ML20101H126

From kanterella
Jump to navigation Jump to search
Flaw Acceptance Stds for Arkansas Nuclear One Unit 1 Reactor Pressure Vessel Weld Insps
ML20101H126
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 02/22/1996
From: Cofie N, Deardorff A
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20101H098 List:
References
SIR-95-017, SIR-95-017-R00, SIR-95-17, SIR-95-17-R, NUDOCS 9603290105
Download: ML20101H126 (103)


Text

.. - . . .

Report No.: SIR-95-017 Revision No.: 0 Project No.: ANO-100 File: ANO-100-402 February 1995 Flaw Acceptance Standards for Arkansas Nuclear One Unit 1 -

Reactor Pressure Vessel Weld Inspections Prepared for:

i Entergy Operations Prepared by:

StructuralIntegrity Associates San Jose, California -

1 Prepared by: Date:

N. G. Cofie l l

Reviewed by: l

[2 ~'

[ Date: M 23N [

' _ A.'F.Mard'orff /

/

Approved by: Date: 2/22[C N. G. Cofie j

'9603290105 960325 Structural Integrity Associates, Inc.

lDR ADOCK0500Q3 l

i Y

Table of Contents Section East 1.0 ' INTROD UCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-l '

2.0 EVALUATION METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Overview of Section XI Evaluation Procedures . . . . . . . . . . . . . . . . . 2-1 2.2 Specific Details of Evaluation Methodology . . . . . . . . . . . . . . . . . . . 2-3 2.3 Analysis Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 3.0 BASIS OF ANO-1 VESSEL EVALUATION . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Grouping of Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Vessel Geometry and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4' 3.3 Loadings and Loading Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 3.4 Stresses and Stress Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 4.0 R ES U LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 IWS-3500 Evaluation Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.2 IWB-3600 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

5.0 CONCLUSION

S AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 6.0 REFEREN CES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 APPENDIX A Flaw Acceptance Diagrams for Group A Materials . . . . . . . . A-1 APPENDIX B Flaw Acceptance Diagrams for Group B Materials ........ B-1 APPENDIX C Flaw Acceptance Diagrams for Group C Materials ........ C-1 APPENDIX D Flaw Acceptance Diagrams for Group D Materials . . . . . . . . D-1 APPENDIX E Flaw Acceptance Diagrams for Group E Materials ........ E-1 APPENDIX F Flaw Acceptance Diagrams for Group F Materials . . . . . . . . . F-1 APPENDIX G Flaw Acceptance Diagrams for Group G Materials . . . . . . . . G-1 APPENDIX H Flaw Acceptance Diagrams for Group H Materials . . . . . . . . H-1 APPENDIX I Flaw Acceptance Diagrams for Group I Materials . . . . . . . . . . I-1 SIR-95-017, Rev. O i f StructuralIntegrityAssociates,Inc.

1 List of Tables Number East 31 Grouping of Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 ,

3-2 Material Properties of ANO-1 Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  !

3-3 - Stresses for Group A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 3-4. Stresse s for Group B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  !

3-5 Stresses for Group C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 ,

l

3-6 Stresses for Groups D, E, F and G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 y i

I' 3-7 Stre sse s for G roup H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 3-8 S tresses for Group I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

]

1

)

l I

i 1

i i

l 1

- SIR 95-017, Rev.' 0 - ii j f StructuralIntegrityAssociates,Inc.

I 1

List of Figures Figure East i

1. Plates and Weld Locations of ANO-1 Vessel . . . . . . . . . . . . . . . . . . . . . . . 3-20 3-2.. Vessel Geometry at ANO Top Head Region . . . . . . . . . . . . . . . . . . . . . 3-21 l
3. Vessel Geometry at ANO Flange Region . . . . . . . . . . . . . . . . . . . . . . . 3-22 3-4. Vessel Geometry at ANO Beltline and Bottom Head Regions ....... 3-23

{

3-5. Vessel Geometry at ANO Details of Bottom Head Region . . . . . . . . . . 3-24

6. Axisymmetric Finite Element Model of ANO-1 Vessel . . . . . . . . . . . . . . . . 3-25 i

i i

7 4

4 w

4 A

t SIR-95-017, Rev. O iii  ;

h StructorsiIntegrityAssociates,Inc.

i

1.0 INTRODUCTION

In preparation for the second ten-year in-service inspection (ISI) of the reactor pressure vessel at Arkansas Nuclear One Unit 1 (ANO-1) during the February 1995 outage (IR12),

Entergy Operations Inc. contracted with Structural Integrity Associates (SI) to develop flaw acceptance diagrams for the shell-like regions of the vessel to allow for rapid evaluation of flaws in the case that flaw indications are found during the vessel examinations. Similar previous evaluations were performed during the first ten-year ISI interval by Babcock and Wilcox in Reference 1. However, the Reference 1 report considered only inside surface flaws and it is only valid up to the second ten-year ISI. The present analysis updates the Reference 1 evaluation such that the flaw acceptance diagrams can be used until the end of plant life. In addition, it also addresses both surface and subsurface flaws and incorporates new flaw and materials evaluation methodologies that have been developed since the Reference 1 report was published.

This report contains a definition of acceptable flaw sizes that can be used during the vessel inspection to perform rapid assessment of flawindications. These flaw acceptance guidelines

are provided in graphical format in the appendices of this report and are based on the

, methods contained in ASME Section XI [2]. The evaluation methods have been supplemented by more sophisticated evaluation techniques, where Section XI, Appendix A,

- may not be completely definitive for the evaluation (e.g., for cladding stress intensity factors).

An evaluation of vessel materials and thicknesses has resulted in a conservative grouping of potentially-flawed locations to limit the number of flaw evaluations to a manageable number.

Thus, the graphical acceptance standards included herein are intended to be conservative but need not serve as the only basis for performing Section XI flaw evaluations.

d Section 2.0 of this report describes the methods of analysis and the assumptions that have been made in conducting the analysis. Reading and understanding the information included therein is important to understand the limitations inherent in conducting an evaluation of all possible flaws that might exist in the vessel.

SIR-95-017, Rev. 0 1-1 f StructuralIntegrityAssociates,Inc.

Section 3.0 presents an evaluation of the specific materials and welds for the ANO-1 reactor vessel and shows how they were grouped to limit the number of evaluations conducted. The design input (stresses, load cases, etc) that forms the basis for the analysis is included.

Section 4.0 presents and describes the results. Section 5.0 summarizes the findings and

. restates the limitations with respect to the results presented in this report.

l l

l 1

l i

\

I i

a

\

l a

r l

)

i SIR-95-017, Rev. 0 1-2 h StructuralIntegrityAssociates,Inc.

1

2.0 - EVALUATION METHODOLOGY 2.1 - Overview of Section XI Evaluation Procedures The rules for evaluation of flaws in reactor vessels are ' contained in IWA-3000, IWB-3500 and IWB-3600 of Section XI of the ASME Boiler and Pressure Vessel Code [2]. Appendix-A of Section XI provides specific methodology that may be used for detailed fracture mechanics evaluations. The following provides an overview of the Section XI evaluation approach. i

. In the first step of vessel flaw evaluation, the indications from vessel inspections must be  !

l characterized per the requirements of Section XI Article IWA-3000. This requires that the l

.. indications be bounded by a rectangular shape with depth (a for surface flaws and 2a for j subsurface flaws) and length (f) that will completely contain the suspected material flaw.

Closely adjacent flaws must be linked together based on criteria contained in IWA-3000.

Similarly, flaws closely adjacent to the base metal surface must be assumed to be surface flaws, based on criteria presented in the code. l The next step in the vessel flaw evaluation is to compare the flaw with the evaluation standards included in Table IWB-3510-1. This table provides the size of allowable planar flaws that may be accepted without further evaluation. Table IWB-3510-1 defines allowable sizes for surface and subsurface flaws as a function of wall thickness, flaw aspect ratio (a/f) and flaw depth ratio (a/t), where t is the has metal thickness.

If the indication is larger than may be accepted by IWB-3510-1, then additional analytical evaluation is allowed per IWB-3600. These evaluations are based on the 1_ctalo wall thickness including cladding. ~ Again, flaws located closely adjacent to the surface must be evaluated i S1R-95-017,' Rev. 0 - 2-1 )

{ StructuralIntegrityAssociates,Inc.

as surface flaws based on criteria in IWB-3000. Flaws located completely within the vessel  ;

cladding are acceptable with no further evaluation. Key points of the evaluation include:

e The criteria allow acceptance by specifying a factor of safety on either the size of the critical flaw, or a factor of safety on the stress intensity factor.-

e Separate evaluations are required for Normal / Upset and Emergency / Faulted conditions, with different factors of safety for each.

1 e Additional consideration is given to areas near structural discontinuities (e.g., for welds near a flange) by allowing alternate factors of safety for low-pressure operating conditions.

Appendix A of Section XI provides a detailed procedure for vessel flaw evaluation. To perform the analysis, the following factors must be considered:

o The flaw must be characterized and resolved into a shape that can be evaluated.

This includes determination of the depth ratio (a/t) and the aspect ratio (a/t) of the ,

flaw. For subsurface flaws, the eccentricity ratio (c/t) must be determined, where e is the distance from the center of the vessel wall (including cladding) to the center of the flaw. '

e Stresses and the temperature at the location of the flaw must be determined for all loading conditions.

e The flaw stress intensity factor and critical crack size must be calculated, either by using the equations, charts, and tables of Appendix A of Section XI or through use of other more sophisticated, documented analytical techniques.

i i SIR-95-017, Rev. 0 2-2 h StructuralIntegrityAssociates,Inc.

e The material properties must be defined at the location of the flaw, including the effects of irradiation.

e The crack growth that can occur during the evaluation interval must be determined (e.g., to the next inspection or to the end of life).

e The flaw size at the end-of-evaluation period must be less than that allowed by Section XI.

  • The primary stress limits of the original design code Section III, (NB-3000) must also
j. ' be met assuming a local area reduction of the pressure-retaining membrane that is equal to the area of the characterized flaws.

2.2 Specific Details of Evaluation Methodology

)

2.2.1 Stress Intensity Factors 4

Appendix A of Section XI provides a basic methodology for evaluating vessel flaws.

i However, there is limited guidance for the determination of stress intensity factors for cracks extending through cladding. In addition, the guidelines are very limited for determining the stress intensity at the surface for surface flaws. The following describes how the stress

! intensity factors were determined for the ANO-1 RPV evaluation.

Annendix A Methods For all stresses, except for those due to cladding for an internal surface flaw, the methods of Appendix A are used for the deepest point of surface flaws and for subsurface flaws.

Surface Stress Intensity Factors (excent for claddinci For surface stress intensity factors for surface flaws, Mm and Mb, as defined in Appendix A e

of Section XI, have been determined based on the Raju/Newman membrane and bending SIR-95-017, Rev. 01 2-3 f StructuralIntegrityAssociates,Inc.

solutions [3] for the worst case ofinternal and external cracks for a vessel with thickness-to-radius ratio of 0.L For flaws with an aspect ratio (a/f) of zero, the surface stress intensity factor is assumed to be zero since an infinitely long crack does not have a surface point.

. The so-determined surface stress intensity factor is applied at the cladding-to-base metal interface for the vessel inside surface.

Cladding Stress Intensity Factor .

For cladding stresses for a long inside-surface flaw, the stress intensity factor at the deepest point of the flaw is determined by integration of the stress over the crack face for an edge-cracked plate using the methods from Tada and Paris (4].

2 o(x) dr (1)

K=gofa m(x) where: o(x) = cladding stress distribution in cladding and base metal as a function of distance (x) from clad surface a = crack depth

,[,) , 3.52(1 -a *) _ 4.35 - 5.28a * (2)

(1 -t *)1.s (j _,.)o.s

.. 1.3 - 0.3(a *)1.s + 0.83 - 1.76a *

- (1 -(1 -a * )t *)

3 (1 -(a ') )o.s where: a* = x/a t' = a/t t = wall thickness As shown in a paper by Kuo,

Deardorff,

and Riccardella, [5], this solution yields a stress intensity factor that has reasonable comparison to " exact" solutions, but is unrealistic and increases significantly for deep-wall cracks in a pressure vessel. Thus, it is assumed that the k

j SIR-95-017, Rev. 0 2-4

{ StructuralIntegrity Associates, Inc.

deep-wall stress intensity factor increases by no more than described by the following:

- For a s a i.,

Kl = i f (3)

For a > a ,3, Kl = lesser of Kf or Kf**' (4)

) a, where:

Kf g = minimum f in f base material a = crack depth size a,,g, = a at Kf ,e To account for the flaw aspect ratio, the stress intensity factor is corrected using the shape factor of Appendix A of Section XI for the crack.

r 30 K = Kl f

05 (5) rQ>

where: Oo = shape factor for flaw with aspect ratio of (a/1) = 0 0 = shape factor for flaw with aspect ratio (a/f) being evaluated

' The stress ratio (the other factor affecting O) is determined based on membrane plus i bending stress (Um + ab) for the flaw, exclusive of the cladding stresses at the cra'c k. Since SIR-95 017, Rev. 0 2-5 h StructuralIntegrityAssociates,Inc.

.- _ - - - _ . _ = . _ - - - . . ._

a ratio is being determined, this approach is reasonable.

The stress intensity factor at the cladding surface is not evaluated. However, the stress intensity factor for the cladding-to base metal interface location is evaluated as ifit were at the surface. The cladding stress intensity factor (determined by Equation 1 above) for a flaw depth equal to the thickness of the cladding (with the same aspect ratio as the deeper flaw being evaluated) is. determined. It is then modified based on the ratio between the membrane stress intensity correction factors for the surface (using the Raju/Newman, Mm )

and the crack tip (using the Appendix A, M ). Although not rigorously derived, this formulation is believed to be conservative for this analysis.

For flaws with aspect ratio of zero (a/t = 0), there is no surface crack. Therefore the stress intensity factor due to cladding at the " surface"is evaluated as zero.

2.2.2 Fracture Toughness l

The fracture toughness, Kr or Kic,is obtained from Section XI Appendix A. The analyzed I vessel wall local fracture toughness, at the location of the associated crack stress intensity factor, is determined with consideration oflocal temperature (as a function of wall depth),

initial RTNDT, local fluence, margins and chemistry factors in accordance with the methods  ;

of Regulatory Guide 1.99 Revision 2 [6]. The approach is as follows: )

ART = RTwo7,i + RTuor Shift + Margin (6)  !

where:

ART = Adjusted Reference Temperature, F RTNDT,i = initial RTNDT, F j 8

Margin =

required margin = 2 fo* + 0 3, F (RTuo7 Shift, o,, and c 3are defined below) 1 The margin is determined based on the standard deviation of the initial RTwo7 (o) and that of the RTsor shift (o 3). The standard o, is 28 F for welds and 17 F for base metal SIR-95-017, Rev. 0 2-6 h StructuralIntegrityAssociates,Inc.

[6), except that o, need not exceed 0.5 times the computed shift in RTm7 t

, RTm7 Shift = (CF) - (FF) (7) where: ,

CF = chemistry factor, 'F FF = fluence factor, dimensionless FF = f**'# (8) where:

f = local fluence, neutrons /cm2 x 1019 (E> 1MeV)

The local fluence, f, at any position in the wall may be calculated from: -

f = fg e * (9) where: ,

= fluence at inside surface, neutrons /cm 2 x 3019 (E>1MeV) fsurf x = distance from inside surface, inches I

The fluence at the surface is a function of time:

fre x EFPY (10) fg = EFPY,4 i

where:

.= 2 fr re reference surface fluence , neutrons /cm x 1019 (E>1MeV)

EFPYrer = effective full power years associated with refr ,

EFPY = effective full power years for evaluation SIR 95-017, Rev. 0 2-7 f StructuralIntegrityAssociates,Inc.

____m _ _ _ _ . _ _ _ _ .

f This allows the adjusted reference temperature to be calculated for the beltline region at any 4

depth, at any time, and for each specific weld or plate being evaluated. For regions not in the beltline region, there is no shift in RTmyr-2.2.3 Crack Growth Considerations l ' A conservative estimate of the crack growth for determining allowable subsurface and outside surface flaws is based on the crack-growth curve for air of Section XI Appendix A, using the latest formulations from the 1992 Edition with 1993 Addenda. A conservative '

estimate of the number of cycles to the end of the evaluation period is made. For inside surface flaws, the water curve-growth is used. In all cases, the crack growth is based on R

= 1.0, where R is the ratio of the minimum crack tip stress intensity factor to the maximum -

stress intensity factor (Kmin/Kmax). The stress intensity factor at the allowable flaw size for each flaw is used in this evaluation. For flaws accepted by the evaluation standards of Table IWB-3500-1, there is no requirement to consider crack growth.

F l

2.2.4 Subsurface Flaw Size Considerations l

For subsurface flaws, the maximum allowable size that does not have to be considered as a surface flaw per the requirements of Table IWB-3510-1 or Figure IWB-3610-1, as f applicable, is determined based on flaw eccentricity as follows:

4 l

' a_' , 0.5 - le/tl (33)

,t% 1.4 where:

l I =

thickness of vessel base material (for IWB-3500 evaluation), or total thickness of vessel wall including cladding (for IWB-3600 /

Appendix A evaluation)

SIR-95-017, Rev. 0 2-8

^

f StructuralIntegrityAssociates,Inc.

i l

4

'e = flaw eccentricity, measured from center of vessel wall, (determined with or without cladding as appropriate), negative if toward inner vessel wall r

2.2.5 ' Definition of Allowable Flaw Size and Shape  ;

.i In evaluating hypothetical flaws, such as evaluated herein, one is faced with the problem of

! determining the size of the allowable flaw. In some cases, larger flaws may be acceptable as compared to smaller flaws. This is especially true when there is a large bending  ;

component to the throughwall stress distribution, the fracture toughness through the wall is i not constant due to irradiation embrittlement and/or if cladding stresses are a significant s

contribution to the stress intensity factor. Also, if the surface stress intensity factor is

controlling, a flaw with a smaller aspect ratio (more extent of flaw length) may be acceptable r when a similar depth flaw with less flaw length would not be acceptable. There are several 3

choices that can be made in choosing the allowable flaw size at a location:

e Option 1
Accept the largest flaw with the smallest aspect ratio that is acceptable.

In this case, a larger flaw (depth and/or length) may be acceptable whereas a smaller l flaw would not be acceptable. This is analogous to evaluating an actual flaw by assuming a larger bounding flaw size or length.

e Option 2: The most conservative approach is to determine the minimum flaw size that is acceptable for the flaw aspect ratio being evaluated.

1 o Option 3: In some cases, the surface stress intensity may control the allowable flaw depth, especially when cladding stresses are being evaluated or if the surface fracture toughness is low. However, a longer flaw (e.g., all = 0) might be acceptable. For this option, the acceptable flaw size is based on the smallest acceptable flaw depth

(as in Option 2) but the aspect ratio can be assumed to be smaller (the flaw is assumed to be longer) than for the actual aspect ratio being evaluated.

. SIR-95-017, Rev. 0 '2-9

, f StructuralIntegrityAssociates,Inc.

h l

' In the evaluations included in this report, the first option has been chosen since the stress-

~

intensity factor solution for surface stresses and cladding are believed to be quite conservative.

The stress intensity factor within the cladding does not have to be evaluated for acceptability.

, Thus, .the allowable inside surface flaw size will always be at least equal to the cladding i thickness plus that allowed by the acceptance standards of IWB-3500.

4 i

2.3 Analysis Implementation

The analysis presented within this report has been prepared using a computer program f

,  : developed and verified by SI for this specific purpose. APPENDA (standing for Appendix ,

i

. - A Analysis) (7) is a computer program written to perform reactor pressure vessel flaw  ;

- evaluation in accordance with Appendix A of Section XI and Subarticle IWB-3600 of Section i 1 . XI of the ASME Boiler and Pressure Vessel Code [2]. It uses the methodology described ,

above, and determines allowable inside surface, outside surface and subsurface flaws. It is intended to provide a rapid assessment of all possible flaws so as to allow construction of flaw acceptance diagrams that may be used to provide guidance in reactor vessel inspections. l APPENDA performs an evaluation to determine the acceptable size of surface and  ;

- subsurface flaws in accordance with the requirements of ASME Code Section XI, Appendix I A and subarticle IWB-3600 (2). In addition, the acceptability of relatively smaller flaws is evaluated in accordance with Section XI, Table IWB-3510-1 [2] for planar flaws. The i i

i program output includes the acceptable flaw size for the complete range of flaw aspect ratios and flaw eccentricities (for subsurface flaws). Key features include 1

e Ability to include an arbitrary stress distribution for pressure, bending, thermal and residual stresses, including load multiplier factors for each, 4

d SIR-95-017, Rev. 0 2-10

{ StructurallategrityAssociates,Inc.

.-- _ . . _ , _ . . , ,- m - m_, c_ r . - , , , - .

1 e Evaluation of cladding stresses, with several methods to handle the effects of the cladding stresses at the surface for inside surface flaws, e Ability to evaluate flaws based either on the maximum acceptable size, minimum acceptable size, or the minimum acceptable size assuming a smaller aspect ratio, a/1.

e Consideration of normal / upset condition, emergency / faulted condition or regions near

local discontinuities (per IWB-3613 (a)).

e Automatic determination of the wall fracture toughness distribution given initial material properties and accumulated surface fluence at the end of the evaluation period.

e Conservative assessment of flaw growth to the end of the evaluation period.

i A separate utility program MAPPA (standing for Multiple Ap_pendix A analysis) provides an evaluation of multiple input cases and determines the controlling loading condition (or I combination of conditions) for a number of individual evaluations using APPENDA.

l 4

i SIR-95-017, Rev. 0 2-11 l

{ StructuralIntegrityAssociates,Inc.

i

1 1

l 1

1 3.0 BASIS OF ANO-1 VESSEL EVALUATION I

3.1 Grouping'of Locations

. The reactor vessel plates, forgings and welds at ANO-1 are shown in Figure 3-1. The circled -

inumber designation used in this figure is consistent with that used in the Reference 1 flaw evaluation.

- As shown in Figure 3-1, locations were defined as the following: ,

1. Nozzle Belt to Upper Shell Weld '
2. Upper Shell Longitudinal Weld
3. Upper Shell to Lower Shell Weld

~

4. Lower Shell Longitudinal Weld
5. Lower Shell to Transition Forging Weld
6. Transition Forging between Vessel Shell and Bottom Vent
7. Transition Forging to Lower Shell Weld
8. Vessel Flange to Nozzle Belt Weld
9. Upper Nozzle Belt
10. Nozzle (Corner Crack) ,
11. Nozzle Belt to Nozzle Belt Weld '
12. Nozzle (Vessel Side) i Upper Shell 13.
14. Lower Shell
15. Upper Head to Closure Flange Weld
16. Lower Nozzle Belt
17. Upper Head
18. Lower Head SIR-95-017, Rev. 0 31 f StructuralIntegrityAssociates,Inc.

l I

1 i

i The evaluation in this report is limited to the shell welds and as such the nozzle-to-vessel welds (#10 and #12).were not considered. It should be noted that the nozzle welds are remote from the belt line region and are unaffected by irradiation c.ffects. Hence the ,

Reference 1 flaw acceptance diagrams may be used for these locations, subject to I recognition that the materials evaluation used for the current evaluation is probably more j conservative.

Material properties for all the RPV plates and welds have been assembled in Reference 8

based on data collected during a site visit to ANO. Using this information, these locations have been identified by variations in fluence, initial RT,em and geometry in Table 3-1.

For the purpose of reducing the magnitude of the analytical computations, these locations

, have been combined to form nine groups. These groupings have been selected based on similarities in geometry, material data, stresses or thicknesses in the surrounding plate and/or weld material, as shown in Table 3-1. Referring to Figure 3-1, these groups have been combined starting from the top of the vessel (upper head). For each region, the surrounding j material has been examined for the worst case, i.e., irradiation effects, stresses and/or initial RTuo7. A description of each group and reasoning for their grouping is as follows:

Group A 3

Head Flange Weld and Adjacent Shells This group includes the upper head shell (Mk# 24), upper head to closure flange weld, and closure flange. Material properties and stresses for the upper head to closure flange weld have been used to represent all materials in this group.

, Group B Upper Flange Weld and Adjacent Shells This group includes the closure flange, vessel flange to nozzle belt weld (Weld 01-001), and upper nozzle belt shell (Mk #86). The material properties and stresses for Weld 01-001 have been used to represent all materials in this group.

SIR 95-017, Rev. 0 3-2 h StructuralIntegrityAssociates,Inc.

Group C Nozzle Belt to Nozzle Belt Weld and Adjacent Welds / Shells This group includes the upper nozzle belt shell (Mk #86), the weld between the upper and lower nozzle belts, and the lower nozzle belt shell (Mk #87). For this group the material is unitradiated with no chemistry factors or fluences considered.

Group D Beltline Shells (I)

The group represents two irradiated shells in the beltline region: Lower shells (Mk #A2, heat C5114) and lower nozzle belt shell (Mk #87). Because the irradiation effects are greater for the lower shell (with higher fluence and chemistry factor) and margin terms are greater, this material has been selected as representative for this grouping. Note that the other heat of the lower shell has been included in Group E. Maximum stresses are found at the nozzle belt to upper shell weld (01-003). Therefore, these stresses have been used 1

to evaluate this grouping. 1 1

1 1

Group E I

Beltline Shells (II)

The lower shell (Mk #A2, heat C5120) and upper shells 13-1,13-2 (Mk #A1, heats C5120 l and C5114) have been grouped together to form Group E, due to the irradiation effects for these materials. The higher chemistry factor of 123 F which exists for the upper and lower 1

shells has been used for this group. Stresses found at the nozzle belt to upper shell weld i I

have been used to evaluate this group. l Group F 1 i

Upper Shell to lower Shell Weld j

, This group represents the upper shell to lower shell weld (Weld 01-004). This : eld has been evaluated separately due to the relatively large chemistry factor. Maximum stresses are found at the nozzle belt to upper shell weld (Weld 01-003). Therefore, these stresses have been used to evaluate this group. l SIR-95-017, Rev. 0 3-3 i f StructuralIntegrityAssociates,Inc. l

Group G Beltline Welds This group includes upper shell longitudinal welds, nozzle belt to upper shell weld, and lower shell longitudinal welds (Welds01-007, 01-008,01-003, 01-009, and 01-010). Weld 01-003 possesses the highest chemistry factor (167*F), therefore this was conservatively used for this group. Margins of 12.5 F and 20 F were used. Maximum stresses are found at the nozzle belt to upper shell weld (Weld 01-003). Therefore, these stresses have been used to evaluate this group.

Group H Lower Shells / Welds (I)

The lower shell to lower head transition forging weld (Weld 01-005) and lower head transition forging (Mk #36) have been grouped together to form Group H. For this group, the lower shell to lower head transition forging weld (Weld 01-005) irradiation effects have been used, as well as the margin terms. Stresses for Weld 01-005 have been used for this group.

, Group I Lower Shells / Welds (II) ..

This group includes the lowerhead transition forging (Mk #36), lowerhead transition forging to lower shell weld (Weld 01-006), and lower head shell (Mk #6). Material properties for the lower head shell (Mk #6) have been used with an initial RTNDT of 10 F and a margin shift of 10 F.

3.2 Vessel Geometry and Materials The geometric details of the ANO-1 vessel are shown in Figures 3-2 through 3-5. The dimensions in these figures were assembled based on information contained in the drawings from References 9 through 11. Although small discrepancies were observed in the vessel wall thicknesses in these drawings, the smallest thickness at a given location was SIR-95-017, Rev. 0 3-4 h StructuralIntegrityAssociates,Inc.

i conservatively used when these minor discrepancies were noted.

The vessel plate material is either A533, Class 1, Grade B. The vessel flange material and nozzles are A-508-64, Class 2. The vessel stud bolts were fabricated from A540 Grade B23 steel. Material properties for these materials were obtained from the existing vessel Stress Report [12] for use in the present evaluation as presented in Table 3-2.

3.3 Loadings and Loading Conditions In the Reference 1 evaluation, the steady state leak test, slightly above normal operating conditions (temperature and pressure) was evaluated. In addition, heatup (at full pressurized conditions) was considered for the upper head closure flange, and cooldown (at zero or some other low pressure) was considered for all other locations. This choice of conditions was chosen to maximize the internal surface tensile stresses since only inside surface flaws were considered in the flaw evaluation. For the current evaluation, several other loading conditions will be evaluated since surface (both inside and outside) as well as subsurface flaws are being evaluated.

3.3.1 Boltup at Ambient Conditions This is chosen to evaluate the stresses near the upper closure welds at a uniform through- '

wall temperature of 70 F. Boltup produces significant compressive stresses on the inside surface, but there are corresponding tensile stresses on the outside surface. Since the analysis is to consider both internal and external flaws, and also subsurface flaws, this may be a bounding condition. The decreased safety factors associated with local discontinuities

[ (IWB-3613) are considered when this case is considered by itself.

T SIR 95 017, Rev. 0 3-5 h Structural tr*sgrity Associates, Inc.

,,x a va,e nsx.. t n=,e a , .aw .v. ..a, + ns a4 - e - a..w,-- . m - - -.=...e ..~.w a w .a=,- +-

1 4

? ,

I 3.3.2 Heatup at Cold Conditions 1

1 i

This condition is chosen at 100*F above boltup or 170*F, assuming the reactor has heated
l up at the Technical Specification limit of 50*F/hr for two hours, establishing the thermal

)

j: gradients in the vessel [13]. The limit of 527 psi pressure for the " Hydrostatic Heatup and I Cooldown"in Reference 13 is used. The vessel temperatures are determined based on a .i i

I j .

reactor fluid temperature of 170*F. This condition may be limiting for some of the outside  :

i surface weld locations, since the fracture toughness may be lower than the upper shelf value l of 200 v'ksi-in s. (Heatup at colder conditions is not considered because significant time is i

required to establish a steady state stress gradient that would exhibit maximum tension at l j the outside surface). l

. i

. i 1

. 3.3.3 . Heatup at Warm Conditions i  !

This condition is similar to the above, except that the conditions at 220*F vessel fluid j temperature and 822 psig are chosen. Although the material fracture toughness should be 1

[ higher, _..., may be offset by the higher pressure stresses, such that this ;ondition could 4

control. -

l' .

l_ 3.3.4 Heatup at Hot Conditions i

l This condition is chosen at the end of heatup with a fluid temperature of 603'F. This condition may be controlling for some of the outside surface locations. A vessel pressure l

of 2300 psig for the leak test is used (1.06 times the nominal operating pressure). The vessel .

t heatup rate is taken as 50'F/hr.  !

i f 3.3.5 leak Test i

, This condition is the same as above, except that the vessel wall temperature will be uniform 1 i

i SIR 95-017, Rev. 0 3-6 Y { StructuralIntegrity Associates, Inc.

b _ _ . __ _

(

2 i

at 603*F with no throughwall thermal stresses. This condition may be limiting for some  ;

locations.-

l 3.3.61 Cooldown at 100*F/hr

' This case is chosen based on the maximum pressure for the cooldown transient at the lowest l

temperature condition [13). Cooldown is expected to produce inside surface tensile stresses.

In addition, cladding-induced stresses play an important part at lower temperatures. -This i

cooldown rate is only allowed with the vessel > 280*F, so this lower bound temperature is

. t chosen for the vessel fluid [13). The maximum pressure for ". Hydrostatic Heatup and ,

Cooldown"is taken as 1382 psig.  !

3.3.7 Cooldown at 50*F/hr i

This is similar to the above except the vessel fluid temperature is taken as 150*F and the pressure is taken as 461 psig. (For the flange region, the lower safety factors permitted by i IWB-3613 are used). i 3.3.8 Cooldown at 25'F/hr  ;

This is similar to the above except that the vessel fluid temperature is taken as 70 F and t'.c pressure is taken as 388 psig.

i 3.4 Stresses and S:ress Evaluation k

3.4.1 Ope.ating Stresses '

In performing the evaluations, the possibility of using previous stress analyses in Reference i 1 and also the existing stress report [12) was explored. It was observed that detailed ,

4 through-wall stress information in either of these references was not available at the critical SIR-95-017, Rev. 0 3-7 f StructuralIntegrityAssociates,Inc.

l l

locations of the vessel for flaw evaluation. As such, an axisysmmetric finite element model was developed for the purpose of determining the operating stresses in the vessel. .)

l

- The finite element model of the vessel is shown in Figure 3-6. The model was developed l using the ANSYS computer software [14]. The model was generate'd using isoparametric finite elements for the vessel. No clad material was included in the model. The upper shell

]

flange and the upper head were not physically connected in the model, but rather they shared common coincident nodal locations. In the thermal analysis, the coincident nodes were coupled such that they have the same temperature. For stress analysis, the upper head '

is connected to the flange by a number of gap elements. These gap elements started from  !

the inner diameter and ran approximately to the end of the raised seating face between the i flange and the head. The bolt holes in the flange were not modeled but were accounted for by modifying the stiffness of the material at that location based on area reduction of the l holes. The materials properties are presented in Table 3 2. )

1 The following basic loading conditions were determined from the Stress Report [12):

Gasket loads of 400 kips and 407.6 kips were applied to the mating flange surfaces at the inner and outer gasket grooves.

l A spring load of 6 x 103kips was applied during heatup and a value of 3 x 103 i kips was applied during cooldown. For isothermal corurions, the average f value was used.

i l

The boltup load of 84 x 103 kips was applied for 70*F isothermal conditions.

e Five basic stress cases were run using this model to determine the stress response. Several other load cases can be derived from these basic load cases.

. SIR 95-017, Rev. 0 3-8 f StructuralIntegrityAssociates,Inc.

t innd &<a 1 - Bolt-up at 70*F

{

i f In this load case, the cold bolt-up load was applied to the flange. In addition to the bolt-up.  ;

- Joad, the spring and gasket loads were applied. The bolt load was applied to the model by l j the use of a 2-D spar element available in the ANSYS library.  !

1  !

? I Load Case 2 - Bolt-up at 603*F-  !

a i

i 1

j This case is similar to Load Case 1 above except the vessel was maintained at 603*F. Bolt  ;

j - loads decreased slightly.

Load Case 3 - Bolt-up plus Pressure at 603*F '

i

This case simulates the leak test. It is similar to Load Case 2 except that a pressure of 2242 -

t i j psig was applied to the inside surface of the vessel. The pressure force was also applied  ;

4 J

!- between the top head and the upper shell flange to the first gasket. I 1 1 1

1

,' Load Case 4 - Heatup Transient  !

i i

l 1 '

j .

The initial temperature of the transient was 350*F with a heatup rate of 50*F per hour to l a temperature of 603*F. Stress analysis was performed at the instant 603*F was reached.

l An internal pressure of 2242 psig was applied during the transient with the bolt and gasket  !

loads used in Load Case 1 also applied. I l Load Case 5 - Cooldown Transient The initial temperature of the transient was 603*F with a cooldown rate of 100* F/ hour to r temperature of 287*F. In this case, a pressure of 175 psig was applied.

! l l

SIR-95-017, Rev. 0 3-9 l' f StructuralIntegrityAssociates,Inc.

n -

e , n ,- - -,, -. - , - . ---,.r-. --,

e- - . - , - , - - - - - - - - - - - _ _ - - - - - - - - -

1 2 -

Individual loa'd case stresses derived from the above basic load cases are shown in Tables I i

j 4

3-3 through 3-11 for the various groups of the. vessel. The computed stresses were i

' extrapolated into the vessel cladding region for purposes of the flaw evaluation. More ,

f' ' details of the thermal and stress analyses are provided in Reference 14.

f i 3.4.2 Weld Residual Stresses For purposes of tne fracture mechanics analysis, it was also assumed that weld residual j stresses could be present at all location . A cosine shaped distribution was assumed in the base' metal with a :naximum surface tensile stress of _8 ksi [15). The 8 ksi stress was l- conservatively extended into the cladding for purposes of evaluation. Since residuti stresses

! i may be beneficial in reducing the stress intensity factors, evaluations were also conducted j- without residual stresses so that the controlling condition could be determined.

t

{ 3.4.3 Cladding Stresses 4

6 Cladding stresses were determined using Structural Integrity Associates computer software  ;

l PIPE-TS2 [16] which determines thermal stresses in a bi-metallic cylinder. The cladding in  !

[ a reactor pressure vessel is at its maximum tensile value at cold ambient temperature i

j conditions because of the relative thermal expansion coefficients for alloy steel and stainless 4

l steel. It was assumed that the cladding tensile stress at 70 F was nominally 35 ksi (m f tension), slightly higher than the minimum yield strength for stainless steel (30 ksi) obtained j from the ASME Code material property tables. This stress level is conservative, especially  !

{- when one considers that some additional yielding would have occurred during the original ,

1 vessel cold hydrotest that would tend to reduce the cladding residual stress below the yield j value at ambient conditions. Table 3-10 shows the cladding-induced stresses used in this ,

j analysis for the cladding and the base metal. Because the hoop and axial stresses are nearly 4

i identical, the cladding axial stress distribution was conservatively used in all cases. It was  !

I also assumed that the cladding stresses determined for the cylindrical model would be  :

. applicable for the spherical and the flanged regions.

! l

SIR 95-017, Rev. 0 3-10 h StructuralIntegrity Associates, Inc.

t

,.r , .-

For use in computing the flaw shape factor,0, the reactor vessel material, A533 Class 1 Grade B has a specific minimum yield strength of 50 ksi[11) at ambient conditions. For 1 other cases, the yield strength was determined based upon the maximum temperature  !

existing at the section being analyzed.

i i

SIR-95-017, Rev. 0 3 33 h StructuralIntegrity Associates, Inc.

Tabh 3-1 Gmuping of Locations m

ee - che-t-r =-i m

,Q t Triedt fluence Feeter sa el h~ Regies type Deecetretoe ID ltsel F eks' F F F Y

O LH Shell ther lhed kt 824 6 625 10 NA NA NA NA 15 Weld tw lued to Cleewe Flerpe 6 625 5 NA NA NA 20 g VF hil veneel Flanye ha 87 12 10 NA NA NA 0 Creep A 6.625 -$ NA NA NA 30 g hit th Flenpe ha 87 12 10 NA NA NA 0

,< 9 Weld vessel Fierpe te Nozzle Deh Ol@l 12 -5 NA NA NA 20 g 9 Shell thwe Nozzle Beit kt 81t6 12 10 NA NA NA 0 Geoep 5 II -9 NA NA NA 30 9 9wil t%Ter Nozzle Bek kt 896 NA NA 12 10 NA 0 11 Weld Nozzle Bek to Nozzle Bek 01402 12 -5 NA NA NA 20 16 hil Loew Nozzle Beh (I) k& 857 12 30 NA NA 12 0 Croep C 12 -S NA NA NA 30 16 SheG Lourer Nozzle Beh kt 857 64375 30 7 41E+48 31 12 0 14-2 Shell lewer 5 ell k& 8A2 (C5114) 84375 11 9 75E+1B 106 17 10 Geoop D(2) 8.437$ 17 9.75E+ls 106 17 le 15-3 hil Upper Shell kt 8Al (C5120) 94375 -10 9 75E+tt 123 17 5 15-2 h5 thwrShell ha 8Al (C5114) 84375 -10 9 75E+18 106 17 5 14 1 hil fewer She5 kt 8A2(C5120) S4375 -10 915E+18 123 17 5 Ceeep E E4375 -le 9.?SE *19 123 17 9 3 Weld t%per Shell to Lower Shell 01404 84375 -5 9 75E+18 195 125 20 L Groep F S.4378 -S 9.75E+18 195 II.S 30 N 2 W eid Upper Sheil lW Ole 7 84375 -5 7 22E+18 150 12.5 20 2 Weld ti lyer Sheillerptslazl 0140s 84375 -5 7.22E+18 150 12.5 20 I Weld Nozzle Bek to t%9er Niell 01403 84375 5 7 41B+Ie 167 12 5 20 4 Weld tower Shett L,- 01409 84375 -5 7 6tB+18 150 125 20 4 Weld lower Shell Leagprudwiel 01410 8 4375 -5 7 6t E+18 150 17 10 Ceeep C S.4375 -8 7.4tE+la 567 12 S 38 14-1 Shell tewer Shell At 8A2 (C5120) S4375 -10 9 75E+18 823 5 5 14-2 hil leser Shell kt 8A2 (C5tle) e4375 17 9 75B+18 106 17 10 5 Weld leoer Shen to Trewesen Forsq 01405 5 -5 546B+l6 165 4 20 6 hil Tension Ferges kt 836 5 10 NA NA NA 0 g Creep H t3) 5 -9 186E+16 les 4 20 6 Shell f ansecon Feryng kt 836 5 10 NA NA NA 0 g 7 Weld Trernason Forpeg to Lower Head 01an6 5 -5 NA NA NA 20 E Lil hil lewer Head kt 86 5 10 NA NA NA 10 E C,oe, i S i. M M NA 19 e

- No.e. -

, I Fm dus troupegt a has been emmened that the portson of the lower Nozzle Bek (he 886) rayon is . .. m-i g 2 liste l 4-2 has been selected to eepreerte Orcip D due to the hqiher Buence l 3 3 Although the ether respons in the ynupeg peesees e tarpe Buence, weld 01405 has been selected to reposses the sepan y dise to its ter5er overall redsutson she Q

, O t &

I &

.w 5

9

E!- Table 3-2

?

y Material Properties of ANO-1 Vessel S

e

  • N S

O Temperature, *F Properties Material 70 100 150 200 250 300 350 400 450 500 550 600 E, psi i ? e. 2.99E+07 2.98E+07 2.97E+07 2.95E+07 2.93E+07 2.91E+07 2.89E+07 2.86E+07 2.83E+07 2.80E+07 2.77E+07 2.74E+07 a,infin j.4 6.12E-06 6.18E-06 6.28E-06 6.38E-06 6.49E-06 6.59E-06 6.69E-06 6.79E-06 6.89E-06 7.00E-06 7.10E-06 7.20E-06 k, Btutin's I3! 6.12E-04 6.08E-04 6.02E-04 5.96E.04 5.90E-04 5.84E-04 5.78E-04 5.72E-04 5.65E-04 5.59E-04 5.53E-04 5.47E-04 W

C, Btullb *F p,ItWin'

{}{="

0.104 0.107 028385 0.28385 0.28351 0.111 0.115 0.2831 0.118 0.28275 028235 0.12 0.123 0.282 0.125 0.126 0.28166 028125 0.128 0.2809 0.13 0.133 0.28049 0.28015 E, psi ,g 2.99E+07 2.99E+07 2.97E+07 2.95E+07 2.93E+07 2.90E+07 2.87E+07 2.83E+07 2.78E+07 2.74E+07 2.68E+07 2.63E+07 a, inlin ]=U 6.09E-06 6.17E-06 6.30E-06 6.42E-06 6.54E-06 6.66E-06 6.77E-06 6.88E-06 6.99E-06 7.10E-06 7.20E-06 7.31E-06 k, Btulin's i 5.09E-04 5.06E-04 5.00E-04 4.95E-04 4.89E-04 4.83E-04 4.78E-04 4.72E-04 4.67E-04 4.61E-04 4.56E-04 4.50E-04 C, BtutIb *F gh" 0.104 0.107 0.111 0.115 0.118 0.12 0.123 0.125 0.126 0.128 0.13 0.133 p,itWin' 0.28409 0.28385 028351 0.2831 0.28275 028235 0.282 0.28166 0.28125 0.2809 0.2805 0.28015 Note: To simulate bolt holes in the flange, the values of g. E, k and C were melbplied by 0.517 in the local cross-secton area occupied by the Bolt Hole.

E o

5 E.

w 5

I R

k 8

B e

Y 9

.- g --

-r ~ 1 W -

E Table 3 Stresses for Group A Axial Stresses i Stresses (ksi)

Distance Bolt-up Pressure Heatup 60*F/hr Cooldown 100*F/hr From 1.D. (in) @T=70*F 2242 psi Stress Temp. Stress Temp.

0 -22.071 16.255 3.830_ 589.00 5.816 311.29 0.187 -20.916 15.706 -3.821 589.00 5.557 311.29

0.188 20.910 15.703 3.034 589.00 5.555 311.29 0.845193 416.850 13.772 -2.518 581.44 4.645 323.74 1.50633 -12.960 12.812 1.781 574.74 3.427 334.89 2.171318 -9.123 12.359 -1.067 568.99 2.172 344.55 2.84007 5.222 12.269 -0.423 564.22 0.976 352.66 3.512498 -1.191 12.458 0.140 560.42 -0.117 359.19 ,

4 4,188518 3.087 12.901 0.616 557.61 -1.088 364.11 4.868048 7.720 13.633 0.999 555.79 -1.941 367.39 5.551008 12.820 14.740 1.348 554.98 -2.769 369.00 t

! 6.237318 18.640' 16.440 1.731 555.20 -3.666 368.87 6.926903 25.360 19.510 2.537 556.48 -5.196 366.95

! Hoop Stresses Stresses (ksi)

Distance Bolt-Up Pressure Heatup 50*F/hr Cooldown 100*F/hr

.g From 1.D. (in) @T=603*F 2242 psi Stress Temp. Stress Temp.

O -0.276 9.301 -18.163 589.00 28.124 311.29 0.187 0.254 9.206 -18.048 589.00 27.112 311.29 0.188 0.257 9.206 -17.560 589.00 27.107 311.29 '

0.845193 2.120 8.872 15.317 581.44 23.551 323.74 1.50633 3.868 8.881 -13.034 574.74 19.967 334.89

, 2.171318 5.607 9.059 -10.987 568.99 16.709 344.55 2.84007 7.367 9.370 9.164 564.22 13.772 352.66

! 3.512498 9.146 9.795 -7.563 560.42 11.149 359.19 4 4.188518 10.940 10.314 -6.158 557.61 8.852 364.11 4.868048 12.760 10.940 -4.963 555.79 6.878 367.39 5.551008 14.580 11.670 -3.959 554.98 5.223 369.00 6.237318 16.410 12.530 -3.174 555.20 3.898 368.87 6.926903 18.520 13.800 -2.501 556.48 2.802 366.95

; SIR-95 017, Rev. 0 3-14 h StructuralIntegrity Associates, Inc.

l 3- l l .

I

- Table 3-4 Stresses for Group B l f

i

Axial Stresses  !

i 4- Stresses (ksi) ,

3 Distence Bolt-up Pressure Heatup 80*F/hr Cooldown 100*F/hr From 1.D. (in) @T=70*F 2242 psi Stress Temp. Stress Temp.  !

, 0 -14.527 10.709 -16.250 590.53 25.818 309.95 i l 0.187 -13.764 ~ 10.630 -15.780 590.53 24.661 309.95 i i 0.188 -13.760 10.630 -15.105 590.53 24.655 309.95  !

I 1.3875 -11.080 10.128 -11.078 576.06 18.085 335.09 i

{ 2.5875 -8.361 9.430 -7.147 563.26 . 357,53 11.717 l'

! 3.7875 -5.576 8.652 -3.671 552.08 6.041 377.24 l 4.9875 2.871 7.927 -0.734 542.48 1.212 394.26 i

) 6.1875 -0.212 7.258 1.694 534.42 -2.797 408.59 7.3875 2.437 6.636 3.653 527.88 -6.029 420.26 i 8.5875 5.101 6.047 5.181 522.82' -8.536 429.31  !

1 9.7875 7.765 - 5.490 6.316 519.22 -10.366 435.74 l' ,10.9875 10.310 4.905 7.082 517.07 -11.520 439.59 12.1875 12.800 4.340 7.497 '516.36 -12.073 440.87 f

Hoop Stresses j' ,

i Stresses (ksi) l Distance Bolt-Up Pressure Heatup 50*F/hr Cooldown 100*F/hr i From 1.D. (in) @T=603* 2242 psi Stress Temp. Stress Temp.

4-0 -1.043 15.788 -20.45 590.53 32.35 309.95

[

0.187 -0.787 15.726 -19.73 590.53 31.11 309.95 O.188 -0.786 15.725 -18.93 590.53 31.11 309.95

1.3875 0.112 15.326 -14.32 576.06 23.48 335.09
2.5875 1.008 14.879 -9.96 563.26 16.35 357.53 l 3.7875 1.902 14.423 -6.18 552.08 10.10 377.24 i- 4.9875 2.749 13.998 -2.97 542.48 4.75 394.26 f j 6.1875 3.569 .13.596 -0.31 534.42 0.30 408.59 i 7.3875 4.374 13.207 1.83 527.88 3.29 420.26 i

8.5875 5.172 12.834 3.46 522.82 -6.05 429.31 9.7875 5.966 12.474 4.61 519.22 -7.98 435.74

[ 10.9875 6.726 12.113 5.30 517.07 -9.11 439.59 12.1875 7.465 11.771 5.54 516.36 -9.46 440.87  :

i i-9 SIR-95-017, Rev. 0 3-15

& structursilategrityAssociates,Inc.

.- . . . - , . - - _ _ - . . . . . . ~ . . - . . . . , _ . - . . .. - --- .- .- - . . . -

i-Table 3-5 F

Stresses for Group C

!' Axial Strasses i

l i ~

l j

Stresses (ksi) f~

Distance Bolt-up Pressure Heatup 80*F/hr Cooldown 100*F/hr From 1.D. (in) GT=70*F 2242 psi Stress Temp. Stress Temp. ,

i. 0 1.295 8.177 -15.280 597.46 .26.140 301.06 j j- 0.187 1.224 8.131 -14.687 597.46 24.223 301.06  :
0.188 1.224 8.131 -14.162 597.46 24.212 301.06 i 0.845193 0.977 7.972 -10.196 584.33 17.474 324.71

! -i 1.50633 0.734 7.811 -6.459 572.73 11.191 345.83.  ;

2.171318 0.494 7.654 -3.235 562.63 5.697 364.39 1 2.84007 0.257 7.496 -0.504 536.36 0.987 380.40 l 3.512498 0.022 7.339 1.747 533.16 -2.932 393.89 l 4.188518 -0.212 7.182 3.535 531.25 -6.061 404.86

+

4.868048 -0.446 7.027 4.858 530.62 -8.406 413.35 5.551008 ~ 0.681 6.871 5.751 553.98 -9.966 419.38  !

6.237318 -0.917 6.718 6.203 546.74 -10.766 422.98 l- '6.926903 -1.154 1 6.562 6.228 540.88 -10.804 424.17 l

F Hoop Stresses

-t .

Stresses (ksi) -

] Distance Bolt-Up Pressure Heatup 60*F/hr Cooldown 100*F/hr 1

From I.D. (in) ST=70*F 2242 psi Stress Temp. Stress Temp.

j 0 0.700 17.257 -14.82 597.46 28.24 301.06 0.187 0.674 17.166 14.71 597.46 26.16 301.06 0.188 0.674 17.166 -15.20 597.46 26.15 301.06 0.845193 0.583 16.845 -10.92 584.33 18.85 324.71

1.50633 0.494 16.533 -6.92 572.73 12.11 345.83 1- 2.171318 0.407 16.228 -3.47 562.63 6.25 364.39 i- 2.84007 0.322 15.943 -0.57 536.36 1.25 380.40 3.512498 0.239 15.665 1.81_ 533.16 2.89 393.89 4.188518 0.157 15.396 3.69 531.25 -6.20 404.86 4.868048-- 0.077 15.137 5.10 530.62 -8.69 413.35 5.551008 -0.003 14.886 6.04 553.98 -10.37 419.38
6.237318 -0.081 14.644 6.54 546.74 -11.27
  • ~ 422.98  :

6.926903 -0.159 14.402 6.62 540.88 -11.38 424.17

~

i-

[

i i

t i SIR-95-017, Rev. 0 3-16 '

}. f StructuralIntegrityAssociates,Inc. .

Table 3-6
Stresses for Groups D, E, F and G i

a Axial Stresses i

Stresses (ksi)
Distance Bolt-Up Pressure Heatup 80*F/hr Cooldown 100*F/hr j From 1.D. (in) @T=70*F 2242 psi Stress Temp. Stress Temp.

0 - 9.663 -8.051 599.00 15.558 298.26 0.187 - 9.696 -8.082 599.00 15.141 298.26 3

0.188 - 9.631 -8.383 599.00 14.316 298.26 1.030268 -

9.922 -6.205 592.46 10.576 310.23 j 1.874535 - 10.150 -4.077 586.66 6.991 320.97 2.718302 - 10.370 -2.187 581.58 3.774 330.44 3.562069 - 10.590 -0.540 577.21 0.943 338.65

4.405837 -

10.810 0.880 573.54 -1.492 345.59 i 5.249604 - 11.030 2.070 570.55 -3.532- 351.25 6.093371 - 11.260 3.020 568.25 -5.176 355.65

! 6.937149 11.480 3.750 566.61 -6.419 358.78 7.780911 -

11.700 4.230 565.63 -7.250 360.65 8.624673 - 11.890 4.470 565.30 -7.646 361.26 Hoop Stresses Stresses (kai) '

Distance Bolt Up Pressure Heatup 80*F/hr Cooldown 100*F/hr From 1.D. (in) @T=70*F 2242 psi Stress Temp. Stress - Temp.

i 0 - 23.453 -6.95 599.00 13.68 298.26 ,

0.187 - 23.436 -6.93 599.00 13.27 298.26 i 0.188 -

23.400 -7.34 599.00 12.43 298.26 1.030268 - 23.240 -5.17 592.46 8.70 310.23

1.874535 - 23.060 3.08 586.66 5.20 320.97 i- 2.718302 - 22.900 -1.27 581.58 2.15 330.44 3.562069 - 22.740 0.29 577.21 -0.49 338.65 ,

I 4.405837 -

22.590 1.59 573.54 -2.72 345.59 5.249604 - 22.450 2.63 570.55 -4.53 351.25 6.093371 - 22.310 3.45 568.25 -5.94 355.65 6.937149 -

22.170 4.03 566.61 -6.94 358.78 7.780911 - 22.050 4.38 565.63 -7.54 360.65 8.624673 - 21.920 4.50 565.30 -7.74 361.26 j .-

i f

SIR-95-017, Rev. 0 3-17

. { StructuralIntegrityAssociates,Inc.

e

l i

Table 3-7 Stresses for Group H l Axial Stresses Stresses (ksi)

Distance Bolt-Up Pressure Heatup 60'F/hr Cooldown 100'F/hr From 1.D. (in) @T=70*F 2242 psi Stress Temp. Stress Temp.

0 -

19.515 -12.493 599.79 18.924 294.20 0.187 -

18.840 -11.816 599.79 18.974 294.20 0.188 - 18.840 -12.204 599.79 18.969 294.20 0.688131 - 18.710 9.127 596.75 14.400 299.61 1

1.188262 -

18.700 -6.620 594.00 10.470 304.48 '

1.688393 - 18.500 -4.370 591.55 6.628 308.87 1

2.188524 - 18.290 -2.150 589.39 3.246 312.73 2.688655 -

18.110 0.030 587.54 -0.078 316.04

3.188786 - 18.050 2.120 586.01 -3.336 318.80 l 3.688917 584,78 18.220 4.200 -6.573 321.00 4.189048 - 18.590 6.200 583.85 -9.655 322.66 4.689179 - 19.350 8.430 583.29 -13.080 323.67 5.18931 - 21.060 10.850 583.03 -16.764 324.14 Hoop Stresses Stresses (ksi)

Distance Bolt-Up Pressure Heatup 50'F/hr Cooldown 100'F/hr From 1.D. (in) @T=70*F 2242 psi Stress Temp. Stress Temp.

O -

17.167 -7.75 599.79 12.61 294.20 0.187 -

16.440 -7.02 599.79 12.67 294.20 l 0.188 -

16.440 -7.82 599.79 12.67 294.20

  • 0.688131 -

16.300 -6.26 596.75 10.08 299.61 1.188262 -

16.270 -4.72 594.00 7.68 304.48 1,688393 -

16.150 3.35 591.55 5.45 308.87 2.188524 -

16.080 -2,11 589.39 3.47- 312.73 2.688655 - 16.030 -0.99 587.54 1.68 316.04 3 3.188786 -

15.980 0.06 586.01 0.02 318.80 3.688917 -

15.990 1.04 584.78 -1.53 321.00 4.189048 - 16.040 1.93 583.85 2.92 322.66 4.689179 - 16.160 2.77 583.29 -4.22 323.67 5.18931 -

16.530 3.55 583.03 -5.41 324.14 4

1 SIR-95-017, Rev. 0 3 18 f StructuralIntegrityAssociates,Inc..

Table 3-8 Stresses for Group I Axial Stresses Stresses (ksi)

Distance Bolt-Up Pressurw Heatup 50*F/hr Cooldown 100'F/hr From 1.D. (in) @T=70'F 2242 psi Stress Temp. Stress Temp.

0 - 17.276 -4.172 600.46 8.109 292.85 0.187 - 17.341 -4.236 600.46 7.771 292.85 0.188 - 17.210 -4.410 600.46 7.117 292.85 0.688058 - 17.560 ' 3.310

- 598.10 5.316 297.11 1.188116 - 17.910 2.310 595.99 3.700 300.91 1.688174 - 18.260 -1.390 594.15 2.219 304.25 2.188231 - 18.610 -0.570 592.56 0.894 307.14 2.688289 - 18.940 0.150 591.23 -0.271 309.58 3.188347 - 19.270 0.770 590.14 -1.292 311.58 3.688404 - 19.600 1.310 589.30 -2.171 313.13 4.188462 - 19.940 1.760 588.71 -2.914 314.25 4.68852 -

20.320' 2.110 588.36 -3.502 314.94 5.188577 - 20.700 2.410 588.24 -4.003 315.17 l

Hoop Stresses Stresses (ksi)

Distance Bolt-Up Pressure Heatup 50'F/hr Cooldown 100*F/hr From 1.D. (in) @T=70'F 2242 psi Stress Temp. Stress Temp.

0 -

16.629 7.57 600.46 12.98 292.85 l

0.187 -

16.647 -7.59 600.46 12.67 292.85 l 0.188 - 16.610 -7.95 600.46 12.06 292.85

0.688058 -

16.710 -6.93 598.10 10.43 297.11 1 1.188116 -

16.840 -5.97 595.99 8.91 300.91 1.688174 - 16.970 -5.10 594.15 7.53 304.25 2.188231 - 17.090 -4.33 592.56 6.32 307.14

2.688289 - 17.220 -3.66 591.23 5.24 309.58 2

3.188347 -

17.340 -3.07 590.14 4.31 311.58 3.688404 - 17.470 -2.58 589.30 3.52 313.13 4.188462 - 17.590 -2.16 588.71 2.86 314.25 4.68852 -

17.710 -1.82 588.36 2.34 314.94 5.188577 -

17.8?O -1.57 588.24 1.94 315.17 i

i SIR-95-017, Rev. 0 3-19

, h StructuralIntegrityAssociates,Inc.

. . . . .. .-. . - . ~. . . -. .

4 i

I 6J CCCCC

@ Upper Head (Mk #24).

Upper Head to Closure Flange N

_\

L g\ s--

i N Closure Flange s'\

\ '

s

' 4 Vessel Flange (Mk #7) ,

101-001 l :

4 p [ Vessel Flange to Nozzle p Belt Core Flooding Nozzle

\ (Mk #17) inlet Nozzle @ Upper Nozzle Belt (Mk #86)i - ~ -- d 5'5" (Mk #18) .

or ---- --- Nozzle

! *#r th(CornerCrack) f x

' Nozzle (Vessel Side) @ Lower Nozzle Belt (Mk #87) f 5'5"

$ Nozzle Belt to Upper Shell h

101-003 HE 1 $ ll

/ Upper Shell 01-007 l [

Upper Shell 2 (Mk #A1) 6'1%."

, Longitudinal l

01-008 to Lower Shell 101-004 f-+3 d' 9 Lower Shell wer Shell I 4

Longitudinal @'("Mk #A2) 01-009l 6'1Mi'

,  %'p'l01010 )

1 101-005 HI 5 E "

Lower Shell to Transition Piece i

-j Y

@ Transition Piece (Mk #36) / 2'9 %"

Transition Piece to Lower Head " l l01-006 l  : 7 J

Y. ' '@ Lower Head (Mk #6)

,2' 3X" l

' ,wd l

i 4 ?pgj f' l l

l Figure 3-1. Plates and Weld Locations of ANO-1 Vessel S1R 95-017, Rev. 0 3 20 StructuralIntegrity Associates, Inc.

1:

6.625 in

/

/

R = 16.25 in 1

1 1

bN

, R = 87.25 in i

e 4 R = 16.25 in G N

O f

Y R = 76.1875 in ,

T 4

R = 100 in J

.i Arkonsos Nuclecar One Unit 1 - Reactor Pressure Vessel

.umno t

Figure 3-2. Vessel Geometry at ANO Top Head Region i

e SIR 95-017, Rev. 0 3-21 h StructuralIntegrityAssociates,Inc.

1

-l 1

I

.i 1

1 R = 100 in  ;

l R = 83.75 in i 16.25 in

    • 1 l

, . . c

~

.E

.E .E

.E $ $

R N -

N N

82.4375 in .,

s v 4

R = 4.5 in*

i I

R = 84 in ,. ,

12 in ,.

l i

Arkonsos Nuclear One Unit 1 - Reactor Pressure Vessel l 1

no.2,o  :

l Figure 3-3. Vessel Geometry at ANO Flange Region 1 i

i SIR-95-017, Rev. 0 3-22 l StructuralIntegrity Associates, Inc.

i 4

l l

1 l

1 x- O -

a e

I {

  • i I

e I, 84 in 3 1 126.75 in l

l --+ +---12 in I

I '

l i

.I

-l 5 7/32 in c I G '

- E i s i 5 l --+ +-- 8.438 in i

l i

4 I

6 85.5 in  ;

i l

i I <

f l

l R = 87.25 in I

i I

i 1 5 in i \ -, 1 i \

Arkor7 sos Nuclear One Unit 1 - Reactor Pressure Vessel I

esosie t

Figure 3-4. Vessel Geometry at ANO Beltline and Bottom Head Regions  :

1 1

l 1

SIR-95-017, Rev. 0 3-23 l f StructuralIntegrityAssociates,Inc.

y s m Tc 5 0 6

vi 3

a 500

  • e. 7. a.

o y 0 in

o. 3 e y " o n. g d5-c

/s o@y W 8 Z

C

$<a

'I"

.E u 0 / IEE-e s y

/

/x$ a EE E "- *

^'

E E "

J S.

O n

O M o C 5 5

n 1

-+

5 '

= l -> y 4-2  %

g I- -

n 5

^

o 0 y si v L 0 m ,r v

-+ cn a o x g k I * '

4 g ] 343.1875 in from .

=:

  • 0 't -

w RPV Flange Top 4 m -

" 296.023 in R m from RPV co CD k ,' 372 in from RPV Flange Top Flange Top D hk

=

e n

a Z

a b<

a "i-a

_,3 on ,

E m 0 ga1 E G

~

x @-

gn<E&

W n OE

  • E m

5-

.go a

g a Q. m oEo 4 ==

a b O R

E'

-a ia 5

9

i 1

Y 4

7 )(

R j

, \

a l

I i

, 1 j Ar isonsos flut l ear One - Peactor Pressure Vessel Figure 3-6. Axisymmetric Finite Element Model of ANO-1 Vessel I

l SIR-95-017, Rev. 0 3-25 '

f StructuralIntegrityAssociates,Inc. ,

l

-\

~

4.0 RESULTS Graphs which define acceptable flaw sizes are included in Appendices A through I of this ,

j report for the corresponding vessel material groups shown in Table 3-1. For each material group, five graphs are presented for inside surface, outside surface and three subsurface flaws (eccentricity ratio, e/t = 0.35,0, and -0.35) for axial and circumferential flaws. Results for five other subsurface flaw eccentricity ratios (-0.4, -0.25, -0.1, 0.2 and 0.45) are provided  :

l

. on a QUATfRO-PRO (Lotus 1-2-3 compatible) spreadsheet with accompanying APPENDA

output ". SUM" files on the accompanying diskette.

! 4.1 IWB-3500 Evaluation Standards For completeness, each of the evaluations also considered the IWB-3500 evaluation standards from Table IWB-3500-1. For subsurface flaws, the limitations of proximity to the i

surface of the base metal are shown for rapid evaluation. Linear interpolation may be used for intennediate flaw eccentricities.

i i

~

The evaluation standards ofIWB-3500 are also included for reference as the lower bound in the location-specific flaw acceptance graphs in Appendices A to I. In these sets of curves, the acceptable inside surface flaw is the depth of the cladding plus the acceptance standards.

In all graphs, it has been assumed that the cladding thickness is 3/16 inch.

a 4.2 IWB-3600 Evaluations The graphs of Appendices A to I show the acceptable flaw sizes based on this evaluation.

The minimum allowable flaw size for all cases evaluated is shown and considers the effects of crack growth to end-of-life (32 EFPY). Each Appendix has two evaluations, one for axially-oriented flaws and the other for circumferentially-oriented flaws. The general

scheme is to show the allowables for inside surface flaws, outside surface flaws and a range of subsurface flaws for various' values of flaw eccentricity. Results for subsurface 1

SIR-95-017, Rev. o .

4-1 h StructuralIntegrity Associates. Inc.

i flaws with five other eccentricity ratios are available on site for review as an electronic file.

For subsurface flaws with intennediate values of flaw eccentricity, linear interpolation can be used. F j

For all the graphs presented in Appendices A through I, a default maximum flaw size was i j determined such that the nominal stress would increase to approximately 1.5 times the j nominal stress if a long flaw existed at the location. Dtis was done because IWB-3610(d)(1) j requires that the primary stress limits of NB-3000 (of ASME Section III) be satisfied for the 1
size of the evaluated flaw. For actual flaws found in a reactor pressure vessel, this should ,

j never become limiting because NB-3000 allows local primary membrane stresses to

] approach 1.5 S,provided that the extent of the region with stress exceeding 1.1 S, does not exceed [5? (where R is the mean vessel radius and t is the thickness). This compares to the

]

requirement for the design equations for pressure sizing where the stress must be maintained l below S,. Based on this ratio, the additional primary stress criterion might become governing for axial flaws with depths approaching one-third of the wall thickness that have

any significant extent, provided that the pressure stress is near the allowable stress. Since j the stresses acting on circumferential flaws are about one half of that for axial flaws, greater flaw depths would be allowed for flaws with a circumferential orientation. ,

i l It should be noted that most of the allowable flaw sizes for near-surface subsurface flaws are l t l l governed by proximity requirements at the surface and not by crack tip stress intensity factor.  :

! In these cases, the flaws may be acceptable when evaluated as surface flaws. More details of the fracture mechanics evaluations to establish the flaw acceptance diagrams are presented m Reference 17.

1.

I l

i SIR-95-017, Rev. 0 4 StructuralIntegrity Associates, Inc.

l

i

5.0 CONCLUSION

S AND DISCUSSION A comprehensive evaluation of potential flaws in the ANO-1 RPV shell welds and plate material has been completed. To limit the number of evaluations (and pages of this report) to a manageable size, r. limiting set oflocations was determined (welds) and flaw acceptance diagrams were denloped for these locations. As in all engineering evaluations, a number l of assumptions were built into these evaluations, including: i 1

e A conservative assessment of cladding stresses was included.

i r e The effects of both deepest point and surface stress intensity factors were included.

d e The largest acceptable flaw size was determined. There may be smaller flaw sizes ',

(mainly for surface flaws) that would be unacceptable if evaluated without

! consideration of larger acceptable sizes.

i e The assessments were computed for hydrotest and heatup/cooldown pressures and temperatures consistent with the vessel pressure / temperature limits for the current i _ technical specifications [13]. Boltup at ambient temperature was considered for the '

upper flange weld.

l e A conservative assessment of cyclic crack growth was included for all plant transients

! that can affect overall vessel heatup and cooldown to end of life.

e The analyses were conducted both with and without the effects of weld residual

)

stresses, e For the beltline region, the maximum effects of shift in the reference temperature were considered.

! SIR 95-017, Rev. 0 5-1 h StructuralIntegrityAssociates,Inc.

i i

The results of the current evaluation show significantly smaller flaws for the inside surface ,

than that presented in Reference 1. Several reasons are as follows:

e For the irradiated beltline regions, end-of-life fluence was considered.

i  ;

e The effects of cladding were included. Reference 1 did not include cladding effects i as required by Section XI, Appendix A.

i i '

'e Weld residual. stresses were considered, since recent publications [15] show that these

! are not reduced to zero by service or post weld heat treatment.

e A broad range of heatup and cooldown conditions were evaluated. In many cases, j l

j these were more limiting than the cases considered in Reference 1.

i e The complete stress distribution through the wall was determined for all loading -

I conditions, whereas Reference 1 appeared to work with linearized inside to outside stresses.  :

i On the other hand, the current report performs specific analysis for subsurface and outside

. . surface flaws. In some cases, these allow for larger flaws than Reference 1.

Based on the above, it is believed that the results of the evaluations are correct and conservative. However, because of the number of evaluations, every one could not be

studied in detail to quantify and understand the conservatisms. Thus, these results by ,

themselves should not serve as the sole basis for accepting flaws that significantly exceed the acceptance standards ofIWB-3500. On the other hand, alternate analysis can probably be conducted, removing some of the conservatisms to show acceptability oflarger flaws, by using tools like SI's fracture mechanics computer program pc-CRACK [18]. In addition, the

requirements ofNB-3000 for primary stress limits must be checked.

SIR-95-017, Rev. 0 5-2 { StructuralIntegrity Associates, Inc.  ;

t

l The information presented in the Appendices of this report should allow Entergy engineers ,

1 l

to perform rapid assessment of any indications reported during RPV inservice examinations.

i i

?

b l

d A

l 1

l E

SIR-95-017, Rev. 0 5-3

. f StructuralIntegrityAssociates,Inc.

i l

l l

l 6,0 REFERENCES l l

i

1. B&W~ Document No. 77-1139631-00, ANO-1 Inservice Inspection Allowable Flaw j Indications", December 1982.

a

2. " Rules for In-service Inspection of Nuclear Power Plant Components,"Section XI of  ;

the ASME Boiler and Pressure Vessel Code,1989 Edition, American Society of Mechanical Engineers, New York, July 1,1989. '

3. Raju, I. S., and Newman, J. C., " Stress-Intensity Factors for Internal and External ,

4 Surface Cracks in Cylindrical Vessels," Journal of Pressure Vessel Technology, 104/298, November,1982.

4. Tada, Paris and Irwin, " Stress Analysis of Cracks," Del Research Corporation,1973.

. 5. Kuo, A.Y.,

DeardorfE A.F.,

& Riccardella, P.C., " Thermal Stress Intensity Factor of an Axial Crack in a Cladded Cylinder," presented at 1993 ASME Pressure Vessel &

Piping Conference.

I

6. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, May 1988.

i

7. APPENDA and MAPPA, " Computer Programs for Performing Flaw Tolerance

} Analysis of Reactor Vessel Shells," Structural Integrity Associates (QA-1800), June 1994.

SI Calculation ANO-10Q-301, "ANO-1 Vessel Materials Evaluation", Revision 0.

8.

i

9. B&W Drawing 6600-MIB-1-7, "Arrgt. Reactor Vessel, Long. Sec.", Revision 7, dated

, 11/1/94, SI File ANO-10Q-208.

10. B&W Drawing MIB-223, " Upper Shell Assembly", Revision 0, dated 8/2/91, SI File
ANO-10Q-208.

I

11. B&W Drawing MIB-230, " Vessel HD & Suppt Assy & Det.", Revision 0, dated 8/2/91, SI File ANO-10Q-208.
12. " Design Report - Arkansas Power & Light Company, Arkansas Power #1, Reactor

, Vessel and Closure Head", Including Stress Analysis Reports Numbers 1 through 11, Customer Order No. M-1-6600, B&W Contract No. 620-0008-51/52, March 1974, SI File Numbers ANO-10Q-209 through ANO-10Q-216.

13. Excerpts from ANO-1 Technical Specifications, Section 3.1.2, SI File ANO-10Q-302. ,

4 SIR-95-017, Rev. 0 6-I h StructuralIntegrityAssociates,Inc.

...~ _ _ -. _ _. _ . .

i r

l

14. SI Calculation ANO-10Q-302, "ANO-1 Reactor Vessel Stress' Analysis", Revision 0. l 4
15. EPRI-TR-100251, " White Paper on Reactor Vessel Integrity Requirements for Level A and B Conditions," Electric Power Research Institute, January 1993.
16. PIPE-TS2, "A Computer Program to Compute the Transient Thermal and Thermal Stress Response of an Axisymmetric Two-Material Cylinder," Stmetural Integrity Associates, Version 1.01, (QA-1260), April 1991.
17. SI Calculation ANO-10Q-303, "APPENDA/MAPPA Reactor Vessel Flaw Evaluation", Revision 0.

~

. 18. "pc-CRACK Fracture Mechanics Software" Version 2.1, Structural Integrity Associates, San Jose,1991.

1 4

4 4

SIR-95-017, Rev. 0 6-2 f StructuralIntegrity Associates, Inc.

APPENDIX A Flaw Acceptance Diagrams for Group A Materials Items Covered

+ Adjacent Head Plate (Mk #24)

SIR-95-017, Rev. O A-1 .

f StructorsiintegrityAssociates,Inc.

I inside Surface Axial Flaw Hrd-to-Flange W;ld 15 2.5 _

IWB-3500 r 2

+

IWB-3600

.d

.c 1.5

~.o 8

E 5 ~

= "

y5  ;;  ;. _

J 0 , , .

0 0.05 0.1 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw

, , Head-to-Flange Weld 15 2.5 _

lWB 3500 j 2 IWB-3600

.c 5

.c 1.5

~.o 8

E a i o 0.5 i Q C_ .

:HH '

l 0 ,

0 0.05 0.1 0.150'20.250'30.350'4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure A-1.- Flaw Acceptance Diagram For Inside Surface Flaws (Group A)

, _ Note: Flaw depth includes thickness of cladding.

I SIR-95-017, Rev. O A-2

{ StructuralIntegrityAssociates,Inc.

Outsid2 Surface Axial Flaw  ;

Head-to-Flange Weld 15 2.5 _

IWB-3500 7 -*-

{

.s 2 (WB-3600 5

.e 1.5 E

E E

$co 2 -

k ge 'l

~

1

'~ -3 L

gg ~~

, :gHH T

0 0 0.U5 0.1 0.'150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Outside Surface Cire Flaw Head-to-Flange Weld 15 2.5 --

lWB-3500 g f-g 2 6 IWB-3600

.s

.c 1.5 E

8 3

.9 S

E r

k g 1 -, -

3 f  ::--w&- \

M._

o _

,  :: l 0 0.b5 0.1 0.'50'20.250'30.350'4 0.45 0.5 1 . . .

Flaw Aspect Ratio (a/l)

Figure A-2 Flaw Acceptance Diagram for Outside Surface Flaws (Group'A)

SIR 95-017, Rev. O A-3 f StructuralIntegrityAssociates,Inc.

f '

Sub-Surface Axial Flaw Head-%-Flange Weld 15 - e/t = -0.350 4 l l l l l l l l l l i

= ~

~

IWB-3500 g 1.4 _A-i

$ IWB-3600 O 1.2 / -*-

Max. Allowed 4

Ei 2

05 -#3 ,

/'

3 m 0.8 2 E /.

o ',%'

25 a 0.6 /

E -

f R o,4 / /

c?-

.J ?.--

0.2 , , , , , . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)  ;

Sub-Surface Cire Flaw Head to-Flange Weld 15 - e/t = -0.350 l l l l l l l l l IWB-3500 I I I i i i g 1.4 -A-.

E IWB-3600 0

.E

-=- f 1.2 Max. Allowed a ,

m 7

.t!

1

$m 0 .8 .;

N -

E /

.g '

,A

@ 0.6 S

s ,--

2 ' /~ t

< 0.4

,Y

H- l 0.2 0 0.05 0'.1 0.'15 0'.2 0.25 0.3 0.35 0'.4 ONS 0.5 -

Flaw Aspect Ratio (a/l)

Figure A-3. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of -0.35 (Group A)

SIR-95-017, Rev. O A-4 I

{ StructuralIntegrity Associates, Inc.

Sub-Surface Axial Flaw H:ad-to-Flange Weld 15 - c/t = 0.000 2.5 -

= = = =  ::

IWB-3500 T l

~*-

2 2 IWB-3600

.d

  1. y -m-4 Max. Allowed E 1.5 m

.e w

a

. C y'

$m - J

. /

b 0.5 -

E .p&

tm 0

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw

, Head-to-Flange Weld 15 - e/t = 0.000 2.5 .__

= = = = = = = = =  ::

IWB-3500 7 -*-

j 2 IWB-3600

.5 -m-E Max. Allowed E 1.5 0

.e w

3:

m ,

E 1

,,e o

Zi /

./ '

2-/

E o

=05 r p

C&

0 , . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figt:re A-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0

. (Group A)

SIR-95-017, Rev. O A5 f StructuralIntegrityAssociates,Inc.

Sub-Surtes Axid Flaw i Hrd-to-Flang] W:Id 15 - c/t = 0.350 l 1.6 l l l l l l l l l l = l

"---* IWB-3500 l g 1.4 +

{

.E 1.2 IWB-3600

-m-E E

.e r

/[ /

ca Max. Allowed

$m 0.8 / I C g /w i f - \

$ 0 .6e# --

8 / -' /

< 0.4 cr -f 0.2 .

0 0.050.10.150.20.250.30.350.40.450.5 I

Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Head-to-Flange Weld 15 - e/t = 0.350 1.6 C I I l l l l l l l

= = = IWB-3500 g 1.4 +

.E IWB-3600

.5 1.2

' --=-

Max. Allowed j

/[ .'

a

. t 0 .8 '

$ f f /

$m 3

0 .6e/ - /,-

_/.

2 ' -/

< 0,4 C i# -f f 0.2 , , , , ,

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure A-5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.35 (Group A)

SIR-95-017, Rev. O A-6

{ StructuralIntegrityAssociates,Inc.

t APPENDIX B Flaw Acceptance Diagrams for Group B Materials -

Items Covered s

  • Adjacent Upper Nozzle Belt (Mk #86) l l

l

~ SIR-95-017, Rev. O B f StructuralIntegrityAssociates,Inc.

1 Insid2 Surface Axid Flaw l Shell-to-Flinge Wcid 8 4

3.5 IWB-3500 l j -*- I g 3 IWs-3e00  !

J E 2.5 5 l 2

E 1.5 E '

p g:  :.  ::

4 0.5;.  ;  :.

  1. G ~

0 . . .

0 0.05 0.1 0.150.20.250.30.350.4 0.45 0.5 l Flaw Aspect Ratio (a/l) l inside Surface Cire Flaw Shell-to-Flange Weld 8 4 __ .. .. .. .. .

> f, IWB-3500 3.5

-5 3 IWB-3800

.E E 2.5 5c.

8 2

=

/

$ 1.5

.e /

S 1 m

0.5 g :_

0 . ,

0 0.05 0.1 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure B-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group B)

Note: Flaw depth includes thickness of cladding.

SIR 95-017, Rev. O B-2 f StructuralIntegrilyAssociates,Inc.

I l

Outside Surface Axial Flaw I Shell-to-Fl:nge W;ld 8 l

4 _

IWB-3500 3.5 9

f ' ~

l

.E 3

I E 2.5 l 6o.  !

8 2 l t i m 1 E 1.5 l g 1 f

Y

_g r ' .

R 0'5 " " "

_/ ::

__ _ -:HF"  !

0  ! I O 0.05 0.1 0.150.20.250.30.350.4 0.45 0.5 l Flaw Aspect Ratio (a/l)

Outside Surface Circ Flaw Shell-to-Flange Weld 8 4 .

3.5 IWB-3500 8 / -A-5

.E 3 / IWB-3600 E 2.5 5 4 o

e 2 /

I 1.5

.m O 1 g __ .:. --

2 0'5 => 2 22

/ :H:-#^

~

l l l 0

0 0.05 0.1 0.'50.20.2.50'30.3504 0.45 0.5 1 .

Flaw Aspect Ratio (a/l)

Figure B-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group B)

SIR-95-017, Rev. O B-3 f StructuralIntegrityAssociates,Inc.

Sub-Surface Axid Flaw Shell-to-Flang) W Id 8 - c/t = -0.350 3 ._

IWB-3500

=  :: = = = = = = =  ::

g IWB-3600

.E -m-4 2 Max. Allowed E ,

e

$ 1.5 2 /3 5 /

3 1

gr h .

f-Q 0.5a 0 . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Shell-to-Flange Weld 8 - e/t = -0.350 3  :

IWB-3500

--e  :  :  :  : = = r S IWB-3600

.M -=-  !

2 Max. Allowed j

$ 'jf '

05 1.5 .'

7: /

e 1 f-

'/

3 /

a E

, - _g

< 0 .5-m o , . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure B-3. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of -0.35 (Group B)

SIR-95-017, Rev. O B-4

{ StructuralIntegrity Associates, Inc.

Sub-Surface Axial Fl:w Sh:ll-to-Flange W;ld S - c/t = 0.000 l 1

4 --

y/ IWB-3500 - l g 3.5 f _

E IWB-3600

._g 3 --m- l E Max. Allowed a 2.5 G 2 E 1.5 - /'

- /

b *

/

1 g I 0.5n n" 0 .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Shell-to-Flange Weld 8 - e/t = 0.000 4= = = = = = = = = = =

c IWB-3500 g 3.5 #

$o IWB 3600 I

,c 3 -m-Max. Allowed g4 2.5

)

2 1 5 2

!c j 3

$ 1.5 t'r

.9 /

S r /

$ /'

A 0.5 JW 1 I

I l O , . . .

0 0.050.10.150.20.250.30.350.40.450.5 l Flaw Aspect Ratio (a/l)

Figure B-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group B)

SIR-95-017, Rev. O B-5 l h StructuralIntegrityAssociates,Inc.

Sub-Surface Axir1 Flaw Shell-to-Fl:nge W:Id 8 - c/t = 0.350 3 ,_

IWB-3500  ;

= = = = = = = = =  ::

)

9

{

.E IWB-3600

_m-E 2 Max. Allowed O!. -c

$ 1.5 }f

,/ [

x E

a E

<0 .5- ..--

w/e/

0- .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Cire Flaw Shell-to-Flange Weld 8 - e/t = 0.350 3 _

lWB-3500

= = = = = -m = = =

_g 2.5 -*-

.g IWB-3600

.5 _m-4 2 Max. Allowed N ,,

U5 1.5 # f

$ [

E e 1

>/-

k /

8 # #

I Q 0.Sa 1 l

0 l

0 0.050'10.'5020.250.30.350.40.450.5

. 1 Flaw Aspect Ratio (a/l)

Figure B 5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.35 (Group B)

SIR-95-017, Rev. O B-6 f StructuralIntegrityAssociates,Inc.

t

(

j i

)

i l

4

. APPENDIX C ,

Flaw Acceptance Diagrams for Group C Materials 1

Items Covered j J

  • Nozzle Belt to Nozzle Belt Weld (01-002)

. Adjacent Nozzle Belts (Mk #86 and Mk #87)

-t Note:  ;

For regions idjacent to the vessel inlet and outlet nozzles, special evaluations are required due to possible interaction effects 1

4- 4 i

S1R-95-017, Rev. o - C.) { StructuralIntegrityAssociates,Inc.

Insid3 Surface Axial Flaw Nozzl3 Belt Weld 11 4 _-

IWB-3500 73.5 m -A-

.c IWB-3600 8 3 f 2.5 a

a 2 E 1.5 I  :

3 0.5;. _ r.-

  • 0 . . . . . . . . .

0 0.05 0.1 0.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Nozzle Belt Weld 11 6 ,_

lWB-3500 W

,g 5 -A-8 IWB-3600

  • T 54 iE O

o3 E

m2 fa a

E1 M H "

0 0 0.b5 0'1 0.'150.20.250'.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure C-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group C)

Note: Flaw depth includes thickness of cladding.

SIR-95-017, Rev. O C f StructuralIntegrityAssociates,Inc.

l 4

Outside Surface Axial Flaw Nozzis Belt W:Id 11 4 _ _ , i e

3 .5 IWB-3500 l f -e

. 3 3 IWB-3600 T

m y

/

=

7 2.5 a

$ 2

=

m E 1.5 e '

Z5 1

t o 3 /, ... e ff g ...... e .. - e . - @ ...... e ..-.. e " - . ...... . . .

cy.

l 0

l 1 l

l l

0 0.b5 0.1 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/I)

Outside Surface Circ Flaw Nozzle Belt Weld 11 6 - - - - - --

e IWB-3500

$5 -*-

5 IWB-3600

.s j4 -

E a

83 3

m

. E o 2 - - .

S a

e1 '

sM  ; j l ,,,,,.e 1 i

.. e. -..! -.~.o tw. .e ....e.. ..e..-e--

e""" ,'

l

' l' 0

O 0.d5 0.1 0.'1 5 0 2 0.25 0l3 0.35 0'4 035 0.5 .

Flaw Aspect Ratio (a/I)

Figure C-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group'C)

SIR-95 017, Rev. O C-3 f StructuralIntegrityAssociates,Inc.

Sub-Surface Axial Flaw Nozzle Belt Weld 11 - e/t = -0.350 3

  • I l' ,  !

l 1 --23 **

I i IWB-3500

_ . ........................... . ... ..l ..

8 2.54 .

5 l l t

l

! IWB-3600

.E l >

j '

j 2 , j , - Max. Allowed j

- i ,

l e i i  ;  ! I i

.5 ca 1.5 i i  ;

1

. m ~....a 3 l l l  !

l ... "..

.o  !  !  ! . !i u.

o 1

i

' "... .z i 3x 1

.# 1 I ,.. z

3 ..z ..e

"#~ I k O.5cc--

O , , , , , . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Nozzle Belt Weld 11 - e/t = -0.350 3 -.

IWB-3500

_ . ^

^

$ 2.5 5 [ IWB-3600

.s 0

2

/ .

Max. Allowed O!.

O .. m 3'5 / fl ..g

@ W l I[ *l * . . .

  • 3a e 1 I

j i

.'"....- ~

3 . 5 .. e ... z '

i , .

k 0.5e-y7' [  !  !

t l i i , a

' i I i

0.  !  ! . l . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/I)

Figure C.3. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of -0.35 (Group C)

' SIR-95 017, Rev. O C-4 f StructuralIntegrity Associates. Inc.

Sub-Surface Axial Flaw Nozzi2 Belt W:Id 11 - e/t = 0.000 4: = = = = = = = = = =

e IWB-3500 3.5 -

$ +

j 3 IWB-3600 Max. Allowed

$ 2.5 M 2  !

3 n m

E 1.5

.g ,....m..*....

.o m

B 1

  • '...a

..e 2 9g w__ _

g .-e " V O , , , , , , , , ,

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/I)

Sub-Surface Circ Flaw Nozzle Belt Weld 11 - e/t = 0.000 6: = = = = = = = = = m ..

lWB-3500

$5 ---

5 IWB-3600 E ....

E4 Max. Allowed SS R

E3 4 -

3 m

C e 2 25 i ...a m ..e -

n ...e o  : "'...a Q1 a .. . e .....7 e ** e ..... e ,,,,, s ; .-- 4 l >

l

-l O

' l  !

O 0.b5 0'1 0.15 0'2 0.25 0 3 0.35 0l4 0.45 0.5 Flaw Aspect Ratio (a/I)

Figure C-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group C)

SIR.95 017, Rev. O C-5 h StructuniIntegrityAssociates,Inc.

Sub-Surface Axial Flaw Nozzle Belt Weld 11 - e/t = 0.350 l

3- '

+-

r l l  :

I i  ; IWB-3500

_ .... .! ... . ..... .i........_..........i -

. .. .y

-A--

8 - 2.5 ' , , ,

5  !

l  ; ,

IWB-3600

.=

=

i  ; i,

,  ; l 2 Max. Allowed I g

j

~

i i i i i m e

!  ; , i i

'z'..

.d l j i l m 1.5 '

a i  !  !

m

u. -

l z'...

5..

i

> l l .m.... i  !

z.

9 3 I ...

+

m **'.e.

5 ..s 1

) k O.Sce "*

O . . . . . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratic (a/I)

Sub-Surface Circ Flaw '

Nozzle Belt Weld 11 - e/t = 0.350 3 ,,,=,,,,,

IWB-3500

'-.- = --

=

82.5 5C IWB-3600

-- -e .

l 4 m 2 Max. Allowed E .m o

.S e 1.5

  1. /l . .

'm..

E

.5 u l z'...."..

i 3

e 1 i i

-'"....i i

..e ...e '...z m 1 i  : ,

3 i

h0.5e--"""*  : I  ! i l

i

! i i 1 )

O. . . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure C-5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.35 (Group C)

SIR-95 017, Rev. O C.6 h StructuralIntegrity Associates. Inc.

APPENDIX D Flaw Acceptance Diagrams for Group D Materials Items Covered

  • Lower Nozzle Belt Plate 1 Lower Shell Plate 2 (Mk #A2 - C5114) 1 Adjacent to weld 01-003 2 Portion above vessel thickness transition t

. SIR-95-017, Rev. O D-1 h Structural Integrity Associates, Inc.

insiv surface Axial Flaw Plate 16 @ W.1/ Plate 14-2 ,

3 __.

lWB-3500 7 --*-

W 2.5 , ^

} ,

l i'

IWB 3600 5 2-c I E ,

$ 1.5 l

- 3 m

~

u . '

.g 1 ,

1 4 "O Q

8 0.5 i

i

{

-l--

.L#l 3

= '

l l l 0

0 0.05 0'.1 0.'150'.20.250'.30.350'.40.450.5 Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Plate 16 @ W.1/ Plate 14-2 4.5 _

IWB 3500 4

E I -*-

E 3.5 ,

IWB 3600 5  ! -

i-

. l 3 3 , ,  ;  ! i r I '

l

' i l E. 2 85 R 2 l

I

! m

~

LL.

e 1.5 3 i

$ 1 . , . ,

o i i

Q 0.5 ;; _ z -

7 O . . . , l . ,

0 0.05 0.1 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure D-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group D)

Note: Flaw depth includes thickness of cladding.

I SIR 95-017, Rev. O D-2

{ StructorstIntegrity Associates. Inc.

l Outside Surface Axial Flaw  :

Plate 16 @ W.1/ Plate 14-2 l 3 . ..m

' i i IWB-3500  !

$ 2.5 -*-

$' l  !

!  ! IWB-3600

.E i  !  ! i  ! i i  ; i' j  !

m 2 ,

i' si ,  !

i c. i

. i

. $ 1.5 '

3 i! .'

i i'  !

e 1 - - - - - - - -

3 .

m ,

2

< 05 ,

e,,.. e..

..e... .

e 1  ;  :

. . .s.... e . .e-- e" "**.. E i .

g i.

i l  ! ,

0.05 0.1 0.'50.20.25.0.30.350.4 1 0.45 0.5 Flaw Aspect Ratio (a/l) 4 Outside Surface Circ Flaw Plate 16 @ W.1/ Plate 14-2 s

4.5

: ..e..

I - - -

_ 4 T IWB-3500 E -*-

j 3.5- - -

IWB-3600

, .=

t g 3 - - . . _

.=

c. 2.5 - - - -

b A

. = 2 - _._ /

m G- .

3 1,5 -

.c  ;

m 3 .1- -- . _ .

g .

  • ~~

..g.... e-- -G- ---E==m

s. s... .s......s.- e .. e 0

O. 0.05 0.1 0.'50.20.250.3 0.35 0.4 0.45 0.5 1

Flaw Aspect Ratio (a/l)

Figure D-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group D)

SIR-95 017, Rev. O D-3

{ StructuralIntegrityAssociates,Inc.

= _ _ - - .. . - -- - . _ . . -

Sub-Surface Axial Flaw Plate 16 @ W.1/ Plate 14 e/t = -0.350 2; .

IWB-3500 1.8*-+-*--+-*--*-*--*--*--*--*

$ i -*-

J 51.6

=

IWB-3600

$ 1.4 --- - ~

Max. Allowed CL c 1.2 -

13 3 1 5 , ,

u.

R 0.8- i i

.=. i .,: -

m i  ! i 0.6 .,,

0.4 . ,,, e.

! i i 0.2 0 0.050[10.'50.20.250'30.350.40.450.5 1 .

Flaw Aspect Ratio (a/I)

Sub-Surface Cire Flaw Plate 16 @ W.1/ Plate 14 e/t = -0.350 .

2  ;  ;  ; j j -+-

g  ; j  ;

1.8........-...---*--+--*--*--* IWB-3500 9 IWB-3600 3 1.6 i j s ,

i j

--m-1.4 Max. Allowed l

! l  !

{

,@ 1.2  ; j j { g a o

~3...

3 1 j

j f .o i ...- l e i ,.

, i 4 E

2 OR j l 4 g-

! *. 2 i

.c . ,

n ,..... ,

3 o 06- ..e -

~

Q ..y - ' * *.. . 2 ~' 1

0. 4g- .. 1, 1 l I  ;

O 0.050.1:0.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l) l

~

Figure D-3. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of -0.35 (Group D)

SIR-95-017. Rev. O D-4 i s StructuralIntegrity Associates. Inc.

1 i

i Sub-Surface Axial Flaw l Plate 16 @ W.1/ Plate 14 e/t = 0.000 l 3 j , ,  ; .

j ,

e--.-....--..-...-- - -

=

- 1 7 .

IWB-3500 1  !  ;

$ 2.5 .

l IWB-3600

.: i o <

s

. i l ,

k 2 ,

, Max. Allowed i i  !

e I.  :  ; ,

.cf  ! l  ; . 1 i en 1.5 . .

' .! i 3  !  ! l

... m ca i  :

E  ;

4, 1 i

..... m -

S 1-

.z .... =

.c -

h i 4,....a *'  ; j

=

< 0.5 w ... e . - a *....  :

ea-\ ,

i  ;

O . . . . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/I)

Sub-Surface Cire Flaw Plate 16 @ W.1/ Plate 14 e/t = 0.000 4.5 l ,

l . . __ . . .

IWB-3500 4-

$ i

~*-

53.5- lWB-3600

= >

k 3 - ---

Max. Allowed E.

  • 2.5 -

ro g 2 ---

E S 1.5- ' '

@ *. . .. . t 3

2 1 -. ___

  • ...a*,,,.-

q *2*"*, ,.....e*

0.5 ...g. g.w a> -

0. . . . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure D-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group D) 51R.95 017, Rev. O D-5 f StructuralIntegrityAssociates,Inc.

i Sub-Surface Axial Flaw Plate 16 @ W.1/ Plate 14 e/t = 0.350 j -:--

2l ,

IWB.3500

_1.8.......................-.......-*

IWB.3600 5 1.6-1

.5 . . .

$ 1.4 ~

i Max. Allowed '

E 2

,@ 1.2-

.R

1 m ..

3 1

, 4 I

m E

'z . . . l' c 0.8 -

3 )  :

i e

j 0.b l .

'7....,z f

i 3,,,

R ,

t i l i i 0.4, .. .-

' l 1 l l 0.2 l O.050.10.'150.20.250.30.350.40350.5 Flaw Aspect Ratio (a/l)

Sub-Surface Cire Flaw Plate 16 @ W.1/ Plate 14 e/t = 0.350 I l l ' ~ ~~

1.8.

l l l l l

-.I- .I-e-l _

lWB-3500

'Gr I .-A--

o i 1

51.6 , l IWB-3600

.5 i  ! j i -

k 1.4

,  ; Max. Allowed E

S 1 ~2 l- ,

} '.I

$ l l

I l li  !

1 .

.'.F'1 i 2 f,..*' {

o 0.82 3 .2 S 0.6 "'*

.9 .

R  ;

0. 4 ,.....y.2 *.. 2 *.... z' i

I 0.2 0 0.050.10.150.20.250.30.350.'40.450.5 Flaw Aspect Ratio (a/l) ,

Figure D.5. Flaw Acceptance Diagram for Subsurface Fiaws with Eccentricity Rano of 0.35 (Group D)

SIR.95 017. Rev. O D-6 StructuralIntegrity Associates. Inc.

l APPENDIX E >

Flaw Acceptance Diagrams for Group E Materials i

Items Covered

  • Upper Shell Plates (Mk #Al-C5120, Mk #Al-C5114)
  • Lower Shell Plate 1 (Mk #A2-C5120) 1 Applicable to portions of plate above the thickness transition.

Special evaluation required for plate on transition. See Group H for plate adjacent to weld 01-005.

SIR-95-017,' Rev. 0 E-1 f StructuralIntegrityAssociates,Inc.

1 Insida Surfica Axial Flaw Plate 13/ Plate 14-1 3 ,_g_  ;

IWB-3500

? -*-

y 2.5 l g IWB-3600 l

'i l 3 2 8 1.5 4

3 s 1 S

$ 0 .5 -

1 R  :.  : __

- +

0 0.05 0.1 0.150.20.250.30.350'40.450.5 .

i Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Plate 13/ Plate 14-1 4.5 _

- 4 IWB-3500 Y ~*~

g 3.5 IWB-3600 T

S 3

.c

} 2.5 O

3 2 m 1.5 S

3 3 1 e l l l l

~" ~"

< 0.5

.-3 . g._.-iP F--

I T I I O 0 U5 0.1 0.'50'20.250'30.350'40.450.5 1 . . .

Flaw Aspect Ratio (a/l)

Figure E-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group E)

Note: Flaw depth includes thickness of cladding.

SIR-95-017, Rev. 0 E-2 h StructuralIntegrityAssociates,Inc.

Outside Surf ce Axial FI;w Pl!.t313/ Plate 14-1 3

..e ...

n IWB-3500

$ 2.5 - -

s IWB-3600

.s g 2 - /

.=

1.5 m

E o 1 - - -

3m

< 0.5 l

, j l l I .e - e -o g..... 6 ..fr.... e --- e I i i I l

~~~*l ~~f,,,,,.4...

4 I

1 0

0.U5 0.1 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Outside Surface Cire Flaw Plate 13/ Plate 14-1 4.5

-e -.

l l  !  !

l 4 4 J - ,- . 4 1 IWB-3500 l -A-53.5 . .

-t +-- -  ;

f IWB-3600

.s .

3 J ' '

i m

+ -

V r E  ! l

c. 2.5- - , +- - - -

$ I l  !  !

3 2- -

t - 4 Id 1 -

t m .

I E  !  !  ;

o 1.5 H -

3m  !,  ;

t g 1- -

p ---f

- i .

p l

, i i .  :

< 0.5; . .--

. i. i i

.-..e......d, r - G = e i

s w ....e......e. .....e -- - e~~ g......e, 1

' l 0

O 0.b5 01 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure E-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group E)

SIR-95-017, Rev. 0 E-3 f StructuralIntegrityAssociates,Inc.

Sub-Surfaco Axial Flaw Plate 13/ Plate 14 e/t = -0.350 l  : l gr . q... g.....q. ..g.....q.....g. ..O..= O..-e.--* IWB-3500 g -A-51.6-C IWB-3600 m 14 *~ '

Max. Allowed CL o 1.2- -

m g 1- - L--

E  :

i

i 3 0.8 + ,

. .a  ; .2  ! .

m ' l '

i 1: 0'6 . ' #.. '

S l ...

-[.... 8'

, l i

i 0.4 g,,,,,e.

l --

l l 0.2 0 0.D5 0.1 0.'15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I)

Sub-Surface Circ Flaw

Plate 13/ Plate 14 e/t = -0.350

~~2~

1.8.

l l

l l

.._..-.\

l l l' l

-e--.--*

l l IWB-3500

. 7 .

0 51.6 IWB-3600 a

g 1.4 7 e.

Max. Allowed

~

/

e 1 i .

l i

- l}4l ,,...?""* l  :

E {

I l 2 ... l o 0'8 ~

3e .. 2 ' r'. '

0.6, W l,

i. .  ;

@ g.e ,..

t 2 * ,,

- 2.... .

0.4 3,,,.. {

l  !

0.2 ~

0 0.050.10.150.'20.250.'30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure E.3. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of .0.35 (Group E)

SIR.95 017, Rev. 0. E-4 h StructuralIntegrity Associates, Inc.

JL -

Sub-Surface Axial Flaw P!:t313/ Plat 314 c/t = 0.000 3

I i i i i i i i i 1 l e--

IF - - -

7 lWB-3500 7 7

~

l l  !  !

l

$ 2.5 -

5 l IWB-3600

.= ..

k 2- 4 Max. Allowed Ei l e

N i3 1.5- --

+ + +

m g

1 + -

6 ,,..s.P....m *...n f ,.....e****.....

q 0.5 ..e.

  • . .. e e e,

0 . . . . . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface circ Flaw Plate 13/ Plate 14 e/t = 0.000 4.5 I ..e...

i i ,.

i i , i i l 4 e i ,

iwB-3500

.  ? l l l  !

5e 3.5 -

---i  ;

h---

l

,1

' IWB-3600 j

, s , . . . . .

3 --

l + ,

i Max. Allowed w 3 2 2.5 t L F ,

2 ' - -

u) ' .

B 2 ---, " 3 L-e , '

E  !  !

.9 1.5- + - - - 4- --l -

.o I i i i ,  ! ,

.3 f_ 1-f 1- m e ~~~*'

  • e.. .

0.5 y.....e - - p ...e.

- ee.....e  !

c  ;

, l

,1  ! t

, . i 0

0 0.b5 01 0.15 0 2 0.25 0.3 0.35 O!4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure E-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group E)

SIR-95-017, Rev. 0 E-5

{ StructuralIntegrityAssociates,Inc.

Sub-Surfeca Axial Flaw Plate 13/ Plate 14 e/t = 0.350 r

2l l

- y IWB-3500

? 1 . 8 *--*-~ *--*-- *--*-- *--*--*--+/-w '

j.1.6 j

- IWB-3600  ;

=

14 ~

j 4 ,.

g / Max. Allowed

~ .

2 5 1.2 - -

.~ -

in 3

1 3

a. i ,

2 0. 8,

.c i s.< *g.-

m  !

"..,,j 3 0.6

~

2 *.. I i

i- e... l l l

i 0.4 ,,, $. "'.

l l 0.2 0 0.050.10.150'20.250'30.350'.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Plate 13/ Plate 14 e/t = 0.350

~I-~

l l l l l l l l l l l e--*---*--+-*--+-= = = = m IWB-3500 1 .8 7 *

$ /(

51.6 I IWB-3600

.5 k 1.4 i Max. Allowed E i

  • .S
  • 1 '0

.ti l g

= , fl  ; '.. i 3 1 .

w, 5  : i  ; i

u.  ; j  !

i j 3

e 0.8 l

- i i ..Z.d,g l o 06 R 2...z -

v

0. 4 ,,,,..p. 2....

0.2 l 0 0.050'10.150.20.250'.30.350'40.450.5 Flaw Aspect Ratio (all)

Figure E-5. Flaw Acceptance Diacram for Subsurface Flaws with Eccentricity Ratio of 0.35 (Group E)

SIR-95-017. Rev. 0 E-6 h StructuralIntegrity Associates. Inc.

4 -

b APPENDIX F ,

Flaw Acceptance Diagrams for Group F Materials items Covered i

r i
  • Upper Shell to Lower Shell Weld (01-004)
l i

d

)

i l

J i

1 l

l 4

9 SIR-95-017, Rev. O F-1 StructurniIntegrity Associates, Inc.  ;

Inside Surf ce AxirJ Flaw Beltiins Wzid 3 3

-s--

_ IWB-3500 yE 2.5 -*-

g IWB-3600 3 2 s.

$ 1.5 3

iE m 1 S

3 _- . -,

e 0.5

" '~

s r=  : H " '~

=- -

0 0.b5 0.1 0.15 0.'2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Beltline Weld 3 4.5

<=r-g 4 IWB-3500 1 g 3.5 IWB-3600 7

3 3

.c E2 .5 3 2 i$  !

p 1.5 '

S 3 1 E l '

l

< 0.5_ , _

l l 0 1 i

0 0.D5 0.1 0.15 0.2 0.25 0 3 0.35 0.4 0.45 0.5 I Flaw Aspect Ratio (a/l) I l

Figure F-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group F)

Note: Flaw depth includes thickness of cladding.

SIR-95-017, Rev. O F-2 i f StructuralIntegrityAssociates,Inc.

Outside Surface Axial Flaw Beltline Weld 3 3 .

j ..e .

IWB-3500 j 2.5 -*-

g IWB-3600 i 2 6

k1.5 -

d B i e 4 E i

$a l i

3 .

2 0,5 r '

+

i

-, e - -4 i ....e... .e ..- o I -~~ t

......e-.... j O'

O.d5 0.1 0.150.20.250.30.3504 0.45 0.5 Flaw Aspect Ratio (a/l)

Outside Surface Cire Flaw

, Beltline Weld 3 4.5 e-

{ l l l -

T IWB-3500

_ 4 -

-4 T

$ l

  • I f .

5c 3.5 ~

lWB-3600 l ,

l T a i

1 I

m 3 - - -

E i

c. 2.5 j

$  ! l 3 2- e 4 e m j m  !

E  ! j

_g 1.5 --- r - - ~-

i j

S l l  !

=

1 i

, T, r, i,  !

I i i.

4 -

< l

  • 5 ---*===e O

M......el e,... e

..-e ei

....;. .. 4, ---e---?

, ~

O 0.U5 0.1 0.150.20.250.30.350.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure F-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group F)

SIR-95-017, Rev. O F-3

{ StructuralIntegrityAssociates,Inc.

Sub-Surfaco Axial Flaw Beltline Weld 3 - e/t = -0.350 e

~~~~

i  !

l  ! ,

IWB-3500 7

1.8e-e--.--....-*--+-*--+--*-+---*-

i -*-

I 0 IWB-3600 5 1.6

-t

.5 i ...

1.4-

~ -

Max. Allowed IS, '

R 1.2-  ;

E  ! ' i

i

)

E 1-

~

i 3 0.8 ,

.= *} } -

i'

' m j '

@ 0.6 , l -

q l i 0.4 0.2 l.

gl . . . . . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 ,

Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw ,

Beltiine Weld 3 - e/t = -0.350

~ 2-~

l l l l l l l l l l l

$ (WB-3600 EC 1.6 1.4 Max. Allowed R 1.2 , ,

5 l I i

I I 3 1 -

i m ' ,

E l l' i' l S 0.8- .

i

.c < >

I .

m  !  !

=@ 0.6-l I

< i '

0.4 ,g.- c '.. .

0.2 l ~

O 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure F-3. Flaw Acceptance' Diagram for Subsurface Flaws with Eccentricity Ratio of -0.35 (Group F)

SIR-95-017, Rev. O p.4 h StructuralIntegrity Associates,Inc.

Sub-Surface Axial Flaw Bettiine Weld 3 - c/t = 0.000

-E3-~

l

,........1l l

.. .!..I. .I .I .I .I .

l IWB-3500

$c 2.5- -

IWB-3600 8

le 2- c Max. Allowed N

O U d m 1.5

  1. g r -

E l /

w,..m 3

.o 1- -

l z ', weJ.

g . Ia *** ,e .

o l q 0.5 ...e. . ...e- ,.... l cy l

0 O 0.050.10.150.20.250'30.35040.450.5 .

Flaw Aspect Ratio (a/I)

Sub-Surface Ciro Flaw Beltline Weld 3 - e/t = 0.000 4.5 . .

I i i

t l J l

i i

t l . 43.

4 ./.... -  ; lWB-3500

. i i  ! i i i  ;

. i E l

  • l l iC 3.5 4 + + , -

i  !

. IWB-3600

.-. l, 3 -

g r i Max. Allowed

.g 2.5 ,

m  !  ! j  !

g 2 + + 4 - i a 4 E

R 1.5 7 e-- , .

.o i  :

1 >

..e ce j  !  !  !

l 1= ~ l 2 ,,g.w.ee.- -

=

@ i p f i s ,

i e .

gw e **. e '. ,i j  ;

0.5 y.....e +

c

j j j ,

l l i  : i  : +

0 . . . . . . . . .

i 0 0.050.10.150.20.250.30.350.40.450.5 l i

Flaw Aspect Ratio (a/l) l Figure F.4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 l

(Group F)

)

l SIR.95 017, Rev. O F.5 l f StructuralIntegrityAssociates,Inc.

Sub-Surfaco Axial Flaw Beltline Weld 3 - e/t = 0.350 2 ,

.. ........... . .. .. .. ... ....

_.A_

g  !

L IWB-3600 j 1.6

.= ...

~

k 1.4 - - - - - - - - - Max. Allowed E jJ

' 4 o 1.2 , l ,

g  : . 1 3 1 L ----

m 1

, 1 ,

I

_.o 0.8 , , ,

i

.c m

i l

j i

!. l 3 06 k .

0.4 g,,,,.E.J"'

' ' ~ '

l 0.2 0 0.U5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1

1 Flaw Aspect Ratio (a/l)

Sub. Surface Circ Flaw i

Beltline Weld 3 - e/t = 0.350 ,

l l l l l l

-e-l l

=

l l

.-e l ~*~

Iw s.3500 m .-e- - ~

_m 1.8 --A -

w y IWB-3600 j 1.6 ,7 14 -

/ -e.-

Max. Allowed m

E l 5 i W , . . -f e

e 0'8 i

' l i

!ATi l  ;

! & l l l' i j 0.eJ l 2',,,

R , i C'...

O.4,,,,..h l

0.2 0 0.050.10.150.20.250.30.350.40350.5 Flaw Aspect Ratio (a/I)

Figure F-5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.35 (Group F)

SIR.95-017, Rev. O p.6 h StructuralIntegrity Associates, Inc.

i e

1 1

APPENDIX G i

Flaw Acceptance Diagrams for Group G Materials 3

Items Covered

  • Beltline Nozzle Belt-to-Upper Shell Welds (01-003)
  • Beltline Longitudinal Welds 1 (01-007 to 01-010) 1 Applicable to portions of welds above thickness transition. Special evaluation required for welds located on transition.

i Yt i

1 t

l 4

SIR 95 017, Rev. O G1 f StructuralIntegrityAssociates,Inc. .

Insida Surfree Axirl Fl w Bettiin] Welds 1,2, & 4 3 .

_ IWB-3500 h 2.5 -k-g IWB-3600 7

3 2 m

~.

Q

$ 1.5 i

E p 1 0.5 r=--

_ .f 0 0.05 01 0.150'20.250'30.350.40.450.5 Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Beltline Welds 1,2, & 4 4.5 ,

- 4 IWB-3500

j 3.5 IWB-3600 3 3 c

o 2.5

~.

O it 2 m 1.5 S

=

2'

< 0.5 c: ..


a -

0 0 0.d5 0.1 0.15 0'.2 0.E5 0'3 0.35 0'4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure G-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group G)

Note: Flaw depth includes thickness of cladding.

4 SIR 95-017, Rev. O G-2 h StructuralIntegrityAssociates,Inc.

Outsids Surface Axial Fliw Beltline W: Ids 1,2, & 4 3 ..e.

IWB-3500 f2.5

- IWB-3600 i 2 6C.

l

. $ 1.5 3

m E

o 1 3m

) '

d S

< 0.5

+

i 1

i  :

e

. . . e......e i l .e... e.

, ..... ,... 4......e- " e"'*" 4._  ;

i l l l 1 0

0 0.b5 01 0.'1 5 0 2 0.25 0 3 0.35 0l4 0.45 0.5 Flaw Aspect Ratio (a/l)

Outside Surface Cire Flaw Beltline Welds 1,2, & 4 4.5 l l ..e... l

! f i+ IWB-3500 4- + -- 4 -

+

$ I I l L IWB-3600 1

5 3.5- d -, - ,

.s E 3 i

r i

~.

o 2.5 o

O 3 2 - +

b ,

p-,

E /"

i e 1.5 -- - -

r r -

1 3m I l  ! l l l

l i I l l R 1- 4 ' -

+

i O  !  !

l,

= i i

i' 4 \ I ,

0.5 . =

, , g s......e

.e.... e' .*=*' e"""e. - e l ~~~~*. ...l , ...

i r . -

l 9 ....g... l  ;

O O 0.b5 0.1 0.'50.20.250.30.350'40.45 0.5 1 .

Flaw Aspect Ratio (a/l)

Figure G-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group G)

SIR-95-017, Rev. O G-3 f StructuralIntegrityAssociates,Inc.

Sub-Surface Axial Flaw Beltline Welds 1.2. & 4 - e/t = -0.350 2 , _,g_,

l

.i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......* IWB-3500 51.6- - -

IWB-3600

.B ....

$ 1.4 Max. Allowed E  ;

21.2- -

5 '

3 1 e i ,

u. '

i S 0.8-

.c  ! i i e i

@ 0.6

=

. - 5 i i

}

< i ' l 1

' i 0.4;g--

I 0.2 0 0.d5 0.1 0.15 0.'2 0.S!5 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Sub. Surface Circ Flaw Beltline Welds 1,2, & 4 - e/t = -0.350

  • l l l

=

l l l l I I I I+IWB-3500 1.8 8

m k 1.4 l t Max. Allowed j

'$ 1.2 , , , ,

E i i  ;

3 1 ,

5 u.

i  !

i i

g 0.8 ,  ; j.#

0.6- ~~~,g..* -

Q i .

0.4 ;,..... y ' 2 ,,... e -

l 0.2 0 0.050.10.'150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure G-3. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of -0.35 (Group G) 1 l

SIR-95 017. Rev. O G-4 StructuralIntegrity Associates. Inc.

Sub-Surface Axial Flaw Beltliro Welds 1,2, & 4 - e/t = 0.000  !

3l .

l

..I l l l l 1

l l

l

  • Ei -

IWB-3500 l

[ l

' l '

[2.5 o IWB-3600 I

.C.

N 2

g "y , ..

Max. Allowed 51.5 3

m *..m x

g 1 r***.x a

g o

g 0.5 *~ - e s .....* *....

I

-+ -+

c y.....e. -@.....e-0 , , , , , , , , ,

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Beltline Welds 1,2, & 4 - e/t = 0.000 4.5 , , ,  ; , ., , , , ,  ; ,,,,,

4 -

i 2  ; i  ! i 4 IWB-3500 l E l 2-5 3.5 --- IWB-3600

, .E  ; ....

3 q  !

4 .-

Max. Allowed l

$ 2.5 ,

O I 3 2-m

-. i U- i

.9 1.5 5 - --

r e

- L-~

.o I  ! 1 7,

...a

= i i

l l S

o 1 --

,.....e* *...e -

R  !  ; ..... e * *,,,, : l 0.5 .e - p e; *--+ -

t y..

3 l l

l ' l  :  !'

i

' i 0

' ~

0 0.U5 01 0.15 0 2 0.25 0l3 0.35 0 4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure G-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group G)

' SIR.95-017, Rev. O G-5 )

{ StructuralIntegrityAssociates,Inc.

1

Sub-Surface Axial Flaw Beltline Welds 1,2. & 4 - e/t = 0.350 2l ,

l IWB-3500 1.8*--*--+--+--*--+--*--+--+--+-* ~*-

$ IWB-3600 5C 1.6- -- -

E 1.4- -- - ---

1 Max. Allowed

,.2 -

4 m '

' '..n E i  ; z l 3

e 0.8 i i

' 2. ' , 4 i

0.6- -

h. '**

2 ~,,, !

q i E.. '

i 0.4 ,, .g 0.2 0 0.05O'.10.'150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/I)

Sub-Surface Circ Flaw Beltline Welds 1,2, & 4 - e/t = 0.350

'E~~

l l l l l l l l l l l m--*--+--+-+--+-+-  :

  • e -

lWB-3500 .

1.8 y l -*-

IWB-3600 51.6 ,

.E E 14 i Max. Allowed E l P S 1.2 m I i I

,,. 5. ~ ~

I 3 1 h '

o 0.8 . .

,,2.-

3  !  ! 1 -

i .

$ 0.6-

~

.o e..

Q 2.....e**. ~

O.4 3.....g -

l 0.2 0.D5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I)

Figure G-5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.35 (Group G)

SIR-95-017, Rev. O G-6 h StructuralIntegrity Associates, Inc.

i i

s i

1 l

l 1

i APPENDIX H I

Flaw Acceptance Diagrams for Group H Materials Items Covered

  • Lower Shell to Transition Forging Weld (01-005)

I

  • Adjacent Lower Shell Plates (Mk #A2 - C5120 and C5114)
  • Adjacent Transition Forging (Mk #36) i l

l l

l i

l 1

l l

l l

I 1

SIR 95 017, Rev. O H-1 l f StructurniIntegrityAssociates,Inc.

I insid3 Surfac3 Axial Flaw l Transition Weld 5 l 1.8 -

j IWB-3500 i W 1.6 ~*~

2 IWB 3600

.8 1.4 l 8

E 1.2

. a

$ 1-3 m

E 0.8

, .e

'f0.6 5

1 e 2

- '~

d

< 0.4 i gr i T I l 0.2 O 0.d5 0'1 . 0.'50'20.250'.30.350'.40.450.5 1 .

Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Transition Weld 5 i 1.8 ._

IWB-3500 7 1.6

.g 3,4 m

E 1.2

. a 1

8 1 .

I 3

4 m l E 0.8

_o_

f0.6 2 2'

'~

~

< 0'4 0.2 0

Y T

0.U5 0'1 .

I 1

WlI 0.'50'20.250'.30.350'.40.450.5 Flaw Aspect Ratio (a/l)

Figure H-1. Flaw Acceptance Diagram For Inside Surface Flaws (Group H)

Note: Flaw depth includes thickness of cladding.

SIR-95-017, Rev. O H-2 h StructuralIntegrityAssociates,Inc.

Outsida Surface Axial Flaw Transition Weld 5 1.8 l l l -e.--

WB-3500

_ 1.6

$ -A-j 1.4 IWB-3600 T l g 1.2- 7 4 r /

'c. 1 3 0.8 m

E 3

.o 0.6 - -

a 3 0.4 .

S l

< ,.... e... .s-...e 0.2 j ,

c y... .e......s......e.-...e""**.......e 0

0.U5 0.1 0.150.20.25030.35040.45 0.5 O

Flaw Aspect Ratio (a/l)

Outside Surface Circ Flaw Transition Weld 5 IO j ..e.

B-3500

?

_ 1.6= +

! -A-- '

$ "l -*-

1.4- - -

lWB-3600 8

< T g 1.2 +- /! ---

  • r

~.

o 1 .

b I

! l l E 0.8 '- L -J t + ~ -

r 3

u.

i l

i

' l e 0.6 -- " r - -

3m i  !

i 3 0.4^ s t -

- S '

I i l I

a 0.2

, i e >. .f.

...ie......e. +-

- e "***gzwe.-~~*......e......e...-e

t i  ! l  ! i 1 0

0 0.U5 0'1 . 0.'5020.250'30.350.40.450.5 1 .

Flaw Aspect Ratio (a/l)

Figure H.2. Flaw Acceptance Diagram for Outside Surface Flaws (Group'H)

SIR 95-017, Rev. O H-3 i

f StructuralIntegrityAssociates,Inc.

Sub-Surfacs Axial Flaw i Transition Weld 5 - e/t = -0.350 1 1

-~~

l 1.2 l l

~=- *""*""""-^-^^"--

IWB-3500 1.1 *-:"* *-~ 5 i y -

~

l f -A-IWB-3600 g 1 I

!, -*~

h 0.9 --

Max. Allowed g .

- 0.8 -

5 07 l

..a 3

y 0.6 i i

...'g..**'.

e l '

3 0.5 m

i

, . . .I " -

+

i i

g i t

' , i

' m '

=o 0.4 i l

.2- i i

< l l- e l l ' ~

0.3 , ,,,, ,

0.2~6 0.b5 0.10.'1 5 0.2 0.25 0'.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw

' Transition Weld 5 - e/t = -0.350

+

',,,,=.i

'* I .i.l . . -

l I I.I I I l

iws.3500 Y 1

/I I IWB-3600 5C l l - * -

09 Max. A!! owed ko I N '

5 0.7  !

l 3 l

~

{ ' ' "*'~ ..m 5

w 0.6 i '. i i i

i

- i

! ... ~e . i' t

e ' I 3 0.5 m r i '. '  ;

..  ; j i

3  ! ~~.m -

o 0.4 -

g i

q 2,,.-

',, w .!

0.3-l*****...a-- r 0.2 c 0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure H-3. Flaw Acceptanc Diagram for Subsurface Flaws with Eccentricity Ratio SIR-95-017, Rev. O H.4 f Structuralintegrity Associates, /nc.

s Sub-Surface Axial Fliw ,

Tran:ition W:Id 5 - c/t = 0.000 1.8 +

l l l l l l l l l l

= = =' = =' = = = = = IWB-3500 1.6 -*- l

}8 1.4 IWB-3600 a Max. Allowed sy., 1.2-5 1 .

4 3 1 m

E 0.8- -

j

.*3 e

3 y.0.6 g 'm '..

.9 m.z ,,,

R o,4 l_-

,.....e,,,,-

60. **b5 0'.1 0.15 0.2 0.25 0.3 0.35 0 4 0.45 0.5 0.2~--

Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Transition Weld 5 - e/t = 0.000

"*}~

l l l l l I l  ! l I l

:  :  :'  :  :  :  :'  :'  :  : IWB-3500 1.6 A - 4 IWB-3600 5 1.4- -

i t ~

l

~~ * **

.c.

i J Max. Allowed

  • $ 1.2 ---

k l,

+

l i,

2 i

e N

< i j ,  ;

' 4" 5 1- i E l l l 1  !  !

m i' i i  ; i E 0.8- -- i-- i +- a --+ 4 3

,9 i  ! 1 l m,....A

.o i . ,

j 0.6 4

)  : --y t

$r"~

o t  !

g *,,,

k 0,4 -.1 l fs. *** l b g--

t i ..e I, i

'"'"0.....e' '  !

0'2 N" -0.*b5 O!1 0.'15 0'2 .0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure H-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group H) i SIR 95-017, Rev. 0 H f StructuralIntegrityAssociates,Inc.

Sub-Surfaco Axial Flaw Transition Weld 5 - e/t = 0.350 1.2 ,,,,,

1.1 E  ? = "" * -"" ? '" " " " " ? " " * " = e  : .= IWB-3500

$ +

1 5 IWB-3600  ;

.f 0.9 " * ' '

i ce  : Max. Allowed E' O.8 2

~

2 i 5 0.7 9 --

3  ! i

$ 0.6 l

e l

i 1

l , , " .. ', g' t

j i 3 0.5 ,  ! , ,

$  ! l  !'  ! ,..N... ! l .

g 0.4  ; 2

< t l .e ',, i 0.3 , ,

I ..e *,,,,l 0.2~

50.*b5 0:1 0.15 0.2 0.25 0'3 0.35 0'4 0.45 0.5 Flaw Aspect Ratio (a/I)

Sub-Surface Circ Flaw Transition Weld 5 - e/t = 0.350

* "+"

l l l l l l l l l 1.1 *=== = - ==== se---*-- - - - = IWB-3500 y

T l +

g 1 IWB-3600 '

i 0.9 ~*"

ce Max. Allowed E 0.8 2

5 0.7 ,

g '. 5 t i ..

.j 0.6 , , l i

,g' l e  : ^j j l t 3 0.5 0.4 l l l

I g'. . --

i.#.. l l- l

.9 ,

R  ;

0.3- a,,..** - -

~*.2*,,..

0.2~6 0.d5 0.1 0.15 0.2 0.25 0.3 0.35 0'4 035 0.'5 .

Flaw Aspect Ratio (a/l) 1 Figure H-5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 1 0.35 (Group H)

SIR-95-017, Rev. O H-6 h StructuralIntegrity Associates. Inc.

i

!' T E

4 j

APPENDIX I d

Flaw Acceptance Diagrams for Group I Materials i Items Covered

  • Weld to Lower Head (01-006)
  • Adjacent Forging and Lower Head (Mk #36 and Mk #6)

J I

)

?-

1 3

I' l

l SIR 95-017, Rev. O I.1 f StructuralIntegrityAssociates,'inc.

Inside Surfacs Axial Fliw-Low r Herd Weld 7 1.8 __

^ 1.6

~*~

h IWB-3600

,g 3,4 .

t f 1.2 a '

8 1 E 0.8 g 0.6 2 - - -

< 0.4  ;

c -- -

I

~

T i l 0 0.b5 0.1 0.150'.20.25030.350'40.450.5 .

Flaw Aspect Ratio (a/l)

Inside Surface Circ Flaw Lower Head Weld 7 1.8 ,,_

00 7 1.6

.U .1.4 m

! 1.2 .

5  !

$ 1 m

E 0.8

_o_

f0.6  ;

0.4 M i 1 1m .-=

i T I l 0.2 0 0.b5 0.1 0.150'20.250'30.350'.40.450.5 Flaw Aspect Ratio (a/l)

Figure I-1. F;aw Acceptance Diagram For Inside S'urface Flaws (Group I)

Note: Flaw depth includes thickness of cladding.

SIR-95-017, Rev. O I-2 h Structuralintegrity Associates, Inc.

Outside Surface Axial Flaw Lower Herd Weld 7 1.8 l -e.-

l '

2 -

lWB-3500

_ 1.6 1 .4

/[ '

IWB-3600 i 1.22 r

~

a. 1 8

3 0.8 1 m

E e 0.6 - -

Zi m

e B

O 0.4 .

= i

< 0.2 . .,e.--

"*,.....e... . e...... 43 c y... ...

.... e...- e---e,,,,..e.

' I I I 0

O 0.d5 0.1 0.150.20.2503 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l)

Outside Surface Circ Flaw Lower Head Weld 7 1.8

; i  ; .

4 1 lWB-3500

_ 1.6 8 l l

  • 5 1.4 -- -

H iWB-3600

.E i d[- d E 1.2 ---

4 i  !

~.

c 1 b

3 0.8 " .

.' - L-~

3  !

l i  ! I

u. I

~

i

! I i

~

3 0.6- -

, l

.o '

i N ' I j 3 0.4 o

! i

. - - L

- e .

, j i ,

! .i i

<c  ;

0.2 i

.e.- *Eq,.....e......e......+ a

~~~~4...

c >. . .

... .e....-e- e i t l

i l

i l

' i i' 0

O 0.b5 0.1 0.1'50.20.250.30.350.'4 0.45 0.5 Flaw Aspect Ratio (a/l)

Figure I-2. Flaw Acceptance Diagram for Outside Surface Flaws (Group'I)

SIR.95-017, Rev. O I-3 f StructuralIntegrityAssociates,Inc.

Sub-Surface Axial Flaw Lower Head Weld 7 - e/t = -0.350 1.2 l .

, l IWB-3500 1 .1 * " " * ~ ~ * " -- * - ,

$ 1 ~ ~ ~

-A--

IWB-3600 5C

~*--

T 0.9- -

m ,

Max. Allowed E!. 0.8 - - - -- -

o N . i 5 0.7 -

3 ,

@ 0.6 ,

. 2. *y~

$e 0.5 '  !

!i S' ' '

. . # i  :

3

l .2.. i' i

3 0.4 ,

q l i

  1. '.x.... l,
  • l 0.3 ,

A,,, I O.26 0.050.10.150.20.250'30.350.40.450.5 .

Flaw Aspect Ratio (a/I)

Sub-Surface Circ Flaw -

4 Lower Head Weld 7 - e/t = -0.350 i

~ ~- ~ ~

1.2 l. l l l l l l l l l IWB-3500

. 1.1

$ +

1 IWB-3600

$e T 0.9 g Max. Allowed

- 0.8 2

5 0.7 . ,

I l 3

  • C a l  !

' 8 5

u. 0.6  ; )

e -

, i

, } . ,, zl -

4 l " '

3 0.5 ,

', i m -  !  !

3 i . 5.. . i 2 0. 4 ~ , y -

R i

  • 2. . . -

0.3- ,,.a l

1 0.2

'*'"...e '

I 6 0.050.10.150.2.0.250.30.350.40350.5  !

Flaw Aspect Ratio (a/l)  ;

Figure 13. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio '

of -0.35 (Group I) a SIR-95-017, Rev. O I-4 StructuralIntegrity Associates. Inc.

Sub-Surface Axial Flaw Lower Head Weld 7 - c/t = 0.000

~*~~

1.8 l l l l l l l l l l l 1.6

-A-I -3600 81.4-

~

..q e

Max. Allowed d 1.2 2 '

US 1

  • m  ;

l E 0.8  ! 2 l

I j 0.6 -

i

',g ...-

a \ \

< o,4 *,,g.*'.... ! '

\ , ...e *

. .. . ...... e , I

,_,6 0.U5 0.1 0.15 0 2 0.25 0.3 0.35 0 4 0.45 0.5 Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Lower Head Weld 7 - e/t = 0.000 1.8 . . . .  ;

l l

= = = - -

IWB-3500

? 16 4

.I l  ! ,

"~

I i IWB-3600

._8 1.4 - T,-~

--t- r

3 ......  ;

. 1 i i

' 3 e i  ;  : Max. Allowed 1 sy., 1.2 -

j J  ;  ;  ;

4 Q i

' i  ! i

.d I i l  ! .

m 1  ;  ;

- r j ,

7 R I i i  !  : .

m  ; > >

i 1 E 0.8 2 L "

i , 7 m 1

.9 t

.o 1

,a... '

i j 0.6 - i 1

. = * *, ..z  ;

.g  !

A o 4- l --

y v* *'..

,,e. i i  !

... g.....e***.. e, '

0.2, 6 0.b5 0.1 0.15 0.2 0.25 0.3 0.35 0 4 0.45 0.5  :

Flaw Aspect Ratio (a/I) I i

Figure I-4. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of 0.0 (Group I)

SIR-95-017, Rev. O I-5

{ StructuralIntegrity Associates, Inc.

.I Sub-Surfaca Axial Flaw Lower Head Weld 7 - e/t = 0.350 j -r--

1.2 l .

IWB-3500 J

1.1 = l

- i 8 .

l~ ~ ~ ~

IWB-3600 5C .-

T 0.9 -- ,

-g Max. Allowed

- 0.8 - e---

2 ,

> 5:

5 0.7 -- '

3 ..M i '

' 0'6

$m 0.5 i I

2. 2 >

I e . , . 1 .

3 i

l l l t '

S 0.4-  ;

l ,,./'*.. ,i,r.2

< i

+

1 i

i 0.3 ,

)

60.

O.2~*****b5 0.1 0.' 1 5 0.2 0.25 0'.3 0.35 0.4 0.45 0.5

Flaw Aspect Ratio (a/l)

Sub-Surface Circ Flaw Lower Head Weld 7 - e/t = 0.350 1.2 I I I I I I I I I I 1.1 *  : ---*---*-- = ~*- +WB-3500 l

$  !  ! f -*-

- 1 U IWB-3600 C

e--.

7 0.9 5 Max. Allowed E 0.8 . ,

2 l

.d B 0.7 '

3 l l l l l y 0.6 ,

, , 3 y ',.*f ,

e i j j l 3 0.5 *

2.  ! .

m  ;  ! .

i  !  !

3 i  ! 2. . . . > ,

2 0.4- -

g .

q  ;

0.3- ,,d. e ... ~ ,

O.2c-*"~~~ . . . . .

0 0.050.10.150.20.250.30.350.40.450.5 Flaw Aspect Ratio (a/l)

Figure I-5. Flaw Acceptance Diagram for Subsurface Flaws with Eccentricity Ratio of  !

0.35 (Group I) i SIR-95-017, Rev. O l-6 structuralIntegrity Associates. Inc.

_ .