ML20133M164

From kanterella
Jump to navigation Jump to search
Revised OTSG Iga Sizing Technique App H Qualification
ML20133M164
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 09/09/1996
From: Boudreaux W, Jonathan Brown, Griffith J
FRAMATOME
To:
Shared Package
ML20133M122 List:
References
NUDOCS 9701220285
Download: ML20133M164 (55)


Text

'

i 22164 (17./95)

N "l

h.

5:

  • 2 t

OTSG IGA SIZING TECHNIQUE APPENDIX H QUALIFICATION lll i

$5 95 Y$

,l

,l mR 0E i

88 ii

  • 4'E 4 September 1996 gw ok

'l' Framatome Technologies, Inc.

[g 155 Mill Ridge Road

{w gl Lynchburg, VA 24502 i!a ig L

11

. (a DATE: 7/J/76 PREPARED BY:

[J. C. Grifdi'th "5la k

.b.

DATE: 7[5dA REVIEWED BY:

gI

(

J.

c. Brown

[5 Md DATE:/f f [d APPROVED BY:

- W./M. toudreaux

/

/

I

-E Es it!

e A

s 9701220295 970113 E

PDR ADOCK 05000313 JE P

PDR Page1 of27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) ue? ? *. ~

qq$;GQl{g.Y

/.

'w'-

. c '... g, g,e p

?,hl$Ocif;

_,,ma_.,,.

// -

3JJ, y:.So :n

. % [ S.u.,9%'.Q l Q T*~

'15 4 i$;

\\

.x x <

M

- n a, a '.

., g g l,

.;a, m _,_,

g.

+

RECORD OF REVISION 1

Revision No.

Date Description of Change ik O

08/6/96 Original issue.

g 1

09/4/96 Added reference to EDDY TOOL E9 Deleted reference to 0.540 probe

$E Revised regression coefficients s$

To eliminate Oconee data Ig Revised RMSE value gg Added Regression Input Variable l

gg Tests a

p"nl Added Regression Tool Testing Added Regression Test Data 8g Added Normalization Correction 8

l Testing Added Blind Test Result h

Added Probability of Detection Rj Revised Regression Plot n

9.g Revised Technique Sheet El Eg li 11h ew RE X

Ie v

!"i ll

=

sE l

I s

EE 11 RI 1

gn f

Page 2 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) h PURPOSE:

The purpose of this document is to provide a brief description of a technique which can be used to size Intergranular Attack (IGA) indications in Once Through Steam Generators (OTSG's).

BACKGROUND:

There have been several attempts to qualify a sizing technique for IGA. The Appendix H document for sg IGA detection in 0.750" and 0.875" tubing contains a plot for bobbin coil estimated depth versus truth.

gj This data in Figure I shows an Root Mean Square Error (RMSE) of 29 % and a correlation coeflicient of 0.23. Crystal River also evaluated sizing for a different data set as shown in Figure 2 with an RMSE of gy 27 % and a correlation coeflicient of 0.25. Both of these cases fall short of the 25 % RMSE sizing limit ga specified in Appendix H.

a k8I PROJECT APPROACH:

A project was defined to work on improving the RMSE ofIGA sizing. The starting point for this work ng was the collection of data on all OTSG pulled tubes containing IGA defects with destructive examination lg (DE) results. The data was first reviewed to confirm the correlation of the eddy current (EC) indications

=l with the correct DE location and result. Although some problems were identified, a high confidence correlation was established to link the EC calls with the correct DE flaws.

After establishing the correlation of non destmetive examination (NDE) indications to DE results, the ll accuracy of the EC percent through wall (% TW) calls was reviewed. It was found that the original field ls calls, excluding signal to noise (S/N) calls, had a fair RMSE (22.6%) when used by themselves, but there

  • ?

were not enough of these calls (13) to establish a good statistical sample. The main problem with this d

%E situation is that the indications which were originally dispositioned as S/N now have to be sized. When conventional phase based eddy current sizing estimates are forced on the original S/N indications, the RMSE of the sizing becomes unacceptable.

i 11 El[I5 8s

  • st IE eIir*

Page 3 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDLX II QUALIFICATION Revision: 1 Drawing: 1260104-A

i 22164 (12/95) b k..

A:

x,,,

REGRESSION CONCEPT:

The regression concept is based on the premise that multiple types of measurements taken on an indication will contain more information than just a single measuremem. For example, if one can measure the peak to peak voltage and associated phase angles on three different frequencies, this additional data g

may allow a more accurate sizing. There is an obvious physical reasoning that different frequencies with different skin depths and fields of view should provide some information about defect depth. However, glj the actual relationship is very difficult to determine without regression techniques due to interaction of g

ug the measurements.

Ej sg A multiple regression technique will mathematically calculate the relationships between multiple ga measurements (independent variables) and the actual defect depth by DE (dependant variable). Although ag it may be difficult to explain the relationship, it has become obvious that the use of two independent h

variables on the complete data set can produce a sizing estimate with an RMSE < 25 %. The use of a n!

single input measurement cannot produce an RMSE below 25 %.

i ilQ JUSTIFICATION FOR REGRESSION:

E5 gi As discussed above, the use of two or more measurements has shown to provide enough additional "l

information to provide a distinct improvement on both the RMSE and on the correlation coefficient.

3 The multiple frequency eddy current mix algorithm used for analysis of code examination data is based on hl a multiple parameter regression solution. In the case of a mix, the independent variables are the vertical B

ll and horizontal components of each frequency chosen for the mix. For a repression mix, the dependant je variable is 'O'. Ideally, we want to have the coefficients of the mix produce a 'O' residual signal. The ideal solution is not practical, but the best fit solution is valuable. In the case of enhancing a signal, we l

8, seek the coeflicients which will produce the output signal which is a copy of the signal to be enhanced.

e l

I Thus a multiple regression mix algorithm is routinely used to produce a signal which is measured and

[ls used to predict code examination depth estimates.

lf The IGA sizing effort uses the same type of mathematical solution for multiple input variables to obtain i

the best prediction of a known depth.

l qlE 5

3 Xs i

=g Il e

5 Ie Page 4 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A 1

22164 (12/95)

I I NNN7tmlw +.vemide S -.y poco o, : s N 1/+

$"m'*C9m DATA REANALYSIS:

The original field data from the pulled tubes containing IGA defects was reanalyzed using a standard analysis guideline shown in Figure 3. Initially, there was no basis for selection of the measurements which should be used as input to the regression. Multiple measurements of phase angles, voltages and N

depth estimates we-re made using peak to peak, max rate and vert max measurement modes for each gl frequency available. The reanalysis was done consistently between pulled tubes to provide more accurate g[

input data for the regression.

sW G

PULLED TUBE DATA:

SEp Appendix A (8 pages)is a spreadsheet which lists the specific OTSG IGA pulled tube defects which have og DE results along with the plant, date and original NDE result. Only the indications detected by bobbin lu coil ECT were reanalyzed. In several cases of the Crystal River data, it was necessary to separate some cI of the DE flaws which had been reponed as a grouping into separate eddy current detections. The reanalysis of the data reported multiple indications within a grouping of DE flaws. A review of the data g

showed that the real DE positions corresponded well with the reanalysis call positions.

%ltAll of the available DE and reanalysis information for detected indications was combined into a single

j spreadsheet file to allow multiple parameter regression evaluation. A copy of this spreadsheet is itg contained in Appendix B (20 pages),

lwlBy performing a linear multiple regression on the data with the tiue depth as the dependant variable, 8

li l coeflicients are calculated for each independent input variable. Similar measurements on unknown d

defects are then combined with the calculated coeflicients to provide a ' trained' estimate of the unknown

[J depth.

t0 l'{

" " ^ ' ' ' ' ^ " " " ' ^ " ^ " " =

5 This document describes the method which can be used to size IGA defects within 25 % RMSE.

i h

The qualification package includes the raw eddy current data files, a tabulation of the flaws and their ag locations, the analysis guidelines, the analyzed data used for input to the regression, a description of the regression, and the regression testing. A cal group listing is in Appendix C.

g O

h The initial field implementation will be an EDDYNET95 EDDY TOOLS widget which measures the

'g selected parameters and calculates the regression call using a single command button.

e iI E8 Page 5 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95; ll.

(j ACQUISITION:

l The data acquisition would be the same as in the past, with differential data acquired on 200,400 and 600 KHZ frequencies with a 510 HF probe. The calibration standard will have to contain the four 20 %

FBH's for a normalization reference. The regression includes data acquired with a range of probe sizes i

from 0.500" to 0.510". The regression also includes data from medium frequency (MF) and high gl frequency (HF) probes.

H eg ANALYSIS SETUP:

lg The analysis setup would be to set the 100 % TW hole to 40 degrees as normal. The voltage normalization can be consistent with current analysis guidelines as long as a correction factor is used for ga the regression analysis. When normalized, the normalization must be stored to other channels.

l f

g*$

Specifically, if the 600 khz is used to normalize, that normalization factor should be stored to the 400 and

i a

200 khz differential channels.

l Il, Analysis must measure the response of the 20 % flat bottom hole (FBH) after normalization. The g

regression was based on this value being set to 4 V on the 400 Khz differential channel. If a different gg g8 normalization is used, then all voltage measurements must be multiplied by a factor which will correct the l

400 Khz differential peak to peak voltage on the four 20 % FBH's to 4 V. This correction factor must be 3g applied before the voltages are entered in the regression calculations. For example, if the official ge normalization is set for 6 V on the 4100% holes for 600 Khz diff, and the 20 % FBH measure at 5 volts Bl on the 400 KHZ with this normalization, then all voltage readings (or coefficients) should be multiplied

((

by 0.8 (4/5) before applying the regression formula.

i ls GE ANALYSIS PARAMETERS:

8I Testing today has concentrated on evaluating regressions with a single measuremen technique on the i

ll three channels of differential data (600,400 and 200 khz). The max rate, peak to peak and vert max WI measurement modes were evaluated. There was no clear difference so the peak to peak mode was ih chosen for the best cases. Limiting the regression to a single measurement technique does degrade the i

performance of the regression slightly and we are continuing to review other formulas. Multiple oy measurements and the use of absolute data or motorized rotating pancake coil (MRPC) measurements should improve the accuracy. The current regression requires the following measurements which could l

g!

be made by a single call on each of 3 frequencies:

8 7I

's 200 KHZ peak to peak phase peak to peak voltage 400 KHZ peak to peak phase peak to peak voltage g

600 KHZ peak to peak phase peak to peak voltage g

g*

Page 6 of 27 OTSG IGA SIZING TECHNIQUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A

e

's 22164 (12 4 5)

REGRESSION VARIABLES:

A single phase angle or depth measure seems to work well above 60 % true depth and would be acceptable if such indications could remain in service. However, below that true depth, a combination of measurements is necessary to allow any degree of accuracy in the estimated depth. By taking a I$

combination of these variables measured on a number of pulled tube defects, coefficients can be y

calculated which allow a better estimate of actual max depth.

lI sg The variables are designated as follows:

If yg 200 KHZ peak to peak phase - D200PPP peak to peak voltage - D200PPV 400 KHZ peak to peak phase - D400PPP peak to peak voltage - D400PPV ga ag 600 KHZ peak to peak phase - D600PPP peak to peak voltage - D600PPV I

h aS The three voltages must be multiplied by a correction factor of(4 / p-p voltage of four 20 % FBH @ 400 Khz) before continuing with the regression calculations.

Da Some modified values are calculated from these values to improve the regression model:

gg DE SIN ((D200PPP+50)*3.1416/180)

PPP200

=

SIN ((D400PPP+50)*3.1416/180)

PPP400

=

SIN ((D600PPP+50)*3.1416/180) 1 PPP600

=

l The above three variables convert the phase angle to a single valued function of depth.

b.

D200PPV ^.25 PWR2

=

%~

PWR4 D400PPV ^.25

=

PWR6 D600PPV ^.25

=

ls!

The above three variables reduce the exponential response of voltage versus depth.

lf PWR2 / PWR4 R24

=

PWR4 / PWR6 R46 y

=

PWR2 / PWR6 gg R26

=

Eu h

The above variables are ratios of voltage responses at different frequencies.

IE Figure 4 (2 pages) is a tabulation of the reanalysis measurements, the above parameters, the regression e

calculation and the RMSE calculation. Figure 5 shows a graphical comparison of the EC regression estimated depth versus the true DE value.

p Page 7 of 27 OTSG IGA SIZING TECIINIOUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/951 h

/.. l ff l

Q,.

., ; ; y s

,y.

]pyc. he % '.' /

l, !. J ' f j ip,d, eyg

.M g

.3 REGRESSION FORMULA:

The above variables are combined as follows to estimate the depth:

Estimated depth = 361.14 fil

- 553.38

  • PWR6 2l

+924.72

  • PWR4 l

l

- 391.12

  • PWR2 gg

- 513.00

  • R46 gj

+138.64

  • R26 g

+ 32.67

  • PPP400

+ 0.180

  • D600PPP gg

+ 0.176

  • D200PPP i

e REGRESSION PERFORMANCE:

{

The regression was trained on all available OTSG pulled tube DE and EC data points. Laboratory grown og IGA, such as the Babcock and Wilcox Owner's Group (BWOG) tube integrity samples, was not used.

lg Their EC voltage responses were very high compared to the pulled tube data, and significantly degraded g

the model response. Although the RMSE may have still been acceptable, it was found that the model j

performance was worse on the lower amplitude signals which are more characteristic of actual OTSG f

IGA data.

g!

l The RMSE is 8.5 and the correlation coefficient is 0.81 which indicates a good fit. Figure 4 is a tabulation of the regression data. Figure 5 is a plot of the regression results. The technique sheets are contained on pages g/

21 through 24.

t5 l'6

' " " " " " ' " ' ' " " " " ' " " " " ' ' ' ' " ' " ' " ' " ^ " ' ^ " ' " '

l[

During development of the regression formula, several tests were performed using different input vaiables.

8 Below is a discussion of these tests.

Il USE OF 600 KHZ DEPTH CALLS ONLY eg I

s The use of the 600 Khz depth calls only produces a reasonable accuracy for calls above 60 % TW h

true depth. This is the reason that the field analysis calls (without S/N and NQI calls) had a Ig reasonable RMSE. However, for defects smaller than 60 % true depth, the depth calls based on a e

phase calibration curve range from 0 to 95 %.

AI x=

i Page 8 of 27 OTSG IGA SIZING TECHNIQUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A

s 22164 (12/95)

If the actual 600 Khz depth calls are compared to the actual defect depths, the correlation coeflicient is 0.05 for the tube pull data set. If the uninterpolated 600 Khz phase angles are compared to the actual defect depths, the correlation coeflicient is 0.03. Both of these tests indicate that the 600 Khz phase angle provides a poor measure of real IGA depth for defects below 60 %.

ELIMINATION OF 200 KHZ INPUT FROM REGRESSION:

Several tests were conducted to determine if the 200 Khz input could be eliminated from the ag regression. The tests are tabulated below with the correlation coefficient, standard error (related to gj RMSE) and the number of significant input variables.

En gs Input variable group Correlation coeflicient Evi. Error Variables lu All 600 and 400 Khz aI Measures 0.83 9.5 11 l

400 and 600 P-P only 1

g Depth, V and phase 0.77 10.6 9

gg 400 and 600 P-P only gi V and phase 0.72 11.5 7

EI

]g Current Regression 0.81 8.5 8

i 200,400,600 P-P

}e V and phase lll

[e Current - 200 KHZ input 0.62 12.7 3

?

I The above table shows that the 200 Khz information does add some intelligence to the regression ll sizing. It also shows that the current regression formula provides a good correlation with a I

reasonable number ofinput variables.

"5 I$

11 in Pd se la e

5i r=

Page 9 of 27 OTSG IGA SIZING TECHNIQUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A i

i

l 22164 (12/95) d I

R??%??M W

]l@

'?Q k

~~

y$.Kf @/1y'[ tm;p;ctgh ]ky.;.:

v-v

.,.._ f.a xv.,,$ M

/h2.1 E J

, Q.",l.b$a

4. A.. J- /, '

, A....x M Y !QMS i

/:

t.

.e.g :y.- w p

.. zu, _ j m

4 1

TESTING OF REGRESSION ON PARTIAL DATA SET:

Partial data sets were used to train the regression coefficients. Each partial set consisted of approximately 70

% of the pulled tube data points selected at random. The remaining data points served as a test for the g,.

regression formula. The table below lists the number of calculated points, maximum and minimum error as j

gg well as the RMSE for the test case.

l E

3 gg Test Cass Number of Points Max Error Min Error llMSE j

8.!

j lg 1

12

+ 22

- 10 13.2 l

$g 2

13

+ 28

- 21 12.6 j

l"8 3

15

+ 37

- 26 16.1 a

4 13

+ 30

- 25 14.1 l

l!

5 19

+ 15

- 15 9.8 s

6 17

+ 27

-8 8.8 l

7 13

+ 30

- 21 14.3 I

t kw wm wg e

E j

El fl w

uh tl le 1

f e$

i 25 r

i Ie 1

lio ls "5

Go

[5 B

EB

$d r-IE 1

I I

X*

i 1

Page 10 of 27

)

OTSG IGA SIZING TECHNIQUE Date:

09/4/96 3

APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A j

22164 (12/95)

TESTING OF EDDYNET 95 REGRESSION TOOL:

Zetec has programmed an EDDY TOOL to automatically perform the regression sizing calculation. This tool was tested on a group ofindications in tube 90-28. Since there could be some variation in the setting of l

the phase angle for the calibration setup, the phase angle was set u61g the P-P measurement which gave

]

r.i difTerent results from the data used to train the regression. The result of the initial test of the regression tool gg are tabulated below:

ea og Digitized Point Location Original Regression Call Eddynet Tool Call DE depth 23643 50 54 49 39 23669 48 34 30 gs 23705 52 51 62 lg m

0 23722 46 60 49 23749 35 33 53 ofl 23783 36 41 45 23814 42 49 45

.g ag 23826 52 50 60 lg 23862 47 41 46 g

23870 58 53 53

}

23963 61 62 50 1

24019 52 56 56 35 ll The data shows that the regression tool demonstrated reasonable agreement with the original regression call despite some differences in the initial calibration phase angle setting. The regression tool properly sized the

[@s depths within the required accuracy.

RI t

I,18

$n E

11 et i

o 16 Udr{

'R 1

82 Page11of27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

,i 1

22164 (12/95)

[bkk

, $k 1

/,' : '

T h;)

. igj[l [

Qeh y

, y(

TESTING OF NORMALIZATION CORRECTION FACTOR:

The regression tool was developed to allow a different normalization setup to be adjusted for use with the regression. The regression development was based on setting the 4 - 20 % TW FBH to 4 volts on the 400 Khz channel. This was done since some of the older tube pull data did not have 4 - 100% TW holes for normalization. Current practice requires normalization references other than that used for the regression gl development.

p The calibration setup was performed with a second set of 100 % TW holes w. to 6 volts on the 600 KHZ ag gj channel. The 4 - 20 % FBH response was measured on 400 Khz to be 4.44 volts P - P. The correction

[g factor of 4 / 4.44 = 0.9 was entered into the regression tool setup to correct for the different normalization method. The results of the test are shown in the table below:

a a

REP US Digitized Original Volts New Volts Old Call New Call Location 600 Khz 400 Khz 600 Khz 400 Khz 23643 0.99 0.70 1.09 0.77 54 %

54 %

gg g2 gl 23669 0.15 0.12 0.17 0.14 34 %

34 %

31 This test demonstrates the proper operation of the regression tool normalization correction.

h}l tl

!=d t

l 8E i

e t

1 Pl l

1 i

9 58 sy a

e 5I E2 Page 12 of 27 OTSG IGA SIZING TECHNIQUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) h E

BLIND TEST OF REGRESSION SIZING:

Due to an oversight, two DE locations in tube 109 - 30 were omitted from the regression development training and testing. The DE results were not included in charts with the other tube pull results and it was not obvious that the data had been omitted until the oversight was discovered during a subsequent review. It was decided that this tube would be a good candidate for a blind test of the regression tool since it has not been previously analyzed as part of the IGA sizing task.

g

$g Three measurements were performed on the two DE locations. The first measurement was performed with a

yj the original regression values which contained some training information from Oconee. The second analysis y

was done with the regression parameters developed without the Oconee data. The third test was performed p

by an analyst who had never used the regression tool and had no prior knowledge of the DE result. The results of this test are tabulated below:

a kl s

Location Analysis 1 Analysis 2 Blind Analysis D3 Depth 4

10.0-10.06 33 38 38 40 Mjg 8.38-8.46 43 44 48 50 i

lij This test shows that the regression is capable of a reasonable predication in a blind test case.

E

}nl PROBABILITY OF DETECTION:

I l As part of the supporting documentation for this project, the FOD for IGA detection by bobbin coil in an

.E OTSG was evaluated. The results of the POD evaluation are documented in FTI drawing 1260216 A. The

!I POD for bobbin coil detection ofIGA in an OTSG for a defect depth of 40 % TW or greater is 0.838 with a confidence level of 90 %.

4 5

I

.P 1.it

}5g EE

  • d E

e 1

g2 Page 13 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

s 22164 (12/95) j l

CONCLUSION:

The method described is one technique which can size IGA indications in OTSG's. The regression equation was chosen to minimize the analysis time required to make the multiple calls. Alternative measurements could provide a more accurate depth estimate at the cost ofincreased analysis time. The single bobbin coil i

input was chose to minimize acquisition time. Preliminary testing has shown that additional MRPC length, width and amplitude information can provide substantialimprovements to the accuracy of predicted depth.

08 This method should be used to size IGA defects during future OTSG inspections. The accuracy of this gg gj method should be tested with all future OTSG DE IGA flaws. This method should be refined as desired as jg future information becomes available.

k8s OI Si ha D2i E!

I 1lle 51il a"

l sig 3ti*

Ie isalP 11 ESilO E5 0t I!

e 12 Page 14 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX 11 QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) 9q B

j.4 ODSCC PRIME /QTR DIFF MIX-BOBBIN gl TSP, CREVICE, I i S ll 100

,.[

+

" g.

+

+

++

DATA l

+[

+

+[

LEAST SQR'S FfT

+

++

+

+

ng

+

+

3 60-

,+

50-

+ - - + -

E 8

+

CORR COEF.23 g

g g

H 40

+

I E

30

[+

ls t--

,1E w

20 RMSE 29.0 ff

/

+

/

+

Ir 10 -.

g v

glg 0

0 10 20 30 40 50 60 70 80 90 100 3

TRUTH % THRU WALL g

og l.

x

  • c 15 e

Figure 1 - 0.750 and 0.875 IGA Sizing Accuracy Page 15 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) 7 : 7 : w.g. m y n 3"

3 5:q;-l) ; g:. =s.;} \\Q l

,.eNj.h j,[Mg,[.I 1,y.{-f-j,4{.[)(.~.h'~.

{g g;;f l

klg

~

COMPAPITIVE ANALYSIS

~

5/14/92 N

100 a

m i

D 90-w 2

/

EC DATA l

P so

/

a en Il BEST FIT.

F 70 I b

/

60=

CORR. COEF. 25%

/

50 a

g /*

3 M

s l

40 RMSE 27%

2 30-M

?

l 20-SLOPE.65

  • 7

_)

~

8

$g_

X/Y-MEAN 3b/30%

a

==

g Sg 0

=

x 0

10 20 30 40 50 60 70 80 90 100 pl L

MET PERCENT WALL LOSS 11

[9 i

50 11 eI Figure 2 - Crystal River IGA Sizing Accuracy Page 16 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/06 s

APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A P

r

22164 (12/95) 1 r g.g

,p,.,,,

r.-

,,;, <e...,. g.g x-:

s,, >y

.i, m,.. _.,... ~

..,2.

IGA Reanalysis Guidelines l'

1)

, Setup 400/200 diff P1 TSP mix, and 600/200 diff P2 TSP mix.

2)

Rotate all ch's, ever4 35 kHz, as follows: 1x100F e.40 deg; h

use maxrate for dif f ch's, use peaktopeak for abs ch's.

L-5,$

3)

Normalize 4x20%'s @ 4.00 V on 400 kHz dif f, save & store all I{

i ch's.

$g 4)

Do phase curves for all ch's; use maxrate for diff ch's, use j

g peaktopeak for abs ch's.

i J

5)

On abs calls, catch the earliest base excursion.

6 6)

TURN ON VERT MAX ANGLE IN CONFIG!

j l

7)

Save setup, analyze as primary (erase any previous calls).

el

$k

[@

Report S td 1)

Make message calls describing:

h cal group, g$

probe type and size, e

unit & outage, g

configuration. (list each CH, ex.-

Chi,600d; Ch2,600a; Ch3,400d;

.)

2)

Call ICA flaws only:

k V 's' s

1.

i V,,

X All channels & mixes l

Vv,,

o g

Always first call Vpp, then V,,, then v..

Designate Vpp, Vmr, or Vvm in the extent field. so we know which is which.

I Ex.

Qng flaw would have 22 calls if using a 4 freq setup, with dif f and abs on each Ch.

3)

Leave % TW's.

gg gg 4)

Open window wide on Vpp and Vvm.

Close window down on vmr.

g@l 5)

Click call on each Ch (do not carry ball placement from j

other channel), where possible.

E*5d

\\E RI Figure 3 - Analysis Guideline for Regression Testing Page 17 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDLX II QUALIFICATION Revision: 1 Drawing: 1260104-A

...a

.- ~

.~,..,...

c

. ~.

u.-

1 d

I e

22164 (12/95.

y=

.g-

,*k!,,,

1

' #, / '. '} $ '. g 8 v

1

[

2

)

3

. y

'w j [

.... ~.- -s.o' 1r 4

.A 1,. y 2>-

'.5,

,,y7l s ul& -

5

/.[ u)

4. \\ } ',~

1y e,

Wu

~<

.J.

... s s ka.

l'

    • ) -

e g

I

. ~.

=

i.

in w

am n

.n

.n l

i

=

n.

n in

.a 1.

1

.N

.,9

.9 M

,1 N

. 9, l

=

n

.o n

.n

.a i

n a

n n

.n in

.n 4

t u

i.

s, n

.n

.n

.=

m

.u en h

W M

,,9

.M

,1 M

(

5 u

i.

n

.=

.n gI n

n n

n

.n

.n in

.o i,

o i.

g

.n a.,

M l

.M

. 91 yJ EQ

=

a

=

.a n.

.=

=

u

.n in n.

.n n

en

.=

1 g

n n

.n n.

.n u

.n

.n u.

n

.c

,u

.n

.a

=

ng.

l M

,M I I, M

M N

l.,

1 3

n u

u

.n n.

.u

.a u

.a t

n.

M M

.N 9.

.M n

n

. 9,

.M e

.n n

.n Ng v.

n w

n ni ni

.=

.n n

en

.u 25 n

u n

u i,

u, n

en a

e.

y3 i.

,, g t; g M

9.

.M IM I.,

..I

.g

.e

.M M

A M

.M

.I

.1.

M 1

19 y,

..)

t,,

t

.,9 M

I a

m n

,a

.n

,u

.m

..i

.a t

op

,9

.M 15

.M

.I

. 9, i

e

,P.

.M 9,

.1 n

5 1,

.m

.,e i.

. 4, 14

.N

,M

.M 9,

,1

.M

.,9 N

4.

.M k

.t n_,

.9 lH

,1.

n n

.n y

n n

n, in

.o R

n,

.n

.n in i

p u,

n 11 3

EE C.amma Comme.s M

,,,M

-uou

-mou

.n.

ei

.-.un I g m,-

ye a-es !r u[

.n,

,n,

.,n.,,.

-.c

,c.,

n,.m

= = = ma m,.

..,,.,,.-..n R

Figure 4 - Regression Tabular Result and RMSE E2 l

Page 18 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

..m_

m 8

s y

e 22164 (12/95) 4 RAW (4 Eseye D190PPP PPP2 PPro P9Pe FW.2 Pwn.

PwE.

DM

.e.

.M

.HM E.Are FR. _.0 l

.n

.n

.M l.3 13.

l.a

.M i 1.

t.I 94 13 4

,, M S

9

.9

..?

13

..I 11 I tt 11 B 19 E.1 W.,

41, 53 l

,9

.M

. 8, i 11 03.

l 13, t.e

.e.1 49.

9 1

.1 41

..I

. ?s 4 99

.m i st t

u s,

.e s.1

.s a H.

93

.M

. 97

. Ff IM l.,

t,1

.M B.O

. p?

t.9 3, 9 33 as 3.

?

.3 t il tu

. 9?

. 89

. 91

.c

.9 IM I,1 39 M

.M

.?

II II 1,7 43 45.

. ?S

. a.

. 9t

.9

. 41 19 18

.fl M

$15 7 s.

15 3,

.M 4M

. 31 41 4 95 4

..e

. ft

.l M

.N 1.

3.

1

.M

. 19

.h

. 91 1.

1.

n.1 4M

. 91 1.

SS

. 91 41

. 89

.h S.,

..e g.t

.M

.3 99 3U

g. 3.

g1 5

I

.1 e tt

. 8, 1

.3

. 91

. 93 1.

I s.

.SS 43 91 4 b

1.

.9

., n

,, n

.n

. 9, 4.,

g n

n n

.n

.=

4.i

.c

.c i.

in in nu in n it pd

.9 n

1

.n i.,

i.,

.c on 4.

nn n

5g

."it

'",I 19

.)

99 1

4 I, e

n

.M

.?

.M

..)

till

.T 9 S..

8

=

n n

.u

.=

4.

.n

.9

.n u.

4.

i..

ti n

n

. 9,

.n

.c en en

.n in i.

n 4n 8%

n

.n

.c

.n

.n

.=

nn

. r, un 1

fW u

si

.3 an

..a 4m

.n

.n

.c

.u nn

.n uw o5 s,

s.

n

.i.

.n

..i

.es en t ii

..s i s.

..s s,9 t oi 05

=

u

=

.c

.n in

.o in

.n un

.i n

i..

n u

en su su en en sn

.n su su nu do un M

S.

.n t

. 97

.N

. 99

.9

. 39

.M

. 31

3. 9 4 31 H

M

. 91

. 51

. 19

. 9.

..?

.M

.N

.l I 99 n

w st

. 9,

.=

.c i.

an en in en un en gg n

n n

.n en en

.c

.n nn

i. n in n ga n

n u

en

.w au en

.=

.n en in

.=

un un in n gg

. 9,

. 9,

,9 n

in S.

31 1.

..)

.M 4

.n

.n

.1

. 31

.1

. 8) f1 t ri

..t t,

M

.7

..l 49, 4 95

. 86

..I

.n t

. 9,

., 91 49

..I "2

.n n,.

i.,

. 9,

.c

.c 4.

.n

.n

.u i

un in in i

l n

3.

i.

4n 4n

.n em

.c n.

..i 4,

39

.I

. 99

.1

..I 11 19

.c

. 9, I 19 I.9 33 N l?.9 3,

.4 4.,

41.

.n 44

.n

.N

.n

.h MJ7 des nm N

.N

.M

. 91 99 19

.N I.t M

13 8.

351 M B

.s is n

.a 4 i.

4=

.=

.u

.n

.w

.m u.

a.

,i n ri o

si w

i.

4w an su

.n

. s.

nn en

.=

1

.9

.)

1,

. l.

41.

. 91

.M

.I.S lSS

9. N fE n

n.

.n 4n

.o

. 9, in

.n n,.

in,9 in

.n 4.

. 9, nn 4e

,, n g

I,,

.n en

.n

. 9,

- it e

. 9, i.

1

. 9, n o, n,

I j

.n

.c i ii n

n

.o

.n

.9 n.9 l5I

.c

. i.

.n i.

i.,

n.

COtWT

$3 Aspeeme. 0mape O

c-AvC,.Q 11

.MM t.5 M < V.m u.,

3 u.

.i, n yg

u. <-

e o.,es. < -

.e.

.ed

%[

. c n.

.,n

. < c.,

..n

..u g

A Figure 4 (cont.)- Regression Tabular Result and RMSE Page 19 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95)

.l

.a.

... 7 i

i l1 OTSG IGA SIZING BY REGRESSION 1

!j CORRELATION = 0.81, RMSE = 8.5 g

4 I

av F120 p

o.

.g w 100 -

iu O


7 o

g C,

80

/-

In

/

LaJp i,l

<c 60 -------------n-g 2

..j. y....

....................s...

M...

o g

1 w

20 -- - - - - - - - ' - - - - - -

1 F

h.

O 0

d W

r 0

20 40 60 80 100 R

j)

TRUE DEPTH BY DE

[11 s

1

- (Linear Fit) he IB h

O e

E Figure 5 - Plot of Sizing Technique vs Depth by DE Page 20 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A

.~...

I 22164 (12Mi a

l Examination Technique Specification Sheet ETSS # Bobbin _otsg_ iga _ qual Page 1 of 4 TUBING g

Material: Inconel 600 OD: 0.625" Wall: 0.037" g

Test Application: This technique applies to detection and sizing of volumetric intergranular attack (IGA) found in freespan, mid support and tubesheet crevice areas of OTSO tubing. The technique is not qualified for detection or e

B,y sizing ofindications inDuenced by deposits, dents or suppod structure edges or where a mix is required for detection.

gg ACQUISITION TECHNIQUE g

Bobbin Probe X

Rotating Probe Other 1

nE lu DATA ACQUISITION s$

Instrument Irobe l

Manufacturer: Zetec Manufacturer: Zetec Ew l

gg Model: Miz 18a, MIZ 30 Diameter: Fill factor =>82 l

Acquisition System Software Part Number: A ***-(M)/ULC HF d

3 Manufacturer: Zetec Probe Cable Length: 100' I

j Description or

Title:

EDDYNET Analog Probe Extension I

EDDYNET95 i

Manufacturer: Zetec Version / Revision: Revision 2 or egoiv.

Length: 50' il j

g Frequencies / Coil Excitation Modes "r

Differential Mode Absolute Mode h

g Channels / Frequencies / Gain / Volt Channels / Frequencies gl l

1 600 / 1 /11 Khz 5 200 /1 /11 Khz 1

Khz 5

Khz

  • l 2

Khz 6

Khz 2

Khz 6

Khz t

s 3 400/1/11 Khz 7

Khz 3

Khz 7

Khz Mg W

4 Khz 8

Khz 4

Khz 8

Khz E

e Data Recording Equipment A

{

Manufacturer: any Model: digital ya Page 21 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) h{.[

&f { f aum2

_#g{pijp}ri

~'

/

j/ g,,

s g,,

,;:.y...;-

f f'l:.;.

gt; 1

g.

,p - w yF 1 3

.my w

.2 I

Examination Technique Specification Sheet I

ETSS # Bobbin _otsg iga _ qual Page 2 of 4 Digitizing Rate, Scan Direction & Scan Pattern Bobbin Probe Rotating Probe E

Digitizing Rate Min (DR) 30 sam / inch Digitizing Rate Hin (DR) kEg Sample Rate Min (SR) 400 Sample Rate Min (SR)

Probe Speed (PS) 12"/see to 57"/see Withdrawal Speed Max (WS)

Sean Direction axial Rotation Speed Max (RPM) a

,___.._._.._.m_

for the cin;umferendal W SR = DR min x (1/ RPM) x (1/ tube diameter)x 19.09 g

DATA ANALYSIS 8

Instrument Analysis System Software i

35 e

9E Manufacturer: HP Manufacturer: Zetec l

Model: 300/400/700 Series Description or

Title:

EDDYNET Revision: Revision 3 or equiv.

[

Analysis Channels Single Frequency Channels _1,3,5 Channel Channel "l

E Span Setting 100% @ 50 % fsh g

le v

Phase Rotation 100% @ 40 deg ils using max rate 5

Calibration Std.

ASME i

5 s=

Calibration Curve Phase 20,60,100%

i l

@E gI Volts 4 V @ 400KHz on 4 X!

  • 20 % FBH (or y

equivalent conversion)

IIe Page 22 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDLY H QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95)

Examination Technique Specification Sheet ETSS # Bobbin __OtSg___ iga __ qual Page 3 of 4 Analysis Channels (Cont'd)

Process Channels Channel Diff/ Abs Channel Diff Abs Channel Diff/ Abs E

Span Setting h@

5 Phase Rotation Calibration Std.

Og Calibration Curve g

d ag Volts P

Uh Mi"I"9 Frequencies et Filtering ti%

Analysis Guidelines gl This technique applies only to the detection and sizing of volumetric gg intergranular attack (IGA) found in freespan, mid support and tubesheet gg crevice areas of OTSG tubing. The technique is not qualified for detection 55 or sizing of indications influenced by deposits, dents or support structure edges or where a mix is required for detection.

l Detection of indications is based on analysis screening of 400 kHz jnl lissajous data on a span setting equal to or lower than the setup on page a

2.

Detected indications should be reviewed on the 600 and 200 kHz data for gh proper OD flaw like characteristics.

If the indication exhibits OD flaw g

gg like response, and the indication can be classified as a volumetric IGA 2

then the lissajous window should be adjusted for proper signal measurement.

f5 Press the regression tool button in EDDYNET and verify the proper ' ball Wl placement' on the lissajous signals.

If necessary, the signals may be l8 measured individually for each channel. Once the call is correct, press the ' Report Regression' key to record the call.

k The three channels of peak to peak measurements are used as inputs to the f

g formula defined on the attached page.

c EB Ed l

E Technique Performance i

i e

Detection Probability at 40 % TW (90% CL)

RMSE String Error. % through-wall 0.82 8.45

,%TW Page 23 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 l

Drawing: 1260104-A

]

22164 (12/95)

Examination Technique Specification Sheet ETSS # Bobbin OtSR IRS Qual Page 4 of 4 II

  • Analysis Guidelines:

\\

3 The variables are designated as follows:

ha 200 KIIZ peak to peak phase D200PPP peak to peak voltage D200PPV 5,$

400 KIIZ peak to peak phase D400PPP peak to peak voltage D400PPV 600 KIIZ peak to peak phase D600PPP peak to peak voltage D600PPV E

These voltages must be multiplied by a correction factor of (4 / peak to peak voltage of four 20 % FBII measured at 400 Khz).

a" Some modified values are calculated from these values to improve the regression model:

PPP200 -

SIN ((D200PPP+50)*3.1416/130) 8g O

PPP400 -

SIN ((D400PPP+50)*3.1416/180)

PPP600 -

SIN ((D600PI'P+50)*3.1416/180) 0W These convert the phase angle to a single valued function ofdepth.

h5 D200PPV ^.25 g

PWR2 g*

D400PPV ^.25 PWR4 eg D600PPV ^.25 5a PWR6 3l I

These reduce the exponential response of voltage versus depth.

PWR2 / PWR4 R24 0f PWR4 / PWR6 i

R46 i

PWR2 / PWR6 p

R26 These variables are ratios of voltage responses at difTerent frequencies.

h REGRESSION FORMULA:

The above variables are combined as follows to estimate the depth:

I8 Estimated depth = 361.14

- 553.38

  • PWR6

+924.72

  • PWR4
  • .[

391.12

  • PWR2 3

513.00

  • R46 9

+138.64

  • R26 50

+ 32.67

  • PPP400 f

+ 0.180

  • D600PPP

+ 0.176

  • D200PPP g

IIr*

I Page 24 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

22164 (12/95) t 4

APPENDIX A List of all Pulled Tube OTSG IGA Defects N

8 98 ag ANO Pulled Tube list 1page E

g CR-3 Pulled Tube list 7 pages lg8

,t b"$

s 11 1

ya

i wa yil i

E!!!

Xl 5w

$Itlal ai 3x is 2

pf l1 s

1::lIsIs

\\d E

e 5ir*

Page 25 of 27 OTSG IGA SIZING TECIINIQUE Date:

09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

. - -. ~ -. _ _

_ ~. - ~_

l k

ANO ONE PULLED TUBE IGA RESULTS Flaw identiflcaten DE Results Field (Pre-pus) ECT Depth Can and Tape No.

Lab (Post-pub) ECT Depth Cas 500 Bobbin

$10 BotMn 540 Bobbin Flaw trbel Plant S/G Date Puned Row-Tube Sean Location Max Depth Ave Depth cab %TW EPRI %TW Tape No. cab %TW Tape No. Cat %TW Tape No.

500 510 540 1

ANO-1A 07/78 77-17 Piece 1, area b UTSF + 0.63 100 75 1A 70 2

ANO-1B 11/82 73-8 Ptem 2, area 1 UTSF + 5.50 100 84 84 194 92 3

ANO-1B 11/82 73-8 Pieco 2 area 2 UTSF + 5.00 100 84 63 194 88 83 60 60 194 4

ANO-1B 11/82 73-8 Piece 2. area 3 UTSF + 4.60 100 5

ANO-1B 11182 73-8 Piem 2. area 485 UTSF + 3.50 70 36 36 194 NQt i

6 ANO-1B 11/82 73-8 Piece 2, area 6 UTSF + 0.50 100 84 84 194 100 7

ANO-1B 11/82 112-19 Piece 4, area 1 15TH - 2.25 20 63 63

?

NOD 8

ANO-1A 03/84 77-34

?

UTSF 100 ODI C3

?

?

- Notappucable Nv. _ * - Data for Fisws 1 through 7.

Regression Data for Flaws 1 through 6.

7 Not researched or not found X axis Fleid 500 Bobbin Cat X axis: Field 500 Bobbin cab UTSM Upper Tubesheet Secondary face by More than 1/4 inch Y 2: DE Max Depth Y axis: DE Max Depth UTSF Upper Tubesheet Secondary Face, within +/- 1/4 inch LTSM Lower Tubenheet Secondary fem by More then 1/4 inch Ro0ression Output (Y-Intercept computed):

Regression Output (Y-Intercept computed):

LTSF t.ower Tubesheet Secondary Face, within +/- 114 inch Constant 29.302 Constant 55.928 Std Err of Y Est 29.563 Std Err of Y Est 6.641 R Squared 0.216 R Squared 0.765 R1ferences:

No.of Observations 7

No. of Observations 6

9 31-114377100, Asw.ssment of ANO-1 OTSG Conditon for Arkansas Degrees of Freedom 5

Degrees of Freedom 4

r Power and Light Company 06-23-83.

X CoefRdent(s) 0.792 X Coef5cient(s) 0.554 (Data for Raws 2 through 7).

Std Err of Coef.

0.675 Std Err of Coef.

0.154

2) RDO:84:5303-04:02 Exmarunation of OTSG Tubes B73-8 and B112-19 from ANO-1,0610-83.

Regression Output (Y-Intercept set at 0) :

Regression Output (Y-Interupt set at 0) :

(Data for Raws 2 through 7).

Constant 0

Constant 0

3) Performance Demonstration Database, Chapter 7 Puned Tube Std Err of Y Est 27.967 Std Err of Y Est 16.015 L

Database, June,1994.

R Squared 0.158 R Sq0ared

-0.710 (EPRI %TW for Saws 2 through 8; DE data for flaws 2.7; No. of Observations 7

No.of Observat:ons 6

i their report stating that there was no Seid car for Saw 3 is Degrees of Freedom 6

Degrees of Freedom 5

l inacarate, and their reaaalysis is dismissed.)

X Coomcient(s) 1.191 X Coefficient (s) 1.301 l

4) Tuban database reports.

Std Err of Coef.

0.148 Std Err of Coef.

0.090 (Supercedmg source for Fleid Can %1W for Saws 1 through 8.)

SUMXMY2 is 5998 SUMXMY2 is 4149

5) 1190991 A-2, OTSG Puned Tube Catalog. 08/02/95.

div by 7 is 856.857 div by 6 is 691.500 (Data here for ANO Saws confNds with ref 1,2 and 4.

RSMEis 29.272 RenAE is 26.296 This source considered innaurate and is not used for i

the ANO flaws.)

See Graph ANO-1.1 See Graph NO-1.2

6) 51-1141742-00, ANO-1 OTSG Tube Preaminary Assessment for Arkansas Power and Ught Company. 03-25-83.

(Source not used.,Dupilcates ref 1 and 2. Usted here to Notes:

note that Fleid ceas for Sews 3 and 4 were reversed in the

1) DE Max depths for flaw 5 areas were 70 %TW for area 4 and 60 %1W for area 5.

I Detaued Summary, but corred in the Appendix Table.)

2) A 1978 ANO EC car sheet reports flaw 1 as 70 %TW. Reference 7 repous the Raw 1 Sold EC can as 80 %TW.

1

7) LR:78.6206-01:4, Final Report on Tube 77-17 From Arkansas A 1982 ANO EC history reports the Raw 1 field EC cat as ?5 %TW. Tu%n records the Bow 1 field EC can as Nudear One. 07-24-78.

75 %1W the accepted value.

(DE and tab data for new 1.)

l

}

rI, I

(!

(

l l

1[l t

6 6 6 6 6 6 6 6 6 6 8 6 6 6 8 8 8 8 8 8 8 668 66 6 8

)

t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 U

e 0 0 0 0 r

1 1 r f

r 1 f

r f f f

f 1

f r

f 1 r f

1 1 1 r 7 7 7 7 7 7 7 7 7 7 7

( 1 1 t r 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 0 0 0 1 1 1 1 1 1 1 1 1 1 1 r

r f

1 t r r 1 t 1 t

1 t t t

1 r t 1 t f

1 t r r r 1 r

2 2 22 2 2 22 2 2 2 p

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T

S.

1 2 3 0 3 9 6 1 7 5 g

.0 6 4 8 -

- - - - - - - - - - - - - 7 9 0 3 2 - 1 3 - - -. - -

9 0 1 2 1 2 3 2 0 0 00 J

)

f e(

i 8

k e

0 0 5 4 5 5 7 3 2 2 a n 0 -

5 1 8 5 4 7 8 7 3 4 c o 1

nh apP zH)

K f(

4 2 4 7 1 3 1 6 1 7 5 0 t

- - - - - - - 1 1 2 1

- - - - - - - - - - - - - 3 2 4 3 2 - 1 3 - - - - - -

s 0 a 000 0 000 00 00 2

V C

P 4

. R )(

t 8

7 2 2 7 3 22 o0 e 2 27 N2 s

. - - - - - - 4 0 -

5 $

5 2 1 5 4 7 8 5 a 1

1 e

h m

p nP a e b

Tl Tt 7 * "

  • u

)t

'5 a

V "9 3 r

(

5 5 7 2 "0 1

e

+

0 7 4 2 0 0 7 3

  • 4 5"

"5 6*

s F

1 9 8 8 0 1 r6 8 1

- 9 8 - - - - - -

e S

t 1 1 1 1 f f "f

  • / "/

1 f 1 t 1 1 f f 1 f 1 1 f f "f

  • /

1 /

C T

0 5 "1 0 0 2"

5 1 4 2 8 8 t

L

- - - - - - - 0 2 0 9 0 1 92 1 1 S

c 0 9 8 5 0 97 6 p

o 1

eD

.L m.

T W

C T

NNNN O NNN NN O NN OOOOOO E)

- - - - - - - / /

I

/ D

- - - - - - - - - - - - - ///

//DI I

DDDDDD SSS SSN SS NNNNNN SSSS N t

e C

o 7

N 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 6 6 6 6 6 6 8 6 6 8 8 S

e 8 8 8 8 8 8 8 8 8 8 8 8 5$ 5 5 8 5 5 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 Ie ap i

m F

T r

s 7 5 2 8 7 30 1

5 8 Ht

- - - - - - - 4 95 9 -

- - - - - - - - - - - - - 0 7 0 7 - - 6 8 - - - - - -

K o 0 V 00 00 1 1 1 0

00 08ne tt s 5

8 e

9 8

9 1 7 6

0 0 4

4 -

1 2 0 0 - -

1 o a 7

7 9

B h 1

1 1 1 1 1

1 F P H

0

  • m 1

+

5 F "2 "2 "3 "9 "0

  • 5 8

"6 *8 nS 8 8 eT

- - - - - - - 1 2 0 10 - - - - - - - - - - - - - 3 8 3 2 - - 5 2 - - - - - -

0 7 6 8 8 4

b L 0 9 8 5 0 1

1 u

1 c

T o L

m W

O0OOOO T 0OOOOOO NNNN8 OOO0OOOOOOODO N 6 N 2 DD/

NNP NNNNN

/

OO N 8

% 0DDDDDD / / S S L NNN7 O0DODD

/ / C DDD0ODDODDDDD/S 4 S 6 NN S 7 s 4 NNNNNNSS P

1 NNNN P

e C

h 1

3 tp e

2 6 3 8 3 0 3 5 2 7 4 8 1 7 00 3 8 0 6 5 3 3 8 9 9 0 1 4 6 0 0 6 9 4 5 5 1 2 4 5 6 6 R tad 3 2 3 1 3 3 1 4 4 4 3 3 5 3 3 3 4 4 5 2 4 4 4 1 4 4 5 4 5 4 d

e e

a v uT A se R

nep 9

E - e D 2eD 2 6 3 8 3 0 3 5 2 3 4 8 1 9 0 0 2 9 3 8 5 5 0 8 6 3 O 6 4 8 6 4 6 9 4 5 8 6 W

3 2 3 1 3 4 1 4 5 5 3 3 5 4 3 3 8 4 $ 2 4 4 6 1 4 5 S 5 5 4 4 4 5 1 '2 ta ax T M 1 +

- F 8 1 1

5". 3 "4 0" "8. 6 3 8 "1

"4 4

"0. 0 "9 5-0 2 1 5 1 8 0 2 9 3 8 5 8 3 "0

". 3 7. 1 3 S 5

1 1

aT twL 6 5 4 4 12 7 6 5 5 4 4 3 2 2 1 1 0 0 07 6 4 1 9 8 8 7 8 5 3 2 1 1 1 0 8 6 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e c T oL 1

2 2

- 0 2

2 D

X. V. 2 2T. S. Q 0 N. K U1 E.

2 2 m

3 1w X USRP N. L M

H GE C. W T.R P0MK1 G1 b K.2.G.0 8 t

F A, B 2 I.

m e

1 1 1 F A1 A 1 1 1 t 8

E.

n lo teF N

K1 0

XVTS s

D T

A m

m n

i 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 22 2 2 2 2 222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 o

tce S

n a

Se e

c b

n u

1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 e

2 - 5 5 45 5 5 5 45 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 u

t 5 5 - -

l e

- 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

7-7 7 7 7 7 7 7 7 7 n

5 5 5 5 5 5 5 5 5 5 5 5 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 k

e w

R o

hF de S

T u

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 s

L P / 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

/ 9 9 9 9 9 9 9 9 / mt 9

/

/

t

/ / /

7

/

/ / / / / / / / / / / / / / / /

9 / / / / / / / / 9 U

6 /6 /6 6 /6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 e 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 000 0 0 0 0 0 0 00 0 0 0 0 0 0 SE ta R

D AG G

I 8 888888 88 8 8 8 8 88 8 8 8 88888888 8 8 8 88 8 8 8 8 8 8 8 8 I

S 3 - - - - - - - - - - -

S n

- 3 3 3 3 3 3 3 3 3 3 3 3 3 43 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 E

t R R RRR RRRR RR R R RRR R RRRRRRRRRRR RRR RR RRRRR R U

la CCCCCCCCCCCC CCCCCCCCCCCCCCCC CCCCCCCCCCC T

P O

E le f7 LL b

n U

a 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 P

9 o1 2 3 4 5 6 7 8 9 0 1

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 t

L t

1 1 1 1 1 1 1 1 1

2 2 e

3 w

R la jlF

3R 3 PULLED TU8E IGA RESULTS Fisw Identr6caton DE Results Lab (Post-puR) ECT Depth Can Table 3-1 Table 3-1 Table 2-9 Table 3-1 Lab 510HF Bottin 600KHz Ttben 520 RPC 200KHz pancake Flaw Label Ptant S/G Daw Puned Row-Tube Section Fisw 10 Loc LTSF+* Max Depth Ave Depth Cat %TW BTM+*

Loc LTSF+*

Phase Volts Can %TW BTM+*

Loc LTSF+*

Phase Volts NDD 9

CR-38 06/92 52-51 2

X 16F 32 32 NDO NDO 10 CR-38 06/92 52-51 2

U 15 7 26 26 NDO 11 CR-38 06/92 52-51 2

5 14T 33 33 S/N 16.97 14.37 107 0.35 NDD NDD 12 CR-38 06/92 5241 2

R 14.1*

18 18 NDD NDO 13 CR-38 06/92 52-51 2

P 13.1*

33 33 NOD 14 CR-38 06/92 5241 2

N1.N2 12.4*

40 30 NDD NDO L

11.4*

13 13 NDO NDO 15 CR-38 06/92 5241 2

16 CR-38 06/92 5241 2

K1.K2 11.0" 45 45 NDD S/N 13.00 10.40 125 0.35 1?

CR-38 06/92 52-51 2

11.t2 10.0" 52 42 S/N 12 21 9.61 130 1.02 NDO 18 CR-38 06/92 5241 2

F.O 8F 53 47 S/N 10.91 8.31 87 0.79 S/N 10.88 8.08 64 1.13 19 CR-3B 06/92 52-51 2

0 6.5" 34 34 S/N 8.64 6.04 154 0.97 S/N 8.14 5.54 103 0.88 20 CR-38 06/92 52-51 2

B

-1.0" 38 38 NDD NDO 21 CR-38 06/92 90-26 2

AF 17.2" 51 51 NDD NDD i

22 CR-38 06/92 90-28 2

AD1.AD2 16f 49 37 S/N 23.66 16.16 164 1.08 S/N 23.27 15.77 45 0.76 23 CR-38 06/92 90-28 2

AB 15.5" 30 30 NDO NDO 24 CR-38 06/92 90-28 2

Z 15 #

30 30 NDO NDO 25 CR-38 06/92 90-28 2

X1.X2 14 8" 62 43 S/N 21.92 14.42 91 0.65 SIN 21.28 13.75 52 0.58 26 CR-3B 06/92 90-28 2

V1.V2 14.0" 49 48 S/N 21.39 13.89 130 1.12 NOD 27 CR-38 06/92 90-28 2

T1.T2 13_2" 53 50 NDO NDD 28 CR-3B 06/92 90-28 2

St.S2 12 9*

28 26 NDD NDO 29 CR-38 06/92 90-28 2

Q 12X 45 45 SIN 19.72 12.22 143 0.66 NDO 30 CR-38 06/92 90-28 2

0 11 #

45 43 S/N 18.99 11.49 132 1.07 NDO 31 CR-38 06/92 90-28 2

M.N 11.5" 60 43 S/N 18.61 11.11 116 0.46 S/N 18.54 11.04 76 1.47 32 CR-38 06/92 90-28 2

K 10.8*

18 18 NDD NDD 33 CR-38 06/92 90-28 2

H.I 10 7 46 49 S/N 17.65 10.15 100 0.46 NDD 34 CR-38 06/92 90-28 2

G 10 0" 53 49 S/N 17.21 9.71 126 1.06 S/N 17.25 9.75 70 0.71 33 CR-38 06/92 90-28 2

E 7#

$0 50 36 14.78 7.28 122 1.66 S/N 14.89 7.39 86 0.92 36 CR-38 06/92 90-28 2

B,C 61*

56 41 S/N 13.32 5 82 99 0 91 S/N 13 22 5.72 91 0.96 37 CR-38 06/92 97-91 2

W 14f 54 54 52 21.89 14.39 103 0.93 S/N 21.88 14.38 71 1.41 32 CR-38 06/92 97-91 2

s.T.U 11.5" 48 46 62 19.19 11.69 91 0.64 C.N 19.17 11.67 69 1.74 39 CR-38 06/92 97-91 2

R1 9.3" 4

4 NDO NDD 40 CR-38 06/92 97-91 2

P 8.4*

46 50 S/N 15.82 8.32 124 0.79 S/N 15.82 8.32 117 1.09 c1 CR-38 06/92 97-91 2

O a 0" 54 50 44 15.54 8.04 113 0.75 S/N 15.51 a 01 114 1.00 C2 CR-38 06/92 97-91 2

M 7.1*

16 16 NDD NDD 43 CR-3B 06/92 97-91 2

K 6.6" 29 29 NOD NDD 44 CR-38 06/92 97-91 2

1 5.6*

4 4

NDO NDD 45 CR-38 06/92 97-91 2

G 3X 5

5 NDO NDO 46 CR-38 06/92 97-91 2

D.E1.E2 2r 8

6 NDD NDO 47 CR-38 06/92 97-91 2

b 1.1*

6 6

NDD NDD

' age 2 of 7 m

Ca-3 PULLED 7USE GA RESULTS Flow :_ - -.

DE Resu8s Flekt M ECT Depet Cet and Tape No.

Telpe 3-1 Tatdo 31 Table 2-9 Tatdo 3-1 Tuben 510W 8abtei 800KHz Tuben 520 RPC 200KHz pencake I Voss00 ' Tape 0/IO Flaw Let et Ptent StG Date Puned Row Tube Section F1sw 10 Loc LTSF+" Mar Depih Ave Dope Ces %TWLoc LTSF+*

Phase VtWts Tape No. Cet %TWLoc LTSF+(Illf)

Phased)

Vo8s(D ' Pnese00 48 CR-38 06/92 106-32 2

8F 8G 166" 17 15 NDO 5

NDO

- 1 121/127 49 CR-38 06/92 10642 2

BC.80 15.6" 31 31 NDO 5

NDD -

121/127 50 CR-38 06/92 106-32 2

AZ.8A.88 14r 22 20 POO 5

NDO -

121/127 51 CR-38 06t92 10 W 2

AY 14.8*

36 36 S/N 14.34*

110 0.30 5

POO

-f-1211127 52 CR-38 06/92 10642 2

AX 14 7 32 32 NDO 5

NDO -

121/127 53 CR-38 08/92 10842 2

AUAV 13 5*

39 34 POO 5

NDO

-f-121/127 54 CR-38 08#92 10642 2

AT 13.2" 31 St S/N 12.82" 162 0.57 5

S/N 12.12"(13.41*

41 0.12 76 0.13 121/127 55 CR-38 06/92 10642 2

AR 12 7 19 19 NDO 5

NDO -

121/127 56 CR-38 06/92 10432 2

AQ1AQ2 11 7 46 35 SJN 1124*

131 0.34 5

S/N 10.78"(1128" 45 0.13 61 0.14 121/127 57 CR-38 06/92 10432 2

AOAP 11r 42 27 S/N 10.91*

147 0.48 5

NDO -

121/127 58 CR-38 06/92 108-32 2

AM123AN 10 #

36 27 NDO 5

NDO

-f-121/127 59 CR-38 08/92 100-32 2

ALtAL2 10.5*

16 11 NDO 5

NDO -

121/127 C3 CR-38 06/92 10& 32 2

^ AK 100" 40 39 S/N 9.48*

156 0.55 5

S/N 9.09"/10.13" 87 0.20 93 0.27 121/127 61 CR-38 06/92 106-32 2

AJ 97 38 39 NDO 5

NDO

- 19 81*

80 0.12 121/127 g2 CR-38 08/92 100-32 2

AH 8.9" 29 35 NDO 5

NDO f -

121/127 g3 CR-38 06/92 100-32 2

AG1AG2 ST 40 35 S/N 8.22" 138 0.34 5

S/N 8.17"/8.85*

101 0.25 8

0.19 121/127 64 CR-38 06'92 100-32 2

AC2ADAE 77 25 24 POD 5

NDO

- f-121/127 65 CR-38 08/92 10432 2

ASAC1 7.4*

18 18 NDO 5

NDO

-/-

121/127 66 CR-38 06/92 10432 2

ZAA 7.0" 51 34 NDO 5

NOO 121/127 27 CR-38 08/92 10& 32 2

X1.X2.Y 6.4*

49 28 S/N 5.78*

135 0.84 5

S/N

.,5.77"/8.35" 101 0.32 92 0.37 12tt127 68 CR-38 06/92 100-32 2

V2 SX 14 14 NDO 5

NDO

- / -

12tt127 69 CR-38 06/92 106-32 2

q

-Of 7

7 NDO 5

121/127 70 CR-38 06/92 10632 2

N

-tr 15 15 NDO 5

- f.

121/127 71 CR-38 08/92 10432 2

H.lj K.B

-2X 31 14 NDO 5

1 -

121/127

~2 CR-38 06/92 10842 2

F

-3.4*

9 9

90 0 5

- t-121/127 23 CR-38 06/92 10642 2

E

-3r 23 23 NDO 5

- I-121/127 75 CR-38 06/92 10432 2

e

-5 4" 7

7 NDO 5

1211127 75 CR-38 06/92 41-44 2811 15.5 37 32 90 0 7

NDO 12e 76 CR-38 06/92 41-44 2810 13.8 30 30 POO 7

S/N 13.37*

72 1.61 126 77 CR 38 08/92 41-44 288 11.5 55 55 S/N 12.08 117 0.88 7

SIN 11.89" 29 2.50 128 78 CR-38 06/92 41-44 286 8.8 35 33 POD 7

90 0 126 p

79 CR-38 06/92 41-44 284 7.5 28 19 POO 7

S/N 7 20" 125 2.06 128 i

03 CR-38 08/92 41-44 292 50 40 40 S/N 8 88" 118 0 89 7

S/N 4.99" 115 1 44 12s 81 CR-38 04/94 66-46 3

-06 75 88 LC8 59 f

St CR-38 04/94 72-49 2

0.0 19 19 LC8 2

l L

I I

m l

Page 3 of 7

.- ~

CR-3 PULLED TU8E IGA RESULTS Flaw identrhcoten DE Results Lab (Post-put) ECT Depth Cas Table 3-1 Table 3-1 Table 2-9 Table 3-1 Lab 510HF Bobbin 600KHz Tuben 520 RPC 200KHz pancake Flaw Label Plant StG Date Puned Row-Tube Secten Fisw ID Loc LTSF+* Max Depth Ave Depth Can %TW BTM+*

Loc LTSF+*

Phase Volts Call %TW BTM+*

Loc LTSF+*

Phase Volts 48 CR-3B 06/92 106-32 2

BF.BG 16 6*

17 15 49 CR-38 06/92 106-32 2

BC.BD 15.6*

31 31 50 CR-38 06/92 106-32 2

AZ.BA BB 14.9*

22 20 51 CR-38 06/92 106-32 2

AY 14.6*

36 36 52 CR-38 06/92 10642 2

AX 14X 32 32 53 CR-38 06/92 106-32 2

AU.AV 13.5*

39 34 54 CR4B 06/92 10642 2

AT 13.2" 31 34 55 CR-38 06/92 10642 2

AR 12.3*

19 19 56 CR-3B 06/92 106-32 2

AQ1.AQ2 11.7 46 35 57 CR4B 06/92 106-32 2

AO,AP 11.2*

42 27 58 CR-38 06/92 106-32 2

AM123.AN 10.8*

36 27 59 CR-38 06/92 10642 2

AL1.AL2 10.5*

16 11 60 CR-38 06/92 106-32 2

AK 10.0" 40 39 61 CR-3B 06/92 106-32 2

AJ 9.T 38 39 62 CR4B 06/92 106-32 2

AH 8.9*

29 35 63 CR.38 06/92 106-32 2

AG1.AG2 87 40 35 64 CR-38 06/92 10642 2

AC2.AD,AE 77 25 24 65 CR-38 06/92 10642 2

AB.AC1 7.4*

18 18 66 CR 3B 06/92 106-32 2

Z,AA 7.0*

51 34 67 CR-38 06/92 106-32 2

X1 X2.Y 6.4*

49 28 68 CR-38 06/92 106-32 2

V2 5.3" 14 14 69 CR-38 06/92 106-32 2

q

-0 6" 7

7 70 CR-38 06/92 10642 2

N

-1.8*

15 15 71 CR-38 06/92 10642 2

H.1J.K.I

-2.3*

31 14 72 CR-38 06/92 106-32 2

F

-3.4*

9 9

73 CR-38 06/92 106-32 2

E

-3.s*

23 23 74 CR-38 06/92 106-32 2

c

-5 4' 7

7 75 CR-38 06/92 41-44 2811 15.5 37 32 7

?

?

?

?

?

?

?

?

?

76 CR-38 06/92 41-44 2810 13.6 30 30

?

?

?

?

?

?

?

?

?

?

77 CR-38 06/92 41-44 288 11.5 55 55

?

?

?

?

?

?

?

?

?

?

78 CR-38 06/92 41-44 286 8.8 35 33 7

7

?

?

?

?

?

?

?

?

79 CR-38 06/92 41-44 2B4 7.5 26 19 7

7 7

7

?

?

?

?

?

?

80 CR-38 06/92 4144 282 50 40 40

?

?

?

?

?

?

?

?

?

?

81 CR-38 04/94 68-46 3

-06 75 68

?

?

?

?

?

?

?

?

?

?

82 CR-38 04/94 72-49 2

00 19 19 7

7 7

7 7

7

?-

?

?

?

l Pag 3 4 of 7

CR-3 PULLED TU2E IGA RESULTS

- Notapplicable

? Not researched or not found UTSM Upper Tubesheet Secondary face by More than 1/4 inch UTSF Upper Tubesheet Secondary Face, within +/- 1/4 inch LTSM Lower Tubesheet Secondary face by More than 1/4 inch LTSF Lower Tubesheet Secondary Face, within +/- 1/4 inch

~

S/N Signal to Noise less than 5 (Ref 12, p.B-1).

Flaw ID's UPPERCASE ARE IGA; lowercase are pits.

Sage 5 of 7

s__._m.m________.-_.._____..___.-

.m i

CR-3 PULLED TUBE IGA RESULTS t

Notes.

References.

1) Some flaw ID's were grouped as one flaw, as in Table 3-1 of Ref 12. Some of
4) Tuban database reports (Supercedmg source for aR flaws' Field Bobben and RPC:

these grouped Raws in Table 3-1 were split and Ested as separate taws to Call %TW, Loc LTSF+", and Tape No. For flaws 7542: Field match separate EC caus. These split flaws keep their combined average depth.

~

Bobbe and RPC: Phase, and Volts.)

2) Flaw 30 and 31 (O and M.N) was split from the single entry in Table 3-1, using
12) TR-103756 Exammabon of Crystal River Unit 3 Steam Generator Tube Reference 12, Figure 2-37 on p 247, to better comslate EC cans.

r Sechons, April 1994.

3) Flaw 33 and 34 (H,1 and G) was spHt from the single entry in Table 3-1, using l

(For Raws 9-74: Table 2-9 used for Max Depth, Table 3-1 used for Reference 12, Figure 2-37 on p 247, to better conelate EC cans.

Flaw identificabon. Ave Depth, Field and Lab 510 Bobben calls.)

4) Fisw 40 and 41 (P and O) was split from the single entry in Table 3-1, using
13) 1217887A-0. Eddy Current Exammahon of Puged Steam Generator Tubes, Reference 12. Figure 2-37 on p 247, to better correlate EC caps.

Crystal River Unit 3,9/8/92.

5) Flaw 53 and 54 (AU,AV and AT) was sput from the single entry in Table 3-1, using (For flaws 9-74: Field Bobben and RPC: Phase, and Volts; and Referena 12, Figure 2-37 on p 247, to better correlate reanalysis EC cats.

+

I all Lab ECT data.)

6) Flaw 60 and 61 (AK and AJ) was split Itom the single entry in Table 3-1, using
14) TR-106483, Analysis of Steam Generator Tubing from Crystal River Unit 3 Reference 12, Figure 2-37 on p 247, to better correlate reanalyses EC cans.

Draft of Final Report, Apr81996.

7) Flaw 62 and 63 (AH and AG1,AG2) was sput from the single entry in Table 3-1, (For flaws 7542: Tables 5-2 and 4-1 used for Flaw identification, using Reference 12 Figure 2-37 on p 247, to better correlate reenalysis EC cans.

1 and Max and Ave depths Text on p. 4-5 was used for depths of

8) Flaws 37,38,40, and 41 have only one pair of Field RPC entries (Phase and flew 81 in tube SIM6.)

Volts), but they are repeated in each Tape's columns (Phase I & II, Volts 1 & II).

i

15) 1237899A-0. Eddy Current Tube Pun Examination for Florida Power
9) Flaw 38's Lab RPC car st 19.17" corresponds to Saw U (48 %TW). The cou et Corporebon. Crystal River Unit 3,6f30I94 19.27" (68deg, 0.51V), which corresponds to fisw T (44 %TW), is omsted from (For Raws 7542: Not used yet.)

the table.

(

l r

?

1 I

(

i l

i i

I s

i e

Paga 6 of 7 i

I CR-3 PULLED TUBE IGA RESULTS Regr:ssion Data for Flaws 35,37,41 Regression Data for Flaws 35,37,38,41 X axis: Field 510HF Bobbin Call X axis: Lab 510HF Bobbin Call Y axis: DE Max Depth Y axis: DE Max Depth 46 50

-4 36 50

-14 62 54 8

52 54

-2 76 54 22 62 48 14 44 54

-10

@SUMSO(above)is 564 div by 3 is 188

@SUMSQ(above)is 496 RSME is 13.71 div by 4 is 124 RSME is 11.14 g

Regr:ssion Output (Y-Intercept computed):

Regression Output (Y-Intercept computed):

Constant 44.320 Constant 55.553 Std Err of Y Est 1.523 Std Err of Y Est 3.494 R Squired 0.783 R Squared 0.096 No. of Observations 3

No. of Observations 4

Degrees of Freedom 1

Degrees of Freedom 2

X Coefficient (s) 0.136 X Coefficient (s)

-0.084 Std Err of Coef.

0.072 Std Err of Coef.

0.181 R gression Output (Y-Intercept set at 0) :

Regression Output (Y-Intercept set at 0) :

Constant 0

Constant 0

Std Err of Y Est 10.691 Std Err of Y Est 12.815 R Squ red

-20.431 R Squared

-17.248 No. of Observations 3

No. of Observations 4

Degrees of Freedom 2

Degrees of Freedom 3

X Coefficient (s) 0.831 X Coefficient (s) 1.018 Std Err of Coef.

0.099 Std Err of Coef.

0.130 See Gr:ph CR-3.1 See Graph CR-3.2 Pags 7 of 7

=._....

t 22164 (12/95 1

j jt:/f!'> ^]{,f EI(3 -M];;[. N4 Q '[,? y ",' /)Cf,4j? WT t? + ?-@-. aiS*M /; 4:} M '.- {U-' r 1.f p ' ~1 gr Ef$0 ;.glp;M b ' M gW ,F R AM ATO M EW MC 4~+-: m J @i 7.4 U y.M --6. / ' Y. w.c % *. *

  • T E C H H O L O O.1 E S r i ? / 'f.

g .t%,r i i APPENDIX C i i OTSG PULLED TUBE CAL GROUPS l 1 g i E g Cal Group Plant Tubes Probe Type as }} tape 001A. cal 00 ANO-1 77-17 0.500 MF $9 g tape 34B. cal 01 ANO-1 77-34 0.500 MF g/ 1 lh tape 34Bea101a ANO-1 112-19, 73-08 0.500 MF s$ j { tape 34Bea102 CR-3 106-32 0.510 HF s gg tape 34Bea103 CR-3 52-51 0.510 HF VE tape 34Bea104 CR-3 90-28 0.510 HF l 4 3 1 tape 34Bca105 CR-3 97-91 0.510 HF i }l i ll tape 007A.ca101 CR-3 41-44 0.510 HF ,l lls SGB3HCAL00018 CR-3 68-46,72-49 0.510 HF 12* SGB3HCAL00057 CR-3 68-46,72-49 0.540 HF Ie i i i

  • I SGB_HCAL00101 ONS All 0.510 MF i

l8 l SGB_HCAL00104 ONS All 0.540 MF a$it ea EEN E e EI P 1 Page 27 of 27 OTSG IGA SIZING TECHNIQUE Date: 09/4/96 APPENDIX H QUALIFICATION Revision: 1 Drawing: 1260104-A 1

22164 (12/95) APPENDIX B Page Reanalysis Data 15 1-2 600 Khz Diff I 3-4 600 Khz Abs 5-6 400 Khz Diff ag 7-8 400 Khz Abs yj 9-10 200 Khz Diff Il-12 200 Khz Abs gg 13-14 35 Khz Diff gs ag 15-16 35 Khz Abs lw 17-18 400/200 Khz DiffMix sS 19-20 600/200 Khz Diff Mix 11 in EE 3 I d iit I! a I gs IIil' a"sf UI e E I E* Page 26 of 27 OTSG IGA SIZING TECIINIQUE Date: 09/4/96 APPENDIX II QUALIFICATION Revision: 1 Drawing: 1260104-A

600 KHz Diff DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 UTS+5.77 1.05 50 93 1.05 46 96 0.82 56 88 73 8 +20353 3 100 UTS+5.39 1.08 76 73 1.08 75 74 1.05 .76 73 73 8 +20339 4 100 UTS+4.87 1.18 72 76 1.18 72 76 1.12 72 76 73 8 +20300 5 70 UTS+3.58 0.29 105 51 0.29 107 49 0.28 105 51 73 8 +20216 6 100 UTS+0.83 8.49 54 90 8.49 52 91 6.87 54 90 112 19 +18540 7 20 015 -1.44 0.20 55 89 0.20 76 73 0.17 55 89 77 34 + 2830 8 100 52 51 + 22745 11 33 + 14.34 0.49 160 0 0.49 150 9 0.18 156 0 52 51 + 22802 13 33 + 12.77 0.32 151 7 0.32 151 7 0.16 151 7 52 51 + 22831 14 40 + 11.96 0.22 119 52 0.22 119 52 0.19 119 52 52 51 + 22880 16 45 + 10.55 0.46 67 89 0.46 74 85 0.42 67 89 52 51 + 22911 17 52 + 9.68 0.92 164 0 0.92 149 11 0.40 152 5 52 51 + 22955 18 53 + 8.45 0.51 79 83 0.51 77 84 0.50 79 83 52 51 + 23034 19 34 + 6.20 1.01 174 0 1.01 147 15 0.41 151 7 90 28 + 23643 22 49 + 16.43 0.99 177 0 0.99 171 0 0.23 164 0 i 90 28 + 23669 23 30 + 15.68 0.13 131 35 0.13 131 35 0.10 131 35 90 28 + 23705 25 62 + 14.77 0.45 104 64 0.45 116 53 0.43 104 64 i 90 28 + 23722 26 49 + 14.29 1.14 135 30 1.14 129 38 0.84 130 37 90 28 + 23749 27 53 + 13.57 0.30 21 53 0.30 41 100 0.17 43 99 90 28 + 23783 29 45 -+ 1?.68 0.54 143 17 0.54 153 0 0.32 143 17 90 28 + 23814 30 45 + 11.85 0.97 156 0 1.32 136 28 0.47 152 0 90 28 + 23826 31 60 + 11.51 0.32 126 42 0.32 113 56 0.32 97 70 90 28 + 23862 33 46 + 10.57 0.41 123 45 0.41 93 73 0.34 123 45 90 28 + 23870 34 53 + 10.33 0.96 144 15 0.96 121 48 0.74 125 43 LO 28 + 23963 35 50 + 7.87 1.54 128 39 1.54 122 47 1.23 123 45 90 28 + 24019 36 56 + 6.37 0.90 113 56 0.90 108 61 0.85 108 61 97 91 + 23049 37 54 + 14.67 0.72 116 54 0.72 107 64 0.67 112 59 97 91 + 23137 38 48 + 12.17 0.98 27 68 0.98 350 100 0.58 53 96 97 91 + 23251 40 46 + 8.98 0.65 119 50 0.65 111 60 0.57 119 50 IGA Reanalysis Page 1 of 20

600 KHz Diff DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC Volts deg %TW Volts deg %TW Volts deg %1W 97 91 + 23260 41 54 + 8.72 0.88 91 77 0.88 90 78 0.88 91 77 97 91 + 23315 43 29 + 7.18 0.23 72 88 0.23 75 87 0.22 72 88 106 32 +22128 50 22 + 14.80 0.31 121 50 0.31 108 62 0.27 121 50 106 32 +22138 51 36 .+ 14.51 0.69 19 48 0.69 13 33 0.34 49 96 106 32 +22171 53 39 + 13.53 0.36 37 93 0.36 30 75 0.22 42 99 106 32 +22180 54 31 + 13.30 0.56 156 1 0.61 165 0 0.35 136 33 106 32 +22234 56 46 + 11.74 0.44 166 0 0.44 131 39 0.23 138 30 106 32 +22246 57 42 + 11.39 0.47 157 0 0.47 150 12 0.27 136 33 106 32 +22261 58 36 + 10.93 0.20 52 95 0.20 30 75 0.16 52 95 106 32 +22294 60 40 + 10.00 0.53 153 7 0.53 157 0 0.24 153 7 106 32 +22303 61 38 > 9.74 0.42 162 0 0.42 150 12 0.14 155 3 106 32 +22329 62 29 + 8.96 0.20 76 83 0.20 73 85 0.19 76 83 106 32 +22337 63 40 + 8.76 0.35 139 29 0.35 139 29 0.29 120 51 106 32 +22362 64 25 + 8.04 0.38 22 55 0.38 23 58 0.17 34 85 106 32 +22376 65 18 + 7.63 0.63 178 0 0.63 165 0 0.18 157 0 106 32 +22400 66 51 + 6.97 0.89 177 0 0.89 176 0 0.11 168 0 106 32 +22420 67 49 + 6.36 0.83 136 33 0.83 138 30 0.58 136 33 106 32 +22686 70 15 -1.27 0.70 185 0 0.70 195 0 0.13 15 38 106 32 +22728 71 31 -2.47 0.92 192 0 0.92 200 0 0.23 18 45 41 44 + 22541 75 37 + 15.59 0.82 131 38 0.82 127 43 0.61 130 39 41 44 + 22619 76 30 + 13.37 0.40 57 93 0.40 62 91 0.34 57 93 41 44 + 22678 77 55 + 11.69 0.81 133 35 0.81 116 55 0.59 133 35 41 44 + 22780 78 35 + 8.78 0.24 84 80 0.24 107 63 0.24 84 80 41 44 + 22845 79 28 + G.90 0.84 123 48 0.84 119 52 0.71 123 48 I 41 44 + 22891 80 40 + 5.61 0.33 105 65 0.33 122 49 0.32 105 65 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22160 91 47 013+ 8.38 0.05 111 47 0.05 99 58 0.05 111 47 134 5 + 22175 92 47 013+ 8.76 0.07 117 41 0.07 113 45 0.06 117 41 l 134 58 + 22201 93 47 013+ 9.42 0.10 100 57 0.11 114 44 0.10 100 57 134 58 + 22616 94 21 013+19.89 0.02 56 90 0.02 18 45 0.02 56 90 IGA Reanalysis Page 2 of 20 i

600 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 73 8 +20353 3 100 73 '8 +20339 4 100 73 8 +20300 5 70 73 8 +20216 6 100 112 19 +18540 7 20 77 34 + 2830 8 100 52 51 + 22745 11 33 + 14.48 0.36 116 66 0.36 124 59 0.33 116 66 52 51 + 22802 13 33 + 12.88 0.40 157 12 0.40 142 38 0.17 142 38 52 51 + 22831 14 40 + 12.04 0.46 43 100 0.46 43 100 0.32 46 99 52 51 + 22880 16 45 + 10.64 0.10 284 0 0.10 284 0 0.04 167 0 52 51 + 22911 17 52 + 9.77 0.71 149 27 0.71 150 26 0.36 149 27 52 51 + 22955 18 53 + 8.53 0.86 51 98 0.86 57 96 0.67 51 96 52 51 + 23034 19 34 + 6.31 0.79 162 0 0.79 179 0 0.34 108 72 90 28 + 23643 22 49 + 16.56 0.39 141 26 0.39 158 0 0.27 135 36 90 28 + 23669 23 30 + 15.82 0.79 13 33 0.79 20 50 0.22 20 50 90 28 + 23705 25 62 + 14.88 0.36 118 57 0.36 106 68 0.33 112 63 90 28 + 23722 26 49 + 14.40 1.00 157 0 1.00 163 0 0.39 157 0 90 28 + 23749 27 53 + 13.62 0.32 36 90 0.32 42 99 0.21 42 99 90 28 + 23783 29 45 + 12.76 0.33 96 75 0.33 96 75 0.33 96 75 90 28 + 23814 30 45 + 11.93 0.40 158 0 0.40 133 39 0.22 137 33 90 28 + 23826 31 60 + 11.67 0.35 58 94 0.35 58 94 0.30 58 94 90 28 + 23862 33 46 + 10.70 0.71 150 7 0.71 148 12 0.36 150 7 90 28 + 23870 34 53 + 10.44 0.68 148 12 0.68 140 28 0.42 119 56 90 28 + 23963 35 50 + 7.97 1.51 152 2 1.51 133 39 0.76 142 ~24 90 28 + 24019 36 56 + 6.45 0.62 113 62 0.62 111 64 0.57 113 62 97 - 91 + 23049 37 54 + 14.75 0.49 90 87 0.49 107 78 0.49 90 87 97 91 + 23137 38 48 + 12.26 2.50 168 0 2.50 167 0 0.51 168 0 97 91 + 23251 40 46 + 9.09 1.08 165 0 1.08 161 0 0.34 160 0 IGA Reanalysis Page 3 of 20

600 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 97 91 + 23260 41 54 + 8.81 0.78 138 46 0.78 138 46 0.57 126 62 97 91 + 23315 43 29 + 7.24 0.52 5 13 0.52 12 30 0.08 12 30 106 32 +22128 50 22 + 14.89 0.40 163 0 0.40 163 0 0.12 163 0 106 32 +22138 51 36 + 14.63 0.41 173 0 0.41 180 0 0.06 172 0 106 32 +22171 53 39 + 13.62 0.26 158 6 0.26 156 11 0.12 144 31 106 32 +22180 54 31 + 13.42 0.18 169 0 0.18 169 0 0.06 140 37 106 32 +22234 56 46 + 11.85 0.34 52 97 0.34 54 96 0.29 62 93 106 32 +22246 57 42 + 1151 0.47 136 42 0.47 133 46 0.33 136 42 106 32 +22261 58 36 + 11.02 0.50 169 0 0.50 180 0 0.10 169 0 106 32 +22294 60 40 + 10.15 0.60 23 56 0.60 16 39 0.60 16 39 106 32 +22303 61 38 + 9.86 0.35 49 98 0.35 40 98 0.27 49 98 106 32 +22329 62 29 + 9.02 0.76 31 76 0.76 42 100 0.39 31 76 106 32 +22337 63 40 + 8.85 0.56 15 37 0.56 20 49 0.14 20 49 106 32 +22362 64 25 + 8.10 0.11 153 16 0.11 153 16 0.05 153 1S 106 32 +22376 65 18 + 7.75 0.31 148 25 0.31 151 20 0.17 148 25 106 32 +22400 66 51 + 6.85 0.24 177 0 0.24 177 0 0.13 70 90 106 32 +22420 67 49 + 6.48 0.82 165 0 0.82 160 2 0.23 162 0 106 32 +22686 70 15 -1.15 1.11 191 0 1.11 191 0 0.18 190 0 106 32 +22728 71 31 -2.39 0.65 202 0 0.65 195 0 0.27 30 73 41 44 + 22541 75 37 + 15.79 1.31 174 0 1.51 173 0 0.34 157 11 41 44 + 22619 76 30 + 13.51 0.63 ~171 0 0.63 176 0 0.12 167 0 41 44 + 22678 77 55 + 11.86 0.63 141 34 0.63 126 50 0.40 141 34 41 44 + 22780 78 35 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22845 79 28 + 7.04 0.77 162 2 0.77 175 0 0.36 149 23 41 44 + 22891 80 40 + 5.73 0.27 142 32 0.27 142 32 0.20 93 75 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NOF NOF NOF NDF NDF 134 58 + 22160 91 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22175 92 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22201 93 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22616 94 21 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF IGA Reanalysis Page 4 of 20

400 KHz Diff DATA Maximum WP MXR VMX ROW TUBE POINT flaw Depth LOC Voits oeg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 UTS+0.67 7.35 69 72 7.35 69 72 6.95 72 69 73 8 +20366 2 100 UTS+5.77 2.06 62 77 2.06 58 81 1.81 62 77 73 8 +20353 3 100 UTS+5.39 2.14 81 55 2.14 75 62 2.12 81 55 73 '8 +20339 4 100 UTS+4.87 2.71 78 59 2.71 80 57 2.65 78 59 73 8 +20300 5 70 UTS+3.58 0.59 102 31 0.59 100 33 0.58 102 31 73 8 +20216 6 100 UTS+0.83 11.8 54 85 11.8 52 87 10.2 65 73 112 19 +18540 7 20 015 -1.3S 0.68 92 43 0.68 86 50 0.68 92 43 77 34 + 2850 8 100 UTS+0.12 3.55 50 88 3.55 50 88 2.98 57 80 52 51 + 22745 11 33 + 14.31 0.31 132 0 0.31 128 0 0.24 127 0 52 51 + 22802 13 33 + 12.74 0.20 128 0 0.20 135 0 0.16 128 0 52 51 + 22831 14 40 + 11.93 0.30 71 79 3.30 75 76 0.28 71 79 52 51 + 22880 16 45 + 10.55 0.47 65 84 0.47 75 76 0.42 65 84 52 51 + 22911 17 52 + E.?1 0.73 121 2 0.73 122 0 0.63 121 2 52 51 + 22955 18 53 + 8.45 0.70 75 76 0.70 83 68 0.68 75 76 52 51 + 23034 19 34 + 6.23 0.71 161 0 0.71 114 20 0.51 114 20 90 28 + 23643 22 49 + 16.48 0.72 161 0 0.72 165 0 0.28 131 0 90 28 + 23669 23 30 + 15.73 0.18 78 74 0.18 76 76 0.16 81 71 90 28 + 23705 25 62 + 14.77 0.64 88 64 0.64 93 57 0.64 88 64 90

20. + 23722 26 49

+ 14.29 1.05 114 20 1.05 98 50 1.01 103 42 90 28 + 23749 27 53 + 13.57 0.32 43 59 0.32 41 100 0.21 45 97 90 28 + 23783 29 45 + 12.66 0.46 119 7 0.46 110 29 0.44 107 35 90 28 + 23814 30 45 + 11.85 0.60 116 15 0.78 111 27 0.54 116 15 90 28 + 23826 31 60 + 11.53 0.48 75 77 0.48 80 72 0.47 75 77 90 28 + 23862 33 46 + 10.60 0.35 100 47 0.35 63 86 0.34 100 47 90 28 + 23870 34 53 + 10.36 0.90 101 46 0.90 98 50 0.89 101 46 90 28 + 23963 35 50 + 7.87 1.53 108 33 1.53 103 42 1.45 108 ~33 90 28 + 24019 36 56 + 6.37 0.98 86 66 0.98 88 64 0.97 86 66 97 91 + 2304$ 37 54 + 14.67 0.76 91 55 0.76 87 62 0.76 91 55 97 91 + 23137 38 48 + 12.17 0.89 35 88 0.89 341 100 0.67 68 83 37 91 + 23251 40 46 + 8.98 0.60 95 48 0.60 82 68 0.60 95 48 IGA Reanalysis Page 5 of 20

400 KHz Diff DATA Maximum VPP MXR VMX i ROW TUBE POINT flaw Depth LOC Volts deg %TW Volts deg %TW Volts deg %TW 97 91 '23260 41 54 + 8.72 0.99 73 78 0.99 76 75 0.95 73 78 97 91 + 23315 43 29 + 7.21 0.22 65 85 0.22 48 96 0.21 81 70 106 32 +22128 50 22 + 14.80 0.38 96 49 0.38 90 56 0.37 96 49 ';06 $2 +22138 51 36 + 14.54 0.53 32 80 0.53 22 55 0.34 45 97 106 32 +22171 53 39 + 13.53 0.39 39 98 0.39 39 98 0.24 39 98 106 32 +22180 54 31 + 13.33 0.46 115 18 0.46 117 14 0.45 107 32 106 32 +22234 56 46 + 11.74 0.44 103 39 0.44 94 51 0.43 103 39 106 32 +22246 57 42 + 11.39 0.48 109 29 0.48 121 6 0.46 109 29 106 32 +22261 58 36 + 10.93 0.21 40 100 0.21 34 85 0.18 72 76 106 32 +22294 60 40 + 10.03 0.52 126 0 0.52 125 0 0.43 123 1 106 32 +22303 61 38 + 9.71 0.37 134 0 0.37 119 10 0.27 134 0 106 32 +22329 62 29 + 8.96 0.38 72 76 0.38 68 79 0.36 72 76 106 32 +22337 63 40 + 8.76 0.34 92 54 0.34 117 14 0.34 92 54 106 32 +22362 64 25 + 8.04 0.39 31 78 0.39 23 58 0.22 43 98 106 32 +22376 65 18 + 7.66 0.50 136 0 0.50 136 0 0.39 111 25 106 32 +22400 66 51 + 6.94 0.59 163 0 0.59 188 0 0.29 133 0 106 32 +22420 67 49 + 6.36 0.77 110 27 0.77 110 27 0.72 110 27 106 32 +22686 70 15 -1.27 0.77 162 0 0.77 159 0 0.29 157 0 106 32 +22728 71 31 -2.47 0.95 163 0 0.95 155 0 0.36 156 0 41 44 + 22541 75 37 + 15.59 0.77 113 22 0.77 112 24 0.72 110 28 41 44 + 22619 76 30 + 13.37 0.50 57 90 0.50 56 90 0.42 57 90 41 44 + 22678 77 55 , i1.66 0.75 112 24 0.75 78 72 0.07 112 24 41 44 + 22780 78 35 8.78 0.36 81 69 0.36 83 67 0.37 90 59 + 41 44 + 22845 79 2F, + 6.93 0.84 105 37 0.84 96 51 0.81 105 37 41 44 + 22891 80 40 + 5.61 0.45 102 42 0.45 110 28 0.44 102 42 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22160 91 47 013+ 8.36 0.14 80 53 0.14 90 45 0.14 92 42 134 58 + 22175 92 47 013+ 8.76 0.18 99 32 0.18 108 17 0.18 P' 32 134 58 + 22201 93 47 013+ 9.42 0.31 93 33 0.31 103 26 0.31 9t. 33 134 58 + 22616 94 21 013+19.89 0.06 72 68 0.06 63 78 0.05 72 68 IGA Reanalysis Page 6 of 20

400 KHz Abs DATA Maximum ~ VPP MXR VMX ROW TUBE POINT flaw Depth LOG LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 73 8 +20353 3 100 73

  • 8

+20339 4 100 73 8 +20300 3 70 73 8 +20216 6 100 112 19 +18540 7 20 77 34 + 2830 8 100 52 51 + 22745 11 33 + 14.45 0.35 124 6 0.35 146 0 0.33 100 51 52 51 + 22802 13 33 + 12.85 0.39 148 0 0.39 146 0 0.21 148 0 52 51 + 22831 14 40 + 12.04 0.40 31 76 0.40 33 80 0.19 33 80 52 51 + 22880 16 45 + 10.64 0.10 36 88 0.10 36 88 0.04 157 0 52 51 + 22911 17 52 + 9.79 0.62 119 18 0.62 107 41 0.55 119 18 52 51 + 22955 18 53 + 8.53 0.96 47 97 0.96 45 98 0.70 47 97 52 51 + 23034 19 34 + 6.31 0.31 97 55 0.31 97 55 0.30 97 55 90 28 + 23643 22 49 + 16.56 0.41 111 17 0.41 116 0 0.38 111 17 90 28 + 23669 23 30 + 15.82 0.98 11 23 0.98 18 45 0.23 17 43 90 28 + 23705 25 62 + 14.88 0.39 90 63 0.39 101 44 0.39 90 63 90 28 + 23722 26 49 + 14.42 1.13 141 0 1.13 136 0 0.71 141 0 90 28 + 23749 27 53 + 13.70 0.31 18 45 0.31 23 58 0.12 40 100 90 28 + 23783 29 45 + 12.79 0.44 74 80 0.44 85 69 0.42 74 80 90 28 + 23814 30 45 + 11.96 0.47 153 0 0.47 155 0 0.21 153 0 90 28 + 23826 31 60 + 11.64 0.32 81 74 0.32 84 70 0.32 81 74 90 28 + 23862 33 46 + 10.73 0.77 148 0 0.77 153 0 0.44 143 0 90 28 + 23870 34 53 ^ 10.44 0.46 121 0 0.46 109 23 0.39 121 0 90 28 + 23963 35 50 + 8.00 1.47 132 0 1.47 115 1 1.10 125 0 90 28 + 24019 36 56 + 6.48 0.S4 66 86 0.84 72 82 0.78 78 77 97 91 + 23049 37 54 + 14.75 0.74 56 96 0.74 73 90 0.61 56 96 97 91 + 23137 38 48 + 12.29 1.97 158 100 1.97 153 0 0.78 156 100 97 91 + 23251 40 46 + 9.09 0.94 148 0 0.94 140 0 0.53 137 0; IGA Reanalysis Page 7 of 20

4 400 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE FOINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 97 91 + 23260 41 54 + 8.81 0.65 101 64 0.65 88 80 0.64 101 64 97 91 + 23315 43 29 + 7.43 0.91 163 100 0.91 164 100 0.27 163 100 106 32 +22128 50 22 + 14.92 0.26 131 0 0.26 131 0 0.22 121 8 106 32 +22138 51 36 + 14.57 0.51 173 0 0.51 167 0 0.11 157 0 106 32 +22171 53 39 + 13.65 0.14 142 0 0.14 135 0 0.10 90 67 106 32 +22180 54 31 + 13.42 0.23 81 76 0.23 81 76 0.23 87 70 106 32 +22234 56 46 + 11.83 0.39 59 91 0.39 59 91 0.34 59 91 106 32 +22246 57 42 + 11.51 0.37 123 1 0.37 119 14 0.33 117 20 106 32 +22261 58 36 + 11.04 0.15 135 0 0.15 153 0 0.11 128 0 106 32 +22294 60 40 + 10.12 0.69 40 100 0.69 46 98 0.45 40 100 106 32 +22303 61 38 + 9.86 0.35 70 85 0.35 57 92 0.33 70 85 106 32 +22329 62 29 + 9.05 0.64 40 100 0.64 43 99 0.41 40 100 106 32 +22337 63 40 + 8.82 0.56 27 68 0.56 33 83 0.25 27 63 106 32 +22362 64 25 + 8.18 0.10 90 67 0.10 90 67 0.10 90 67 106 32 +22376 65 18 + 7.72 0.37 105 46 0.37 106 45 0.36 105 46 106 32 +22400 66 51 + 7.08 0.50 163 0 0.50 166 0 0.14 163 0 5 32 +22420 67 49 + 6.48 0.60 133 0 0.60 126 0 0.43 133 0 106 32 +22686 70 15 -1.18 0.81 172 0 0.81 176 0 0.14 167 0 106 32 +22728 71 31 -2.39 0.48 158 0 0.48 170 0 0.23 146 0 41 44 + 22541 75 37 + 15.76 0.82 147 0 1.10 151 0 0.52 150 0 41 44 + 22619 76 30 + 13.51 0.61 153 0 0.91 157 0 0.40 154 0 41 44 + 22678 77 55 + 11.88 0.90 131 0 0.90 124 0 0.68 131 0 41 44 + 22780 78 35 + 8.89 0.57 20 49 0.61 19 46 0.28 28 68 41 44 + 22845 79 28 + 7.07 0.73 107 41 0.73 144 0 0.70 107 41 41 44 + 22891 80 40 + 5.76 0.36 135 0 0.36 135 0 0.29 118 14 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF ND:: NDF NDF 134 58 + 22160 91 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 - 58 + 22175 92 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22201 93 47 013+ 9.29 0.35 ' 101 39 0.35 68 78 0.34 101 39 1 34 58 + 22616 94 21 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF IGA Reanalysis Page 8 of 20 _a--__ a;_:__

I 200 KHz Diff DATA Maximum VPP MXR VMX t ROW TUBE POINT flaw Depth LOC Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 UTS+5.77 1.11 64 48 1.11 61 54 1.00 64 48 73 8 +20353 3 100 UTS+5.39 1.13 69 39 1.13 69 39 1.06 69 39 73 '8 +20339 4 100 UTS+4.87 1.65 77 25 1.65 77 25 1.60 77 25 73 8 +20300 5 70 UTS+3.58 0.29 88 7 0.29 85 12 0.29 88 7 73 8 +20216 6 100 UTS+0.83 7.58 52 73 7.58 49 79 6.01 52 73 112 19 +18540 7 20 015-1.40 0.43 83 15 0.43 77 25 0.43 83 15 77 34 + 2830 8 100 UTS+0.12 1.63 56 68 1.63 60 60 1.41 74 32 52 51 + 22745 11 33 + 14.34 0.21 80 32 0.21 77 40 0.19 86 13 52

51. + 22802 13 33'

+ 12.77 0.08 90 0 0.08 79 35 0.08 90 0 52 51 + 22831 14 40 + 11.93 0.22 38 95 0.22 42 98 0.13 43 97 52 51 + 22880 16 45 + 10.55 0.30 55 82 0.30 57 79 0.24 66 64 52 51 + 229 ?

  • 17 52

+ 9.71 0.42 90 0 0.42 84 20 0.42 90 0 52 51 + 22955 18 53 + 8.45 0.51 65 66 0.51 67 62 0.46 65 66 52 51 + 23034 19 34 + 6.23 0.31 108 0 0.31 81 29 0.29 108 0 90 28 + 23643 22 49 + 16.46 0.27 146 0 0.27 118 0 0.20 114 0 90 28 + 23669 23 30 + 15.73 0.18 78 33 0.18 90 0 0.17 78 33 90 28 + 23705 25 62 + 14.80 0.38 65 64 0.38 72 49 0.34 70 53 90 28 + 23722 26 49 + 14.32 0.60 82 20 0.60 74 44 0.59 82 20 90 28 + 23749 27 53 + 13.59 0.20 57 78 0.20 41 99 0.17 57 78 l 90 28 + 23783 29 45 + 12.68 0.26 79 30 0.26 72 49 0.26 79 30 90 28 + 23814 30 45 + 11.85 0.25 72 49 0.28 74 44 0.25 90 0 90 28 + 23826 31 60 + 11.59 0.32 62 70 0.32 62 70 0.28 62 70 90 28 + 23862 33 46 + 10.62 0.16 86 5 0.16 70 53 0.16 86 5 l 90 28 + 23870 34 53 + 10.36 0.47 83 17 0.47 70 53 0.47 83 17 90 28 + 23963 35 50 + 7.87 0.80 79 30 0.80 75 41 0.79 79 30 90 28 + 24019 36 56 + 6.37 0.62 70 53 0.62 68 58 0.57 73 46 97 - 91 + 23049 37 54 + 14.64 0.48 66 65 0.48 66 65 0.44 66 65 97 91 + 23137 38 48 + 12.17 0.55 58 81 0.55 68 60 0.47 63 72 97 91 + 23251 40 46 + 9.00 0.35 64 70 0.35 61 76 0.31 66 65 IGA Reanalysis Page 9 of 20

200 KHz Diff l DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC Volts deg %TW Volts deg %TW Volts deg %TW 97 91 + 23260 41 54 + 8.72 0.61 59 80 0.61 58 81 0.52 59 80 9/ 91 + 23315 43 29 + 7.24 0.14 55 86 0.14 63 72 0.12 63 72 106 32 +22128 50 22 + 14.83 0.29 62 69 0.29 58 76 0.25 62 69 '2 +22138 51 36 + 14.54 0.29 48 90 0.29 30 75 0.22 50 88 106 3 106 32 +22171 53 39

  • 13.56 0.21 43 97 0.21 38 95 0.14 43 97 106 32 +22180 54 31

+ 13.33 0.26 74 45 0.26 84 17 0.25 74 45 106 32 +22234 56 46 + 11.74 0.31 88 3 0.31 77 37 0.31 88 3 106 32 +22246 57 42 + 11.39 0.30 90 0 0.30 87 7 0.30 90 0 106 32 +22261 58 36 + 10.93 0.14 38 95 0.14 38 95 0.12 48 90 106 32 +22294 60 40 + 10.03 0.29 88 3 0.29 87 7 0.29 88 3 106 32 +22303 61 38 + 9.77 0.20 101 0 0.20 95 0 0.19 101 0 s 106 32 +22329 62 29 + 9.02 0.28 61 71 0.28 66 62 0.24 61 71 106 32 +22337 63 40 + 8.76 0.27 52 85 0.27 60 73 0.22 72 49 L 106 32 +22362 64 25 + 8.10 0.21 '50 88 0.21 48 90 0.14 50 88 106 32 +22376 65 18 + 7.69 0.34 .92 0 0.34 93 0 0.34 92 C 106 32 +22400 66 51 + 7.20 0.10 36 90 0.10 45 94 0.06 45 94 106 32 +22420 67 49 + 6.36 0.46 83 20 0.46 76 40 0.46 83 20 106 32 +22686 70 15 -1.29 0.52 116 0 0.52 117 0 0 47 116 0 106 32 +22728 71 31 -2.50 0.71 112 0 0.71 103 0 0.66 112 0 41 44 + 22541 75 37 + 15.62 0.42 87 10 0.42 81 29 0.42 87 10 41 44 + 22619 76 30 + 13.40 0.37 57 78 0.37 45 94 0.31 57 78 41 44 + 22678 77 55 + 11.66 0.41 90 0 0.41 66 63 0.41 90 0 41 44 + 22780 78 35 + 8.78 0.21 74 46 0.21 78 37 0.20 74 46 41 44 + 22845 79 28 + 6.93 0.47 80 31 0.47 79 34 0.47 80 31 41 44 + 22891 80 40 + 5.64 0.34 73 49 0.34 90 0 0.34 92 0, 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF I 134 58 + 22160 91 47 013+ 8.36 0.16 73 31 0.16 71 36 0.16 73 31 134 - 58 + 22175 92 47 013+ 8.76 0.22 87 0 0.22 74 29 0.22 87 0 134 58 + 22201 93 47 013+ 9.42 0.39 84 5 0.39 82 10 0.39 84 5 134 58 + 22616 94 21 013+19.89 0.08 60 60 0.08 54 72 0.07 60 60 r IGA Reanalysis Page 10 of 20

200 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Voits deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 73 8 +20353 3 100 73

  • 8

+20339 4 100 73 8 +20300 5 70 73 8 +20216 6 100 112 19 +18540 7 20 17 34 + 2830 8 100 52 51 + 22745 11 33 + 14.45 0.24 63 71 0.24 70 58 0.24 71 56 52 51 + 22802 13 33 + 12.88 0.11 148 0 0.11 129 0 0.06 148 0 52 51 + 22831 14 40 + 12.07 0.20 38 95 0.20 38 95 0.12 38 95 52 51 + 22880 16 45 + 10.64 0.08 27 68 0.08 27 68 0.02 63 71 52 51 + 22911 17 52 + 9.85 0.34 82 27 0.34 68 62 0.34 82 27 52 51 + 22955 18 53 + 8.56 0.72 41 99 0.72 39 98 0.47 41 99 52 51 + 23034 19 34 + 6.31 0.24 35 88 0.24 35 88 0.21 65, 68 90 28 + 23643 22 49 + 16.56 0.28 88 0 0.28 126 0 0.28 88 0 90 28 + 23669 23 30 + 15.87 0.55 32 80 0.55 25 63 0.30 32 80 90 28 + 23705 25 62 + 14.91 0.23 61 78 0.23 56 85 0.20 61 78 90 28 + 23722 26 49 + 14.45 0.36 136 0 0.36 183 100 0.28 123 0 90 28 + 23749 27 53 + 13.70 0.18 42 99 0.18 48 94 0.12 42 99 i 90 28 + 23783 29 45 + 12.76 0.37 57 84 0.37 48 94 0.31 57 84 90 28 + 23814 30 45 + 11.96 0.08 129 0 0.08 129 0 0.07 81 14 { 90 28 + 23826 31 60 + 11.67 0.21 36 90 0.21 22 55 0.15 47 95 i 90 28 + 23862 33 46 + 10.70 0.39 125 0 0.39 124 0 0.32 125 0 i 90 28 + 23870 34 53 + 10.44 0.12 84 0 0.12 84 0 0.12 84 0 i 90 28 + 23963 35 50 + 8.00 0.59 80 20 0.59 80 20 0.58 80 20 l 90 28 + 24019 36 56 + 6.45 0.50 52 90 0.50 61 78 0.42 61 78 97 91 + 23049 37 54 + 14.78 0.56 42 97 0.56 49 91 0.37 42 97 97 91 + 23137 38 48 + 12.31 0.65 139 100 0.65 123 0 0.65 133 0 97 91 + 23251 40 46 + 9.12 0.31 103 0 0.31 107 0 0.30 103 0, IGA Reanalysis Page 11 of 20 1

200 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %RV Volts deg %TW 97 91 + 23260 41 54 + 8.81 0.31 56 83 0.31 56 83 0.25 56 83 97 91 + 23315 43 29 + 7.43 0.34 147 100 0.34 152 100 0.19 147 100 106 32 +22128 50 22 + 14.95 0.12 53 89 0.12 51 91 0.10 53 89 106 $2 +22138 51 36 + 14.43 0.56 214 100 0.56 212 100 0.33 36 90 106 32 +22171 53 39 + 13.68 0.10 83 20 0.10 90 0 0.10 83 20 106 32 +22180 54 31 + 13.42 0.14 52 90 0.14 69 64 0.11 52 90 106 32 +22234 56 46 + 11.88 0.33 60 80 0.33 51 91 0.31 65 72 106 32 +22246 57 42 + 11.54 0.24 87 0 0.24 78 40 0.24 87 0 106 32 +22261 58 36 + 10.90 0.16 189 100 0.16 198 100 0.05 18 45 106 32 +22294 60 40 + 10.12 0.57 48 93 0.57 44 97 0.45 52 90 106 32 +22303 61 38 + 9.86 0.27 51 91 0.27 54 87 0.20 51 91 106 32 +22329 62 29 + 9.14 0.46 47 94 0.46 58 83 0.34 52 90 106 32 +22337 63 40 + 8.85 0.45 29 73 0.45 34 85 0.22 29 73 106 32 +22362 64 25 + 8.18 0.05 76 47 0.05 76 47 0.05 76 47 106 32 +22376 65 18 + 7.78 0.36 86 4 0.36 80 33 0.36 86 4 106 32 +22400 66 51 + 7.05 0.16 157 0 0.16 162 0 0.13 110 0 106 32 +22420 67 49 + 6.48 0.27 87 0 0.27 103 0 0.27 87 0 106 32 +22686 70 15 -1.15 0.56 141 0 0.56 127 0 0.36 135 0 106 32 +22728 71 31 -2.39 0.55 123 0 0.55 114 0 0.47 114 0 41 44 + 22541 75 37 + 15.76 0.47 136 0 0.47 120 0 0.36 121 0 41 44 + 22619 76 30 + 13.51 0.36 134 0 0.36 90 0 0.25 134 0 41 44 + 22678 77 55 + 11.83 0.48 115 0 0.48 92 0 0.43 110 0 41 44 + 22780 78 35 + 8.86 0.36 20 50 0.36 24 60 0.17 24 60 41 44 + 22845 79 28 + 7.07 0.44 81 34 0.44 45 97 0.43 81 34 41 44 + 22891 80 40 + 5.73 0.25 73 59 0.25 87 2 0.26 63 78 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22160 91 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22175 92 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22201 93 47 013+ 9.29 0.51 77 34 0.51 90 0 0.50 77 34 134 58 + 22616 94 21 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF IGA Reanalysis Page 12 of 20

35 KHz Diff DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 t 73 8 +20366 2 100 73 8 +20353 3 100 73 '8 +20339 4 100 73 8 +20300 5 70 73 8 +20216 6 100 112 49 +18540 7 20 77 34 + 2830 8 100 52 51 + 22745 11 33 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22802 13 33 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22831 14 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22880 16 45 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22911 17 52 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22955 18 53 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 23034 19 34 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23643 22 49 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23669 23 30 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23705 25 62 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23722 26 49 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23749 27 53 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23783 29 45 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23814 30 45 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23826 31 60 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23862 33 46 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23870 34 53 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23963 35 50 NDF NDF NDF NDF NDF NDF NDF NDF NDF ND'F 90 28 + 24019. 36 56 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 - 91 + 23049 37 54 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23137 38 48 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23251 40 46 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF IGA Reanalysis Page 13 of 20 L

= 35 KHz Diff DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %1W Volts deg %TW 97 91 + 23260 41 54 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23315 43 29 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22128 50 22 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 $2 +22138 51 36 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22171 53 39 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22180 54 31 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22234 56 46 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22246 57 42 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22261 58 36 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22294 60 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22303 61 38 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22329 62 29 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22337 63 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22362 64 25 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22376 65 18 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 1 06 32 +22400 66 51 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 10S 32 +22420 67 49 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22686 70 15 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22728 71 31 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22541 75 37 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22619 76 30 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22678 77 55 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22780 78 35 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22845 79 28 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22891 80 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22160 91 47 013+ 8.33 0.02 76 0 0.02 104 0 0.02 76 0 134 58 + 22175 92 47 013+ 8.68 0.05 40 100 0.05 76 0 0.03 68 0 134 58 + 22201 93 47 013+ 9.32 0.08 54 5 0.08 51 15 0.07 54 5 134 58 + 22616 94 21 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF

GA Reanalysis Page 14 of 20 m-

- m + m

s c 35 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 UTS+5.77 0.15 48 55 0.15 50 100 0.11 48 55 73 8 +20353 3 100 UTS+5.39 0.14 179 100 0.14 179 100 0.11 92 100 73 8 +20339 4 100 UTS+4.87 0.36 62 100 0.36 60 100 0.32 62 100 73 8 +20300 5 70 UTS+3.58 0.16 73 100 0.16 86 100 0.16 80 100 73 8 +20216 6 100 UTS+0.83 4.68 260 100 4.68 289 100 4.61 80 100 112 19 +18540 7 20 015-1.44 0.11 345 100 0.11 0 0 0.06 132 100 77 34 + 2830 8 100 52 51 + 22745 11 33 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22802 13 33 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22831 14 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22880 16 45 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22911 17 52 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 22955 18 53 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 52 51 + 23034 19 34 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23643 22 49 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23669 23 30 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 2" + 23705 25 62 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23722 26 49 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23749 27 53 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23783 29 45 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23814 30 45 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23826 31 60 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23862 33 46 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23870 34 53 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 23963 35 50 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 90 28 + 24019 36 56 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23049 37 54 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23137 38 48 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23251 40 46 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDFj IGA Reanalysis Page 15 of 20

5 e 35 KHz Abs DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC Vcits deg %TW Volts deg %TW Volts deg %TW 97 91 + 23260 41 54 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 97 91 + 23315 43 29 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22128 50 22 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22138 51 36 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22171 53 39 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22180 54 31 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22234 56 46 NDF NDF NDF NDF NDF NDF NDF NDF NDF NC/ 106 32 +22246 57 42 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22261 58 36 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22294 60 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22303 61 38 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22329 62 29 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22337 63 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22362 64 25 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22376 65 18 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22400 g6 51 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22420 67 49 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22686 70 15 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 106 32 +22728 71 31 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22541 75 37 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22619 76 30 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22678 77 55 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22780 78 35 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22845 79 28 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 41 44 + 22891 80 40 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 50 13 + 22849 85 6 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22160 91 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134. 58 + 22175 92 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22201 93 47 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF 134 58 + 22616 94 21 NDF NDF NDF NDF NDF NDF NDF NDF NDF NDF IGA Reanalysis Page 16 of 20

s 400/200 KHz Diff Mix (CH P1) DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 UTS+5.77 1.78 32 92 1.65 32 92 0.95 32 92 73 8 +20353 3 100 UTS+5.39 1.68 47 73 1.68 50 69 1.29 51 67 73 '8 +20339 4 100 UTS+4.87 2.27 40 82 2.27 44 77 1.46 40 82 73 8 +20300 5 70 UTS+3.58 0.41 71 35 0.41 64 47 0.38 71 35 73 8 +20216 6 100 UTS+0.83 9.62 27 98 9.62 29 96 5.34 37 86 112 19 +18540 7 20 015 -1.36 0.51 47 73 0.51 45 76 0.41 55 62 77 34 + 2830 8 100 UTS+0.12 3.97 35 92 3.97 35 92 2.42 38 87 52 51 + 22745 11 33 + 14.31 0.14 142 0 0.14 151 0 0.08 142 0 52 51 + 22802 13 33 + 12.74 0.10 144 0 0.10 172 0 0.06 144 0 52 51 + 22831 14 40 + 11.93 0.15 72 76 0.15 90 56 0.15 72 76 52 51 + 22880 16 45 + 10.55 0.31 56 90 0.31 47 96 0.25 58 88 52 51 + 22911 17 52 + 9.71 0.35 142 0 0.35 128 0 0.27 124 0 52 51 + 22955 18 53 + 8.45 0.43 60 87 0.43 60 87 0.38 60 87 52 51 + 23034 19 34 + 6.23 0.41 161 0 0.41 126 0 0.28 126 0 90 28 + 23643 22 49 + 16.48 0.36 166 0 0.36 143 0 0.16 143 0 90 28 + 23669 23 30 + 15.76 0.14 45 97 0.14 49 95 0.10 45 97 90 28 + 23705 25 62 + 14.77 0.39 90 59 0.39 90 59 0.39 90 59 90 28 + 23722 26 49 + 14.32 0.68 116 13 0.68 101 43 0.64 105 36 90 28 + 23749 27 53 + 13.57 0.26 41 99 0.26 37 93 0.17 41 99 90 28 + 23783 29 45 + 12.66 0.29 110 26 0.29 121 0 0.27 110 26 90 28 + 23814 30 45 + 11.85 0.40 133 0 0.58 125 0 0.30 136 0 90 28 + 23826 31 60 + 11.53 0.33 65 84 0.33 74 76 0.31 74 76 00 28 + 23862 33 46 + 10.60 0.25 108 30 0.25 62 86 0.23 108 30 90 28 + 23870 34 53 + 10.36 0.57 104 38 0.57 100 45 0.55 104 38 90 28 + 23963 35 50 + 7.87 0.95 111 24 0.95 107 32 0.89 111 24 90 28 + 24019 36' 56 + 6.37 0.64 79 71 0.64 89 60 0.63 79 71 97 91 + 23049 37 54 + 14.67 0.42 95 51 0.42 90 59 0.42 95 51 97 91 + 23137 38 48 + 12.17 0.74 31 78 0.74 356 0 0.42 44 98 97 91 + 23251 40 46 + 8.98 0.35 101 41 0.35 85 65 0.35 101 41 1 IGA Reanalysis Page 17 of 20

a. 400/200 KHz Diff Mix (CH P1) DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Voits deg %iW Volts deg %TW 97 91 + 23260 41 54 + 8.70 0.61 75 76 0.61 79 72 0.59 75 76 97 91 + 23315 43 29 + 7.18 0.13 52 93 0.13 30 75 0.10 77 74 106 32 +22128 50 22 + 14.80 0.25 67 78 0.25 69 76 0.23 81 61 106 32 +22138 51 36 + 14.51 0.44 35 88 0.44 17 43 0.25 35 88 106 32 +22171 53 39 + 13.56 0.31 36 90 0.31 35 88 0.19 37 93 106 32 +22180 54 31 + 13.30 0.30 106 15 0.30 120 0 0.29 106 15 106 32 +22234 56 46 + 11.74 0.31 79 64 0.31 77 67 0.30 79 64 106 32 +22246 57 42 + 11.39 0.30 95 39 0.30 90 48 0.30 95 39 106 32 +22261 58 36 + 10.93 0.16 36 90 0.16 35 88 0.10 42 09 106 32 +22294 60 40 + 10.00 0.29 123 0 0.29 124 0 0.24 123 0 106 32 +22303 61 38 + 9.74 0.20 128 0 0.20 107 13 0.16 128 0 106 32 +22329 62 29 + 8.96 0.29 55 89 0.29 49 94 0.24 55 89 106 32 +22337 63 40 + 8.73 0.28 47 95 0.28 69 76 0.22 54 90 106 32 +22362 64 25 + 8.07 0.38 27 68 0.38 26 65 0.18 37 93 106 32 +22376 65 18 + 7.66 0.25 151 0 0.23 27 68 0.23 81 61 106 32 +22400 66 51' + 6.97 0.45 174 0 0.45 197 0 0.17 139 0 106 32 +22420 67 49 + 6.36 0.47 105 18 0.47 105 18 0.46 105 18 106 32 +22686 70 15 -1.27 0.27 170 0 0.27 171 0 0.07 143 0 106 32 +22728 71 31 -2.47 0.35 190 0 0.35 208 0 0.12 27 68 41 44 + 22541 75 37 + 15.59 0.37 111 18 0.37 100 39 0.35 111 18 41 44 + 22619 76 30 + 13.40 0.43 34 85 0.30 34 85 0.24 38 95 41 44 + 22678 77 55 + 11.63 0.36 110 20 0.36 65 81 0.34 96 45 41 44 + 22780 78 35 + 8.78 0.22 77 70 0.22 79 67 0.22 77 70 41 44 + 22845 79 28 + 6.93 0.41 109 22 0.38 88 56 0.38 88 56 41 44 + 22891 80 40 + 5.59 0.30 56 89 0.29 66 80 0.20 45 97 50 13 + 22849 85 6 014 -1.01 0.15 14 35 0.15 14 35 0.04 18 45 134 58 + 22160 91 47 013+ 8.38 0.10 65 73 0.10 75 60 0.09 65 73 134 58 + 22175 92 47 013+ 8.76 0.10 80 53 0.10 104 13 0.10 80 53 134 58 + 22201 93 47 013+ 9.42 0.17 69 68 0.17 65 73 0.16 77 57 134 58 + 22616 94 21 013+19.87 0.04 63 75 0.04 63 75 0.04 63 75 IGA Reanalysis Page 18 of 20

m . _ _. ~. _ _ _.... A c 600/200 KHz Diff Mix (CH P2) DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 77 17 +29343 1 100 73 8 +20366 2 100 UTS+5.77 1.15 45 54 1.07 41 62 0.81 45 54 73 8 +20353 3 100 UTS+5.39 1.24 51 44 1.24 47 51 0.97 51 44 73 '8 +20339 4 100 UTS+4.87 1.69 57 34 1.69 57 34 1.43 60 29 73 8 +20300 5 70 UTS+3.58 0.32 64 23 0.32 65 21 0.29 69 16 73 8 +20216 6 100 UTS+0.83 8.39 33 79 8.39 29 88 4.51 33 79 112 19 +18540 7 20 015-1.36 0.44 69 16 0.41 64 23 0.41 69 16 77 34 + 2830 8 100 52 51 + 22745 11 33 + 14.34 0.39 158 0 0.39 168 0 0.16 146 0 52 51 + 22802 13 33 + 12.74 0.29 152 0 0.29 152 0 0.13 152 0 52 51 + 22831 14 40 + 11.93 0.29 54 94 0.29 54 94 0.23 54 94 j 52 51 + 22880 16 45 + 10.55 0.57 50 96 0.57 55 93 0.46 59 91 52 51 + 22911 17 52 + 9.71 0.70 163 0 0.70 142 0 0.38 143 0 52 51 + 22955 18 53 + 8.45 0.68 57 92 0.68 56 93 0.57 57 92 52 51 + 23034 19 34 + 6.23 0.83 175 0 0.83 144 0 0.38 147 0 90 28 + 23643 22 49 + 16.46 0.92 182 0 0.92 186 0 0.13 62 90 ~ 90 28 + 23669 23 30 + 15.76 0.18 12 30 0.18 12 30 0.11 52 95 90 28 + 23705 25 62 + 14.77 0.38 94 70 0.38 109 56 0.38 94 70 90 28 + 23722 26 49 + 14.29 0.95 134 23 0.95 127 34 0.71 128 33 90 28 + 23749 27 53 + 13.54 0.36 22 55 0.36 41 100 0.20 45 98 90 28 + 23783 29 45 + 12.66 0.42 146 0 0.42 157 0 0.23 145 2 90 28 + 23814 30 45 + 11.85 0.86 161 0 0.86 142 9 0.36 145 2 90 28 + 23826 31 60 + 11.56 0.45 43 99 0.45 9 23 0.32 58 92 90 28 + 23862 33 46 + 10.57 0.36 124 38 0.36 93 70 0.31 114 51 L i 90 28 + 23870 34 53 + 10.33 0.78 143 7 0.78 118 46 0.65 122 41 90 28 + 23963 35 50 + 7.87 1.29 126 36 1.29 120 44 1.07 121 42 i 90 28 + 24019 36 56 + 6.37 0.75 108 57 0.75 104 61 0.74 101 64 97 - 91 + 23049 37 54 + 14.67 0.60 102 61 0.60 98 65 0.59 102 61 97 91 + 23137 38 48 + 1217 1.12 28 70 1.12 357 100 0.61 46 98 l 97 91 + 23251 40 46 + 8.98 0.53 113 47 0.53 105 58 0.49 113 47. [ IGA Reanalysis Page 19 of 20

A L e 600/200 KHz Diff Mix (CH P2) DATA Maximum VPP MXR VMX ROW TUBE POINT flaw Depth LOC LTS+ Volts deg %TW Volts deg %TW Volts deg %TW 97 91 + 23260 41 54 + 8.70 0.83 80 80 0.83 83 78 0.82 80 80 97 91 + 23315 43 29 + 7.18 0.22 69 87 0.22 68 88 0.21 69 87 106 32 +22128 50 22 + 14.80 0.42 18 45 0.42 6 15 0.25 90 64 106 32 +22138 51 36 + 14.51 0.80 24 60 0.80 17 43 0.39 39 98 106 32 +22171 53 39 + 13.5C 0.45 36 90 0.45 30 75 0.27 41 99 106 32 +22180 54 31 + 13.30 0.44 158 0 0.44 171 0 0.31 125 14 106 32 +22234 56 46 + 11.74 0.26 98 56 0.26 96 58 0.25 98 56 106 32 +22246 57 42 < 11.39 0.30 124 16 0.30 137 0 0.28 105 47 106 32 +22261 58 36 + 10.93 0.29 22 55 0.29 15 38 0.18 45 97 106 32 +22294 60 40 + 10.00 0.34 145 0 0.34 151 0 0.19 145 0 106 32 +22303 61 38 + 9.74 0.28 155 0 0.28 135 0 0.12 148 0 106 32 +22329 62 29 + 8.96 0.32 47 96 0.32 39 98 0.23 47 96 106 32 +22337 63 40 + 8.73 0.45 20 50 0.45 20 50 0.29 97 57 106 32 +22362 64 25 + 8.07 0.49 25 63 0.49 27 68 0.22 33 83 106 32 +22376 65 18 + 7.66 0.46 174 0 0.46 160 0 0.18 121 22 106 32 +22400 66 51 + 6.91 0.87 186 0 0.87 191 0 0.20 40 100 106 32 +22420 67 49 + 6.36 0.63 122 20 0.63 127 10 0.52 117 29 106 32 +22686 70 15 -1.29 0.40 182 0 0.40 183 0 0.06 16 40 106 32 +22728 71 31 -2.47 0.51 195 0 0.51 185 0 0.14 16 40 41 44 + 22541 75 37 + 15.56 0.60 118 31 0.60 111 42 0.53 118 31 41 44 + 22619 76 30 + 13.40 0.66 39 98 0.83 30 75 0.42 39 98 41 44 + 22678 77 55 + 11.69 0.60 123 22 0.60 78 77 0.50 123 22 41 44 + 22780 78 35 + 8.78 0.34 36 90 0.28 73 81 0.25-62 88 41 44 + 22845 79 28 + 6.93 0.67 108 46 0.67 101 54 0.65 102 53 41 44 + 22891 80 40 + 5.61 0.35 76 78 0.35 93 63 0.34 76 78 50 13 + 22849 85 6 014 -1.01 0.09 18 45 0.09 13 33 0.04 45 97 134 58 + 22160 91 47 013+ 8.38 0.05 90 59 0.05 79 70 0.05 90 59 134 58 + 22175 92 47 013+ 8.76 0.05 104 42 0.05 99 49 0.05 90 59 134 58 + 22201 93 47 013+ 9.42 0.11 72 76 0.11 73 75 0.11 72 76 134 58 + 22616 94 21 013+19.89 0.03 53 91 0.03 34 85 0.02 53 91 IGA Reanalysis Page 20 of 20 !}}