ML20097G085

From kanterella
Jump to navigation Jump to search
Rev 0 to ASME Code Case N-481 Evaluation of Arkansas Nuclear One Unit 1 Reactor Coolant Pumps
ML20097G085
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 06/08/1992
From: Cofie N, Copeland J, Riccardella P
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20097G083 List:
References
SIR-92-037, SIR-92-037-R00, SIR-92-37, SIR-92-37-R, NUDOCS 9206160280
Download: ML20097G085 (112)


Text

_

i 1

i y,

k.*

1.

.r w

1

.i. r. . ' .

r >e.

ASSOC:rES,:XC. '

k.

7*

r.

9 3150 ALMADEN EXPRESSWAY, SUITE 145. SAN JOSE CALITORNIA 95118 . (408) 978-8200 . FAX: (408) 978 8364 trimnemustneemwannageam,camrmvarsawwmwehwa- ue:-a-wwaawameA-aze.sweawams FOSSIL PLANT OPERATIONS . 66 SO MILLrn nn cum ^^* . AKRON, OHIO 44333 . (216) 864 8886 . TAX: (216) 864 5705

(

I I' Report No.: SIR 92-037 I Revision No.: 0 Project No.: ANO 010 June 1992 I

I I ASME Code Case N 481 I Evaluation of Aikansas Nuclear One Unit 1 Reactor Coolant Pomps I

I Prepared for:

Entergy Operations I

l Prepared by:

Structural Integrity Associates, Inc, I

Prepared by: Date: E!fA N. G. Cofie Reviewed by: \(( h7 @ Date: b ~ E~ @ b

& Date: b^ld e8 lM i g A. yftson Approved by: A; . A/ Date: $@ T2 l',' C'~hichardella " * ' I STRUCTURAL INTEGRITY I- ASSOCIATESINC

a r

L Table of Contents r-Section l'ngt I 1.0 I NTRO D U CTI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 1.2 Ba ck grou n d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

De scriptic,n of Pump Casings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 11 11 1.3 Objective and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.0 P REVIO'J S I NS P EC1'lON S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 1986 1 n s pe ction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

'I 72 1988 I ns pe ctio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 1992 I n s pe c t io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2.4 Disposition of Flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.0 BACKGROUND

ON ASME CODE CASE N 481. . . . . . . . . . . . . . . . . . . 31 4.0 ASME CODE CASE N-481 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 Evaluation of Material Properties, including Fracture Toughness . . . 41 4.2 Stress Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 l 4.3 Review of Operating History of the Pumps ................... 47 4.4 Selection of 1.ocations for Postulating Flaws . . . . . . . . . . . . . . . . . . . 47 '

l 4.5 4.6 Postulation of Flaws ....................................

Determination of Stability of Postulated Flaws . . . . . . . . . . . . . . . . . 4 10 49 4.7 Effect of Thermal Embrittlement and Other Degradation Mechanisms l that May Degrade Properties of the Pump Casing . . . . . . . . . . . . . . 4-14 5.0

SUMMARY

AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 I 6.0 R E FER E N CES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 I APPENDDC A ASME Code Case N-481 APPENDIX B pc CRACK Output Stress Intensity Factors APPENDIX C pc CRACK Output Fatigue Crack Growth g

I SIR 92 037, Rev. O i O STRUCTURAL I P lINTEGRITY

/ ASSOCIATESINC

List of Figures l Figure Page 11 Typical Casing Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 12 Typical Casing Horizontal Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 Schematic Drawing Showing Pump Casing Welds for ANO 1 Reactor Coolant Pump . . . . . . . . . . . s . . ................................ 1-4 2-1 Schematic Drawing of Weld Flaws in Arkansas Nuclear One "A" and "B" Reactor Coolant Pumps, Unit 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1 22 Byron Jackson Reactor Coolant Pump Weld and Base Matuial Thickness with Lower Scroll Weld Flaw Indication - ANO 1 "B" RCP  ;

1988 uT Ex a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 g

2-3 ANO-1 1988 UT Exam of "B" RCP Lower Scroll Weld Indication - I g Se ct io n Vie w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 2-7 24 ANO 1 1988 UT Exam of "B" RCP Lower Scroll Weld Indication -

l Pl a n V i e w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 25 Byron Jackson Reactor Coolant Pump Weld and Base Material I Thickness with Upper Scroll Weld Flaw Indication ANO 1 "B" RCP

- 1988 UT Ex a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 l 26 ANO 1 1988 UT Exam of "B" RCP Upper Scroll Weld indication Se ct io n Vie w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 10 27 ANO 11988 UT Exam of "B" RCP Upper Scroll Weld Indication

-PlanView................................................ 2-11 41 Effect of Thermal Aging on Room Temperature Impact Energy of CF3, CF8 and CF8M Cast Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 22 4-2 Solution Heat Treated Wrought Type 316 Stainless Steel . . . . . . . . . . . . . . 4 23 43 Solution Heat Treated Grade CF8 Stainless Steel Casting . . . . . . . . . . . . . . 4-23 44 Effect of Temperature on Charpy Transition Curves of CF3, CF8 and CF8M Steels Aged for 30,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> .......................... 4 24 l SIR 92 037, Rev. O il p STRUCTURAL INTEGRITY I- d ASSOCIA3ESINC

I IJst of Figures (concluded)

Eigitte East I 45 Correlation Between Fracture Toughness (/,,) and Charpy impact Energy for Unaged and Aged Cast Stainless Steels Tested at Room Temperature a n d 290 3 20

  • C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 25 4-6 Axisymmetric Pump Case biodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 26 g 4-7 Three dimensional Element hiap Top . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 27 48 Three dimensional Element hiap Bottom . . . . . . . . . . . . . . . . . . . . . . . . . 4 28 I 49 Typical Section Cuts for Primary Plus Secondary Load Conditions ....... 4 29 l 4 10 P u m p Ca se bi ode l - Top Vie w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 30 s

I I

I I

I I SIR-92 037, Rev. O iii STRUCTURAL TJfINTEGRITY

. < ASSOCIAIESlbC

I l List of Tables Table Eagt 41 Properties of ASTM A351 Grade CF8M . . . . . . . . . . . . . . . . . . . . . . . . . . 4 15 42 Determination of Lower Bound Fracture Toughness of ANO 1 Pump Casings Considering Thermal Embrittle ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 16 43 Stresses at Locations No.1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 4-4 S tresse s at Loca tion No. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 17 45 Stre sse s a t Location No. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41S 46 S tre sse s at Location No. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 19 47 Postulated Flaw Sizes and Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 20 I 4-8 Comparison of Calculated and Allowable Stress Intensity Factors for Level A and B Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 4? Comparison of Calculated and Allowable Stress Intensity Factors for Level C and D Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 21 4 10 Results of Fatigue Crack Growth Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 4 21 I

I I

E SIR 92-037, Rev. O iv

~sTaucwan I k INTEGnITY

' ASSOCIATESINC

1.0 INTRODUCTION

1.1 Background

During the 1992 Arkansas Nuclear One, Unit 1 (ANO 1) refueling outage (1R10), the "D" reactor coolant pump (RCP) was disassembled. The purpose of the disassembly was to inspect the RCP for damage due to a potential motor thrust bearing failure. One of the requirements in the safety evaluation performed by the Office of Nuclear Reactor Regulation (NRR) in April 1989 [1], following the 1988 refueling outage (1R8), is that single wall radiography (RT) should be performed in the event that any RCPs are completely disassembled for maintenance, repair or examinations. The disassembly of the "D" pump was not a planned outage activity and, therefore, adequate plans had not been I made to perform RT on this pump casing. Becatise of this, Entergy Operations submitted I a letter to the NRC [2] to revise the commitment to perform single wall RT of the pump casing, and instead conduct RCP casing structural integrity examinations and evaluations using the methodology contained in ASME Code Case N-481 [3]. Subsequently, the NRC requested the results of the VT.1 and VT 3 examinations of the "D" RCP. Prior to allowing ANO-1 to return to power operations, the NRC also requested a comparative analysis between the Code Case postulated flaw evaluation and the previous "A" and "B" RCP fracture mechanics and stress evaluations. The results of the VT-1 and VT 3 examinations and scoping evaluation of Code Case N 481 for the ANO-1 pump casing were provided to the NRC in Reference 4.

1.2 Description of Pump Casings l The four reactor coolant pumps at ANO 1 were manufactured by Byron Jackson. All four pumps were fabricated from ASTM A351-69, Grade CFSM material. Figure 11 identifies l the various portions of the pump casing. At the bottom of the pump casing is the suction nozzle whose axis of symmetryis an extension of the axis of rotation of the pump shaft. The lower flange occupies the upper end of the suction nozzle, and is marked by a series of SIR-92 037, Rev. 0 11 I

l internal steps as shown in Figure 11. The upper end of the lower flange blends into the diffuser. The diffuser consists of upper and lower rings separated by vanes. The upper l

l diffuser ring blends into the upper flange. The scroll section is a relatively thin walled section connecting the upper and lower flanges outside of the diffuser. The scroll forms a spiral around the diffuser as shown in Figure 12, starting at the crotch area and terminating at the discharge nozzle.

As shown in Figure 13, there are two horizontal welds on the scroll portion of the pump casing (one on the upper end and the other on the lower end). These two welds are joined together by a circumferential or vertical weld near the crotch region.

1.3 Objective and Organization I

. The objective of this document is to address the safety and serviceability requirements of ASME Code Case N 481 to assure that postulated flaws in the pump casings at critical locations will be stable, considering the operating stresses and material properties of the pump casings. Section 2 of this report discusses previous inspections that have been performed on the pump casings, and the inspection results. Section 3 discusses the background of Code Case N-481, the items covered by the ASME Code Case, and the safety factors used with this Code Case. Section 4 provides the specific evaluation performed using this Code Case. Section 5 presents the conclusions of the evaluation, and Section 6 provides the references used in the evaluation.

g I

I I

l SIR 92-037, Rev. 0 2

(? STRUCTURAL INTEGRITY ASSOCIAIESINC

I I  ;

Upper Flange Diffuser Scroll , ,

I Lower Flange

e

= Suction Nozzle I Figure 1-1. Typical Case - CrossSection I .,_

I -

s

/

)

I /

4[

'l / \

\ O /1 /  !

1

'( gf /g/

Wnes

/N s

~~

b/

Discharge I ""'

c,9,cn %s d ^ k "'"'"

I Figure 12. Typical Case - IIorizontal Section I STRUCTURAL SIR 92 037, Rev. 0 13

[(t. INTEGRITY l 4 assccuntsiwa

I I An I l i

Scroll i

" ' Weld

[m 1 Casement

/ *' Circumferential I #

Weld I > A ,_

I '

I [h i

s n

I 1 4 z Casement Circumferential Weld

-l \ Scroll Weld l VIEW A I

I Figure 13. Schematic Drawing Showing Pump Casing Welds for ANO 1 Reactor

,I Coolant Pump I SIR.92 037, Rev. 0 1 -- 4 gg l INTEGRITY ASSOCIAl'ESINC

I I 2.0 PREVIOUS INSPECrlONS I 2.1 1986 Inspection I During the 1986 refueling outage, a volumetric examination was performed on the "A" RCP welds, as required by the first 10-year ISI program (based on the requirements of the 1974 Edition through Summer 1975 Addenda of Section XI of the ASME Code), by performing RT examination of the pump casing welds. The RT examination indicated the presence of a flaw which exceeded the ASME Section XI allowable indication standards of IWB-3500 g (1980 Edition through Winter 1981 Addenda). The indication is best described as a series of slag inclusions having an effective length (per ASME Section XI criteria) of 5.66 inches.

l The indication is located in the vertical weld which ties together the upper and lower scroll welds of the pump casing (see Figure 2-1).

Radiographic parallax techniques indicated that the top of the Daw is 1.5 inches below the l outside surface of the weld. The weld is approximately 2.6 inches thick in this area.

Application of special ultrasonic testing (UT) techniques indicated that the flaw indication l does not extend to the internal diameter of the pump casing. Thus, the maximum through-wall dimension of the flaw indication is less than 1.1 inches.

I To determine if any Daw existed at this location prior to service, the original construction radiographs were reviewed. The review found five small inclusions that are part of the identified flaw indication of 5.66 inches in length. These inclusions on the original radiograph were determined to be acceptable per the Code during the preservice examinations. Because of the quality of the presenice radiograph in the area of the indication, equipment was brought on site to perform computer enhancement of the area of the flaw. This process allowed characteriz.ation of the Daw on the original film more I clearly, and determined conclusively that the current flaw indication and the original flaw were identical.

I I sir 92-037, Rev. 0 21

[gyg I / ASSOCIATfliIIC INTEGRITY

The original construction radiographs for the remaining three pumps were then reviewed, l searching for any preservice Daw indications or weak areas in film density. Identified areas were then computer enhanced in an attempt to identify any unacceptable flaws that were l previously unidentified. Portions of approximately 20% of all presenice radiographs were computer enhanced. From this review, the "C" and "D" pumps were determined to have no unacceptable preservice Daw indications. However, the computer enhancement on the "B" pump did indicate an unacceptable flaw indication in the same general weld area as the "A" lm pump.

lB i

The flaw indication on the "B" pump through the computer enhancement process was shown as 1.5 aches in length. The original construction radiograph of this area shows a Daw of 0.625 inches in length which was acceptable per Code requirements at that time. The wall thickness in the area of the Daw indication is 3.1 inches. UT inspection was used in an attempt to better characterize the Daw indication. Due to the material of the pump casing (coarse grained, statically cast stainless steel) and the small size of the indication, UT was not able to specifically characterize the Daw. Ilowever, from these examinations, it was determined that the Daw size was no larger than 1.5 inches long by 1.5 inches deep.

l 2.2 1988 Inspection Since the 1986 inspection, AP&l, with the assistance of Babcock and Wilcox (B&W),

developed a UT procedure for the examination of the pump casing welds from the outside ll l surface. The UT examination of the Daw indication in the "A" pump casing and the entire l "B" pump casing welds were performed during the 1988 refueling outage, utilizing the B&W automated ultrasonic data acquisition and imaging system (ACCUSONEX).

A robot was used to perform the ACCUSONEX automated scanning and to provide coordinated data for the transducer location. Using threshold values that just exceeded the average noise level from the pump casing material for both straight beam and angle beam mensurements, minimum detectable indications of approximately 1/8 inches wide (through-SIR 92 037, Rev. 0 2-2

[c~^ STRUCTURAL

<y IINTEGRITY a assCcwesuc i I

I wall dimension) and 3/4 inches long through the maximum wall thickness can be detected.

The fact that the previous slag indications could not be detected with UT most likely indicates that they are very small, occupy very little volume, and are below the limit of detection for present day UT technology.

Also, during the 1988 refuehng outage, a complete volumetric external surface examination of the "B" RCP casing welds, using double wall RT and advanced ultrasonic techniques, was performed. The areas of the casing welds examined by RT showed no rejectable indications.

Sections of the upper and lower scroll welds near the discharge end of the pump. which could not be successfully radiographed to meet ASME Code fihn density requirements, along with the remainder of the vertical weld, were examined by UT. In the lower scroll weld, severalindications were detected (using ACCUSONEX)in an area bounded by a rectangle with a length of 4.1 inches and a through. wall dimension of 1.8 inches, at a depth of 0.9 inches below the outer weld surface in a region where the weld is 4.75 inches thick. These indications were considered to be slag inclusions located approximately 0.70 inches from the weld centerline. The upper scroll weld could not be examined with ACCUSONEX due to insufficient access for the robot; however, a manual scan was performed which identified l three indications. The composite size was conservatively determined to he no larger than a 4.5 inch long by 1.25 inch through wall dimension at a depth of 1.35 inches from the outsiJe surface. The weld is also 4.75 inches thick in this region. These indications are located approximately on the weld centerline to 0.6 inches from the centerline. The g composite indication is also considered to consist of slag inclusions resulting from the original construction welding process and not a senice induced condition. Table IWB-3518 2 l maximum allowable dimensions for an indication are 1.8 inches for the length and 0.30 inches for one half the through wall dimension within the weld. Figures 2-2 through 2 7 show the locations of the lower and upper scroll weld flaw indications found by the UT examinations. The "B" RCP factory radiographs for these areas and the low density l radiographs of these areas taken during this outage were computer enhanced. The analysis of these enhanced radiographs showed no rejectable indications in the welds. It was thus concluded that these indications are small presenice slag inclusions.

SIR 92 037, Rev. 0 2-3

' STRUCTURAL INTEGRITY

/ ASSOCIATESINC

I

! 2.3 1992 Inspection During the 1992 refueling outage, the "D" RCP casing welds were inspected by visual means.

A VT 1 examination was performed on the upper nnd lower scroll (horizontal) welds and torus (vertical) weld. No indications were identified. A VT-3 examination of the interior surface of the casing also identified no indications. Scratches were found during the VT-3 examination on the wear ring; however, this is not a concern since the wear ring does not function as a pressure boundary. A successful hydrostatic pressure test (and VT-2 examination) was performed on a" aur RCPs prior to returning the unit to power --

peration.

Enhanced UT examinations of the ama of interest on the "A" and "B" RCF& were also performed. No new indications were ident:fied and there was no growth in the previously g identified 1986 and 1988 Daws. In fact, due to better technology, the previously identified flaws in the "B" RCP have been sized smaller than were previously identified, yl 2.4 Disposition of Flaws I Conservative fracture mechanics and stress analyses were performed in 1986 and 1988 [5 9]

f to show that ASME Code Section XI safety margins were satisfied with the observed Daws.

The evaluations were based on linear elastic fracture mechanics principles consistent with Apnendix A of Section XI of the ASME Code. O I

I I

I I SIR-92-037, Rev. 0 2-4 g

I [ INTEGRITY a / ASSOCLVESINC

t-I I A *-

l n

I O w Casement Circumferendal

'l l k Weld

-I 5

-- > A_

I a

I I'  ?

I "A" Pump Flaw Indicadon 7

' . "B" Pump Flaw

  1. IN,"U "

w /

I Casement Circumferendal l Weld g

VIEW A I

I Figure 2-1. Schematic Drawing of Weld Flaws in Arkansas Nuclear One "A" and "B" Reactor Clolant Pumps, Unit 1 I

I SIR-92-037, Rev. 0 2-5 STRUCTURAL INTEGRITY

.l l assccmssm

l I

_l t flaw indics icn

, g, A,4 3 1.2 - J',

,f ,., n A'

l

r. >1
s. S2 4

'l j .n y  %%

s l . ~

p l -

' \

8:

I S$ *\ '

/

) $c l )

%.- + /

l #

c, - a '

eg, sp

I .

g.y

  • ne 49 c:x si' F s

t l

Figure 2-2. Byron-Jackson Reactor Coolant Pump Weld and Base Material Thickness with l Lower Scroll Weld Flaw Indication - ANO-1 "B" RCP - 1988 UT Exam I

SIR-92-037, Rev. 0 2-6 1

l INTEGRITY

~ ma

I I

I I

g M A5 I A3

, es

.{ p.1.r 4 2.r---.

.I y

.s..y I M.75 '

[ ~~

, J l' 1 i , "a D I

, 1 = 4.1" 2a= 1.8" (a= 0.90")

s = 0.90" I

LI I-Figure 2-3. ANO-1 1988 UT Exam of "B" RCP Lower Scroll Weld Indication - Section-View SIR-92-037, Rev. 0 2-7 STRUCTURAL I INTICGRITY ASSOCIATESINC

I A3 A4 AS I To eso discharge i l

~

l.7 l L4 -:

7 WG2b c W I

t I To center of pc.o I. ,I i

I 4

Figure 2-4. ANO-1 1988 UT Exam of "B" RCP Lower Scroli Weld Indication - Plan View SIR-92-037, Rev. 0 2-8

,srau-sINTEGRITY I

ASSOCIATESINC

I I l I )

t I -

Osw + #'4 indication 5 y J3 J4 J5 j,

1. .~ w .co a ., sa Nb (

g

.c - ,.t

  • r

?k., Y,

,4 i I & l V,"+4 5 b I ~'\" *

~

_1 J ]N 4 c s A*

b; / , f J ,

.l l<" N* y 'p"

.+ d5 o 'x r: s g s, I '"'

%* f.: k I

Figure 2-5. Byron-Jackson Reactor Coolant Pump Weld and Base Material Thickness with I Upper Scroll Weld Flaw Indication - ANO-1 "B" RCP - 1988 UT Exam I SIR-92-037, Rev. 0 2-9 STRUCTURAL I ==Rrry AE?OCIA'IHiINC

k I

, i I

J2 J3

. J:

(' a o .

k LS' $ 3. o ' I m h I 8 I S g

  • 2 f = .75

[] 3 J

I 1 = 4.5"

, _= 1 5" (a = 0. 625")

2a I

I g

I I

I Figure 2-6. ANO-1 1988 UT Exam of "B" RCP Upper Scroll Weld Indication - Section I View SIR-92-037, Rev. 0 2-10 STRUCTURAL I INTEGRITY ASSOCIATESINC

1 i

I -

io pumo discharge (J1)

J,2 p g:

-I . . +

. ,/.w

  • W'"'

, . I no -

.. .c Q - - - -

IQ Center Cf Qump I

I-I g Figure 2-7. ANO-11988 UT Exam of "B" RCP Upper Scroll Weld Indication - Plan View SIR 92-037, Rev. 0 2-11

, n sraucTunn.

INTEGRITY l

' ASSOCIATESINC.

I _

l

3.0 BACKGROUND

ON ASME CODE CASE N-481 A resiew of data collected in EPRI's " Cast Austenitic Stainless Steel Sourcebook"[10] shows that slag inclusions and other fabrication defects, such as th e identified during the l inspections of the ANO-1 "A" and "B" pump casings, are not uncommon. However, whenever such flaws are identified by surface or volumetric inspection during fabrication, they are usually excavated and weld repaired. Examinations and repairs during the fabrication process are accomplished with relative ease, since they are performed in a shop emironment.

Ultrasonic examination and radiography of pump casings, once in service, is very difficult and time consuming. As noted by the NRR in the 1989 Safety Evaluation [1], the disassembly of a reactor coolant pump for the sole purpose of performing a volumetric examination of the pump casing welds is not practical. There is considerable personnel exposure to I- radiation and significant outage time associated with removal of the pump shaft. The industry operating experience with cast stainless steel pressure components has been good, I and furthermore, no detrimental service induced degradation of pump casing welds, detected .

with various inspection techniques, has been reported.

I Because of difficulties associated with the examination of pump casing welds during service, ASME Code Case N-481, shown in Appendix A, addresses examinations and evaluations that may be performed in lieu of the volumetric examinations specified in Table IWB-2500-1 of Section XI, Division 1 of the ASME Code for Examination Category B-L-1. Examination Category B L-1 relates to pressure retaining welds in pump casings; hence, the application of this code case is limited to the scroll welds, the vertical welds, and the adjacent base metal. Therefore, the vanes and their attachment welds, which are not pressure retaining, are excluded in this evaluation.

I In addition to performing visual examinations (VT-1, VT-2 and VT-3), the code case outlines a seven-step evaluation procedure to demonstrate the safety and serviceability of the pump l SIR-92-037, Rev. 0 3-1 l

O[SBUcrURE INTEGRITY ASEOCIATESINC

l casings. Key to this procedure is the demonstration that an assumed quarter thickness flaw, with lengtn six times its depth, will remain stable, considering the stresses and material properties of the pump casings.

The ASME Code Case N 481 evaluation procedure is very similar to that in Appendix G of Sections III and XI of the ASME Code, which provides fracture toughness criteria for protection against failure of reactor pressure vessels, in that a similar postulated flaw is assumed for the analysis in both cases. The Code Case does not provide any guidance on safety factors to be used in the evaluation. Therefore, for the evaluation presented herein, safety factors consistent with Appendix G for similar evaluations of pressure vessels have been used.

I Appendix G was first introduced into Section III of the ASME Code in the 1972 Edition, and has remained virtually unchanged through the current 1989 Edition. It was introduced I into Section XI of the ASME Code in the 1986 edition with addenda through 1987.

Therefore, even though ANO-1 is committed to the 1980 Edition with Winter 1981 Addenda of ASME Code Section XI, the use of the 1989 Edition of the ASME Code is acceptable for this evaluation.

I Although Code Case N-481 does not specify that a fatigue crack growth evaluation must be done, and such analyses are not part of an Appendix G evaluation of the stability of a quarter thickness deep flaw, such calculations are done in this study for information purposes.

I I

I  ;

SIR-92-037, Rev. 0 3-2 o sTaucronar.

INTEGRITY l ASSOCIATESINC l

4.0 ASME CODE CASE N-481 EVALUATION In this section, the seven items listed in the Code Case, to demonstrate the safety and serviceability of pump casings, are addressed in relation to ANO 1, 4.1 Evaluation of Material Properties, Including Fracture Toughness The material of the pump casing is ASTM A351 Grade CF8M, an austenitic stainless steel I casting specilication. The mechanical and physical properties of this material, obtained from

'he ASME Code [11] used for the Stress Report, are shown in Table 4-1.

I A review of the fabrication records indicates that the scroll and the vertical welds were fabricated using either the shielded metal are welding (SMAW) or submerged arc welding (SAW) process. The records also show that several weld repairs were made during fabrication. After welding, the casings were solution heat treated at 1900-2050*F for ten hours at temperature, followed by quenching in agitated water to below 700*F within five minutes.

The most important material property pertinent to this evaluation is the fracture toughness, g The fracture toughness of the base material and the weld metal are addressed separately, since they are affected by different mechanisms. Fatigue crack growth analyses are done for information only, since they are not specifically required to evaluate the large flaws postulated by the code case.

I 4.1.1 Fracture Toughness of ASTM A351 Grade CF8M I The fracture toughness of cast stainless steels has been the subject of significant research in the U.S. and elsewhere in recent years. Three grades of cast stainless steel frequently used in nuclear power plant applications (CF3, CF8 and CF8M) have all been studied extensively to determine the kinetics and material parameters that control the toughness of these I SIR-92-037, Rev. 0 4-1 '

STRUCTURAL INTEGRITY ASSOCIRIESINC

1 materials. The major conclusion drawn from most of the work done on these castings is that initially cast, austenitic stainless steels have toughness that is relatively high; however, during senice at 550'F they become embrittled with time, which results in a loss of toughness as shown in Figure 41.

The microstructure of stainless steel castings is significantly different from that of wrought products. Wrought products consist of a single phase, austenite (y), as shown in Figure 4-2.

Castings on the other hand exhibit a two-phase, or " duplex", microstructure of austenite (y) and delta ferrite (6) as shown in Figure 4 3. The ferrite phase in the duplex structure in these castings increases the tensile strength, improves the weldability and soundness of the casting, and increases the resistance to stress corrosion cracking. However, various carbide phases, intermetallic compounds such as sigma and chi phases, and a chromium rich bec phase (a') can precipitate in the ferrite phase during senice at elevated temperatures and l lead to substantial degradation in toughness properties. Research performed at the Argonne National Laboratory (ANL) and elsewhere (12-23] has shown that the thermal embrittlement of cast stainless steel components will occur during the reactor lifetime of 40 years.

l As a result of such thermal aging embrittlement, the Charpy transition curve shifts to higher temperatures as shown in Figure 4-4. For cast stainless steel of all grades, the extent of thermal embrittlement increases with an increase in ferrite content. The low-carbon CF3 grades are the most resistant and the molybdenum-bearing high c.rbon CF8M grades are the least resistant to thermal embrittlement.

The embrittlement of cast stainless steels results in brittle fracture associated with either the cleavage of the ferrite or separation of the ferrite /austenite phase boundaries. The degree

-I of embrittlement is. controlled by the amount of delta ferrite and the extent of ferrite /austenite phase boundaries. Brittle failure occurs when either the ferrite phase is continuous, such as the case with cast material with a high ferrite content, or the ferrite /austenite phase boundaries provide an easy path for crack propagation. Hence, the amount, size and distribution of the ferrite phase in the duplex microstructure and the SIR-92-037, Rev. 0 4-2

^7 STRUCTURAL Fl, INTEGRITY I / ASSOCIATESItC J

I l presence of phase boundary carbides are important parameters in controlling the extent of thermal embrittlement.

I The kinetics of thermal embrittlement have been explained in detail by Chopra, et al, [12-l 16). The kinetics are controlled by several mechanisms that depend on material parameters and aging temperatures. During embrittlement, additional phases are precipitated in the ferrite matrix. These include the formation of a chromium (Cr)- rich a' phase by spinodal decomposition; nucleation and growth of a'; precipitation of nickel (Ni) and Silicon (Si)-

rich G phase, MuC. carbide and y, (austenite); and additional precipitation and/or growth of existing carbides at the ferrite /austenite phase boundaries.

The chemical composition of the casting and the ferrite morphology are important parameters to be considered during embrittlement. A procedure and correlations for predicting the fracture toughness of aged, cast stainless stee!s from known material information is provided by Chopra [24). The only information required in these correlations l is the chemical composition from the certified material test report (CMTR). A correlation for the extent of thermal embrittlement at " saturation" (the minimum impact energy that l would be achieved for the material after long term aging) is given in terms of the chemical composition. The extent of thermal embrittlement as a function of time and temperature of reactor senice is then estimated from the extent of embrittlement at saturation and from the correlations describing the kinetics of embrittlement, which are also given in terms of the chemical composition. In this evaluation, the fracture toughness associated with the minimum impact energy will be conservatively used.

Using the methodology of Reference 24, the chromium equivalent (Cr,q) and nickel equivalent (Ni,y) are determined from the chemical composition, based on Hull's equivalent factors [25]:

SIR-92-037, Rev. 0 4-3 cgSTRUCTURAL INTEGRITY I -

ASSOCIATESIlO

I Cr,, = (Cr) + 1.21 (Afo) + 0.48 (SI) - 4.99 Ni,, = (Ni) + 0.11 (Ain) - 0.0086 (Afn)2 + 18.4 (N) + 24.5 (C) + 2.77 where the chemical composition is in wt.%

The ferrite content (6,) is then determined by the relationship:

6, = 100.3 (Cr,/Ni,,)2 - 170.72 (Cr,/Ni,,) + 74.22 For CF8M cast stainless steel, the saturation (minimum) impact energy considering thermal embrittlement is given by:

loga Cg, = 7.28 - 0.011 (6,) - 0.185 (Cr) - 0.369 (Afo) - 0.451 (SI)

- 0.007 (Ni) - 4.71 (C + 0.4N)

Knowing the value 'of CN,, a lower bound value of Jucan be determined using the correlation shown in Figure 4 5 [14]. The lower bound value of Ku used for linear elastic fracture mechanics analysis is determined fromul using the relationship:

K '"T u = 3 (1-v j where E is the elastic modulus, and v is Poisson's ratio.

}l The above methodology has been used to estimate the lower bound toughness value of the heats of the ANO-1 pump casings [26). A summary of the results is presented in Table 4-2 and shows that for these CF8M pump casings, the range of Ju (including k.ng-term aging 2

effects (embrittlement))is 817-1117 in-lb/in . This minimum value of 817 in-lb/in' translates into a Kuvalue of 152 ksi/in at the operating temperature of 550* F.

SIR-92 037, Rev. 0 4-4

^ STRUCTURAL I INTEGRITY ASSOCIATESIIC

l 4.1.2 Fracture Toughness of Pump Casing Weldments As indicated earlier, the fabrication records indicate that the pump casing weldments were made using flux welding, either by submerged arc welding (SAW) or shielded metal arc welding (SMAW). Extensive work done on the toughness of austenitic stainless steel weldments in References 27 and 28 has shown that the toughness for SAW and SMAW weldments in the unaged condition are lower than for the base material. On the other hand, tungsten inert gas (TIG or GTAW) weldments have toughness more typical of the base metal. The lower toughness of SAW and SMAW weldments is due to nonmetallic inclusions in the weld metal Qat result from the flux welding process. Limited data from Reference 27 suggests that /,, values of 1168 and 973 in lb/in 2 may be used for SMAW and SAW weldment fracture assessments, respectively, in the as welded condition. Corresponding values for solution-annealed weldments are 968 and 1260 in lb/in2 . Values of 990 and 650 in-lb/in2are suggested in Reference 29 for SMAW and SAW, respectively, based on the work done in Reference 28. Unlike the base cast materials, the fracture toughness of SMAW and SAW weld metals are virtually unaffected by long-term aging [30]. In the safety evaluation performed by NRR in 1989 [1], the lower bound value of 650 in lb/in2 for SAW weldments was recommended for use in any future fracture mechanics evaluations for the ANO-1 pumps. Hence, this lower bound value will be used in this evaluation.

In comparison with the fracture toughness of the ASTM A351 Grade CF8M matenal,it can be seen that the fracture toughness of the SAW weldment is controlling. The lower bound 1,, va!ae of 650 in-lb/in2 translates into a K,, value of 135.5 ksi/in at the operating temperature of 550* F.

4.2 Stress Analysis Results A Stress Report [31] for the ANO Unit 1 RCPs was prepared in 1973 by the Byron-Jackson /Borg Warner Corporation to meet the requirements of the ASME Code Section III, 1968 [11]. Since the pumps are identical, this Stress Report covers all four pumps. In this SIR-92-037, Rev. 0 4-5 O STRUCTURAL 3 INTEGRITY

/ ASSOCWHUNC

I Stress Report, a significant portion of the pump casing was analyzed using a two-dimensional (2D) axisymmetric model. A small portion of the casing near the discharge nozzle was l analyzed using a three-dimensional (3D) model. These models are shown in Figures 4-6 through 4-8. Stresses for various load combinations were reported at critical sections for the l axisymmetric model, as shown in Figure 4 9.

A supplement to this Stress Report was provided by Babcock and Wilcox to address revised pipe loads [32.]. In this analysis, a finite element model of the Byron Jackson pump casing l developed for Consumers Power Corporation's Midland plant in Reference 33 was used as shown in Figure 410. The ANO-1 RCPs were found to be sufficiently similar to those at Midland [34), thereby providingjustification for the application of the Midland pump casing stress analysis to ANO Unit 1. This revised anelysis showed that only very mNerate centroidal and surface stresses are produced in the pump casing due to mechanicalloadings.

The on? highly stressed areas for the Design Category loads are the vanes (especially the tips) and the suction and discharge nozzles. This observation suggests that the critical regions on the scroll welds are unaffected by this revised analysis and, therefore, stresses from the original Stress Report (31] are still valid for these locations.

In previous fracture mechanics analyses to disposition the flaws found in 1986 and 1988 [5-9),

stress information from the Midland Stress R port was used. Conservative stresses at the flaw locations were used from this report. In the analyses presented herein, stress information contained in the original Byron Jackson Stress Report, together with stresses at I previous flaw locations provided in the Midland Stress Report, were used to perform the fracture mechanics analyses.

In addition to the applied stresses, weld residual stresses need to be addressed in this evaluation. In the evaluation of pressure vessels per ASME Code, Appendix G, residual stresses are not considered, because the vessel is postweld heat treated after welding to minimize the effect of residual stresses. Similarly, since the pump casings were solution heat l SIR-92-037, Rev. 0 4-6 srauemua pLiINTEGRifY I d1/ ASSOCIRFESINC

I l treated subsequent to welding and weld repairs, residual stresses are expected to be minimal and are, therefore, not considered in this evaluation.

4.3 Review of Operating History of the Pumps I

ANO-1 has been in commercial operation since December of 1974. The plant has undergone ninety-three (93) heatups and 1:inety two (92) cooldowns. At this point in time, these numbers are slightly below the expected number of heatup/cooldown cycles considering the design number of heatup/cooldown cycles (240 for a 40-year plant life). _

The four RCPs at ANO Unit 1 have experienced essentially the same operating hi: ary, since the cold legs are not isolable from the reactor vessel or the steam generators. The normal operating pressure and temperature for the RCPs are 2155 psig and 550'F, respectively. There have been short periods (on the order of 2 to 3 months) of only three I pumps operation. These periods involved the "C' and "D" pumps not operating, and would have caused the temperatures through the respective cold legs to be somewhat elevated, but within the operating envelope. ANO is licensed for three pump operation. All other plant transients would have affected all the pumps and all the cold legs equally.

I 4.4 Selection of Locations for Postulating Flaws _

Three criteria were used in selecting flaw locations for this evaluation:

)

1) Fracture Toughness
2) Previous Inspection Results g 3) Stresses.

l Since the fracture toughness of the weld material has been shown to be smaller than the base material, even when considering embrittlement, flaw locations were chosen at the welds.

l Along the welds, areas where slag inclusions have previously been found during inspections SIR-92-037, Rev. 0 4-7 smema I INTEGRITY ASSOCIATFEINC

I were selected. Hence, all the locations identified on the "A" and "B" RCP vertical and scroll welds in 1986 and 1988 were included in this evaluation in addition, areas of maximum stress in the scroll welds were chosen. Considering the above criteria, five locations were chosen as described below. Stress and thickness information at these locations are also prosided.

Location No.1 I This location corresponds to the location on the vertical weld of the "A" RCP where slag inclusions were identified in 1986. From Reference 5, the thickness of the pump casing at this location is 2.6 inches. The maximum tensile stresses occur for the combination of rapid cooldown, internal pressure, deadweight, preload and 15% thermal expansion load. The maximum compressive stresses occur for a load combination of heatup, internal pressure, deadweight, preload and 15% thermal expansion load. The stresses at this location are shown in Table 4-3. It should be noted that the assumed flaw would be on the inside surface since this is where the maximum tensile stress occurs, location No. 2 This location corresponds to the location on the vertical weld of the "B" RCP where slag inclusions were identified in 1986. From References 7 and 8, the thickness at this location l is 3.1 inches. Stresses are identical to those at Location No.1, and are shown in Table 4-3.

Also, as at Location No.1, the flaw was assumed on the inside surface. It should be noted

(. that since stress results reported in References 5 and 6 are the same for both Locations No.

1 and 2, these will also envelope all other stresses in the vertical weld and, as such, further l evaluation is not required for the vertical weld.

I >

I SIR-92-03',s Rev.0 4-8 O STRUCTURAL INTEGRITY I. ASSOCIATEINC

g location No. 3 This location corresponds to the area on the upper scroll weld on the "B" RCP where slag l-inclusions were identified in 198S. The thickness at this location was obtained from l Reference 9 as 4.75 inches. Stresses at this location, nlso obtained from Reference 9, are shown in Table 4-4. The assumed flaw in this case would be on the outside surface, since l the maximum tensile stress occurs at this surface.

Imcation No. 4 This location corresponds to the area on the lower scroll weld on the "B" RCP where slag inclusions were identified in 1988. The thickness at this location is also 4.75 inches [9].

Stresses at this location are provided in Table 4-5. Similar to Location No. 3, the assumed flaw will be on the outside surface.

location No. 5 This location is chosen to correspond to the thickest portion of the horizontal scroll welds.

From Reference 35, the maximum thickness of the scroll weld is 5.3 inches. At this location, the maximum stresses from the Stress Report [31) on the weld were used to perform a I bounding evaluation. Stresses at this location, obtained from Reference 31, are shown in Table 4-6. The flaw is postulated on the inside surface for the fatigue evaluation.

4.5 Postulation of Flaws As required by the Code Case, the postulated flaw is a quarter thickness semi-elliptical flaw with length six times the depth. A summary of the flaw dimensions at each location is provided in Table 4-7.

l l SIR-92-037, Rev. 0 4-9 m_

INTEGRITY LI 1

/ ASSOCIATESINC

4.6 Determination of Stability of Postulated Flaws l To determine the stability of the postulated flaws, fracture mechanics evaluations are performed at each location to address the following:

I 1) Determination of applied stress intensity factors

2) Allowable stress intensity factor
3) Fatigue crack growth
4) Stress corrosion crack growth.

4.6.1 Determination of Anplied Stress Intensity Factors Even though austenitic stainless steels have been shown to be relatively ductile materials, linear elastic fracture mechanics (LEFM) techniques were conservatively used in lieu of clastic plastic fracture mechanics (EPFM) techniques.

The strest, intensity factors (K,) associated with the applied stresses were conservatively determined using the flat plate model of ASME Code,Section XI, Appendix A [36). The expression for K, is given by:

K, = o,Ai, 6 JalG + oj,1,6 lalG where:

o ,o, = membrane and bending stresses a = minor half diameter of embedded flaw; flaw depth for surface flaw Q = flaw shape parameter Af, = correction factor for membrane stress Af, = correction factor for bending stress

, The above model is contained in the library of Structural Integrity's computer software pc-CRACK [37]. This software was, therefore, used to determine the stress intensity factors SIR 92-037, Rev. 0 4-10 l sTancrunar.

l INTEGnITY l ASSOCIATESINC

at the variou's locations, using the stress information contained in Tables 4-3 through 4 6.

In order to use pc CRACK, the through-thickness stresses are curve fit to a third degree polynomial to determine the membrane and the bending components. The pc CRACK results for the stress intensity factor determination are provided in Appendix B.

4.6.2 Allowable Stress Intensity Factor Stress intensity factors, for comparison to an allowable value, were calculated consistent with the safety factors provided in Appendix G of Section XI of the ASME Code. Paragraph G 2222 requires a safety factor of 2.0 on pritaary stresses and a safety factor of 1.0 on secondary stresses for Senice Levels A and B.

The terms whose sum must be less than the allowable reference stress intensity factor (Km) for Levels A and B operating conditions (Service Levels A and B) are:

1) 2K,i for primary membrane stress
2) 2Kidfor primary bending stress
3) K,i for secondary membrane stress
4) K i a for secondary bending stress.

I -No safety factors are specifically provided for Senice Levels C and D, and it is recommended in Appendix G that each situation be studied on an indiv dual case basis. In this evaluation, the safeiy factors used for Senice 12vels C and D were taken as d for I primary stresses, and 1.0 for secondary stresses. The safety factor of d is conservatively taken as that used for flaw evaluations per Paragraph IWB-3610 of ASME Section XI, for i

ferritic materials.

!I Tables 4-8 and 4-9 provide the stress intensity factors with the appropriate safety factors for the various locations, and their comparison to the allowable Km value of 135.5 ksi/in . The SIR-92-037, Rev. 0 4-11 STRUCTURAL INTEGRATY

/ ASSOCIATES,INC

L analysis was perfornied using the postulated quarter thickness flaw depth. It should be noted that for Locations No. I through 4, a safety factor of 2 was conservatively used regardless of whether the stress is primary or secondary. It can be seen that the stress intensity factors at alllocations are below the allowable values.

1 l

4.6.3 Fatigue Crack Growth l Even though the postulated flaw bounds the maximum expected flaw during the life of the component, fatigue crack growth analyses were performed to assure that crack growth is minimal compared to the postulated flaw. For postulated flaws on the outside surface, the analyses were performed using pc CRACK and the ASME Section XI, Appendix C [36) c ack growth law for r.ustenitic stainless steel in an air environment and a temperature of 550 F. A fatigue crack growth law for a water environment is not currently in the ASME Section XI; however, per the recommendation of ASN.3 Section XI Task Graup for Flaw Evaluation [38], a factor of 2 was applied to the air environment law to accouni for the PWR water environment. The ASME Section XI fatigue crack growth law for air is given as:

= C,(bK,)"

I where n equals 3.3, and l C, = C(S) where C is a scaling parameter to account for temperature, and is given by C = 101-"

  • S22, te r - us, te 7 2 o2, ie rj T is the metal temperature in *F (T S. 800*F). S is a scaling parameter to account for the l R ratio (K.A.,), and is given by:

I I SIR-92-037, Rev. 0 4-12 STRUCTURAL INTEGRITY ASSOCIATES,INC

S = 1.0 when R s 0

= 1.0 + 1.8R when 0 < R s 0.79

= 43.35 + 57.97R when 0.79 < R s 1.0 I At a temperature of 550'F, and for R 10 as in this case, C, was calculated as 1.84 x 10*

for an air environment. A value of C, of 3.68 x 10* was, therefore, used for the PWR water environment to determine crack growth for flaws on the inside surface.

I Fatigue crack growth analyses were performed for the five locations for a 40-year plant life l (240 heatup and cooldown cycles) with an initial quarter thickness Daw. The pc-CRACK results for the fatigue crack growth analyses are presented in Appendix C and summarized l in Table 410. The results show that in comparison to the large initial postulated flaw, fatigue crack growth is relatively small, except for Location No. 5. However, recent l inspection results, Cacumented in this report, show that initial fabrication defects in scroll welds have not grown since the start of service, indicating the very conservative nature of these fatigue predictions for large postulated defects.

4.6.4 Stress Corrosion Crack Growth Stress corrosion cracking (SCC) in pressurized water reactors is not generally of concern, since the environment is not usually conducive to SCC. Moreover, stainless steel castings have been shown to have superior resistance to SCC when compared to wrought products.

Because a wrought material consists of a single phase austenite (y), when such a material I is welded, the thermal cycle associated with the welding cause chromium carbides to be precipitated from solution and at austenite austenite (y-y) grain boundaries. The diffusion of chromium from the austenite matrix results in a chromium depleted zone at the grain boundary, resulting in sensitization. On the other hand, when a stainless steel casting (a two-phase duplex microstructure) is exposed to the same thermal cycle, carbon and chromium also combine to form grain boundary carbides; however, these carbides form exdusively at the austenite-ferrite (y-5) boundaries, with the majority of the chromium diffusing from the SIR-92-037, Rev. 0 4-13 mu-I . -

INTEGRTTY ASSOCIATESINC

l delta ferrite side of the boundary (diffusion of chromium in the ferrite is approximately 1000 times faster than that in austenite at a temperature of 1100'F). Thus, the chromium content of the austenite is not reduced significantly, and corrosion resistance, even near the y-5 grain boundary, is maintained. Crack growth due to SCC will, therefore, not be considered I in this evaluation.

4.7 Effect of Thermal Embrittlement and Other Degradation Mechanisms that May Degrade Properties of the Pump Casing Structural material degradation mechanisms for wrious components in light water reactors have been discussed extensively in Reference 39. Of all the degradation mechanisms addressed in this EPRI report, only thermal and irradiation embrittlement ceuld potentially degrade the fracture toughness properties of the cast stainless steel pump casings. Thermal embrittlement effects have been included in the consideration of crack growth and fracture toughness (Km) properties in this study. Irradiation embrittlement is not of concern since the RCPs are far removed from the reactor core.

I I

I SIR-92-037, Rev. 0 4-14

[ ]. STRUCTURAL INTEGRITY I ASSOCIATESINC l

I Table 41 Properties of ASTM A351 Grade CF8M

! Temperature E x 106 (psi) oyx 102 (psi)

S x 10' (psi) a x 104 (in/in/ F)

(*F)

I 70 27.4 30,0 20.0 9.11 200 27.1 26.0 20.0 9.50 300 26.8 23.6 20.0 9.73 400 26.4 22.2 20.0 9.96 500 26.0 21.8 19.6 10.20

. 600 25.4 21.2 19.1 10.43 700 24.9 20.5 18.4 10.66 I

I I -

5 I

I I

I I SIR-92-037, Rev. 0 4-15 .

I (INTEGRITY l

' ASSOCIATESINC

l I

Table 4 2 Determination of Irwer Bound Fracture Toughness of ANO 1 Pump Casings Considering Thermal Embrittlement I

lieat Numbers I Material Composition 6426 6415 6441 6395 Pump A Pump B Pump C Pump D Cr 18.8 18.8 18.7 19.1 Si 0.76 0.82 0.71 0.92 l Afo Ni 2.23 9.4 2.26 9.4 2.15 9.3 2.19 9.4 C 0.04 0.04 0.07 0.04 Al'8 0.91 0.98 0.8 1 N 0.047 0.07 0.068 0.055 l Cr,,

Ni,,

16.9 14.1 16.9 14.5 16.7 15.1 17.2 14.3 Ferrite (6,) 13.5 11.5 7.9 14.2 Cry, (J/cm 2) 140 122 125 102 1,, (in-lb/in2) 1117 975 1001 817 I

I lI I

I SIR-92-037, Rev. 0 4-16

^2 STRUCTURAL l INTEGRITY I .

/ ASSOCIATESINC

Tabic 4-3 Stresses at 1.ocations No. I and 2 I

PROPRIEIARY INFORRTION I _

I

.g Table 4-4 Stresses at Location No. 3 I

PROPRIETARY LwanW I

I I

I I

~

SIR-92-037, Rev. 0 4-17 -

'l D6TEGRITY ascamsma j

l i

l

)

Table 4-5 Stresses at Location No. 4 1

PROPRIETNU INFONTION i

(I.

i

-l.

a J

1 lI

" \

!E

g. I 1

l l

2 1

i I

I I

SIR-92-037, Rev. 0 4 18 sra=runn meanrrr ASSOCIATFS INC I

Table 4-6 Stresses at location No. 55 PlOPRIETARY lNF01MiTIO:1 l

l 2

1 1I SIR 92-037, Rev. 0 4-19 STRUCTUIULL INTEGRITY ASFm ATPS INC

lI Table 4 7 I

Postulated Flew Sin and locations lI Location Weld Flaw Depth Flaw length lg location of Thickness (in.) (in.)

g , -.

Flaw (in.)

,l 1 Inside 2.60 0.65 3.9 2 Inside 3.10 0.775 4.65 3 Outside t 75 1.1875 7.125 Outside

. 4 4.75 1.1875 7.125 5 Inside 5.30 1.325 7.95 I Table 4 8 I Comparison of Calculated and Allowable Strera inten.ity Factors for Level A anJ B Conditions for Quarter Tt:ckn;:sa Sarface Flaws Calculated Stress Allowable Stress Ixcation Intensity Factor Intensity Factor l (ksilin ) (ksl/in )

l 1 47.7 135.5 2 52.1 135.5 I 3 129.0 135.5 4 128.7 135.5

,g 5 (2D) 99.4 135.5

'3 (3D) 128.4 135.5

! l

!I SIR 92-037, Rev. 0 4-20 '; STRUCfURKL INTEGRITY ASSOCIATESIIC

I I Table 4 9 Comparison of Calculated and Allowable Stress Intensity Factors for Level C and D Conditions for Quarter Thickness Surface Flaws I Calculated Stress Allowable Stress  !

Location Intensity Factor Intensity Factor (kst/in ) (ksi/in )  ;

1 38.9 135.5 2 42.5 135.5 3 106.3 135.5 4 106.3 135.5 l 5 (2D)

(3D) 109.0 110.1 135.5 135.5 I

Table 410 Results of Fatigue Crack Growth Analyses for Quarter Thickness Surface Flaws Location Initial Flaw Depth Crack Growth (in.) (in.)

I 1 0.65 0.0389 2 0.775 0.0523 3 1.1875 0.06 %

4 1.1875 0.0662 5 (2D) 1.325 0.5870 (3D) 1.325 0.2908 I SIR.92-037, Rev. 0 4 21 Q l

3 .k[ STRUCTURAL INTEGRITY l 3 J/ ASSOCIATESINC

I I "'

300 . i i niud i ii n, j i p ied i + , nir,

, i n ouj i i u nia A i ,

Heat 69 CF 150 F

I $ 250- r ~s --~

s  ; sN -  :

=,

0 O

  • 200--

e N \g, g go d  ?

\ 7 g

W 100- -e

s . unaged
w. y QL----
N -

3 I **

W n

E 3 + 3&C 50- - '

- o 4we 3*C

- $0 g a

E I 0-10

~ ' ' " '"i 0

$n i

""'!, ' ' ' " ' "! ' ' ' ""i ' ' ' " "I 10 2 10 Aging Time (h) 3 10 8

i 10' 10' 0

300 . io j . .p ',

i u.ml . ,mo; i i n.u] i nig a' 3 . Heat 68 CF *

- 160 e I

@250- 7 S  !, mtW.  : =

N N, --

O.200- ; 3 *

- 0 100 g I g  : -

i a 150-- # -

a g j s . z3v. \* l  : g W 100--- e Unaged a .

- W I U 3

. arc E 50-1.
  • 3WC 3o 4rc

,M CNL o

o

=

- 50 g 2

S 5

, n eTi I

iinn i i o , i n -q r , . n, q _ . i i n nq i i n , nj n 0 3 8 8 10 10' 10 2 10 10' 10 10 Aging Time (h) 300 _ i i no;j i i n nf i i i no,l i p und i i n nul i i non

- * , Heat 75 CF-BM -

"l 250 g --150 g-

~

S i 1 ,

=200 4. .

=

0  : -

0 g  ; --

--100 g I a 150-E c

W 100 -e

~

1 6 299

unaged Q

o W

a E

c

~

  • - 50 I U j

E so la 354 C

+

}o arc 3rC o 0

go o .

[

g j

E I O 10 0

~ ' ' " " "l ' ' " " 'i ' ' ' " Y ' ' " ""i ' ' " "'i ' ' " "I' 10' 10 2

10 Aging Time (h) 3 10' 10' 10' O

Figure 41. Effect of Thermt Aging on Room Temperature Impact Energy of CF3, CF8 and CFSM Cast tainless Steel [15)

I SIR 92-037, Rev. 0 4 22

>s muenmm.

INTEGRITY

, J ASSOCIATESINC i

_ _ 1

I ^

300- , i n nl; i mw( i p ud , + n noj , i ny , , un3 250-5 0

, Heat 69 CF-3 ~

--150 $

. 200--- 'N x N g\, -

0 0 e sN'. $

I N- \ -

\$x \\

~

$ 150-*- -

100[*

t  : 3 2 4 <. 's N -

c J 100-7* Una;<4 5

'E----- - ,

, pg.c -- 50 g k $0-- 3a 2wc f E -o 4xre - --

i i n nI; iinoj I i n nil i i niq i iinnq i i n.mi i

o g 0 1 2 3 10 10 10 10 10' 10' 10' Aging Time (h) 300-; , o m-; , , 1

,, ,  ; m;q ,,mm; , , , m,j , a q,

~

Heat 68 CF "h250-} --150 g I

s y . .m -

w

.200-o.

-! sa%

e' O

O  ; - O I g  : 1 --100 g A

,\

en150-- "\ \g '

tm t  : 5 23 % \ \ *'

E c  : \ x -

c W 100--e Una;+d a 6N .

- W I U 5

E 50-1*

e 22
rc
- o soo c 3WC ON o\

o N-

--50 g

~

5 E

I i

i n n q i . n ul '

' " ""! ' ' ' " '" o 4

o i n nnj '""i 10 0 3

10 2 10' 10' 10' I

10 10 Aging Time (h) 300 - r n .in', i ionj i 11,ud i p un] i i n w] i ii nu

^

Heat 75 CF-BM -

"h 250 i-

--150 m

= 200 bN $ k 0

'~ $ . -

- O

=

g  ; - 100 g t2 150-~ - 0~

ta

~

- E -

- 5 28'/. U c -

c W 100~~-e Unap4 e - W

^ -- 50 I y g I o reO o E 50 ha 35caC Qt .-

[ E

.E. - o ec -

o .

.E.

I O 10 0

' ' ' ""i 10'

' '""! ' ' ' ""'! ' ' ' ""l ' ' " ""! ' ' " ' k 0 10 2

Aging Time (h) 10 3

10' 10' lo s

Figure 41. Effect of Thermal Aging on Room Temperature Impact Energy of CF3, CF8 and CF8M Cast Stainless Steel (15]

I C' STRUCTURAL SIR 92-037, Rev. 0 4 22 1 INTEGRITY k / ASSOCIKIESINC

l I  :* w < ,+.. -

a {! N p{1 I s

, A. . ' ~ v

\ v %g s

.s

,~<

~/

ll1 * ] ~~ '

) ll.4 c.r e {~

. Nsl I

  • s* og g' v.'

. - s' .

g *

-A t,. ~. . v, , \ .g ..

k Q 't Figure 4.. Solution Heat Treated Wrought Type 316 Stainless Steel g

I I '..'.'

W':*j?.

l .

\ ym* .:. :.

  • m *.f.

,c,,.- -,- ,e .

% v;

,,,a !,,,*

. . , .. M. .

r ?,y,*.y '.*

pp

> w %,

I t?:l W, Y., 9 o s %.g .

.o f % 'G. ' ,w .',*,.,c .

~.o.' r

  • - M

.-s %d=v.nr y)'

I =m +P~'"M%

ms c ' .h, zW...

a t- . .s ) ..

W.

4., - p.. . c&-4,. , yg <> + p 'y g

  • ~ Y, .

,t .. . - ..

p. . .Y..

.I 'kh cf&. n .. Y,) ..

Figure 4-3. Solution Heat Treated Grade CF8 Stainless Steel Casting l

I SIR.92 037, Rev. 0 4 23 r^ STRUCTURAL I

g l

l INTEGRITY

~ uSecamm w- V 1  %

-v-t ~ 1-- -w

I ,,,,;>,,,i....i> . .j, . z i > , , j . rm

-- 250 I c 3

. . . .k H..i ee s . 24s

- . uw

+ . x=>,rx

- . ru.,we cF-s 1 2,0 :

g c

1 300

. x m .., w e .

> t-  ! O'

?>jd._m o

.. O _:;. -- 180 g 4  ; e 4-  : p E 200-_- * *

.

  • 0 - a I

8  : > -

--100 W i .

  • / . .
y 100 -;- j(* , ,, j

,I 0 E.ieri i

1 e,t,i,,,,,,,,e, , ,

, ,,,i,1 1 , 1 0

300 200 100 0 100 200 300 400 I .. : i r s I

{ i r j i

i Tempoisture ('C) y F j

i r i I

l 1 i I

g- r I l

l: 1 i i l

l l

280 I

g,,-p H.et68 8 23% C F-8 [

3 . v.- . . . -

3

,E xma*w: .~. ,,, -

U -g- *. xm h e ec .

  • 8

/e 'g

=,

3, 300 -p . xnnew:

I

,/ . . O O _p , o --150 g 4 P

./,..,,e 7 3

P 200-= p  : 3 e*

I -- 100 W I  : .

W /

. e/

7 o W ga1009 : s .

g -

- 60 .f.

_) , .  :

0.iiiTk. iin , i i r i t, . i i i I, i i i i 1, e i e i l ' ' ' ' , 0 300 200 +100 0 100 200 300 400 Tempereture ('C) i i t i f i

r. 3 I f I lI i T F gI 'iI lt "i1 i 1 j'I I T ji3 I i.

l

-- 2hD
4. . a. H.175 8 2es q . v.s CF-4M :

p -

g g -ra 3CM h

  • wt ,

200 C q g . x ono h a wc _

e

- 300 -r. x= . , we  :

I O,

,  : a .

O  :. * -

g [g a '

--- ISO @-

. 200 - .=!

I

. -- 100 W W

.5 '

o O

f - -

N U. 3 ,, _ :

R P ". a

, - 3, E E e -

9 I

~

s . .s

c .J__ 3 -

g t iiEi ii11 iii!n iiifi ii!1 ieiliiis' 0 300 200 100 0 100 200 300 400 Temperature ('C)

Figure 4-4. Effect of Ternperature on Charpy Transition Curves of CF3, CF8 and CF8M Steels Aged for 30,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> [15]

i l SIR 92-037, Rev. 0 4-24 gm (3 V INTEGRITY ASSOCIATESINC l

t-

IMPACT ENERGY, KCV (f t lb)

I 0 50 100 150 200 250 sooo '

AclNo CAST STAINLESS STEEL T[WP.('C) ANL WH FRA [PRI KRs TESTED AT 290-320'C ~ 5eo" I ~

"E 18 H

  • 25 350 400 0

t, o 7

  • n' C

d S jfD D  : -8 . CT- 3 k 5 gg4 g CLOSED: CF-BM d o -

-r o f 1o00-I n

p , _ - O - --

o g ,4- . "

"g g 8 ,,,_

a d* [.  !

eo ,

..- . .,,00 I o. * *50 5.F*A . . . . . . .o 400 0 100 150 200 250 30g 350 IMPACT ENERGY , KCV (J/cm )

IMPACT ENERGY, KCV (f t lb) 0 50 100 150 200 250 toop AOiNO CAST STAINLESS STEEL TEuP.('c) ANL WH FRA [PRI KRB TESTED AT ROOM TEMP, ~'""

25 0 I

a 350 a n n' - l 400 o 7 + d k ,,,,,

SYWBOLS jf70 0 -8o00

2 OPEN: CT-B . CF-3 CLOSCD: CF-BM -

284 E d'

' I  :::l, O

-r '!-<- _-. o

@ 1000- }.ll "c ' " "

[

g 2 E , , . - -40oo $

Zi 8 I 8 a

000 -

O

-oooo o b

/ ' / _ p .* - , , - v

.,1 # .

b 5'O ido 1$0 250 250 30g 350 400 IMPACT ENERGY , KCV (J/cm )

Figure 4-5. Correlation Between Fracture Toughness (1 3 ) and Charpy Impact Energy for g Unaged and Aged Cast Stainless Steels Tested at Room Temperature and 290 320*C [14}

I SIR-92-037, Rev. 0 4-25 ngg

. INTEGRITY I

/ ASSOCIMESINC  ;

I l

1 I

1 I

I Pf0PRIFTAPY INFDPPATION

'l I

I I

I I

lI

!I

,I STRUCTURAL

,l INTEGMTY SIR mAmIm 0'/.0 t7 n ,.., n . - . _ . . - . _ - . . . _ _ . - . . . . - . . .

i' i

1 i

i l

R
m

!l- 5

! P10PRIINI INWR%TIO:i S 1

II @

in 2

! E o

. E o

Q s E g 8 u

5 A .5 5 7u e

d

-r E

l~ &

E I

I I

srnocrona 4 27 DTTEGRITY SIR 92-037, Rev. 0 A N GEIE

I I

I I

I PROPPlETARY I!EIC%TICU I _

I -

I I

I

.I I -

1 I

I I

I Figure 4-8. Three dimensional Element Map - Bottom [31]

I SIR 92-037, Rev. 0 4-28 g I nmxmrrr ARetrlATIE ITC

l T

L I

I P10PIGETARY UUVIC4ATION I _

I 1

I I

I I

I I

I I

Figure 4-9. Typical Section Cuts for Primag Plus Secondary Load Conditions [31]

I 4 29 SIR 92-037, Rev. 0 _

d ASSOCIATES INC 1

I 1

I I

I I _

I PROPPlETAl& INFOIM\ TION I

I I

I I -

I I

I I

I Figure 410. Pump Case Model - Top View {6)

I SIR 92-037, Rev. 0 4-30 l N

- ,emem m j

I 5.0

SUMMARY

AND CONCLUSIONS The evaluations contained in this report have demonstrated that the ANO 1 reactor coolant pump casings meet the safety and serviceability requirements of ASME Code Case N 481.

The fracture toughness of the base metal stainless steel, A351 Grade CF8M casting, and the I weld metalwere addressed, including the ecmsideration of thermalembrittlement. The lower bound fracture toughness value of these materials was used in the analysis.

I Five critical flaw locations were selected for the evaluation, considering areas where fabrication defects have previously been identified. In addition, the maximum stress locati;ns were abo included in the analysis.

Consistent with similar evaluations for pressure vessels with postulated large flaws, per Appendix G of ASME Section III, safety factors of 2 for primary and I for secondary loads were used for Senice Levels A and B conditions. Safety factors of 6 and 1 were used for primary and secondary loads, respectively, for Senice Levels C and D conditions. At all locations, the applied stress intensity factors were below the allowable values.

I Fatigue crack growth analyses were performed for information purposes, conservatively considering the 40. year plant life to show that crack growth for even the boundary postulated flaws are relatively small.

The analyses included a number of conservatisms as noted below:

I e The lower bound toughness of the weld metal was used in all cases to determine the allowable stress intensity factor, t

1 i

SIR-92 037, Rev. 0 51 '

STRUCTURAL l

Is - .

INTEGRITY l / ASSOCIATESINC

I a c.ven though east stainless steel components and their weldments are relatively

  • ctile, a linear elastic fracture mechanics approach was used for the analysis,in

...a of clastic plastic fracture mechanics techniques.

  • A flat plate model was used to calculate the stress intensity factors, even though the pump casings, for the most part, have circular cross sections. The use of a more representative model would have reduced the stres: intensity factors.
  • At Locations No.1 through 4, because available documentation provided only a combination of primary and secondary stresses, a safety factor of 2 was applied on I both the primary and secondary stresses. A safety factor of 1 on the secondary stresses, as required by Appendix G of Sections 111 and XI of the ASME Code, I would have resulted in lower applied stress intensity factors at these locations.

I

  • At Location No. S the maximum stresses along the weld were applied at the thickest section, resulting in conservative stress intensity factors. Also at this location, stresses were classified as primary if they could not be conveniently separated into primary and secondary components. In addition, stresses were classified as membrane ifit could not be determined whether they are membrane or lxnding.

I I

l l

SIR-92 037, Rev. 0 52 -

INTEGRITY ASSOCIATESINC

I

6.0 REFERENCES

l 1. " Safety Evaluation by the Office of the Nuclear Reactor Regulation Related to the Inservice Inspection (ISI) Program, Arkansas Power and Light Company, Arkansas Nuclear One, Unit 1, Docket No. 50 313", dated April 25, 1989. Attached to letter I from hir. J. A. Calvo (NRC) to hir. T. G. Campbell (AP&L), " Reactor Coolant Pump Casing Weld Flaw Indications Request for Relicf from AShiE Section XI inspection Requirements, Arkansas Nuclear One, Unit 1 (TAC No. 64146)", dated April 25,1989.

I 2. 12tter from J. J. Fisicato (Entergy Operations) to USNRC," Arkansas Nuclear One -

Unit 1, Docket No. 50-313, License No. DRP 51, Revision to Reactor Coolant Pump Augmented Inservice Inspection Commitment", dated hf arch 26,1992.

-E a 3. AShiE Boiler and Pressure Vessel Code, Code Case N 481," Alternate Exan,ination Requirements for Cast Austenitic Pump Casings,Section XI, Division 1", biarch 5, 1990.

4. letter from J. J. Fisicato (Entergy Operations) to USNRC, " Arkansas Nuclear One -

Unit 1, Docket No. 50 313, License No. DRP-51, Comparative Analysis of the Reactor Coolant Pumps", dated April 13,1992.

l 5. Babcock & Wilcox Document No. 321165797 00," Fracture hiechanics Analysis of ANO 1 "A" Pump Case Indication", dated November 7,1986.

l 6. Babcock & Wilcox Document No. 321165802 01, "ANO-1 Pump Case Stresses",

dated November 7,1986.

7. Babcock & Wilcox Document No. 321165899-00, " Fracture hiechanics Analysis of ANO-1 "B" Pump Case Indication", dated November 7,1986.
8. Babcock & Wilcox Document No. 321167147 00, " Fracture hiechanics Analysis of ANO 1 "B" Pump Case Surface Flaw", dated November 24,1986.
9. Babcock & Wilcox Document No. 32117343101, "RCP B Pump Case Flaw Evaluation", dated October 26,1988.
10. EPRI Report TR 100034, " Cast Austenitic Stainless Steel Sourcebook", prepared by EPRI and Structural Integrity Associates, October 1991.
11. ash 1E Boiler and Pressure Vessel Code, Section 111,1968 Edition with no addenda.
12. O. K. Chopra and 11. hi. Chung, Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems: Semiannual Report, April-September 1987, NUREG/CR 4744 Vol. 2, No. 2, ANL-89/6 (August 1989).

SIR-92-037, Rev. 0 6-1 h -

'l,gg INTEGRITY ASSOCIATESitC

I

13. O. K Chopra and H. M. Chung, Long Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems: Seniiannual Report, October 1987 March 1988, I NUREG/CR-4744 Vol. 3, No.1, ANL-89/22 (February 1990).
14. O. }L Chopra and iL M. Chung, Long. Term Embrittlement of Cast Duplex Stainless  !

Steels in LWR Systems: Sem ennual Report, April September 1988,  !

NUREG/CR.4744 Vol. 3, No. 2, ANL 90/5 (August 1990). l

15. O. }L Chopra and 11. M. Chung, Long Term Embrittlement of Cast Duplex Stainlev Steels in LWR Systems: Semiannual Report October 1988 March 1989, NUREG/CR-4744, Vol. 4, No.1, ANL-90/44 (May 1991).
16. O. M. Chopra, A. Sather, and L Y. Bush, Long Term Embrittlement of Cast Duplex I Stainless Steels in LWR Systems: Semiannual Report April September 1989, NUREG/CR-4744, Vol. 4, No. 2, ANL 90/49 (June 1991).

I 17. A. L lliser, Tensile and J R Cuive Characterization of Thermally Aged Cast Stainless Steels, NUREG/CR 5024, MEA 2229, Materials Engineering Associates, Inc., (September 1988).

18. E. 1. Landerman and W. 11. Bamford, " Fracture Toughness and Fatigue Characteristics of Centrifugally Cast Type 316 Stainless Steel Pipe after Simulated l Thermal ServP Conditions", in Ductility and Toughness Considerations in Elevated Temperature Service, MPC 8. ASME, New York, pp. 99 127 (1978).

l 19. S. Bonnet, J. Bourgoin, J. Champredonde, D. Guttmann, and M. Guttmann,

" Relationship Between Evolution of Mechanical Properties of Various Cast Duplex Stainless Steels and Metallurgical and Aging Parameters: An Outline of Current l EDF Programmes", Mater. Sci. end Technol., 6, 221 229 (1990).

20. P.11. Pumphrey and K N. Akhorst, " Aging Kinetics of CF3 Cast Stainless Steel in Temperature Range 300-400'C," Mater. Sci. Technol., 6, 211 219 (1990).
21. G. Slama, P. Petrequin, and T. Mager,"Effect of Aging on Mechanical Properties of Austenitic Stainless Steel Castings and Welds," presented at SMiRT Post-Conference Seminar 6, Assuring Structural Integrity of Steel Reactor Pressure Boundary Components, August 29 30, 1983, Monterey, CA.
22. Y. Meyzaud, P. Ould, P. Balladon, M. Dethmont, and P. Soulat, " Tearing Resistance I of Aged Cast Austenitic Stainless Steel", presented at Intl. Conf. on Thermal Reactor Safety (NUCSAFE 88), October 1988, Avignon, France.
23. P. McConnell and J. W. Sheckherd, Fracture Toughness Characterization of Thermally Embrittled Cast Duplex Stainless Steel, Report NP-5439, September 1987, Electric Power Research Institute, Palo Alto, CA.

SIR-92 037, Rev. 0 6-2 I E?[ STRUCTURAL INTEGRITY

/ ASSOCIATES,INC

1 I

I 24. O. K Chopra," Estimation of hiechanical Properties of Cast Stainless Steels During Thermal Aging in LWR Systems", NUREG/CP 0119. Vol. 2, pp.131 178, Proceedings l of the U.S. Nuclear Regulatory Commission,19th Water Reactor Safety Information hiecting held at Bethesda, h1D, October 28-30, 1991, published April 1992.

l 25. L S. Ambrey, P. F. Wieser, W. J. Pollard, and E. A. Schoefer," Ferrite hicasurement and Control in Cast Duplex Stainless Steel", in Stainless Steel Castings, V. G. Behal and A. S. hielilli, editors, ASThi STP 756, pp.126164 (1982).

26. Babcock & Wilcox P. O. No. 805502, Contract No. 620-0008, Byron Jackson Pumps.
27. EPRI Report NP-4668, " Evaluation of the Toughness of Aust:nitic Stainless Steel Pipe Weldments", June 1986.

l 28. EPRI Report NP-4768," Toughness of Austenitic Stainless Stt.cl PJpe Welds", October 1986,

29. EPR1 Report NP-4690 SR," Evaluation of Flaws in Austende Steel Piping", July 1986.

I 30. Private Communication between Nathaniel G. Cofie (Structuralintegrity Associates) and O. K Chopra (Argonne National laboratory), ApGl 24,1992.

I 31. Byron Jackson Report TCF 1014-STR, Vol.1, Rev. O, "33 x 33 x 38 DFSS Primary Coolant Pump Arkansas Power & Light Co.", dated 12/21/73, (B&W Document 32 0232-00) NSS-8 (APAL Calc. #83 S 00020 05).

32. B&W Document No. 321169053 00," Stress Analysis of Revised Nozzle Loads", dateri November 16,1987.
33. Byron Jackson Report TCF-1023 STR, Vol. 2, Rev. C, " Pump Case Analysis t n C(msumers Power hiidland Plant Unit I and Unit 11", dated June 19,1980 (B& W l Document 33 0210-03, dated July 29,1980) NSS 12/13.
34. Telecopy from F. hiarrujo (Byron-Jackson) to Bill Jones (B&W) dated October 21, 1986.
35. Duke Power Company, Radiographic Inspection Report / Technique, ANO Unit 1, Item Number B12101, ID Number 43-001 UPPER, dated October 20,1986.
36. AShiE Boiler and Pressure Vessel Code,Section XI,1989 Edition.
37. pe CRACK Computer Software, Version 2.1, Structural Integrity Associates, hiny 1992.

SIR-92 037, Rev. 0 6-3 MUN I INTEGRITY M ASSTIATESINC

38. Section XI Task Group for Piping Flaw Evaluation, ASME Code, " Evaluation of Flaws in Austenitic Steel Piping", Journal of Pressure Vessel Technology, Vol.108, l August 1986.
39. EPRI Report No. NP.5461," Component Life Estimation: LWR Structural Material l Degradation Mechanisms", September 1987, prepared by Structural Integrity Associates.

I I

I I

I I

I I

I SIR-92 037, Rev. 0 6-4 7)gg INTEGRITY

. / ASSOClRIESINC

I I

APPENDIX A g ASME Code Case N-481 g

I I

I I

I I

I

.I I

I I

I SIR 92-037, Rev. O A1 .

in INTEGRITY E ASSOCIATESINC p

CASE CASES OF A5h!E Do!LElt AND l'RESSL'RI VE5sEL CODE Approval Date: March 5.1990 See Numerits!IMex for capitation end sny res*firmstson Cates, Case N.481 ternal surfaces of the weld of one pump casing.

I Alternate Examination Requirements for Cast nustenitic Pump CasingsSection XI Division 1 (c) Perform a VT 3 visual examination of the in.

ternal surfaces whenever a pump is disassembled for maintenance.

(d) Perform an evalua )n to demonstrate the safe.

ty and serviceability of the pump casing. The evalu-Inquiryr When conducting examination of cast 81 n 5 8U Cuet8fU ng:

austenitic pump casings in accordance with Section (1) CValu8 TIDE m 8terial Properties, includbg XI, Division 1, what examinations may be performed fra ture toughness values; in lieu of the volumetric examinations specined in f ) Performing a stress analysis of the pump cas.

Table IWD 25001, Examination Category B.L.I' in U-Item B12.107 (3/ reviewing the operating history of the pump; (4) selecting locations for postulating flaws; Reply: It is the opinion of the Committee that the (5) postulating one quarter thickness reference following requirements shall be met in lieu of flaw with a length six times its depth; I performing the volumetric examination specified in Table IWB 25001, Examination Category B-L.1, (6) establishing the stability of the selected flaw under the governing stress conditions; Item B12.10: (7) considering thermal aging embrittlement I (a) Perform a VT.2 visual examination of the ex.

crior of all pumps during the hydrostatic pressure test required by Table IWB 25001, Category D.P.

and any other processes that may degrade the prop.

erties of the pump casing during service.

(c) A report of this evaluation shall be submitted to the regulatory and enforcement authorities having I (b) Perform a VT 1 visual examination of the ex.

ternal surfaces of the weld of one pump car,ing, jurisdiction at the plant sit for review.

I I

I S17 'N STRUN a - nc I >

ASSOCUGHilNC

I d

I I

APPENDIX B I pc CRACK Output Stress Intensity Factors ,

I I

I I

I I

I I

I I

l SIR-92-037, Rev. O B-1 l

L

E [.' STRUCTURAL INTEGRITY '

! u ASSOC 1/GESINC j l'

I I- tm o c - C R h C >.

I (C) COPYRIGHT 14S4 IC90 STRUCTURAL INTEGRITY ASSOCIATES. INC.

SAN JOSE. CA (4CB)C?e-E200 VERSION 2.1 Date: 2 *- Ma y- 199 2 Time: 10:51:31.57 LINEAR ELASTIC FRACTURE MECHANICS EVALUATION ANO-1 CODE CASE N-481 EVALUATICN - LOCATION NO. 1 I

crack modol: ELLIPTICAL SURFACE CRAOK PLATE UNDER MEMBRANE & BENDING STRE3S2-WALL THICKNESS (t): 2.6000 YIELD STRESS: 21.5000 CRACK ASPECT RATIO (a/L): 0 1667 STRESS COEFFICIENTS:

CASE ID CO C1 COOLDOWN 15.8833 -2.5000 HEATUP -19.0167 3.8077 EMERGENCY 19,6833 -6.9615 I CRACK ------- -------STRESS INTENSITY FACTOR----------------

SIZE CASE CASE CASE COOLDOWN HEATUP EMERGENCY l 0.0260 4.663 -5.302 5.861 0.0520 6.587 -7.485 8.254 I 0.0780 0.1040 O.1300 8.059 9.295 10.380

-9.151

-10.548

-11.771 10.067 11.576 12.688

O.1560 11.357 -12.871 14.05S 0.1820 12.253 -13.877 15.120 O.2080 13.084 -14.800 16.095 0.2340 13.861 -15.678 16.998 0.2600 14.594 -16.496 17.841 0.2860 15.340 -17.324 18.673 0.3120 16.058 -18.118 19.464 '

0.3380 16.750 -18.882 20.217 I O.3640 0.3900 0.4160 17.420 18,071 18.705

-19.620

-20.335

-21.029 20.937 21.627 22.290 L 3 0.4420 19.322 -2).705 22.*29

'g 0.4680 0.4940 19.o26 20.516

-22.363

-23.005 23 545 24.139 l

0.5200 21.094 -23.633 24.715 O.5460 21.665 -24.257 25.302 I SIR-92-037, Rev. O B-2 p.-STRUCTURAL I 1 INTEGRITY

/ ASSOCIATESINC

I I oc-CAACK VERSION 2.1 PAG 3 2 0.5720 22.026 -24.868 25.873 0.5930 22.777 -25.468 26.430 I 0.6240 0.6500 0.6700 23.320 23.855 24.382

-26.05D

-26.639

-27.210 26.473 27.523 28.021 I 0.7000 0.7280 0.7540 24.903 25.417 25.926

-27.774

-28.30G

-28.877 25.528 20.024 25.510 0.7800 26.428 -29.418 24.480 I 0.8060 0.8320 0.8580 27.069 27.709 28.349

-30.106

-30.793

-31.479 30.5E7 31.153 31.774 0.8S40 20.989 -32.164 30 362 I 0.9100 0.9360 0.9620 29.628 30.268 30.908

-32.848

-33.532

-34.216 32.G46 33.526 34.103 34.677 I 0.9880 1.0140 1.0400 31.549 32.190 32.832 33.578

-34.899

-35.581

-36.264

-37.070 35.247 35.815 36.534 1.0660 I 1.0900 1.1180 1.1440 34.328 35.081 35.837

-37.979

-38.691

-39.506 37.054

~7.07S 38.697 1.1700 36.597 -40.325 39.421 I 1.1960 1.2220 1.2480 37.360 38.126 38.896

-41.147

-41.972

-42.800 40.146 40.B'3 41.601 39.669 -4?.632 42.332 I

1.2740 1.3000 40.446 -44.467 43.063 I END OF p:-CRACL i I h I

I I

I SIR-92-037, Rev. O B-3 ~

_,gg I h x

INTEGRITY ASSOCIRIESINC

. . _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ . . _ . . _ _ _ _ _ . _ _ _ _ - _ ~ . _ _ . _ _ _ _ . _ _ _ . _ _ . _ . , _ , _ . . _ _ . _ . _ _ _ . _ .

ll tm I (C) COPYRIGHT 1984 1990 STRUCTURAL INTEGRITY ACSOCIATES. INC.

o -CRACV.

SAN JOSE, CA (4CB1978-8200 VfPOION .1 Date: 23-May-1992 Time: 11: 5:10.18 LINEAR ELASTIC FRACTURE MECHANICS EVALUATION ANO-1 CODE CASE N-451 EVALUATION - LOCATION NO. O crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE L BENDING STRECCCC WALL THICKNESS (t): 3.1000 Y! ELD $ TRESS: 21.5000 I CRACK ASPECT RATIO (a/L): 0.1667 I CASE ID COOLDOWN STRESS COEFFICIENTS:

35.8833 CO

-2.0968 C1 HEATUP -19.0167 3.1935 EMERGENCY 19.6833 -5.8387 3

CRACK ---------------STRESS INTENSITY FACTOR----------------

SIZE CASE CASE CASE COOLDOWN HEATUP EMERGENCY I 0.0310 5.092 ~5.790 6.400 0.0620 7.193 -0.173 9.013 0.0930 8.800 -9.992 10.993 0.1240 10.149 -11.517 12.640 I 0.1550 0.1860 0.2170 11.334 12.401 13.379

-12,853

-14.055

-15.153 14.072 15.350 16.510 0.2480 14.287 -16.170 17.575 I 0.2790 0.3100 0.3410 15.136 15.936 16.750

-17.119

-18.012

-18.916 18.561 19.481 20.390 0.3720 17.534 -19.783 21.253 I 0.4030 0.4340 O.4650-18.290 19.022 19.732

-20.618

-21.424

-22.205 22.075 22.861 23.615 0.4960 20.424 -22.963 2 ." .339 0.5270 21.098 -23.700 25.036 0.5500 21,757 -24.419 25.709 0.5890 22.402 -25.120 26.359 I 0.6200 O.6510 23.034 23.657

-25.806

-26.487 26.997 27.628 i

i

{

lI ^

l SIR-92-037, Rev. O B-4 STRUCTURAL

! ASSOCIKIESINC i 1

I i DC-CRACK VERSION 2.1  ? ALE 2 0.6800 24.269 -27.154 29.251 4

0.7130 24.871 -27.810 28.850 O.7440 25.464 -28.454 29.452 i g 0.7750 26.048 -29.088 30.021 4

g 0.80o0 26.624 29.712 20.547 4

0.8370 27.193 -30.327 31.151 ,

1 0.8680 27.754 -30.933 31.692 l

  • 0.8940 28.309 -31.531 32.223 i

! 0.9300 28,858 -32.122 32.743 33.399

! O.9610 29.557 -32.874 l 0.9920 30,256 -33.624 34.049 i 1.0230 30.955 -34.373 34.695 1.0540 31.654 -35.121 35.337 l

! 1.0850 32.352 -35.868 35.974

, 1.1160 33.051 -36.615 36.608  !

i 1.1470 33.750 -37.361 37.238 I 1.1780 34.449 -38.107 37.864 l 1.2090 35.149 -30.852 38.488

! 1.2400 35.850 -39.598 39.108 l 1.2710 36.665 -40.478 39.892

} 1.3020 37.483 -41.361 40.678 1.3330 38.306 -42.248 41.465 I 1.3640 1.3950 1.4260 39.131 39.961 40.794

-43.138

-44.032

-44.929 42.254 43.045 43.837 1.4570 41.631 -45.830 44.600

,I 1.4880 42.472 -46.735 45.426 1.5100 43.316 -47.643 46.223 4 1.5500 44.164 -48.555 47.022 i CND OF pc-CRACK

. I I .

I LI 4

iI j SIR-92-037, Rev. O B-5 - . ..

5 ASSOCIAPESINC 1

I I

tm E DC-CRACK fC) COPYRIGHT 1904, 1400 STRUCTURAL INTEGRITY ASSOCIATEE. INC.

I SAN JCEE. C4 (40B M78-5000 VERCION 2.!

I Cate: 73-M..

Time: 11:36. 0.10 792 LINEAR ELAS**C FRACTURE MECHANICS EVALUATION i

)

l ANO-1 CODE CASE N-481 EVALVATION -

LOCATIOd NO 3 i crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING STRESSES i

, g WALL THICKNESS (t): 4.7500 3

g' YIELD STRESS: 21.5000 CRACK ASPECT RATIO (a/L2r 0. e.6 7 E

W STRESS COEFFICIENTS

CASE ID CO C1 TRANS-A 37.0000 -10.6526 TRANS-B -0.8000 5.5579 EMERGENCY 38.3000 -6.4000 1

CRACK ---------------STRESS INTENSITY FACTOR----------------

SIZE CASE CASE CASE TRANS-A TRANS-B EMERGENCY 0.0475 14.946 -3.143 15.642 O.0950 20.993 -4.369 22.074

O.1425 25.533 -5.257 26.943 '

l 0.1900 29.279 -E.963 31.004

' m

, 0.2375 32.505 -6.547 34.544 4

. O.2850 35.357 -7.040 37.711 g 0.3325 37.9.9 ~7.462 40.591 l g 0.3800 40.248 -7.625 43.242 0.4275 42.382 -8.138 45.705 0.4750 44.351 -8.408 48.009 l

I O.5225 0.5700 0.6175 46.234 47.995 49.649

-8.611

-S.778

-8.911 50.303 52.489 54.580 l 0.6650 51.205 -9.014 56.585 l- 0.7125 52.673 -9.089 58.515 0.7600 54.061 -9.137 60.375 '

l 0.0075 55.374 -9.lel 62.173 l g. 0.8550 55.619 -9.162 63.913 i i

g 0.9025 57.801 -9.141 65.601 O.9500 58.902 -9.099 67.240 i O.9975 60.120 -9.112 66.894

I SIR-92-037, Rev. O B-G rasroenma t,HiTEGIUTY hV ASSOCIATrAINC

7 oc-CRACK VERSION 2.1 PAGC 2 1.0450 61.272 -9.110 70.509 1.0925 62.380 -9.093 72.067 1.1400 63.447 -9.003 73.631 I 1.1875 1.2350 1.2825 64.475 os.466 66.420

-9.019

-8.9t2

-0.693 75.143 76.o24 78.07e 1.3300 67.344 -8.812 79.500 I 1.3775 1.4250 2 1725 68.234 69.093 70.157

-8.719

-8.615

-8.4t4 80.902 92.278 84.018 I b'00 4675 1.6150 71.199 72.222 73.226

-0.300

-0.126

-7.940 85.749 87.471 89.185 -

1.5625 74.211 -7.744 90.092 1.7100 75.179 -7.537 92.591 I- 1.7575 76.130 -7.320 94.284 1.80s0 77.065 -7.093 95.071 1.8525 77.984 -6.856 97.652 1.9000 78.888 -6.o10 99.328 1 1.9475 80.218 -o.487 101.394 1.9950 81.545 -6.359 103.465 2.0425 82.869 -6.224 105.542 s 2.0900 84.190 -6.084 107.624 2.1375 85.508 -5.938 109.711

., . 2.1850 86.824 -5.787 111.805 2.2325 88.138 -5.630 113.904 2.2800 89.449 -5.468 116.010 2.3275 90.759 -5.301 118.122 2.3750 92.068 -5.129 120.240 END OF pc-CRACK I -

g I

I I

I SIR-92-037, Rev. O B-7 7M N

c~ I W ASSOCUGHUNC ,

<q.

$^ W fl, Lm oc-CRACK (C) COPYRIGHT 1984, 1990 STRUCTURAL INTEGRITY ASSOCIATES, INC.

[3 .I SAN JOSE, CA (408)978-8200 VERSION 2.1 I Date: 23-May-1992 Time: 12:17:44.78 LINEAR ELASTIC FRACTURE MECHANICS EVI4.UATION o A*:T - 1 CODE CASE N-481 EVALUATICN - LOCATION HO.4 I track model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBAANE 6 SENDING STRESSES -

WALL THICKNESS (t):

I. YIELD STRESS:

CRACK ASPECT RATIO (a/L):

21.5000 4.7500 0.1667 STRESS COEFFICIENTS:

CASE ID CO C1 TRANS-A 36.9000 -10.6105 TRANS-8 -9.3000 5.9368

  • ' EMERGENCY 38.3000 -6.4000

}

h-CRACK ---------------STRESS INTENSITY FACTGA----------------

SIZE CASE CASE CASE ,

TRANS-A TRANS-B EMERGENCY O.0475 14.907 -3.319 15.662 0.0950 20.937 ~4.613 22.074 0.1425 25.466 -5.550 26.943

  • 0.1900 2;.201 -6.293 31.004 O.2375 32.420 -f.907 34.544 0.2850 35.265 -7.426 37.711 I O.3325 0.3800 0.4275 37.821 40.144 42.273

-7.869

-8.249

-8.577 40.591 43.242 45.705

  • O.4750 44.237 -8.859 48.009 I 0.5225 0.5700 0.6175 46.116 47.874 49.524

-9.070

-4.242

-9.378 50.303 52.409 54.580 0.6650 51.077 -9.462 56.58S

?.7125 52.542 -9.555 58. 51~5 0.7600 53.927 -7.601 60.375 0.8075 53.239 -9.621 62.173 I O.8550 0.9025 0.9500 S2.482 57,661 58.781

-9.616

-9.588

-9.538 63.913 65.601 67.240 0.9975 59.977 -9.547 68.894 SIR-92-037, Rev. O B-8 o1 sraucronax.

INTEGRrfY I AsscCIATESINC

.. . -.- . - . . - . . . - ~ . . . . - - . - . . - - - . . . - . - .- . . . . . . -

i .

pc-CRACK . VERSION 2.1 PAGE 2

< 1.0450 61.127 -0.539 70.509 i

.h925 62.233 -9.516 72.097 E' 63.299 '9.478 73.631

~I A s.

"h 6 /5 64.325 -9.426 75.143 1.2350 65.315 -9.360 76.624 2

'g 1.2825 66.269 -9.201

-9 190 78.076 7* 502 E l 3300 67 190 1.3775 68.079 -9.086 80.40:

, 1.4250 68.937 -8.970 82.278 1.4725 70.000 -8.802 84.018 3I 1.5200 1.5675 71.041 72.063

-8.621

-8. (29 85.749 87.471 g 1.6150 73.066 -8.224 89.185 2 " 25 7'- 5 -S- S

  • S':

E- 1.7100 75.018 -7.781 92.54A 1.7575 75.969 -7.542 94.284

1.8050 76.903 -7.293 95.971

. 1.8525 77.822 -7.034 97.652 4

1.9000 78.725 -6.764 99.328

, 1.9475 80.054 -6.626 101.394

^'

1.9950 81.379 -6.481 :65 j 2.0425 82.702 -6.331 105.542 i 2.0900 84.021 -6.174 107.624

t. 2.1375 85.338 -6.010 109.711

, 2.1850 86.652 -5.841 111.805

= 2.2325 87.965 -5.667 113.904 l 2.2800 89.275 -5.486 11o.010 i g 2.3275 90.584 -5.300 118.122 2.3750 91.891 -5.108 120.240
E END OF pc-CRACK i,

.f i

I I

I SIR-92-037, Rev. O B-9 (5

g INTEGRITY I ASSOCIATESINC

I I tm cc-CRACK I (C) COPYRIGHT 1984 1990 STRUCTURAL INTEGRITY ASSOCIATES. INC.

SAN JOSE, CA (408)978-8000 Oate: 5-Jun-1992 Time: 13:10:30.25 LINEAR ELASTIC FRACTURE MECHANICS EVALUATION AND-1 CODE CASE N-481 EVALUATION - LOCATION NO. 5 (2-D MODEL) crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING STRESSES

=

WALL THICKNESS (t): 5.3000 YIELD STRESS: 21.5000 CRACK ASPECT RATIO (a/L): 0.1667 STRESS COEFFICIENTS:

, I CASE ID NORMAL-PRI NORMAL-SEC 11.0000 27.0000 CO 0.0000

-6.7925 C1 EMER-PRI 14.0000 -0.0000 I EMER-SEC NORMAL-RNG 34.4000 58.0000

-8.6415

-14.3396 CRACK ---------------STRESS INTENSITY FACTOR----------------

SIZE CASE CASE CASE CASE CASE NORMAL-PRI NORMAL-SEC EMER-PRI EMER-SEC NCRMAL-RNG I O.0530 0.1060 4.531 6.416 11.529 16.197 5.859 8.296 14.690 20.637 24.779 34.815 O.1590 7.867 19.704 10.173 25.106 42.361 I: '

0.2120 O.2650 O.3180 9.095 10.181 11.166 22.599 25.096 27.303 11.761 13.165 14.439 28.796 31.977 34.790 48.592 53.967 58.723 0.3710 12.075 29.288 15.614 37.320 63.002 0.4240 12.924 31.094 16.712 39.621 66.E96 0.4770 13.725 32.750 17.747 41.732 70.470 0.5300 14.484 34.280 18.730 43.682 73.773 I O.5830 0.6360 0.6890 15.273 16.038 16.782 35.747 37.121 38.412 19.750 20.739 21.700 45.552 47.303 48.950 76.946 79.920 82.719 O.7420 17.508 39.629 22.639 50.50' e5.359 I 0.7950 0.8480 0.9010 18.218 18.914 19.598 40.779 41.867 42.899 23.557 24.457 25,342 51.96S 53.356 54.672 37.855 90.220 92.465 O.9540 20.271 43.879 26.212 55.922 94.599 I 1.0070 20.934 44.810 27.069 57.110 96.o29 I F STRUu M I SIR-9 2 ')3 7 , Rev. O B-10 DITEGRITY AELMESINC

u u I pc-CRACK VERSION 2.1 PAGE 2 1.0600 21.588 45.c96 27.915 58.240 98.562 1.1130 22.221 46.638 28.735 59.441 100.612

, 1.1660 22.847 47.544 29.544 60.598 102.586 1.2190 23.466 48.418 30.344 61.712 104.490 I 1.2720 1.3250 1.3780 24.078 24.684 25.285 49.260 50.072 50.956 31.135 31.919 32.696 62.786 63.822 64.823 106.327 108.100 109.S14 1.4310 25.880 51.613 33.466 65.789 11. 470 I 1.4840 1.5370 1.5900 26.471 27.058 27.641 52.345 53.052 53,736 34.230 34.984 35.742 66.723 67.626 68.499 113.072 114.62:

116.123 I 1.6430 1.6960 1.7490 28.388 29.137 29.888 54.584 55.417 56.235 36.705 37.676 38.648 69.581 70.644 71.683 117.956 119. Sic 121.615 -

1.8020 30.641 57.038 39.622 72.714 123.385 6 1.8550 31.396 57.829 40.599 73.723 125.126 I- 1.9080 1.9610 32.154 32.915 58.606 59.370 41.579 42.562 74.715 75.c92 126.840 12L.528 2.0140 33.678 60,123 43.549 76.653 130.190 I 2.0670 2.1200 2.1730 34.443 35.212 36.070 60.864 61.593 62.649 44.539 45.532 46.643 77.599 78.531 79.879 131.829 133.444 135.756 I 2.2260 2.2790 2.3320 36.934 37.803 38.676 63.703 64.755 65.805 47.759 48.883 50.012 81.224 82.566 83.5s6 138.005 140.369 142.671 2.3850 29.555 66.853 51.148 85.244 144.9c4 I 2.4380 2.4910 2.5440 40.438 41.326 42.220 67.900 68.945 69.990 52.290 53.439 54.594 86.580 87.914 89.247 147.265 149.558 151.849 2.5970 43.118 71.033 55.756 90.579 154.139 2.6500 44.021 72.075 56.923 91.909 156.427 I

END OF pc-ORACh -

I I

I I

I '

QsTRUcrunAL t, INTEGRITY I SIR-92-037, Rev. O B-ll -

ASSOCIATESINC

I tm oc-CRACK (C) COPYRIGHT'1984, 1940 STRUCTURAL INTEGRITY ASSOCIATES, INC.

SAN JOSE, CA (4081978-8200 VERSION 2.1 Date: 5-Jun-1992 Time: 12:32:51.43 I LINEAR ELASTIC FRACTURE MECHANICS EVALUATION ANO-1 CODE CASE N-481 EVALUATION - LOCATION NO. 5 (3-D MODEL)

~

crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING STRESSES WALL THICKNESS (t): 5.3000 YIELD STRESS: 21.5000 CRACK ASPECT RATIO (a/L): 0.1667 STRESS COEFFICIENTS:

CASE ID CO C1 N ORM A L- PR I 18.0000 0.0000

.I NORMAL-SEC 28.0000 -10.5660 EMER-PRI 19.0000 0.0000 EMER-SEC 29.6000 -11.1700 NORMAL-RNG 48.0000 -11.3208

CRACK ---------------STRESS INTENSITY FACTOR----------------

SIZE CASE CASE CASE CASE CASE NORMAL-PRI NORMAL-SEC EMER-PRI EMER-SEC NORMAL-RNG O.0530 7.709 11.785 8.195 12.459 20.534 g 0.1060- 10.916 16.488 1.,604 17,430 28,861 0.1590 13.385 19.974 14.229 21.116 35.129 e 0.2120 15.474 22.811 16.450 24.114 40.311 t 0.2650 17.322 25.221 18.414 26.662 44.787 0.3180 18.998 27.318 20.196 28.879 48.753 O.3710 20.545 29.172 21.840 30.838 52.326 0.4240 21.990 30.828 23.377 32.589 55.582 0.4770 23.352 32.318 24.824 34.165 58.576

,. 0.5300 24.644 33.666 26.198 35.590 61.346 0.5830 25.986 34.877 27.625 36.870 64.020 I O.6360 0.6890 0.7420 27.287 28.553 29.788 35.976 36.976 37.884 29.008 30.354 31.667 38.032 39.088 40.045 66.532 68.900 71.140 0.7950 30.996 3S.709 32.951 40.921 73.263 0.8480 32.181 39.457 34.210 41.712 75.280 0.9010 33.344 40.134 35.447 42.427 77.198 0.9540 34.489 40.745 36.664 43.073 79.027 1.0070 35.617 41.244 37.863 43.653 80.772

.I I SIR-92-037, Rev. O B-12 STRUCTURAI.

INTEGRITY N- ASSOCIATESINC

f f

I pc-CRACK VERSION 2.1 PAGE 2

, 1.0600 36.730 41.7S4 39.047 44.171 82.438

1.1130 37.808 42.389 40.195 44.011 84.192 1.1660 38.873 42.950 41.325 45.404 85.885

. 1.2190 39.926 43.469 42.444 45.952 87.521 1.2720 40.967 43.948 43.551 46.458 89.102 1 1.3250 41.998 44.388 44.647 46.924 90.622 1.3780 43.020 44.793 45.733 47.352 92.114 1.4310 44.034 45.163 46.811 47.743 93.549 i 1.4840 45.039 45.499 47.880 48.098 94.940 I 1.5370 1.5900 1.6430 46.037 47.029 48.300 45.803 46.076 46.382 48.941 49.995 51.346 48.420 48.708 49.031 96.270 97.599 99.230 1.6960 49.574 46.660 52.700 49.326 100,836 l 1.7490 50.852 46.913 54.059 49.593 102.417 j 1.8020 $2.133 47.141 55,421 49.834 103.975 j 1.8550 53.419 47.345 56.789 50.049 105.512

. . 1.9080 54.708 47.525 58.159 50,239 107.027 1.9610 56.002 47.682 59.534 50.406 108.523 1 2.0140 57.300 47.817 60.914 'D . 5 4 8 109,999 l 2.0670 58.603 47.930 62.299 50.668 111.456 l 2.1200 59.910 48.023 63.688 50.766 112.896 2.1730 61.371 48.500 65.242 51.270 114.906 2.2260 62.841 48.967 66.804 51.764 116.913

2.2790 64.319 49.424 68.375 32.247 118.919 i l 2.3320 65.805 49.872 69.955 52.721 120.923 l 5 2.3850 67.300 50.310 71.544 53.184 122.926 2.4380 68.803 50.740 73.142 53.639 124.927

, 2.4910 70.314 51.160 74.749 54.083 126.928 2.5440 71.834 51.573 76.364 54.518 128.928 i 2.5970 73.362 51.977 77.989 54.945 130.928

! 2.6500 74.899 52.372 79.622 55.364 132.928 i, g 1

END OF pc-CRACK I

I

. I I

!I iI un_n-on , "' B-13

~ gg(())ULI l nnTARFfY w ec  ;

I ry I

I APPENDIX C pc CRACK Output - Fatigue Crack Growth I

I I

I I

I -

I I

I I

SIR-92-037, Rev. O C-1 srnueruant.

I INTEGRITY ASSOCIAEiINC

tm E PC-CRACK (C) COPYRIGHT 1984, 1790 STRUCTURAL INTEGRITY ASSOCIATES, INC.

SAN JOSE. CA (408)978-8200 VERSION 2.1 ll Date: 5-Jun-1992 Time: 13:28: 47.16

' [J FATIGUE CRACK GROWTH ANALYSIS AND-1 CODE CASE N-481 EVALUATION - LOCATION NO. 1

, INITIAL CRACK SIZE: 0.6500 i = WALL THICKNESS: 2.6000 j MAX CRACK SIZE FOR FCG: 1.3000 PARIS CRACK GROWTH LAW:

l' da/dN : C* (dK)*n t whert l dK : Kmax - Kmin 3 dK > dKthres

, Kmax < Kic CURRENT l, LAWS: LAW ID C n dKthres Kic PWR WATER 3.680E-10 3.300 0.000 135.500 lI

+

-CASE ID CO STRESS COEFFICIENTS C1 C2 C3 COOLDOWN 15.8833 -2.5000 0,0000 0.0000 HEATUP -19.0167 3.8077 0.0000 0.0000 j EMERGENCY 19.6833 -6.9615 0.0000 0.0000

~

i t

NUMBER OF CYCLE BLOCKS: 240 4 PRINT INCREMENT OF CYCLE BLOCK: 6

' = NUMBER OF CALCULATION PRINT FCG SUBBLOCK CYCLES INCREMENT INCREMENT LAW ID 1 1 PWR WATER 1

E

_g 1

Kmax Kmin SUSBLOCK CASE ID SCALE FACTOR CASE ID SCALE FACTOR 1 CuGLDOWN 1.0000 HEATUP 1.0000 crack modci: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING STRESSES CRACK ---------------STRESS INTENSITY FACTOR----------------

2 SIZE CASE CASE CASE

COOLDOWN HEATUP EMERGENCY snuerunn.

SIR-92-037, Rev. O C-2 m ASSOCIATES,INC

4 4

1 pc-CRACK VERSION 2.1 PAGE 2 O.0260 4,663 -5.302 5.861 i- 0.0520- 6.597 -7.485 '8.254 '

1 0,0780 8.059 -9.151 10.Oe7 i' f 0.1040 9.295 -10.548 11.576 O.13OO 10.380 -11.771 12.888 1 0.1560 11.357 -12.871 14.058 i O.1820 12.253 -13.877 15.120 l 0.2080 13.084 -14.808 16.095 0.2340- 13.861 -15.678 16.998

O.2600 14.594 -16.496 17.841 i~ 0.2860 15.340 -17.324 13.673 l 0.3120 16.058 -18.118 19.4o4 I O.3380 16.750 -18.882 20.217 l

0.3640 17.420 -19.620 20.937 1

0.3900 18.071 -20.335 21.627 0.4160 18.705 -21.029 22.290 0.4420 19.322 -21.705 22.929

O.4680 19.926 -22.363 23.545 0.4940 20.516 -23.005 24.139

!- 0.5200 21.094 -23.633 24.715 l .O.5460 21.665 -24.257 25.302 0.5720 22.226 -24.868 25.873 4 0.5980 22.777 -25.468 26.430 l 0.6240 23.320 -26.058 26.973 O.6500 23.855 -26.639 27.503 0.6760 24.382. -27.210 28.021 O.7020 24.903 -27.774 28.528 0.7280 25,417 -28.329 29.024 0.7540 25.926 -28.877 29.510-0.7800 26.428 -29.418 29.986 O.8060 27.069 -30.106 30.587 I O.8320 0.8580 0.8840 0.9100 27.709 28.349 28.989 29.628

-30.793

-31.479

-32.164

-32.848 31.183 31.774 32.362 32.946 I O.9360 0.9620 0.9880 30.268 30.908 31.549

-33.532

-34.216

-34.899 33.526 34.103 34.677

? 1.0140 32.190 -35.581 35.247 1.0400 32.831 -36.264 35.815 1.0660 33.578 -37.070 3o.534

!- 1.0920 34.328 -37.879 37.254 I 1.1180 35.081 --38.691 37.975 1.1440 35.837 -39.506 38.697 1.1700 36.597 -40.325 39.421 1.1960 } 37.360 -41.147 40.146

, I 1.2220 1.2480 1.2740

.38.126 38.896 39.669

-41.972

-42.800

-43.632 40.873 41.601 42.332 1.3000 -40.446 -44.467 43.063 iI SIR-92-037, Rev. O C-3 STRUCTURAL

(

l ASSOCIATESINC i

i n e - - -

I I pc-CRACK VERSION 2.1 2 AGE 3 I -

TOTAL SUBBLOCK CYCLE CYCLE KMAx KMIN DELTAK R DADN DA '4 Af i BLOCK 6 6 1 23.87 26.e6 50.53 -1.12 1.EE-04 0.0002 0.s509 0.2E BLOCK 12 12 1 23.89 -26.63 50.57 -1.12 1.5E-04 0,0002 0.t513 0.25

,,I -.

BLOCK 18 18 1 23.91 -26.70 50.60 -1.12 1.5E-04 0.0002 0.652S 0.25 I"

BLOCK 24 24 1 23.93 -26.72 50.64 -1.12 1.6E-04 0.0002 0.6.537 0.25 BLOCK 30 30 1 23.95 -26.74 50.68 -1.12 1.6E-04 0.0002 0.6546 0.25 I BLOCK 36 36 1 23.96 -26.76 50.72 -1.12 1.6E-04 0.0002 0.6556 0.:5 I BLOCK 42 42 1 23.98 -26.78 50.76 -1.12 1.6E-04 0.0002 0.6565 0.25 BLOCK 48 "

48 1 24.00 -26.80 50.80 -1.12 1.6E-04 0.0002 0.6574 0.25 BLOCK S4 54 1 24.02 -26.82 50.84 -1.12 1.6E-04 0.0002 0.6584 0.25 BLOCK 60 60 1 24.04 -26.84 50.88 -1.12 1.6E-04 0.0002 0.6593 0.25 I BLOCK 66 66 1 24.06 -26.56 50.92 -1.12 1.6E-04 0.0002 0.6603 0.25 I BLOCK 72 72 1 24.08 -26.88 50.96 -1.12 1.dE-04 0.0002 0.e612 0.25

,I BLOCK 78 I SIR-92-037, Rev. O C-4 STRUCTURAL I INTEGRITY

/ ASSOCIATESINC

I I

oc-CRACK VERSION 2.1 FAGE 4 78 1 24.10 -26.90 51.00 -1.12 1.6E-04 0.0002 0. c t :. 2 0.25 I BLOCK 84 84 1 24.12 -26.92 51.04 -1.12 1.eE-04 0.0002 0.6621 0.'6 BLOCK 90 90 1 24.14 -26.95 51.00 -1.12 1.6E-04 0.0002 0.6041 0.26 BLOCK 96 96 1 24.16 -26.97 51.12 -1.12 1.6E-04 0.0002 0.6e51 0.26 --

BLOCK 102 102 1 24.18 -26.99 51.16 -1.12 1.6E-04 0.0002 0.6660 0.26 BLOCK 108 108 1 24.20 -27.01 51.20 -1.12 1.6E-04 0.0002 0.6e70 0.26 I BLOCK 114 114 1 24.22 -27.03 51.25 -1.12 1.6E-04 0.0002 0.6679 0.2c BLOCK 120 120 24.24 -27.05 51.29 -1.12 1.6E-04 0.0002 0.66S7 0.2d I

1 BLOCK 126 126 1 24.26 -27.07 51.33 -1.12 1.6E-04 0.0002 0.6699 0.26 _

BLOCK 132 132 1 24.27 -27.09 51.37 -1.12 1.6E-04 0.0002 0.6709 0.26 i

.I. ab BLOCK 138 138 1 24.29 -27.12 51.41 -1.12 1.6E-04 0.0002 0.6718 0.26 .

I BLOCK 144 144 1 24.31 -27.14 51.45 -1.12 1.6E-04 0.0002 0.6728 0.2d I BLOCK 150 150 1 24.33 -27.16 51.49 -1.12 1.6E-04 0.0002 0.6723 0.2d I BLOCK 156 156 1 24.35 -27.18 51.53 -1.12 1.6E-04 0.0002 0.e74E O.26 I '

STRUCTURAL SIR-92-037, Rev, O C-5 I / ASSOCIATESINC

lI I PAGE oc-CRACK VERSION 2.1 5 DLOCK 162 162 1 24.37 -27.20 51.58 -1.12 1.tE-04 0.0002 0.6758 0.26 BLOCK 168 168 1 24.39 -27.22 51.62 -1.12 1.7E-04 0.0002 0.6768 0.26 BLOCK 174 174 1 24.41 -27.24 51.66 -1.12 1.7E-04 0.0002 0.6773 0.25 BLOCK 180 180 1 24.43 -27.27 51.70 -1.12 1.7E-04 0.0002 0.6788 0.26 186 I

BLOCK 186 1 24.45 -27.29 51.74 -1.12 1.7E-04 0.0002 0.6798 0.26 '

I BLOCK 192 192 1 24.47 -27.31 51.78 -1.12 1.7E-04 0.0002 0.6508 0.26 I BLOCK 198 198 1 24.49 -27.33 51.83 -1.12 1.7E-04 0.0002 0.6818 0.26 BLOCK 204 204 1 24.51 -27.35 51.87 -1.12 1.7E-04 0.0002 0.6828 0.26 BLOCK 210 210 1 24.53 -27.38 51.91 -1.12 1.7E-04 0.0002 0.6338 0.26

. BLOCK 216 216 1 24.56 -27.40 51.95 -1.12 1.7E-04 0.0002 0.6543 0.26 I BLOCK 222 222 1 24.58 -27.42 51.99 -1.12 1.7E-04 0.0002 0.6858 0.26 I BLOCK 228 228 1 24 4 60 -27.44 52.04 -1.12 1.7E-04 0.0002 0.cBe8 0.;t I BLOCK 234 234 1 24.62 -27.46 52.08 -1.12 1.7E-04 0.0002 0.6973 0.26 BLOCK 240 I Ggg SIR-92-037, Rev. O C-6 ASSOCIATESING

I pc-CRACK VERSION 2.1 PACE o I. 240 1 24.e4 -27.49 52.12 -1.12 1.7C-04 0.000; 0.6889 0.06 I- END OF pc-CRACK

.I I _

I I

I I -

C I

I I sin-92-o37, nev, o c-7 sraucrona I <

INTEGRITY ASSOCIATESINC

s 4

tm

! oc-CRACK (C) COPYRIGHT 1934 1790 I STRUCTURAL INTEGRITY ASSOCIATES. IN'.

SAN JOSE. CA (4C9)975-8:00 VERSION 2.1 l Date: 5-Jun-1992

W Time
13:37:31.76 FATIGUE CRACK GROWTH ANALYSIS I ANO-1 CODE CASE N-481 EVALUATION - LOCATION NO. C 9

, INITIAL CRACK SIZE: 0.7750 WALL THICKNESS: 3.1000 MAX CRACK SIIE FOR FCG: 1.5S00 PARIS CRACK GROWTH LAW:

da/dN : C* (dK)^n where dK : Kmax - Kmin dK > dKthres Kmax < K1c CURRENT LAWS: LAW ID C n dKthres Kic PWR WATER 3.680E-10 3.300 0.000 135.500 I STRESS COEFFICIENTS CASE ID CO C1 C2 C3 COOLDOWN 15.8833 -2.0968 0.0000 0.0000 HEATUP -19.0167 3.1935 0.0000 0.0000 EMERGENCY 19.6833 -5.8387 0.0000 0.0C00 NUMBER OF CYCLE BLOCKS: 240 PRINT INCREMENT OF CYCLE BLOCK: 6 NUMEER OF CALCULATION PRINT r C L, SUBBLOCK CYCLES INCREMENT INCREMENT LAW ID 1 1 1 1 PWR WATER Kmax Nmin SUBBLOCK CASE IO SCALE FACTOR CASE ID SCALE FACTOF I 1 COOLDOWN 1.0000 HEATUP crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMSRANE O BENDING STRESSES 1.0000 CRACK ---------------STRESS INTENSITY FACTOR----------------

SIZE CASE CASE CASE COOLDOWN HEATUP EMERGENCY SIR-92-037, Rev. O C-8 I INTEGRITY ASSOCUUESINC

I' I

oc-CRACK VERSION 2.1 PAGE 2 I.

O.0310 5.092 -5.790 0.400 I O.0620 0.0930 0.1240 7.193 8.800 10.149

-8.173

-7.902

-11.517 9.013 10.993 12.640 O 1550 11.334 -12.853 14.072

' I 0.1860 O.2170 0.2480 12.401 13.379 14.287

-14.055

-15.153

-16.170 15.350 16.510 17.575 I O.2790 0.3100 0.3410 O.3720 15.136 15.936 16.750 17.534

-17.119

-13.012

-18.916

~19.783 18.5e1 19.491 20.390 21.253 0.4030 18.290 '-20.618 22.075 0.4340 19.022 21.424 22.861 0.4650 19.732 -22.205 23.615 O.4960 20.424 -22.963 24.339 I O.5270 0.5580 0.5890 21.098 21.757 22.402

-23.700

-24.419

-25.120 25.036 25.709 26.359

-25.806 26.987 I

O.6200 23.034 0.6510 23.657 -26,487 27.628 0.6820 24.269 -27.154 28.251 0.7130 24.871 -27.810 28.859 I O.7440 0.7750 0.8060 25.464 26.048 26.624

-28.454

-29.088

-29.712 29.452 30.031 30.597 0.8370 27.193 -30.327 31.151 I O.8680 0.8990 0.9300 27.754 28.309 28.858

-30.933

-31.531

-32.122 31.692 32.223 32.743 O.9610 29.557 -32.874 33.399 I 0.9920 1.0230 1.0540 30.256 30.955 31.654

-33.624

-34.373

-35.121 34.049 34.695 35.337 I 1.0850 1.1160 1.1470 32.352 33.051 33.750

-35.868

-36.615

-37.361 35.974 36.608 37.238 1.1780 34.449 -38.107 37.864 I 1.2090 1.2400 1.2710 35.149 35.E50 36.665

-38.852

-39.598

-40.478 38.488 39.108 39.892 1.3020 37.483 -41.361 40.678 I 1.3330 1.3640 1.3950 38.306 39.131 39.961

-42.248

-43.138

-44.032 41.465 42.254 43.045 I 1.4260 1.4570 1.4880 40.794 41.631 42.472

~44.929

-45.830

-46.735 43.837 44.630 45.426 1.5190 43.316 -47.643 46.223 1.5500 44.164 -48.555 47.022 I SIR-92-037, Rev. O C-9 F STB.UMM I 3

" INTEGRITY ASSOCIATESINC

i LI pc-CRACK VERSION 2.1 FAGE -

TOTAL SUBBLOCK CYCLE CYCLE KMAX EMIN DELTAK R CADN DA v. A ~

BLOCK 6 6 1 26.07 -29.11 55.18 -1.12 2.1E-04 0.0002 0.77s2 0. 5 BLOCK 12 12 1 26.09 -29.13 55.22 -1.12 2.1C-04 0.0002 0.7773 0.25 BLOCK 18

.I 18 1 26.11 -29.16 55.27 -1.12 2.1E-04 0.0002 0.7737 0 :5 I BLOCK

'4 24 1 26.14 -29.18 55.32 -1.12 2.1E-04 0.0002 0.7GCO O. 5 ,

I BLOCK 30 30 1 26 16 -29.21 55.37 -1.12 2.1E-04 0.0002 0.7512 0.25 BLOCK 36 36 1 26.18 -29.23 55.42 -1.12 2.1E-04 0.0002 0.7025 0.25 1

DLOCK 42 42 1 26.21 -29.26 55.46 -1.12 2.1E-04 0.0002 0.7337 0.25 '

I BLOCK 48 48 1 26.23 -29.29 55.51 -1.12 2.1E-04 0.0002 0.7350 0.25 BLOCK 54 54 1 26.25 -29.31 55.56 1.12 2.1E-04 0.0002 0.7E60 0.25 BLOCK 60 60 1 26.28 -29.34 55.61 -1.12 2.1E-04 0.0002 0.7573 0.25 BLOCK 66 66 1 26.30 -29.36 55.6e -1.12 2.1E-04 0.0002 0.7323 0.25

.I BLOCK 72 I BLOCK 72 78 1 26.32 -29.39 55.71 -1.12 2.1E-04 0.0002 0.7700 0.23 I SIR-92-037, Rev. O C-10 , gg I y' INTEGRITY ASSOCIRIMINC

.. - . . . - - ~ . _ . .. . .- - - . . - . . . - .

g ,  ;

pc-CRACK v'ER S I ON 2.1 FACE 4 I 4

i 78 1 26.35 - 29.41 55.76 -1.12 2.1E-04 v. ^202 0.To12 0.2t 1-4 DLOCK 84 e4 1 26.37 - 29.44 55.81 -1.12 2.1E-04 0,0002 0.7 2s .' . 2 d E BLOCK 90 90 1 26.39 -20.46 55.36 -1.12 2.1E-04 0.0002 0.7939 0.2c 4

I. BLOCK 96 96 1 26.42 -29.49 55.91 -1.12 2.2E-04 0.0002 0.7952 0.26 i

j BLOCK 102

< 102 1 26.44 -

29.52 55.96 -1.12 2.2E-04 0.0002 0.7965 0.26 BLOCK 108 4

108 1 26.47 -29.54 56.01 -1.12 2.2E-04 0.0002 0.7}78 0 e.

l

} dLOCK 114 l- g. 114 1 26.49 -29.57 56.06 -1.12 2.2E-04 0.0002 0.7991 0.26 g

- BLOCK 120 120 1 26.52 -29.59 56.11 - 1 ;.12 2.2E-04 0 0002 0.82'4 0.26 BLOCK J26 i 126 1 26.54 -29.62 56.16 -1.12 2.2E-04 0.0002 0.S017 0.26 BLOCK 132 132 1 26.56 -29.65 56.21 -1.12 2.2E-04 0.0002 0.8030 0.26 E B'ock 13e I g 138 1 26.59 -2C,67 56.26 -1.12 2.2E-04 0.0002 0.-5043 0.26 BLOCK 144 5 144 1 26.61 -29.70 56.21 -1.10 2.2E-04 0.0002 C.SCEL O.
o I BLOCK 150 150 1 26.64 -

29.73 56.26 -1.12 2.2E-04 0.0002 0.80c7 C.::

BLOCK 156 156 1 26.66 -29.75 56.41 -1.12 2.2E-04 0.0002 0.3CE3 0.26

~ srauerunn SIR-92-037', Rev. O C-ll INTEGRFFY ASSOCLTT. SINC

I

!I pc "7ACK VERSION 2.1 PAGE 1

.=

BLOCK 162 162 1 26.69 -24.78 5 .46 -1.12 2.2E-04 0.0002 0.8006 0.20 l BLOCK 168

168 1 26.71 -29.81 56.52 -1.12 2.2E-04 0.0002 0.3109 0.26

'g 8 LOCK 174 174 26.74 -29.83 56.57 +1.12 2.2E-04 0.0002 0 C1 3 0.2m iE t

1

! 3 LOCK 180 j 180 1 26.76 -29.86 56.62 -1.12 2.2E-04 0.0002 0.8136 0.26 i

fl BLOCK 186

! 5 186 1 26.78 -29.89 56.67 -1.12 2.2E-04 0.0002 0.8150 0.26 i

l BLOCK 192 i' 192 1 26.81 -29.91 56.72 -1.12 2.3E-04 0.0002 0.8163 0.26 i

BLC2K 198 198 1 26.83 ~29.94 56.77 -1.12 0.3E-04 0.0002 0.8177 0.26 i

i BLOCK 204

'04 1 26.86 -29.97 56.82 -1.12 2.!E-04 0.0002 0.8190 0.26 i

8 LOCK 210 210 1 26.88 -29.99 56.88 -1.12 2.3E-04 0.0002 0.8204 0.2c

.I .

BLCCK 216 216 1 26.91 -30.02 56.93 -1.12 2.3E-04 0.0002 0.0213 0.27 I BLOCK 222 222 1 26.93 -30.05 56.98 -1.12 2 . 3 E- O'4 0.0002 0.8221 0.27 BLOCK 228 228 26.,96 -30.07 57.03 -1.1.7 2.!E-04 0.0002 0.8245 0.27 I

1 BLOCK 234 I 234 1 26.95 -30.10 57.09 -1.12 2.3E-04 0.0002 0.8259 0.27 BLOCK 240 SIR-92-037, Rev. O C-12 NCTURAI.

I ASSOCIATESLNC

I .

-oc-CRACK VEPSION 2,1 PAGE 6 040 1 27.01 -30.13 57.14 -1.12 2.3E-04 0.0002 0.027! O.27 I END OF oc-C MC K I

I t'

I I

I I 3

!' *t I .

I I

SIR-92-037, Rev. O C-13 Q STTRTM I. ASSOClKIMINC

I I oc-CRACK (C) COPYRIGHT 1084 1990 tm STRUCTURAL INTEGRITY ASSOCIATES. INC.

I SAN JOSE, CA (4081476-6 00 VERSION 2.1 Date: 23-May-1992 Time: 11:50:18.99 FATIGUE CRACK GROWTH ANALYOIS I ANO .1 CODE CASE N-481 EVALUATION - LOCATICN NO.3

~--

I INITIAL CRACK SIZE: 1.1875 WALL THICKNESS: 4.7500 MAX CRACK SIZE FOR FCG: 2.3750 TEMPERATURE: 550.0 ASME SECTION XI: AUSTENITIC STEEL WITH AIR ENV!RONMENT I where S :

da/dN : C

  • 10^F *S 1.0

+

  • cK^3.3 for R < 0
1.0 1.8
  • R f or O < R < 0.79
-43.35 + 57.97
  • R f or 0 79 < R < 1 F : Code specified function of temperature dK : Kmax - Kmin R : Kmin / Kmax I WHERE:

C * .10^F : 1.84033E-10 IS FOR THE CURRENTLY ASSUMED UNITS OF: ~

FORCE: kips LENGTH: inches TEMPERATURE: Fahrenheit I CASE ID TRANS-A 37.0000 CO

-10.6526 STRESS COEFFICIENTS C1 0.0000 C2 C3 0.0000 TRANS-B -8.8000 5.5579 0.0000 0.0000 ,

. EMERGENCY 38.3000 -6.4000 0.0000 C.0000 NUMBER OF CYCLE BLOCKS: 240 PRINT INCREMENT OF CYCLE BLOCK:- 6 I SUBBLOCK 1

NUMBER OF CYCLES 1

CALCULATION INCREMENT 1

PAINT INCREMENT FCG LAW ID 1 SECT XI AUSTENITIC/ AIR I GUBBLOCK 1

CASE ID TPANS-A Kmax SCALE FACTOR 1.0000 CASE ID TRANS-B Kmin SCALE FACTOR 1.0000 I

cqsrBuc=n I SIR-92-037, Rev. O C-14 1' INTEGRITY ASSOCUtTES,INC

I I

pc-CRACK VERSION 2,1 -

PAGE crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE 6 BENDING STRESCEE CRACK ------------ --STRESC INTENSITY FACTOP----------------

SIZE CASE CASE CASE TRANS-A TRANS-B EMERGENCY 0.0475 14.946 -3.143 15.662 0.0950 20.993 -4.369 22.D74 0.1425 25.533 -5.257 26.943 g l 0.1900 29.279 -5.963 31.004 3 0.2375 32.505 -6.547 34.544 -

0.2850 35.357 -7.040 37.711 O.3325 37.919 -7.462 I 0.3800 O.4275 0.4750 40.248 42.382 44.351

-7.825

-8.138

-8.408 40.591 43.242 45.70S 48.009 g

I O.5225 0.5700 0.6175 46.234 47.995 49.649

-8.611

-8.7'8

-8.911 50.303 52.489 54.580 l 0.6650 51.205 -9.014 56.585 0.7125 52.673 -9.089 58.515 0.7600 54.061 -9.137 60.375 0.8075 55.374 -9.161 62.173 O.8550 56.619 -9.162 63.913 I 0.9025 0.9500 0.9975 57.801 58.922 60.120

-9.141

-9.099

-9.110 e5.601 67.240 t8.894 I 1.0450 1.0925 1.1400 1.1875 61.272 62.380 63.447

-9.110

-9.093

-9.063 70.509 72.087 73.631 l 64.475 -9 019 75.143 1.2350 65.466 -8.962 76.624 -

1.2825 66.422 -8.893 78.076 1.3300 67.344 -8.812 79.502 1.3775 68.234 -8.719 80.902 1

{ I 1.4250 1.4725 1.5200 69.093 70.157 71.199

-8.615

-8.464

-8.300 82.278 84.018 85.749 1.5675 I

72.222 -8.126 87.471 1.6150 73.226 ~7.940 89.185 1.6625 74.211 -7.744 9C.892 1.7100 75.179 ~7.537 92.591 I 1.7575 1.8050 1.8525 76.130 77.065 77 o94

-7.320

-7.093

-6.856 94.284 95.971 97.652 1.9000 78.888 -e.610 99.328 I 1.9475 1.9950 2.0425 80.218 81.545 82.869

-6.4S7

-t.359

-6.224 101.394 103.465 105.54; 2.0900 I

84.190 -6.094 107.624 2.1375 85.508 -5.936 '

10%.711 2.1850 86.824 -5.787 111.805 2.2323 99 13a -5.620 113.904

^

SIR-92-037, Rev. O STRUCTURAL C-15 M

/ ASSOCIATESIIC

I I

pc-CRACK VERSION 2.1 PAGE 3 2.2800 89.449 -5.468 116.010 2.3275 90.759 -5.301 118.122 2.3750 92.068 -5.129 120.240 TOTAL SUBBLOCK CYCLE CYCLE KMAX KMIN DELTA 6 R DADN DA A A/T I. BLOCK 6 6 1 64.50 -9.02 73.52 -0.14 2.7E-04 0.0003 1.1891 0.25 I. BLOCK 12 12 1 64.54 -9.02 73.55 -0.14 2.7E-04 0.0003 1.1907 0.25 I BLOCK 18 18 1 64.57 -9.01 73.58 -0.14 2.7E-04 0.0003 1.1923 0.25 I BLOCK 24

~

24 1 64.60 -9.01 73.61 -0.14 2.7E-04 0.0003 1.1939 0.25 BLOCK 30 30 1 64.64 -9.01 73.65 -0.14 2.7E-04 0.0003 1.1955 0.25 BLOCK 36 I 36 1 64.67 -9.01 73.o8 -0.14 2.7E-04 0.0003 1.1971 0.25 ,

BLOCK 42 42 1 64.70 -9.01 73.71 -0.14 2.7E-04 0.0003 1.1987 0.25 BLOCK 48 48 1 64.74 -9.00 73.74 -0.14 2.7E-04 0.0003 1.2003 0.25 BLOCK 54 54 1 64.77 -7.00 73.77 -0.14 2.7E-04 0.0003 1.2019 0.25 I BLOCK 60 60 1 64.80 -9.00 73.80 -0.14 2.7E-04 Q.CDC3 . 2033 C.25 I BLOCK 66 66 1 64.84 -9.00 73.84 -0.14 2.7E-04 0.0003 1.2051 0.25 r

I STR 0?-027, ?r.. EN O C-16 IhTTEGRITY ASSOCIATESINC

1 l l l

I pc-CRACK VERSION 2.1 PAGE 4 BLOCK 72 72 1 64.07 -0.00 73.87 -0.14 2.7E-04 0.0003 1.2CoS O 25 BLOCK 78 78 1 64.90 -8.99 73.90 -0.14 2.7E-04 0.0003 1.2064 0.25 BLOCK 84 84 1 64.94 -8.CQ 73.92 -0.14 2.7E-04 0.0003 1.2100 ?.25

_g BLOCK 90 g 90 1 64.97 -8.99 73.96 -0.14 2.7E-04 0.0003 1.2116 0.26 g

BLOCK 96 E 96 1 65.01 -8.99 7s.99 -0.14 2.7E-04 0.o003 1.2132 0.06 I BLOCK 102 100 1 65.04 -S.99 74.03 -0.14 2.7E-04 0.0003 1.2149 0.26 BLOCK 108 108 1 65.07 -8.98 74.06 -0.14 2.7E-04 0.0003 1.2165 0.26 i

l

. BLOCK 114 114 1 65.11 -8.98 74.05 -0.14 2.7E-04 0.0003 1.2181 0.26 BLOCK 120 120 1 65.14 -8.98 74.12 -0.14 2.7E-04 0.0003 1.2;93 C.26 BLOCK 126 126 1 65.18 -8.98 74.16 -0.14 2.7E-04 0.0003 1.2214 0.26 BLOCK 132 132 1 65.21 -8.98 74.19 -0.14 2.7E-04 0.0003 1.2230 0.26 BLOCK 138 138 1 65.25 -8.97 74.22 -0.14 2.7E-C4 0.0003 1.2247 0.Os BLOCK 144 65.28 -8.97 74.25 -0.14 2.7E-04 0.C003 1.22c3 0.2d I

' 14 1 l

l BLOCK 150 I -

sraucrunn.

SIR-92-037, Rev. O C-17 I k ASSCCMINC

I

-I pc-CRACK VERSION 2.1 PAGE 5 150 1 e5.31 -8.97 74.28 -0.14 2.7E-04 0.0003 1.2260 O.2c BLOCK 156 156 1 65.35 -8.97 74.32 -0.13 2.8E-04 0.0003 1.2296 0.Co BLOCK 162 162 1 65.38 -8.97 74.35 -0.14 2.8E-04 0.0003 2.231' O.26 BLOCK 168 -

168 1 65.42 -8.96 74.38 -0.14 2.SE-04 0.0003 1.2329 0.26 I BLOCK 174 2.8E-04 0.0003 1.2346 0.26 174 1 65.45 -8.96 74.41 -0.24 BLOCK 180 180 1 65.49 -8.96 74.45 -0.14 2.8E-04 0.0003 1.23c3 0.;c BLOCK 186 I 186 1 65.52 -8.96 74.48 -0.14 2.8E-04 0.0003 1.2379 0.2t BLOCK 192 192 1 65.55 -8.96 74.51 -0.14 2.8E-04 0.0003 1.2390 0.26 BLOCK 193 198 1 65.59 -8.95 74.54 -0.14 2.aE-04 0.0003 1.2412 0.26 -

BLOCK 204 204 1 65.62 -8.95 74.57 -0.14 2.8E-04 0.0003 1.2429 0.26 I BLOCK 210 210 1 65.65 -8.95 74.60 -0.14 2.SE-04 0.OGC3 L.2446 0.21 I BLOCK 216 216 1 e5.69 -8.25 74.63 -0.14 2.SE-04 0.000! 1.24c3 0.2d BLOCK 222 222 1 c5.72 -8.94 74.6o -0.14 2.8E-04 0.0003 1 2479 0 . ~. 6 BLOCK 228 228 1 65.75 -S.94 74.70 -0.14 2.eE-04 0.0003 1.249c O.26 I SIR-92-037, Rev. O C-18 C7 STRUCTURAL I '

kN ASSOCUM31NC

I I

pc-CRACK VERSIOt1 2.1 PAGE e I.

BLOCK 034-234 1 65.74 - 8 . 9 .1 74,73 -0.14 2.8E-04 0.0003 1.2513 C.2d BLOCK 240 240 1 65.80 -9.94 74.76 -0.14 0.8E-04 0.0003 1.2500 0.26 Et4D OF oc-CRACK I-I I

I I

I I

4 SIR-92-037, Rev. O C-19 C STRUCTUIUU, I .

IIVTEG UTT ASSOCIRITSINC

I:

  • m E

DC-CRACK (C) COPYRIGHT 1984 1990 STRUCTURAL INTEGRITY ASSOCIATES. INC, SAN JOSE, CA (408)973-P OO VERSION 2.1 I Date: 23-Mav-1992 Time: 12:20: 9.40 FATIGUE CRACK GROWTH ANALYCIS ANO-1 CODE CASE N-481 EVALUATION - LOCATION NO. 4 INITIAL CRACK S ZE: 1.1875 WALL THICKNESS: 4.7500 MAX URACK SIZE LOR FCG: 2.3750 TEMPERATURE: 150.0 ASME SECT]ON XI: A*.'ST E N I T I C S T E E L W I T H AIR ENVIRONMENT da/dN C 10^F

  • S
  • dK^3.3 where S : 1.0 f or R < 0 I  : 1.0
-43.35 + 57.97
  • R F : Code specified function et temperature

+ 1.8

  • R for O < R < 0.79 for O.79 < R ( 1 dK : Kmax - Kmin R : Kmin / Kmax WHERE:

C* 10^F : 1.84033E-10 I IS FOR THE CURRENTLY ASSUMED UNITS OF:

FORCE: kips LENGTH: inches TEMPERATURE: Fahrenheit U

~

STRESS COEFFICIENTS CASE ID CO C1 C2 C3 TRANS-A 36.9000 -10.6105 0.0000 0.0000 TRANS-8 -9.3000 5.9369 0.0000 0.0000 EMERGENCY 38.3000 -6.4000 0.0000 0.0000

" NUMBER Of CYCLE BLOCKS: 240 PRINT INCREMENT OF CYCLE BLOCK: e; NUMBER OF CALCULATION PRINT FCG SUBBLOCK CYCLES INCREMENT INCREMENT LAW ID 1 1 1 1 SEC- XI AUST NITIC/A:s E Kmax K m i r.

SUBBLOCK CASE 10 GCALE FACTOR CASE ID SCALE FACTCR 1 TRANS-A 1.0000 TRANS-B 1.0000 I SIR-92-037, Rev. O C-20 I INTEGRITY ASSOCIATESIIC

I pc-CRACK VERSION 2.1 DAGE 1I crack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING STRESSEE CRACK ---------------STRESS INTENSITY FACTCR----------------

SIZE CASE CASE CASE TRANS-A TRANS-E EMERGENCY I.' O.0475 14.907 -3.319 15.6t:

0.0950 20.937 -4.613 22.074 0.1425 25.466 -5.550 26.943 0.1900 29.201 -6.293 31.004 0.2375 32.420 -6.907 34.544 0.2850 35.265 -7.426 37.711

-l 0.3325 37.821 -7.869 40.541 3 0.3800 40.144 -8.249 43.242 -

0.4275 42.273 -8,577 45.705 0.4750 44.237 -8.859 48.004 0.5225 46.116 -9.070 50.303 0.5700 47.874 -9.242 52.489 0,6175 49.524 -9.378 54.580 O.6650 51.077 -9.482 56.585

'I O.7125 0.7600 52.542 53.927

-9.555

-9.601 58.515

.J.375 0.8075 55.239 -9.621 62.173 I O.8550 0.9025 0.9500 56.482 57.661 58.761

-9.616

-9.588

-9.538 63.913 65.601 67.240 0.9975 59.977 -9.547 68.894 1.0450 61.127 -9.539 70.509 1.0925 62.233 -9.516 72.067 1.1400 63.299 -9.478 73.631 I

1.1875 64.325 -9.426 75.142 1.2350 65.-315 -9.360 76.624 1.2825 66.269 -9.281 78.076 1.3300 67.190 -9.190 79.502 I 1.3775 1.4250 1.4725

'68.079 68.937 70.000

-9.086

-8.970

-8.802 80.902 82.278 84.016 1.5200 71.041 -8.621 85.749

.I 1.5675 1.6150 1.6625 72.063 73.066 74.051

-8.429

-8.224

-8.008 87.471 89.185 90.892 1.7100 75.018 -7.781 92.591 I- -

1.7575 1.8050 75.969 76.903

-7.542

-7.293 94.284 95.971 1.8525 77.822 -7.034 97.652 1.9000 78.725 -6.764 99.328 1.9475 80.054 -6.626 101.394 1.9950 81.379 -6.481 103.465 2.0425 82.702 -6.331 105.542 2.0900 84.021 -6.174 107.624

-I 2.1375 2.1850 85.338 86.652

-6.010

-5.841 109.711 111.805 2.2325 87.965 -5.667 113.904 I SIR-92-037, _ev. O C-21 '^' STRUCT1 TRAL E N E ( ASSOCIATESINC

pc-CRACK. VERSION 2.1 PAGE 3 2.2800 89.275 -5.486 116.010 2.3275 90.584 -5 300 118.122 2.3750 91.891 -5.108 120.240 I

TOTAL SUBBLOCK CYCLE CYCLE KMAX KMIN DELTAK R DADN DA A .4/ T BLOCK ta 6 64.35 1

-9.42 73.78 -0.15 2.7E-04 0.0003 1.1S71 0.25 BLOCK 12 12 1 64.39 -9.42 73.81 -0.15 2.7E-04 0.0003 1.1907 0.25

  1. BLOCK 18 18 1 64.40 -9.42 73.84 -0.15 2.7E-04 0.0003 1.1923 0.25 BLOCK 24 24 1 64.45 -9.42 73.87 -0.15 2.7E-04 0.0003 1.1940 0.25 BLOCK 30 30 1 64.49 -0.42 73.90 -0.15 2.7E-04 0.0003 1.1956 0.25 BLOCK 36

. I -- 36 1 64.52 -9.41 73.93 -0.15 2.7E-04 0.0003 1.1972 0.25 I BLOCK 42 42 1 64.56 -9.41 73.97 -0.15 2.7E-04 0.0003 1.1938 C.25 BLOCK 48

. I: 48 1 64.59 -9.41 74.00 -0.15 2.7E-04 0.0003 1.2004 0.25 BLOCK 54 54 1 64.62 -9.41 74.03 -0.15 2.7E-04 0.0003 1.2021 0.25 BLOCK 60 60 1 64.66 -9.40 74.06 -0.15 2.7E-04 0.0003 . 2037 0.25 BLOCK 66 66 1 64.69 -9.40 74.09 -0.15 2.7E-04 0.0003 1.2053 0.25 I

I SIR-92-037, Rev. O C-22 m,gg I INTEunurf ASSOCIATESINC

m pc-CRACK VERSION 2.1 PACC 4 BLOCK 72 I 72 1 64.73 -9.40 74.12 -0.15 2.7E-04 0.0003 1.2070 0.;5 BLOCK 78 Ll 1 I 78 1 64.76 -9.40 74.16 -0.15 2,7E-04 0.0003 1 20Co 0.23 m

I BLOCK 84 84 1 64.79 -9.40 74.14 -0.14 2.7E-04 0.0003 1.2103 0.25 l BLOCK 90 N 90 1 64.83 -9.39 74.22 -0.14 2.7C-04 0.0003 1.0119 0.:6 n

BLOCK 96 96 1 64.86 -9.39 74.25 -0.14 2.7E-04 0.0003 1.2135 0.26 BLOCK 102 102 1 6 .90 -9.39 74.2B -0.14 2.7L-04 0.0003 1.215 0. t

" BLOCV 108 108 1 64.93 -9,37 74.32 -0.14 2.bi-04 0.0003 1.0163 0.~6 I BLOCK 114 114 1 64.96 -9.38 74.35 -0.14 2.8E-04 0.0003 1.2195 0. 6 I BLOCK 120 120 1 65.00 -9.38 74.30 -0.14 2.8E-04 0.0003 1.2001 0.26 I BLhCK 126 126 1 65.03 -9.38 74.41 -0.14 2.8E-04 0.0003 1.2218 0.26 BLOCK 132 132 1 65.07 -9.38 74.45 -0.14 2.8E-04 0.c 03 1.2235 0.2 BLOCK 138 I 130 1 65.10 -9.37 74.48 -0.14 2.SE-04 0.0003 1.2251 C.a BLOCK 144 144 1 65.14 -9.37 74.51 -0.14 2 BE-04 0.0003 1. 263 0..u 150 I

BLOCK SIR-92-037, Rev. O C-23 .

I .-

INTEGRITY AFEOCIAILNINC

i pc-CRACK VERSION 2.1 FACE 3

150 1 65.17 9.37 74.54 -0.14 2.SE-04 0.0003 1.2265 0.0L i

e i

i BLOCK 156 156 1 65.21 -9.37 74.57 -0.14 2.8E-04 0.0003 1.2301 0.;6 l

i j

BLOCK 162 162 1 65.24 -9.37 74.61 -0.14 2.8E-04 0.0003 1.2313 0. b 1' ,

J l

1 BLOCK 168 168 1 65.28 -7.36 74.64 <0.14 2.8E 04 0.0003 1.2335 0.26 l- BLOCK 174 174 1 65.31 -- 9 . 3 6 74.67 -0.14 2.8E-04 0.0003 1.2351 0.26

. BLOCK 180 1 ' 180 1 65.35 -9 36 74.70 -0.14 2.8E-04 0.0003 1.2353 L. t

}

j

' BLOCK 186 186 1 65.38 -9.36 74.73 -0.14 2.8E-04 0.0003 1. 2335 0 ;c.

< '.OC K 192 l 192 1 65.41 -9.35 74.77 -0.14 2.BE-04 0.0003 1.2402 0.26 j _a llg BLOCK 198 198 1 65.45 -9.35 74.80 -0.14 2.8E-04 0.0003 1.2419 0.2d BLOCK 204 204 1 65.48 -9.35 74.63 -0.14 2.8E-04 0.0003 1.2436 0 26 1

1 -

BLOCK 210 210 1 65.51 -9.34 74.86 -0.44 2.BE-04 0.0003 1.2452 0.26 BIOCK 216 216 1 65.55 -0.34 74.89 -0.14 2.8E-04 0.0003 1.2461 0.2 BLOCK 222 222 1 65.58 -9.34 74.92 -0.14 z.8E-04 0.0003 1.248u 0.Ct DLOCK 229 228 1 65.62 -9.34 74.95 -0.14 2.eE-04 0. COO 3 1.250! 0.;- s I  :

I SIR-92-037, Rev. O C-24 _

STRUCTURAI.

INTEGRITY

% ASSOCVGESINC

.__-- - . . . _ - ~ - .. . - -.- - . - . - . . - - .

- . . - - - . - ~ - - - . . . - . - - -

I l

l l

l t

oc-CRACK VERSION 2.1 PAGE b BLOCK 234 234 1 65.65 -9.32 74.98 -0.14 2.SE-04 0.0003 1.:E 0 C.06 BLOCK 240 i reo 1 es.o? -o,03 75.01 -0.14 2.9C-04 0.0003 1 . ~a'. 7 0 . : .>

END OF pc-CRACK g

I 4  :

I I

I I

. I I

I SIR-92-037, Rev. O C-25 -

gg DETGRITY  :

/ ASZIATESINC l

-,,-. -,--,-,..,.-,,,..,--,----,..,.--n., . . , , , - _ _ , . - , . _ _ , - - - - -

l I

I tn oc-CAACK (C) COPYRIGHT 1o84, 1990 C i h. .  ::i V, % IrnEGRI"Y ASSOCIATEC, INC, CAN JOSE, CA i4081978-3:00 VERSICN 2.1 Oate: 5-Jun-1992 Tine: 13: 14: 52.95 FATIGUE CRACK GROWTH ANALYSIC I ANO-1 CODE CASE N-481 EVALUATIOri - LOCAT.ON NO. 5 (0-D MODEL)

INITIAL CRACK CIZE 1.3250 I WALL THICKNESS: 5.3000 MAX CRACK SIZE FOR FCG: 2.6500 PARIS CAACK GROWTH LAW:

da/dN *C* (dK)^n where ,

dK : Kmax - Kmin dK > dKthres Kmax < Kic l

CURRENT I LAWS: LAW ID PWR WATER 3.680E-10 C

3.300 n dKthres 0.000 Kic 135.500 ,

C1RESS COEFFICIENTS

" CASE ID CO C1 C2 C3 NORMAL-PRI 11.0000 0.0000 0.0000 0.0000 I NORMAL-SEC EMER-PRI EMER-SEC NORi,AL-RNG 27.0000 14.0000 34.4000

-6.7925

-0.0000

-0.6415

-14 3396 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 58.0000 NUMBER OF CYCLE BLOCKS: 240 PRINT It4CREMENT OF CYCLE BLOCK: 6 I NUMBER OF CALCULATION PRINT FCG l SUBBLOCK CYCLES INCREMENT INCREMENT LAW IL 1 1 1 1 PWR WATCP Kmaw Kn. i n I SUBBLOCK CASC ID 1 NORMAL-RNG SCALE FACTOR 1.0000 NOPMAL-RNG CASE ID SCALE FACTCP 0.0000 crack macel: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING STREOSEL CRACK -------- ------STRESS INTENSITY FACTOR---------------- .

1 I C STRUCTURAL C-26 N fY lI- SIR-92-037, Rev. O

/ ASSOCUGEilNC

I I i

i i pc-CRACK VERSION 2.1 FAGE O I

SIZE CASE CASE CASE CACE CASE NORMAL-PRI NORMAL-5EC EMER-PRI EMER SEC NORMAL-MO i

4.531 11.529 5.819 14.630 24.779 I

O.0530 0.1060 6.416 16.197 8.292 .'O t.3* 24.515 0.1590 7.8d7 19.704 10.173 25.10c 42.2c2 0.2120 9.095 22.599 11.761 28.79e 4 8 . b "- +

I O.0650 O.3100 0.3710 10.181 11.166 12.055 25.096 27.303 29.289 13.165 14.439' 15.614 31.977 34.700 37.220 53.967 50.7:3 63.002 0.4240 12.924 31.094 16.712 39.621 66.076 0.4770 13.725 32.750 17.747 41.73 70.470  ;

O.5300 14.484 34.280 19.730 43.682 73.773 O.5830 15.273 35.747 19.750 45.552 76.'46

3 0.6360 16.03D 37.121 20.739 47.303 79.920 g 0.6890 0.7420 16.782 17.508 38.412 39.629 21.700 22.639 40.950

$0.502 82.719 85.359 0.7950 18.218 40.779 23.557 51.968 87.855 I O.8480 0.9010 0.9540 18.914 19.598 20.271 41.867 42.899 43.879 24.457 25.342 26.212 53.356 54.672 55.922 90.220 92.465 94.599 1.0070 20.934 44.810 27.069 57.110 96.6~9 l 1.0600 21.588 45.696 27.915 58.240 98.Ec2 1.1130 22,221 46.638 28.735 59.441 100.612 1.1660 22.847 47.544 29.544 60.598 102.556 1.2190 23.466 48.418 30.344 61.712 104.490 I 1.2720 1.3250 1.3780 24.078 24.684 25.285 49.260 50.072 50.856 31.135 31.919 32.696 62.766 63.822 64.823 106.327 109.100 109,614 65.789 111.470 I 1.4310 25.880 51.613 33.466 1.4840 26.471 52.345 34.230 66.723 113.072 1.5370 27.058 53.052 34.999 67.626 114.622 1.5900 27.641 53.736 35.740 68.499 116.123 I 1.6430 1.6960 1.7490 28.3G8 29.137 29.888 54.584 55.417 56.233 36.708 37.676 38.648 69.581 70.644 71.6e8 117.986 119.816 121.615 1.8020 30.641 57.038 39.622 72.714 123.355 1.8550 31.396 57.829 40.599 73.723 125.126 l W l 1.9080 30.154 58.606 41.579 74.715 126.840 1.9610 32.915 59.370 42.562 75.692 128.528 60,123 43.549 76.653 130.170 I 2.0140 33.678 2.0670 34.443 60.864 44.539 77.599 131.8?o

. 1200 35.212 61.593 45.532 78.531 13s.444 2.1730 36.070 62.649 46.643 79.877 135.75c 2.2260 36 'i34 63.703 47.759 81.22* 138.Ot5 I, 2.2790 37.803 64.755 48,883 $2.5td 140.369 2.3320 38.676 65.805 30.012 83.90t 142.671 2.3850 39.555 66.853 51.148 85.244 144.719 I 2.4380 2.4910 2.5440 40.436 41.326 42.220 67.900 68.945 69.990 52.290 53.439 54.594 86.550 87.914 89.247 147.2:.5 1 9.556 151.54S 2.5970 43.118 71.03', 55.756 90.57' 154.139 I 2.6500 44.021 72.075 56.923 91.909 156.427

}gfgyM SIR-92-037, Rev. O C-27 INTEGRTTY

/ ASSOCIATESINC

I I pc-CRACK VERSION 2.1 PAGE 3 I

7 0ML SUDBLOCK CYCLE CYCLE kMAX v. MIN DELTAh R NDN .A A A, i I BLOCd 6 6 1 108.41 0.00 108.41 0.00 1.9E-O! O.0019 1.33:4 0.20 I DLOCK 12 12 1 108.70 0.00 108.78 v.00 1.9E-03 0.0019 1.3 20 0.2; I BLOCK 10 18 1 109.16 0.00 109.16 0.00 2.OE-03 0.0000 1.3597 0.26 BLOCK 24 24 1 109.54 0.00 104.54 0.00 2.OE-03 0.0020 1.3715 0.26 I BLOCK 30 30 1 109.92 0.00 109.92 0.00 2.OE-03 0.0020 1.3834 0.26 BLOCK 36 36 1 110.30 0.00 110.30 0.00 2.OE-03 0.0020 1.3955 0.26 I BLOCK 42 42 1 110.68 0.00 110.63 0.00 2 OE-03 0.0020 1.4077 0.27 BLOCK 48 48 1 111.07 0.00 111.07 0.00 2.1E-03 0.C021 1.4201 0.27 BLOCK 54

$4 111.46 0.00 111.46 0.00 2.1E-03 0.0021 1.4326 0.27 I

1 BLOCK 60 60 1 111.84 0.00 111.84 0.00 2.1E-03 0.0021 1.4453 0.27 BLOCK 66 66 1 112.22 0.00 112.22 0.00 2.1E-CI O.0021 1.4531 0.23 BLOCK 72 72 1 112.61 0.00 112.61 0.00 2.2E-03 0.0022 1.4710 :) . 28 SIR-92-037, Rev. O C-28 psTatienmAL I nmxmtry ASSOCIAIESINC

I I pc-CRACK VERSION 2.1 PAGE 4 DLOCK 79 70 1 113.01 0.00 11*.01 0.00 2.0E-03 0.0000 1.4341 0.03 BLOCK B4 64 1 113.40 0.00 113.10 0.00 2.2E-03 0.0022 1.4974 0.08 I BLOCK 90 90 1 113.79 0.00 113.79 0.00 2. E-C3 0.0002 1.5108 0.27 BLOCK 96 114.19 0.00 114.19 0.00 2.3E-03 0.0003 1.5243 0.29 I

96 1 BLOCK 102 102 1 114.59 0.00 114.59 0.00 2.3E-O! O.0003 1.5380 0.29 BLOCK 108 108 1 114.98 0.00 114.98 0.00 2.3E-03 0.0023 1.5519 0.29 BLOCK 114 I 114 1 115.37 0.00 115.37 0.00 2.3E-O! O.0023 1.5o59 0,30 I BLOCK 120 120 1 115.18 0.00 115.78 0.00 2.4E-03 0.0024 1.5801 0.30 I BLOCK 126 126 1 116.20 0.00 116.20 0.00 2.4E-03 0.0024 1.5945 0.20 BLOCK 132 132 1 116,71 0.00 116.71 0.00 2.4E-03 0.0024 1.6090 0.30 9

BLOCK 138 138 1 117.22 0.00 117.22 0.00 2.5E-03 0.0025 1.6233 0.!1 I BLOCK 144 144 1 117.75 0.00 117.75 0.00 2.5E-03 0.00:5 1.2257 0.3; I DLOCK 150 150 1 118.28 0.00

. 110.28 0.00 2.5E-03 0.0005 A.t340 0.31 BLOCK 156 I

psTaucrunar.

I SIR-92-037, Rev, O C-29 DiTEGRITY ASSOCIAIES,1NC a . . . . .. __ __

- - ~ . . . - . . . - . - . . . . - . . ~ . . - . . . . - . . - - - . . - - - - _ - - . _ - . . _

i I

1 pc-CRACK VERSION 2.1 FA3E i 156 1 118.81 0.00 116.81 0.00 2.cE-03 0.C026 1. 6c,5 4 D.31 E B l.OC K 162 g it 2 1 119.35 0.00 119.35 0.00 2.6c.-03 0.OOrt 1.6Ei. 0:

BLOCK 168 f 168 1 119.89 0.00 119.89 0.00 2.7E-03 0.0027 1.700c D.! l t - ,

l BLOOK 174 i B 174 1 120.44 0.00 120.44 0.00 2.7E-OI 0.0027 1.7171 0.30  ;

I BLOCK ISO 180 1 100.99 0.00 120.99 0.00 2.7E-03 0.0027 1.7005 0.33 i

BLOCK 106 i 186 1 121.56 0.00 121.56 0.00 2.SE-03 0.0008 1.7501 0.03 k

1 4 BLOCK 192

, 192 1 122.12 0.00 122.12 0.00 2.8E-03 0.0028 1.7670 0.33 BLOCK 198 198 1 122.69 0.00 122.69 0.00 2.9E-03 v.CO29 1.7841 0.04 I BLOCK 204 1.8016 0.04 204 1 123.27 0.00 123.27 0.00 2.9E-03 0.0029 BLOCK 210 210 1 123.85 0.00 123.85 0.00 3.0E-03 0.0030 1.019:' O.34 BLOCK 216 216 12'.44 0.00 124.44 0.00 3.0E-03 0.0000 ..C370 0.25 I

1 BLOCK 222 222 1 125.04 0.00 125.04 0.00 3.1E-03 0.0031 1.3553 0.:0 SLOCK 228 228 1 125.64 0.00 105.64 0.00 3.1E-02 0.0031 1. 3 7 F. O.!:

BLOOK 234 I 234 1 126.25 0.00 126.25 0.00 3.2E-03 0.0032 1.E929 0.!c I SIR-92-037, Rev. O C-30 QSTRUCTUIULI.

INTEGRITY I ASSCCIAIESINC

4 oc-CRACK VERSIOf4 2.1 '

PAGE c BLOCK 240 240 1 126.67 0.00 16.57 0.00 2.0E-03 0.002: 1.c.;; . . ! :.

Et4D 07 pc-CRACs I i I

I I

I I

l l SIR-92-037, Rev. O C-31  %'>STRUCTUIULL l . INTEGRITY ASSOCIATESINC

_ - _ _ _ _ . _ _ _ . _ - ~ _ _ . _ _ . . .._._ __ _ ___._.

I

'I oc-CRACK tm I (C) COPYRIGHT 1984, 1990 STRUCTURAL INTEGRITY ACSOCIATES. INC.

SAN JOCE. C' '. 4 00 ) C 7 9- S CCC Date: 5-Jun-1992 Time: 12:52:10.75 FATIGUE CRACK GROWTH ANALYSIS I ANO-1 CODE CASE N-481 EVAL ATION - LOCATION NC.5 (3-D MODEL)

INITIAL CRACK SIZE: 1.3250 WALL THICKNECS: 5.3000 MAX CRACK CIZE FOR FCG: 2.6500 PARIS CRACK GROWTH LAW:

da/dN C * (dK)^n I where dK : Kmax dK > dKthreg Kmin Kmtx < Kic CURRENT LAWS: LAW ID C n dKthres kic PWR WATER 3.680E-10 3.300 0.000 135.500 STRESS COEFFICIENTS I CASE ID NORMAL-PRI NORMAL-SEC CO 18.0000 28.0000 -10.5660 C1 0.0000 C2 0.0000 0.0000 0.0000 0.0000 C3 EMER-PRI 19.0000 0.0000 0.0000 0.0000 ~

EMER-SEC 29.6000 -11.1700 0.0000 0.0000 NORMAL-RNG 48.0000 -11.3208 0.0000 0.0000 I NUMBER OF CYCLE BLOCKS: 240 PRINT INCREMENT OF CYCLE BLOCK: 6 NUMBER OF CALCULATION PRINT FCG SUBBLOCK CYCLES INCREMENT INCREMENT LAW ID i PWA WATER I

1 1 1 hmax kmin SUBBLOCK CASE ID SCALE FACTOR CASE ID SCALE FACTOR 1 HORMAL-PNG 1.0000 NORMAL-RNG 0.0000 ct'ack model: ELLIPTICAL SURFACE CRACK PLATE UNDER MEMBRANE & BENDING ETRECSET CRACK ---------------STRESS INTENSITY FACTCR----------------

I ^ STRUCTURAL I SIR-92-037, Rev. O C-32 ASSOCWESINC

I l

pc-CRACK VERSION 2.1 PAGE  :

I SIZE CASE C r'5 E CASE CASE CASE NORMAL-PRI NORMAL *SEC EMER-PRI Et1ER-SEC NCRt'AL RNG l 0.0530 7.70C 11.785 8.195 12.459 20.~24 i

0.1060 10.916 16.488 11.604 17.430 2 8 . 8 t.1 O.1590 13.385 10.o74 14.224 21.116 35.1;.9 0.2120 15.474 22.811 16.450 24.114 40.311 0.2650 17.322 25.221 18.414 26.662 44.757 0.3180 18.998 27.31S 20.196 28.879 40.753 i

' I 0.3710 O.4240 0.4770 20.545 21.990 23.352 2?.172 30.828 32.318 21.840 23.377 24.824 30.538 32.584 34.1d5 52.3rd 55.bS2 58.576 0.5300 24.644 33.566 26.198 35.590 61 34t 6,5830 25.986 34.877 27.625 36.870 64.000 0.6360 27.287 35.976 29.008 36,032 66.532 0.6890 28.553 36.976 30.354 39.068 68.900 l 0.7420 29.788 37.884 31.667 40.048 71.140

, 3 0.7950 30.996 38.709 32.951 40.921 73.263 l

0.8480 32.181 39.457 34.210 41.710 75.2E0 0.9010 33.344 40.134 35.447 42.427 77.148 I 0.9540 1.0070 1.0600 34.489 35.617 36.730 40.745 41.294 41.784 36.664 37.863 39.047 43.073 43.653 44.171 79.027 80.772 82.4*E 1.1130 37.808 42.389 40.193 44.811 84.192 1.1660 38.873 42.950 41.325 45.404 85.885 1.2190 39.926 43.469 42.444 45.952 87.521 1.2720 40.967 43.948 43.551 46.456 89.102 1.3250 41.998 44.388 44.647 46.924 90.632 1.3780 43.020 44.793 45.733 47.352 92.114 l 1.4310 44.034 45.163 46.81.' 47.743 93.549 1.4840 45.039 45.499 47 080 48.098 94.940 1.5370 46.037 45.803 48.941 48.420 96.290 1.5900 47.029 46.076 49.995 48.708 97.599 1.6430 te.300 46.382 51.346 49.031 99.230 49.326 100.836 I 1.6960 49.574 46.660 52.700 1.7490 50.852 46.913 54.059 49.593 102.417 1.8020 52.133 47.141 55.421 49.834 103.975 1.8550 53.419 47.345 56.788 50.049 105.512 1.9080 54.708 47.525 58.159 50.239 107.027 1.9610 56.002 47.682 59.534 50.406 108.523 2.0140 57.300 47.817 60.914 50.548 109.999 2.0670 56 203 47.930 62.299 50.660 111.456

2.1200 59.910 48.023 63.698 50.766 112.006 l 2.1730 61.371 48.500 65.242 51.270 114,906 l 2.2260 62.841 48.967 66.804 51.764 116.913 3 2.2790 64.319 49.424 68.375 52.247 118.919 jg 7

2.3320 2.3850 65.805 67.300 49.872 50.310 69.955 71.544 52.721 53.184 120.923 122.926 I

2.4380 68.803 50.740 73.142 53.639 124.927 I 2.4910 70.314 51.160 74.749 34.053 ;26.928 2.5440 71.834 51.573 76.364 54.518 128,928 2.5970 73.362 51.477 77.989 54.945 130.9'9 2.6500 74.899 52.372 79.622 55.3c4 132. h ;

l I SIR-92-037, Rev. O C-33 '

STRUCTURAL lm INTEGRITY E v ASSOCIATESINC  ;

.I oc-CRACK VERSION 2.1 PAGE 3 TOTAL SUDBLOCK CYCLE CYCLE KMAX KMIN DELTAK R DADN DA A /4 / 7 DLOCK 6 I BLOCK 6

12 1 90.78 0.00 90.79 0.00 1.1E-03 0.0011 1.3314 0.25 12 1 90.96 0.00 40.96 0.00 1.1E-0! 0.C011 1.3073 0.25 BLOCK 18 18 1 91.14 0.00 91.14 0.00 1.1E-03 0.0011 1.3442 0.25 BLOCK 24 24 1 91.32 0.00 91.32 0.00 1.1E-03 0.0011 1.2507 0.25 I BLOCK 30 30 1 91.50 0.00 91.50 0.00 1.1E-03 0.0011 1.3573 0.06 I BLOCK 36 36 1 91.69 0.00 91.69 0.00 1.1E-03 0.0011 1.3637 0.06 DLOCK 42 42 1 91.87 0.00 91.87 0.00 1.1E-03 0.0011 1.3705 0.26 BLOCK 48 48 1 92.06 0.00 92.06 0.00 1.1E-03 0.0011 1.3772 0.06 BLOCK 54 54 1 92.24 0.00 92.24 0.00 1.1E-03 0.0011 1.3539 0.26 BLOCK 60 60 1 92.43 0.00 92.43 0.00 1.1E-03 0.0011 1.3906 C . T. 6

.I BLOCK 66-t 66 1 9?.61 0.00 92.61 0.00 1.1E-03 0.0011 1.0474 0.06 1

l BLOCK 72 72 1 92.79 0.00 92.79 0.00 1.1E-03 0.0011 1.4043 0.26 LI SIR-92-037, Rev. O C-34

^ STRUCTURAL i.

ASSOCIA'IESINC L

i I

s E oc-CRACK VERSION 2.1 PACL s BLOOK 78 78 1 02.98 0.00 92.9S 0.00 1.2E-03 2.0010 1.4112 2.27 BLOCK 84 84 1 93.17 0.00 92.17 0.00 1.2L'-03 0.0012 3.413'. C.27 BLOCK 90 90 4 93.36 0.00 93.36 0.00 1.2E-03 0.0012 1.4231 0.27

- - BLOCK 96 96 1 93.55. 0.00 93.25 0.00 1.2E*03 0.0010 1.4321 0.27 l .

BLOCK 102 E 102 1 93.73 0.00 93.73 0.00 1.2C-03 0.0012 1.4390 0.27 BLOCK 108 108 1 93.92 0.00 93.92 0.00 1.2E-03 0.0010 1.4463 0.27 BLOCK 114 114 1 94.11 0.00 94.J 7.00 1.2E-03 0.0012 1.4535 0.27 ,

BLOCK 120 120 1 94.30 0.00 94.30 0.00 1.'JE-03 0.0012 1.4607 0.00 BLOCK 126 126 1 94.49 0.00 94.49 0.00 1.2E-03 0.0012 1.4680 0.28 BLOCK 132 132 1 94.68 0.00 94.68 0.00 1.2E-03 0.0012 1.4753 0.28 138 I

BLOOK l

138 1 94.87 0.00 94.87 0.00 1.2E-03 0.0012 1.4827 0.28 BLOCK 144 ,

144  ? 95.06 0.00 95.06 0.00 1.2E-03 0.0010 1.4901 0.23 l

BLOCK 150 150 1 95.25 0.00 95.25 0.00 1.2E-03 0.0212 1.476 0.23 BLOCK 156 i

l C-35 SIR-92-037, Rev. O , STRilCTIIRJLL l

6 M

A3SOCIATEINC i

I I oc-CRACK VERSION 2.1 NGC 5 156 1 95.45 0.00 95.45 0.00 1.3E-03 0.0013 1.5051 0.25 I BLOCK 162 162 9 5 . c,4 0.00 95.64 0.00 1.3E-03 0.0013 1.51:7 0.0%

I 1

BLOCK 168 168 1 95.03 0.00 95.03 0.00 1,3E-03 0.0013 1.5:03 0.29 BLOCK 174 174 1 96.03 0,00 96.03 0.00 1.30-03 0.0013 1.3250 0.27 BLOCK 180

, 180 1 96.22 0.00 96.22 0.00 1.3C-03 0.0013 1.5357 0.29 BLOCK 186 i 186 1 96.42 0.00 96.42 0.00 1.sE-03 0.0013 1.5434 0.29 i l

I BLOCK 192 192 1 96.61 0.00 96.61 0.00 1.3E-03 0.0013 1.5513 0.29 BLOCK 198 198 1 96.00 0.00 96.80 0.00 1.30-03 0.0010 1.5591 0.29 BLOCK 204 204 1 97.00 0.00 97.00 0.00 1.3E-03 0.0013 1.3671 0.30 BLOCK 210 210 1 97.20 0.00 97.20 0.00 1.3E-03 0.0013 1.57S0 0.30 l =' BLOCK 216 216 1 97.40 0.00 97.40 0.00 1.3E-03 0.0013 1.5831 0.30 BLOCK 222 222 1 97.59 0.00 97.59 0.00 1.4E-03 0.0014 1.5912 0.30 LI

!~ BLOCK 228 l

228 1 97.84 0.00 47.84 0.00 1.4E-03 0.0014 1. 5 9 '? ! O ., 3 0 BLOCK 234 234 1 98.10 0.00 98.10 0.00 1.4E-03 0.0014 1.6075 0.30 ,

SIR-92-037, rov. O C-36 D NfY

. ./ ASSOCIA'IESINC

I f

pc-CRACK VERSION 2.1 PAGE 0 I BLOCK 040 240 1 98.35 0.00 98.35 0.00 1.4E-03 0.0011 1.6158 0.20 END OF oc-CR40h I

I I'

I .

I I

I -

I .

.I I

I I

I SIR-92-037, Rev. O C-37 -

ggg I INTEGRITY ASSOCIAIESINC