ML20155H716
| ML20155H716 | |
| Person / Time | |
|---|---|
| Site: | Arkansas Nuclear |
| Issue date: | 07/15/1998 |
| From: | ENTERGY OPERATIONS, INC. |
| To: | |
| Shared Package | |
| ML20155H712 | List: |
| References | |
| 96-R-2030-02, 96-R-2030-02-R01, 96-R-2030-2, 96-R-2030-2-R1, NUDOCS 9811100255 | |
| Download: ML20155H716 (44) | |
Text
{{#Wiki_filter:...-- Entergy ENTERGY OPERATIONS INCORPORATED Operations ARKANSAS NUCLEAR ONE 22 a 22 DOCUMENT RECORD TYPE (Refer to Procedure 5010.005): [X] Quality Assurance Record i ['] NOT a Quality Assurance Record SYSTEM / COMPONENT CLASSIFICATION: 4 [x] Q [-] NON-Q i ENGINEERING REPORT l FOR i ARKANSAS NUCLEAR ONE RUSSELLVILLE, ARKANSAS i 1 'l Qll6YAS k t'. b /2 dar d a $ /L4 /.1 ouw enb Rut N j 0- $1/1/96 InitialIssuance RWC ///d. M i REV. DATE REVISIONS BY CHECK 'APPR 9811100255 981102 ~ ADOCK05000368b7 4 PDR ~ P PDR if TITLE: Revised Reactor Vessel Fluence Determination REPORT NO.: %R-2030-02 FORM TITLE: FORM NO. REV. ENGINEERING REPORT COVER SHEET 5010.017A 1
t 96 R-2030-02, Revision 0 Page1 1.0 Background / Purpose Reference 1 documents the change in the limiting reactor vessel beltline plate. Using the material properties of the new limiting plate and the fluence assumptions used in Refeence 2, it was demonstrated I that to maintain the bases of the cu Tent Technical Specification RCS Pressure / Temperature (P/T) limits, the j-period of applicability for those limits need to be revised (Reference 1). s Based on the information presented in Refsence 1, the period of applicability needs to be revised from 21 EFPY to 17 EFPY His poses a concern with the next scheduled surveillance capsule withdrawal. He next capsule is scheduled to be withdrawn at 19 EFPY (Reference 3, Table 4.4 5). With the required one year 4-time frame to analyze and report the results of the capsule (Reference 4), there would be approximately one year to revise the PT curves and gain NRC approval for the revised limits prior to the expiration of the current limits. 4 There are three options for resolution of this issue: 4 in the first option, the period of applicability of the current limits and the surveillance e schedule could be revised sudi that the current two year difference was maintained. His would require a Technical Specification Change Request (TSCR) and its associated costs and would also mean the PT limits would have to be revised sooner with its associated TSCR. I A second option would be to revise the period of applicability and leave the surveillance schedule as is. This would require one TSCR to be followed by another TSCR for the same specification (PT limits) in a relatively short time after the surveillance capsule has been analyzed. This is not a prudet option. The underlying bases for the current limits could be evaluated and unnecessary conservatisms 4 e could be identified and removed (Option 3). His calculation will center around this option. The fluence estimates used to date are very conservative in nature, ney are based on the one specimen l capsule pulled at 1.69 EFPY (two cycles of operation) and linearly extrapolated to 21 EFPY (Reference 2). During the first six cycles of operation, ANO 2 operated with a high leakage core. In Cycle 7, tte core was i changed to a low leakage design, in part to reduce the vessel fluence. ANO-2 has operated with a ;ow leakage design since that time; however, the fluence estimates were not revised. According to the bases for the Pressurefremperature Limits (Refsence 3, Specification 3/4.4.9) the i adjusted reference temperature (ART) for 21 EFPY at the 1/4T position is Ill*F and 96'F at the 3/4T location. These values are based on a vessel inner surface fluence of 3.74 E+19 n/cm'; 1/4T fluence is l 2.33E +19 n/cm'; and the fluence at the 3/4T location is 9.06 E+18 n/cm (E > 1 MeV). 2 1 In the following evaluation, the fluence estimates have been revisited to take advantage of some of the conservatism in the simple linear extrapolation used as a basis for the current Technical Specification limits. Reference 2 provides an indication of how conscrvative these estimates are. j i i 2.0 References 4 1. %-R-2030 01, Revision 0, " Limiting Beltline Plate Determination" 2. 90-E-0097-01, Revision 1, " Reactor Vessel Fluence Determmation" 7
96-R-2030-02, Revision 1 Page 2 4 k 3. ANO-2 Technical Specifications, Amendment 176 4. 10CFR50, Appendix H 5. 10CFR50.61 6. ABB-CE Calculation, AN-FE-00ll, Revision 3,"ANO-2 Cycle Independent Data and Setpoint Assumption List" 7. DraA Regulatory Guide DG-1053, " Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" 8. NRC letter dated January 2,1996, " Updated Values for Pressured Thermal Shock Reference Temperatures - Calvert Cliffs Nuclear Power Plant, Units Nos. I and 2," D.G. Mcdonald, Jr. (NRC) { to R. E. Denton (Baltimore Gas and Electric) 1 9. Not Used l
- 10. Procedare 2302.039, Revision 9," Core Power Distribution Following Refueling"
- 11. ABB-CE letter dated May 18,1978, " Power Ascension Test (pal *F) Predictions," H. H. Windsor and E. H. S mith, Jr. (ABB-CE) to E. C. Ewing (AP&L) 3.0 Assumptions 1.
The axial averaged Relative Power Densities for an assembly is at the maximum acceptable value. 2. The ratio of the fast flux from one cycle to the next subsequent cycle is equal to the excore detector j response ratio. 3. Subsequent of Cycle 12, the duration of the cycles is 490 EFPD. 4. With respect to the fast flux seen at the vessel wall, the core design for Cycle 13 and beyond will 4 remain constant with Cycle 12's ) i i 4.0 - Methodology The bases of the Reference 3 limits is in the ART determination, as described above. The ART is based on the material's properties and fluence. The ART is determined by the following equation (Reference 5): ART = Initial RTurr + ARTmyr + Margin Initial RTmyr is the reference temperature for the unirradiated material as defined in Section III of the ASME Code. ARTmyr is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows: I
96-R-2030-02, Revision 0 Page 3 ARTmyr = (CF)f*
- 0 The term, f** 0, is the fluence factor and is determined by calculation or from a figure in Regulatory Guide 1.99, Revision 2. fis in terms of E+19. His term accounts for the fluence at distance from the inner surface of the vessel. In this case, the distance would be one-quarter and three-quarter thickness of the reactor vessel.
i To determine the fluence at the 1/tT or the 3/4T location the following equation is used: f(x) = f%e* whac f,,,,,, is the inner surface fluence oc is 0.24 (Reference 2) x is the distance into the vessel wall, in this case x is 1/4T or 3/4T. T is the thickness of the wall or 7.875 inches (Reference 2). CF 's the chemistry factor which is a function of the copper and nickel content of the material in question. The " Margin" term is the quantity that is added to obtain conservative, upper-bound values of ART for the calculations required by Appcmdix G to 10CFR50. ne Cycle 1 flux was derived from the surveillance specimen pulled at the end of the second cycle of operation. He subsequent beginnmg of a cycle's flux estimate is multiplied by the excore ratio for that cycle. His is the new flux used in detamimng the vessel fluence. He "Excore Ratio" is the ratio of a cycle's Begmning of Cycle (BOC) 100% power flux at the excore detectorlocations to the previous cycle's BOC 100% power flux at the same location. Rese ratios provide an indication of the amount ofleakage from the core from cycle to cycle. 1 5.0 Results M Material Properties Based on the information contained in Refuence 1, the revised limiting plate is C8010-1. This plate is limiting based on revised best estimate values for the copper and nickel content of the plate. He chemistry factor for the plate is 54.5 (Reference 1) and the initial RTmyr for this plate is 12*F (Reference 1). De margin tcrm for this plate is 34*F (Reference 1). M Excore Ratio nere are four excore detectors for ANO-2, one in each quadrant. When ANO-2 transitioned to the low-leakage cores, the excore ratio was developed to help calibrate the detectors. His ratio is the BOC, Equilibrium Xenon, All Rods Out (ARO) 100% powcr flux for Cycle N divided by the BOC, Equilibrium Xenon, ARO 100% power flux for Cycle N 1. It is assumed G.at the ratio of the fast flux from one c, cle to the next is equal to this ratio.
96-R-2030-02, Revision 0 Page 4 There are 11 assemblies used in the calculation of the ratio. The QC location for these assemblies are 1, 2,3,4,5,6,7,9,10,11, and 12. Part of the information presented in Attachment 1 is the QC locations of these assemblies. Assembly weighting factors (Reference 6) are applied to the radial Relative Power Density (RPDs) to determine a QC Location's contribution to the excore detector response. A consistent set of weighting factors are used in this calculation. The RPDs used in this calculation are from the Reload Reports for each cycle, except for Cycle 1. Cycle l's data is from Startup predictions (Reference 11). These are predicted values. Attachment 1 provides a copy of each of the cycle's appropriate information. In addition, as part of the startup testing for each cycle, the measured radial power distribution is i compared to the predicted power distnbution. The acceptance criteria in Reference 10 states that for a predicted RP"> < 0.9, the measured and predicted RPD values shall agree within i 15%. For a predicted RPD 2 0.9, the measured and predicted RPD values shall agree within i 10%. This was done to address 1 the differences in the RPDs in each quadrant. (In reviewing the startup data for each cycle, the -at-* criteria for the axially averaged RPD has not been violated.) Tables I through 12 lists the weighting factor, the radial RPD f r Gone QC locations, the " corrected" ] RPD (the RPD times the appropriate uncertainty - 10% or 15%), and the individual locations contribution to the detector's response (Corrected RPD times weighting faccor). The individual contributions are then summed to get the total detector's response. This information is provided for each of the cycles. The flux. j ratio is also provided in each table, t ABB-CE has provided the excore ratio as part of the Startup Predictions for each cycle since Cycle 7. Table 13 compares the values provided by ABB-CE to the values calculated in Tables 6 through 12. As can be seen, there is good agreement between the two sets of numbers. When more fresh fuel is located near the periphery in one cycle compared to the previous cycle, the excore ratio is greater than one. M. Initial Flux Determination To remove some of the conservatisms in the fluence estimates and to use the excore ratios, the flux in Cycle 1 must be determined. ANO-2 has pulled only one material surveillance capsule to date. This capsule was pulled at the end of Cycle 2 or 1.69 EFPY, Reference 2 lists the maximum surface fluence for 2 this time period as 3.01 E + 18 n/cm. This deternunation utilized the ENDF/B-IV cross-sectional library. In Reference 7, the NRC has noted that ENDF/B-IV libraries may underpredict the fluence the vessel wall is seeing due to an error in the Iron inelastic scattering cross-section. The ENDF/B-VI libraries corrected this deficiency. This underprediction could be significant (~20 - 30%) according to the NRC. In a letter to Baltimore Gas and Electric, dated January 2,19% (Reference 8), the NRC stated concerning projected neutron fluence, "The methodology employed the CASK cross section set. CASK is based on an early ENDF/B version which is known to have an iron scattering cross section error, which was corrected in ENDF/B-VI. However, we know from experience that this error appears only during neutron transmission through significant amounts ofiron, as for example the thermal shield or the vessel. Neither of the Calvert Cliffs units is equipped with a thermal shield; thus, the staff does not expect the results to have been affected by the use of the CASK cross sections."
~ =. 96-R-2030-02, Revision 1 Page 5 ANO-2 does not have a thermal shield; therefore based on the above, it is not expected the maximum surface fluence would change if the analysis was reperformed using the ENDF/B VIlibraries. There are two additional issues associated with the approach used in this report that may impact the determination of the initial flux. These issues are the use of Beginning of Cycle RPDs versus End of Cycle RPDs and the use of the RPDs from the Reload Reports versus As-Built RPD data. Each issue is discussed below, il As a cycle progresses, the assemblies
- RPD changes as the power shifts from the center of the core to the periphery of the core. The excore ratio methodology was developed for the beginning of a cycle so the excores could be calibrated. The excore are periodically calibrated throughout the cycle. The shift in the RPDs from the beginning of a cycle to the end of a cycle is relatively small in magnitude.
The RPD information provided in each cycle's Reload Report is based on predictions for that cycle. The ratio that is provided by ABB-CE is based on As-Built data. As can be seen Table 13, the values calculated using the Reload Report predic'ed values versus the ratio using the As-Built data are very close. To address the all three issues listed above (ENDF/B-IV versus B-VI, power shift, and the use of Reload Report predicted RPDs), the 1.69 EFPY calculated fluence was increased by 10%. Therefore; 2 2 $i(Duration of Cycle 1) + $2(Duration of Cycle 2) = 3.01 E + 18 n/cm (1.1) = 3.311 E + 18 n/cm +2 " t
- Excore Ratio for Cycle 2 or 1.34174:
The duration of Cycle I was 324.68 EFPD and Cycle 2 was 292.77 EFPD long (see Attachment 2 for the documentation of the cycle lengths). i Based on this, the flux in Cycle I was then 4.6147 E +15 n/cm - EFPD. 2 l M Subseauent Cycle's Flux and Vessel Inner Surface Fluence Determination Table 14 and the following text provide a summary of the calculation to revise the fluence estimates. The first column is the cycle number. The second column is the assund BOC flux estimate, which for Cycle 2 through Cycle 19, is the corrected flux for the previous cycle. The product of the second and third (excore detector ratio) columns is then the new flux for that cycle (column four). This value is then multiplied by the length of the cycle (column five) to determine the cycle's fluence (column six). For Cycles I through 12, the duration of the cycle was taken from burnup data taken at the end of each 7 cycle (see Attachment 2). The remaining cycle lengths are assumed to be 18 months in length (490 EFPD). The "EFPY" column is just the "EFPD" value divided by 365 to cc mcrt the days to years. The last column isjust a sum of the cycle fluences to that point. 1
o 96-R-2030-02, Revision 1 Page 6 Based on Table 14, the integrated fluence at 22.20 EFPY is 2.% E + 19 n/cm at the inner surface of the 2 i vessel. The fluence at 20.86 EFPY is 2.82 E + 19 n/cm. Linearly interpolating between these values for 2 21 EFPY, the inner surface fast fluence is 2.84 E + 19 n/cm2 This is less than the inner surface value 2 (3.74 E + 19 n/cm ) used in the bases of the current limits. 6.0 Conclusions Q 1/4T and 3/4T Fluence Determiantion Based on the above information, the fluence at the 1/4T location is: 9 f(1/4T) = 2.84 e42*a25x1in) = 1.77 E + 19 n/cm2 The 3/4T fluence is: 4 f(3/4T) = 2.84 e****"X"") = 7.00 E + 18 n/cm 2 Both the 1/4T and the 3/4T fluence veues are less than the values listed in the basis of Technical 2 2 Specification 3/4.4.9 (2.33 E + 19 n/cm and 9.06 E + 18 n/cm, respectively) 6.J ART Determination The shiAin the RTmyrcan then be determmed. The value for the shift is at the 1/4T location i ARTmn = (54.5)l.778 28430 % l ") = 63.0* The ARTis then j ART = 12 + 63.0 + 34 = 109. 0* This compares to the value listed in the basis of the Reference 3 limits for the 1/4T location of 111*. The value for the shiA is at the 3/4T location j ARTmn = (54.5)0.700m2:4to %atm> = 49.0* The ARTis then .j l ART = 12 + 49.0 + 34 = 95.0* This compares to the value listed in the basis of the Reference 3 limits for the 3/4T location of 96*. Based upon the above conservative arguments, the limits listed in the Technical Specifications are still applicable and the period of applicability for the Pfr limits can remain at 21 EFPY and the suneillance schedule does not need to be resised. s -~
o 96-R-2030-02, Revision 1 Page 7 TABLE 1 CYCLE 12 EXCORE DETECTOR RESPONSE Assembly Cycle 12 Cycle 12 Cycle 12 QC Box Weighting Radial Corrected Detector , Number Factor RPO RPD
Response
1 0.3428 0.3200 0.3680 0.1262 2 0.2459 0.4700 0.5405 0.1329 3 0.1022 0.4700 0.5405 0.0552 4 0.0991 0.3100 0.3565 0.0353 5 0.0825 0.5800 0.6670 0.0550 6 0.0406 1.1000 1.2100 0.0491 7 0.0305 1.1700 1.2870 0.0393 9 0.0176 0.3900 0.4485 0.0079 10 0.0161 0.9900 1.0890 0.0175 11 0.0150 1.0900 1.1990 0.0180 12 0.0078 1.2200 1.3420 0.0105 Totals 1.0001 0.5469 Cycle 13/12 Flux Ratio = I 0.8881 4 TABLE 2 CYCLE 11 EXCORE DETECTOR RESPONSE Assembly Cycle 11 Cycle 11 Cycle 11 QC Box Weighting Radial Corrected Detector Number Factor RPO RPD
Response
1 0.3428 0.2300 0.2645 0.0907 2 0.2459 0.3900 0.4485 0.1103 3 0.1022 0.4700 0.5405 0.0552 4 0.0991 0.3200 0.3680 0.0365 5 0.0825 0.5500 0.6325 0.0522 6 0.0406 0.8000 0.9200 0.0374 7 0.0305 1.1000 1.2100 0.0369 9 0.0176 0.4300 0.4945 0.0087 10 0.0181 1.1100 1.2210 0.0197 11 0.0150 1.1300 1.2430 0.0186 12 0.0078 1.2900 1.4190 0.0111 Totals 1.0001 0.4772 Cycle 12/11 Flux Ratio = 1.1461
96-R-2030 02, Revision 1 Page 7a TABLE la CYCLE 13 EXCOR5: DETECTOR RESPONSE Assa.nbly Cycle 13 Cycle 13 Cycle 13 QC Box Weighting Radial Corrected Detector Nurnber Factor RPD RPD
Response
1 0.3428 0.2400 0.2760 0.0946 2 0.2459 0.4400 0.5060 0.1244 3 0.1022 0.5000 0.5750 0.0588 4 0.0991 0.2800 0.3220 0.0319 5 0.0825 0.5300 0.6095 0.0503 6 0.0406 0.7300 0.8395 0.0341 7 0.0305 1.1100 1.2210 0.0372 9 0.0176 0.4300 0.4945 0.0087 10 0.0161 0.9400 1.0340 0.0166 11 0.0150 1.1400 1.2540 0.0188 12 0.0078 1.1900 1.3090 0.0102 Totals 1.0001 0.4857
96-R-2030-02, Revision 0 Page 8 TABLE 3 CYCLE 10 EXCORE DETECTOR RESPONSE Assembly Cycle 10 Cycle 10 Cycle 10 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.3700 0.4255 0.1459 2 0.2459 0.7100 0.8165 0.2008 3 0.1022 0.4700 0.5405 0.0552 4 0.0991 0.3700 0.4255 0.0422 5 0.0825 0.9200 1.0120 0.0835 6 0.0406 1.1600 1.2760 0.0518 7 0.0305 1.1500 1.2650 0.0386 9 0.0176 0.4700 0.5405 0.0095 10 0.0161 0.9800 1.0780 0.0174 11 0.0150 1.2200 1.3420 0.0201 12 0.0078 1.2500 1.3750 0.0107 Totals 1.0001 0.6756 Cycle 11/10 Flux Ratio = 0.7063 TABLE 4 CYCLE 9 EXCORE DETECTOR RESPONSE l Assembly Cycle 9 Cycle 9 Cycle 9 QC Box Weighting Radial Corrected Detector j Number Factor RPD RPD
Response
) 1 0.3428 0.3500 0.4025 0.1380 2 0.2459 0.6900 0.7935 0.1951 3 0.1022 0.4900 0.5635 0.0576 4 0.0991 0.3400 0.3910 0.0387 i 5 0.0825 0.8700 1.0005 0.0825 6 0.0406 1.1100 1.2210 0.0496 7 0.0305 1.1300 1.2430 0.0379 9 0.0176 0.3300 0.3795 0.0067 10 0.0161 0.9000 0.9900 0.0159 11 0.0150 1.1600 1.2760 0.0191 12 0.0078 1.2100 1.3310 0.0104 Totals 1.0001 0.6516 Cycle 10/9 Flux Ratio = i 1.0369
96-R-2030-02, Revision 0 Page 9 TABLE 5 CYCLE 8 EXCORE DETECTOR RESPONSE Assembly Cycle 8 Cycle 8 Cycle 8 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.3800 0.4370 0.1498 2 0.2459 0.7300 0.8395 0.2064 3 0.1022 0.5100 0.5865 0.0599 4 0.0991 0.3800 0.4370 0.0433 1 5 0.0825 0.9600 1.0560 0.0871 6 0.0406 1.1400 1.2540 0.0509 7 0.0305 1.0400 1.1440 0.0349 9 0.0176 0.3800 0.4370 0.0077 10 0.0161 1.0100 1.1110 0.0179 11 0.0150 1.2200 1.3420 0.0201 12 0.0078 1.2100 1.3310 0.0104 Totals 1.0001 0.6885 Cycle 9/8 Flux Ratio = 0.9464 TABLE 6 CYCLE 7 EXCORE DETECTOR RESPONSE Assembly Cycle 7 Cycle 7 - Cycle 7 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.3300 0.3795 0.1301 2 0.2459 0.6900 0.7935 0.1951 3 0.1022 0.5100 0.5865 0.0599 4 0.0991 0.4000 0.4600 0.0456 5 0.0825 0.9000 0.9900 0.0817 6 0.0406 1.0900 1.1990 0.0487 7 0.0305 1.1700 1.2870 0.0393 9 0.0176 0.4500 0.5175 0.0091 10 0.0161 1.0700 1.1770 0.0189 11 0.0150 1.2500 1.3750 0.0206 12 0.0078 1.2400 1.3640 0.0106 Totals 1.0001 0.6597 Cycle 8/7 Flux Ratio = 1.0437 l
96-R-2030-02, Revision 0 Page 10 TABLE 7 CYCLE 6 EXCORE DETECTOR RESPONSE l Assembly Cycle 6 Cycle 6 Cycle 6 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
i 1 0.3428 0.4900 0.5635 0.1932 2 0.2459 0.8600 0.9890 0.2432 3 0.1022 0.6700 0.7705 0.0787 4 0.0991 0.4400 0.5060 0.0501 5 0.0825 0.9500 1.0450 0.0862 6 0.0406 1.1700 1.2870 0.0523 7 0.0305 1.3000 1.4300 0.0436 9 0.0176 0.4700 0.5405 0.0095 10 0.0161 1.0900 1.1990 0.0193 11 0.0150 1.3100 1.4410 0.0216 12 0.0078 1.0900 1.1990 0.0094 Totals 1.0001 0.8071 Cycle 7/6 Flux Ratio = 0.8173 TABLE 8 CYCLE 5 EXCORE DETECTOR RESPONSE Assembly Cycle 5 Cycle 5 Cycle 5 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.7100 0.8165 0.2799 2 0.2459 0.9700 1.0670 0.2624 3 0.1022 1.0100 1.1110 0.1135 4 4 0.0991 0.7800 0.8970 0.0889 5 0.0825 1.0200 1.1220 0.0926 6 0.0406 0.9200 1.0120 0.0411 7 0.0305 1.2000 1.3200 0.0403 9 0.0176 0.8700 1.0005 0.0176 10 0.0161 1.2100 1.3310 0.0214 11 0.0150 1.2100 1.3310 0.0200 12 0.0078 0.8500 0.9775 0.0076 Totals 1.0001 0.9852 Cycle 6/5 Flux Ratio = 0.8192 i
D e 96-R-2030-02, Revision 0 Page 11 TABLE 9 CYCLE 4 EXCORE DETECTOR RESPONSE Assembly Cycle 4 Cycle 4 Cycle 4 OC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.5700 0.6555 0.2247 2 0.2459 0.8100 0.9315 0.2291 3 0.1022 0.9000 0.9900 0.1012 4 0.0991 0.7900 0.9085 0.0900 5 0.0825 1.0400 1.1440 0.0944 6 0.0406 0.7200 0.8280 0.0336 7 0.0305 0.9000 0.9900 0.0302 9 0.0176 0.8600 0.9890 0.0174 10 0.0161 1.1700 1.2870 0.0207 11 0.0150 1.2800 1.4080 0.0211 12 0.0078 1.0700 1.1770 0.0092 Totals 1.0001 0.8716 Cycle 5/4 Flux Ratio = 1.1304 TABLE 10 CYCLE 3 EXCORE DETECTOR RESPONSE Assembly Cycle 3 l Cycle 3 Cycle 3 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.7300 0.8395 0.2878 2 0.2459 1.0200 1.1220 0.2759 3 0.1022 1.0600 1.1660 0.1192 4 0.0991 0.7600 0.8740 0.0866 5 0.0825 1.0500 1.1550 0.6953 6 0.0406 0.9100 1.0010 0.0406 7 0.0305 1.1900 1.3090 0.0399 9 0.0176 0.8300 0.9545 0.0168 10 0.0161 1.1000 1.2100 0.0195 11 0.0150 1.0100 1.1110 0.0167 12 0.0078 1.2800 1.4080 0.0110 Totals 1.0001 1.0092 Cycle 4/3 Flux Ratio = 0.8636 4
t e 96-R-2030-02, Revision 0 Page 12 TA.BLE 11 CYCLE 2 EXCORE DETECTOR RESPONSE Assembly Cycle 2 Cycle 2 Cycle 2 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.7900 0.9085 0.3114 2 0.2459 1.0700 1.1770 0.2894 3 0.1022 1.1300 1.2430 0.1270 4 0.0991 0.7800 0.8970 0.0889 5 0.0825 1.1300 1.2430 0.1025 6 0.0406 1.1300 1.2430 0.0505 7 0.0305 1.1400 1.2540 0.0382 9 0.0176 0.8000 0.9200 0.0162 10 0.0161 1.0300 1.1330 0.0182 11 0.0150 1.2200 1.3420 0.0201 12 0.0078 1.0000 1.1000 0.0086 Totals 1.0001 1.0712 Cycle 3/2 Flux Ratio = 0.9422 TABLE 12 CYCLE 1 EXCORE DETECTOR RESPONSE Assembly Cycle 1 Cycle 1 Cycle 1 QC Box Weighting Radial Corrected Detector Number Factor RPD RPD
Response
1 0.3428 0.5637 0.6483 0.2222 2 0.2459 0.7618 0.8761 0.2154 3 0.1022 0.8190 0.9419 0.0963 4 0.0991 0.5351 0.6154 0.0610 5 0.0825 0.7691 0.8845 0.0730 6 0.0406 1.0163 1.1179 0.0454 7 0.0305 0.9541 1.0495 0.0320 9 0.0176 0.5537 0.6368 0.0112 10 0.0161 0.9661 1.0627 0.0171 11 0.0150 0.9623 1.0585 0.0159 12 0.0078 1.0412 1.1453 0.0089 Totals 1.0001 0.7984 Cycle 2/1 Flux Ratio = 1.3417
96-R-2030-02, Revision 0 Page 13 TABLE 13 COMPARISON OF EXCORE RATIOS Cycle Number ABB-CE Provided Calculated 12 1.1577 1.1461 11 0.70 0.7063 i 10 1.03 1.0369 9 0.98 0.9464 8 1.01 1.0437 7 0.84 0.8173 l l l i l
96-R-2030-02, Revision I %l Page 14 6 TABLE 14 FLUENCE DETERMINATION 1 W r CYCLE "i" Flux Excore Ratio New Flux EFPD Fluence "i" EFPY Fluence 1 4.61E+15 1.0000 4.61E+15 324.68 1.50E+18 0.89 1.50E+18 2 4.61E+15 1.3417 6.19E+15 292.77 1.81E+18 1.69 3.31E+18 3 6.19E+15 0.9422 5.83E+15 234.30 1.37E+18 2.33 4.68E+18 4 5.83E+15 0.8636 5.04E+15 355.91 1.79E+18 3.31 6.47E+18 [ 5 5.04E+15 1.1304 5.69E+15 312.42 1.78E+18 4.16 8.25E+18 6 5.69E+15 0.8192 4.67E+15 443.63 2.07E+18 5.38 1.03E+19 7 4.67E+15 0.8173 3.81E+15 414.50 1.58E+18 6.52 1.19E+19 8 3.81E+15 1.0437 3.98E+15 419.74 1.67E+18 7.67 1.36E+19 l 9 3.98E+15 0.9464 3.77E+15 430.66 1.62E+18 8.85 1.52E+19 10 3.77E+15 1.0369 3.91E+15 481.00 1.88E+18 10.16 1.71 E+19 11 3.91E+15 0.7063 2.76E+15 484.20 1.34E+18 11.49 1.84E+19 12 2.76E+15 1.1461 3.16E+15 478.03 1.51E+18 12.80 1.99E+19 13 3.16E+15 0.8881 2.81E+15 490.00 1.38E+18 14.14 2.13E+19 14 2.81E+15 1.0000 2.81E+15 490.00 1.38E+18 15.49 2.27E+19 15 2.81 E+15 1.0000 2.81E+15 490.00 1.38E+18 16.83 2.40E+19 e i 16 2.81 E+15 1.0000 2.81E+15 490.00 1.38E+18 18.17 2.54E+19 17 2.81E+15 1.0000 2.81E+15 490.00 1.38E+18 19.51 2.68E+19 18 2.81E+15 1.0000 2.81E+15 490.00 1.38E+18 20.86 2.82E+19 i 19 2.81E+15 1.0000 2.81E+15 490.00 1.38E+18 22.20 2.96E+19 1 6 e 9 5
.a 96-R-2030-02, Revision 0 Paged! ATTACHMENT 1 e 1
I 96-R-2030-02, Revision 0 4 ) { PageA2 l Y ) i nn BB 1 M0 2 N2 3 N2 BB = Batch idendnerfor Aasendy an l x.xx XJorn'::.0'Reinem Power Density 0.32 0.47 0.47 1 i 4 MO 5 N2 6 PO 7 P1 8 P2 O.31 0.58 1.10 1.17 1.07 i 9 M2 10 P0 11 P2 12 P2 13 N2 14 P2 1 0.30 0.99 1.00 1.22 1.09 1.23 1 i i 15 MO 18 P0 17 NS 18 P2 19 N2 20 P2 21 N3 4 0.31 0.90 1.02 1.22 1.10 1.30 1.11 i 22 N2 23 P2 24 P2 25 N3 28 , P2 27 NO 28 P2 j 0.59 1.00 1.22 1.12 1.34 1.24 1.37 1 29 MO 30 PO 31 P2 32 N2 33 P2 34 N1 as P2 36 N2 j i 0.33 1.11 1.22 1.10 1.34 1.23 1.36 1.15 i l 37 N2 34 P1 30 N2 40 P2 41 No 42 P2 43 N1 44 N1 1 0.47 1.17 1.00 1.30 1.24 1.36 1.14 1.06 j X 45 N2 46 P2 47 P2 44 N3 49 P2' 50 N2 51 N1 52 K2 1 0.47 1.07 1.23 1.11 1.37 1.15 1.06 0.01 X = Maximum 1-Pin Peak = 1.49 Arkansas Power & Arkansas Nuclear One Unk 2 Cycle 12 Figure LightCa. AsessMy Relative Power Dansky, 51 Arkansas Nuclear One Unk 2 BOC.EFF, Equilibrhan Xemen, ARO EOC -11 = 464 EFFD 5-7 i i f a ~ - -. - -
'^ \\ c i f %-R - 2o30-oz, h. I 8 I i nn 'BB BB = Batch Identifier for Assembly nn 1 N2 2 P2 3 P2 x.xx Assembly Relative Power Density 0.24 0.44 0.50 i i ~ 4 N2 5 P2 6 P2 7 R1 8 R2 O.28 0.53 0.73 1.11 1.15 9 P2 10 R1 11 R2 12 R3 13 P1 14 R4 0.43 0.94 1.14 1.19 1.15 1.24 15 N2 16 R1 17 P2 18 R3 19 P2 20 R4 21 PO 0.28 0.94 1.07 1.30 1.21 1.25 1.21 q 22 P2 23 R2 24 R3 25 P2 26 R4 27 P2 28 R4 O.52 1.14 1.29 1.20 1.27 1.19 1.27 29 N2 30 P2 31 R3 32 P2 33 R4 34 PO 35 R4 36 P2 1 0.24 0.73 1.19 1.20 1.27 1.28 1.31 1.26 37 P2 38 R1 30 P1 40 R4 41 P2 42 R4 43 P0 44 PO l 0.44 1.11 1.15 1.24 1.19 1.32 1.29 1.24 X 45 P2 46 R2 47 R4 48 P0 49 R4 50 P2 51 PO 52 K2 0.50 1.15 1 4 1.21 1.27 1.26 1.24 0.96 X = Maximum 1-Pin Peak = 1.54 ARKANSAS ANO-2 CYCLE 13 POWER & LIGHT CO. BOC, HFP. EQUILIBRIUM XENON. ARO FIGURE ARKANSAS NUCLEAR ONE ASSEMBLY RELATIVE POWER DENSITY 1-7 UNIT 2 EOC12 = 461 EFPD l 12
_ _ _ _ _ _ _ _ _. _. ~. _. _. _. 0 96-R-2030-02, Revision 0 PageA3 X Y X = QC Location (Cycle 11) Y = Batch identdier 1 L2 2 LO 3 M2 i A A = Assembly Relative Power Densay B=BM r W Insam cms 8 0.23 0.39 0.47 4 L1 5 M2 8 M0 7 N1 8 N1 0.32 0.55 0.80 1.10 1.18 9 L1 10 NO 11 MO 12 N3 13 M2 14 N2 0.43 1.11 1.13 1.29 1.18 1.30 15 L1 18 N0 17 M1 18 N2 19 M2 20 N2 21 M1 0.32 1.11 1.21 1.38 1.18 1.2F 1.18 i 22 M2 23 M0 24 N2 28 M1 28 N2 27 M2 28 N2 0.55 1.13 1.38 1.24 1.31 1.12 1.28 X i 29 L2 30 MO 31 N3 32 M2 33 N2 34 M1 38 N2 38 M2 0.23 0.80 1.29 1.18 1.32 1.18 1.28 1.13 37 L1 38 N1 39 M2 40 N2 41 M2 42 N2 43 M2 44 N3 0.38 1.11 1.18 1.29 1.12 1.28 1.14 1.32 48 M2 48 N1 47 N2 48 M1-40 N2 80 M2 51 N3 52 K2 0.47 1.18 1.30 1.14 1.28 1.13 1.32 0.90 NOTE: X = MAXIMUM 1-PIN PEAK = 1.51 Arkansas Power & Arkansas Nacisar One Unit 2 Cycle 11 Figare Li hs Co. t Asssibly Relative Power Density, 5-1 Arkanssa Naclear One Unit 2 BOC HFP, Eqailibriam Xease. ARO $-7
96-R-2030-02, Revision 0 Pagek AA B8 AA = QC Assembly Location f CC BB = Batch Identifier 4 CC = Assembly Relative l Power Density 1 K1 2.. M0 3 K0 O.37 0.71 0.47 i 4 K1 5 M0 6 M1 7 M2 8 L1 0.37 0.92 1.16 -1.15 1.00 i X 9 LO 10 M1 11 M2 12 L2 13 L1 14 --K2 0.47 0.98 1.22 1.25 1.26 0.93 15 K1 16 MI 17 L0 18 L2 19 M2 20 L0 21 M2 l 0.37 0.98 1.03 1.08 1.30 1.20 1.30 i 22 M0 23 M2 24 L2 25 K2 26 L0 27 M2 28 L0 0.92 1.21 1.08 0.86 1.10 1.28 1.17 29 K1 30 M1 31 L2 32 M2 33 LO 34 M2 35 LO 36 M2 0.37 1.16 1.24 1.30 1.10 1.20 1.08 1.20 37 N0 38 M2 39 L1 40 L0 41 M2 42 LO 43 K2 44 L1-0.70 1.14 1.25 1.19 1.28 1.08 0.81 1.00 C 45 K0 46 L1 47 K2 48 M2 49 LC 50 M2 51 L1 52 K2 L-0.47 0.97 0.92 1.30 1.17 1.20 0.97 0.75 NOTE: X = MAXIMUM 1-PIN PEAK - 1.49 ARKANSAS POWER & ARKANSAS NUCLEAR ONE - UNIT 2 CYCLE 10 FIGURE LI E C0. ASSEMBLY RELATIVE POWER DENSITY, Ark nsas Nu lear BOC, HFP, EQUILIBRIUM XENON, ARO 5-1 5-9 m r
i 96-R-2030-02, Revision 0 Page 5 C AA BB AA = QC Assembly Location l CC BB = Batch Identifier CC = Assembly Relative l Power Density 1 JO 2 L1 3 J2 0.35 0.69 0.49 4 J1 5 L1 6 L2 7 LD 8 K2 0.34 0.87 1.11 1.13 1.02 9 JO 10 L2 11 LO 12 K2 13 K1 14 KO 0.33 0.90 1.16 1.21 1.24 1.20 15 J1 16 L2 17 KO 18 K0 19 LO 20 J3 21 LO 0.34 0.90 0.98 1.08 1.31 1.03 1.34 22 L1 23 LO 24 K0 25 J2 26 K2 27 K1 28 K0 0.87 1,16 1.08 0.92 1.24 1.32 1.25 29 J0 30 L2 31 K2 32 LO 33 K2 34 LO 35 J3 36 LO 0.35 1.11 1.21 1.31 1.25 1.30 0.99 1.25 i X 37 L1 38 LO 39 K1 40 J3 41 K1 42 J3 43 KO 44 K0 j 0.69 1.13 1.24 1.03 1.32 0.99 1.04 1.02 4 C 45 J2 46 K2 47 K0 48 L0 49 K0 50 LO 51 K0 52 JO 0.49 1.02 1.20 1.34 1.25 1.25 1.02 0.76 7 i NOTE: X = MAXIMUM 1-PIM PEAK = 1.49 i j ARKANSAS NUCLEAR ONE - UNIT 2 CYCLE 9 FIGURE GNT C ASSEM8LY RELATIVE POWER DENSITY, Arkansas Nuclear 80C, HFP, EQUILIBRIUM XENON, ARO 5-1 One - Unit 2 5-8
96-R-2030-02, Revision 0 Page 6 s C AA BB AA = QC Assembly Location L CC BB = Batch Identifier CC = Assembly Relative l Power Density 3 1 H2 2 K1 3 H3 i 0.38 0.73 0.51 l 4 H2 5 K1 6 K2 7 J1 8 K2 0.38 0.96 1.14 1.04 1.15 .9 H3 10 K2 11 J3 12 Jo 13 KO 14 H1 l 0.38-1.01 1.22 1.21 1.26 0.90 I 15 H2 16 K2 17 KO 18 JO 19 K0 20 JO 21 JO 0.38 1.01 1.25 1.18 1.31 1.14 1.08 d-i 22 K1 23 J3 24 JO 25 J2 26 F0 27_ J4 28 F0 0.96 1.22 1.18 1.13 0.90 1.14 0.94 i 29.H2 30 K2 31 Jo 32 K0 33 F0 34 K0 35 J3 36 K0 0.38 1.14 1.22 1.31-0.91 1.25 1.17 1.28 X } 37 K1 38 J1 39 KO 40 J0 41 J4 42 J3 43 FO 44 J2 l 0.73 1.04 1.27 1.15 1.16 1.17 0.87 1.05 i i C 45 H3 46 K2 47 HI 48 Jo 49 F0 50 KO 51 J2 52 F0 l 0.51 1.15 0.90 1.08 0.94 1.28 1.05 0.81 j i i NOTE: X = MAXIMUM 1-PIN PEAK = 1.51 ARKANSAS POWER & ARKANSAS NUCLEAR ONE - UNIT 2 CYCLE 8 FIGURE LI K C0. ASSEMBLY RELATIVE POWER DENSITY, Arkansas Nuclear BOC,.HFP, EQUILIBRIUM XENON, ARO 5-1 One - Unit 2 5-8
I 96-R-2030-02, Revision 0 A Page 7 4 4 ZZZ QUARTER-CORE ASSEMBLY NUMBER 1.00 ASSEMBLY RELATIVE POWER DENSITY C L E = LOCATIoM OF MAXIMUM 1-PIN PEAK = 1.52 l 01 02 03 0.33 0.69 0.51 1 04 05 06 07 08 0.40 0.90 1.09 1.17 1.04 09 10 11 12 13 14 0.45 1.07 1.25 1.24 1.27 1.20 15 16 17 18 19 20 21 0.40 1.07 1.09 0.99 1.34 1.10 1.37 22 23 24 25 26 27 28 0.90 1.25 0.99 1.10 1.18 1.20 1.17 29 30 31 32 33 34 35 36 0.33 1.09 1.24 1.34 1.18 1.20 0.90 1.14 i X 37 38 39 40 41 42 43 44 0.69 1.17 1.27 1.10 1.20 0.90 0.91 0.88 C 45 46 47 48 49 50 51 52 L-- 0.51 1.04 1.20 1.37 1.17 1.14 0.88 0.67 l I ARKANSAS NUCLEAR ONE - UNIT 2 CYCLE 7 ygg .y ASSEMBLY RELATIVE POWER DENSITY, i g
- f BOC, NFP, EQUILIBRIUM XENON, ARO 5-1 A*
5-8
FIGURE 5 1 %-R-2030-02, P,wision 0 ARKANSAS NUCLEAR ONE - UNIT 2 CYCLE 6 Page 8 . ASSEMBLY RELATIVE POWER DENSITY BOC, HFP, EQUILIBRIUM XENON, ARO . KEY T0 MAP t------! ! ZZZ QUARTER-CORE ASSEMBLY NUMBER ! 1.00 ! ASSEMBLY RELATIVE POWER DENSITY X = LOCATION OF MAXIMUM 1-PIN PEAK = 1.52 C L t...--_!_ 01 02 03 ! 0.49 ! 0.86 ! 0.67 ! 04 05 06 07 08 ! 0.44 ! 0.95 ! 1.17 ! 1.30 ! 1.27 ! -09 10 11 .12 13 14 ! 0.47 ! 1.09 ! 1.31 ! 1.09 ! 1.33 ! 1.07 ! l------!------!---...!------!-----.!------!------! 15 16 17 18 19 20 21 ! 0.44 ! 1.09 ! 1.30 1 1.29 ! 1.26 ! 1.11 ! 1.23 ! X 22 23 24 .25 26 27 28 ! 0.95 ! 1.30 ! 1.29 ! 0.84 ! 0.81 ! 1.11 ! 0.82 ! l----_.t...--_!__----! 29-30 31 32 33 34 35 36 ! 0.49 ! 1.17 ! 1.09 ! 1.26 ! 0.81 ! 1.06 ! 0.93 ! 1.03 ! 37 38 39 40 41 42 43 44 ! 0.86 ! 1.29 ! 1.32 ! 1.10 ! 1.11 ! 0.93 ! 0.83 ! 0.69 ! t------!------!----- '!------t------!------! 45 46 !. 47 48 49 50 51 52 ! 0.66 !~1.26 ! 1.06 ! 1.22 ! 0.82 ! 1.03 ! 0.69 ! 0.46 ! CL---! _--_-t--_---!----..!------!... __!---___t_____-t--_-_-! 57 A
96-R-2030-02, Revision 0 Pageh l ASSEMBLY RELATIVE i POWER DENSITY i s 0.71 0.97 1.01 X 1 s 0.78 1.02 0.92 1.20 0.95 l i n 1 0.87 1.21 1.21 0.85 1.10 0.75 1 l 0.78 1.21 1.03 0.96 1.15 1.00-0.71 1.02 1.22 0.96 1.19 0.94 1.17 0.81 0.71 0.92 0.85 1.15 0.94 0.90 0.96 1.17 0.97 1.20 1.19 0.99 1.17 0.95 1.19 1.00 1.01 0.95 0.75 0.71 0.80 1.17 1.00 0.81 NOTE: X = LOCATION OF MAX 1 MUM 1 PIN PEAK = 1,49 1 ARKANSAS Figure POWER & LIGHT CO. ARKANSAS NUCLEAR ONE. UNIT 2 CYCLE 5 Arkansas ASSEMBLY RELATIVE POWER DENSITY, HFP 51 ~ Nuclear One Unit 2 AT BOC, EQUILIBRIUM XENON, ARO = \\ 5-7 ) ~. - -~..
\\ 96-R-2030-02, Revision 0 e Pagek0 j T. ASSEMBLY RELATIVE l POWER DENSITY 4 0.57 0A1 030 0.79 1.04 0.72 0A0 1A7 i OA6 1.17 1.28 1A7 13 OA1 ~ 0.79 1.17 1A0 1.34 12 1A1 OJ1 l 2 t ] 1.04 1.25 1.34 OA6 1A2 1.26 0.77 t l 0.57 0.72 1A7 1R 1A2 0A7 OAS 0A0 t 0A1 OAO IM 1A1 1.28 OAS 1.00 032 X T. -- OJO 1A7 OA1 OA1 0.77 0A0 031 0.67 - 9. NOTE: X $ LOCATION OF MAXIMUM 1 PIN PEAK = 1.53 C IN CORE CENTER q l ARKANSAS ARKANSAS NUCLEAR ONE UNIT 2 CYCLE 4 Figure POWER & LIGHT CO. ASSEMBLY RELATIVE POWER DENSITY, HFP 51 Arkansas AT BOC. EQUILlBRIUM XENON. ARO Nuclear One Unit 2 (EOC3 OF 8819 MWD /T) 5-8 i )
0-I 96-R-2030-02, Revision 0 Page 11 9. i ASSEMBLY RELATIVE POWER DENSITY 0.73 1.02 1.08 O.78 1.05 0.91 1.19 0.93 4 4 0.83 1.10 1.01 1.28 0.97 1.00 0.76 1.10 1.13 1.28 0.90 1.23 0.91 1.05 1.01 1.29 0.88 0.97 0.88 1.08 0.73 0.91 1.27 0.90 0.97 1.11 0.82 0.93 X 1.02 1.19 0.97 1.23 0.88-0.83 1.11 0.84 '1.08 0.93 1.00 0.90 1.07 0.94 0.89 0.72 - 9, X = LOCATION OF MAXIMUM 1. PIN PEAK = 1.48 9. ARKANSAS NUCLEAR ONE. UNIT 2 CYCLE 3 POW & LIG T CO. ASSEMBLY RELATIVE POWER DENSITY, HFP 53 Arkansas. AT BOC, EQUILIBRIUM XENON, ARO Nuclear One. Unit 2 5-10
96-R-2030-02, Pevision 0 Page 12 k Assembly Relative Power Censity 0.79 1.07 1.13 i ,4 0.78 1.13 1.13 1.14 1.18 0.80 1.03 1.22 1.00 1.14 0.97 0.78 1.03 1.14 0.98 1.31 0. 9 ?. 1.24, 1.14 1.22 0.99 1.03 0.87 0.79 0.80 0.79 1.14 1.01 1,32 0.87 1.12 0.76 1.03 1.07 1.14 1.14 0.92 0.79 0.76 0.79 0.65 X ( l.13 1.19 0.97 1.25 0.80 1.03 0.65 0.54 NOTE: X " Location of Maximum 1-Pin Peak = 1.50 c1 ARXANSAS POWER & LIGHT CO. ARKANSAS NUCLEAR ONE - UNIT 2 CYCLE 2 ARKANSAS ASSEMBLY RELATIVE POWER DEtiSITY, HFP FIGURE I flVCLEAR ONE - UNIT 2 AT BOC, EQUILIBRIUM XENON 5-2 5-13
-- ~ ~ -. - _.... -. -.. - -.. _ ~. -. - -, - e E l ti t: t4 V A L. U c .VVItdie M e e t. 4 a v a 4 t .uuttI4 ? pnRit a f T5 I BOY TYPES'HO. MAY. vat'UE IN 901 8ATC9 SQxES pgp.pp, (vg,p BOX,oPD 1.2657 44 'C1 6'.04'4786 1.015'? MAY 4 - 8 I N' 1.3611 ,.4 4
- C 2,.36
.076477 .4672' Q PAX 1-81N 1.4311 44 C3 12 . Or,3 8 M8 .7800 WITH CrlRE AVE 4 AGE P0uf R .9999 C4 '16 .050327 .5486 OM 067Rl6@f f3,37 ]1,[., 40144 2 31, ) X fV /OO/c kW% .9161 1 0627, '.1.1.204 T) .9644 1.1138 1.1676 $QtliLISRILLN1 Y? W \\ C4 '4 C2 5 C1 6 52 7'- A3 8 [. i .535.1 .7691 1.0163* ' 9541 .9778 . 9826, 1.0,933 '1.2100-1.1057 1.0659 i . 9307 1 1441. 1.2795 1 1595 1.1201 .C2 10. A3 11 8'2 1 ? A2 13 B2 14 C5 9 t .5537 .9661 9623 1,.'0412 1.0566' 1.0949- .904A 1.2211 1.0687 '.1.1770 .1'.1459 1.2086 0592 1.2871' 1.1305 1_.2359 1.2061 1 2678 C4 15 CT 16 43 17 82 18' A2 19 a2 20 '. A 2 '21 .534S .9611 1.0003 1.0893 1;,1055 1.1540,1.1388 .831h 1.2195 150990 1.2127 1.1945 1 2711 1.2291 .9299 1.2eS4 1.1609 1.27,45 1.,2569 1.3352 1.2903 C2,22' 13 23 82 24 A2 25 81 26 .h2 27 8.1 28 _ %.s .7728 .o617 1.0935,1.1230 1.18t8, l'.1810 -1.2140 t 1.0934 1 0682 1.2134 1.2303 1.2959 L.2712 1.3183 1.1443 1.1290 1 2753 1 2715 1.3623.1'.3357 1 3848 C4 29 C1 3~0 42 31 A2'32 81 3.3 A2 34 8.1 35 Al 36 .5610 1.0152 1.6357 1.1044 1.1795 1.1940
- 1. 2351 1 2162
.9142 1.2075 1 1747 1.1938 '1.'2944 ').2832 1 3424 i.3068 .9623 1.2769 -1 '2334 1.2561 1.3607 1.3492 l'.4111 1.3729 C3 37 47 38 A7 39 42 40 1 2 4 1. 81 4.2 41 43. 81 44 .7601 .952Q .1.0547 1.1577,1.1804 1.2400 '1 2232 1 2652 1 0604 1.1031 1.1441 1.2713 1.2703 1.'3435 1 3179 1.3613 1.1114 1.1568 1.7,042 1.3353 1.3352. 1.'123 1 3955 '144311 C3 45 A3; 46 9 2 '4 7 &?. 48 81 49 Al '50 41 51 I AT 52 .41'72 .9753.l.'0893 1.1376 1.2054/ 1.2159-1.2600 1.2399 .1.1179 1.0'631 1 2d57 1.2279 1.3166 1.3065 1.3600 1 325A 1 1450 1.1171 1 2647 1.2890 1.3930 1.377.6 1.4297 1.3970 TNTSCE0IT(CERISE-l'2,(7/SEP/77[ CASE,#UNAT.18.IlGN '04/19/78 [j$0ME ~.40*t-7 ERO 'AND NDil Uri T T Y P I,N FACTORS'HAVE REFN USED ore NOR-UNITY 80X FACTCSS HAVE MEEN USED .g [ 96-R-2030-02, Revision 0 Page013 ( -. 6 P R. D K D / ~ m. m. 7.... ...oi o i..o wn =-=--.yu ..-.-z=
.O 96-R-2030-02, Revision,,0 Pagfl ATTACHMENT 2
g,, 1 U Entmay ENTERGY OPERAHONS INCORPORATED Jy 3 eo ARKAkSAS NUCLEAMk.t[Wt i T
- ~
opema:na .f' ~ . c, kA)',Fuelpycle'forwhichcalculationisbeingperformed: ~ 3 I sh t NOTE If this calculation ases an actual and-of-cycle bornup, 2-check ACTUAL. If this calculation uses a projected end-of-cycle bornup, check FJoJECTED. 3 1 a. .i ,.i i (B) T'ffo.Of esiculation.,: (Cit lAL FRCJECTED I ~ ~~~ I g Cycle (.*.)and-od-cycle.fraup: M M.k W EFT 3 4 i g; (C) [, ~~~~ l . [ (D) C6irolative core,burnap kicir 'to Cyh.le <TA): .o EFFD ' ~ v-
- Yt,
[. p(E) Cumu'1stive burnop;pt End pf-Cycle (A) = (C) + (D) EFFD -l ^ 3 n%483L_4
- 0. - i
~e/ 33.4. I,8 5M-EFFD 1 g . ['* ' (F) donveksio' n' 'to LFPY: '[(E)/365] = EFPY } 3 r-u m, = [ 3 2%.6nd ' /' 365f;= ?.19 4N '.;(! ETM. ri l j "*-' 7 . y..r .3, i i ( i ' ~; - NOTZ 1"L j 1 l! !8 If tha cumulative bir> valua.Sm (F) in 17.7s EFPY or jj l ,".greaterg. re))ctor,hessp,1 irridiktforr. surveillance " ~ ); .4 i:.. speciment 2#shall bg removed at tIis sad of the cycle or l ^ examination', and attd(G) sisy b/ina' rked "N/A". } i ~ " -r _ _, sv%. ). 4, y g ,.q i m.r 4 t l ~ (G)4Nuhbarof"cycf$s*re3eI$IA7until-'spE$leeinremoval: k l ~, 1 l'
- t %*
w. i ??:- ..tv , = (19 (F))/1.26 = [19:Ac. S1M ;.v /1.16 as,-
- f cycles
~ -] \\ !a l ,06 Oc + "KA,r.....O w,..... . int ' l h*
- 5. * -Assuming.,an. average 'c.yc25 lengt,h' okkl.26 EFFY $60 'EFFD)
~
- 1c e
.xp ' "n ': ' ~i *l ". '... ,, ?~i .L..:i _. e... hm M' i t .4 1 n. [ .h'V,rdiculat i' f ! l. L,M., h' 5W 4k. h GW As n-4 I B '~'"-~~ M e '5/)S/7.3, d [ 4;l2 ( j.dhprov.ed By; Date IIU ...;"lJ l .pp: <: 'r $.c.for.Engineerius. Sept. . S, '.,e . n '.. a.: i j. 4 '"r.g i.
- r. E.ef, y,,,,
.. = t j i . l 96-R-2030-02, Revision 0 e Page 2 " N CAfCULATION OF CUNULATIVE ANO-2 BURNUP Y.y. 4;4.. f. ) s. .$ $2.013A{. ... Y' t .. _....... 4 - =. - ~ =-
_.r@ Entergy ~
- lENTERGY' OPERAilONS TWCONPORATED
~-~ operctions ARKANSAS NUCLEAR ONE 8 er
- l 1
i (A) Fuel Cycle' for which calculatica is being performed! ~2. e =.b i l NOTE If this calculation uses an actual and-of-cycle burnup, check ACTUAL. If this calculation uses a projected end-of-cycle burnap, check PROJECTED. i j AW A 't ?I (D) Type of calculation: ACTUAL PR 'Ja { (C) Cycle (A) and-of cycle burnup: 2c. TI d EFPD (D) Cumulative core burnup prior to Cycle (A);,31$ 65% EFPD
- 2.
[. \\ (E) Cumulative burnup at End-of-Cycle (A) = (Cf + (D) ETPD i j I = 291. T713 + 324. 47 3b = 6 ID. '/IY9 { EFPD i ) (F) Conversion to EFPY: [(E)/365] = EFPY 5[ = [ 4,0. 4 519 / 365] = 1 L917 EFPY f. 4 gi s NOTE h If the cumulative burnup value in (F) is 37.75 EFPY or greater,* reactor vessel irradiation surveillance t ) .j specimen 2 shall be removed at the end of the cycle for examination, and step (G) may be marked "N/A". '(G) Number of cycles
- remaining until specimen removal
= [19-(F)]/1.26 = [19
- 1. M
]/1.26 = # sW'Ucycles do g
- Assuming an average cycle length of 1.26 EFI'Yl460 EFFD) 1-
- 460
.l Calculated By arid E Date 3/ IS/b g ..p Reviewed By P_ det - Date 3 -@ Approved By Date M3 U Reactor Edgine'ering Supt. ~ T,. i i, ; - - - 96-R-2030-02, Revision 0 0 Page 3 s " " CALCULATION OF CUMULATIVE ANO-2 BURNUP $Yi22.013A [* l
&- Entergy_ f..r ENTERGY OPERATIONS INCORPORATED ~~ operationa ARKANSAS NUCLEAR ONE
- er *
(A) Fus1 Cycle for which calculation is being performed: 3 NOTE If this calculation uses an actual and-of-cycle burnup, check ACWAL. If this esiculation uses a projected end-j of-cycle burnup, check PROJECTED. I / l (B) Type of calculation: ACYUAL PROJECTED (C) Cycle (A) and-of-cycle burnup: 234.1950 EFPD (D) Cumulative core burnup prior to Cyc.le (A): (.17.YS 97 ETPD (M) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD 2.3 't 19 se +In.9599 S SI. 7'IM EFPD = (7) Conversion to EFPY: [(E)/365] = EFPY = [ 9 51. 'l'4 *l 9 / 365) = 1. 3 M EFPY NOTE If the cumulative burnup value in (F) is 17.75 EFPY or greater,* reactor vessel irradiation surveillance specimen 2 shall be removed at the end of the cycle for examination, and step (G) may be marked "N/A". (G) Number of cycles
- remaining until specimen removal:
[19-(F)]/1.26 = [19 - 2. 5134 ]/1.26
n cycles
- Assuming an average cycle length of 1.26 EFPY (460 EFFD) l e
Calculated By NM D". deck Date 3/IS!93 Reviewed By. h k. 6 Date 3*6'N Approved By Date 3//.f8 'T Reactor Enginee(ing Supt. i 96-R-2030-02, Revision 0 page 4 Y CALCULATION OF CUMULATIVE ANO-2 BURNUP N22.013A Y ~... l [
~ ~' ~~ [ENTERGY OPERATIONS INCORPORATED g Entergy .,7 ~ i ~ oper:.tena ARKANSAS NUCLEAR ONE
- er a (A) Fuel Cycle for which calculation is being per.1ormed:
'i l NOTE If this calculation uses an actual and-of-cycle burnup, check ACTUAL. If this calculation uses a projected end-l of-cycle burnup, check PROJECTED. l (B) Type of calculation: ACTUAL PR E CTED l (C) Cycle (A) and-of-cycle burnop: 15 1 9:01 Er?D (D) Cumulative core burnup prior to Cycle (A): ' 951 M 99 EFPD (E) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD = 3 5 5 9101 + 9 5l. 7 % 99 id7. L b c>o EFFD = (F) Conversion to ZFPY: [(E)/365) = EFPY ={ tw67.LLeo / 365] = A ~5 ox 7 TJPY NOTE If the c.umulative burnup value in (F) % 1'i.75 EFPY or greater,* reactor vessel Arradiation survaillance specimen 2 shall be removed at the end of tie cycle for examination, and step (G) may be marked "M/P ~ (G) Number of cycles
- remaining until specimen removal:
= [19-(F))/1.26 = {19 - 1.30% 7 ]/3.26 -, N __ cycles
- Assuming an average cycle length of 1.26 EFPY (460 ETPD)
Calculated By ' Date 3 //5[9A Reviewed By / Date 3-/5 93 Approved By Date 3YSb Reactor Engineering Supt. l 96-R-2030-02, Revision 0 0 Page 5 a l '0""
- FORM NO.
REV. CALCULATION OF CUMULATIVE AND-2 BURNUP 1022.013A 5 .n.... e-~-
.c 4 ENTERGY OPERATIONS INCORPORATED I - Entergy operattn2 ARKANSAS NUCLEAR ONE
- oc 8 7
~ ~ (A) FJe1 Cycle for which calculation is being performed: 5 NOTE If this calculation uses an actual and-of-cycle burnup, check ACTUAL. If this calculation uses a projected end-of-cycle burnup, check PROJECTED. (B) Type of calculation: ACTUAL PRMECTED (C) Cycle (A) and-of-cycle burnup:.lli.4tr5lEFPD (D) Cumulative core burnup prior to Cycle (A): lioitAno EFPD (E) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD i = 311. ho 9 + h.o7. blo o = t51.e oEnq EFPD ,(F) Conversion to EFPY: [(E)/365] = EFPY
[ t '51o os oci / 365)
- 4. IL %
EFPY i \\ NOTE i If the cumulative burnup value in (F) is 17.75 EFPY or greater,* reactor vessel irradiation surveillance specimen 2 shall be removed at the end of the cycle for i examination, and step (G) may be marked "N/A". (G) Number of cycles
- remaining until specimen removal:
To = [19-(F))/1.26 = [19 4 tb % J/1.26 = Il cycles %4 q i
- Assuming an average cycle length of 1.26 EFFY (460 EFFD) 4
-palculated By M-Date 3/I5/93 Reviewed By N# N Date b IT~b 3 Approved By' Date 2[MS2 Reactor Engine (ring Supt. 96-R-2030-02, Revision 0 Pagek " ' CALCULATION OF CUMULATIVE AND-2 BURNUP N22.013A Y'
== ..s.-...
f..-(s h' ENTERGY OPERATIONS INCORPOTRAM..Nb U. Estergy. s opectirn3 ARKANSAS NUCLEAR ONE 8 er 8
- j (1) Fuel C'ycle for which' calculation is being perforeed:
L 4 ~ .I s n 5 NOTE { If this calculation uses an actual end-of-cycle burnup. i j check ACTUAL. If this calculation uses a projected end-of-cycle burnup, check PROJECTED. t! (B) Type of calculation: ACTUAL PROJECTED (C) Cycle (A) and-of-cycle burnup: '1%.b319 EFFD (D) Cumulative core burnup prior to Cycle (A): 1810.0909 EFPD (E) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD \\ i M. L 3l9 + t 51 o. o % 0'l IH.3. ~711.% EFPD = = (Fj' Couversion to EFPY: [(E)/365] = EFPY = [ M bl -)ll.% / 365] = T.3800 EFPY NOTE If the cumulative burnup value in (F) is 17.75 EFPY or ,j greater,* reactor vessel irradiation surveillance s,pecimen 2 shall be removed at the and of the cycle for expmination, and step (G) may be marked "N/A".
- +
- (G) Number of cycles
- remaining until specimen removal:
,o god i g ,,/ 3-6 M 3,os e) .i j = [19-(F)]/1.26 = [19 - F. 3 800 }/1.26 = ,M ' cycles I e A. 't !.!)f,
- Assuming an average cycle length of 1.26 EFPY (460 EFPD)
~ 'i.' l Calculated By 41/m,1 &. O-Date 3/IS/9 3 .k Reviewed By k k. Date 3I D Approved By M Date YnID Reactor Engineering Supt.
- . t b b. i i; ::
96-R-2030-02, Revision 0 page 7 .v YM ' CALCULATION OF CUMULATIVF. ANO-2 BURNUP N22.013A Y j i. + 7 m
@c~. Entergy ENTERGY OPERATIONS INCORPORATED .c ~~ operatiore ARKANSAS NUCLEAR ONE
- at a
' br-{-1) Fuel Cycle for which calculation is being performed: ~7 8, iI' NOTE If this calculation uses an actual and-of-cycle burnup, l 'i check ACTUAL. If this calculation uses a projected end-r of-cycle burnup, check PROJECTED. { i ,~ (B) Type of calculation: ACTUAL PROJECTED (C) Cycle (A) and-of-cycle burnup: Ml9.99hEFFD (D) Cumulative core burnup prior to Cycle (A): 19 0'L ME EFFD (E) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD 414. 4 9 r o + f % 3. i t 2.1 = 13 7 9. 2092 EFPD l w
- 4 (F) Conversion to EFPY:
[(E)/365] = EFPY [ 13 h 091 / 365] = L 6l55 EFPY = NOTE If the cumulative burnup value in (F) is 17.75 EFPY or 4 greater,* reactor vessel irradiation surveillance ,',.f l specimen 2 shall be removed at the end of the cycle for [( examination, and step (G) may be marked "N/A". i l l (G) g b) Numberofcy.cles*remaininguntilspecimenremoval:q bM (19-(F)]/1.26 = [19 L.5156 ]/1.26 = f cy les e
- Assuming an average cycle length of 1.26 EFPY (460 EFPD) j Calculated By Neumd D~.
3/15[9??" Date Reviewed By k-Date I'6~N Approved By Date 2NdN Reactor Enginee' ring Supt. 96-R-2030-02, Revision 0 Page 8 FORM WE: Fonu wo. REV. CALCULATION OF CUMULATIVE ANO-2 BURNUP 1022.013A 5 as
.r..-@- ~ ENTERGY OPERATIONS INCURPORATED ~ Entergy ~~ cperati:ns ARKANSAS NUCL. EAR ONE
- cr *
(A). Fuel Cycle for which calculation is being performed: 9 NOTE If this calculation uses an actual end-of-cycle burnup, check ACTUAL. If this calculation uses a projected end-of-cycle burnup, check PROJECTED. 4 (B) Type of calculation: ACTUAL t/ ' PROJECTED (C) Cycle (A) and-of-cycle burnup: 419 7'1a < EFPD -(D) Cumulative core burnup prior to Cycle (A): 3.177.20% EFPD (t) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD i 419. "I'f oS + 2 319. 2.o 9 e =
- 2. 7 97. 9 501 EFPD
= l !, (F) Conversion to EFPY: [(E)/365) = EFPY , ',1
[37 at 7. 9 5 ol / 365)
~1. LL 54 EFPY il NOTE If the cumulative burnup value in (F) is 17.75 EFPY or i greater,* reactor vessel irradiation surveillance specimen 2 shall be removed at the and of the cycle for examination, and step (G) may be marked "N/A". (G) Number of cycles
- remaining until specimen removal:
gM g g = [19-(F)]/1.26 = [19
- 7. 465L
)/1.26 = [ c clos
- Assuming an average cycle length of 1.26 EFPY (460 EFPD)
Calculated By N M M-M Date.2/IS-[93 .r Reviewed By ~ k4 e A Date 3-II 'N Approved By Md Date Y#O2 Reactor Engin(ering Supt. 96-R-2030-02, Revision 0 Page 9 CALCULATION OF CUMULATIVE ANO-2 BURNVP $i22.013A Y ~
' ' " = $ ntemy ENTERGY OPERATIONS INCORPORATED ~E ~~ oparitions ARKANSAS NUCLEAR ONE 8 or 8 (A) Fuel bycle for which calculation is being performed:._, 9 NOTE If this cciculation uses an netual end-of-cycle burnup, check F4UAL. If this calculation uses a projected end-of-cycic harcup, check PROJECTED. (B) Type of calculation: ACTUAL PROJECTED (C) Cycle (A) end-of-cycle burnup:.'Go 15 51 EFPD (D) Cumulative core burnup prior to Cycle (A): 1.1979 501EFPD (E) Cumulativo burnup at End-of-Cycle (A) = (C) + (D) EFPD =.'110_1.51.L_ + 2. 7 9 7 : 9 Sol 32 21. t05 Y EFPD = (F) Conversion to EFPY: ((E)/365) = EFPY = [ Mile f'f / 355] = 1. S 'l55 EFPY e NOTE If the cumulative burnup value in (F) is 17.75 EFPY or greater.* reactor vessel irradiation surveillance specimen 2 shall be removed at the end of the cycle for exam'netion, and step (G) may be marked "N/A". (G) Number of cyc1*s* remaining until specimen removal: g j 60 = [19-(F)J/1.26 = [19 -0145 5 J/1.26 = L P - Tycles s r
- Assuming an average cycle length of 1.26 EFPY (460 EFPD)
Calculated f:y b con [_J7 Date 3/t o/91 l 3. ei Date D '1 ' Reviewed By Approved By Date 3d>N Reactor Engineering Supt. ~ .. ~ - 96-R-2030-02, Revision 0 Page 10 FORM RE: FORM NO. REV. CALCULAU ON GF CilhULATIVE ANO-2 BURNUP 1022.013A 5
$ ntrgy ENTERGY OPERATIONS INCORPORATED E operations ARKANSAS NUCLEAR ONE 8 of 8 (A) Fuel Cycle for which calculation is being performed: 70 NOTE If this calculation uses an actual end-of-cycle burnup, check ACTUAL. If this calculation uses a projected end-of-cycle burnup, check PROJECTED. i (B) Type of calculation: ACTUAL PROJECTED (C) Cycle (A) end-of-cycle burnup: Y8#T M5 EFPD (D) Cumulative core burnup prior to Cycle (A): 3SAFdoWEFPD (E) Cumulative burnup at End-of-Cycle (A) = (C) + (D) EFPD Vfd. 99f3 +.12.2 8'. 40SV 3 7054037 EFPD a a (F) Conversion to EFPY: [(E)/365] = EFPY [ 5 7#f 4037 / 365) = /A C.3 EFPY = NOTE If the cumulative burnup value in (F) is 17.75 EFPY or greater,* reactor vessel irradiation surveillance specimen 2 shall be removed at the end of the cycle for examination, and step (G) may be marked "N/A". (G) Number of cycles
- remaining until specimen removal:
(19-(F)]/1.26 = (19 - /0</433 }/1.26 = 7 cycles =
- Assuming an average cycle length of 1.26 EFPY (460 EFPD)
Calculated By 8 wI Date SM N Reviewed By evi Ir O Date S~lb-Approved By Date 3//5/9Y Reactor Engineer (ng Supt. 96-R-2030-02, Bevision 0 b Page ll FORM TITLE: FORM P40. REV. CALCULATION OF CUMULATIVE ANO-2 BURNUP 1022.013A 5
AM Entrgy ENTERGY OPERATIONS INCORPORATED ~~ operations ARKANSAS NUCLEAR ONE 8 of 8 (A) Fuel Cycle for which calculation is being performed: // 1 NOTE -If this calculation uses an actual end-of-cycle burnup, check ACTUAL. If this calculation uses a projected end-of-cycle burnup, check PROJECTED. (B) Type of calculation: ACTUAL / PROJECTED (C) Cycle ( A) end-of-cycle burnup: M* N EFPD t (D) Cumulative core burnup prior to Cycle (A): 3709.0037 EFPD (E) Cumulative burnup at End-of-Cycle ( A) = (C) + (D) EFPD = 48Y.19S + 3764, 6037 = M l4 3, ~799 EFPD (F) Conversion to EFPY: [(E)/365] = EFPY = [ H93,7% / 3651 = 11 O EFPY NOTE If the cumulative burnup value in (F) is 17.75 EFPY or greater,* reactor vessel irradiation surveillance specimen 2 shall be removed at the end of the cycle for examination, and step (G) may be marked "N/A". (G) Number of cycles
- remaining until specimen re- "al:
= [19-(F))/1.26 = [19 - if NO ]/1.26 = S.960 cycles
- Assuming an average cycle length of 1.26 EFPY (460 EFPD)
/ !// S Calculated By ____ // Date Reviewed B adw Date 8 Approved By Date //Mf4 Reactor Engineefing S' upt. l i ~ 3 a, 96-R-2030-02, Revision 0 N Page 12 i FORM WE: FORM NO. REV. i CALCULATION OF CUMULATIVE ANO-2 BURNUP 1022.013A 5
^ ~ ~ j;< y; 9s.g.2o3o -o2, y, j _O e 3/2a. ~===~ Entergy 4' inter-Oilice 307T03pDHdCC3 Date: May 12,1997 Number: ANO-97-2-00093 To: F.T. Philpott From: T.A. Erskine
Subject:
ANO-2 Monthly Performance Repor+.. Attached is the monthly performance report for ANO Unit 2 for the period i of May 1,1997 to May 31,1997. The Unit shutdown for 2R12 at 2332 on May.
- 9. If there are any questions or comments, please contact me at extension 5526.
-{ TAE/tae Attachments cc: J.H. Willoughby (GSB/3W) R.B. Lang (ECH 37) P.B. Brown (ECH 681) K. Fitzsimmons (L-ENT-118) D. Doucet (L-ENT-118) ANO-DCC -*eao e e a e me e. e
==e e mue + eea t 0 s
.... ~. p ?,g W R-zo30-cz. L/ Pg B12b i .(. REACTOR THERMAL POWER HISTORY. FORM NO. 1022.011 A 1 Unit 2 Month May Year 1997 I l l i DAY AVERAGE POWER CUMULATIVE OUTPUT BORON COMMENTS %FP MWt EFPD MWD -PPMB 1 97.34 2740.06 471.964 1328579.73 ) 2 97.39 2741.60 472.938 1331321.32 71 i 3 97.35 2740.41 473.912 1334061.73 4 97.35 2740.50 474.885 1336802.23 S 97.32 2739.70 475.859 1339541.93 60 6 = 0.49 2716.32 476.824 1342258.24 -7 77.60 2184.49 477.600 1344442.73 73 1 8 69.50 1956.36 478.295 1346399.09 "~ 9 63.62 1790.83 478.931 1348189.92 138 Trip from 10 0.00 0.00 478.931 1348189.92 19 % @ 2332 11 0.00 0.00 478.931 1348189.92 12 0.00 0.00 478.931 1348189.92 4 i 13 0.00 0.00 478.931 1348189.92 i k -14 0.00 0.00 478.931 1348189.92 15 0.00 ' O.OO 478.931 1348189.92 l 16 0.00 0.00 478.931 1348189.92 17 0.00 0.00 478.931 1348189.92 18 0.00 0.00 478.931 1348189.92 19 0.00 0.00 478.931 1348189.92 20 0.00 0.00 478.931 1348189.92 21 0.00 0.00 478.931 1348189.92 22 0.00 0.00 478.931 1348189.92 23 0.00 0.00 478.931 1348189.92 24 0.00 0.00 478.931 1348189.92 25 0.00 0.00 478.931 1348189.92 26 0.00 0.00 478.931 1348189.92 27 0.00 0.00 478.931 1348189.92 i l 28 0.00 0.00 478.931 1348189.92 29 0.00 0.00 478.931 1348189.92 30 0.00 0.00 478.931 1348189.92 31 0.00 0.00 478.931 1348189.92 AVERAGE AVERAGE TOTAL TOTAL t 25.61 720.98 7.940 22350.58 I i i t' Page 2 -}}