ML20207J203

From kanterella
Jump to navigation Jump to search
Exam Rept 50-456/OL-88-01 on 880718-22.Exam Results:Three Senior Reactor Operators & One Reactor Operator Candidates Failed Exams
ML20207J203
Person / Time
Site: Braidwood  Constellation icon.png
Issue date: 08/18/1988
From: Burdick T, Damon D, Hopkins J, Sunderland P
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III)
To:
Shared Package
ML20207J196 List:
References
50-456-OL-88-01, 50-456-OL-88-1, NUDOCS 8808300309
Download: ML20207J203 (128)


Text

,

.) '

O U. S. NLoLEAR REGULATORY COMMISSION REGION III Report No. 50-456/0L-88-01(DRS)

Docket Nos. 50-456; 50-457 . Licenses No. NPF-72; NPF-77 Licensee: Commonwealth Edison Company Braidwood Station R.R. 1, Box 84 Braceville, IL 60407 Facility Name: Braidwood Stativa Examination Administered At: Braidwood Station and Production Training Center Examination Conducted: July 18-22, 1988 Examiners: -- -

8[l8f El D.L. Damon Date 6 E-86 P. R. Sunderland Date b &

u / C Ju. /98$

[/.A.Hopkitis Date' Approved By: i / U l Thomas M. Burdick, Chief Date '

Operating Licensing Section 2 Examination Summary l

l Examination administered on July 18-22, 1988 (Report No 50-456/0L-88-01(ORS))

to six Reactor Operator and seven Senior Operator candidates.

Results: Three Senior Reactor Operators candidates failed the examinations and one Reactor Operator candidate failed the examinations.

l 8808300309 880822 6 PDR ADOCK 0500

\

1 .

(

REPORT DETAILS

1. Examiners T. M. Burdick
  • D..J. Damon J. A. Hopkins P. R. Sunderland T.'Guilfoil, SONALYSTS F. Victor, SONALYSTS
  • Chief Examiner
2. Exit Meeting On July 25, 1988, the examiners met with the members of.the plant staff to discuss findings made during the course of the examinations. The.

following personnel attended the exit meeting.

Commonwealth Edison Company (CECO).

R. Querio, Station Manager R. Ungeran, Operations Engineer, Unit 1 K. Kofron, Production Superintendent

0. O'Brien, Services Superintendent T. Chasensky, Training Supervisor D. Huston, Operator Licensing Training Group Leader U.S. Nuclear Regulatory' Commission (USNRC)

D. J. Damon, Region III Examiner J. A. Hopkins, Region III Examiner The following strengths and weaknesses were detailed to the facility staff:

a. Strengths (1) The candidates exhibited strong team work and practiced good i communication skills by using "repeat backs" or some other i positive acknowledgement of most orders and most communications. '

(2) The candidates demonstrated positive control in each phase of the bistable tripping procedure.

(3) The candidates exhibited good knowledge of individual systems and good familiarity with Technical Specifications.

(4) In general, the candidates used the operating procedures well, especially the Emergency Procedures.

2

b. Weaknesses (1) In simulation scenarios wiih a loss of Centrifugal Charging Pump, mcr' candidates did not shut Valve FCV-121 prior to startint tea standby pumo, as required by procedure BwAR 1-9-A3.

'(2) In simulator scenarios with.a loss of an electrical bus, the candidates would' focus on an individual piece of equipment an'd ignore other equipment.that had been lost. For example, the B0P would focus on the loss of an ESW pump, and ignore a stoppad CC pump and the de-energized bus. In some cases, candidates did not even recognize that a bus had been lost.

(3) In general, the candidates had difficulty:

(a) identifying Temporary Alterations on a Critical Drawing; and (b) explaining the meaning of the circled numbers on the Radiation Survey Maps.

(4) Some of the candidates were not aware that the kWP requires a review of the Radiation Survey Map prior to signing the RWP.

(5) On the SR0 written exam, the majority of the candittates did not correctly answer a question concerning the verification of a j reactor trip in the Emergency Operating Procedures.

(6) un the R0 written exam, all candidates failed to correctly answer a question concerning verification of a stuck control rod. Bw0A-ROD-3 specifies exercising rod banks in five step increments. Most candidates stated that rod br.nks must be exercised in 10 step increments,

c. General Comments l Although these topics were not covered by every examiner and are not considered generic in nature, they deserve mention in this report.

i (1) QA by the license 4's Training Department on examination l materials sent to the NRC was inconsistent. For example, one l side of a two sided page would not be copied, drawings and I even entii*c :hapters would be missing. Additionally, the system descriptions were not all current, which affected the written examination.

(2) During the conduct of the operating examination, some i deficiencies were noted in the implementation of certain Administrative Procedures. For example:

(a) A caution card on the Main Contro'l Board could not be found in the Haster Caution Logbcok.

l 3

I

l .

. 'I (b) The status of an Out of Service (005) Tag logged in the Master 00S Logbook could-not be determined.

(c) The status of a Nuclear Work Request identified on the Shift Engineer's Turnover Log could not be determined.

3. Examination Review The following are facility comments on the written examination and ,

their respective NRC resolutions:

Question 1.20 Facility Comment Part a Acceptable answer for description should also be ". . . suction i pressure less than minimum required NPSH . . . ." l NRC Resolution i

Comment accepted. Answer Key modified to give credit for "When ,

pump suction pressure (0.25) is less than minimum required NPSH i (0.25) bubbles form." This first phase of the second sentence yvil be accepted for credit, as well as the current key. 1 Part b Additional acceptable answers should be:

  • Temperature alarms on components served
  • Low flow alarms on components served 1

NRC Resolution Comment not accepted. These alarms are considered annunciators )

in the Control Room and were specifically excluded in the j question. However, "Temperature increasing on components  ;

served" will be added to the answer key. Answer key modified.

Question 3.02 Facility Comment Part b The question is very confusing, difficult to tell what is want'u. The questions asks what generates a Logic Cabinet Urgent Failure. The key gives answers for "Power Cabinet Urgent Failure." Recommend that Logic Cabinet Vrgent Failure Alarms also be acceptable.  ;

l

1. Loose or missing card R
2. Slave Cycler failure
3. Oscillator failure
4. Shutdown banks C, 0, E circuit failure 4

.~

NRC Resolution Part b deleted.

Question 3.03 Facility Comment Part b The question asks for four rod stops that block both manual and auto withdrawal other than OTDT and OPDT. .The key lists only two. The key is correct in that there are only two such rod stops.

Recommend full credit for the two listed in the key.

NRC Resolution Part b deleted.

Question 3.12(a) (Third Sentence)

Facility Comment Part a Answer should state: Chilled water to the RCFC chilled' water coils vice "Essential Service Water to the chilled water coils."

NRC Resolution Comment not accepted. Chilled water to the RCFC chilled water coils is not isolated on a Safety Injection signal. The SI signal bypasses SX to the Primary Containment Refrigeration Unit.

This causes the chill water pump to trip. Chilled water is not isolated. Answer key modified.

Question 4.05(b) i Facility Comment Part b Typical valve numbers should be acceptable for full credit.

NRC Resolution I Comment accepted. Answer key modified, i

l

)

l

5 l

c.

Question 5.01 -

Facility Comment The question asks for a description of the effects of a boration on shutdown margin. The' answer key then requires an explanation of the effect on a trip. Recommend that theLlast sentence.not be required for full _ credit.

NRC Resolution Comment accepted. Answer' key modified.

Question 5.03 Facility Comment Sigaificantly different va'ues for Delta rho can be obtained by using different calculational methods. Request that a band of 130 pcm be acceptable on the answer, and the following calculational methods for delta-rho be acceptable.

a. Delta-rho = in (K2 )

Ky K

b. Delta-rho = K2 -

1 K

2y NRC Resolution Comment partially accepted. Alternate calculational methods-will be accepted for full credit. Because of this, a range for the total delta-rho will be set at 960 to 1000 pcm. The range for xenon delta-rho will be set at -500 to -540 pcm.

Question 5.08 (a)

Facility Comment Part a Since the quercion di ' .iot specify that oniy moderator temperature ;a t.ved; recommend . hat the follovlag answer be considered:

If moderator tempercture '1crav as, fuel temperature must increase (at 3r above pr./Hs thus doppiar power coefficient will add negative reacvi'.y. I l

l l

l 6

I

NRC Resolution Comment partially accepted. While it is true that a fuel temperature increase will result in a moderator temperature increase, this is not the only method that can be used to raise moderator temperature. Therefore, if a candidate states the assumption'that the moderator temperature increase was due to a fuel temperature increase, credit will be given for the facility requested answer as one part of the overall answer.

Answer Key is modified accordingly.'

Question 5.09(b)

Facility Comment Part b The reason for a smaller power decrease given in the answer key is incorrect. Doppler Power Coefficient gets less negative as the core ages. Even though Fuel Tgggerature Coefficient gets more negative due to buildup of Pu , ciad creep causes the change in Fuel Tgggerature per % power to decrease--this overrides the Pu effect. The power decreases is smaller at the end of life because MTC. is so much more _ negative, temperature does not have to decrease as much to compensate for rods.

1 NRC Resolution Comment accepted. Answer Key modified.

Question 6.03 Facility Comment Question premise is false, all Diesel Generator and Diesel l engine trips are simultaneous. Thus, examinees were unable to '

determine what the question was asking. Recommend this I question be deleted.

NRC Resolution Comment not accepted. The answers given in the original key {

energize a generator trip relay which in turn energizes a '

engine shutdown relay. Though the two trip signals are fractions of a second apart, the generator trip does in fact occur first. Also, based on additional references, the answer key is expanded to include the following: manual, bus lockout, and SI. Answer Key mcdified as indicated.

Question 6.08(d)

Facility Comment High water temperature should by 205 vice 225 .

7

r s'

o e

NRC Resolution Comment accepted. Typographicalierror was corrected.

Question 6.10 l Facility Comment

~

Contact 3 should be (RTA) (BYA)

This was recently changes as a result of the modification to

~

P-8. This change is still in routing and has not been incorporated into all of the Braidwood Training Material.

NRC Resolution Comment accepted. Answer Key modified. It is expected that the facility develop a system to inform the NRC examiners prior to examinations when a change has been made that has not been incorporated into training materials.

Question 7.06 Facility Comment

1. Should be an Unusual Event, Lake level is below Tech Spec minimum; as this Tech Spec has no correction period, we must immediately begin shutting down.
2. Could be an Unusual Event. Question does not state why the operator initiated S.I. but indicates it might have been required as pressure has stabilized below shutoff head of Hi Head SI and below Normal Operating Pressure. This is symptomatic of a small break LOCA. Recommend either answer, None or Unusual Event be accepted.  ;
3. Answer could be None as EAL, specifies that an inadvertent l dilution must be cause for rods going below Low-Low insertion i limit and question does not give enough information to determine whether or not that is cause of runback. Recommend that either answer, None or Unusual Event be accepted.

NRC Resolution

1. Comment accepted. Answer Key modified. l l
2. Comment partially accepted. Answer Key modified t require  !

Unusual E'eant as the answer.

3. Comment accepted. Answer Key modified.

8

r o

Question 7.07 Facility Comment Training guidance as agreed to by PTC, Braidwood and Byron in this matter, is that if one trip breaker' is' open and all other Rx trip parameters are verified, i.e. rod bottom lights are lit and a negative startup rate exists, it is not necessary to go to BwFR-S.I.

Recommend that an answer along the line of "Send a person to locally open the closed trip breaker" be acceptable for full 4

credit.

NRC Response Comment not accepted. BwAP 340-1, Paragraph C.2.b.1 states in part "When the sequence is not important, the low-level step shall be preceded by a bullet. A "closed bullet" requires all steps to be completed in any order "(*)." This statement removes all decision making from tne operator regarding the completion of low-level steps preceded by a closed bullet.

BwAP 340-1 further =.tates that "If an action cannot be performed or an expected response is not obtained, the user should go to the contingency response or action." Thus, to conform with BwAP 340-1, if a low-level step that is preceded by 3 closed bullet cannot be performed, the major step is not considered to be completed satisfactory and the response not obtained column must be entered.

Training policy as generated by PTC regarding the implementation of EP-0 step 1 violates the guidance contained in BwAP 340-1. Technical Specification 6.8.1 gives specific guidance concerning the use of procedures. Technical l Specification 6.8.2 sets forth the review requirements that must i be met prior to implementing changes to the procedures as listed in 6.8.1. Since the training policy has not been reviewed by the Onsite Review and Investigative Function as stated in Technical Specification 6.5.2, the facility may not be operated in accordance with training policy and must be operated in accordance with approved administrative and emergency operating procedures.

The Answer Key remains unchanged.

Question 7.08 Facility Comment Point source formula not provided on formula sheet. Recommend that full credit be awarded for any reasonable and conservative attempt to solve, or the question be deleted.

9

i s .j l

. l

, l 1

NRC Resolution Comment accepted. The fact that the formula was not provided will be taken into account and credit will be_ assigned accordingly.

Question 8.10 Facility Comment An alternate acceptable answer should be: " . . pro'vides' assurance that a mass addition pressure trans??nt can be:

relieved by the operation of a single PDF, or an RHR relief valve."

NRC Resolution Comment accepted. Answer Key mcdlfied.

Question 8.11 ,

1 Facility Comment Key is only practically correct. Additional instances are-t

1. To prevent injury _ to public or company personnel.
2. To prevent releases off-site in excess of Tech Spec limits.
3. To prevent damage to equipment if such damage is tied to a possible adverse effect on public health and safety.

Also: ,

In an emergency when this action is immediately needed to  ;

3 protected the public health and safety and no action consistent

  • with license conditions and Tech Specs is immediately apparent. Recemmend that these two answers also be acceptable -

for full credit.

NRC Resolution r

Comment accepted. Answer Key modified.

I l

l 1

l l

10 F

\

S'~ MASIER U. S. NUCLEAR REGULATORY COMMISSION COP _Y SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY: _DB@lDWQ99_1h2___________

REACTOR TYPE: _PWB-Wgg4________________

DATE ADMINISTERED: _@@l9Zl1@________________

EXAMINER: _QAMgN 1 _Qz_______________

CANDIDATE: _________________________

INSIBUCIlgNS_IQ_CONQ1RSIEL Use separate paper for the answers. Write answers on one side only.

Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts.

% OF CATEGORY  % OF CANDIDATE'S CATEGORY

_ vetug_ _IgleL ___SCQBE___ _VGLUE__ ______________C81EGQBY_____________

_25t9k__ _2Dt99 ___________ ________ 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS

_25t99__ _;5199 ___________ ________ 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION

_2Et99__ _25199 ___________ ________ 7. PROCEDURES - NORMAL, ABNORMAL,  !

l EMERGENCY AND RADIOLOGICAL CONTROL

________ 8. ADMINISTRATIVE PROCEDURES,

_?5t99__ _25399 ___________

CONDITIONS, AND LIMITATIONS 100.00 ___________ ________% Totals Final Grade All work done on this examination is my own. I have neither given nor received aid.

l

____________-______________________ l I

Candidate's Signature MAST R CORY

I I

l

' l

= NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS I

During the administration of this examination the following rules apply:  ;

1

1. Cheating on the examination means an automatic denial of your application l and could result in more severe penalties.  ;
2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside.the examination room to avoid even the anpearance or possibility of cheating.
3. Use black ink or dark pencil gely to facilitate legible reproductions.
4. Print your name in the blank provided on the cover sheet of the ,

a examination.  ;

5. Fill in the date on the cover sheet of the examination (if necessary) .
6. Use only the paper provided for answers.
7. Print your name in the upper right-hand corner of the first page of gach j i

section of the answer sheet.

~

8. Consecutively number each answer sheet, write "End of Category __" as appropricte, start each category on a Ogw page, write gnly g0 goe sidg of the paper, and write "Last Page" on the last answer sheet.
9. Number each answer as to category and number, for example, 1.4, 6.3.

j 10. Skip at least thtgg lines between each answer.

, 11. Separate answer sheets from pad and place finished answer sheets face  :

1 down on your desk or table.

12. Use abbreviations only if they are commonly used in f acility litetatutg.
13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.

i 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.

15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE

, OUESTION AND DO NOT LEAVE ANY ANSWER BLANK.

, 16. If parts of the examination are not clear as to intent, ask questions of the ggamiggt only.

l

17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.

i 4

e b

- 18. When you complete your examination, you shall:

a. Assemble your examination as follows:

(1) Exam questions on top.

(2) Exam aids - figures, tables, etc.

(3) Answer pages including figures which are part of the answer.  !

b. Turn in your copy of the examination and all pages used to answer the examination questions.
c. Turn in all scrap paper and the balance of the paper that you did not use for answering the-questions.

I

d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.

l

)

l l

l l

=U

, Pcgo 1 of 5 QOIO EUEEI BEBCIQB IMEQBY_EQBdukeS:

5UR(t) p = p et /t P = P 10 EI th P = ---------10 -------------- SUR = 26.06/7 3.12 x 10 fissions /sec p

1

, ,-(B Lg) P = 1* + III --

th 2 2 y 1 +hv 1 + (B L th K- 1 p =e

-cs 2 g 23 f

p = -----

K K

Ap = In i!Ufl--

, , ,-CN3tI,,j]/tr, initial 3 -

p C

3 (1-K,993) =C 2 (1-K Hf2

    • ~

h"~~

8 1 C 1 m = --- = Il0fl-- - --

~

initial 2 2

. 1 of l ap al c = - -- + - -- - B (- b + AL- b -)

f at p At at at 3 -

K,,, =( Pg pP th fn Pg =P O ~ ~~~~

I E ef+ 91 l

', , , , Pcgo 2 of 5 QBIO_EUEEI IUEBdQQYuedlCS_86D_ELUID_dECU8NICS_EQBduL85:

b = 5 oh ,

2 w lot Q = -----------------------

1 In R /R 3 in R3 /R 2 2

0=UA (AT*) - + -------- + --------

K K K 2 3 G = m. c (oT)

P b=a&AR4 0 $ (h -h n= !O -

"t n = - LO--- 9t)CE*l-- -

(h Q

in in -hou.) ideal actual 1 1 22

. _________ ____ = ____

yP T T W 2 supplied 1 A = pAV ,

pAV3g 3 = p2 Av22 3

$ = KA J oP p 5 = KA E = KA AT M = KA op JoP x nc Q AT m

. eI_1101_:_eI_!estl e._i!tb___ 9 oT (in) 8.8x10 In (--------)

AT (out) 2 Gr ,

kAST T -T = --- Q = -----

  • P" 4k Ax .

O

, total Q = 37--- gg-- AX a b n

___ + ___ + , , , + ___

l K K K a b n I

l l

1 1

I

)

t l '..

'.

  • Pcgo 3 of 5 D8Ie_SWEEI i l

i l CEWIBIEUGOL_EUdE_LBWS l N (N )2 H (N ) P l _1 . 5_1 1 1 1 1 N (N ) H (N ) P 2 2 2 2 2 2 I

B0010Il0N_0ND_ CUED 15ISY_EQBdWLOS:

2 ,-mx CVg g =CV22 R/hr = 6CE/d 3 , y G = DLly1Lgo_ Belt I = Io IL[ C

=.C0*

Volume 10 A=A 0 e A = AN j l

CQWEBS1QNS: )

3 1 gm/cm = 62.4 lbm/ft Density of water (20 C) = 62.4 lbm/ft 1 gal = 8.345 lbm l

^

1 ft = 7.48 gal Avogadro's Number = 6.023 x 10 1 gal = 3.78 liters Heat of Vapor (H O) = 970 Btu /lbm 2

1 lbm = 454 grams Heat of Fusion (ICE) = 144 Btu /lbm

~

e = 2.72 1 AMU = 1.66 x 10 grams u = 3.14159 Mass of Neutron = 1.008665 AMU 1 KW = 738 ft-lbf/sec Mass of Proton = 1.007277 AMU 1 KW = 3413 Btu /hr Mass of Electron = 0.000549 AMU 1 HP = 550 ft-lbf/sec One atmosphere = 14.7 psia = 29.92 in. Hg 1 HP = .746 KW 'F = 9/5 *C + 32 1 HP = 2545 Btu /hr 'C = 5/9 (*F - 32) 1 Btu = 778 ft-lbf 'R = 'F + 460

-6 'K = 'C + 273 1 MEV = 1.54 x 10 Btu h = 4.13 x 10 -21 M-see 10 1 W = 3.12 x 10 fissions /sec 2 c = 931 MEV/ AMU g g = 32.2 lbm-ft/lbf-sec 1 inch = 2.54 cm C=3x 10 m/sec

-8 R e = 0.1714 x 10 Btu /hr ft l

', ' , ', . Pcgo 4 of 5 DGIO_SBEEI eVEBeGE_IBE8 del _CQNDUCIIVIIY_1El datettal K Cork O.025 Fiber Insulating Board 0.028 Maple or Oak Wood 0.096 Cuilding Brick O.4 Window Glass O.45 Concrete 0.79 1% Carbon Steel 25.00 1% Chrome Steel 35.00 Aluminum 118.00 Copper 223.00 Si l ver 235.00 Water (20 psia, 200 degrees F) 0.392 Steam (1000 psia, 550 degrees F) 0.046 Uranium Dioxide 1.15 Helium 0.135 Zircaloy 10.0 d1SCELLONEQUS_INEQBdellOut .

E = me 2

KE = 1/2 mv PE = mgh V

f =VO + at Geometric Object Area Volume Triangle A= 1/2 bh ////////////////)

2 Square A=S /////////////////

Rectangle A=Lx W /////////////////

2 Circle A = nr /////////////////

Rectangular Solid A = 2(LxW + LxH + WxH) V=LxWx H Right* Circular Cylinder A= (2 nrz)h + 2(nrz) V = ne z h 2

Sphere A = 4 nr V = 4/3 (nr2)

Cube ///////////////////////////// V = S'

PC9U 5 of 5

.. D8Ie_suggI

( U1SCELLeUEQUS_INEQBdel10N_1canttouedt:

l 10 CFR 20 Appendix B l

Table I Table 11 Gamma Energy Col I Col II Col I Col II MEV per Air Water Air Water Mcterial Half-Life Disintegration uc/ml uc/ml uc/ml uc/ml

-6 ~0 Ar-41 1.84 h 1.3 Sub 2x10 ----- 4x10 ------

~0 Co-60 5.27 y 2.5 S 3x10

~7 1x10

~#

1x10 5x10 ~3

~

~3 -AO -7 I-131 8.04 d 0.36 S 9x10 6x10 1x10 3x10

~3 ~#

Kr-85 10.72 y 0.04 Sub 1x10 ----- 3x10 ------

~# ~3 ~

Ni-65 2.52 h 0.59 S 9x10 4x1C'~ 3x10 1x10 "

-12 ~

~I" -6 Pu-239 2.41x10 y 0.008 S 2x10 1x10 " 6x10 5x10

-Y ~3 -ll ~7 Sr-90 29 y ----- S 1x10 1x10 3x10 3x10

~

~#

Xe-135 9.09 h O.25 Sub 4x10 " -----

1x1C ------

Any single radionuclide with T > 2 he -5 -10 -6

-9 which does not decay by alpha dr 3x10 9x10 1x10 3x10 cpontaneous fission 2

Neutron Energy (MEV) Neutrons per cm Average flux to deliver equivalent to 1 rem 100 mrem in 40 houro 6

thermal 970x10 670 6 280 (neutrons) 0.02 400x10 6 30 0.5 43x10 -- .

cm 5-----e 10 24x10 17 x se Linear Absorption Ce>efficients p (cm~l)

Energy (MEV) Water Concrete Iron Lead 0.5 0.090 0.21 0.63 1.7 1.0 0.067 0.15 0.44 0.77 1.5 0.057 0.13 0.40 0.57 2.0 0.048 0.11 0.33 0.51 2.5 0.042 0.097 0.31 0.49 3.0 0.038 0.088 0.30 0.47

_ _ .___ _ __ i

t -

EAST DAVIS EAST DAVIS FRANKFORT CREEK FRANKFORT CREEK .

LINE LINE LINE LINE 2001 2002 2003 2004 1 1 2 1 m

\, \, \, \,

' ~

OCB lACB ~ ~

OC8 - ACB-' 2 OCS ~ '

1-3 13-4 4-7 9-80 1 0 - 81 g, ACO '

l-!5 , Q

. Z AC8 OCB OC8 ACB OCB O

I-ap 7-8 g 9 -15 14 -15 11 - 1 4 g

1 1 1 k I  % I 0104 -

020 3 . . . . _

LoSALLEg 4 LeSALLE y XFMR y i

MN cENei e 1 T .

UAT 848-I UAT 841-2 SAT 142-1 SAT 142-2 6.9 4KV 6.9 4MV 6.9 4KV 6.9 wu wm 4 K V.

wu wn wu un su uw Nm N% &% Nm SO N% MW M%

j i FRW CECO 3GKV SYSTEM 1578) 1572) 1598,) 8561 ) 1562) 1588 1571 l 159 l 1592l) 15 6 15 8 1582l)

"" l' bh a h b b h p l

PUM RCP BUSES h h PWP COND 8 COND TO 4KV y h PUM RCP h SES S/G FW 4

CONO 8CONO US 045 035 BOOSTER PUEP BUSES BOOSTER RIVER SCREEN

! HOUSE c,n, ,n c . ..n - . - - - . - . . . . . . - . - . . - -- -- .

l .

~

g .g, ."

. i .. . i .... . . . . i . . . .. .., .....

3 .y..

3...y.. 1 .y '

. . .:.3..,

T~' T ~~ T T ** -

I... --

l _., ]_ Z

_ .s .. r,

- ...i, s

r~

... /... ,

i ..../ i i

1. =_. _.A.gw. ,
4. =. 4. . s m.1. .

. L:. 41 :!: 5- .

- =,r -.,. .i ,M rk. 11../

. 2..J._e - .-

:: ".' :T':::"'

7  :: " " '""'

'::::=

= .:::. . ,,. .

e -

~

-= .. -- o. u. ,.,..

,... ~ ~ _

, =. ..

o g

.. .* .a .a ;g =g; ~;- = .. ,,,,

= = =  ;; .

g === .

g .. -

Q T

n. ... .. ,,T. . .

=~

a.- *

~

n.

.- =.

5 5 '> 5 5 5 5 ') 5 5 -

5 5 5 5 5 '5 .

! r.:;e i . i _ ... ;4.w. .=.; e _ .. i _ . . err.

. 3 _ _', . _ _ _ _ _3 p __ _l 3 5._____;_, ~

j . .

e.e.ec m.. ..e.ac r e. evac r e.e c t

)

H . .I' l' c :.: - - . I)- - H

^-

i) i i .. .c

= aa _~ i) i' i ')

""a' E

1) I)
  • f.'

I l I) y""=

:"l.i!..

.. "5.71..

FIGURE 4-2 A.C. DISTRIBUTON SNGLE LNE DIAGRAM PART 2 (REV. O)

INFORMATION ONLY '

l

. . j o o mm o o .. .

3 1

& . 7. . 7. . G hhk ~ ~

l 6 6: Uhhh u  : vjL m:;m 'Al: u -

te:m: .

e_m.  ::L .

. ev " i o ll G: m:

@ ,:'t l

I (r

r  :: y ,, ,  : ,  !

w) l'  ;;

t  ::

" ,, t I t u

@@. a > 1

d.  ::::: <>  :: ::- -

E;. f U

't l n3 p

E!

jil 9r- ;j T ll 5  !

9:  : -

F < 3 2

. En --

-@I  ?' -

l

.; k 9 o t

0

-e U o l e l' . 2 E o o >

s .

N s

+l + [:  :: - -+- $

6 - -

'l M ] G ::10 l =

l l 4, h

e a 4

'l

.A tt- oi::m::E0 -- t 8, h  ;

1:  ; [ k_ .

T+i

, e t er

+f ,

W.g

c ,9 =

-) l:

1

1 . e
: <-

"g s  ! ,, <! t 33."

m1 1 1 Me! hlliJ

$$$i!::O: _

h,

_4:ii$$$

-t 63 a -

" I o - T

(

NON-ESSENTIAL '

TCV PCV TCV SERVICE WATER -

3818 131 12 9 -

J L

______ (--------------- ----

D W' l ,,,i h-IN-

~

--] lh SURGE TI-379 9  ! ,

LET N LETddkN I CHILLER pL W ,}

EXCHANGER DEMINS I TI-376 !

-J FI-375 I E

' I FCV 381A

  • s I 375 Q TO V C T *- - - - - - --- -" L J I I z

icy ' - - - - - - - - - - - ---- ----- J 8542 TCV 386 MODERATING HEAT 7041 EXCHANGER O

7054 7002A 70028 LETDOWN LETDOWN 386 -o- CHILLER REHEAT 382 T q HEAT HEAT EXCHANGER EXCHANGER 385 g HCV 7022 h

389 7040 0- &

7046 L

7058 7045 70lOE 7010D 70 LOC 70108 70 LOA 7059

-- -- ~~ ~~

j- FIGURE 16-1

BORON THERMAL IE ID IC 18 IA REGENERATION SYSTEM

( BTR S)( R E V. O ) l l l l _ _

i l 11l!

= ,

~

e Zn2mbOz Oz rA e .

T C

A _

T _

N D O

C D I

Y G O L N N _

P I E P M O L _

U R O -

S A S _

R E

[ _

W O

P - )

C O _

D - V. __

- E _

R

- ( _

T_

l

- l U_

- C_

5 6 R __

[-Y  : I

: C

- E _

4 A -

V _

3 L I E - S S

3 R

- I G -

M_

N R_

I M

- E_

R - P_ .

A R_

- E S

- N_

E.

D_ _

0

- N_

- O_

C_

C

- 1 1

I 4

2 2

8

[-Y E

R U

A G 1 1 L

E I

F R

E V

I S

AI S

I M

R E

P u

'eNt_ dZ .O4 8U

6

~' '

INFORMATION ONLY REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BwEP WOG-1 UNIT 1 ES-1,3 STEP ACTION /IXPECTED RESPONSE EESPONSE NOT OSTAINED CAUTION Steps 1 thru 5 should be performed without delay. BwFRs should NOT be implemented prior to completion of these steps.

CAUTION The following Spurious Valve

- Actuation Guideline (SVAG) valves must be energized locally at MCCs, before transfer to Cold Leg Recirculation.

e SI pump suction from RWST Isol Valve: I e ISI8806 (MCC 131X 1AP3) I e SI pump Mini Flow Isol Valve:

. e ISI8813 (MCC 132X 4AL3)

CAUTION SI recirculation flow to the RCS must be maintained at all times.

CAUTION If offsite power is lost after SI reset, then manual action may be required to restart safeguard i equipment. i l

  • NOTE
  • With.this procedure in effect, notify
  • the Station Director who will
  • evaluate for GSEP conditions, . APPROVED
  • per Bw2P 200-1, BRWD EMI:RGENCY
  • ACTION LEVELS.
  • JUL 301987 Step continued a next page ,_ _

. nu navi..

Page 2 of 10 0180E(0710E7) 0012E

e i

- INFORMATION ONLY REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1.3 sTsP ACTION / EXPECTED RESPONSE ESSPONSE NOT OsTAINED 1 RESET SI: Reset SI per 1BwOA PRI-5, CONTROL ROOM

a. Depress both SI' reset INACCESSIBLITY.

pushbuttons -

b. Verify SI ACTUATED permissive l light - NOT LIT '
c. Verify AUTO SI BLOCKED permissive light - LIT 2 VER"FY CC WATER FLOW TO THE RH HEA' EXCHANGERS)
a. CC to RH HX iso 1' valves - OPEN: a. Manually open CC to RH e ICC9412A HX isol valves:
  • 1CC9412B e ICC9412A
  • 1CC9412B
b. CC flow indicated on 1FI688 and b. Verify locally RH HX  !

IFI689 - GREATER THAN 4670 GPM outlet butterfly valve 1 throttled:

~

  • 1CC9507A (364' +12' S16 AB)
  • 1CC9507B (364' +12' l S17 AB) 3 VER:FY ADEQUATE CNMT REC:RCULATION SUMP LEVEL:
a. Bottom 4 Cnmt recirc sump a. Check floor water level level indicator lights - LIT channels A (1LI-PC006) and B (1LI-PC007), greater than 1_ inch.

IF level greater than l Finch, THEN GO TO l Step 4.

IF level is less than Finch, THEN GO TO

. . 1BwCA-1.1, LOSS OF EMERGENCY COOLANT RECIRCULATION, Step 1. l APPROVgD

. JUL 30 G87 Page 3 of 10 ewes"2L 0180E(071087) 0012E

e INFORMATION ONLY -

REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1.3 sTIP ACTION /tXPICTED RESPONSI RESPONSE NOT OSTAINED l

l CAUTION Any pumps taking suction from RWST should be stopped upon RWST EMPTY alarm (5.9%).

CAUTION SI pumps should be stopped if RCS

-pressure is GREATER THAN 1590 PSIG, their shutoff head pressure.

4 VERIF" CNMT RECIRCULA""0N SUMP Establish RH pump suction 1

ISOLA"10N VALVES POSI' ON: l from the Cnmt recirc sump on one RH train at a time

  • Cnmt recirc sump isol as follows:

valves - OPEN:

a. Check adequate Cnat
  • 1SI8811A recirc sump level:
  • 1SI8811B o Bottom 4 sump level indicator lights - LIT.

-OR-o Level indication on floor water level channels A (1LI-PC006) and B (1LI-PC007) greater than 1 inch.

b. Stop RH pump in affected train:

o RH pump 1A o RH pump 1B

. Step continued en next page APPROVED .

JUL 30 387

'"10tRCE.

0180E(071087) 0012E

INFORMATION ONLY l REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1.3 STEP ACTION /EXPSCTED RESPONSE RESPONS4 NOT OSTAINED '

Step 4 (continued)

c. Close RWST to RH pump suction valve for affected RH pump:

o ISI8812A o ISI88123

d. Stop CS pump in affected train by placing control switch in PULL OUT:

o CS pump LA o CS pump 1B

e. Close RWST to CS pump suction valve for affected CS pump:

o ICS001A o ICS001B

f. Open Cnmt recirc sump suction valve to affected RH pump: 1 o 1SIBB11A i o ISI88118
g. Restart affected RH pump:

l o RH pump 1A o RH pump 1B

h. Open RWST to CS pump suction valve for affected CS pump:

o ICS001A o ICS001B Step continued on next page APPROVED Page 5 of 10 0180E(061687)

-- ---- _ _ - . _ *Dr$$aO".

~ '

. - INFORMATION ONLY -

REV. 2 TP.ANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1,3 STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OSTAINED Step 4 (continued)

1. Restart affected CS pump:

o CS pump 1A o CS pump 1B

!? both RH trains were Efected, THEN repeat Steps a throuch i for remaining train.

Il at least one flow path from Cnmt recirc sump to the RCS can NOT be established or maintained, THEN GO TO 1BwCA-1.1, LOSS 3 OF EMERGENCY COOLANT i RECIRCULATION, Step 1.

I l

l l

1 APPROVED JUL 301987 oI.YOUvia.

0180E(061687) 0012E

' ~~"

~ .' .

INFORMATION ONLY . ,

\

. i 1

l 1

REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1.3

~

1 sine AcnoN/tXPECTED RESPONSE RESPONSE NOT OSTAINED -

CAUTION Prior to initiation of Cold Leg Recirculation, verify Control Room and Aux Bldg Charcoal Booster Fans are discharging thru the Charcoal absorbers.

1 5 ALIGN ECCS FOR COLD LEG RECIRCULATION:

a. Verify CENT CHG pumps miniflow a. Manually close N CHG valves - CLOSED: pump miniflev valves
  • 1CV8110 IF 1CV8111 and ICV 8114 e 1CV8111
  • 1CV8114 Ell NOT close and 1B
  • 1CV8116 CENT CHG pump is running, THEN:
1) Trip the 1A CENT CHG
  • pump.
2) Locally CLOSE 1A CE C CHG pump miniflow isci valve:

1CV8479A (364* S14 outside 1A CDC CHG l pump Rm).

3) START 1A CENT CMG pump.

IF 1CV8110 and ICV 8116 Ell NOT close and 1A CE C CHG pump is running, THEN:

1) Trip 1B CENT CMG pump
2) Locally CLOSE IB CENT CHG pump minificw isol valve:

-

  • ICV 8479B (364' X14, outside IB CENT CHG pup Em).
3) START 1B CENT CHG pump.

Step continued on next page -

APPROVED Page 7 of 10 JUL 3 0 ISO /

0180E(061687) 0012E M R %Cf.

INFORMATION ONLY REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1.3 ST ACTION / EXPECTED RESPONSE R$$PONSE NOT OSTAINED '

Step 5 (continued)

b. Verify RH pump suction from b. Manually close valves.

RWST 1 sol valves - CLOSED:

  • 1SI8812A
  • 1SI8812B
c. Close SI pump miniflow isol valves:
  • 1SI8813
  • 1SI8814 .
  • ISI8920
d. Close RH HX discharge crosstie valves:
  • 1SI8716A
  • 1SI8716B

.e. Open SI and CENT CHG pumps suction crosstie valves:

  • 1SI8807A .i l
  • 1SI8807B e ISI8924
f. Open RH pumps discharge to suction of N CHG, and SI pumps valves -
  • 1SI8804B APPROVED JUL 301987 oE[EE$svYw 0180E(061687) 0012E

' - - - - - - - - - - - - - ~ -

6-

, , . ~~ INFORMKrlON ONLY

. REY. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP WOG-1 UNIT 1 ES-1.3 STEP ACTION /tXPSCTED RESPONSE RESPONSI NOT 087AIN8D "

6 ISOLATE RWST FROM SI AND CENT CHG Emie.S:

a. Close SI pump suction'from.RWST isol valve:
  • 1SI8806
b. Close RWST to CENT CHG pump saction valves:
  • 1CV112D
  • 1CV112E ,

I 1

APPROVED t JUL 30 887

.i? E*???. l Page 9 of to 0180E(061687) 0012E l

Cf "

INFORMATION ONLY l

1 REV. 2 TRANSFERTOCOLDLEGRECIRbulATION 1BWEP WOG-1 UNIT 1 ES-1.3

~

sTIP ACTION /HPSCTED RESPONSE RESPONSE NOT 08TAINED l l

7 START ECCS PUMPS AS NECESSARY 8 ALIGN CONTAINMENT SPRAY S STEM FOR RECIRCULATION IF NECESSARY:

l a. Check RWST 1svel LESS THAN 5.9%: a. GO To Step 9.

  • RWST EMPTY status lights - LIT
b. Open Cnmt recirc sump supply valves:  !
  • 1CS009A
  • 1CS00';B '
c. Cicse RWST supply isol valves:
  • 1CS001A e ICS001B 9 ALIGN CC FOR POST LOCA RECOVERY  !

DER BWOP CC- 14 COMPONENT COOLING POST LOCA ALIGNMENT

.10 RETURN TO PROCEDURE AND STEP IN l EFFECT l 1

-Eno_ l APPROVED JUL 301987

.'"..'# *P2 0180E(071087) 0012E

gwEP 209-1Al

  • Devirlem 3 ,

^

APPENDIX A ~

BRAIDWOOD -

EMERGENCY ACTION LEVELS

1) Aircraft crash or missiles 17) Main Steam Line Break / Feed Line Brook.

from whatever source.

18) Loss of Heat Sink.
2) Controi exe evacuation.
19) Steam Generator Tube Rupture.
3) Earthquake.
20) Inadvertent Positive Reactivity p)4 Unplanned Explosion
21) Feedwater Malfunction.

-J.

Z5) Fire.

O 22) ECCS Actuation.

7)6 Flood or Low Water Level.

' O 23) Turbine - Generator Accedent.

p 7) Security Threat.

4 24) Loss of Fission Product Barriers.

2n) Tornado / Severe winds. '

4 gr 25) Fuel Handling Accident.

0)9 Torie Gas.

26) Elevated Area Rad Monitor Readings.

z 10) Less of AC power.

27) Gaseous Radiation Releases.
11) 14es of DC power. -
28) Liquid Radiation Releases.
12) Plant Shutdown Functions.
29) Personal Injury.
13) Loss of Annunciator Alarm Capability.
30) Hazardous Materials.
14) Other systems required by Technical Specifications.
15) InadehteCoreCcolant.
32) Transportation Accidents.
16) Loos of primary coolant.

APPROVED OCT 9 1987 o=

i a.o-o.

.. . vww 8678P(IC )

Dw2P 200-1A1 .,

Revicion 3 APPENDIX A (Continued)

BRAIDWOOD DERGENCY ACTION LEVELS UNUSUAL EVENT ALERT SITE DEERGDICY C5 FERAL BEEnneury C_ONDITIONS Events in progress Events in progrese Events in progroom C1 css Description Events in progress or have occurred or have occurred or have occurred or have occurred

  • which indicate a which involve an which involve actual which involve actus1 potential degrada- actual or potential or likely major or 1suminent substae-tion of the level substantial degrada- failures of plant tial core degradstles of safety of the tion of the level functions needed or melting with poten-plant. . of safety o.5 the for protection of tial for loss of con-

'.p

.3 plant. the public, tainment integrity.

Z O

  • Impacted on-site. Impacted on-site and A) Impacted ca-site
7) Aircraft 1

crash has degraded equip- and has degraded O or missiles ,

ment described in equipment described from whatever p( source. the Technical Speci- in the Technical y fications such that Specifications beyond gr a limiting condition the limiting condition O for operation for operation that

' E requires a shutdown. requires a shutdown;

_Z or B) has exceed a Tech-nical Specification safety limit.

Due to exceeding Due to exceedis.g

2) Control Room 10CFR20 exposure 10CFR20 exposure Evacuation. limits, evacuation is limits, evacuation is required and required and control control is established is not established from local control from Local Control stations or from Stations or from Remote Shutdown Remote Shutdown Panel

! Panel within within 15 minutes.

15 minutes. . _ _ _ - - - -

r.r r aw w -

OCT 9 1987 2 senassuscoo

'u u

  • 8678P(10r *)

Dw2P 200-1A1 .,

Revicion 3 APPENDIX A (Continued) , .~

BRAIDWOOD DIERGENCY ACTION LEVELS ALERT SITE D4ERGI30CY GENERAL EMERGENCY CONDITIONS UNUSUAL EVENT Seismic equipment At a level greater At a level greater

3) Earthquake than Operating than Safe Shutdown (activation of is activated.

Basis Earthquake () 0.21g).

seismic monitor- (at level of 0.02g).

ing alarm with level () 0.095g).

verification not spurious or testing.)

y_

J Explosion onsite has A) Explosion has Z4 ) Unplanned Onsite but not degraded equipment degraded equip-O Explosion, affecting plant

  • described in the ment described in operations, 7 Technical Specifi- the Technical g

-- cations such that Specifications g a limiting condition beyond the condition 4 for operation for operation that y requires a shutdown. requires a shutdown; gr or .

O B) has exceeded a 31-

  • 2 Technical Specifica-tion safety limit.

A) Fire requires Fire requires off- A) Fire requires off-

5) Fire (ongoing NRC notification site assistance and_ site assistance and

. as described if not identified has degraded equip- has degraded equip-by observation ment described in or alarm, and within 10 mins.; ment described in or the Technical Speci- Technical Specifica-verified by the (fire brigade). B) Fire requiring fications such that tions beyond the

' offsite assis- a limiting condition limiting condition tance but not for operation for operstion that affecting plant requires a shutdown. requires a shutdown; operation.

- or B) has exceeded a Technical Specif1-cation safety limit.

h00AWsAw OCT 9 98T 3

,puensmenos_

8678P(10"' )

l

SwZP 200-1A1 .*'

Revicion 3 -

' APPENDIX A (Continued) .

^ ,-

BRAIDWOOD ,

~

EMERCDICY ACTION LEVELS UNUSUAL EVENT ALERT SITE EME:K;ENCY GWWERAL WERGBICT CONDITIONS Cooling pond dike Water at level of Water level at plant

6) Flood failure affecting Probable Maximum grade elevation (2 OR offsite property. Flood (Cooling Pond 601 feet MSL). RI: -

water level Rainfall in excess of Low Water Level 2 598.17 feet MSL). Probable Maximum EG: Precipitation Precipitation greater than or y equal to the J l Z Probable Maximum i

O Precipitation of 31.9 inches in 48 hrb) 4 z

O E E p

< Cooling Pond water Cooling Pond water 2 level i 590 feet level i 584 feet (r nst with coincident Mst with coincident O cooling pond dike

' E cooling pond dike 3 failure. failure.

i 1

1 APPROVED

~

4 OCT 9 1957

,ng, 8678?(10r ') ,,,,,

Bw2P 200-1A1 .,

  • Revicion 3 s

APPDfDIX A (Continued)

,.r BRAIDWOOD D4ERGENCY ACTION LEVELS ALERT SITE DIERGDOCY GEMRhL BWhMsCT CONDITIONS (PfUSUAL EVENT An ongoing security An ongoing security An ongoisrJ security 75 Security Threat The following events threat (event) levolving Definition: Acts as described in the threat (event).of threat (event) in-increasing severity 'volving an launinent a loss of physical wilch threaten Security Plant (1) Obvious attempt that persists for loss of physical control of the the safety of facility.

to sabotage. . pore than 60 min. control of the stat. ion personnel facility.

or security (2) Internal l

of the nuclear disturbance y (disturbance

.J units or special Z nuclear meterial, which is not O This includes short lived or

  • crowd disturb- is not a harmless 7 outburst involving O ances or acts of sabotage. one or more (p individuals within the pro-2 .

tected area).

(I" O (3) somb device E discovered.

$ (4) Hostage.

(5) Civil disturbance (spontaneous collective group gathering which disrupts normal operations). ~

(6) Armed or forced protected area intrusion.

(7) Armed or forced vital area in-trusion.

APPROVED OCT 9 1967 J 5 seasopoos, 8678P(100' 1,

DwZP 200-1A1 *-.

Revision 3 APPENDIX A (Cortinued)

  • BRAIDWOOD DERGENCT ACTION LEVELS SITE EMERGDICY GDN5tM, Bsrunsury

!.WUSJAL EVENT ALERT CONDITIONS - _

A) Tornado strikes Suetsined winds b Tornado or severe winds A) Tornado near Facility Facility or > 85 mph a_nd B) Sustained winde either unit noj; being experi- (1) Control Room In cold shutdown.

informed by ) 75 mph.

enced (Wind speed as Load Dispatcher indicated in OR Control Room is (2) Station personnel y used to classify have made visual J

. Z condition.) sighting; O or

  • B) Sustained winds z > 60 =Ph-O

~

<>- Uncontrolled Entry of Toxic Gas Entry of Toxic Gas F) . Toxic Gas. release of Toxic into the protected gas into vital areas (I~ area. . affecting the safe O gas at life threatening levels shutdown of the plant.

I -

near or onsite.

1 Both ESF 4KV busses Chegoing loss of power -

10) Loss of AC toss of all offsite toss of all off-per unit deenergized and total Icos of AC power o_r loss of site AC power a_nd feeduster naheup

. Power.

all onsite AC power loss of all onsite for > 15 minutes.

AC power required capebility.

required pen' unit.

per unit. .

I APPROVED OCT 9 1987 6

nome coe.

8678P(100 *)

Sw2P 200-1A1

  • Revision 3 APFINDIX A (Continued) ,

BRAIDWOOD EMERGENCY ACTION LEVELS ALERT SITE EMERGENCY GENERAL gennemerv UNUSUAL EVENT C_ONDITIONS Loss of DC Power Loss of all ESF Busses 111 (211)

11) Loss of DC and 112 (212) are Power. sourcer has degraded DC power, per '

equipment described unit. both doenergised in the Technien1 for > 15 minutes.

Specifications ruch that a limiting condition for y operation requires J

. Z a shutdown.

O - .

Z A) Complete loss of A) Complete loss of Transient requiring O12)

Plant Shutdown any function any function needed Operation of shutdoma functions.

g needed to main- to maintain hot systems with failure 4 tain cold shut- shutdown. (If you to trip and core damage y down (Botb RH do not have at least is evident.

gr one operable S/G with trains, OE hth O CC trains, M Wide Range water 11-

_Z both SX trains.) level ) 65% AND ability to control g steam release either by S/G PORV, or steen B) Failure of the dump capability to the Reactor Protection condenser.)

System instrumen-tation to initiate @

' and complete a reactor trip, B) Transient requiring which brings the operation of shutdoun reactor sub- systems with failure to critical once trip. (Power Generation a limiting safety continues, but no core system setpoint damage evident.)

has been exceeded.

APPROYED 7 DCT 9 387 8678P(10r ') MRA' ios

SwZF 200-1A1 Revicion 3 PPENDIX A (Continued) "

BRAIDWOOD -

DERGENCY ACTION I.EVELS ALERT SITE DEERGDICY GENERAL NERGBCT CONDITIONS UNUSUAL EVDrr

13) ins of post or In the Main Control In the Main Control Room. Room a_nd a plant all alarm transient in progrees.

capability of i.

annunciators.

Equipment described A) Equipment described pI4) Conditions or in the Technical in the Technical

  • J systems required Specifications is Z by Technical Specifications is O degraded such that degraded beyond the specifications limiting condition

( i . e . IOCS, a limiting condition z for operation for operation that O fire Protection, requires a shutdown. requires a shutdown:

p etc.) 0W

( __

B) has exceeded a Tech-2 .

nical Specification E safety limit.

O LL Z-

> 650*r in sworegs Braidwood Status Braidwood Status

15) Inadequate Tree's (DwST's)

Core Coolant. of 10 highest Ant-ort Tree's (DwST's) therreewuple- reusings require entry into require entry OR L*wf1t-C.2 into BwrR-C.1 Subcooling ( 25'r Response to Response to for 15 w.irndes. Degraded Core Inadequate Core Cooling Cooling, based on based on sub-cubcooling, nsember cooling, number of RCP's running, of RCP's running, vessel level, and vessel level, and core exit thermo- core exit thermo-couples. couples.

APPPDVED CCTg 1987 8

8678P(10' 7)

-.w.a -m. -

  • Sw2P 200-1A1 ~~

Revicion 3 APPDfDIX A (Continued) .

~.

BRAIDWOOD ,

DENCDICY ACTION t.EVELS ALERT SITE DIERCDICY GDfmmL meermusy C_ONDITIONS UNUSUAL EVENT

16) Loss of Primary A) Failure of a A > 50 gpm leakage Primary system leak- Primary system primary system incrose_e in a 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> age is beyond leakage is heyend Coolant. sokeup empobilities safety or relief period as indicated makeup capabilitiee valve to close, by either leak rate of charging pumps. of chstging pumps W OR a primary calculations, Failure to activate PORY failure to charging psamp flow ECCS.

close, and its or VCT level y changes.

J block valve will Z not isolate.

O B) Total Reactor '

Coolant leakage, Z excluding O Pressure Boundary p leakage, exceeds

( the limits 2

E specified in the O Technicai Specification 7

- limiting condition for operation for greater than or .

. equal to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

C) Detection of any Reactor Coolant Pressure Boundary leakage.

With zero or small With I gym primary Ten (10) gym primary

17) Main Steam Line to secondary leakage to secondary leakage Break / Feed line primary to secondary Break. leakage and/or small and with It failed And significant fuel percentage of failed fuel. damage.

fuel.

OCT 9 ' iger naa.--=oos 8678P(10' *)

BwZP 200-1A1 '

Revision 3 APPENDIX A (Continued) -

.(

BRAIDWOOD W Y ACTION LEVELS .

ALERT SITE DIERCIFY GDfERAL 67 CONDITIONS UNUSUAL EVENT Braidwood Status Alert condition is Alert condition is

18) Ioss of Heat Tree's (BwST's) on going for 15 on going for 45

$1nk.

require entry to minutes. (Loss of minutes. (tmos of

  • BwFR-H.1 Rest 7se all feedwater and all feeduster and to toes of Secondary all auxiliary feed all atalliary feed Heat Sink, based on water, and the water and the roeidus!

heet removal eyeten is y total feedwater flow residual heat J to the steam gene- removal system is not in operation.)

. Z rators. not in operation.)

O ,

2 Exceeding primary Entry into BwEP-3 Same (v.41 tion as Oia) Steam Generator to secondary leakage Steam Generator Tube Alert a_nd loss of Tube Rupture.

(p rates as specified Rupture with the offsite power in Technical following: @

2 -

Reactor Trip / Tube (s) rupture is Specificatione.

(I" safety Injection beyond the capability O AND of the charging pgsspe.

EE-7 1. High radiation in the condenser air removal system.

- ?

2. High radiation in steam generator blow-down.

E

3. Unexplained increase in any steam generator level.

APPROYED OCT 9 1967 10 .

""'**0** .,,

8678P(10" 7)

SwZP 200-1A1 Revinica 3

$PPDfDIX A (Continued) .

BRAIDWOOD ,

DIERGDICY ACTION LEVELS ALERT SITE DERGDICY GDI5tAL WWIGNICY CONDITIONS IDfUSUAL EVDfT

20) Inadvertent A. Inadvertent positive dilution such thats reactivity 1) Technical Speel-insertions due fication shutdown to rods or margin requirements dilution. are violated.

y  ?

J Z 2) The control bank

.O -

low low insertion limit is reached.

Z n. uncontrolled rod O. withdrawal from p suberiticality or

( power operation.

2 (I"-

O2) reedwater Any feedwater Malfunction. malfunction

22) EECS Actuation. ECCS initiation.

(Non Spurious) with flow into reactor coolant system.

APPROVfD OCT 9 1967 11 "

8678P(10 '7) i

SwZP 200-1A1

  • Revision 3 -

APh9fDIX A (Continued) , ,

e BRAIDNOOD DEERGENCY ACTION LEVELS ALERT SITE @ CBI5mL N CONDITIONS UNUSUAL EVENT .

A turbine generator A turbine generator

23) Turbine-Generator failure in which accident in failure in which missiles are gene- missiles are generated which missiles rated and no pene- and penetration of the are generated.

tration of the casing casing does occur; all occurs and normal possible impact areas reactor shutdown containing essential b

Z follows. equipment are protected and normal reactor shut-O down follows.

  • z O

T 2 -

e O

u.

, z__ _

APPROVED OCT 9 8 87 .

12 8678P(10r ')

DwZP 200-1A1 *

  • Revicion 3 APPDfDIX A (Continued)

BRAIDWOOD .

EMERCDeCY ACTION LEVELS ALERT SITE DERGDICY CDfERM. EperarsarY CONDITIONS UNUSUAL EVENT A. > 2 x 102 R/hr A. > 4 x 102 R/hr A. > 2 x 103 R/hr

24) Loss of rission Primary Contairunent Primary Contairunent Primary Contalsment Product Barriers. Radiation, OR Radiation, OR Radiation, and probable loss of primary containment, M B. Loos of I of the B. Loss of 2 of the B. Loos of 2 of the p Primary Contain- following 3 fission following 3 fission following 3 fission 3 enent Radiation product barriers: product barriers:

product barriers:

Z is observed on with an imuninent lose O the RM-11 display ' of the third barridr:

7 console for: 1) Cladding:' 1) Cladding: 1) Cladding O 1(2)RE-AR020 or greb se gle results grab sample results grab sample results p 1(2)RE-AR021

> 300 uCi/cc > 300 uCi/ce > 300 wiece 4 equivalent of I-131 equivalent of I-131 equivalent of I-131 y

(I" 2) Reactor Coolant 2) me.ctor Coolestt O 2) Reactor Coolant System: System: System:

11-a) Containment a) Contairunent a) Containment

$ press. > 5 peig and press. > 5 psig and press. > 5 poig and b) Contalrunent b) Contairunent b) Containment temp. > 150'r and temp. > 150'F and temp. > 150*r and c) Contairunent c) Contairunent c) Containment humidity ) 50% humidity ) 50% hwaldity ) 50%

3) Primary 3) Primary 3) Primary Contairunent Contairurent Containment a) Contairunent a) Contairunent a) Contaismount press. > 50 peig or press. > 50 peig or press. > 50 poig or l

b) Contairunent b) Contalrunent b) Containasset l

tesy. > 2b0*F, or temp. > 200*r or tesy. > 200*F or c) Ioss of contain- c) Loos of contain- c) Imos of contain-snent integrity when ment integrity when ment integrity when l contairunent integrity contalrunent integrity contalrament integrity is required. :is required. is required.

A ROO 13 OCT 9 1967 l 8678P(10' 7) er voce,

swzP 200-1A1

. Revision 3 .-

5PPENDIXA(Continued) , ~,

BRAIDWOOD .

EMERGE Cr ACTIOff LEVELS SITE IMERGBICY CEBIERAL ""memry IMUSUAL EvDiT ALERT C_ON. DITIONS Fuel Handling A) Radiation levele ,

25) Fuel Hend11pg Building enhavet in the ruel llendling Accident has been diverted Building are (Direct infor- through the charcos! > 100 mR/hr as motion from fuel filters. observed on the 156-11 handling person- display console for nel indicating ORE-AR055 or that an irradi- ORE-AR056, y ated fuel assembly

_J OR

. Z has been damaged.) si ruel nandlin, O '

Building exhouet Z ch*rc'*1 flit *r*

O are depleted OR g inoperable and

( radioactivity is being releesed to y .

gg- the atmosphere.

O ts.

Z-Unplanned increase Unplanned increase

26) Elevated Area by factor of 20 in (Resulting from Rad Monitor degradation in the readings any ARM.

control of radioactive meterial and confirmed by survey or redundant instrumentction) by a factor of 100 of any

~

ARM.

l

- APMtOVED

- OCT 9 1957 14 yeawswoco, 8678P(20" 7)

_ . . . _ . . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ . _ _ _ . . _ _ _ _ . _ _. . _ _ _ _ ____ - -_ _ __ _ __ _m _ _ _ _ - _ _ _ _

DwZP 200-1A1 Revicion 3 -

APPENDIX A (Continued) .

BRAIDWOOD ,

DfERGENCY ACTION LEVELS UNUSUAL EVENT ALERT SITE INERCDICY CBIBEL N CONDITIONS

27) Gaseous Radiation Releases **

No core demoge event Instantaneous release Release rate averaged Instamennamnes roleses A. Core Densgo for 2 minutes exceeds rate exceede leoel Suspected is postulated at the rate exceeds Unusual Event level. 1.8 x 106 uC1/sec > 500 mrom/hr whole cori: -_ Jims to body at the site > 1 ree/hr whole body y bounde at the site benoudary i J

(8.9x10 uCi/sec) under actual Z meteorolo,y.

O

  • OR This condition esists netease rete averaged when g > 7x106xo 7

O for 30 minutes ex- where Q = release rete p coeds > 50 mrom/hr whole im

(

Z uci/see body at the site U = mean wind speed E boundary in meters /see O (8.9 x 105 uCi/sec)

B. NO Core Instantaneous release Instantaneous release Release rate averaged Instar - release Damage rate exceeds rate exceeds for 2 minutes exceeds rate encoeds level

_.-flag to Suspected 1.8 x 106 uC1/see 1.8 x 10 7 uCi/sec > 500 mrom whole cor.:

Noble gas body at the site > 1 rem /hr whole body Noble gas at the site honoudary OR OR boundary 30 uCi/sec Iodine 300 uCi/see Iodine (1.6 x 10 8 sci /sec) er actant meteoc-OR ology. This condition

@ . Qt exists when:

10 CFR 20.105 10 times 10 CrR Release rate instantaneous 20.105 instantaneous averaged for 30 min. Q > 1.3 x 108 sU release limits release limits exceeds > 50 mrom he where Q = release rate whole body at the in tCi/sec are exceeded. are exceeded. U = mean wind speed site boundary

  • (1.6 x 107 uC1/sec) in meters /sec For noble _geoes, effluent monitor
    • Monitored releases can be measured by effluent socitoring or counting instrumentation. ro_r lodines, effluent monitor 1(2)RE-PR0030, channel 4, displays the release rate in uC1/aec on the RM-11 display console.

1(2)RE-PRO 28 displays a concentration in uCi/cc that must be corrected for stack flow rate to ot '.ain a release rate inAPPROVE uCi/sec.

c*Unmonitored releases can be estimated by field measurements taken by Environmental Survey Teams.

y- w 8678P(10 ~7)

Bw2P 200-1A1 Rev61on 3 ~.*

APPENDIX A (Continued)

BRAIDWOOD 8

_MEPGENCY ACTION LEVELS ALERT SITE EMERGDICY GENERAL N ERGBICT CONDITIONS UNUSUAL EVENT

1) Gross Beta 1) Cross Beta 1) Gross Beta
28) Liquid 1) Gross Beta > 2,000 Ci total 1 2 x 105 Ci tots 1

> 1 x 10-' uCi/ml > 1 x 10-b uC1/s)

Radiation OR or in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Release from OR the Plant as 2) Tritium ) 40 Ci total OR

> 3 x 10 5 uCi/ml in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 2) Tri Uum 2) Tritium measured by OR > 2 x 109 Ci > 2 x 103 Ci counting total in 24 hrs.

instrumentation 2) Tritium total in 24 hrs.

y ~> 3 x 10-4 uCi/ml J or effluent ce Z monitoring inst- -

O rumentation. > 500 Ci total l

(Radiation re- in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. '

l 7 O leases are ob-g served on the i ( RM-11 display 2 - console for EI" ORE-PR010.)

O w ..

b29) Personnel Transportation of a Injury radioactively con-taminated injured person to hospital l 30) llazardous As a direct result of Materials hazardous materials a person is killed or hospitalized or estimated property damage exceeds $50,000.

APPROVED OCT 9 1967 16 HRAsprenos 8678P(10r )

DwZP 200-1A1 -

Revi:: ion 3 APPENDIX A (Continued) .

BRAIDWOOD ,

EMERGENCY ACTION LEVELS GENERM, genansary ALERT SITE DIERGENCY CONDITIONS INUSUAL EVENT Warrants activation Isuminent Core Melt, 4

31) Any other Warrants increased Warrants activation.
  • of Technical Support of the Ebnergency Conditions of awareness on the Operations Facility part of the stcto Center.

! equivalent and monitoring teams; magnitude to and/or local off - warrants notification site officials, '

the criteria of the public by State used to define and local agencies.

,y the accident J category as Z determined by O

ti.e Station .

Director.*

7 O

T<--

2 II*

. O LL.

_Z l

I i

  • Conditions that may or may not warrant classification under GSEP include:

j!

j a. Incident reporti,ng per 10CFR50.72

b. Incident reporting per 10CFR20.403 or Illinois Rules and Regulations, Part D.403.

i

c. Discharges of oil or hazardous substances into waterways per 33CFR153.

l Security contir.geacy events per the Station Security Plan.

d. '

] The Station Director may, at his discretion, categorise the above situations as GSEP emergencies, depending upon

! (Refer to Section 9.3 of the generic plan for additional inforination.) APPROVfD l , the seriousness of the situation.

2 I OCT 9 5 87 i 17 perneersoop

. .. . . :.~1 8678P(IC 7)

BwZP 200-1A1 -

Revision 3 ,

APPTNDIX A (Continued)

BRAIDWOOD .

INERGENCY ACTION LEVELS

32) A. A vehicle transporting radioactive materials or non-radioattive llazardous materials from a Comenonwealth Edison generating station is involved in a situation in which:
1. Fire, breakage or suspected radioactive contamination occurs involving a shipment of radioactive material or
2. As a direct result of Ilazardous materials, y (a) A person is killed; or J (b) A person receives injuries requiring hospitalization; or Z (c) Estimated carrier or other property damage exceeds $50,000.

-O 7 B. Any other condition involving Hazardous material transportation and equivalent to the criteria in Item A.

! O F

<C 2

(r O

< u 4

. Z -

i i

=

l i

(Final) .

APPROVED 18 8678P(10' 7) ,8u'*"W'Coe,

INFORMATION ONLY .

REV. 2A RE*CTOR TRIP OR SAFETY INJECTION 1BWEP-0 WOG-1 UNIT 1 l -

ST EP ACTION / EXPECTED RESPONSE t

RESPONSE NOT 06TAINED l2l VERIFY TURBINE TRIP: Manually trip the Turbine.

e All Turbine throttle stop :I Turbine vill NOT trip, valv.es - CLOSED l' HEN manually run back the e All Turbine governor valves - "urbine at maximum rate by CLOSED the following method:

1) Press TURB MAN.
2) Press FAST ACTION and GOV LWR simultanecusly.

-IF Turbine can NOT be

  • run back, THEN place ZH pumps in PULL OUT position.

H Turbine still will NOT trip, I!a2! manually initiate Main Steamline Isolation and manually close MSIV bypass valves.

l3l VERIFY POWER TO I4KV ESF BUSSES:

a. RSF busses - AT LEAST ONE a. Try to rettere power to,a ENERGIZED: least one ESF bus.

o Bus 141 alive 3ight - E power can NOT be LIT restored to at least one

-OR- ESF bus, o Bus 142 alive light - THEN GO TO 1BwcA-0.0, LIT ,

LOSS OF ALL AC POWER, '

Step 1.

b. ESF busses - ALL EKERGIZED: b. Try to restore power to deenergized ESF bus whileI e Bus 141 alive light - LIT continuing with this 1

-AND- procedure.

  • Bus 142 alive light - LIT APAROVED DEC 111987 N.M?** L Page 4 of 31 (0024Q/0002Q)

i INFORMATION ONLY l

I REY. 2A REACTOR TRIP OR SAFETY INJECTION 1BWEP-O '

WOG-1 UNIT 1 j

i

- l ST EP ACTION / EXPECTED RESPONSE RESPONSE NOT OSTAINED l l

CAUTION l During a loss of offsite power, l operator action will be necessary to actuate PER PORVs.

...e....eee.e ......e..e..e..e.....e.ee.

e e

  • WOTE *
  • With this procedure in effect, *
  • notify the Station Director who willa evaluate for GSEP conditions per
  • Dw2P 200-1, BRWD IMERGENCY ACTION *
  • i LEVELS.
  • e......ne......ee. .s.......... eeeeeeen ettee nt e et t e met ett est e enn e s eet t e nt e e s se e e e a

g a 8teps 1 through 15 are IMMEDIATE *

  • ACTION steps.
  • eeseeeeeeeeeeeeeeeeeeeeeeeeeeesessnessee easeeeeeeeeeeeeeeeeeeeeeeeeeeeeemenesene e e WCXT *

"Adverse Conta:Lnment" as used in

  • Braidwood Emergency Procedures is
  • defined as:
  • o Containment presr.tre GREATER,
  • APPROVEC

-OR-

  • o Contaiment radiation level
  • DEC 11 ISE GREATER THAN 105 R/HR.
  • a99e9eeaeaeeeeaeeaeeaeeaeeeeseeeemsmesse BR o +.AI nzDW OO ;D savu l1l VERIFY REACTOR TRIP: Manually trip the Reactor, e Rod bottom lights - LIT H the Reactor will NOT trip e Reactor trip and bypass THEN GO TO 1BwFR-S.1, breakers - OPEN RESPONSE TO NUCLEAR POWER e Neutron flux - DECREASING GENERATION /ATWS, Step 1.

(0024Q/0002Q)

52i_IWE98Y_9E_NyCLE88_E9 WEB _EL8NI_QEg8811gNx_E6ylppt_8Np PAGE 2

'l' ' IOEBuggyueu1CS QUESTION 5.01- (1.00)

The plant is operating at 85% power with rod control in manuel and all other control systems in automatic. The operator inadvertently aligns charging' pump suction to the.RWST. Describe the changes.to the shutdown margin.

QUESTION 5.02 (2.00)

A centrifugal charging oump is running with the discharge flow control valve FCV-121 in mid p0:ition. Indicate how each parameter will change (Increase, Decrease, or Remain the Same)- if the discharge valve is fully opened.

a. Discharge flow
b. Pump discharge pressure upstream _of the discharge valve
c. Motor amps .
d. Available NPSH to the pump
e. Seal injection flow OUESTION 5.03 (3.00)

Consider the following plant conditions:

MODE 3, BOL Boron concentration is 900 ppm All shutdown banks withdrawn Actual reactivity present in the core is minus 4% delta-K/K Source range indication of 100 CPS Dif f erer.tial boron worth is minus 10 pcm/ ppm )

A boron dilution to 750 ppm increases the source range indication to 132 CPS. During the dilution, Xenon concentration has changed. How many PCM of reactivity did xenon contribute during the dilution? State all equations used and assumptions made and show all work.

l OUEST10N 5.04 (1.50)

Explain how the venturi-type flow restrictor will act to limit main steam i line flow if a line break occurs downstream of the venturi. j

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

- DEL:IME98Y_9E_NyCLg@B_EgygB_E68NI_gEgE8IlgNi_ELUIDSz_8NQ PAGE 3

/ ~ IHEBMgDYN@MIC@

'OUESTION 5.05 (3.00)

The reactor is at 100% power at BOL with equilibrium xenon and all rods out when the boron concentration is reduced, causing a deep insertion of control rod bank D to maintain Tave constant. Describe how the axial core power distribution will change as a result of this action. ASSUME NO FURTHER ROD MOTION. Continue the explanation until steady state conditions are restored.

QUESTION 5.06 (3.00)

a. Why does a single RCP pump running during hot shutdown draw more motor amperage than when one of four running at power? (0.75)
b. Why does a RCP running at cold conditions draw more motor amperage than at hat conditions? (0.75)
c. Why is RCP motor amperage higher when starting the pump than when running? (0.75)
d. Why should operating a pump with too much flow and no discharge pressure be avoided? (0.75)

.OUESTION 5.07 (1.00)

WHY will Axial Flux Difference change if reactor power is reduced from 100%

to 50%7 Assume the reactor is operating at 100% power with all rods out, early in cycle life at equilibrium Xenon conditions when power is reduced to 50% by borating (no rod motion). Neglect changes due to Xenon.

QUESTION 5.08 (2.50)

a. Explain two effects on core reactivity that occur as Reactor Coolant temperature is increased? (0.75)
b. Briefly explain why there is a larger change in the magn.tude of MTC l with changes in boron concentration at 560 degrees than there is at l 100 degrees. (1.0)
c. WHY does power defect coefficient become more negative as the core ]

ages? (0.75) 4 l

(****4 CATEGORY 05 CONTINUED ON NEXT PAGE *****)

, Q1 ; THEORY OF NUCLEAR POWER PLANT OPERATIONz_ FLUID @z_ANQ' PAGE 4

,'IHE8dOQyNAd1Q@

DUESTION 5.09 (2.00)

Describe how inserting a control rod group 50 steps (f rom ARO) would

~

a.

affect each of the parameters below. Continue description until equilibrium is reached. Assume the plant is operating at 100% power early in cycle life and all other parameters are normal for this condition.

1. Reactor power. (0.75)
2. RCS Tave. (0.75)
6. How would the plant response differ at end of life? (0.5)

DUESTION 5.10 (2.00)

a. Why can the neutron population remain relatively constant in a subcritical reactor with Keff of 0.57 (0.75)
b. Explain why initially locating the detector further from the neutron source than required during core loading will'still result in an accurate 1/M plot. (0.75)
c. Why is locating the detector between the source and the. fuel being  !

loaded during a core load considered unconservative? (0.5) ,

l l

DUESTION 5.11 (2.00)

Explain WHY each of the condenser conditions below act to decrease overall efficiency of the plant. Consider each case separately. Use of appropriate thermodynamics f ormulas is acceptable.

a. Hotwell level increases (above the bottom rows of tubes).
b. Noncondensible gas inventory increases,
c. Circulating water flow decreases. l

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

m__

- - - - . . - . . . _ =.

PAGE *i ?

. DIli1HE98Y_9E_NWGLE8B_E9 WEB _EL8NI_QEEBBI19Ni_E691 dst _8NQ -

'4

  • ISEBd90YN8d1G5 .

QUF.STION 5.12 (2.00)

Briefly describe 2 power distribution limits that are used to ensure.that

^

the power distribution shape.in.the core is acceptable, how they are determined, and what' direction (radially or axially) .each ' ensures acceptable power distribut'on.

i (NOTE: include i limit for radial distribution AND 1 limit for axial distribution.)

e I

a b

b

(***** END OF CATEGORY 05 *****)

,z,- ,~:-- . _ .

z-. . .

EQ8NI_@YSIEd@_Q@@lGN t _GQNIRQL t _ANQ_IN@IBud@NI6110d, PAGE 6 SE V

QUESTION 6.01 (1.50).

Per BwOA-RCP-2, "Loss of Seal' Injection", explain why an RCP does. not

~

necessarily have to be tripped when. seal injection flow to the RCP is: lost.

QUESTION 6.02 (3.50)

Refer'to figure 4-1 and 4-2 attached.

a. What position (OPEN or SHUT) would each of the following breakers be in for a SHUTDOWN electrical plant lineup? (2.5)-
1. 1571 6. 1662 11. 1411 16. 1442
2. 1572 7. 1581 12. 1412 17. 1421
3. 1591 8. 1582 13. 1414 18. - 1422
4. 1592 9. 1431 14. 1413 19. 1424
5. 1561 10. 1432 15. 1441 20. 1423
6. Which breakers from tne above list would be in a different position from the shutdown lineup if the plant is placed into an AT-POWER lineup? (1.0)

DUESTION 6.03 (2.50) I i

List or describe 5 trips associated with the Emergency Diesel Generators that will cause the generator output breaker to trip open before. causing the EDG to trip. (I.E. DO NOT include trips that DO NOT cause a generator j trip prior to engine trip.) Assume the EDG is running for surveillance j testing. l I

l

(***** CATEGORY OA CONTINUED ON NEXT PAGE *****)

I l

PAGE 7 6ElpE68NI_SYSIEd@_QEg1GUz_gGNIBQLt_8NQ_IN@IBQNENI@Ilg8 QUESTION- 6.04 (3.00)-

Refer.to figure.12-1A attached.

On-the drawing, l abel each of the following penetrations as indicated:

(.1.ea)

a. SI- (8 connections) b'. RHR ,

(8 connections)

c. Accumulators (4 connections)

~d.' Hi head charging (4 connections)

e. CVCS letdown (1 connection)
f. Normal charging (1 connection)
g. Alternate charging (1 connection)
h. Auxiliary spray (1 connection)
i. RCDT (2 connections)

QUESTION 6.05 (2.00) .

Assume that power is steady at 35%. I&C technicians are performing . .

calik ations on a stator cooling water dif f erential pressure transmitter.

One of the other channel transmitters fails low and a reactor trip occurs.

Explain why the reactor tripped.

QUESTION 6.06 (2.50)

~

Refer to the attached diagram concerning the Baron Thermal Regeneration System (BTRS):

a. Describe the flow path during the release (boration) mode. (1.5)
b. Describe the flow path during the storage (dilution) mode. (1.0)

QUESTION 6.07 (3.00)

Briefly describe the Reactor Vessel Level Indicating System, including the '

types of detectors used and the principles of operation of the system.

1

'1 1

l i

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

0

l 6J_uEL8NI_@y@I@d@_DESIGNz_CggIBg6,_eNQ_INSIBydENI@IlgN PAGE .8 j i

i OUESTION 6.08 (3.50)

a. List or describe 8 '.onditions that will cause an auto trip of a running Motor Driven'Fer. water Pump. Include setpoints where applicable, b.- List or describe e conditions that will cause an auto trip of a running Turbine Driven Feedwater Pump. Include setpoints where applicable.
c. List or describe 3 conditions that will cause a trip of a running motor driveo AUXILIARY FEEDWATER PUMP. Include setpoints where. applicable.
d. List or describe 3 conditions that will cause a trip of a running diesel driven AUXILIARY FEEDWATER PUMP. Include setpoints where applicable.

(.175 ea)

NOTE: different conditions that send the same trip signal to the pump will count as 1 response.

QUESTION 6.09 (2.00)

Assume that you are the SRO reviewing RD logs and note the following data Turbine load = 80%

Steam Generator pressure = 998 psig Steam flow (oer generator) = 3.4 x IOE6 lbm/hr All systems operating in automatic Are the above indications consistent with each other? Justify your answer, SHOWING ALL CALCULATIONS. State all assumptions.

QUESTION 6.10 (1.50)

Refer to figure 24-11 attached concerning the steam dump system.

Label the contacts on the figure numbered 1A, 1B, IC, 2, 3, 4, 5 and 6. l l

l

(***** END OF CATEGORY 06 *****)

- Z21_EB9GEDWBES_:_N9Bd86i_0BNgBd861_gdgBggdgy_@NQ PAGE 9 l

+-

  • 58D196991G96_G9 NIB 96 QUESTION 7.01 (2.50)

What are the entry conditions for BwEP ES-0.0, "Rediagnosis"? Be specific.

QUESTION '/ . 02 (2.50)

BwEP ES-1.3, "Transfer to Cold Leg Recirculation" (attached), contains a caution stating that BwFRs should NOT be implemented prior to completion of steps i thru 5. What are the reasons (bases) for this caution?

QUESTION 7.03 (1.50)

Per BwEP-0, "Reactor Trip or Safety Injection", list or describe 3 symptoms that require a' reactor trip. AND saf ety inj ection, if both have not occurred. Include setpoints.

QUESTION 7.04 (1.50)

State the line of succest, ion (who has the responsibilities) of the Acting Station Director if the Station Director is not available or not on site during an emergency.

QUESTION 7.05 ( .50)

True or False? ,

General categorization and declaration of an emergency condition may be delegated by the Station Director to the Corporate Command Center Director.

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

e' .

P'GE A 10'

- Z3,...PEOCEDURES - NORMAL _8@UQBM8L 2 _EMEBGENCY_ANQ i

." Begig6gGIC86_Cgu1Bgt QUESTION 7.06 (3.00)

Classify each of the f ollowing as to. their appropriate Emergency Action Lovel. Limit your answers to NONE, UNUSUAL EVENT, ALERT, SITE EMERGENCY, or GENERAL EMERGENCY. BwZP 100-1A1 is attached. (.75 ea)

1. cooling pond level is at 588 ft due to dry weather
2. an operator -initiates saf ety injection with the plant at po.ver.

Pressure remains stable at 2135 psig.

3. while-removing the main generator from the grid, the operator inadvertently opens the SAT disconnects instead of the UAT disconnects
4. a runback results in driving bank.D control rods below the low-low rod insertion limit QUESTION 7.07 (2.00)

Refer to the attached pages from 1BwEP-0.

While performing step 1 of this procedure, you note that one of the reactor trip breakers did not open. All rod bottom lights are lit. What action (s) do you take and WHY7 l

  • QUESTION 7.08 (2.00)

Assume that the long fuel handling tool must be physically inspected by removing it from the spent fuel pool. The tool will be out of the pool for

, 2 weeks. Readings at the end of the tool are 240 mrem per hour at a 1

distance of 2 feet.

Where (at what distance) must a RADIATION AREA sign be posted? Show all )

work and state all assumptions. I l

OUESTION 7.09 (1.50) l Per BwGP 100-2. "Plant Startup", certain actions must be taken by the operator if the source range count rate inrareases unexpectedly by a factor of two or more during any operation. What immediate actions must be taken and when can the operation be resumed?

(***** CATEGORY 07 CON'..NUED ON NEXT PAGE *****)

PAGE-'11 22_iBB9GEDUBES_:_N9Bd861_8DN9Bd86t_EMEBGENGY_8NQ

.- 8891969G1986_G9 NIB 96 QUESTION 7.10 (3.00)

BwGP.100-2, "Plant Startup"; states in part "the' shutdown banks must'be.at-the fully withdrawn position whenever positive reactivity is being cdded..." Describe:3 exceptions to this_ rule.

QUESTION 7.11 (2.50)

Per BwGP 100-6, "Refueling Outage", describe 5 occurrences that require that core alteration operations be suspended.

QUESTION 7.12 (2.50)

Per BwRP 1 1 2 0 - 1 ,- "Control'1ed Area Access", personnel entry into a controlled area 'is not permitted unless certain requirements are met. List or describe 5 of these requirements.

I i

l

'l 1

(***** END OF CATEGORY 07 *****)

l 1

l

.PAGE 12

@ [60didlEIB611ME 889EEEMBEEt 99 dell 19dEx 6dE 61d1IGIlggg w

QUESTION 8.01 (2.00)

Par Technical Specification 3.1.1.4, the lowest operating loop temperature shall be greater than or equal to 550 degrees F when in mode 1 or 2. Give 4 reasons for this limit.

QUESTION 8.02 (2.50)

Assume that one of the governor valves for the Unit 2 high pressure-turbine is stuck and declared inoperable. Per Technical Specification 3.3.4, "Turbine Overspeed Protection", what are your 3 options?

QUESTION 8.03 (2.50)

Assume that you are the on-shift SCRE, unit 1 is in an-outage, and unit 2 is at 40% powe'r. -

An auxiliary operator who is enrolled i n .the train' g program for reactor operator at Byron is at Braidwood to assist the ops.ations department during the outage. He asks you if he may move the control rods in manual on unit 2 in order to complete practical factors for his training as an RO.

What administrative requirements must be met before you let him perform the manipulation? Be specific. r QUESTION 8.04 (2.50)

Per BwAP 350-1, "Operating Logs and Records", give 10 types of entries that should be made in the SHIFT ENGINEER' S LOG. Do not give actual examples.

QUESTION 8.05 (2.00)

Per BwAP 350-1, "Operating Logs and Records", give 8 types of entries that should be made in the CONTROL ROOM LOGS. Do not give actual examples.

I

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****) l 1

l

.* PAGE 13

, ass,_GRd1NJ@lB8IlyE_BBQgEgyBESz_ggNpillgNgt_8ND_61d1I8IlgNS.

QUESTION 8.06 (3.00)

Assume that.you are the SRO on-shift with unit 1.in mode 3 when you receive the following chemistry sample results for unit 1:

dissolved-oxygen: 1.1 ppm chloride: 0.25 ppm-fluoride: 0.11 ppm

~

specific activity: 1.2 microcuries/ gram dose equivalent I-131 gross activity: 24 microcuries/ gram E-bar: 0.4 Explain what basis would be used (if any) for entering the actions statements fort

a. Technical Specification 3.4.7, "Chemistry"
b. Technical Specification 3.4.8, "Specific Activity" l

QUESTION 8.07 (1.50)

Assume that you are the Shift Engineer and are notified that an acid spill-occurred while regenerating ion exchanger resin beds. Per BwAP 550-13, "Caustic and Acid Spill Cleanup Procedure", list 3 actions that you should take, i

"OUESTION 8.08 (2.00) l Per BwAP 900-9, "Telephone Bomb / Sabotage Threat", list 4 persons or organizations that you should notify of a bomb threat if you are the Shift ,

Engineer.

l

.i OUESTION 8.09 ( .50)

Per the license for Unit 1, what is the maximum power level ( ther mal )- that ,

Unit 1 is authorized to operate at? l l

I

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

i 14

- Np_61d1I6IlgNS PAGE

.. Br;209b1NI@IB6I12E_EBQgEQUBE@z_ggNp1IlgNSt_6 D'

1 I

l QUESTION 8.10 (1.50) l Tschnical Specification 3.5.3 specifies that a maximum of one centrifugal

)

charging pump:shall:be operable whenever the temperature of one or more of  ;

the RCS cold legs is less than or equal to 330 degrees F. Technical Specification 4.5.3.2 f urther states that no 'saf ety injection pumps shall i be operable n this condition.

What is the basis for these technical specification limits?

OUESTION 8.11 (1.00)

Explain under what conditions an operator may be allowed to violate technical specifications when performing an Emergency Procedure (BwEP series).

CUESTION 8.12 (2.50)

Technical Specification 3.6.2.2 places limits on the volume and '

concentration of NaOH in the spray additive tanks. What are the bases for these limits? Be specific.

QUESTION 8.13 (1.50)

State whether or not each of the following cases would require entry into a Technical Specification LCO. Limit your answer to YES or NO. (.75 ea)

1. A containment pressure channel monthly channel check was performed on i the following dates this year Jan 4, Feb 6, Mar 6, Apr 13, May 12 and l l

June 6. l l

I

2. Control room temperature has been 100 degrees f or the last 2 shifts.

The plant is in mode 3.

(***** END OF CATEGORY 08 *****)

(************* END OF EXAMINATION ***************)

~ , .

~PAGE 15 f05 S_IME96Y_9E_NyCLge8_EgNE8_E68NI_QEE8811QNt_E6UlQS t_8NQ.

"- ' IMEBdQQYN8 digs ANSWERS -- BRAIDWOOD 1&2 ' -88/07/18-DAMON, D.

t.. -

ANSWER 5.01 ( 1.~ 00)

SDM increases CO.33 The decrease in the reactivity by the boron'will.be= equal to the increase in reactivity by the temperature and/or power decrease. [0.73 REFERENCE Reactor Theory, ch 7, obj 8 and pp 7-8 to 7-14 OO4000K519 ...(KA'S)

ANSWER G.02 (2.00)

a. Increase,
b. Decrease
c. Increase
d. Decrease (will accept remain the same)
e. Increase CO.4 pts each]

REFERENCE Fluid Flow, ch 2, obj 5 and pp 2-38 to 2-46 OO4000K604 191004K105 191004K106 191004K107 193OO6K115

...(KA'S)

ANSWER 5.03 (3.00)

Keff1 = 1/((1-(-0.04)) = 0.9615 [0.33 100(1 - .9615) = 132(1 - Keff2) , Keff2 = 0.9708 CO.73 rho 2 = (0.9708 -1)/O.9708 = -0.03 [0.33 delta rho = rho 2 - rhol = -0.03 -(-0.04) = 0.01 = 1000 pcm [0.63 (accept del ta rho =ln (k2/ki) =963 pcm and del ta rho = (k2-ki) / k2ki=996 pcm)

(acceptable range on delta rho is 960 to 1000 pcm)

Baron delta rho = -150 ppm x -10 pcm/ ppm = 1500 pcm [0.53 Xenon delta rho = 1000pcm - 1500 pcm = -500 pcm CO.63 (acceptable range on Xenon delta rho is -500 to -540 pcm)

REFERENCE Reactor Theory, ch 4, obj 4 l Reactor Theory, ch 5, pp 5-28 to 5-31 l Reactor Physics, ch 6, obj 13 and pp 6-21 to 6-24 OO1000K528 ...(KA'S)

I

. 5 b_IMEQBY_9E_NWGLE85,.E9 WEB _EL681_QEEB61198t_ELUlpSi_8NQ PAGE' 16

'- -'*~- *ISEBdQDYN9dlGS-ANSWERS -- BRAIDWOOD 162 -88/07/18-DAMON, D.

d ANSWER 5.04 (1.50)

As the area of the venturi decreases, fluid velocity increases.(.5)' The velocity is limited to sonic velocity in the throat of the nozzle.(.5)

Since mass flow rate is proportional to velocity, mass flow rate is limited by sonic velocity in the throat.(.5)

(full credit for concept)

REFERENCE Fluid Flow, ch 3, obj 1b and pp 3-17 to 3-23 039000A201 191002K101 191002K105 193OO4K103 193OO6K115

...(KA'S)

ANSWER 5.05 (3.00) .

Rod insertion causes flux shift towards bottom of core (0,5). Xenon buildup in top of core due to less burnout and xenon reduction _in bottom of core due to increased burnout causes flux to shift towards the bottom of the core even more (1.0). Later, xenon buildup in bottom of the core due to increased production and xenon reduction in top of the core due to xenon decay causes a flux swing towards the top of the core (1.0). These feedback effects between xenon and power result in an axial power oscillation (0.5) (which will die out with time).

~

REFERENCE Reactor Theory, ch 4, obj 10 and pp 4-29 to 4-34 192OO5K114 192OO5K116 ...(KA'S)

5Es_IdEQBy_QE_NQQLg88_EQWEB_E68NI_QEgB8IlgN t _ELylDQt_88Q PAGE .17 1

. 'J ' ISEBdQQYN8dlGQ ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D.

ANSWER 5.06 (3. 00)-

a. A single pump running.has a higher flow than when all 4 are operating (due to reduced discharge pressure) so more work is done and more amperage drawn. (0.75)
b. At cold conditions, fluid density is higher, so more mass'is moved.so more work is done and more amperage drawn. (0.75)
c. It must accelerate more mass, which requires more' work, and amps.(0.75)
d. Operating at runout may cause pump damage / trip on overcurrent. '(0.75) will accept concept for all parts REFERENCE Fluid Flow, ch 2, obj's 1, 3, 9, 14 and pp 2-24 to 2-25, 2-63 to 2-69 Fig's FF-2-32, FF-2-33 191004K105 191004K107 191004K108 191004K112 ...(KA'S) i ANSWER 5.07 (1.00)

Due to the greater decrease in the temperature of the coolant exiting the core relative to the decrease of the inlet coolant (0.5), more positive reactivity will be added in the upper core regions (0.5), (resulting in a

~

more positive (less negative) AFD.)

REFERENCE i Reactor Theory, ch 8, obj 4 and pp 8-14 to 8-16 193OO9K102 193OO9K107 ...(KA'S) l l

1 i

l i

\

c

. PAGE 10 '

Ut _IUEQBY_9E_NUGLEBB_EQWEB_E66NI_QEEB81198t_E6MIEEz_6NQ J. IdEBdQQYN6d1G@

ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D.-

l 1

l ANSWER 5.08 (2. 50)-

a. The increasing temperature causes a density change of the' coolant-which results in negative reactivity,(.25) due to the decrease in  !

moderating ability of the water. (.25) The subsequent decrease in density results in removing boron, causing positive reactivity'due to ,

fewer losses to the boron poison. (.25) [ Accept the following for i DNE reactivity effect: If the candidate assumed that the moderator 1 temperature rise was due to fuel temperature rise, doppler power coefficient will add-negative reactivity.]

^l

b. The change in density of the coolant with changing temperature at l higher temperature is much greater than at lower temperature, (0.5) so j more boron atoms enter or leave the core'at higher temperatures which j causes a larger reactivity change f or a given temperature change (0.5) i

~

c. Lowering boron concentration over lif e makes MTC,more negative due to the decreased poisoning changes with density / temperature changes. (.5)

MTC's contribution to power defect overrides other changes over core I I

life, (.25) (causing power defect coefficient to become more negative.)

REFERENCE Reactor Theory, ch 2, obj's 6, 8, 9 and pp 2-63 to 2-69 192OO4K108 ...(KA'S)

ANSWER 5.09 (2.00)

a. 1. Reactor power will initially decrease to add positive reactivity from doppler due to the negative reactivity added by the_ control rods. (.5)

Power will return to 100% sir.ce power follows steam demand. (.25)

2. Tave will decrease because of steam flow / reactor power mismatch (.5) until enough positive reactivity is added to return reactor power to 100%. (.25) i
b. The difference is that Tave will decrease less (since MTC is more (0.5) l negative at EOL). Also accept smaller power decrease.

REFERENCE Heat Transfer, ch 7, obj's 7, 8 and pp 7-32 to 7-56 192OO4K106 192OO4K107 192OO8K124 ...(KA'S)

. Uzi_IMEQBy_QE_NyGLE68_EQWE8_EL@NI_QEg8@IlgNt_ELQ1QQt_8NQ PAGE. 19-

. ISE6dggyN8dlQQ ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D.

ANSWER 5.10 (2.00)

a. The loss of fission neutrons is made up by source neutrons. (0.75)
b. The initial count rate is low as.well as the subsequent count rates so that the ratio of 1/M is constant and notiaffected. (0.75) 1
c. The detector will detect ~only source neutrons in this geometry until there is a relatively large flux f rom the f uel being loaded. (0.5)

REFERENCE Reactor Physics, ch 8, obj's 4, 16 and pp 8-13'to 8-30 192OO3K101 192OO8K104 ...(KA'S) i ANSWER 5.11 (2.00) ,

a. Effective area available to condense steam is reduced, which increases' Tsat and Psat in the condenser. The increase in Psat causes the extraction of less work from the turbine since work is proportional to delta P across the turbine, so efficiency decreases.
b. Increasino noncondensibles block some tube area, with same consequences as above. Also, this reduces the amount of steam undergoing phose change, which decreases the specific volume change, leading to higher pressure, and the effects above.
c. Reduced mass flow reduces heat rejected f rom the steam in the condenser, causing less dT, with a corresponding increase in Tsat and Psat, with the effects above.

(3 answers S 0.666 ea.; General concept required, not specific answer)

(will also accept explanations utilizing appropriate heat transfer equations)

REFERENCE Thermodynamics, ch 4, obj 11 and pp 4-64 to 4-106 191006K110 191006K112 191006K114 193OO5K103 ...(KA'S)

-.5t _INEQBy_QE_NQg6E68_EQWEB_E6@NI_QEEB@IlgNz_E691pSt_8NQ PAGE 20

'.' ' ISEBdQDYNed1GE-ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON. D.

. . I ANSWER 5.12 (2.00)

Axial Flux Difference (0.25) determines axial-distribution (0.25) and is determined by subtracting calibrated I.from the bottom detectors.from the i calibrated I f rom the top ' detectors and dividing by the 100% power calibrated I (0.5).

Quadrant Power Tilt Ratio (0.25) determines the radial flux shape (0.25) I and is. determined by ratioing the maximum upper half excore detector I to the average upper excore detector I (also applies to lower detectors) (0.5) .

F(Q)2 EO.25] determines local heat flux at a specific elevation EO.25]

by use of the in-core NI's to ensure both axial and radial flux within ,

limits. CO.5]

Fxy EO.25] ensures that radial peaking factors within limits.CO.253 and is determined with in-core NI's. CO.5]

[Any 2 of 4 that addresses both radial and axial flux] (2.0)

REFERENCE Reactor Theory, ch 6, obj 7 and pp S-16 to 8-24 193OO9K101 193OO9K102 ...(KA'S) i 1

4 l

'PAGE 21

. 6 tE_E68NI_SYSIEd@_Q$$1GUz_QQNI696t_8NQ_IN@l8QdENI811QN

' ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON,'D.

ANSWER 6.01 (1.50)

As long as CCW is supplied to the thermal barrier (.75), reactor coolant is cooled to acceptable temperatures prior to reaching the seals and bearings.

(.75)

REFERENCE System Description ch 13, objective 4d and pp 13-42 to 13-43 OO3OOOA201 ...(KA'S)

ANSWER 6.02 (3.50) 1

a. 1. open- 6. shut 11. open 16. shut
2. shut 7. open 12. shut 17. open '
3. epen 8. shut 13. open 18. shut )
4. shut
  • 9. open 14. open 19. open
5. open 10. shut 15. open 20. open
b. 1571, 1572, 1561, 1562, 1431, 1432, 1441, 1442

(.125 for each answer, 3.5 total)

REFERENCE System Description ch. 4, objective 9 and pp 4-105 to 4-106 062OOOK104 ...(KA'S)

ANSWER 6.03 (2.50)

Any 5 & .5 eat Generator over-current Generator neutral to ground over-current Loss of field Reverse Power Under-frequency Manual Bus lockout i Safety Injection l REFERENCE ,

I System Description ch. 9, objective 5 and pp 9-48 to 9-51 Figure 9-2 064000K402 ...(KA'S)

i e ',

INFORMATION ONLJ

st l

.- s l

a! $ !! a !! ' !E

. :e _A. . 1. -

et l &&&fo a -

Ea c

u:A sada 3'n*&&  :

w .

gye t

-  : a :::pf, a  :.!l ey! -

ll y I "

@  :(

(*

r ,

,, ,, t  :,

~)  ::

g " "

e, qc ::

f@ @

MJ8%' @ C,' 2 t r!

1 t' mm -

s i=; -

ym a

~

s 9 -o.3 -

s

> <a, l mm@ -- ~.

  • 3

/p w

~

N g .y

=w 1

9 v. g I

. " a o a u l o l "I' .

l a:

I

=

m y 8 i

= u i l!

. s f ij N 4

9 +9 - + ,

_i,  :

l

-

  • w i h '-

N7% [ h h d II

  • U*e lf 3M E l f, .{:  ;*Sg"joo@c i

y

=

x 4,

s s

W. e =; f x

y<~ ,

lheif bE i el-m iV d~ W 4! ' h hli m me_

~

~f 40 l n s vam *t li!j'Ij*** l!"i!!! 3

'1

-l yj

~

T' IGE 22

,. 6[._PL8NTSYSTEMSDESIGNz_ CONTROL _@ND_1NSTRUMENTATION t

ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. j I

ANSWER 6.04 (3.00)

Sxe attached drawing  !

REFERENCE System Description ch 12, objective 2h and figure 12-1A OO2OOOK106 OO2OOOK108 OO2OOOK110 ...(KA'S)

ANSWER -6.05 (2.00)

A combination of 2 stator water DP transmitters low give a generator trip (45 seconds later). (.75) Generator trip gives turbine trip. (.5) With reactor power above 30% (p-8), turbine trip will give reactor trip. (.75)

I I

REFERENCE -

System De4cription ch 7c, objective le and pp 7c-23 to 7c-25 012OOOK106 045050K101 ...(KA's)

ANSWER 6.06 (2.50)

a. moderating heat exchanger, bypasses letdown chiller heat exchanger, through letdown reheat heat exchanger, through resin beds, to moderating heat exchanger, and letdown chiller heat exchanger t
b. moderating heat exchanger, through letdown chiller heat exchanger, to resin beds, to moderating heat exchanger 3

(.25 for each component) i REFERENCE 1 System Description ch 16, obj 6 and pg 16-5 OO4000K405 ...(KA'S)

.i 4

._...-..y.. _ , - , - , , ,

- . ,_m, -_ _ , . .~ ,,r ,

- 41__ELONI_EYSIEd@_DggIgNt_ggNIBQ6t_8NQ_INgIBQNgNI8IIQN PAGE 23 ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMOK ..

ANSWER 6.07 (3.00)

System consists of a series of heated junction thermocouple sensors.(.25)

Each sensor consists of a thermocouple near a heater and another "way from l

the heater. (.75)

If liquid water is covering the sensor, the delta T between thermu. aples is small due to the good heat transfer properties of li quid water. (1. 0) If steam voiding occurs, the heat transfer goes down and a larger delta T is '

l present, indicating the level change.(1.0)

REFERENCE System Description, ch 34b, obj 4 and pp 34b-10 to 34b-11 ,

016000K101 016000K102 ...(KA'S) i ANSWER 6.08 (3.50)

a. any 8 of the following:
1. phase OA overcurrent 7. loss of only CD/CB pump ,

l

2. phase DC overcurrent 8. low su: ; ion pressure -4 caps.3 +- l hi-2 S/G 1evel any S/G

~

3. neutral ground overcurrent 9. 7H
4. hi differential current 10. any SI 2 Ag h i
5. hi lube oil temp - 175 degrees 11. undervoltage l
6. lo lube oil press - 10 psig j i
b. any 6 of tne following l
1. overspeed - 5720 RPM 5. hi-2 S/G 1evel any S/G j
2. lo autostop oil press - 35 psig 6. any SI  !
3. lo bearing press - 10 psig 7. thrust bearing wear - (
4. lo vacuum - zone C @ 14" Hg 10 m:1s
c. any 3 of the following:
1. control switch (manual) 3. lo-2 su.: tion precs-4.48"Hg i
2. overcurrent 4. undervcitage bus 141 {
d. any 3 of the followingt
1. overcrank - 55 secs 4. overspeed - 1900 RPM 1
2. high water temp - 205 dagrees 5. lo-2 suction press-4.48"Hg l
3. lo oil pressure - 10 psig

.175 ea; for answers with setpoints, .0875 for trip 4m .uCc5 for setpoint.

REFERENCE System Description, ch 25, obj 7 and pp 25-82 to 25-83 ch 26, obj 7 and pp 26-14, 26-17 059000K416 061000K407 ...(KA'S) l

PAGE 24 l,,As},_ELONI_SYSIEMS_DESl@Ni_GQNIBQ6t_8NQ.INSISWdENIBI1QN ANSWERS'---BRAIDWOOD 1&2 ~-88/07/18-DAMON, D.

e ANSWER -6.09 (2.00)

Not consistent. (.5)

Steam pressure ramps from 1092~to 975 from 0 to 100% power (.5)

' 80% turbine load = 998 psig (.25) -

Steam flow O ts 100% power = 0 to 3.75 x 10E6 lbm/hr _

(15 x 10E6 lbm/hr all S/G's) 80% turbine load a 3x 10E6 lbm/hr.- (.25) (This is the inconsistency)

REFERENCE System Description, ch 23, obj 11 and pg 23-10.

039000A106 ...(KA'S) l ANSWER 6.10 (1.50) 1A, 1B, 1C - cire water pum; breakers (.25) 2 - condensor vacuum (.25) 3 - RTA (.125) and BYA (.125) 4 - loss of load (C-7) (.25) i 5 - steam pressure mode (.25) l 6 - permissive (C-9) (.25) t NOTE: 3, 4, 5 may be interchanged in any order  ;

REFERENCE ,

System Description, ch 24, obj 7 and figure 24-11 041020K401 ...(KA'S) i 1

II l

l l

h

~ . . .

e PAGE" 25

. 22._EBQGEDUBES_:_NQBd86t_eENQBdebt_EdEBQENGY_8ND.

i

  • BBQ196001GOL_GQUIBQL ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D.

J ANSWER 7.01 (2.50)

Entered based on operator judgement whens (.75)

-1. SI is actuated or required AND (.75) '

2. BwEP-O has been implemented (.5) AND a transition _has oeen made to

.another BwEP-(.5)

(.5 pts off if the AND logic is missing)-

REFERENCE BwEP ES-0.0 symptoms or entry conditions OOOO11G011 ...(KA*S)

ANSWER 7.02 (2.50)

~

-The amount of water in the RWST between the switchover setpoint and the empty point is limited, (.75) so the realignment of the SI system must be done quickly to maintain SI pump suction. (.75) -These steps must be completed even if challenges to the CSFu occur at this time, (.5) since they relate to the maintenance of' core cooling. (.5)

(credit given for concept, not exact wording)

REFERENCE BwEP ES-1.3, first caution BwEP Simulator Lewson Plens, EP-1, obj ic and pg 157 )

i ERG background, ES-1.3, Step 1 Note 1, (HP-Rev. IA) <

I OOOO11 GOO 7 ...(KA'S)

~

l ANSWER 7.03 (1.50) l

1. PZR pressure less than or equal to 1829 psig I
2. steamline pressure less than or equal to 640 osig
3. containment pressure greater than or equal to 3.4 psig

(.4 for each symptom, .1 for each setpoint)

REFERENCE BwEP-O symptoms or entry conditions OOOOO7G011 ...(KA'S) l 1

l l

PAGE '26

-Zz'__ESQGEDWBES_:_NQBd86t 8ENQBd86t_EdEBQENGX_8ND '

-l. 1689196QQ1986_GQUI606 ANSWERS.-- BRAIDWOOD 1&2' -88/07/18-DAMON, D.

ANSWER 7.04 (1.50) ,

Shift Engineer -

Shift Foreman SCRE (.5 ea, order important)

REFERENCE BwZP 090-1, E.1-194001A116 ...(KA'S)

ANSWER 7.05 ( .50)  :

False  ;

REFERENCE -

Dw2P 090-1,_D.1.a  ;

194001A116 ...(KA'S) 1 ANSWER 7.06 (3.00)

1. unusual event ,
2. unusual event ,
3. unusual event
4. unusual event or none REFERENCE I

. BwZP 2OO-1A1 194001A116 ...(KA'S) f i

ANSWER 7.07 (2.00) l Since not all reactor trip and bypass breakers are open, the second substep cannot be completed. (.5) Since this is a "closed bullet" item, all  ;

substeps must be completed to complete the major step. (.5) Since the major step cannot be satisfied, the RNO column must be entered, (.5) so go to BwFR-S.1, step 1. (.5)

REFERENCE .i BwEP-0, step 1 BwAP 340-1, C.2.b.1 194001A102 ...(KA'S) i l

l

PAGE 27

- 'Z zs' _EB9GEDWBEE_ _N9Bd8Lt_8DNQSd8Lt_EMESDENGY_8NQ

' 66R196991GOL_G9NI696 ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON.-D.

ANSWER 7.08 (2.00)

Assume a point source, so R1 (D1)**2 = R2 (D2)**2 (.5)

R1=240 mree/hr Di=2 ft-em 5 g r w o r L d a y = l b b m.* e m 7 4 b k E ' '

yar'2.5 m' rem /hr for worker in that area for the week (1.0)

{

therefore R2=2.5 mrem /hr (.25) and D2=19,6 f eet (credit given for 19.5 to 20 ft) (.25)

(credit given for any other valid assumptions, such as covering with shielding to reduce rad levels,.etc)

REFERENCE BwRP 100-A1, p'g 3 of 69 -

Radiological Protection Module, ch 5, Appendix A

] 194001K103 ...(KA'S)

ANSWER 7.09 (1.50)

The operation shall be stopped immediately (.75) and suspended until a

satisfactory evaluation has been'made. (.75)

J REFERENCE ,

BwGP 100-2, E.1.a 015000 GOO 1 . . . OGY S )

l t

1 i

l l

i l 4

l i

PAGE 28 E#. ~ Zi2_EBQCEDVBEE_ _NQBdebt_8ENQBd8Lx_EMEB@ENGX_8NQ

":~.

  • B00196Q91G96_G9NI696 ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON,.D. j i ANSWER 7.10 (3.00)

(1.0 ea) 't

1. If'the shutdown banks cannot be withdrawn, the reactor coolant must be "

borated to ensure adequate shutdown margin, and the boron concentr'ation

confirmed by samp11.ng.
2. If the reactor coolant has been borated to at least the hot, xenon-free boron concentration, and is being maintained at hot star.dby, the shutdown banks need not be withdrawn.
3. If the reactor coolant has been borated to.the cold shutdown concentration, the shutdown banks need not be withdrawn. i (exact wording not required)

~

l REFERENCE

! BwGP 100-2, E.2.c  !

001000G001 ...(KA'S).

! ANSWER 7.11 (2.50) any 5 of the following 9 .5 ea:

1. less than one boron injectior, flow path available <
2. no centrifugal charging pump operable l
3. less than one borated water source available i

! 4. less than two source range monitors in service

5. direct com.nunications between control room and ref ueling station lost
6. less than one RH loop in operation
7. less than 23 feet of water above Rx vessel flange
8. less than one fuel building exhaust vent system operable
9. activation of containment evacuation alarm
10. RCS or refueling canal Keff greater than 0.95
11. RCS or refueling canal boron concentration less than 2000 ppm 4 REFERENCE i BwGP 100-6, E.3 l 000036G010 OOOO36G011 ...(KA'S) 1-

- ?is_EB9CEDUBES_ _Ng8086t_8pNgSU8Ez_EdgBGEUgy_8ND PAGE 29 1 l

.' '68D196901G86_G9NIBg6 ANSWERS -- BRAIDWOOD 1 &.2 -88/07/18-DAMON, D.

I ANSWER 7.12 (2.50)

Any 5 of the f ollowing 9 .5 ea:

1. Supervision has authorized the entry.
2. each person has a valid NGET card
3. each person has read and understands the appropriate RWP
4. each person has received a bioassay
5. the job supervisor or the person performing the work has checked with Rad / chem for requirements
6. each person is aware of the maximum dose equivalent authorized
7. each person has read and understood all radiological signs and labels at the access control point REFERENCE BwRP 1120-1. F.2 194001K103 ...(,A'S)

O l

l

Dt. 8Qd1U1?IB811YE_E6QQEQQ6E@t_QQNQlI1QNEt_9NQ_LidlI611QUE PAGE 30.

. ANSWERS - BRAIDWO6D 1&2 -88/07/18-DAMONp.Do 1

P ANSWER 8.01 (2.00)

Any 4 of the fc11owing G .5 ea ,

1. MTC is within analy:ed temperature range l
2. trip instrumentation is in normal cperating range
3. PZR capable of being in an OPERABLE status with a steam bubble
4. reactor vessel is above minimum RT NDT
5. plant is above cooldown steam dump permissive (P-12) l REFERENCE Tech. Spec. bases 3/4.1.1.'4 OO1000K516 OO2OOOGOO6 ...(KA'S) i ANSWER 8.02 (2.50) restore valve to operable s.tatus (.5) (within 72 hrs) or close at least one valve in the affected steam line (1.0)  :

or isolate the turbine f rom the steam supply (1.0) (within 6 hrs) 1 REFERENCE Tech. Spec 3.3.1 045000 GOO 5 ...(KA'S)

ANSWER 8.03 (2.50) must be under tne direct supervision of a licensed operator (.75)  :

his name must be on the memo from the Braidwood training department verifying that he is in a training status and eligible to perform  !

reactivity manipulations (1.75)

REFERENCE  !

BwAP 300-1, para C.8 10 CFR 55.59 inspection report 50-456/87042(DRP) 194001A103 ...(KA'S) 1

- , _ _ _ - . _ _ _ _ ~ - _ _ _ - . _ _ ~ . _ _ . _ . - . . . . . __ _

..r . _ .

4 ' '92 _8Dd1NIGIB011YE_EBQGEDW6ESt_GQND1119 Net _8ND_L10118I1QNQ PAGE 31 ANSWERS -- BRAIDWOOD 1&7 -88/07/18-DAMON, D. q 4 .

i ANSWER 8.04 (2.50) ,

any 10 of the following & .25 ea:

1. major equipment status changes
2. major system and equipment testing
3. personnel accidents or injuries
4. entering a tech spec action statement
5. leaving a tech spec action statement
6. potential reportable occurrences
7. occurrence of significant events, such as reactor trips or unexpected power changes -

- 8. criticality data, such as rod position and boron concentration

9. implementation of GSEP
10. security incidents
11. out-of-spee chemistry results
12. off-site calls to/from NRC, upper management, or. Duty Officer concerning significant events '
13. pert'inent miscellaneous information ,

Notes will accept other answers on a case-by-case basis t

REFERENCE BwAP 350-1, para C.1.c.2 [

194001A103 ...(KA'S) 1 3

t I

t l

2 a

f 4

I i

I

.- Ett_89d181SIBOI1Yg_P8QGEQQBE@t_QQUQlI1QU@t_8NQ.LidlI@IlQN@ PAGE R32 ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, Do ANSWER 18.05 (2.00)

Any 8 of the f ollowing D .25 ea t

1. mode changes
2. load changes
3. reactivity changes (other than during startup-and shutdown)
4. equipment status changes
5. time.of criticality during startup and pertinent plant data at criticality
6. performance of surveillance testing
7. reportable occurrences
8. saf ety-related and other important equipment maintenance in j progress
9. entering a tech spec action statement ,
10. leaving a tech spec action statement ,
11. implementation of GSEP
12. all releases of radioactive effluents, including >; tart'and stop times .
13. pertinent miscellaneous information Notes will accept other answers on a case-by-case basis.

REFERENCE BwAP 350-1, para C.1.d.3 194001A103 . . . (KA' S) i 1

i -ANSWER 8.06 (3.00) -

s 4

a. exceeding oxygen transient limit (1.0) and exceeding chloride steady
. state limit (1.0)
2. exceeding dose equivalent I-131 limit (1.0) ,
REFERENCE J

Tech Spec 3.4.7, TS table 3.4-2, 3.4.8 1 OO4000 GOO 5 ...(KA'S) j l

4 I l 1

4 4

t l

4 i

4 l

l T

l

_j

PAGE 33' C 9t%_8Dd1NISIB8I1YE_E89GEDWBEEz_GQNDlIl0 net _8ND_ Lid 118I1QNQ

' ANSWERS -- BRAIDWOOD_1&2 -88/07/18-DAMON, D.

ANSWER 8.07 (1.50)
1. Contact medical personnel if needed and/or chemistry supervision
2. Ensure that the area of the spill is roped off with caution signs-
3. ensure the spill is cleaned up with non-combustible absorbing material

(.5 ea)

REFERENCE BwAP 550-13, F.1 194001K110 ...(KA*S)

ANSWER 8.08 (2.00) any 4 of the following 9 .5 ea:

1. secur-ity control c, enter operator
2. station manager
3. construction superintendents
4. proj ect manager
5. station security administrator
6. load dispatcher. southern division
7. NRC REFERENCE BwAP 900-9, C.2.c 194001K116 ...(KA'S)

ANSWER 8.09 ( .50) 3411 megawatts thermal REFERENCE Unit i license section 2.C.1 015000G010 ...(KA'S) 1 ANSWER 8.10 (1.50)

Provides assurance that a mass addition pressure transient (.5) can be relieved by the operation of a single PORV (.5) or an RHR suction relief valve. (.5) 1

9 '

i

' -PAGE 34

. i Bta._8Dd1NISIBOI1YE_EBQGEDWBESt_G98D1I1QNet_eND_ Lid 1IGI1QUS ANSWERS - DRAaDWOOD 1&2 -C8/07/18-DAMON, D. l; REFERENCE TS basis 3/4.5.3, 3/4.1.2 OO6000 GOO 6 ...(KA'S)

ANSWER 8.11 (1.00)

Any one of the.followingt ,

1. When the actions are directed by the EP in order to maint.'in plant safety.

To' prevent injury-to the public or company personnel

~

. 2. a.

b.. To prevent releases off-site in. excess of the TS limits

c. To prevent damage to equipment if such damage is tied to a possible adverse effect on public health and safety-
3. In an emergency when this action is immediately needed to protect the i public health and safety and no action consistent with license conditions and Tach Specs is immediately apparent.

(credit given for concept, not exact wording)

REFERENCE '

5 ERG Executive Volume, Generic Issues, Technical Specification Violation BwAP 300-1, pp 17-18 10CFR50.54x '

OO6000 GOO 1 ...(KA'S) f ANSWER 8.12 (2.50)

J Ensures a pH value of between 8.5 and 11.0 for tha solution recirculated within containment after a LOCA. (1.0) This band minimized the evolution of i iodine ( . '75 ) and minimizes the effect of cnloride and caustic stress corrosion on mechanical systems and components. (.75) .

REFERENCE TS basis 3/4.6.2.2 026000 GOO 6 ...(KA'S)

ANSWER 8.13 (1.50) .

i e

1. no i f
2. yes

PAGE 35 a Via_0Dd1NIS168112E_ESQGEDWBESt_G9BD1119NSt_699 61d1IBI1QUS ANSWERS -- BRAIDWOOD 1&2 ~B8/07/18-DAMON, D.

REFERENCE TS 4.01, 3.7.12, 000068G003 103000G006 ...(KA'S)

O e

l i

1 l

l I

i 1

. M Ab m . COPY

b. S. NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION FACILITY: BRAIDWOOD 182 REACTOR TYPE: PWR-WEC4 DATE ADMINISTERED: 88/07/18 EXAMINER: VICTOR, F.

CANDIDATE:

INSTRUCTIONS TO CANDIDATE:

Use separate paper for the answers. Write answers on one side only.

Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts. .

]

f

% OF l CATEGORY % OF CANDIDATE'S CATEGORY I VALUE TOTAL SCORE VALUE CATEGORY 2E,os 25.00 " ,Jr.51- 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYHAMICS, '

ilEAT TRANSFER AND FLUID FLOW 21,97 l 23.00 ,6 -

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS
o. oc ) . *I 7

-i%CG p 44,41- 3. INSTRUMENTS AND CONTROLS I 2 (, e v

' i 25.00 ,f5.51- 4. PROCEDURES - NORMAL, ABNORMAL,  !

EMERGENCY AND RADIOLOGICAL CONTROL

  • ig. c c.

l ,,.00-  % Total s i

Final Grade All work done on this exanination is my own. I have neither given nor received aid.

Candidate's Signature bk. 2

?

/V1 "Qu.)iL .N LDi . I

NRC RULES AND GulDELINES FOR LICENSE EXAMINATIONS Daring the administration of this examination the following rules apply:

1. Cheating on the examination means an automatic dental of your application I and could result in .nore severe penalties, i
2. Restroon trips are to be limited and only one candidate at a time may l leave. You nust avoid all contacts with anyone outside the examination  ;

roon to avoid even the appearance or potsibility of cheating. '

3. Use black ink or dark pencil only to f acilitate legible reproductions.
4. Print your name in the blank provided on the cover sheet of the _ j examination.
5. Fill in the date on the. cover sheet of the examination (if necessary).  ;
6. Use only the paper provided for answers.
7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet. .  :
8. Consecutively number each answer sheet, write "End of Categoiy ,_" as ,

appropriate, start each category on a new page, write only en one sido of the paper, and write "Last Page" on tIie last answer sheet.

1 Ibnher each answer as to category and number, for example,1.4, 6.3.

14 Skip at least three, lines between each answer , ,

11. Separate answer sheets from pad and place finished answer sheets f ace down on your desk or table. '

l

12. Use abbreviations only it they are commonly used in facility literature.
13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required. ]
14. Show all calculations, methods, or assunptions used to obtain an answer to mathematical problems whether indicated in the question or not.
15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND 00 NOT LEAVE ANY ANSWER BLANK.
16. If parts of the examinstion are not clear as to intent, ask questions of the examiner only.
17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in conpleting the exanination. This nust be done af ter the examination has been completed.

i i

I

18. When you complete your examination, you shall:
a. Assemble your examination as follows:

(1) Exam questions on top.

(2) Exam aids - figures, tables, etc.

(3) Answer pages including figures which are part of the answer.  ;
b. Turn in your copy of the examination and all pages used to a,5wer the examination questions.
c. Turn in all scrap paper and the balance of the paper that you did '

not use for answering the questions,

d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still j in progress, your license may be denied or revoked.

i l

i 1

1 1

l I

i i

l

\

r

  • 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 2 j THERMODYNAMIC 5. HEAT TRANSFER AND FLUID FLOW 1

QUESTION 1.01 (1.00)

MULTIPLE CHOICE Which one of the following conditions will result in a negative startup rate when the reactor is at power. Assume the reactor does not trip / scram.

a. Inadvertant dilution.
b. Steam line break,
c. Feedwater regulator valve fails full open,
d. Dropped control rod.

~

QUESTION 1.02 (1.00)

MULTIPLE CHOICE The effective multiplication f actor (Keff) is the ratio between the number of:

a. Neutrons in one generation and the number of neutrons in the previous generation.
b. Fast neutrons produced by all neutron-induced fissions and the number of fast neutrons produced by thermal neutron-induced
fissions,
c. Thermal neutrons absorbed in the core and the number of thermal neutrons produced in the core.
d. Fast neutrons produced f rom thermal neutron-induced fission and the number of thermal neutrons absorbed in the fuel.

i 1

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

  • ~
1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 3

. THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.03 (1.00)

MULTIPLE CHOICE Differential boron worth (DBW) becomes MORE NEGATIVE (the absolute value becomes larger) with an increase in which one of the following?

a. Coolant boron concentration
b. Coolant average temperature
c. Controlling rod group height
d. Fission product poison buildup QUESTION 1.04 (2.00) -

Answer the following TRUE or FALSE.

a. To reduce the possibility of motstare carryover in Unit 1 Steam Generators, FOUR additional swirl vane separators (total of 16) have been added to each steam generator. (0.5)
b. Unit 2 Steam Generators have higher flow rates through the riser section than Unit 1 Steam Generators which helps to reduce

, potential corrosion problems. (0.5)

c. For equivalent transients, the Unit 1 Steam Generator level indication response will be slower and less pronounced when compared with Unit 2. (0.5)
d. During a normal plant transient on Unit 2, the operator should expect the narrow range and wide range Steam Generator level indication to move in opposite directions. (0.5) l l

l l

l l

(***** CATEGORY 01CONTINUEDONNEXTPAGE*****) l l

. 4. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 4

- THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.05 (1.00)

MULTIPLE CHOICE How will affected pressurizer level indication compare to actual pressurizer level if a pressurizer level reference line ruptures?

a. Indicated pressurizer level will be lower than actual pressurizer level.
b. Indicated pressurizer level will be higher than actual pressurizer level .
c. Indicated pressurizer level will be equal to actual pressurizer level .
d. Indicated pressurizer 1evel will fail as is.

QUESTION 1.06 (1.00)  ;

MULTIPLE CH0 ICE The plant is operating at 30 percent load during a load ramp to full power.

If steam flow denisity compensation pressure channel fails at its 30 %

load value, then at full power, affected stean flow indication will:

a. Be less than actual steam flow.

l b. Be equal to actual steam flow.

c. Be greater than actual steam flow.
d. Fail at the 30 percent load value.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

'. 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 5 THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW QUESTION 1.07 (1.00)

MULTIPLE CH0 ICE Which of the following statements best describes the change in count rate resulting from a short rod withdrawal with Keff at 0.99 as compared to an identical rod withdrawal with Keff at 0.95.

a. Less time will be required to reach steady-state following the rod withdrawal and the count rate will be greater with Keff at 0.99.
b. More time will be required to reach steady-state following the rod withdrawal and the change in count rate will be less with Keff at 0.99,
c. Less time will be required to reach steady-state following the rod withdrawal and the count rate will be less with Keff at 0.99.
d. More time will be required to reach steady-state following the rod withdrawal and the change in count rate will be greater with Keff at 0.99.

QUESTION 1.08 (1.00)

MULTIPLE CH0!CE During a reactor startup, control rods are withdrawn such that 1,000 pcm (1% delta-K/K) of reactivity is added. Before the withdrawal Keff was 0.97 and count rate was 500 cps. What will the final steady state count rate be following rod withdrawal?

a. 750 cps.
b. 1000 eps.
c. 2000 cps.
d. 2250 cps.

i

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 6

. THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.09 (1.50)

When fuel temperature is increased, the resonance absorption peaks are shortened and broadened such that more neutron energies are susceptible to absorption, but the average probability of resonance absorption (average microscopic cross-section) remains constant.

Explain why the doppler effect adds negative reactivity with increasing fuel temperture despite the constant average micrcscopic cross < etions of the resonance absorbers.

t QUESTION 1.10 (1.00)

MULTIPLE CHOICE During a loss-of'-coolant accident that results in fuel damage, several thermocouples exceed their nelting temperature. The temperature indication from these thermocouples will be:

a. Lower than the actual temperature being measured.
b. Higher than the actual temperature being measured.
c. About the same as the actual temperature being measured.

. d. Impossible to describe due to the lack of a similar previous operating event.

QUESTION 1.11 (1.00)

MJLTIPLE CH0 ICE How does critical heat flux vary from the bottom to the top of the reactor core during normal full power operation?

a. Increases, then decreases.

! b. Decreases, then increases,

c. Continuously decreases.
d. Continuously increases.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 7 THERMDDYNAMICS, HEAT TRANSFER AND FLVID FLOW QUESTION 1.12 (1.50)

Answer the following TRUE or FALSE.

a. When subcooled nucleate boiling is occurring in the core, fuel rod surface temperature is greater than coolant saturation tenperature.

(0.5)

b. Convection is the primary mechanism by which heat is transferred between the fuel rod surface and the reactor coolant during normal operations. (0.5)
c. During a LOCA with steam blanketing the fuel rod, radiation becomes the principle method of heat transfer. (0.5)

QUESTION 1.13 (1.00)

MULTIPLE CH0!CE The moderator temperature coefficient (MTC) becomes LEAST NEGATIVE (the absolute value becomes smallest) under which one of the following conditions?

a. Average temperature is decreased while boron concentration is decreased.
b. Average temperatt re is decreased while boron concentration is increased,
c. Average temperature is increased while boron concentration is increased.
d. Average temperature is increased while boron concentration is decreased.

1

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****) i i

', .l. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 8 '

THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW QUE5T10N 1.14 (1.00)

MULTIPLE CH0 ICE Which one of the following is NOT a purpose for rod insertion limits?

1 i a. Minimize the time required for the control rods to add negative l

reactavity following a reactor trip.

i

b. Produce axial flux distributions that will prevent local power peaking.
c. Provide a shutdown reactivity margin that will offset the power defect at any power level.
d. Minimize the reactivity added in the event of a rod ejection acciden.t. .

QUESTION 1.15 (1.00)

MULTIPLE CHOICE Which of the following conditions will result in criticality occurring at a lower than estimated control rod position?

l

. a. A malfunction resulting in control rod speed being slower than normal speed.

b. Delaying the time of start up from 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> to 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> following a trip from 100% power equilibrium conditions.

l l c. Misadjusting the steam dump controller such that steam pressure is

, maintained 50 psig higher than the required no load setting.

1

d. Inadvertent dilution of RCS boron concentration.

I i

i l

l l

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

l 1

l l

'. 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 9 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.16 (1.00)

MULTIPLE CH0!CE The plant is stable at 90 percent power with rod control in manual (Tave, equal Tref.). The controlling rod group is inserted about 10 steps. No other operator action is taken. Which one of the following properly describes the sequence of the plant response resulting from the rod insertion?

a. Reactor power remains constant, Tave increases. Tave stabilizes above Tref.

L

b. Reactor power decreases. Tave decreases, reactor power stabilizes below 90 percent, Tave stabilizes at approximately Tref.
c. Reactor. power remains constant. Tave decreases, Tave increases, ,

Tave stabilizes at appr~oximately Tref.

d. Reactor power decreases, Tave decreases, reactor power increases to approximately 90 percent, Tave stabilizes below Tref.

QUESTION 1.17 (1.00)

MULTIPLE CHOICE At the time of reactor shutdown from 100 percent power, shutdown margin was detemined to be -5883 pcm with all control rods fully inserted. Three days later Xenon reactivity had changed by 2675 pcm, temperature reactivity had changed by 500 pcm due to cooling down to 140 degrees F and boron concentration had changed by 1040 pcm due to borating the RCS. What is the new shutdown margin?

a. -2168 pcm.
b. -3748 pcm.
c. -4843 pcm.
d. -5883 pcm.

QUESTION 1.18 (1.00)

How does reactor power respond during a plant startup at end of life (EOL) when the point of adding heat is reached with a 1.0 dpm startup rate? l Assume no operator action and no reactor trip.

("*** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

. *1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 10 THERMODYNAMIC 5. HEAT TRANSFER AND FLUID FLOW QUESTION 1.19 (1.00)

MULTIPLE CHOICE Fast neutron irradiation adversely affects the reactor pressure vessel primarily by causing.

d. Embrittlement stress.
b. Brittle fracture,
c. Thennal gradients.
d. Pressurized thermal shock.

~

QUESTION 1.20 (2.00)

a. Define pump cavitation and describe how it occurs. (1.25)
b. List THREE conditions monitored by the control room operator that would (Do notindicate that aand include noise Component Cooling) Water pump was(0.75) annunciators. cavitating.

QUESTION 1.21 (1.00)

MULTIPLE CHOICE Which of the following is NOT compensated for by K excess (Excess Multiplication Factor). 1

a. Fuel burn up.
b. Fission product poison buildup.
c. Chemical shim,
d. Reactivity effects of fuel and moderator temperature.  !

l i

l

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)  !

I l

l

a .

. 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 11 THERMDUYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.22 (1.00)

MULTIPLE CHOICE To increase nuclear power from 15% power to 100% power normally requires l' which one of the following combinations of actions?

a. Increasing turbine first-stage pressure, decreasing RCS boron concentration, and increasing rod height.
b. Decreasing turbine first-stage pressure, decreasing RCS boron cr.ncentration, and increasing rod height.

4

c. Increasing turbine first-stage pressure, increasing RCS boron concentration, and decreasing rod height.
d. Decreasing turbine firs.t-stage pressure, increasing RCS boron concentration, and decreasing rod height.

4 c

4 i

l 1

l i

a 4

(***** END OF CATEGORY 01 *****)

  • 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 12 QUESTION 2.01 (2.00)

How do the following systems connect to the reactor coolant system?

J

a. . Pressurizer spray? [ STATE LOOP NUMBER (S) AND WHETHER HOTLEG OR COLOLEG)
b. Pressurizer surge? [ STATE LOOP NUMBER (S) AND WHETHER HOTLEG OR ,

COLDLEG] <

l

c. Emergene Core Cooling System? [ LIST FOUR SYSTEMS CONNECTING TO COLDLEGS
d. CVCScharging?[STATELOOPNUMBER(S))
e. CVCS letdown? [ STATE LOOP NUMBER (S))
f. CVCS fill? [ STATE LOOP NUMBER (S) AND WHETHER HOTLEG OR COLDLEG)

QUESTION 2.02 (2.00)

a. How are the reactor coolant pump breakers interlocked with the loop isolation valves? [ LIST TWO INTERLOCKS) (1.25] ,
b. Why must the RCPs be tripped on a Phase B isolation signal? [!NCLUDE TWORCPCOMPONENTSAFFECTED) [0.75]

f j QUESTION 2.03 (2.00) , ,

a. Why is a constant by pass spray flow maintained through the pressurizer l spray system? (LIST THREE REASONS] [0.75]
b. What are the sources of water discharged to the Pressurizer Relief Tank [PRT]? [ LIST FIVE SOURCES OTHER THAN VALVE LEAK OFFS SUCH AS RHR SUCTIONVALVESETC) (1.25]

i QUESTION 2.04 (2.50)

List FIVE functions of the Volume Control Tank.

(***** CATEGORY 02 CONTINUED ON NEXT PAGE ***")

!1

l '.

l t o J. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 13 t

l QUESTION 2.05 (2.00)

a. When in the BORATE MODE of operation, why is the blender output directed to the VCT outlet instead of the VCT inlet? [0.5)
b. Why is the amount of time using the ALTERNATE DILUTE mode of operation  ;

limited? [lNCLUDE IN THE ANSWER WHERE THE BLENDER OUTPUT IS DIRECTED ,

AND LIST TWO UNDESIRABLE EFFECTS OF ALTERNATE DILUTION) [1.5) ;

I QUESTION 2.06 (2.50)

a. Why does each $1 and CV line entering the RCS contain valves [for .

i example 1518810A,B.C.D] which are locked in a throttled positions?

[ LIST TWO REASONS) [1.0) j

b. List SIX systems associated"with the ECCS which have pumps that are automatically started following a LOCA. [1.5)

QUESTION 2.07 (3.00)

4. Describe the two [2] interlock conditions that must be satisfied in order to open the Containment Spray Pump Recire Sump suction Valves '

CS009A(B) and include the reasons for each interlock. [2.0)  !

I

b. Describe the interlock condition that must be satisfied in order to  !

open the Containment Spray Pump RWST Suction Isolation Valves l CS001A(B) and include the reason for the interlock. [1.0) ,

QUESTION 2.08 (1.50)

List THREE conditions that will cause automatic closure of the MSIVs?

[INCLUDINGSETPOINTS,INTERLOCKSANDCOINCIDENCESASAPPROPRIATE]

(***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)

', .. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 14 QUESTION 2.09 (1.00) -

How will the steam dump system be affected by a failure / loss of the 125VDC non ESF bus 113? [ SELECT THE CORRECT ANSWER]

a. The steam dumps will be inocerable becaust. the D solenoid is powered from the 12SVDC non ESF bus 113.

I

b. The steam dunp system will be inoperable because ALL of the solenoids are powered from the 125VDC non ESF bus 113. -
c. The steam dumps will trip to the full open position because the C solenoid repositions to the instrument air port upon the failure / loss of the 125VDC non ESF bus 113.
d. The steam dump system will be fully operable because the steam
dump solenoids are not powered by the 125VDC non ESF bus 113.

I QUESTION 2.10 (1.50)

What condition is required for the auxiliary feedwater ESW suction valves to automatically open? [ assume the valve control switch is in the auto position 1 [lNCLUDE SETPOINT AND THREE COINCIDENCE SIGNALS] -

- QUESTION 2.11 (1.00)

During normal at-power operations with on-site power from the SATs and i UATs, how are the inplant loads split? [ SELECT THE CORRECT ANSWER]

! S147

a. UAT 141-1 supplies buses 157 and 141 and K142-1 supplies buses  ;

a 159 and 143 i SAT

b. UAT 141-2 supplies buses 142 and 156 and $142-2 supplies buses 144 and 158 SAT
c. VAT 141-1 supplies buses 144 and 156 and 7142-2 supplies buses 142 and 158 q.4 7 l d. VAT 141-2 supplies buses 156 and 144 and-MT-142-1 supplies buses 159 and 141 j

QUESTION 2.12 (2.00)

What are the purposes of the component cooling water surge tank? [ LIST FOUR) 4

(**"* END OF CATEGORY 02 **"*)

'. '3 . INSTRUMENTS AND CONTROLS PAGE 15~

QUESTION 3.01 (2.00)

Units 1 and 2 are operating at 100% load. Both Units have been experiencing frequent makeup to the VCT. 18C technicians are investigating.

1. If Unit 1 is in the auto M/V mode, how would Unit 1 VCT level be affected if LT-112 fails at 56%? [ ASSUME NO OPERATOR ACTION; SELECT THE CORRECT ANSWER] [1.0]
a. VCT level will increase until LT-185 opens CV-112A to full divert at 95%
b. VCT level will decrease to 5%; at 5% VCT level CV-1120 and E opens and CV-112B and C close
c. VCT level will go to zero
d. VCT level will decreas'e to 37% and then increase until LT-185 opens CV-112A to full divert at 95%
2. If Unit 2 is in the auto M/V mode, how would Unit 2 VCT level be affected if LT-185 fails at 0%? [ ASSUME NO OPERATOR ACTION; SELECT THE CORRECT ANSWER] [1.0]
a. VCT level will increase until LT-112 opens CV-112A to full divert at 95%
b. VCT level will decrease to 5%; at 5% VCT level CV-1120 and E opens and CV-1128 and C close
c. VCT level will go to zero
d. VCT level will be maintained in the normal operating range QUESTION 3.02 (1.50),,,(C so)

During operation at power [93%), you are manually withdrawing the controlling bank of rods and the "Rod Control URGENT Failure" annunciator is actuated in the control room.

a. How is rod motion affected? [ ANSWER FOR BOTH MANUAL AND AUT0] [0.5]
b. "h:t re the p=cr :: binet 00ndition:/faikre: th:t cau:0 : "Legic C binet Urgent F ihr;"? [ LIST FOUR CON 0!TIONS/ FAILURES] [1.0} ,g m ,, /, / )

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

', 3. INSTRUMENTS AND CONTROLS PAGE 16 QUESTION 3.03 (2.00h.l.00

a. What are the rod stops that block only automatic rod withdrawal? [ LIST TWO; INCLUDE SETPOINTS AND COINCIDENCE AS APPROPRIATE] [1.0]
b. Other ther the evertemper:ture and over power-delta T r0d steps, what are the red step: th:t b!c k both automatic :nd m:nu:1 r0d withdr:w;1? O c /e Y '

[ LIST COUR; IS'CLUDE SETPOINTS AND C0!NCIDENCE AS APPROPRIATE] [1.0] 7+

QUESTION 3.04 (1.00)

The Rod Position Indication System consists of two different position indication systems. Briefly describe how each system senses / determines rod position?

QUESTION 3.05 (2.00)

The auctioneered high Tavg signal is used as an input to several circuits including the computer and recorder. List FIVE different circuits, other tha7 the computer and recorder, that are supplied with auctioneered high Tavg inputs.

QUESTION 3.06 (1.50)

With the Steam Dump Systen aligned for normal 100 % power operesions, explain how the Steam Dump System would be affected if PT-505 [HP Turbine First Stage Impulse Pressure] fails LOW.

QUESTION 3.07 (2.50)

While operating at 75% power, the Pressurizer Pressure Control System reference pressure, Pref, [ Proportional-Integral-Derivative (PID)

Controller setting] fails to zero. [ ASSUME PLANT SYSTEMS RESPOND AS DESIGNED AND AS NORMALLY ALIGNED; NO OPERATOR ACTION TAKEN]

How will the pressurizer pressure control systen respond to the failure?

[ DESCRIBE HOW PRESSURIZER PRESSURE RESPONDS AND INCLUDE JUSTIFICATION FOR YOUR DESCRIPTION] [2.5]

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

'3. INSTRUMENTS AND CONTROLS PAGE 17 QUESTION 3.08 (3.00)

a. What condition (s) are required for the P-4 permissive actions to occur? [ LIST TWO COMP 0NENTS AND THEIR REQUIRED POSITION] [0.75]
b. What are the actions that the P-4 permissive initiates? [ LIST FOUR ACTIONS and ASSOCIATED CONDITIONS SETPOINTS & COINCIDENCES AS APPROPRIATE] [2.25]

QUESTION 3.09 (2.00)

Lable ITEMS A. through E. on the attached source range block diagram, Figure 3-1.

QUESTION 3.10 (2.25)

a. List THREE inadequate core cooling instrumentation sensors. [0.75]
b. What is the significance of the following indications on the inadequate core cooling detection system:
1. Interval 1? [ DESCRIBE THE CONDITION OF THE REACTOR COOLANT] [0.5]
2. Interval 2? [ DESCRIBE THE STATUS OF THE REACTOR COOLANT INVENTORY] [0.5]
3. Interval 3? [ DESCRIBE HOW CORE EXIT TEMPERATURES ARE TRENDING AND STATE WHY.]  !

QUESTION 3.11 (2.25)

a. Describe the operation of the interlocks associated with AREA RADIATION MONITORS ORE-AR055 and ORE-AR056 (Fuel Building Fuel Handling Incident). [1.5]
b. Describe the operation of the interlocks associated with PROCESS l l

RADIATION MONITORS ORE-PR033 and ORE-PR034 (Control Room Outside Air Intake B Monitors). [0.75]

l

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

I e . ._- _ _.

3. INSTRUMENTS AND CONTROLS PAGE 18 QUESTION 3,12 (3.00)
a. Describe the operating sequence for the Reactor Containment Fan cooler System following a Safety Injection Actuation. [ Include the operation of interlocks were appropriate.] [2.0]
b. What conditions will actuate the P-14 Interlock and what actions are initiated by this permissive? [ LIST THREE ACTIONS AND INCLUDE SETPOINTS

& COINCIDENCE AS APPROPRIATE] [1.0)

I i

(***** END OF CATEGORY 03 *****)

I l

I

. 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 19 RADIOLOGICAL CONTROL QUESTION 4.01 (1.50)

Procedure 1BWOA ELEC-1, "Loss of DC Bus Unit 1" requires a reactor trip on loss of either 125 VDC Bus-111 or Bus-112. What is the basis for requiring this action?

QUESTION 4.02 (1.50)

In BWAP 340-1, "Use of Procedures for Operating Department", it is stated that ," Due to the large number of procedures, which vary widely in complexity and impact, it is recognized that their content must be retrieved on differing bases." In accordance with BWAP 340-1 how are Braidwood General Procedures (BwGP's) to be used?

QUESTION 4.03 (2.00)

Procedure 1 BWEP, ES-1.3, "Transfer To Cold Leg Recirculation Unit 1",

contains a caution stating that:

"S! pumps should be stopped if RCS pressure is GREATER THAN 1590 PSIG".

Provide a detailed explaination why the cold leg recirculation procedure contains this caution.

QUESTION 4.04 (1.50)

In accordance with Technical Specifications 3/4.4.6, "Reactor Coolant System Leakage", list the THREE Reactor Coolant System Leakage Detection Systems that should be operable in Modes 1 through 4.

QUESTION 4.05 (1.50)

List the SUBSTEPS required to verify the following immediate action steps as stated in IBWEP-0, "Reactor Trip or Safety Injection Unit 1".

a. VERIFY REACTOR TRIP: 0.375)
b. VERIFY FW ISOLATION: [1.125)

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

', 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 20 RADIOLOGICAL CONTROL QUESTION 4.06 (2.00)

a. Having observed the symptoms in procedure IBWOA R00-3 "Stuck or Misaligned Rod", what action is taken by the reactor operator to determine / verify that the rod is actually stuck. (1.0)
b. According to procedure; IBWOA R00-3; the method used to realign a rod that is misaligned LOW with respect to its group is significantly different from the procedure for realigning a rod that is misaligned HIGH. State the basic difference between the two realignment procedures (1.0)

QUESTION 4.07 (1.50)

BWRP 1000-A1, "Commonw?alth Edison Radiation Protection Standards",

provides guidance on the wearing and use of personnel dosimeters, and dose limits for individuals.

a. State where on the body and how in relation to each other personnel dosimeters are required to worn. (Normal position only, DO NOT state exceptions.) (0.5)
b. State the required action for an individual who after entering a Radiologically Controlled Work area discovers that their self-reading dosimeter reads off-scale. (0.5)

~

c. List the whole body and extremity dose limits for life-saving activities. (0.5)

QUESTION 4.08 (1.00)

In accordance with BWAP 330-1 "Station Equipment Out-of-Service Procedures", WHAT is the recomended sequence for the placement of Out of Service Cards when removing a power operated valve from servica?

QUESTION 4.09 (2.00)

List FOUR symptoms for a failed number one RCP seal per procedure IBWOA RCP-1, "Reactor Coolant Pump Seal Failure Unit 1."

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

. 4. PROCEDURES'- NORMAL, ABNORMAL, EMERGENCY AND PAGE 21

- RADIOLOGICAL CONTROL QUESTION 4.10 (1.00)

Using the guidance provided in BWAP 1100-1, "Fire Protection Program",

what action should you take when discovering a fire in the Turbine Building?

QUESTION 4.11 (2,00)

Abnormal procedure 1 BWOA PRI-2, "Emergency Boration-Unit 1", lists in order of preference, FOUR methods used to emergency borate the RCS.

a. List the first THREE methods in order of preference. (1.0)
b. State why emergency boration using the MANUAL emergency borate valve (1CV8439) is the fourt,h or least prefered method. (1.0)

QUESTION 4.12 (1.00)

List the TWO parameters, including set points, that indicate adverse containment conditions have been reached.

l QUESTION 4.13 (1.50)

Fill in the blank for the following concerning Plant Technical Specifications:

a. Reactor Coolant System pressure shall not exceed ~ psig and RCS temperature (Tavg) in Mode 1 must be greater than degrees F.

MULTIPLE CHOICE 1

b. Reactor Coolant System (RCS) leakage through a steam generator  ;

to the secondary coolant is known as .

(1) Controlled Leakage '

(2) Identified Leakage (3) Pressure Boundary Leakage (4) Unidentified Leakage

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 22 RADIOLOGICAL CONTROL QUESTION 4.14 (1.50)

State the RCP Trip Criteria as listed in "Operator Action Summary Sheet for IBWEP-0 Series Procedure" (fold-out page).

QUESTION 4.15 (1.00)

Fill in the blanks for the following "Precautions and Limitations" for the Component Cooling System as stated in WEC's "Precautions, Limitations and Setpoints for Nuclear Steam Supply Systems".

a. The temperature of the cooling water supplied to the various components should be greater than or equal to degrees F and should NOT exceed degrees F during normal operations. (0.5)
b. The normal source of makeup water to the CC surge tanks is

. If the normal source is not available, then is used as an emergency source.

(0.5)

QUESTION 4.16 (1.50)

The control room operators are performing 1BWFR-C.2 "Response to Degraded Core Cooling", in response to an ORANGE path condition shown on the Core Cooling Critical Safety Function (CSF) status tree. Answer the following TRUE or FALSE. Consider each one separately.

a. The operators must leave this procedure before completion and go to IBWFR-S.2 "Response to loss of Core Shutdown", if the I subcriticality status tree indicates an ORANGE path condition. j
b. The operators may leave this procedure at any step as soon as the l core cooling CSF adverse condition has cleared. (GREEN path established) l
c. The operators must leave this procedure before completion and go j to IBWFR-H.1,"Response to Loss of Secondary Heat Sink", if the heat sink CSF status tree indicates a RED path condition.

i

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 23 RADIOLOGICAL CONTROL 1

QUESTION 4.17 (1.00)

Special Operating Order Number 50-ST-0014 is entitled "Mandatory In-Hand Procedure". Define a mandatory in-hand procedure and list by number or title description the ONE Braidwood OP applicable to this special order.

i 1

I i

l 1

l i

l i

~

l i

l l

l l

1

(***** END OF CATEGORY 04 *****) l

(************* END OF EXAMINATION ***************)

i

of3 1ofo of L We tm s.

+ 1150 VDC "A ' < ficTtINpl fyLUG %MP V DISet/ttIWM T* A a u Its L Arti

___4 (

pvat rwa peut Deinx L.oG Ps'Lrt in st w rer i s vfl MMP *

  • p y fzpyr corsM61.

' #*Yp p y nCB W 'A si nuna, pg y podWG y gg- V5 88###

gws rv j f 'E ~

6PPS \

  • s'p?le't W f coprn'Mk

,--. .a a sa, ff,Le 3 .1

\

1 . . .

t,

. EQUATION SMEET

( ~ **

w = ag

'~*

s = v,t + hat - Cycle efficiency = Net Work (out)

E = aC a = (vg - v,)/t KE = lsv y v g = v, + a t A = AN A = A,e PE = agh w = 8/t , A = h 2/tq = 0.693/tg W = VAP tg(eff) = (t,l)(ts)

AE = 9316m

( 4 )

Q=$ CAT I=Ieo -IX

, P Q = UAAT I-Ie-UX g

Pvr = Wg a I=I -XM g 10 P=P 10 SUR(t) tyt = 1.3/y p=p HYL = 0.693/p o t/T SUR = 26.06/T ,

T = 1.44 DT SCR = S/(1 - K,gg)'

(1 0)

SUR = 26 g l CR, = S/(1 - Kefh)

T = '(1*/p ) + [(6 - p)/1,ggo ] CR 1 (1 - Keff)I = C (1

'Keff)2 T = 1*/ (p - j'y H = 1/(1 - K,gg) = CR g/CRO

~#! eff' H = (1 - K,gg)O/ (I ~ Eeff)1 8 " (E eff /E

~I)/Keff " OEeff eff SDH = (1 - K,gg)/K,gg p= ~

[1*/TK,gg ] + [I/(1 + A,gg?)] , 1* = 1 x 10 seconds P = I(V/(3 x 10 0) g aff = 0.1 seconds I = n, Idgg=1d22 WATER PARAMETERS Id g =Id 2 1 gal. = 8.345 1bm R/hr = (0.5 CE)/d (meters)

I gal. = 3.78 liters R/hr = 6 CE/d (feet)

I ft = 7.48 gal.

HISCELLANEOUS CONVERSIONS ,

Density = 62.4 lbm/ft 1 Curia = 3.7 x 1010dps Deneti y a L ga/cm I kg = 2.21 lbe Heat of valorization = 970 reu/lba 1 hp = 2.54 x 103 BTU /hr Heat of fusica = 144 Beu/lba

(

1 N = 3.41 x 100 Stu/hr l Atm = 14,7 psi = 29.9 in. Ig.

1 Btu = 778 ft-lbf I ft. H O2 = 0.4333 lbf/in 1 inch = 2.54 cm F = 9/5'c + 32

'R_=&TLn'om

t i

i I

Table 1. Saturated Steam: Temperature Table Enthalpy Entropy Abs Press. Specific Volume Temp l Sat. Sat. Sat. Sat.

Temp Lb per Sat. Sat. Fahr

liquid Evap Vapor Liquid Evap Vapor Fahr SqIn. Liquid Evap Vapor l hg h fg hr sig sg t vs veg vg 5f j t p 3304.7 0 0179 1075.5 1075 5 0.0000 2.1873 2.1873 32.8 32 8 0 08859 0.016022 3304.7 2.1762 2.1802 34.8 j 3061.9 1.996 1074.4 10764 0 0041 34.8 0 09600 0 016021 3061.9 2.1651 2.1732 36 e 4.008 1073.2 1077 2 0.0081 36 0 0.10395 0.016020 2839.0 2839 0 38.0 l 6.018 1072.1 1078.1 0.0122 2.1541 2.1663 1 38.8 0.11249 0 016019 2634.1 2634.2 i

2445.8 8.027 1071.0 1079 0 0.0162 2.1432 2.1594 40.0 I 1.12163 0.016019 2445.8 42.s 40 8 2272.4 10 035 1069 8 1079.9 0 0202 2.1325 2.1527 I 42.8 0.13143 0.016019 2272.4 2.1217 2.1459 44.8 2112.8 12 041 1068.7 1080 7 0.0242 i 44 8 0 14192 0.016019 2112 8 2.1I11 2.1393 45 8 1%5.7 14.047 1067.6 1081.6 0 0282 0.15314 0.016020 1%5.7 48.8

! 45 8 1830.0 16.051 1066.4 1082.5 0.0321 2.1006 2.1327 1 48.8 0.16514 0.016021 1830.0 l 1083.4 0 0361 2.0901 2.1262 50 0 0 016023 17048 1704 8 18.054 10653 3 58 8 0.17796 1084.2 0 0400 2.0798 2.1197 52.8 0 016024 1589.2 1589.2 20 057 1064.2 52.8 0.19165 10851 0 0439 2.0695 2.1134 54.0 1

0 016026 1482.4 1482.4 22 058 1063.1 1 54 8 0.20625 1086.0 0 0478 2 0593 2.1070 56.8 0 016028 1383.6 1383.6 24 059 1061.9 I 56 8 022183 1086 9 0 0516 2.0491 2.1008 58.8 0.016031 1292.2 1292.2 26.060 1060.8 0.23843 g 58 9 1087.7 0.0555 2.0391 2.0946 88.8

" 0.016033 1207.6 1207.6 28.060 1059.7

$8.8 0.25611 0.0593 2.0291 2.0885 52.0 l 0.016036 1129.2 1129.2 30.059 1058.5 1088 6 52.8 0.27494 0.0632 2.0192 2.0824 64.0 0.016039 1056.5 1056.5 32.058 1057.4 1089.5 i 64.8 0.29497 1090.4 0 0670 2.0094 2 0764 56.8 56.0 0 31626 0 016043 989.0 989.1 34.056 10563 i

926.5 926.5 36.054 1055.2 1091.2 0 0708 1.9996 2 0704 ES 0 j E8.5 0 33889 0.016046 1092.1 0.0745 1.9900 2.0645 78.8 0.016050 868.3 868.4 38.052 1054.0 10.0 0.36292 0.0783 1.9804 2.0587 72.0 0.016054 814.3 814.3 40.049 1052.9 1993.0 j 72 8 038844 1093.8 0 0821 1.9708 2.0529 14.0 0,41550 0.016058 764.1 764.1 42.046 1051.8 14.0 0.0058 1.9614 2.0472 75.8 3

0.016063 717.4 717.4 44.043 1050.7 1094.7 4 7E S 044420 0 0895 1.9520 2 0415 78.8 0.016067 673.8 673.9 46.040 1049.5 1095.6

) 78.8 0.47461 0.016072 633.3 633 3 48.037 1048.4 1096.4 0 0932 1.9426 2.0559 80.0 88.0 050683 0 0969 1.9334 2 0303 82.0 0.016077 595.5 595.5 50.033 10473 10973 82.8 0.54093 1998 2 0.1006 1:9242 2 0218 84 I 0 016082 560 3 560 3 52.029 1046.1

. 84 0 0 57702 1099 0 0.1043 1.9151 2 0193 86 0 0 016087 227.5 527.5 54.026 1045 0

! 85 0 0 61518 01079 1.9060 2.0139 88 0 0.016093 496.8 4%.8 56 022 1043 9 1099 9 i 80 8 0.65551 468.1 468.1 58 018 1042.7 1100 8 0.1115 18970 2.0056 98 0 98 I O69813 0 016099 18881 2 0033 97 0 0.016105 4413 4413 60 Old 1041.6 1101 6 01152 32 8 0.74313 01188 I8792 19950 34 8 0.016111 416 3 416 3 62 010 1040.5 1102 5 34.s 079062 1103 3 0 1224 18704 19928 56 8 034072 0 016117 392.8 392.9 64.006 1039 3 96 s 1104 2 0 1250 18617 1.9876 38 8 0 89356 0016123 370.9 370 9 66 003 1038 2 38 8 '

i

Specific Volume Enthalpy Entropy Abs Press. - Sal. Sat. Temp Sat. Sal. Sat. Sat.

, Temp tb per Vapor Liquid Evap. Vapor fahr Fahr SqIn. Liquid Evap Vapor liquid Evap hg s, sg 1 I p V Vig V 8 hl h ig sgg j 1105.1 0.1295 1.8530 1.9825 100.0 350.4 350 4 67.999 1037.1

' 100.0 0.94924 0 016130 0.1331 1.8444 1.9775 102.8 331.1 331.1 69.995 1035.9 1105.9 102.8 100789 0.016131 0.1366 1.8358 1.9725 184.8 j

313.I 313.1 71.992 1034.8 1106.8 i 104.B 1.06 % 5 0.016144 73 99 1033 6 1107.6 0.1402 1.8273 1.9675 lese Its 8 1.1347 -

0 016151 296.16 296.18 100.0 280.28 280 30 7598 1032.5 1108 5 0.1437 1.8188 1.9626 188 I I2030 0.016158 1031.4 11093 0.1472 1.8105 1.9577 110.0 0.016165 26537 26539 77.98 110.8 1.2750 1030.2 1110.2 0 1507 1.8021 1.9528 112.8 0016113 25137 25138 79 98 112.8 1.3505 238 22 81.97 1029.1 1111 0 0.1542 13938 1.9480 114.0 114 0 1.4299 0 016180 238 21 0.1577 13856 1.9433 115.8 225.84 225 85 83.97 1027.9 1111.9 115 0 15133 0 016188 0.1611 13774 1.9386 118.8 0 0161 % 21420 214.21 85.97 1026.8 11123 118 8 1.6009 0.1646 13693 1.9339 120.8 20315 203 26 87.97 1025.6 1113.6 1.6927 0.016204 0.1 30 13613 1.9293 122.8 128 8 0 016213 192.94 192.95 89.96 1024 5  !!!4 4 124.8 122.8 13891 10233 1115 3 0.1715 13533 1.9247 0 016221 18323 18324 91.96 125.8

1245 1.8901 174.09 93.96 1022.2 1116.1 0.1749 13453 1.9202 125.8 1.9959 0.016229 174 08 0.1783 13374 1.9157 128.8 j

165.45 165.47 95.96 1021.0 1117.0 178 8 2.1068 0 016238 j 130.0 15733 97.96 1019.8 1117.8 0.1817 13295 1.9112 130 8 2.2230 0.016247 15732 13217 1.9068 132.0 99.95 1018 7 1118 6 0.1851 2.3445 0 016256 149.64 149.66 134.0 132.8 142.41 101.95 10173 1119 5 0.1884 13140 1.9024

> 1348 2.4717 0 016265 142.40 13063 1.8900 135.8

103.95 1016.4 1120 3 0.1918 0 016274 13555 135.57 l 1 136.8 2.6047 23438 0.016224 129.09 129.11 105.95 1015.2 1121.1 0.1951 1.6986 1.8937 138.0 i 135.0 0.1985 1.6910 1.8895 148.8 1

122.98 123 00 107.95 1014.0 1122.0 1 140 0 2.8892 0016293 0 2018 1.6534 1.8852 142.0 11711 13722 109.95 1012.9 1122.8

142.0 3 0411 0 016303 02051 1.6759 1.8810 144.s 0 016312 11134 11136 111.95 10113 1123.6 144.0 3 1997 1124.5 0 2084 1.6684 1.8769 145.0 0.016322 106.58 106.59 113.95 1010.5 146.8 33653 1125.3 0.2117 1.6610 1.8727 1480 0.016332 101.68 10130 115.95 1009.3 148 8 3.5331 0.2150 1.6536 1.0686 158.0 97.05 97.07 117.95 1008.2 1126.1 150.0 33184 0.016343 02183 1.6463- 1.0646 152.0 92.66 92.68 - 119.95 1007.0 1126.9 1528 3.3065 0.016353 0 2216 1.6390 1.8606 154.8 0 016363 88 50 88.52 121.95 1905.8 11273

' 154.8 4.1025 1128.6 0 2248 1.6318 1.8566 158.0 0.016374 84 56 84.57 123.95 2004.6 156 8 4 3068 1129.4 0.2281 1.6245 1.8526 158.0 0.016384 80 82 80.83 125.96 1003.4 2 158I 4 5197 0.2313 1.6174 1.8487 158.0 77.27 77.29 127.96 1002.2 1130.2 168 8 4 7414 0.016395 0.2345 1.6103 1.8448 162.0 73 90 73.92 129.96 1001.0 1131.0 162.8 4 9722 0.016406 0.2377 1.6032 18409 164.0 70 70 7032 131.96 999.8 1131.8 164 0 5 2124 0.016417 0 2409 1.5961 1.8371 155 0 54623 0 016428 6767 67.68 133 97 9986 1132.6 168.0 1

185 8

- 135.97 997.4 1133.4 0.2441 15892 1.8333 158 I 5 7223 0.016440 6418 64.80 j 0.2473 15822 1.8295 178.8 62.04 62.06 137.97 996.2 1134.2 l 170 8 5 9926 0016451 0 2505 1.5753 1.8258 172.8 5945 139.98 9950 1135 0 172 8 62736 0 016463 59 43 02537 1.5684 18221 174 I

14I.98 , 993.8 1135.8 56.97 i

1745 e

6 5656 6N 0 016474 00I6486 56 95 54 59 54 61 14399 992 6 1136 6 g__

1.g 1 138

I i

I 4

i l

J Enthalpy Entropy Abs Press. Specific Volume Sat. Temp Sat. Sat. Sat. Sat.

Temp Lb per Sat. liquid Evap Vapor Fahr Liquid Evap Vapor Liquid Evap Vapor J fahr SqIn. hg sg seg sg i v, veg he h eg i t p va i

50.21 50.22 148 00 990.2 1138.2 0 2631 1.5480 1.8111 180 0

! ISS B 7.5110 ' O.016510 989.0 1139 0 02662 1.5413 1.8075 182O 0 016522 48.172 18.189 150 01 j 182.0 7.850 0.2694 1.5346 18040 184 8 0.016534 46.232 46.249 152 01 987.E 1139.8 184.8 8203 1140.5 02725 1.5279 1 8004 1868 q

8 568 0.016547 44383 44.400 154 02 $86.5 185.8 983.3 11413 0.2756 1.5213 13969 188 8 8.947 0.016559 42.621 42.638 156 03 108.8 1142.1 02787 1.5148 1.7934 198 8 40.941 40.957 158.04 984.1 I 198 0 9 340 0.016572 02818 1.5082 13900 1925 39337 39 354 160 05 982.8 1142.9 i 1928 9347 0.016585 981.6 1143.7 02848 1.5017 13865 194 8 10.168 0 016598 37.808 37 824 162.05 l 194I 980.4 1144.4 0.2879 1.4952 13831 196 8 10.605 0 016611 36348 36 364 164.06 i

196 I 0 2910 1.4888 1.7798 198.8 0.016624 34.954 34.970 166.08 979.1 1145.2

198 8 11.058 -

1146.0 0.2940 1.4824 13764 280.8 0 016637 33.622 33.639 168.09 977.9 J 200 8 11.526 975.4 11475 0 3001 1.4697 13698 284I 204 5 12.512 0.016664 31.135 31151 172.11 288 0 i 28878 176.14 9 72.8 1149 0 0 3061 1.4571 17632 208 8 13.568 0 016691 28.862 212 8

{ 26199 180.17 9703 1150 5 0 3121 1.4447 17568

> 212 I 14 696 0.016719 26382 216 5 24894 18420 967.8 1152.0 03181 1.4323 13505 216 0 15.901 0.016747 24.878

) j, 13442 220 e 23.131 23.148 18833 965.2 1153.4 03241 1.4201

! 228.8 17.186 0.016775 11380 2248 21.545 192.27 962.6 1154.9 0 3300 1.4081 224.0 18.556 0.016805 21.529 2288 1

20.056 20 073 1% 31 960.0 11563 03359 13961 1.7320 228 8 20.015 0016834 13842 13260 232 8 i

0 016864 18301 18318 20035 957.4 1157.8 03417 232 8 21.567 13725 13201 236 8 1

0.016895 17.454 17.471 21.;3 954.8 1159.2 03476 1 235 8 23.216 0.016926 16.304 16321 208.45 952.1 1160.6 03533 1.3609 1]I42 248.8 240.0 24.968 0 3591 13494 13085 2448 26.826 0.016958 15.243 15360 212.50 949.5 1162.0 244.8 03649 13379 13028 2488 28396 0.016990 14.264 14.281 216.56 946.8 1163.4 2488 03706 13266 1 6972 252 8 30.883 0.017022 13 358 13.375 220.62 944.1 11643

, 2528 03763 1.3154 I6917 2568 33 091 0.017055 12.520 12.538 224.69 941.4 1166.1 j 256 8 4

03819 13043 1.6862 268 0

! 250 0 35.427 0.017089 11345  !!J62 22836 938.6 1167.4 1 6808 264 0 ,

11.025 11.042 232.83 935.9 11683 0 3876 1.2933

! 254 8 37.894 0 017123 10.358 10 375 236.91 933.1 1170 0 0 3932 13823 16755 258 8 ,

i 258.8 40 500 0 017157 2720 0 017193 9338 9355 240 99 9303 11713 0 3987 12715 1.6702

} 272 8 43 249 12607 1.6650 276 8 0.017228 9.162 9.180 245.08 927.5 1172.5 04043 275 5 46.147 l 04098 1.2501 1.6599 250 0 49.200 0.017264 8627 8 644 249.17 924.6 1173 8 l 288 8 0 4154 1.2395 1.6548 284 I 2848 52 414 001730 8 1780 8.1453 253 3 9213 1175 0 2

7.6634 7.6807 257.4 918.8 1176.2 0.4208 1.2290 16498 288 8 288 0 55795 0.01734 292 8 l 7.2475 261.5 915 9 1177.4 04263 1.2186 1 6449 292 4 59 350 0 01738 72301 296 8 4

6 8433 265.6 913.0 1178.6 04317 12082 1.6400 l 296 8 63 084 001741 6 8259

}

j I

l i

Enthalpy Entropy -

i Abs Press. Specific Volurne Sat. Temp Sat. Sat. Sat. Sat.

Temp tb per Sat.

Evap Vapor Liquid Evap Vapor Fahr Fahr Sqin. Liquid Evap Vapor Liquid l hg h gg hg sg sgg 58 t t p vg vgg vg j

269.7 910 0 11793 0.4372 1.1979 1.6351 3000 300.0 67.005 0 01745 6.4483 6 4658 304 8 273.8 907.0 1180 9 0 4426 1.1877 1.6303 l 304 8 71.119 0 01749 6 0955 6 1130 388 8 278 0 9040 1182.0 0 4479 1.1776 1.6256 380 e 75 433 0.01753 5 7655 5 7830

) 5 4566 54742 282 1 901.0  !!83 1 0.4533 11676 16209 312 8 312.0 79 953 0 01757 1.6162 315.8 l

5.1673 51849 286 3 897.9 1184.I 0 4586 1.1576 4 316.8 84.688 0 01761 89d.8 1185 2 0.4640 1.1477 1.6116 320 0 320 0 89 643 0.01766 4.8961 4.9138 290.4 891.6 1186 2 0 4692 1.1378 1.6071 324 8 324.5 94 826 001770 4 6418 4 6595 294 6 100 245 001774 4.4030 4 4208 298 7 888.5 1187.2 04745 1.1280 1.6025 328 8

' 328.8 1.5981 312 e 4.1788 4.1%6 302.9 885 3 1l88 2 0 4798 1.1183

) 332.0 105.907 0 01779 3.9681 3 9859 301.1 882.1 11891 04850 I1086 1.5936 336 8 i 336 I I11.820 0.01783 1

311.3 878.8 1190 1 0 4902 1.0990 1.5892 3400 348 0 117.992 0 01787 31699 31878 315 5 875 5 1191.0 04954 1.0894 1.5849 3440 3448 124 430 0.01792 3.5834 3 6013 l 131.142 0.01797 3.4018 3 4258 3191 872.2 1191.1 0.5006 1.0799 1.5806 348 8 3488 138 138 0.01801 3.2423 3 2603 323.9 868.9 11923 0.5058 1.0705 1.5763 352.0

! 352 8 355.8 145 424 001806 3.0863 3 1044 328.1 865.5 1193 6 05110 1 0611 1.5721 355 0 2.9573 332.3 862.1 1194 4 0.5161 1.0517 1.5678 368 0 l > 300.0 153 010 0 01811 2.9392 2.8184 336.5 458.6 1195 2 0.5212 1.0424 1.5637 364 8 i

1 a 364 0 358 0 160 903 169.113 0.01816 001821 2.8002 2.6691 2 6873 340 8 .35.1 1195 9 05263 10332 1.5595 368 8 2.5633 345 0 851.6 11 % 1 0 5314 1.0240 1.5554 372 0 312.0 177.648 001826 2.5451 2.4462 349 3 848I 1197.4 0 5365 1.0148 1.5513 376.8 376 0 186 517 0.01831 2.4279 353 6 844.5 1198 0 0.5416 1.0057 1.5473 300 0

! 300.0 195129 0.01836 2.3170 2.3353 384 0 205 294 0.01842 2.2120 2 2304 357.9 840 8 11981 0 5466 0.9966 1.5432 3845

]

4 388 0 215 220 00lM7 2.1126 2.1311 362.2 837.2 I199 3 0.5516 0.9876 1.5392 388 8 392.8 '.e5.516 001853 2.0184 2.0369 366.5 833.4 1199 9 05567 0.9786 1.5352 392.8

. 3708 8297 1200.4 0.5617 0 9696 . 1.5313 396.5 j

~

395.0 236.193 0.01858 1.9291 1.9477 400 0 247.259 0.01864 1.8444 1.8630 375.1 825.9 1201.0 0.5667 09607 1.5274 400 0 l 822.0 0 5717 0 9518 1.5234 4840 484.8 258325 0 01870 1.7640 13827 379 4 1201.5 l 818.2 1201.9 0 5766 0 9429 1.5195 488 8 488 8 270 600 0 01875 1.6877 1.7064 383.8

{

412 8 282 894 001881 1.6152 1.6340 388I 814 2 1202.4 0 5816 0.9341 1.5157 412 0 j 418 8 HE8 295 617 0 0i387 1.5463 1.5651 392.5 810 2 1202.8 0 5866 0 9253 1.5118 806.2 1203.1 0.5915 0.9155 1.5080 428 8 428 5 308 780 0 01898 1.4808 1.4997 396.9 0 5964 0 9077 1.5042 424 8

  • 24 8 322.391 0 01900 1.4184 1.4374 . 401.3 802.2 1203.5 0 6014 0 8990 1.5004 428 8 4280 336463 0 01906 1.3591 1.3782 4051 7980 12031 410.1 793 9 1204.0 0 6063 0 8903 1.4966 432 O 4320 351 00 001913 1.30266 1.32179 4368 435 8 366 03 001919 1.24887 1.26806 414 6 7891 12F2 0 6112 0 8816 1.4928 i

419 0 785 4 1204 4 06161 0 872* 8 4890 4488 j 448 8 381.54 001926 1.19761 121687

! m ae 1er u nnioit twa i inom '1 % 7Al.I 1704 6 0 6210 0 8643 I4853 RO

I 1

j Abs Press. Specific Volume Enthalpy Entropy Temp tb per Sat. Sat. Sat. Sat. Sat. Sat. Temp 4

Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr I p vg veg vg ht hg i hg s, s,g sg t

468.8 466 87 0.01961 0.97463 0 99424 441.5 763.2 1204.8 0.6405 0 3299 1.4704 460 0 464.0 485.56 0 01969 0 93588 0 95557 446.1 758 6 12043 0 6454 0 8213 1.4667 464 0
468 8 504.83 0.01976 0.89885 0.91862 4503 754.0 1204.6 0 6502 0 8127 1.4629 4680 j 472.5 524 67 0 01984 0 86345 0.88329 455 2 749 3 1204.5 0.6551 0 8042 1.4592 4728 459.9 744.5 12043 0 6599 03956 1.4555 475 g 1

476.8 545.11 0.01992 0.82958 0 84950 0.6648 03871 1.4518 488 8

) este 444.0 566.15 587.81 0 02000 039716 0 02009 036613 0.81717 03 8622 464.5 469.1 739.6 7343 1204.1 1203.8 0.66 % 03785 1.4481 '34 0 j 7293 1203.5 0.6745 01700 1.4444 488 e

> 488.8 610.10 0.02017 0 73641 035658 473.8 i 492.0 633 03 0 02026 030794 032820 478.5 724.6 1203.1 0.6793 01614 1.4407 492 0 4960 656 61 0 02034 0.68065 070100 483.2 719.5 1202.7 06842 01528 1.4370 496.8 j 500.0 680.86 0.02043 0.65448 0.67492 487.9 7143 1202.2 0 6890 03443 1.4333 508 0

> 504.0 70538 0.02053 0.62938 0.64991 4923 709 0 12013 0.6939 07357 1.42 % 584 0 1 588 8 731.40 0.02062 0 60530 0.62592 497.5 7033 1201.1 0.6987 01271 1.4258 588 e i y 512.0 757.72 0 02072 0.58218 0 60289 5023 698.2 1200.5 0.7036 03185 14221 512 O 516 8 78436 0 02081 0.55997 0.58379 507.1 6923 Il99L8 03085 03099 1.4183 516 0 l 4

} 528.8 812.53 0.02091 0.53864 0.55956 512.0 687.0 1199.0 0.7133 03013 1.4146 528 8

. 524.8 841.04 0.02102 0.51814 0.53916 516.9 6813 1198.2 03182 0 6926 1.4108 524 O

520 8 87031 0 02112 0 49843 0 51955 521.8 675.5 11973 03231 0 6839 1.4070 528 8 .

4 532.8 90034 0 02123 0.47947 ~050070 526 8 669 6 1196 4 03280 0 6752 1.4032 532G j 536A 931.17 0.02134 0.46123 0.48257 5313 663.6 1195.4 0 7329 0 6665 13993 536 0 540 0 96239 0.02146 0.44367 0.46513 536.8 657.5 11943 03378 0.6577 13954 548 8 j 544.8 995.22 0 02157 R42677 0.44834 541.8 6513 1193.1 0.7427 0.6489 13915 544 8 i 548.0 1028.49 0 02169 R41048 0.43217 546.9 645.0 1191.9 03476 0.6400 13876 548e j 552.8 1062.59 0 02182 039479 0.41660 552.0 638 5 1190.6 03525 0 6311 1.3837 5520

+

556.0 1097.55 0 02194 037966 0.40160 557.2 632.0 1189.2 0.7575 0.6222 13797 556 0 t

SESI 1133 38 0 02207 136507 038714 562.4 6253 11873 0.7625 0.6132 1 3757 560 O 564 8 1170.10 0 02221 035099 0 37320 567.6 618.5 1186.1 03674 0 6041 13716 564 0 l 0.5950 13675 5640 568 8 120732 0 02235 033741 035975 572.9 611.5 1184.5 03725 i 572.0 1246.26 0 02249 032429 034678 5783 604 5 11823 03775 0 5859 1.3634 572 0

! 576 8 128534 0 02264 031162 033426 5831 597.2 1180.9 0 7825 0 5766 13592 576 8 500 0 1326 17 0 02279 R29937 032116 589.1 589.9 '1179 0 0 7876 0 5673 13550 580 0 584 5 13673 0 0229'. 028753 031048 594.6 582.4 1I76.9 03927 05580 13507 584O 588 5 1410 0 0 02311 0 27608 0 29919 6001 574 3 1174 8 0.7978 0 5485 13464 588 0 592s I453 3 0 02328 026499 0 28827 6053 5668 1172.6 0 8030 05390 13420 597 8 596 0 1497.8 0 02345 0 25425 0.27770 611.4 558 8 1170 2- 0 8082 0.5293 1 3375 . 596 0

l -

I i

i Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sat. Sat. Sat. . Sat. Sat. Sat. Temp l fahr j Sqin. Liquid Evap Vapor Liquid Evap Vapor Liquid . Evap Vapor Fahr I p vr vrg vg hg h rg hg sg s g, 5, t i EOS 8 1543 2 0.02364 0.24384 0.2674.' 617.1 550 6 1167.7 0 8134 05196 1.3330 588.8 1 584 8 15891 0.02382 0.23374 0.25737 622.9 542.2 1165.1 0 8187 0.5097 1.3284 544 8

588 8 16313 0.02402 0.22394 0.247 % 628.8 533.6 1162.4 0.8240 0.4997 13238 688 8 s 512.8 1686.1 0 02422 0.21442 0 23865 634 8 5241 1159 5 0.8294 04896 13190 512.8 EXE E 1735.9 0.02444 020516 0.22960 640.8 515.6 1156 4 0.8348 04794 1.3141 615 8 i 528 8 1786.9 0.02466 0.19615 0.22081 646.9 506 3 1153 2 0.8403 0.4689 1.3092 528 8 524.8 1839 0 0 02489 0.18737 0.21226 653.1 4*66 1149 8 0.8458 - 0.4583 1.3041 E24.8
528 8 1892.4 0 02514 0.17880 0 20394 659 5 486 7 11461 0.8514 0.4474 1.2988 528 8 j E32 8 19470 0.02539 0.17044 0.19583 665.9 476.4 1142.2 0 8571 0 4364 1.2934 632 8
E35 8 2002.8 0 02566 0.16226 0.18792 672.4 4651 11381 08628 0 4251 1.2879 E35.8

, 544.0 2059.9 0.02595 0.15427 0.18021 679.1 454.6 11331 0.8686 0 4134 1.2821 548 8 i 544 8 21183 0 02625 0.14644 0.17269 685.9 443.1 1129 0 0 8746 u.4015 1.2761 544 0 i 548.8 2178.1 0.02657 0.13876 0 16534 692.9 431.1 1124 0 0.8806 0 3893 1.2699 548 8 l y 652.8 2239.2 0 02691 0.13124 0.15816 700 0 4181 - 11187 0.8868 0 3767 1 2634 552 8

. ESE 8 23011 0.02728 0.12387 0.15115 707.4 4051 1113.1 0.8931 03637 1.2567 555.8

! oo EES.8 23651 0.02768 0.11663 0.14431 714.9 392.1 1107.0 0.8995 03502 1.2498 $64.8

. 654 8 2431.1 0 02811 0.10947 013757 722.9 3773 1100 6 0.9064 03361 1.2425 E54 8

' 558 8 24981 0 02858 0.10229 0.13087 731.5 362.1 1093.5 0.9137 03210 1.2347 558 8

E72 8 2566.6 0.029;l 0.09514 0.12424 740.2 3451 1085.9 0.9212 03054 1.2266 672.8 l 576.8 2636 8 0.02970 0 08799 0.11769 749.2 328.5 1077.6 0.9287 0.2892 1.2179 E75 8 588.8 2708 6 0.03037 0.00080 0.11117 758 5 310.1 1068.5 0.9365 0.2720 1.2086 Est 8 l 584.8 2782.1 0.03114 0.07349 0.10463 768.2 290.2 1058.4 0.9447 0.2537 1.1984 584 8 588 8 2857.4 0.03204 0.06595 0.09799 -

778 8 268.2 1047.0 0.9535 0.2337 1.1812 588.8

!' E82.8 2934.5 0.01313 0 05797 0 09110 790.5 243.1 1033.6 0.9634 0.2110 1.1744 582.8 585.8 3013.4 0.03455 0.04916 0.08371 804.4 212.8 1017.2 0.9749 0.1841 1.1591 E85.8 788 8 30943 0.03662 0.03857 0 07519 822.4 1721 995.2 0.9901 0.1490 1.1390 788 8 i 782 8 3135 5 0.03824 0 03173 0 06397 835.0 1441 9791 1.0006 0 1246 1.1252 182.8 l 184 8 3177.2 0.04108 0 02192 0 06300 854.2 102.0 956.2 1 0169 0 0876 1.1046 784 8 1 785 8 3198 3 0.04427 0.01304 0.05730 873.0 61.4 934.4 1.0329 0 0527 10856 185 0

! 785 4I* 32082 0 05078 0.00000 0 05078 906 0 0.0 906.0 1.0612 0 0000 1 0612 705.47*

i - A a - - _ _ _ _ _ _ - _ _ _ _ - _ - . _ _ _ . _ _ _ _ _ - _ _ _. _ _ . - - -..___ _ -__.__.-- -_

J , ,

I l

1 1

! Table 2: Saturated Steam: Pressure Table 1 '

i Specific Volume Enthalpy Entropy i Sat. Sat. Sat. Sat. Abs Press.

Abs Press. Temp Sat. Sat. LblSq In.

Liquid Evap Vapor Liquid Evap Vapor lb/Sg in. Fahr liquid Evap Vapor p

3 vg hg hg sg sgg sg q p t vg v ,g h gg 0 0000 2.1872 2.1872 808855 j 088865 32 018 0 016022 3302 4 3302 4 0 0003 1075.5 1075.5 0.0542 2.0425 2 0967 8 25 e 25 59 323 0 016032 1235 5 1235 5 27.382 1060.1 1087.4 l 0 0925 1.9446 2 0370 0 50 s 50 79 586 0 016071 641 5 641.5 47.623 1048 6 1096 3 1036.1

  • 1105 8 01326 1.8455 I9781 18 I8 10134 0 016136 333 59 333 60 6933 i

130.20 1000.9 1131.1 0 2349 1.6094 1.8443 58 58 162.24 0 016407 73.515 73.532 982.1 1143 3 0 2836 1.5043 17879 10 0 le 3 193 21 0016592 38404 38.420 161.26 970 3 1150.5 03121 1.4447 13568 14ESE 14596 212 00 0016719 26382 26399 180.17 4

%91 1150.9 0.3137 1.4415 13552 15.0 15 8 213.03 0 016726 26.274 26.290 181.21 i

I 20 087 19627 960.1 11563 0 3358 13962 1.7320 20 0 20 8 227.% 0 016834 20.070 133436 218 9 945.2 1164.1 0 3632 13313 1.6995 38 8 i 30 8 250 34 0 017009 131266 236.1 933 6 1169 8 03921 1.2844 16765 40 0 l es e 267.25 0 017151 10.4794 10.4965 281.02 8.4%7 8 5140 250.2 923.9 1174.1 0.4112 1.2474 1.6586 Se e 4 58 s 0 017274 29231 7.1562 7.1736 262.2 915 4 1177.6 0 4713 1.2167 1 6440 . Se e E8 s 0 017383 6.2050 2723 907.8 1180 6 0 4411 1.1905 1.6316 10 0 i Je g 302.93 0 017482 6.1875 900.9 1183 1 O G34 1.1675 1.6208 80 0

?

e ses ses 312.04 320 28 0 017573 0 017659 5.4536 4.8779 5.4711 4.8953 282.1 2903 894.6 1185 3 0.4643 1.1470 1.6113- SO S 4.4310 298.5 888 6 1187.2 0.4743 1.1284 1.6027 100 8 l 1sg a 327.82 0.017740 4.4133 33419 0 01782 4 0306 4.0484 305 8 883.1 1188.9 0 4834 1.1115 1.5950 110 O i 118 3 341.27 0 01789 33097 33275 312.6 877.8 1190.4 0 4919 1.0960 1.5879 120 0 l 128 8 34733 0 017 % 3.4364 3.4544 319 0 872.8 11911 0.4998 1.0815 .1.5813 1300

130 8 3.2190 325.0 868.0 1193.0 3.5071 1.0681 1.5752 140 o
les e 353 04 0 01803 3.2010 358.43 0.01809 2 9958 3.0139 330.6 863.4 1194.1 C.5141 1.0554 1.5695 15e o

! 15e 3 i Iss s 363 55 0 01815 2.8155 2.8336 336.1 859 0 11351 0 5206 1.0435 1564I Ise s lie a 368.42 001821 2.6556 2.6738 341.2 854.8 1196.0 0 5269 1.0322 15591 110 0 Ise s 373 08 0 01827 2.5129 2.5312 346.2 8501 1196.9 05'28 1.0215 15543 18e e 19e s 37753 001833 23847 2.4030 350.9 8461 1197.6 0.5384 1.0113 15498 Its 8 j

842.8 11983 0 5438 1.0016 1.5454 200 g

! 20e 8 381.80 0 01839 2.2689 2.2873 355.5 21s e 385 91 0 01844 2.16373 2.18217 359 9 839.1 1199 0 0.5490 0 9923 15413 213 e 389 88 2 06779 2.08G29 364 2 835 4 1199 6 0 5540 0.9834 1 5374 220 0 f 21s t 0 01850 23e a 39330 0 01855 1.97991 1.99846 368 3 831.8 1200.1 0 5588 0 9748 15336 230 e

'j 0 9665 1 5299 240 0 248 8 39739 0 01860 1.89909 1.91769 3723 828 4 1200 6 0.5634 376.1 825.0 1201.1 0 5679 0 9585 1 5264 258 8

253 3 400.97 0 01865 I.82452 1.84317 26s e 404 44 0 01870 135548 137418 379 9 821 6 1201 5 0 5722 09508 15230 268 8 i 2re g 407.80 0 01875 I69137 131013 383 6 8183 1201.9 05764 0 9433 I5197 218 8 283 0 41107 0 01880 1.63169 1 65049 387.1 815.1 1202 3 0 5805 0 9361 15166 280 s j

29s e 414 25 0 01885 1.57597 1.59482 390 6 812.0 1202.6 0 5844 0 9291 15135 . 290 0 1

417 35 0 01889 1.52384 1.54274 394 0 808 9 1202.9 05882 09223 15105 3000 3ee s l

338 8 #3IE 99!9!?  ! 3063{ l32553 4m9 7}j 2 l{04 g 06059 g8909 jj968 g

l Abs Press. Temp Sal. Sat. Sat. Sat, Sat. Sal. Abs Press.

i lb/Sg in. Fah: Liquid Evap Vapor liquid Evap Vapor Lie, aid Evap Vapor. Lb/Sq In.

p t vg vg hg hg g hg sg sgg sg p i vgg i 458 3 456 28 0 01954 1.01224 1.03179 4373 767.5 1204.8 06360 0.8378 14738 4588 588 8 46701 0 01975 0 90787 0 92762 449.5 755.1 12043 06490 0.8148 1.4639 500 5 550 8 476 94 0 01994 0 82183 0.84177 460 9 743 3 12043 0 6611 03936 1.4547 558 8 588 8 48620 0 02013 0 74 % 2 036975 4713 732 0 1203 7 0.6723 03738 1.4461 588 8 558 8 494 89 0 02032 0 68811 030843 481.9 720.9 1202.8 06828 0 7552 14381 658 8 788 8 503 08 002050 0 63505 0 65556 491.6 710.2 1201.8 06928 03377 1.4304 780 8 758 8 510 84 0 02069 058880 0 60949 500 9 699 8 1200 7 0 7022 07210 1.4232 750 8 8888 513 21 0 02087 0 54809 0.56896 509 8 689 6 1199 4 03111 0 7051 14163 800 0 858 8 ~25 24 0 02105 0 51197 0.53302 518 4 679.5 1I98 0 03197 0 6899 1.40 % 850 0 900 0 53I 95 0 02123 0 47968 0.50091 5263 6697 11 % 4 0 7279 06753 1.4032 308 8 4

358 0 53839 0 02141 0 45064 0.47205 534 7 660 0 11943 0 7358 0 6612 1 3970 350 0 1808 0 544.58 0 02159 042436 0 44596 542.6 650.4 1192.9 0 7434 0 6476 13910 10008 1858 8 550 53 0 02177 0 40047 0 42224 5501 640 9 1191 0 0 7507 06344 1.3851 1058 8 1180 0 556 28 0 02195 0 37863 0 40058 557.5 631.5 11891 0 7578 0 6216 13794 1100 0 i 1150 0 561 82 0 02214 035859 038073 564.8 622.2 1187.0 03647 06091 13738 11500 1200 0 56719 0 02232 034013 0 36245 5 71.9 613 0 1184 8 03714 05%9 1.3683 1280 8 i 1758 0 57238 0 02250 032306 0 34556 578.8 603 8 1182.6 0.7780 0.5850 13630 1258 8 i 13000 577.42 0 02269 030722 032991 585 6 594.6 1180 2 03843 0 5733 13577 13008

1350 0 582 32 0 02288 029250 0 31537 5923 585 4 1177 8 0 7906 0 5620 13525 13500 14000 58707 0 02307 0 27871 030178 598 8 576.5 1175 3 03966 0 5507 13474 14000

> 14500 59130 0 02327 026584 0 28911 605 3 567.4 1172.8 0 8026 0 5397 13423 14500

'. 15000 596 20 0 02346 0 25372 0 27719 6113 558 4 1170.1 0 8085 0 5288 13373 15008 o 1550 0 00059 0 02366 0 24235 0 26601 6180 549 4 1167.4 0 8142 0 5182 13324 1550 0 15000 604 87 0 02387 0 23159 0 25545 624 2 540 3 1164.5 0 8199 0 5076 13274 16000 1650 0 609 05 0 02407 022143 0 24551 630 4 5313 1161 6 08254 0 4971 1.3225 16500 1700 0 613 13 0 02428 0.21178 0.23607 636 5 522.2 1158 6 0 8309 0.4867 13176 17000 1758 8 617.12 002450 0.20263 0.22713 642.5 513.1 1155 6 0 8363 0 4765 13128 1750 8 1880 0 621 02 0 02472 0.19390 0 21861 648 5 503 8 11523 0 8417 0 4662 1 3079 11000 1858 0 624 83 0 02495 0 18558 0 21052 654 5 494.6 1149 0 0 8470 0 4561 13030 18583 1900 0 628 56 0 02517 0.17761 0 20278 660 4 485.2 1145 6 0 8522 0 4459

  • 12981 19000 19588 632.22 0 02541 0 16999 0.19540 E66.3 475 8 1142.0 0 8574 0 4358 I2931 19500 2883 0 63580 0 02565 0 16266 0 18831 672.1 466 2 1138 3 0 8625 0 4256 12881 2800 0 21800 642 76 0 02615 0.14885 0 17501 683 8 4463 1430.5 0 8727 04053 12780 2I00 8 2200 8 64945 0 02669 0 13603 0.16272 695 5 4263 1122 2 0 8828 0 3848 12676 22000 2388 8 655 89 0 02727 0.12406 0 15133 707.2 4060 1113.2 08929 03640 12569 23000 2400 0 662.11 0 02790 0.11287 0.14076 719.0 384.8 1103 7 0 9031 0 3430 12460 2400 0 25000 668.11 0 02859 0.10209 0.13068 7313 361.6 1093 3 0 9139 0 3206 12345 25000 26800 673 91 0 02938 0 09172 0 12110 744 5 337.6 1082.0 0 9247 0 2977 1 7225 2600 0 2700 0 679 53 0 03029 0 08165 0.11194 7573 3123 1069 7 0 9356 0 2741 12097 2700 0 2800 D 634 96 0 03134 0 07171 0 10305 770 7 285 1 1055 8 0 9468 02491 I1958 2800 0 2980 0 690 22 0 03262 0 06158 0 09420 7851 2543 1039 8 0 9588 0 2215 11803 25000 30000 695 33 0 03425 0 05073 0 08500 801.8 218 4 10203 0 9728 0 1891 1 1619 3000 0

!, 2380 0 700 28 0 03681 0 03771 0 07452 824 0 1693 993 3 0 9914 0 1460 11373 3100 0 3200 0 705 08 0 04472 0 01191 0 05663 875 5 56 1 931.6 1 0351 0 0482 1 0832 3700 0 f 08 2- 70547 0 05078 0 00000 0 05078 ,9M 00 906 0 1 0612 0 0000 1 0612 g8 2*

t .

\

l l

l 1 Table 3. Superheated Steam Aos ms. men.

i so so i. .u ..en.m r ~.. -

nu i e om, si..,i m n. n. n. .n m u. m n. m m im n .. un_

, un n.. ,m,nn .

n n. m) no non mn um n m unn ,u ,n n, m unn mu n, v.nnn n n.

,,.n.

,,, ,6 n , . ,., .mn un n m Ill.n2 ).

H F1 1805 O nn 191..1 2 0600 18 f .721 I lit $ l

!!lle 2 8 7121 17.n. Illi n 1768 4 13M 2 4122 136.

.l 24Mb P1nf IIF t 2n 5 f)Mt 2 7tM l .H t.n l 1 1) 196 S 3.

ti I e

16 2.n 96 9t I la nn il P6 in 76 1 776 13776 f. 33 nf 76 .it 76 tu 76 1 11 F4 n t 7 74n 8 8.7 76 In ti nin IM 157.n IW IF1716 liul fl ,l to n M P)

.0,61 7351 Fl 164 Ill M in7 198 7 IlW l.1 61 .l.

6 llo , liit . 1 2.18Itu 2 13n t IM.O ) nut i 37 1%= 7 3586 3 lu1 e

.no23.lg1 n1631.)1 8 716 8 90H Itut

  • M6. I17 19 .1 2 on.i t040 174.71 2Mn !IM9 2lin !11H 2 PSil 2 26M 2 34 .6 3  %. . m,, un nu 6n M .m?? IN P1 - n4 n it 706 P9 u ?Muu 79 306 nuit .04 un71 5 6 n .04u79 706. 71 .06 n 79 906 u71, 1004ou71 m3,i, m n n.n nm nu, ni,u m.n 6 nui im nni in.cta. un. n.n nu 6 n.n lu9,

, sun tw, no. Inn nun 6

im3 Imi lun lun um nu >0m non luu nm om, sun 5 m te es se 13 es 1.s se iM og tee se s.e go .e.s e, te, as e.s I. 79. es aste we se H H8 . M Pe le u N Hn M il Mn .7 s6 .9 n ot M .E M 13 u it un 8Id l'8 . it. 4n 7Hi n F.99

% lu n.  !!1 H 8 t in36 Inf. nni IMI .3 nHP ,1 0 ti.n up

. un ina nu ni 1 t17,.6 n ,9 If.M,o 1 nn. imi iun nin nm . ,nH 6 nu nm n n $4 M97 M97 IM,18 194 97 7M97 n697 1 . bM ll 6 697 FM t t .et ti 94697

.mn nnso m, n m, n m, Im n sn .,9u, u m. u m, u m, u m.

ana s .m313? a linn n 17 o.00 n n, u m, n m n.m .0,6.t?m n n n nn , 6972.u n.u . B ull I.nn0 I M4. ISN2 1 9787 1 13 n 6.n nu nu im 116 20n3 2 0984 2 1309 Inn) 21982 16 n n, nu m m e. m .m u, m e a,, ,c, a. .mn nm n.um0 n . m e. um mu me m.u. m.0-> n .u n su nm  ;

. allA l n m n 11671 liti m. In92 n n17m. 0 n1206m 9 Ilu t u m n.ns l 1 43 nu) 1546 3 1679 8

. .IM nwP3 inn inn om li.g) i m um . nin nm n I M.i.l u ,4 nu.7 nm nm enn 3 11 650 1) FMi 3". .mn i6 m o 9,3 IM n 19,991, timn99) 19J?

, SH.l.1 s n4 un n.nm titti lo.u.1 J9 li m.n4 ll9 Pn.r l..

s i 1uu n..liss. i auss m, y, .

.m gi inn.6 ti it' i p 371 a m.4 171.g 17 7 % st n n.6 616.g nes.t v n.V

t u..m.

1

. 3)Js & ll i lJh1 1 pg.; e pesi, I al 1 1% 4 uff I gl 3 95A l ernt 7 t ial 7 est.77 pari )nat

=

5 .4 64 9. H 199 W P In u .o u n.g u 69W 79 u

.mu nm 19,4 ow u, mn nu,

.nu nm n m.

no om om om a n, on6 Im n n. o,mi m

m, n,.9 u M n.n..n n m,

,n,um n =6n im .u. nuu nu m, n n m.nmn.o n ,Mn sn um m, u n.

9.W. S.9.%,,

16 nu u .

unn

$h

.m= nm um 71 90 7 n u,8 1.. fi 490 n 7 0 78, M. Pl e.0 f! 5 071 6 071 7. 71 u. n

,,1,% n, noi nu. o n ., n .n uni o m an, u m, nnu m, n m n nu m, nn.n, n u, 9.e Inn nim. nm 4 .m.n 3 09 i Hit 3 ply I#4 I ;P6l 1m.0hn 1Mu.n lin . nu . I til. nI9n u .l2 0004 7.n nl 2.in 7 lu6 la SP F) nf 7) 1 2 n fu n 3p FS 11 S $n FS PU F) in F) in F)

N. PS n 1.U ?)

.nu

.wom n.u nin io imi noi n..,

myn> .,m =na i.no .u. 1 n un, n n u., n m..un

. u m. nn6 n n m, n.ew n m..

. .nn mn .m . ninn mn im ,

nm nn ,nmts .nmio n 5 75 M m ipr.W, fil M In W .n M %Fl W 61% %m 67 tii M an. n ,a Pis n, M P,,FS mW n%6%,n u m li.m.

) f.m inn liu 6 nu nl3n.m n 28 ,6.311m 8 u.6F lin 6 lin r in.#

\ nn n.t 7n \ n.t0 Im. ,un 4 m u m un.3 uan um feu lit . Ill

. .. m.3.n.1 2 1872

,w, n ,

1

= u

l. .n, . m om. nm n. . m . m . m . m . m, m. min.., m, 4 mia .mn .m .., ,

n n n.n. I im , nu i inn o m. nnn m, a nun., in. Iml n

. n.o s nll n16SH

m. i 161n 4 7 i n mn 4 747.no.0017 n.ni l a. n.u.16 l luff I Mil . Mll 2.ul 76 n2 H $a 517 611 9 .n ll 187 9) ov en . .mn iin m 6.J mn t.u nl.l IM, ,9) nn 3titi im . n.13u n nnu,91nnu.) nm n 6J. umfif t)

. iunn n nu.

im. n im.n,innmn imi om m , tilli,nn.

1 nn6 in in.u. n. innnni nm i em., , n, u. u m, l te le .07 f1 n2 ev ,n .mn nn ,7'11 n

itl t1 lit it

.m . innni n.n M. .i.t.t M.7.F9

.08 nu ,MP nmn19 n o. n.n nn ?.,n.n.. 9.Ph m nu m

. sahi nni um lm) m m.lun o n.i n 3 umno, luu Imu la \.,uv an, un lu'i en n.s.

,,y,,, .mn . nn .' n im

. lun o* mil nm n.6t!

nm um in M. IJ, 'u'n..! m, '!',U. TJi, nu. no um i=1 on lun, T.'t inn nu n',tlnu nni nul MEn.n., .

mt:non, im511 n nm) n'Ji m.!!

. , m ., u m ., n,,, n,,,

= im ..., ,,,, ,mn, .,0 n n.,m., nn n,.., m m. mnu inu, o n. m., l ,

nu m .p.n.33 m n.nm nu.

m6.0 nu. in,i im., nn. n not n, 0 18316 lu 4 6til 1723r s7% 17193 18 nu.n.

1.on 011 nu t iil n n.3 Itut 3.nl 1%

, sa g g;g 797 3, 59

,,,,5,u nun ni. .o,.

i m, gg9.n

, gg;99

... nn gp n n,;)9, u i n,s me lit n F1? n .17 39, nintui.1,19 m.In n n.,

mn nu, nn n.6. m.n, m.n. inn m.Mi e 8 0mw 8N IWS no.i ne I nt. . u 16 8784 67 2 1 7116 4 8.n. 1 9148 I ttn I Mn 3 147

$Pl

  • SWCft Pt..I I il a tm.doy Ofg ott Ib y a spgtsfiC .tivm.. CW !! p.f Ib l e triff.py. Big pe' R pet tb B -3

. l l

l I

1 I

Tat >le 3 Superheated Steam-Continvect Aes hets (6/$6 la 54t Sal It'"8U 84 Or t'"S 8 d*'*l

($4r le*el walee $leam llt ett ut $$4 $$4 408 09 809 tot 1000 litt lite Het 11:3 h

88 Olleet e 4 tl F17 lef t 1 901 3796 6 F18li t6 66H Hf 947018 It1Mi sos t)? M 7 714 ?I) tlSMit6MO 487M 1 119 $8 40 P 01) M10 64796 19796 01 18541 H as7 31s M 13tetcalM138:lt 3;3u b 787 1% l1831 ltes t l!M S tf% l Ull1 )1607 llu t al3M lealSI Wit IM3% leM8tW9 S lati l 1)D469000 luel 2008 1638100646 tell eilib3 17a6 8 s 44634 5 6290 l Wij liite I 1000 11349 i 8102 1 9464 j 15 33 74 33 74 1H 74 ist:4 2331s 793 74 3s3 74 4:3 74 las se 68314 M3te 3s3 74 tello 1 tui j ho 186 0 61767 S t47 64H0$ll?t 6so 6H3 4Hf161305 M6 72n t ott 4 7647 tlaw) eselaticle tte 19ettjustIllHit 60s Ir sie 9 llpe 016 761 57 1164 7 I?c3 i IMll 1100 0 13M 6 1380 llHe 1611 all 1 Sh s &4HO ISlH I 6396 14Fil i 2006 I H19 8luJ lint i 8t?0 88H4 iSWI  ! tJ04 4 9133 2 G363 2 0179 2 c44J '

M ansai e elitM 4 ett 79 Ff Pt lire  ?? I?1SMt i sos 77 iPtuH ff fft lut

1) !?9s7$ ti 319 > 600 ff att F) $Pt ?) (71 F) )?j PJ $79 7) 179 ll Ig?t f) I 0 IM H im) Here isnt m4 9 uma iMle HMt Hue nMiHii.M itse t ui 19 n0 i un a las e im ealso m illl; iso Intl i a v a643 laill 1 6323 I H46 I Het l ull lleet 1 770i 181M IInft 1 8967 13N3 198H 2 0000 203H 2 0619 1 la M

e 4 81770 4 HI fitteMaan tf truf t rollist wl ts tilltlastPPs 6m ut his attstf l*6 an nt in st etter inst art er 97187 laiss?  !

4 794 70 IIM 7 1700 1 1728 9 Itu l litt e llogg l)?t t 4179 : 547t 4 78)8 see3 684n t ill8%45 984 19390 ll elt 188 1144 0 02442 15171 16377 14917 4 1

>s $4H4 1 6069 4 625) ll)40 1 6876 iflet 8 7404 i sett 1 8094 l is09 8 8817 1 9?67 I MOS 8 9940 29M4 ftMt let e 9 01774 fill fill lifil 17219 17718 f H il 377 10 472 l8 l?f l4 47318 fillt 87t li 972 88 It?t il I 02782) 4 431 4 HC 4 915 9 766 lite 6 904 4 816 6 833 140 8 050 S HS 9 M4 9 860 19 464 litfD '

a 798 54 11172 e t e 743 1 602) 14487 llet t 17!!

I Hl44164 Itill 4litt110e8 l IMa167344 llM 6l inM 13 tt1 i8034 leMI 1841 leto sI MJ1 Imt 164sISMS4ItH2 1637 4 litl teeitt 1 9443 17t 4h0;% l la tel e 0 0lHB 4 731 eteu nt 64ft Illu 16043 lieu P6863 35843 46063 Mall 664 63 768 H IW H 96453 sett s)

Q1137) b 4 600 S MI 6 36% $ 617 ltti 6 Soo 8 086 PMS 8 741 8 816 93H 1 961 islu 302 24 6148 0 llM S 12M 4 liu s 1778 8 IMel 1321 7 1371 3 lett e 14 03 tills lust ilD S 1691 6 17864

$6 s leito llM4 1 6171 [6en 16715 1 7931 l ilH IID0 IfMI I OJte 1 b 31 1 9111 1 9498 1 9829 1914 10d84 lit OM ill e 0 91737 e nas n

lifeeMletP1ea4 119e71 rt;1071lis t l75% %f SL4 71 Mui 6 70%

MlPI 86478 6 nt64679 im P M%f at t 76571 06% f1 M% PI 806 71 304 43 lite t 11978 1774 4 167% 17/4 8 ID 18 1178 9 1979 0 l4M P 8480 1 1914 )7 g ell twl 1 %ef temt IHet NH4 M4:4 IJat e I s teHe 4 H50 1 6061 1 O 96 IHM 86511 11H3 1 7476 l itit 18344 18737 1 9099 1 9444 ItHi itMI 20317 2n {

til litt litt lii t? 16t M filt? 761t? MlW sel f? Mi tt celu Mitt esi t? Mit; IMi t; 034 GS e t il PH list 3MP 4;H 4PI s 6al Slit $3H leu 6 46% 4 99e ful 8 086 e lle 9013 9 61) b 309 tl llM 6 1196 7 12M t init tilf t IMll 1874 6 Hil l leMS 44 ?t t IMI6 1980 16H f Mll e 1144 3 s $ 4417 IHl3 I Hel 1 6340 I M64 16th 1 7161 174) 8 H17 1 8194 I M82 190e9 it)M I9FH 2 00s4 f t)st IM 0 F3 la 73 IM !! 154 F3 700 H tit #1 358 73 854 FI He il 414 73 M4 P3 0 873 Me 73 Ime 73 Dell?l e 9 01799 37HS 3 flil 4 41M allie 4 6MI # 9009 58633 1 6413 e ll?8 410M P n64 7 70M s itit title 9 3634 n 312 54 Ilto e titl6 !!?a l IPit t lill e IMJS 1318 3 1318 e 1410 0 le tt 8 IH14 inu t 16371 16ti l afst;

. a 0 4119 1 64/9 1994 86 M 16H2 I H12 lilu 17316 illis 18144 I MJS I 9004 IlMt i 9He 199M 3 63M sn IN Da733 e 0 0l ?te 3 4ted lter a699uit3187677a41 alu gittstelef rstlst4 7578f l161 s tiet 35768 $ 2384 4967 S tilllult 4524f t itle 4 64e4 Mff D lI44#Sitt littl 4tust 6all Itut?

SW) b lit t) litt 4 449M i 1113 1 5413 1 M23 4 !!H1 61426 1281 16et3 9 llit1 87164 IMF[ I PoJi lHP)littJ I 13D H3}, 4470 4 14 F14 till l 1643 6 llM 9 4691 6 0464 l aill lam latil lint itHI I H87 l &lli le 44 96 M 96 144 M IM M P44 M MM eM M le4 M &as ts pe6 M M4 M te6 M 1944 96 las e e tt eel 3 7190 D63 041 4 M4 M 8193 0 j oest alle 19626 41644 esitt seus litet 6:54 s t ret SMM t elst le6u IHl4 s 4 M71 137W llM S 1748 7 !!?S ) IMil 1375 0 8378 4 84P8 9 le tt i 1110 0 It4J 4 1457 MMt 17 o 9 IHel i Het i Ms6 I test i FIM i 1612 I stil I test las2e i9476 I ties i tatl 3 eitt sh allt 9117 l41 H 49117 fel p 3d167 44197 64117 64157 743 57 6elli 981 H 16d e lt etc e 0 9:009 3 0131 QS44a 6 3M H lita l 3 12197798 38H)IU43 1 IN74 3 6?H 00013 H70 IH61 e IPit llif altta18J 4946 7 4 1476 63101 7 llMSPM4S 1141 6 4tt 8 16M4 %df Stul Hel S IHot I Milp s ellel 13406 llM3 4 6J13 I H87 1 646) lillt 1 7573 I?Mi IIM3 4 8714 I t006 I MJi 197e4 legy an M al as el IM el IM al see e telett 3:3M 3eMe litte 3 *4H 3 6a6, 'M el 3M al 4M el SM et SN el Fu el 8M e > SMal lejlat 0H 06 4 3M 07 tilt i l!Ise Ita6 6 1713 3 1799 6 inste stort 4 6?tt leiH S Het litel 6 tus lut! 6 tou s 45J06 I nsl IHos 4 W38 I H2t l etto 37% 4 1376 4 18777 1878 4 1510 3 In&7 9 1453 1690 % U46 itJt 1 1499 l itit lult 14674 19ett 19M9 i nit l etse tit

$n e 0 91471 f 6t34 alle alle 138 54 Illit 13118 Hlle 41158 131 54 tit li 731 14 43158 13164 3:31 gg Ole tti ae }stle lit 6 9 # 816# 30M4 3 7306 3 4Mn 3 6114 3 M ?t e n)6 4HH 18789 98371 litte 61M4 6 89H slJ69 ,llH4 [ fill 1144 i till { 1214 4 (H47 (Ull 14M 8 44784 nMe 1142 4 MM4 nte s 04):

16423 8 6117 16ae r 6 6217 l H64 i f elt li4M 1 4241 1 0619 190' t i ntti lleet I Mil i

$n les e ( 01827 71317 M t! M tf IM H 1 P8 97 f*t ti 3M tf emit l?lli 474 97 FM tf SM lf SM97 IDM t3 l 073 De a M419 il96 9 3lill1 64741783 f tSc4 4 Ilil36sn I lit) t37te6 13te leM3 9 1371 3 76243 14?S 4 1064 3 leil(*M4 i 1529 e ttei liitt 18%f 7 4642 4 IlMS1tatemig6i 6Ust)s ti e 9 1326 i He) i F43 iWI 1 6374 i Mai I 6900 1FMJ l 7194 1 1876 ISW1 4 8494 iSHF l SW 8 M41 in 1141 ti e t titel 19141 U149 3H el 4H 49 SH et 621 41 fftet titel Ut e t 191148 lit e tillH 180)$ 2 001 PHH iarM 30W)HH3 3 H86 3941 34Mt 42148 elms1541 4897191164 18949 tpollilis OH 33 e Mo t4 lies 6 liitt Udif IDel 17181 Hid e latit 14784 1914 len t 1490s l e 4 6344 iWe i Wei I WO4 16M) i Hai i HJS I titt iHH I 1111 1 asle 1 8434 I tiH I 9444 8 tJit I in le ft ta tt 111 79 fee 04163 e 4 91171 7 787) I M*t flot F 487 '64 tt til ft 118 70 olite 110 ?$ 611 70 illit 8!8 79 titte 601179 H)9 3993 ) Da' ) 16td 4 00t4 e MJi 06:18 4 9161 t illt 9 6109 e lilla litt y 1710 1 llec t 17et t 196 7 liit t lipa l lan g 84:# 9 gMt nal g ign a 16M t [14% )

s eMM 1644 ISH) IHH 16287 Hit 16H3 I H39 ITM3 1 9967 O g4M 13nt 1 9191 l $427 s ti32

$A e litktektal.I 11 e tAllI4lpy. Siv Ctf ID t = litcdic volvme, tu fl per it I = entrepp, Blv ste F per it B-4 I

1 l

l I

Table 3. Superheated Steam-Contmued l gg $31 %I Iempe14% . Derfers t einasic.t flat le*H W e' e' Sl'am 4 00 450 let 154 804 700 l'a 100 IMS 1899 IIM 1391 le f t, list h Id M 64 01 114 01 164 M lle M lle M el4 M lle M Gle M 714 M 814 M 114M 1994 C9 til8 M i til e 0 01N4 t il2P 7 7364 telli 3 5840 7 7504 7 9078 37137 3 $170 3 806" 48937 4 Mit 4 6411 4 *6 % S Mil $

  • s40 1
04) til b Mt 91 litt 0 1700 M I?39 7 1764 0 lits 3 Int 9 1373 7 44M 1 left 7 15?S 8 IMI6 46Mi 16a16 17s4 a lex 8 I s 4 6490 65413 inut 15872 1 6480 164W B 671) 1 7187 I M;7 1 0001 1 8371 1 8721 19eS4 1 9372 1 9677 1 9170 la lelf So ll 11017 1601) 200 l? 310 17 419 17 litll 61087 f19 87 Stel? 949 87 1810 17 1110 17 I FM e 8 01950 Pose! 71740 7 7999 7 4434 26199 7 7710 30w7 3 M04 1snt 19i7$ 41905 a s471 47s?6 5 0173 $ ? tis i Ott la t ha 17 litt 4 I?O6 3 12379 I?M 9 1294 ) 1373 2 1373 7 1874 F 1876 3 1528 6 ISee 4 167% 0 1641 4 lide 7 18306 8 8 $$40 i H74 Ib43 15000 8540 1 6400 i HS4 1 7128 I nl3 i M44 8 8311 iOut I 90H I1JM i M71 1 Mit in 6 30 $4 30 106 30 5% M 206 30 306 30 406 30 $06 M 406 M 706 M ses M 9M M 1006 30 1806 M He e 4 919 % ItH1 2 021! # 1919 P MC) P Soc 4 7 6461 f t??6 3 7020 34716 3 7406 4 0064 47717 4SMS 8 7544 Som 093T2 4 364 78 lt'IC i 120ee 12 M 3 IMSi l?t3 6 1370 4 1377 7 late 7 1416 0 litt i b811 1634 8 4689 3 1844 1 IFJ0 S 4 H44 lHM llMS 1 947 18062 44M4 I H04 1794 I M07 17897 1 4264 I Mil 1 8947 I NFO 1 9%76 1 9669 la Ill 5261 18261 152 61 M261 302 41 402 41 S02 61 60761 Mill 867 68 90161 100761 llull let e 4 91160 1 9177 14M8 F C978 77Mt F Mll I S316 7 0074 3 0641 33M9 35431 3 8)#$ 4 9e?6 49% 4977 a ndt?

LMP 396 a 372 f 7 1700 4 1207 4 Inst IM86 IM77 1319 7 1377 6 lull 14 7% l ll!7 9 1580 9 16 M 6 16tti 1744 3 l hJ0 4 3 0 M34 I litt i 1320 1 M47 6 6006 l6MI l6MF i Peli l 7417 iPH4 i Elit i SSF0 1 B908 I till Itut i 9672 h 4903 9903 18993 199 03 719 93 79903 49903 $9903 SM 03 79993 99953 lette)

PM e teltu 18432 7 0cl6 f ined 1 7909 tam 7 2 641! Italt 81909 3342 3 6437 1 9770 4 899 0,3esill e 6546 170 1400 971 a 374 14 1243 4 1233 4 IM35 1291 8 4319 0 1371 6 1434 1843 1527 6 IS40 6 1H44 1648 9 1744 2 1800 7 e S M?t l W64 I M29 I H%l 1 6239 1 4102 I H76 4 740$ 1 7801 181F3 18W4 1 84S4 1 9177 1 9442 1 97?6 h HH 95 % lat $4 19) % M154 pt% M 895 S4 595 % 691 H 791 $4 995 54 995 $4 109t M tse e t ell?0 1774 1 9173 2 0619 21981 # 3799 ineet ! &?% 30643 3 3044 3 5800 3 7tSe 4 0097 4 ;a?7 d erw (408 441 6 379 90 1701 i 1231 9 I?W 4 I?90 t Illt i 1371 1 14H t 1474 9 1527 3 Iva0 e tow 7 1644 i 1744 0 1400 t a S U22 1 1230 . I H73 i Sett Ilitt i 6413 16tM iIM9 8 17 % 1Sul I 8480 1 Mit I till IHM i 1731 in 4770 91 70 1H ?0 lu te 79PM M7 ?g 441 79 WM Ht F0 79? ?9 M7 70 997 ?0 1997 M til e 0 018?) 1 7104 1 8396 19799 21171 7 7344 78874 2 7144 f tS09 3 1006 3 80N 3 4)st 30843 40N9 4 3047 N07 la 4 M3 H 1701 9 47308 IMi2 1790 9 1317 5 4378 % 1074 leie 6 1577I 1540 1 16 M i 16a4 g 17419 laun e t t U64 I 5157 8 %ll lS&8 Iliet i 6406 l 64 8 8 7315 1 Fill 1 8001 1 H37 8 8776 8 9000 i H94 i Mt0 la 33 93 se t) 133 93 lu t) 743 93 M493 e6493 54493 604 93 708 93 084 93 18813 3000 tl 100 e 0 01000 16%0% 1 764l 19037 10327 t ilSI 2 2909 2 6tH 3 84H 3 06 % 3 70 % 3 Sest 3 7117 3944 4 $43 4414 073 4 Mill 1702 3 1718 0 lite t 17:1 1 1316 8 1370 8 1472 4 1474 2 ISM I il7t t 4633 8 lute 1781 f 17998 8 834M 1 5164 1 6464 L Hl4 4 6093 16MI 1 6441 8 1273 1 7674 1804 4 439% # 4 5 9058 1 93 % 1 9641 la M it HM In it Ill 5 28% h Mi PS 4H P) 541 7% 60% FS 7995 ST. ,s tei n IM5 5 798 e 9 01845 15988 16H8 18377 1998 1 9771 F Mit flMt flue itSH 31714 3 M14 3 59/6 30019 40 %

641e ?): n 790 64 1707 6 e e 4444 4 $1JS l727 3 IM49 1780 1 1316 0 IMil IUti le f) 9 lim l 1579 6 1613 5 1648 P 170 6 litt 7 I $442 1li$e 16088 1 6317 I 6799 8 1232 1 1630 1 0003 8 83M I M90 1 9010 1 9346 i Mit la Me e 9 siDet I $477 3745 if H 132 H 187 H 76265 M2 ll 442 H 547 ll 642 ll 75741 882 65 9826% IM2H I sju I PMS 1 saH t goes ;;M3 2 4407 76509 78Mt 3ON3 3 Met J 4728 3 67e6 3 4164 Will)I t M199 !?til 1775 7 IMPP litF P 1315 7 1M89 1471 3 1473 6 ISM P 1571 4 lull 1648 0 lid e lit 9 6

, t IbMJ l H0) i$HI I U03 8 6003 4 6274 16754 i Pitt i 4 91 8ind 1 831I IMW I 4977 i W79 i Mil k M 64 79 64 IM 64 116 e 4 91M4 ' 41H 1 983 1 7084 IBH) 1964 77t H 379 64 471 64 %79 H L?t H f M 64 471 68 97164 lef t 6e left Mi MfM 9)H 7 1179 # M00 7 M30 2 76W 7 M44 316?) 3 M94 3HM 3 hat t

e $ H29 1017

. leil lHe1 itM } lits 3 1 3314 13Hi i Het lia i j284 64Je 9 4473 I inft t lift i 16331 16s F 4 4743 3 l tM 4

6H3 I 6719 1 F164 iMH 1 7927 4 4200 i Mll 1SHi 4 9741 8 96M h MH MH IM H SM e 9 01896 AaN 5707 16e6. 176M Pt 8P7 st IP6 H 374 69 476 69 SM H SM H FM H 876 H SPt H M76 H 1423 311 t 800 l} 70 4  !?!l IFM , IPM 3 all }s #IMPB 982314Jt
  1. 7 68 ) # 4421 t 1472 9 litie86774 1571978708 16U t30We 144763MM170 #1 44M
  1. 7991037 3

6 6 lose 5088 , SMI i h64. ' I6elt 6112 lute Iille IFS 16 i P900 1 8743 4 4579 149H I 9206 8 9000 36 s O SIN) 1 60s 23 82 Fi tt ' t3 82 73 87 tilli lull 473 82 $P3 H SF182 773 82 473 41 175 t! leflu 334 4ead I wil 795c sin ;si6g 2 pt); 3 seS4 3699 3 rats !Me{ 3 ISan 3 33e9 3 Wtl MM ih 6 403 4 tM36 FMt 1M40 tes e 313 0 IMF) leMe lar;l ISM I 15?9 7 IH!i 16871 874 9 17997 0 43906 i ell 5213 llM4 . Mll 6113 I Mel 1 7919 1 7440 81015 1A298 18M4 4 4464 1 9171 l le64 let Sn, 4611c4 l %st ti ll 11 91 : ll ti Pi tt Pfl 01 371 91 475 01 171 91 671 01 771 01 471 0l 178 tl 44fl 61 H20 HB all 15199 6bil PWI Itut flM3 8 3333 f 5171 ? ?tOS IMll 3 Mil 32402 3 4186 t 406 M 1703 8 17U 8 . Fil o 8 8 8424 l ette ',!!t H4 blWS ,but lif f IM47 1419 6 14 ?? f it?% 9 liit e 1632 ) 16473 674 3 1799 3 6114 IMM i 7084 4 74dl 17sM 8 8174 4 Hit 1 8131 I t!M llor D

PH e 981917 13MS 18 77 64 H 11877 16477 764 77 Ma rl Ma tt M4 tt pa t7 764 77 assif 964)I les4 tp MH Ph n est H 120e 6 13FM 14113 1 6002 1 Pt/I 1 8979 2 0637 !?llt # 44 4 18719 I Net 317M llell s ugg e 448H 84M4 1117 ) IMIl 1781 4 1111 4 IM6) 1819 ) lef t I lue8 1l79 i ISU 3 16471 174 6 iFM e IHit l H43 llM7 I Wil l HP) lieb 1 7411 B Jill 18441 I H17 1 8194 1 9106 l le0s 9 1559 4559 364 e 4 01917 PMI i l2H i s4%e 11 H 1121 li tt Mill Milt Mill HlH MlH 76159 MlH Mill 1966 g9 14 H ell n 41781 194 1 fill it%0 3 FIl l 6MS 1841 70H7 f t009 7 3 Pil 7 5442 7 71M 28898 3 0$t7 J t;71 6 S t0ll Hel M1) i Mal 1M4 110 6 134 6 1418 f 1471 $ 1614 4 ISif t full 16M t 17 4 l Itts g 6h4 16M4 i H18 1 7379 8 3154 4 8109 8 8446 187H I 9073 41M4

> le ft 64 H 10 H SM e 8 0192$ l f tig is72 M06 '4471 44hti31 760talg H M439 464 H % 4 39 M4 H 7H H 864 H Molt IM4 M 14M 6ll t 418 59 liv 4 117 4 le s i 17t l jeg 4 3H g 9139 3 e921 7 74l4 f alle flMe 7 7M4 t est) 3 0g71 i l6lM litM 4M3 , $40 f M41  ;)Mt 417 9 le ft i llM 8 Ilif e 163l 4 1646 % tial t Issa g H 7t 6til 1 7311 3 1692 I4tu IIIH 4 870) 1 901) llMt I

$)I e lippgrhqal, I h . gelli3 py Big pgf th V = SptCalg vtNme, tu ll 997 ID i e te(70py,StW ptf R ptfIb 8 -5

. . j e

Tabie 3. Supetheated Steam-Contmued

$ la $4t 54t h*94' 8' - h t* 8 8 4W"4'l aei re i weit, ii.e. 45. n. u. H. US m in *. me nu on n= un in.

k 400 lto glat les 40 Inas 20%49 75540 2 % 40 4 % 40 llide in 40 755 at au 40 9% 40 mi da 6644 600 e 8 01934 11410 18738 12841 6 3816 14143 6 % 46 I Htt 1 8111 1 975: 7 1339 2 1101 7 8450 7 H87 illh FM 6

47417 I?08 6 1708 8 lie i tilli ini4 llh t IM34 1417 0 1678 I li?) 3 I)?l 9 1047 1646 7 1741 1 eneP b

e SMll leMP l ette I M82 B Mil Ill01 8 6163 1 6406 164W 1 77 % allu liste ill/S 18647 1894% lthe Ot 60 SO 60 800 60 ISO 60 700 60 150 60 250 60 ese60 M460 6W 60 iW to tw Le 9% 64 n4 %

1449 406 e t elWI h

479 % ll%7

!?C81 1676 7 !?ct 1i 1242 764341L75 31134 lyni ssol 6 lHe%1804llu13%1816 76 lIittl lau187t% f alc44108 a lui7 1964 f lit) 73HP 14 o 1 7Ital 8 6'11 7610% 1 1647 7798 4

0 6276 44807 44004 1 5706 t he? lun 16:00 16MS 16111 t ilt7 l ull litu 8 t?tt 1 8991 18M9 1 919%

k est e 0 0lM0 10tM i 4597 nit I tau91 97 letti 19597 3 3319 1413026 9716445 l atil 34 97 46 17itMI l itig 56 70730 97 falti fi?23 76 97F84 97 14%

MCS 24998 %718364 ntS17 leve $35 6 64 H 1704 e 6 tHll 147 % int 7 1273 4 lh8i till 7 134l I tell3 1447 4 52; 3 IS PS 9 1610 4 nt)l L 7413 liti 7 1 6l32 I H74 l H77 1 6044 161H 167H 1 7442 I?WI 17818 l ull 185Je 18647 19:43 D, 4150 9150 elle 444 leWlon 8 01969 10NP 10971 1889 708 ille 24650 Hlw WISO 54150 64854 74150 441 50 MIM 1H193 a 43t:3 6704 3 llM S lih 3 )o?) 131 3487 64747 15703 1 7637 ItWe IMM 1 1776 77%9 13901 1 939 i 9 0 6387 I4118 1 5060 1 5409 5111 4 IM00 1414 4 1464 9 lif e l 1971 4 18799 16M n 17e0 9 179 4 1 lH7 46D0 l ue0 8 7089 1 7469 lilM 6116$ 1 8444 18197 l ect) '

> pie

  • 87 1 1788 tid e 4 08967 0 %44 l ee05 lix9 fin 8738 nPIs Hill 41788 9731 61718 73718 43714 91710 telitt 14Q 4h h 444 4 170a 8 llM i (261 i MOS 7 88 ) IMn 1 %n I Det I His 1 90)0 tene fi6lt ! ?t00 t air) s 8 6439 14477 leMS llM4 .MH 110 % DM8 1806 p67 3 1M09 IUat it?t t 1648 7 1140 4 17911 '

692% 3 6116 16G8 1938 litit IJH7 1 8116 1849 18748 1 904)

D ntt U tt u tt

{

seg e 8 489 01975 tU1 - Smit 1 fili 07168 6 84 U tt in H 3H 99 4 M tt Smit 6H tt IM tt In tt SU tt llu tt PN7 iMH l a)17 1 570s 1649; 38?M 19W7 2 0146 7 1377 f uo3 1s61 015 8 li 1708 r IHII iMi 8 4 6490 8 46Jt 8 isla i h?H 319 1 tilf 7 1487 7 1464 6 4510 3 1574 4 M1, i 16ed a lla0 3 11969

.Hh h i Stil 16813 1 6118 86960 1FMI I H30 1 8069 i SJH I 87H l etH He e t elNP 0 t914 It t) Plu lilH lilH ??t H US H 420 0 W8 9) 6?t H ??013 878 93 178 93 1978 9) till 81) 6 4W 14 1208 % G l*H 1 9374 1 8044 Illit 17%4 I Mit 1 % 46 16M) IPHP 1 8784 1 9980 7 817% lint s 06H0 84WI lt74 14433 3 liul u;3 4 1201399 e ID77 I Wil13% 1604) 14118 144% 9I litt IHM 16943 Hil7lined 1%D18W4 9 167838M4 7 16M18474 1740 9 f tM P 1 8954 h

bei e 9 91 910 4 t50 I4 99 74 99 174 99 674 tt !?4 99 174 99 of 4 99 We 99 674 99 ??e 99 874 99 974 99 1974 1871su b 6M PI I?08 4 4 90s% 0 9064 leul llMP 4 7014 IDH 14)es I Dod 1 6400 1804 191H 70D6 7101 8 86W) l4MS 17?S I I?u % I?M 7 13?6 3 l)M 3 14it 9 14H I 1519 1 1934 1678 7 66436 IPM 7 11*6 4 i 4186 1 5164 l Sett i1757 16473 8 6443 16997 14te 17640 1 1901 18JM i 86n I #918 h

tid e 0 SI94 4 4764  ?!le 76 16 11116 til 16 Ut 16 !?! n 41116 51816 62116 71116 811 36 918 n 1971 M stil tal b delle 1703 7 4 06H t 447% l til 7 8 9907 l1%7 I7787 8 3177 i SlF1 IWu I D64 iewo 19uls 7one e OEM I 4121 BH27 1760 3 Itti t 1314 9 17%8 7 le10 0 leu 4 1618 6 1U79 n178 Mta l llM 4 iPm i 14129 1 11 % I S434 1 5717 I ll7S 1 6434 168)J IPHf IFM6 Ilut 1 8163 18W3 1 84/4 h

100 e 0 87004 9 M71 llu 67 4 Intel utal 704) 30 0 4083 117 0 61741 73748 lifel 9174) 1917 41 0482 575 6 46107 1103 9 0 6797 8 9100 G H14 4 0457 l illt 1784 I MF) 8 493 1 % 31 1 6100 a tt% 18118 8 9980 t S EP) 1 44 % 1719 1 1580 Ittf l IM14 IM38 1408 7 18417 litle 1924 16tl e 1HJ1 Iml th)4 1 8654 liess 1 1340 15468 15919 1 6394 1 6411 171M I F)M 3 7090 l&H3 l g)33 1 4434 I

l k I4 80 80 11190 tille lijst 63 3 ice e . o 0 7ni 1,1 00. v6 63.H 0 .12 84H.iot

' i70.m iim, i m i 40u i u00 711 80 333 e0 e go Igl31, f 1646 pel n all 70 IM37 867H l 646 )

lin t tru e atto 3 sue inta less3 less e 1517 4 1676 1 nite nas iun I mf asu eltin im 6 4 lett i 4963 4 13/9 M24 1 ben 46MI a 6769 i Fill i F%ir i 1969 I 4:44 , 6494 4 871J h

la,oget, e 0 e79M $ 7084 til 1611 Im li 11% I8 7et t 304 10 eei ll telli 4M ll 7M ll eM ll 9M il 40m il b es:89 110: s 4 Stor7373 6 Ile 6 6ttS4 128478614131844?9 l 1544 0 tal i M11 l 69L9 6 itF1 67%9 I asse I $909 Ibh4 i ftO g i 4424 3 088 lacs e 1861 f 151%t 1907 l6?s t nel 6 fue0 l na 9 4 4430 14M4 i M97 13507 I uti 8 6?e9 i HJi 1iMt i74 8 1 176l Isett ) 6483 Ilien En pee e 8 87,g4 gun 44 t2 96 97 14611 IMll 794 0 3Mit 416 SP Smit sM et FM t; iM st 9M tf gE3 06a 6 491 60 1701 8 e rill s ig;g easte stoft leiN 81e78 1 7023 17143 Inse 1447 1 447 1 6110 4 46928 4 ode It4J 4 liti 0 1314 6 13al 6 1403 7 lett a lite a l%g4 6624 4 4807 D37 P 17943

> i 4724 1 6090 1 utt I W13 8 6tH l 6$40 iSHf I 73h 8 7679 8 4006 I 8)18 1 0617 PW

$14 68) e 8 0?c69 0 6095 600 89 ID07 M ll et16 lit il let is itt 14 M9 il 48916 Set 16 Hs 16 79916 totis tot 16 t

0606 0 7313 01682 0849 5 9J46 10X4 a llti I ?oll 1 7116 1359 14%H 4 641%

8 41N2 1 4137 llM t lit 61 1319 8 1343 5 lett $ 64U 6 Ml? t 1%47 nuli 1471 8 17M 4 87136 k l ete l e tti litto I llH 1 6065 164 H 1 6444 l it$) 1783 I IS26 182J3 18us 000 e 9 02007 4 %e0 31 71 sl it 0171 191 7% tel it M179 40179 581 7' ul Pt 781 71 841 79 948 79 Siltil D bot II Itti e t eill 4 6174 97M3 4 7818 0 8759 S Mll 1 6479 l iitt 6 7091 1784 1 849 1 4486 9 $ 3111 14163 1001 1771 1 130L 8 ID91 lite I leu 4 not4 l%49 16H ) 1674 % DnP 8 797 t h 1 441) 14069 litt8 I S444 1 6948 1640 1 6407 1 7871 8764 4 7811 18ne 1844 24 76 854 e O C21M ituo 74 il lia 76 474 76 f 74 76 37476 474 76 Sf 4 76 674 76 F74 76 874 76 914 76 6n 248 h

$18 46 Ilta t e %41 0 6ft6 6 66:9 6 731% 6 610% 9904 4 M)4 104c4 IIM6 i Fil) 8 itil i M68 s 0 7897 18096 (fD 0 IMit IM11 llM S 1396 0 189 0 ille t 1917 M18 6 14/1 9 1714 9 17113

& leMf 14761 l iitt f lit 6 liitt 163M 161JJ 1 7442 1 1454 I H40 I SON 8 8Jts see e 6 0lill 4 5009 llM 68 0) IIIM n8 M M8 t$ 368 M 444 0$ 5410% 644 0$ 768 0% sea t) 968 eg 631 til 4 Stg it 1896 4 01263 9 6469 44388 9 6858 0710 0 8504 8 9761 9 9994 187/9 1800 t iill lien e tilts laut lltti I?M 6 1794 6 HUP l)t4 4 149 7 noe l 1%44 16?0 0 uf 7 I 804i H116 soln laut t ulo IHil 1 5817 46M3 16442 llen I H62 I H13 18W8 183M

$h = tuttehe84 F h = enthalpy 81v ptf lb 9 = SpeOf*C tolvme, tv f t per Ib l = enllopy, Siv pt7 f pe7 lb B-6

Table 3. Superheatec Steam-Continued I;5 a Sai leapr ehre - De r n i awet a.i ie..) .t.al l e, sle ., ii. .00 it. 100 n0 ut nt => . 00. ute i,00 n m, a 950 la Illi till 19161 66161 211 61 761 61 Sil 61 Mint 461 61 Will Hill tillt tal lt til ti e 9 47141 t e ??! 0488) 0 6405 01993 06ut ettti 0 7772 4 75 % e tc)0 0875) OH% letar les.; 4 6444 I;:43 6 30 391 4 l)4 74 11W 7 1207 6 till t Inte ID9) Init 1397 0 14711 14 W ) 1507 8 IH)! Ilit t 16 67 lin ) li): :

s 0 7158 1 3970 18094 44D7 laul lin8 l % 00 t ila t 1 % 77 8 619) I Dtl llMF llait I J6at llut 1 4;67

% le? M 47 10547 lua? ;M U 2 % 41 30$ 47 3% 47 s % 47 %$ 47 lil e? Mlaf Pu s? m at less e 8 021 % 0 4460 t ell 0 5137 Sun 06080 O pel 0607% e sten 4 760) 0 8?ti 60%4 e Mit l o'n l ccol t '. i 644 M1 6 H2 % ll119 litt ) 4249 ) 1790 1 4)M 9 13 % 7 lH4$ le tt 4 1848 % ISOS 4 li4t 9 1611 4 16?) I llM % lit: I s 8 1834 1 1960 1 111) a 4867 l 8IH I Stat 1 5476 i Loll 1 M38 86126 46130 86105 a754 1 f?89 I leM 14;)F k 4987 tie f legal 19943 fee? 79147 Mt47 ute! $d9 47 64987 fa9 H LJ9 4 7 in H 1960 e 0 07177 Gent 0 4til e lll! 096 06:47 t ull 0 6877 0 7716 9 7881 08M4 0 9151 09767 1 C37) 10 ')

6 Mill 4 $W il l1910 lle)4 titl 7 1874 13% B litP P 1417 3 1446 6 1903 0 1544 7 1617 e 16744 Illi t !!196 s 01W7 13851 14168 14748 I W17 3 5)$4 8 %CS 5 5842 I W62 l H89 1 6445 47117 1 7131 17648 4 8.61 la alu 13 72 14172 19377 24372 ft) f f 34377 44377 SO f f 64171 70 77 BJ 3 72 10 f!

list e 4 6219% 98004 08%)I 1W0 OW9 O n*26 0 6184 4 6%)) 8 6865 6 750% t eill 0 877) 9910 lista ipt SM 2ll t lit il list i 1217 ) 1741 2 6318 8 IN1 lip 7 lall 7 1864 i liu2 4 IDt4 1616 ) 167) $ illi 9 isH &

s 4 7678 I )?)4 leM9 land 18996 1 6184 llW7 0 %I79 l WOO I HIS 16787 1 7141 1 7476 l ist) 4 8;17 la M 13 8118 I)g 18 149 il fit il tail 8 3M II en 18 131il 61918 77918 lliiB 939 il line , g 37218 0 1437 64M) g a 746 0 5167 0 %)8 0%f19 96n) 0 6v48 0 7161 0 77$4 G Bill 9 84tt 0 **% It"7 666 N1 6 %a 73 lis'0 if JO 9 1776 6 1115 7 1849 1 1342 7 181) Q I447 0 1500 t luii test 7 1612 6 1730 7 1788 I s liWP 1 3738 14864 laWJ l all) 1 5286 l Hit il717 I ntel i till 8032 1 7007 174H 8 7741 1834

% )f 81 8788 13781 187 81 flit! 212 81 3Hll 4HIl lull 6H 81 7)? Il 8M 81 11? t t 1100 o 0 027M O M7e 9 8016 04497 t a t0% 0 W7) DHil OHit 0 61$4 06pl e sels g ri;4 9 8 sit s ton OMW 66719)' 6 til 4% l164 0 . lHei till I 13ll t 1386 9 IDS 7 lale 8 6483 1 latt 8 ISM 1 16l4 7 16716 liti e 118

  • t e 01114 i M8) 14066 14501 l a sil 1 6110 1 641% I H58 1 540) 1 6764 l H19 l it)l 11Jil 1 7611 12H6 k 17 68 77 58 177 %8 177 %8 777%8 777 58 M2 %8 4M %8 577 %I W7 H M754 87758 t?? tt I se e 0 07789 S D99 IMit0 08N 04H1 08808 ell?g S S4M 9 973 66747 9 6427 e f)s t tipi e llet e f! *S SH ell b SIS M llH 7 1709 9 IMl9 IMJ1 llMil ID46 1848 1010 14% ) 1%W ) 1617 0 164, 3 1;is t lisa l s 47W) I JtH 1 3460 18H0 187ll 1 5011 1 %?96 1594 154) 16ste 6 6 bit 1 691) l ull l ii% 1 7902

% 17 93 4 93 1I71) 16291 717 % 767 1) 1l79) 417 9) 51793 617 9) 7179) 817 9 117 93 segg e 9 0?)C7 0 1011 O ll?6 9 M68 080%9 94eo0 04767 O kos $ 5787 0 6009 s till e ttH 8 777) 0 lFD] 0806 687811 6 HS B) 11 4 ) IIN I 175 4 4796 8 IDel int) 1802 6 141) ? 1811 7 ll* l l 16M 1880 1963 1781 3 s 0 7164 1 3474 I Mll t elli loin 14100 1 6182 1 6416 I H70 1 60 % l H84 8604 liten 1408 lisu 9 3 90 1182 tello 15100 70160 7%) to M)to 40100 M) to' 603 00 70 00 00140 tH 9 ?

1544 e G C2H6 07771 8 7870 t illt O D;; G eost eene sept la sta 9%M4 t sa*t stul 8 6713 t itle 0:6H 6 16 791 6 68168 ll ?01 1176 1 I?*07 1787 9 ll?se IMag 13974 1879 7 14908 l$at ? IWii 16u i 6714 8 lif il s 06Mt i 311) 1 34)I I 44H 34443 4 41st i 60)) I l))) I % 12 1 6004 l6HS 6 6ill I hel I leti lilla 4 ell) 9% Il 1611 6%Il te% 0 PM I) 3tt il 4ta l) Still 69% Il P9% ll 094 1l 1600

  • G U18 F O fi% 9 3016 O Mil 6 3181 0409 94MI te%) 0 W)I Glas? 0 1915 GOM 9 6144 t illa

. f60s 876 6 62a 20 1164 5 1220 3 1779 4 IMI4 1344 6 1397 8 14M i leen 1 1646 6 160% 6 1%89 14)2 1 18.* 1 s 881H I M14 13061 t e jil leH7 14968 15fl6 l H18 l Hl4 l ull 1 6418 1 7917 llHf 17663 4 MIF 84 8) IM87 1887 PM 87 74687 104 17 48657 lat ti 6M it #96 17 Be4 U IPse e 4 6?478 47161 47154 9 3147 e la(4 g ir$1 S toll t ap%) e stil gilag G Mi2 G HS1 06HI 66:'4 1613 111 4 6H O llW 6 17 3 ) 1179 % liia l 43V 9 1348 8 1411 7 144J e IH40 164) e luft if 717 1781 0 s 08Mt 1 3176 l Mtf 1 818) l el% l egni 1 1840 4 5364 I MJ) lHM I Hel 1610 litle 1 768%

la f a ts late t7e93 67s te ng 9 ;;ste 3rste 478 94 178 94 0864 Da tt 8 ?I et 1800 e I t'871 8 7106 9?%$ 97W Otnl Otw ein? gitte ese?6 S as t6 e Pit S V09 44400 86180 eWi gfl b HIet 189 3 lici t I?ti l llM e lla? 7 1383 ) 14171 1440 6 lial e 1601 7 1947 17?0 1 Hit i s 8 8417 1 3019 l hti 140W I4446 1 4768 89089 ilMI llill 8 61 % 16V8 1 6816 I Hee 6 7516 k fis4 fl ed Irise 1714e 771 44 17144 371 44 aplas Vl aa 6flas Hl 44 871 44 1900 6

e 0 87%if 9 7fl? 4 $ P?;d $ 7tal g ifta G Ufl 01b)1 S ilal G alil 04%$ t aS40 sliel 4WM 46TF sW8 MI K016 114% 6 li ti f IMij 1300 ? 1341 0 litt e 1813 9 18714 lit 4 8 ID99 16M 8 1718 6 17:0 4 s libil I ?tti llM6 INS 14)J8 64677 4440 llis t I MF7 1 6064 1648 16Mt 18 38 4366 4 14 70 64 ?S lid 70 164 70 714 to 764 f t X410 448 19 %J 79 %4 f t its it 04a 70 rees e 40?MS t ltal 0 70 % 9 7418 9 7 Act 4 1071 9 3337 03%)4 4 3987 Gent $ n80 9 %01 ) O pst SM%

sul 63 6 6)! 11 11ta 3 1164 ) Itac 9 !?t? 6 Inn a till t loot i 1474 6 ISM # ll% 1 1690 lid t IHiI s etWS 12881 13154 l arH 1 e 731 l os8 18814 1 9110 llW) I Wie 8 6)tl 104) 1 7975 1 7389

> 774 M 74 1617e 1%714 ?nfte N 14 1M 74 811 4 Ylle V9 74 r%IF4 9%1 14 tige o 0 8761% ' 81150 01 n4 7 4 7 tha G M?t g rapt e sis) g elig e nfia esc 9 taan ga:it eugt g uig 1682 764 h M) ?t flN S 1148 % 17'* 8 1744 1 I lM ) lifJ e leid e 14 fe t IDl6 8%df ID%7 Ull a 01);

a 9 8127 12160 llNi I Mel 1 417% 1 4486 l e tte I W60 illM l %a8 16M7 l ull n iets l l)))

M tres e 8 02Hf Il8H 480s % 09% ?lldIP% IM H FM % 79 % 791 % 4%4 % SM M 6Vi % 79 % BM %

4 'a'.4 11" ?

01170 4?%4 0 1161 GB4 9 1891 tsDI 0491 seau g %ing 1641 68 e pi at e 00W8 1 7616 11:35 1;is t 17:48 1);11 INI 1410 0 ist: 6 I)3a 4 ne'l 1%l) 17139 lin a 11691 I J)2) 140?e 1819) 18700 leM4 4 546) liet) I W66 16W7 169% l illa la de ll ta ll talli 144 ll testl Ha ll asa ll 14all 644 11 pee lt 8:s il f190 e 0 07178 0190 t itil 0 7 mi e ns6 07'98 s ?t99 e llt) 9 1714 genn Dataa g eaal gog in% 3D t 70?ll 1107 17% ) IX8e dig t lisa l it9s t leu ; ig!8 ) Ivet t K$l g pip i pave t $ 1119 1299 I I)tl 1 9418 14)tn l asti l a til 11717 11411 18.107 16%% 1 4101 I rt:1

$ft e lvptt htal, I lb

  • tetha'09 BlW off 10 t r SptobC V0lWfPt. CW 11 ptf Ib 1
  • ffttt00y. BfW pet R Def ID 0 -7

Table 3 Supe, heated Steam-Continued A.

  1. 5. Shen. i ., s., i. . .. . o,ven e.~,-i l$.t f.e.) W.ite $i.am 7 In .$s ... .t. 1.H 1858 IIM fil.  !!N 13 IIM lit.

n

,64 4 n .,=10m9) .nw.,

.)

.n m n. .u 18,3 6 17), o, m n .m m n. .v~ n n,u.

IN 13 7 14,6

. m,,. .m.w , ,w n. m.w n. .w nnnu, n w n wi n..,n m n w .w.,,n. n tt:w n .n.o n, 4 169 in) 6 ll) t ,,u. 8, n,n, s 9 31 124. 8 3232 13 la)l,.1, i 1.$.8 9 l egJ, 15. ) Il3J2 I nn) 11 an,44 11,$9 1 ISM.9 61 16.,

8 654 6, 166 1 n .u,.nn in ,n, n n a. ..

. ., m,4 Inll .u.,6 In,.n n .m n no

. ). , an. .in n m.t ,)n .nin. n o.6 nn.m - n .6 n, .i n..

9.ain .u1)W , .

,W n, ..im, . m, sp a ,., , n.n,n,,

I lI ,M. n) . o.n,u, 1 % 29in,g 31 11 4 int llui I M,6 I I .6 l a.,7 1 I.

152gt l i.92 IS lin,H IN 160 4 nn,, I m. t,tr,H Ig 1,4,4 i ,1 .

1. , 1,6 ., fil ., 2n ., 1,6., .14 9 .,4 9 126 9 6n ., ,14.,

. nm.n .,um. , .,M,,m 1un nn.n u , . 5nu,i.I?l nn nu n n m, .2,6.,im m nu,, ..no, no, m, nn . no, nu um, .nu n , . ..n,, n. . . , , m. ~,

?.6 t,

. .uwo inn um im, imo i nm i .4. nio nu neu im o am am im,io um nu n.n a .m a, m a. a .n n an. , . ,

.m. .o nna .m a., .n~ n. .m,m, nn m.m..nn.n, m .ma,

- mm .n., a., .n..n.

m. .,ne.u i.n nn nu Im a n n, .n n im,no... ..m. no s un

. nu inn Iml mn im inn.nnmn,ir.m i iun in .

nm nn iw6 nm nm i m. i nn Inn p 181 36 5 41S N 68% 6. ,1%N g n .l,l Nm .l,i km .I M,,H n u,No .nlns N. nim NIS.,u m:8., .nn e,nn .n m.g.

.,.,n.69 u . m.l i llM , 13,2 8 .n5 N4.nu .31%1 im .

e.n . m. .lilN

,66 Mi 16,,

t

.944 1.n,S4 till {13M.

n=6 13 18 7 0, 1inni 816 Ill 3 n4P 1 $ IMn s 11 ItWr Itu.0 142n I.Wl 144J. l H.1 Blul 11,4 I H34 161 6 I MSI jun

> .n .a.n, a n. .nn n n .an

m. .u,m .in,o. .i. u n u m n .mm. ,, a.mn, e n. m n .aun

.6. n, s

n.o

.n96 .n.18 J IJn3 1 3256 13 im. .u.n m,. ,

.a.n m.1,1 1

.., .m. no,,n, ion.nn n.u.wi s n I W12 I t?H IP 1

mn Im.)i .nuwi, .nn 15.W 16#,

n u.

im

.m.n.

. n16o.0% i nil o6u 1 6219

. wo o n.., , ,

m , .n. i , ,.,,.,

. 6, o6,

. .s. ..,n, ni.,n, .nnu,. , m i.,

..un..,nn. ..m.

. u.u.

,. .n m

,m n,

. m.

. . - in m, n,m. . . u, om no, Im nn. om

l. n.n, nn, n.u nm n

. ... m. ..,.n. n .n nin on...m . . im ., oi im. ui.

i mi n m om n nm I

> , n .M,ui n f., ,2 7 y, !) , ,7 .,, ,1 S 6,, ,7 ,

imm,l. ., no . 1,,w,7, 9,, ,7 m..m.,

., .o.n nn nn. na .I., ,7,o nW.n ..nn,.n. . n.3,,, . nu

,7i im im no nm6 an n . nn. .M ,7n m

no .,> . .M m.xn,1 m nm i nn i n i om nu on 4 nm isn.

n mn inn i o , o.u un n .u. n, n,,u, .u.n m e u.n ~ n, u n n.,n, 4,m.41

.)

, u,.

. .,.a.u .,.m e , m,3

.u.n. .n,.n. w ,w,m. m , s.u,n ml .ilm,. J 161

. m.8s1694 .n .m, .:

)4 in In.1 11% , 11)4 67 n.18 .til., n,N. 1,n, 4 1.

8.n.

1n IMn litn inil 1 1956 in.)) li.t.

1 14 9 I4M4 i Sil. Inn In a 1,.9 3 4176 i N,3, I uJ6 n.,

m., n,, . m, . u

. .in,n n nn. m.n. no i m, m. . ..:.. . im n u, nn . nu, . m, o, . w . m, e iI 4 5Mn 8 M,1 I sw I .542 44 m.n 13 nel Wil l nIW8., Inu.I lb i ), im.d IWM i6 tM a n,6, u., n . n , . ,m, . . m. . .nmf . m., .m

., .nn.

In. inu .,nn .,~im imi .,un. Im fan on i imi I.u.

wi lW nn.

n I i.u.e lm. u Inn ion

. im, .nu6 m. . im,Mnu. . In n.u, . ml . ..u m., .rm., e.n,n n .,u.,, n ,, , n, i .M m n n.n. .nu,im.02 in nn. i$ni e 1.,62 ma in ,

s lin I 3J42 l3 i til, Sm. I di Ien 45 i MI I6 4WW l Wil 5

== , . . n. . mi nn, . m, . .., . nnl. n,.n, . nn. . n,n. ,,,.,,,,,,,,,,

. n=6 i. m .,y.,

I,,, ,,,, ,,,,, ,,,,

t I n81 mo8 IMW ln.n.6. l 3 31 m.),4 4 45 l .gle iin .u.1 81) I n,6 In4 5 6JE IMW

. n,u o . im, .nn. en,n . .i.

n 40p 7 IM nn IM 8 1 16 .n,n. .nu . , m . n., . =, n,IM=,

138 8 n .56 int 12 13sts Islo inn.7 46 4 6 4.65lim n?! 4 4%68 8U1 tua s I ml 11 Ibot 1 54.66 I W., I n.4

,, 5: i

, .,m.n.

.IIn im5. 3Jn m,n,. .nim, 6,... im. , . ,iu.,n ~ . .m . -i. mn = ., mm. . .m. n. . an, m. ,,,,,  !

g 1 13 % mo. 1 13 181W lI n 4 61 1 M li m., ,6 1 %?.1 l lel,F t helf I ll,, i nn,6 16n

(

o,. 5: .,.n. . ,n

. el nt 6 .,118 6n I)tmn . m . mfim .i m. .in,t. .im .im .Mm.,6i . m, . m,6. om g 4 .g.6 8 7544 1Jn) iMM i45) i n.t 14M4 tI o.l 42 i t.t.u 4 93 initt i bli. IlH1 16i,6 11 42 86 61 l u ., nu.Wt6 t i i

. m. n,n . ., o . .unm., .. . o.

. . f.n.S . im m,, .,.. 1 n. .it ,,n,m. . .on, n i, s 3 5W l lJn iM In n,) InM .Inl i c, .m o.n.. . n.

1n p .g g i s.li 1 1.e.

m, n,.

IWW 3% ) 1 64 1 6341

$,1 e lv..th..l I v = 1..C,bC v.lvme, CW !! p., Ib h 3m e ent,.py, enth.loy BigBlvp.f Rp.f p Ib.f th B-8

. g .

e Table 3. Superheated Steam-Contmued M','si 3 l ht imoevatwe-Der'ees f 4keet

..i,.., ,h,m, si,4 m I m 400 m att im utt mt ute int ut, n.0 ml 4.e. .eM ten, t im O n. .im G i.n t an e ini O m, fi M ti G M,1 e n., 0,.3.

n 3834 8100 0 1707 4 17772 lin e 1343 % 1423 r la43 9 Ilot t il3s s llF14 16Ce l 8676 3 17417 s 16H1 8 2t64 1 2117 8 3446 1 3647 1 4141 l edit 147M 1 8974 t illi I WOJ 8 % 07 IHU I UJO 4.e, 5; tuH ton SMn .nM tin, . int . im . ila . n. G i.00 . ino . itn til., en, 6

561 1971 7 1490 7 116) { IM34 1377 6 1s170 tele t lett i Illit 19611 lesi 16738 1740 0 s 101N I1835 i 2164 13Mr i 37 4 3 4090 1 4390 l Mn i etel i lift i 1341 1 $$43 i Stil I W11 9

6000 e GUM 9 0591 S ttll 0 8038 t ilti 0 1317 014M S Il?t 016M 0 1715 0 1906 OlH0 O Mle e ttel t

Bla t IM25 1173 6 1717 9 l'tll IM48 1410 7 6812 1 14ti l llM 1 1%)$ 1600 9 IU00 UH4 e

l 0870 lIlla iJill i Hof I 3645 Isoci e 8300 1 4142 3 4431 l 6066 112H Iless ileu lWin th 1700 e 6MM $ clH 0 67M e M F3 etil9 017 4 e13w 914W g flu 9164 6 I776 0 lait e 1966 0Pn4 6 WS4 1816 9 LlH 9 1780 e 1303 7 13M 4 1403 e 1446 7 Ises 3 3Wa5 twI3 IMFi lus a l714 7 a 0 1945 11370 124H I Jeed i Plal i Mas i 42M i 4100 1 4762 i e995 W14 iWO I Sam alin

$4 last e 0 8317 0 Odil 9 9778 0 Mll 0 1918 0 1187 0 1791 0 1192 9 latl 9 1577 0 1616 6 i!M 0 feet 9Mn n

$381 9ta l llH I lF2 F P IM37 lWie IJt6 5 5440 3 lat t i 1519 8 IM P I IHis 1643 f 1717 t t

9 Mit l il?S 1 2796 litet 1344 1MU l aill 1 4437 l#M 8 8931 1 5153 llM2 157W 8 6lM Sa tese e a

0 8309. 0 0s47 t est? Stew 91001 91174 eff u S D31 tien ellet 9 1589 4 1667 f lin t itle s

43? e 171 0 1819 9 12:40 1783 7 1M07 IMl6 54)4 3 leit t hil t IHit IWil luol 17M S eMH I 1000 i 2137 1 20l0 l 3348 8 3742 8 a07% 8 4344 1 4628 seat I tel3 8 1308 i Mll 8 60M k .

Hee e 4 003 9W19 654 4 06 % 0 f*at 01070 t 19 77 0 ids 0 043 0 1447 0 M77 0 lael e Itat elui t LP 71 M44 Iles e 170s I IH16 Ill? 6 IMF6 1874 3 14it 6 Ille % isse 7 Iwga lagia 1776 e t

t 9003 i M67 1IMI I27H I Mle 1 M14 1 3999 I 4217 44M4 4 4408 IWM i W44 1 M44 I 600s teos e 6 8tres 06H7 0 0$71 0647 0 0000 0 leM $ 11M t 1771 3 1300 4IMI 8 le69 e lla4 e lese 0 le t7 6

till MI 1064 6 lita l IM3e 18734 1375 8 1472 3 len e llen t 1946 1982 9 lite t 0247 0 9114 1874 l itD 1 761% IJtW l ille 1 J95 142M 1 4100 1 8748 l et19 IllW llH3 l H60 p

  • 6600 e t

0 Elf 9 His 0 68M 0 06$5 9 Ort) iclot elof f 0 llN e il$$ 9 l?M 0 lla0 $ 1811 9l%4 016H allt till ikli IIH ) !!)P 8 13027 1318 1 t e07 3 18122 18S4 3 1538 1 1577 5 1ma 87t 7 6 e

t 9641 1 0519 1 Il06 iHM i Mi1 1 3379 i U43 ieMe 1 4347 I 4604 1 del 1 1962 8 1871 i Wee la 7888

  • n 0 0?Pt 0 03M 9 N 30 0 9573 0 6704 000l$ $Mll 0 teos 0 let) 0 1140 9IMI t 174 9 1874 0lui 6 0806M42 9 901 iWie0i1243 leill 1874 8 Mll1 i1217 26496317817 3171 l#0}

13%iIPSP I 1439 4 310e t lau 4 1 4700 6 IW37 Il43i et34 eau i till 8 16186 8 un1P111 i1;;g la Flef * $ 8777 0 8318 e ttte 6 9512 S ts 31 0 87 # O eIH O Mit tons $1864 SilX ti?to elhi Insu t

  1. 13 885 9 Mit IMil 1188 3 IMit luft 13777 leM t 1871 8 tilla lHlf 16M 8 I PO4 6 l 6

4 9514 t elle lieu 1 8818 1 2473 12000 12397 I ml 189H 143M leben leelt I Wel ll4u I as gese e e eP67 0 83e6 4 M71 0 es46 6 Mit t 1871 0 976 0 54% 0 stM iHet 0 low etill e I?M t Ills t

s Ptt t 4791 U44 167a 3 38654 lisle pol IMf! 14130 [sH 6 Ilost skal IW3s IHis 6MH I till I # 64 5 1613 i H74 l 1798 I 323 1 3643 IJtte s4M8 i ea6i n 470$ l il40 iMM D

Stel e 6 e t?61 0 8796 4the 6 es?9 eMM e 06Il 9 OPM 9 6700 8 335) e Mit 9 M62 8INI O lill 0 1714 9 797 7 till Mts 1918 $ 1164 6 12:19 Itss ) 8975 {ao02 lasa t 1892 9 Iml 16:5 4 1696 7 Skal IND 1 8743 i l4M 12tN 1 2627 8 J07% I M60 s M13 l eet) 4 4JM ienr t wee i ndM p

8881 4 0 0714 0 0791 803n 0 944; I 04:3 0 0%s 0 osat 0 6774 00794 4 0014 0 M!I 9 M?l 9 1841 4 litt t

F913 06a 7 fee t 10376 lill e IM48 1277 1 8H39 IM75 14178 14e7 9 16?6 3 luft 1641 3 0

0 93W 49%4 10613 llMS litil 1244 4 7926 13H3 IJMi I M79 4424 16sl2 l ette Igyg toe *: 0.n. , ..v, .t , .ogi

-> n9Mu tim Onli

. 74 O.m,1, 93 1.n . n t S n M.I0, 6.n tna,.n In.6 0.>o 9 lull 0.e.

14> . i.7 imi -4 la

. O nit ilm itm inu nni inM inn imi ism inu inn im inn iWu ime isees e O stli 00U6 9 4312 6 0162 0 0dM 9 0s tl 90%) 4 N 31 9 # 97 0 8797 0 00!? $ N6% G M43 t ilsa e

8 int sul 93tj isu l 1094 ) 3172 4 listj im3 IMit laill iet t e Ix46 IHit Is pi s 9 M79 9 9847 3 08M i ISM i 1834 1 !!Il iMw I 30 4 iMM i U89 8 402) I alt) I 4163 i ll63 la itus e n

Ostas letti 60M3 etup 0 0s 08 0 0ss t t eln S tatt SmW 4 4714 0 9764 Smit O ml3 41soi 8 781 % tie t til4 10019 loe 3 nts t 17784 17974 IMIi 1808 i leu 9 Incol HM$ 164 7 9lH2 0 1790 l lJW l otM i 1819 i M60 l 7171 8 1944 i H71 1 Mee I 31 9 4 algt i e64 1 1100 131 = tvotthtet.I h = enthaigt Stu get th v = Specific volvme, CW 11 ptf ID 3 = enhept. Stu get I per ID 0 -9

W Table 3. Supe 7 heated Steam-Contenued Ass Press ws a g,i $g len,caiwe - Des'ees tamanci Gal leae) maiet Stne 154 000 914 tee tiMs , tSt lett 1814 litt llW 1798 I?H IWe late litt n ewo sem entM e o3M o 0ses e p43 s ea) eeni e06M e ssp 6 e sist e siM e mne e mi s 779 6 M49 9175 19? ! 1%99 ll44 8 llilt 1796 7 Hit t 83+e s Pesas lettl Igie ; spel til#

  • 9 tim $UU lilN l stil 1 8837 1 8446 1 2414 17913 1 32o0 13St8 1384 l illi 1 869% l %078 6 $ 6183 9 8243 8 est0 0 8N $ 0370 O Nl3 4 6878 0 0th 6 0500 0 5d1 S pil 9 67M 8 0817 4 0409 t 777 7 8d 3 8 9174 94 % 4059 4 liit t IMal IM47 13M I 1364 4 lull l all isees e t till e Mes I 8737 i e772 4 til6 4154 i Hot i 1727 1 3147 iM4 4 37te I' acts I alltlisi t 18'4 7 i elet t

e 074i eeMo ewu oen> eom ewel eesw eesne eesas eesle eMse esies eeine aeast n

776 1 Sal e tell 917 4 IMet llP4 % lit) 7 IMll till) 1378 7 1476 6 1875 1 1%49 1644 8 ittee . 8 9138 6 9657 1 9177 1 9701 t illt 1870 1 1709 1 7627 I Nit 1 3313 iMW IJeal l edM 1487 b st?M ,esM6 t w 75 s e309 esas sent sedu swM e sin e Mu o sa't s es73 esite seau l

774 7 138 4 9C3 9 178 9 10411 til%1 1l64 8 17:39 13088 13654 lille las7) IMat 1931 usee . 0 1101 4 MIB 1 0177 1 en37 I lill i 1653 1 7117 I flM 11918 8 3764 iMM iasse ieM) I se b

3 seM 771% 9oment gan eansa esier eetM eout aw7e eesse eesit eMsa eeser eaus ee7M e sitt

  • As s loup lies ) 1874 4 1738 ) 17916 IMS 14N9 6 legt e 1)%I 6 1U74 62$48 e 4 9073 69%J l M40 I e578 1 1079 8 1%71 17010 1 7445 1 7631 13179 IMW I lit! 14M6 4 4 0?M StN 9 8771 e 0?t? 0 03?B 00M4 O NM 9 ps4 e ptt eMM eM77 GMit S Mtl 4 0764 t 777 3 834 4 M72 Mtf 1414 9 19998 l144 3 1779 ) IMit IMal lapi n legi g 1957 stilt la , 0 e e,o9085 n . 8 9144 1 0037 iOue 1 Nie 1 149% iIWS 1 1341 12789 13est i Mll 1 3705 1 t 7 si7,..

6 . wo 3 . Mu.t.i . m.n. ,. . imi us. . us.m. , .m.,n. .nu7 ix.M.i,s .m.

) .im Mi.si.. elm.m. .., ,

m. ,

l lages , 0 9011 0 till 4 9996 I W 73 i ett3 314M i 1877 l1781 lJ671 1 3071 133M l M31 i el 6

s770ell 4

tw4 SLMA t elt 9 9314 3 0)al 0 4190 0 0dil S WS$ G W 96 9MM O MP3 e ma i 4

831 9 991 7 Mal 14t9 6 MM t title lHit 13714 1337 9 13e6 4 1837 3 ill/6 16711 tiest e 9 lit 8 0 W84 9 9147 1 OsM i 0097 11MJ l 1901 1 ??06 iM7 1 7949 1 1764 13%4 1 4

. 4 8'30 0 8744 0 wil e stat TOM 4 903H 9GMt 8 Wel i kd3 8 ed 79 0 Mil 0MM 4 S 4Mt6 Mit I BM l seti 38)&P9W1Ok6 t Illi it!)of lose 6 lies i fin 9 1796 8 1764 1 389711 33?6e laite lam 3 It?s a 161) t mM ,

Wll 9MM i 17M i Mll 1 Mag Mtl I 40/J l 4694 e s*7 t

748 9 seat eene es;7: sow eeut esMe som swM e em e ne.1 emu seus seus t'8 7 m77 tel t 641t l lor) 7 HMS 470s ) IMit Hit t 13778 14736 IS/e 4 16 01 i

O Pn44 9WM 4 tut i 9)ee i Siti e #!al i14Je t Je73 1749 i Mll 1 3131 1 M78 i M)

Sh = sup M est.F 1

, = specific volume. cv fl pe7 lb h = enthalpr. Blv per Ib

= enl7epy, Blu per it per Ib I l

l l

1 B -10 c - __

. u u__ _. .%

a g" i.

=

w =' '

g '. ph.ys .

, ." 1;

. I ,+

.! e ' 44 4

,y.,%p.l- .

i

=

=

t. ):

h%m g4 .

. l .

J t

,- -r, ,

=

pl . ..li;lfppr or w t& <

!y V'M{ui .t j# ,

= . ,

Q -

s ,.

t1!!NlDgi

? '!.Mi T i,;y -l ...

.  : ..M ji.h .. g gip.p

= ii:;:7h. Jh ;* #

fid l l.i YcY  ?"

" ww "d'47M dh .m +%, ,. < s .. ,6 fbM ,;?

'l 2 t

Of %&zh I

ssbe hfi 7 p.$e1Ilisik M 9 p%k  %

~pA ,.

W G2& p~-

5m .a r +^' rm r t . - . . . . -

~

5%)?YhN WfC3f.'lOsYi$ 0.._.$?rU$5$$.

._ r C .

$NM@$$$!;

5'YYi$$'%YNY ?Yz WW =l A

"b45'M'3N kWh

. .r_ . .

0{r E-1 M!M %12W N*

713 -

'h rir Z.m ng p"r UNMiddhdiMH k

13%, ,g.3gQ<.

I1 "

a..;[.f.df. jrr; w vrr yd s. .

'* AII idNt'IMWS*

f'.RY,i c. 'Mi!D:J A4tQd ASi a 'Ji71*EG p:1. , i $ "'

~

I, h "it# N Fa ur *r.,g; M brf t..sg.~.,h tap; ilm .

n ,~.)m ~"

Nn%'i='? ikrs%mWM
sii<.;n;*e -

.g * * - * - a;,, - y,,

m$

.c

,,, h@44*g *4r , u

, ( tt;.g%.
  • :t

~**

^'

3.*7

- G iiG'd7=g Nyi~.i . 9I5HEg':~M,4 J1!EEg..5i M W 4'z n; #dM -

l

. M. s7. :e.. &+.;Q.+,w

~ ;w.. w%awy. - mm . 1 7 f . ./ . ~. r s- .

.+- ~

  • n~4. . s 2 f.z "

,yi r

.1. g p'5,"f,5 $ gb';{$" t73 l . &p rY$

i Y;sc;*+ h Y.1 +,. WN!iY? **n g.I g% 5g l,;

.?

. ;ip@:n.&.:r::f' 'gr.;:t .nz; P;pp:.rMn.f:1ptiv,gP a mnm . WuMydj;.

3.g3t /x .- .

.. :4g'{.g., u2 r j r ream:nc . .ig:rta .nm- q,.

= ~r.; ; t; g,..y7:.ru -~1 -r..t;;p...?

It 2y d..i.p

/ ne...n.M. ,;~tn:.

~e rr--

.u _z.r c r'e . -= #

i

,tar. p..u n .::&; . ,,

\

" > a ...

.,- :. p .u. 4.J . .. .: n . .....a n 1..

- a N .. T , ', ,

N,#

. . ., * 'I., TIN ,#

m wn =f.x: y . dr 'n u. ;hg..n:X; ..em..xj::p:

z ... annf- r ;teffp{ m.x.E. ,;m.m y: hw=.-

=

.tr/.. $r;';w*,t:.,y .r:y =te

=

DT .DE

!:Ljd#fjh,ny/'. 'itn n:n .."i' 1 - / i('.d r,rN #di;::p,f; S 5 Y I:nt ut r; "; -

dim!

? ' ?.r. , tv ;' :;kNa.., *ga. ~-

".f r , ;f?hW /I :[.

4 E4 I*'rMil M,i!V"

,?/,tM U ~'

I.Q:;; ir', '?Y t ;U;. "

.ftrill}k =Yi."f.'hitti;;{  ;\ M Y.n:uitEU:1.

'2' ' .

ny m ..lau . p. - L.,F:tyMqrng;.

Ar4;.:;u'<g/t" 8.. V;'

.hiMaf4f?5(iHilys' 3.i W.

- Ft a W:,: gen, smw'GSp nn p w: g V-juc."

4 +rg 9%2 t r

J 3.//Ip:a-:ymq;u*v%v.m.A;,J x.-A,, .

n W:d f" t i,r "

F,Mi.2 .* -

t utt ert

' 1.- PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 24 THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,F.

ANSWER 1.01 ~(1.00) ,

d.

REFERENCE Westinghouse, Fundamentals of Nuclear Reactor Physics,1983, p. 7-21.

192003K106 ...(KA'S)

ANSWER 1.02 (1.00) 2.

~

REFERENCE Westinghouse, Fundamentals of Nuclear Reactor Physics, 1983, p. 5-52.

192002K108 ...(KA'S)

ANSWER 1.03 (1.00) c.

REF ERENCE BW PWR Operation Fundamentals-Reactor Theory p. 5-17 to 5-20 Westinghouse, Reactor Core Control for large PWR's,1983, p.5-13 thru 5-18.

192004K109 ...(KA'S)

ANSWER 1.04 (2.00)

a. FALSE
b. TRUE
c. TRUE
d. TRUE REFERENCE BW S.D. PWR. Operations, Unit 1/2 Differences p. 12 to 16.

035010K402 035010K503 ...(KA'S)

-l

. - - - - . . . . - - - . - , - , , , - - , , - - - - , , . . - - , , , y- , , - , , . .. .

t. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 25 THERMODYNAMICS. HEAT TP.ANSFER AND FLUID FLOW

. ' ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

- ANSWER 1.05 (1.00) b.

REFERENCE BW PWR Operations Fundamentals-Instrumentation and Control p.1-33 Westinghouse, Thermal-Hydraulic Principles and Applications to the PWR, Vol . 2,1982, p.11-29.

191002K109 ...(KA'S)

ANSWER 1.06 (1.00) c.

~

REFERENCE BW PWR Operations S.D. p.27-18 Westinghouse, Mitigating Core Damage,1984, p. 6.26 Westinghouse, Thennal-Hydraulic Principles and Applications to the PWR, Vol . 2,1982, p.11-19,11-20.

191002K102 ...(KA'S)

ANSWER 1.07 (1.00) d.

REFERENCE Westinghouse, Fundamentals of Nuclear Reactor Physics,1983, p. 8-54.

192008K103 ...(KA'S)

ANSWER 1.08 (1.00) a.

REFERENCE BW PWR Operations Fundamentals-Reactor Theo.'y Ch.9;p.8 of 33 Westinghouse, Reactor Core Control for Large Pressurized Water Reactors, 1983, p. 9-10.

192008K104 ...(KA'S) 1 cm .

- -<m -

e

.

  • 1. . PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 26

. THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 1.09 (1.50)

Reasonance energy neutrons travel further into the fuel pellet (0.5)

(reduces self shielding) which ensures all neutrons with resonance energy areabsorbed(0.5).

In addition neutrons with energies slightly above or below resonance energy have a greater probability of being absorbed in the fuel (0.5)

(lost from the fission chain).

REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 2-30 and 2-31.

Westinghouse, Reactor Core Control for Large PWRs,1983, p.2-29.

192004K107 ...(KA'S)

ANSWER 1.10 (1.00) a.

REFERENCE BW PWR Fundamental Text-Instrumentation and Control p.1-42 Westinghouse, Mitigating Core Damage,1984, p.8.9.

191002K114 ...(KA'S)

~

ANSWER 1.11 (1.00) c.

REFERENCE i Westinghouse Transient and Accident Analysis, Vol.1,1983, p.12-11 and 12-43.

BW PWR Fundamentals Text-Heat Transfer p. 9-25 and HT. 9-11.

19300BK106 ...(KA'S) l ANSWER 1.12 (1.50)

a. TRUE
b. TRUE
c. TRUE 1

m; -

  • 1'. PPINCIPLES OF NUCLEAR POWER PLANT OPERATION PAGE 27 THERMODYNAMICS, HEAT TRANSFER AND FLUIDN ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,F.

REFERENCE BW PWR Fundamentals Text-Heat Transfer p. 1-64, 1-72, 1-94 193008K101 193008K103 ...(KA'S)

ANSWER 1.13 (1.00) b.

REFERENCE Westinghouse. Reactor Core Control for Large PWRs,1983, p. 3-20 to 3-28.

BW PWR Fundamentals Text- Reactor Theory p. 3-17, 3-18.

192004K106 ...(KA'S)

~

ANSWER 1.14 (1.00) a.

REFERENCE BW PM2 Operations Fundamentals-Reactor Theory p. 6-25.

Westinghouse, Reactor Core Control for Large PWRs,1983, p. 6-30.

192005K115 ...(KA'S)

ANSWER 1.15 (1.00) d.

REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 7-14 to 7-17.

Westinghouse, Reactor Core Control For Large Pressurized Water Reactors,  !

1983, p. 7-51 thru 7-33.

192008K102 ...(KA'S) i ANSWER 1.16 (1.00) i d.

REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 7-10.

Westinghouse, R1 actor Core Control for Large PWRs 1983, p. 9-18.

192008K120 ...(KA'S)

  • 1'. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 28 THERMODYNAMICS, HEAI TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,F.

ANSWER 1.17 (1.00) b.

REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 7-6.

Westinghouse, Reactor Core Control For Large Pressurized Water Reactors, 1983, pages 7-21 thru 7-23, 192002K114 ...(KA'S)

ANSWER 1.18 (1.00)

Reactor power will increase.(0.25) until it is turned by the heatup of the fuel (0.25) and coolant (444dr at ~which time startup rate decreases to near zero.(0.25) ,,(o.a v l REFERENCE BW PWd Operations Fundamentals-Reactor Theory Cll.9, p. 20 of 33.

Westinghouse, Reactor Core Control for Large PWRs,1983, p. 9-17.

192008K117 ...(KA'S) l

. ANSWER 1.19 (1.00) l l

a.

l REFERENCE Westinghouse, Thermal-Hydraulic Principles and Applications to the PWR, Vol . 2, p. 13-62.

BW PWR Fundamentals Text-Heat Transfer, p.6-22.

193010K105 ...(KA'S)

I l

l l

l

'I. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 29 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW

' ANSWERS -- BRAIDWOOD 142 -88/07/18-VICTOR, F.

x, p.,4 ; , a Jd; howl aa yM/ emar E, sem d re feu.< , . "

wfe. pay rae hh p rostun (0, K) is less ANSWER 1.20 (2.00) fl.. A m /&i-- tegwir J W u,2d 1R ',,.

a. Cavitation is the formation (0.25) and subsequent collapse (0.25) of vapor bubbles in a pump. When local pressure (0.25) decreases below fluid saturation pressure (0.25) bubbles fonn and then collapse as the bubblesmovetoregionsofhigherpressure(0.25).
b. (1) Fluctuation in pressure. Ay th<* 1 (2) Fluctuation in flow. (0.25 each)

(3) Fluctuation in motor current.

Of) n vrafur-o in er es siny es erspexe is served.

REFERENCE BW PWR Fundamentals Text < Fluid Flow p. 2-47.

191004K101 ...(KA'S)

ANSWER 1.21 (1.00) c.

REFERENCE BW PWP. Operations Fundamentals-Reactor Theory p. 2-9 Westinghouse, Reactor Core Control for large Pressurized Water Reactors, 1983, p. 2.7.

. 192002K109 ...(KA'S)

ANSWER 1.22 (1.00) a.

REFERENCE BW PWR Operations Fundamentals-Reactor Theory Ch.9, p.22 of 33.

Westinghouse, Reactor Core Control for Large PWRs, 1983, p.9-22.

Ch.9 /spper.d D Q#5 ANS or why dilute- Power defect add negative reactivity-dilute to compensate.

192008K119 ...(KA'S)

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 30

, ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 2.01 (2.00)

a. loops 3 and 4 [0.2] cold legs [0.2] [0.4]
b. loop 4 [0.1] hotleg [r.1) [0.2]
c. hihead SI RHR Accumulators

[all 4 0 0.2 each] [0.8)

d. loop 1 or 2' -

[0.2]

e. -loop 3 [0.2]
f. all 4 [0.1] coldlegs [0.1] [0.2]

REFERENCE Reactor Coolant System Lesson Plan, Chapter 12, p. 31 and 33 002000K106 002000K108 002000K109 ...(KA'S)

ANSWER 2.02 (2.00)

a. In order to close the RCP breaker [0.25] the hot leg :nd cold leg  !

[0.25] must be open [0.25] or the cold leg shut [0.25] and the bypass open [0.25]. l

b. Component Cooling Water is lost [0.25] to the reactor coolant pump oil coolers [0.25] and the reactor coolant pump thennal barrier 4

heat exchanger [0.25] on a phase B isolation signal.

REFERENCE ,

i Reactor Coolant Pump le sson Plan, Chapter 13, Rev. 5, p. 36  :

Reactor Coolant Pump System Description, Rev. 5 Para 11.5. , p.13-36, 003000K112 003000K411 ...(KA'S) '

l 3

-2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 31 ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

l ANSWER 2.03 (2.00)

a. ' Prevent excess cooling of the spray system Limit effects of thermal shock on the spray nozzle Equalize PZR and RCS chemistry

[all 3 0 0.25 each] [0.75]

b. Primary makeup water pump Pressurizer PORVs Pressurizer safety valves RCP seal water relief valve-Letdown Orifice relief valve

[all 5 0 0.25 each] [1.25]

REFERENCE Pressurizer Lesson Plan, Chapter 14, Rev. 3, Para II.c.2, p. 20 Pressurizer Pressure and Level Control System Description, Chapter 14, Rev. 4, Para 11.7, p.14-23 and 14-24, 010000K105 010000K401 ...(KA'S) l l

l l

l

\

i

' 2'. PLANT DESIC-N INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 32

. ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,F.

ANSWER 2.04 (2.50)

Provide surge capacity for RCS expansion not accommodated by the Pressurizer Provide a means for oxygen control of the RCS by maintaining hydrogen in the RCS during normal operation Provide sufficient net positive suction pressure for the charging pumps Provide sufficient back pressure for the number one seal of the RCPs Provide a place to makeup to the RCS Place to remove dissolved gases to Waste Gas System

[ equivalent wording accepted for full credit] [any 5 0 0.5 each] [2.5]

REFERENCE Chemical and Volume Control System Description, Chapter 15a, Rev. 6, Para II.A.1.m p. 15a-27 and 15a-28 004000G007 ...(KA'S)

. ANSWER 2.05 (2.00)

a. To prevent clogging of the VCT spray nozzle [0.5]
b. Blender output is directed to the VCT inlet [0.25] and outlet [0.25] ,

[0.5]  !

Water directed to the VCT outlet is not degassed by the spray nozzle  ;

[0.5] )

Water directed to the VCT outlet is not exposed to the hydrogen gas in the VCT and therefore is not allowed to absorb hydrogen [0.5]

[ equivalent wording accepted for full credit]

REFERENCE Reactor Makeup Control Lesson Plan, Chapter 15b, p.36 i Reactor Makeup Control System Description, Chapter 15b, p.15b-25 & 15b-26. i 004000K106 ...(KA'S) 1 l

l

'2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 33

. ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 2.06 (2.50)

a. To limit pump runout [0.5] -

To limit individual line flow on a downstream break [1.5]

b. CVCS syste.n [ Centrifugal charging pumps]

Safety injection system Residual heat removal system Component cooling water system Essential service water system Auxiliary feedwater system Containment spray system

[+ W 6 0 0.25 each] [1.5]

70 Mf REFERENCE Emergency Core Cooling System Description, Chapter 58, Rev. 7, Para I.B.,

p. 58-8, Para III.D.1.a.2, p. 58-53.

006000A302 006050K402 ...(KA'S)

ANSWER 2.07 (3.00)

.a. Containment Recirc Sump suction valves [SI8811A/B] must be fully open [0.5] to ensure a suction path to the CS pumps from the recirc sump is available [0.5] [1.0]

Residual Heat Removal hot leg suction valves [RH8701A(B)] must be fully closed [0.5] to prevent the CS pumps from inadvertently taking a suction from the RCS hot leg supply lines to RHR [0.25] and discharging the contents of the RCS into the containment atmosphere [0.25] [1.0) i

[ equivalent wording accepted for full credit]

I

b. Containment Spray Pump Recirc Sump Suction Isolation Valves -

[CS009A(B)] must be fully closed [0.5) to prevent inadvertently l supplying a drain flowpath from the RWST to the recirc sumps [0.5]

[ equivalent wording accepted for full credit] [1.0]

REFERENCE Containment Spray System Description, Chapter 59, Rev. 2 Para II.C.2.83.,  ;

p. 59-25 and 59-26 i 026000K401 ...(KA'S)

I .

l 1

'2'. PLANT DESIGN INCLUDING SAFETY AND ENERGENCY SYSTEMS PAGE 34 ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

9 ANSWER 2.08 (1.50) 2/3 [0.1] low steam line pressure in any line [0.2] 640 psig [0.1] when above P-11 [0.1] or SI not blocked below P-11 [0.1] [0.6]

high-high containment pressure [0.2] 8.2 psig [0.1] on 2/3 channels [0.1]

[0.4]

2/3 [0.1] high negative steam pressure rate in any line [0.2]

100 psi /50 sec [0,1] when below P-11 and S1 blocked 10.H,,, [0.5]

co.c52,, Ec.oF],,

REFERENCE Main Steam System Description, Chapter 23, p.23-35 039000K405 ...(KA'S)

ANSWER 2.09 (1.00) a.

REFERENCE Steam Dump System Description, Chapter 24, Rev. 2, Para !!. A.9. , p. 24-12 and Para II.C.1.c., p. 24-14 041020K603 ...(KA'S)

ANSWER 2.10 (1.50) 1 low auxiliary feedwater pump suction pressure [0.2] 1.22" Hg VAC [0.1]

coincident with one of the following signals:[0.1] [0.4]

l I

2/4 [0.1] low-low steam generator level signals (0.2] from any steam generator [0.1] [0.4]

2/4 [0.1] reactor coolant pump busses [0.2] undervoltage [0.1] [0.4]

any SI [0.3] [0.3] I i

REFERENCE Auxiliary Feedwater System Description, Chapter 26, Revision 4, Para i

!!.C.1., p. 26-39 l 061000K401 ...(KA'S) 1 I

'20 PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 35 ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

f ANSWER 2.11 (1.00) do REFERENCE A.C. Electrical Power Distribution System Description, Chapter 4, Rev. 2, Para .III.B. , page 4-104, TP0 #4.

062000K201 ...(KA'S)

ANSWER 2.12 (2.00)

Accommodate the expansion and contraction of the component cooling water resulting from the temperature changes during system operation i Provides an immediate source of makeup in the event of a component cooling system leak Provide a suction head for the component cooling pumps Accomodate the inflow of reactor coolant steming from a RCP thermal barrier heat exchanger tube rupture for three minutes

[ equivalent wording accepted for full credit]

[all 4 0 0.5 each] [2.0]

REFERENCE Component Cooling Water System Description, Chapter 19, Rev. 2. Para l 0080bObb0 .(KA'S) l l

l 1

1 l

1

~

'31 INSTRUMENTS AND CONTROLS PAGE 36

. ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 3.01 (2.00) 10 c. [VCT level will go to zero] [1.0 each ans.]

20 d. [VCT level will be maintained in the normal operating range]

REFERENCE Chemical and Volume Control System Description, Chapter 15a, Rev. 6, Para II.B.I.k., p. 15a-54&55 004020A104 ...(KA'S)

ANSWER 3.02 (1.50)y(d.FO)

a. Manual rod motion stops

-[0.25 each ans.]

Auto rod motion stops

6. Regulat4cn failure- p j ~ g { } , g, Ph :0 failure Logic crroe "eltiplexing error- .

Lee:e e- -!::ing card [:ny ' :t 0.25 :::h]

REFERENCE Rod Control System Description, Chapter 28, Rev. 5, Para II.B.2.a., p.28-65 through 28-67 001050K401 ...(KA'S)

ANSWER 3.03 42 00 h ,( I.40)

a. C-5 [ turbine first stage pressure] [0.25] <15% [0.15] 1/1 [0.1]

C-11 [ control bank D) [0.25] 223 steps [0.25]

b. C 1 [inte nedict: r:n- nucle:r evarpear] [0.20] grrent equal te 20% l p:=r[0.15]1/2[0.1) pg ig j, j, 4 j, l C 2 [;;a r r ns: nucle:r p;a r] [c.2:] 103% [c.1:] 1/4 [c.1]  !

I l

30 INSTRUMENTS AND CONTROLS PAGE 37 ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,' F.

REFERENCE Rod Control System Description, Chapter 28, Rev. 5, Para C.1., p. 28-72 and 28-73 001000K408 ...(KA'S)

ANSWER 3.04 (1.00)

The digital rod position indication system [0.25] senses actual rod position using coils mounted around the rod drive pressure housing [0.25].

The demand position indication system [0.25] determines rod position by counting the number of steps demanded by the rod control system [0.25].

t REFERENCE Rod Position Indication System Description, Chapter 29, Rev. 5, Para I.B.,

p. 29-5 014000A102 ...(KA'S) -

ANSWER 3.05 (2.00)

Rod control Steam dumps

. Pressurizer level program [all 5 0 0.4 each]

RIL Deviation alarms [ loop Tavg or Tref)

REFERENCE Reactor Coolant System Description, Chapter 12, Rev. 2, Para II.B.1.,

p. 12-22 through 12-24 016000K403 ...(KA'S) i ANSWER 3.06 (1.50)

The loss of load controller [0.5] would generate a Tavg-Tref mismatch signal [0.5], however the dump valves would not open since they are not anned [0.5]. ,

REFERENCE Steam Dump System Description, Chapter 24, Rev. 2, Para II. A.7. , p. 24-11 041020A408 041020K411 ...(KA'S)

4 3 INSTRUMENTS AND CONTROLS PAGE 38 ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 3.07 (2.50)

Pressure decreases because PORY opens momentarily and shuts [0.5] all heaters turn off [0.5) while both spray valves open and remain open [0.5).

[A reactor trip and) safety injection occur which raises pressure after the pressurize is filled soild [0.5). Final pressure will be detennined by cycling of the PORV [0.5).

[ equivalent wording accepted for full credit)

REFERENCE Pressurizer Pressere and Level Control System Description, Chapter 14, Rev. 3 Para II.C.1. , p.14-38 through 14-41 010000K103 ...(KA'S)

ANSWER 3.08 (3.00)

a. When a Reactor Trip Breaker [0.25] and it's Bypass Breaker [0.25) are both open [0.25) [in either train.]
b. 1. Actuates turbine trip. [0.5)
2. Closes the main feedwater valves [0.25] on Tavg < 564 [0.253
3. Prevents opening of main feedwater valves which were closed [0.25) by safety injection [0.25] or high-high steam generator water level [0.25).
4. Allows manual block [0.25) of the automatic reactuation of safety injection [0.25]

REFERENCE l Reactor Protection System Description, Chapter 60b, Rev. 3, Para II.C.1., i

p. 60b-21 012000K610 . . . ( KA 'S )

l l

1 l

o .

'3n INSTRUMENTS AND CONTROLS PAGE 39

  • ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 3.09 (2.00)

A. PREAMP B. LOSS OF DETECTOR VOLTAGE ALARM C. AUDIO COUNT RATE D. SUR CIRCUlT s

[0.4 for each ans.]

E. HI FLUX AT SHUTDOWN ,

REFERENCE Source Range N!'S System Description, Chapter 31, Rev. 3 Figure 31-7 015000G007 015000K603 ...(KA'S)

ANSWER 3.10 (2.25) 1 a. Reactor coolant loop pressure sensors Reactor vessel level indication system [RVLIS]

Core exit thermocouples [all 3 9 0.25 each))

. f

b. 1. Loss of fluid subcooling prior to the occurrence of saturation conditions in the coolant [ equivalent wording accepted] [0.5]

t t

2. Decreasing coolant inventory within the upper plenum [from the i top of the vessel to the top of the active fuel] [0.5]
3. Increasing core exit temperature produced by'uncovery of the core

[0.5]

REFERENCE Inadequate Core Cooling System Description Chapter 34b, Rev. 2,. Para I.B.

p. 34b-4 through 34b-6  ;

i 016000G015 017020K601 ...(KA'S) 1 i

l P

4 4

  • 3. INSTRUMENTS AND CONTROLS PAGE 40 0

, ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,F.

ANSWER 3.11 (2.25)

a. When a high radiation level is detected, one of the charcoal booster fans [0.25] (OVA 04CA or B) starts (0.25]. The filter bypass damper closes [0.25] and flow is directed through the filter [0.25]. Once one of the booster fans starts [0.25] the other is locked out and prevented from starting [0.25].
b. When a high radiation level is detected, automatically the outside air intake B dampers close [0.25], the makeup area unit fan (0VC03CB) starts [0.25] and the main control room turbine building air intake "B" dampers open [0.25].

REFERENCE Radiation Monitoring System Description, Chapter 49, Rev. 2, Para 11.C.1.82

p. 49-64 through.49-67 ~

072000K402 073000K101 ...(KA'S) 3.)?' f,, h ' 1, : CAoye. H ucI 3 *- lw h !"d E f m b l S** w

  • L a ier 14 fn wy Ces%=~ l A* % I'O"H** bis i s
  • U'd !

ANSWER 3.12 (3.00) t c.9.

a. All RCFC fans operating in HIGH speed will trip. [0.40] Af ter a 20 second time delay [0.4] (with power available) all fans will start in LOW speed. [0.4] Essential Service Water to the dill:d .;;t;r ::il; ,g is isolated [0.4] (resulting in the chill water pump tripping.) The RCFC unit is interlocked with the Essential Service Water outlet isolation valves [0.4] (such that isolation valves automatically open  ;

, when fan motors start and close when fan motors stop.) l l

b. The P-14 interlock is generated by Hi-Hi Steam Generator Level [0.1] l with 2/4 detectors [0.1] on 1/4 Steam Generators [0.1] above 81.4% '

NR[0.1]. The P-14 interlock closes all feedwater control valves (0.2], '

trips the MFW pumps [0.2] and actuates a turbine trip [0.2].

1 REFERENCE Engineered Safety Features System Description, Chapter 61, Rev. 2, Para ll.C.14. p. 61-34 Containment Ventilation and Purge System Description, Chapter 42, Rev. 2  ;

Para 11.C.1 & 2 p. 42-38 through 42-40 1 013000G004 013000K113 ...(KA'S) 4 1

4

. I

' '4 . PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 41 RADIOLOGICAL CONTROL ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F.

ANSWER 4.01 (1.50)

A reactor trip is necessary to prevent low S/G levels (0.5) since the Feedwater Regulating Valves (0.5) and Feedwater Bypass Valves (0.5) fail closed on loss of either DC bus.

REFERENCE BW Rev.2 S.D. Chapt.8a p.8a-22 BW Procedure IBWOA ELECT-1 p. 2 of 28 000058K302 ...(KA'S)

ANSWER 4.02 (1.50)

The operator must have the procedures immediately present (0.5)(as they are used) and steps are signed off on a flow chart (0.5) as the steps are 1 performed.(0.5)

REFERENCE BW Procedure BWAP 340-1, Rev. 52, p.2 194001A102 ...(KA'S)

. ANSWER 4.03 (2.00)

When aligning the RHR system to supply the SI system (0.5) the SI Pump miniflow valves must be shut (to prevent coolant from entering the RWST.)

(0.5) With RCS pressure above 1590 at their shutoff head pressure.(0.5)psig the SI pumps Operating will be at the SI pumps operating shutoff head pressure with no recirculation (miniflow) could damage the pumps.(0.5)  :

REFERENCE BW Procedure 1 BWEP, ES-1.3 p.4 BW Systems Lesson Plan ECCS Ch.58, p. 44 of 81 I 006000K402 006000K406 ...(KA'S) i

4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 42 RADIO!.0GICAL CONTROL ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. l

[

ANSWER 4.04 (1.50)

1. The Containment Atmosphere Particulate Radioactive Monitoring Syst em.
2. The Containment Floor Drain and Reactor Cavity Flow Monitoring Syst em.
3. The Containment Gaseous Radioactivity Monicoring System.

(0.5 each ans.)

REFERENCE BW Technical Specifications p. 3/4 4-20.

000009A210 000009A211 ...(KA'S)

ANSWER 4.05 (1.50)

a. Rod bottom lights-LIT.

Reactor trip and bypass breakers-OPEN Neutron Flux-Decreasing (0.125 each ans.)

b. FW pumps-TRIPPED FW pumps discharge valves-CLOSED IFWoo:L 4/S/c/D FW reg valves-CLOSED f rw r,c /ruR3</re FW reg byp valves-CLOSED s r v ri, A/ra<a/ry1/ swr 4 2*

FW 1501 valves-CLOSED t ru ce y s/syc/0 FW temprng flow cont valves-CLOSED er v ,3y s/s/c/o FW temprng isol valves-CLOSED / rv oir A/JA/e ,

FW prehtr byp isol valves-CLOSED t r v r it 4/5'e/4  !

FWly byp isol valves-CLOSED erp evi 1/544(0.125 each ans.)

REFERENCE BW Procedure 1BWEP-0 p.3 of 31, 6 of 31, 7 of 31 000005G010 000007A206 ...(KA'S) i i

b i

l, '4. PROCEDURES - NORMAL, ABNORMAL. EMERGENCY AND RADIOLOGICAL CONTROL PAGE 43 l .

ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR,F.

ANSWER 4.06 (2.00)

a. With rod control in manual, exercise the bank (with the failed rod) by inserting rods 5 steps (0.5) and then withdrawing rods 5 steps (0.5) to detennine if all rods move.
b. A rod misaligned high is driven in to match its group (0.5) while a rod misaligned low has the group driven in to match the micaligned rod.

(0.5)

REFERENCE BW Procedure 1BWOA, ROD-3 p.3 of 6, 6 of 6 000005K306 ...(KA'S)

~

ANSWER 4.07 (1.50) e

a. Personnel dosimeters are worn near each other (0.25) on the front part (c.1)O of the body at or above tgwaist level (A3}7
b. The individual shall leave the work aYdNanEreport to his supervisor (c.ad n(erM} and then to Radiation / Chemistry imediately(0.25).
c. Whole body dose limit shall not exceed 75 rem.(0.25) Extremities dose limit shall not exceed 200 rem.(0.25)

REFERENCE BW Procedure BWRP 1000-Al p.26,33 4

194001K103 194001K104 ...(KA'S)

ANSWER 4.08 (1.00)

First --Place an 005 card on the remote control switch.

1 Next ---Place an 005 card on the power supply for the valve.

Last ---Place an 005 card on the valve. (0.33eachans.)

REFERENCE BW Procedure BWAP 330-1 194001K102 ...(KA'S) p.3; BWAP 330-6 p.1 1

i j l

l 1

4. PROCE00RES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 44 RADIOLOGICALCONTR01 ANSWERS -- BRAIDWOOO 182 -88/07/18-VICTOR,F.

P ANSWER 4.09 (2.00)

1. #1 seal leakoff flow high
2. #1 seal leakoff flow low
3. #1 seal outlet temperature high
4. RCP vibration
5. #1 seal low delta-p (Any 4 at 0.5 each)

REFERENCE BW Procedure 1BWOA, RCP-1 p.1 of 14 003000G015 ...(KA'S)

ANSWER 4.10 (1.00) ,

If you discover a fire that is so small that you are sure you can put it out with extinguishers readily available, extinguish it at once [0.25]

and then dial extension 2211 and report the fire [0.25].lf in doubt sumon aid before fighting the fire.[0.25] Report the use of any fire equipment to the Fire Marshal as soon as possible.[0.25]

REFERENCE BW Administrative Procedure BWAP 1100-1 p.13 t

000067G001 194001K116 ...(KA'S)

ANSWER 4.11 (2.00) i 1 a. 1. Emergency borate using emergency borate valve (ICV 8104).

2. Emergency borate through the nornial boration path.
3. Emergency borate using RWST. (0.25 each; 0.25 for correct order)
b. Emergency boration using the manual boration valve (ICV 8439) will only deliver 10 GPM of boration flow (0.5) which does not meet the flowrate required by Technical Specifications. (0.5) 1

] REFERENCE BW Procedure IBWOA, PRI-2 p. 2 of 7 through 4 of 7.  !

000024K302 ...(KA'S) 4 i

i l

i

r

=

4'

~4. MOCEDURES - NORMAL ABNORMAL. EMERGENCY AW PAGE 45 RADIOLOGICAL CONTROL ANSWERS -- BRAIDWOOO 182 -88/07/18-VICTOR,F.

ANSWER 4.12 (1.00)

1. Containment pressure (0.25) greater than 5 psig. (0.25)
2. Containment radiation level (0.25) greater than 100,000R/HR.(0.25)

REFERENCE BW Procedure 1BWEP-0 p.3 of 31 000009A210 000009A211 103000G015 ...(KA'S) ,

ANSWER 4.13 (1.50)

a. 2735, 550 .(0.5 each)
b. (2)IdentifiedLeakage (0.5)

REFERENCE BRAIDWOOD T.S. p.1-3; 2-1; and 3/41-6  ;

002000G005 010000G005 ...(KA'S)

ANSWER 4.14 (1.50)

. Trip the RCPs when:

--CC Water to RCPs lost (0.25)

--Containment Phase B activated (0.25)

--Controlled cooldown not in progress (0.25) and RCS pressure less '

greater than 50 GPM than1370psig(0.25)andHighHeadSIpump(0.25)

(0.25) or SI pump (s) greater than 100 gpm.

REFERENCE BW Procedure IBWEP-0 fold-out page.

000007A104 ...(KA'S)  !

i ANSWER 4.15 (1.00)

a. 60 105 I
b. Demineralized water supply (0.25 each) l Reactor makeup water i REFERENCE BW Precautions, Limitations ar.d Set points p.90 008030G010 ...(KA'S) i j

r ,

y

  • 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 46 a RADIOLOGICAL CONTROL

. ANSWERS -- BRAIDWOOD 1A2 -88/07/18-VICTOR, F.

ANSWER 4.16 (1.50)

a. FALSE
b. FALSE  ;
c. TRUE REFERENCE BW Procedure BWAP 340-1, Rev.52 p.9 000011K011 ...(KA'S)

ANSWER 4.17 (1.00)  ;

A mandatory in-hand procedure must be in the possession of the personnel on the job and each' step is read (0.25) and understood (0.25) prior to performing the task. (0.25)

BWOP RD-5, Control Rod Drive MG Set Start Up and Paralleling. (0.25) ,

REFERENCE ,

BW Special Operating Order 50-ST-0014 i 194001A102 194001A103 ...(KA'S)

!