ML20217N910

From kanterella
Jump to navigation Jump to search
Rev 0 to SIR-98-026, Svc History & Susceptibility Review, Risk Evaluation & Element Selection for Svc Water Sys at ANO-2
ML20217N910
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 03/27/1998
From: Cofie N, Giannuzzi A, Licina G
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20217N838 List:
References
SIR-98-026, SIR-98-026-R00, SIR-98-26, SIR-98-26-R, NUDOCS 9804090249
Download: ML20217N910 (39)


Text

i

! Report No.: SIR-98-026 l Revision No.: 0 l

Project No.: EPRI-l10Q File No.: EPRI-l10Q-401

March 1998 Service History and Susceptibility Review, Risk Evaluation and Element Selection for the Service Water System at Arkansas Nuclear One Unit 2 Preparedfor

(' Entergy Operations Prepared by:

StructuralIntegrity Associates,Inc.

San Jose, California f

l Prepared by:

bIEd Date: 1'S 8

-.M / Licin I "

N Reviewed by: ~

Date: S N7l9?

I #

p/ Gir.nnuzzi Approved by: Date: }l* 9E I N. G. Cofie

?bR $$$$o$o$$3sg { StructurstIntegrityAssociates,Inc.

O PDR

g

]

REVISION CONTROL SHEET l Document Number: SIR-98-026

Title:

Service History and Susceptibility Review, Risk Evaluation and Element Selection for the Service Water System at Arkansas Nuclear One Unit 2 Client: Entergy Operations 1

1 SI Project Number: EPRI-110Q Section Pages Revision Date Comments All All 0 3/27/98 . Initial Issue 1 O l

l l i i

l l

l t ,

i ,

4 e

l O '

f StructuralIntegrityAssociates,Inc.

A i

1 l

2 i

i i

i fm Table of Contents

(

\

s Section _P_ age ,

i 1.0 INTR O DU CTION . . . .. .. . .. . . .. . . .. . .. . . . ... .. . . . . .. . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. .. . . . . . .. . . . . . . . . . . .

1.1 Risk Informed Inspection ..... ............... ...... . . . ....... .. ........ . ... .. ....... .... .. ................ ......... .... . 1 - 1 l .2 B ack groun d . . .. . . . . . . . . . . . . .. ... . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . .. . . . . . .. .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . .. . . . . . . . . . . . 1 - 1 j

1.3 S ystem Descripti on. ... . . ... ........... .. ......... . ....... ............... ....... ...... .............. .. ............ . . . .. .. 1 -2  ;

1.4 Water Ch e mi s try. ... . . ... . . . . . . . .. . . . .. .. . . . .. . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . .. . . . . .. . 1 -3 l 1.5 B ioci de Treatment .... . ...... .... ............. ............................. .. ...... ... .... .. . . ............ ........ .. . ... . . 1 -3 1

2.0 SERVICE HISTORY AND SUSCEPTIBILITY REVIEW.'............................................... 2-1 2.1 Station Information Management System (SIMS) .......................................................... 2-1 2.2 Condition Report (CR) Database ...................................... ............................................. 2- 1  !

2.3 Licensing Research S ystem (LRS) .............................................. .. ................................ 2-2 q 2.4 Nuclear Plant Reliability Database System (NPRDS) ............................. .. ................... 2-2 2.5 ANO-2 IS I Program Records . .. .. ... .. ......... ...... . ..... .. . ... . ......... .... ... .... .. . ... ..... ....... . .. .. ... ..... 2-2 2.6 Control Room S tation I.og .... . .. . ..... .. . .... ..... .... .. . . ...... ..... . .. ...... .. ..... .. ... . ............. . ... .. . . . . 2-3 2.7 System Upper level Document (ULD) ............... ................................ .......................... 2-3  ;

2. 8 Othe r S tation Docu ments .. ... ................ ... ...... .. .. . . . ....... ... .......... .... .. . .. .. ..... . . .. . . ..... ... . ... .. 2-3 )

t  !

%.s  ;

.........................................................................................................- 1 l

.4.0 ELEMENT S ELECTION .. ................. . .. .. .. ...... . . .... . .... .. ..... .. .. .. ..... ..... ..... ..... . .......... . ... . 4- 1 4.1 Techni cal Approach . ... . ............ .. . ... ..... . . ..... . ...... ... . . .. .... ............... . . . ..... .. .. . .. . . . .. .. . ....... .. 4- 1 4.2 Evaluation...................................................................................................................4-2 4.3 Elements.......................................................................................................................4-5

~ 4.4 E v al u ation Resul ts ... .. . ...... .... .. . .. . ...... . .. . . ... ... ..... . ... ... . ..... ... . . .... . .. .... ... .... .... . .. . ....... . ... . . . . 4-6 5.0 REFEREN CES . . . . . . .. . . . . .. .. . . . . . . . . . .. . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 5 -

s N

SIR-98-026 Rev. 0 iii f StructuralIntegrityAssociates,Inc.

. A List of Tables na e. ,

1

, i Table 2-1 Service History and Susceptibility Review - Service Water System ........................ 2-4 Table 2-2 Degradation Occurrences Identified in the Service Water System ................ .......... 2-5 Tabla 3- 1 Risk Segment Identification ..................... ............................................................... 3-2  ;

. Table 4-1 MICPro Evaluation of ANO -2 (Supply Headers and Shutdown Cooling).........,.. 4-9 Table 4-2 MICPro Evaluation of ANO - 2 (Emergency Diesels and Containment Cooling). 4-10 Table 4-3 MICPro Evaluation of ANO - 2 (Emergency Feedwater, Fue'l Pool Cooling and Closed Cooli n g Water) ......... .... ..... ....... ................. .. ......... ....... ......... . ..................... . 4- 1 1 Table 4-4 Ele me nt Selection . . . ................ ................ . ............. . ..... ................ ..... .. ...................... 4- 12 l

l O

b I

l l

l O

SIR-98-026 Rev. 0 iv { StructurallategrityAssociates,Inc.

1.0 INTRODUCTION

l 1,1 Risk Informed Inspection J

The Electric Power Research Institute (EPRI) has developed an alternate approach for the inservice inspection of piping systems in lieu of the requirements currently specified in Section

- XI of the ASME Boiler and Pressure Vessel Code. The EPRI approach is based on the application of a risk-informed process which consists of the following two essential elements:

  • A consequence evaluation is performed to assess the impact on plant safety in the event of a piping faihne. i e A degradation mechanism evaluation is performed to assess the failure potential of the piping system under consideration.

The results from these two independent evaluations are coupled to determine the risk significance  !

of piping segments within the system. The number of elements to be inspected within the piping

. segment is then determined based on the risk significance of the segment. In addition, the service history of the piping system is reviewed to supplement the degradation mechanism evaluation.

l ia The purpose of this report is to document the service history and susceptibility review, risk evaluation and element selection for the Service Water System (SWS) at ANO-2 utilizing the l . EPRI Risk Informed Inservice Inspection Evaluation Procedure (RISI) of Reference 1 in a pilot

plant application study. The damage mechanisms and consequence evaluations for the ANO-2 SWS have been performed separately in References 2 and 3, respectively.

.1.2 Background The service water system (SWS) provides cooling water to a variety of safety-related and non-

- safety-related systems,'among them the containment cooling coils, switchgear room coolers, l

l

' SIR-98-026, Rev. 0 1-1 { StructuralIntegrityAssociates,Inc.

p control room emergency condensing unit coolers, electrical equipment room coolers, various b pump room coolers, fuel pool cooling, and standby diesel generators during normal and off-normal plant operating conditions [2]. This system also provides cooling capability for the closed cooling water systems in the plant.

. Much of the equipment cooled by the SWS is idle during normal plant operation. The most common " operating" conditions for those systems are the periodic operability / functionality demonstrations. Quarterly demonstrations are fairly common. As a result, the individual systems within the SWS will remain stagnant from one operability demonstration to the next, however, the SWS supply and return headers will generally be in continuous operation (i.e., rarely stagnant for more than a day at a time).

The operating conditions to be considered for a nuclear plant service water system are far different than those for most other systems in nuclear plants. As noted above, the operating status of the service water system is almost completely independent of the operating condition of the plant in contrast to systems such as the reactor coolant system or power conversion system. The service water system is designed for a maximum temperature of about 150 F and pressure of 150

, psi. The operating temperature rarely exceeds 120 F and experiences a much different aqueous environment than most other systems. For example, untreated raw water (from a river, lake, pond, etc.) flows through the service water system. The chemistry of such waters can vary over time and seasonal variations are common. The service water system at ANO draws water from a shallow lake that experiences definite variations in temperature and water chemistry as described in Section 1.4. This environmental variability is dramatically different from the carefully controlled purity water used it; other plant systems. Portions of the service water system may be subject to continuous flow, to nearly continuous wet lay-up, or to a daily, weekly, monthly, or quarterly cycling operation.

1.3 System Description The service water system consists of two loops. In summer, under normal operation, d approximately 7,000 gpm flows through one SWS loop and about 10,000 to 12,000 gpm flows SIR-98-026, Rev. O I-2 StructuralIntegrity Associates, Inc.

1 1

through the other loop. On the average, the Loop 1 room coolers (small coolers) take about 250-300 gpm, spent fuel cooling takes about 2,000-3,000 gpm, and component cooling takes about 5,000-6,000 gpm.

Even though both loops are in almost continuous operation, there are segments that are usually stagnant as described in Reference 2. The normal flow conditions of the SWS segments and the normal operating status are provided in Reference 2.

! 1.4 Water Chemistry l

The ANO service water system is a once-through system fed from (very shallow) Lake l l

Dardanelle and other fresh water tie-ins, through the supply headers, to the various cooling loads, l l then back to the lake or emergency cooling ponds through large diameter return lines. Spring  !

rains cause the lake water chemistry to fluctuate the most and late summer is usually when water chemistry is the worst. The lake typically turns over twice per year. l O Ranges of water chemistry (low /high):

i pH 7.5/9.0 Conductivity 100/500 S/cm  ;

Sodium 15/120 ppm l l

Total Alkalinity 75/250 ppm Total Phosphate 0.2/2.0 ppm Total Hardness 75/200 ppm Chloride 10/100 ppm (Peak at 300 ppm)

Sulfate 10/50 l

TSS 50/150 (highest in spring) j i

Iron .2/<1 ppm

Copper 0.1/0.2 ppm 1.5 Blocide Treatment 1

Originally, the SWS was untreated. In 1981, treatment with gaseous chlorine (typically several i times per day) was initiated to control macrofouling. The chlorine gas system was installed late tO V

SIR-98-026, Rev. 0 1-3 { StructuralIntegrityAssociates,Inc.

in startup and operated essentially continuously through approximately 1990. It was efective for macrofouling.

Currently, the normal biocide treatment at ANO-2 is sodium hypochlorite. The measured biocide content is 0.2 to 0.3 ppm (0.3 to 0.5 total residual oxidant, TRO) at the discharge of the CCW

^

heat exchanger. Hypochlorite plus sodium bromide is also used. Note that the SWS also provides makeup for the circulating water system. Circulating water cycles 2 to 4 times. ANO-2 has been using sodium hypochlorite continuously for the past 7% years, except for a short period in 1992.

In 1992, the continuous addition of biocide was discontinued. However, continuous treatment l was restarted as a result of biological fouling of shutdown cooling heat exchanger 2E-35A. In addition to the hypochlorite, ANO-2 has also used sodium bromide for six years, orthophosphate plus zine plus polymer (at 0.1 to 0.3 ppm Zn) for three years, and is now using a synthetic  !

polymer as a dispersant. Coupons have been monitored for more than seven years and a biological station (BioBox) was installed about four years ago. i ANO-2 observed some high corrosion rates, due to the continuous use of the gaseous chlorine system. ANO-2 has observed an average corrosion rate of ~5 mpy on carbon steel (Corraters with corrosion coupons for back-up) and 0.10 mpy on 90-10 copper-nickel. The use of sodium hypochlorite has been beneficial and has eliminated approximately 99% of the biological fouling.

System performance has improved and many small coolers which used to foul do not exhibit fouling any longer. Slime was observed in the system through 1993 but is not observed currently.

I Biocide plus inhibitor is projected to manage corrosion in the ANO-2 SWS through end-of-life.

l L/

SIR-98-026, Rev. 0 14 StructuralIntegrity Associates, Inc.

o

( 2.0 SERVICE HISTORY AND SUSCEPTIBILITY REVIEW The following discussion summarizes the results of a search performed by ANO of plant and industry databases and station documents to characterize the station's operating experience with ,

respect to piping pressure boundary degradation. The results of this review are provided in a condensed form in Table 2-1 and a listing of the piping pressure boundary degradation occurrences identified is provided in Table 2-2.

Although several pre-commercial references are included for completeness, the timeframe for identifying items applicable to this effort was focused on post-commercial operation (Commercial Operation date of March 26,1980). This was done to avoid inclusion of items primarily associated with construction deficiencies as opposed to inservice degradation. The following subsections describe the databases and other sources which were queried to accomplish this review:

r 2.1 Station Information Management System (SIMS)

The SIMS database was queried for all ANO-2 job orders on Code Class I,2, and 3 components which involved corrective maintenance (CM) or modifications (MOD). Additionally, a separate query was performed in order to capture certain non-Code, Q component failures. This query was for non-Code Q And SR (safety related) components. This database contains information from approximately 1985 to the present.

2.2 Condition Report (CR) Database The CR database was queried for any pipe leak /mpture events or other conditions associated with identified damage mechanisms at ANO-2. The keywords searched ur. der were; pipe, piping, line, water hammer, leak, leaking and leakage. CR's are written on Q, F or S equipment failures or S1R-98-026, Rev. 0 2-1 f StructuralIntegrityAssociates,Inc.

, other conditions potentially adverse to safety. This database contains information from 1988 to l the present.

2.3 Licensing Research System (LRS)

L

  • 1 The LRS database was queried using a keyword search specific to ANO-2. The . keywords 1

searched under were: thermal cycling, thermal stratification, thermal fatigue, defect, flaw, indication, fatigue, cavitation and corrosion. This search captured all communication between ANO and the NRC, both plant specific and generic industry, associated with these topics.

l However, for the purpose of this review, only communication from ANO to the NRC was reviewed. Additionally, this search system was used to query Industry Events Analysis files i (captures INPO documents) for ANO-2 events or conditions relevant to this review. The keywords searched under for this portion of the query were: pipe & stratification, thermal &

fatigue, thermal & transient, pipe & leak, vibration & fatigue and pipe & rupture. " Fuzzy" search l logic was employed to reduce the possibility of failing to identify a pertinent document. This database contains information from prior to commercial operation to the present for ANO-2.

I i

1 i l 2.4 Nuclear Plant Reliability Database System (NPRDS)  ;

1 i

NPRDS was queried for ANO-2 entries for pipe failures. The keywords searched under were:

pipe. This database contains information from 1991 to the present.

l 4 l

i 2.5 ,ANO-2 ISI Program Records 1

The ISI program findings were compiled and reviewed for all outage and non-outage inservice '

inspections conducted at ANO-2 since commercial operation.

1p O

SIR-98-026, Rev. 0 2-2 h Structors! Integrity Associates, Inc.

1

s (y) 2.6 Control Room Station Log The station log was utilized as a source of information for recent operational events. The log exists in electronic format from early 1994 to the present and has search capabilities which allowed a review for events of interest. Tae keywords searched under were: water hammer, leak andleakage.

2.7 System Upper Level Document (ULD)

The ULD was reviewed as a source for historical perspective of issues related to the system and identification ot modifications made to the system or changes to operational procedures to address those issues (e.g., water hammer, corrosion or vibrational fatigue).

rm C 2.8 Other Station Documents This source of information consists of such documents as the SAR, Technical Specifications, operational procedures and the damage mechanism analysis done as part of this effort.

v I

SIR-98-026, Rev. 0 2-3 f StructuralIntegrityAssociates,Inc.

de l a o r o

- n N 2 o hn. c r r e e e e e e e n .it d

e e n l ~.

n n n n n n isy o h %_ o o o o o o o 2 k lu hn 7 co i )

s t ( h r it n O .

N N N N N N N p e a 5 a s o ". .

o m m 0t - te r a C N m r

o 1 d e y a 9e n c o()v -va f

E h e 2i t iv e r e r he. c r

d

,is n r

e n e ), e em e e e l ) ) t o t n 2, h{ n n n 2 e t la 5 nio s n

Wa ma

_ o o (

E o o o ( , a c 3 et F E. E y is 5 s ua .in d N 'P P N N N P r w y d

A H  ! h t

is

. h p

0wla ema m

g 1 lovt 9f est o

_ e

- y l e u 2 r , sd

_ a c h c

( .

. onoet e i

n a F e

n e

n e

n e

n e

n e

n e

n r e

t n

e .

1

. ni h u 3 o at b r t

V o o o o o o o v i h

c e

N N N N N N N h t a

w e h t

m 5 is icf i 4of r it ot a t

M t

n e, is 0on not s, a g n 9ceio r .lp a a -

d t t h 2di an tewl s c 5, e zhf eicsa e C e e e e e e e a e n n n n n n n eei a

_ v dt A F

o N N o

N o o N

o N

o N N o

N a mivt ae n w m 8l 3 ct o i

at d w i

s r r e e n n

o a s to g n

g 0o - emde .

S ) .

pi p gt r h

i t

a m

0 hl 9t uc mev o e e e e e h( I it a -

iwcn os me 1 I ) p m

w o C n ( n n n n Il 4 I nf o o d 2 i o F o o o o F it ,

9 ,dd t

e R E- N 8 P. N N N N h P

8P P a r

euv lt de g n

d ie 6t h ies e dr s psr i iacf w a

_ k f 6

y oer se c it n 0cht i i S

C e

n e

n e

n e

n e

n e

n e

n e

n f

o as bo a

r c d e 9 ow s neh c r 8s9id 2- a4 nih e n C o o o o o o o o e ana y i

n o N N N N N N N N g b a s0ewe t i a s o

dd eef d f 3,k2 a W r r )

) ) lwi i

f o e c

o s

8 le9 bn,o 1

o e i e e e e i 1 t t n 0ll 8 atsi e C T n (

n n n n (

)

onlus ne e t

c F( 4 l

c I

P o F- o o o o F kd e d e 9- aPh a d N B N N N N S 8P iv f wCr ic i

v s.

e z P P P hg is r e f

e 8 2- h

- Dedn r E ums as gn mi e  : ..

n c

o e

')

e e e e

~) ) oia r n s

a ht e

'suoms R roi t ah i

S .

l C n 1

( .

n n n n 1

(

1 )

( 4 h as n Cht ir cah T

- b. F o F o o o o F F( t h g o m c

e M N S N N N N B BP scn it o r dl f e . i P- P P gei a nadt Sa l

w M inmao d d f

g e e d a n sm SwW i

v g C adl r

g i D)amo f a C e e e e e e e e lo e e lt L sd oe 1- e S n o

n o

n o

n o

n o

n o

n e

n o

t d a n d u s Uoa un e h ).

y >- 2R m a g W P

N N N N N N N N dl nua r y e r

( i tn a5 r nni c t n

ey D n as st a s v0eig 4-om i

Mc s d e 5 rr nr t

mps l

bi l o C e e e e e e e e s s in n

u la w mtn9 ue0ctuio n o 2

ai r C e n n n n n n n n ea o m1 cao c

f Tib C S o o o o o o o o indh b l oci i t C a uc la N N N N N N N N DuAcNodnca

_ t e

E hl ce e p r e s c ei nm u

s h w -

l e

vd oC 2 .ca Nireb i

c s

a C e e e e e e e e mye s e

g u eh emaf, u C n n n n n n n n eoa r g r p o L ic cef .r C- S o o o o o o o o ggm r rh e nt s u e.

S G N N N N N N N N a e a h pwedysi mtad s.dve s T t p (

s i Sr d e a c f

o U 79 vr ad n t r

C d d s e is eis t r n m5 st ue inc ee a S C

e n n e e n

e n

e n

e n

e n

e n d ht a e x b o e0e al u .

y S o o o o o o o o eTl t

uy o it a

t s7 - r r Weds n r N N N a niW

_ G N N N N N . t l f ic y9 o o I lus t stn o S 2- ceo cf eS s ts opren fit c Wd Civoie t

s oi xf r o n R r vh e e e SnaNenroet i

u e e e e e e e peo uica H

t T n n n n n n n n d g e ,S it sn i

_ i T o o o o o o o o f olynnic s -

_ e t a N N N N N N N N t oof e h t 4 5 e a n i c F nni it it P),5 8ht iicoC d 5 0- 0f n nE i

oetaa n u 1 f v l a it r r e S a uficd ai d lc W9 7 4- ot ne end I

r m C e e e e e e e e iccir n e na e

S( 2-,2t 9 iodi b T e

r S n n n n n n n n nngsee t i S o o o o o o o o f it oe y -

r eeI h A r T T N N N N N N N N d

eta i ddu nid id sr c yl o

g e

m7R a4Cptoh r

a vP ,

r y

r sr addiea n t a g4 o05

,a r noI sh t C f

o a eguny c r - 4 oet M d m d el ur P7 u md f

d n m e is O e e udc noo h y9 Od eo r w uo 2- lc yi b eg t t -

s s y s T i2 t

r -0fie c elvf y nr ayet e B O S t r r a - g ,9i oia

_ iv e rN S e m e J s g n e s iyd ngs ouc )

er e3 - t n dlei t In2 Rid cnis e 7Cehb t r t s

e u A R ss n a e s o m t

n oue eh s is t e b t

s a m l u e got lu r 0 e t a a r h o s

e e r s m e

a t

a S y b a R u n io c

o m teb cpT a e ia F t e - 6 Co ,iwd r p n

s a P g g t

u f a9Da9 cruis o )- nr n aemth

e. D h a t D c .y b . a c D m a / o is sh cee W2L -

1 n a e gi oa t

a ni r c0, Uec2 ss

-, a S D h es T natan d e i, y a

r v t

a p e t g e ,s0ie ni D M M e m

s i

7r o m l n o

T r - p) demr u iv 1 P r - af 0

_ e o e 1 I

b r t i aoo r 0 n -

Se0Wm9ht

. i l R a P r i .

/ o R o e )r fo nvDr i

v l eB t

s cir C a i R a - cn t

i t

a n

o g l

e I

S p t ee t e

> S n2 ee e

o
n n i n R I

/o /p S o sr evcE la aeru s he9

- he aF .nd R o unt icicd i

i

t 2 f r

. t s le n o

i d s n

t n - t r

e ce nsyhhye e sr s t 2t rhCn1 o w z.

c M d

e f n o

e ra O n o m e

ht ed la P ivP e , ect e eie ct c 6 e( p( h o[ P t P n c r r c1 2

(

a F N C t O n3 na na n o f o r I

C i L A s ( 0 D e e g n o

r a S y e2 r

e0e ewred r

er e are -

e af gf 8

_ e c n c D i t

a l

c d F  :

f e3 ef eee

- f 9-r u e t u n P E D B s R9R oRdR o id S N e g

P P P e t R S E v e o . . .

I

_ L N 1 2 3 4. S

m x

d n

d n

0 p 0 '

- 7 - p 1 o o a a 6 m 6 5 4 E F 7 o - t t 4 u 4 3 0 2 2 l o 5 2 n n 7 1 p 1 38 5- 0 o o n 3 2 - -

0 t - o 5 0-4 V W V n0 W6 n6 t 1 it c

it c

o 0- C S C o- e7 n V14 e e i

t 4 6 2 2 it 5 S 0 m3 -

o n n a 0 f a3 20 e7 it C0 n n d 1 7- e o e v - 5

- l e c 2 7- o o a - 3 v e v e2 e d e c c r

g 3 7

7 l

a v

g r

l a

v le7 v3-la3 wna n n

e8 -

v f f e s s a rd on v7 lo o la 2 o o D d d f o h c

f o loa f 6 2 c v7 l

e d f f d m m d le is f 7 f o n o0 f o ona a) a) e w w m a

d m a f 0 a m6 e"

r 8 e"

r 8 i

f n n e ,

e o0 5 a7 m m3 t t i

t n e e t r 7 2

r m5 m0 e3

- a e) a e 1 s1 n4

- s1 n4 e e s t

s a3 a0 r r0 -

e w w n m n e - e -

tr 5 ts 7 trs18" t s7

- w3 w3 d t t w7 e w7 r2 t s3 - ns n- p8 o -

dCB o -

d BC I

e e s7 wld u -

f o b b d0 o0 I t

- d0 o0 ps p u37 o e w3 o 3-

,2 ,H ,H

, - - ud d w 77 1 1 n 4 9 ,6 t n

,6 ,le es dC 2(2 2( 2 2 ,ne 1 s o 1 2 2 2 2 2 7 w ,B d r r i 2 - io 2 - 7 ind le 4H ml me me t

a m8 m3 m7 2 J m7 2 n l

6 e e e ed ed c e3 n me ee t w mw m2 ( t w It a e It a e

It 0 le4 I

o t ed o ed nn e e e ert

- n .

vee t

L 4 0 - It le is I

le It w It b t e Id a e h h w0 8 -

w nB -

w t

e -

4 t

ee w2 w2 m o 1 - e7 - e p d a4 -

p e pd eb " w t e0 ee iph lo w t op op b3 ip3 xP ip ip5 b e lbo t

e l E7 P7 in Pa E2 in Pa P 0" %e b P1 PI l

Eb E lo lb o Elo s

y .

S .

r d o nN 1

e 1 1 I 1 I 2 . 1 1 1 t

a ag .

" . .h . .

. n

  • 6!

h h 01 "0 Sh 01 "6 S h 81 h " 6" hS "2 h h. " h W oi Nwa 4

- "B S 6 2

- 3- -6 2- 3i - 1 1

5

- "8 S 6

6 50 S

1 1

S "6 S 6

6S 6 1 e

c er 0 2-1 4 7- - 62 2- -

21 3 -2

?2

? -

51 3- -5 53 3- - 7 1

- 80 1 3

72 8 -7 8- 1 i

v nD C 0 C 6 D C3

- D DB D C 6 C-2 50 C 6 C 6 r

i L c 1 B 7- DB DB C3 B 7- BC 80 2- C8 - B 8 B 8-e gr ti B - HC BH B -

HC BH B -

HC BH HC HC C B

H C HC HC HC H2 H2 H2 S ne 2B 2B 2 2 B 2 2 B 2 2B 2H BC 2 B 2B 2B H H H H 2 HC H H H ht e

i i

pm H 2 2 2 2 2 2H 2 2 2 -

P o 2 o

n l 2i -

d 2 e d ia r 4 5 5-ef i e n n n n n n t n n n n epa 5 l i bt sn o o o o o o c o o o o dares0 - 2 uo is is e is is is is an is it is it ai t o o a o a o f e o o o o e a7 r e d9 Ted Ca r o

r r

r o

it v

r r

o it v

r r

o D r

r o

r r

o r

r o

r r

o hd e -

I s derda C C C

a C C

a C n o C C C C t ol nCa l

t 2

R -

e t g d d d d it d d d d of c

e e onsC c e e n e n e a e e e e t _

n pD z z li o iz o iz ic iz iz iz iz n n ogo I f -

e li a a is la is la r l a la la la la r sf c c o c o c b c c c c ut r S uo o o E r

o E r

o F a o o o o ai ert lpu l

s u L L L L L L L L So p e c r c

O d n e e ps i

o f y lais epe t

a ore veikn n d sv no k

a k

a k

a k

a k

a r nic k

a k

a k

a k

a k

a k

a a e e e e e e e e e e e r

g ac es L L L L L mit at oh L L L L L L xcl MiD l

e E ua D T e d w Ur 3 9 5 1 5 2 1 0 3 7 4 7 t 8 6 8 3 3 7 3 1 7 4 5 9 n 6 3 5 5 5 2 0 2 4 5 5 e

c e 1 0 -

0- 0 -

0 -

0- 0- 0 -

0- 0 -

0- 0- 0- '

r m 9 9 0 0 3 5 6 7 7 7 u

ocu 1 1 8- 8- 9 9- 9- 9- 9- 9- 9- 9- 9- 9-

- So 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-D R R R R R R R R R R R R C C C C C C C C C C C C 0

3 7 v f 9 0 1 9 5 6 7 e o 9 9 9 R

1 8 0 9 9 y 9 9 9 9 9 9 9 9 7 9

_ ere 8 1 9 1 9 1 1 9 9 9 9 1 ,

6 mv a

9 r 1 r e

1 r

e r

e 1 1 9

1 r

e 2 r o 1 e r y r e

1 r e

f c b t

s b e b b r a b b 0-l i

u b m b ly m es r p m e g m e o m e e u o u o e 8 miD A v u v t

c v t n t c J t

c v 9-o o p a o i

o A O e O O T N N N S J

N R I

_ S

i 7

lQ l

l!

3.0 RISK EVALUATION l

l ' The risk evaluation is performed utilizing the information contained in References 2 and 3. The 1

i risk segments must be identified first followed by the determination of the segment risk categories.

Risk segments consist of continuous runs of piping that are exposed to the same degradation l ' mechanisms (i.e., damage groups per Reference 2), and in the event of a failure, result in the same consequences (i.e., consequence segments per Reference 3).

By combining the consequence and failure potential categories a risk category is produced for each segment.

Application of the above criteria results in the formation of 49 risk segments which are distributed as follows:

e 8 High Risk Segments - Category 2

. 38 Medium Risk Segments - Category 5 e 3 Low Risk Segments - Category 6 The risk segments are identified in Table 3-1 below.

[

SIR-98-026, Rev. 0 3-1 h StructorslintegrityAssociates,Inc.

t r 1 1 1 2 -

2- ne q a y y 9'5 8 r r

% 1 2 1 2

2 7

2 W W i e Ve 1 R N 4 4 4 4 4 t t R R e e s s x x d W W 1 1 1 1 1 a a u u n V- V- V- V- V- E E A A E e r

e r C C C C C g g o o

u u 2 2 2 2 2 n in t t G .

t c

u r

t c

u f

o f

o f

o f

o f

o n

k i

u d

ir u

i i

t n i i

n t

. t r

t m*m m m m B B x x E E E

, S k

e S

k e

t e"e e

r t a

r t e

e r

t e

e r

t a

e r i e

n i e

n l

e n

t e

n a a s# s s s s b r

br n n k t t p#p p p p u u u u a n n U U U U U T T T T M I 1

i

) 9 1 9 9 1 1 ) 1 1 2( 2(

1

(

1

(

1

(

1

(

1

( 2( 2

(

1

(

1

( -

~

r r ~ r - - -

t r t e e t t e 9 1 5 ne ne ir a a a 1 2 2 4 4 4 6

P W W W 1 1 1 W W _

e e e V- V- V-ne ne t s

t s .

t c c c r

o r i i C C C W W a a t v r m v r 2 2 2 E E S e e e f f f e r e r

g g .

S S S o o o u t

u in t

in f f t o fo C o m m m c c h i M r

- e 4 a e a u u u u p

e pP e

p e r e r

e r

r t

r t B B

, r r2 r t t t S S e e

e # e h p
  1. e s n

s n

s n e e n n h h cm" i i c c t k br br w w w s a k

s D s

r iu" s

DPf i D

s D

o D

o D

o I

t n I t

n T u

T u

M l I

)

1 1

1

)

1

)

1 1

1 l

t

)

t

)

1 1

1

( ( ' ( ( ( ( ( ( ( (

s p

I 1 1

s. m n o n t 1 t 1 t 1 1 1 1

.h 1

.hh

. - 1 o N wo " h h-

~ hh

" h. " h. h. " h. ~ hS hSS ' h. ~

e SS "00 SS 0 S S "0 S 0 S 20 S3, 08 S 00 20 S1 i

t r 0 0 '0 0 a

c in D 2- ~

1- -3 22 - -

1- -3 2 -

1 2- 1 2 1-2 -

1

- - - 2 384 2- 1 i

l i

c 2 23 24 24 2 2 2 2 2 2 2 2 3 33 4 444 3 3 4 4 f g t r 3 -

33-33 33 - -

3- 3 3- 3 3 3 3 3 3 33 3 333 - -

3 3 3 3 i

t n e C C C- C C- CC C C- C C C- C- C- C- C- C C- C- CCC C- C- C- C-

>m l

1 n 8 BB BB BB 8 B 8 B B B B B B BB B 8BB B B B 8 -

- e P o H HH HH HH H H H H H H H H H HH H HHH H H M H 3d i s 2 22 22 22

) )

2 2

)

2 2

)

2 2

)

2 2

)

2 22 2 222

)

2 2 2 2 2-ei 11 1 1 2 1 1 1 1 1) 1 2 1

1 2 1

1 1

1 J.l t ( 2( ( ( ( ( ( ( ( ( ( ( ( ( 3

.b n

, %ae Tmg y e n r S f o og s y e m m m m m m m m m u u e u u u u u u ks t i r i i i iu ko 5 i i i R aC d 5 d de 5 d 5 d 5 d 5 d 5 d 5 de 5 .

i e e e e e e e e k M M R s k s

M M M M M M M M M M -

0 1

t e

i p t u n o e C ee k

C C ee k

C ee k

C ee k

C ee k

C ee k

C ee k

C ee k

C ee k

r t G 6P 4 i 4 4 l L - l 4 l 4 l 4 l 4 i L-l l. - l S n S S d S S n S n We S W Re W e W e S t S M S n t e

g e We S mS W

S We S mS S mS S mS S mS S mS Wl S mS e We We S mS S mS o ur mM e e D F 0

1 e v A B C A 8 3 A 8 A B c 4 4 5 S n 6, e

f O uim f

O I

D u m 2 0 um 2 0 u m 0 m C u

- 0m - iu 0- um 0- m D mu o

u q : . C- de C- C de i - i C d= C- d i

e S- e d i

C d- C - d i

C dn SC e d i

e e S e S e S e s C W- M W- W- M W- < W- M W S

M WM WM W M WM n S S S S S S S S S o

C 0

D v J e A B C A 8 A 8 A B R J t.

1 0

t O

I D

2 0

2 0

3 0 4 0

4 0

5 0

S D 6

\ .

, R R

R -

R -

R R

S 1

4 R

R R -

2 0-

S S S S S S S S S W W W W W W W W W W 8 k S S S S S S S S S S 9-s M R I

S

~ -

t t

1 2 0

- 4 1- n n ,

h 6 098n-o3 31 3i2 t 3i to i o

n

7 0

2 0

P 500a0 5a t a o , -

d 1 1 r r i , n '4

- t t g c V.06en 00r2 Vt t n

L e e a r , i 5 Ce n t

E C46n o t e y g a r

3 200%i t 2P %n t n

_O e

t. p f 22 1 a o f

ietr %n f t n oo0le8F yo i t

onnbn mii eaas%

oo t t s e

m o7 e B 0 @s 0 k 0

d gg

,g e

P d k a

v er r t tr e1 e r0s0e gyo_

e E L t ee cn2 tr e - e -

sb4 b c70c2b e ng t

u r o

ks snn ce4 ap0 l

,o or o W11I%%nO0 WR2Iu0a0n n2U y, g G l F

a ) ) ) i1 ) 1 ) 9 y; 1 )

2

( 3(( (4S6 ( 2( 3( 4

(

5( ' g 1

(

2

(

t 0 1 0

I n y r

y r

3 3 4 e e 5 5 0

% 1 1 1 nx ms V V-2 ,

t u u n r

a C C o t A A 2 2 i t

o o a S t t f

o f

o t r

n in

e i

m m n t

i it a a e x x e e P E g E g r r d

. l en l n

t s

t s e ei n n L n nM nf nk r w w t

u 5 o9 k uu uu o r 0 s TB TB D 2 G0 m 9 1

)

1

)

1 1

1

)

1

( ( ( ( (

s

. g s n 111 21 21 1 1 21 1 1 1

_ n o i N wa 1

_ o " h. - . - . .

hhhhhh. " "

hhhhhh.....

  • h. * " . h-i t e r '0 "6
  • 2" 2 SSSSSSS
  • 0 "6
  • 2~ 2 SSSSSS 8 S 8 2 g "8" 2* 0 S a n D

) 21 81 61 1- 21 1 1 1 2 21 81 61 1- -21 1 1 1- 1 1 1 1 1 g

.1- -1 1- 1 1 di fc U c - - - - - -

353857 3353857 434957 4434967 3 3 333555 35

't g nt 336688 3336688 - 346688 3446688 - 4 3 333333 n CCCCCC- -

CCCCCCC- - -

CCCCCC--

CCCCCCC i

nt ie D D DDgDDD DD

_ on tp m BBBBBB BBBBBBB HHHHHH HHHHHHH BBBBBB BBBBBBB HHHHHH HHHHHHH B B H H BBgBBB BB HHyHHH HH Ce

( d I P o s i

222222 2222222

) ) ) ) ) )

222222 2222222

) 9 1 ) ) ) )

2 2 1

22g222 22 l) 3 2 3) 4567 I 2 -

l1 e 3

- t.

n.

1

( ( ( ( ( ( (

1

( 2

( 3(( (4567

( (

1

( ( ( 3

_ l .

y a q b n r o og TSk f y e e t m

u h h iu m

i s n a C ht e

5 i H

g 2 H

ig 2 d 5 e

k M M R

s k asm

. of t e i

p t u

o n e C ee k

C ee k

C ae k

C se t

- r t

- G &P 4 l 4 i 4 l 4 l S S n S S

e r

W S m eN We S mS W

S m eN Wn S m a

u

. =R a- a S S S c F o

t e

c yr A 8 7 8 6 6 0 n 0 mu 0 m e go 0- h - - '

C h C ud u e C- i d C g i i

g i l

a at S- e S- H SWH -

S- e s C WM W S WM S

n S S o

c 0

0 v 1 e A 8 R O

t.

6 6 1 B ,

0 0 D D 6

u. -

R R R 2 L

, R S

S S

W S

W 0 -

W W S S 8 _

t S S 9- _

e m R I

S

t 8 11 1 t 4 - - -

h 0 0 1 1 3 6 2 4 844 P 5 in n 1 455 d o s 1 1 1 n i t V- a V V V-E a r C B CCC t

2 r

,' t.

e n f e

w 222 fff e o o ooo .

P

, d m e

T g

mmm eee

. e e n eee _

E t r r r r u t s

A o

t t t sss k o r p o ppp s G U C UUU M ) ) ) ) ) ) _

( (2 2(

1 1 1

( ( 2( .

t 8 2 3 0 n 9 4 4 4 4 -

0 5 5 5 n 6 n W

/ W- 2 1 1 1 i

o 6 i t

o t C n V- V- V- t 0 a .

r A o C C C a r 2 t r

t a 2 i t 2 2 2 t e n e S f a r f f f n i to n e .

o t o o o e a e r P t

n m n P m m m t e6 e a*

e P e a e

e e

a e

d7 e1 n e M1 m r de r r r i R e s0 g

e t

s n

t s

t s

n t

s n FMP s0 e-u 8n m0m0c5 t

S w o6 r0o w w w a4 a4 c5 g k

M s D

)

o G0D

) ) )

o D1 D

)

o

)

o0o0a0fo F2F0In2

) )

1 1 1 1 1 4 5

( ( ( ( ( 3( ( (

s

.g n s o i n 1 1 I 1 1 21 1 o N wa h * " h. *

  • hhhhhh i

t e r 0' 8 S 4 "0 4 S 01 8" 6 6' 2" 2 SSSSSS _

a "81 in D 2 1 1 1 22 , 2- 1- -288 1 1 1 1 1

)

c l

- - - - - - _ - - - - - - - - - -1 2 di .

3 5 35 33 3 3333 009571 009571 _

f g k, 2- 3 22 2 2222 555778 555778

't - - - - - - - - - - - _

CCCCCC CCCCCC-i ^ - - _

nt  ; 0 '0 DD O0 D DD0D _

on T>n 8

H H HH 8 B8 B6 g HH 8 B88B H HHHH BBBBBB BB8BBB HHHHHH HHHHHH Ce I

( d I P u l 2 2 22

) )

22 2 2222 1 1 222222 222222 1 ) ) ) 1 4-1 t 1

( 2( 1

( 2( 1

( 1 2 3( (4 (5(6) 3 3 en em l y _

b g i r _

a e  %,. oge TSk t m

u h m

u h a i d 5 ig 2 i

de 5 g 2 i

s 2.

k C e H i

H .

R s k M M M Ms 0

1 l

a i

p t u

o n e C se t

C ee k

C ae k

C ae k

r t L L L L G oP S n

- i S n

- l S

- l -

S R L

e g e r

W S mS a W S m e W S m aR W S m e

a u S S S mR a a D F _

0 1

e c y 9 0 1 A r 2 n

e go C- u 0 m 1 h

1 m

u 1

h C-- g C- C-- i g i

u q et S- ed S H i

S e- d i

S H e a s C WM S

W S

WM S W n S o

C 0

D ve I

t; 9 0 1 A R 9)- w 0

R 1

R 1

R 2

1 R

6 2

)

S S S S 4

2 W W W W 8 k S S S S 9-s M R I

S

t r 222 1

2-002 0 3 6 n 9

864 455 6

4 n 5 5 i o

o 4 4 t d 1 1 1 1 i t 1 1 a r

n V V V- V- a r V- V-t E CCC e O  :

C t e C C n 222 2 n 2 2 e

- = fff f e f f P

. ooo c P o o d7

, mmm eee m a

d e m e m a

e1 M0 eee e l

e e e Fr 0 E r r r t t t r

t b e t r

t r

m0 k sss p p s t s s a4 n p M

a WWU i l U W U o0 F2 l1) ) 9 ) 9 )

i 2( 2(

t 1

(

1

(

1

(

1

( 2(

tt 0 1 4 0 3 h 8 8 6 5 0

n n 4 4 ,4 4 9 n 4 6 o o 1 1 g 1 o 1 P 4 0 in t

i t

g 1

0 i

t t ao ar V- V- V-0 a

r V-r 2 ri t t C C , C t C a n ea t e 2 2 g 2 0 e 2 t

io nt r n 4 n S ee e t o

t o

g f

o 0 e f o

t.

t a Pn e P 2 P r , t

. t eP3ie m m m n o0 m

e l bl 0b a a , a o o7 a n

e sr a0s s er e , e r i e r

r g, t

, P 5eS se0s- e t s

n t

s n

t s

n t a

r BM r

e t

s n

E n3ct 8c e7 w w e b0 p0a co0a o4 c w n b4 w k n o o o e u0 o s O0InB2I D2D D P R2 D1 M 1 ) 1 45

)

6

)

1

)

1 y

g 1

1

)

1

)

1

)

1 3( ( ( ( ( ( g ( ( ( (

s

. g n s o i n 1 1 1 1 1 2 1 1 1 I 2 o N wa * " " "

hhhhhh SSSSSS ' ~*

  • h.

S * ~ h.

S ~ * "

hhh.

SSS i

t e r 8 6 6" " 22 048 '0 6 64 464

) a in D 1 1 1

- - - -81 - - 1 1- -21 - -

1 321 -

1 3- 1 1

1 1 1 1 1 1 1 1 1 1 dic l

i c 1 1 0681 1 1 0681 666 6 6 6 5 5 33 3 599 599

't f y k 556778 556778 222 2 - 2- 2 3 3 44 4 355- 355 nt i r h e CCCCCC- -

CCCCCC-DDD D D D C- C- C C- C- C C C- CCC on p m BBBBBB BBBBBB HHHHHH HHHHHH BBB B HHH H B B H H B

H B

H BB B HH H BBB BBB HHH HHH Ce

( I d

r i os i

222222 222222

) ) 1 ) ) )

222 2

)

2 2

)

2 2

)

22 2 1

222 222

) 5-( (2) t 1 1 1 1 1 1 t i( 2 3(( (456 ( ( ( ( ( 3 3 en l em b g y n r t e so o g TSk s e e t h h h m

u m

u m

u i

s n a C i

H g 2 ig 2 H

ig 2 H

6e 5 d g e

i d 5 e

k R s k s

M M M M M 0

1 se i

p t S

u e o n C ae k

C ae k

F k s C se t

C C ae k

r t 4 l C, e G 6P 4 L l 4 l 4 4 l S M SW 4 N S n S S n e

g er W s S mS W

S m e S s W S m a W W S m e

o u Wm S mna S S S S S on F o

l e 8 3 3 A 8 A c -v 2 1 1 4 4 5 n &

1 h h - 1 m u

1 1

- u m '

e u ie C-- i g C-

- i g C- ihg -

C- d i C-- C d i q :

e e S H S W

H S W

H S e S S e s W WM W WM n C S S S S S S o

c 0

0 v 1 e

t. 8 1 2 - A 8 A R

. 2 3 3 4 4 S ,

6 V

1 1 1 1 1 1

, R R R R R R 2

S S

S S

S- S 0-

W W W W W W 8 k S S S S S S 9-s M R I

S

t 2- 1 t - -

h 0 n 0 1 o 0 io 1 1 P 0 t 5 5 d 2 a r

1 1 n n t e V- V- 0 5 1 E io n C C 2 5 2 t.

t a e 2 2 P- P- P-(( -

r t

e n

P de f

o f

o 2

i n

o 2

n o

2 n

o e M m m t i

t i

t F a e a a a

_ P 5 e e r r r E n3 m t r r t

t e

t e

t e

k e7 a s s n n n e p0 o p p e e e O0 F U U P P P M ) 1 1

9 1

1 1

)

1

)

1

)

2( ( ( i ( ( 2(

t 6 1 0 n 5 1 1 4 n n 5 5 W

I 1 i t

o n i o 1 1 t V- a r io t a V- V-r a C t e

t a r t

C C 0 t 2 n r t e 2 2 2 S f o e e n e

f o

f o P-4 t.

P ne P 2

. m e P d m m n

a N e a a o e t d e e t

r s s e m t r t r i t

a s e l

e F s s r n c b n n t E w c fa m s w w e n

k o a n o o e s D2 I n U Fe D D P M 1 1

1 1

9 1

)

1

)

1

)

1

)

1

( ( ( ( ( ( (

s

_ . g 1 1 11 11 s n n o i 1 1 1 1 1 - . . - . .

hhhhhh o N wa * ~ 4 SS hh h

S

" h.

S ' h S

- 1 1

"2 "0 .'20" " *

" SSSSSS i

t e r "4 6 4 1- 1 "2 2 2 " h S " h S 1 1 g_61 - - -86 1- -231 23

) a c i n D 1 1

- 5 1 1

1 1 1 1

- 2 1 1 2

1 1 33335555 333555 di L c 3009 30 8 8 9 9 8 8 - - - - 00g00000 000000 i

't if g r 4662 46 6 6 6 6 6- 6 2 2 3 3 1 1 g 1 1 1 1 1 1 t 1 1 1 1 nt n e CCCC-t - -

C C- C- C C

C- C C- B B B B C C g. C C C C- C- CCCCCC- -

on i

>m BBBC BB HHHH HH B B H H B B H H B B H H B B H H B B H H BBgBBBBB BBBBBB HHyHHHHH HHHHHH Ce (I

d P o I

s 2222 22

) )

2 2 1

2 2

)

2 2

)

2 2

)

2 2 1

22g22222 222222 1 6-t 1 2

( (

1

(

1

(

1

(

1

(

1

(

1

( 2)

( 3 3- en 3(J f 1em l

r b g n a a e o &, -

TSk i g ;

e : i m

u m

u r i m.

t i

m u

m iu m

u w i

s R eC d 5 e de 5 d e

5 d 5 e

de 5 de 5 l o 6 -

k R s k s

M M M M M M M M _

0 1

l a

i p t u e o n C ee k

C ae k

C ae k

C e k

C ae k

C ee k

C ee k

4 le

_ r t G dP 4 l 4 l L - l 4 l L - l 4 i S n S R S na S n S n S ne S ne e W a Wa W We We W W s er S mS S mS S mS S mS S mS S mS S mS e U m1en D a F 0

1 e

c y 8 A 8 7 A B A r 5 6 nu 6 1 8 B 9 n

e go 1 m u

1 h

1 m

u C-m u

1 m iu 1 m u

1 w

u e q

C-- di S e C d - C - d S e i

- d i

C-- d C d -

i C- o e a t

S e S e S e S e S- l s WM WM WM WM WM WM W n C S S S S S S S o

C 0

D v I e t

. B A 8 7 A 8 A R e S 6 6 1 8 8 9 ,

I 1 1 1 1 1 6 O)(

, R R R R R R R 2

. S S S S S S S 0-E W W W W W N W 8 k S S S S S S S 9-s M R I

S

a 4

t t - -

h n 6 4 3 _

u o 0 9 9 P

i t n 0 0 0 i

ar i o 0 2 2 t t m 3 e a r 3 n n .

O E 6 n t 9 o o .

P- e e 0 i

t i

P n t

2 e 2 a r

a r

n e P3 n t t e e i

t o hs 1 0 e0 i t

o n e

n e

s a Se0

a P P r e - r E t e c c t 8 t e m m k n aU o4 o0 n a a s e e o o P In# B2 P F F _

M ) ) )

1

) 1 2( 2)( 2( ( 2( 2(

_ t _

t r

8 n o 6 W

I 3 i t

0 t

0 a 0

  • r 0 t r 0- _

t a 5 5

1 2

3 6 6 e 6 6 n 6 S P- P- P- 0 e 0 . _

t 2 2 2 2 P 2 _

n n n n n e n e o o l _

io i o b i- o m t i

t i

t t s i t

g a s a a a a _

e t r t r r t t r e t r

S e e e e c e n n n n c n k e e e e a e s P P P P I n P M )

1

)

1 1

1

)

2 1

1

)

1

( ( ( ( ( ( .

s _

g 1 1 1 I I I

s. n 1 1 2 1 21 1 1 _

_ n o i . . . . . .

hhhhhh 1

1 _

o N wa 2" 0*

  • 20" ~ SSSSSS 1

hS

.h hS

. h hh.

SS hhh SSS SS hh.

i t e r 1 1 461 1 86 1 241- -23 '

S ' 2" S

) a i n D - - - - -

44446666 444666 2 1 21 1 8 1 1 8 1- 2 8 1 1 di fc 1 - 1 -

L i

c 00000000 000000 1 1 7 8 - 8 3 33 6 66 4 444 6 666 3

6 35 67

't g tr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 47 57 - - 57 8C -

8 C-CCCCCCCC CCCCCC-C C C C-in; i

nt B 8C C- C C- C- CC on p - -

8B3BB8BB 8BB8BB HHHHHHHH HHHHHH B

H 8B HH 88 8B HH HH 8 B8 H HH B B88 H HHH B

H BB HH Ce i .

( d I P u l 22222222 222222

) )

2 22 1) 22 22

) 1 2 22

) )

2 222 1 )

2 22

) ) 7-1 2 1 1 2 1 1 2 1 1

. J13 en 2( ( 2(

t ( ( ( ( ( ( ( ( ( 3 em l y bg

_ e e .

. org _

TSk e m m m m m u u u iu iu t w _

%'. a C

i i i s o 6 de 5 d 5 d 5 d 5 de 5 _

i l e e e _

k M M M M R M _

_ s k M Ms

_ D I

l e

i

_ p t u

o n e C ae k

C ee k

C se k

c k

ae C se k

C ee k

r t L- L- L l L- L G 6P S l

na S M L -

S M L

S-l M S M L

S ne l

W e Wa W s e

g e W S mS We S mS S mS S mS S m W

S mS

_ o n S mha _

De F I

D .

e y c 8 A 8 A 8 A _

9 0 0 1 1 2 n

e go r 1 w

2 mu 2 mu 2 mu 2 mu 2 m

- iu u

q e C-- o C-- d i

C-- d i

C-- d i

C-- i d C d-t S L S e S e S e S e S e _

e a W WM WM WM WM WM s

n C S S S S S S _

o C _

0 _

D v _

I e _

8 A 8 A 8 A R O

t.

9 0 0 1 1 2 , _

u 1 2 2 -

2 -

2- 2- 6 R R R R R R 2 S

S S

S S

S 0-m W S

W W S

W S

W S

W S

8 9-k s S -

M R I

S

t t -

1 2 - 2-h 4 3 4 6 n 6 n n 6 9 0 0 6 i o 1

- 2 i o o 8 A P

t 0 5 5 0 a 5 5 t a

i t 2 2 f 2 1 1 2 r 2 1 r a r

y m n V- V- n t

e 5 V-t e t W- W-E o C C o n 1 e F F i i e C m n E E rO t

a 2 2 t a P V- 2 A e 2 2

. r f f r e C f e 1 d3 P f f

. t e o o t e 2 o o o n

e m m n

e Nr s m m N1 r

s01r F eg m m P e e

r a

e r

P s e

a e

r a

e s0Fg e -

a e

r e

e m t t m c c t t r c5mg t t r

k a5 s p

s p a o a s p s p c8ag s p s p

s o0 F0 U U F n U U a0oo n2Fg U U M ) ) ) )

I

) ) 9 I

) ) ) )

2( 1

(

1

( 2( 2

(

1

(

1

(

1

( 2(

1

(

1

(

t 3 4 5 6 4 n - - - 0 O - 2 2 - 2 f

6 4 3 4 5 S 5 n o 5 5 3 0 1 1 1 1 P 9 9 9 8 i t 2 2 0 0 0 V- V- 0 a V- V- 0

  • _ t r 2 2 2 C C 2 r C C 2 n a n n t

e o

_ t n 2 2 n 2 2 n i t

io o o o S f f n f f e a .

t i

t i

t o o i

t e o o r t; a r a r

a r a r

P t e

t e

m e r n

. t e

t t e m t m m t

e s a e N a a e e w n n r e n s e e n r

. e e a r e s r r e d

, P P P t s

t s P s e

t s

t s P e m7 n n c n n n

_ E a0 m a

m a w w m a c w w e m a

_ k o0 o o o o o a o o p o s F0 F F D' D F I n D1 Dy O F

_ M 1 1

)

1

)

1

)

1

)

1

)

2

)

1 1

3) 2)

)

1

( ( ( ( ( ( ( 3( ( ( (

s

. g '

n s o i n 1 I 1 1 1 2 1 I 1 1 1 1 21 1 12 1 o N wa hh SS h

S h

S hh.

SS hh SS

" hh SS

" h S

hhhh.

SSSS SS hh. h S

i t e r ~ ~ ~ ~ ~ " 2 2 2" 2 ~ "

) a c i n D 88 - -

21- -

B -

1 8 -

1 8- 1 1 8 -

1- -2 1 1- -2 1 1

1 1 1- 21-6 -

1 1 6 -

1 di l i

c 46 46 5 5 6 6 5 55 6 66 7 77 7 7 1 7 1 1 1 7 5 S5 6 6

't f g r t 67 -

67 - -

7 7 7 7 7 77 7- 77 8 88- - 8 8 88 8888 - -

8 B8 -

8- 8 -

nt i

(n e C C- CC C C C- C- C- C C- C C C- C- CC C- C- C C- C C C C- C- CC C C on >m BB BB HH HH B B H H B B H H B BB H HH B BB H HH B BB H HH B B H H BB BBBB HH HHHH B BB H HH B B M H Ce (d I A os I

22 22

)

2 2

)

2 2

)

2 22

) )

2 22 1 )

2 22

) )

2 2

)

22 2222

) ) 1 2 22

) )

2 2

) 8-t 1

( (

2) 1

(

1

(

1

( 2(

1

( (

2 1

( (

2 1

(

1

( 2( 3( 1

( (

2 1

(

n 3 p() 13em l

e b g 1 n

ce io ;

5-TS k g

e = i m

u i n

r u i m

u i m

u i m

u i m

u i m

u i m

u i m

u i m

u

_ s R eC d ,

e d 5 e

de 6 d 5 e

d 5 e

de 5 de 5 d e

de 5 de 5

_ i k

R s k s

M M M M M M M M M M M M D

I f

e i

p t u

o n e C C ae k

C ae k

C ae k

C ae k

C ae k k a C ae k

C ae k

C ae k

r G 6P t

4 S

L S n

- t L - l L - l L - l 4 S Nn l Ml e L -

S na l

L - l L -

S na l

e g er W W S m W a S ne S W na S ne W W S N W

S mS a W S mS S n W

S m a W S mS o r S S

S mS S mS S mS S mS S mha _

De F D

I e y c 8 A 8 A 8 A B 6 A 0 _

2 3 3 4 5 S 0 0 .

2 mu 42 mu r

n e go 2 2- imu 2 mu 2 mu 2 mu 2 mu 3 mu 3 mu '

u C de C- id C- id C- i C- i i C- i _

q e i i C- C-- d C-- d - d d C-- d d t S S- S e S e S- e S e S e S- e S e S- e _

e a W WM WM WM WM WM WM W M WM WM s

n C S S S S S S S S S S o

C 0 _

D v _

I e .

t. G A 8 A 8 A B 6 A 8 R 2 3 3 4 4 5 S 0 0 ,

)V

_  ; 2- 3 2 2 2- 2 2 2- 2- 3 6 f R R R R

R -

R 2 -

R R S

- R - - R S S S

0-

S S S S S S W W W W W W W W W W 8 k S S S S S S S S S S 9-s M R I

S

t r d h n 6 6 P P d 3 g n n 3

E er h

o

u o t

c C r

u y

_ t c

, S ne

  • e g r

t k o t

e a n m M i E

) )

1

~ ( 2(

t r

1 0

~ h d 4 6 6 n 5 5 P o 1 1 t

P V- V-r g C C t

a K n 2 2 S o o

f o

f o

t.

C m y m u a e c

n e

r e

r t

, e g s t

s E r n n e w w k m o s E D M ) )

1

)

1 2( ( (

sy

- 1 1 I 1 I s s n o k hhh

. . . 1 . .

i o N we SSS ~ h

. hh SS t e r 2" 01 2 0 S 01

) a c h e

D 4- 888- - - 4 j 84 -

di f t i

c 8 888 3 3 33

't i g

e t r 8 888 8- 8 88 nt h e C- C C C- C C- CC o n %p m B 8BB H HHH B B BB

- Ce

( d I 1

i o

s 2 222 H H HH 2 2

)

22

)

1

2) 9-

. O3 1 1 1 t ( ( ( 2(

- n 3 a

_ e n _

l b g y _

n r

_ aeS lo og p e T 'ks e R aC t h p 2 w o 6 i

k H l

- R s k M Ms .

D I

l e

i p t u n

_ k t o

r et C ae L

C se L-G &P S

- l S n t .

Wna e

g e r S m W

S m a -

_ o r S S mAe De F

- 0 1

_ e'y c r 1 2 n 3 3 e go C h C-- w g

u q e t S-i H S ol e a W W s

n C S S o

C 0

D v J e R

O

t. 1 2 3 -

3 - 6

. R -

R - 2

S S 0-E W W 8 k S S 9-

- M s

rr R

I eE&E Ei*:i  ::9k8Ei? E9 S i r n i

(\

\'~')

4.0 ELEMENT SELECTION 4.1 Technical Approach The first cut, " binary" evaluation of all potentially active degradation mechanisms indicated that the potential exists for localized corrosion (i.e., microbiologically influenced corrosion (MIC) and pitting) and now sensitive attack (i.e., erosion-cavitation) in the service water system (SWS) at ANO-2 [2]. Per the criteria given in EPRI report TR-106218, the possibility of failure coupled with the consequence of failure determine the quantity oflocations to be inspected. In the ANO-2 SWS, application of this approach would yield an inspection sampling of 10% to 25% of the susceptible locations. This approach is considered impractical for application to a system like service water, which is susceptible to localized corrosion mechanisms which can occur over large areas. Use of a " finer screen" than that used for the binary determination of all the potentially operative degradation mechanisms, however, permits the inspection to be focused on those

()

portions of the system or sub-systems where degradation is most likely. In this " finer screen" approach, other forms of corrosion that could potentially affect the SWS are evaluated in addition to MIC and pitting which were determined to be operative for the ANO-2 SWS in Reference 2.

This type of analysis requires a determination of the temperature, Dow, water chemistry, and water treatment variations throughout the system. Results from prior inspections or monitoring can also be factored into the selection process in this way so that system history becomes a key input into the determination of potential degradation. By selecting locations that are most hkely to be degraded, then performing a reasonable number of inspections at those areas. :nformation can be obtained that should bound the entire system.

The objective of this report is to identify specific locations within the ANO-2 SWS which are most susceptible to corrosion degradation based upon the system geometry (which inDuences local Dow and deposition patterns), operating history (e.g., the flow pattems for various sub-systems in the SWS), any prior failure or repair history, seasonal variations in temperature and water chemistry, and variations of biocide concentrations around the system with data from

(]

'J SIR-98-026 Rev. 0 4-1 Structural Integrity Associates, Inc.

l i

1 C/ laboratory studies and prior experience at other plants also considered. Areas to be inspected can  !

I then be selected based upon accessibility, planned maintenance nearby, etc. 1 The first step in this process was a detailed review of all the P& ids and isometric drawings and documents supplied by the station on typical operation of all of the subsystems within the SWS.  !

l That material, which included information on typical system flows, temperatures, water i 1

chemistry, and water treatment, revealed that the SWS has operated under four clearly different control regimens.

l

  • From prior to commercial operation to 1981, the system was untreated.  ;

1

  • From 1981 to 1990, gaseous chlorine at a target concentration of 0.3 ppm was added continuously (actually several times per day) in an attempt to control macrobiological fouling.
  • From 1990 to 1992, the gaseous chlorine was replaced with a combination of sodium n

(j bmmide and sodium hypochlorite at a target concentration of 0.5 ppm; again, for control of macrobiological activity.

e Since 1992, the sodium bromide plus sodium hypochlorite concentration was reduced to 0.3 ppm and a corrosion inhibitor (zinc plus orthophosphate; zinc concentration in the SWS is believed to be of the order of 0.25 ppm), and a polymer (for deposit control) have been added.

4.2 Evaluation These inputs were evaluated using the EPRI computer program MICPro [4] to determine the susceptibility of specific subsystems within the SWS to MIC and other forms of corrosion I

j (including pitting, underdeposit corrosion, and general corrosion). MICPro evaluates susceptibility as a function of the material of construction, temperature, flow, water chemistry, g] and water treatment. Runs were performed for each subsystem for each of the time periods

/ defined above.

SIR-98-026 Rev. 0 4-2 h StructuralIntegrityAssociates,Inc.

L

t 7 1 l .

(.

The MICPro results for the different subsystems were compared and benchmarked against the system failure history from Section 2. As shown in Section 4.4, the majority of the failures or areas where degradation was detected by inspection were in good agreement with the MICPro l

l rankings.

Water chemistry and concentrations of water treatment chemicals used were nominal values for the entire system. All additions of water treatment chemicals are made at the SWS intake. The measured data for biocide residuals were made at the discharge of the closed component cooling L water heat exchangers. The input data to this study did not include any measurements of the actual concentrations of critical chemical species around the system. For example, oxidizing biocides, such as chlorine or the bromine /hypochlorite mixture that is cunently used, will be consumed in the system. As a result, the biocide concentration in some portions of the system, such as, areas a long distance from the injection point or from the position where the residual values are measured, may be less than the target value. Oxidizing species also decay over time.  ;

Systems that have a biocide residual during periods when those systems experience flow, will r have a lower residual after the system has been stagnant for some time. Several elements were  !

identified for selection to determine if consumption of water treatment chemicals through the I

system produced areas with more degradation than would be predicted from the nominal water treatment.

Conversely, areas very close to the biocide injection point may experience higher, possibly much higher, than nominal values. Since those chemicals can exacerbate general and localized corrosion, several areas, such as the SWS supply headers, were also identified for inspection to assure that the treatments themselves had not produced degradation.

The subcvstems which showed the most severe MIC and other corrosion degradation in the l MICPro mns were the primary focus for the element selection. The condition of those systems should bind the candition of all areas of the SWS. The majority of candidate locations selected I

& inspection were from the most susceptible systems.

L SIR-98-026 Rev. 0 4-3 f StructuralIntegrityAssociates,Inc.

I

(

l V) Finally, some of the stainless steel piping in the SWS was identified for inclusion in the l l inspection matrix. Stainless steel has been shown to be susceptible to MIC, especially at weldments. Including a limited number of stainless steel welds provides comprehensive, bounding data to demonstrate that localized attack from MIC is well understood.

l The number of locations to be inspected, and the quality of the information to be gained by those inspections, will be affected by accessibility limitations (e.g., much of the piping is buried and L

can be examined on the ID by remote methods only) and by the avai%ble techniques (e.g.,

ultrasonic, radiographic, visual). Locations to be inspected must be selected carefully to optimize the inspection results. For example, for the potentially operative degradation mechanisms for the l

SWS, ultrasonic testing will be the primary inspection technique employed for inspection of l i piping. Where access to the inside of piping or a component is simple (e.g., at a threaded  !

connection or in a component that is scheduled to be opened for maintenance) visual inspection may be utilized. In most cases, visual inspection will only be performed in the event that UT  ;

reveals severe degradation that must be further analyzed by visual inspection and detailed NDE  ;

1 or destructive methods.

The inspection program will attempt to define typical and worst case areas in the SWS so that eli of the expected degradation mechanisms may be assessed. Areas will be selected to provide a statistically significant number of locations and lowions that are likely to experience worst case conditions for localized corrosion (including pitting, crevice corrosion, and underdeposit corrosion).

l l

l The localized corrosion phenomena generally produce leakage only and do not jeopardize the system's structural integrity :n any other way. The existence of such localized phenomena does I signal an unacceptable condition that must be addressed in future maintenance activities and possible modifications.

Pitting requires a material susceptible to localized attack in the bulk aqueous environment. A

(]

V local region of active metal begins corroding, a pit is initiated, and a local electrolytic cell is SIR-98-026 Rev. 0 4-4 StructurniIntegrity Associates, Inc.

V formed. The pit continues to grow, often at a high rate, into and through the metal, since the I

corrosion process within the pit produces conditions that are far more aggressive than conditions '

in the bulk environment. Low flow or stagnant conditions stimulate pit formation. Pitting of carbon steel, especially under tubercles or other deposits, can also be exacerbated by highly oxidizing conditions in the bulk fluid.

MIC is the interaction of microbiological life processes and the electrochemical reactions that produce corrosion. MIC can produce localized corrosion at metal removal rates that are tens or even hundreds of times what is normally experienced in the same environment without a microbiological influence. Unlike other forms of localized corrosion which will be limited to at least some extent by the availability of aggressive chemical species such as chloride, microbes are mobile, can produce extremely high concentration factors for aggressive species., and can become active panicipants in the corrosion process.

l

  1. 4

) Appropriate conditions exist in the service water system to make these forms of localized attack operative for both carbon steel and stainless steel. Localized corrosion of carbon steels are most likely to occur over relatively large areas (e.g., the size of a quarter or larger) with a large aspect ratio (1/d>4). Pitting, crevice corrosion, or underdeposit corrosion in stainless steel will be much more localized. Pits with a very small cross-section, but that propagate, often very rapidly, in the through-wall direction, are more likely. Low flow or stagnant lines will be most susceptible.

Similarly, flanged connections and welds, especially those made with backing rings or welds with defects such as a lack of fusion, produce geometric conditions that are conducive to crevice corrosion or underdeposit attack.

4.3 Elements Locations expected to exhibit the worst degradation were selected. For example, regions of g highest oxygen (or other oxidizing species such as the biocide) and high flow may have the most

() =

l SIR-98-026 Rev. 0 4-5 h StructuralIntegrityAssociates,Inc.

1 1

i I

aggressive pitting. Low flow areas will be most susceptible to underdeposit corrosion and MIC.

Stagnant and intermittent flow areas may be particularly susceptible to MIC.

Section changes, where fluid velocity can increase or decrease rapidly, or geometries where fluid changes direction abruptly are the areas most likely to experience erosion due to " scouring" by particulates. These areas are also susceptible to underdeposit corrosion or MIC where particulates and microbes settle.

-l Accessibility was a factor also considered in the inspection recommendations. Since UT can be performed rapidly, with minimal disruption to system operations, its use will be emphasized.

Wall thickness determinations by UT will be used to evaluate the existing condition of the pipe relative to the minimum wall thickness, to provide an estimate of the general corrosion rate, and to define areas oflocalized attack.

n.

Characterization of deposition effects can be performed using RT at locations that would be

, expected to demonstrate worst case deposition. RT has also been shown to be a powerful tool in evaluating local thinning of carbon steels and other alloys where MIC or erosion effects are operative. Radiographic methods may also be used in areas where such effects might be suspected to be a concern. More likely, RT will be used to provide additional information in I

areas where UT has identified thinning.

1 1

Since access to most areas inside the SWS is limited, visual methods will be used only where access is simple (available access ports and manholes, instrument taps that are being accessed for maintenance, threaded connections, etc.) or where other techniques reveal that degradation is severe.

1 4.4 Evaluation Results Tables 4-1 through 4-3 summarize MICPro results for the carbon steel SWS piping for the following systems. i i

l SIR-98-0D Rev. 0 4-6 StructuralIntegrity Associates, Inc. j i

i

-Supply Headers Containment Cooling Coils -

Emergency Diesel Generators l l

Shutdown Cooling Emergency Feedwater l .

Fuel Pool Cooling

Closed Cooling Water j i

' 1 Not surprisingly, the degradation fdr each subsystems is predicted to be fairly similar since the  !

l materials, and system wide temperature, flow history, water chemistry, and water treatments are essentially the same. The areas with the predicted worst degradation were:

Prior to commercial operation --+ 1981: Shutdown Cooling Supply Headers 1981 -+ 1990: Shutdown Cooling i Fuel Pool Cooling l: 1990-+ 1992: Supply Headers Shutdown Cooling l After 1992: Shutdown Cooling

  • Reported failures or degradation detected include:

! . Containment Cooling (1989; localized Corrosion) l L Emergency Diesels-Return Line (1989 and 1995; Localized Corrosion)

! Supply Header Expansion Joint (1990; Localized Corrosion)

Shutdown Cooling Supply Header (1991; Localized Corrosion)

EFW Pump Suction (1996 and 1997; localized Corrosion) .

Spent Fuel Pool Heat Exchanger Piping (2 in 1997; Localized Corrosion) l Specific locations to be inspected within each system are listed in Table 4-4. Those specific

[t , locations should provide typical areas of degradation for the system or worst case degradation. In most cases, inspection of one or more one foot lengths in a spool piece or a specific fitting is identified for inspection. As noted previously, selection of those specific locations was based '

l

  1. ~

upon a change in flow (e.g., the upstream or downstream end of a reducer or tee), at the bottom j

. SIR-98-026 Rev.- 0 4-7 Structural Integrity Associates, Inc.

{

l

= of a long vertical mn where deposition would be expected to be a maximum, immediately downstream of a heat exchanger (higher AT; greater microbiological activity), or at locations of extremes in chlorine concentration. High chlorine concentrations can accelerate damage beneath deposits. Such conditions may have existed in areas near the chlorine injection point (e.g., ,

supply headers), especially during the time periods when a relatively high chlorine residual (0.8 TRO) was measured at the CCW heat exchangers or at the system discharge. Other areas, such as any of the normally stagnant legs or in the retum headers, have probably experienced lower-than-nominal concentrations of water trectment chemicals and less protection against MIC or localized corrosion.

O 9

4 i

- SIR-98-026 Rev. 0 4-8 f StructuralIntegrityAssociates,Inc.

Table 4-1 MICPro Evaluation of ANO - 2 (Supply Headers and Shutdown Cooling)

ANO-2 Plant Information:

-~

Date Plant Began Operation: 3-26-80

_ System / Segment Supply Headers (Note 1) Shutdown Cooll9g (Note 4)

Penod Evaluated 76-81 81-90 90-92 92-96 76-31 81 90 90-92 92-96

- Date System Began Operation: 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 Date First Wet Out: 706 1/1/81 1/l/90 1/1/92 706 1/1/81 1/I/90 1/1/92 System Base Material Matenal-C-steel. S-Steel CS CS CS CS CS CS CS CS Product Form: Pipe. Plate, Forgmg Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe MatenalTreatment Applied: None None None None None None None None Operational Information:

. Average Temperature 'F 72 72 72 72 72 72 72 72 Maximum inlet Temperature *F: Default Default Default Default Default Default Default Default Minimum Inlet Temperature 'F: Default Default Default Default Default Default Default Default i Average AT'F 0 0 0 0 10 10 10 10 l

, Maximum 4T *F 0 0 O_ 0 Default Default Default Default

{vyace Flow (ft/sec) Default Default Default Default 10.1 10.1 ,_

10.1 10.I' i Minimum Non Zero Flow (ft/sec): Default Default Default Default Default Delault Default Default Normal System Operating Pressure: 110 110 110 110 70 70 70 70 i Normal Stagnation Penod (wks): Default Default Default Default 13 13 13 13 Longest Stagnation Penod (wks): 13 13 13 13 52 52 5'! 52

]

  1. Staenation Penods/ year Default Default Default Default 4 4 4 4 Normal Restart flow (ft/sec) Default Default Defsult Default 10.1 10.1 10.I' 10.1 l

Total Time at Min Flow (wks/vr) Default Default Default Default Default Default Default _ Default Water Source:

River. Lake. PondlLake l Lake l Lake l Lake l Lake lL.ake l Lake l Lake Water Treatment:  ;

Biocide None Chlonne NaOCl+NaBr NaOCl+NaBr None Chlorine NaOCl+NaBr NaOCl+NaBr ppm 0.8 0.5 0.3 0.8 0.5 0.3 freq Cont's Cont's Biodispersant ppm freq Inhibitor Zinc + 0'PO4 Zinc + 0'PO4 ppm i 1 freq Deposit Control Polymer Polymer ppm freq Water Chemistry Conductivity (pS/cm) 500 500 500 500 500 500 500 500 Tot. Dis. Solids. TDS (ppm) Default Default Default Default Default Default Default Default pH 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 Turbidity (NTU) Default Default Default Default Default Default Default Default Total Hardness ppm Default Default Default Default Default Default Default Default Total Alkahmty ppm 75 75 75 75 75 75 75 .53 Total Solids ppm 150 150 150 150 150 150 150 150 Sulfate ppm 50 50 50 50 50 F1 50 50 Chloride ppm 100 100 100 100 100 100 100 100 Sulfide ppm Default Default Default Default Default Default Default Default Oxygen ppm Default Default Default Default Default Default Default Default iron ppm 1 1 1 1 1 1 1 1 Manganese ppm Default Default Default Default Default Default Default Default RESULTS Note 2 MIC 7.1 5 4.5 4.7 7.3 5.1 4.8 4.8 General / Pitting Corrosion 7.1 8.6 8.6 1.8 7.3 8.8 8 4.9 (for Stainless Steel): Note 3 MIC 6.8 4.8 4.3 4.6 7 4.9 4.6 4.6 General / Pitting Corrosion 2.8 3.5 3.5 1.9 2.8 3.5 3.1 1.9 OTES:

1. Includes 2 HBC-32,-33,-34 and 2 HCC 33 & -34 5. Includes 2 HBC-63,64 (supply) & -75, -76 (return)
2. MIC Index = 4.8 & Corrosion Index = 7.8 for 0.3 ppm TRO 6. Includes 2HBC-68,-103,-69,104,-105,-77,-106, 78 and HBB-2 , -3, -4, -5
3. MIC Index = 4.6 & Corrosion Index = 3.1 for 0.3 ppm TRO
4. Includes 2 HBC-35,-43,-59,-60 and 2 HCC-294 & -295 Sfr#Clurall#fegr/fyASSOClateS InC.

SIR-98-026 Rev. 0 4-9

f Table 4-2 MICPro Evaluation of ANO - 2 (Emergency Diesels and Containment Cooling)

ANO-2 Plant Information:

Date Plant Began Operation: 3/26/80 System / Segment Emergency Diesels (Note 5) Cont'mnt C~4ng (Note 6)

'enod Evaluated 76-81 81-90 90-92 92-96 76-81 81-90 90-92 92-96

> ate System Began Operation: 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 Date First Wet O , 7D6 1/1/81 1/1/90 1/1/92 7n6 1/1/81 1/1/90 1/1/92 System Base Material Material-C-steel. S-Steel CS CS CS CS CS CS CS CS l Product Form: Pipe. Plate. Forrmg Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe l MatenalTreatment Applied: None None None None None None None None l

Operational Information:

l . Average Temperature *F 72 72 72 72 72 72 72 72

, Maximum inlet Temperature 'F: Default Default Default Delault Default Default Default Default Minimum inlet Temperature 'F: Default Default Default Default Default Default Default Default Average AT'F 10 10 10 10 23 23 23 23 Maximum AT'F 10 10 10 10 Default Default Default Default Average Flow (ft/sec) 5 5 5 5 5.5 5.5 5.5 5.5 l Minimum Non Zero Flow (ft/sec): 2 2 2 2 Default Default Default Default i Normal System Operating Pressure: 110 110 110 110 120 120 120 120 Normal Stagnation Penod (wks): 4 4 4 4 26 26 26 26 Longest Stagnation Penod (wks): 13 13 13 13 52 52 52 52 j # Stagnation Penods/ year 12 12 12 12 2 2 2 2 Normal Restan flow (ft/sec) 5 5 5 5 5.5 5.5 5.5 5.5 Total Time at Min Flow (wks/yr) Default Default Default Default Default Default Default Default Wrter Source:

River. Lake. Pond l Lake l Lake ILake l Lake l Lake ILake l Lake l Lake We ter Treatment:

Biocide None Chlonne NaOCl+NaBr NaOCl+ NaBr None Chlonne NaOCl+NaBr NaOCl+NaBr ppm 0.8 0.5 0.3 0.8 0.5 0.3 freq Cont's Cont's "iodispersant ppm freq Inhibitor Zinc + O'PO4 Zinc + 0'PO4 ppm 1 I freg Deposit Control Polymer Polymer ppm freq We ter Chemistry l

Conductivity fps /cm) 500 500 500 500 500 500 500 500  !

Tot. Dis. Solids. "IT)S (ppm) Default Default Default Default Default Default Default Default l

pH 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 i Turbidity (NTU) Default Default Default Default Default Default Default Default 4 Tot'l Hardness ppm Default Default Default Default Default Default Default Default l Total Alkalinity ppm 75 75 75 75 75 75 75 75 Total Solids ppm 150 150 150 150 150 150 150 150 Sulfate ppm 50 50 50 50 50 50 50 50 Chlonde ppm 100 100 100 100 100 100 100 100 Sulfide ppm Default Default Default Default Default Default Default Default Oxygen ppm Default Default Default Default Default Default Default Default j tron ppm 1 1 1 1 1 1 1 1 Manganese ppm Default Default Defanit Default Default Default Default Default RESULTS MIC 6.8 4.8 4.6 4.6 7 4.9 4.6 4.6 General / Pitting Corrosion 7.1 8.6 7.8 4.8 7.1 8.6 7.8 4.8 (for Stainless Steel):

MIC 66 4.6 4.4 4.4 4.5 45 ineral/Pittine Corrosion 2.8 3.5 3.1 1.9 3.1 1.9 NOTES:

1, includes 2 HBC-32,-33,-34 and 2 HCC-33 & 34 5. Includes 2 HBC-63,64 (supply) & -75, -76 (return) i 2. MIC Index = 4.8 & Corrosion Index = 7.8 for 0.3 ppm"IRO 6. Includes 2HBC-68,-103, 69,-104 -105,-77,-106,-78 and HBB-2 , -3, -4, -5 l

3. MIC Index = 4.6 & Corrosion Index = 3.1 for 0.3 ppm TRO
4. Includes 2 HBC-35. -43,-59. -60 and 2 HCC-294 & 295 Str#Clural /nlept/ty ASSOC /3feS. inC.

SIR-98-026 Rev,0 4-10

Table 4-3 MICPro Evaluation of ANO -2 Emergency Feedwater, Fuel Pool Cooling and Closed Cooling Water)

ANO-2 Plant Information:

Date Plant Began Operation: 3/26/80 System / Segment Emergency Feedwater Fuel Pool Cooling Closni Cooling Water riod Evaluated 76-81 81 90 90-92 92-96 76-81 81 90 90-92 92-96 76-81 81-90 90-92 92-96 ate System Began Operation: 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 3/26/80 Date First Wet Out: 7n6 1/1/81 1/1/90 1/1/92 7D6, 1/1/81 1/1/90 1/1/92 706 1/1/81 1/1/90 1/1/92 System Base Material Matenal-C steel, S-Steel CS CS CS CS CS CS CS CS CS CS CS CS Product Form: Pipe. Plate. Forging Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe MaterialTreatment Applied: None None None None None None None None None None None None Operadonal Information:

Average Temperature 'F 60 60 60 60 72 72 72 72 72 72 72 72 ,

Maximum inlet Temperaturt. *F: Default Default Default Default Default Default Default Default Default Default Default Default I Minimum inlet Tempa sure 'F: Default Default Default Default Default Default Default Default Default Default Default Default Av rage AT'F 0 0 0 0 5 5 5 5 10 10 10 10 Maximum .iT *F 0 0 0 0 5 5 5 5 20 20 20 20 Av rage Flow (ft/sec) 6.09 6.09 6.09 6.09 4.44 4.44 4.44 4.44 3.58 3.58 3.58 3.58 Minimum Non Zero Flow (ft/sec): Default Default Default Default Default Default Default Default Default Default Default Default l Normal System Operstmg Pressure: 89 89 89 89 Default Default Default Default Default Default Default Default I Normal Stagnation Penod (wks): 52 52 52 52 Default Default Default Default 0.01 0.01 0.01 0.01 Longest Starnation Penod (wksi: 52 52 52 52 4 4 4 4 4 4 4 4

  1. Stagnation Penods/ year 1 i l 1 Default Default Default Default 1 1 1 1 Normal Restart flow (ft/sec) 6.09 6.09 6.09 6.09 Default Default Default Default 3.58 3.58 3.58 3.58 Total Time at Min Flow (wks/yr) Default Default Default Default Default Default Default Default Default Default Default Default Water Source:

River, Lake, Pondl Lake l Lake l Lake l Lake l Lake l Lake l Lake l Lake (Lake llake l Lake l Lake Witer Treatment:

Biocide None Chlonne NaOCl+ NaOCl+ None Chlonne NaOCl+ NaOCl+ None Chionne NaOCl+ NaOCl+ l NaBr NaBr NaBr NaBr NaBr NaBr ppm 0.8 0.5 0.3 0.8 0.5 0.3 0.8 0.5 0.3 freq Cont's Cont's Cont's j dispersant J ppm freq inhibitor Zinc + Zinc + Zme+

0'PO4 O'PO4 O'PO4 ppm ] ] ]

freq Deposit Control Polymer Polymer Polymer ppm freg Wr ter Chemistry Conductivity (nS/cm) 500 500 500 500 500 500 500 500 500 500 500 500 Tot. Dis. Solids. TDS (ppm) Default Default Default Default Default Default Default Default Default Default Default Defauit' PH 7.5 7.5 7.5 7.5 7.5 7.5 I 7.5 7.5 7.5 7.5 7.5 7.5 Turbidity (NTin Defanit Default Default Default Default Default Default Default Default Default Default Default Total Hardness ppm Default Default Default Default Default Default Default Default Default Default Default Default Total Alkalinity ppm 75 75 75 75 75 75 75 75 75 75 75 75 Total Solids ppm 150 150 150 150 150 150 150 150 150 150 150 150 Sulfate ppm 50 50 50 50 50 50 50 50 50 50 50 50 Chlonde ppm 100 100 100 100 100 100 100 100 100 100 100 100 Sulfide ppm Default Default Default Default Default Default Default Default Default Default Default Default Oxygen ppm Default Default Default Default Default Default Default Default Default Default Default Default iron ppm 1 1 1 1 1 1 1 1 1 1 1 1 Manganese ppm Default Default Default Default Default Default Default Default Default Default Default Default RESULTS MIC 6.8 4.8 4.5 4.5 7 5 4.7 4.7 6.6 4.6 4.4 4.4 General / Pitting Corrosion 7.1 8.6 7.8 4.8 7.1 8.6 7.8 4.8 7.1 8.6 7.8 4.8 g (for Stainfess Steed:

IIC 6.6 4.6 4.4 4.4 General /Pittine Corrosion 2.8 3.5 3.1 1.9 NOTLS: I. Includes 2 HBC-32 -33, 34 and 2 i(CC-33 & 54 4 Inchies 2 HBC-35,-43. 59,-60 and 2 HCC-294 & -295

2. MIC laden = 4 8 & Corrosen Inden a 7 8 for 0.3 ppm TRO 5. Includes 2 HDC-63. 64 tsupply) & 75. 76 (
3. MIC Index = 4 6 & Corrosion inden = 3.1 for 0 3 ppm TRO 6. Includes 2HDC-68. -103, 69. -104, .105, 77, 8 i Ha n-2 . -3. -r 5 StructuralIntegrity Associates, Inc.

SIR-98-026 Rev. 0 4-I1

,n Table 4-4 Element Selection leo Drewing No. Risk Segment ID Exam Method / Volume Description inspection Location Reeson for Selection

]

2HBC-32-1 Sh.1 SWS-R-01 A UT / One foot x 270* arc that includes bottom 60*

2P-4A Discharge Spool 2 Typical Section of Supply Header 2HBC-321 Sh.1 SWS-R41C UT / One foot x 270* arc that irtcludes bottom 60*

2P-4B Discharge Spool 4 Typical Section of Supply Hooder 2HBC 321 Sh.1 SWS-R-01 B UT / One foot x 270* arc that includes bottom 60*

2P-4C Discharge Spool 7 Typical Section of Supply Header l 2HBC-33-3 Sh.1 SWS-R-01 A UT / One foot x 270* arc that includes bot:om 60*

Supply Header #1 Spool 1 Typical Section of Supply Header 2HBC-33-80 Sh.1 SWS-R-04A Remote visual (when other activities provide access to any part Supply Header #1 Underground Section

~

Typical Section of Supply Header 2HBC-33-1 Sh.1 SWS-R-05A UT / One foot x 270* arc that includes bottom 60*  ;

Supply Header #1 Spoola 1 thru 3 (one required) Typical Section of Supply Header 2HBC-331 Sh.1 SWS-R 06A UT / One foot x 270* are that includes bottom 60*

  • g Supply Header #1 Spool 4 / 5 Elbow (item 5) Supply Header . Probable worst case deposition area 2HBC-33-1 Sh.1 SWS-R-OSA / 06A UT / One foot x 270* are that includes bottom 60*

Supply Header #1 Spool 5.6 or 8 Typical Section of Supply Header 2HBC-33 2 Sh.1 SWS-R-06A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 Spool 1 - Tee and pipe that drops Supply Header - Probable worst case deposition area down at 45* from 2HBC 33 20* to 2HBC-33-2 Sh.1 SWS-R-06A UT / One foot x 270' arc that includes bottom 60*

Supply Header #1 Spools 1 thru 5 (one required) Typical Section of Supply Header 2HBC-33-2 Sh.1 SWS-R-06A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 Spool 5 - Between elbow (Item 71 Dead leg / Galvanic couple (HCC-283-3*) near transition to and valve 2CV-1530-1 2HBD-33-18" 2HBC-34-3 Sh.1 SWS-R-018 UT / One foot x 270* are that includes bottom 60*

Supply Header #2 Spool 2, 3,4A or 4B Typical Section of Supply Header 2HBC-34-80 Sh.1 SWS-R-04B Remote visual (when activities at manhole / meter box provide '

Supply Header #2 Spool 10 or 20

  • ""^ "" * "

Typical Section of Supply Header 2HBC-34-1 SWS-R-OSB / 06B UT / One foot x 270* are that includes bottom 60*

Supply Header #2 Spools 1 thru 8 (one required) Typical Section of Supply Header 2HBC 34-2 Sh.1 SWS-R-06B UT / One foot x 270* arc that includes bottom 60*

Supply Header #2 Spool 3 Typical Section of Supply Hnader g SIR-98-026 Rev. 0 4-12 h StructuralIntegrityAssociates,Inc.

b N Table 4-4 (Cont'd)  !

Element Selection leo Drewing No. Risk Segment ID Exam Method / Volume Dese'iption inspection Location Reason for Selection 2HBC-68-1 Sh.1 SWS-R-06A /16A ' UT / One foot x 270* arc that includes bottom 60* I Supply Header #1 to Spool 2 - Long horizontal run Worst Case Section of Supply to Loop 1 Containment Cooling Coils Containment Cooling Coils 2HBC-66-1 Sh.1 SWS-R 16A /17 UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Spool 3 or 4 Typical Section of Supply to Loop 1 Containment Containment Cooling Coils Cooling Coils 2HBS 21 Sh.1 SWS-R-18A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Spool 1 Typical Section of Supply to Loop 1 Containment Containment Cooling Co?s Cooling Colts 2HBB-21 Sh.1 SWS-R-18A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Spool 2 Typical Section of Supply to Loop 1 Containment l Containment Cooling Coils Cooling Coils 2HBC-1031 Sh.1 SWS-R-19 A UT / One foot x 270* arc that includes bottom 60*

Supply Hender #1 to Spool 1/ 2 Elbow (item 11) Worst Case Section of Supply to Loop 1 Containment Cooling Coils Containment Cooling Coils i O

2HBC-103-1 Sh.1 SWS-R-19A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Spool 1 - Horizontal run Worst Case Section of Supply to Loop 1 Containment Cooling Coils Containment Cooling Coils 2HBC 59-1 Sh. 2 SWS-R-15 A UT / One foot x 270* arc that includes bottom 60*

Retum from Shutdown Cooling Spool 1 Between heat exchanger At/near location of known failure and heat l Heat Exchanger to Header #1 nozzie and valve 25W-11 A exchanger with microbiological fouling 2HBC-59-1 Sh. 2 SWS-R-15A UT / One foot x 270* arc that includes bottom 60*

Retum from Shutdown Cooling Spool 2 Riser frot valve, Probable worst case locations Heat Exchanger to Header #1 horizontal run, and expa, Tion loop (minimum of three ers ts) 2HBC-59 Sh.2 SWS-R-15A UT / One foot x 270* arc that includes bottom 60*

Retum from Shutdown Cooling Spool 5 Downstream of redut

  • Probable worst case location Heat Exchanger to Header #1 (Item 86) 2HBC-59-1 Sh. 2 SWS-R 15A VT / One foot x 270* arc that includes bottom 60*

Retum from Shutdown Cooling Spool 3 Horizontal run and Probable worst case locations Host Exchanger to Header #1 expansion loop (two locations) 2HBC-591 Sh. 2 SWS-R-15A UT e Jne foot x 270* arc that includes bottom 60*

Retum from Shutdown Coohng Spool 4 - Long horizontal run and Probable worst case locations Heat Exchanger to Header #1 short vertical decline (minimum of two areas required) 2HBC-60-1 Sh.1 SWS-R-15B UT / One foot x 270* arc that includes bottom 60*

Retum from Shutdown Cooling Spool 1 - At heat exchanger outlet Probable worst case locations O Heat Exchanger to Hender #2 and at bottom of short vertical run (two locations) n SIR-98-026 Rev. 0 4-13 f StructuralIntegrityAssociates,Inc.

l C

v Table 4-4 (Cont'd)

Element Selection leo Drawing No. Riek Segment ID Exam Method / Volume C+w .-. . Inspection Location Reason for Selection 2HBC-60-1 Sh.1 SWS-R-15B UT / One foot x 270* are that includes bottom 60*

Retum from Shutdown Cooling Spool 1 Dissimilar metal Probable worst case locations Het . Exchanger to Header #2 welds (carbon steel to stainless i steel) at flow orifice 2FO-1456 I 2HBC-60-1 Sh.1 SWS-R-15B UT / One foot x 270* are that includes bottom 60*

Retum from Shutdown Cooling Spools 3 and 4 Probable worst case locations Heat Exchanger Header #2 One location - each spool 2HBC-601 Sh.1 SWS-R-158 UT / One foot x 270* arc that includes bottom 60*

Retum from Shutdown Cooling Spool 5 - Downstream of Probable woint case location Heat Exchanger Header #2 reducer (Item 78) 2HBC-501 Sh.1 SWS-R 12A UT / One foot x 270* are that includes bottom 60*

Return Header #1 Spool 7 Typical Section of Retum Header 2HBC 50-1 Sh.1 SWS-R-12A UT / One foot x 270* are that includes bottom 60' Retum Header #1 Spool 5 of 6 Typical Section of Retum Header p 2HBC-50-2 Sh.1 6WS-R-12A UT / One foot x 270* are that includes bottom 60*

Retum Header #1 Spool 4 Downstream of Typical Section of Retum Header (with velocity change) i reducer (Item 21) '

2HBC-50-2 Sh.1 SWS-R 12A UT / One foot x 270* are that includes bottom 60*

I Retum Header #1 Spool 2 or 3 Typical Section of Retum Header 2HBC-511 Sh.1 SWS-R 128 UT / One foot x 270* are that includes bottom 60*

Retum Header #2 Spool 1 (two locations required) Typical Section of Retum Header 2HBC-51-2 Sh.1 SWS-R-128 UT / One foot x 270* are that includes bottom 60*

Retum Header #2 Spool 6 Typical Section of Retum Header 2HBC-B3-81 Sh.1 SWS-R-32 Remote visual (when other activities provide access to any par i kne - g an un gro M Retum Headers #1 and #2 to Underground Section Emergency Cooling Pond Retum Header Location (Maximum distance from water treatment chemical injection point) 2HBC-83-2 Sh.1 SWS-R-32 UT / One foot x 270* are that includes bottom 60*

RetumNeeders #1 and #2 to Spool 2 Typical Return Header Location (Minimum concentration Emergency Cooling Pond of water treatment chemicals expected) 2HBC-83-1 Sh.1 SWS-R-32 UT / One foot x 270* arc that inclJdes bottom 60*

! Retum Header; #1 and #2 to Spool 1 - Downstream of Probable worst case deposition /Mt.: locations in retum

! Emergency Coon.m Pond reducer (item 5) anr8 :t tee .c header where water treatment chemical concentration is 2HBC-51 Y (two locations) a minimun 2HBC-83-80 Sh.1 SWS-R 32 Remote visual (when other activities provide access to N Retum Headers #1 and #2 to Underground Section

) Emergency Cooling Pond Retum Header Location (Maximum distance from water V treatment chemicalinjection point)

SIR-98-026 Rev. 0 4-14 f StructuralIntegrityAssociates,Inc.

i r%

)

( Table 4-4 (Cont'd)

Element Selection Iso Drawing No. Risk Segment ID Exam Method / Volume l 1

Description ineraction Location Reason for Selection 2HBC-85-1 Sh.1 and 2 SWS-R-06A / 30A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Spools 14 thru 17 (three Typical segments in a non-heat transfer system with a Emergency Feed Pump locations required) history of localized attack 2HBC 86-1 Sh.1 SWS-OSB / 308 UT / One foot x 270* arc that includes bottom 60* l Supply Header #2 to Spools 11 thru 14 (three Typical segments in a non-heat transfer system with a Emergency Feed Pump locations required) history of localized attack 2HBC-63-1 Sh.1 SWS-R-21 A flT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Diesel Spool 5 - Elbow (Item 33) Intermittent flo.v system l Jacket Cooler Heat Exchanger I 2HBC-63-1 Sh.1 SWS-R-21 A UT / One foot x 270* arc that includes bottom 60* )

Supply Header #1 to Diesel Spool 4 Elbow (item 32) or intermittent flow system Jecket Cooler Heat Exchanger 8- h h M 2HBC-63-1 Sh. 2 SW-R-06A UT / One foot x 270* arc that includes bottom 60*

Supply Header #1 to Diesel Spool 7 Pipe (item 24)or intermittent flow system Jacket Cooler Heat Exchanger 7 8hN  ;

() 23) and riser pipe litem 5) '

2HBC-64-2 Sh.1 SWS-R-21 B UT / One foot x 270* are that includes bottom 60* ,

Supply Header #2 to Diesel Spool 2 - Elbow (item 12) Intermittent flow system Jacket Cooler Heat Exchanger 2HBC-75-1 Sh.1 SWS-R-22A / 23A UT / One foot x 270* arc that includes bottom 60*

Retum from Diesel Jacket Spool 1 Intermittent flow system - higher temperature during Cooler to Header #1 operability demonstrations (probable worst case i location) 2HBC-75-1 Sh.1 SWS-R-23A UT / One foot x 270* are that includes bottom 60*

Retum from Diesel Jacket Spool 2 - Elbow (item 11) Intermittent flow system - Probable high deposition area Cooler to Header #1 (bottom of short vertical run) 2HBC-75-1 Sh. 2 SWS-R 24A /12A UT / One foot x 270* are that includes bottom 60*

Retum from Diesel Jacket Spool 4 or 5 Intermittent flow system Cooler to Header #1 2HBC-76-1 Sh.1 SWS-R-22B / 238 UT / One foot x 270* arc that includes bottom 60*

Retum from Diesel Jacket Spool 1 - Short horizontal run Intermittent flow system - higher temperature during Cooler to Header #2 (Item 1) from heat exchanger, operability demonstrations (probable worst case elbow (item 15) or downcomer location)

(Item 2) 2HBC-76-1 Sh.1 SWS-R-23B UT / One foot x 270* arc that includes bottom 60*

Retum from Diesel Jacket Spool 3 - Elbow (item 18), intermittent flow system higher temperature during Cooler to Header #2 vertical pipe (item 5), elbow operability demonstrations (probable worst case h

Q

(! tem 19) or horizontal run (item 6) to valve 2CV 1504-2 location)

SIR-98-026 Rev. 0 4-15 f StructuralIntegrityAssociates,Inc.

^\

i I

(d Table 4-4 (Cont'd)

Element Selection leo Drawing No. Riek Segment ID Enem Method / Volume C:_ _. _ z  !

. - _. Lacedon

^

Reason for Selection 2HBC-76-2 Sh.1 SWS-R-248 UT / One foot x 270' are that includes bottom 60*

Return from Diesel Jacitet Spool 4 intermittent flow system - higher temperature during

Cooler to Header #2 operability demonstrations (probable worst case location) l 2HBC 76 2 Sh.1 SWS R-24B UT / One foot x 270' arc that includes bottom 60*

Return from Diesel Jac6.et Spool E At fillet welded sleeve intermittent flow system - possible worst case location Cooler to Header #2 to hanger 2HBC-76-H9 from changes in material due to welding of sleeve (elevation 354'-8*)

i e

i Single Location for Inspection of Erosion-Cavitation Degradation l

leo Drewing No. Risk Segment 10 Enem Method / Volume to , '--._;_ :1-- Location Reason for Selection

}

i 2HBD-261 SWS-R-13-2 UT / One foot x full 360' SW & ACW Return to Reservoir Spool 1- immediately downstream of valve

2CV-1460 j

i l

l I

A U

i SIR-98-026 Rev. 0 4-16 f StructuralIntegrityAssociates,Inc.

1

[-

)

p U

5.0 REFERENCES

1. " Risk-Informed Inservice Inspection Evaluation Procedure," EPRI Report No.

TR-106218 Interim Report, June 1996.

2. Structural Integrity Associates Report No. SIR-98-011 " Evaluation of Damage Mechanisms for the Service Water System at Arkansas Nuclear One Unit 2," Revision 0
3. Duke Engineering & Services (formerly Yankee Atomic Electric Company) Document No. NSD-023, " Consequence Evaluation of ANO-2 Service Water System," Revision 0
4. "MICPro* (Version 2.0)- Advisor for Predicting' Susceptibility to Microbiologically Influenced Corrosion," EPRI-AP-100526, EPRI, April 1992.  !

O 1

-1 I

O SIR-98-026 Rev. 0 5-1 { SitucturalIntegrityAssociates,Inc.

.