent MCPR Limits with FWH 00S MOC to EOC 25 2.4 ~ 50% Core Flow 23 21 8 2 31 21 8 2 23 2.2 35 4 2 13 2 1

< 5mo Core Flow /./ 35 4 2 02 2.0 ci 19 IE' El. Option A u 1.8

iE Tau= 0.2 35 4 1 66 40 1 66 50 1 66 1.7 1.6

_J 1 1.5 1.4 '. JC 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-6B Cycle 23 GNF3 Power-Dependent MCPR Limits with FWH 00S MOC to EOC COLR Page 18 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 2i 8 2 35

/ - t",0% Core Flow

/ >

Ji' 2.3 21 8 2 27 2.2 2 1 2.0 a: 1.9 cl Q.

0 1.8

~ Tau= 0.2 1.7 I

1.6 I

15 1.4 13 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-7A Cycle 23 GNF2 Power-Dependent MCPR Limits with PR+FWH OOS MOC to EOC 2.5 2.4 .::. 50% Core Flow 2.3 21 8 2 31 21 8 2 23 2.2 2.1 Option A 2.0 a: 19 cl Q.

0 18

~ Tau= 0.2 17 1.6 I I

I 1.5 1.4 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-7B Cycle 23 GNF3 Power-Dependent MCPR Limits with PR+FWH OOS MOC to EOC COLR Page 19 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 2.5 2.4 21 8 2 35 2.3 218.227 2.2 21 20 a: 1.9

~

a.

0 1.8

E 1.7 16 15 1.4 1.3 1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-8A Cycle 23 GNF2 Power-Dependent MCPR Limits with PR+EOC-RPT+FWH 00S MOC toEOC 2.5 24 . > 50~*o Core Flow 23 21 8 2 31 ~/ -

21 8 2 23 22 21 Option A 2.0 a: 1.9

~

a.

0 1.8

E Tau= 0.2 1.7 1.6 1.5 1.4 1.3 /

Option 8 /

1.2 0 10 20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Figure 2-88 Cycle 23 GNF3 Power-Dependent MCPR Limits with PR+EOC-RPT+FWH 00S MOC to EOC COLR Page 20 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1 70 1 65 1 60 1 55 1.50

£ 1 45 0::

a. 140

(.) 20. 1.35 30. 1.35

E 1.35 1.30 1.25 1 20 90 1 23 105, 1 23 1 15 1 10 0 10 20 30 40 50 60 70 80 90 100 110 Core Flow (% Rated)

Figure2-9A Cycle 23 GNF2 Flow-Dependent MCPR Limits, All Application conditions 1.70 1.65 1 60 1 55 150 145

£ 0::

a. 140

(.)

E 1 35 1.30 125 100, 1.20 1 20 96 2. 1 20 110 1.20 1.15 1.10 0 10 20 30 40 50 60 70 80 90 100 110 Core Flow (% Rated)

Figure2-9B Cycle 23 GNF3 Flow-Dependent MCPR Limits, All Application Conditions COLR Page 21 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1.05 35 4 1 000 50 000 70 1 000 85 1 000 100. 1 000 1.00 0.95 0.90 35.4.0.885 C:

o 0.85 if 0::

< 50% Core Flow

(!) 0.80 J:

..J 21 8 0 761 . /

0.75

.:: 50% Core Flow . . . ._,___ ____

070 '-.. _. .. 35 4 0 702 21 8 0 671 -------*

0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated}

Figure 3-1A Cycle 23 GNF2 Power-Dependent LHGR Factor BOC-MOC, EIS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1 05 35 4 1 000 50 1 000 70 1 000 85 1 000 100 1 000 1.00 095 35 4 0 9'.3'.3 0 90 50% Core Flow C: <

0

<(

0.85 LL 0::

(!) 0.80 21 8 0 802 J:

..J 0.75  ;, 50% Core Flow ...._

- ---~...........,..,~------~--

35 4 0 740

~

0.70 21 8 0 707 0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-18 Cycle 23 GNF3 Power-Dependent LHGR Factor BOC-MOC, EIS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 22 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1.05 354 000 50 000 70 1 000 85 1 000 100 1 000 1.00 0.95 090

'ii 35.4.0.865 u 085

~ < 50% Core Flow a::

C) 0.80 J:

...J 21 8 0 752

  • 0.75 070 ~ 50% Core Flow ........_

21 8 0 671 --------

. ______ 35 4 0 702 0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated}

Figure 3-2A Cycle 23 GNF2 Power-Dependent LHGR Factor BOC-MOC with FWHOOS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1.05 35 4 1 000 50 1 000 70 1 000 85 000 100 1 000 1 00 0.95 354 0912 4 0 912 0.90

< ::,0% Core Flow

'ii -~

0 085

~

a::

C) 0.80 J: 21 8 0 794

...J 075 > 50% Core Flow -~-.... -3540740 0.70

- ---~:~--- -~-----

21 8 0 707 0.65 060 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-2B Cycle 23 GNF3 Power-Dependent LHGR Factor BOC-MOC with FWHOOS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 23 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1.05 100. 1.000 1.00 0.95 0.90 85. 0918

'ii 354, 0 865 o 0.85 70. 0 860 if a::

< 50% Core Flow C) 0.80 J:

.J 218.0752 50. 0.770 0.75 0.70 ~ 50% Core Flow -------.__.

35 4 0 701 21 8. 0 671 -------

0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power(% Rated)

Figure3-3A Cycle 23 GNF2 Power-Dependent LHGR Factor BOC-MOC with PROOS, FWHOOS and EOC-RPT (Application Conditions 6 and 8); Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1.05 100 1 000 1 00 0.95 85 0 966 354.0 912 0 90 70 0 905 50% Core Flow 0::

0 085


,~

~

a:

C) 080 21 8 0 794 50 0 812

I:

..J 0.75

/--;*---***-**

35 4 0 739 0.70 21 8 0 707 0.65 2 50% Core Flow

/

0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

I Figure 3-38 Cycle 23 GNF3 Power-Dependent LHGR Factor BOC-MOC with PROOS, FWHOOS and EOC-RPT (Appf1Cation Conditions 6 and 8); Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 24 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1.05 3541000 50 1 000 70 1 000 85 000 100 1 000 1.00 095 0.90 C:

u 0.85 < 50'.l/o Core Flow 35 4. 0843

~

1k:

C) 0.80 J:

...I 21 0 751 0.75 0.70 ..:: 50% Core Flow ."'--

35 4 0 693

,,~-------------

e o 657 065 21 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-4A Cycle 23 GNF2 Power-Dependent LHGR Factor MOC-EOC, EIS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1.05 35 4 1 000 50 000 100 000 1.00 095 0.90 354.0.907 C: < 50% Core Flow u 0.85 ----~

~

1k:

C) 0.80 21 8 0 792 J:

...I 0.75

50% Core Flow 35 4 0 730

'*--~--------------

0.70 21 8 0 693 __ /

0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-4B Cycle 23 GNF3 Power-Dependent LHGR Factor MOC-EOC, EIS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 25 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1.05 354 1000 50. 1 000 70 1 000 85 1 000 100 1 000 1 00 0.95 0.90 C:

0 0.85 < 50°1;, Core Flow

~ ~ 35.4, 0.836 0:: '-..~

C) 0.80 J:

...I 0.75 2180741 0.70 > 50% Core Flow *-..___

0.65 21 0 657

  • ..~~~--------- 35 4 0 693 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-5A Cycle 23 GNF2 Power-Dependent LHGR Factor MOC-EOC with FWHOOS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1 05 50 000 1.00 0.95 0.90 C: < 50~o Core Flow o 0.85

~

0::

C) 0.80 21 8 0 782 J:

...I 075

> 50% Core Flow -~" .. 35 4 o 730 070 21 8 0 693 ....:~/---/-

0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-5B Cycle 23 GNF3 Power-Dependent LHGR Factor MOC-EOC with FWHOOS Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 26 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 1 05 100. 1 000 1.00 0.95 0.90 C:

o 0.85 50% Core Flow 35.4,0.836 if <

,.,,,.~,.,.,,,..,.*

Q:'.

C) 0.80 /,,,-,**

r:: / ..

...J 0.75 50 0 766

/ ..

070 .::. 50% Core Flow -----.., ____.-- 35 4 0 693 0.65 21 8 0 657 .----~

0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3-GA Cycle 23 GNF2 Power-Dependent LHGR Factor MOC-EOC with PROOS, FWHOOS and EOC-RPT (Application Conditions 6 and 8); Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1 05 100  ;.

iOO 1 000 0.95 /

. /

85 0 952

.,..,?---

--~~

0.90 354. 0.899 C: 0 870

<  :,0% Core Flow 0 0.85 if Q:'.

C) 0.80

r:: 21 8 0 782 50 0 808

...J 0.75 0.70

> 50°:o Core Flow --

21 8 0 693

    • -- _-~- _..----

4 0 730 0.65 0.60 0 10 20 30 40 50 60 70 80 90 100 110 Power (% Rated)

Figure 3~8 Cycle 23 GNF3 Power-Dependent LHGR Factor MOC-EOC with PROOS, FWHOOS and EOC-RPT (Application Conditions 6 and 8); Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 27 LBDCR 2020-026

CORE OPERATING LIMITS REPORT 105 71 4 1 00 105. 00 1.00 0.95 0.90 g

C" 0.85 a::

C) 080 J:

_J 0.75 0 70 065 20 0 652 30 0 652 0.60 0 10 20 30 40 50 60 70 80 90 100 110 120 Core Flow (% Rated)

Figure 3-7A Cycle 23 GNF2 Flow-Dependent LHGR Factor Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 1 05 1.00 0.95 090 C"

u cq:

0.85 u.

a::

C) 0.80 J:

_J 0.75 0.70 065 0.60 0 10 20 30 40 50 60 70 80 90 100 110 120 Core Flow (% Rated)

Figure 3-7B Cycle 23 GNF3 Row-Dependent LHGR Factor Note: These factors to be applied to the exposure-dependent limits as descibed in Section 5.3 COLR Page 28 LBDCR 2020-026

CORE OPERATING LIMITS REPORT CORE FLOW(% rated) 0 10 20 30 40 50 60 70 80 90 100 110 110  ; ~  ; * *I

  • I 100

.._ _________ ----------f-------**-+---------+--**------+---------*~-----*-----~----------+  ! I


1 Implemented BSP Boundary i l i I1--- i


rso-;-; i uu-----(---------- /. 3

~i.-sJ-oo

_ _ ;r*o-::-,0-,-1:

' i 0-0--1------*-----**---l 90


----------+-----***-*'---***-*****~--**--*****i***********L**- i I MELLLA+  !

Boundary 1-J..

I i ~~t*=- ~------~ i__,..---*- *- - .-* - - -*-'--**--*~--*J*-***----

      • --1------*****ti __ -**-*--*+*-****-*-*J*-**--*---**-*~

~ 05 100 I 80 ********* . 56, 80.6 .....+-"'"

          • --**__j_************---r---:.~ ........~Ilt;,,-"'l**--********;**********+**********

~-~* ,.. i

..... *-*** *-** ...... *-*l**-********'**********

TMELLLA Boun~a~ , ........... A1 , 1.~ 3 * ~_;~[_,/" l ' ' * ' *****

sf 60 -----** *-- * * *---*-- r*----*~ I~~*--

~)--*-********-****-*-**"***--"-1___1 .._... Z~E~.:~  ! *-------'!1L**------\*-*-**----\-*-**-***-*t*--******T-*-**-*-*---*****-*----- ---*----------***--*-----

4 c -*----** -----** -* "-~~ I i .

~

OPRM Armed Region ffi 50 I ~~V-/ V

~ 40 Scram Region

- 1 --' =:;t2:f7~ 1/4j-***-******-j**--**-****+***-*-*****+--**-******~-*****-*--~*****---*-*' l*11

=

~ 30 o ---*------- -----*---*+*----*----l---**-------1--.-**-*-e i1 I ,/'

.v L__ . Controlled Entry

. Ir___ -*----*-*-- Ti J.:j .J ! ---

_. _______ it11 ___________,_ _* * *-* '*----------'- ------~------*-***-*-*-----L.-..

-, 1 u 20  ::: ***:***:~1------*----,---------***~;t~~jt=*- - -~ *-.* -.*:._*-_ *_ -_ .-_* -_ -, =L:~;;~a~t;;+~-!-_.e_-_*~-*-~-*,jb1-._-~*- - _~-.--~........ ~~ N:=-+*********+***************************-*****

10 I ~ . . . ***7v i ' ' SLO is prohibited in MELLLA+ region

  • o  : 1 1 I 1 1 l 0 10 20 30 40 50 60 70 80 90 100 110 120 CORE FLOW (MLB/HR)

Figure 4 Backup Stability Protection Region Boundaries for Normal Feedwater Temperature (NFWf)

COLR Page 29 LBDCR 2020-026

CORE OPERATING LIMITS REPORT CORE FLOW(% rated) 0 10 20 30 40 50 60 70 80 90 100 110 110 l l l l i l 100 Implemented BSP Boundary 90

                    • +*********+**********'***********1***********:*********+********'.**********1***********'.**********+**********'.******-*+**********'.***********I****** ~ ----------.. ----------+----*----,t----------1-------1---1 80
                    • +**********1******-*-:***********1***********:*********+**********:**********1***********i**********+**********:**********1~1********!i.......... ,..........., .........+ ..***************************************************************

-10

"'C Q)

(0

._ 60 1--------+--------+-~ MELLLA Boundary K 1----******+-**------t*-A-1**-**----

': Vi  ! 1________ 1---------+---------+****--****I--*-------+-*-*-----+-*-+*-+-*--+-*

Ji

-0~

0w::: 50 l I ~-r- ~ r'

'**--+------------*--*--+---------- 1 ----------+-----iii--f"-------:~--------1 I!

OPRM Armed Region ********-*------*---,-----------*-*--*-----*

3: * ****+J Scram Region f~ +----------: ---*--*---+----------:**-------*-1**********+*********+********-li******----+*****---**l*------*-*-t-*-----****: **********+****..***+********************************

2w 40 Ji a::: 1----------+---------+---------- :----------+--------- L. f ******i *~ Controlled Entry f l*****l*********l*********+*****;t*****j**********j********j*****~***********************

0 30 u

20 f~L**** 1..........  ;......... I i ttl***********l**********f**********l***** C,v,ratirn Piotect:on--+---+--

oo~

10 E:f:4--f4 *_;

1-********-+**-**--***t----- a * * ~ *

  • 10 20 l;f +

30 t .:

40 I

50 t *:*

i l 60 CORE FLOW (MLB/HR)

+; 1*;+*1-+*1 70 80 90 100 110

!j IlI 120 130 Figure 5 Backup Stability Protection Region Boundaries for Reduced Feedwater Temperature (RFWf)

COLR Page 30 LBDCR 2020-026

GNRO-2020/00020 Page 4 of 4 Attachment 2 Pressure and Temperature Limits Report (PTLR)

Grand Gulf Nuclear Station Pressure and Temperature Limits Report (PTLR)

Up to 35 Effective Full-Power Years (EFPY) and 54 EFPY Revision 3 PTLR Page 1 LBDCR 2020-024

Table of Contents 1.0 Purpose .....................................................................................3 2.0 Applicability ................................................................................. 3 3.0 Methodology ................................................................................ 3 4.0 Operating Limits ........................................................................... 4 5.0 Discussion ...................................................................................5 6.0 Negative Pressure in the Reactor Vessel. .......................................... 8 7.0 References ................................................................................. 9 Figure 1 - Composite P-T Curves Effective for up to 35 EFPY ....................... 10 Figure 2 - Composite P-T Curves Effective for up to 54 EFPY ....................... 11 Table 1 - Tabulation of Curves - 35 EFPY ................................................ 12 Table 2 - Tabulation of Curves - 54 EFPY ................................................ 16 Appendix A - Reactor Vessel Material Surveillance Program ........................ 20 Appendix B -ART Table for EFPY 35 ....................................................... 21 Appendix C - ART Table for EFPY 54 ....................................................... 25 Appendix D - GGNS Reactor Vessel P-T Curve Supporting Plant lnformation ... 29 PTLR Page 2 LBDCR 2016-265

1.0 Purpose The purpose of the Grand Gulf Nuclear Station (GGNS) Pressure and Temperature Limits Report (PTLR) is to present operating limits relating to:

1. Reactor Coolant System (RCS) Pressure versus Temperature limits during Heatup, Cooldown, and Hydrostatic/Class 1 Leak Testing;
2. RCS Heatup and Cooldown rates;
3. Reactor Pressure Vessel (RPV) to recirculation loop ~T requirements during Recirculation Pump startups;
4. RPV bottom head coolant temperature to RPV coolant temperature ~T requirements during Recirculation Pump startups;
5. RPV head flange bolt-up temperature limits.

This report has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.6, "Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMTS REPORT (PTLR).

2.0 Applicability This report is applicable to the GGNS RPV for up to 35 Effective Full-Power Years (EFPY) and 54 EFPY.

The following TS is affected by the information contained in this report:

TS 3.4.11 RCS Pressure and Temperature (PIT) Limits 3.0 Methodology The limits in this report were derived from the NRG-approved methods listed in TS 5.6.6 using the specific revision listed below:

1. The neutron fluence was calculated per Engineering Report MPM-814779, Rev. 5, Neutron Transport Analysis For Grand Gulf Nuclear Station, May 2015. (Ref. 7.1)
2. The pressure and temperature limits were calculated per GE Hitachi Nuclear Energy Methodology for Development of Reactor Pressure Vessel Pressure-Temperature Curves, NEDC-33178P-A, Rev. 1, June 2009 (Reference 7.2)

PTLR Page 3 LBDCR 2016-265

This revision of the PTLR incorporates the following changes:

  • Fluence application for operation at 4,408 MWt
  • New surveillance data from the Integrated Surveillance Program (ISP)
  • 35 EFPY with new fluence methodology
  • 54 EFPY for Licensing Renewal with new fluence methodology
  • Negative Pressure in the reactor vessel As discussed in Appendix A, GGNS participates in the BWRVIP Integrated Surveillance Program (ISP) and is not a host plant. No surveillance capsules are currently scheduled to be withdrawn and tested from the GGNS RPV. The GGNS surveillance capsules have an ISP status designation of deferred (standby) per Reference 7.4. The adjusted reference temperature (ART) values for 35 EFPY included in Appendix B and 54 EFPY included in Appendix C are developed using the latest ISP published surveillance data available that is representative of the applicable materials in the GGNS RPV beltline (Ref. 7.3). The surveillance data used in the ART calculations is not obtained from actual GGNS RPV test specimens.

Should actual surveillance capsules be withdrawn and tested from the GGNS RPV (e.g., status change to be an ISP host plant under the BWRVIP ISP), compliance with 10CFR50, Appendix H requirements on reporting test results and evaluations on the effects to plant operations parameters (e.g., P-T limits, hydrostatic and leak test conditions will be in accordance with Section 3 of Reference 7.3.

Changes to the curves, limits or parameters within this PTLR, based upon new irradiation fluence data of the RPV, surveillance capsule data of the RPV, or other plant design assumptions in the Updated Final Safety Analysis Report (UFSAR), can be made pursuant to 10CFR50.59, provided the above methodologies are utilized. The revised PTLR shall be submitted to the NRC upon issuance.

4.0 Operating Limits The pressure-temperature (P-T) curves (See Figures 1-2) included in this report represent top head pressure versus minimum vessel metal temperature and incorporate the appropriate non-beltine limits and irradiation embrittlement effects in the beltline region. The operating limits for pressure and temperature are required for three categories of operation:

1) Curve A: Pressure Test (Hydrostatic Pressure Test and Leak Test)

Curve A may be used during pressure tests at times when the coolant temperature heatup or cooldown rate in :520°F/hr during a hydrotest and when the core is not critical.

2) Curve B: Non-Nuclear Heatup / Cooldown PTLR Page 4 LBDCR 2016-265

Curve B must be used whenever Curve A or Curve C do not apply. In other words, this curve must be followed during times when the coolant heatup or cooldown rate is greater than 20°F/hr during a pressure test and when the core is not critical.

Additionally, when performing low-power physics testing, Curve B must be followed.

The heatup and cooldown rate is limited to ~100°F/hr when using Curve B.

3) Curve C: Core critical Operation This curve must be used when the core is critical with the exception as noted in 2) during low-power physics testing activities. The heatup and cooldown rate is limited to ~100°F/hr when using Curve C.

Complete P-T curves were developed for 35 EFPY and 54 EFPY. The P-T curves are provided in Section Figures 1-2 and a tabulation of the curves is included in Tables 1-2.

Other temperature limits applicable to the RPV are:

  • RPV bottom head coolant temperature to RPV coolant temperature /J. T limit during Recirculation Pump startup: ~ 100°F.
  • Recirculation loop coolant temperature in the loop to be started to RPV coolant temperature /J. T limit during Recirculation Pump startup: ~ 50°F.

5.0 Discussion The computer codes described in References 7 .1, 7.2 and 7 .6 were used in the development of the P-T curves for GGNS.

The method for determining the initial Reference Temperature of the Nil-Ductility Transition (RT NDT) for all vessel materials is that defined in Section 4.1.2 of Reference 7.2. Initial RT NDT values for all vessel materials considered are presented in tables in Appendix B, "GGNS Reactor Pressure Vessel P-T Curve Supporting Plant-Specific Information."

For GGNS, there are four thickness discontinuities: 1) Bottom Head to Support Skirt; 2)

Bottom Head to Shell #1; 3) Shell #1 to Shell Ring #2, and 4) Shell Ring #3 and Shell Ring #4. There is also a thickness discontinuity between the top head dollar plate and torus; this discontinuity is bounded by the top head evaluation. The P-T curves defined in Section 5.0 of Reference 7 .5 are based upon an RT NDT of 10°F for Bottom Head Curve A for the plates and -20°F for the welds for the hydrostatic pressure test conditions. The results of the discontinuity analysis demonstrate that the linearized stresses in the Bottom head and cylindrical shell regions are bounded by the Bottom Head (CRD) Curve B, the Upper Vessel Curve B, and the beltline Curve B. The maximum RT NDT for the bottom head, Shell #3 to Shell #4 is 10°F for the plates and -

PTLR Page 5 LBDCR 2016-265

20°F for the welds. At 54 EFPY, the maximum RT NOT (ART) for the Shell #1 to Shell #2!

region is 51.1 °F for the plates and 16.1 °F for the welds. At 35 EFPY, the maximum!

RT NDT (ART) for the Shell #1 to Shell #2 region is 41.8°F for the plates and 4.9°F for the!

welds. The 54 EFPY beltline curves are based on an ART of 51.1 °F. Curves based on!

these temperatures bound the requirements due to the thickness discontinuities.

The ART of the limiting beltline material is used to adjust the beltline P-T curves to!

account for irradiation effects. Regulatory Guide 1.99, Revision 2 (RG 1.99) provides!

the methods for determining the ART. The RG 1.99 methods for determining the!

limiting material and adjusting the P-T curves using ART are discussed in this section.

The vessel beltline copper and nickel values, except for the N 12 nozzle were obtained!

from the evaluation presented in the Integrated Surveillance Program (Reference 7.3).!

The N 12 nozzle was evaluated using the limiting material properties (Chemistry and!

initial RT Nor) of the adjoining Shell Ring #2. The copper (Cu) and nickel (Ni) values!

were used to determine chemistry factors (CF) in accordance with RG 1.99 and!

Reference 7 .3 for welds and plates. ART values for 35 EFPY are included in Appendix!

B. ! ART values for 54 EFPY are included in Appendix C.

The N6 RHR/LPCI nozzle occurs in Shell #3 and falls within the beltline region as a!

result of the update fluence provided in [7.1]. Sufficient information is contained in the!

N6 CMTRs to enable evaluation for the ART. The GGNS EPU P-T curves have been!

prepared considering the requirements for the N6 nozzle.

The P-T curves for the non-beltline region were developed for a Boiling Water Reactor!

Product Line 6 (BWR/6) with nominal inside diameter of 251 inches. The analysis is!

considered appropriate for GGNS, since it is a BWR/6 with a nominal inside diameter of!

251 inches. The generic value was adapted to the conditions as GGNS using plant-specific RT NOT values for the reactor pressure vessel.

The peak RPV ID fluence used in the P-T curve evaluation for 35 effective full power!

years (EFPY) is 2.14E+18 n/cm 2 , which was calculated using methods that comply with!

the guidelines of RG 1.190 (Reference 7.1 ). The peak!(Overall Maximum)!RPV ID!

fluence used in the P-T curve evaluation for 54 effective full power years (EFPY) is!

3.40E+18 n/cm 21 (Reference 7 .11 ).

This 54 EFPY fluence applies to the lower-intermediate plates and associated!

longitudinal welds. The fluence is adjusted for the lower plates and associated!

longitudinal welds and the girth weld based upon a factor of!0.1244; hence, the peak ID!

fluence for these components, at this location,!is!4.23E+17!n/cm 2 . Similarly, the fluence!

is adjusted for the N12 nozzle based upon a factor of!0.1115; hence the peak ID surface PTLR Page 6 LBDCR 2020-024

fluence used for this component is!3.79E+17! n/cm 2 . The fluence is adjusted for the N6!

nozzle based upon a factor of! 0.0606; hence the peak ID surface fluence used for this!

component, at this location, is!2.06E+17 n/cm 2 .

It is to be noted that Fluence dpa attenuation was calculated for all the materials that need! to be included in the PTL Curve analysis. The fluence values calculated in Reference![7.11] are less than those reported in Reference [7-1] at exposures of 35 and 54 EFPY. !Therefore, the PTL Curves currently in this PTLR (Figures 1 and 2), and the ART values!(Appendix B, Table 4-2a and Appendix C, Table 4-2b) supporting these Curves, are!bounding, remain valid, and are still applicable. Thus, they do not need to be changed!and have not been revised.

From Reference [7.11], the calculated dpa for the maximum Peak fluence value is located! in Shell 2 (Plate) of the RPV. The attenuated fluence values using the data from! Reference 7.11 and RG 1.99 have been calculated for the needed exposures (e.g., 35! EFPY and 54 EFPY) for use in development of the PTL Curves. The fluence was! calculated using both the alternative dpa attenuation analysis and the exponential!attenuation factor in Equation 3 of Reg. Guide 1.99. Both yield comparable results. The! calculated dpa attenuation data is slightly more conservative at the RPV ID wetted surface!and the 1/4T locations in the RPV, and the exp(-0.24x) equation is more conservative at!the 3/4T position. However, the exponential attenuation factor in Equation 3 of Reg. Guide! 1.99 may not be conservative at elevations above and below the active fuel.

The P-T curves for the heatup and cooldown operating conditions as a given EFPY!

apply for both 1/4T and 3/4T locations. When combining pressure and thermal stresses, it!

is usually necessary to evaluate stresses at the 1/4T location (inside surface flaw) and !the 3/4T location (outside surface flaw). This is because the thermal gradient tensile !stress of interest is in the inner wall during cooldown and the outer wall during heatup. !However, as a conservative simplification, the thermal gradient stress at the 1/4T location !is assumed to be tensile for both heatup and cooldown. This results in the approach of!

applying the maximum tensile stress at the 1/4T location. This approach is conservative!

because irradiation effects cause the allowable toughness, K1R, at 1/4T to be less than!

that at 3/4T for a given metal temperature. This approach causes no operational!

difficulties, since the BWR is at steam saturation conditions during normal operation,!are well above the heatup/cooldown temperature curve limits.

For the core not critical curve (Curve B) and the core critical curve (Curve C), the P-T!

curves specify a coolant heatup and cooldown temperature rate of~ 100°F/hr for which!

the curves are applicable. However, the core not critical and the core critical curves!

were also developed to bound transients defined on the RPV thermal cycle diagram and!

the nozzle thermal cycle diagrams. The PIT limits and corresponding heatup/cooldown PTLR Page 7 LBDCR 2020-024

rates of either Curve A or B may be applied while achieving or recovering from hydrostatic pressure and leak test conditions. Curve A may be used for the hydrostatic pressure and leak test if a coolant heatup and cooldown rate of :5 20°F/hr is maintained.

Otherwise, the limits of Curve B apply when performing the hydrostatic pressure and leak test.

Section 5.3.3 of the GGNS UFSAR[7.7] discusses evaluations performed for a Design Basis Accident in GE report NEDO 10029[7.8]. The UFSAR states that this analysis considered very conservative assumptions in the fracture mechanics area, resulting in an upper bound limit on brittle fracture failure mode studies. It was concluded that catastrophic failure of the pressure vessel due to such an accident will not occur from the fracture mechanics perspective. The results of the 60 years (54 EFPY) analysis provided in this appendix, based on a more representative fluence, further support these conclusions.

In order to ensure that the limiting vessel discontinuity has been considered in the development of the P-T curves, the methods in Sections 4.3.2.1 and 4.3.2.2 of Ref. 7.2 for the non-beltline and beltline regions, respectively applied.

6.0 Negative Pressure in Reactor Vessel Grand Gulf operation has included operating the vessel at vacuum (less than atmospheric pressure). CR-GGN-2016-3150 determined that the actions from CR-GGN-2013-7021 and CR-GGN-2015-0867 were not effective in preventing reactor steam dome pressure from going negative. The issue occurs during start up or shut down or any abnormal condition where the MSIV's are open and the condenser has vacuum and the vessel is depressurized.

Calculation MC-O1B13-16001 [7.9] has been issued addressing negative pressure in the reactor vessel. To simplify the analysis it is assumed that a vacuum in the vessel is equivalent to an external pressure of 14.7 psia with zero psia in the vessel. For determining the maximum permitted external pressure, the 2010 ASME B&PV Code

[7.10], rules are applied to procedure NB-3133.2.

The evaluation determines the shell is limiting at 523 psig external pressure. For this assessment the flange stiffness has been ignored for both shell and head external pressure calculations and the shell was assumed the full length of the vessel. It is concluded that the vessel is in no danger of collapse from an external pressure or vacuum from the condenser. Substantial margin exists between the reactor and condenser.

PTLR Page 8 LBDCR 2016-265

7.0 References 7.1 Neutron Transport Analysis for Grand Gulf Nuclear Station, Report Number MPM-814779, Revision 5, May 2015, 7 .2 Final Safety Evaluation for Boiling Water Reactors Owners Group Licensing Topical Report NEDC-33178P, General Electric Methodology for Development of Reactor Pressure Vessel Pressure-Temperature Curves, Revision 1, June 2009.

(NRC SER included in the ML092370487),

7 .3 BWR Vessel and Internals Project Integrated Surveillance Program (ISP) Data Source Book and Plant Evaluations, BWRVIP-135, Revision 3, EPRI, Palo Alto, CA, (EPRI Proprietary),

7.4 BWR Vessel and Internals Project, Updated BWR Integrated Surveillance Program (ISP) Implementation Plan, BWRVIP-86-A, EPRI, Palo Alto, CA: 2002.

1003346. (EPRI Proprietary),

7.5 Grand Gulf Nuclear Station EPU - Pressure-Temperature Limits Report, GGNS-NE-10-00073, Rev. 1, July 2015, 7.6 Benchmarking of MPM Methods for Nuclear Plant Neutron Transport Calculations, Report Number MPM-614993, Revision 5, May 2015, 7.7 GGNS UFSAR, Section 5.3.3, "Reactor Vessel Integrity",

7.8 "An Analytical Study on Brittle Fracture of GE-BWR Vessels Subject to the Design Basis Accident", GE-APED, San Jose, CA, (NEDO-10029), June 1969, 7.9 Reactor Vessel Negative Pressure During Startup, Shutdown and Off-Normal Conditions, MC-O1B13-16001, Rev. 0, 7.10 2010 ASME Boiler and Pressure Vessel Code, Section Ill Division 1 -

Subsection NB Class 1 Components, 7.11 Neutron Transport Analysis for Grand Gulf Nuclear Station, Report Number!

MPM-814779, Revision 5B, February 2020.

PTLR Page 9 LBDCR 2020-024

Figure 1: Composite P-T Curves [Curves A, B, CJ up to 35 EFPY

[Without Uncertainty for Instrumentation Errors]

Curve A Curve B Curve C 1400 ACCEPTABLE REGION OF 1300 OPERATION IS 1200 TO THE RIGHT I OF THE I

I APPLICABLE 1100 I CURVE I

I 001000 I HEATUP/COOLDOWN "iii I I C.

I I RATE OF COOLANT

~ 20°F/HR FOR

~ 900 I I I I

w

c CURVE A, ~ 100°F/HR I I Q.

l I FOR

~

_, 800 CURVES B&C i

w I' V,

V,

~ 700 a::

....0 BOTTOM

~

w 600 HEAD a:: (CURVE B) z

.,_ 500

~

w

~ 400 V,

00 V,

w a::

o. 300

- A - PRESSURE TEST WITH FUEL IN THE VESSEL 200 B - NON-NUCLEAR 100 HEATUP/COOLDOWN CORE NOT CRITICAL 0 BOTTOM HEAD 68°F -C-NUCLEAR BOLTUP HEATUP/COOLDOWN CORE 70°F

-14.7 CRITICAL 0 25 50 75 100 125 150 175 200 225 MINIMUM REACTOR VESSEL METAL TEMPERATURE (F)

PTLR Page 10 LBDCR 2016-265

Figure 2: Composite P-T Curves [Curves A, B, C] up to 54 EFPY

[Without Uncertainty for Instrumentation Errors]

Curve A Curve B Curve C 1400 ACCEPTABLE REGION OF 1300 OPERATION IS 1200 TO THE RIGHT OF THE APPLICABLE 1100 CURVE HEATUP/COOLDOWN 1000 bO RATE OF COOLANT

'vi 3  ::;; 20°F/HR FOR C 900 CURVE A, ::;; 100°F/HR c:i:

LU

c FOR 0.. CURVES B&C

~ 800

...I LU

~

~

~ 700 0:::

0 t-u BOTTOM

<i:

LU 600 HEAD 0::: (CURVE Bl z

i 500 LU

~

~

400

~

LU 0::: 312 PSIG 0..

300

- PRESSURE TEST WITH FUEL IN THE VESSEL 200 B NON-NUCLEAR 100 BOTTOM HEAD 68°F HEATUP/COOLDOWN CORE NOT CRITICAL 0 - NUCLEAR BOLTUP HEATUP/COOLDOWN CORE 70°F CRITICAL

-14.7 0 25 50 75 100 125 150 175 200 225 MINIMUM REACTOR VESSEL METAL TEMPERATURE (F)

PTLR Page 11 LBDCR 2016-265

Table 1 - Tabulation of Curves -35 EFPY Required Metal Temperature with Required Coolant Heatup / Cooldown Rate at 100°F/hr for Curves B & C and 20°F/hr for Curve A for Figure 1 Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 35 EFPY Head 35 EFPY Head 35 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF)

-14.7 68 70 68 70 70 0 68 70 68 70 70 10 68 70 68 70 70 20 68 70 68 70 70 30 68 70 68 70 70 40 68 70 68 70 70 so 68 70 68 70 70 60 68 70 68 70 70 70 68 70 68 70 70 80 68 70 68 70 70 90 68 70 68 70 70 100 68 70 68 70 70 110 68 70 68 70 72.6 120 68 70 68 70 77.2 130 68 70 68 70 81.4 140 68 70 68 70 85.1 150 68 70 68 70 88.4 160 68 70 68 70 91.5 170 68 70 68 70 94.5 180 68 70 68 70 97.3 190 68 70 68 70 99.8 200 68 70 68 70 102.2 210 68 70 68 70 104.5 220 68 70 68 70 106.7 230 68 70 68 70 108.8 240 68 70 68 70.7 110.7 250 68 70 68 72.6 112.6 260 68 70 68 74.4 114.4 270 68 70 68 76.1 116.1 280 68 70 68 77.8 117.8 290 68 70 68 79.4 119.4 300 68 70 68 81 121 310 68 70 68 82.5 122.5 312.5 68 70 68 82.8 122.8 PTLR Page 12 LBDCR 2016-265

Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 35 EFPY Head 35 EFPY Head 35 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF) 312.51 68 100 68 130 170 320 68 100 68 130 170 330 68 100 68 130 170 340 68 100 68 130 170 350 68 100 68 130 170 360 68 100 68 130 170 370 68 100 68 130 170 380 68 100 68 130 170 390 68 100 68 130 170 400 68 100 68 130 170 410 68 100 68 130 170 420 68 100 68 130 170 430 68 100 68 130 170 440 68 100 68 130 170 450 68 100 68 130 170 460 68 100 68 130 170 470 68 100 68 130 170 480 68 100 68 130 170 490 68 100 68 130 170 500 68 100 68 130 170 510 68 100 68 130 170 520 68 100 68 130 170 530 68 100 68 130 170 540 68 100 68 130 170 550 68 100 68 130 170 560 68 100 68 130 170 570 68 100 68 130 170 580 68 100 68 130 170 590 68 100 68 130 170 600 68 100 68 130 170 610 68 100 68 130 170 620 68 100 68 130 170 630 68 100 68 130 170 640 68 100 68 130 170 650 68 100 68 130 170 660 68 100 68 130 170 670 68 100 68 130 170 680 68 100 68.7 130 170 690 68 100 69.9 130 170 700 68 100 71 130 170 PTLR Page 13 LBDCR 2016-265

Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 35 EFPY Head 35 EFPY Head 35 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF) 710 68 100 72.2 130 170 720 68 100 73.3 130 170 730 68 100 74.4 130 170 740 68 100 75.5 130 170 750 68 100 76.6 130 170 760 68 100 77.6 130 170 770 68 100 78.6 130 170 780 68 100 79.6 130 170 790 68 100 80.6 130 170 800 68 100 81.5 130 170 810 68 100 82.5 130 170 820 68 100 83.4 130 170 830 68 100 84.3 130 170 840 68 100 85.2 130 170 850 68 100 86 130 170 860 68 100 86.9 130 170 870 68 100 87.7 130 170 880 68 100 88.6 130 170 890 68 100 89.4 130 170 900 68 100 90.2 130 170 910 68 100 91 130.1 170.1 920 68 100 91.7 130.5 170.5 930 68 100 92.5 130.8 170.8 940 68 100 93.3 131.2 171.2 950 68 100 94 131.5 171.5 960 68 100 94.7 131.8 171.8 970 68.6 100 95.5 132.2 172.2 980 69.4 100 96.2 132.5 172.5 990 70.2 100 96.9 132.8 172.8 1000 71 100 97.6 133.2 173.2 1010 71.7 100 98.2 133.5 173.5 1020 72.5 100.3 98.9 133.8 173.8 1030 73.3 100.9 99.6 134.1 174.1 1035 73.6 101.2 99.9 134.3 174.3 1040 74 101.5 100.2 134.5 174.5 1050 74.7 102 100.9 134.8 174.8 1055 75.1 102.3 101.2 134.9 174.9 1060 75.4 102.6 101.5 135.1 175.1 1070 76.2 103.1 102.1 135.4 175.4 1080 76.9 103.6 102.8 135.7 175.7 PTLR Page 14 LBDCR 2016-265

Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 35 EFPY Head 35 EFPY Head 35 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF) 1090 77.6 104.2 103.4 136 176 1100 78.2 104.7 104 136.4 176.4 1105 78.6 104.9 104.3 136.5 176.5 1110 78.9 105.2 104.6 136.7 176.7 1120 79.6 105.7 105.2 137 177 1130 80.2 106.2 105.8 137.3 177.3 1140 80.9 106.7 106.3 137.6 177.6 1150 81.5 107.2 106.9 137.9 177.9 1160 82.1 107.7 107.5 138.2 178.2 1170 82.8 108.2 108 138.5 178.5 1180 83.4 108.7 108.6 138.8 178.8 1190 84 109.2 109.1 139 179 1200 84.6 109.6 109.7 139.3 179.3 1210 85.2 110.1 110.2 139.6 179.6 1220 85.8 110.6 110.8 139.9 179.9 1230 86.3 111 111.3 140.2 180.2 1240 86.9 111.5 111.8 140.5 180.5 1250 87.5 111.9 112.3 140.8 180.8 1260 88 112.4 112.8 141 181 1270 88.6 112.8 113.3 141.3 181.3 1280 89.1 113.3 113.8 141.6 181.6 1290 89.7 113.7 114.3 141.9 181.9 1300 90.2 114.1 114.8 142.2 182.2 1310 90.7 114.6 115.3 142.4 182.4 1320 91.3 115 115.8 142.7 182.7 1330 91.8 115.4 116.2 143 183 1340 92.3 115.8 116.7 143.2 183.2 1350 92.8 116.2 117.2 143.5 183.5 1360 93.3 116.7 117.6 143.8 183.8 1370 93.8 117.1 118.1 144 184 1380 94.3 117.5 118.5 144.3 184.3 1390 94.8 117.9 119 144.6 184.6 1400 95.3 118.3 119.4 144.8 184.8 PTLR Page 15 LBDCR 2016-265

Table 2 - Tabulation of Curves -54 EFPY Required Metal Temperature with Required Coolant Heatup / Cooldown Rate at 100°F/hr for Curves B & C and 20°F/hr for Curve A for Figure 2 Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 54 EFPY Head 54 EFPY Head 54 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF)

-14.7 68 70 68 70 70 0 68 70 68 70 70 10 68 70 68 70 70 20 68 70 68 70 70 30 68 70 68 70 70 40 68 70 68 70 70 50 68 70 68 70 70 60 68 70 68 70 70 70 68 70 68 70 70 80 68 70 68 70 75.4 90 68 70 68 70 81.8 100 68 70 68 70 87.4 110 68 70 68 70 92.4 120 68 70 68 70 97 130 68 70 68 70 101.2 140 68 70 68 70 104.9 150 68 70 68 70 108.2 160 68 70 68 71.3 111.3 170 68 70 68 74.3 114.3 180 68 70 68 77.1 117.1 190 68 70 68 79.6 119.6 200 68 70 68 82 122 210 68 70 68 84.3 124.3 220 68 70 68 86.5 126.5 230 68 70 68 88.6 128.6 240 68 70 68 90.5 130.5 250 68 70 68 92.4 132.4 260 68 70 68 94.2 134.2 270 68 70 68 95.9 135.9 280 68 70 68 97.6 137.6 290 68 70 68 99.2 139.2 300 68 70 68 100.8 140.8 310 68 70 68 102.3 142.3 312.5 68 70 68 102.6 142.6 312.51 68 100 68 130 170 320 68 100 68 130 170 PTLR Page 16 LBDCR 2016-265

Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 54 EFPY Head 54 EFPY Head 54 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF) 330 68 100 68 130 170 340 68 100 68 130 170 350 68 100 68 130 170 360 68 100 68 130 170 370 68 100 68 130 170 380 68 100 68 130 170 390 68 100 68 130 170 400 68 100 68 130 170 410 68 100 68 130 170 420 68 100 68 130 170 430 68 100 68 130 170 440 68 100 68 130 170 450 68 100 68 130 170 460 68 100 68 130 170 470 68 100 68 130 170 480 68 100 68 130 170 490 68 100 68 130 170 500 68 100 68 130 170 510 68 100 68 130 170 520 68 100 68 130 170 530 68 100 68 130 170 540 68 100 68 130 170 550 68 100 68 130 170 560 68 100 68 130 170 570 68 100 68 130 170 580 68 100 68 130.6 170.6 590 68 100 68 131.4 171.4 600 68 100 68 132.2 172.2 610 68 100 68 132.9 172.9 620 68 100 68 133.6 173.6 630 68 100 68 134.4 174.4 640 68 100 68 135.1 175.1 650 68 100 68 135.8 175.8 660 68 100 68 136.5 176.5 670 68 100 68 137.1 177.1 680 68 100 68.7 137.8 177.8 690 68 100 69.9 138.5 178.5 700 68 100 71 139.1 179.1 710 68 100 72.2 139.8 179.8 720 68 100 73.3 140.4 180.4 PTLR Page 17 LBDCR 2016-265

Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 54 EFPY Head 54 EFPY Head 54 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF} (OF) (OF) (OF} (OF) 730 68 100.2 74.4 141 181 740 68 101 75.5 141.6 181.6 750 68 101.9 76.6 142.2 182.2 760 68 102.7 77.6 142.9 182.9 770 68 103.5 78.6 143.4 183.4 780 68 104.2 79.6 144 184 790 68 105 80.6 144.6 184.6 800 68 105.8 81.5 145.2 185.2 810 68 106.5 82.5 145.7 185.7 820 68 107.3 83.4 146.3 186.3 830 68 108 84.3 146.9 186.9 840 68 108.7 85.2 147.4 187.4 850 68 109.4 86 147.8 187.8 860 68 110.1 86.9 148.1 188.1 870 68 110.8 87.7 148.5 188.5 880 68 111.5 88.6 148.9 188.9 890 68 112.2 89.4 149.2 189.2 900 68 112.8 90.2 149.6 189.6 910 68 113.5 91 149.9 189.9 920 68 114.1 91.7 150.3 190.3 930 68 114.8 92.5 150.6 190.6 940 68 115.4 93.3 151 191 950 68 116 94 151.3 191.3 960 68 116.6 94.7 151.6 191.6 970 68.6 117.2 95.5 152 192 980 69.4 117.8 96.2 152.3 192.3 990 70.2 118.4 96.9 152.6 192.6 1000 71 119 97.6 153 193 1010 71.7 119.6 98.2 153.3 193.3 1020 72.5 120.1 98.9 153.6 193.6 1030 73.3 120.7 99.6 153.9 193.9 1035 73.6 121 99.9 154.1 194.1 1040 74 121.3 100.2 154.3 194.3 1050 74.7 121.8 100.9 154.6 194.6 1055 75.1 122.1 101.2 154.7 194.7 1060 75.4 122.4 101.5 154.9 194.9 1070 76.2 122.9 102.1 155.2 195.2 1080 76.9 123.4 102.8 155.5 195.5 1090 77.6 124 103.4 155.8 195.8 1100 78.2 124.5 104 156.2 196.2 PTLR Page 18 LBDCR 2016-265

Upper Upper Vessel & Vessel &

Bottom Beltline Bottom Beltline 54 EFPY Head 54 EFPY Head 54 EFPY Beltline Pressure Curve A Curve A Curve B Curve B Curve C Psig (OF) (OF) (OF) (OF) (OF) 1105 78.6 124.7 104.3 156.3 196.3 1110 78.9 125 104.6 156.5 196.5 1120 79.6 125.5 105.2 156.8 196.8 1130 80.2 126 105.8 157.1 197.1 1140 80.9 126.5 106.3 157.4 197.4 1150 81.5 127 106.9 157.7 197.7 1160 82.1 127.5 107.5 158 198 1170 82.8 128 108 158.3 198.3 1180 83.4 128.5 108.6 158.6 198.6 1190 84 129 109.1 158.8 198.8 1200 84.6 129.4 109.7 159.1 199.1 1210 85.2 129.9 110.2 159.4 199.4 1220 85.8 130.4 110.8 159.7 199.7 1230 86.3 130.8 111.3 160 200 1240 86.9 131.3 111.8 160.3 200.3 1250 87.5 131.7 112.3 160.6 200.6 1260 88 132.2 112.8 160.8 200.8 1270 88.6 132.6 113.3 161.1 201.1 1280 89.1 133.1 113.8 161.4 201.4 1290 89.7 133.5 114.3 161.7 201.7 1300 90.2 133.9 114.8 162 202 1310 90.7 134.4 115.3 162.2 202.2 1320 91.3 134.8 115.8 162.5 202.5 1330 91.8 135.2 116.2 162.8 202.8 1340 92.3 135.6 116.7 163 203 1350 92.8 136 117.2 163.3 203.3 1360 93.3 136.5 117.6 163.6 203.6 1370 93.8 136.9 118.1 163.8 203.8 1380 94.3 137.3 118.5 164.1 204.1 1390 94.8 137.7 119 164.4 204.4 1400 95.3 138.1 119.4 164.6 204.6 PTLR Page 19 LBDCR 2016-265

Appendix A Reactor Vessel Material Surveillance Program In accordance with 10CFR50, Appendix H, Reactor Vessel Material Surveillance Program Requirements, the first surveillance capsule was removed from the GGNS reactor vessel during refueling outage (RFO)07 and returned to the reactor during RFO-08 without testing.

As described in GGNS Updated Final Safety Analysis Report (UFSAR) Section 5.3.1.6, Material Surveillance, the Integrated Surveillance Program will determine the removal schedule for the GGNS surveillance capsules. The Grand Gulf material surveillance program is administered in accordance with the BWR Vessel and Internals Project Integrated Surveillance Program (BWRVIP ISP). The ISP combines the U.S. BWR surveillance programs into a single integrate program. This program uses similar heats of materials in the surveillance programs of BWRs to represent the limiting materials in other vessels. It also adds data from the BWR Supplemental Surveillance Program (SSP). Per the BWRVIP ISP, no capsules are scheduled to be withdrawn from the Grand Gulf vessel. Other plants will remove and test specimens that represent the Grand Gulf vessel.

PTLR Page 20 LBDCR 2016-265

Appendix B GGNS Reactor Pressure Vessel Beltline EFPY 35 ART Values PTLR Page 21 LBDCR 2016-265

Table 4-2a: GGNS Beltline ART Values (35 EFPY)

Component HEAT %Cu %Ni CF Fitted or Initial 1/4T 35 EFPY O; Ot. Margin 35 EFPY 35 EFPY adjusted RTNDT Fluence A RTNDT OF Shift °F ART°F CF OF n/cm 2 OF OF PLANT-SPECIFIC CHEMISTRIES PLATES:

Shell Ring 3 (6) C2741-1 0.12 (7) 0.64 84 10 1.59E+17 12.5 0 6.3 12.5 25.0 35.0 C2741-2 0.12 (7) 0.64 84 -10 1.59E+17 12.5 0 6.3 12.5 25.0 15.0 (27479-1 0.12 (7) 0.64 83 10 1.59E+17 12.4 0 6.2 12.4 24.7 34.7 Shell Ring 2 C2593-2 0.04 0.59 26 -30 1.61E+18 13.5 0 6.7 13.5 27.0 -3.0 (2594-1 0.04 0.63 26 -10 1.61E+18 13.5 0 6.7 13.5 27.0 17.0 C2594-2 0.04 0.63 26 0 1.61E+18 13.5 0 6.7 13.5 27.0 27.0 A1224-1 0.04 0.65 26 0 1.61E+l8 13.5 0 6.7 13.5 27.0 27.0 Shell Ring 1 (6) Alll3-1 0.12 (7) 0.65 84 10 1.93E+l7 14.1 0 7.0 14.1 28.2 38.2 C2557-2 0.12 (7) 0.64 84 10 1.93E+17 14.1 0 7.0 14.1 28.1 38.1 C2506-1 0.12 (7) 0.66 84 -20 1.93E+17 14.1 0 7.1 14.1 28.2 8.2 AXIAL WELDS(l):

Shell Ring 3 (6) 5P6214B/0331 Single 0.02 0.82 27 -50 1.59E+l7 4.0 0 2.0 4.0 8.0 -42.0 5P6214B/0331 Tandem 0.014 0.70 23 -40 1.59E+17 3.4 0 1.7 3.4 6.8 -33.2 Shell Ring 2 5P6214B/0331 Single 0.02 0.82 27 -50 1.61E+18 14.0 0 7.0 14.0 28.0 -22.0 5P6214B/0331 Tandem 0.02 0.82 27 -40 1.61E+18 14.0 0 7.0 14.0 28.0 -12.0 Shell Ring 1 (6) 5P6214B/0331 Single 0.02 0.82 27 -50 1.93E+l7 4.5 0 2.3 4.5 9.1 -40.9 5P6214B/0331 Tandem 0.02 0.82 27 -40 1.93E+l7 4.5 0 2.3 4.5 9.1 -30.9 CIRCUMFERENTIAL WELDS:

AB (2) 4P7216/0156 Single 0.03 0.79 41 -40 1.93E+17 6.9 0 3.4 6.9 13.8 -26.2 AB(2) 4P7216/0156 Tandem 0.03 0.81 41 -60 1.93E+l7 6.9 0 3.4 6.9 13.8 -46.2 AC(2) 5P6771/0342 Single 0.03 0.88 41 -30 1.59E+17 6.1 0 3.1 6.1 12.2 -17.8 AC(2) 5P6771/0342 Tandem 0.04 0.95 54 -20 1.59E+17 8.0 0 4.0 8.0 16.1 -3.9 PTLR Page 22 LBDCR 2016-265

Table 4-2a: GGNS Beltline ART Values (35 EFPY) Continued Component HEAT %Cu %Ni CF Fitted or Initial 1/4T 35 EFPY 11 O; Ot,. Margin 35 EFPY 35 EFPY adjusted CF RTNDT Fluence RTNDT OF Shift °F ART°F OF OF n/cm 2 OF NOZZLES:

N6 Forging (6) Q2QL2W 0.20 0.83 160 -20 1.13E+17 19.1 0 9.5 19.1 38.1 18.1 N6 Welds (6) 5P6756/0342 Single 0.08 0.93 108 -60 1.13E+17 12.9 0 6.4 12.9 25.7 -34.3 N6 Welds (6) 5P6756/0342 Tandem 0.09 0.92 122 -50 1.13E+17 14.5 0 7.3 14.5 29.1 -20.9 N12 (3) C2593-2 0.04 0.59 26 -30 1.76E+17 4.1 0 2.1 4.1 8.3 -21.7 N12 (3) C2594-2 0.04 0.63 26 0 1.76E+17 4.1 0 2.1 4.1 8.3 8.3 N12 Welds (3) SB166 BEST ESTIMATE CHEMISTRIES from BWRVIP-135 R3 Plate A1224-1 0.035 0.65 23 0 1.61E+18 11.9 0 6.0 11.9 23.9 23.9 Weld 5P6214B/0331 Single 0.019 0.828 26.3 -50 1.61E+18 13.6 0 6.8 13.6 27.3 -22.7 Weld 5P6214B/0331Tandem 0.019 0.828 26.3 -40 1.61E+18 13.6 0 6.8 13.6 27.3 -12.7 N6 Weld (6) 5P6756/0342 Single 0.080 0.936 108 -60 1.13E+17 12.9 0 6.4 12.9 25.7 -34.3 N6 Weld (6) 5P6756/0342 Tandem 0.080 0.936 108 -50 1.13E+17 12.9 0 6.4 12.9 25.7 -24.3 Weld AC (2) 5P6771/0342 Single 0.034 0.934 46 -30 1.59E+17 6.8 0 3.4 6.8 13.7 -16.3 Weld AC (2) 5P6772/0342 Tandem 0.034 0.934 46 -20 1.59E+17 6.8 0 3.4 6.8 13.7 -16.3 Weld AB (2) 4P7216/0156 Single 0.038 0.82 51.4 -40 1.93E+17 8.6 0 4.3 8.6 17.3 -22.7 Weld AB (2) 4P7216/0156 Tandem 0.038 0.82 51.4 -60 1.93E+17 8.6 0 4.3 8.6 17.3 -42.7 INTEGRATED SURVEILLANCE PROGRAM (BWRVIP-135 R3)

Plate A1224-1 0.Q35 0.65 47.87 (4) 0 1.61E+18 24.8 0 8.5 17.0 41.8 41.8 Weld 5P6214B Single 0.02 0.92 43.28 (4.5) -50 1.61E+18 22.5 0 11.2 22.5 44.9 -5.1 Weld 5P6214B Tandem 0.02 0.92 43.28 (4.5) -40 1.61E+18 22.5 0 11.2 22.5 44.9 4.9 PTLR Page 23 LBDCR 2016-265

Table 4-2a: GGNS Beltline ART Values (35 EFPY) Continued Notes:

[1] Use of SMAW Heats 422K8511, 627069, 626677, and 627260 was determined to be limited to weld pick-ups at the ID/OD surfaces or initial root pass or sealing at the backing bars which were ground out or subsequently removed. Certified Material Test Reports indicate that no SMAW weld material is present at either the 1/4Tor3/4 T Location. Therefore, these heats are not required to be evaluated as part of the beltline region.

[2] Welds AB and AC occur within the extended beltline region, defined as experiencing a fluence >1.0e17 m/cm 2 .

[3] The N12 Water Level Instrumentation Nozzle occurs in the beltline region. Because the forging and weld are non-ferritic material, the ART is calculated using the plate heats where the nozzles occur. For GGNS, these nozzles occur in only two (2) of the Shell 2 plates.

[4] The fitted CF (plate material) and adjusted CF (weld material) are determined using the methods defined in RG 1.99, R2, Position 2. Best estimate chemistry is considered.

[5] Weld Heat 56214B is represented by material in BWRVIP-135 R3 with two (2) different chemistries. Recommendations provided in BWRVIP-135 R3 have been employed to determine the surveillance chemistry used for calculating the adjusted CF. The adjusted CF is calculated using the best estimate chemistry to represent the vessel CF - (27/27) x 43.28 = 43.28°F. BWRVIP-135 R3 provides updated data for this weld that has been incorporated in this evaluation.

[6] Shell 1 and Shell 3 and the associated axial welds and nozzles are evaluated based on the extended beltline region.

[7] Copper content is not available; therefore the maximum allowable %Cu was obtained from the vessel design specification.

PTLR Page 24 LBDCR 2016-265

Appendix C GGNS Reactor Pressure Vessel Beltline EFPY 54 ART Values PTLR Page 25 LBDCR 2016-265

Table 4-2b: GGNS Beltline ART Values (54 EFPY)

Component HEAT %Cu %Ni CF Fitted or Initial 1/4T 54 EFPY a; 0A Margin 54 EFPY 54 EFPY adjusted RTNDT Fluence ~ RTNDT OF Shift °F ART°F CF OF n/cm 2 OF OF PLANT-SPECIFIC CHEMISTRIES PLATES:

Shell Ring 3 (6) (2741-1 0.12 (7) 0.64 84 10 3.04E+l7 18.6 0 9.3 18.6 37.2 47.2 (2741-2 0.12 (7) 0.64 84 -10 3.04E+l7 18.6 0 9.3 18.6 37.2 27.2 (27479-1 0.12 (7) 0.64 83 10 3.04E+l7 18.4 0 9.2 18.4 36.7 46.7 Shell Ring 2 C2593-2 0.04 0.59 26 -30 2.76E+l8 16.9 0 8.4 16.9 33.7 3.7 (2594-1 0.04 0.63 26 -10 2.76E+18 16.9 0 8.4 16.9 33.7 23.7 (2594-2 0.04 0.63 26 0 2.76E+l8 16.9 0 8.4 16.9 33.7 33.7 A1224-1 0.04 0.65 26 0 2.76E+18 16.9 0 8.4 16.9 33.7 33.7 Shell Ring 1 (6) Alll3-1 0.12 (7) 0.65 84 10 3.63E+17 20.S 0 10.3 20.S 41.1 51.1 C2557-2 0.12 (7) 0.64 84 10 3.63E+17 20.S 0 10.2 20.S 41.0 51.0 (2506-1 0.12 (7) 0.66 84 -20 3.63E+17 20.6 0 10.3 20.6 41.1 21.1 AXIAL WELDS(l):

Shell Ring 3 (6) SP6214B/0331 Single 0.02 0.82 27 -SO 3.04E+l7 6.0 0 3.0 6.0 12.0 -38.0-SP6214B/0331 Tandem 0.014 0.70 23 -40 3.04E+17 5.1 0 2.5 5.1 10.2 29.8 Shell Ring 2 SP6214B/0331 Single 0.02 0.82 27 -SO 2.76E+18 17.S 0 8.8 17.S 35.0 -15.0 SP6214B/0331 Tandem 0.02 0.82 27 -40 2.76E+l8 17.S 0 8.8 17.S 35.0 -5.0 Shell Ring 1 (6) SP6214B/0331 Single 0.02 0.82 27 -SO 3.63E+17 6.6 0 3.3 6.6 13.2 -36.8 SP6214B/0331 Tandem 0.02 0.82 27 -40 3.63E+17 6.6 0 3.3 6.6 13.2 -26.8 CIRCUMFERENTIAL WELDS:

AB (2) 4P7216/0156 Single 0.03 0.79 41 -40 3.63E+17 10.1 0 5.0 10.1 20.1 -19.9 AB (2) 4P7216/0156 Tandem 0.03 0.81 41 -60 3.63E+17 10.1 0 2.0 10.1 20.1 -39.9 AC(2) SP6771/0342 Single 0.03 0.88 41 -30 3.04E+l7 9.1 0 4.5 9.1 18.1 11.9 AC (2) SP6771/0342 Tandem 0.04 0.95 54 -20 3.04E+l7 12.0 0 6.0 12.0 23.9 3.9 PTLR Page 26 LBDCR 2016-265

Table 4-2b: GGNS Beltline ART Values (54 EFPY) Continued Component HEAT %Cu %Ni CF Fitted or Initial 1/4T 54 EFPY 11 O'; O't, Margin 54 EFPY 5 EFPY adjusted CF RTNDT Fluence RTNDT OF Shift °F ART°F OF OF n/cm 2 OF NOZZLES:

N6 Forging (6) Q2QL2W 0.20 0.83 160 -20 2.17E+17 28.9 0 14.5 28.9 57.9 37.9 N6 Welds (6) 5P6756/0342 Single 0.08 0.93 108 -60 2.17E+17 19.5 0 9.8 19.5 39.1 -20.9 N6 Welds (6) 5P6756/0342 Tandem 0.09 0.92 122 -50 2.17E+17 22.1 0 11.0 22.1 44.1 -5.9 N12 (3) C2593-2 0.04 0.59 26 -30 3.25E+l 7 6.0 0 3.0 6.0 12.0 -18.0 N12 (3) C2594-2 0.04 0.63 26 0 3.25E+17 6.0 0 3.0 6.0 12.0 12.0 N12 Welds (3) SB166 BEST ESTIMATE CHEMISTRIES from BWRVIP-135 R3 Plate A1224-1 0.035 0.65 23 0 2.76E+l8 14.9 0 7.5 14.9 29.9 29.9 Weld 5P6214B/0331 Single 0.019 0.828 26.3 -50 2.76E+18 17.1 0 8.5 17.1 34.1 -15.9 Weld 5P6214B/0331 Tandem 0.019 0.828 26.3 -40 2.76E+l8 17.1 0 8.5 17.1 34.1 -5.9 N6 Weld (6) 5P6756/0342 Single 0.080 0.936 108 -60 2.17E+17 19.5 0 9.8 19.5 39.1 -20.9 N6 Weld (6) 5P6756/0342 Tandem 0.080 0.936 108 -50 2.17E+17 19.5 0 9.8 19.5 39.1 -10.9 Weld AC (2) 5P6771/0342 Single 0.034 0.934 46 -30 3.04E+17 10.2 0 5.1 10.2 20.4 -9.6 Weld AC (2) 5P6772/0342 Tandem 0.034 0.934 46 -20 3.04E+l7 10.2 0 5.1 10.2 20.4 0.4 Weld AB (2) 4P7216/0156 Single 0.038 0.82 51.4 -40 3.63E+l7 12.6 0 6.3 12.6 25.2 -14.8 Weld AB (2) 4P7216/0156 Tandem 0.038 0.82 51.4 -60 3.63E+l7 12.6 0 6.3 12.6 25.2 -34.8 INTEGRATED SURVEILLANCE PROGRAM {BWRVIP-135 R3)

Plate A1224-1 0.Q35 0.65 47.87 (4) 0 2.76E+18 31.1 0 8.5 17.0 48.1 48.1 Weld 5P6214B Single 0.02 0.92 43.28 (4.5) -50 2.76E+18 28.1 0 14.0 28.0 56.1 6.1 Weld 5P6214B Tandem 0.02 0.92 43.28 (4.5) -40 2.76E+18 28.1 0 14.0 28.0 56.1 16.1 PTLR Page 27 LBDCR 2016-265

Table 4-2b: GGNS Beltline ART Values (54 EFPY) Continued Notes:

[1] Use of SMAW Heats 422K8511, 627069, 626677, and 627260 was determined to be limited to weld pick-ups at the ID/OD surfaces or initial root pass or sealing at the backing bars which were ground out or subsequently removed. Certified Material Test Reports indicate that no SMAW weld material is present at either the1/4 Tor3/4 T Location. Therefore, these heats are not required to be evaluated as part of the beltline region.

[2] Welds AB and AC occur within the extended beltline region, defined as experiencing a fluence >1.0e17 m/cm 2 .

[3] The N12 Water Level Instrumentation Nozzle occurs in the beltline region. Because the forging and weld are non-ferritic material, the ART is calculated using the plate heats where the nozzles occur. For GGNS, these nozzles occur in only two (2) of the Shell 2 plates.

[4] The fitted CF (plate material) and adjusted CF (weld material) are determined using the methods defined in RG 1.99, R2, Position 2. Best estimate chemistry is considered.

[5] Weld Heat 56214B is represented by material in BWRVIP-135 R3 with two (2) different chemistries. Recommendations provided in BWRVIP-135 R3 have been employed to determine the surveillance chemistry used for calculating the adjusted CF. The adjusted CF is calculated using the best estimate chemistry to represent the vessel CF - (27/27) x 43.28 = 43.28°F. BWRVIP-135 R3 provides updated data for this weld that has been incorporated in this evaluation.

[6] Shell 1 and Shell 3 and the associated axial welds and nozzles are evaluated based on the extended beltline region.

[7] Copper content is not available; therefore the maximum allowable %Cu was obtained from the vessel design specification.

Page 3 of 3 PTLR Page 28 LBDCR 2016-265

Appendix D GGNS Reactor Pressure Vessel P-T Curve Supporting Plant-Specific Information PTLR Page 29 LBDCR 2016-265

Figure 3: Schematic of the GGNS RPV showing arrangement of vessel plates and welds PTLR Page 30 LBDCR 2016-265

T a bl e 3 a: IT a ues for GGNS Pl ate an d Fl ange M atena nt 1a I RT NDT VI . Is (T-.or-60) Drop RT~or Test (OF) Weight (OF)

Component Heat Temp Charpy Energy (ft-lb) NOT (OF) (OF)

Top Head & Flange Top Head Dollar (2448-3 30 71 51 60 -30 -30 -30 36-2 Top Head Torus Plates 36-1-1 thru 36-1-3 (2944-1 70 52 55 53 10 -20 10 36-1-4 thru 36-1-6 B6727-2 40 52 52 50 -20 -20 -20 Top Head Flange 32-1 48D1682-1-1 30 85 101 113 -30 -30 -30 Shell Courses & Shell Flange Shell Flange 48D1141-1-1 30 105 87 81 -30 -30 -30 27-1 Upper Shell Plates (2815-2 70 53 51 56 10 0 10 24-1-1 (2788-2 70 61 51 50 10 -10 10 24-1-2 (2779-2 70 50 53 57 10 0 10 24-1-3 (2788-1 70 58 52 53 10 -20 10 24-1-4 Upper Intermediate Plates 23-1-1 (2741-2 50 54 68 66 -10 -10 -10 23-1-2 (2779-1 70 52 50 54 10 -10 10 23-1-3 (2741-1 70 66 54 50 10 -30 10 Lower Intermediate Plates 22-1-1 (2593-2 20 52 60 61 -40 -30 -30 22-1-2 (2954-1 50 56 50 62 -10 -10 -10 22-1-3 (2594-2 40 67 50 50 -20 0 0 22-1-4 A1224-1 60 52 74 52 0 -20 0 Lower Shell Plates 21-1-1 A1113-1 70 62 58 60 10 -20 10 21-1-2 (2557-2 70 64 63 72 10 -20 10 21-1-3 (2506-1 40 50 61 71 -20 -30 -20 Bottom Head Bottom Head Dollar 13-1 (2630-2 60 55 53 51 0 -40 0 Bottom Head Torus Plates 13-2-L (2539-2 70 53 51 50 10 -20 10 13-2-R (2539-2 70 53 51 50 10 -20 10 13-3-L A1145-2 50 51 60 52 -10 -10 -10 13-3-R A1145-1 70 53 69 55 10 -10 10 PTLR Page 31 LBDCR 2016-265

Table 3b: Initial RT NDT Values for GGNS Nozzle Materials (TNoT-60) Drop RTNDT Test (OF) Weight (OF)

Component Heat Temp Charpy Energy (ft-lb) NOT (OF) (OF)

Nl Recirculation Outlet Nozzle 49-1-1 Q2QL1W 40 105 104 86 -20 -20 -20 49-1-2 Q2QL1W 40 112 96 96 -20 -20 -20 N2 Recirculation Inlet Nozzle 52-1-1 Q2QL1W 30 62 90 110 -30 -20 -20 52-1-2 Q2QL1W 40 91 70 93 -20 -20 -20 52-1-3 Q2QL1W 30 96 108 77 -30 -20 -20 52-1-4 Q2QL1W 40 85 89 52 -20 -20 -20 52-1-5 Q2QL1W 40 94 70 81 -20 -20 -20 52-1-6 Q2QL4W 40 77 86 72 -20 -20 -20 52-1-7 Q2QL1W 40 60 50 67 -20 -20 -20 52-1-8 Q2QL4W 40 81 67 62 -20 -20 -20 52-1-9 Q2QL1W 40 78 104 86 -20 -20 -20 52-1-10 Q2QL1W 30 80 78 62 -20 -20 -20 52-1-11 Q2QL1W 40 92 112 103 -20 -20 -20 52-1-12 Q2QL1W 30 80 78 62 -30 -20 -20 N3 Steam Outlet Nozzle 56-1-1 Q2Q65W 30 118 128 121 -30 -20 -20 56-1-2 Q2Q65W 40 113 80 68 -20 -20 -20 56-1-3 Q2Q65W 40 135 125 115 -20 -20 -20 56-1-4 Q2Q65W 40 118 97 103 -20 -20 -20 N4 Feedwater Nozzle 59-1-1 Q2Q65W 30 74 98 128 -30 -20 -20 59-1-2 Q2Q65W 30 54 98 104 -30 -20 -20 59-1-3 Q2Q65W 30 112 118 140 -30 -20 -20 59-1-4 Q2Q65W 30 76 86 80 -30 -20 -20 59-1-5 Q2Q65W 30 83 109 98 -30 -20 -20 59-1-6 Q2Q65W 30 110 82 98 -30 -20 -20 NS Core Spray Nozzles 63-1-1 Q2QL2W 40 71 76 55 -20 -20 -20 63-1-2 Q2QL2W 30 57 95 90 -30 -20 -20 N6 RHR/LPCI Nozzle 67-1-1 Q2QL2W 40 63 58 70 -20 -20 -20 67-1-2 Q2QL2W 40 70 60 71 -20 -20 -20 67-1-3 Q2QL2W 40 98 108 103 -20 -20 -20 N7 Top Head Spry Nozzle 71-1 Q2QL13QT 40 83 70 81 -20 -20 -20 Blind Flange 72-2 (2448-3 30 71 51 60 -30 -30 -30 NS Top Head Spare Nozzle 74-1 Q2QL19QT 40 85 56 80 -20 -20 -20 Blind Flange 75-1 (2448-3 30 71 51 60 -30 -30 -30 N9 Jet Pump Instrument Nozzle 77-1-1 Q2QL1W 40 113 111 108 -20 -20 -20 77-1-2 Q2QL1W 20 82 78 79 -40 -20 -20 N10 CRD HYO Return Nozzle 80-1 Q2QL4W 30 70 58 73 -30 -20 -20 N11 and N18 Core L'IP Nozzle 84-1-1 and 84-1-2 SB166 N12 and N13 Instrument Nozzles 88-1-1 thru 88-1-8 Stainless Steel N14 Instrument Nozzles 91-1-1 thru 91-1-4 Stainless Steel N15 Drain Nozzle 93-1-1 thru 91-1-2 719282 30 180 209 239 -30 -30 -30 N16 Instrument Vibration Nozzles 95-1 Q2QL4W 30 68 63 54 -30 -20 -20 Blind Flange 95-2 (2448-3 30 71 51 60 -30 -30 -30' N17 Seal Leak Detector Nozzle 99-1 SB166 PTLR Page 32 LBDCR 2016-265

Table 3c: Initial RT NDT Values for GGNS Weld Materials (TNoT-60) Drop RTNDT Test (OF) Weight (OF)

Component Heat or Heat/ Flux/ Lot Temp Charpy Energy (ft-lb) NOT (OF) (OF)

Top Head Welds Top Head Torus to Dollar Plate (AH) 540892/J424B27 AE 0 65 62 62 -60 -70 -60 629865/A421A27AD -10 69 70 88 -70 -90 -70 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 412L4711/A423B27AH 0 72 83 95 -60 -90 -60 07R458/S403B27AG 0 59 61 70 -60 -60 -60 L83978/J414B27AD -20 51 52 81 -80 -80 -60 Top Head Flange to Torus (AG) 401P2871/H430B27AF 10 75 75 107 -50 -70 -50 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 412L4711/A423B27AH 0 72 83 95 -60 -90 -60 07R458/S403B27 AG 0 59 61 70 -60 -60 -60 629865/A421A27AD -10 69 70 88 -70 -90 -70 640892/J424B27 AE 0 55 62 62 -60 -70 -60 412P3611~417B27AF -20 52 65 69 -80 -80 -60 401S0371/B504B27AE -20 61 64 77 -80 -60 -60 Top Head Upper Torus Meridional Welds DH, DJ, DK, OM, ON, DP 422K8511/G313A27AD -20 65 74 127 -50 -50 -60 DH, DJ, ON, DP 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 DH, DJ, DK, OM, ON, DP 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 DH, DJ, DK, OM, ON, DP 629865/A421A27AD -10 69 70 88 -70 -90 -70 DH, DJ, DK, OM, ON, DP 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 DH 07R458/S403B27 AG 0 59 61 70 -60 -60 -60 Cylindrical Shell Circumferential Welds Shell Flange to Upper Shell (AE) 5P6756/Linde 124/0342 (Single) 0 55 66 63 -80 -80 -60 5P6756/Linde 124/0342 (Tandem) 10 64 72 77 -50 -90 -50 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 629865/A421B27AD -10 69 70 88 -70 -80 -70 540892/J424B27 AE 0 55 62 62 -60 -70 -60 07R458/S403B27AG 0 59 61 70 -60 -60 -60 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 Upper Shell to Upper-Intermediate Shell (AD) 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 412L4711/A423B27AH 0 72 83 95 -60 -90 -60 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 5P6771/Linde 124/0342 (Single) 30 78 53 68 -30 -30 -30 5P6771/Linde 124/0342 (Tandem) 40 77 81 83 -20 -20 -20 629865/A421A27AD -10 69 70 88 -70 -90 -70 640892/J424B27 AE 0 55 62 62 -60 -70 -60 Upper-intermediate shell to lower 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 intermediate Shell (AC) 07R458/S403B27 AG 0 59 61 70 -60 -60 -60 412L4711/A423B27AH 0 72 83 95 -60 -90 -60 5P6771/Linde 124/0342 (Single) 30 78 53 68 -30 -30 -30 5P6771/Linde 124/0342 (Tandem) 40 77 81 83 -20 -20 -20 Lower-Intermediate Shell to Lower Shell (AB) 4P7216/Linde 124/0156 (Single) 20 51 59 53 -40 -70 -40 4P7216/Linde 124/0156 (Tandem) 0 64 71 63 -60 -50 -60 Lower Shell to Bottom Head (AA) 5P6214B/Linde 124/0342 (Single) 10 51 56 57 -50 -20 -20 5P6214B/Linde 124/0342 (Tandem) 40 70 67 62 -20 -20 -20 629865/A421A27AD -10 69 70 88 -70 -90 -70 401S0371/B504B27AE -20 61 84 77 -80 -60 -60 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 412P3611/J417B27 AF -20 52 65 69 -50 -80 -80 02R486/J404B27 AG -10 52 64 66 -70 -90 -70 L83978/J414B27AD -20 51 52 81 -50 -80 -80 PTLR Page 33 LBDCR 2016-265

Table 3c: Initial RT NDT Values for GGNS Weld Materials, Continued (T,mr-60) Drop RTNDT Test (OF) Weight (OF)

Component Heat or Heat/ Flux/ Lot Temp Charpy Energy (ft-lb) NDT (OF) (OF)

Cylindrical Shell Vertical Welds Welds within Lower Shell Ring BA,BB,BC 627260/B322A27AE 30 52 56 51 -30 -40 -30 BA,BB,BC 624063/C228A27 A 10 57 59 68 -50 -60 -50 BA,BB,BC 627069/C312A27AG 0 72 64 78 -60 -60 -60 BA 626677 /C301A27 A 40 53 51 54 -20 -40 -20 BC 624039/D205A27A -30 64 61 69 -90 -90 -90 BC 492L487/A421B27AE 0 50 51 57 -60 -90 -60 BC 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 BA,BB,BC 5P6214B/Linde 124/0331 (Single) 10 56 50 54 -50 -50 -50 BA,BB,BC 5P6214B/Linde 124/0331 (Tandem) 10 50 61 64 -50 -40 -40 Welds within Lower Intermediate Shell Ring BD, BE, BF, BG 627260/B322A27AE 30 52 56 51 -30 -40 -30 BD, BE, BF, BG 624063/C228A27 A 10 57 59 68 -50 -60 -50 BD, BE, BF, BG 626677 /C301A27 A 40 53 51 54 -20 -40 -20 BD, BE, BF, BG 627069/C312A27AG 0 72 64 78 -60 -40 -60 BD, BE, BF, BG 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 BD, BE, BF, BG 5P6214B/Linde 124/0331 (Single) 10 56 50 54 -50 -50 -50 BD, BE, BF, BG 5P6214B/Linde 124/0331 (Tandem) 10 50 61 64 -50 -40 -40 Welds with Upper-intermediate Shell Ring BH, BJ, BK 627069/B322A27AE 30 52 56 51 -30 -40 -30 BH, BJ, BK 626677 /C301A27 A 40 53 51 54 -20 -40 -20 BH, BJ, BK 6240603/B312A27A 10 57 59 68 -50 -60 -50 BH, BJ, BK 627069/C312A27AG 0 72 64 78 -60 -60 -60 BH, BJ, BK 5P6214B/Linde 124/0331 (Single) 10 56 50 54 -50 -50 -50 BH, BJ, BK 5P6214B/Linde 124/0331 (Tandem) 10 50 61 64 -50 -40 -40 BJ 624039/D205A27 A -30 64 61 69 -90 -90 -90 Welds within Upper Shell Ring BM, BN, BP, BR 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 BM, BN, BP, BR 626677 /C301A27 A 40 53 51 54 -20 -40 -20 BM, BN, BP, BR 627260/B322A27AE 30 52 56 51 -30 -40 -30 BP 627184/C314A27 AH 10 53 66 63 -50 -70 -50 BM, BN, BP, BR 627069/C312A27AG 0 72 64 78 -60 -60 -60 BM, BN, BP, BR 5P6214B/Linde 124/0331 (Single) 10 56 50 54 -50 -50 -50 BM, BN, BP, BR 5P6214B/Linde124/0331(Tandem) 10 50 61 64 -50 -40 -40 Bottom Head Welds DA 492L4871/ A421A27AD 0 50 51 57 -60 -90 -60 DA,DC, DD 422K851/G313A27AD -20 65 74 127 -80 -80 -80 DC, DD 5P6214B/Linde 124/0331 (Single) 10 56 50 54 -50 -50 -50 DC, DD 5P6214B/Linde 124/0331 (Tandem) 10 50 61 64 -50 -40 -40 DC, DD 627260/B322A27 AE 30 52 56 51 -30 -40 -30 DC, DD 626677C301A27A 40 53 51 54 -20 -40 -20 DC, DD 627069/C312A27AG 0 72 64 76 -60 -60 -60 Support Skirt to Bottom Head 5P5657/Linde 124/0931 (Single) 0 51 55 68 -60 -60 -60 5P5657 /Linde 124/0931 (Tandem) 0 51 57 55 -60 -80 -60 629865/A421A27AD -10 69 70 88 -70 -90 -70 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 CA,CB,CG 422K851/G313A27AD -20 65 74 127 -80 -80 -80 CA,CB 49214871/ A421B27 AF 10 56 58 61 -50 -80 -50 CA,CB,CG 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 Shroud Support to Vessel Welds Shroud Support to Lower Shell lnconel Shroud Support to Bottom Head 'lnconel 182 PTLR Page 34 LBDCR 2016-265

Table 3c: Initial RT NDT Values for GGNS Weld Materials, Continued (T"oT-60) Drop RTNDT Test (OF) Weight (OF)

Component Heat or Heat/ Flux/ Lot Temp Charpy Energy (ft-lb) NOT (OF) (OF)

Nozzle Welds Nl Recirculation Outlet 05T776/I314A27 AH -10 69 72 61 -70 -70 -70 627069/C31AA27AG 0 72 64 78 -60 -60 -60 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 5P5657/Linde 124/0931 (Single) 0 51 55 68 -60 -60 -60 5P5657/Linde 124/0931 (Tandem) 0 51 57 55 -60 -80 -60 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 629865/ A421A27 AD -10 69 70 88 -70 -90 -70 626677/C301A27 A 40 53 51 54 -20 -40 -20 624063/C228A27 A 10 57 59 68 -50 -50 -50 N2 Recirculation Inlet 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 627260/B322A27AE 30 52 56 51 -30 -40 -30 626677/C301A27 A 40 53 51 54 -20 -40 -20 627069/C312A27AG 0 72 64 78 -60 -60 -60 5P5657 /Linde 124/0931 (Single) 0 51 55 68 -60 -60 -60 5P5657/Linde 124/0931 (Tandem) 0 51 57 55 -60 -80 -60 627184/C314A27AH 10 53 66 63 -50 -70 -50 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 05T776/L314A27AH -10 69 72 61 -70 -70 -70 629865/ A421A27 AD -10 69 70 88 -70 -90 -70 5P5657 /Linde 124/0342 (Single) 0 55 66 63 -60 -60 -60 5P5657/Linde 124/0342 (Tandem) 10 64 72 77 -50 -50 -50 04T931/A428B27AG 0 65 69 72 -60 -90 -60 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 624063/C228A27 A 10 57 59 68 -50 -60 -50 N3 Steam Dome 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 629665/A421A27AD -10 69 70 88 -70 -90 -70 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 05T776/L314A27 AH -10 69 72 81 -70 -70 -70 04T931/A428B27AG 0 65 69 72 -60 -90 -60 07R458/S403B27AG 0 59 61 70 -60 -60 -60 412L4711/A42B27AH 0 72 83 95 -60 -90 -60 5P6756/Linde 124/0342 (Single) 0 55 66 63 -60 -60 -60 5P6576/Linde 124/0342 (Tandem) 10 64 72 77 -50 -50 -50 3P4955/Linde 124/0342 (Single) 40 51 52 55 -20 -40 -20 3P4955/Linde 124/0342 (Tandem) 30 60 65 52 -30 -20 -20 5P6771/Linde 124/0342 {Single) 30 78 53 68 -30 -30 -30 5P6771/Linde 124/0342 (Tandem) 40 77 81 83 -20 -20 -20 N4 Feedwater Nozzle 49214871/ A421B27 AE 0 50 51 57 -60 -90 -60 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 626677 /C301A27 A 40 53 51 54 -20 -40 -20 627069/C312A27 AG 0 72 64 78 -60 -60 -60 5P5657/Linde 124/0931 (Single) 0 51 55 68 -60 -60 -60 5P5657/Linde 124/0931 (Tandem) 0 51 57 55 -60 -60 -60 627184/C314A27AH 10 53 66 63 -50 -70 -50 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 04T931/A428B27AG 0 65 69 72 -60 -90 -60 629865/ A421A27 AD -10 69 70 88 -70 -90 -70 07R458/S403B27AG o 59 61 70 -60 -60 -60 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 401P2871/H430B27AF 10 75 76 107 -50 -70 -50 (T NDT-60) Drop RTNDT Table 3c: Initial RT NDT Values (OF) (OF)

Test Weight for GGNS Weld Materials, Heat or Heat/ Flux/ Lot Temp Charpy Energy (ft-lb) NOT (OF) {OF)

Continued PTLR Page 35 LBDCR 2016-265

Component NS Core Spray Nozzles 22K8511/G313A27AD -20 65 74 127 -80 -80 -80 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 5P6756/Li nde 124/0342 (Single) 0 55 66 63 -60 -60 -60 5P6756/Linde 124/0342 (Tandem) 10 64 72 77 -50 -50 -50 05T776/L314A27 AH -10 69 72 81 -70 -70 -70 627069/C31AA27 AG 0 72 64 78 -60 -60 -60 N6 LPCI Nozzle 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 04T931/ A428B27 AG 0 65 69 72 -60 -90 -60 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 5P6756/Linde 124/0342 (Single) 0 55 66 63 -60 -60 -60 5P6756/Linde 124/0342 (Tandem) 10 64 72 77 -50 -50 -50 05T776/L314A27 AH -10 69 72 81 -70 -70 -70 N7 Top Head Spray Nozzle 401SS0371/B504B27AE -20 61 84 77 -80 -60 -60 02R486/J404B27 AG -10 52 64 66 -70 -90 -70 412P3611~417B27AF -20 52 65 69 -80 -80 -80 L83978/J414B27 AF -20 51 52 81 -80 -80 -80 412L4711/ A423B27 AH 0 72 83 95 -60 -90 -60 N8 Top Head Spare Nozzle 629665/ A421A27 AD -10 69 70 88 -70 -90 -70 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 04 T931/ A428B2 7 AG 0 65 69 72 -60 -90 -60 05 T776/L314A27 AH -10 69 72 81 -70 -70 -70 627260/B322A27E 30 52 56 51 -30 -40 -30 N9 Jet Pump Instrumentation Nozzle 629865/ A421A27 AD -10 69 70 88 -70 -90 -70 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 04T931/A428B27AG 0 65 69 72 -60 -90 -60 05 T776/L314A27 AH -10 69 72 81 -70 -70 -70 627260/B322A27AE 30 52 56 51 -30 -40 -30 NlO CRD HYO Return Nozzle lnconel N12, N13, N14 Instrument Nozzles KA lnconel 182 Weld PAD Buildup N13 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 Weld PAD Buildup N13 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 Weld PAD Buildup N12, N13 627184/C314A27 AH 10 53 66 63 -50 -70 -50 Weld PAD Buildup N13 05T776/L314A27AH -10 69 72 81 -70 -70 -70 N15 Drain Nozzle 5P6756 no lot -20 94 97 105 -80 -60 -60 626677 /C301A27 A 40 53 51 54 -20 -40 -20 627260/B322A27AE 30 52 56 51 -30 -40 -30 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 N16 Vibration Instrumentation Nozzle 402P3162/H426B27AE -10 60 54 68 -70 -70 -70 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 04T931/ A428B27 AG 0 65 69 72 -60 -90 -60 05T776/L314A27 AH -10 69 72 81 -70 -70 -70 N17 Seal Leak Detection Noizzle lnconel PTLR Page 36 LBDCR 2016-265

Table 3c: Initial RT NDT Values for GGNS Weld Materials, Continued (T NDT-60) Drop RT'IIDT Test (OF) Weight (OF)

Component Heat or Heat/ Flux/ Lot Temp Charpy Energy (ft-lb) NDT (OF) (OF)

Appurtenance Welds Thermocouple Pads Shell Flange, Shell Ring #4, Top Head Flange, FW Nozzle 629665/A421A27AD -10 69 70 88 -70 -90 -70 Bottom Heat (Sets 15, 16, 17) 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 Top Head Lifting Lugs 629665/A421A27AD -10 69 70 88 -70 -90 -70 L83978/J414B27AD -20 51 52 81 -80 -80 -80 40150371/B504B27AE -20 61 84 77 -80 -60 -60 412P3611/J417B27AF -20 52 65 69 -80 -80 -80 Guide Rod Bracket Stainless Steel Steam Dryer Support Bracket Stainless Steel Steam Dryer Hold Down Brackets to Top 629865/A421A27AD -10 69 70 88 -70 -90 -70 Head 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 Core Spray Bracket Stainless Steel Core Spray Pad Buildup 629865/A421A27AD -10 69 70 88 -70 -90 -70 627184/C314A27AH 10 53 66 63 -50 -70 -50 04T931/A428B27AG 0 65 69 72 -60 -90 -60 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 492L4871/A421B27AF 10 55 58 61 -50 -80 -50 Refueling Bellows to Shell Flange RA 627069/C312A27AG 0 72 64 78 -60 -60 -60 RA 422K8511/G313A27AD -20 65 74 127 -80 -80 -80 RA 492L4871/A421B27AE 0 50 51 57 -60 -90 -60 RA 492L4871/A421B27AF 10 56 58 61 -50 -80 -50 RH 06590D 40 84 80 52 -20 -20 -20 RH 640968/D5 24M lAF -20 81 87 98 -80 -40 -40 RH 40152011/C506M lAG 40 122 111 123 -20 -20 -20 Jet Pump Riser Pads 627184/C314A27AH 10 53 66 63 -50 -70 -50 Feedwater Sparger Bracket Stainless Steel Surveillance Bracket Pads Stainless Steel PTLR Page 37 LBDCR 2016-265

a ues for GGNSA,ppu rt enance an dB 0 IftnQ M atena T abl e 3d IniT,a I RT NDT VI . Is (TNor-60) Drop RTNDT Test (OF) Weight (OF)

Component Heat or Heat/ Flux/ Lot Temp Charpy Energy (ft-lb) NDT (OF) (OF)

Appurtenances Support Skirt Forging 10-1-1 B7128-3 70 53 52 50 10 50 10 10-1-2 B7128-4 10 58 54 50 -50 -40 -40 Support Skirt Base Plate 10-2-1 thru 10-2-3 R0588-1 40 113 108 118 -20 -10 -10 10-2-4 thru 10-2-6 R0666-1 60 62 64 62 10 -10 10 Support Skirt Extension 9-1-1 thru 9-1-2 B7036-2 50 60 55 59 -10 -20 -10 Jet Pump Support 20-1-1 thru 20-1-4 lnconel 20-2-1 thru 20-5-1 lnconel Jet Pump Riser Pads Stainless Steel Shroud Support 20-4-1 thru 20-4-14 lnconel Shroud Support Ring 20-3-1 thru 20-3-2 lnconel Shroud Support Stubs 17-1-1 thru 17-1-14 lnconel Guide Rod Brackets 106-1-1 thru 106-1-2 Stainless Steel Guide Rod Bracket Pads Stainless Steel Steam Dryer Support Brackets 106-1-1 thru 106-1-6 Stainless Steel Steam Dryer Support Bracket Weld Stainless Steel Steam Dryer Hold Down Brackets 110-1-1 thru 110-1-6 C3072-1A 30 52 61 51 -30 -40 -30 Core Spray Brackets 116-1-1 thru 116-1-8 Stainless Steel Refueling Bellows Skirt 46-2-1 thru 46-2-3 A2457-9H 100 66 68 69 40 40 Extension Bar 46-1-1 thru 46-1-6 R0503-1 60 57 56 68 0 0 0 Refueling Bellows Bar 46-1-1 thru 46-1-6 A2457-7 60 50 50 52 0 -20 0 Refueling Bellows Base Plate 46-3-1 thru 46-3-6 B7891-7A 20 71 67 92 -40 -40 -40 Surveillance Specimen Bracket Pads Stainless Steel Feedwater Sparger Brackets 112-1-1 thru 112-1-12 Stainless Steel Top Head Lifting Lugs 43-1-1 thru 43-1-4 C2445-3 30 71 51 60 -30 -30 -30 Min Lat Test Exp LST Component Heat Temp Charpy Energy (ft-lb) (mils) (OF)

(OF)

STUDS Closure 38-1 84025 10 48 50 48 28 10 38-1 84025 10 49 48 53 29 10 N7,N8,N16 72-4 and 96-4 11312 10 49 50 51 27 10 Nuts Closure 39-5 83706 10 50 51 54 28 10 N7,N8,N16 72-5 11312 10 49 50 51 27 10 Washers Closure Washers 39-6 83706 10 60 51 54 28 10 PTLR Page 38 LBDCR 2016-265

Table 4: GGNS RPV Beltline P-T Curve Input Tables Adjusted RT NOT = Initial RT NOT + Shift A= 0 + 42.6 = 42.6°F ~ 43°F (Based on ART Values Vessel Height H = 869.75 inches Bottom of Active Fuel Height B = 216.3 inches Vessel Radius (to bass metal) R = 126.69 inches Minimum Vessel Wall Thickness (without clad) T = 6.4375 inches Table 5: GGNS Definition of RPV Beltline Region Component Elevation (inches from RPV "O")

Shell #2 - Top of Active Fuel (TAF) 366.3" Shell #2 - Bottom of Active Fuel (BAF) 216.3 Shell #2 - Top of Extended Beltline Region (35 EFPY) 381.7" Shell #1 - Bottom of Extended Beltline Region (35 EFPY) 203.4" Centerline of Recirculation Outlet Nozzle in Shell #1 172.3" Top of Recirculation Outlet Nozzle in Shell #1 197.7" Centerline of Recirculation Inlet Nozzle N2 in Shell #1 197.0" Centerline of 2" Water Level Instrumentation Nozzle in Shell 366.0"

  1. 2

[1] The beltline region is defined as any location where the peak neutron fluence is expected to exceed or equal 1.0e17 n/cm 2 .

Based on the above, it is concluded that none of the GGNS reactor vessel plates, nozzles, or welds, other than those included in the Adjusted Reference Temperature Table, are in the beltline region.

PTLR Page 39 LBDCR 2016-265