ML20202B334
| ML20202B334 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 05/31/1982 |
| From: | Grottel M, Mentel H, Veiss G GIBBS & HILL, INC. (SUBS. OF DRAVO CORP.) |
| To: | |
| Shared Package | |
| ML18052B537 | List:
|
| References | |
| FOIA-85-59 AB-5, NUDOCS 8607100277 | |
| Download: ML20202B334 (200) | |
Text
{{#Wiki_filter:___- ' a._ _a.-. ... __. ; a_. ::...1. u.... . :na c. ... n 2.. r a.'. u - t.:1 s
- p)
"L Mejor] '3 7 ~{ 3 c >l .n i 7; t n t i tl COMANCHE PEAK STEAM ELECTRIC STATION i G&H PROJECT No. 2323 'li '.1 . :1 .q'j i 't '. a 'h .4.
- l1 A SIMPLIFIED METHOD d
FOR DESIGN AND ANALYSIS OF 4 .i SMALL SIZE PIPING .3
- 4 t
- 0 PROCEDURE AB-5
...l
- b
-) -i REV. 0 - JAN. 1980 f REV. 1 - DEC. 1980 . fj REV. 2 - FEB. 1981 .i REV. 3 - JUNE 1981 REV. 4 - DEC. 1981 ~ ?.: REV. 5 - MAY 1982 .g .i i i O f~ GIBBS & HILL, INC. ';I ENGINEERS, DESIGNERS, CONSTRUCTORS j NEW YORK, NEW YORK 1 .m I - d 8607100277 860630 i := i" PDR FOIA GARDE 85-59 PDR
I.: - -.^
- =...
-.2 - - ;._ r u- $i 1 N:j A SIMPLIFIES METHOD TOR DESIGN AND ANALYSIS OF SMALL 1 SIZE PIPING .j - i'a 1 i l ^I FOR -1 i ?g j .j .-{ COMANCHE PEAK STEAM ELECTRIC STATION 1 G & H PROJECT NO.2323 l i Rev.5 'l t' MAY,1982 ' !O il . Prepared by G.VEISS /M.GROTTEL i ij . Design Reviewed by -f* H.MENTEL Approved by A.RUTKOWSKI i s i s t 'I i i ~, -l h GIBBS & HILL, INC. l s ENGINEERS, DESIGNERS, CONSTRUCTORS 1
- 1 NEW YORK, NEW YORK i
~-
- e-*
s e w-.,
--~ = -- _.. a _.a u. a. ~a.. . w.. - } s. \\q' f 1 8 t g j i 1 Table of contents j 1. Zatroduc' tion t 2. Scope j 3. Design criteria 3.1 Plant operating conditicas o 3.2 3.oading conditions t i i
- 3. 2.1 Pressure i
l t i 3.L 2 Deadweight i I 3.2.2.1 support spacing i 3.2.2.2 Support Loads ($ A _..- 3.2.3 seismic
- 3. 2. 3.1 Seismic 111cuable stress 3.2. 3. 2 seissic 3estraint spacing 3.2.3.3 Seduced Seismic Restraint spacing 3.2.3.4 sestraint Icads 3.2.3.5 seismic Ancher sovements j
- 3. L 4 2hermal 2xpansion and Anchor sovements
- 3. 2. 4.1 Thermal 31sp2acements 3.2.4.2 Thermal Allevable stress -
I 3.2.4.3 Approximate criteria of Flexibility 3.2.4.4 Siniana Span Reguired I i i 3.2.4.5 Reu.tiow Leads t e g, 3 i 4. Design Guidelines c.. d 4.1 Deadweight 4.1.1 Support Spacing i I I .j e l
Mh_ir.:.. a.c.+2...c.;:o e. _,.._3 ; fx
- i '.T......
- e
... :~" ~ 7:. ~ i R. "( 1a 4 4.1. 2 Su;; ort Loads 8eJ. i j 's. t. 2. Anchezrcr equipment nozzles i 4.2 Seismic d
- 4. 2.1 Seismic restraint spacing k
- i i
4.2.1.1 21 bows st ' I., 4.2.1.2 Tees 4.2.1.3 First lateral support of a tee 4.2.1.4 Reducers
- 4. L 1. 5 Lateral support close to reducer
- 4. 2.1'. 6 concentrated weights
'.i 4.2.1.7 other piping components with 5.I.F. i 4.2.1.8 Seismic restraints at the valves i f] i 4.2.1.9 Talve with operators 4.2.1.10 Bestraints on the valve body I 4.2.1.11 Diractions cf seissic restraints i n 4, J 4.2.1.12 1xial restraints 5 t i
- 4. 2. 1'. 13 Length cf span in all three directions
+ {' 4.2.1.14 Large radius curvature 6'
- 4. 2. 2 Dea.dweis.41 ased Sebm s*c Su o s.+ L o ed Ce few da fidor tsg, g,
1 Fev u verfa t01.01 Rev. i 4.2.2.1 Ce Sc.u to t(ou Fotmwto,t l 4.2.2.2 No m og r.a.p h Ms.thed 844.5 t A. v,1
- 4. 2. 2. 3 4mchdzJ oz. eSu,Amakt Mo?.2.lc 4.3 Thermal Expansion and Anchor novements l.;
a. 4.11 Thermal expansion loop c i \\ I e e um + me. -e. ..e._ e __ _ - _ ~ _ _. _. _ _
...m. .E. 1 l 1 .l h 2 n 6, '. 1 1. Introenetion l' ! The piping systems for comanche Peak Stean Elect =ie . :e station (CPS 23) shall be designed in accordance _j with *ASEE Boile: and Pressure Yassel Code, I Section 1 1 and T3 LE-c2525. for Class 2 and 3 'M piping
- systems, with sar.11 diaseter and lov 1
s) pressure and tempe=ature, a simplified Design d method will be used.
- Bovever, the-simplified
- 4
' :i Design Bethod described in this documentation will support location and determination of ensure prope: C' load on supports, anchors and equipment
- nozzles, J
such that the ASEE section III Code requirenants for piping stresses and the equipment nozzle !_) allowable loads provided in the specifications vill .ti c 1 - Li be set. -1 The simplified Design method will consider loading j of pressure, weight, earthquake, thermal expansion and ancher zovement. f. i I 2. }.59.p.S 'I The simplified Design authod applies to ASE2 Code .f t
- 1 y
Class 2 and 3 piping, with a no=inal diameter c .I I I .1.c a in. which remains cold (less than 200 F) i t. i o er eee ses.. e mee we g a mag e, e e. __m
- =**.Am.
- Me e.1 a
p Me e ,p.,,,, 9F "W 1
.-..u...:..<..:. ..s..,... 2 ;
- w.. _...,_.
L ... = .:.-------.c.- e y 1 Q-1 3 1 p during all plant conditions. It can be used also for non-nuclear piping governed by AssI 331.1, with the same size and ope =ating conditions. P=actically, there is no pressure limitation for the scope of this procedura. TAs pressure vill be l limited by allowable st:sss.,Roverer, for non-high 1 energy lines, the pressure is limited to 275
- psi, j
by definition. For high energy
- lines, with a pressu=a higher than 275 psi, ses below.
9
- material, Schedule and Category specifications of i
i b' piping covered by the 31splified Design method are i 1 listed in Table No.1.1', APPendM A. i the simplified Des'ign method presents a simplified conservative static seismic analysis to es+= M 4 =h 1 i 1 the span .between seismic rastraints, and to I determine seismic loads on restraints, anchors and I J . egnipsent noz=les. It alac provides spacing between deadweight [ supports and the corresponding loads. 5 The Simplified Design Bethod presents also a sethod of evaluating thermal flezihility of the piping systems and determination of the:aal loads. 15E3 d l 1 i 1 i .ww , - r ,., - - +,, - - -. ,.---,-w---v--,
,.---,,-w,e.
,-.,,e-,-- w--- m --w-,.
l ,i O 5 1 i I Section I= class 1 P piag. is not covered by this i method. Energy Plaid Piping system, as defined by IRC Eigh Branch technical Position APSC3 3-1
- is al"so act covered by this method, anless break locations ama 1
i at every ficting and other veldi.ng postula'ted 4 d connecticas or attachments. i h): Piping systems that are subject to dynamic loading.s d othe than seismic (i.e., i uh
- WP.A. (I.fch, k
- {
are azcinded from the scope of water basser, etc.) NMAWd
- 4 E
s thismetho%d%d %% in% n.gw h Lf.f r'u g"I. F A % dl "1Whk MW 'kitt Des An' Criteria 3. 9 The simplified' Design method considers all loadings ~i resulting from pressure, deadweight, earthgnake, i thermal expansion and anchor movement for all ej this procedure. Each piping within the scope of ec comhinatic. A' loading is evaluated for
- loading the stress r e g nf % rn u t,.5 specified by the plant i
operating condittsas. i Plant Oeeratine Conditions 3.1 The plant operating conditions for 1523 HI class 2 . [. are categorized as
- Bernal,
. h and 3 pipiag systems l ~f n.-.r------ 7..;-,.,,,...,,___,_. .s .............y....
- * +.
~ a...-.-._... ~... 'Ii 1 a N j 5
- Opset, Zaergency and Fanited conditions.
The associated ioad combinations and allosalle stresses are specified in 1553 I.II-NC-3652 and are l i sassarized in the following paragraphs. Borsal and Unset overatize conditions 3.1.1 l During normal and upset operating conditions the following egnations must be satisfied. 3.1.1.1 Sust=hed Leads s g I' The effects 'of pressure, 'scight and other sustained i er-u) sechanical loads must meet the requirements of E g. (8). 's
- a. pJo +
.75 151.5 1.0 3 (8) sL sta z h j i y = internal design pressure, psi. .l Do = outside diameter of pipe, in. 1 ta = nominal vall thichness, in. f 4 = resultant soment due to weight and other 5 sustained load,s, in-lbs. i = ntress intensification factor (0.751 21) 7 = section modules cf pipe,.in.8 z sh = basic material allowable stress at Design Temperature, psi 4 l i O 1 .m g e-seem - w_ ~
..-...a....
:==-
e i O i ~c 6 ~ l 3.1.1.2 occasional Loads The effects of pressure, weight, other sustained i loads, and occasional loads, including earthquake, must meet the =egui=ements of Eg. (9). 4 23 (9) 1 Puer to + 0.75 i (E a + M4 3 = c1 4tn 3 h Terms same as in 3.1.1.1 except: l Psaz = 7eak pressure, psi. 5 = 3esultant soment due to occasional loads, 3 such as thrusts from relief and safety valve q ~ loads f:ca pressure and flow t=ansients, and earthquake (only one-half range). Effects of anchor displacement due to earthquake may be excinded from Equation (9) if they are in- ~J cluded in Eg."10. 'ij . -J b 4 S 4 g (- 9 e- =* -. - *. - en * -m e 4 e e,. w e.e .oee..... -.e. .e.ee.. ger
- e en ge-e, y vaine +M + e Nee g e
% er p=my .e. g ., =.,,e ,g. .a e e e*= +, o
- r. - -.--- .. - - -.7 -- m... I l i G t-7 3.1.1.3 Thermal treansion d = the requirements of either Zg. (10) or Zg (11) d k 1 met. I The effects of thermal expansion' anst meet its .,I a) requirements of Eg. 10. e
- .f 5,3 g s 51 (10) s =
5 S q Terms same as in Equation (8) except: y . t' i 3 Ec = Range of resnitant acaents due to ' ?!i (') thermal exp=n=4 aa - Also incinde nosent J effects of anchor displacements due to earthguake if anchor displacement effects were ositted from equation (9). ',j a, Allowable stress range for expansion 5 = .i A stresses = f(1.25 sc + 0.25 sh) '} where f - reduction f actor based on cyclic loadi t b) The effects of
- pressure, weight other sustained loads and thermal expansion shall I
I seat.he requirements of Eg. (11) i (11) t J,p.o + 0.75 i 1]L), + 1 f.c 5 s + s 5 = I TI utn Z I 1 lj, i 1, 1 e ..e, '.=--=*ew* -.mee- -.ee.e 6= =e e e =,..,.,, g,,,,e ,p g @ p er eg,gygsge p.m. gy,, g g, w -._-.m..,
. = -. - - - - 3 l O x 8 1 ) i Eseroenev coeratine conditions 1 3.1. 2 q I During emergency conditions,,the sus,of the i stresses produced by in+= n=1
- pressure, weight, sustained loads and occasional loads defined other in the design specification for energency condition must meet the requirements of Eg. (9) with an
.,= allowable of 1.8 Sh. Psar De + 0.75 i f5A+ Em) f 1. 8 Sh (9) 20 i 3 = CLE Sun S 1 U~. Paulted Czeratine Conditions 3.1.3 the faulted operating conditions the sua of t During I its 1cnsitudinal stress produced by occasionL1 loads datined in the design specifications as i l. I faulted condition must meet the requirements of .T 'I Eg. (9) with an allowable of 2.4 Sh. r Paar Do + 0.75 i (E A + HM $ 2.4 sh (9) .b.' h r l l ~ 3 = I CIF 4tn S 3.2 Leadine conditions eyalnation for diffareat loading conditions is The in presented in detail in the following paragraphs i terms cf analytic'ai assumptions and method of 0 analysis. - - em ese e..e w- - - _ __ = as.e e, =-eee =wm e en.. ewe ..w., p, _p_,,, --.-T".4 6eG er.8 4 ,f ap-q p egwg y, mg g 5 I t a e m ,..r. --e, ---,._y
..2__._ ) h n 9 4 i .3.2.*1 Pressurg Longitudinal pressure stresses shall be calculated ~. in accordance with the egnation: $4/. 3 = Psas Do, where 4tn Paaz = maximum design pressure (psig) = outside diameter of pipe (inches) 1 Do = ncainal vall thMness (inches) I sn Based cm the pipe miniana wall design, we can assnae a limit of SLP $ 0.5 Sh t ,A 3.2.2 Dendweieht 4 i properly supported piping system and { to assure a ttestOz)* ked j minimize the possibility of arm===tv g.e vertical suppert spacin'g j deflectica, the nazians ' l and shear was based on a ma=ians combined bending t' k mm C.75 i.3,3 5 0.1 sh x 0.75 i d(! i 5 = 31 g 5 0.1 inch. and a naziana deadweight displacement l 3.2.2.1 succert scacins L gives receasended aaziana deadweight pipe Table a support span L (ft) for various pipe sizes and fluid centent. .1 Q 5 y ,.2 !) 4 y_,,., ,,w-. p- --m-
3 i :n /0 l l l O i Table A Recommended M=w4= m Deadweight Span, LD, ft I 1 _,? Water Se:vice Steam, Cas, Air ,d i Noninal Pipe Si=e-Inch 'k 7 4 5 IG 1/2 6 8 3/4 s 7 I 12 9 1-1/2 13 10 i -2 14 11 2-1/2 15 12 3 16 7.- 13 3-1/2 17 l3 14 4 s. I 3.2.2.2 Suwoort Loads Deadweight support loads are calculated by the following for:sulass j kU.I6' y=1.IhxL~j F O The increase of 10 percent is for conse:vatisia. For concentrated weights at mid-span, Wdib), the be calculated reaction forces at the supports may by: Rt/3 3=it.fwxL)+1/2W F e 3 = deadweight support load, lbs where F W = distributed weight, 1bs/ft L a span between supports, ft W = concentrated weight, 1bs. l 1 l .l 'lt Jl f l __m,, -,-.e__-.-_-p,_
- ..~.
w -. _.. _..... .a 1 i' .b T 11 ?.3 To calculate soment loads on anchors or agaipment I no=zles the fonoving egnations.say be-used: t 3 ~i ~ The nosent: ? E = 1/8 E13 _l The reaction force: I = } SL l 8 i i, special situations are considered in Section 4. 3.2.3 seismic I the simplified static analysis sethod uses l conservatively the strass criteria, to es*=h14=h O the set==i= nest== int sea =t= ~ 3.2.3.1. seismic 111ovable stress From Ig. (9) of paragraph 3.1.1.2, and the s assumpticas made in paragraphs 3.2.1 and 3.2.2, we I can write the seismic allowable stress, for upset i condition (032): 0 i 3 = 1.2 sh - 0. 5 sh - 0.75 iz 0.1 sh = 0.7 sh - 0.1 SL d j S 0.75 1 0.75 1 i 1 once the stress level requirement for upset conditics are
- set, eg. (9) for emergency and i
.1 i faulted condition shall not be considered. since will not* the the pressure and deadweight sr.resses -i u) .i 8-e aus 0 l 6.. . ~ ~ - - - - - - -, l s
l . u..a :w.a.;,a.. .c_ n- - -_ _,,,;,. a, c i> .s 'i 3 s .9 c.J 12 l.i
- change, the increase of s=4=-de stresses for SSE f
- - i (9) vill give a total stress which will satisfy og.
for both conditions, energency a.nd fanited. s 'l 3.2.3.2 seiscie 1testraint swecina i i straight run, based on the simply supported for a beam, or a boas with one end fixed and one and. I simply supported, the== e 4== = span length between '. 4 1 rest: mints, l L = 2.19 (Sh 3/12 Gs N) 1/2 where 0 L = span length between==4==ie i 1 restraints (ft) ; I ~ sh = basic material allowable stress at 200 F (psi) ; 1 a = elastic section sodnins of pipe (in8) ; l 2 i N = vaight dist=ibution of tha pipe (Ib/f t) ; =,the effective seismic coefficient G s 't expressed in" gravities; i t I j f - - ~ ~. -- -- - t.
- N--
-"*W%
- s. 4 yb.
was a 4w 'wi= p y f&P*4T-M- --C- - " -'"-- ~ " ' -- - ' '- Mw----+'---W w me-s-' r== e-w e -r"Fwr'--" -'-v-u-'- we r=+wP
~ -- -1 s. I a 'l lR 'A 33 I s O s This formala was derived on the basis of 5 = 0.Esh e s r. Therefore, by maintaining the seismic span, th&[- J s Sh1ess < g., t allovable be met. g I The equation can be v=itten: 1 L= cs/Gs w The span L, can be esta hl f.*h ed through the ~ nomegraph Fig. No. 1.1, appendiz 1, which ~ represents this equation, if we have the values cs -t ,<-~ k.I sad Gs. i 3.13.2.1 Tabulated values cs -) i 't The vaine cs depends on the size, schedule and j l l 3 I. sate:ial of pipe. This indornation is provided in t [I I TUSI Piping Specification 2323-ES-433. Three s nesignations (1, 3 and c) were established for 1 \\ different types of materials, with different vaines 1 8
- s. i of Sh, in Table 1.1, appendiz 1.
1: 9 i. I l The properties of pipe such as unit weight of the i empty pipe, unit weight of water inside the
- pipe, the elastic section
- modulus, are given in i
Table 2.1, appendix 1. J } z.c--
.... Y..... I .I .>.c.:. .r. z ~-
- w A.
h .i si 7 x..y 4. i Cs depends also on the weight of insulation. J Value considered.
- 4
.I Two types of insulation were J .i Insulation No. 1, calcium-silicate and insulation c The , No. 2, stainless steel reflecti've insulation. 1 unit weights of these two types of insulation, corresponding to a 4~ ~ temperature of 200 F,
- i s
are given in Table 3. A, Apr~'4 w A. .i 9l ' abulated Cs values are given in Table 4.A, t The Appendix A, for various pipe sizes. 'f s t d 3.2.3.2.2 Seismic coefficient Gs s.i. b] T.is coefficient has the value s. ? G2.+G2+G2 .a G = s x y z The G-loads are the peak floor response spectra for '.~ ,3 CBE, for different buildings at given elevations. i..! The Cs values are d A damping of 1% was considered. 4u listed in Tables 5.A, Appendix A. The G values for SSE will be used for emergency I &~ <4 ,1 'I loads on the supports only. 4 Reduced seismic Restraint Soncing '1 3.2.3.3 j The fo=uula for the maw 4 mum span length between Q seismic restral=ts, developed in paragraph 3.2.3.2, i was established for a straight run. For actual' c i b h! 0 Sjdf. MAS,WhN
- i. '
P hg dbs.theus Aroude,cesezddad uRigUs (%bes, i 1 I i '1 i 3 R s
.... a _a -. w _ . ~. ij m 1 l. t s ( ') I \\
- 4 U
15 c..! L i M ( flanges, forged fittings, etc.), were the vaines of JJ 0.75 i > 1, the nazisua allowed spa.n between J 6. restraints has to be reda=ed.
- i.
n the equation which gives the span becomes ~ 9t L= C /G r ib a 1 whers C = E.Cs L- 'l k K = nultiplier iactor 5 1. vaines of E, for va=ious piping components and i the in -1 different piping configurations are es+=h_14 =hed I ' ]) section'4.2. 3.2.3.4 3estraint Loads seismic restraint
- loads, assuming a beam on t,
unitiple restraints, are calculated by the ~ f 1 fallowing foran1as: 1 Borizontal Bestralst - 1R = 1,15 3.6h.L SWb j Yertical Bestraint - Er = 1.25 E.GT.L i i .) J where: G = narians acceleration in horizontal direction,; f q .1 1 G - sy, nazimus acceleration in vertical l direction; 5 9 Ea .j .... _. ~. ~_.. .e -..... nn... r .,_,..-_,.__.__._,,,,,-.__.e_-,_-,.
4-s 3 [ i I [ iO 3 16 g i Tha250% increase is for conservatism. Loads with concentrated weight 5, at a mid spaa c I ci of two restraints (125 EL + 0.5 I jf, Borizontal Bestraint - 2 = 5 c h [.lJ * ~ (1,25 EL + 0.5 I } S Tertical Bestraint - 3 = Y c r, To calenlate acaent loads on anchors or equipment nozzles the following egnation may be used: The acaent: 5 = 1/8 ELag .X, i v The reactica force: A = 3/8 ELG where G - sazimas acceleration in any' direction-g's. Special situations are considered la section 4. 3.2.3.5 Seisale ancher movements t' I The effects of relative seismic displacement of 1 l anchces and restraints can be determined through a 1 secondary stress analysis. The displacement i components shal.l be assumed to act in the most l anfaverable combinations. The stress due to worst h case seismic displacements shall be calculated as a static thermal displacement case.and combined as shown is the next paragraph. Seis=ic displacements l t ,O. g .'b. t W W WW
- 9 e
A y + 4 f ..m.,.., .m.,,_,..-,w., .~.w,., _.
P D
- y l
(h t t 17 - t for different buildings and elevations are given in P 4 Tahle 7.1, Appendiz 1. Thersal 2rt'ansion and anchor sovements
- 3. 2. 4 To complete a thermal flazibility analysis a 1
nazisaa stress caused by the l comparisca of the l. l expansion on the pipe and anchor sovesants i thermal is made with the allowahle stress range si, as The mezt' step is to determine l defined by the code. t .i the forces and soments at restraints, equipment l l nozzles and anchors. i h Thermal distlacement f J.2.4.1 Ua' t that must be absorbed The thermal displacesant j has to be determined. For by a piping span L, l,j expansion of leg L3-2 anst be absorbed by
- example, l
leg 12-3 v m l kt d ] 6-1 5b l l / l / l [ t = el Li-2. 6 i n 7777 fh V i r f < - -. - - ~...,,.. -~ ~
- ' ' * ' N 7.y * - = -g
.9.,,, + i f ,~.,-,,n-,,,-._,,,,,,,-,e, ,------w+y.-r-..,,-
. =_ e tJ 1
- 3 I
18 .l O,, i Where: .,f. h=thermaldisplacement-inch & = linear coefficient of thermal expansion itu j, in going from 70 F to the designed highest kW h temperature - inch /ft, ? = length of expanding pipe - ft L 1-2 2 ~) . 3.2.4.2. Thermal allowable stress Sg 4 When calculating this value the effect of worst JI l A ?; J thermal case and the intensification factors must O be cons,idered. t '.? sTE = sx 1 .i i '4 1 ? where S = f (1.25 Sc + 0.25 Sh) j A l A Uhere f-reduction factor based on cyclic loading. t l . s, j 3.2.4.3 Aceroximate criteria of flexibility A piping of uniform size whiczi has no more than two i a )a anchors and no intermediate restraints is considered ~1 'l having an acceptable flexibility if it satisfied the I i formula provided by Piping Code .g 6 l 1 1 4. . :, -. - r.,. c. ---.-.-......n y -,,-,------.---w, -,,-,.,-,-,-,,,,----,,--,,.n ---,--,-----n g, +, v--,-.s --y n
~l Q. 19 si (151 331.1) DY l Ds (s-1} s $ C.03 where D = nominal pipe size, in. 1' I = resultant of restrained thermal expansion and not linear terminal displacements, is. I U =. anchor distance (1sagth of straight I line joining terminmi or anchs: Pcists), it ] 2 = ratio of developed Pipe length to ~ anchor distance, dimensionless. 4 k in chart i B of This, formula is given, grapM"=117 ', I 1ppendiz 3. 'j the abeve equation does not directly evaluate 1 j Bovever, the actual nazians stress range stressoa. l N SZ contained in the equation can be found from i t 33.3 UT 3 5 = d 2 04 (1-:1) a.25 this formnia represents .l It has te be sentioned that j has limitations l no sors than a rule cf thumb, and ti ,f in cases of unf averabis configuration. ) O J , ; - -,-- 77. ..L -._
n._
a ".. x._ a_. :.. ~~ ... ~ ~. --g
- ~, ~
N go . -] 1 .4 gg i O , MINIMUM SPAN REQUIRED i Y d The guided cantilever method is the basis for the .i 3.2.4.4. l calculation of the minimum span, [ m !,, h nP J'
- / [
3 - L T 1 . :'i I/ b l, -l l ,i a N . 4 .t Y a s*a l f A ne.A o: o A 1 C $? A o'n f' t.;.
- * * ' *e
~ t It will The leg.,, 4 s is guided cantilever. absorb by deflectien the thermal expansion of the j (). I leg ,, / 2 plus thermal and seismic anchor move-a ment in the direction of,, / 2 The deflection at point 2 PLf n zr (inch) = I. I The bending stress 1 S = PQ <STg yy ,e the force due to deflection Where P l section modulus of the pipe I i The minimum length is l m68Et /_m. in. n 7'y a 1 i - ul Y h
.f .. ~ I i i, 7 -2 t - 4 min. is the minimum distance to the first Where y rigid support located on,, [j ) inch. Modulus of elasticity of the pipe, psi E 3 - pipe radius, inch t+ = [t - thermal e.xpansion of the leg, /.2 + f thermal anchor movement (if any), inch ) k - seismic anchor displacement, inch 8g-allowable therma 3 stress, psi If L1 actual >f Lain flexibility is met, otherwise, rearrange support (3,) location or type (for snubber) until the above condition is met. For special appli- ~.~a)r cations, details wi$1 be given in the next section. j j i e e e O 4 .j 5 e f f 9 e m. ,,, [
- [,*,'
- ..-*....*.-=+-w.*e**-=._.
- ^*
ae q e s.- m-
.... w _,m..., 3_ ,.m_.._. .,... ~. l 1 i .I O r v 22 1 t .t. I (I*tf *..?.4 '* 5Pa2g74- ). 3.2.4.5 Riacha'o n 193.4,3 ne reaction. loads, (one to restraint on thermal Eg* i expansion and/or anchor movements, can be calculated as follows: ) Reaetion forces: = 12EI La Reaction soments: I e Egg 2 l where I = nosent of inartia, ia*. l i Desien Guidelines 4. I ne fc11oving guidelines have to be used in l hf acccrdance with the previons Design critsria, to ) determine acceptable support and restraint spacings, to evaluate pipe support aad restraint
- loadings, and to provide pipe floribility for t
. 4 1 t thermal expansion and anchor sovements. -l I f 4.1 Dea dweicht s 4.1.1 Snsvert scacime 3 g For deadweight load cases, if the resnits show that t I the required deadweight vertical support spacing is l j greater than the vertical restraint spacing fros 1 the setssic analysis then vartical supports will i i r 1 i ,e t i '} l l A l -s l . i.- =...._ l-.---.-.....-----.---- - - - - - - -. - - - - - - - - - - - - - - - - -. -. - - - -. - -. - -..--~ - -
.. ~. -- ~. .. 3,_.e , m- ..y,.. m -.l O. 23 not to be required in addition to seismic rigid restraints at ths recommended maximum seismic spacings. If the mawinum lateral seismic support spacing exceeds the allowable vertical gravity spacing, locating guides at the allowable vertical gravity spacing will satisfy both the seismic and gravity support requirements. t Reduction factor K for the seismic span, can be I j used to reduce th eadweig span, directly for 1sePla' h f.) concentrated weights id zor otheg with the formula btV2a 1j b red = (b) (6) where b deadweight span from l j TableA.( l0) - !.) 4.1.2 Support Loads The deadweight leads at the supports will be treated at paragraph 4.2.2 together with the seismie loads. a
- l L. cuid4b. h1fe nu.pd Scols dth.s2d,
gi
- a. 2. 2.2.. m los %- cruddA N i d:
k e J* (d,ts.gto.v.c,. t .r e 1 ,,y-- --c w w ,e -iw- --a w- ,---..,.,--~-------------.--,--~-----,-----.-v,.- ..w- - - + -.
6 =- = ~ Ek-- fCt1 gn Ne tu (, 3 fed '44g *el rgFid sy, i
- entrated veicht not at the mid scans
- CUppn3 i i,,,,' ae %
- <c % '
2,,*%ticz c Fra,ggy ,r g_, a, tei g e .d <= 24 e, - <3 h jg y c. p0 s l [eCPM'c4 y l ' d'ece:2y ~,o: eux l so.n n,,o-w2 e Kgy ), ' cpg,., 'The reaction 's'upport is' T. = 1.as(W x L) + h L D E'u.58(S. WA22 be g '8ted r s;gg O ' W 'y Cads nMGv ^ yC dk 'd 404 ' %Mu 4 l,.:, --:g r V- ..? .bc. c cn.cickhd cu 4. Lc ^3 tot %2 L s.ou. %2 p N (~'.) d1 e,. untudDu.tD.d pecgfwm pow.91 e s k Y ad 6.CT,tG,k.ku, , ~ ~ - * - - U..... e..
-;.4-Li Q. (508 1 s I i Concent:-ated veicht not at the m!.d scan _t O ,r g A' s .to Y h if C. Fo. I L L l f i The reac. ion 's' pport. is' i u .rs
- J
- r. - 1.2r(w x a + wd.
D Wers. b en g G yWe ..O r ... l U-r, Li.ou,'icc.cca.cic.hhad.euO.kc"1ys}d it; y 14 O'.T '6d e. untudhT. id. 's o w. '.h tect'.U.um ghdNc,s'.k,\\M. 'h h. r$G0.( b Att-i S11.+Mfd, ^AhTt.G.k.ku, . (A ] ,) u i f s h .? ..*p w., ,-M
- e e en.nmesi b
. ae. M. m
c--- ^ n? -...... - ~ a e 't s 1' 'l O, _2g- ,a .t 1; ( _9 1 4 4.1. 2. I inche: s er ecuineent nozzles i .l In addition to the loads given in 3.3.2.2 which are 'f a unifora-load, we for a g'uided cantilever with have to consider special situations. A concentrated weight in the fi st span. a) C : b /Z_ f c jD-w, u s n >3 L L i The reaction force for the vaight in the aid span i is apprezimate '- l 2 = 0.7 N g The nazians soment is i. a = -0.19248 2. l 8 C These reactions are in addition to the unifor: s 'l o dist:12sted load reactions. i 1 + - _ - _ _ _ _ - - _-,,,_,,____..,.-,_,_.,_7 ,,,,w-ym.-,. __,,_.,,,__.,%-9 ,-_p._. m --y ,yg-ww-.
-.a . ;. a e ) G. ,,, g, b) Effect of a riser. 'j L o .... r- ._.... l s-l 6 / O; iw I yo a I q consider as a beaa with one and 21=ad and one Will i end sia;17 supportad ~' M2 . p% m m%.- d T [ 4 The acaent 5 = ~E x a, where E, the total weight t C C l of the raiser." t The. reaction,is h ~ s a The soment 5 = I These are in addition to the reaction one to the distrib tea loads. i I j e ) Y. I t .? l -l l. t -- ~ l -. ~ - -. _. _.. ~. _. ~ _. _ _ ~. -w._,_,.---,,-,,,.- w.nn_,,,---. .-w,--..-,
i t .} .}:
- D.
t 2.7 - 4.2 Seismic 1 4.2.1 Seisnie restraint spacine I The basic spans provided in paragraph 3.2.3.2" must ~ be reduced when any-'* g but st.might runs are i
- involved, i.e., elbows, teos, concentrated weights, etc.
i To calculate the reduced seismic restraint spacing i as is paragraph 3.2.3.3, value K has to be s determined in all cases. f]' 4.2.1.1 Elbows ~ for piping with a band or an elbow the K value is l given in Figure No. 2.A, Ap - ddv A. The K value [ depends on the pipe size and schedule, the angle between the two legs connected, and the 7 ratio of the two legs (Reference 6). For 1 socket-welded elbows, the reading of K values is done at the SIY = 0.75 i = 0.75 x 2.1 = 1.575, for any pipe size or schedule. K values are given in gry ~ Table 8-A. f 6 I ' **7;*. , _,,,,, ;,- ',,, 7 : ~,v. y _.._4_--- ,___p_.
- ~~..
.. ~. - ' ~ ~ ~ L 1, . 1 O,. , i 3 4.2.1.2 23y,3 For run with toes the h value is given in fig. I so. 3.1, appendix 1. For saches velded tees, K= 1 = 0.635 I .75 i for any size or schedule. s 4.2 1.3 First lateral support of a too has to be as close J. as possible to the side of the too. L es o n s s n l t un t w .L o d % pJ 2he seccad support at the asia run will have a span L determined by the monograph with the corrected value ch = Kcs. the spaa L' has to be determined for the corresponding pipe size and s[:hedule of the branch, and the same K. ..) i 8 e 6 i I i j
m.__.- c_ a.... ..t....-_.__..
- a. <. -
u:.. m- ' 3, ,1 1 O i 1 i s -1.9-4.2.1.4 Reducers q for a', change in cross section of a piping by a redu=ar, l 1 K= 1 = 1 = 0.667 ""73I N S In case of a socket welded reducer, or insert K = 0.635 4.2.1.5 A lataral support has to be located as close as possible to the reducer, at the larger pipe size. t j De sacend support at the sna11er size will have a span L deternised with Cb = KCs. For Cs, the pipe size and schedule corresponds to the smaller size. 4.2.1.6-Concentrated weichts g for concentrated weightst. valves, flanges, fittings 1 - the K factor is given in Charts No. 1-A and 2-A. Stress Intensification factor is included where ) J needed.
- 1,
.i Me K values will multiply directly the length L 3 q established through the Homograph. De reduc.ed .] 3 span 1 for concentrated weights vill bes .q y 1= K: (ft) ~ b
,-e,-.
? Di .O-80- -.e 't Ifthehori=entallineforagiven[willintersect the upperbound of the chart gt a point.beyond the l' actual K, read the K value corresponding with the kgyh s g ,j value. Id intersection of upperbound and actual Ky If wi11' intersect with the lowerbound at a point value, read the K value cor-before the actual Kg resp 6nding with the intersection of lowerhound and M.] i Inanycaseif.[ga,putarestraint actual K. j g .t immediately after the concentrated weight componen't l l (at the pipe,near the weld point of the valve, flange J, etc.) i .l.j 4.2.1.7 Other Pipine comoonenets with Stress Intensification 1 - v i Factors s For welding connections on straight pipes, tapered 1 transition, etc., K is given in Figure 4.A, Appendix A. k 1 't pj i t .l 3 3 i i ) \\ 'O 3 f)~s i.' i f i. ':
- ,... ~ -
s-y.- ___.,s__._.___ .,_.~__.,,.,m._,_ ,.,_.7 c.
^ 1 ;j ] ,{ (h N .a ,i}l For any other S.I.F. which is not given here but is .'i i t r required by Ccde, 'I ~. ~ 1 g. 1 Il 0.75 i To account for wall thickness violations, the follow-ing procedure has to be applied. 1a - By Ref.14, aKv f actor was established f or minimum wall thickness violation up to 0.02 in. based on pipe -' i f size and schedule, for Eg. 8, 9, 10. The Kv values ,3J shall be treated as stress intensification factor. j 1 l For Deadweight and seismic they were already multi-0' plied by 0.75. In the Nomograph method, the span
- .]
reducing factor will be K= 1 kv In cases of short straight section connected by y d two elbows, or an elbow and a concentrated weight, etc., so that a section has more than one SIF il whichever is higher has to be considered. 1 Seismic restraints have to be located as clcse as 4.2.1.8 } possible to the valves, flanges, and other types 1 If two of concentrated loads on the piping system. g o A.T 5 L'# u i ,s o s o.o v l yo i J.2.9 33 i '? / 'I Ao t E. o 6 3..r 'n o /9.o 5 L 72 Q va s 2.c
- 5. 0 7 l1
/2 do 4 /.2 J'. Y a ~- ito r o. t 5Ab 0 f/ '.1 1 yo S t.1 2,,
- 7
' sa 1.t. / I tso 97.3 7.23 us i o 4. y A.f J i 2I# jo e 'a 1.,f 8.2 7 Iso t t 3. 7 9.9 .y o / 7 2. Y I. C. 7 7 - i 3" go 2 2 2. f. / t.7 / j t6o ?27.s /2.78 wo z s 9.Y I 2. C s go 3 ; y, o / 1,7 f f B y,,, ') 40. S 2. t, 0 I Y. Y go y 2 7,o / T. i 3 ~ 'y,, fac ft a.o / (.17 'i 's g o s,90,0 / 7. 4.5 'I
- t. ;
6 1
- i... - -,
{*,,.,.. ..,.,,.4..,* l ___.,.7, ,.-4.,, _y_ .y.. e e. A g _y
w-vywr
.., = ff- .1i 2
- A
., y 4 I .i ib d ? 3 i J l '.1 et
- 1 i
4.2.1.9 valves with h rators The eS.stence of' an operator attached to a valve creates additional b=ading and torsional moments, and therefore greater stresses in the pipe. f for spacing, the total weight of both the valve t body and the operator has to be considered 0 find the K value, and the==w4=n= W = W ;+ Wop to ,1 / -i
- t span L.
'4 1 J 'g s l 1 4 4 4 4 J + eomes .,m,,_ .ry:-9:.mqq.7s .v,q ,ww e a f i* -@f i 994. <h m_> +
- I W S*9 e eyeimy
.3-..,.. -.,,,,,, g 8 f i
umm.. _. ~ 2. _. ..4 _ - -... Tr I I i O -3C-1 In addition to the stress vaine for a valve with the total weight concentrated.in the center line of the pips,. which will be ss = 0.6 sh, we have to I consider the stresses due to the in-plane bending soment: h z Ecp z s 3 = b .1 * .s i where h = distance from the cantar line of pipe to the ope'ator center of gravity; i acceleration in gravities, along the s = 1 axis of the pipe; a=4 the==t-1 a=e to==ional oaant: O 1 E m. hXsopzG j 4 t i wh~ere G = acceleration, perpendienlas to g the axis of the pipe. I The total additicnal stress, due to the operator, i will be g ~1 s = s + nga b op y 1 and if we add this to ss, the cz:iteria of seismic allevable streds est=M ' =hed in
- 3. 2. 3.1 shall be met.
3 1 i 4.2.1.10 Bestraints on the valve body may be requested by the vender if they can't meet the specification requiresents for the seis=ic conditions 4 9 m G .-,,m --,w
t'. * ,[j g q.
- ?
..j }a - 2 7-A M i (accelerations, natural fragnancies). l i ,g yj Bestraints on the va.17e body may be reguired in some cases, to meet $he pipe' stress criteria. In I a such cases, the ve'ador has to approve the location 2 of these restraints and the =* v4 ="= reaction forces have tc be provided to the
- vendor, for
-a consideratina. This structural anchor point for the operator support shall be located near the st=actural point for the supports of the valve body. shis will prevent relative action of the structural anchor points during seismic events. The valve body has to be supported on each side, by two mutually perpendienlar directions, as close as possible, and in. addition, the pipe run has to have an axial restraint. 1'l 4i
- 4. L 1.11 Directicas of seismic restraints At each location of a seismic restraint, provide
.t 1' i two antaally perpendienlar restraints, normal to the " pipe. At the change of pipe direction, one of the restraints should be perpendicular to the plane i I which centains the elbow or band. l I I m i V Y i 2 ] 1 . _,,, 7;,, -,, - - - _ - y -c.
a } ~33-i O, 1 Q,3 4.2.1.12. Axial Restraints For straight sections of pipe not anchored 5nd longer than two span L established from the nomograph or containing concentrated masses such as valves a.no/ 1 flanges, provide a restraint parallel. to the axis of pipe. A lateral restraint in an adjacent run may ? act as an axial r'estraint for the adjoining run if .s i it's located near welded point of an elbow or near the weld point-of a tee. Do not put two axial re-straints at the same straight pipe run. ~J ) If along the pipe run there is a concentrated mass, 1 axial restraint shall be used, with lug attachments, j closed to this mass. If a pipe run perpendicular to two adjacent pipe runs, is shorter than two seismic span, L, it can be considered as a concentrated weight. The K value for the reduced span is given in Chart No. 3-A. The K value will multiply directly the length L es,tablished through the nomograph, to find the reduced' span 1.
- For piping of 3, 3-1/2 and 4 inches Sched. 40, and for piping of 2 inches and 4T3f.1,with socket welded elbows, K will be reduced as follows:
. =-.,. s. 7, m --.= 7. n -.,-. m -m ,w ,y
T:.. ' T.:,'.. ~ ~... - -. '.. .--s,~.: _ k *. '......G -;-- ~'-~"- - 4 -1 i ' l . - 3.9. If the horizontal line for a given al will inter-sect the upperAound of the chart at a point beyond i i the actual Kw, read the K value corresponding with the intersection of upperbound and actual'Kw value. f, Ifwillintersectwiththelowerboundatapoint before the actual Kw value, read the K value corre-sponding with the intersection of lowerbound and ictual Kw. If 1 4 a, put.an axial restraint at the riser. \\ i Length of Span in all Three Directions 4.2.1.13. The span between restraints is not necessarily the ,O total length of pipe between them. i It is rather e ,.I. l .== 5 i O ~ ~ - - ~ ~~ ~ ~ ~ ' ' -
.m. m-- -2.^...,. - " ~ T ~^...:= v& & v.+s:~^. -:. w.^. ~..- p. O v 'q -ds 1 .y' d the projected length of pipe which provides lJ flezihility in the direction of seismic action as n shown in the following example: /... - E Cr 4 1 .1 Y .a 4 f _.j 1 N, A i. z x v .d u 'N MF L O seismie tirection z y z Lenght at span A+C+D B+C+R k+2+D+E i. i
- Bowever, in z direction, the weights of 3 and Z
- weights, in y anst be considered as concentrated j
directica 1 and. D, and in z direction C, and the 4 support span reduced appropriately. Assaae that a l the total length 13cDE is 21. The two restraints provided at mid-span of C any restrain the piping - j in z and 7 Ent in z direction this piping is not a l restrained sufficiently. An additional z rest %t should he placed adjacent to the run C. 9 i - t ,j 1 O n -. i -j o .I j I
_.m.,.. ~ _ _ _ -,,. _ _ _ _. _ _. - - - - ....... _.me. _.u.-... .-m_ y i '1 s k 3 -f{- lj t .E 4 t. 4.2.1.14 Laree radius curvature i -{ For a band with a radins bigger than five times the ] a nominal size of the pipa, use E=1. In such a . e' case it is recommended to locate a seismic restraint in the middle of the band, perpendicular + to the plane of the bend. i 1 ~ i For continuously curved segments of pipe vith a i which very large radins of curvatura (e.g., pip ng 4 follows the curvature of the reactor containment 3 building) use the spacing procedure for straight i P PS-g t e r I t
- I,.
G - l I N b g\\ I i s I t
- ~ ~ - - -
n, e r
,.n,,e
i.a..: =. ...a-. a. - ~~ ),} ...;.;=- ~- .-y. .j .'3 ........ ~. -. 9 - d?, -. / Load Calculation for 5 #WML 4.2.2 Deadweight and Seismic supper casos. i 4.2.2.1 Calculation Formulas Deadweight and seismic support loads are calculated for the four cases shown below: i Case 1
- 4+ 4 YL-bR
.e
- l Case 2 A
a c a N4 g: 'W L Q,, CL
- i
~ bL be _ l. Case 3 1 A B C QR g i 4 a ", e i d4. 4. i Case 4 ~ ~i A e c ' a.u s g, y } C4 G4 4 Qt _ i ~ ~ i
- 0. R.
S = "[N /-R sh ) .I j 1 d, ~ }; .----w-. ,.g,- g.
i 2 1 1 ,O Os "'he following symbols are used in this paragraph: - deadweight support "B" lead, lbs F ] BD - seismic support "B" load, lbs F. BS - deadweight support "B" load, when the pipe F lb B distributed weight w = 1 ft - the pipe support span b'etween wo supports 1 (A & C) next to the support "B", ft - the pipe support span from the left side 1 L of the support "B", ft - the pipe support span from the right side O. 1 R of the support "B", ft - the concentrated weight from the left and W ,W CL CR right side of the support "B", lbs 2 Deadweight and seismic support loads M QJ be calculated by the following formulas: ~ Case 1 =. 625' {x w , fay = l. 2Cvi +
- Fasx = 1.2rw ($ e Q) Gx =. s 2 r$< was,
~ f .fssy = /.2 7W Sy = = 62Tf a de C y .ne.2n M n.na-.s o ) /----,-...,
..L:.L u. a.. ~ ~
- i l
3 3 A'10 11 & ?. s 2 r d w + f/gg= (.. czr d v. Waz ft. 2 Case 2 $L Eas -(. e as-l< w + Waz.<pi ) cx 4 a N Fasy -(.s2c2-w+ We:.fL) Gi \\ -l hsz '(2'2""+ &9s) Gz J Case 3 hp =. 62T$= W +
- s. C2C$a W r Vc' g (/--$g)
.fAs uf 622$ W + $cg[I-))plQ a Fasy =[c2rd-w + %(<-fgcy i fe.sz =[ < 2rd-w-Wa,epy,]Cz Case 4 9 Fan = carbw + Wu.A +We,(1-pg) _ 5s,fC2:!-w-LJi.+V2g(t-),gCx Frs,,[szrdew., yf pi+ yt,g(f.pgg, k Fas2 =[c2rd we HLpfe %(t-pagGz ~j llCTE; b EA.pweicui 4o45 a gg iue gg gecj ca use,zup,{3 v4 ty i We will accept for all 4 cases the general formulas: o.j (a) 0.625 leg x w F = BD (b) 0.625 leq x w x c
- 4 F
= ] B5 l..j 1 4 . =, "h.
.-.-..._g. .._._._.,..u2,. a 2 1.m.._u 1 4 1 -g i I .-Q leq - the length of the straight equivalent pipe, I Where i with the distributed weight "w" which acts at the I support "B". with the same force as the real pipe t f f I 1 i l 1 For the Case 1 leq = 1 i t I For the case 2 leq = 1 + 1' l W x$ CL J L where l' = ----------- "'i 0.625 w .i For the Case 3 leg = 1 + 1" l" 1 (1-pR) W CR = ------------- S where 1" 0.625 w A) 7 s. For the Case 4 leq = 1 + 1' + 1" t -t etc., the length has For the pipe with elbows, branches, i 4 to be calculated as the sum of different parts. t .d length calculation for several schemes are shown in ". 4 1" The
- 1 1;
Tables No. 1, 2, 3. ) span in direction perpendicular,to the support load
- ti The
-1 ~ should be considered "0" if the pipe is supported in q this direction. The sample problem support load calculation is given for I i . -.;j / 4. i the 4 Cases in Table No. 25 s . i V) i s 4 t 4 h e S.'l t.) ij .-.. =. -. -r: r
- '*~~~-aa
..~ - ..........--..ee--=~ i ~ Gibbs & Hill,Inc. .i Gibbs & HillJob No. Client 3 @y Onginator M C. Date 6. p. f; Checker Date Calculation Number Sheet No. of o., , i e 3-4 s e e s se .c, TAbt.E M7.l .3 A Susiect
- f. e see 4 8, es teu da iroso (2 enm 006 Gn
~ i i i T T '~ i-T T - '.' \\ 1 i* i I id i l s {f. re p ) r= 11 "' I ! IiiW t *' 4 i , T'P I-T T i i / i ) 8 i l i l I I I I f i .._.). t _ i. ' ) l _IC ' i l' ' I i l%_ .' 6'I i t l. Cat' 4 fp. ~ i t e,,I i ~ t
- i
., e l I 'iil P i_ _'
- R, L
i I ' j i /l _i i, t , 4 9.g. d..I . g I I' ' i l l 1 l l l l e : i i i ! t 'i i i i i i l Ii. l.! !_' i i._. +
- i. i I
- n 8 i
.I I , t f ~ li A-s.4,.K_ --p;-- 4 ~/. f._, i jCg
- y,,
t -yi. e7.. i : e t i 6 i t. igy2 i i
- ,_. c i.
J - =n 7--- i = ,r - i i -O. _.gz 7 o . M,. -[ l 8 'Ee-" i .6 s _( 4 .i (t .f E.W..A 42 ~ ' i i i i , i i..,i, 4 . i n e, #2ci.9. 4. a. , i i :, i i ;in __3 ,A c 1. . i
- tii, iiii 3,e.y-r i
D ..; C-i s - i 0,f_ IE i! i i t i I
- i...'.
i. 4 I
- Lc I L 1 G. C. t
' i i i' _r. i i i i J,a i i ! /.. + ! I I la J 164. ' s i i i (,,,, Q, +,G +_Q__A /,g ~ i : i l, j._'. i i i__ st - i ! i ! '
- i pi-t; I
,9 " a, I I i l 4.,i e-> .i y .,.Is._ k.s h. t- + e' A-4. l 1t I Wif I i / I i . t.- , i, a, ! l f -. L
- i!
_I I l bl i i ! i i i. I. F _I i i s y _Z '; a, l L.. _... _.... _ L_._}4= - M '. f,. ' - * ; ;.;. t ; --*4 ~i h- -- ' -- - - - - - ' ~ ' ~. - A ~' U,..) 9 ). T . , '. ^t
- 2. 2.:. c' ~: _._.
~~ - ' ~ ~ ~ ~ a_ i i i_
- i i
i i Checki Method Ar ' i * * "* - 2 a"n eu meC.ama.statenuaiss.e es F-166. ~' 80 s e c.r ._=,= ' e_ .g._s. --c= 4. 1 -l J - -.w, v p - -.
- ame _
-.---,.s-,; ,,._w.-
_,,_---__,__..,_.__-,-,,...-_--_.,,,,._,,,_.,._.y--
-..~ .. -.. ~. _..... --- c.c - - '6 -4 7 - i Gibbs & Hill. Inc. Cient i Gibbs & Hill Job No. l; p N' Originator M, f Date G. S. $ f Checker Date Ce#' ion Number Sheet No. of r i s s a t e e io W m =us. AS!.E NO-o=== $25^^ {.t ne 4 f.le Co. f e v (e i/Ou ( L u ke ed. /b 9 l ! l i ! l I II l i l ! I h l l l C I l
- D j
, ~** W. - ~- I
- I i, + T*.
t iv: "' "y y __ t l 8 t l l l l l. ' ke /. un l e i !. '.i. 6 _(r7/ f $ ;- .i.14 i 8 3 t '8 x' ; 4 c : i Wa* i i i 2.-i< . a/ --'t i . i j ,, A.+--u p, p ,, i -s ggig i L~" 'j : i.i i i i. I
- f. 4 ( 4
=. ,r T - T" _! -' T_ _ _I __., +. -.p i e f _ 7 4 C.:-.,' H L ...i. ... {..._.4.g'.---. gg p.__:.: ___ _'_ _ _L. _ _. _.,.. _ __, V 2.j _.,+ ._4.__. i : O .~ ..gg 't h + '*-. l
- 6
'V.../d.1 u '.. e<.e. :_ n / L t. / _s sy' ]+ g ~ jA '. / - ~ ._4 .r >f ii 5 k i.t_J '4 4 8 _ _: / b ._ i _ __ ___ A._ A i ig l] l o ./ /u 1 _ i~.F <d _f_z &. ._f Z. L 1 _A L.
- 7
- 7" G :h G.
5 ~ __b,, - e _.._ _... .} v_= =1.~_ 7. ___ __' _ _U s a g,- A/ I _. M. l i i ..J., 1: .2.Ceu'.L'u 4 . Ji't.v. - _ o. M, + M y +_.Q f P_r a kW- ---L.L W-
- 4. t _ _.W- _ - y
&_ I.f' N : - ' y., __ _ g;.wQ ._y._.____., 2 .s,. y .g _._ _.i s _t _,. g. .t._ 37..j.... ..+:._ (- .i._. _. _. i2,. .c .4 4 r.. ;... .1..a_ L __ _.i _.; i!;2 I : I ! .I...l.l.}_.1 !. h - . Ll.d.O. IgL.i._!..L 1L..:.1 L.. E ' ,'u=*'***_-_,,,,,,,, F-M 3-80 Checking Method a w_ -..... -. -,'".i_-__ - . - u .l O"W" PM**3.m.=. ,g e '#8', 8 g 6 ._..,--.-7_ _ _ _ _ _ - - -. _..
. u - ?_ .a_ c. ~ =... .. __. n,- + - - ~ _. _... 4.,< =. .a; ~ 7 Gibbs & Hill, Inc. 4 C11 ant 'W 9, Gibbs & HillJob No. M.G Date G. S. A l. Checker Date Orginator SheetNo. of Cerlation Number 1 l1 1 e ij Subject i _ e s. o i.4. e n t e.u <a.1.* hu f t u o se t st. S *N ThtssL3 j h i I l \\ l 6 I i _.,i.i_ _ 11 I h l Il !fiI"Ii c l I I 'o i ',_ I
- lAh' 1
S C Ach.f i .i i i e ! I i
- 1 i i
! i! = t'..:r t(st A '.' i 1 .t :a_ N i. c a.JLi ' A 7 %g. t g.' -42 i+ {4g_+ g + Q. i
- r,
i .I w i ' V'i n.T* u n. i i !.J T~~ iA\\ t -\\i_ \\l, \\ ~i i _a i 6%/ s i. ,- > r.y,!. t D,. , w - a + 2 P /A;.A r c . __.,. ( _ w ._2 4.. _,\\. 1 ; i o 2_. f k t,.4_,8.. _N._ / P 2 di e_ af_ 2-n u .a.,,x. fa. '3- ) ' ?, I __I .i.._. i J. ' i 'E.' __ fAi CT_ i
- 2. 4 l
1 L.;...
- p._.;_, /._., LJe i '
- 2.!
.2. !l .2 .4 _c u _ e e en i._ _._ _._2 L. ___ % _ __E u_...tn.... D /. u_ 1 + + 2._ .g! -u i 9 4h. _M..
- 9. h'._
..---/_[_p.. ~- i l y , _( yy__. / ' 4. - 2%- t G,__. _e_Q..L.... A... r.. 4 - - _ _.. H z _,..t._ z.. i 3. _ __ ___.y_A__,___._ = _ =. - .o.. Fu. , t. 4 l' f'
- MA L;
If_r3.;. > s e a t ^ / - _ _t._A_ i _.Iz r _ _e -f= L Ear.(2+ . j3, m. ] m, _. _ _ _, _ _. -.. w~..ra,/.x~ ~Q.i._tpz_t + 2t . W fii '4.f.. 1.. 7_Qg _ t_. ~ _.63.. c i s:_ g .n 1 / t_.._, '. _j.f$p~ f8s +.. sf', 42, l t>- / n /._ f- 'L J .. ' :/-- f 7 ._. 4 7 J a,._. __ L _ +.,4 +. g,., -k -k.< A t. i J. i + _ r),, 3 ,s -4; a. AR l > w-t .i %: n. .,. _. __ 4__ ( d dc. e, q,.w, ; ja i. e a m 4 y e [ Y [...'.__ _--"..#* N _5 4+24.+4 if P i)/F i i j l) . _. /g _ C t;..J S......_ _ _[.:..d7 -.e .g,.,.g.,.c ,y j, ei ; A. 7 p .i k l Q,. a.1= x 4:.la. . _.!.. _ Q z 4 a q,.f ;; p j/ p p a Li oLii.t 7 .1..I..;. }.b;_. j- &7 :... !._; r; . 2 i. J6 I i_ ....n 4 wng u,inoe, ,me e.,= i.an, su I a j I --- ~.M a p y __,p(,, ,_.,m_.
s.. s... Gibbs & Hill. Inc. / 8 Client Gibbs & Hill Job No. q"., j Orginator M. (, Date (, S.ii Cr,Eker Date Sheet No. of C=bfation Nurneer 4 s ,o n i --.i
- 1 subiect leadweres+ sud s eit w,t suaem+ C&
cat'eutefien. ,;w g ju...!; g 3 e T r 0 9; -g .E
- f.,,g..
g.. 4 'j y p. g j.... 'i . 3.w=y.+* .3 .g. g .-.r .u ~ g .y n .y.. [.. 3 Q, u .g g,g.g .g...... ._. _.C....e1 -c0 o.... . -.b*.. . g,..T. g. .( s. g L .. _M... 8.R.E q g .e t o m J m. .. D..'O gu o ,n [ xM 1 s .R .k, k, j 4.f g n m, ..Y t h. ?* . -. 4 a .c E V e; 4o GS u y vs ~ i'. % i t, u = I hN .'d d g Li y
- 3.. % _ n E., v
=.o. m a . = w. .d k. ( (. s g I I N -w _M D . J~ 'M 5 6 \\ C\\} M s Nw e ~ M .h M E 'N.g 4,, -~ e f % d 4L> bQ ts q T gD 4 v e'. ,. i r ..L. % . m .,0 AW,.4. 4. : c' _Q, i. e s ~ ... h.C c) ~' .g.. w 'M i h. 4 .4-6 N y., Md N. .w ,.,3 s
- ' m g
[ Q -%g $f,n k ~ a N 4 m+ 1 gg Checking Method #
- mm p.166. 3 l
- s.==.=.==. ha=-u ='===p i:.p
,g .r.. O- .y 'q e. a
.----,y.-----mrw.w-r w
v e -e- -w-- -w-1 m- - > + - - - - -, - +s---
...u . _ a. -... _ _ a =- ...._ y- -._ -= O ~I V
=
J I a l 3 .t O. i 4.2.2.2 Nemograeh Method . i The support loads for deadw'eight and seismic can be 2a established through the nomographs Figures 1, la, 2, i which represent equations "a" and "b" (Figure la is an enlarged part of Figure 1, Figure 2a - of Figure 2). The value "E " can be found through the nomograph Figure 1. .~i B "F " depends on the ratio: 9 B n ng C "1" and "l' (l")"
- O q
Use the upper part of the nomograph for case 2 (the 4 concentrated weight is from the left side of the bj support) and the lower part for Case 3. (The ) concentrated weight is from the right side of the support.) Use both parts of the nomograph for Case 4. The values "F )" (deadweight) and "FSS" (seismic) can be S found from the nomograph Figure 2. f Use the right part of the nomograph for determination of "Fh", and the left part for determination of "FeS"- The value "F,y" depends on "F and V, ce vahe 4 [ 8 6 depends on "F3y" and "G". .i i O t .-.s.=. ..... _...,.. =.
+,---,7-
.---w--- g,-r- ..+gw.
^ ~ ~ T~ .s. m..-~ e... w.. u x.. a ....-....u.. .a.. . ~._ r-O .i - [C ~ } j G. 4.2.2.2 Nomograeh Method .i The support loads for deadweight and seismic can be 2a 'i established through the nomographs Figures 1, la, 2, i which represent equations "a" and "b" (Figure la is an enlarged part of Figure 1, Figure 2a - of Figure 2). The value "E " can be found through the nomograph Figure 1. 1 B .F " depends on the ratio: T B n ny "[ * "1" and "l' (1")" i C - J . : O Use the upper part of the nomograph for Case 2 (the concentrated weight is from the left side of the ] . j support) and 'the lower part for Case 3. (The f concentrated weight is from the right side of the ~i support.) Use both parts of the nomograph for Case 4. The values "F )" (deadweight) and "FSS" (seismic) can be S found from the nomograph Figure 2. 4 l Use the right part of the nomograph for determination of "Th", and the left part for determination of "F y". a .t the value " Fay" The value "F,j" depends on "F " and "w", 6 depends on "F3y" and "G". 1 , 0 o i s ~,t -l I a ._r.. ... = _.. 7 F
/0 -$) - ie ' J. i Q ( Fg P,e 4 h 6 l l t j I (F1) (L5]t i 1 ( 'It I I el l ' l 4i j i I L., .i y. i l VI 1.1: l i I i I l / l fi i i A:/ ) /gf y l a / A / A ~ / / /,/ \\ 1.!i -"I 1// fl M If l L' yy y y,,. /X/# XI M t I a \\ ////ff-fIW i to.. i I i y///WW M il G-d. k o ffMM-7 >HI 1 1 ~' t W ',' 97/fML.wn I \\ t t Il s, ^ s V/Am ~ u
- ,0-ve ! I I I i i i I
,t i : I ! . uc I ir i 1 i l I 3
- l
- 1Q %'I 2D 1 i Q 5'l 6 I I 140 Q l I 50 e_
s t i e 1 e i i N 8 _ LJ.E is %hANZAl W1' i i i NN hNTh h i I m.s t t t l yn. NPNN M I N I AK'NLN Mi N i i - l t i 90<.-l NXNN IN I h a t ~ - xN%iwixi t i ! e i +. 4 N N N K i T-h NN Niw, 3 N N-. x i-4 r
- l N N 17.s I
\\ l I N I N: I ~ t l l i ii' g Ng 7.a i1 i N i 1 g pn. 1I I i l i l l l i i If Fa t-1 I l I I I I i 4 ( -l (FD (LB) WTi j i 1 NOMOGRAPH FIG.1 g i. 1 w wes enaneausans i ,{ +9 -e-. -.M y.y " ~ m,*ner; -~7 p py y_ er -.- .-n. .g. d 4y s' g ~ 'l i 6 ...n . - - -, - - - - -. ~
66 e e@*D-e e h46 4 eWM s s'pg8 I y eene @W to@$s ,duw ed4 a= '^ ^^O-hida' O 9g _a g a --a - 5 2. - // f l' (FT) s,... \\q n 4 7 j / .R 1 / f 77p/,. a / / / / 0 /// / / d ' // // / / -1 /, u/// / W / -/, / M} (// /, j /' \\ /l - yd // sf///A&CSN ?
- M' s
= o A M, 8P i w Nx'N; I i i A M .bk s SW%N, s c s\\m x NNN N N. \\\\\\ WNN hhN' xx-et eg'a O e e cer> NOMOGRAPH FIG.1R_ 08/04/01 CADAC/3321/2523 = =. '~. ,3 4 ~
_ my _ ,i 6S' 12, 9 l i ) O. o i. k. i Ea. c i C e - l e i o 1 OE em. O z e. Il en a ~ I l* I i 'l P i 2, I _,6 g "I T 1jl l-I l i "l " l 'NCWA%JN N K A X X N IN I1 f\\ l 4 T i 5 =t Xt%CWNNA K N N N NI\\ l\\ l) ! 1,= ~~* d NhvhNXX X l\\ N \\I \\l \\l Li .I 1 NAN %ANNN X IX I\\. \\l \\ \\: l\\ i l- 'hMhNWTNA N \\ \\i \\ l\\' 'hhhWh N X \\ !\\ ' \\ u t u !\\ I N \\\\\\ o I l 3 I Il I i t i II i! I I I IT'AM t I ! I 1 1 I i 6 ! I i i i e iii f L ii I i i i I i 1 l l a! e I i io8 : Ie 'eI iie: iA i-Iel' I Ie1 l i f fg I = 6a 5I a aiiIa: 1 ia, i Ki. I l i ii l iii i i i ii i i i i e i i i if:" Pi u l l l 1 1 I I o I i !ft iI e ii I ) i I l 1 I i i i i Ifl l I l/i ////g D ~ ij i i I I i I I/i I I /i / V///# e i j i I L fu I I V t/ A/Hil F. I i i 6- /i / / //#l - e ! i i / I I V; i / / ///# 1 f / l i V IA /'/ //// i "f e .l 1 / li/ I. I ' /. f illi + y 1 t/; I Vi / l/ V /// o 1 = d i / /l t if / /A/li: I a l / I i/I -/ '/II//l i i e / i l
- VI I/,
/ / /.// ;I s i / 1 l i \\ l /i V 11 / liff
- i e i
'/ / E .i / / '/ / 1/ s / fl i l c. / /, / / f lit i i i e' f I / / ) till l i E / / i / / / / / /ft-i i i E 1 / l'i / ) f f II, I I s / VI J ) ) lit i I t i 8 / / / , /. e / l. I'l l I e' 1/ / t VI / y'/ ft i i! Ea i i = _3 _ \\ / /' / / / /Ji ,t l / / / / /,l. /6/ i. i I 8 J5 / / ) J f J al f ' i I 'I iI 6 l e el 5 *e F iin v i I I i I - f )k .r.... w __-----------,--m-- w
ar------.
er
b a-Aease&W&+--7 W h,-_
- +h e*
- Sa-g W*r
.S
- M 9
e&*g .,g,g e $p ' ~
- ,}
.,u-a. _ a w-m-- - ~~ ~~ ---- - - ~ ~ h $~k - a ~ d I e ] o/ 4 s. m y = L t = i
- 4 4
c 1 -i OEC I w 2 1 m d e ~,y x x N XN \\ \\ MM N NN \\ \\ \\ ~ i w&cKnN N X s \\ \\ Mt;-edRRWNN N \\ \\ \\ -r;::ssss:kdMN\\ \\ \\ \\ o ~::sesssi:SANN\\ \\ \\ ' ANNA \\\\\\ NhNs\\\\ ~p I 1.4 g n f////. ,R l;
== i en / //N/ j / / /////
- i
/ / ///lli / / / / //ll ) ~ \\i- / / / // lill I f / / / // /// ~ ~ / / / / lli ll 1b V / / / / /l)I 5 ..~. = l l 5 1 .J ~ - ~ ---.--,.c e r--- ---mv-
_z_ s.u . _,....y_ ._ a ;.. 7. _ a. _ _._ M '1 gg-- s ,D s..;> ] The sample problem for the four cases (see Table 4) is s shown at the nomograph (Figures 3 and 4). i .The step-by-step procedure for case 4, for exs=ple, is as follows:
- 1 1,
Step 1. Calculate the ratio W CL 211 22.38 (ft)
= ------- =
w 9.425 i ) W .211 CR -l =..------ = 22.38 (ft) w 9.425 1 L..' Step 2. From the nomograph Figure 3 with the above values rx and f = = 0.5 L R find l' = 18 (ft) (Upper part) ~ 1" = 18 (ft) (Lower part) 1 Step 3. Add I l' and 1" l' + 1" = 18 + 18 = 36 (ft) Step 4. Connect by the straight line 36 (ft) 3.8 (ft). and l' = I 1 = 25 (1bs) Read the value of F = i B 0 4 t = , :*~ e+=* .m
..- = x -..-. -- .u... - .. k ~, _ _..,.. - - . ~.. \\ ~ ' i n l0 .;l J UL 'b - hk 45"iEM41t.- N ,3
- s. 0 y%
c4 c..a y-2 Fe l' h I i f l i e (F11 i j (L5Jt i i i Rih i l-1 I i I l i l i ..I J l iL i T.QE2 i l 1 i i-I--i-I d d 5A 2. l l l MD A I t it.. i t i <, y ,4., i t<y- ~ g g I VI 1.8 J l I l 1 i f l i l l I f i fi I c 1; i 1 : tn V
- )'
t I t t i /,/ y,, ':l t A A / IA tM i a , q t 1 I /1sr / A i 1.'i t/M/ MIMI.. { 1: .I I i i ,,1, i l t4/pl X Wi i _.4* i i i I I I 40- ,J f i si '/fVf MI M I I -.I i i n
- LJ T I WX/M M l W l' a-Y / / / W W M i i M __
~' ru o 6 s
- h2 X
Mi W 8 i i l A., 1' I iI I R i i i ~Af. A.w H -t * ~ i ,dbsMWJ <3 I i W j jF ~%C ii! MiVff#D .T I i I il i I i i i i ! w i
- i T-r r.,ii
,iI i eiI Y r "J i i 8 O l l 51 i $ 1 I4D t I i SD I i ~ l l l 1, 6 J I l' i 4 I i i ' i ! ! i 1 1 6,, i, e Ylg l NT ~, Qi I ! I iWii ' 's (q' ~~ ~" ./ I ' WMMMI IM i ' t : 1 1' ,i I .J 'l 1 i NhAAN lh i I N.8 i i y,,, \\WNM NI N .I. I i ( ,,(, Ii i i WTMw hi N t - i i a 90 i i i \\\\N N N I h - 4 i I ( t u NKiwi M l h i i i -i i 3 N'% N I X i T - 3 o
- i M N TR I N.
1 l i j t il% % i K l'I i l i 1 i 1 I l I i I i i N N l7.s c, i ; t l i I i i i IN I N I e
- -i iI ) ; i t
l l i N I'? 1 ) ll I ; i i I l I i l i I I I LN _i ] 1 l l l l .g i i i i l em;' - g g I l I i I i! I I I t i I ) i f I i i i ! I I h ,t I ( i I I l i I l l ' l t l l l tf l 1 l I I i i l i I i 1 l i ( l i i l'31 1 (* 1 l i tr1 (LsJ (FTl i
- 9. 0
'l f f 06/04/01 C80nC/8343/f323 't I
^~ ~^ . ~. ~....... ~.. ~ .a - J E7 - /2 i i deH ..I d,ou v i. i. j 1 [ l i 1 i i E 104 k am. l hoha@k ( Aut. hl tdtuMN-t ysh"5 .t 1 m " l '" I 'l f %I d g ~ l Sl 7l
- l l
- l 5
? '%cNNAwAA TN X X \\! N : T " iT T : =t ~ .i 8 '<N}LRAINN 's N N i\\ \\ \\ f\\ l \\! 6 i I '<%h NNN N IN N N \\t \\l tt
- i L
-NANNsNMN. UXN Nf \\ l \\: l) : l 'h%AMNN% % l\\ \\ l\\l \\ l\\l l j 'hhNWh N N K !\\ ' \\ e l \\x i i i A% l l l i ( l E ,I I r i i p Le I i i, i l i i ei ! I i tii I, i l i ll l l ., i. .le o1 1 Ei l 5 ) Ei aii I; 1 IE. 'ti iG - l l EAff)) ~ =
- 1 I i i
i i i i ' ;l I iIf 14//( I i l i.I !ft il /1 ff/g~i% i l i I I I I e I I I i 1 I i l/s f f//ll T 1 \\ li ; i l/t l 1 l 1 1 l i/t s ' I I fi / '/ N/A e i f I Vt l L.) /MI - A l Ve i is .i fi i l: /i / I/ ///f/ ' e f I 6 /: I / ; / ///H i EJ l i I / ! i/..uA / V//Il i e! 'l i / 66. I t /. / /Ill a / 1 i il t/ / / ( #l i o r / t/; I j / t /\\ \\ \\\\A / / } lll : 1 V i i t/ I / ' /i/ Vil i i e / / T l /; / fDr T / l Ai '/1 ) I lit t I e -i / / / 1 I/l /- / i /1/ j l t.: l / /i i / / // It i i e' 1 3 / t / 4 ab ~ / t
- /
l / /,i t il / / / f I' l f i-I t 5-fi 1/ ) f f il; ) i e = _I / / ./ /i / / J l'l i i i i E /. / l/ I / / i/ / J I I I /\\ Vi \\/ V fl fl . ' I 8 ' f-- '/ f. / / / '/ / /j iii'i
- J_
\\ / / / ) J[ lll l \\\\ 5A* 1
- 2 0 i
1 {_j_j l t f / l } 1 i 1 e . r-p io i i i i I M, e 1 e
- a.*. ;. s.
...73..,,...,.. ,_.._.c._,.._. .,,y.., }
,= -.-.w u_=... .. c. :- u. v.. uw a... .....w. u.~. I e ..'.4' t ) w n m w '~ '11 (N N./ - .-) Find from the nomograph Figure 4 Step 5. 9.4 M .I 25 (1bs) and w = ,il for F = fr B 'J . - l' the value ..] 230 (1bs)(Right part of the nomograph) l F = BD Step 6. For 4 230 (1bs), and G=3 F = BD i find the value 700 (1bs) (left part of F = BS the nomograph). ~ t t S e t 1 1 Y Il i
- I w
s .1 'a ,\\ e 8 1 U s 8 i s I 1, ' - .i a.
- 7... - -..
- w, 1
,3 ,...2__...2.. E 1 i = i ,1 i l 4.12.3 inchers er eouissent nozzles addition to the loads given in 3.2.2 4, we have 7
- In to consider special situations.
~i a concestrated weight la the first spaa, & SbNI a) d r O f c _\\ L.). wm n s y 6-L a E' The reaction fa=ce for the seight in the mid-span is apprazimate .e 0.7 RL G 1 = C ~! The nazians soment is 1 t 0.1924 EL G E = C ,g c. -] i . O l t .i - - - - - = = * - = ..~ e w ,.,.-,,,e -~
'~ j ~ '~.. C '.I.': 1.-- :..~ -..-' " ~ ~ ~ " ~ - " ~ ~ ~ .. ~ ^ j 1, t i4 l ' t. i A O' ~GO- .o $5 c; '4 .1 h b) Effact of a riser (see figure paragraph 4.1.2.3.6) ? d i
- a i
The reaction force is: '} 2 = J WeaG : L 1 2 L j .s The acaent E = 1, i reactions are in addition to those .l: All these A given by the unifora distributed loads., n y. os Thermal Irvansion and anchor sovements 4.3 'i Thernal Irvansion Icos M
- 4. 3.1
'In cases where the criteria of fleed w4 uty -.I '.J (3.2.4.2) is not set, it is recommended to create a t 't d; loop, which provides additional fiev45414ty q K,L g 7 d t L d ] i ' l. KzL 3 .i N .4 4 .l p L a 7 T_ j
- 1 r
to the piping systes. .2 The required height for the loop is given in f i i ~I
- .);
-l - - ~. m
u.:.um w.;
- c..
..x _u-..... ~.-... j i O~ -6I-Chart 2-2 of Appendiz 3. 4."3. 2 sinimus sean receired l The minimus spaa required to abso=b the expansion by deflection, which is e stablished in I can be read in Table 1-3, paragraph 3.2.4.4, i Appendiz 3. l t The tatie is based on the deflection , o.D. of j
- pipe, 1 = 30 x to
- pai, and an allowable 3 = 10,000 psi.'
/ To calculate the expansion, in Table 2-3 is given "N the thermal expansion of different pipe materials in in./ft, for different temperatu:es. For two legs adfacent and perpendicular to an
- 0. hd I
S I-g k t/.,1 t expanded leg of pipe 1,, 2 d,, L1 ,b_ i 1 ~l-l ~ l, _i r i l ( 4 / i L2 4 i r o o o u 16 an the corresponding deflection of each leg vill be calenlated by the formulas G l l I / - - ~ ~..._ _...--..,_ ..;. 5, j I
..n 0 l- - .daa.wh c... 2..g.,, - --- ~ ' t - - -.a_ a _ c
- i e
Q G ?. ~
- T f
For leg L s i <j h = KLt2 g KL)* + L2 Where: j d=expansionoflegLrA, f K - a factor of stiffness, depending J i on ratio L /L 8 1 2 .i .k l .i l i i i 1 1' i 1/2 l 1/4 1 ej i L /L2 i i i 1 i i 1 I 1 i 1 I K I 1 1 16 1 32 1 1 1 I I I O ror seg L : 2 C2 = s - G ror. pipe vita. z sa.,s. Ax 4shd, k& & %d, h s K%k.ki i i . 3 m q %4 L t
- g, s.
.4_ \\ M 4.t. \\ D i A I ~~m 'a .N / _I fa. ( s y. I; l
- t i fir
(%; t l% '!2- ~ l L, /z, I I I l 2a 4s x i 3 }
- =+a
- - --.-.----.----..---.-,..s f.; - f.
^ _ _._l .+ - ' ^O.. "..... +.... ..a. z. =. ; u .:. _..a;._,a.z_.. u. . _. ~....- - -. i, il ita 6. -ca _ l I l s. will be used the same formula, as I Where LyfL2, for leg L3 y above.
- I l
For leg L
- 2 1.
If L 4 L ' Y y 2 2. If L1=L, 2=A~ 2 k For not anchored legs, the following procedure may be used. (Ref. 6): d a-= st t a a f x g u J, Ti y e V T* o (3 y e = e (54) The't'otal deflection of leg Lgk h =. +- e' ~ TR (& /M) Q (,CR @ H$k where: = CX L i 3 = g, _7, c< - tkeuwd txpawdm d To consider also rotation, a factor K will be used cg L, 4 L au== 2 E.
- ..1 4
L/L 0.1 0.5 1. 2. 10, ) j 7 i., K 25, 5 3 2, 1.4 Q 4 .k e, $., l 7
'~' ~ ' T;:... ~* _ c. c
- i-
-G4-3 s e .) M O? 1 wo legs d an and 1M
- f
'I 4.3.2.1 s r 4 d / i K, .M i 1_ 6.1 b.i. I. y, I k L s I t l N \\ 1 7 't 4 o Il0 osa n 2 RW 6 - X O f. 9 $,=L,+Lg i 3 ~~ K .i C' g,=s,_,,-6 %y s. gI + rL - a,.4. s.%.+ da-r v_4.2.v.'. E. - _= d s.2 + O -3' i d 3-y 2 e h 1 .) } 'i j .i ) ? J I .,i I t .1 ,.i 'J'..--.....
... ;.~1 ~.2: J3. a__ [ _1 e -.r-- ^ ^ ^ .... : =". -... . EC *.. ' ~ ' ~. '- * = - .I 'I i l O 9 - 6 (- Supr.,crt small bore vive to a large bore eine a 4.3.2.2 n sL L a amm11 bore pipe to a large bore pipe To support the condition is /g ) $ d .' i /_2 g g 1 e,- s _cp m .i a ssau p:n j c r '(s [ t. L s = a. i a .I \\ f V 3 e If i r 1l J ( [0.Tgc ptpf. J b'f. [ ~; ,~ n.- 9 'I t will be established considering The seismic span points 1 or 3 as anchors. I. l The thermal effect will be considered like in a paragraph 4.3.2 g l {F' W-bl ' ' $n. $,) - F i s l dl L d kj
- pk 2/t N lQ l
M N -i d).- Q) j-g 4 A3 t F.9 2 9 . ca t.n is needed pt k n-e. e ff ac+ 4 _ca s es e, x e. in f,9 2 a.nd f s'g. 3 } .i .-.- = + .s+ .[,,.., ~* ~ I ..-,,-..--...n.,
.....e.. GG-1 i J ! n. Multielane Configuration in Thermal F.xeansion l 4.3.2.3 l For the out of plane piping the thermal deflection will be calculated as it is shown below M Q fl h / N '2 'j ? $ ,/ - / N >/ Ls tr %. 4-6 4 g .i S ig. I ~~~ 3 Gz< b " b Lv + t,. 6 4*bL+Lg, t Ll+i: 4 Lptl o x < La. < 6tn g#,4 _ $ _Q 3 b3 L.2 [# g_ / j3pg3 Lg 4 2. Where K depends of the ratio. L2
- 0 L4 1
'h d2 / 2. /f .z
- 5 K
/ . 37T . 2 S~ ' i ~ I j I I O eJ + 1 , - - 7 3,.__ d
_ l .f G7-4 / 4. ./! \\ l i For the more complicated situation, including out of plane piping the following procedure will be used. To calculate deflection of one leg in a certain direction consider all other legs as rigid bodies. l The legs which grow in that direction under the tem-perature consider hot, all others - consider cold / I L N y 3 Z 2 2 5 X N ' O. b E Lr 7 4 Fig. 2 1 ..1 } i, [, For example, to calculate deflection of leg,,it a , e, -j e v direction (Fig. No.2.} consider legs,Z,j,,ds,,,/ 4,,I-f t 2 ]1 ,/- 4,,l[- m Mk, L. " as rigid. bodies. Legs,,42 .j is cold .l St, = ~ [0h s ? 0 XLr ~ 0 X42 )
- Then, i
To calculate deflection in,M direction consider legs ,, d2~ d.3,,/-[,.[l.r-as rigid q a o bodies; leg ,, /_3 is hot, legs,, /2, / tf,,/3 u l 1 are cold. f.vt, = d -%
- a m - ~ ~-~~ N -
_~ $,.. [ {.~. . __... [~_~[s1,.l.~.~~.^~.~...7.,..'...n..._....,....
..... ~. _...,. ...u..... 1 -G8-a4 'j N ') f To calculate deflection [yt, consider legs ee b da ,,,/. as rigid bodies > 19 is hot, i only leg *43 Oz4 =-43q 'Accordingly [z9 = o ZA, t The actual [i, =j(6ha + Gg i Then the value of. [.f,f, will be obtain'ed from. the.' tad %, f-B, Ne value of L4 min will be obtained from
- ~
the Table 1-B according to the value i
- 5 44 '
St To calculate deflection - 8xi,3 consider legs,,Zi,,4g, j 1,f/[ as rigid bodies. jl 4 o or or j,7,, / - cold. d f Legs,,1 r j,, A Y j,d f 43g 40 d 3 2 j &g -(a% + n ) ~(-s na)=-(uit-vi.;ma) I 9 The deflection of the leg,I r in., 2 direction ~ 2 ] SZ z = 4 Zi, ..i i so r ri or I ~\\ ri o s a, I I g3 V V L. L2 [x 2 2 3 g 2. d z +
- yn y
e g i }Q r i / s ' ' ty l / .] F.'g.3-g,, 4 .y w
- ~**==e-e=**e e
[* D, %. 6 6 pg...g .g,on eq e w ,w- - -,,, --..-----.----,--,---------------------v
y - - ^ .y___ a ...g,. .. wm _ M GG-O The same calculation for the piping at the Fig. No. 4 T -1 and Fig. No. 5 are shown belows, l:] $X,! 'AXLg } 1 t-ij. 3 q
- l Eq = 'b X 2}{
i 4 .J 6x, = - og Co:s d, t A Xg t EXLi=6Xtg S m al., + b Z i, Ca el 4 i}. S = - a94 j q S ~ \\ Exzi *E L W ) t O 4 4 t .i deflection leg "L " in the direction 4 Where yg perpendicular to the leg. 4.j 1 i i .] 1' I i 1 o 4 i v 9
- O a
i 2 .4 t__ .) p-': - ..-w
. l. _,, 1::. - z.~ -...,..__~.~..;.,_...__,.. + _ y o. - d t 1 Plinimum span for branches and reducers. -l ~ 4.3.2.4 .i i [- ,,4_.1
- 2. _,,
L, L2 1 I .4:l J L Re,v. 3 N#anchororaxialrestraint ': j In this case, the deflection ist .er 85 03-4 5 TheminimumspanrequiredforthisdeflectiontaNenfromTab.e 1.B shall meet the criteria L min 4 L1 '1 i Where L1 6 L2 i to 1 0 e S 6 s l + 1 ) +- . h.,,. n
._,_,..m..m,. ...t 44 m 'l 7 /.. e l For a double branch, each leg is ) 2 y1 ~~ f .5 6 ~~ j Li I. L2 s 1 j i -1 . h gu s treated independently: -t ] [1= d 4-6 1 1 f2 = d 3-5 I ,Then: L min 1 4Li s l L min 2 /L2 ~O l .a t
- !g
?i e,. I eI, J.3, s 4
- j P h
+5 .4 e e 1
- mt
.J ':t l a i O q t .O l -[ t! t8 -..,,.f-,_,..
- 8 m,.
r- --
- c sy - -,n
....,,.,p., s I w e--., -. - -, -,, --.n,.-- ~,-w- - +
_72- .'i~ For a tied branch each leg has to be checked and the greatest j t,;. deflection shall be considered. ~ 1 2 1 Ll. 1 3 L2-L-- 1 ~~r -v e ~ Yi I, . 4 L4 4 ( W-L3 4 ~~_ [g 2 Consider two separate connections: Li-3 La + L 2-5 Reva 1 i 4 l d' g1=. L,3 2-5 l L ' + L3' 2 Select for [ 1 h9 larggt value between 1 andol b For the other sid. ~ / E.,. t,3 d -5 2 Li +L3 a 4 ~ [2 L13 5 3 L ' + L3 2 4.-+, H / y. ---p 3 Select for [2[th9 lar egt iw-valve between 2 and(,2 e i For a branch and elbow L1 I L2 m ~- s 2 -3 y 1 8 U1 .i 4 5 L'3 j M -) M - y,. 3..,,, ..s 4, - ~ - - - - -.... y-., e .g
._,..____m._____ "[ 3 -
- i Lj
't ~- j Q., _t -I For L1 4L2 .j i use the formula L'3 d -5 61 31. w3-2 and [2 =d 2-5 h .I 'j For a span with a reducer, the deflection m Rev:> 1 .s-4, +i L,3 x is a function of an equivalent length to power of cubj 3* 5 2 ,Io ,e, / / O,\\ 1 g,, l I b a ) L 2 +b)+3L(f +b) 3 ) .L,3 = - 2 l l A conservative approach is to consider the entire span with I Io. I O 1 ~.,a--.~., __.._.....-._:..:7_.9.._,_..;.._.. ,...____._...__g. ,y,.._.,.._ry..,. y,,_-y,.v_,._y.
..u _.....:.-... a...:.:.. w.a. u -..
- :.w s-1
- * ~* ' -. ~** _a
- 4
=.. ,_._( - l ]f-
- j tl n
- st
~ ,4 'A } .i . 1 I 1 4. 3. 2.. i. Me-4 mum critical sean Lanc.th 42 -i a Wr l 8 1 0 N y m .i i 1 1 ) ono In the particular case shown at the figure above, has to be met. the cri. eria L14.,5.5 L2 t i the straight shape of the P P* "If Li > 5.5 L2. can become unstable.
- l 6
- J I
i ..I .6!O 6
- )
.' )
- ]
j."#' 4 .g s 6 e e - - - e v- .-,_.,._.,_,y --_-_--_._w.- ,,--.y-. y- - - -,.- -,-.-,. - - - - - - - - _ - ~... -,., - - -
4 .f. 8 -fg-3 d O' 1 1
- ]
Rigid restraint loads 4.3.3 l After the minimum span is tstablished and the stress N, the leqds on restraints, equipment criteria are met, nozzles arid anchors have to be calculated. From paragraph 3.2.4.5, based on the formula -t i M = P_L I' 4 2-xZ (1b) can be written P = g = S L 6L where L - span, ft t b This formula is represented in a. graph, Chart 3-B, Appendix B. h.3.2.31 1 4 the bending moment at the point 1 In the sample fig.2 t M = PL, 2 i The shear force 5 P = 2M e 1 .f L1 t Two Scans _ Transferred Loads for 4.3.4 The.following standard situations are considered I 1 l 6 i'f j I e e,es e.ame e e, ~-,.c-,..,..._ )
- 'yWg 4
-., + p. ,,,,.,nn,
. w... a ..a ..... _.,.... _.... _ ~ -........ -7c - / L, L' L L t I ,x l b,l N. rd 4., i 7 g l i l l II I l . h Y rt)7 ) 3 t Fig. No. 2 f Fig. No. 1 i In chart 4-B are given the reaction forces and moments for guided t l cantilever and guided end-two spans. I[ tb. emsd.sp L',4.mpo(b h s OR CM W T ( W. p b e d k M k h hsh?.fd Ihod OJ W h h - D }' Substitute snubber instead of rigid support when the 4.3.5 \\ thermal analysis shows that the thermal displacement i absorbed by a' piping span L (Fig. No. I and 2, paragraph 4.3.4.1) will produce excessive stress at the pipe.
- t
!c .j Or. nowever, the risid suv9ert can de u=ed if it has a s 9 / no less than 1/16" and the following criteria are met 1 L+L1 [Ts L L+L1 >f L min Where L sin.can be read, due to,, ," from table 1-B, App. B. 4 l 4.4 Criteria for Design Welded Lug Attalinments For axial restraint, lug attachments shot.ld be welded on the pipe. These have to be used only on straight runs., The lugs have to be placed not too O L- [ -y c -i.y ---,p v,. _,_y%- ,..r---- --..,,_m .,.~-.,,----.y--
+._ _. _ _ - .~ f q'. close to valves, fittings or any velds on the pipe. shenever is possible, use of valded ings should be avoided. i l Stress evaluations for veld lue attachmentg
- 4. 4.1
,.3 1 71 .I The stresses induced in the pipe due to the velded .4 4 lugs shonid be added to the og. 8, 9, 10 or 11 of paragraph 3.1 ead make sure to saet the allevables. The stress SL say be calenlated with the precedure provided in Apy nA4_r C. t j 5. Procedure for acclication This is an explicit method to be followed in performing a sisplified piping analysis. 4 n ste: 1. Determine Pressure stress M.] 517 = Psaz Do 4tn ] Stet 2. Determine Deadweight Span i dj Use Table 1, page 10. 1 i Stec 3. Evaluate Pressure and Deadweight Stress per code Eg. 8 .i Find the nazinua stress Intensification Factor in the piping systen being 4 ..) 1 l j 5 1
..:==...... '3 g .i ~} O ) r-g .] e .1 analyzed. i1 517 + 0.751 x 0.1 Sh < 1.0 Sh ' ;l ^ .s 1 1 ster 4. Check Seismic 111ovalle Stress per code -l Eg. 9. For straight
- pipe, without
- ,g f
welding connections: 1 -1 3s = 1.2 sh, 'sLF - 0.1 sh 3,0.6 sh 1 stee 5. Determine sad==te Bestraint spacing fl ) a Frsa Table 1.1, Appendiz' 1, find pipe i;]
- "'' ^ * ** "-
O From Table 4.1, Appendiz 1, based on pipe t' size, schedule, pipe designation, type of I I insulation and finid, read vaine Cs. 1 + !! From Table 5.1, appendix A, for the corresponding b=4 m ng and the higher 1 elevation of the piping system, read l vaine Gs. If the piping is laying in two \\ l l buildings, selec't the' higher vaines for' ) ~ the given eierations. l From nosograph fig. 1.1, read the sax. span between two seismic restraints, on a straight pipe, Ls. JO .i i w'! l r-.......... .. _ _ _,,, ~.,. -, - - - - - -. - -
='L AL'd.r'.bw,;;,, r,;. _ - ~-,-- - - - - w.<.... t.s, _ _.x O 1-i i m j f). _y ~ 1 E stec 6. Locate supports i compare the deadweight and seismic spaa and find out the governing span. Follos l ~l the instructions gives in 4.1.1. l 't
- )
.t Reduce the seismic span, for tees, 3 4
- elbows, concentrated
- weights, etc.
i rollow the instructions provided la .I al 4.2.1. Find the E vaine from fig. 2.A, 3.A, 4.1 New 3 l da.sts /a,%3a. Appendix A. Calculate Ch = Escs I Find reduced seismic span, from acaograph I fig 1.A, Appendix A. j ~ 4 i: see also section 6, sample problas. i. Stet 7. Determine thermal Stress per code eg. 10 i i calculates sa = f (1.25 Sc + 0.25 sh) f i i Find the saziana SIF in the piping systes f j a [ being analyzed. l .l t I p 3:n - i o e g . O 4 e e l 1 ' ^ N"*** P f. 8'.a-g, yg m.~ = -m yea * - + ---T r---'weWeP---r--s----m'"'1'"- ' " - - -t N ww-ew'yrw-wr-tW---w-= y-w yew ew 4"weawaer-- - --*w=mW-N-- -=*'~*='wN"*-'--**'"-C'*--"-*-'*-'""*P
.6.. w. a .n-
- axa,
.:c -.:.~.. .......:t.. . :~ - I -w_a 1 4* i .M. _ go _ l -1 I sten 8. Determine Thermal Disp.lacements Find thermal displacement for nozzles, .1 due to equipment thermal growth, from the } fixed point to the nozzles, in all three direc. ions. b L, (( i 'i Find thermal expansion factor O( (ia/ft) from table 23, Appendiz 3, based on
- l temperature and pipe material.
I i e 1 calculate the expansion 4 of each leg of 1 the piping systes and thus the deflection s (in) of the o'ther leg which will absorb this expansion. i. i
- k.
(
- =.
two legs adjacent to an expanded leg For of of pipe, the corresponding deflection h M eg, vil.1 he calenlated by the e l formula K di z d (in) [1
- b K 4,/ + l. 't.,
4 l l 6*t,a
- O - 8*r I
i k see instructions give n in 4.3.2 a Deter =ine sais io D141a.e.ent a see, 9. I .I T 9
.,,,,,,,i ~~ ~ ? m__ I i 1 -N .1 'I 8\\ - i l Read the seismic displacements, from j i table 7.1, appendiz 1., for the I corresponding gn41A4ngg ggd glgggtiggg, c t t Calculate the relative seismic i displacements for the two adjacent bei1 A4 ngs, by absointe sua: Jll: I 1 fo= all three 41: action. i These relative displacesants will be applied at the anchor or the first 1 /{T) restraint in each direction,of only one of the buildings. ster 10. The minians length required. Read from table 1.3, Appendix 3, the i ~ l miniana length L (f t) required for j deflection [= + (*h ) If there is a gignificant settlement novenant of a building or a tant, this 3, d
- 1 should be also added to the total s
7 deflectionh. I 6 0
- a. 0 1i
.I -j g.
4. & --w..st. ..a s - ...u.:...; 1 p, ~ [ y r p:
- ]s
.5 'I h'. - 8L-If the deflection (La) is different than t c 1 those given la table 1.3, a correction 1 l should be made, to the closest tabulated + valse. 1F { l'a.tsa1/ %1. L = 1. tabi. 1 Table 1.3 is based on a stress s S = 10000 pai. If STE is very different, j i a correction should be made i ) L=L y 10000./S:5 tamie 4 the shinna length required is higher If Q than the seismic span, and no other i' changes can be made, than a manhber and should replace the rigid rest =aists, deadweight a spring-hanger should be i for l added. I. Stee 11. Deadweight and selssic support Load i 1 i Ca2Calation. ,l i ? t 1 calenlage the load for dead 6eight and .1 1 I. rts..*': :N4'.i f orsnias given seismic say in a.$.2.lp. cz.,4./.L 04 4)5A.s.3 H. O 2 Lu b. 1.2.'t.. ~,z i A . Fi g. I, I A, ) i homopza I l. 2j M,4 l e polt,,k. 2. 2. 2. See also sectf.on 6, sample problea. l* t O' ] t \\
- l
.. _,t l 'g i Ti 1 . _ _ _ _. _ _. _ _ _ _ _ _ _ _ _ _ _... _ _ ~., -. _ _ _ _ _ _ _ _.. _ _ _ _ _
d I.. ~ m..c ~.... _gg-Thermal support Load Cales.lation. ster 12. ?~ be Isad from chart 3.3, Appendiz 3, the load length on the suppe=t, based on the pipe the L, perpendicular ta the thermal growth. the If the miniana length
- reguired, was shall
.a in corrected for another SEE f 10000. psi, 3 and then correct the force by the foranla: .e f r = rehart x (525/10000.) lb. two span pipe, For a guided and i l all calculate the transferred load to the second a support, based on chart 4.3,
- hors.
hypendiz 3. erred Follow the instructions given in 4.3.3 and 4.3.4. see also Section 6, sample probles. I sozzle and anchor loads. I ster 13. i Calculate reaction forces and nosents for 3' esadweight, seismic, and thermal. i l Follow instructions given la 4.1.2.l, 8(4h 1 a.2.2 3 and 4.3.4. l i 4 t ...-. z..
u-m%3. - -
- ,.,., m >.r-,
H \\... A '.i - 8 C-O G. sAupt E pro.S2.Ew u = b
- J 1
1 I 4. e.5 '] =x 'i sr j "" ~ 3.E' 2.o* . 5*' Z o -1 24.063, l 1 S2' 4, [ y.t _-bS-3 s.E' _ 'l w-i y 4 12.c6 Il i -4.V. _ 17s 18 _l e! ! o g
- Yzt, I
28 a a. m ll e I 2:s*. li n -1 i ll t i 4 4* ll 1, O S'J 4 p : L l 2 y SAM G l,_AU % s N MS \\ EDCa.'n' SL,pca, j-1 j N. p[ 41 h .l a v %9' o \\ PIPE SIZE 2l' SCM.aC i U MPE $PSt. 38f g S A -312., TP 306 t = Eso ir ' {' p = tso Psi a j Sc s16600, pai .1 SLs17aco, p. i Flui.I. Watec y At.v e V 1
- t.1 l'.
,i V.t 7 & 1I, i O i I a=====*=e.*. e e m e-j ) l
w:. w au.;.. w e.... : .. u.... w .-..-. u -. ~.....~...._..._.,....$..._ .R - 8G ' (! ./ - i 1 j 1. Desar=ine Pressure Stress 1 4 l PsazDe 250 x 2.375 = 964. psi 3 = - = LP Ata 4x.154 2. Determine Deadweight Span (table 1) ~ e I Laut = 10 f t 1 u Evaluate Pressure and Deadweight Stress per Code Eg. 8 ..l J. i l All velding connections are socket. welded. Stress intenmHication factor: i = 2.1. i 1 l h PDo 51 + 0.751 - < 1.03h j 4tw z 1.575 x 0.13h = 964 + 1.575 x 1780 = 3768ps$.< 17800. psi 3 + LP I. Check Seismic 111oushia Stress per Code Eg.9 4. Por straight pipe. without velding: 1 Ss = 1. 23h ' (O. 4 : Sh) 2 0.43h LP l t j Ss = 21360_- 27.a = 18616 2 10680 psi j I lllhe solution vill be conservative. If the seismic spaa is 4 i I calculated ind maintained per the procedure then a seismic ~ I I l stress no greater than 10680 psi vill occur. , i, .i g
.n-~ ou; t .j I mC' - g 7-1 4 1.I 5. Deter =ine seismic 3estraint spesing I - From tahle 1.1 pipe designation C. j; .- From tahle 4.1, for 2 in pipe size, schedule 40, l Ins an. 1, and mater inside, ra.ad cs = 653. - From table 5.1, for safeguard an4 mng at I elev. 852.5, G = 7.1. For luz. 2nild. all s's are lower, at the same elevation. ) - Froa. nosograph flg. 1.1, the saz. span between two seismic restraints, on a straighs pipe La = 9.7 ft. i 6. Locate supports.
- O i
lllhe seistic span determined in step 5, being sac 11er than i the deadweight span ddtermined in step 2, the s=4-=9- 'I restraint locaticas will be used also for deadweight. a suonort No. 4 - Ratio L (1-2)/L (3-4) > 1/4, angle 90-; 0.751 = 1.575; .I [i From Fig. No. 2.1, E = 0.474; cb = 0.474 x 653 = 310; '. s. ~. 11-4 = 6.7ft's 13-4 = 3.5 ft; = 21.
0.354 Soonert so. 6 - En
v' 8 Laaz o.118 x 9.7 I From table 6.1, by extrapolation Ecv = 0.505 J 'l For socket velding, 0.751 = 1.575, Esv = 0.6 35; E = Kev z Ksv = 0.505 x 0.635 = 0.320 '3 hi 'O I f a !W 2..= 'I
..--*.T---.-----
- -.. c
' T:.-..... e -N~ i !D ul. y ~.. y cb = 0.320 x 653 = 20'9. L = 5.5 ft I 3etween 6 - 7, a mittiana of 3' in. required. Fut.5 ft 1 between suppc== 6 and tangest point of elbow. 3 Actual L (4-6) = 5.5 ft; b; q 9 - Snubber in x 'Sirection, to restrain sussert yo. seismic and permit thermal expansion for line 3-7; f 10 - 0.751 = 1.575; E = 0.635; I suocert N o. = 7.5 1t; 'l cb = 0. 635 x 653 = 415; L = 7.75 ft; Actaa.1 1(8-10) o I suocert so. 18 - L(11-18) = 7.75 f t; t, O' ,~ summert so. 19 - 1 = 7.75 f t Actual L(18-39) = 7.25 ft; i 4' sanoort so. 23 - Ier elbov Eel = 0.635; Fc: conceas:sted ~ / ' weight, Kw = 12 = 0.2; From table 6.1, Ecw = 0.672; 6.114 x 9.7 = j 8 E = Ea1 x Kew = 0.635 x C.672 = 0.427; cb = 0.427 x 653 = 279. .p \\ L = 6.3 ft = L1 + L2; L2 = L - 11 = 6.3 - 0. 5 = 5.8 ft = L(21-23) ; g l + I l suonort No. 25 - Kw = 28 = 0.473; Kew =.402 6.118 x S.7 l Esv = 0.635; E = 0.402 x 0.635 = 0.255 = cb = 0.255 x 653 = 164.* L = 4.85 ft; 3 .i O. i i .1 i - - - - ~ ~ - -
-.. -... ~. _... _ _ _ _ _ u .a m _. .m. .u.m.. ... m 7 .4 0 --s s - (. 26 - 1ertical rigid, at the sia-bend; suesort No.
- I 4
se nort no. 27 - L (27-28) = 7.75 ft; i '1 14 - Ratio L(14-15)/L(16-37) > 1/4, angle 908; Suseort No. ,t 2.5 ft; 0.751 = 1.575; K = 0.474; Cb = 310; 1(14-17) = 6.7 ft; L (14-15) = rron the inte=sectica to 14, L = 7.75 ft; Actual L(13-14) 5.5 fs; = l B _I 4 e I 't i O. l 's i e I t k I 1 .l I e i i j ' i. O ,b j a 1*
- i
- j Ik g
- - - -. -.. ~.... _.. ..., x m_ w. _ . w n. -ac-9j O. 7. Determine Thezaal Stzess ~ ,s 1 i=1;S A = 1.25 Sc + 0.25 sh = 1.25 (18800.) + 0.25 (17800.) = P
21950. psi i=2.13 13310. psi 323
= = i 8. Detezzine The:aal Displacements % = 0.0416 ia/ft, tzca tahle 23,. Appendiz 3 [p-4) = d (1-21 = C(. L (1-2) = 0/0146 x 3. = 0.0438 in. d (3-7) = O(. L (3-7) = 0.0146 x s.5 = 0.1387 (1-2) ex = 18 f1-21 d(3-7) =h7r x 0.1387 = 0.008 O s z - 1s= Thezaal' displacement of mozzle 1. t = 4,x 0.0146 = 0.0584 in. 1-2) ez + = 0.0664 in. (1-2) = C (8-10) = 18(8-10) = 14 1 x 0.1387 = 0.13 E 13-Lya 443 0 d (8-11) = 4. L(8-11) = 0.0146 x 8. = 0.1168 in. (13-14) = [(14-15) = d(16-17) =D(. L (36-17) = 0.0146 x 4.2 = 0.0613 in. d(13-15) =K. L(13-15) = 0.0146 z 8. = 0.1168 in. [(16-17) = 2L (8-20) =%. L (8-20) = 0.0146 x 23. = 0.3358 in. [(21-23) = [(26-27)= (21-26) =O(. L (21-26) = 0.0146 x 14 = 0.2044 in. j d (25-26) = 2L (26-28) =0(. L (26-28) = 0.0146 x 14 = 0.2044 in. w .k = 1 9. Dete==ane seis=ic Displacement O imz. 114. 11 31.5 t .I .i
- i. 4-
~
-,_ w.. g, ... ~.- e-h.;..; 9.W --~u~ ^' ~ = hl # e h gy=0.109; 2 = 0.06 l safety 3n114. 11 831.34 -t = 0.044 y = 0.08; 1 } Balative dis;1acement: 0.104; y = 0.189; = 7 = 0.189 i i. C/ s( 28) 4 The sizians length required: j, 10. alth correction for deflection: From table 1.3, I 0.066a = 3.1 < 3.2 ft 1 Laim (1-2) =6 0.25 s ,1 f 'l Lai=(3-4) =6 ,0.0s3a = 2.5 < 3.7 ft I \\ 0.25 \\[D = 4.32 < 7.5 ft j '1 0 13 Lain (8-10) =6 l .] Q Laia (13-14) =6 0.1168 = 4.1 < 7.3 ft \\ 0.25 Laim (14-15) =6 0.0613 = 2.97 > 2.5 ft \\
- 0. 25
- he vertical seissic restraint in 14, shall se be a sankber.
.l i = 6 (I 0.1168 = 4.1 4 4.2 ft Lain (16-17)
- 0. 25 Laim (21-23) ~= 8.5
'~0. 3 3 5 8 = 6.9 > 5. 8 f t I ~ \\, 0.5 t The vertical seismic restraint in 23, shall be i L a a snabber, sad a s; ring-hanger has to be added. i ( For the following restraias, vila. nse SA = 27950. psi t. = 6 c.20s x 10000 =.J.24 < 4.3 i
- m4 m (26-27) 5 0
\\ .l /. 5.'., (25-2 c) = 3. 2 Y
- 3. nr j
s n o ve m e 1' ?* % L e. s >, ic. o *e c k o n.
- b b " * (2 7~ 18) = G f a 4' 1/,4. 7. 7C* g, a'
se,ge. ewp
- " [
- 4W4 'p* a dF F 4 puer s
u .w w- . ;y.::m.v c - -:.:aw { i u.;s,., h ~__ -' 2 p - u - -waum, ...r - j I i i 1 j }! (m ,4 i R j
- a r, o g7 i-1
' i i Laia (25-26) = 3.2a < 3.25 i i to: & - *
- ansker sessa.au i
i = 5.22 < 7.73 2: 1.ais G7-23) =4 h @,,4i.:a4 4..2.s.(m 7pg e4vi.* ad.u
- S222, 64d w o
s.a.em asa se =4. sun.== L a ~ -s i.=7 24 j 12. Deadweich. + L(4-4) ) + f (T-1) z a/L) F7 = = (1.1 z I x 1/2 (L(3-4) = -(1.1 x 4.114 x 0.5 z S. + 21. x 2/5.3) = = (3C.3 + 7.7) = -34 1.3. i]G
- s. u.=1- - n.,.=.1==.t z=e, s=z sr - 4.1*
t 4.14a s2133. I b,. 77 = h! (8.118 3 0.3 z S. + 7.7) s (,. j the ha=1=st.a.1 isat, is: c2 = s. l
- = = t.5 z x 1/2 g(1-2)
- L &3-4)i
- L (s-51) as + Jra n r a 1.34:
A
- 4. = s2703
= 1.s (s.tts z o.3 x 12.2 + 7.7) f. susse-t 4 a Beadweicht 7 1 1(5-30) 2r = = (1.1 s t z (1/2 G(a-4) + 1(6-7) + 1(21-23)) + i + 21 2 2.31_ i 1/1 L(13-13)) + 34 I 3 =-222.3 j 77 = -(1.1 z. 4.11a z It. + 13.2) 1 L4LxxL2 + u i)..is g rr = x.s ci z t/s n( -7)
- z(s-zo) + :.(23-223 + :. (u-i y )
1 = 1.5 (4.118 2 4.5 z 44.3 u.J) s.ta = 3444.14 ;> ai + 12. 3) 4. l (? 7= = b 5 (I z 1/2 G(s-7) + 1(4-10)) e s') C.5 z 1a. + 12.J) 4 = s227. D 1.5(4.114 = 1 zu=se=1 9 f ~ .xj j ._ g..., ,,m_,,., me. y.
u _. 'l .-.__~.e 7 _. 7_,--v,3.n 7 - ya;q;. .m_ yo,p.csa .:..y4. -~.- c k" ._.. ~.. s s. J 1 -I D .q i"(
- j, a
~ 4iO ss .I + ..g g a e 4
- a; Gz = 4.14 2= = 1.3 (T z 1/2 (L(1-2)
- L(6-4) + L(S-1,0)J + (1 + 137 + 7 fv=11.3. 21 sz J. 7 1'
i t = 1.3 (6.114 x 0.3 x 13.7 + 74.J) 4.14 = a444. D su-se n 10 s 'F2 = 1.3 I z 1/2 G(9-10) + L(10-18) + L 113-14)) z 4.14 i = 1.5 x 6.118.C.3 z 22.23 x 4.14 = 387. D 'I I r= = 1.3 x 6.114 x 4.3 G (9-10).L(20-1sj +1(u-171) z 4. 4 = 1.5 x 4.118 x 0.3 x 24.23 x 4 = a455. u s su-se-t ia l Q 1simE12 z s.1s j ' (,. 2: = 1.5 x I z 1/2 (L(10-18)
- L(16-13)
- g L(ts-1s))
i U.. l = 1.5 z 4.114 z.5 z 13.34 = a.ss = 2sa. 13 + L (13-17)) a. 2a = 1.5 z 4.114 z 1/2 G(10-14) + L(15-19) = 1.5 x 6.114 .03 x 13. 8 z 4 = b e. D 5.f sane-- is g e I n 1.5 z I z 1/2 (L(6-7)
- L(8-22) + L(21-23) + L (13-14) l j F =
{- L (14-17) ) 4.14 + e .I 1.5 x 4.118 z 0.5 x *1.3 z's.14 = 37s 4. u 1, = .a 2: = 1.5 x 4.114 z 0.3 G(U.14) + L (14-17) - 1(10-18) ) 4.6 [ = 1.3 z 8.118 x 0.3 = 19.93 z 4.14= a 344. D ~ , u] 4 ) il l ..} 1 i i .s -..w, f ^ t s ..e,.,..._ ,,_n,
......w.:..,.... = -m 2 u,_- 3 . _ _ __. --.m E e,>- _x-+ *. ^. ...-~.. . i l O. ,s t O-94 .i 1, ,1 I 3l : m -- *
- w. mar
,. 3.5 x a = 2,2 G ne-m + uit-2sm * " ~ = 1.5 x 4.113 z 0.5 x 13.55 z *.14
- 8258 D g.1.5 (6.113 3 0.5 G OS-18)
- M2F2m + 8*sI N ) b
,.5 G. m, 0.5. s u. es + o.s = 1s> * - == = 3
- 1
.i s i -l. 1 4 6 .fi a .1. .?st: x ? n 3 ,.,1 .s s. e g p. . M"* .. j p $o 1 ,,,1 . f. ') ' 9 ,j . g.=. - t g- \\ 4 4 +
- 1 4
'I, c.,
.:...Qn :. '
- n.....
..a.. :...._...:. a 1 ~ -:. 1 I j l ii
- i D
1 1 .g.V ' J ,~ j lO 95 I Sasse-T 3 6, .) = i Dea dved eht . -l Py = =(1.1 x 3 x (1/2 G (6-7) + L (13-15) + a(21,22) + 1(2.3-25) t L(4-20)) +t tv-21 a+12) 4 + 12) *- 104 D
== (1.1 2 4.114 x 11.33 + 23 2 4 i j se.i. rad e L(3-20J + a(13-14)_ L(31-23) Pr = 1.3 (4.112 x Q.5 G(6-7) + + a (23-23)) + 1 t,-21 a+ t2) 4.14 m 3 1 4.14 = a77C. D .i ? *, = 1.3 (4.116 x 8.3 a 31.43 + 13.3 + 12 ) l 2: = 1.3 (4.115 2 C.1, G(13-13) + 2 G3-25) J
- 15.3 + 12) 4.14 j
= 1.3 (4.114 z C.5 z 11.13 + 27.3) 4.14 = s 342. D s. s V s s e 2s 's Seedveicht i = e (1.1 z E 2 1/2 G(23-25) + L(25-241 ) + t tv21 hl = 'i 77 m ds 1 4.118 z. C 3 2 4.2 + 25 r 2.21 =-a c. n
== (1.1: i
- e. Ah f
ii .a., ~ ~f - .g s. .=g = = ~ ~ ,1 5 .s >j_. I e 1 3 ~ g 1 i l O..j u.;. s i
.. u _....c..n... ) . n-- . a -W .,i Q. s. r i rh QJ O (' ,Jeaats i r; = 1.5 (6.118 x 0.5 (3G3-25) + 2 (25-dj ) + 12.7) 4.14
- 1:3 (6.114 x aJ z s.2 + 13.7) 4.34 = s 225.13 i
= + 12.7) 4.14 1.5 (6.11s :- 0.5 G G3-251
- 2 G5-233 )
- = =
1 C.5 x 2c.25 + 12.7) z a.14 = z al.D a ) 1.5(6.113 : = I sasser-e 34 \\ Seadwelch F;.=.1.1z21/2 @ 25) + 2 G5-27) ) =-1.3 z 6.118 z C.5 x 7.45=-21.3 gggglg 1.5ss.11asc.5=7.45 n.1a s1a3.D 2; = sussert T7 s ~ Deadwei eht \\ i I 77 m.(i.1 x I 2.1/2 G (26-27) + * (27-283 ) -l 1 =.1.121.111: C.5 z 12.05 = -41. D l4 i d l 1 4 e C.J t l e .l i t .. _,. ~ -.... ' Y' y
.-..-m..... . r. _...x.. r. 3 F: e....... : e..:.. ; m .o. ~ g Gibbs & Hill Inc. J N~ CSent rl Gibbs & HillJoe No. ( Date (,, J 3 / Checker Date Onginator M.G. Sheet No. of C2%!atron Number f .o 3 ls s e air v r_- _ j a Suciect i.. 2 A J ..tcufa. ts.... g-i... ..Ee.cer ca cs ,sunoot+ !
- Ue a d w. ; ski a nel se,& e' c.
A.9 G. LOAD 8.hl.2: U46%,, y y,t.h ). c4?% t E %(c.t. c u coorf. fonds.i w 3 d.ot u_ h. 1 M i.cl G e.ic@k 4
- a. k cl se t.w 2
Q. , gl_ yty. 8 33 .I4 6.4,; >x .,- m l u' =, ' ~ )U = M. =' 'T%' i I ~ di 3 =4 .l r 6 - 1.: 3 2g 'y.- ) 6.i ~,,h b - 57 3 1 y gg ..y ,A i 4 / d / I .1
- s 0..
./.. +S. -.%..; / -fl 7 2.\\.6. 7 3 q g..-_g... g... - = -~ ~ s 3,f ' 2 = G.iti = f, '. / f Le d
- 1. i4j w
G. lit w W = G. //8 73-y . __.....i _... r 2. ._.4 i u.sp&&) j h.. M I.(s T). j o Pf r.. DL) SST.b.4A.1 (. cri I D.w MS5c.9 21 . ',6Yl i 2
- '/0 ',
.Mul ~ 71~ . 6Y e i2 ~ 170. .s.ch.e=..,c &c / seis S e Dy. 5.re.rdsj. - - 21.
- i. 6Y. j.
t.4 .;27o
- rast.gt.
_4 i. Sc%.1@.4 l 4 4 Y {'. n 0 . 2..V2.12s4_Q.
- 9
/I00 2.1 si.resa w 364. f f.rs:s3.3 TAdLf2 ISO.(a.IO~I.5d#.AC T 6.3 4't M 38.tr .)26.... 1f i 3 :
- 0
- k. 0.WeIk 6.3#.iff23O(i37 24
~ . te-: S' 1 l zoo' iTdlEll4r.6 Q I. corp.sr+s.wss.a.. 28 ... 4 2-.- .9 i. CC w setsJ t2. 24 . v s-jfage 1 a 9 . i w. -j izo u.wl .% s,3 y,3 + 3. ss ur. - e ..- ;..j.r$T
- tap.t.t /
.m 2 v.2+7.7r%2.er 1 2.00: se " 1 c.I g 27 j TM.trl i l - :lY0 : $c.( N c.1 .I ' s 'l-seis 2.sw r. C= & + i fj Checking Method *
- *,,,*,,-l'!='"*-
F-166. 3 80
- " " ~ ~
..._ Pr== v.w '.3
- 3 & ~ ~ "~".~
t
- v t
l .,~. +- -. :.. _...... _~- ""**"r**. v.?,--.._,. _,m_,,. -.. ..m. _,.ym.
s 7 A ~ J;' *-[ + L, _ g,g : ~.~......m.m._.. G. 1, -N~ ~ Gibbs & Hill, Inc. Client i M-Gibes & HillJcb No. case d 3* Onginator NC Cate C-)3. il Checuer of I Sheet No .t .4 Calculaten Number .l. s i el l l l l I J l i " Il l 1 Subiact d. ', ', Ser'sv ;c s u p po+ load in,f ".d,% ch.bsi h3 i >a 's gg l I the __ i .cv v A, ns /h h VN ,j'" g g 'M_E V '1 j 4l- #. -L s; 3 6 / d R / ~L vs.n %y '4 . N& ,1. ~ k.y ' W l'l is ^/ g's -r O. + e V '4 l l w., c.,,gB' = 3.1 $ :y.r/ G. = u c l1 ppy n E e.' g k ?PT . T(f % wei g g g MwN Wer p71
- 4...- (cal l4[
foo f Ta 64) 3 -g gj .gC + 12 Ta & t, 2 5 ck. A &~f' t -- i 7+7.2 17 7 i W l' Tg & G 2,' %;is. d'C
- 10
+.r.s : 2 0 l '7.7 }~+ f f f 2.1.G, ) I T+se 2., sc u..o/ 8
- 8
= /8. '.. 2.vo : Jf, fs.t.2=S8 f yto 7A suiI. s u wI 1.4 W.sm45+1994 2.2 I 6 7_ Laf+3g.A.2 M (. Y s- ' 4 /.Sf. g,,,,c,g /, 3 cl.. u e / i i23 a [4d 1 :- g.T A Sts 2.,ith. *' i i ~ ../2f. 5rf'r f # 52.t Y.2 W 1.,,,, ~ - = LY.7 l i I f,. I i i g t 4 p.166. C' Checking Method #
- =e.d-=~.., a _ -_ -
1 \\ f .{ ,=. ~. - - - -- i ( ~'~;~.*::::- _:..- ;-. -w -e--v y ,,_.wm--..-.r--%_y,,*W r Ty+re---' ww-w--=.'WNypr v WNW' 'WW-'-w'9'-r--f'TTN-yY"'*$'r'TvywW-'**
a.w. w. ..--.a. . _.,,,;,,,, 7,. ; 'de ' .99 - l Gibbs & Hill, Inc. IO(' Client Gibbs & HillJob No. Date i Orginator W.(,'- Date (,4. g/ Criecker of Sheet No. 1 Calculaten Number i ,T.1 1 1, w ( l W I i .] W ,. } ...__.d3 b kis~.'c suwc14. :h. d.m. ; &:.e.-d u c.4 r P.t..... 3 a .] d nm .Q W ic! .et_.. 2y g o*g } #jk ~ ~ . i,. s.s-s L.A V% -~ , 3,s-la -Y 4, 27 I 0 N k,!- g i C 23 .s g
- / p-H
( / - i l -#a,.-- s .4 h Nt 5 L Q ~7U '6 l'.i - j l9 l ' V .p a .: a i .J-o q '] ws.nt (% J,, w' = S. y
- -
- 7.s'7 C;= +
j
- % fi[
pa, l' ( f1> A/cTE lf C ( *.1~1 4.A 1 L6 sceseW 21 edY 2 2.to r u.:.E.2 Ic u a d ..h- ~> /2. 2. -.- i '2 I >y 4 LAG Ta o e Q.5Ck.N2 j N.T+ 0.Cn.4 t1.Cs i . '6 -: n r* 5 < S s ch.N s.9 rg 0.n.1.SstAt4.- i > +. -
- v. 2 + g. nr 377 i ssz. r g.sch,>/5 7 zca 17.7,g _ }.2.r
- i.
.i 4.. kr*. T5 I sch*e_ 4.- g tm
- 7. c+ a.r+ Y.a+
o.g f ~t'3.. e m m o. s " i *' S S " *'"t8 4* 2O M . "i.-i n 2 6. c r i 'i in.cJ b v e dt c.U =J4.m c.u M ( r a +.k. h. s. :x bye. w;,. va u mm iu. c n i s.- F-166' 3-8 .-j cn=* ins Metnou
- =
- :::e ;
e ..m.,i e.3 a- -. -,. a. - g d 9 9 l .._,m m
.. e - : - u e i l O' ICO I l I 1,
- 12. Thermal Suenort Lead Caleclation g
i 1 I Sueco-t No. 4 (6) I The pipe '} The growth tif L(1-2) vill be resisted by support 4. From chart length, perpendicular to the thermal growth', L=3.5. e 3.3, Appendiz 3. 27=-285. 12 i ~ Based on the forsnias given in chart 4.3, 355 of this load vi.11 .l be assumed tc be transferred load to support 6. J, a ~! 7y= 100.1h .1 Suenort so. 10(,18) and thermal displace-The reaction force one to growth of 1(3-7) seat of nozzle Ic.1 Pipe length, L=3.2+7.5=10.7 Fx = 90.lb 3 i. 18, .1 Transferred load to support s h Fx = -32.lb i The reaction force due to growth of L(13-15) i 5-I i Pipe length, L=4.7 j . f Fz =-210.lb sucport 25. (26) (6) (23) g t l h, Isaction force due to growth of L(8-20) Pipe length, L=10.65 5 i ~ ...x.~,.,-----_ y---- - 1 l
___.a. w ._.>...a., ' m.m... i... ......4..... ~%ees ML.i fa s e.e** ' ' ' $.6 mM $s E _, -.*K-e'.a=Q=-=""**-- ^ ^ ' Li^ ^ - ' ^ ^ ^ e.. i I 1 f \\ (D [0t s,s 5 I Fy =-90. 1h ,s I Reaction is su;;c=t 6, Fy = 90.1h
- I 2ransferred load to support 26
. l JI = 32.12' 3eactica force due to growth of L(26-28) Pipe length, L=3.35, from chart 3.3, Appendiz 3, F = 300 lb .. ) will cc: ect this vaine by the level of st:sss 51, a l} rz=-300. x g = -838 lb l 2:ansferred load to support 23 2x = 293 1h succort 27 q Beaction f orce due to growth of 1(21-26) s 1 ) Pipe length,' L = 4.3 ft, F 235 lb j will cc: ect by 51 ct 22 = - 235 z 2,2,g5,0 = -657. Ib 11 0 .] 20000 e; 2eaction in sn; port 19, rz = 657. Ib 2:ansfe::sd lead to ancho: point 28 'I Fz = 230. Ih.
- 13. Wozzle and ancho: leads.
I .i Netzle Ic.1 D Deadweicht
- 33. Ib
- Ry = EL (1-2) + 5/3 EL (3-4) = 6.118 (3.2 + 2. 2) = 0.125x6.118z3.2:zt2 = 94. in - lb. - mz = 1/SEta (3-4) = I se.Lscic = 25/6 (EL (1-9) +T (?-1)) GI = z0.625 (6.118x13.2+21) 22 4.16 = 2265. Ib m 137 lb. Ry = 2 (EL (1-2) +5/8c. (3-4)) Gy = =3324.14 = 4 ~ 1 ,e. .,--.n-, ....,.,..,,..,,.v..- -,-.._-.-n,
_..._..._...___.[., j,,, ..2 C $1 .I 1 I C ?- O{' .i A -i _I; Ez = $5/8tI1-43z = 20.625x6.118z6.7x4. = a102 2h Ez = 21/gsza (1-4} sz = 20.125x6.118x6.7azi2x4 = *1618 ia-lb. {
- Torsion,
- 4 By = *1/831
- 3-44z = 20.125x6.1823.5a t2x4 = a 450 in-D 1
z Es = s (1/ 8112 (1-2) Gz+0.193 (EL (3-7) + t (v-1) ) 3. 7 Gz+1/8ELa (3-4) g y) i = 2 (O.12526.118x10. 24x12x4.16+0.193 (6.118x9.5+21) 3.7x12x +0.125 6.118x12.25x12x4.) = s (391+ 2156+450) = i =
- 2997. in - 1h J
f Thermal j k4 Reaction for eguivalent to the tharsal force on support 4 Fy = 285 lb. Foz the force en support 10, l@ rz = - s0 in. j Romaat only la z direction, Ez = 1/2 (28523.5x12-90x10.7z12) = 207.ia-2.h. ,1 3 s' Anchor scint 17 teadweicht ll - 27 = EL16-17+5/8FL13-15 = 6.118 (4.2+5.) = 56.1h. ~ - Ex = 1/8EIa13-15 = 0.125z6.118z64x12 = 587 ia-lb i l Seismic -.3 Ex = $5/8tL14-17Gz = 20.625x6118z6.7z416 a 2107 ia=1b i 37 = $56.z4.14 = s232. Ib. Iz = * ( (5/SEL (16-17) +0.5) +0.7xEL(13-15) ) Gz 4
2 (0.625x6.118xe.7+0.7z6.118x8) 4.16 = 2217.lb (1/8B (L (16-17) +0.5) a+0.153 (EL (13-15) (L(16-17) +0.5) Gz z Ez
+1/8ELage-1syy = (0.125x6.118s22.1+0.193x6.118x8x4.7) x12x4. ' i a .; O =2n 2 1 - 13 .j 6 f1 i ; '.i \\ L c ~ - n. j l
.2_
- .;wj_
.s. j k3 O. l Ez = $1/SELa(in - lb.14-th = 2 125x6.118zs4.9x12x4.1 t = 2 1714 1i Torsica ] sy =
- 1/8ELag4-15px = z.125x6.11sx6.2524.16z12=239 in-lb ll Thermal l!
Aeacten to the thermal force on support 10 . M. 'I 2x = 210 lb L 3eac$ca due te vertical growth of &(16-17) the pipe length,L = 8 ft. F oa 3.3, q By = = 140. Ib This force will react ca support 6, with Fy = + 1401h only in z'dizaction, due to As.
- soment,
=. 52,2. 1. - 1h
== - ies(2,0x4.2x22) O Anchor soint 28 'j Deadveicht 8 5/8EL t27-28) =.625x6.118xS.7 = 37. Ib - Ryu l 1/8.ELa (27-28) =.125x6.118x9.78x12 = 864 in - lb i - 3: = 1 'selstic ij 2x = 2 (EL (26-28) +5/83L (25-26)) Gr l} = t (6.118x14.+.625x6.118z3.35} 4.16 = 2410. Ib f-l. 27 = 5/83Q7-24Gy = 0.625x4.11829.724.14 = s.1$4. lb l_ l / 12 = 0.62526.118x9.724. = *148. 2h la-lb 2 By = 1/8ELa{27-24Gz=.125x6.118z6024.z12 = 2202 1/8EL$7-2hy =.125x6.118::60x4.14x12 = 2279 in-lb
- 5; e i
~ phersal transferred fros support 27, Fz = 230. Ib r' 1 I 'JM h,; Beactica.to thermal force of support 25 1; ~'
- - 4 m -....-. -..
a. .:. a.. a.. - -. t.,: ~ - -c a. .t l . I i ~. + 1 3 Fx = E3 4 lb. will com. sider the Foz the seiszie anchor movement same chart as f or thersal, chart J.3'. 3 Fy = rz = 135 1h 57 = 1/2(FzL(27-28) +FzL(25-26)) soment 4 = C.5x135x7.75x12 = 6277. in-lb. As = 0.5 FyL (27-28) = 0.5x135x7.75x12 = 6277. in-lb i s h 4 e e O I e P l i . ! O e L { 3 i a
- )
i e v e o e a l c.l 930 I I e I a eee
- ~ ~ ~ ~ " - ~ ~ -
,.= s
h, s 'l i. -i (Da n I i sussert Leads 14 ~ i 1 Fx(1h) Fy (1b)' Fz(D) as (1a-lb) 57 (la-D) Es (in-D) Sunport 1933 j 'l -38 4 DE ~j SE 1219 1270 -285 'l
- I 4
-222 6 DE 2848 1337 SE 3 330 TX ,U = = = 9 SZ 2580 4495 10 33 2387 -210 TE 90 i $290 i 18 52 2294 23 -32. 1 Q j 14 SE 1381 1788 2562. 19 32 2259 gs7 4 .1 gg 'l -104 l 23 Du sz $383. 3770 TE 293 -40 1 25 DE 52 2463 2235 TI -838 -90. -26. 26 DB 2145 51 32
- l ra 27 '
Dy 41. s229 2571 . 52 -657 23- -94. -33. Iozzle 1 DW
- 4 53 2265 2137 2102 1618 2450 s2997 207.
3 r3 -90 285 -557. -56. I anch. 17 DE 3Z 2107 2232 2217 22942 c239 =1714. -140 210 5292 ] Q' 25 ..q b.; 7._.y_ m.yg, _.._.. _. ]
- ,1 3.-,_.-.,_.
J .,_._____,i
4 m.A m m ~.. a 24- -e s. - +se..
- m
- s,
-- - * " = ~ = s ^ -'a.'e m sa.&..e 44 e e
- 4(,"---
- - - ', ameW_' ^ ". E=.", s, L, _- ^'- a _.Iy ' A:M4._-_ J -S* <' p *q1 p.. eis w g ra 4 _M.= 1 * +*et. = I
- e 1
4 I h !Ob
- s x'
1 4 l ~1 ~ 8 0"- .i anch. 23 DE ~ -37 ~ 22202 32279. -1 sr
- sic. 2154 14s 6277 6277
') (TI+515) 838
- 135 345 i
I 4 .1 t t 9 h 1 m 4 .I O 1 t 4
- 1 1
l. S l .i -2 /t
- O
-1 i' r... e.-,. --, -[*, m. *. J.-.. f :-,,..'.:J. ; ~ ~ e s ,-n.
_,-u,,,,__- .u -.,a. ..n.,...
- r..
...g -.a.. -107-M.I 1 .i () 7. References CPSES-FSAR, Sec. 3.7, Amendment 4, 01/31/79; -t'i 1 ASME Boiler and Pressure Vessel Code, Section III 1974 Ed. 2 ANSI Standard B31.1.0, Power Piping Code, 1973 Ed. ) u ll 3 Piping Specification 2323-MS-43B, Appendix I Revision 3
- 1 4
1 - June 15, 1977. Gibbs & Hill, Inc., Nomograph for Simplified Seismic 5 ] Analysis, Issue No. 1, March 19. .i .l M.W. Kellog Co., Design of Piping Systems, John Wiley 1 6 } & Sons, Inc., New York, 1956 t j R.F. Roark, W.C. Young, Formulas for_ Stress and Strain 4 J 7 ] (5th Edition), McGraw-Hill, New York, 1975. t .t j ITT-Grinnell, Piping Design and Engineering (4th 8 j O Edition >, 1973 Welding Research Council, Bulletin 107, 1965 2 j 9 26, 1979 CPSES - TUSI, Attachment to letter, Dec. 4 10 - 'l CP,SES - TUSI, TGH-4316, March 7, 1977 11 - 50492, 51815, 53981, 54256 12 - G&H-GTNs - 43977, 50493, ,.4 G&H-Integral welded attachment ASME Code Class.2 and 3 13 - q Piping verification procedure Issue 1, July 1980, and
- i 4
~^ Addendum 1, September 1980. -i GTN-46857 - Procedure AEP-1 for Minimum wall violations 14 - ..j and following procedure AB-4 and revision. ~] G&H-jet impingement evaluation procedure - 1982. 'I 15 - Si .1 i - 9 t 1 ......, _. 9 _ ,,_.c...,_,_,-., ,,,,, = _..,,.. ' i' _m ,.7_ ,,,,y
~ ..:..a.- g. 1 'i i t 4 I
- l b.. ' '
IO3 . 'J J il ^ 't A27END 1 A \\ i Nomograph for simp!*** d seismic analysis Fig. 1.A x vain.s f==.idows.na b.nas ~ rig. 1.A 1 x valm.s for t s. ,' y Fig. 3.A E valu.s for other piping compen.sts Fig. 4.A -8 ^ tahl. 1.A - Pipinc Ep.cificasica .h1 2.A
- m. w.,
a.s 31 2.A - : =,.,,. e - ~ .bl 4.A - e.h 3..s_ v.1, es ) e.31 3.A - w31 a v.los es
- --i-es..so _sene.nt=ms.d-w ishes-hM I }.g. 7.
9 _-er n.- Y =ahl. 7. A - s is=i= einpl nes 'i g Ck.4 L 41.~ C A s % A U LE ' EUJ I T~d;117k - r Os. p AM b4-L f.. Mf L / NYS k4 bb b lI 3 .j k .S 1 n. 6.. g g ..1., ... -] 1 .::4
- 4
..-j 11 ~;u O 1 e m. i ?-; WA q .e., 4 "-. gM 4+.O g ay. 1+ Y Y , -,., -,.., - - ~,. -. -
g i. u. c-9 L i s, _1 log 1 1, 'l --es s0c0-- -60 t ..l.s b 4000- ..sg .1 , g 40 2500. 1 2.5 ~ 50 L 3
- 2000-25' 53 s
i 20 4 t = - 500 4 .a .s ) ~ 4 1 -E s c-o -6 o 1000 -- 1 mg s00 -- 7 800 : 10 l - 9*. '..a 700 ~, .g i s .S' "..fo e',:$ 3 I o ' g00 -- Q .7 w 500 .-6 j m 15 '1 400- .5 n .n - -4. j.gg i b. .y r -25 ,,3 200 .-2.5 t I go NadOGRAPM.-W ~ SIMPU.'!ED Q, 100 L SE15MIO ANAL.TSIS ~ ,,,,,, c ~,,,,m. i i.. i i i i i ' ' N .-.- = i i ' , s.o.w i. > > > 3A4Ag4 e i i , g, y,,,, i l me me. ,..._-*-.*.=***-*"i m paa 1 .,.7 :.... . ~--- ~ l _l J ,"ll:' l= l = =_ r .m._ .-~ .i .-.-:----:----,-~;-~~::--,--:--~-- .l.. ~ ;m -. =.- ,-w~,.- Y y % D y ,--w. s am --r--m,---me-wy--ee,---,-e ---,,--.-e-u-.-.-y -.-e--- mum.--m.ww--w-
.a.. u .s
- m...._x.w.-zawwc., aa.
n'..a.:.;.,.a c.eu '^ ! 'u c; a.- r-l 1 i -t tIO ~~~~~~ m ENDS --.ORRECTI.ON.T. ACT.OR FO. R ELBOWS,, AND B aj k[ C 4 i 1 JOR E5 BOWS AND BENDS: FOREL30WSbbLY Lo* - 1 a 563. szzE 40 so. iso. 160 I J .i 1 1 T '1 r:.Exzazzzs S.z.r. 1 l1 ~
- I bR bh -
~ b_"* ?"~p"~E~ '3 i j !1 1 g 14 1.136 1 !1.26 1 1 1 2 2h 1.197 I 1 1 1 = j 3 .1.3 1.05 1
- 1 i
11 . 4 I. f ' N 1,10 ' 1 i 3h 1.189 4 1.573 1.244 1.047 1- ~ t ? e t 'I t d 9 -) e ge i I O i j ' I* N 4 -WM ..w
,,.-,__-,_,_.-.----.,.-----,_,-ry.,.,e..w
,,.,,w,.-..,,w-
-s m - a s ' :(-: ~ ~a .v ar .,_:3-. --.= '^ ,.3 k 6-O 1 r ~ i'r 1;
- m u,-
1 ~> I i I i l_ e i 6 ' l i i 1 i I I i I t i e i i i i l iI i i ' i i i I t i 6 1 , 'j l i e i e i i ; i l i I i i I i i i e i F ! : i l i i i iiiI i l ) I u e i i ) i i 'l i I I i i 1I - .) ) 'l iI ! _l i l i Ij t. ' s ) I I i.I I i I l. .I l 8*' i 1 814-i 't 91 i 44 6 i t-#1 I I ! i 1 I i -l i. ~t .e i i i 1,0 4 1 -18448 I i f 8 I l : 4 I l
- l. l.l l 14 IJ I Ai_-
'i i e l e f I I i f I l.1 !6 i I T.5ltA10ggJfirem7h i f a#Apir f 12::. r3 't 6 /t 1 i l.@l 51 'l 'l ll : I ' i~ 'I li ; 'l I ! I if ] - i i I l I I i i 4 i i i i i i i I I i i I' I f l , I e i l i i l! i; 1 i l i i i i i i ltr i ~ l i I t_ ,.i .i I I Li'l 11 I i i-l l i I i ) i I tI iii I I I i i i ~ 4 i t i
- )
l I I i l l-1 i il I i i l i ! i i4 i i 1 i i I 6 3 i l i i } l 1 I rii t i e i s' ' t i.4 i i iI i i l r ] I i i 3 L I .I l. I i l l .s
- I l I i f
i I I J J l I ' q
- l. l I
li l l t J i 6 ! l 1 l l l 4 i i 6 1i i e ! ! 8 8 I i i 1 1 2pl Lh t ! l ; l l l I i i i.6. ' mel _i i CD1
- l I i i
^'r
- ;, ; i l
l l a t I i I ) l i e4 i i ) 3 ' ~ ,m.~ w...,..
- i I i l Q
M, i i_ r1 i i , 4 1, i el 8,1 .t i i ! I i i I ( ) MISn'A.NJ.Pf I I I i i i .l 3 i M.r, f*'T 8 4==:~i i ! '-I i t.- i l i I i i i J ' 'f.5) I I i i I i i i i i 1 I i .t.,l I I i
- __f ;4 Fi 1 9 7 67 i l i I
.l ~ 'T_3,1 1 1 # ; J' T l i M se TI g l
- i ii i
1 i 1-i i I i i i iii ; i i ) _i.E l,,4 f.ut-i l l -M.c f U7 ! i I : 1 MFI iM ' N,1 1, 'l,tt V i if l a 'e si stre i i. I i i l **1' A/ % /4i ( P A" I/ i i i.i e i I 2 O}j ~ Fr3 B* vi ly ' ' I4 is F#' i 1,s '" i <' sa 6~ l
- 1' i i
i i i I I i ; o l - i I sLi3 I i i ! l ; { l J) d I. I i L,an'T a I \\y" #, 1 I I 4 i _/ I t i 1.' I
- 1 IR.
t* ! I t T A l.)ft I i i i i l-? I l,. t U* C l r Af, } I I I i._ l i 1 1 T l't.l. '*" L P l L l [ \\ IV 1 I l ,c. ? j i i 1 L. ; f I i j slys'4/ll,/t 1 3 l I i\\ /I I l i-l I l l *l I I i l i i l I ?
- M N T- /AW '
L l i 1 1 88 ! i-t 1
- 1. I.
I 1 I I I ! I I i i l -l -l i siil l I i i j i t !
- )
i#ni i i i u m t t.4-i , i i< i i mui i ni i i i i 1 1 i i l i i i i i i i ' i i=' '- i i i i i I ) i a i ; i i l i i i i i i i l I I i i i ! i l i i i l i l 4 i i i i f i l i i i i i i li l i .j e Eq. h. 2 A - i: g <T ] BN-8.
- "*'*.*s e
=
- ee
~ '
.. i K. '}9,; - p _,. ~_ y.
- 5 1
'. i l\\1 1 9 (. e a. s. A 4vm.vts rom. TY55 ../ f
- JS'"m ***"*$eshua 8 I
.I4 C. Pester : I e 0,5 fit'"5 .,.Ali IM i I; .e7 e g. f 0 t N4 6 6 l 8 88 8 l [ ll N ll I.I d I t i IN l.I_f e i ll l i l, IN I
- 61 a
ii,i i. ex i 1: k li ll ll l llMl I og a3ee-e644Je S.1 3 A-4 J 18 la 1 Chusosaurises h l v .j 1 i q 1 i g = O.h.. \\ t . I. I 1 i
- O-e 2
= I .s IL112 &lb8TY $,L F. . E. 4 4 b 'h"Jr"Y Sn &3 4 E gg hYs = m t .i apsg3 3tgJ .. n
- j
- l 3
e l -i i Ia T., 1 j ( 'a M.f, w,6_, .y*e-j i n.m s - w a v. 'te L_ 35988 ped . '{ .1 ~~ I l ~3 ~. ._.Me =r ,I i. 8,F lt, l- ] J unre.neereas taariastse 'n 8" s I* o l _ -_=.- -.. - - .a
- b
,. -.,.. =... -
- - :.,.. =. - - - -... - : ----.
- ~:
.. :::= - ep -_-._._.,.--__,._,,c- __.,-.c w-w
.s__. ..w .Aw- .a ,m ___.g,,g.
- s..
6 .l ) n3 C 1 (.. ?
- r.,
i(WF-(e)'^(&x'), .,4-1 i 4 t.> Stie one$ 4 0.i [.__,_ I U 7.; 1 .[% I\\ 3 '1 F 1.3 'er flush weed r g- .1 ~.. 6, 0., u,.r - i .,4,m d ~.. - u e ..1 c 7 1 e.' n tal l 'J a enw w u i lA-) g ~ 4 rL, /t : i O t -- se u i u cmas % *3s # 1% l \\ 4 iumi nisa ~ k k,k 4 j t p 1,. k. 2 0 sm.m. 7 ,d LANSI S163 er 1 OA* oms g7 c .e 0, e ~ IO2 8883 # # 8s D ,f g 4 s ..s 1 .i* f T re.g.e.n.e jean, q er weressestio pe % = O.7.1 X (, 4 2 camsv.3=e a o.i-i s 2J .ser ei.e er woe.as Desi$ t j Fig 4 A O E I-! A .,!~. . n., ,,,,., ; -,, _. y,, _, -... -.7 ._s.._ _.., -. _. _ O e
11 4 lO f ) i M-Table 1A I PIPING S?ECIPICATION i f' 1 1 Categ. & Mat. Category Schedule classification Sh/?"* E Material Seee. 150 SA-106 Gr.B 40 5 15,000?. 40 A 21,300,} 55-464 40 C 17,800 Ii 151 SA-312 Type TP-304 or TP-316 I l 152 SA-106 Gr. B 40 B 15,000 1 j SA-312 40 C 17,800 301 TP-304 or TP-316 ~ 17,800 601 SA-312 40 C e TP-304 or TP-316 .f p 602 SA-106 Gr. B 40 B 15,000 i v ~j d 1302 SA-106 Gr. B 80 3 15,000 i 1303 SA-333 Gr. 6 80 3 15,000 I C 17,800 1501 SA-312 80 4 TP-304 or I TP-316 ,s j 2002 SA-106 Cr. 3 120 B 15,000 / i SA-106 Gr. B 160
- )
SA-333 Gr. 6 120 5 15,000*.fs 2003 'SA-333 Gr. 6 160 2501 "SA-376 160 C 17,800 TP-304 or TP-316 i 2503 SA-106 Gr. B 160 3 15,000 i O i - rr -, - ---,-,p_..2,-,... -. v,_.v v. .....__.y r. 1 em -,,.,-,_,7.,. -p.
-.;,~,h. 4; L '. a..J.;_f.i.; . %.ugs, w. .E.. E- - - o-- t lif 1 O.- Table 2A PI?! FROPERTIES t l W4 2 Wh )(1b/fl _ fin. 1 M r 1 Fipe (Ib/f l Size fi=.) 40 .850 .1316 .04070 .109 j l 1/2 1.087 .1013 .04780 .147 1.31 .074 . 05269 ' 187 l 80 i-
- I 160 40 1.131
.2301 .0706 .113 ]' 80 1.474 .1875 .0853 * .154 3/4 160 1.937 .1284 .1004 .218 1 40. 1.679 .374 .1329 .133 80 2.172 .311 .1606 .179 160 2.844 .2':61 .19C3 .250 1 1/2 40 2.718 .882 .326 .145 80 3.631 .765 .412 .200 160 4.859 .608 .508 .281 l,] 2 40 3.653 1.455 .561 .254 80 5.022 1.280 .731 .218 O. 160 7.444 .971 .979 .343 40
- 5.793 2.076 1.064
.203 2 1/2 7.661 1.837 1.339 .276 160 10.01 1.535 1.637 .375 SO 40 7.58 3.20 1.724 .216 80 10.25 '2.864 2.226 .300. ~ 3 160 14.32. 2.348 - 2.876 .437 3 1/2 40 9.11 4.28 2.394 .226 is 80 12.51 3.85 3.14 .318
- ~-
4 40 10.79 5.51 3.21 .237 1 80 14.98 4.98 4.27 .337 i g#-a 120 18.96 4.48 5.18 .437 I .l 4.02 5.90 .531 160 22.51 -,j g i ~ ), I )k i O i I.:l:}i
~ 4. _.p m _,. t1b O., .e f i l Ii 4 I 8 -fj '1 .1 '1 Table 3A .l INStmATION i -- I' ., IN ' Pipe Sizes (in.) 1/2 3/4 1 1-1/2 2 2-1/2 3 3-1/2 4 7 M Calcium-Silicate Ins. No. 1 (1bs/ft) .49 0.49 0.72 0.84 1.01 1.14 1.25 1.83 1.6 'a .c: Stainless Steel Reflective Insulation - Ins. No. 2 (1bs/ft) 2.45 2.45 2.70 3.12 3.4 3.62 3.9 4.29 4.6, / -t f a .l 4 1 s t T i o 9 ~ O . o, 1
- ij
.:,.,.;;..=,.. ;. ;..:. _. ..,., :=. ;.. _
- ... -.au.
...-,...-, ~
- =.
l .l __ ~. :..., - -.._... -. ~.- - - - - Ill. REV. 5 'I i i Table 4A.Fugglejl0 1/2 in. I SEISMIC RESTRAINT SPACING l VALUES OF CONSTANTS "Cs" 1 1 Schedule
- 40 80
$160 I Wall Thickness, in. .109 .147 .187 e Unit Wgts., lbs/ft Pipe .85 1.087 1.31 i Pipe + Ins. 1 1.384 1.577 1.8 Pipe + Ins. 2 3.3 3.537 3.76 Pipe + Water .982 1.188 1.384 Pipe + Water + Ins. 1 1.472 1.678 1.874 Pipe + Water + Ins. 2 3.432 3.638 3.834 1 ({}teq. & Mat. Pipe-A 407 375 342 297 264 241 Pipe-B Pipe-C 341 313 286 Pipe-A + Ins. 1 258 258 248 Pipe-B + Ins. I 182 182 175 Pipe-C + Ins. 1 216 216 208 Pipe-A + Ins. 2 105 115 119 Pipe-B + Ins. 2 74 81 84 Pipe-C + Ins. 2 88 96 .100 Pipe-A + W 356 342 324 Pipe-B + W 249 241 228 Pipe-C + W 295 286 271 Pipe-A + W + Ins. 1 236 243 240 Pipe-B + W + Ins. 1 166 171 169 4 Pipe-C + W + Ins. 1 197 203 200 l Pipe-A + W + Ins. 2 101 112 116 ~ Pipe-B + W + Ins. 2 71 79 82 Pipe-C + W + Ins. 2 84 93 98 Note: i es.T s. 1 = Calcium-Silicate Insulation (_1 J. 2 = Stainless Steel Reflective Insulation 'I .1 = ...... =.- +......a . _ =... e_... L
Ts ,c .-;..e::n . a. _z..:.. ; :a__... 1 s .' l I llb a
- )
s 1 ef,8 L i, Tahls IA' - P9 I SE:SICC 3 ESTRA:NT 57A7 3/4 is. 13ZZP_"3 CF CONSTANTS *Cs" 5 .T = d 40 80 160 1 .I er%.Aet. .113 .154 .218
- l Wall "'*-t ass, in.
~; esit wets.. Ibs/?: 1.133, 1.474 1 937 Pipe 1.781-
- 2. I24".
2.587 n f Pipe + :ss.1 3.924 4.387 3.581-ij ripe + ns.2 t 1.361-1.661 2.0E5 ripe + Water 2.011 2 311 2.715 2ipe+ Wa.ta= + :ss.1 t j Pipe + Wata= + *.=s.2 3.811' 4 211 4.515 2 es... m. .442 -j 522 493 Pips - A Pipe - 3 ,374 347 311 445
- 412, 369 Pipe - C
. i, ' 338 342 330 1 i Pipe - A'+ Iss.1 238 242' 233 Pipe - 3 + 'ss.1 5 3l 282 285 276 Pipe - C + Ins.1 't 4 168 185 195 7ipe - A + :ss.2 118 121 137 Pipe - 3 + :=s.2 140 154 lt3 Pipe - C + :ns.2 44'2 438 414 f Pipe - A + W 3 311 308 292 4 Pipe - 3 + W - 346
- q 369 366 Pips - C + W
- g
-4, - m. w... '***a*'N wage -eem-. 4
.y Ji I (l6 .i e -l Le t l e.his R hy 2, et
- t M *O3ES N U O 3/4 is*
~. jl va:033 CF CCNS W W W Pipe - A + w + :ss.1 i 221 222 211 ~ ripe - 3 + W.+ 238*1 m 3D W pip.. e + w + :ss.1 1 153 M6 W .j ygp. - A + w + :=s.2 M W rip. - 3 + W + :ss.2 W W ygy.. e + w + :ss 2 ~ j 1 1, ] i .. L 1 j Nota .l .:ns.1 = "' # "' ~ Iili#*~~" Z##=l ~~
- = 2 - stainless's u.1 mel== in 225u1*****
= -i ~ 3 l l I 1 i .t i "I m L) f.i /; 3 _a r s 8 ,q .e
i ~ ~.- . _ ___......u. I} .I em l2 0 - 1 ix 1 L. s l Table AAU 9 4q'.w h w-ew y.ss-2A:NT SPAc:53 1 i=. .j VALCIS CF,CCNSTAN'::S "Cs" .j 40-80-150 Sched la <.j j Kall ~*-h ass, is. 133 179 .250 U=.it we_s.. Ibs/?t j Pipe 1 679 1.1'.O
- 2.844
-1 ?j Pipe + :=s.1 2 399 1.892 3.564 1 Pipe + :=s.2 4.379 4.872 5.544 .j 1.053 2.483 3.070 .s , Pipe + Wa.e= Pipe + Wata= + lll=s.1 1.773 3.203 3.730 e J Pipe + Wata=.+ 2=s.2 4.753 1 133' 5.770 !O. .i ( Catee. a Mat.. .. t. 674 630 570 ~l Pipe - A 476 443 401 f Pipe - 3 ~ 543 527 476 Pipe - C j Pipe - A + hs.1 472 473 455 Pipe - 3 + hs.1 332 333 320 Pipe - C + 2=s.1 395. 336 380 Pipe - A + hs.2 259 231 232 l Pipe - 3 + :=s.2 182 198 2f)6 1 235 244 Pipe - C + :=.s.2 116 551 551 528 Pipe - A + W 71pe - 3'+ W 386 386 372 i) '?ipe b C + W 460 460 442 I .l 3 t ~ - -,. .7-----.-... s
~ .._m. ,.. = __.,~..s__.. .._.t__ _,. _,., _ 1 4 <c ^- v. 4 \\2.\\ i n, ,t i. .s s I Tadrie AA. t'ay Et t,i-i s m N *T2 57AC:N3 1 Di 1 in. 1, m r.s er cous z *cs" ' i 438 4 17 C8 ] yipe.- A + w + :ss 1 237 321 342 j 2ipe - 1 + W + ss.1 3C 357 357 pipe - C +'W + :=s 1 1 238 264 231 -l yipe A + W + :ss 2 157 186 198 1 ~ l yipe - 3 + W + :=s.2 I., Pipe - C + W + ss.2 139 ' 221 234 sose:.
=='- - * * = ' = " - ' " ' ~ ~ '" ' ' " - .! O
- ss 2 = stai=less steel Rec ective =suist, ion i
-} d i. I 8 ~ i 4 .i k e e e e e W k l .i G 1 I ,1 i i O. 8 - e e ops
- O g
- -- - r - -
-..,7.-,
1 I ii. g gn 2 A 3] <- t-table 0 h p G~f!G. sz=mc= = = m S;m VAL:ES OF Qa, 42CS "Cs" gg gg, 40 80 1K0 Schedule Wall "ideress, in. 145 .230 .221 i
- d 1
mit wess., Ibs/Ft. . j. 2.718 3.s31 4.853 J yipe l 3 55a ,4.471 5.ss9 rip + z=s.1 i 5.838 E.731 7.979 Lj 2ipe + :=s.2 3.s40 ' 4 3H 5.457 ~l Ripe + Wasa: Pipe + wata= + 2=s.1, 4.440 E.234, 6.307 .1 -l Ripe + Mata= + =s.2 6 710 7 116 8.587 .j 'Ca:$se. s Mat. 9:2 Su a80 i mi,e - A 719 681 s27 Pipe - 3 853 ,808 745 rip - C i 'JM 2'ipe - A + %=s.1 781 '735 759 2ipe - 3 + :=s.1 550 553 535 Ripe - C + %=s.1 652 E56 634 Pipe - A + Iss.2 476 520 542 Pipe - 3 + Ins.2 325 366 382 3 'l Pipe - C + :=s.2 397 434 453 771 798 792 'i} Pipe - A + W 544 563 557 Pipe - 3 + W 644 667 662 Pipe - C + W 1 9 z;e s-I 1 '**W**'*". .An.*-*+ m ee e mmm,.,a,p
^ , -a -a.w.. z,_...a.. e< sg 1 .,,t s .'l .Q' kN =ga 0 p.!.J ^;-,*( J
==%1a M - h g,at-{le lg 43, a q r ew m ass'suL T_. 52Ac:NG VALUE cf CONS W "S "Cs* h -l 525 670 584 '.'l yipe - 2.+ w + 1.n 3, 9 440 473 483 j1 2ipe - N + w + :::s.1 523 544 M .. 4 d pipe - C + W + Ins.1 414 457 504 ,y Fipe - A + W + Iss.2 291 330 353 -j Fipe - 3 + w + I=s.2 346 390 422 2ipe - C + w + I=s.2 d .] '9.. Nota: 4 =,,1. e.' d - - sili=sta I=sula" \\" I .i O
- =s.2 = 5 mi= lass Steel Raflective I=s"'**! =
j } r t + 1 .a Li ,} s4 0 3,. e,. - pP 1 e tv* S ..j ...'J 1 -,j 9 it 1
- 1 30 I
^ 'i .1 - = ~ ' $,] ~ - - - - O 4
a a-ea ...-n--.. - ud. ; 4.dk.'.
- L. _ s'..".~swi;..^*
..s.. c.-. -n - ~ ~ - i n i .:3 J 2.4 r Table'7A -b>.Te{tf.
- 1 9
m s=: sac ll' Rzs;3Am; s2AC:NG z 2, w _s or cous= =:s e.- 1 Oj E0 180 'J e Schedule s 2
- j d w 5.g3, in.
.154 .218 J43 i 1 [
- t Wess.., sbs/?t.
3.633 K.022 7.444 ' { ygp 4.gg3 6.C32 8.454 rim + Ins.1 7.053 8.422 10.844 -l ~ 2iPe + 'm.2 1 5.108 6.302 8.415 Ripe + Wa*x 6.113 7.322 9.425 pipe + Wa*x + ll;ns.1 8.3c3 9.702 11J15 l ripe + Wa m + Ins 2 O ( catee. s Mat.. 1309 I2 40 1%21 '{ y.ipe - g 322 874 789 f, Pips.- 3 1D93 1838 837 i hipe - c 1015 10.33 988 yipe - A + :ns 1 722 728 695 1j pipe - 3 + Iss.1 t 857 863 824 Pipe - C + 2ns.1 i 678 740 789 pipe - A + Ins.2 477 521 542 l ripe. 3 + %=s.2 567 618 642 pips - c + I s.2 936 988-891 Pipe - A + w 659 696 698 yipe. 5 + w
- 782 825 828
(;j pipe. e + W e 4 0 geme M S 6-g 6 T. -~ ,,n. .n.
- .. e
.-...x.,..... t
- _,._x. s.
- , g.a
- . s.z.:..._......
.,,., < w'n ......u..,. .a. __ _ ... __. c - _.,. e M.. 1 ". 3 .i r2 I25 -4 / ~ 1 ..e Y.4 table. A,r ug t. W,g i 2 in. j -- yms mi:=e s7Ac:N3 .j va:::::s or cous:xx:s es-72 asz ses. 4 yip - x + w
- ss.1 551 W
523 '] ytp 3+w+:ss1 833 M j. zips - C + w + ss.1 ~ 552 542 706 pipe. A + w + :ns.2 396 W .j pip, - 3 + W + Zns.2 4f5 537 59Q pipe - c + w + :ss.2 2 sota i, a lO "2""-'**""""~'- ~
- ss 2 = stainless steel Reflective 2ns..lation I
I. ( .s 1 <s s. i
- 'd e
O .d - 1 . 1 6 . 'i l.- ,4
- J~,
~ - eW - . - - ~ ~ e i r _ _ ~ e l - *j n " ~ ~ " ~~ .e --en-. = l -e..
2...:.- - .. m 3 ^, ~.s 5 & M*;.,L_k-y;Q..* ;,_ ^ ' '~ ,:n
- s u.e oe_--
.h - il ici ps } i s j% .= oW c *\\' t L 2h in. 'Tzhle M 'is i ~' i.:] .w.Na' FJ.S"E2 *.NT SPA $*.G m.= cr c=xS:ues -e.s-m
- i s0 so 160,
0 I. s+ ^, e i
- i Wall * -W ess, is.
.203 Z2'E 373 j In:it Wess.. Ibs/Tt. l 5.753 7.5K1 10.010 l ". Pipe -i Ripe +. s.s.1 , E S33 S.,801 1 150 - t i l' 13.g30 "m-9.413 Pipe + :ss.2 l 7'. SKS S.438 1 545 ~! Pipe + Water -.I Bipe + Wata= + :ss.1 9.009 10.538 1 685 Pipe + Nata = + :ss.2 1 489 13.118 15.155 1 i ( Catae. s Mat. i 1565 1439 1394 -1 Ripe - 1 Pipe - 3 , 1103 1049 981 -4 ~ .a 1308 1144 1164 Pipe - C ..I Pipe - A*+ :=s.1 1307 1234 1251
- ' I 921 913 881 i
Pipe - 3 + :=s.1 iI Fipe - C + Ins.1 1893 ,1984 1945 Ft3 10!1 1023 t Pipe - A + :ss.2 .e 57 8 712 721 ~ '~1 Pipe - 3 + :ss.2 805 848 855 j Pipe - C + :ss.2 1152 1251 1208 Pipe - A + W 812 846 851 n Pipe - 3 + W 963 1004 1009 ,.lj Pipe - C + W .s. ..e .ro .=. 6
- l- (
e J ^ " + * -
.:.. a 2= x. uuu:.:...:. .~a.... ,.j + l 4 - 4, l h l, .) l27 I Tahle _M hge g fit. Sc3c0 3=s 2A_%."' 57A :N3 VA: Is CF mm"lS *Cs" 4 4 Pipe - A + W + :ss.1 1206 - 1073 1099 ~ e . j ripe - B + W + :ss.1 709 753 773 .f Pipe - C + W + ss.1 841 897 913 Pips - A + W + =s.2 789 870 S19 - 1, Pipe - A + W + :=s.2 536 * (12' 548 4 727 765 ~i 560 1 Pipe - C + W + Iss.2 0 - ,. I Notar e
==s.1 = cal = inn - silicata =sn1=*.irm ~
- =s. 2 = s -= 8 -' = = = steel Ra.fle==ive ' h tien 8
e 1 i b e G o
- t e
O et 30
- 1 4
l i e f 1 7 1-e l i ... ; i.:~~. = w - e I q l t I
~ .u.u!.la.. -.
- i. _. _.
-a.. ..:~ 2...ia.u.- ~: -.+.a - l -- ~ _. _, .,1 i ' 1, i / 1 ) lQ l tw s ~ l Table"M Tbj gIe{.!(, 3 in 5I:stC: EE3* RAIN':' SPM::NC VA::E3 CF Coss. ANTS *Ca* i ) = Sched=le 40 10 150 i j wall ^'ckness, in. .216 .300 .437 .i 1 Unit we*s.. Lbs/Ft. ripe ,7.580 10.250 14.320 1
- t Pipe + :ss.1 8.830 11.500 15.570,
q Pipe + Ins.2 11.480 14.150 11.220. Bipe + Wasa= M.73O 13.114 16.668 ~ Pipe + wa.a= + :ns.1 11.030 - 14 364 17J18 - 4 } Pipe + wata= + Ins,2 14.580 17.014 25.568 - } T i ~ i Catse. & Ma% .i . i. Ripe - A 1938 1830 1711 -i Pipe - 3 1364 1304 1105 .i 1 1 Pipe - C 1520 1546 1430 i i. -l i Pipe - A + %=s.1 1853 1649 1574 1 1 Pipe - 3 + Zns.1 1172 1152 1109 } i + Fipe - C + Zss.1 1390 1378 1$15 i Pipe - A + :ss.2 1279 1340 1345 ,2ipe - 3 + Zss.2 901 944 948 ? ? Pipe - C + Zns.2 1069 1110 11'24 '8 ~ Pipe - A + W. 1362 1446. .1470 Pipe - 3 + w 959 1019 1035 v Pipe - C + W 1139 , 1208 ,1223 t 1 .I t i i g -r. i 'b ~e. e .,,,m,,,_, ,y,,,,,, _.___,_.___,_,___c.-
~~ ~ ~ ~ ~ .:..i: e.....,..... w. .w. ..~ g- - -.. m - - . p,a. _ l (- IIS g .v g l I, Tableh ~ibs.212, !L 3 4. s 3CSCC RES".JtA NT SPAO N3 ~j YALUES CF CCNSTANTS "Cs* 4 1 4 yip.: A +.w + :=s.h. 1:21 1320 ,1367. - 360 S30 963 Pipe - 3,+ W + ss.1 Bipe - C + W + ss.1 1010 1104 1144 pipe - A + W + ss.2 1001 1114 1151 ~ i Pipe - s + w + :ns J 70s 785 839 i Pipe - C + W + :ss.2 836 332 SS7 t Not** )Q 2.s.1.., - 3.,, w -.e '( =s.2 = stal=less steel Ra"lactive Insulation I e 6 e 1 e 8
- e e
e 'J' s ]0 Li 9 4 1 1 ,,_,,--,a
-4a h n ua..... - p. t, .r. sty . az,.-x - .t. c,. l t U ) t.m.... i q.- . ]' ISD _- j Table _AA -Ibj l' tj 1L 35 in. s-32C: RZs 3A::NT SPAC::N3 .l rm cr c:ESW.S *Cs* -} 40 80 1 Schad=le l Wall ~'-w ss, is. .215, .318 t e ' 1, U it we_s.. Ibs/?t_ f 1 3.11 12.51 i. . Pipe 1 10.34 14.34 .j Fipe + :=s.1 11.40 15 80
- l1f, Pipe + :ss.2 13.39 15.36 Pipe + Wata-i ripe + Wata= + :ss.1 15.22 11.19, 4
- j Pipe + wata= + Z
- $.2 17.58 20.53 i O
- 1
.w -l ( 2239 2138 ~ Pipe - A 1577* 1506 4 i i Pipe - 3 i 1871-1737 l Pipe - c i Pipe - A + :ss.1 1853 1854 i, 1313 1314 4 Pips - 3 + Zss.1 1558 1553 Pipe - c + :ns.1 Pipe - A + :ss.2 1523 1593 g ,i Pipe - 3 + Zns.2 1972 1122 Pipe - C + :=s.2 1272 1331 1523 1435 Pipe A + W 1073
- 1151, Pipe - B + W -
i Pipe - c + W 1273 1356 h j l b, s -f A ((j .1 e b n v...--- __-,r_
'd)- _., m..-..._,~....u ..., a_ .,n_,_._. . a, . c. c. _ _ ~... 7.1, e 7,1 .,i pJ .. ~. ~ I3l I ~ 21.: e Tahle AA Pp.@ tCe {-t 'u 3% 1:L. =" c m m sr a vi=:=s er Ceusus:s c2-Pipe - A + W + : s 1 1344 1470 1 .l dipe - 3 + W + ::n.s.1 944 1D36 ripe - C + W + :=s.1 II20 I223 -1 . t, 21p* - A + W + Zas 2 II54 1295' l Ripe - 3 + W + :nis.2 813 913 i 1 Ripe - C + W + :ss.2 564 1083 j 1 Bass: 1 s
- =s.1 = cal =i=n - S* * * -=ts
=sula*N f t -{ Z=s.2 = stal=less Staal Raf1 active Insula *d.an 3 4 6 e I 1 f 4 i e 9 J V 2 4 0 ..e,=, p 9 ) 1 9
.1__ _.... J,11..... _ _. _, .,i ~~ ~ ^ ^ :^ T: ' ^ ......'..L ^ j ?) l 'i- 'I n 112. g, i, 4 i l, v(. a 1
- a
.) 1b I Ib I Table 4A - ila.:. SEISMIC RESTRAINT SPACINC 4 VALUES or CONSTANTS "Cs" i 4 40 80 120 160
- l Wall Thickness, in.
.237 .337 .437 .531 Schedule 1 i Unit Wets., lbs/ft 4.- 10.790 14.980 18.960 22.510 12.410 16.600 20.580 24.130 Pipe Pipe + Ins.1 15.400 19.590 23.570 27.120 1 l Pipe + Ins.2
- 16.300 19.960 23.440 26.530 Pipe + Water Pipe + Water + Ins. 1 17.920 21.580 25.060 28.150 l
'j Pipe
- W'ater+ Ins. 2 20.910 24.570 28.050 31.140 q
Catec. & Mat. 2533 2427
- 2326 2232 3
i Pipe-A 1638 1572 1784 1709 2117 2028 1944 1865 .j Pipe-B Pipe-C 2202 2190 2143 1828 .I Pipe-A + Ins. 1 1551 1542 1509 1466 Pipe-B + Ins. 1 Pipe-C + Ins. 1 1840 1830 1791 1740 b 1775 1856 1871 1852 Pipe-A + Ins. 2 1250 1307 1318 1305 Pipe-B + Ins. 2 1483 1551 1564 1548 Pipe-C + Ins. 2 1677 1821 1882 1666 Pipe-A - W 1181 1283 1325 1334 Pipe-B + W 1401 1522 1572 1582 Pipe-C + W Pipe-A + W + Ins. 1 1525 1685 1760 1785 1186 1239 1257 q Pipe-B + W + Ins. 1 1074 j Pipe-C + W + Ins. I 1275 1408 1471 1491 i, 1307 1480 1572 1613 Pipe-A + W + Ins. 2 920 1042 1107 1136 Pipe-B + W + Ins. 2 1092 1236 1314 1348 Pipe-C
- W + Ins. 2 Notes
-1 h Ins. 1 = Calciun-Silicate Insulation Ins. 2 = Stainless Steel Reflective Insulation i
- ]
i m -:k '"**'*~**% ~ ~ ~ ~~ ~ =
l ^ i O e t ~ 133 i i NI s Tab.'.ON.d TukVC. E't = s= m st. ar__ st._ -1 .1' i . cont =haent snildine j 783.58
- 1. 0
'1.83 1.19 2.401 j 805.50 1.12 2.07 1.27 2.674 i j 460.00 1.84 2.42
- 1. 84 3.5 54
't 't 905.75 2.88 3.06
- 2. 88 5.094 i
950.54 3.92 4.10 3.92 6.895
- ii l
1000.50 5.0 5.19 5.0 4.771 ..f* u In t. St neture Cont. Building 783.58 0.62 1.87 0.89 2.162 2 O .0. 00 1.0. 2.08 2.21
- 2. 29 2.04 2.27 2.07 3.644 832.50 3.28 2.49 3.53 5.424 560.00 385.50 4.37 2.75
- 4. 46*
7.091 905.75 5.27 3.0 5.95 8.49,6 5 e 'I 4 t a 4 .4 e ) .i j .i i i I, !O 9 L - - ~ +.,......,,,,, l -f..-f3+* e. + - .I t
_..g _. .} 1 t '. s.
- i (ml
- j 1
lj 114 .-r J.h c A
- c.g z n T
'w. IA,f.Is. L C' L 3.L safeenard Scildi=c 773.5 0.65 1.96 0.75 2.197 "t* i l 3 755.5 0.90 L0 1.04 L 427 790.5 1.15 2 40 ' 1.35 L 984 '-I 4 810.5 2.19 3.81 2.19 4.91 .) 831.5 3.09 3.94 3.06 5.868 1 1 852. 5 4.00 4.14 4.16 7.102 s .] 873.5 4.87 4.55 4.87 8.254 a 496.5 4.80 3.19 4.67 7.418 ) A u=114 =-v Buildine 1 790.5 1.00 2.60 0.81 2.901 ! O 810.5 1.50 2.81 1.37 3.467 ai I 431.5 2.22 3.07 .2.34 4.453 1 ~j 852.5 3.00 3.32 3.22 5.513 873.5 3.75 3.62 4.19 6.688 856.5 4.10 3.44 5.75 7.156 i 899.5 4.56 3.69 5.32 7.919 e -!p 6 1 4 .. f 1 .? i 4 e ..O 'h
- , e-*w ae*** p g e - *
.g,-.5 w-e. 7, p. .y :, .,r....,,. *,,.,,, W
5.< _.-.s. ..g 4 \\. 1 ,O we . i.; ( Iaf T'Jd-fA Pu/1 ej 7 lb 7-J ,-]! 4 Elev. Gr G7 83 8 6
- 4
.4: ziect-i al Buildine 'f 778.00 0.85 2.36 0.54 2.57 .[ 807.00 1.50 2.50 1.ss 3.252 430.00 2.07 2.58 2.21 3.978 854.33 2.72 2.65 3.00 4.840 il 873.33 3.25 2.65 3.64 5.566 [ ...j 4 y .1 ) 4 4 e. 1, O. 1 1 t ? e f 41 1 .1 1, N .1 ^ .1 'I A i e g i 1 1 r ' e * * = * - ** wy *
- '*~*=****v-
- * - * - * ** ' wp **} ;; + 99 '* ;*~." ?.* Tett'FY' *' * * % ^ -
i.'"*t*T**,'*V* ^,* erp y,v eeyp ree, ow-ee r e e + .'t I 9 r
W' o ~ _. w-
- l
,y . l l .d, i s ga a ...a j 1% - -l --1 Assensum ro &J $ k7 TABLK SA ~ i A $4. 6St EMTMCUAbtE GY es Ge earvaesev g .i Se oursus erwwuet l 755.00 . 50 69- .50 s.88 1 1 i =48 794.00 .pg 23 6C SSS.00 g.gg g. A1
- I.0T t.toD i
i SSE SMTH&tJMCS 4 O 199.00 .79 60 ,79 I.40 - 1, 196.0a I IB I.I9 .75 I.30 sse.c t.cs. I.35 I.Sc 3.Ie f i. W 6 e t e 4 6 E o 9 e h g i f \\ f k I e
- e
.sh i rwe r,--ep 9 9 au. m.e,.. 9g9e 9q g
- W4m*=
W Y q e y _r,,__, ___,n _~ __.__,
-,.c s: .......= I 1 l t..j 1' ~~ ~' . i (u.l v31 A t.. gg7 '4 4 i -i .1 i ADGENOL,lM 10 I T:A D t.,E S A 44 [ f-T l SSE SAAiWOLUAACE es Os mLevarow g g I t 1 Auxtussev OdeLDoHG -i 5.00 4.80 9.51 3.10 .j ggg.so 1 sas.so 4.10 4.30 9.10 8.17 1 i s18.90 4.50 S.00 9.00 S*LC t 852.50 3.50 4.60 3.90 1.Il i 'l t 488.50 2.30 4.50 f.20 G.04 g:,.. I ,I ' l o .r 410.30 1.90 4.30 1.30 4.95 190.50 t.40 8.00 I.te 4.51 .I 1 ? rust musuarue 1 sus.= s.a t.e u.s0 s.0, 1 6 11 899 60 4.40 t.10 4.90
- 7. I t, S60.00 t.90 t.50 t.60 4.14
$48.00 t.C0 " 2.90 &*30 4.16 (j 3f5.00 t,.20 g.30 f.90 3.as ii $10.80 f.90 g.30 1.40 S.31 s e n n s u o n s s urt.s N m
- 4. t.2 ass so 5.80 S.10 5 10 4
9.94 373.50 5.60 5.50 4 10 351.30 4.40 5.10 9 40
- 8. se I
es $6iJC 8.40 4.90 3.90 7.12 j j O t- $10.00 t.30 4.60 2.90 G.12 4 i i J t f -- --~ p,....y..q3-....-.,..-,.., .y, - ~,. ..)...:.,.y.~,,..,.,.-c... . g. ; g I O .-y--..-....-,------,,.,,,,<,...,,-.w-.- -..,,--....r -,..-v.-- ,---.-----..--,-.--.-.y--, ,,----.,.-y
. yv' ' ' , ~- Y.. <.7.*,,,, JJ
- :,i
.%.e 13 8 '.i .d
- s As79fNOlmIM N
.O TXBLE BA 44 C$ T l :; ..1 .CSE EAMTNQtJAKE MLesvA1"reV A A k b ,j SAnnseuARD BUILDthQ fW l f.40 3.97,
- 1. -
f.54 S.20 790.50 l - '.] l.d 785.~50 I.20 d.80 /.4c 3.35 77s.50 1 00 2.60 1 00 S.14 ) 1 :., ; u ELK.TMICM ButL,OING A., 875.55 S.70 8 80 4.80 6 81 ' 4 g sas.33 3.so a.co 3.30 - 6.14 j -., f,. 3 I $30.00 g.50 3 80 2.70 f.29 1 i Sat.00 I.00 S.7e i.90 4.97 j d 778 00 f.go 3.sg 0.90 S.96 1 - t coutAruwwwr at.rtsWa_ 4 et n 20o0 50 9.60 5.10 5.60 9.48 f 950.58 4.40 4.80' d 40 7.Il
- q 1
ses.7s s.so s.oo s s0 s.es i.q i .i . ssa.co 2.20 3.50 2.20. 4.63 t I sog.so I 40 S.00 1 50 S.69 i.I 733.53 . /.to 1.70 1 30 S.SS 1 i 4
- 4
.1 -.i r i O 4 1 D- ~ O e e ',' 3, s '~ 9 49 --,,w.%_.,__.,_.-..,_._____m. ,-__,-,,-,_,-.__..__m._ . _ ~, _,,, _ _ _ _ _..,. _ _ _ _ _
. ae - ~ a..._..,.... _ _. m..,,,,,._,. l _. _, ~, ~~ v d
- j n
W.. q ~ 1 l33 .1 AconNDUM 70 Tass.5 5A A.g7d7 $sE EARTNGUAKS tr stava m a h 31 23, .93. 1, nu, snve-uns een st.se. 4 ~s 90s.75 5.00 4.00 6.24 S.9 I 3 7: !] Bask 4.s0, S.So 5.10 1.6L + . 840.00 3.30 3.50 S.80 4.18 -] .) S.80 1.30 4.54 891.50 2.10 sos.co t.so 3.00 f.de 8.52 1 ..s =i 1 ..f 1
- )
i. w I. 1 1 1 1 .i .. 3 I (O = 4' .3 a(.8 1 e 9 ,w w ---*w.% -.---..-~, - - _ y._._y ,-,._._----+,m--.----,---.-,-,-w_.,..,,-
.r.._. c2c, m.,._.,___ -- s.'./.,L.h..x G! JJf.^. - . - e..=J.. _.... ; r.. ? t. _ ~ MY *e - n.0= ^.- ) ~ .v Ll I (G ~e . t. --r ( 14 O T1212 7.A 2 "9 (- ~~ I"1TITY DISP; 1/2 SSI d I Y Z -f ) CCr:1I HZIT f ,d r .a 797.75 0349 .0912 .0344 434.25 0944 .1300 .0951 ~. 896.25 2421 .1970 .2482 950.5-4042 .2344 .4154 ~ 1002.5 5483 .256" .5574 1052.1 6761 .2534 .6854 'I IRT22W11 S*2UCTFII ,. -.s 'j .,7 797.75 0349 .0912 .0344 1 / 'f 1 832.48 0140 .1058 .0765 l 861.44 1093 .1046 .1178 893.33 1528 .1124 1691 SA.F23 CARD IIDG 772.53 0065 .0401 0106 4 789.68 0145 .0560 0222 .'. { -} 809.47 0265 . 06 94 0374 i. j 831.34 0440 .0814 0613 0629 .0414 0501 i l 851.80 ~9 872.4 .0772 .1271 1001 i .0805" .1271 1138 ^ 893.s9 a +l. q o-
- t i
i j t '; ) .m--..
- w"
" g .g 4ag> e gase gag 9 e c-p ,.-_r<n, e, -,,,-.-,. _,e,,_,,,-,,,.,,-_n,..,..,w,e,-
)4'E_ i E E b MU*M/e.. :(ble.14 4~. 4, m,_ u 1 } ' O \\' 14 i T k 1-A 'f-p1Nk Z Y I AUC UL2Y EL3G .0188 .0914 l 791.36 .0207 .1035 0343 )I 811.46 .0401 0514 l .1087 i .l 831.15 .0401 0689 .1100 60753 1 ,.849.55 i 0837 .1117 1 .0909 872.32 { 1117 ' 1039 i .896. 85 .1067 t ^l .i Z:,r='EICLL BLDG 1 .0675 0101 i 776.79 .0103 0320 .0722 8C5.63 .0328 l 829.55 .0527 .0746 .4486 - i .07&S .0659
- )
.0703 452.50 cj .0773 .0755 471.29 .0830 ln h O 9 4 1 . 4 I a t t b
- ~
e l 9 ) ... g g
- = ~ -
ei m e n++e e e ,,_m._ 7 ---___y .-.w.-- _---,--.._..,-c-,m.
l' .___.e-- -.- - - - - - - ~ - - i .q I k 2-E 9 g t >= l i c J. e m i u i I t I e 'a iii: I* e I 2 e l= l q m n \\ i n e r- &I I i i o o a o 11 41 41 41 t'l El CL O ~ \\ \\ \\ \\ ( l \\ \\ \\ \\ \\ \\ 14 -j XA N .\\ \\ t \\ / I ts i . / O A \\ l \\ \\ IT 1 / f* e l j 's 'hl MI I N \\ .\\ V - r it = t 1 l Y1N M i\\ \\ \\ A / l/ e I!NN 's.W \\ \\ \\ / \\ / /; /'
- i j
it J i h M N N \\ T / 1 / / /. e e Ts ANN TA M \\ ( / 1 / /l n o l 1i /. %X W kw l\\ A 1 / \\ ) lI s ] e huh \\ \\' 1 / \\ / / II ' / m 6 .] I ~ ll AwrN N \\ \\ i\\ / F / / u c-1 1 il %\\\\h X \\ X /t !/ I e l i O ' i - 'a ' ws w / v i =~ i j Ps NWNA \\ \\ \\ l1 i A '/ll / i 1 l a i I i 'I i I WSC4v N \\ V f1/ l/ f = s I i e i ll l=i 's ihWW \\' \\ ( / I /; j = I I i
- 8
r WmM \\ V / \\ /li t< 1 e rs hh &i m. / t/ / 1 a 'E Y '-l 's DNAM l\\ \\/ /1 / f 1" c i
- ?.l g
j WNA Wi 9./ IJ l t/ o s i A d' 's / M'h% V J V il Al "; i i I 'E o s's hWC W\\ / /\\ / fB _I [ ? I 's W4NKT J / l l llt, e d I J %\\ %\\J l f i t =' = ~ s 1 j_ 7 h% \\ 'T
- \\
J \\J 1 Y "I ( WM \\l11 1 11 l YETY\\ 101 i a s MV A 4 W 11 J o j, TSMI \\ " -~ vIA J1 r s t 's\\Wt"T\\1 li 1 a 1 i i J ' ALMP A a,i l V i I 'N \\T \\ () 'l si A iI h\\\\ \\Y l
- i..
n q e i I Nwt i t .J ".) U 1 i i i i NN\\1 1 -i 7 7 i I I M\\
- )
ei ~ els t i i i I i l I l hM\\\\ i i l,], ] I I i.,,,e i i i l I it i 1M 6 i i i I ari l 19 t
- j T__ t ii i eie i 6 6 I i'6 I i 4
i ,) I' l iet i Im 6 l l eI ie e i e I i ns 1 IeI i I i lo1 1 i eI i i ei ie e i ei Iei e Iel l 3 a .,. - l... l. .._.,.e.,n. ..~-,,-.~.r...---..*~~p ~v
- .-s*-.*,~~
m-**-~~ -* ~~ ,______._.__..,_._,__,_______,._,a__.___.__.__,,._,____
l ~l 6 5 } /l ~6
- l.. (--
~ s i t he a c .s. i i a 8 z l l 1 ~ 8 l 1 i i i 6 i n i i i let i e i J. s-i i iei i e, e ie A U i i i i6I i o u u <a 6 9 'ei l i 6 i i i \\ l \\t \\ \\ k I I-I .!: 1 1 t 'TI \\ \\ i\\ i i iI m I { A n l Ai '\\i \\i g Mi-i 6 t_ l i hi AI \\ \\: 1/i 8 ei 'j 1% P%iV \\ 1 11 i le 2 4, t ( \\N i ii X T w\\ \\i.. 'J =i al i X N i i \\ \\ l \\.'l r i r, u l,1 I\\ h \\ \\- 1 JM/ 1. (, R ii to l t cs W i l\\ \\ l Tl I eI l !\\ uT I \\ V\\i. s 'e n \\iA ,\\# \\IN ;.' l \\13 l I i u l \\ I* ~~- ) I I /t N i = \\ l l\\ / i\\ F. s I' t i ici N N V l e i At T* Ii 6 Al i I i; I n, l i t ii* I 's i \\K N / \\ l \\ if V i= 'J AN\\ /\\ i i \\1 I / L d' 'o I i ,p z 'c / Wi 1/ N W /\\/ '_ i ii i i e, j q /\\i l\\i / A \\i i I K V \\W i .et Is %TT / \\ A\\ A n. 8e ~~~ W_X y l\\/ \\ T.t: 'l J ~ l I 7t ' t el \\N V \\ iA n Eh e 'J \\ l N M IV
- 1 in
\\ / \\ /N M T le "T J L ' W Y i Ki Y6 i '{ a 'O h6V \\/i \\'/Ai
- W N./\\N 1
I lal ~~~ / X 11 A /\\ LV in C vJ t%.Ki A ) \\p i Fra N \\ \\ /'\\t ** ii ', eO N \\ li 1 i= l ~ 1 i t
- V
'J X \\Y \\ A Viet 4 y l l n a T', Y.X N K t \\ > ' i s i i L 'JN \\W\\i I ~~ l l t I i iis i rs Y\\\\ i-0 l l 1 j l.Tn NNNuN i i n i t i ,I i il i it i i i f A \\\\\\,oi i l I I i ! I i ii!E l'N\\\\\\\\ 8 i .l e..a t I l i I ( l,l ii l l 6 i i i i e i ! t= 6 rWIi .l ll I 2 i .L,l_!.1.i l__i i 4L3 i 7 _ _. L.J.. _ ~ P' _!. L _L Ll I i i i i i F. -i ioi i. - 1 i ai i, iiinii ..ii di 6 i is i o toi iici i Idi iini ..s _ _ = _. _.. _.. _... ~._ t y--.- -.--9y m--- ,,,,_.,,._-.-.,_.-,.,_-,,.,,,_,,,,g,. ,-eawv--mwyy--rmmm.,mmy-,.*my..g-.-*e g
h, ,i t i i 5 l l. lu 1gA I I III I IE g i j i l kMN.,Ma5.h.py' N]4f IIi1 I t I.J 4 I IiiI l l i i g g l w .i. o il , i i ii , 6, ,.i ;g l [L,l// _t 4 I /d yin ON 'I 1 s
- 1 i i r,4 i Ti
- Wi i ;
I I i l i 4 .IL - hhf f { [g t.% gr e ! t., l. i Li I i i l l i u s u, i a i, i ill l I I i i i I 66 I I I i e, 6, I ii, 4 e 1 i i 1 i ! I i i ' ' I i 6 j I 1 l g
- i
, 8 i i e i. i l II - i i _i 1 I I
- i l l 11 l Tw WW ! 3 O l
i g -} i I, t Eg I I l a' l I i i ' I i i i I e e i i i 4 i 1 e 0 l t l I g } ,l I e df l 1 i l l l I i .i i i i ei I7 8
- Q i
i i t i i I 6 il i l I I I t i 1 l',',,i l i i i i I i I I i i !I IIj j I I I l ' I l i I
- I i l I
I I l g l l l iI i t i, ). ; i.
- - i i
, g g i
- i I
! I i i e g g i g
- i g i ; ;
I i l i il i I I $8 I I I l j lI.,,- l 1 i i i i i i i I i t i I i I ,, g g,g i l ; e i i.. ! I i I I i i 1 8 l h I l I I ' ' ' y g g, g,, l l l I I, I I I l' i . i 1 i i i g i I L 4 r 6 l 'I i ' II I, i '. I y, ii: j i i g i l t t 8 i I e ' L , i i, i I i e
- i i
1 . 8 e.. l :
- i ! i
. t i i l i i i l l i 4 . i i , e l I O i 3 l g i i, e j l i l 4 l l i i i i l i I., i eiil i i ' i l I i I ' '. I . ' g l g $ i i e I l l a l' I e l I i t i ! i i I f i 'l i 8 I I
- I I
+ j i ; l 4 ) 4 i g g i 3 i l t I l I g i i g. I I i l I ' I i l I s ; i,. -i i i i g l i i i l I l I I { [ t i i i i l I i i I g , g } l l 1 i l l i i I I i l i J i,g;;; i i i [ i i l l l i t i l.i i i 3.1 t i 7p Vl~ s i 1 'I .q .o 3 21,. .,...._,....._-...._.m.. j
i ~ e e l# 1, t l - 8 WD N. W r-8 I s i 3 eg qE . _ _ _. k._ - - - - - - - - - - n _ ~~ _ _ -- g g) _ 9 -~ 4a --- _ = _____-__.___-.__a =- . = _ _ _ _1_ - - _.. - - _ -._______---o,._-g- _. _ _ _ e, 2 g-a ~ __ _ = _ = _. q _, = _ _ _ = - = T__M T_-
- .f~'---
T_=-i________=__. ~ 1 - =--- - - -
- E~ ~ ~=f ~~
"-_l i [} - _ _ _ __ -i=_ = K '= 5 = ~ = = = ~~^ :-~ ['~(([f * ~ =_ - - --^--- ____. ___= -- = - _ _ _ _ _ - - - - - _ - _ _ _ _ _ =.. _ = _ - - - = = - _ --. L. ._-----------q_____.--;=----- L__.________====n=_=;-_-^="___T_~___~___-^-_.._-__m__2-1 ^ ___----=--="=---_-[2_.=-_ _ _ n =_ l g ~_ ; Y^ .2
7._
O M 9 ._-=___ _________g 1
__= = _. ;._._
_ _ [-- ~ ? :.-~ - = - - f s_ =- = .c__.__-- ~ - - = F:^T ~i;~5__ 3;-} e.. ^ G _ =. - = * =- =_ ~. E- [ ~ - -[-[- _- -- = = - g . j 4.-_--- -_ ;;- -.=_. _____ _ =__ =_== y_ = - {= a _ = _ ".-_ _---_
=
3-g _ g== 7 - - - - ~ = - = =
- -T __ =g __ _ _=. - E 3==2 c
--- __.== _ n ___ g _. _ - -_~~- _4_ r.. _ - = =4E ~ ~ -
- C
- ~ ' ~ '- y==.---~_~~ O \\ _ - =. --, M_gE- -W=g_2--- =- a E J '--N'=~ - - h_~ O ~~~3~ 5 - ~ -- g .._______.__.____5_---_n T g -1.--- t _..=1b_-=_,_~E_~_=~_~_-E.'__~_E _ ~ e . --__~_EEE__.__j_-55SN ~~ '-- "~_- = __.'~--- -_h_ q35.258 -E_~[_ 9 $ A _3.________ ___.-=.:--- =_== __..-- a __. __ =__ . _ _ _ - - = - - - _. _- ^ _=- 5* _4[5'~E~_h - ? ____'=_c..-_-- ~. 2 ^ --_---_______---^-_-_--_^y-_ _ _ _ _ _. _ _ _ c
~55EEE g
'='- _---_3-_-_ '^~ - -~-'- -- --+_- _ _ _ O I=- M T =E w
== % =R=__~ = __-. = = c - = - i. _______~_-_---==_._:, = _ _ _ - - - - - - - - - - - _ _ _ _ _ _ ---.-.----?.r-4 -~~~~ 9 7 \\ c w a e a j Q.a TJ .n e - ~~at 1 (~) a m hI N 7 N-d j CQ a { d'J n a d, N 3 3 Il i 9 W 1 d M M j g 44 s l 1
- r...
~7 ei - *--, -m -~~~~m-----,s. r w-- r 7-v, ~. cy v v.-~~ -- .m e. - - - ~ r-s ~~~ --n,. -.---,,.. y 9 I g
- 3 l
~ .) O. ( -4 s, kh d' Ayyggs s 3 s Flestihili.ty c=ita= ion t
- c. art 1.3 2.
Resp: ired Mt for earpassion loop m 2.3 Tht=:nal =saction force' -3 Cha:-t 3.3 .) Fo==ss and Moment:s fs= Guided Cas #leve: i e 4.3 l and G ided End-2 Spans.
- 8-span.. W ed I
j Table 1.3 .] The M expansion Table 2.3 e 1 J l O. s 'j i* e + .4 i. e 4 1 W 4 g O b l, e n i .e ? N s -f s i eee WN w C M
- eswf, Wp *,y e,wp
,y.,w w..,. I
- ,f P"".~*M""*1."e 4
g.. y g g o r g ,,, y..a. I w s t 4* p 2
- sd t
l .a l i ,J
- 1 3,
l Q I47 c w A R *'"
- 4. E y
h Chest for Cdsaries istPars 4"D(a) la Code far Prussure Pipsag ASA E ,.,] "* RI. I.I. I. I. I I. I ., assaear _ - us sva ;ss.... 380.. 5;ar a.: 1" / ' s 5,. '. ; 1 * ~ MY M ,.Y m -.c. 2k". ";, 1 w 30 1 y: w. s.=c -w ~ f 1- _ g.._=.:-- - --h - = .E=- so - - - =, g E j 4 A 51'7 - p w ghsmaasm. ft
- 2 44 ?W W t
' - 4.. ' f ..g p
- 3. h emesser. a.
-'- - m -.. m= =w_ _ a_w ___ _ _ _.,=- e q -am 30 - za g__ =_ ry r-m e-u- Anaissis a(pipisgris mondeury V .:-m s g, j ^ ' y<F 88 n 1 I 1 . 1-.mmmm-m-a assm-a - x.mient in r at we. J. _ 8 ~ - n ---
- c.7,
J. - Deveispad M M A. j le y s..... .i s ,@ st _ _ g a O { 7,_._ m.. ._..y. _ _ _ _ _ ,,,h,,'_- and ass Emmar arman1 dasplassmana. 3a. a g, w gg,,,,,, g g 4 g - = _ - 7 j . __.m ur_1.=_ jenes sasham) fs. j 'I a
- - Temperamme. F.
.. +, _jt - ; 4 .t.- -a'-.c = u-T/U womaeseisas-L' e':he --- - een'sanybeemedinsamedet s. .w-4 _= -= ^ af Gwanaher 3 a+a__ r ' a
== M-Painta. g M d Chart Anahum e,t pipias Is mandmassy if the faGewi y _t l
- m. as. -
l ____--ws .m DT unwem.mesm .M e.in 'I .v= m-se===.,r ... =... = -. -n.- .g xr-sm 2 _ . x.- ' .
- u:b 4
-I 8 . \\., j ~ t.,. D. : a A. - 1 3, %_ m. e 3-- pffi5=M=W_%c_<=,-W J
- 88. I I t.....
o e t. e .'s l t
- f. '
- 4 t
.i .... ~ l
- }
i .3 a ~--m m - - .,7_ .~. --. _ _... [ e t l, a
' -] ~ .7... .. '. ^. " 4 l
- t n
y, . s. t. o' M2 ca 5y,:.._g-- 9, EEQCIRED HI2GET 'l J .=.1c_;
- - k.p n
f .f 1 M 5 e e we ' emuse v e e e
- /p g
f. esade a v n 4-L, s oM & m.!agsk kom 4 5 3. R. ( j I. -nsa -ra .s h e W MM MI,b D = Demde danamar of pipe.in, i i a YeLes of 2 used = 5 X 108pd. j K. - Code ansenhie seres mace GJSK.* a253.k pd. M$,f = O '; ~ = J _-. -=v :; n= z 1 i. =- _s m._-._ .g ~ ~L =5% 7__
- = = EE T ~ ~
y 3 ( L' % l i. IC* D A I = s m m M a h 1______ 30 - + 5%=_==- - = - =- _=__=. - - = _ w-,x=+- _L - 2 % - n+ --~ -._.3---____.-_=___- __:--= z - :: .l w 1 - y . M %,' .~ v:... ,..y r., :
- w -r %
%t =#-- 1-T -- _=_+- =_--_x- = :- - - - =_ _ =,- m y 2--^---__==_H__:-_=- -~_---=__=-p-,, = =. = _ _ =g5_=-m 1 m 1 p.s. _. _ _ _ _. -'5_ t t r. _. i ~J --- _. - - - ~ ~ ', - _ ' ' ; =Y _q-1 K _Y {--- 3 e .as JQ 2 2 A 3 3 2321A a# '., E k ElMIS D N NM .6 O M e e t e J 3 e e e 4 Y-
- -r-
--.--~,g., s Gid g m,_,_. r. _,_,m._,,_.
? .y -p g... 5 .t f 4 p
- j '{
g3 a ~ * * *
- p7 g,g
\\f \\t N h i l iN I \\ l N i K l l \\t i\\ \\ l\\ \\ l iIItii l s 4 A i\\l N i llT \\l i% i INil\\l\\ \\l \\ l\\ l iI:lil I "\\ l\\ l \\l \\ (N ill\\ \\l I \\1 I l\\llth \\ \\ 't N Iiilll j [I \\ l \\1 K IN INil \\ K I l\\l l Nil \\ \\ l\\ l\\l\\l lilli
- j
] \\1 'k I'll'il'kl \\ \\ l 'kl i 'll \\ \\l N 't hi llit ]\\ 'k \\ \\ X\\ \\ \\ t,\\ \\\\ \\ 1N" i l ..\\\\ \\ \\ \\\\\\ \\ \\ \\ \\ \\\\ M ~ l. \\ \\ \\'\\ \\'\\,\\ \\ \\'M$ iN \\ N%q\\\\.NNN;h 4 l 'sN y '\\\\ \\ 9 \\\\ \\ i =.. s Ei l\\; I IN l\\ .\\ $3 i\\ l l\\ l N I 6 I V. \\l \\ l\\ l\\T).I I Al \\ l l ' I \\1 i N lWill\\ h l\\ I N Kri ll h \\l l\\l i \\ili't \\ \\ I 'L I Itt N il \\ l\\ l N \\l %II \\ N I T I i\\lll\\ \\ l !'5,! l\\lIhlNI \\ I \\ N KITI) \\ l\\ I I\\l 11111 \\ \\ i 1 I i 1 I I h, I N I'k \\1 Al \\l h it \\1 \\1 I N iiN \\ ' i 'I\\ \\ \\N 1 \\! K \\ k \\ ' \\!.\\ \\ 3?g IN \\\\ \\ \\, \\ \\\\ \\ \\, \\ \\ ( s x p.s N \\ .\\ \\ i 3 l ggg \\ s \\ x \\ i e,x .i \\ \\ N N \\ 4 ,c l \\ \\: .s N \\
- : :::::1 I
i liilill I ], O, y AR:':E - Its. ] 3
- ce 1 --... - -.
'j -i 9 y a g
.... b st k.
- h.
v. We G4. %...%.. L,4m s; _ _,;yu w g. y[g
- f.,
t ,y Q-g 1 I i l l. i 4 'CIIART 4.B FORCES AMD MOMEMTS FOR GUIDED cAHist.EVER ~ 1 AMD GUIDED EHD - 2 SPAMG u., !4 til'E-BEA1A COEEP15 ', 4 (DELTA). Pi Mo MI Re R.t s .t t y p . Ph* 11E14 Pts . PL I i b .i .e l1El (s1 1 1 g,,,-..1l'......*..,.- ,l 1 t1 -{ j up ~ n s-7
- s e
g { I'P I- 'n t psk I E ) tis lhe l l xs g -l { GUIDED CAHTILESER ~ n. o _ Lies.. t uas ; ,s Ife -j j pros 64f(*) [ f.7. (.P). (P) - 3 I g 7. ./ ji ( .;.i v ;.,,,. ll. .I 1 i .g 1
- s. '
t I c? WhDED END-tsPAlls .I .- ? 'I. s L.ln Lesse(shit <J) e- -I e c4... . }.,.. ' s '. j .4 l '6 [- .t a e ,2 ,g 8 fs.;. l i, e.
- j l.
s I = g '.) t d, e a a l t '.i
.. a.ama., m _,. , 3, : :-a x : y c, .,a - -. + ~ ~- - '.7 _n_-
- ]
' i . -4 k .3
- Pr.**.*,p_s'a*.=A****"****'***"'*"**-
..] .s......-. 8 lC 1 TX51.fl.5 f J. n N2 25* ARC lt TO 7"25 3:l",3 EA3GZZ .gj.y I -l fE x u.sePr= x 16.,3 = 10,000 pi 3=y w i i 3 Pipa Em 1 I -l
- f IM [, 1H,3 3M 3
3M 4 s e a m.n 14 la u m j; l t 1 I u () uu as U 17J 1 I i ,J s.s, SJ. s.s' is uJ ) I l 1 (- 4J 3.0 3.3 e.o SJ 7J' ( ) 1 I ( M e i t ( t i M 6.5 8 7.0. 7.8 8.8 SJ B.3 11 12 13 14.3 14J 18J B R 2.8 EJlB l l t \\ \\ l I ~ I 1 I s \\ I ] l i i f 10.3 HJ 13 , 14 14.3 18 17.5 E 38 SL5 SJ sfJ 2 30J i l t I l I - f I l l i 1 f 1 l \\ M 3.08 9.0 9.3 I l ) J 1 l E.3 M.8. B.3 SJ t i i l 1 ) 1 9.0 l 10 u n-2.3 la , is I? u.3 MJ 2 28 5 I ) l i 1 I J I I \\ {NJ s I* I l I I 18.3 !?.3 13.3 ' 3 ' 31.3 as a R.3 3 33.3 3rJ f f ( \\ \\ N m.m ne. - l 2.3 j 14 I t . IM , la a 11.3. 12 i 1 i l J 11 i ,u I=J.2J u 18J 18 ISJ E.8 33 as 3BJ B 34.5 3a ' EsJ,e .aJ l l e I. t t I f J J l r t =r mJ 34 3r as a u.& a l t I I e . j
- ='!24.5 j
\\ 114 2 ! u.5 '14.3 le 17J 19.8 m l 1 J s ~ ' a l MJ ' I 8 i f CJ' a f l 3.5,25.8 3 33 asJ e f ) a t i i f J =.3 s l j 2 1 13 ; 14.5 18.3 17 [ 19
- 1 l
\\ \\ \\ n as a a c.3 u.s arJ aoJ ' e i e t 6 I l i l j ) l t I= I.s as } m.s .) ~ i
- f 2x ! u.a u.s 1sJ 1s.4 2 l
\\ \\ \\ ) i , 3M
- 14 4 18 17 18.8 R
2.4 3 28.3 3.3 3 38.8 a 44.3
- ' as ' s M
l i I f ( ( i l \\ i I I I l l ) ) 1 BJ BJ e c e m.s 3s.4 m.a r 34.s 2s I ts ! n I s ) 1 J J u i t? ' 1s a 3 \\ e 1 I j t j 25; r e a at 5 , as u l \\e 1 I ) i 3 3 uJ !?J IS 21 3 23.5 K.8 3' 32J B ) I i ( f I I I i l 3M If N B.5 3 3 3rJ s.4 n.s, as as a.s 4s.s s ,as.3 as s' es I f i i ( ( l I ) i \\ l t I 1 l E.8.2 34.3 2r BJ E.8 ' N.8 3".4 4.3 4.3 32 88.5 5 ' 5 MJ J f r i l ( l i I t l i l 73 4 18 1 .g 4H , is ,EJ 3, as 2SJ RJ 54 5.3 39J e 4.8 88 9 5 Er 71 ; 1 l i J l = 1 J f I I f I I a ' as . M.3 73 I TS ! f as ,g l ) e-e .e 27.3 u.8 4.3 C g 3.3 i i 30 3 j 24.3 l af i l8 l 2.J 2 i =. ! = 1 m '*=>u. i= =.i=.3l.3i= ! =.3. ' <.3 l u.> L i.s I.. t E 14 n t l t I i e O ? i f f l 30. 37 C.4 W. 73.3 77.3 c es.3 l i ] f f ,MJ 8 i 41 .'. 2 l 3.5 30 - B. as , asJ 12 i n l,6 4 e. e e f .J. 'i ~ * - -
- .-*r*
,,,s-
..n ;m.,, & a . ~. 0;)
- s. ::...
- - = g l p. u ). (; l51. l 2 .i -. y 9--- i. -esmvit gzyAN5 ION OF FIFE MA-NA* t--3 CEES FE1 FOCT
- f
=4 ka Ikg 4 4 l jk =: 3, 3 = = a = = = i 1 4 4 E 5 I, E I g.;*I l 3 3 2 = 2 2 I. u 4 a E l E = 4 g r 8 1 =z = a a gj g i gil =R 4 4 8 2 lIa 4 =, ms.R .i x 1,. i 3 2 8 8 3 E 8 I E I 3 3 I E I, '.I, l y g g g g g g ~ 2 3 y 7 3 I (= i 3 5,,ii, i, I g g gig
- 4l.{ [
l'E.i. >i gat
- i3 a
a .s. 3 5 3
- {...k I
1, I iF i-2 ,3 l { 2, g
- .{
!.,- l. l Ilg K,l.. =, =,l 5 i E:
'ic'l
8 lll's.i la (,,;l aan, i .5 3 = w ,s ,i i n
- l. e !
a l= = i i. a, a i =n 1,5 ait:== t alt ,g > s,- is Q, ,i, != g., Ii= ii i ,i = IitI*'[ 5 i a 5!i sistk =4 I* I g.I i i, -l- .( s t a. l I =. i i =lsi lit n, t ! t g g i s i l,!== til.a, 3.:. =- 1 i
- -; a u!3i5 ti i
= ! *t a, g l j i t ! E L i l E 3,.s
- g. tit [i ill g t. :4. !,
ui -i,1 it: 3 in i = e
- i ni m
iz = =i .s, '.sl4 E I t: s -\\=M 6 ii .ais i
- "i 2
4: E-4'l 8 ,tiii a sI.g
- j ge a
a .nE 4 5 g.: N' 5 lr z.s-x
- 5,la R
I. l 4 = r -: ,8 4 8 41 4. l 1E 3! gi zlsi: =i=>a a g
- :i. - 1 i
8 4 E i R4 A l. t i 4 5 4 sjI!: sl.k
- =
-I.S E. E, -l gigg { g 5.: = riglg n =
- g. g, ! l a
g s = 3 j g 3 g ':2 = El s, ,I . l E, 4 4 = {-{.'ls 4 E. l: I, I. I~4 3 i I.s:I g!I I I =t g
- l ;l la.! ElI a.s s
ta! s! E l il.., ,l.l_,p! 4 ,8, .!.I. uit ai I ti ]l i i i i j 3'.- i j.I.I,Elg.E .. l I I. g -,ji i E I. -: j I. l _. l I. I. Ij i! t i l i 1l:j1 I I I I I' ll !
- j J
I I e{- I 1 s.e i v i.. ; se e.*
- '*u-w eg.
m .f ., f v.e; g g op . - ~ - - - - ..n
.. - P'f t.. .a_.__ i l O s' W j (. 3 i '.j 1 Ar?!NDIT C i CCEPUTA ICE OF ADECICIE 3:1353 DCE D ZI:ZG111 EZ133D l 1i A=1 Carus: l
- )
loads transmitted to the pipe sa: face th=ough integral . Rest:sist '3 local stresses in the welded attachment will cause additional f l.] pipe wall. These additional st= esses should be included in 3 4 ' to meet corresponding 15EZ ' code ognations 8 then 11 in c de: ^ allowable s : essa. i ij established in conf orsance with the ~ l' Fo11ering method has been compute these
- ]
Eijlaard analysis outlined in BEC bc11stin 107 to '{ the pipe sn= face at the junction of the i additional stresses en 3 pipe and its integral velded attachment. Wg 2 . Q['
- ) s _:
-PIPiE 7 ) M te. 3 p l q EG TEC!! TE! AII AL FC2CE F S*123525 IESUI'" l 'J 145m b,.dy,) ;' lhi CIRCUEFERIECAL 3:3E35 (() 1. tih, d*M $ 4 ( %= (E1) (C1) 2 (E2) (C2) 4 Tw"!k d (Ci) 4 there Il = 1.183 F.a 4 Est - n 1 j ~ 12 = 6.257 F.a Y' f * ~ 2n is the mean =adius of the pipe U is the nominal thichness of the pipe ? 2 =adius of the welded attachaent 6 is the oute: is the radial distance of the axial to:ce f:ca e 1 the pipe surface (as shown in sne sketcA) a i ,m, 1 %) i g E f W g ? = --,_.,--_.------.,----.yv y
y gi r^. . : f.;. -yet-l
- 1 3
~ s.c a Ith = constants C1 & C2 should be obtained f=os the attached
- }
carves 1C and 20 respectively 4 2. LON 2CDINA: 3:2223 (%) q) (E1) (C3) * (E2) (C4) Y0k ' ( ,{ = h $Kj(Cd - taldWd bis . )l there E1 & K2 are same as in article 1. cove and constants 'lj C3 & Cs should be obtained from the attached curves 3C and 4C 2-j-respectively. 3. sazam srzzss (l') i )9 4,. = .,erev.,=as.r,m.d.,..a.m s sov, the additional stress due to the velded attachaeat on the pipe st= face; 3 g may he obtained by combining the component j. s==e-- y, % -d u a ue tou..u, sa...: ' " " f2. $9 '~$ ) +4 EL 3 ),. ..j
- .!i Further, this additional stresses s should be included to the g
q \\ gross stresses at the particular pipe location to arrive at the j total stress level to compare with the 1313 CODI allowablas. l. IE 4 gs a ms., hat en1.4 hah (C I{ 9,,5.a usyo odi M L %dee k#% L.. % 1
- 4. hhh 4,mcs -
) m &Q& 3 bus Cd tcvnbs 1,S,lo ad it em'da l q-L y K% wa-k.y.wd 9 % du % uu(M 1 Q wg n cm3 ali e & . Mm- %m O_ 4% a 4 64 Aws' he dcht i fM, j % cte u s e.d M wseda W b tuudocu h 4 4~cc.biwad gg.mm 4-k 6 gp a f cuddiud ' a chap didh c. c.4. %p6g # e, . t.27 -% 4 paf,w (k .A &&.. j "m- .....,.m..,,,7,.t... .' ' P" -
~ ~ ~. _.. .._[, ..,A ty
- ~_ g w,. _ y,... ~ ;._g ;,... ~
5" 1 ~ [jf Cb ( t@M. 3 Cu .-( i i
- ! /
1 ILoading conditions i Equations of Acceptance ! Stress Limits _l i i l' I ~ ISustained I. cads [(8') Ssn + S'L i S3 l ~ g I I 1 1 1 i I' Sustained and l(9'f Son +53 V 1 OL. .I 1.5 53 i l I l loccasional loads [ (upset condition) l sol + So,L + S,,L l-1.8 Sh I o l. I l d I l I J 1 1 l 1(9'e) Song + Sc,og . %.'. ' l 2.16 Sg i 1 JSustained and loccasional loads I I ..~- 1 Ii 'I I (emergency condition) I i-I 171500') 1 e 7 1 SA+Sh I ISustained loads, thermall(11) Ssn + S g + Ssn + Sg-l1 1 lexpansion and anchor l I l -I imovements i where: i ! Ou Sa, 5xE =a' S a
- 88 defined PreviouslY on Page5f fo 2.
= The primary localized membrane stress due to sustain.ed loads. ~ ShL ~i m .1 d e primary localized membrane stress due to sustained and .l sol *. = occasional loads such as earthquake (OBE). j S' OLE *= The primary localized membrano stress due to sustained and occasional loads such as carthquake (SSE). e t l sol. = The localized E M. stress due to sustained and occasional r v, T loads such as earthquake (osE). ' ' *i ...k~~ t r = The localized secondary stresses from expansion loads and anchor 'j S g movements. i Nh b ]~ M Mh, \\Lya
- w..scu + s'u.wgp '
g a w,nkOL.dkJ AS4'd il b .ikst% ue ] a msh14s i Ag.ga.<A 3 6 sx. n l, I 1
- .c.
3-, -__-9.,.-,.,egym ,...w...p.,-y
i 1 ........e., I 1 lS" I l .. ~. g S. t (* ' k.1 i=.*?. h ia
- e.. I i.
t 4 i 3 f a s 10. .c 2 i i 4 1 4 1'0 O 'i I i O- ? i r.-- t l f 6 -f 1 i '] \\ '1 ~ ?. .u-d l . -- '74 C{~ __ % L: q J GR 1 .oi . 37N,. O i .T j.:, ,2 i 2 ? 2 s-. tyj *L.; A.' t... ~.*_ Z_ 7.15t. G i:-4-_-- _ _T E~1.. b.....-p " ' ' ' ' y=,- .. m.. --.. - O m 2 t +_ O 0.00 04 O t3 4 10 Eas 0 30 43S Geo 0 45 040 CHAAT ic Mbekhtx c. t .. r vr--- n- >p. - ' n y.--o ..-.~~..~.,..a e._,.. ~, y o .,p-..v
- p. 7.
t O en
- * = * * - - -. + - * = * - -
t.
- .. m..e m.,
. - -.. ~. _. .....m......_ ,,._.,.,g ... - ~.. e~ \\ t I[ 7 i e s se f .y ,,,,s, ., g i .r-6 o..w v. g is;.; 4 y i,.,';--- g M* M .J f 8* f+*.. i <1 7 'S, s. l f I ( - - = - I d. ~.. - . -....~ .sen - e n-n. ... - ~.. -. -..... ~. ~. =.. ..,. = ~ a . _ = w - _ _ a__p. _ +--. - =.= _ % g =._ =.- _. ' ^.- - .5 _' -. w a - T 'g. sa. s -- --- 6
- 4 - g, y
+ , r;.-. * - g= ,_= - _ - - _.._ - - -- - _- - - ~ - . - =.. +,. - -..- -- --__
=
--=====a_-=_==-m==.=m==_-_-_=La..5=__ ,4 - _._=g .=x=_ _.s.,._-:.__-. t _. -.. m, w.
==-g = -- _a .= i l 8l . _. - - -.e. ~. w. hm. e.-.- w
- c.
..c . #g 2 .:. v 7 m =.+z ~~ .C., set-T.T 4.J - -b -.W-
- " ;^---
.r 1-- Q nW Sn:4 Q _y.-. '=","._-Y r a _.3 2 z~ ~ =_ 1.-- = - - _. - - - - - =_ m _
==
-__w=--.- =.
= _ _ - _ % seh-n,- ewN% g--- .agre.c%ms v h N drL ' =
- c '_ h. V. _C.:n _l-_
- ~ 0. ? > gr:E s%% M.' *.< %* W - T. mO *.h. _Mc ~ -. :-~_ _u _ -. ' _Cz ... %'u %_, *= " 4 m_ .s 2- -'- ' -a. - -c-- a .. - _ = _ ~ - - ,*'=Ar_1w=_-__=-__-=_-_z_-_. i e. g g _Z __ - ~- : g r-g = = m u__ i g gtf=_ =- w__ __ _-a_ _ _ _--A-j _==g-~.___"==g-t m v
==.v ~ ** h , i M M N 6 M NM l =m - 1 mM mmmm MMMM h M 1 6 - Nh ' AM M-l mm.. _.mmmw'_w _ ~.. '- .O [$ t. -3 ,.7 s. M e; ~ ~ .2. _ _.' . [. -- ~ = _ $_ _ ;.- _-Mi - M_ --.df =9 . o-t ) : ~ -.., - N L_=_ 2l:_ g = ~ ~ 2._-'-_D.- r ^- - - _ =_. ' = - = ' __Ts_t :'z- _.-G _. -j ..h - _;-M _m m ..a ,,,3 g ;. y. - __y., j. _ % - - - - __ - - _ -
- *
- ej.,49-7' - ^ ".
.;=9's1 $ g,),;.y'_- 4. 6- = _-=f p '- w _ i-, __ .:. %:.. ; d --- .. - dE__ -- gpg_ t -- = -2% =- m--=-=='=-=- W '00.1 ..A.. Y.. 4
- ==
- ~ ^
w
- GQu
,A Js, = n y an _ ~_ _ =_ _ _. _ .~-~;--.L-=_==--- g - #1 J -*'N% s- .-r- .. - ~ ~ - . m J r.~ 1,.k = ~_- - rw .e s. =7 2 -s v w - _ _,- v -.x m. -~ - n s. m. .. e : .w r_ r.--: m r sana a - c ---=gne y-s .a ..e
- 4. M -< s u -s R t-e..
- p. i P.Mts. Itu. -
h '7.= _-T r*- N..e -r ,!r-r'r, r E a .m +.m .+ .m..... .z. m ....r s.-- + --. u = : = = - - - =..., _. -: *...= .. t : -= =- : ..g. ...{ _. m. _ = i.6 l a a
- .i...
[.-' + I 0 GM SJO 02 M 025 030 028 640 OAS MO C.d4 hRT 2.t h W EN b)% C. l ^ l s e q- .m..,.. G e
{.h 1 2.m - ._.m.. l,\\ 8 i m ,,m_s i ci ',,,.ne_ m. - wm.re w - - w _- .4.s. >wwM rA-2 41 84 N w ~ 4 - ~....,. ; - _-_ w w_ - - -w-
- l 4 - M rr. -: sic r-# c.>W _^-v5ef-1M.M W m Nw'hd eb-Pi -4.. 4-L.m_M C:
. -._q ( ,..g.
- W m
(- n.-_e.. . - f. t-g PJ., _ -8F3
- i. M,-w.:
-. v. .- n-v me u >w. weem n 4 .w n _.n.
- s. -mn m.,. r..~ wn =w_sw- -.:
w. - p 9 -.u - = _n ' !=_ _. _ +___w - ; =;- ; i 3 ~ = 4 l H .l i (O. t f ~ t ,6
- t. 0 l
I O pl l P N,Iuu W l j I n' n* 4 l I i I a' r-a r r 10 i i i .~.. a - __ =_ I i f. .ci ~~' r 3 M M.Ad. T.h. l. Er _m .,w. m n_. n m Q-v -I E 6 r .s. .e. .p_., s-,% Q s. 3 w.q ..ip-3.;.f)[Ns _. g.nr.. --+-w_....r. s 2.-an;4.. MM.- =.w=. 8=..: :=== =e!, ", ~ ._.._. r- -..:.: = n. :: 2.u._::. .;. - t...:.. =. _=.'T . _k -l J.... -T 0 aos oJo ats 423 Eas c.30 ass o *o aos aso cH ADJ SC, M P s N btx c. \\ 9 l 4 9 l s.._... --e +
the ^ ..,.e ~ ^**~.T.. ~ T$A. i 1.s l C ~ s. ..+. n <. v., .-,.w.,, a. ,m, >,, e .v-,. -+ = \\ 4 h 4 l.. 1 I 4 1 4 o k I } } f I d' i 1 J, O e l 0( m U I 1] tre. l 1 l Q B s s u. a. a u. us u. am ao
== == e i l cyQTlC WNhly c t 1 e ..,..,..-.-_,..-....._,..,.z .. 7y. 3 e ~ --,,.----w-
,,m_. 7 t a,,,o _a . w e'~ y e ;g h &k llo A' a a I. PROCEDURE FOR SIMPLIFIED ANALYSIS OF SAFETY AND RELIEF VALVE INSTALLATIONS = i o 1 1.0 SCOPE I Tnis procedure considers the loadings resulting from discharge of Safety and Relief Valve Installations and - provides a Simplified Analysis and a Design Guide Criteria cased on ASME Code Section III for Class 2 and 3 Piping and ANSI B 31.1. - Will be considered Open and Closed Discharge Installation. The Design of Safety and Relief Valve Installations shall include consideration of all components of the Safety or Relief Valve, upstream piping or systems: ..i header, downstream or Vent piping, system supports, and structure to which the supports are attached. <j l The following' loads have to be considered in addition to the load resulting from discharge: Internal Pressure - Upstream of valve, highest valve set pressure plus accumulation pressure required to attain design flow rate (3 to 10% of set pressure); (]) Closed discharge piping system - Downstream of valve, 9 ] tne piping design pressure; j Deadweight - Considering both distributed weight of the piping system and the concentrated weight of the j Safety or Relief Valve; t } Seismic - For safety related piping the Seismic Analysis should include effect of valve mass on piping and sup-ports; Thermal and Anchor Movement - Heat-up and steady-state 1l Thermal Expansion of piping and effect of Anchor and N support displacements; l' All tnese loads will be treated as per " Simplified Method 'j for Design and Analysis of Small Size Piping," or'per " Alternate Stress Analysis Criteria," to meet the stress limits requirement by codes. In extension to the above mention loads, it is in the scope ) of this procedure to determine the loads due to the dis-cnarge of Safety or Relief Valve and to evaluate the stresses due to these loads. f,. The resulting stresses will be added to the other stresses i and compared with the code stress limit requirements, as I per FSAR-CPSES. l a I l i 'i i , -.. ~..,.. w - ---..--_.y e .-,.,-,,.,,w-, ,-,,,,9,,,,e,%.,,es ~
Id
- _1 fp)
'3 PM. C ' 1.1 \\N\\ f \\ 2.0 LOAD EVALUATION FOR SAFETY / RELIEF VALVE [ 2.1 Maximum Flow Capacity The maximum flow capacity for steam may be determined by .rj the formula: -]' W = 51. 5 AP/3 600 (1) where: W = safety valve saturated steam flow rate, Ibm /sec i A = safety valve nozzle throat area sq. in. ~l'.: P = absolute pr. at the safety valve inlet nozzle, j psia ~ for liquids: Q = C K A (p-pb) I!2 (2) i 't wnere: -1 Q = safety valva liquid flow rate, GPM C = 27.2 for 25% overpressure; 16.3 for 10% ,1 overpressure h K = Specific Gravity Correction Factor (Fig. 1) j p = set pressure, psig Pb = Constant Back Pressure, psig j 2.2 Pressure Evaluation i For compressible fluid, at the discharge elbow exit, the Pressure P1 is given by: = W (b-1) ~2 (ho-a)J (3) P1 h g (2D-1) Al b g P1 absolute pressure, psia = flow area at discharge elbow exit, in2 A1 = q (Fig. 2) mass flow rate of~the safety valve as determined W = ~b d-by formula (1). 1 1 l v! i
- I
. 7.., .'s' i l \\
. 4 Ib1 R u..( l v a, ( I 'l 1 3 4 I .i... a
- r.,.,,.,.,,.,.,.
i ,.i.. I .i. * ,,,,,i i, i,.. -i j ' GdD'-_ Pndtv, w x&ow-4dn'CEy =-K--.. u t .... 4 15 w I, s i i i.. i ...., +... i i, i, 3 g,g , t ..i i ,i g .. i g js 4 I . 2. ~ s j i.c .. +, i , 6 i. ei I 6 i i,,. i,,,. f* .., i., , i. .c --\\ i. x s ,s . s. g i. 6 6 i,. s i y 45 i i. i, i, .,i, X , i 6. i,,., e-.... 6 i ,,.,,, i X j ( ( ,6 .X*i 4 6 t.... e, 6,, t. , t., .. 11, i. 3, E , )..,.. ., I.,,, 4 ( j 4.. ,. 4 I, N.. .. j ., 4, 6 9 t I,..... s -.,.., t. . i. e e. ,, i 4 6 g,, 9 t g 6 N .,.,, e e i. N 6 /* .,, i i,,. N ii,,, i ,, + 6 . i l , I, 4, . i ,. l, , i.., e. t 4, , i q } i,, p,. p,, 4.., g q 6 g 9 f t t,,, 4. . g g ,, g,, . 9 ,,,.., i O I y.... .. g i 1 ,,b f, ,.... g. [. i ,25 .50 75 too l.25 1.50 175 'g W% k% i pq.: %. \\ '4 4 e.P 'k 1 %J .,l l k. 1 4 i t A9 i,., p. 7-. ..-- y, y.r . ~.. r b
W ^
- 7..
7. ^ '^ ^ ~.j D4. ( i DO! [hl .? t' 3 i 2.3 Velocity Evaluation 1. The velocity component for incompressible fluid shall .i be determined from flows .j V= Q x 0.002228 ft/sec (4) 1 A where: Volumetric flow rate, GPM Q = Discharge elbow area, ft2 A = 2. The velocity component for compressible fluid i (steam, etc.) at discharge elbow exit shall be ,- d evaluated as follows: 1=gf2%J(ho-a) ft/sec (5) ~j V y (20-1) -l where: 't t ho = stagnation enthalpy at the safety valve inlet, Btu /lbm .p j V. 778.16 lbf/ Btu j = .' t i 32.2 lbm-ft i g = g l lbr-sec2 ~ '. 3 -I Common values of a and b are as follows: 1 1 '1 I i i I j i i i i 1 I i I l Steam Condition I a,(Btu /lbm) I b l i j l i i i l 't I i i I -i 'l l -Wet Steam, 1 251 1 11 1 i 1 4 90% Quality l l l d I i i l 1 Saturated Steam, I I l l i 1 M 90% Quality, l 823 1 4.33 1 fl l 15 psia sfr Pi 41000 psia i I 4 I i i ] l Superheated Steam l l l 1 Ak90% Quality l 831 1 4.33 l 11000 psia <. Pid!.2000 psia l I I a lk I 4 ~~i ~t =-s v ~; ,.g.
y . __ n h e Rad. I .. ~. 1 (M f .J 2.4 STATIC LOAD EVALUATION The reaction force for steady static condition is a com-bination of velocity effect as well as pressure effect 4 and is computed by: = W V1 + g (6) F, Pressure Sc Velocity Component Component where: 4I dwffj F, Reaction forces (lb) f = Mass flow rate (lb mas /sec) 11% higher 'j W = as determined from formula (1) ~ gravitional constant (32.2 lbm-ft) }i g = Ibf-sec2 j V1= Exit velocity (ft/sec) Pg = Static g (. at discharge elbow exit, psig =, Exit flow area (in2} 9 A1= iL
- M AC4f ffREttu/2 L(0.)
2.5 DYNAMIC LOAD FACTOR g i A dynamic load factor DLF shall be applied to consider the effect of suddenly applied load for open discharge system and transient pressure build up for closed discharge system j j
- i as the pressure wave may steepen into a shock wave during the first few milli seconds following relief valve lift.
- l The valves are spring-loaded devices and generally fast-
't acting, requiring consideration of dynamic amplification. ..j Evaluation of the Dynamic Load factor is given in AppendixE, n 2.6 For an open discharge system, tne following supporting sys- i tem is recommended: -j If the stress due to the bending moment at the branch con-4 ] nection A together with all other stresses do not exceed the allowable stress, no support is needed. M. /. _., m.,.. .7. ,__..p,n.,,, T' ~ a e-- ~-,-,m. g . - = - -w y
2-.-y-
- + -ew-* yw--w
hj n._.-- .....po_... .m.. --n---m. -. o m -.. -.m q4
- 7
':1 .] / ( =\\ '.} - t
- .'s k/
t CENTER OF GRAVITY OF, 5;J57YVALVE, l a r m e:cN PIPING;MID FLANGES St L d %'ar l' i A . 1
- 1 a
= .i \\ l i ..q. t ,d v pI I j i '3 2== or O i OUTLET PIPING il C 4 INLET PIPE i RPdtCH-COUN:.w.wa. t q. X ) e J
- )
1 A j I .?!. _ ) RN.2IPE'. 1 4 i u; .i l. 1 l sArTy vA.LvE INSTALLATION (OPEN DISCF.ARG CSTDO x ~ FIG.2. ~ a e
- )
4 1 h 3 ,y.... t 9,, ,.,v.-,,..w.7.,._,,., .n. c-, , _-., _.-~..,_..,-.,...__ 3,.,--,-...,.m,_,,
1 a . -. 2 -. :.- -- ' ~~=. . ^:& ..." ^ * ^ } R14 - ( [O 3 (O ._W lii I If the stress due to the bending moment is high, a vertical I It is recommended support at the elbow has to be provided. 3 l tnat the support near the valve discharge be connected to 6), ratner than to adjacent structures the run pipe (Fig. 'j in order to minimize differential thermal expansion and seismic interaction. However, the thermal expansion loads 1 d and stresses shall be considered in that C352. 3.0 ' CLOSED DISCHARGE PIPING SYSTEM I Closed discharge systems Fig. 3 do not easily lend them- '.] selves to simplified analysis techniques. When a safety j valve discharge is connected to a relatively long run of l pipe and is suddenly opened, there is a period of tran-sient flow until the steady-state discharge condition i a i is reacned. A time-history analysis of the piping system may be required to achieve realistic values of 'y. } moments created by these transient loads. a .;a A simplified procedure to calculate the effect of safety and relief valve blowdcwn on the down stream piping of a j closed disenarge system with water as flow medium is as e, follows: ] () The blowdown force is calculated using twice the product j 3.1 -j of the valve orifice area and the valve set pressure .1 (2PsAo). "J This blowdown force can be conservatively applied at each 'l 3.2 elbow or the discharge piping to simulate the transient nydraulic effects of the valve opening. l Since static analysis will be performed, a dynamic load ,U 3.3 factor 2.0 will be used to amplify the blowdown force. i d The static force applied at each elbow is assumed to be 4 3j 2(2PSAo) = 4PsAo. .~ 1 The static force applied at each change of direction of piping will be an unbalanced foree as indicated in l ~~' Fig. 4. I As conservative assumption we can assume these forces to act at the same time. i 1 'd 3.4 For a closed discharge system,following supporting system d' is recommended: 'l 3.4.1 A support should be provided on the discharge piping as c) close as possible to each safety and relief valve discharge nozzles that the forces and moment will not jeopardize gi (bs) the integrity of the valves, the iniet lines to the valves, or tne nozzle. l .5 4 Gy :,=,----, x n. - -,m..., .. - -.-- 7 ,3-.,..-...-, y e .,.__,'r -.__.___,.-._,v-- ,-.m
nj -3: __- z.y n- _ ; p._.,. _ _ -- '1 ]j .( 4
- o.
I47 ~ (, .s:i 3.4.2 Each straight leg of discharge pipe should have a sup-port to take tne force along the leg. If the support is not on tne leg itselt, it should be as near as possible on an adjacent leg. Two orthogonal restraints do sometimes withstand the t'hrust loads for a few horizontal legs (See Fig. 4). 1 The system support design is acceptacle as long as the unbalanced forces resulting from the compression and decompression waves travelling upstream and downstream of the safety valves, due to the various parameters like .l transient pressure, momentum and acceleration are taken,' up by supports. q -+ 3.4.3 When a large portion of the system lies in a plane, the i Ni piping must be supported normal to that plane even though static calculations do not identify a direct force re-quiring restraints in the direction. Dynamic analysis of,these systems has shown that out-of-plan motions can J occur. i ([) 3.4.4 Either hydraulic snubbers or rigid supports may be. applied, consistent with the requirements of thermal expansion l j and seismic support. If the discharge time of a safety valve in a close system is not known, then rigid supports instead of snubbers may be required. 4.0 BENDING STRESS EVALUATION EOR OPEN.bfM MdR(4~ E,K72-/A The Bending Moment at branch Connection A (Fig. 2) will be: s M = (F) (La) (DLF) (in-lb) 4 l .l where: s l 'l La, distance from center line of disharge elbow to A; (in);(F(,1,*,) The Bending Stress, due to Relief Valve Discharge Load 1 is: t 0.75i M (psi) SBRV = z ,4 wheres ("T i, stress intensification factor; I %J I z, section modulus of the branch; (in3); i i } ,.n . ; y q ~
'?< --.--~. .~s= - - ~ '~-' '*
- ^ - ~ ' * "
l@ ' Q,( -i ..:. \\ c, . 4 1 1 9 4 1 i .'t 1 a f ',i r i ei i-
- 'i 1*OUr.ET i
FIANGES .0 SED DISCEARGE .1 PIPE I J ~. SA E T h f A k / ~~' I INLET FImre_s m 1 RANCE CONNECTION. .V j _ INLET PTPE e i t , RUN PIP; l') .O 3 O FIconE 3 e f e I l 1 i e s i e 't ..c-..........., ,_yo.,.._--,,4.--
~ ~.,,., _ _...__.....-..,z.m_ vai .s, SS-g.g 8 't i.q t'T ' a.
- 'i
.9.s l. = 42 I 1
- .,1, 4
.i M ,.s.i, J. i ts - 1. .j 1 S 1 a ORTHAGCNAL, j s RESTRAlt4T ~
- - )
p ~ 'I ~ MMN HEADE.P-F 2 -t s n ni ,-1 1 o# 3 PLAN DISCHARGE HEADER. 1 -;f 1, S .1 .e j .j ria.4 p .J f ,- j a N'I .,_......._m._......,.__..--,.. e "
p_..a u.2 n- .......w. m.. .....__,s N
- c.,
~ _ u,, 7 /,] d O. 170 a ( f 4.1 Account of the Bending Stress Due to Relief Valve Discharge
- J in ene Simplitied Metuod 4,M i M c. M ina,,
t The additional Bending Stress due to Relief Valve Discharge ..7 Load has to be accounted in the overall stress evaluation of the " Simplified Method for Design and Analysis of Small Size Piping 3" (er'N. Moh '.@g'O, k s R $ " o. 7,r J M 8 2, be ' M, EGCNs medi c{-b Maiw kyt, ; (tsC .j The Seismic Allowanle Stres.s calculated for a straight j pipe will be compared with 0.6Sh, which is the base for .4 } the seismic Nomograph: l Sls = 1.2 Sh hw - Stp - Son (psi) LP 2 bc_ i M g ,3, Ss i {gt,(.2,. K = O.6S If K< 1, it will be used as a correction factor to reduce ,c - i the maximum allowed span between restraints on the main pipe through the Nomograph method.- . h, Support' Load Calculation in the Simplified Method Tryc(ggpi h'sekotot i s s stm. 1 When the support is located at t leg, along the thrust ~j force, the force is taken entirely by the support. Wnere the support is not at the leg, the force will be accounted as an equivalent concentrated weight, at the point of application. To locate restraints based on the seismic nomograph and to calculate the loads at the sug>- ports, the thrust force will be divided to the G-gravity value, in the force direction. P W gF egl G After that,will be applied the procedure for concentrateq providedintheSimplifiedMethod(Sec.4.2.1.6){%.) ~ weights , 2.
References:
1 Nonmandatory rules for the Design of Safety O. ANSI B31.1 Valve Installa'tions - Appendix 11 - 1977 Ed. 't A Simplified Method for Design and Analysis 2), G&H h of Small Size Piping - January, 1980.
- .1 I
.1 i )i o' i .~... -, ~ _, _...... -..
~~~f~ uwa.u..z..-.-~. . a:. ~. :.-w - -. -..>.~~~= ~- .,a. - - o .w a n y=m-.... - t'1 ._s._.-...... u..r.- h. f l. 9 Af4 i l l71 i ( ) Boiler and Pressure Vessel Code, 3)* ASMC Section III, 1977 Ed. 2 I Boiler and Pressure Vessel Code, 5' ASME f,' "l' Section III, Code Case 1569. 1 d
- 1 4
a
- a e
i I t d .' ) 1
- N i
- t i
i ~! j s s ,4 1 l 1, 4 i i G 'I f e
- i.
I 4 a. .W 4 g
_ y:n, m , _-.= __ 4 %- ( 17L - O APPENDIX E i I [, Evaluation of Dynamic Load Factor l The evaluation of DLF can be done as follows if the run pipe is rigidly supported. I DLF = f I to (T, -) ~l where: the time it takes the safety valve to go from fully to = j closed to fully open (sec) safety valve installation period I and T = .) 0.1846 ~i WL3 (sec) = l E1 I where: Weight of safety valve, inst. piping, flanges 1 W = Q attachments, etc. (1bs) a Dist. from run pipe to contarline of outlet ~' L = pipe (in.), (See Fig. 2.) Young's' modulus of inlet pipe at design temp. i i E = (1b/in2) I Moment of inertia of inlet pipe (in4) I = .j A Plot of DLF Vs is shown in Fig. 5. to has to be entered into that plot Calculated value(r 4 to get DLF. Use minimum DLF = 1.1. Dynamic Load factor is often expressed as the maximu'm ratio t j of the dynamic deflection at any time to the deflection which would have resulted from the static application of the ~ load. s O. l .,-.~-s-%, i .. _ ~
m L.,..a.nyi.? e
- a
-c s.a.. - e -- m, &.{ l55 * ~ ... _ 4. n. ...,....,.....l.,..,,g...., (g s..,. ~~l ,,,.1 a .. [*!.,. I. ., s. .l..) l _.!.g .e. . :.g. v,.), ....,...l. :..,...._.m.....
- i. m
.i.,. e....;.t. l. _gi.
- ... g T
- .,:.
.. e
- _i.: 2..c
- . i..:. s.
j._6., g.pa..,.: :_.;... 1. i... , :..g. r 3 1,..: , 'i .l.....- . l.i ... t. .I.
- i..:
.:..f.!. .!.;. i.f..Lt..:. _!. [ !. i..l.!_ u ..t. .l_. f...!. Lt .}.L:.k.l av .J. L!. .J ' '. '.,.t.' ', ...' !.L.l t. :.L.l j.J..t !;.:..(,, .L s i.j ! .:..!.l.. l.L ' g 9 is.: i M*l. s : e i. ~ .i r - s.t. r!., t..t u i. .6- ~.
- .. s
-i_...,. .t:: .f ~4 t,
- J
- ..i t I : ;;.r '.:_:. l.a. u-' t. t r-l _ t,..l.;.:nrt
. rp.: l i ;;:.;. o o j.t.o
- d l
i 1 ** i.: 14-!.: l?i.:.: :.l*:
- l"*. 9.i!
d.5e itii *il-b ;: :!.L *f *. i !*"-F:~ 3 l @~* =.. .,I. .~ C-. m
- .=.
- I o.
,.6. ...... :.;.: _.s.. :.._._.. _: _..;.e.4. ; a.._ ::: c t t.. ,o o ..i_........,...._._._r..._-. o_ e . p i .t._.._.. _.__...____._...._i..._.._.__-....___.._ g _i.._.___._..4.. . -. -. + _. .t._ _.... ~.. 3 o r; .=..._r.. _ _r :.:-rt. : :-. .,.,I, ?!
- p........._... _ i.,_ __._..... _. ' i.:::e. : l..w._-
v ._:_.::-l- ::.:.::::.1;.. ._-_. -. l.
- r.;. : t.. :..c... - )..
a e .j e .s w .._._._....__...t_._........._-_._....x_.._.._ _..__ _- c. ._1.... O. .i. t.._./._t._...,.____.c_._.. o. 4 __...._....,._..,_._.1 c-x 1 e n S _r. _.-'s.w 2 .- H m + i E" c
- i. -
a.' ' . i. t--. 62..'r ;- - i O O j 3> o to i .+.... z .j -rei, ..,..i i . it... i ii ... o c. i. m 3 l 16 ....s. , e :..:... ,6 s.4e... .., # t6a ..: :: e. o r_ O O.e-U. = s i.i.# it 4.r.,s. .i.:..-es.eis t s-... :.'r-n.r 'g ::v a.. .m.. l . p....:.. p s.._.t er.-g.m._w g,,,,., -] s. C ,6 @ii**Ii.l ;*iT.Q hei..; l:.Pis.i : :.=: i ;.i :--/.".2 : ' ,.:._: ee.W.V__in-iWWsr.-- - p lf i h,
- $ s'i}-!:I:*"!. W I:- l. *~. * " "S" ! " " ' s :.: - : 15l.=* I'l-i ::::Mi* h"@.=IM..
o y ., _=._- :..-..:. :._... l. =.._.. =. :..::. -. i.r. =_ _w .. r.. _:.=....=._...: :.. :...:.:. :.-.:_:. o. .._.t.__........_- e .___. o _. _ _. _ _.._s.__...._......._..-.l. e
- r.._..
.i o -4.. . y... C.m ........l... f/3 e.
- l*i.ti.
C h
- 2. r i *
.' 'N.* i.:E *,d * ~~: l ~d:-!.! : *iFZ-- 1 I-#+ l ~d." :- I W *
- l : 2..:
~ C ....l::: :.: a.:.:_... : ::.._=..i ; _.:.:[.u_: a : i ,. _. : r.__._.:. i..e::._.el w =.._1 ~.._ l.._. u.:.... _.,......;... l O ..._... 1 ... h,...._l... l .....l......._ 4 .,.l.,._< I
- 1 gl',
.. &..... _.. I.. .a.._....... . _..._.N. ) j .h... 4 e. o l = .1 .:.. _, j - .p 6. h . e e. .y... .r g.. : ..6 ,J . 9.. 1 ... =. .. 4 1 .s.. .....i._... ...* *g g...,.. '
- I i
.s ...t ..a. t. ....
- 1..,
1 ..1tg. ... e ..4 .. N-o.. e. 90
- w N
O se. e .e e e e suo s.e t n e 5 p (41c). no.t.ovd uvo 1 omvNAc .*u e e s .e . e ..I .-._r .e.--y-.
~ e.t, . ;;w.,,, c.
- g; v,
.h;C..~.. :.,' n, ::~a;;. : v..- -. .. t.-. 4',* ... ~. n..,.tf.rg*,M j.. s. - ,. e.--. .u -- r
- ~ i7 R4<~(
l- ((4 7 i i ' ~ - .~:c r .~3 g._-s v.: y. r r t .m.- J l mscuar.E l A. ,L 9tPL _ l l once i ws I 1 ,~ f I m bo s a 1 [ J.l nh /l i a 1, 1 r De - i ~y -i l i If I a; r Svrpoti
- s c.
E I [~ - l' List 7%=s_ F s i ~ j l f .t* 4 Do ~ Taa.K Set .,1 i x 3 .~ \\ \\ 1 r ' b_turies L j j -
- {
_w l -._.n I u
- L
\\ Aw&s l y ~) . g. 4 .u 3,,,...:. .y .c ' T..
- h. 6_urtry vn.tt !xszysoy _(oper: ognmt sy g
~ ; c. t e sd#
- l \\.,
.7 O, a'
- . :,.9.,
4. .~. p' ..,.g.
- -. zu. :p?*.
y > <. '.y,: 2 f* i ,,.y ~.. ~~. i ~ > t v- -w .w
-.~~. ? ~ - 7."- Z.2^ -. ^ v, D[ n l f} J7[ - .j ['I O / 4 2,, SAMPLE CALCULATION .t 3 L, g g" To Calculate Bending Stress due to thrust load. .. t t .i --l 1 Sh.D) s $.P) K Q ~j Relief valve weight = 725 lb i 1 Relief valve set pressure = 775 Psia-r7 7 = 8000F f f A aj Steam temperature 3h4 # l Pipe inlet - 6in. - 160 sen. Valve inlet I.D. = 6 in. ~~ = 11.05 in2 (Q orifice) l 2'4',%ya%io Orifice size valve outlet I.D. = 8 in. 1 -kens Weldolet material = A-155 KCF-70
- AllowaDie stress Sh at 8000F
= 16600 Psi Valve rise time =.024 sec I Step 1 Determination of maximum flow rate by formula (1). lh W = 51.5AP/3600 1 where i 1 A = 11.05 in2 -.) Absolute pressure = 775 psia. ~l P = .1 Flow rate, W = 122.5 lbm/sec "} Step 2 Determination of Pressure and Velocity at discharge elbow exit: Pressure P1 = W_ (b-1) 2(ho-a)J_ A1 (b ) yg,(20-1) velocity V1 = /2qJ (ho-a ) i a (2b-1) ,i =. q ' i.J 1 i I ':~.) 1 I- - -, e-
- --- m y.-~
- :c;- - y ~, -,,- --~ -- a -
, q -- o.
. ;. m._ _:......_.c..._.. m.:.... s. _..... _. __;,,._ y.. l Q'. g d kua, ( l \\ ^ Cj [7 h ?.1 W = flow rate = 122.5 lbm/sec. -t A1 = flow area of discharge elbow exit = I (812 = 50.27 in2 ~ T
- i no = Stagnation enthalpy for steam at 775 psia and 8000F*
'l 1, = 1400.3 Btu /lbm .q 823 Btu /lbm for 156 P(m.1000 psia, a = 4.33 and hoS.,1600 Btu /lbm o = i 778 ft Ibf/ Btu J = .1 32.2 lbm-ft i ~ g' lbf-sec2 =
- }
i i P= 113 psia l .1 V1= 1943.2 ft/sec. i 1 Step 3 Determination of Reaction force, FR at discharge
- )
n 'j U Elbow exit. - l R = H Ve + g A F 1 9 .. i, where:
- 1 P = Gage pressure at exit psig
'l = 113.0-14.7
- :. i
= 98.3 Psig I . t FR = 7393.0 + 4942.0 ] 1 = 12335.0 lbf Step 4 Determination of Actual D.L.F.
- J i
.4 i 1 4 I + i I 't g _ .g___..
^ ~~=-- .. T '*.. .....;-- -.-,: r ^ p N,( O i77 p If the usage of DLF=2 produces high thfust load, it is recom-
- c. ended that actual n.L.F. be calculated as per ap'endix p
1 V$ D.L.F. is a ramp function o' to \\ 'd j V') Valve rise time to =.024 sec. j Safety valve installation period T = 0.1846 WL3 sec. i EI where: .,.T) W = 725 lb -t i L= 15 in. I ~l I= 59 in4 1 .f E = 23.8x106 lb/in2 T= . 0077 .024 = 3.117 Jt =- "T M Co, from graph (Fig. 5 ) of D.L.F. Vs i ( D.L.F. = 1.2, i Step 5 Calculation of Bending Moment at branch Connection A 'i } i M=FR La DLF tj = 12335 x 18 x 1.1 '= 2g M36. in.-lb .n Calculation of Bending Stress at branch Connection A / Step 6 Bending Stress = .751M z A weldolet, for din.-160 sch. will have i = 1.04; Assume.751 = 1. a z = 17.81 in3 bending stress = 14.9GO, psi U If the pipe is nuclear safety related, the stress due to ') thrust load shall be added to the stresses of Eq. 9. If the allowable stress (1.2 Sh) is exceeded, the elbow 'shall be i i supported. (See Fig. 6) _zi !1 1 1 I i - - ?? 7 ..,y,. '~". .=- u i
~pjb. C A pg3% A #1 y ( ENCLOSURE 1 \\ COMANCHE PEAK STEAM ELECTRIC STATION G&H PROJECT NO. 2323 /)/ fern 4< da / cd. 7 pcx 2"cv Saa/kr/>&ip. A SIMPLIFIED METHOD FOR DESIGN AND ANALYSIS OF SMALL SIZE PIPING PROCEDURE AB-5 i i REV. 0 - JAN. 1980 REV. 1 - DEC. 1980 REV. 2 - FEB. 1981 REV. 3 - JUNE 1981 REV. 4 - DEC. 1981 REV. 5 - MAY 1982 l GIBBS & HILL, INC. ENGINEERS, DESIGNERS, CONSTRUCTORS NEW YORK, NEW YORK F01A-85-59
i A SIMPLIFIES METHOD FOR DESIGN AND ANALYSIS OF SMALL k SIEE PIPING FOR COMANCHE PEAK STEAM ELECTRIC STATION i G & H PROJECT No.2323 Rev.5 MAY,1982 i Prepared by G.VEISS /M.GROTTEL Design Reviewed by @M ~ H.MENTEL 1 Approved by ) A.RUTKOWSKI .i GIBBS & HILL, INC. ENGINEERS, DESIGNERS, CONSTRUCTORS NEW YORK, NEW YORK i
1 Table of contents E Zatroduc' tion 1. 2. scope 3. Design criteria 3.1 Blaat operating conditions 3.2 LosAing conAitions
- 3. 2.1 Pressure 3.2.2 Deadweight 3.2.2.1 support spacing 3.2.2.2 support loads l
3.2.3 seismic 3.2.3.1 seismic 111cumble stress .,3. 2. 3. 2 seismic testraint spacing 3.2.3.3 seacced seismic Restraint Apacing 3.2.3.4 Bestraint Leads \\._3.2.3.5 seismic &acher sovements / .__ __) 3. 2. 4 Thermal Expossion and Anchor sovements
- 3. 2. 4.1 Thermal Displacements 3.2.4.2 Thermal Allowable stress 3.2.4.3 Approrisate criteria of F2eribility l
3.2.4.4 51minna Spas seguired 3.2.4.5 Reask.~e w Lea 8s e v.1 e 4. Design Guidelines 4.1 Deadweight 4.1.1 , Sapport Spacp,g r.
4 1a l 5.1. 2 Sapport Loats te ev. 3 s ~4.1. 2. Anchos or ognipseat mossles 4.2 seismic 4.2.1 seismic restraint spacing a 4.2.1.1 Elbows 4.2.1.2 Tees 4.2.1.3 First latersi support of a tee 4.2.1.4 Redacers
- 4. 2.1. 5 Lateral support close to redacer
- 4. 2.1'. 6 concentrated weights 4.2.1.7 other Piping composants with s.Z.F.
I 's.2.1.8 seismic restraints at the valves 4.2.1.9 Valve with crerators 4,. 4.2.1.10 Restraints on the valve body i i ' t. 4.2.1.11 Directions ci seismic restraiata i t
- 4. 2. 1. 12 Azial restrsists i
Length cf span in all three directions
- 4. 2. 1. 13 I
( (' 4.2.1.14 Large radias curvatare .( l
- 4. 2. 2 Dea.dweis.it a < se4m,a. su;pa n.+ t
..I ca eew ca Hear tu J For s.sver k (0.101 4.2.2.1 Cafc.wfaf/ou Fe 1.* w d4 & Rev 1 g g e We.tAed g e, il i 4.2.2.2 Ne m op 14.p hov. e Sun'p me dit No t2. las gt.,
- 4. 2. 2. A 4 ech o tJ i
4.3 Thersal Irpassion sad anchor Rovements i ig 4.3.1 Thermal expossion loop a [ i.
ls l 1h
- 4. 3. 2 altimas sPaa regaired F4 **. 3 4.3.3 aigia restraist losts
- 4. 3. 4 2raasferred 2 oats for two spa.as fiv. %
1
- 4. 3. 5 '
sabstitute sashbers for rigid sapPorts I'Y A 4.4 Critaria for Gesign welde4 lag attachasats
- 4. 4.1 stress eva2saties for welt lag attachments 5.
Procedure for application 4. Sasyle probles 1. Esterescas 8. Appaatia 1 9. APPeatiz 3 10. APPentis C - A a'x b - n.- tt a. te-I 6 e ,s I l E ( e f 3 t I ? i e k
C '//i V* u tr. Lusunt e ,.,p PSE-TRAINING RECORD w p'- DATE COURSE COURSE DESCRIPTION . INSTRUCTOR NO. OF ENGRS. ATTENTED i 04/13/81 Alternate analysis method A simplified method G. Veiss of Gibbs & Hill, for small sipe piping for design and New York 26 4;g analysis of small size piping by Gibbs & Hill approach (4 hrs.) 06/16/81 Penetration sleeve seal Selection of pressure. Southwest Research mat'l evaluation fire protection and lastitute, San radiation seal mat'l. Antonio, Texas 12 (2 hrs.) 06/21/81 Vent & drain piping Vent & drain piping P. Chang of PSE seismic qualification seismic qualification CPSES 8 procedures at CPSES (2 hrs.) 05/11/82 Design verification Training for the design Jim Busby 34 05/13/82 verification process, (CP-EI-4.0-1) i i 4 Classes 1 Hr. each 06/16/80 CPPE Indoctrine Introduction to nuclear Richard Baker 114" codes & standards Q.A. 10/15/82 program. standards, safety orientation, Q.A. for engineers. 1 07/27/82 Analysis of ASME class Background of ASME Section P. Chang of PSE, 16 J 2 & 3 piping III, subsection NC & ND. CPSES i (2 hrs.) 11/12/82 Seismic analysis of State-of-the-art of seismic P. Chang of PSE, 65 11/16/82 pipe supports design and frequency calc. CPSES 11/17/82 (3 hrs. each) 02/04/83 QUICKPIPE computer code EDS approach on optimization W. Gallo of EDS, 6 of pipe stress analysis. Walnut Creek, CA 1 i (2 hrs. each) j j 02/14/83 02/14/83 CAD /CAE San Francisco Introduction of CAEMIS-PIPE C. Rosell of EDS, 2 i DRAW, QUICKPIPE, AUTOHANG. &' Walnut Creek, CA I
o
- b [h
( A. Ovg M t y TEXAS UTILITIES GENERATING COMPANY P. o. sox too: ct.n aoss. Trus teo43 g l CPPA-36,322 January 14, 1984 Gibbs & Hill, Inc. 393 Seventh Avenue New York, New York 10001 Attention: R.E. Ballard COMANCHE PEAK STEAM ELECTRIC STATION Re: Ref: Specification 2323-MS-46A Rev. 4 GTN 68181 (12-16-83)
Dear Mr. Ballard:
"j Upon receipt of G & H specification 2323-MS-46A Rev. 4, a review was performed to assure that all items affecting MS-46A were incorporated correctly. Based on this review, the following items are to be considered unresolved and require further action by G&H: 1. The analysis method which was transmitted as Appendix 2 was not in accordance with the instructions provided by CPPA-31,729 and DCA 18,453 Rev. 1. Corrective action should be as follows: a. Replace existing Appendix 2 titled "A Simplified Method for Design and Analysis of Small Size Piping" with the previous Appendix 2 titled " Nomograph for Simplified Seismic Analysis". b. Transmit "A Simplified Method for Design and Analysis of Small Size Piping (procedure AB-5)" as Appendix 9 for Specification 2323-MS-200 (Re: Item #56 on CPPA-18,453) Revise cover sheet for Appendix 2 to reflect title "Nomo-c. graph for Simplified Seismic Analysis". d. Revise table of contents to reflect Appendix 2 title " Nomograph for Simplified Seismic Analysis". e. Incorporate DCA 3305 into Appendix 2. 2. Section 3.3 (m) was listed twice, please correct. ) 3. DCA 18,318 R-1 is void, however, information con' aines Luerein was incorporated. Section 3.3.a.(6)(a) should be revised as follows: F01A-85-59 s otvssseux est Texan t* Tit.ITIKN Et.KrtRit' res.%it*ANY p i ~.
- + s. CPPA-36,322 Prg2 2 of 2 1st paragraph should state, "(N71) Revisions 3 through a. 9..." b. 2nd paragraph " Revisions 3... code case is acceptable" should be deleted in its entirety. 4. Item #54 en CPPA-31,739 (DCA 18,453 R-1) was not incorporated. This should be eccomplished due to conflicting information with section 3.6. 2.1.2.h. 5. DCA 19,015 added specification 2323-SS-30.as. Appendix 9 :to MS-46A. Attached to this DCA are all DCA's which-have been generated against SS-30. These were not incorporated by G & H. Please do so. (NOTE: DCA 15,338 R-1 should be incorporated in lieu of R-0). We request that G & H provide immediate action on the items listed above 9 and incorporate then into Revision 5 of 2323-MS-46A. We also request that G & H issue a preliminary copy of Revision 5 to site for approval prior to formal issue. By copy of this letter to DCC, we request that MS-46A Rev. 4 not be issued for controlled distribution as a controlled document and that a copy of this letter be filed with MS-46A Rev. 4 to document that previous authorization per CPPA-36,010 has been superceded. Please contact Chuck Smaney Ext. 873, should any questions arise. Very truly yours, MAW' M.R. McBAY HRM/HD cc Manager of Engineering i cc: ARMS J.C. Finneran C.R. Saaney F. Strand B. Jones J. Merritt B. Wilcoxen l i 1 .,.., y.;., y. +
f g C.A bgo g 3 i, \\b I l e yc5cs Gibbs S Hill. Inc. 11 Pem Plaza New Wrk, rk10001 212 760-Telex: Demes::c:127636/968694 Intematmal:428313/234475 A Dravo Company February 27, 1984 GTN-6 8 532 Texas Utilities Generating Company Post Office Box 1002 Glen Rose, Texas 76043 i -- Attention: Mr. J. B. George, Vice President / Project Gen. Mgr. Gentlemen: TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION G&H PROJECT NO. 2323 NUCLEAR SAFETY CLASS PIPE HANGERS AND SUPPORTS 2323-MS-46A, REV. 5 REF: CPPA-36,322, DATED JANUARY 14, 1984 Pursuant to the above referenced letter, G&H has revised and reissued the subject specification as a final Rev.,5 per your Mr. H.R. Deem's instruction on February 9, 1984. la. Appendix 2 now incorporates titled " Nomograph for Simplified Seismic Analysis" lb. "A Simplified Method for Design Analysis of Small Size Piping (Procedure AB-5) " is herewith transmitted for your incorporation into Specification 2323-MS-200.' ic. Appendix 2 cover sheet has been revised to read, " Nomograph for Simplified Seismic Analysis" Id. Table of contents has been revised to reflect above title. 1:OlA-85-59
/ ~ ~ Gibbs S Hill. Inc. GTN-68532 February 27, 1984' le. DCA 3305 has been incorporated into Appendix 2 2. Duplicate entry of Section 3.3 (2) (m) has been corrected. 3.a.b. DCA 18,318, Rev. 1 is not void. Please refer to GTN-68443, dated February 7, 1984. No changes have been made to Rev. 5. 4. Item No. 54 on DCA-18,453, Rev. 1 has been incorporated into Appendix 5 (2323-MS-45). 5. Specification 2323-SS-30 has been updated to include all affected DCA's. ? If we can be of further assistance, please contact this office. Very truly yours, GIBBS & ILL, Inc. REBa/Jlr/DMK:gw Robert E. Ballard, Jr. 1 Letter + Attachment Project Manager cc: ARMS (B&R Site) OL P.M. Milam/B. Nelson (TUSI/NY) lL H. Deem (TUSI Site) lL, lA R.D. Calder (TUSI Site) lL, lA O Drave}}