ML18065A597: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 03/23/1996
| issue date = 03/23/1996
| title = Evaluation of Effects of Fire on West Wall of Turbine Lube Oil Room Adjacent to Pipe Tunnel Between TB & FW Purity Bldg.
| title = Evaluation of Effects of Fire on West Wall of Turbine Lube Oil Room Adjacent to Pipe Tunnel Between TB & FW Purity Bldg.
| author name = YOUNG L D
| author name = Young L
| author affiliation = CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.),
| author affiliation = CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.),
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:* Power EA-FPP-95-054
{{#Wiki_filter:*     @)               consumers Power PllWU111111 MICllJliAl/l'S Pll8&IUS PALISADES NUCLEAR PLANT ENGINEERING ANALYSIS COVER SHEET EA- FPP-95-054 Total Number of Sheets~
@) consumers PllWU111111 MICllJliAl/l'S Pll8&IUS PALISADES NUCLEAR PLANT ENGINEERING ANALYSIS COVER SHEET Total Number of Title of Effg,t§ Qf s_ Eire oa tbe West of tbe Qil BoQID s9is,gat to Iuaael tbe Iyrbjae RYil9iag 2nd tbg aYil9iag, INITIATION AND REVIEW Calculation Status Preliminary Pending Final Superseded D D
Title     E~alYstioa      of   tb~ Effg,t§ Qf s_ Eire oa tbe West   ~all  of tbe !YC~iae byb~  Qil BoQID s9is,gat to   tb~ ei~g  Iuaael R~t~g~a  tbe Iyrbjae RYil9iag 2nd tbg             Eged~st~r eurit~  aYil9iag, INITIATION AND REVIEW Calculation Status                                     Preliminary             Pending           Final           Superseded Initiated D
* D Initiated
                                                                                  !nit D
!nit Review Method Technically Reviewed Revr Rev Appd Appd CPCo # Descripti6n By Detail Qual By Appel Bv Date Alt Cale Review Test Bv Date 0 Original Issue LDYoung 12/12/95 DAC "' RWPhil ips 1/17/96 RLS PFB 9f'
Review Method
* ti lfJ 1 Revised to "Final" based on 3/23/96 "'
* D Technically Reviewed     Revr Rev                                                                         Appd                                                         Appd   CPCo
conment resolution.
      #                     Descripti6n                                           By               Detail   Qual                             By   Appel Bv         Date             Alt Cale   Review   Test       Bv         Date Original Issue                             LDYoung     12/12/95     DAC                                 RWPhil ips   1/17/96   RLS   PFB 0
LDYoung I -..,
1     Revised to "Final" based on conment resolution.
* 1.0 OBJECTIVE The purpose of this Engineering Analysis is to show the impact of a fire-on the West wall of the Turbine Lube Oil Room adjacent to the tunnel travelling between the Turbine Building (EL. 590'-0") and the F eedwater Purity Building.
                                                      ~~-t LDYoung
Specifically, the analysis will consider the equivalent fire resistance of the barriers, combustible loading within the rooms and suppression and detection.
                                                                  ~
Through these considerations, this.analysis will demonstrate the ability of the system as a whole to prevent a direct fire exposure hazard to safety related equipment or openings in other fire area barriers required to meet NRC guidelines.  
3/23/96   9f'                    "'
I
                                                                                                                  ~ -:?/;!;_~!. ~p,r/96      ti lfJ 1.0 OBJECTIVE The purpose of this Engineering Analysis is to show the impact of a fire- on the West wall of the Turbine Lube Oil Room adjacent to the tunnel travelling between the Turbine Building (EL. 590'-0") and the Feedwater Purity Building. Specifically, the analysis will consider the equivalent fire resistance of the barriers, combustible loading within the rooms and suppression and detection. Through these considerations, this.analysis will demonstrate the ability of the system as a whole to prevent a direct fire exposure hazard to safety related equipment or openings in other fire area barriers required to meet NRC guidelines.
2.0 ANALYSIS INPUT 2.1        Consumers Power Co. Palisades Nuclear Plant Drawings:
A-108,                    Rev. 1            F eedwater Purity Modification, Architectural, Pipe Gallery C-825;                    Rev. 2            Feedwater Purity Modification, Pipe Gallery, Foundation. &
Floor Slab Plans - Area 8, 14 & 15
* r*
M-216, Sh. 5              Rev. 3            Fire Protection, Reactor Building, Plan of EL. 590'-0" M-216, Sh.14              Rev. 5            Fire Protection, Turbine Building, Plan of EL. 590'-0"
                *;--* 1                                        --*
2.2 t National Fire Protection Ass.o.ciation_Eire Protection Handbook, 17th Edition.
J.              9604080137 960401
_ PDR. ~_QO_C~ .o~OQ025~ ; ! ....:'. _
G                              PDR b
                                                          -                \


===2.0 ANALYSIS===
      @)
INPUT 2.1 Consumers Power Co. Palisades Nuclear Plant Drawings:
MWAll'S~
A-108, Rev. 1 F eedwater Purity Modification, Architectural, Pipe Gallery C-825; Rev. 2 Feedwater Purity Modification, Pipe Gallery, Foundation.  
consumers Power fl'flWUU1I&
& Floor Slab Plans -Area 8, 14 & 15
PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet ~  Rev # ___.._O_ _
* M-216, Sh. 5 Rev. 3 Fire Protection, Reactor Building, Plan of EL. 590'-0" r* M-216, Sh.14 Rev. 5 Fire Protection, Turbine Building, Plan of EL. 590'-0" --*;--* 1 --* 2.2 t National Fire Protection Ass.o.ciation_Eire Protection Handbook, 17th Edition. J. 9604080137 960401 -\ _ PDR.  
2.Palisades Nuclear Plant Engineering Analysis EA-FPP-95-11, Analysis of Combustible Loading for Fire Area 22, Turbine Lube Oil Room.
; ! .... :'. _ , . G PDR b 
2.4  Palisades Nuclear Plant Engineering Analysis EA-FPP-95-18, Analysis of Combustible Loading for Fire Area 23D, Turbine Building - General.
@)consumers Power PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-FPP-95-054 fl'flWUU1I&
2.5  Palisades Nuclear Plant Fire Hazards Analysis, Revision 2, February 1, 1989.
2.6  Palisades Nuclear Plant Fire Protection Program Report (FPPR), Volume 2, Section VIII; List of Changes to Appendix A to Branch Technical Position APCSB 9.5~1 and Regulatory Guide l.78 and l.101, Revision 1, October 26, 1989.
2.7  Palisades Nuclear Plant Fire Protection Program Report (FPPR), Volume 3, Section IX, #46.
2.8  U.S. Nuclear Regulatory Commission (NRC) Generic Letter 86-10, Implementation of Fire Protection Requirements, April 24, 1986.
2.9  NRC Standard Review Plan NUREG-0800, BTP CMEB 9.5-1, Guidelines for Fire Protection for Nuclear Power Plants, Revision 2, July 1981.
2.10 FPETOOL: Fire Protection Engineering Tools for Hazard Estimation, Version 3.0, National Institute of Standards and Technology, October 1990.
2.11 Palisades Nuclear Plant Engineering Analysis EA-APR-95-001, Appendix R Safe Shutdown Equipment List and Logic Diagrams.
2.12 Methods of Quantative Fire Hazard Analysis, EPRI Research Project 3000-37, by F.W. Mowrer, dated May 1992.
2.13 Palisades Nuclear Plant Engineering Analysis EA-FPP-96-012, System Hydraulic.
Analysis for the Lube Oil Storage Room.
2.14 Palisades Nuclear Plant Engineering Analysis EA-FPP-96-013, System Hydraulic Analysis for the M-18 Area.
2.15 National Fire Protection Association, Automatic Sprinkler Systems Handbook, 6th Edition .
* ASSUMPTIONS None


===2.3 Palisades===
(@         consumers Power flflWElllNfj MKBl&A#'S l"llD&laS PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet __J_ Rev #    __..o_ _
 
                                                                                                ~e~erence1~onunen~
Nuclear Plant Engineering Analysis EA-FPP-95-11, Analysis of Combustible Loading for Fire Area 22, Turbine Lube Oil Room. 2.4 Palisades Nuclear Plant Engineering Analysis EA-FPP-95-18, Analysis of Combustible Loading for Fire Area 23D, Turbine Building -General. 2.5 Palisades Nuclear Plant Fire Hazards Analysis, Revision 2, February 1, 1989. 2.6 Palisades Nuclear Plant Fire Protection Program Report (FPPR), Volume 2, Section VIII; List of Changes to Appendix A to Branch Technical Position APCSB and Regulatory Guide l.78 and l.101, Revision 1, October 26, 1989. 2.7 Palisades Nuclear Plant Fire Protection Program Report (FPPR), Volume 3, Section IX, #46. 2.8 U.S. Nuclear Regulatory Commission (NRC) Generic Letter 86-10, Implementation of Fire Protection Requirements, April 24, 1986. 2.9 NRC Standard Review Plan NUREG-0800, BTP CMEB 9.5-1, Guidelines for Fire Protection for Nuclear Power Plants, Revision 2, July 1981. 2.10 FPETOOL: Fire Protection Engineering Tools for Hazard Estimation, Version 3.0, National Institute of Standards and Technology, October 1990. 2.11 Palisades Nuclear Plant Engineering Analysis EA-APR-95-001, Appendix R Safe Shutdown Equipment List and Logic Diagrams.
4.0 ANALYSIS 4.1 General General Guidelines for Plant Protection are discussed in the List of                 Reference 2.6, Page 27 Changes and Response to Appendix A to BTP APCSB 9:5-1 and Regulatory Guide 1. 78 and 1.101, Subsection D.1.j. The regulatory position states that concerning compartmentation " ... Floors, walls and ceilings enclosing separate fire areas should have minimum fire rating of three hours." It then goes on to state that " ... The fire hazard in each area should be evaluated to determine barrier requirements." Also, ... "If barrier fire resistance cannot be made adequate, fire detection and suppression should be provided ... "
2.12 Methods of Quantative Fire Hazard Analysis, EPRI Research Project 3000-37, by F.W. Mowrer, dated May 1992. 2.13 Palisades Nuclear Plant Engineering Analysis EA-FPP-96-012, System Hydraulic.
Based upon the above statements, it is apparent that the analysis of a specific barrier for acceptability should subsequently follow this order .of importance:
Analysis for the Lube Oil Storage Room. 2.14 Palisades Nuclear Plant Engineering Analysis EA-FPP-96-013, System Hydraulic Analysis for the M-18 Area. 2.15 National Fire Protection Association, Automatic Sprinkler Systems Handbook, 6th Edition .
: a. The capability of the barrier must satisfy the minimum fire rating guideline of 3-hours. If not then;                                                                   /
* ASSUMPTIONS None Sheet Rev # ___.._O __ 
* b. The barrier must be adequate to withstand the actual combustible loading in the fire areas separated by the barrier. If not then;
(@consumers Power flflWElllNfj MKBl&A#'S l"llD&laS PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET 4.0 ANALYSIS 4.1 General General Guidelines for Plant Protection are discussed in the List of Changes and Response to Appendix A to BTP APCSB 9:5-1 and Regulatory Guide 1. 78 and 1.101, Subsection D.1.j. The regulatory position states that concerning compartmentation " ... Floors, walls and ceilings enclosing separate fire areas should have minimum fire rating of three hours." It then goes on to state that " ... The fire hazard in each area should be evaluated to determine barrier requirements." Also, ... "If barrier fire resistance cannot be made adequate, fire detection and suppression should be provided ... " Based upon the above statements, it is apparent that the analysis of a specific barrier for acceptability should subsequently follow this order .of importance:  
: c. The actual configuration must be reviewed in order to take credit for other systems or circumstances that may increase ~he acceptability of the barrier (e.g. suppression, *detection, etc ... ).
: a. The capability of the barrier must satisfy the minimum fire rating guideline of 3-hours. If not then;
This analysis is based upon the above three criteria. It shall be used to demonstrate the capability of the fire barrier and its supporting systems to adequately prevent the spread of fire through the pipe tunnel separating the Feedwater Purity Building and the Turbine Building (EL. 590'-0").
* b. The barrier must be adequate to withstand the actual combustible
Additional regulatory guidance is provided in NUREG 0800, Section 9.5.1,           Reference 2.9 sub-section C.7.h, "Turbine Building," which states, in part:
* loading in the fire areas separated by the barrier. If not then; c. The actual configuration must be reviewed in order to take credit for other systems or circumstances that may increase acceptability of the barrier (e.g. suppression, *detection, etc ... ). This analysis is based upon the above three criteria.
The turbine building should be separated from adjacent structures containing safety-related equipment by a fire barrier with a minimum rating of 3 hours.... Openings and penetrations in the fire barrier should be minimized and should not .be located where the turbine lube oil or generator hydrogen cooling system creates a direct fire exposure hazard to the barrier. Considering the severity of the fire hazards, defense in depth may dictate additional protection to ensure barrier integrity.
It shall be used to demonstrate the capability of the fire barrier and its supporting systems to adequately prevent the spread of fire through the pipe tunnel separating the Feedwater Purity Building and the Turbine Building (EL. 590'-0").
Additional regulatory guidance is provided in NUREG 0800, Section 9.5.1, sub-section C.7.h, "Turbine Building," which states, in part: The turbine building should be separated from adjacent structures containing safety-related equipment by a fire barrier with a minimum rating of 3 hours....
Openings and penetrations in the fire barrier should be minimized and should not .be located where the turbine lube oil or generator hydrogen cooling system creates a direct fire exposure hazard to the barrier. Considering the severity of the fire hazards, defense in depth may dictate additional protection to ensure barrier integrity.
In summary, the regulatory goal of the Turbine Lube Oil Room walls is to prevent. a direct exposure fire hazard to either safety related equipment or openings and penetrations in fire barriers containing safety related equipment.
In summary, the regulatory goal of the Turbine Lube Oil Room walls is to prevent. a direct exposure fire hazard to either safety related equipment or openings and penetrations in fire barriers containing safety related equipment.
EA-FPP-95-054 Sheet __J_ Rev # __..o __
Reference 2.6, Page 27 / Reference 2.9 
* * (@consumers Power PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-FPP-95-054 J611WUllll&
**. ,, .... Ir.I ..alillfSS


===4.2 Description===
(@            consumers Power J611WUllll&
        **.,,....Ir.I ..alillfSS PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet ~  Rev # --=o_ _
4.2   Description of the Fire Barrier The West wall of the Turbine Lube Oil Room is corrugated sheet metal directly connected to building support steel. The remaining walls are concrete block walls. The ceiling is approximately 8" thick reinforced concrete, based on field measurement, and the floor is reinforced concrete resting on the grade elevation. The two doors in the south wall are three-hour rated doors. There are two openings in the ceiling for equipment access. These openings are protected by concrete plugs the same thickness as the ceiling with metal framing. The room is curbed to contain potential oil spills or a single tank rupture within the room.
The Turbine Lube Oil Room is a free standing room within the main Turbine Building. Figure #1 shows a plan view of the area. This room does not provide structural support for the Turbine Building. However, the lower portion of two columns supporting the Turbine Building are located within the Turbine Lube Oil Room walls near the west end. Also, the concrete slab ceiling of the room is supported by structural steel beams. Neither the Turbine Building structural steel nor the ceiling beams are protected with fireproofing
* materials. The size of the columns and beams and connecting steel outside the room, provide a large heat sink, and in conjunction with the automatic sprinkler system ensure these components will not fail prior to the arrival of additional fire fighting, equipment to further suppress a fire in this area. The
      . Palisades Fire Brigade is specifically trained to fight liquid petroleum fires as part of their hands on training.


of the Fire Barrier The West wall of the Turbine Lube Oil Room is corrugated sheet metal directly connected to building support steel. The remaining walls are concrete block walls. The ceiling is approximately 8" thick reinforced concrete, based on field measurement, and the floor is reinforced concrete resting on the grade elevation.
        @          consumers Power
The two doors in the south wall are three-hour rated doors. There are two openings in the ceiling for equipment access. These openings are protected by concrete plugs the same thickness as the ceiling with metal framing. The room is curbed to contain potential oil spills or a single tank rupture within the room. The Turbine Lube Oil Room is a free standing room within the main Turbine Building.
                  . . . .ElllN&
Figure #1 shows a plan view of the area. This room does not provide structural support for the Turbine Building.
PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet --2__ Rev # _...._o_ _
However, the lower portion of two columns supporting the Turbine Building are located within the Turbine Lube Oil Room walls near the west end. Also, the concrete slab ceiling of the room is supported by structural steel beams. Neither the Turbine Building structural steel nor the ceiling beams are protected with fireproofing
MKlllU#"S Ar8fiilU.S e erence/Lonunen Figure #1 - Plan View 590' Elev. of Turbine Building Not To Scale Feedwater Purity Bldg.
* materials.
t t                                     Shops/Labs/Offices                 North Outside Area                                                        CCWPump~
The size of the columns and beams and connecting steel outside the room, provide a large heat sink, and in conjunction with the automatic sprinkler system ensure these components will not fail prior to the arrival of additional fire fighting, equipment to further suppress a fire in this area. The . Palisades Fire Brigade is specifically trained to fight liquid petroleum fires as part of their hands on training.
Room Wall Openings Near Ceiling of Pipe Tunnel Open End Turbine Building Figure #2 is an elevation view of the west wall of the Turbine Lube Oil Room.
' Sheet Rev # --=o __ 
      *An opening approximately nine inches wide running the width of the wall is located about 15 ft. high on the 21 ft. high wall, where the ceiling supports for the F eedwater Purity Tunnel were added. This provides a direct air flow path from the Turbine Lube Oil Room to just below the ceiling area of the Feedwater Purity Building. In addition, various piping penetrations are made in the west wall that are not sealed around the annular spaces. The upper 5 to 6 ft. of the Turbine Lube Oil west wall is above the Feedwater Purity Tunnel ceiling and is exposed fo the outside plant area .
@consumers Power PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-FPP-95-054  
* .... ElllN& MKlllU#"S Ar8fiilU.S Figure #1 -Plan View 590' Elev. of Turbine Building Not To Scale Feedwater Purity Bldg. t
* t Outside Area Open End Shops/Labs/Offices Openings Near Ceiling of Pipe Tunnel Turbine Building North Room Wall Figure #2 is an elevation view of the west wall of the Turbine Lube Oil Room. *An opening approximately nine inches wide running the width of the wall is located about 15 ft. high on the 21 ft. high wall, where the ceiling supports for the F eedwater Purity Tunnel were added. This provides a direct air flow path from the Turbine Lube Oil Room to just below the ceiling area of the Feedwater Purity Building.
In addition, various piping penetrations are made in the west wall that are not sealed around the annular spaces. The upper 5 to 6 ft. of the Turbine Lube Oil west wall is above the Feedwater Purity Tunnel ceiling and is exposed fo the outside plant area . Sheet --2__ Rev # _...._o __ e erence/Lonunen
* Rooms * (@consumers Power flf1WU11111i MJDlllUll'S PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET Figure #2 -Elev. View of Turbine Lube Oil West Wall Not To Scale *i c 8 outsidf Area . Ceiling of Pipe unnel \ Pipes Tunn I Area 590' Elev. Front View Facing East Side View Facing North The F eedwater Purity Tunnel connects the separate F eedwater Purity Building to the Turbine Building and is over 150 ft. long. A portion of this tunnel runs adjacent to the lower portion of the Turbine Lube Oil Room west wait' The tunnel is constructed of structural steel with a corrugated sheet metal wall and ceiling contajning fiberglass insulation between the inner and outer sheet metal walls. The structure has no listed fire resistance rating. The Turbine Building wall adjacent to the Feedwater Purity Tunnel is sheet metal supported on structural steel, similar to the Turbine Lube Oil west wall. There are numerous openings in the east wall of the Feedwater Purity Tunnel adjacent to the Turbine Building and the south end of the tunnel opens directly into the Turbine Building.
EA-FPP-95-054 Sheet _6_ Rev # --"O'---Reference
: 2. I
* PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET 4.3 Description of Combustible Loading a. Feedwater Purity Pipe Tunnel The pipe tunnel contains two condensate pipes, a fuel oil transfer pipe (welded fittings near Turbine Lube Oil Room), four lightly loaded cable trays, and other minor electrical and mechanical items. The electrical cables in the cable trays enter conduits approximately 20 ft. from the south end of the tunnel opening into the 590' elevation of the Turbine Building.
There are no significant combustible materials that traverse the openings from the Feedwater Purity Tunnel into the Turbine Building.
The Feedwater Purity Tunnel contains no safety related equipment or circuits and has minimal combustible loading, so it is not classified as a separate fire area. b. Turbine Building (General Area@EL. 590'-0") North & West Side Combustible loading in the Turbine Building general area at EL. 590'-0" is approximately 15 minutes. This fire loading is spread over three elevations of the Turbine Building. . Equipment such as a heater drain cooler, feedwater heater, and air ejector are located near the east and south openings to the pipe tunnel. Any cable in this area is enclosed in conduit. Based on plant walkdowns, there are no significant combustibles within a radius of20 ft. from the yarious openings of the Feedwater Purity Tunnel into the 590' elevation of the Turbine Building.
Waste oil tanks (T-130 and M-18) are located to the west of the Feedwater Purity Tunnel south opening. These tanks are positioned outside of the 20 ft. distance from the Feedwater Purity Tunnel, and are protected by a wet pipe sprinkler system with a spray density greater than 0. 3 0 gpm/ft 2. The next level above the 590'-0" elevation, in this area of the Turbine Building, is the 607'-6" elevation.
This floor level is metal grating, which is not a confining space for smoke or heat. Therefore, any . smoke or heat generated from combustibles on the 590' elevation would rise, not affecting the pipe tunnel, its contents, or the Feedwater Purity Building.
This area is also connected to the turbine operating floor above by open stairwells and various large openings with metal open grating provide an even larger vent area for any smoke and hot gases and minimize heat buildup on the 590' elevation.
Transient combustibles are administratively controlled in all plant areas by plant procedure.
Transients brought into this area of the Turbine EA-FPP-95-054 Sheet -2._ Rev # _o __ onunen Reference 2.11 Reference


===2.4 Refererice===
(@          consumers Power flf1WU11111i PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet _6_ Rev # --"O'---
MJDlllUll'S  ~
Figure #2 -Elev. View of Turbine Lube Oil West Wall Not To Scale outsidf Area .              Ceiling of Pipe unnel \
                                                                                  -~-
Rooms Pipes Tunn I Area
      *ic 8
590' Elev. Front View Facing East                        Side View Facing North The F eedwater Purity Tunnel connects the separate Feedwater Purity                        Reference 2. I Building to the Turbine Building and is over 150 ft. long. A portion of this tunnel runs adjacent to the lower portion of the Turbine Lube Oil Room west wait' The tunnel is constructed of structural steel with a corrugated sheet metal wall and ceiling contajning fiberglass insulation between the inner and outer sheet metal walls. The structure has no listed fire resistance rating.
The Turbine Building wall adjacent to the Feedwater Purity Tunnel is sheet metal supported on structural steel, similar to the Turbine Lube Oil west wall.
There are numerous openings in the east wall of the Feedwater Purity Tunnel adjacent to the Turbine Building and the south end of the tunnel opens directly into the Turbine Building.


2 .1 Reference 2.14 
PALISADES NUCLEAR PLANT                     EA-  FPP-95-054 ANALYSIS CONTINUATION SHEET Sheet -2._ Rev #    _o__
* @consumers Power flflWUllllfi MmAll'S ...-as PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET ------Building for maintenance and operating activities, would be expected to be minimal based upon the type of equipment located in the area. c. Turbine Lube Oil Room The fire loading in the Turbine Lube Oil Room (Fire Area 22), results in an Equivalent Fire Severity of "greater than 9 hours" and therefore has a VERY IDGH Fire Loading Classification.
onunen 4.3 Description of Combustible Loading
A significant fire in this area would be ventilation limited and could not achieve the temperatures normally projected for an open combustible*
: a. Feedwater Purity Pipe Tunnel The pipe tunnel contains two condensate pipes, a fuel oil transfer pipe (welded fittings near Turbine Lube Oil Room), four lightly loaded cable trays, and other minor electrical and mechanical items.
liquid pool fire. The only significant openings to allow combustion air into the room are through the west wall to the F eedwater Purity Tunnel. These openings are estimated to provide less than 32 ft:2 of vent area as shown in Attachment
The electrical cables in the cable trays enter conduits approximately 20 ft. from the south end of the tunnel opening into the 590' elevation of the Turbine Building. There are no significant combustible materials that traverse the openings from the Feedwater Purity Tunnel into the Turbine Building. The Feedwater Purity Tunnel contains no safety related equipment or circuits and            Reference 2.11 has minimal combustible loading, so it is not classified as a separate fire area.
'A', The ventilation openings into the room are protected by fire' dampers which, due to their location near the ceiling, close early in the event and are not considered in this analysis.
: b. Turbine Building (General Area@EL. 590'-0") North & West Side Combustible loading in the Turbine Building general area at EL.
The vent area calculation has added sefety factors to compensate for additional air provided by the ventilation openings early in the event, before the dampers close. In order to provide a quantitative assessment of the concern in this area, to supplement but not replace the qualitative evaluation, a fire model assessment was made. The fire model chosen was FPETOOL as it is a generally accepted industry standard that is available as public domain software.
Reference 2.4 590'-0" is approximately 15 minutes. This fire loading is spread over three elevations of the Turbine Building.
The lack of software quality assurance on the use of FPETOOL requires that any results provided will be for information only and these results are not intended to be used as an exact prediction of the temperatures with an actual fire in this area. A parametric evaluation, using FPETOOL, of the average upper level smoke temperature for the Turbine Lube Oil Room using the 32 ft 2 vent opening is presented in Attachment
          . Equipment such as a heater drain cooler, feedwater heater, and air            Refererice 2 .1 ejector are located near the east and south openings to the pipe tunnel. Any cable in this area is enclosed in conduit. Based on plant walkdowns, there are no significant combustibles within a radius of20 ft. from the yarious openings of the Feedwater Purity Tunnel into the 590' elevation of the Turbine Building. Waste oil tanks (T-130 and M-18) are located to the west of the Feedwater Purity Tunnel south opening. These tanks are positioned ju~t outside of the 20 ft. distance from the Feedwater Purity Tunnel, and are protected by a wet pipe sprinkler system with a spray density Reference 2.14 greater than 0. 3 0 gpm/ft2 .
'B'. The results show that the fire would be ventilation limited in 2 to 8 minutes (120 to 500 seconds), depending on the fire growth rate, with an upper level temperature of 800° F after 20 minutes. The maximum fire size is limited to 2.93 MW for the 32 ft 2 vent opening. The standard fire growth data for "moderate", "fast" and "ufast" that were supplied with FPETOOL were used. The "fast" and "ufast" fire data are for a 10 minute period while the "moderate" data extended to 20 minutes. EA-FPP-95-054 Sheet _a_ Rev# __,,o'---Reference
The next level above the 590'-0" elevation, in this area of the Turbine Building, is the 607'-6" elevation. This floor level is metal grating, which is not a confining space for smoke or heat. Therefore, any
          . smoke or heat generated from combustibles on the 590' elevation would rise, not affecting the pipe tunnel, its contents, or the Feedwater Purity Building. This area is also connected to the turbine operating floor above by open stairwells and various large openings with metal
* open grating co~erings th~t provide an even larger vent area for any smoke and hot gases and minimize heat buildup on the 590' elevation.
Transient combustibles are administratively controlled in all plant areas by plant procedure. Transients brought into this area of the Turbine


===2.3 Reference===
MmAll'S consumers Power flflWUllllfi
                ...-as PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet _a_    Rev# __,,o'---
Building for maintenance and operating activities, would be expected to be minimal based upon the type of equipment located in the area.
: c. Turbine Lube Oil Room The fire loading in the Turbine Lube Oil Room (Fire Area 22),                  Reference 2.3 results in an Equivalent Fire Severity of "greater than 9 hours" and therefore has a VERY IDGH Fire Loading Classification. A significant fire in this area would be ventilation limited and could not achieve the temperatures normally projected for an open combustible* liquid pool fire.
The only significant openings to allow combustion air into the room are through the west wall to the Feedwater Purity Tunnel. These openings are estimated to provide less than 32 ft:2 of vent area as shown in Attachment 'A', The ventilation openings into the room are protected by fire' dampers which, due to their location near the ceiling, close early in the event and are not considered in this analysis. The vent area calculation has added sefety factors to compensate for additional air provided by the ventilation openings early in the event, before the dampers close.
In order to provide a quantitative assessment of the concern in this area, to supplement but not replace the qualitative evaluation, a fire model assessment was made. The fire model chosen was FPETOOL as it is a generally accepted industry standard that is available as public domain software. The lack of software quality assurance on the use of FPETOOL requires that any results provided will be for information only and these results are not intended to be used as an exact prediction of the temperatures associ~ted with an actual fire in this area.
A parametric evaluation, using FPETOOL, of the average upper                    Reference 2.10 level smoke temperature for the Turbine Lube Oil Room using the 32 ft 2 vent opening is presented in Attachment 'B'. The results show that the fire would be ventilation limited in 2 to 8 minutes (120 to 500 seconds), depending on the fire growth rate, with an upper level temperature of 800° F after 20 minutes. The maximum fire size is limited to 2.93 MW for the 32 ft 2 vent opening. The standard fire growth data for "moderate", "fast" and "ufast" that were supplied with FPETOOL were used. The "fast" and "ufast"
* fire data are for a 10 minute period while the "moderate" data extended to 20 minutes.


2.10 
(@         consumers Power flflWU11111i MJIUllU#'S PfllllillBS PAL I SADES NUCLEAR PLANT .
* (@consumers Power flflWU11111i MJIUllU#'S PfllllillBS PAL I SADES NUCLEAR PLANT . ANALYSIS CONTINUATION SHEET The 800° F Jemperature is below the allowable structural steel
ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet _ L Rev #    _...o_ _
* average temperature limits for steel columns and beams of 1000° F and 1100° F, respectively.
Ke~erencet~ommen~
This fire model indicates adequate time is available for manual fire fighting activities to begin and provide additional cooling water on the affected structural steel. Additional runs of the model using either a 50% larger vent area or a 50% lower concrete heat sink still yielded results below the average allowable structural steel temperature for columns and beams after a 20 minute fire duration.
The 800° F Jemperature is below the allowable structural steel
No credit is taken for the full area automatic suppression system actuation in arriving at these temperature values. Realistically, the sprinklers would greatly limit the temperature rise during any postulated fire. If the sheet metal west wall were to fail due to warpage or due to support failure from metal expansion at the high temperatures the fire size could increase due to the increased ventilation area. A conservative maximum would be for the entire wall to open up. This opening of 21 feet by 24 feet (504 ft 2) was evaluated utilizing the "moderate" fire data as this data extends to a 20 minute period. The upper layer smoke and hot gas temperature based on a "moderate" fire *was calculated to be 664° Fat the end of20 minutes. The increased opening allows for more venting of hot gases and reduces the overall temperature compared to t!ie 32 ft 2 vent opening. Ventilation opening sizes between the 32 ft 2 and 504 ft 2 extremes may create higher* temperatures due to maximizing combustion air while minimizing smoke and hot gas venting, but the automatic suppression system will limit realistic fire temperatures below those predicted above. A separate FPETOOL model was run to predict the amount of time before the automatic sprinklers would actuate and begin cooling the area. The standard "fast" and "moderate" fire sizes provided with the FPETOOL program were utilized for the evaluation.
* average temperature limits for steel columns and beams of 1000° F             Reference 2.2, Page 6-76 and 1100° F, respectively. This fire model indicates adequate time is available for manual fire fighting activities to begin and provide additional cooling water on the affected structural steel. Additional runs of the model using either a 50% larger vent area or a 50%
The evaluation of the "fast" and "moderate" fires estimated sprinkler actuation times of
lower concrete heat sink still yielded results below the average allowable structural steel temperature for columns and beams after a 20 minute fire duration.
* just under 3 minutes *and up to 5 minutes, respectively.
No credit is taken for the full area automatic suppression system actuation in arriving at these temperature values. Realistically, the sprinklers would greatly limit the temperature rise during any postulated fire.
Additionally, a steady 3 MW and 30 MW fire size were evaluated with sprinkler.*
If the sheet metal west wall were to fail due to warpage or due to support failure from metal expansion at the high temperatures the fire size could increase due to the increased ventilation area. A conservative maximum ~ize would be for the entire wall to open up.
actuation times of 29 seconds and 8 seconds, respectively.
This opening of 21 feet by 24 feet (504 ft 2) was evaluated utilizing the "moderate" fire data as this data extends to a 20 minute period. The upper layer smoke and hot gas temperature based on a "moderate" fire
The details are presented in Attachment  
        *was calculated to be 664° Fat the end of20 minutes. The increased opening allows for more venting of hot gases and reduces the overall temperature compared to t!ie 32 ft2 vent opening. Ventilation opening sizes between the 32 ft 2 and 504 ft 2 extremes may create higher*
'C'. Clearly, the larger the fire the faster the sprinklers would actuate. The less intense fires would delay sprinkler actuation, but this would be compensated for by the reduced peak temperatures that could damage the non-fire rated west wail. EA-FPP-95-054 Sheet _L Rev # _...o __
temperatures due to maximizing combustion air while minimizing smoke and hot gas venting, but the automatic suppression system will limit realistic fire temperatures below those predicted above.
Reference 2.2, Page 6-76 
A separate FPETOOL model was run to predict the amount of time before the automatic sprinklers would actuate and begin cooling the area. The standard "fast" and "moderate" fire sizes provided with the FPETOOL program were utilized for the evaluation. The evaluation of the "fast" and "moderate" fires estimated sprinkler actuation times of
* * ( @)consumers Power l'fltftUll1lfi MJIUllliAln PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET d. Feedwater Purity Building The Feedwater Purity Building is over 150 ft. from the Turbine Lube Oil Room west wall and the Turbine Building.
* just under 3 minutes *and up to 5 minutes, respectively. Additionally, a steady 3 MW and 30 MW fire size were evaluated with sprinkler.*
Some electrical cables in cable tray traverse the distance separating these buildings inside the Feedwater Purity Pipe Tunnel. The Boiler Room in the Feedwater Purity Building is protected by a sprinkler system. The Feedwater Purity Building and connecting tunnel do not contain safety related equipment.
actuation times of 29 seconds and 8 seconds, respectively. The details are presented in Attachment 'C'. Clearly, the larger the fire the faster the sprinklers would actuate. The less intense fires would delay
No combustible loading calculation was performed for this building due to the large separation from the Turbine Building or any safety related structures or components.  
* sprinkler actuation, but this would be compensated for by the reduced peak temperatures that could damage the non-fire rated west wail.


===4.4 Description===
(
      @)
MJIUllliAln consumers Power l'fltftUll1lfi
                  ~
PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet -1Q__ Rev# -"'D_ _
: d. Feedwater Purity Building The Feedwater Purity Building is over 150 ft. from the Turbine                Reference 2.1 Lube Oil Room west wall and the Turbine Building. Some electrical cables in cable tray traverse the distance separating these buildings inside the Feedwater Purity Pipe Tunnel. The Boiler Room in the Feedwater Purity Building is protected by a sprinkler system. The Feedwater Purity Building and connecting tunnel do                Reference 2.11 not contain safety related equipment. No combustible loading calculation was performed for this building due to the large separation from the Turbine Building or any safety related structures or components.
4.4 Description of Suppression and Detection .
: a. Suppression The Turbine Lube Oil Room is equipped with full area automatic wet pipe suppression system. Sprinkler hydraulic analysis shows                Reference 2.13 the spray density is greater than '0.55 gpm/3,000 sq. ft. which exceeds the 0.30 gpm/3,000 sq. ft. design specified for Extra Ref. 2.15, Fig. 1.24 Hazard (Group 1) protection. The extra water spray will minimize the peak room temperatures well below those predicted above in
            . Section 4.3.c.
Manual suppression is provided by a hose station located less than 20 ft. away from the Turbine Building entrance to the pipe tunnel at the 590'-0" elevation. Various other hose stations are located throughout the Turbine Building on this and other elevations to provide backup fire fighting capability. Fire fighting foam equipment is located just outside the Turbine Lube Oil Room on the 590'-0" elevation.
The Turbine Building has partial area automatic wet pipe suppression systems located in areas around the Turbine Lube Oil Room. These systems provide protection for areas with cable trays, lube oil, hydraulic oil reservoirs and office areas on both the 590'-0" elevation and the 607'-6" elevation. The Turbine Building areas to the north, south and east of the Turbine Lube Oil Room are protected by these sprinkler systems. Portions of these systems are located between the Turbine
* Lube Oil Room and the Component Cooling Water (CCW) Pump Room wall located east of the Turbine Lube Oil Room. The CCW Pump Room wall, which contains non-fire rated openings, provides separation of safety related equipment from the Turbine Building.


of Suppression and Detection . a. Suppression The Turbine Lube Oil Room is equipped with full area automatic wet pipe suppression system. Sprinkler hydraulic analysis shows the spray density is greater than '0.55 gpm/3,000 sq. ft. which exceeds the 0.30 gpm/3,000 sq. ft. design specified for Extra Hazard (Group 1) protection.
        @          consumars Power PllWUllN&
The extra water spray will minimize the peak room temperatures well below those predicted above in . Section 4.3.c. Manual suppression is provided by a hose station located less than 20 ft. away from the Turbine Building entrance to the pipe tunnel at the 590'-0" elevation.
AUDIJIU#'S llmNilral PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION.SHEET EA- FPP-95-054 Sheet -11..._ Rev # _o_ _
Various other hose stations are located throughout the Turbine Building on this and other elevations to provide backup fire fighting capability.
: b. Detection There is no automatic detection located in the general Turbine Building area near the access door to the pipe gallery (EL. 590'-0"). However, the automatic sprinkler systems in both the Turbine Lube Oil Room and the Turbine Building are equipped with flow alarms. These alarms will provide notification to the continuously manned plant Control Room.
Fire fighting foam equipment is located just outside the Turbine Lube Oil Room on the 590'-0" elevation.
: c. Fire Brigade/Equipment The plant fire brigade training program includes actual involvement with fighting flammable liquid fires during the live fire training. The 590'-0" elevation of the Turbine Building contains one of the fire brigade depot areas for equipment storage providing ready access to equipment for a fire in this area. Equipment such as self-contained vent fans capable of delivering 16,000 CFM are also located outside the Turbine Lube Oil Room. As mentioned above, the area also contains fire fighting foam equipment for a potential lube oil fire.
The Turbine Building has partial area automatic wet pipe suppression systems located in areas around the Turbine Lube Oil Room. These systems provide protection for areas with cable trays, lube oil, hydraulic oil reservoirs and office areas on both the 590'-0" elevation and the 607'-6" elevation.
4.5  Overview of Fire Barrier Concerns The primary concern for this area is the spread of a fire from the Turbine Lube Oil Room into the Turbine Building that may ultimately affect either safety relat~d equipment in the Turbine Building or openings in walls separating the Turbine Building from safety related plant areas such as the CCW Pump Room. There is minimal concern for the spread of fire from the Turbine Building back into the Turbine Lube Oil Room due to the low combustible loading on the Turbine Building side.
The Turbine Building areas to the north, south and east of the Turbine Lube Oil Room are protected by these sprinkler systems. Portions of these systems are located between the Turbine Lube Oil Room and the Component Cooling Water (CCW) Pump Room wall located east of the Turbine Lube Oil Room. The CCW Pump Room wall, which contains non-fire rated openings, provides separation of safety related equipment from the Turbine Building.
From the descriptions provided above there are several defense-in-depth barriers to prevent the spread of fire from the Turbine Lube Oil Room back into the Turbine Building. These can be summarized as follows:
EA-FPP-95-054 Sheet -1Q__ Rev# -"'D __ Reference
* The Turbine Lube Oil Room has full area automatic suppression estimated to actuate within 3 to 5 minutes and is hydraulically analyzed to exceed the design standards. In addition, curbing is provided to contain potential oil spills within the room.
* The non-fire rated west wall is exposed to the exterior for the upper 5 to 6 ft. and if wall failure did occur due to a fire, then this area would be expected to fail first venting the smoke and hot gases outside the Turbine Building area.
The size of the realistic fire in the Turbine Lube Oil Room is not projected to reach temperatures that may fail the west wall prior to sprinkler system actuation.


===2.1 Reference===
(@  .
consumers Power l'flWUllNll PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet -1L    Rev #  __..o_ _
AUUllUln Pm1&ras Ke*erencetcomrnenc
* Any smoke and hot gases vented into the Feedwater Purity Tunnel and Turbine Building would ultimately disperse over the entire Turbine Building area and minimize heat stress on nearby equipment. The areas within 20 ft. of the Feedwater Purity Tunnel opening on the 590' elevation into the Turbine Building are virtually devoid of combustible material and contain no safety related equipment.
* The plant fire brigade is available to respond to any plant fire and is specifically trained to fight oil fueled fires and has equipment available to extinguish such fires.
The remaining concern is for direct fire exposu~e to openings in walls separating safety related equipment from the Turbine Building. The west wall of the CCW Pump Room contains various openings into the Turbine Building and these are described in a separate evaluation. However, the additional defense-in-depth features, from those described above, that protect these openings are a follows:
* The areas within 20 ft. of these openings on the Turbine Building side are
    '  . almost devoid of combustible materials. Floor drains are located throughout the Turbine Building to prevent the spread of liquid pool fires to the area adjacent to these openings on the 590' elevation.
* Automatic wet pipe suppression systems are located in the Turbine Building such that a fire on the west side of the Turbine Building (near the Turbine Lube Oil area) would* have to cross these protected areas before exposure of the openings could occur.
Additionally, the original Appendix R post-fire safe shutdown evaluation and the current revision to this analysis do not consider the Turbine Building and the Turbine Lube Oil Room as requiring separate fire areas, because no. safe                Reference 2.11 shutdown components are located in the Turbine Lube Oil Room. Should a fire spread from the Turbine Lube Oil Room to the Turbine Building, it would result in the same consequences as a Turbine Building fire alone. The Turbine Building and the CCW Pump Room are evaluated as separate fire areas in the Appendix R analysis. However, since the west wall of the Turbine Lube Oil Room is facing opposite and over 100' away from the unrated openings in the CCW Pump Room wall, no direct fire exposure hazard is considered credible .


2.11 Reference 2 .13 Ref. 2.15, Fig. 1.24 
      @            consumers*
* @consumars Power . PllWUllN&
Power Nf/IUUllli MIUllliAll'S flllGfiilf.U PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet --1L Rev# __,,o_ _
AUDIJIU#'S llmNilral
: b. Detection PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION.SHEET There is no automatic detection located in the general Turbine Building area near the access door to the pipe gallery (EL. 590'-0").
However, the automatic sprinkler systems in both the Turbine Lube Oil Room and the Turbine Building are equipped with flow alarms. These alarms will provide notification to the continuously manned plant Control Room. c. Fire Brigade/Equipment The plant fire brigade training program includes actual involvement with fighting flammable liquid fires during the live fire training.
The 590'-0" elevation of the Turbine Building contains one of the fire brigade depot areas for equipment storage providing ready access to equipment for a fire in this area. Equipment such as self-contained vent fans capable of delivering 16,000 CFM are also located outside the Turbine Lube Oil Room. As mentioned above, the area also contains fire fighting foam equipment for a potential lube oil fire. 4.5 Overview of Fire Barrier Concerns The primary concern for this area is the spread of a fire from the Turbine Lube Oil Room into the Turbine Building that may ultimately affect either safety equipment in the Turbine Building or openings in walls separating the Turbine Building from safety related plant areas such as the CCW Pump Room. There is minimal concern for the spread of fire from the Turbine Building back into the Turbine Lube Oil Room due to the low combustible loading on the Turbine Building side. From the descriptions provided above there are several defense-in-depth barriers to prevent the spread of fire from the Turbine Lube Oil Room back into the Turbine Building.
These can be summarized as follows:
* The Turbine Lube Oil Room has full area automatic suppression estimated to actuate within 3 to 5 minutes and is hydraulically analyzed to exceed the design standards.
In addition, curbing is provided to contain potential oil spills within the room.
* The non-fire rated west wall is exposed to the exterior for the upper 5 to 6 ft. and if wall failure did occur due to a fire, then this area would be expected to fail first venting the smoke and hot gases outside the Turbine Building area.
* The size of the realistic fire in the Turbine Lube Oil Room is not projected to reach temperatures that may fail the west wall prior to sprinkler system actuation.
EA-FPP-95-054 Sheet -11..._ Rev # _o __
* ---' * (@consumers Power PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-FPP-95-054 . l'flWUllNll AUUllUln Pm1&ras *--* Any smoke and hot gases vented into the Feedwater Purity Tunnel and Turbine Building would ultimately disperse over the entire Turbine Building area and minimize heat stress on nearby equipment.
The areas within 20 ft. of the Feedwater Purity Tunnel opening on the 590' elevation into the Turbine Building are virtually devoid of combustible material and contain no safety related equipment.
* The plant fire brigade is available to respond to any plant fire and is specifically trained to fight oil fueled fires and has equipment available to extinguish such fires. The remaining concern is for direct fire to openings in walls separating safety related equipment from the Turbine Building.
The west wall of the CCW Pump Room contains various openings into the Turbine Building and these are described in a separate evaluation.
However, the additional defense-in-depth features, from those described above, that protect these openings are a follows:
* The areas within 20 ft. of these openings on the Turbine Building side are almost devoid of combustible materials.
Floor drains are located . throughout the Turbine Building to prevent the spread of liquid pool fires to the area adjacent to these openings on the 590' elevation.
* Automatic wet pipe suppression systems are located in the Turbine Building such that a fire on the west side of the Turbine Building (near the Turbine Lube Oil area) would* have to cross these protected areas before exposure of the openings could occur. Additionally, the original Appendix R post-fire safe shutdown evaluation and the current revision to this analysis do not consider the Turbine Building and the Turbine Lube Oil Room as requiring separate fire areas, because no. safe shutdown components are located in the Turbine Lube Oil Room. Should a fire spread from the Turbine Lube Oil Room to the Turbine Building, it would result in the same consequences as a Turbine Building fire alone. The Turbine Building and the CCW Pump Room are evaluated as separate fire areas in the Appendix R analysis.
However, since the west wall of the Turbine Lube Oil Room is facing opposite and over 100' away from the unrated openings in the CCW Pump Room wall, no direct fire exposure hazard is considered credible . Sheet -1L Rev # __..o __ Ke*erencetcomrnenc
----Reference 2.11 
* @consumers*
Power PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-FPP-95-054 Nf/IUUllli MIUllliAll'S flllGfiilf.U


==5.0 CONCLUSION==
==5.0 CONCLUSION==


The regulatory goal of the Turbine Lube Oil Room walls is to prevent a direct exposure fire hazard to either safety related equipment or openings and penetrations in fire barriers containing safety related equipment.
The regulatory goal of the Turbine Lube Oil Room walls is to prevent a direct exposure fire hazard to either safety related equipment or openings and penetrations in fire barriers containing safety related equipment. The plant configuration described above provides adequate defense-in-depth such that the system as a whole prevents a direct fire exposure hazard to safety related equipment or openings in other fire area barriers required to meet NRC guidelines.
The plant configuration described above provides adequate defense-in-depth such that the system as a whole prevents a direct fire exposure hazard to safety related equipment or openings in other fire area barriers required to meet NRC guidelines.  
6.0 ATTACHMENTS Attachment A            - Estimation of Vent Area for Turbine Lube Oil Room West Wall and Surface Area of Interior Walls Attachment B              FPETOOL Summary of Upper Level Temperatures for the Turbine Lube Oil Room Attachment C              FPETOOL Summary of Sprinkler Actuation Time for a Fast and Moderate Fire in the Turbine Lube Oil Room
* EA-FPP-95-054 Sheet 1 of 4 ATTACHMENT A Estimation of Vent Area for
**      Turbine Lube Oil Room West Wall and Surface Area of Interior Walls


===6.0 ATTACHMENTS===
    *Estimation of Vent Area for Turbine Lube Oil West *W~ll.
Not To Scale                                JI ca
        ~        i...-~~~~~~---'-~~~-
        ~      -
Between 22"H Rooms 6" Dia.                                                            7.5"W x 7"H 22"W x 20"H                                    or-10.5" 3'- B"W                  Diagonal 6" Dia.
11 '- 1            9'- 1O"
        ....Cl>                  9'- 5"                    II Cl>
        .c en 7" Dia.
m
        ....Cl>
Cl>~~~~~                                                                                      )>
I
          ~
0 "Tl c:                                                                                            "'tJ 0                                                                                        "'C Q)
                                                                                                        "'tJ I
u===                                                                                     cc CD co 01 590' Elev. Front View Facing East                  Side View        N1 oO Facing North    -01
                                                                                                    ~~


Attachment A -Estimation of Vent Area for Turbine Lube Oil Room West Wall and Surface Area of Interior Walls Attachment B FPETOOL Summary of Upper Level Temperatures for the Turbine Lube Oil Room Attachment C FPETOOL Summary of Sprinkler Actuation Time for a Fast and Moderate Fire in the Turbine Lube Oil Room Sheet --1L Rev# __,,o __ 
EA-FPP-95-054 Page 3of4
* **
* Vent Area Calculation The upper portion of the sheet metal wall is located 7. 5" horizontally away from the pipe tunnel ceiling I-beam and 7" below the lower flange of the I-beam. i::he air flow through this opening will be across the diagonal area calculated as follows:
* ATTACHMENT A Estimation of Vent Area for Turbine Lube Oil Room West Wall EA-FPP-95-054 Sheet 1 of 4 and Surface Area of Interior Walls 
Diagonal= ..f((7.5")2 + (7") 2) = ..f(56.25 + 49) = ..f105.25 = 10.26 or conservatively 10.5" The diagonal opening along the majority of the west wall progresses for 20'-4" (24' minus 3'-8").
*
The area of this portion of the opening is calculated as A1 below:
* Estimation of Vent Area for Turbine Lube Oil West Not To Scale JI Between Rooms ca -.... Cl> Cl> .c en 6" Dia. @ 6" Dia. . 7" Dia.
A 1 = (10.5"/12) ft. X (20' + 4"/12) ft. = 0.875 ft. X 20.34 ft. = 17.80 ft2 The semi-circular cutout for a pipe is conservatively assumed to be completely open without a pipe and the area is calculated as A2 below:
.... Cl> 0 c: 0 u=== 22"W x 20"H 9'-5" 3'-B"W 11 '-1 II 590' Elev. Front View Facing East 22"H 9'-1 O" ' 7.5"W x 7"H or-10.5" Diagonal Side View Facing North m )> I "Tl "'tJ "'C "'tJ Q) I cc co CD 01 N1 oO -01 
A2 = 1/2 X ((7t(6/12)2)/4) = 1/2 X (3.14 X 0.25)/4) = 0.098 ft2 The rectangle cutout for a pipe is conservatively assumed to be completely open without a pipe*
* *
and the area is calculated as A3 below:
* Vent Area Calculation EA-FPP-95-054 Page 3of4 The upper portion of the sheet metal wall is located 7. 5" horizontally away from the pipe tunnel ceiling I-beam and 7" below the lower flange of the I-beam. i::he air flow through this opening will be across the diagonal area calculated as follows: Diagonal=  
* A3 = (22"/12) ft. x (20"112) ft. =   I.83 ft. x t.67 ft. = 3.06 ft 2 The right most diagonal opening is located 7.5" horizontally away from the pipe tunnel I-beam and 22" below the lower flange of the I-beam. The air flow through this opening will be across the diagonal area calculated as follows:
..f((7.5")
* 2nd Diagonal= ..f((7.5")2 + (22") 2) = {(56.25 + 484) = ..f540.25 = 23.25" The rectangle cutout for the remaining 3'-8" of the west wall is calculated as A.. below:
2 + (7")2) = ..f(56.25  
A..= (23.25"/12) ft. x (3' + 8"/12) ft. = 1.94 ft. x 3.67 ft. = 7.12 ft2 The area of the three pipe penetrations, which are essentially filled with the pipes, are conservatively assumed to be completely open and the area is calculated as As below:
+ 49) = ..f105.25  
As= ((1t(6"/12) 2)/4) + ((1t(7"/12) 2)/4) + ((7t(5"/12)2)/4) = 0.196 + 0.267 + 0.136 =
= 10.26 or conservatively 10.5" The diagonal opening along the majority of the west wall progresses for 20'-4" (24' minus 3'-8"). The area of this portion of the opening is calculated as A 1 below: A 1 = (10.5"/12) ft. X (20' + 4"/12) ft. = 0.875 ft. X 20.34 ft. = 17.80 ft 2 The semi-circular cutout for a pipe is conservatively assumed to be completely open without a pipe and the area is calculated as A 2 below: A 2 = 1/2 X ((7t(6/12) 2)/4) = 1/2 X (3.14 X 0.25)/4) = 0.098 ft 2 The rectangle cutout for a pipe is conservatively assumed to be completely open without a pipe* and the area is calculated as A 3 below:
              = 0.60 ft 2 The conservative total vent area is the sum of A1 through     As as follows:
* A 3 = (22"/12) ft. x (20"112) ft. = I.83 ft. x t.67 ft. = 3.06 ft 2 The right most diagonal opening is located 7.5" horizontally away from the pipe tunnel I-beam and 22" below the lower flange of the I-beam. The air flow through this opening will be across the diagonal area calculated as follows:
Total Area~ 17.80 + 0.098 + 3.06 + 7.12 + 0.60 = 28.68 ft 2
* 2nd Diagonal=  
* To further compensate for field measurement errors a 10% safety factor will be added to the Total Area to conservatively estimate the amount of air available to support combustion as follows:
..f((7.5")2  
Total Area= 28.68 X 1.10 = 31.55; the area to be used in FPETOOL will be 32         ff
+ (22")2) = {(56.25 + 484) = ..f540.25  
= 23.25" The rectangle cutout for the remaining 3'-8" of the west wall is calculated as A.. below: A..= (23.25"/12) ft. x (3' + 8"/12) ft. = 1.94 ft. x 3.67 ft. = 7.12 ft 2 The area of the three pipe penetrations, which are essentially filled with the pipes, are conservatively assumed to be completely open and the area is calculated as As below: As= ((1t(6"/12) 2)/4) + ((1t(7"/12) 2)/4) + ((7t(5"/12) 2)/4) = 0.196 + 0.267 + 0.136 = = 0.60 ft 2 The conservative total vent area is the sum of A 1 through As as follows: Total 17.80 + 0.098 + 3.06 + 7.12 + 0.60 = 28.68 ft 2 To further compensate for field measurement errors a 10% safety factor will be added to the Total Area to conservatively estimate the amount of air available to support combustion as follows: Total Area= 28.68 X 1.10 = 31.55; the area to be used in FPETOOL will be 32 ff EA-FPP-95-054 Page 4of4 -* ---Turbine Lube Oil Room
* Surface Area oflnterior Walls The FPETOOL calculation of average upper level temperature includes an evaluation of the heat sink provided by the surrounding enclosure materials.
The Turbine Lube Oil Room is constructed of 8" concrete block on three sides, a reinforced concrete ceiling that is also 8" thick and a reinforced concrete floor that is greater than 8" thick. Conservatively; the 8" thickness will be used for all the enclosure concrete surfaces.
The room is approximately 21 ft. high, but due to obstructions to air flow caused by the steel beams supporting the ceiling a conservative value of 20 ft. is used for the wall height. The lower number will provide both a higher temperature for a given fire size and a lower heat sink value than is realistically available.
Based on the floor area of 24 ft. by 80 ft: the interior wall surface area is calculated as follows: Floor/Ceiling=
80' Long X 24' Wide X 2 surfaces=
3,840 ft.2 N & S Walls = 80' Long X 20' High X 2 surfaces=
3,200 ft.2 East Wall . = 20' High X 24' Long X 1 surface == 480 ft.2 Total Surface Area
= 7,520 ft.2 Conservatively, the structural steel is not included in the heat sink values used for calculating the upper level smoke temperature in the room .. 
*
* ATTACHMENT B FPETOOL Summary of Upper Level Temperatures for the Turbine Lube Oil Room EA-FPP-95-054 Sheet 1 of 14 
*
* Turbine Lube Oil Room FPETOOL Upper Level Temperature
---------l
* I I -----------
-----
I -LL 600 I / I I l I /
I *;' I E I / / Q) I l /
0 .200 ' 400 600 800 1000 1200 Time -Seconds -UFastFire
**-*-*-*---**-*
Fast Fire ------Moderate Fire I (]) T /I) ; <l 1-v .--...r:...
* U_:r'EJ.'JIP version 1.1 average upper level smoke temperature.
!i bine Lube Oil Room -Moderate Fire -32 sq. ft. Vent surfaces are: . S** aGe 1 -7520' Sq*. ft. of 8*' inch thick CONCRETE Fire room openings:
Door is closed. Window is open to a height of 1.333 ft. and a width of 03-22-1996 24 ft. Time Rate of heat release Upper level smoke (sec) (BTU/sec) (kW) (degrees F) 10 1 1 102 20 4 5 105 30 10 11 109 40 18 19 114 50 28 29 119 *60 40 42 125 70 54 57 132 80 71 75 139 90 90 95 146 100 111 117 154 110 134 142 162 120 160 168 171 130 188 198 180 140 218 229 189 150 250 263 199 .160 284 300 I 209 ' 1-70 321 338 219 180 360 379 230 190 401 422 241 200 444 468 252 210 490 516 264 220 537 566 276 230 587 619 288 240 639 674 300 250 694 731 313. 260 750 791 326 270 809 853 339 280 870 917 352 290 934 984 366 300 999 1,053 380 310 1,067 1,124 394 320 1,137 1, 198 . ' 408 330 1,209 1,274 423 340 1,283 1,353 438 350 1,360 1,433 453 360 1,439 1,516 468 370 1,520 1;602 483 380 1,603 1,689 499 390 1,688 1,780 515 400 1,776 1, 872. 531 .410 1,866 1,967 547 1,958 2,064 564 430* 2,052 2,163 580 440 2,149 2,265 597 450 2,248 2,369. 614 '460 2,349 2,476 631 temperature (degrees C) 39 40 43 45 48 52 55 59 63 68 72 77 82 87 93 98 104 110 116 122 129 135 142 149 . 156 163 171 178' 186 193 201 209 217 225 234 242 251 259 268 277 286 295 305 314 323 333 470 2,452 2,585 649 480 2,558 2,696 667 490 2,665 2,809 684 Y df \ Lj 343 353 362 372 500 2,775 .2,925 702 'Tim.burning rate and resulting upper level temperature is limited capacity of the room openings.
*From this point on the amount of energy that can be released within the room is limited to 2778.595 BTU/sec. Room temperature may continue to rise. 510 2,779 2,929 705 520 2,779 2,929 707 530 2,779 2,929 709 540 2,779 2,929 711 550 2,929 712 560 2,779 2,929 714 570 2,779 2,929 716 580 2,779 2,929 718 590 2,779 2,929 720 600 2,779 2,929 721 610 2,779 2,929 723 620 2,779 2,929 725 630 2,779 2,929 726 640 2,779 2,929 728 650 2,779 2,929 730 660 2,779 2,929 731 670 2,779 2,929 733 680 2,779 2,929 734 690 2,779 2,929 736 ) 700 2,779 2,929 738 710 2,779 2,929 739 *. 720 2,779 2,929 741 I 730 2,779 2,929 742 740 2,929 743 750 2,779 . 2,929 745 760 2,779 2,929 746 770 2,779 2,929* 748 780 2,779 2,929 749 790 2,779 2,929 751 800 2,779 2,929 752 810 2,779 2,929 753 820 2,929 755 830 2,779 2,929 756 840 ''2,779 2,929 757 850 2,779 2,929 759 860 2,779 2,929 760 870 2,779 2,929 761 880 2,779 2,929 762 890 2,779 2,929 764 900 2,779 2,929 765 910 2,779 2,929 766 920 2,779 2,929 767 930 2,779 2,929 768 940 2,779 2,929 770 950 2,779 2,929 771 960 2,779 2,929 772 *970 2 t 779 2 I 929 773 980 2,779 2,929 774 990 2,779 2,929 775-1,000 2,779 2,929 777 1,010 2,779 2,929 778 1,020 2,779 2,929 779 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 389 '390 391 392 393 394 394 395 396 397 398 398 399 400 401 401 402 403 404 404 405 406 406 407 408 408 409 410 410 411 412 412 413 414 414 415 


.5 l Lf 1,030 2,779 2,929 780 416 . 1, 040 2,779 2,929 781 416 1-, 050 2,779 2,929 782 417 1,060 2,779 2,929 783 417 2,779 2,929 784 418 2,779 2,929 785 419 1,090 2,779 2,929 _.786 419 1,100 2,779 2,929 787 420 1,110 2,779 2,929 788 420 1,120 2,779 2,929 789 421 1,130 2,779 2,929 791 421 1, 140' 2,779 2,929 792 422 1,150 2,779 2,929 793 423 1,160 2,779 2,929 794 423 1,170 2,779 2,929 795 *424 1,180 2,779 2,929 796 424 1,190 2,779 2,929 796 425 1,200 2,779 2,929 797 425 I *
EA-FPP-95-054 Page 4of4 Turbine Lube Oil Room Surface Area oflnterior Walls The FPETOOL calculation of average upper level temperature includes an evaluation of the heat sink provided by the surrounding enclosure materials. The Turbine Lube Oil Room is constructed of 8" concrete block on three sides, a reinforced concrete ceiling that is also 8" thick and a reinforced concrete floor that is greater than 8" thick. Conservatively; the 8" thickness will be used for all the enclosure concrete surfaces. The room is approximately 21 ft. high, but due to obstructions to air flow caused by the steel beams supporting the ceiling a conservative value of 20 ft. is used for the wall height. The lower number will provide both a higher temperature for a given fire size and a lower heat sink value than is realistically available. Based on the floor area of 24 ft. by 80 ft: the interior wall surface area is calculated as follows:
* version 1.1 o-t \<...{ average upper level smoke temperature.
Floor/Ceiling= 80' Long X 24' Wide X 2 surfaces= 3,840 ft. 2 N & S Walls = 80' Long X 20' High X 2 surfaces= 3,200 ft. 2 East Wall    . = 20' High X 24' Long X 1 surface ==      480 ft. 2 Total Surface Area = 7,520 ft. 2 Conservatively, the structural steel is not included in the heat sink values used for calculating the upper level smoke temperature in the room ..
Turbine Lube Oil Room -Fast Fire -32 sq. ft. Vent 03-22-1996 Sq. ft. of 8 inch thick CONCRETE Fire room openings:
 
Door is closed. Window is open to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke (sec) (BTU/sec) (kW) (degrees F) 10 4 5 104 20 18 19 . '112 30 40 42 122 40 71 75 134 50 111 116 148 60 159 168 163 70 21 7 228 179 80 283 298 197 90 358 377 216 100 442 466 235 110 535 564 256 12 0 ,6 3 7 6 71 2 7 8 130 747 788 301 140 867 913 324 150 995 1, 049 349 -.. 1160 1, 132 1, 193 374 19170 1 , 2 7 8 l , 3 4 7 4 0 0 180 1,432 1,510' 427 190 1,596 1,682 454 200 1,769 1,864 483 210 1, 950 2, 055 512 220 2,140 2,255 542 230 2,339 2,465 572 240 2,547 2,684 603 250 2,763 2,913 635 The purning rate and upper level temperature is limited temperature (degrees C) 40 45 50 57 64 73 82 92 102 113 125 137 149 162 176 190 204 219 235 250 267 283 300 317 335 by the ventilation capacity of the room openings.
EA-FPP-95-054 Sheet 1 of 14 ATTACHMENT B FPETOOL Summary
From this point on the amount of energy that.can be released within the room is limited to 2778.595 BTU/sec. Room temperature may continue to rise. 260 2,779 2,929 641 270 2,779 2,929 644 280 2,779 2,929 647 290 2,779 2,929 650 300 2,779 2,929 654 310 2,779 2,929 657 320 2,779 2,929 660 330 2,779 2,929 662 340 2,779 2,929 665 350 2,779 2,929 668 360 2,779 2,929 671 2,779 2,929 673 2,779 2,929 676 390 2,779 2,929 678 400 2,779 2,929 681 410 2,779 2,929 683 *420 2,779 2,929 686 338 340 342 344 345 .347 349 350 352 353 355 356 358 359 360 362 363 I  
* of Upper Level Temperatures for the Turbine Lube Oil Room
.. S
 
{ o-t-l '-1 430 2,779 2,929 688 364 -* 440 2,779 2,929 690 366 450 2,779 2,929 692 367 460 2,779 2,929 694 368 '.470 2,779 2,929 697 369 --
l
2,779 2,929 699 370 490 2,779 2,929 701 372 500 2,779 2,929 703 373 510 2,779 2,929 705 374 520 2,779 2,929 707 375 530 2,779 2,929 709 376 540 2,779 2,929 711 377 550 2,779 2,929 712 378 560 2,779 2,929 714 379 570 2,779 2,929 716 380 580 2,779 2,929 718 381 590 2,779 2,929 720 382 600 2,779 2,929 721 383. *
* Turbine Lube Oil Room I
* version 1. 1 average upper level smoke temperature.
I FPETOOL Upper Level Temperature 700-1-~-1-~-t-~-t-~-t--=--,,.=:-~-+-~-+-~-+-~-+-~-+-~-+-~
S kei"t 8 \ '--f Turbine Lube Oil Room -UFast Fire -32 sq. ft. Vent 03-22-1996 RAS .a--csue-r-Nf.ao, 8. eslare75:
                                  ~---,./
2-* O Sq. ft. of 8 inch thick CONCRETE Fire room openings:
I I
Door is closed. Window is open to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke (sec) (BTU/sec) (kW) (degrees F) 10 18 19 111 20 71 75 131 30 160 169 156 4 0 2 8 4 3 0 0 18 7_ 50 "\) 444 469 221 60 640 675 259 70 871 918 300 80 1,138 1,199 345 90 1,440 1,518 392 100 1,778 1,874 442 110 2,151 2,268 495 120 2,560 2,699 550 The burning rate and resulting upper level temperature is limited by the ventilation capacity of the room openings.
                                                  /
From this point temperature (degrees C) 44 55 69 86 105 126 149 174 200 228 257 288 on the amount of energy that can be released within the room is l_ated to 2778. 595 BTU/sec. Room temperature may continue to rise.
-LL 600          ~      /                I I
2 t 779 2 t 929 582 -140 2,779 2,929 588 150 2,779 2,929 . 593 160 2,779 2,929 599 170 2,779 2,929 604 180 2,779 2,929 608 190 2,779 2,929 613 200 2,779 2,929 617 210 2,779 2,929 622 220 2,779 2,929. 626 230 2,779 2,929 630. 240 2,779 2,929 633 250 2,779 2,929 637 260 2,779 2,929 641 270 2,779 2,929 644 280 2,779 2,929 647 290 2,779 2,929 650 300 2,779 2,929 654 310 2,779 2,929 320 2,779 2,929 660 330 2,779 2,929 662 340 2,779 2,929 665 350 2,779 2,929 668 360 2,779 2,929 671 a10 2,119 2,929 673 2,779 2,929 676 390 2,779 2,929 678 400 2,779 2,929 681 410 2,779 2,929 683 420 2,779 2,929 686 305 309 312 315 318 323 325 328 330 332 334 336 338 340 342 344 345 347 349 350 352 353 355 356 358 359 360 362 363 S keeT 9 c-t-(<-( 430 2,779 2,929 688 364 44'0 2,779 2,929 690 366 450 2,779 2,929 692 367 460 2,779 2,929 694 368 2,779 2,929 697 369 2,779 2,929 699 370 490 2,779 2,929 701 372 500 2,779 2,929 703 373 510 2,779 2,929 705. 374 520 2,779 2,929 707 375 530 2,779 2,929 709 376 540 2,779 2,929 711 377 550 2,779 2,929 712 378 560 2,779 2,929 714 379 570 2,779 2,929 716 380 580 2,779 2,929 718 381 590 2,779 2,929 720 . 382 600 2,779 2,929 721 383 , * *
I                        l
        +--~~,~--+-r----t-~---t-r,~-t-~-----t-~-----t-~-+-~-t-~-+-~-+-~~
  ~500-+--~-++-~~;_*~-1-----r'~/~-+-~--1-~--1-~---+~---+~---+~---+~-----i
~              I                  I
  ~400-+--~tt-'-f-/-t-~~/~/~-+-~---t-~---t-~---t-~-+-~--+--~--+--~-+-----i E          I      /        /
Q)        I      l        /
~300-1--,-1-+-!~/~~/~/~/-1-~--t-~--t-~--t-~--t-~--+~--+~--+~--+~----1
(])
0            .200 '           400                            600            800            1000    1200 T/I)
Time - Seconds                                            ;
                                                                                                                  ~
                -      UFastFire              **-*-*-*---**-* Fast Fire            ------ Moderate Fire I      <l 1-v
                                                                                                                  ...r:...
* U_:r'EJ.'JIP version 1.1       average upper level smoke temperature.
bine Lube Oil Room - Moderate Fire - 32 sq. ft. Vent              03-22-1996
  !i        surfaces are:
. S** aGe NG=:-~ 1 -7520' Sq*. ft. of 8*' inch thick CONCRETE Fire room openings:
Door is closed.
Window is open to a height of 1.333 ft. and a width of                24  ft.
Time              Rate of heat release            Upper level smoke temperature (sec)          (BTU/sec)            (kW)          (degrees F)      (degrees C) 10                    1                  1              102                  39 20                    4                  5              105                  40 30                  10                11              109                  43 40                  18                19              114                  45 50                   28                29              119                  48
            *60                  40                42              125                  52 70                  54                57             132                  55 80                  71                75              139                  59 90                  90                95              146                  63 100                    111                117              154                  68 110                    134                142              162                 72 120                    160                168              171                  77 130                    188                198              180                  82 140                    218                229              189                  87 150                    250               263              199                  93 I
    .160                          284                300             209                  98
    '      1-70                  321                338              219                104 180                    360                379              230                110 190                    401                422              241                116 200                    444                468              252                122 210                    490                516              264                129 220                    537                566              276                135 230                    587                619              288                142 240                    639                674              300                149 250                    694                731              313.             . 156 260                    750                791              326                163 270                    809                853              339                171 280                    870                917              352                178' 290                    934                984              366                186 300                    999            1,053              380                193 310                  1,067            1,124              394                201 320                  1,137            1, 198 .            408                209 330                  1,209            1,274        '    423                217 340                  1,283            1,353              438                225 350                  1,360            1,433              453                234 360                  1,439            1,516              468                242 370                  1,520            1;602              483                251 380                  1,603            1,689              499                259 390                  1,688            1,780              515                268 400                  1,776            1, 872.            531                277
      .410                      1,866            1,967              547                286
~        ~20                  1,958            2,064              564                295 430*                2,052            2,163              580                305 440                  2,149            2,265              597                314 450                  2,248            2,369.              614                323
          '460                  2,349            2,476              631                333
 
S~ee+ Y df \ Lj 470        2,452            2,585            649            343 480        2,558            2,696            667            353 490        2,665            2,809            684            362 500        2,775          .2,925            702            372
  'Tim.burning rate and resulting upper level temperature is limited
=-b~ne-venEilation capacity of the room openings. *From this point on the amount of energy that can be released within the room is limited to 2778.595 BTU/sec. Room temperature may continue to rise.
510        2,779            2,929             705            374 520        2,779           2,929             707            375 530        2,779           2,929             709            376 540        2,779           2,929             711            377 550        ~,779           2,929             712            378 560        2,779           2,929             714            379 570        2,779           2,929             716            380 580        2,779           2,929             718            381 590        2,779           2,929             720            382 600        2,779           2,929             721            383 610        2,779           2,929             723            384 620        2,779           2,929             725            385 630        2,779           2,929             726            386 640        2,779           2,929             728            387 650        2,779           2,929             730            388 660        2,779           2,929             731            389 670        2,779           2,929             733            389 680        2,779           2,929             734            '390 690        2,779            2,929            736    )        391 700        2,779            2,929            738            392 710        2,779            2,929            739            393
      . 720          2,779            2,929            741            394 I
* 730        2,779            2,929            742            394 740        2,77~            2,929            743            395 750        2,779          . 2,929            745            396 760        2,779            2,929            746            397 770        2,779            2,929*           748            398 780        2,779            2,929            749            398 790        2,779            2,929            751            399 800        2,779            2,929            752            400 810        2,779            2,929            753            401 820        ~,779            2,929            755            401 830        2,779            2,929            756            402 840      ''2,779            2,929            757            403 850        2,779            2,929            759            404 860        2,779            2,929            760            404 870        2,779            2,929            761            405 880        2,779            2,929            762            406 890        2,779            2,929            764            406 900        2,779            2,929            765            407 910        2,779            2,929            766            408 920        2,779            2,929            767            408 930        2,779            2,929            768            409 940        2,779            2,929            770            410 950        2,779            2,929            771            410 960        2,779            2,929            772            411 970        2 779 t              2 I 929          773            412
* 980          2,779            2,929            774            412 990        2,779            2,929            775-            413 1,000        2,779            2,929            777            414 1,010        2,779           2,929             778            414 1,020        2,779           2,929             779            415
 
Sh~~-t- .5 d~ l Lf 1,030  2,779 2,929 780              416
. 1, 040  2,779 2,929 781              416 1-, 050 2,779 2,929 782              417 1,060  2,779 2,929 783              417
*~~~~---,
2,779 2,929 784              418 2,779 2,929 785              419 1,090  2,779 2,929 _.786              419 1,100  2,779 2,929 787              420 1,110  2,779 2,929 788              420 1,120  2,779 2,929 789              421 1,130  2,779 2,929 791              421 1, 140' 2,779 2,929 792              422 1,150  2,779 2,929 793              423 1,160  2,779 2,929 794              423 1,170  2,779 2,929 795              *424 1,180  2,779 2,929 796              424 1,190  2,779 2,929 796              425 1,200  2,779 2,929 797              425 I*
 
S~ecotT ~  o-t \<...{
  *u~EMP    version 1.1          average upper level smoke temperature.
Turbine Lube Oil Room - Fast Fire - 32 sq. ft. Vent              03-22-1996
-~*a~~r~~~e~lar;~20          Sq. ft. of 8 inch thick CONCRETE Fire room openings:
Door is closed.
Window is open to a height of 1.333 ft. and a width of                  24 ft.
Time          Rate of heat release                Upper level smoke temperature (sec)        (BTU/sec)                  (kW)          (degrees F)        (degrees C) 10                    4                    5            104                40 20                  18                    19          . '112                45 30                  40                    42            122                50 40                  71                    75            134                57 50                111                  116              148                64 60                159                  168              163                73 70                21 7                  228              179                82 80                283                  298              197                92 90                358                    377              216                102 100                442                    466              235                113 110                535                    564              256                125 12 0                ,6 3 7                6 71            278                137 130                747                    788              301                149 140                867                    913              324                162 150                995                1, 049              349                176
  -. . 1160            1, 132                1, 193              374                190 19170                1 , 278                l , 34 7            400                204 180 190 200 210 1,432 1,596 1,769 1, 950 1,510' 1,682 1,864 2, 055 427 454 483 512 219 235 250 267 I
220            2,140                  2,255                542                283 230            2,339                2,465                572                300 240            2,547                2,684                603                317 250            2,763                2,913                635                335 The purning rate and resul~ing upper level temperature is limited by the ventilation capacity of the room openings.            From this point on the amount of energy that.can be released within the room is limited to 2778.595 BTU/sec. Room temperature may continue to rise.
260            2,779                2,929                641                338 270            2,779                2,929                644                340 280            2,779                2,929                647                342 290            2,779                2,929                650                344 300            2,779                2,929                654                345 310            2,779                2,929                657              .347 320            2,779                2,929                660                349 330            2,779                2,929                662                350 340            2,779                2,929                665                352 350            2,779                2,929                668                353 360            2,779                2,929                671                355
  ~70                2,779                2,929                673                356
  ~80                  2,779                2,929                676                358 390            2,779                2,929                678                359 400            2,779                2,929                681                360 410            2,779                2,929                683                362
      *420            2,779                2,929                686                363
 
      ..                            S h~e-+ { o-t- l '-1 430        2,779 2,929 688            364
  -*    440        2,779 2,929 690            366 450        2,779 2,929 692            367 460        2,779 2,929 694            368
  '.470              2,779 2,929 697            369
~
  --    4&deg;8'0=-"~"- 2,779 2,929 699            370 490        2,779 2,929 701            372 500        2,779 2,929 703            373 510        2,779 2,929 705            374 520        2,779 2,929 707            375 530        2,779 2,929 709            376 540        2,779 2,929 711            377 550        2,779 2,929 712            378 560        2,779 2,929 714            379 570        2,779 2,929 716            380 580        2,779 2,929 718            381 590        2,779 2,929 720            382 600        2,779 2,929 721            383.
* U_TEt~P version 1. 1                    average upper level smoke temperature.
S kei"t 8 o~ \ '--f Turbine Lube Oil Room - UFast Fire - 32 sq. ft. Vent                        03-22-1996 8
RAS.a--csue-r-Nf.ao, . eslare75: 2-* O Sq. ft. of S~                                                    8 inch thick CONCRETE Fire room openings:
Door is closed.
Window is open to a height of 1.333 ft. and a width of                            24 ft.
Time                          Rate of heat release            Upper level smoke temperature (sec)                    (BTU/sec)                (kW)          (degrees F)        (degrees C) 10                                18                  19            111                  44 20                                71                  75            131                  55 30                              160                169              156                  69 40                              284                3 00            18 7_                86 50 "\)                          444                469              221                105 60                              640                675              259                126 70                              871                918              300                149 80                          1,138              1,199                345                174 90                          1,440              1,518                392                200 100                          1,778              1,874                442                228 110                          2,151              2,268                495                257 120                          2,560              2,699                550                288 The burning rate and resulting upper level temperature is limited by the ventilation capacity of the room openings.                      From this point on the amount of energy that can be released within the room is l_ated to 2778. 595 BTU/sec. Room temperature may continue to rise.
'~30                              2 t 779            2 t 929              582                305
  - 140                            2,779              2,929                588                309 150                          2,779              2,929              . 593                312 160                          2,779              2,929                599                315 170                          2,779              2,929                604                318 180                          2,779              2,929                608                ~20 190                          2,779              2,929                613                323 200                          2,779              2,929                617                325 210                          2,779              2,929                622                328 220                          2,779              2,929.              626                330 230                          2,779              2,929                630.                332 240                          2,779              2,929                633                334 250                          2,779              2,929                637                336 260                          2,779              2,929                641                338 270                          2,779              2,929                644                340 280                            2,779              2,929                647                342 290                          2,779              2,929                650                344 300                            2,779              2,929                654                345 310                            2,779              2,929                ~57                347 320                            2,779              2,929                660                349 330                            2,779              2,929                662                350 340                            2,779              2,929                665                352 350                            2,779              2,929                668                353 360                          2,779              2,929                671                355 a10                              2,119              2,929                673                356
  ~80                              2,779              2,929                676                358 390                            2,779              2,929                678                359 400                            2,779              2,929                681                360 410                          2,779              2,929                683                362 420                            2,779              2,929                686                363
 
S keeT 9 c-t- (<-(
430  2,779 2,929 688          364 44'0 2,779 2,929 690          366 450  2,779 2,929 692          367 460  2,779 2,929 694          368
--~-~
2,779 2,929 697          369 2,779 2,929 699          370 490  2,779 2,929 701          372 500  2,779 2,929 703          373 510  2,779 2,929 705.          374 520  2,779 2,929 707          375 530  2,779 2,929 709          376 540  2,779 2,929 711          377 550  2,779 2,929 712          378 560  2,779 2,929 714          379 570  2,779 2,929 716          380 580  2,779 2,929 718          381 590  2,779 2,929 720        . 382 600  2,779 2,929 721          383
 
S k~e-+  (0 o+ (~
* UTEMP *version 1.1
* UTEMP *version 1.1
* S ( 0 o+ ( average upper level smoke temperature.
* average upper level smoke temperature.
Turbine Lube Oil Room -Moderate Fire -50% of Concrete Heat Sink R. surfaces are: S ace No. 1 3760 Sq. ft. of 8 inch thick CONCRETE Fire room openings:  
Turbine Lube Oil Room - Moderate Fire - 50% of Concrete Heat Sink           03-22-1996 R . surfaces are:
' Door is closed. Window is operi to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke (sec) (BTU/sec) (kW) (degrees F) 30 10 11 111 60 40 42 132 90 90 95 158 120 160 168 189 150 250 263 225 180 360 379 264 210 490 516 307 240 639 674 352 . 270 809 853 ,401 300 999 1,053 453 330. 1,209 507 360 1,439 1,516 564 390 1,688 1,780 623 420 1,958 2,064 684 450 2,248 2,369 748 A480 2*, 558 *
S     ace No. 1 3760 Sq. ft. of 8 inch thick CONCRETE Fire room openings:         '
* 2, 696 814 rate and resulting upper level temperature is limited by **"'the ventilation capacity of* the room opei:iings.
Door is closed.
From this point on the amount of energy that can be released within the room is 03-22-1996 temperature (degrees C) 44 55 70 87 107 129 153. 178 205 234 264 295 328 362 398 434 *limited to 2778.595 BTU/sec. Room temperature may continue to* rise. 510 2,779 2,929 862 540 2,779 2,929 869 570 2,779 2,929 600 2,779 2,929 883 630 2,779 2,929 889 .660 2,779 2,929 895 690 2,779 2,929 901 720 2,779 2,929 907 750 2,779 2,929 913 780 2,779 2,929 918 810 2,779 2,929 923 84-0 2,779 2,929 928 870 2,779 2,929 933 900 '2,779 2,929 938 930 2,779 2,929 942 960 2,779 2,929 947 990 2,779 2,929 951. 1,020 2,779 2,929 955 2,779 2,929 959 1,080 2,779 2,929 963 *10 2,779 2,929 967 40 2,779 2,929 971 1,170 2,779 2,929 975 1,200 2,779 2,929 979 461 465 469 473 476 480 '483 486 489 ' 492 495 498 500 503 506 508 511 513 515 517 520 *522 524. 526  
Window is operi to a height of 1.333 ft. and a width of 24 ft.
Time           Rate of heat release             Upper level smoke temperature (sec)       (BTU/sec)             (kW)         (degrees F)      (degrees C) 30                 10                 11             111               44 60                 40                 42             132               55 90                 90                 95             158               70 120                 160               168             189               87 150                 250               263             225               107 180                 360               379             264               129 210                 490               516             307               153.
240                 639               674             352 .             178 270                 809               853           ,401               205 300                 999             1,053             453               234 330.             1,209               1~274              507               264 360             1,439               1,516             564               295 390             1,688               1,780             623               328 420             1,958               2,064             684               362 450             2,248               2,369             748               398 A480                 2*, 558     *
* 2, 696             814               434 T~urning        rate and resulting upper level temperature is limited by **"'the ventilation capacity of* the room opei:iings. From this point on the amount of energy that can be released within the room is
*limited to 2778.595 BTU/sec. Room temperature may continue to* rise.
510             2,779               2,929             862               461 540             2,779               2,929             869               465 570             2,779               2,929             87~              469 600             2,779               2,929             883               473 630             2,779               2,929             889               476
      .660             2,779               2,929             895               480 690             2,779             2,929               901             '483 720             2,779             2,929               907               486 750             2,779             2,929               913               489 780             2,779             2,929               918             ' 492 810             2,779             2,929               923               495 84-0             2,779             2,929               928               498 870             2,779             2,929               933               500 900           '2,779               2,929               938               503 930             2,779             2,929               942               506 960             2,779             2,929               947               508 990             2,779             2,929               951.             511 1,020               2,779             2,929               955               513 1,0~0              2,779             2,929               959               515 1,080               2,779               2,929             963               517 10             2,779               2,929             967               520
* 40             2,779               2,929             971             *522 1,170               2,779             2,929               975               524.
1,200               2,779             2,929               979               526
 
si.~t  l l er-&#xa3;- I<-!
  *urEMP version 1.1                  average upper level smoke temperature.
Turbine Lube Oil Room - Moderate Fire - 1.5X Larger Vent Area                      03-22-1996 8
  . *:a.*c uerNfoa-c. eslare75: 2 O
_RAS.                                Sq. ft. of S~                                                8  inch thick CONCRETE Fire room openings:
Door is closed.
Window is open to a                he~ght  of  2  ft. and a width of  24  ft.
Time                    Rate of heat release            Upper level smoke temperature (sec)                  (BTU/sec)            (kW)          (degrees F)      (degrees C) 30*                          10                11              107                  42 60                          40                42              120                  49 90                          90                95              138                  59 120                          160                168              158                    70 150                          250                263              181                    83 180                          360                379              206                    97 210                          490                516              234                112 240                          639                674              264                129 270                          809                853              295                146 300                          999            1,053              329                165 330                      1,209              1,274              364                184 360                      1,439              1,516              400                205 390                      1,688              1,780              439                226 420                      1,958              2,064              479                248 450                      2,248              2,369              520                271
/* .480                        2,558              2,696              562                295
  . ,, 510                      2,887              3,043              607                319 540                      3,237              3,412              652                344 570                      3,607              3,801              698                370 600                      3,996              4,212              746                397 630                      4,406              4,644              795                424 660                      4,835              5,097              846                452 The burning rate and resulting upper level temperature is limited by the ventilation capacity of the room openings . . From this point on the amount of energy that can be released within the room is limited to 5106.521 BTU/sec. Room temperature may continue to rise.
690                      5,107              5,382              879                471 720                      5,107              5,382              885                474 750                      5,107              5,382              890                477 780                      5,107              5,382              895                480 810                      5,107              5,382              900                482 840                      5,107              5,382              905                485 870                      5,107              5,382              910                488 900                      5,107              5,382              914                490 930                      5,107              5,382              919                493 960                      5,107              5,382              923                495 990                      5,107              5,382              927                497 1,020                      5,107              5,382              931                500 1,050                      5,107              5,382              936                502 1,080                      5,107              5,382              939                504 10                      5,107              5,382              943                506
* 40                      5,107              5,382              947                508 1,170                      5,107              5,382              951                510 1,200                      5,107              5,382              954                512
 
*urEMP version 1.1      average upper level smoke temperature.
Turbine Lube Oil Room - Moderate Fire - 504 sq. ft. Vent    03-22-1996
~ surfaces are:
S~ace No. 1 7520    Sq. ft. of 8 inch thick CONCRETE Fire room openings:
Door is closed.
Window is open*to a height of 21 ft. and a width of 24      ft.
Time        Rate of heat release            Upper level smoke temperature (sec)      (BTU/sec)            (kW)          (degrees F)      (degrees C) 10              1                  1            100                38 20              4                  5            101                38 30              10                11            102                39 40              18                19            103                40 50              28                29            105                40 60              40                42            106                41 70              54                57            108                42 80              71                75            110                43 90              90                95            112                44 100              111                117            114                45 110              134                142            116                46 120              160                168            118                48 130              188                198            120                49 140              218                229            122                50 150              250                263            125                52 284                300            127                53
*i~~180 321 360 338 379 130 133 54 56 190              401                422            136                58 200              444                468            138                59 210              490                516            141                61 220              537                566            144                62 230              587                619            147                64 240              639                674            150                66 250              694                731            154                68 260              750                791            157                69 270              809                853            160                71 280              870                917            164                73 290              934                984            167                75 300              999            1,053              171                77 310            1,067            1,124              174                79 320            1,137            1,198              178                81 330            1,209            1,274              181                83 340            1,283            1,353              185                85 350            1,360            1,433              189                87 360            1,439            1,516              193                89 370            1,520            1,602              197                91 380          1,603            1,689              201                94 390          1,688            1,780              205                96 400          1,776            1,872              209                98 1,866            1,967              213              100
.10                                  2,064              217              103 20          1,958 430          2,052            2,163              221              105 440          2,149            2,265              225              107 450          2,248            2,369              230              110
    '460          2,349            2,476              234              112
 
s "''Oi!~-t- 13 c-f l t.{
470    2,452    2,585  238                115 480    2,558    2,696  243                117 490    2,665    2,809  247                120
  .. 500    2,775    2,925  252                122
.510        2,887    3,043  256                125
    . 520   3,002    3,164  261                127 530  3,118    3,287  266                130 540  3,237    3,412  270                132 550  3,358    3,539  275                135 560,  3 ,481  3,669  280                138 570  3,607    3,801  285                140 580  3,734    3,936  290                143 590    3,864  4,073    295                146 600  3,996    4,212  299                149 610  4,131    4,354  304                151 620  4,267    4,497  310                154 630  4,406    4,644  315                157 640  4,547    4,792  320                160
      *650  4,690    4,943  325                163 660  4,835. 5,097  330                166 670  4,983    5,252  335                169 680  5,133    5,410  341                171 690  5,28'5  5,570  346                174 700  5,439    5,733  351                177 7cl0  5,596    5,898  357                180 720  5,755    6,065  362                183 730  5,915  .6 I 235 368                186 740    6,079    6,407  373                190 750    6,244    6,581  379                193
.760        6,412    6-,758  384                196 I    770    6,582    6,937  390                199 780    6,754    7,118  396                202 790    6,928    7,302  401                205 800    7,104    7,488  407                208 810    7,283    7,676  413                212 820    7,464    7,867  419                215 830    7,647    8,060  425                218 840    7,833    8,256  430                221 850    8,020    8,453  436                225 860    8,210    8,653  442                228 870    8,402    8,856  4_48                231 880    8,596    9,060  454                235 890    8,793    9,268  460                238 900  8,991    9,477  466                241 910  9,192    9;689  473                245 920  9,396    9,903  479                248 930  9,601  10,119    485                252 940  9,808  10,338    491                255 950  10,018  10,559    497                  259 960  1,0,230 10,783    504                262 970  10,445  11,009    510                  266 980  10,661  11,237    516                  269 990  10,880  11,467    523                  273 1,000    11,101  11,700    529                  276 11,324  11,935    536                  280
  .010                        542 020  11,549  12,173                        283 1,030    il,777  12,413    549                  287 1,040    12,006  12,655    555                  291 1,050    12,238  12,899    562                  294 l,'060  12,473  13,146    568                  298
 
Sh~e.+ \ l.{ &#xa2;~ l ti 1,070    12,709 13,395 *575          302
* 1_, oErn 12,948 13,647  582          305
.100 1,090 110
    ,120 13,189 13,432 13,677 13,925 13,901 14,157 14,416 14,676 588 595 602 609 309 313 317 320 1,130    14,174 14,940  616          324 1,140    14,426 15,205  622          328 1,150    14,681 15,473  629          332 '
1,160    14,937 15,744  636          336 1,170    15,196 16,016  643          340 l', 180  15,456 16,291  650          343 1,190    15,720 16,568  657          347 1,200    15,985 16,848  664          351
* EA-FPP-95-054 Sheet 1 of 6 ATTACHMENT C FPETOOL Summary of Sprinkler Actuation Time
* for a Standard Fast and Moderate Fire or a Steady 3 MW and 3Q MW Fire
                  *in the Turbine Lube Oil Room
* Sprinkler Actuation Time EA-FPP-95-054 Sheet 2 of6 FPETOOL was used to determine the response time for sprinkler actuation in the Turbine 'Lube Oil Room. Values for spririkler parameters and fire size were determined and plugged into the FPETOOL module for heat detector/sprinkler actuation times.
First, sprinkler parameters were defined for the room. The maximum ceiling height of 21 feet was chosen even though the actual location is approximately 20 feet from the floor as this will delay sprinkler response and give a conservative value. The sprinkler spacing in the Turbine Lube Oil Room was evaluated based on a plant walkdown and the maximum distance between sprinkler heads was determined to be 11 '-6". Based on this separation a fire could not be located radially more than 6' (conservatively) from any sprinkler head. The room temperature at the ceiling was set at 90&deg; F, even though it is routinely higher than this value. The lower temperature was chosen to provide "a conservative value. The sprinkler heads are rated at 165&deg; F and according to the "Automatic Sprinkler Systems Handbook", Sixth Edition, page 28, the Response Time Index (RTI) for standard response sprinklers is between 150 ft 112 s112 to 200 ft 112 s112 . The worst case RTI
          *value of 200 ft 112 s112 was chosen to bound the installed sprinkler parameters as the higher the RTI value the slower the response of the sprinkler actuation.                                r Second, the fire size was specified to get a parametric look at the possible conditions in the Turbine Lube Oil Room before sprinkler actuation. The standard "Fast" and "Moderate" fire sizes were run as they are representative of realistic fires used in general fire modeling. Then a steady state 3 MW and 30 Mw fire were run to determine response from a combustible liquid pooi fire that tends to reach and maintain a given heat rate in a short period of time. The 3 MW fire size represents the ventilation limited fire size predicted by an earlier FPETOOL calculation. The 30 MW fire size was chosen to see what effect a considerably larger fire might have on the suppression system actuation time.
The results are shown in the attached FPETOOL printouts and are summarized as follows:
Fire Size                Sprinkler Response Time (Seconds)
Fast Fire                174    (<3 Minutes)
Moderate Fire            298 / (~5 Minutes) 3 MWFire                29 30 MWFire              8
 
Twl.Q - 'FAST FIRE        03-23-1996                          She~T 3 ot b Fire to        Detec;::tor        Room            Device        RT!
.ing          axial dist.        temp.            rating ft              F                  F        (english) 21                6                90            165            200 Minimum heat release rate necessary to activate the detector at the location described is            605 BTU/s Time(Sec)            RHR (BTU/s)            Jet ( F)            Head/det (F)
Time(Sec)            RHR (BTU/s)        Jet (F)        Head/det. (F) 0                    0            90              90 10                    4            92              90 20                    18            97              90 30                    40            102              91 40                    71            107              92 50                  111            113              94 60                  159            120              97 70                  217            127              100 80                  283            134              103 90                  358            142              108 100                  442            150              113 110                    535            158              118 120                    637            167              124 130                    747            175              131 140                    867            184              138 150                    995            193            145 1132            203            153
)*~                    1278 Detector activation at 212 174.2 seconds 161
 
TbO -'MODERATE FIRE
  --~ ,.._:;:,_~
03-23-1996                        S h.eeT    <-{ cf ~
Fire to              Detector                            Device if    ing            axial dist.
ft Room temp.
F rating F
RTI (english) 21                    6                90            165            200 Minimum heat release rate necessary to activate the detector at the location described is                  605 BTU/s Time(Sec)                  RHR (BTU/s)            . Jet (F)            Head/det ( F)
Time(Sec)                  RHR (BTU/s)        Jet ( F)        Head/det. (F) 0                          0            90                90 10                          1            91                90 20                          4            93                90 30                          10            95                90 40                          18            97                91 50                          28            99                91 60                          40            102                92 70                          54            105                93 80                          71            108                94 90                          90            111                96 100                          111            114                98 110                          134            117              100.
120                          160            121              102 130                          188            124              104 140                          218            128              106 150                          250            131              109 284            135              112
'~~                            321 360 139 143 115 118 190                          401            147              122 200                          444            151              125 210                          490            155              129 220                          537            159              132 230                          587            163              136 240                          639            167              140 250                          694            172              144 260                          750            176              148 270                        . 809            181              153 280                          870            185              157 290                          934            190              161 Detector activation at    297.9 seconds


t l l er-&#xa3;-I<-! *urEMP version 1.1 average upper level smoke temperature.
. TLO  --_
Turbine Lube Oil Room -Moderate Fire -1.5X Larger Vent Area 03-22-1996
    .... ** -.._'_3 MW FIRE Detector 03-23-1996 S t..e~-t- 5 <<--f- ~
_RAS. . *:a.*c 8 uerNfoa-c.
Room            Device          RTI
eslare75:
  *.       *lngto      axial dist.       temp.           rating ft             F                  F          (english) 21                      6                90          165            200 Minimum heat release rate necessary to activate the detector at the location described is                  605 BTU/s Time(Sec)                   RHR (BTU/s)           Jet ( F)             Head/det (F)
2 O Sq. ft. of 8 inch thick CONCRETE Fire room openings:
Time(Sec)                   RHR (BTU/s)       Jet (F)         Head/det. (F) 0                        0          90                90 1                         0          90                90 2                      316            90                90 3                      633          139                90 4                       949          167                91 5                     1265          191                93 6                    1581          213                94 7                    1898          232                97 8                    2214          251                99 9                    2530          268              102 10                       2846          285              105 11                       2846          300              109 12                        2846          300              112 13                        2846          300              116 14                        2846          300               119 15                        2846          300               123
Door is closed. Window is open to a of 2 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke (sec) (BTU/sec) (kW) (degrees F) 30* 10 11 107 60 40 42 120 90 90 95 138 120 160 168 158 150 250 263 181 180 360 379 206 210 490 516 234 240 639 674 264 270 809 853 295 300 999 1,053 329 330 1,209 1,274 364 360 1,439 1,516 400 390 1,688 1,780 439 420 1,958 2,064 479 450 2,248 2,369 520 / *. 480 2,558 2,696 562 . ,, 510 2,887 3,043 607 540 3,237 3,412 652 570 3,607 3,801 698 600 3,996 4,212 746 630 4,406 4,644 795 660 4,835 5,097 846 The burning rate and resulting upper level temperature is limited by the ventilation capacity of the room openings .. From this point temperature (degrees C) 42 49 59 70 83 97 112 129 146 165 184 205 226 248 271 295 319 344 370 397 424 452 on the amount of energy that can be released within the room is limited to 5106.521 BTU/sec. Room temperature may continue to rise. 690 5,107 5,382 879 720 5,107 5,382 885 750 5,107 5,382 890 780 5,107 5,382 895 810 5,107 5,382 900 840 5,107 5,382 905 870 5,107 5,382 910 900 5,107 5,382 914 930 5,107 5,382 919 960 5,107 5,382 923 990 5,107 5,382 927 1,020 5,107 5,382 931 1,050 5,107 5,382 936 1,080 5,107 5,382 939 *10 5,107 5,382 943 40 5,107 5,382 947 1,170 5,107 5,382 951 1,200 5,107 5,382 954 471 474 477 480 482 485 488 490 493 495 497 500 502 504 506 508 510 512 
  .\.~
*urEMP version 1.1 average upper level smoke temperature.
2846          300              126 2846          300              129 18                        2846.         300              133 19                        2846          300              136 20                      . 2846          300              139 21                        2846          300              142 22                        2846          300            . 145 23                        2846          300              148
Turbine Lube Oil Room -Moderate Fire -504 sq. ft. Vent 03-22-1996 surfaces are:
    .24                          2846          300              151 25                        2846          300              154 26                        2846.         300              156 27                        2846          300              159 28                       2846          300              162 29                        2846          300              164 Detector activation at      29.2 seconds
No. 1 7520 Sq. ft. of 8 inch thick CONCRETE Fire room openings:
Door is closed. Window is open*to a height of 21 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke (sec) (BTU/sec) (kW) (degrees F) 10 1 1 100 20 4 5 101 30 10 11 102 40 18 19 103 50 28 29 105 60 40 42 106 70 54 57 108 80 71 75 110 90 90 95 112 100 111 117 114 110 134 142 116 120 160 168 118 130 188 198 120 140 218 229 122 150 250 263 125 284 300 127 321 338 130 180 360 379 133 190 401 422 136 200 444 468 138 210 490 516 141 220 537 566 144 230 587 619 147 240 639 674 150 250 694 731 154 260 750 791 157 270 809 853 160 280 870 917 164 290 934 984 167 300 999 1,053 171 310 1,067 1,124 174 320 1,137 1,198 178 330 1,209 1,274 181 340 1,283 1,353 185 350 1,360 1,433 189 360 1,439 1,516 193 370 1,520 1,602 197 380 1,603 1,689 201 390 1,688 1,780 205 400 1,776 1,872 209 .10 1,866 1,967 213 20 1,958 2,064 217 430 2,052 2,163 221 440 2,149 2,265 225 450 2,248 2,369 230 '460 2,349 2,476 234 temperature (degrees C) 38 38 39 40 40 41 42 43 44 45 46 48 49 50 52 53 54 56 58 59 61 62 64 66 68 69 71 73 75 77 79 81 83 85 87 89 91 94 96 98 100 103 105 107 110 112 s
13 c-f l t.{ 470 2,452 2,585 238 115 480 2,558 2,696 243 117 490 2,665 2,809 247 120 .. 500 2,775 2,925 252 122 .510 2,887 3,043 256 125 . 520 3,002 3,164 261 127 530 3,118 3,287 266 130 540 3,237 3,412 270 132 550 3,358 3,539 275 135 560, 3 ,481 3,669 280 138 570 3,607 3,801 285 140 580 3,734 3,936 290 143 590 3,864 4,073 295 146 600 3,996 4,212 299 149 610 4,131 4,354 304 151 620 4,267 4,497 310 154 630 4,406 4,644 315 157 640 4,547 4,792 320 160 *650 4,690 4,943 325 163 660 4,835. 5,097 330 166 670 4,983 5,252 335 169 680 5,133 5,410 341 171 690 5,28'5 5,570 346 174 700 5,439 5,733 351 177 7cl0 5,596 5,898 357 180 720 5,755 6,065 362 183 730 5,915 .6 I 235 368 186 740 6,079 6,407 373 190 750 6,244 6,581 379 193 .760 6,412 6-,758 384 196 I 770 6,582 6,937 390 199 780 6,754 7,118 396 202 790 6,928 7,302 401 205 800 7,104 7,488 407 208 810 7,283 7,676 413 212 820 7,464 7,867 419 215 830 7,647 8,060 425 218 840 7,833 8,256 430 221 850 8,020 8,453 436 225 860 8,210 8,653 442 228 870 8,402 8,856 4_48 231 880 8,596 9,060 454 235 890 8,793 9,268 460 238 900 8,991 9,477 466 241 910 9,192 9;689 473 245 920 9,396 9,903 479 248 930 9,601 10,119 485 252 940 9,808 10,338 491 255 950 10,018 10,559 497 259 960 1,0,230 10,783 504 262 970 10,445 11,009 510 266 980 10,661 11,237 516 269 990 10,880 11,467 523 273 1,000 11,101 11,700 529 276 .010 11,324 11,935 536 280 020 11,549 12,173 542 283 1,030 il,777 12,413 549 287 1,040 12,006 12,655 555 291 1,050 12,238 12,899 562 294 l,'060 12,473 13,146 568 298 


\ l.{ l ti 1,070 12,709 13,395 *575 302
TI:.o_-   --~3.0 MW FIRE       03-23-1996 St..~~-t b 11~ ~
* 1_, oErn 12,948 13,647 582 305 1,090 13,189 13,901 588 309 .100 13,432 14,157 595 313 110 13,677 14,416 602 317 ,120 13,925 14,676 609 320 1,130 14,174 14,940 616 324 1,140 14,426 15,205 622 328 1,150 14,681 15,473 629 332 ' 1,160 14,937 15,744 636 336 1,170 15,196 16,016 643 340 l', 180 15,456 16,291 650 343 1,190 15,720 16,568 657 347 1,200 15,985 16,848 664 351 ** 
Fire-to             Detector         Room           Device         RT!
*
_c41ing              axial dist.       temp.           rating ft             F                 F         (english) 21                   6                 90           165           200 Minimum heat release rate necessary to activate the detector at the location described is                 605 BTU/s Time(Sec)                 RHR (BTU/s)           Jet ( F)             Head/det ( F)
* ATTACHMENT C FPETOOL Summary of Sprinkler Actuation Time
Time(Sec)                 RHR(BTU/s)         Jet (F)         Head/det. ( F) 0                     0           90               90 1                 2846             90               90 2                 5693           300               92 3                 8539           424               98 4                 11385           528             106 5               14231           620             117 6               17078           705             131 7               19924           785             146
* EA-FPP-95-054 Sheet 1 of 6 for a Standard Fast and Moderate Fire .. or a Steady 3 MW and 3Q MW Fire *in the Turbine Lube Oil Room 
          .8               22770           860             164 Detector activation at     8.1 seconds
-;. .. --*
.     \
* Sprinkler Actuation Time EA-FPP-95-054 Sheet 2 of6 FPETOOL was used to determine the response time for sprinkler actuation in the Turbine 'Lube Oil Room. Values for spririkler parameters and fire size were determined and plugged into the FPETOOL module for heat detector/sprinkler actuation times. First, sprinkler parameters were defined for the room. The maximum ceiling height of 21 feet was chosen even though the actual location is approximately 20 feet from the floor as this will delay sprinkler response and give a conservative value. The sprinkler spacing in the Turbine Lube Oil Room was evaluated based on a plant walkdown and the maximum distance between sprinkler heads was determined to be 11 '-6". Based on this separation a fire could not be located radially more than 6' (conservatively) from any sprinkler head. The room temperature at the ceiling was set at 90&deg; F, even though it is routinely higher than this value. The lower temperature was chosen to provide "a conservative value. The sprinkler heads are rated at 165&deg; F and according to the "Automatic Sprinkler Systems Handbook", Sixth Edition, page 28, the Response Time Index (RTI) for standard response sprinklers is between 150 ft 112 s 112 to 200 ft 112 s 112. The worst case RTI *value of 200 ft 112 s 112 was chosen to bound the installed sprinkler parameters as the higher the RTI value the slower the response of the sprinkler actuation.
(
r Second, the fire size was specified to get a parametric look at the possible conditions in the Turbine Lube Oil Room before sprinkler actuation.
r
The standard "Fast" and "Moderate" fire sizes were run as they are representative of realistic fires used in general fire modeling.
* EA-FPP-95-054 Pages 38 through 44 intentionally omitted
Then a steady state 3 MW and 30 Mw fire were run to determine response from a combustible liquid pooi fire that tends to reach and maintain a given heat rate in a short period of time. The 3 MW fire size represents the ventilation limited fire size predicted by an earlier FPETOOL calculation.
* ENCLOSURE 3 CONSUMERS POWER COMPANY PALISADES PLANT DOCKET 50-255 Analysis of the Effects of a Fire on the West Wall of the Component Cooling Water P~mp Room (Fire Area 16)
The 30 MW fire size was chosen to see what effect a considerably larger fire might have on the suppression system actuation time. The results are shown in the attached FPETOOL printouts and are summarized as follows: Fire Size Fast Fire Moderate Fire 3 MWFire 30 MWFire Sprinkler Response Time (Seconds) 174 (<3 Minutes) 298 / Minutes) 29 8 Twl.Q -'FAST FIRE 03-23-1996 Fire to .ing 21 Detec;::tor axial dist. ft 6 Room temp. F 90 Device rating F 165 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec)
* '}}
RHR (BTU/s) Jet ( F) 3 ot b RT! (english) 200 Head/det (F) Time(Sec)
RHR (BTU/s) Jet (F) Head/det. (F) 0 0 90 90 10 4 92 90 20 18 97 90 30 40 102 91 40 71 107 92 50 111 113 94 60 159 120 97 70 217 127 100 80 283 134 103 90 358 142 108 100 442 150 113 110 535 158 118 120 637 167 124 130 747 175 131 140 867 184 138 150 995 193 145 1132 203 153 1278 212 161 Detector activation at 174.2 seconds
* TbO -'MODERATE FIRE 03-23-1996 Fire to Detector Room Device if ing axial dist. temp. rating ft F F 21 6 90 165 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec)
RHR (BTU/s) . Jet (F) S h.eeT RTI (english) 200 Head/det Time(Sec)
RHR (BTU/s) Jet ( F) Head/det. (F) 0 0 90 90 10 1 91 90 20 4 93 90 30 10 95 90 40 18 97 91 50 28 99 91 60 40 102 92 70 54 105 93 80 71 108 94 90 90 111 96 100 111 114 98 110 134 117 100. 120 160 121 102 130 188 124 104 140 218 128 106 150 250 131 109 284 135 112 321 139 115 360 143 118 190 401 147 122 200 444 151 125 210 490 155 129 220 537 159 132 230 587 163 136 240 639 167 140 250 694 172 144 260 750 176 148 270 . 809 181 153 280 870 185 157 290 934 190 161 Detector activation at 297.9 seconds * <-{ cf ( F)  
. TLO ** -.._'_3 .... --_ MW FIRE 03-23-1996 S
5 <<--f-*. to Detector Room Device RTI *lng axial dist. temp. rating ft F F (english) 21 6 90 165 200 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec)
RHR (BTU/s) Jet ( F) Head/det (F) Time(Sec)
RHR (BTU/s) Jet (F) Head/det. (F) 0 0 90 90 1 0 90 90 2 316 90 90 3 633 139 90 4 949 167 91 5 1265 191 93 6 1581 213 94 7 1898 232 97 8 2214 251 99 9 2530 268 102 10 2846 285 105 11 2846 300 109 12 2846 300 112 13 2846 300 116 14 2846 300 119 15 2846 300 123 2846 300 126 2846 300 129 18 2846. 300 133 19 2846 300 136 20 . 2846 300 139 21 2846 300 142 22 2846 300 . 145 23 2846 300 148 .24 2846 300 151 25 2846 300 154 26 2846. 300 156 27 2846 300 159 28 2846 300 162 29 2846 300 164 Detector activation at 29.2 seconds
* TI:.o_-
MW FIRE 03-23-1996 Fire-to Detector Room Device _c41ing axial dist. temp. rating ft F F 21 6 90 165 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec)
RHR (BTU/s) Jet ( F)
RT! (english) 200 Head/det Time(Sec)
RHR(BTU/s)
Jet (F) Head/det. ( F) 0 0 90 90 1 2846 90 90 2 5693 300 92 3 8539 424 98 4 11385 528 106 5 14231 620 117 6 17078 705 131 7 19924 785 146 .8 22770 860 164 Detector activation at 8.1 seconds :.----\ .. ( r
* b ( F)
* EA-FPP-95-054 Pages 38 through 44 intentionally omitted
,* * * ' ENCLOSURE 3 CONSUMERS POWER COMPANY PALISADES PLANT DOCKET 50-255 Analysis of the Effects of a Fire on the West Wall of the Component Cooling Water Room (Fire Area 16)}}

Latest revision as of 15:10, 23 February 2020

Evaluation of Effects of Fire on West Wall of Turbine Lube Oil Room Adjacent to Pipe Tunnel Between TB & FW Purity Bldg.
ML18065A597
Person / Time
Site: Palisades Entergy icon.png
Issue date: 03/23/1996
From: Young L
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML18065A596 List:
References
EA-FPP-95-054, EA-FPP-95-054-R01, EA-FPP-95-54, EA-FPP-95-54-R1, NUDOCS 9604080137
Download: ML18065A597 (39)


Text

{{#Wiki_filter:* @) consumers Power PllWU111111 MICllJliAl/l'S Pll8&IUS PALISADES NUCLEAR PLANT ENGINEERING ANALYSIS COVER SHEET EA- FPP-95-054 Total Number of Sheets~ Title E~alYstioa of tb~ Effg,t§ Qf s_ Eire oa tbe West ~all of tbe !YC~iae byb~ Qil BoQID s9is,gat to tb~ ei~g Iuaael R~t~g~a tbe Iyrbjae RYil9iag 2nd tbg Eged~st~r eurit~ aYil9iag, INITIATION AND REVIEW Calculation Status Preliminary Pending Final Superseded Initiated D

                                                                                 !nit D

Review Method

  • D Technically Reviewed Revr Rev Appd Appd CPCo
     #                      Descripti6n                                           By               Detail    Qual                              By    Appel Bv          Date             Alt Cale    Review    Test        Bv          Date Original Issue                              LDYoung     12/12/95     DAC                                  RWPhil ips    1/17/96    RLS   PFB 0

1 Revised to "Final" based on conment resolution.

                                                      ~~-t LDYoung
                                                                 ~

3/23/96 9f' "' I

                                                                                                                  ~ -:?/;!;_~!. ~p,r/96       ti lfJ 1.0 OBJECTIVE The purpose of this Engineering Analysis is to show the impact of a fire- on the West wall of the Turbine Lube Oil Room adjacent to the tunnel travelling between the Turbine Building (EL. 590'-0") and the Feedwater Purity Building. Specifically, the analysis will consider the equivalent fire resistance of the barriers, combustible loading within the rooms and suppression and detection. Through these considerations, this.analysis will demonstrate the ability of the system as a whole to prevent a direct fire exposure hazard to safety related equipment or openings in other fire area barriers required to meet NRC guidelines.

2.0 ANALYSIS INPUT 2.1 Consumers Power Co. Palisades Nuclear Plant Drawings: A-108, Rev. 1 F eedwater Purity Modification, Architectural, Pipe Gallery C-825; Rev. 2 Feedwater Purity Modification, Pipe Gallery, Foundation. & Floor Slab Plans - Area 8, 14 & 15

  • r*

M-216, Sh. 5 Rev. 3 Fire Protection, Reactor Building, Plan of EL. 590'-0" M-216, Sh.14 Rev. 5 Fire Protection, Turbine Building, Plan of EL. 590'-0"

               *;--* 1                                         --*

2.2 t National Fire Protection Ass.o.ciation_Eire Protection Handbook, 17th Edition. J. 9604080137 960401 _ PDR. ~_QO_C~ .o~OQ025~ ; ! ....:'. _ G PDR b

                                                          -                \
      @)

MWAll'S~ consumers Power fl'flWUU1I& PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet ~ Rev # ___.._O_ _ 2.3 Palisades Nuclear Plant Engineering Analysis EA-FPP-95-11, Analysis of Combustible Loading for Fire Area 22, Turbine Lube Oil Room. 2.4 Palisades Nuclear Plant Engineering Analysis EA-FPP-95-18, Analysis of Combustible Loading for Fire Area 23D, Turbine Building - General. 2.5 Palisades Nuclear Plant Fire Hazards Analysis, Revision 2, February 1, 1989. 2.6 Palisades Nuclear Plant Fire Protection Program Report (FPPR), Volume 2, Section VIII; List of Changes to Appendix A to Branch Technical Position APCSB 9.5~1 and Regulatory Guide l.78 and l.101, Revision 1, October 26, 1989. 2.7 Palisades Nuclear Plant Fire Protection Program Report (FPPR), Volume 3, Section IX, #46. 2.8 U.S. Nuclear Regulatory Commission (NRC) Generic Letter 86-10, Implementation of Fire Protection Requirements, April 24, 1986. 2.9 NRC Standard Review Plan NUREG-0800, BTP CMEB 9.5-1, Guidelines for Fire Protection for Nuclear Power Plants, Revision 2, July 1981. 2.10 FPETOOL: Fire Protection Engineering Tools for Hazard Estimation, Version 3.0, National Institute of Standards and Technology, October 1990. 2.11 Palisades Nuclear Plant Engineering Analysis EA-APR-95-001, Appendix R Safe Shutdown Equipment List and Logic Diagrams. 2.12 Methods of Quantative Fire Hazard Analysis, EPRI Research Project 3000-37, by F.W. Mowrer, dated May 1992. 2.13 Palisades Nuclear Plant Engineering Analysis EA-FPP-96-012, System Hydraulic. Analysis for the Lube Oil Storage Room. 2.14 Palisades Nuclear Plant Engineering Analysis EA-FPP-96-013, System Hydraulic Analysis for the M-18 Area. 2.15 National Fire Protection Association, Automatic Sprinkler Systems Handbook, 6th Edition .

  • ASSUMPTIONS None

(@ consumers Power flflWElllNfj MKBl&A#'S l"llD&laS PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet __J_ Rev # __..o_ _

                                                                                                ~e~erence1~onunen~

4.0 ANALYSIS 4.1 General General Guidelines for Plant Protection are discussed in the List of Reference 2.6, Page 27 Changes and Response to Appendix A to BTP APCSB 9:5-1 and Regulatory Guide 1. 78 and 1.101, Subsection D.1.j. The regulatory position states that concerning compartmentation " ... Floors, walls and ceilings enclosing separate fire areas should have minimum fire rating of three hours." It then goes on to state that " ... The fire hazard in each area should be evaluated to determine barrier requirements." Also, ... "If barrier fire resistance cannot be made adequate, fire detection and suppression should be provided ... " Based upon the above statements, it is apparent that the analysis of a specific barrier for acceptability should subsequently follow this order .of importance:

a. The capability of the barrier must satisfy the minimum fire rating guideline of 3-hours. If not then; /
  • b. The barrier must be adequate to withstand the actual combustible loading in the fire areas separated by the barrier. If not then;
c. The actual configuration must be reviewed in order to take credit for other systems or circumstances that may increase ~he acceptability of the barrier (e.g. suppression, *detection, etc ... ).

This analysis is based upon the above three criteria. It shall be used to demonstrate the capability of the fire barrier and its supporting systems to adequately prevent the spread of fire through the pipe tunnel separating the Feedwater Purity Building and the Turbine Building (EL. 590'-0"). Additional regulatory guidance is provided in NUREG 0800, Section 9.5.1, Reference 2.9 sub-section C.7.h, "Turbine Building," which states, in part: The turbine building should be separated from adjacent structures containing safety-related equipment by a fire barrier with a minimum rating of 3 hours.... Openings and penetrations in the fire barrier should be minimized and should not .be located where the turbine lube oil or generator hydrogen cooling system creates a direct fire exposure hazard to the barrier. Considering the severity of the fire hazards, defense in depth may dictate additional protection to ensure barrier integrity. In summary, the regulatory goal of the Turbine Lube Oil Room walls is to prevent. a direct exposure fire hazard to either safety related equipment or openings and penetrations in fire barriers containing safety related equipment.

(@ consumers Power J611WUllll&

       **.,,....Ir.I ..alillfSS PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet ~   Rev # --=o_ _

4.2 Description of the Fire Barrier The West wall of the Turbine Lube Oil Room is corrugated sheet metal directly connected to building support steel. The remaining walls are concrete block walls. The ceiling is approximately 8" thick reinforced concrete, based on field measurement, and the floor is reinforced concrete resting on the grade elevation. The two doors in the south wall are three-hour rated doors. There are two openings in the ceiling for equipment access. These openings are protected by concrete plugs the same thickness as the ceiling with metal framing. The room is curbed to contain potential oil spills or a single tank rupture within the room. The Turbine Lube Oil Room is a free standing room within the main Turbine Building. Figure #1 shows a plan view of the area. This room does not provide structural support for the Turbine Building. However, the lower portion of two columns supporting the Turbine Building are located within the Turbine Lube Oil Room walls near the west end. Also, the concrete slab ceiling of the room is supported by structural steel beams. Neither the Turbine Building structural steel nor the ceiling beams are protected with fireproofing

  • materials. The size of the columns and beams and connecting steel outside the room, provide a large heat sink, and in conjunction with the automatic sprinkler system ensure these components will not fail prior to the arrival of additional fire fighting, equipment to further suppress a fire in this area. The
     . Palisades Fire Brigade is specifically trained to fight liquid petroleum fires as part of their hands on training.
       @          consumers Power
                  . . . .ElllN&

PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet --2__ Rev # _...._o_ _ MKlllU#"S Ar8fiilU.S e erence/Lonunen Figure #1 - Plan View 590' Elev. of Turbine Building Not To Scale Feedwater Purity Bldg. t t Shops/Labs/Offices North Outside Area CCWPump~ Room Wall Openings Near Ceiling of Pipe Tunnel Open End Turbine Building Figure #2 is an elevation view of the west wall of the Turbine Lube Oil Room.

      *An opening approximately nine inches wide running the width of the wall is located about 15 ft. high on the 21 ft. high wall, where the ceiling supports for the F eedwater Purity Tunnel were added. This provides a direct air flow path from the Turbine Lube Oil Room to just below the ceiling area of the Feedwater Purity Building. In addition, various piping penetrations are made in the west wall that are not sealed around the annular spaces. The upper 5 to 6 ft. of the Turbine Lube Oil west wall is above the Feedwater Purity Tunnel ceiling and is exposed fo the outside plant area .

(@ consumers Power flf1WU11111i PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet _6_ Rev # --"O'--- MJDlllUll'S ~ Figure #2 -Elev. View of Turbine Lube Oil West Wall Not To Scale outsidf Area . Ceiling of Pipe unnel \

                                                                                  -~-

Rooms Pipes Tunn I Area

      *ic 8

590' Elev. Front View Facing East Side View Facing North The F eedwater Purity Tunnel connects the separate Feedwater Purity Reference 2. I Building to the Turbine Building and is over 150 ft. long. A portion of this tunnel runs adjacent to the lower portion of the Turbine Lube Oil Room west wait' The tunnel is constructed of structural steel with a corrugated sheet metal wall and ceiling contajning fiberglass insulation between the inner and outer sheet metal walls. The structure has no listed fire resistance rating. The Turbine Building wall adjacent to the Feedwater Purity Tunnel is sheet metal supported on structural steel, similar to the Turbine Lube Oil west wall. There are numerous openings in the east wall of the Feedwater Purity Tunnel adjacent to the Turbine Building and the south end of the tunnel opens directly into the Turbine Building.

PALISADES NUCLEAR PLANT EA- FPP-95-054 ANALYSIS CONTINUATION SHEET Sheet -2._ Rev # _o__ onunen 4.3 Description of Combustible Loading

a. Feedwater Purity Pipe Tunnel The pipe tunnel contains two condensate pipes, a fuel oil transfer pipe (welded fittings near Turbine Lube Oil Room), four lightly loaded cable trays, and other minor electrical and mechanical items.

The electrical cables in the cable trays enter conduits approximately 20 ft. from the south end of the tunnel opening into the 590' elevation of the Turbine Building. There are no significant combustible materials that traverse the openings from the Feedwater Purity Tunnel into the Turbine Building. The Feedwater Purity Tunnel contains no safety related equipment or circuits and Reference 2.11 has minimal combustible loading, so it is not classified as a separate fire area.

b. Turbine Building (General Area@EL. 590'-0") North & West Side Combustible loading in the Turbine Building general area at EL.

Reference 2.4 590'-0" is approximately 15 minutes. This fire loading is spread over three elevations of the Turbine Building.

          . Equipment such as a heater drain cooler, feedwater heater, and air            Refererice 2 .1 ejector are located near the east and south openings to the pipe tunnel. Any cable in this area is enclosed in conduit. Based on plant walkdowns, there are no significant combustibles within a radius of20 ft. from the yarious openings of the Feedwater Purity Tunnel into the 590' elevation of the Turbine Building. Waste oil tanks (T-130 and M-18) are located to the west of the Feedwater Purity Tunnel south opening. These tanks are positioned ju~t outside of the 20 ft. distance from the Feedwater Purity Tunnel, and are protected by a wet pipe sprinkler system with a spray density Reference 2.14 greater than 0. 3 0 gpm/ft2 .

The next level above the 590'-0" elevation, in this area of the Turbine Building, is the 607'-6" elevation. This floor level is metal grating, which is not a confining space for smoke or heat. Therefore, any

          . smoke or heat generated from combustibles on the 590' elevation would rise, not affecting the pipe tunnel, its contents, or the Feedwater Purity Building. This area is also connected to the turbine operating floor above by open stairwells and various large openings with metal
  • open grating co~erings th~t provide an even larger vent area for any smoke and hot gases and minimize heat buildup on the 590' elevation.

Transient combustibles are administratively controlled in all plant areas by plant procedure. Transients brought into this area of the Turbine

MmAll'S consumers Power flflWUllllfi

               ...-as PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-  FPP-95-054 Sheet _a_    Rev# __,,o'---

Building for maintenance and operating activities, would be expected to be minimal based upon the type of equipment located in the area.

c. Turbine Lube Oil Room The fire loading in the Turbine Lube Oil Room (Fire Area 22), Reference 2.3 results in an Equivalent Fire Severity of "greater than 9 hours" and therefore has a VERY IDGH Fire Loading Classification. A significant fire in this area would be ventilation limited and could not achieve the temperatures normally projected for an open combustible* liquid pool fire.

The only significant openings to allow combustion air into the room are through the west wall to the Feedwater Purity Tunnel. These openings are estimated to provide less than 32 ft:2 of vent area as shown in Attachment 'A', The ventilation openings into the room are protected by fire' dampers which, due to their location near the ceiling, close early in the event and are not considered in this analysis. The vent area calculation has added sefety factors to compensate for additional air provided by the ventilation openings early in the event, before the dampers close. In order to provide a quantitative assessment of the concern in this area, to supplement but not replace the qualitative evaluation, a fire model assessment was made. The fire model chosen was FPETOOL as it is a generally accepted industry standard that is available as public domain software. The lack of software quality assurance on the use of FPETOOL requires that any results provided will be for information only and these results are not intended to be used as an exact prediction of the temperatures associ~ted with an actual fire in this area. A parametric evaluation, using FPETOOL, of the average upper Reference 2.10 level smoke temperature for the Turbine Lube Oil Room using the 32 ft 2 vent opening is presented in Attachment 'B'. The results show that the fire would be ventilation limited in 2 to 8 minutes (120 to 500 seconds), depending on the fire growth rate, with an upper level temperature of 800° F after 20 minutes. The maximum fire size is limited to 2.93 MW for the 32 ft 2 vent opening. The standard fire growth data for "moderate", "fast" and "ufast" that were supplied with FPETOOL were used. The "fast" and "ufast"

  • fire data are for a 10 minute period while the "moderate" data extended to 20 minutes.

(@ consumers Power flflWU11111i MJIUllU#'S PfllllillBS PAL I SADES NUCLEAR PLANT . ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet _ L Rev # _...o_ _ Ke~erencet~ommen~ The 800° F Jemperature is below the allowable structural steel

  • average temperature limits for steel columns and beams of 1000° F Reference 2.2, Page 6-76 and 1100° F, respectively. This fire model indicates adequate time is available for manual fire fighting activities to begin and provide additional cooling water on the affected structural steel. Additional runs of the model using either a 50% larger vent area or a 50%

lower concrete heat sink still yielded results below the average allowable structural steel temperature for columns and beams after a 20 minute fire duration. No credit is taken for the full area automatic suppression system actuation in arriving at these temperature values. Realistically, the sprinklers would greatly limit the temperature rise during any postulated fire. If the sheet metal west wall were to fail due to warpage or due to support failure from metal expansion at the high temperatures the fire size could increase due to the increased ventilation area. A conservative maximum ~ize would be for the entire wall to open up. This opening of 21 feet by 24 feet (504 ft 2) was evaluated utilizing the "moderate" fire data as this data extends to a 20 minute period. The upper layer smoke and hot gas temperature based on a "moderate" fire

       *was calculated to be 664° Fat the end of20 minutes. The increased opening allows for more venting of hot gases and reduces the overall temperature compared to t!ie 32 ft2 vent opening. Ventilation opening sizes between the 32 ft 2 and 504 ft 2 extremes may create higher*

temperatures due to maximizing combustion air while minimizing smoke and hot gas venting, but the automatic suppression system will limit realistic fire temperatures below those predicted above. A separate FPETOOL model was run to predict the amount of time before the automatic sprinklers would actuate and begin cooling the area. The standard "fast" and "moderate" fire sizes provided with the FPETOOL program were utilized for the evaluation. The evaluation of the "fast" and "moderate" fires estimated sprinkler actuation times of

  • just under 3 minutes *and up to 5 minutes, respectively. Additionally, a steady 3 MW and 30 MW fire size were evaluated with sprinkler.*

actuation times of 29 seconds and 8 seconds, respectively. The details are presented in Attachment 'C'. Clearly, the larger the fire the faster the sprinklers would actuate. The less intense fires would delay

  • sprinkler actuation, but this would be compensated for by the reduced peak temperatures that could damage the non-fire rated west wail.

(

     @)

MJIUllliAln consumers Power l'fltftUll1lfi

                  ~

PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet -1Q__ Rev# -"'D_ _

d. Feedwater Purity Building The Feedwater Purity Building is over 150 ft. from the Turbine Reference 2.1 Lube Oil Room west wall and the Turbine Building. Some electrical cables in cable tray traverse the distance separating these buildings inside the Feedwater Purity Pipe Tunnel. The Boiler Room in the Feedwater Purity Building is protected by a sprinkler system. The Feedwater Purity Building and connecting tunnel do Reference 2.11 not contain safety related equipment. No combustible loading calculation was performed for this building due to the large separation from the Turbine Building or any safety related structures or components.

4.4 Description of Suppression and Detection .

a. Suppression The Turbine Lube Oil Room is equipped with full area automatic wet pipe suppression system. Sprinkler hydraulic analysis shows Reference 2.13 the spray density is greater than '0.55 gpm/3,000 sq. ft. which exceeds the 0.30 gpm/3,000 sq. ft. design specified for Extra Ref. 2.15, Fig. 1.24 Hazard (Group 1) protection. The extra water spray will minimize the peak room temperatures well below those predicted above in
            . Section 4.3.c.

Manual suppression is provided by a hose station located less than 20 ft. away from the Turbine Building entrance to the pipe tunnel at the 590'-0" elevation. Various other hose stations are located throughout the Turbine Building on this and other elevations to provide backup fire fighting capability. Fire fighting foam equipment is located just outside the Turbine Lube Oil Room on the 590'-0" elevation. The Turbine Building has partial area automatic wet pipe suppression systems located in areas around the Turbine Lube Oil Room. These systems provide protection for areas with cable trays, lube oil, hydraulic oil reservoirs and office areas on both the 590'-0" elevation and the 607'-6" elevation. The Turbine Building areas to the north, south and east of the Turbine Lube Oil Room are protected by these sprinkler systems. Portions of these systems are located between the Turbine

  • Lube Oil Room and the Component Cooling Water (CCW) Pump Room wall located east of the Turbine Lube Oil Room. The CCW Pump Room wall, which contains non-fire rated openings, provides separation of safety related equipment from the Turbine Building.
       @           consumars Power PllWUllN&

AUDIJIU#'S llmNilral PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION.SHEET EA- FPP-95-054 Sheet -11..._ Rev # _o_ _

b. Detection There is no automatic detection located in the general Turbine Building area near the access door to the pipe gallery (EL. 590'-0"). However, the automatic sprinkler systems in both the Turbine Lube Oil Room and the Turbine Building are equipped with flow alarms. These alarms will provide notification to the continuously manned plant Control Room.
c. Fire Brigade/Equipment The plant fire brigade training program includes actual involvement with fighting flammable liquid fires during the live fire training. The 590'-0" elevation of the Turbine Building contains one of the fire brigade depot areas for equipment storage providing ready access to equipment for a fire in this area. Equipment such as self-contained vent fans capable of delivering 16,000 CFM are also located outside the Turbine Lube Oil Room. As mentioned above, the area also contains fire fighting foam equipment for a potential lube oil fire.

4.5 Overview of Fire Barrier Concerns The primary concern for this area is the spread of a fire from the Turbine Lube Oil Room into the Turbine Building that may ultimately affect either safety relat~d equipment in the Turbine Building or openings in walls separating the Turbine Building from safety related plant areas such as the CCW Pump Room. There is minimal concern for the spread of fire from the Turbine Building back into the Turbine Lube Oil Room due to the low combustible loading on the Turbine Building side. From the descriptions provided above there are several defense-in-depth barriers to prevent the spread of fire from the Turbine Lube Oil Room back into the Turbine Building. These can be summarized as follows:

  • The Turbine Lube Oil Room has full area automatic suppression estimated to actuate within 3 to 5 minutes and is hydraulically analyzed to exceed the design standards. In addition, curbing is provided to contain potential oil spills within the room.
  • The non-fire rated west wall is exposed to the exterior for the upper 5 to 6 ft. and if wall failure did occur due to a fire, then this area would be expected to fail first venting the smoke and hot gases outside the Turbine Building area.

The size of the realistic fire in the Turbine Lube Oil Room is not projected to reach temperatures that may fail the west wall prior to sprinkler system actuation.

(@ . consumers Power l'flWUllNll PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet -1L Rev # __..o_ _ AUUllUln Pm1&ras Ke*erencetcomrnenc

  • Any smoke and hot gases vented into the Feedwater Purity Tunnel and Turbine Building would ultimately disperse over the entire Turbine Building area and minimize heat stress on nearby equipment. The areas within 20 ft. of the Feedwater Purity Tunnel opening on the 590' elevation into the Turbine Building are virtually devoid of combustible material and contain no safety related equipment.
  • The plant fire brigade is available to respond to any plant fire and is specifically trained to fight oil fueled fires and has equipment available to extinguish such fires.

The remaining concern is for direct fire exposu~e to openings in walls separating safety related equipment from the Turbine Building. The west wall of the CCW Pump Room contains various openings into the Turbine Building and these are described in a separate evaluation. However, the additional defense-in-depth features, from those described above, that protect these openings are a follows:

  • The areas within 20 ft. of these openings on the Turbine Building side are
   '  . almost devoid of combustible materials. Floor drains are located throughout the Turbine Building to prevent the spread of liquid pool fires to the area adjacent to these openings on the 590' elevation.
  • Automatic wet pipe suppression systems are located in the Turbine Building such that a fire on the west side of the Turbine Building (near the Turbine Lube Oil area) would* have to cross these protected areas before exposure of the openings could occur.

Additionally, the original Appendix R post-fire safe shutdown evaluation and the current revision to this analysis do not consider the Turbine Building and the Turbine Lube Oil Room as requiring separate fire areas, because no. safe Reference 2.11 shutdown components are located in the Turbine Lube Oil Room. Should a fire spread from the Turbine Lube Oil Room to the Turbine Building, it would result in the same consequences as a Turbine Building fire alone. The Turbine Building and the CCW Pump Room are evaluated as separate fire areas in the Appendix R analysis. However, since the west wall of the Turbine Lube Oil Room is facing opposite and over 100' away from the unrated openings in the CCW Pump Room wall, no direct fire exposure hazard is considered credible .

     @            consumers*

Power Nf/IUUllli MIUllliAll'S flllGfiilf.U PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA- FPP-95-054 Sheet --1L Rev# __,,o_ _

5.0 CONCLUSION

The regulatory goal of the Turbine Lube Oil Room walls is to prevent a direct exposure fire hazard to either safety related equipment or openings and penetrations in fire barriers containing safety related equipment. The plant configuration described above provides adequate defense-in-depth such that the system as a whole prevents a direct fire exposure hazard to safety related equipment or openings in other fire area barriers required to meet NRC guidelines. 6.0 ATTACHMENTS Attachment A - Estimation of Vent Area for Turbine Lube Oil Room West Wall and Surface Area of Interior Walls Attachment B FPETOOL Summary of Upper Level Temperatures for the Turbine Lube Oil Room Attachment C FPETOOL Summary of Sprinkler Actuation Time for a Fast and Moderate Fire in the Turbine Lube Oil Room

  • EA-FPP-95-054 Sheet 1 of 4 ATTACHMENT A Estimation of Vent Area for
    • Turbine Lube Oil Room West Wall and Surface Area of Interior Walls
   *Estimation of Vent Area for Turbine Lube Oil West *W~ll.

Not To Scale JI ca

        ~        i...-~~~~~~---'-~~~-
        ~       -

Between 22"H Rooms 6" Dia. 7.5"W x 7"H 22"W x 20"H or-10.5" 3'- B"W Diagonal 6" Dia. 11 '- 1 9'- 1O"

        ....Cl>                   9'- 5"                     II Cl>
        .c en 7" Dia.

m

        ....Cl>

Cl>~~~~~ )> I

         ~

0 "Tl c: "'tJ 0 "'C Q)

                                                                                                       "'tJ I

u=== cc CD co 01 590' Elev. Front View Facing East Side View N1 oO Facing North -01

                                                                                                   ~~

EA-FPP-95-054 Page 3of4

  • Vent Area Calculation The upper portion of the sheet metal wall is located 7. 5" horizontally away from the pipe tunnel ceiling I-beam and 7" below the lower flange of the I-beam. i::he air flow through this opening will be across the diagonal area calculated as follows:

Diagonal= ..f((7.5")2 + (7") 2) = ..f(56.25 + 49) = ..f105.25 = 10.26 or conservatively 10.5" The diagonal opening along the majority of the west wall progresses for 20'-4" (24' minus 3'-8"). The area of this portion of the opening is calculated as A1 below: A 1 = (10.5"/12) ft. X (20' + 4"/12) ft. = 0.875 ft. X 20.34 ft. = 17.80 ft2 The semi-circular cutout for a pipe is conservatively assumed to be completely open without a pipe and the area is calculated as A2 below: A2 = 1/2 X ((7t(6/12)2)/4) = 1/2 X (3.14 X 0.25)/4) = 0.098 ft2 The rectangle cutout for a pipe is conservatively assumed to be completely open without a pipe* and the area is calculated as A3 below:

  • A3 = (22"/12) ft. x (20"112) ft. = I.83 ft. x t.67 ft. = 3.06 ft 2 The right most diagonal opening is located 7.5" horizontally away from the pipe tunnel I-beam and 22" below the lower flange of the I-beam. The air flow through this opening will be across the diagonal area calculated as follows:
  • 2nd Diagonal= ..f((7.5")2 + (22") 2) = {(56.25 + 484) = ..f540.25 = 23.25" The rectangle cutout for the remaining 3'-8" of the west wall is calculated as A.. below:

A..= (23.25"/12) ft. x (3' + 8"/12) ft. = 1.94 ft. x 3.67 ft. = 7.12 ft2 The area of the three pipe penetrations, which are essentially filled with the pipes, are conservatively assumed to be completely open and the area is calculated as As below: As= ((1t(6"/12) 2)/4) + ((1t(7"/12) 2)/4) + ((7t(5"/12)2)/4) = 0.196 + 0.267 + 0.136 =

             = 0.60 ft 2 The conservative total vent area is the sum of A1 through      As as follows:

Total Area~ 17.80 + 0.098 + 3.06 + 7.12 + 0.60 = 28.68 ft 2

  • To further compensate for field measurement errors a 10% safety factor will be added to the Total Area to conservatively estimate the amount of air available to support combustion as follows:

Total Area= 28.68 X 1.10 = 31.55; the area to be used in FPETOOL will be 32 ff

EA-FPP-95-054 Page 4of4 Turbine Lube Oil Room Surface Area oflnterior Walls The FPETOOL calculation of average upper level temperature includes an evaluation of the heat sink provided by the surrounding enclosure materials. The Turbine Lube Oil Room is constructed of 8" concrete block on three sides, a reinforced concrete ceiling that is also 8" thick and a reinforced concrete floor that is greater than 8" thick. Conservatively; the 8" thickness will be used for all the enclosure concrete surfaces. The room is approximately 21 ft. high, but due to obstructions to air flow caused by the steel beams supporting the ceiling a conservative value of 20 ft. is used for the wall height. The lower number will provide both a higher temperature for a given fire size and a lower heat sink value than is realistically available. Based on the floor area of 24 ft. by 80 ft: the interior wall surface area is calculated as follows: Floor/Ceiling= 80' Long X 24' Wide X 2 surfaces= 3,840 ft. 2 N & S Walls = 80' Long X 20' High X 2 surfaces= 3,200 ft. 2 East Wall . = 20' High X 24' Long X 1 surface == 480 ft. 2 Total Surface Area = 7,520 ft. 2 Conservatively, the structural steel is not included in the heat sink values used for calculating the upper level smoke temperature in the room ..

EA-FPP-95-054 Sheet 1 of 14 ATTACHMENT B FPETOOL Summary

  • of Upper Level Temperatures for the Turbine Lube Oil Room

l

  • Turbine Lube Oil Room I

I FPETOOL Upper Level Temperature 700-1-~-1-~-t-~-t-~-t--=--,,.=:-~-+-~-+-~-+-~-+-~-+-~-+-~

                                 ~---,./

I I

                                                 /
-LL 600           ~       /                 I I

I l

        +--~~,~--+-r----t-~---t-r,~-t-~-----t-~-----t-~-+-~-t-~-+-~-+-~~
 ~500-+--~-++-~~;_*~-1-----r'~/~-+-~--1-~--1-~---+~---+~---+~---+~-----i
~              I                   I
 ~400-+--~tt-'-f-/-t-~~/~/~-+-~---t-~---t-~---t-~-+-~--+--~--+--~-+-----i E           I       /         /

Q) I l /

~300-1--,-1-+-!~/~~/~/~/-1-~--t-~--t-~--t-~--t-~--+~--+~--+~--+~----1

(]) 0 .200 ' 400 600 800 1000 1200 T/I) Time - Seconds  ;

                                                                                                                 ~
                -       UFastFire               **-*-*-*---**-* Fast Fire            ------ Moderate Fire I      <l 1-v
                                                                                                                  ...r:...
  • U_:r'EJ.'JIP version 1.1 average upper level smoke temperature.

bine Lube Oil Room - Moderate Fire - 32 sq. ft. Vent 03-22-1996

  !i         surfaces are:

. S** aGe NG=:-~ 1 -7520' Sq*. ft. of 8*' inch thick CONCRETE Fire room openings: Door is closed. Window is open to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke temperature (sec) (BTU/sec) (kW) (degrees F) (degrees C) 10 1 1 102 39 20 4 5 105 40 30 10 11 109 43 40 18 19 114 45 50 28 29 119 48

            *60                   40                 42              125                  52 70                   54                 57              132                  55 80                   71                 75              139                  59 90                   90                 95              146                  63 100                    111                117              154                  68 110                    134                142              162                  72 120                    160                168              171                  77 130                    188                198              180                  82 140                    218                229              189                  87 150                    250                263              199                  93 I
   .160                          284                300              209                  98
   '      1-70                   321                338              219                 104 180                    360                379              230                 110 190                    401                422              241                 116 200                    444                468              252                 122 210                    490                516              264                 129 220                    537                566              276                 135 230                    587                619              288                 142 240                    639                674              300                 149 250                    694                731              313.              . 156 260                    750                791              326                 163 270                    809                853              339                 171 280                    870                917              352                 178' 290                    934                984              366                 186 300                    999             1,053               380                 193 310                  1,067             1,124               394                 201 320                  1,137             1, 198 .            408                 209 330                  1,209             1,274         '     423                 217 340                  1,283             1,353               438                 225 350                  1,360             1,433               453                 234 360                  1,439             1,516               468                 242 370                  1,520             1;602               483                 251 380                  1,603             1,689               499                 259 390                  1,688             1,780               515                 268 400                  1,776             1, 872.             531                 277
     .410                      1,866             1,967               547                 286
~         ~20                  1,958             2,064               564                 295 430*                 2,052             2,163               580                 305 440                  2,149             2,265               597                 314 450                  2,248             2,369.              614                 323
         '460                  2,349             2,476               631                 333

S~ee+ Y df \ Lj 470 2,452 2,585 649 343 480 2,558 2,696 667 353 490 2,665 2,809 684 362 500 2,775 .2,925 702 372

'Tim.burning rate and resulting upper level temperature is limited

=-b~ne-venEilation capacity of the room openings. *From this point on the amount of energy that can be released within the room is limited to 2778.595 BTU/sec. Room temperature may continue to rise. 510 2,779 2,929 705 374 520 2,779 2,929 707 375 530 2,779 2,929 709 376 540 2,779 2,929 711 377 550 ~,779 2,929 712 378 560 2,779 2,929 714 379 570 2,779 2,929 716 380 580 2,779 2,929 718 381 590 2,779 2,929 720 382 600 2,779 2,929 721 383 610 2,779 2,929 723 384 620 2,779 2,929 725 385 630 2,779 2,929 726 386 640 2,779 2,929 728 387 650 2,779 2,929 730 388 660 2,779 2,929 731 389 670 2,779 2,929 733 389 680 2,779 2,929 734 '390 690 2,779 2,929 736 ) 391 700 2,779 2,929 738 392 710 2,779 2,929 739 393

      . 720          2,779            2,929             741             394 I
  • 730 2,779 2,929 742 394 740 2,77~ 2,929 743 395 750 2,779 . 2,929 745 396 760 2,779 2,929 746 397 770 2,779 2,929* 748 398 780 2,779 2,929 749 398 790 2,779 2,929 751 399 800 2,779 2,929 752 400 810 2,779 2,929 753 401 820 ~,779 2,929 755 401 830 2,779 2,929 756 402 840 2,779 2,929 757 403 850 2,779 2,929 759 404 860 2,779 2,929 760 404 870 2,779 2,929 761 405 880 2,779 2,929 762 406 890 2,779 2,929 764 406 900 2,779 2,929 765 407 910 2,779 2,929 766 408 920 2,779 2,929 767 408 930 2,779 2,929 768 409 940 2,779 2,929 770 410 950 2,779 2,929 771 410 960 2,779 2,929 772 411 970 2 779 t 2 I 929 773 412
  • 980 2,779 2,929 774 412 990 2,779 2,929 775- 413 1,000 2,779 2,929 777 414 1,010 2,779 2,929 778 414 1,020 2,779 2,929 779 415

Sh~~-t- .5 d~ l Lf 1,030 2,779 2,929 780 416

. 1, 040  2,779 2,929  781               416 1-, 050 2,779 2,929  782               417 1,060   2,779 2,929  783               417
*~~~~---,

2,779 2,929 784 418 2,779 2,929 785 419 1,090 2,779 2,929 _.786 419 1,100 2,779 2,929 787 420 1,110 2,779 2,929 788 420 1,120 2,779 2,929 789 421 1,130 2,779 2,929 791 421 1, 140' 2,779 2,929 792 422 1,150 2,779 2,929 793 423 1,160 2,779 2,929 794 423 1,170 2,779 2,929 795 *424 1,180 2,779 2,929 796 424 1,190 2,779 2,929 796 425 1,200 2,779 2,929 797 425 I*

S~ecotT ~ o-t \<...{

 *u~EMP    version 1.1           average upper level smoke temperature.

Turbine Lube Oil Room - Fast Fire - 32 sq. ft. Vent 03-22-1996 -~*a~~r~~~e~lar;~20 Sq. ft. of 8 inch thick CONCRETE Fire room openings: Door is closed. Window is open to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke temperature (sec) (BTU/sec) (kW) (degrees F) (degrees C) 10 4 5 104 40 20 18 19 . '112 45 30 40 42 122 50 40 71 75 134 57 50 111 116 148 64 60 159 168 163 73 70 21 7 228 179 82 80 283 298 197 92 90 358 377 216 102 100 442 466 235 113 110 535 564 256 125 12 0 ,6 3 7 6 71 278 137 130 747 788 301 149 140 867 913 324 162 150 995 1, 049 349 176

 -. . 1160            1, 132                 1, 193               374                190 19170                 1 , 278                l , 34 7             400                204 180 190 200 210 1,432 1,596 1,769 1, 950 1,510' 1,682 1,864 2, 055 427 454 483 512 219 235 250 267 I

220 2,140 2,255 542 283 230 2,339 2,465 572 300 240 2,547 2,684 603 317 250 2,763 2,913 635 335 The purning rate and resul~ing upper level temperature is limited by the ventilation capacity of the room openings. From this point on the amount of energy that.can be released within the room is limited to 2778.595 BTU/sec. Room temperature may continue to rise. 260 2,779 2,929 641 338 270 2,779 2,929 644 340 280 2,779 2,929 647 342 290 2,779 2,929 650 344 300 2,779 2,929 654 345 310 2,779 2,929 657 .347 320 2,779 2,929 660 349 330 2,779 2,929 662 350 340 2,779 2,929 665 352 350 2,779 2,929 668 353 360 2,779 2,929 671 355

  ~70                 2,779                 2,929                 673                356
 ~80                  2,779                 2,929                 676                358 390             2,779                 2,929                 678                359 400             2,779                 2,929                 681                360 410             2,779                 2,929                 683                362
     *420             2,779                 2,929                 686                363
     ..                             S h~e-+ { o-t- l '-1 430         2,779 2,929 688             364
  -*    440         2,779 2,929 690             366 450         2,779 2,929 692             367 460         2,779 2,929 694             368
 '.470              2,779 2,929 697             369

~

  --    4°8'0=-"~"- 2,779 2,929 699             370 490         2,779 2,929 701             372 500         2,779 2,929 703             373 510         2,779 2,929 705             374 520         2,779 2,929 707             375 530         2,779 2,929 709             376 540         2,779 2,929 711             377 550         2,779 2,929 712             378 560         2,779 2,929 714             379 570         2,779 2,929 716             380 580         2,779 2,929 718             381 590         2,779 2,929 720             382 600         2,779 2,929 721             383.
  • U_TEt~P version 1. 1 average upper level smoke temperature.

S kei"t 8 o~ \ '--f Turbine Lube Oil Room - UFast Fire - 32 sq. ft. Vent 03-22-1996 8 RAS.a--csue-r-Nf.ao, . eslare75: 2-* O Sq. ft. of S~ 8 inch thick CONCRETE Fire room openings: Door is closed. Window is open to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke temperature (sec) (BTU/sec) (kW) (degrees F) (degrees C) 10 18 19 111 44 20 71 75 131 55 30 160 169 156 69 40 284 3 00 18 7_ 86 50 "\) 444 469 221 105 60 640 675 259 126 70 871 918 300 149 80 1,138 1,199 345 174 90 1,440 1,518 392 200 100 1,778 1,874 442 228 110 2,151 2,268 495 257 120 2,560 2,699 550 288 The burning rate and resulting upper level temperature is limited by the ventilation capacity of the room openings. From this point on the amount of energy that can be released within the room is l_ated to 2778. 595 BTU/sec. Room temperature may continue to rise.

'~30                               2 t 779             2 t 929              582                 305
  - 140                            2,779               2,929                588                 309 150                           2,779               2,929              . 593                 312 160                           2,779               2,929                599                 315 170                           2,779               2,929                604                 318 180                           2,779               2,929                608                 ~20 190                           2,779               2,929                613                 323 200                           2,779               2,929                617                 325 210                           2,779               2,929                622                 328 220                           2,779               2,929.               626                 330 230                           2,779              2,929                 630.                332 240                           2,779               2,929                633                 334 250                           2,779              2,929                 637                 336 260                           2,779               2,929                641                 338 270                           2,779              2,929                 644                 340 280                            2,779              2,929                 647                 342 290                           2,779              2,929                 650                 344 300                            2,779              2,929                 654                 345 310                            2,779              2,929                 ~57                 347 320                            2,779              2,929                 660                 349 330                            2,779              2,929                 662                 350 340                            2,779              2,929                 665                 352 350                            2,779              2,929                 668                 353 360                           2,779               2,929                671                 355 a10                               2,119              2,929                 673                 356
 ~80                               2,779              2,929                 676                 358 390                            2,779               2,929                678                 359 400                            2,779              2,929                 681                 360 410                           2,779               2,929                683                 362 420                            2,779               2,929                686                 363

S keeT 9 c-t- (<-( 430 2,779 2,929 688 364 44'0 2,779 2,929 690 366 450 2,779 2,929 692 367 460 2,779 2,929 694 368 --~-~ 2,779 2,929 697 369 2,779 2,929 699 370 490 2,779 2,929 701 372 500 2,779 2,929 703 373 510 2,779 2,929 705. 374 520 2,779 2,929 707 375 530 2,779 2,929 709 376 540 2,779 2,929 711 377 550 2,779 2,929 712 378 560 2,779 2,929 714 379 570 2,779 2,929 716 380 580 2,779 2,929 718 381 590 2,779 2,929 720 . 382 600 2,779 2,929 721 383

S k~e-+ (0 o+ (~

  • UTEMP *version 1.1
  • average upper level smoke temperature.

Turbine Lube Oil Room - Moderate Fire - 50% of Concrete Heat Sink 03-22-1996 R . surfaces are: S ace No. 1 3760 Sq. ft. of 8 inch thick CONCRETE Fire room openings: ' Door is closed. Window is operi to a height of 1.333 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke temperature (sec) (BTU/sec) (kW) (degrees F) (degrees C) 30 10 11 111 44 60 40 42 132 55 90 90 95 158 70 120 160 168 189 87 150 250 263 225 107 180 360 379 264 129 210 490 516 307 153. 240 639 674 352 . 178 270 809 853 ,401 205 300 999 1,053 453 234 330. 1,209 1~274 507 264 360 1,439 1,516 564 295 390 1,688 1,780 623 328 420 1,958 2,064 684 362 450 2,248 2,369 748 398 A480 2*, 558 *

  • 2, 696 814 434 T~urning rate and resulting upper level temperature is limited by **"'the ventilation capacity of* the room opei:iings. From this point on the amount of energy that can be released within the room is
  • limited to 2778.595 BTU/sec. Room temperature may continue to* rise.

510 2,779 2,929 862 461 540 2,779 2,929 869 465 570 2,779 2,929 87~ 469 600 2,779 2,929 883 473 630 2,779 2,929 889 476

      .660              2,779               2,929              895               480 690              2,779              2,929               901              '483 720              2,779              2,929               907               486 750              2,779              2,929               913               489 780              2,779              2,929               918             ' 492 810              2,779              2,929               923               495 84-0             2,779              2,929               928               498 870              2,779              2,929               933               500 900            '2,779               2,929               938               503 930              2,779              2,929               942               506 960              2,779              2,929               947               508 990              2,779              2,929               951.              511 1,020               2,779              2,929               955               513 1,0~0               2,779              2,929               959               515 1,080               2,779               2,929              963               517 10             2,779               2,929              967               520
  • 40 2,779 2,929 971 *522 1,170 2,779 2,929 975 524.

1,200 2,779 2,929 979 526

si.~t l l er-£- I<-!

  *urEMP version 1.1                   average upper level smoke temperature.

Turbine Lube Oil Room - Moderate Fire - 1.5X Larger Vent Area 03-22-1996 8

 . *:a.*c uerNfoa-c. eslare75: 2 O

_RAS. Sq. ft. of S~ 8 inch thick CONCRETE Fire room openings: Door is closed. Window is open to a he~ght of 2 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke temperature (sec) (BTU/sec) (kW) (degrees F) (degrees C) 30* 10 11 107 42 60 40 42 120 49 90 90 95 138 59 120 160 168 158 70 150 250 263 181 83 180 360 379 206 97 210 490 516 234 112 240 639 674 264 129 270 809 853 295 146 300 999 1,053 329 165 330 1,209 1,274 364 184 360 1,439 1,516 400 205 390 1,688 1,780 439 226 420 1,958 2,064 479 248 450 2,248 2,369 520 271

/* .480                         2,558              2,696               562                 295
 . ,, 510                       2,887              3,043               607                 319 540                       3,237              3,412               652                 344 570                       3,607              3,801               698                 370 600                       3,996              4,212               746                 397 630                       4,406              4,644               795                 424 660                       4,835              5,097               846                 452 The burning rate and resulting upper level temperature is limited by the ventilation capacity of the room openings . . From this point on the amount of energy that can be released within the room is limited to 5106.521 BTU/sec. Room temperature may continue to rise.

690 5,107 5,382 879 471 720 5,107 5,382 885 474 750 5,107 5,382 890 477 780 5,107 5,382 895 480 810 5,107 5,382 900 482 840 5,107 5,382 905 485 870 5,107 5,382 910 488 900 5,107 5,382 914 490 930 5,107 5,382 919 493 960 5,107 5,382 923 495 990 5,107 5,382 927 497 1,020 5,107 5,382 931 500 1,050 5,107 5,382 936 502 1,080 5,107 5,382 939 504 10 5,107 5,382 943 506

  • 40 5,107 5,382 947 508 1,170 5,107 5,382 951 510 1,200 5,107 5,382 954 512
*urEMP version 1.1       average upper level smoke temperature.

Turbine Lube Oil Room - Moderate Fire - 504 sq. ft. Vent 03-22-1996 ~ surfaces are: S~ace No. 1 7520 Sq. ft. of 8 inch thick CONCRETE Fire room openings: Door is closed. Window is open*to a height of 21 ft. and a width of 24 ft. Time Rate of heat release Upper level smoke temperature (sec) (BTU/sec) (kW) (degrees F) (degrees C) 10 1 1 100 38 20 4 5 101 38 30 10 11 102 39 40 18 19 103 40 50 28 29 105 40 60 40 42 106 41 70 54 57 108 42 80 71 75 110 43 90 90 95 112 44 100 111 117 114 45 110 134 142 116 46 120 160 168 118 48 130 188 198 120 49 140 218 229 122 50 150 250 263 125 52 284 300 127 53

*i~~180 321 360 338 379 130 133 54 56 190              401                422             136                58 200              444                468             138                59 210              490                516             141                61 220              537                566             144                62 230              587                619             147                64 240              639                674             150                66 250              694                731             154                68 260              750                791             157                69 270              809                853             160                71 280              870                917             164                73 290              934                984             167                75 300              999             1,053              171                77 310            1,067             1,124              174                79 320            1,137             1,198              178                81 330            1,209             1,274              181                83 340            1,283             1,353              185                85 350            1,360             1,433              189                87 360            1,439             1,516              193                89 370            1,520             1,602              197                91 380           1,603             1,689              201                94 390           1,688             1,780              205                96 400           1,776             1,872              209                98 1,866             1,967              213               100
.10                                  2,064              217               103 20           1,958 430           2,052             2,163              221               105 440           2,149             2,265              225               107 450           2,248             2,369              230               110
    '460           2,349             2,476              234               112

s "Oi!~-t- 13 c-f l t.{ 470 2,452 2,585 238 115 480 2,558 2,696 243 117 490 2,665 2,809 247 120

  .. 500    2,775    2,925   252                 122

.510 2,887 3,043 256 125

   . 520    3,002    3,164   261                 127 530   3,118    3,287   266                 130 540   3,237    3,412   270                 132 550   3,358    3,539   275                 135 560,  3 ,481   3,669   280                 138 570   3,607    3,801   285                 140 580   3,734    3,936   290                 143 590    3,864   4,073    295                 146 600   3,996    4,212   299                 149 610   4,131    4,354   304                 151 620   4,267    4,497   310                 154 630   4,406    4,644   315                 157 640   4,547    4,792   320                 160
     *650   4,690    4,943   325                 163 660   4,835. 5,097   330                 166 670   4,983    5,252   335                 169 680   5,133    5,410   341                 171 690   5,28'5   5,570   346                 174 700   5,439    5,733   351                 177 7cl0  5,596    5,898   357                 180 720   5,755    6,065   362                 183 730   5,915   .6 I 235 368                 186 740    6,079    6,407   373                 190 750    6,244    6,581   379                 193

.760 6,412 6-,758 384 196 I 770 6,582 6,937 390 199 780 6,754 7,118 396 202 790 6,928 7,302 401 205 800 7,104 7,488 407 208 810 7,283 7,676 413 212 820 7,464 7,867 419 215 830 7,647 8,060 425 218 840 7,833 8,256 430 221 850 8,020 8,453 436 225 860 8,210 8,653 442 228 870 8,402 8,856 4_48 231 880 8,596 9,060 454 235 890 8,793 9,268 460 238 900 8,991 9,477 466 241 910 9,192 9;689 473 245 920 9,396 9,903 479 248 930 9,601 10,119 485 252 940 9,808 10,338 491 255 950 10,018 10,559 497 259 960 1,0,230 10,783 504 262 970 10,445 11,009 510 266 980 10,661 11,237 516 269 990 10,880 11,467 523 273 1,000 11,101 11,700 529 276 11,324 11,935 536 280

 .010                        542 020  11,549  12,173                         283 1,030    il,777  12,413    549                  287 1,040    12,006  12,655    555                  291 1,050    12,238  12,899    562                  294 l,'060   12,473  13,146    568                  298

Sh~e.+ \ l.{ ¢~ l ti 1,070 12,709 13,395 *575 302

  • 1_, oErn 12,948 13,647 582 305

.100 1,090 110

   ,120 13,189 13,432 13,677 13,925 13,901 14,157 14,416 14,676 588 595 602 609 309 313 317 320 1,130    14,174 14,940  616           324 1,140    14,426 15,205  622           328 1,150    14,681 15,473  629           332 '

1,160 14,937 15,744 636 336 1,170 15,196 16,016 643 340 l', 180 15,456 16,291 650 343 1,190 15,720 16,568 657 347 1,200 15,985 16,848 664 351

  • EA-FPP-95-054 Sheet 1 of 6 ATTACHMENT C FPETOOL Summary of Sprinkler Actuation Time
  • for a Standard Fast and Moderate Fire or a Steady 3 MW and 3Q MW Fire
                 *in the Turbine Lube Oil Room
  • Sprinkler Actuation Time EA-FPP-95-054 Sheet 2 of6 FPETOOL was used to determine the response time for sprinkler actuation in the Turbine 'Lube Oil Room. Values for spririkler parameters and fire size were determined and plugged into the FPETOOL module for heat detector/sprinkler actuation times.

First, sprinkler parameters were defined for the room. The maximum ceiling height of 21 feet was chosen even though the actual location is approximately 20 feet from the floor as this will delay sprinkler response and give a conservative value. The sprinkler spacing in the Turbine Lube Oil Room was evaluated based on a plant walkdown and the maximum distance between sprinkler heads was determined to be 11 '-6". Based on this separation a fire could not be located radially more than 6' (conservatively) from any sprinkler head. The room temperature at the ceiling was set at 90° F, even though it is routinely higher than this value. The lower temperature was chosen to provide "a conservative value. The sprinkler heads are rated at 165° F and according to the "Automatic Sprinkler Systems Handbook", Sixth Edition, page 28, the Response Time Index (RTI) for standard response sprinklers is between 150 ft 112 s112 to 200 ft 112 s112 . The worst case RTI

         *value of 200 ft 112 s112 was chosen to bound the installed sprinkler parameters as the higher the RTI value the slower the response of the sprinkler actuation.                                 r Second, the fire size was specified to get a parametric look at the possible conditions in the Turbine Lube Oil Room before sprinkler actuation. The standard "Fast" and "Moderate" fire sizes were run as they are representative of realistic fires used in general fire modeling. Then a steady state 3 MW and 30 Mw fire were run to determine response from a combustible liquid pooi fire that tends to reach and maintain a given heat rate in a short period of time. The 3 MW fire size represents the ventilation limited fire size predicted by an earlier FPETOOL calculation. The 30 MW fire size was chosen to see what effect a considerably larger fire might have on the suppression system actuation time.

The results are shown in the attached FPETOOL printouts and are summarized as follows: Fire Size Sprinkler Response Time (Seconds) Fast Fire 174 (<3 Minutes) Moderate Fire 298 / (~5 Minutes) 3 MWFire 29 30 MWFire 8

Twl.Q - 'FAST FIRE 03-23-1996 She~T 3 ot b Fire to Detec;::tor Room Device RT! .ing axial dist. temp. rating ft F F (english) 21 6 90 165 200 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec) RHR (BTU/s) Jet ( F) Head/det (F) Time(Sec) RHR (BTU/s) Jet (F) Head/det. (F) 0 0 90 90 10 4 92 90 20 18 97 90 30 40 102 91 40 71 107 92 50 111 113 94 60 159 120 97 70 217 127 100 80 283 134 103 90 358 142 108 100 442 150 113 110 535 158 118 120 637 167 124 130 747 175 131 140 867 184 138 150 995 193 145 1132 203 153 )*~ 1278 Detector activation at 212 174.2 seconds 161

TbO -'MODERATE FIRE

 --~  ,.._:;:,_~

03-23-1996 S h.eeT <-{ cf ~ Fire to Detector Device if ing axial dist. ft Room temp. F rating F RTI (english) 21 6 90 165 200 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec) RHR (BTU/s) . Jet (F) Head/det ( F) Time(Sec) RHR (BTU/s) Jet ( F) Head/det. (F) 0 0 90 90 10 1 91 90 20 4 93 90 30 10 95 90 40 18 97 91 50 28 99 91 60 40 102 92 70 54 105 93 80 71 108 94 90 90 111 96 100 111 114 98 110 134 117 100. 120 160 121 102 130 188 124 104 140 218 128 106 150 250 131 109 284 135 112 '~~ 321 360 139 143 115 118 190 401 147 122 200 444 151 125 210 490 155 129 220 537 159 132 230 587 163 136 240 639 167 140 250 694 172 144 260 750 176 148 270 . 809 181 153 280 870 185 157 290 934 190 161 Detector activation at 297.9 seconds

. TLO --_

   .... ** -.._'_3 MW FIRE Detector 03-23-1996 S t..e~-t- 5 <<--f- ~

Room Device RTI

 *.       *lngto       axial dist.        temp.           rating ft              F                  F          (english) 21                       6                 90           165             200 Minimum heat release rate necessary to activate the detector at the location described is                   605 BTU/s Time(Sec)                    RHR (BTU/s)           Jet ( F)              Head/det (F)

Time(Sec) RHR (BTU/s) Jet (F) Head/det. (F) 0 0 90 90 1 0 90 90 2 316 90 90 3 633 139 90 4 949 167 91 5 1265 191 93 6 1581 213 94 7 1898 232 97 8 2214 251 99 9 2530 268 102 10 2846 285 105 11 2846 300 109 12 2846 300 112 13 2846 300 116 14 2846 300 119 15 2846 300 123

 .\.~

2846 300 126 2846 300 129 18 2846. 300 133 19 2846 300 136 20 . 2846 300 139 21 2846 300 142 22 2846 300 . 145 23 2846 300 148

    .24                          2846           300               151 25                        2846           300               154 26                        2846.          300               156 27                        2846           300               159 28                        2846           300               162 29                        2846           300               164 Detector activation at      29.2 seconds

TI:.o_- --~3.0 MW FIRE 03-23-1996 St..~~-t b 11~ ~ Fire-to Detector Room Device RT! _c41ing axial dist. temp. rating ft F F (english) 21 6 90 165 200 Minimum heat release rate necessary to activate the detector at the location described is 605 BTU/s Time(Sec) RHR (BTU/s) Jet ( F) Head/det ( F) Time(Sec) RHR(BTU/s) Jet (F) Head/det. ( F) 0 0 90 90 1 2846 90 90 2 5693 300 92 3 8539 424 98 4 11385 528 106 5 14231 620 117 6 17078 705 131 7 19924 785 146

         .8                22770            860              164 Detector activation at      8.1 seconds
.      \

( r

  • EA-FPP-95-054 Pages 38 through 44 intentionally omitted
  • ENCLOSURE 3 CONSUMERS POWER COMPANY PALISADES PLANT DOCKET 50-255 Analysis of the Effects of a Fire on the West Wall of the Component Cooling Water P~mp Room (Fire Area 16)
  • '}}