ML20153G348

From kanterella
Jump to navigation Jump to search
Rev 1 to Irradiation Study of Boraflex Neutron Absorber Interim Test Data, Interim Technical Rept
ML20153G348
Person / Time
Site: Point Beach, Vogtle, Quad Cities, 05000000
Issue date: 11/25/1987
From: Sarah Turner
BISCO PRODUCTS, INC., NEUTRON SURVEILLANCE TECHNOLOGIES (NUSURTEC)
To:
Shared Package
ML20153G328 List:
References
NS-1-050, NS-1-050-R01, NS-1-50, NS-1-50-R1, NST-87-107, NUDOCS 8805110211
Download: ML20153G348 (22)


Text

. ,.f

. s . "- 1 f

y BISCO BISCO PRODUCTS, INC.

TECHNICAL REPORT No. NS-1-050 (INTERIM)

IRRADIATION STlfDY OF BORAFLEX NEUTRON ABSORBER INTERIM TEST DATA 1

DATE 11/25/87 8805110211 800505 '

ADOCK 0500 5 REV/SION 1 lDR

<)

,II D/

W800 M kNt.

1420 renelemence e%e park ridge, !!!!nois 60068

l i

1 1

MST-47-107 ,

l l

i I

?

IRRADIATION TESTS OF BORAFLEX I 1

seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen  !

e e i

  • PRELIMINARY
  • e e I

i esseeeeeeeeeeeeeeeeeeeeeeeeeeeees  :

Prepared for i

BISCO PRODUCTS, INC. I t

l Ii i

I by l Stanley E. Turner, PhD, PE i

November 1987 1

NU8URTEC INCORPORATED  :

L Palm Harbor, Florida i i

t i .

i

.. w .

, . s

1. INTRODUCTION AND R!t?0RICAL BACKGROUND In late 1986, in-situ tests revealed ' . . .ga ps identified in the Boraflex neutron absorber component of the high-density spent fuel storage racks at Quad Cities Unit 1"'58 as annufactured by the Joseph Ost Corporation of Camden N.J.

These gaps consisted of horizontal cracks through the Boraflex distributed randomly in both size and location in the upper -8 feet of the poison material. In blackness tests, the largest gap observed was 3 1/n to 4 inches wide and the average was -1.5 inches. (Gaps less than about 1/3 inches were not observable.)

Underwater neutron radiography confirmed the existence of the gaps and determined that the largest gap was approximately 35/

inches wide.

Consonwealth Edison Co. (Ceco), the licensee, retained Northeast Technology Corporation (NETCo) to evaluate the test data. In their preliminary report'88, NETCo concluded 818 that the acchanism for the gap formation "may be related to large local stresses in the Boraflex from fabrication-induced restraint within the rack and to tearing and shrinkage of the material *.

At about the same time, a full length sheet of Boraflex (after -1 x 1818 rad total exposure) cut out of the fuel rack of the Pt.

Beach plant (where the Bormflex was able to shrink na-restrained) was found to be intact. Subsequently, the author of the present report was retained by Ceco to evaluate the potential lapact on criticality safety of the observed Borafles gaps. This study'88 confirmed that the reactivity consequence of the gaps was well l within the capability of the Quad Cities racks. l Although earlier tests *** had confirmed that boron was not lost from irradiated .Boraflex even at very high doses (as much as 5 x 1818 rad 888), the sample sizes used in this irradiation test were too small for valid dimensional checks.

2

1 Consequently, shrinkage data inferred from this earlier test cannot be relied upon as an accurate radiation-induced effect.

Based upon the qualification on shrinkage data noted above, a second Boraflex 1rradiation test program was initiated  ;

in the Spring of 1987 for the purpose of seeking to quantitatively determine radiation-induced shrinkage of Boraflex.

These tests used larger size samples in order to improve the precision of dimensional measurements from which shrinkage data would be inferred. At the same tjas, an effort was made to I reduce the concurrent neutron dose to which the samples were exposed so that the results would be more representative of the gamma radiation doses to which Boraflex would be exposed in a spent fuel rack environment. In general, the Boraflex absorber material would normally be exposed to a -3 x 10' to 1 x 10** rad gamma dos, from a single fuel cycle (depending upon specific reactor operating conditions) and approximately twice this accumulated dose if the fuel were to be left in-place throughout ,

a postulated 40-year rack lifetime. If the same storage cell were J to be used for annual refueling, the accumulated dose could reach 1 x10** to 4 x 1011 rads gamma.

Three series of test irradiations were made exposing samples as follows:

(a) 12-inch long samples to 1 x 10' rads in a 00-60 gamma cave at the University of Michigan ,

(b) 1.5 inch square coupons to 1 x 10** rads la the Ford Research reactor of the University of Michigan , and (c) 12-inch long samples to (later) la the research

, reactor _ at the University of Missouri. l Results of these test irradiations are reported herein and the detailed data are presented in Appendix A.

1 3

l 1

_ -. -- _,. _... _ _____.. _ _ __ . _ . , _ _ _ _ . _ . ~ . . , . . . _ . . . . - . . _ . _ , _ _ _ .

2.0

SUMMARY

2.1 YISUAL OBSERVATIONS In the course of irradiation, Boraflex gradually becomes harder and less ductile. Above a radiation dose of about 1 x 10' rad, irradiated Boraflex has the appearance and ' feel' of a ceraale material - strong in compression but fracturing easily in tension (brittle failure). In many respects, radiation-hardened Boraflex resembles a sheet of sintered A1:03 that may fracture in large pieces but does not powder or crumble. Even at the highest doses (-1.1 x 1015 rad gamma), there was no sign of swelling.

Dove a radiation dose of 1 x 10** rad, fine grey powdering appeared on the surface of many of the samples, most marked along the edges and in for a distance of about */4 inch.

This powder could be easily wiped off -

exposing the normal looking black Boraflex underneath - with no significant effect on neutron absorption as confirmed by transmission tests.

As the irradiation dose increased, the most noticeable visual change in the smaller samples irradiated in the University of Michigan reactor was a slight deterioration along the edges, a change less marked but generally confirmed by dimensional measurements. Above a dose of -1 x 10** rad, the edges of many samples began to lose their original sharp deflaition and to acquire a slightly irregular shape with the corners rounded. The edges had a smooth appearance resembling the "polishing" effect of erosion. In some cases, sas11 amounts of edge material had been lost and the edges were friable to a depth of perhaps */as inch or less. Because of the irradiation geometry, the edges were

. exposed to a concurrent neutron dose which substantially -

increased the effective local radiation dose and could likely account for all or some of the observed edge effect. Highly l reactive transient free radicals, (N),[0], and (30:1 or N 03 -

l 4

s

. , , - - , - , - - - . . , _ - - ,.. - - - , , . , , . , , . , , _ , , , , . ~ , _

l '-

i ,

e i

l all present as a result of water radiolysis - any possibly be a ,

contributing factor.

Small surveillance coupons from the Pt. Beach spent ,

fuel pool apparently showed a similar edge deterioration which I suggests that careful consideration should be given the rack surveillance program, -particularly to the size and geometry of the coupons. i 1

2.2 BORON CONTENT  !

Neutron transmission measurements made before and af ter ;

irradiation confirmed that boron is not lost in the irradiation of Boraflex. The absorption remained at -98% regardless of the radiation dose. Thickness shrinkage would not alter the boron areal density or the absorption. However, the transmission measurements are not sufficiently accurate to detect the small increase in boron concentration that theoretically would be a consequence of length or width shrinkage.

2.3 HARDNESS MEASURB GNTS Shore A or possibly Shore D hardness measurements were at one time considered to be a means of qualitatively following accumulating radiation effects on Borafles in spent feel racks by means of measurements made on surveillance coupons. Results of the present test program indicate that both Shore A and Shore D hardness have saturated (ie, fully hard as alght be expected of a cerante material) at radiation doses too low for the measurements to be of real value. Shore A saturates at about 1 x 10' rad and Shore D at less than 1 x 1018 rad as illustrated in Figure 1.

These radiation doses are comparable to those from a single fuel cycle.

1 5

l

l l

' * \

. l l

2.4 SPECIFIC MAVITY MEASURDENTS l essee LAfgg essen l

2.5 MODULUS OF EUPTURE TE8?S (TINSILI) seems LAfgg essen l 2.6 DIMENSIONAL MEASUREMENTS 1

I 2.6.1 GAMMA CWE IERADIATIONS l A total of 10 samples were irradiated in the University 1 of Michigan Co-60 cave to an integrated gamma dose of 1 x 10' rad. Dimensional measurements on these samples are summarized in Figure 2. These data suggest a gradual nearly-linear shrinking of the Boraflex, reaching 1.5 i f.1 % in length at 1 x 10' rad.

2.6.2 REACTOR IEEADI ATION OF C30PON 8AMPLES A total of 108 samples (-1.6 inches square) wre irradiated to doses between 1 x 108 and 1x 1015 rad. Pre- and post-irradiation dimensional measurements were obtained and these data are summarized in Figure 3 showing separate plots of weight, thickness, length and width. At the lower doses, the changes in weight, length and width are not greatly different from those observed in the gasma cave irradiation, despite the higher dose rates and the concurrent neutron flux.

The onset of slight edge deterioration is most clearly seen in the plot of weight change in Figure 3. Up to a radiation level of -2.5 x 10 " rad, the weight consistently increases, probably due to water absorption. However, above that radiation level, the weight change decreases signalling the onset of the slight edge deterioration. Length and width dimensional changes 6,

o do not show as drastic a change, presumably because the micrometer jaws wculd span the small gaps along the edge where some degree of spalling appears to have occurred. In the small samples used for these tests, the edge effect, although less than

%. Anch, is a relatively large percentage of the sas111.6 inch coupon dimension. In a spent fuel rack, an edge deterioration of 2/2. Anch on both sides of each Boraflex sheet would have a nearly inconsequential reactivity effect.

The coupons used in these tests w re mounted as a "sandwich" with the outer samples providing a shleid against thermal neutrons. These outer coupons showed evidence of accumulating higher radiation doses (indicated by the rate of increase in sample hardness) then the inner samples of each 9-sample batch. Consequently, the averaged data presented herein excludes the outer two samples in each batch and considered only the inner seven samples. Simple and approximate calculations suggest that the thermal neutron dose in the inner samples (from fast neutrons thermalized in the Boraflex) was perhaps 10 to 20%

of the indicated gamma dose. However, the edges of all samples were exposed to a significant thermal neutron dose which likely contributes to the edge deterioration observed.

Although there is considerable uncertainty in the length and width changes especially at the higher doses, the shrinkage appears to have saturated at about 2 - 25/s % in length and about 4% la width, including the edge deterioration which would tend to increase the apparent shrinkage. Due to the small coupon size of the University of Michigan test speclaens, the i l

% . inch edge deterioration introduces a significant potential '

error in the shrinkage data inferred from dimensional measurements. Test speclaens in the University of Missoort reactor are twelve inches long and are better shielded from thermal neutron radiation damage. Consequently, the shrinkage 1

- . _ , - , - , - - - - - - - - . . , - - - , . , - . - - - - - - . . - - , - - . - ~ . - - - - , - - _ _ .n_,,___,we,n.ne

I l 1

data from these irradiation tests will be subject to a much lower i error factor from potential edge deterioration.

2.6.3 REACTOR IRRADIATION OF LARGE SAMPLES seen LATER sees

}

l l

8 l

l 1

l l

__ __ _ _ - _ _ _ _ _ . _ _ . _ _ _ . . . . _ _ _ . _ _ _ ___ . .__ .. . _ . _ . . -_.__.__._-__._.___.._.1

.-. ... ...- 1

~

, l 3.0 COIK1USIONS AND RECONNENDATIONS on the basis of the test irradiations, the following conclusions and recommendations may be made.

o For irradiation levels comparable to or in excess of those expected during a 4f year service life of Boraflex I i

in spent fuel storage racks, there does not appear to be degradation of a magnitude to prevent Boraflex from i performing its intended function.

o on irradiation, Botaflex becomes a hard ceramic, strong in compression and relatively weak in tension.

When cracking occurs, it is a brittle fracture characteristic of a ceramic.

o Radiation-hardened Boraflex is a stable ceramic with no further apparent radiation-induced changes (with the possible exception of a small edge effect) op to the maximum dose expected in a typical 40-year in-service lifetime.

o Trradiation of Boraflex does not result in a measurable loss of boron.

i o there appears to be erosion or chealcal etching and  !

spallation along the cut edges of Boraflex sbeets to a maxiana depth of -%e inch but none on the flat finished surfaces.

o Because of the slight possible edge effect, it is conservatively recommended that rack designs include an allowance of %e to % inch in width for potentially enhanced edge deterioration.

i 9

_._,,.,-.-___-~,.,,..-,____--.w_

,--.r.,_.m,,_, , __.~.-,_.__,..___-..v._-m...-..-., .m----,----~----w-- - -

o Care should be exercised in planning a surveillarice program to insure that axlal shrinkage in particular can be measured with sufficient accuracy and that the small l edge ef fects do not produce ambiguous results. This will l require coupons larger than those currently in general use, with 10 inches being the recommended minimum length, o Boraflex reaches full hardness (shore A or Shore D) at a radiation dose of "I x 10** rads or approximately that of l a single fuel cycle. Therefore hardness measurements do l not generally provide an effective means of tracking  !

radiation-induced changes in Boraflex over its expected 40-year in-service lifetime.

)

o In the radiation-induced conversion to a ceraalc, Boraflex undergoes shrinkage of approximately 2 to 25/

percent in the axial direction which should be allowed for in the rack design. Shrinkage in thickness does not alter the boron-10 areal density (grams /en*) and width shrinkage is included in the recommended allowance for edge effects.

o Because of the 2 to 25/ percent radiation induced shrinkage, it is recommended that rack designs permit the free contraction of the Botaflex sheets and avoid strong restraints that could lead to large local stresses. This will eliminate the gap-forastion i

mechanism attributed to fabricator-induced restraint as experienced in the fuel racks of the Quad cities 8tation.

o Modulus of Rupture see later see 10 g -- - ,- - - - . . , ., , , - - - -r-. - - - - , . _ . , - _ . - _ . . - - . . - , , _ . , , , _ , _ , . , ,--,,n, _ ya- ,.,_ ,,, ,.-,---e,we-,wm,,,,~,_

~

v' l

i l

REFERENCES l

\

'18 USNRC Information Notice No. 87-43, September 8,1987  !

'88  !

Northeast Technology Corp. "Preliminary Assessment of  !

Boraflex Performance in the Quad Cities Spent Feel Storage l Racks", February 1987  !

i

8. E. Turner, ' Criticality Safety Evaluation of Botaflex  !

Degradation in the Quad cities Spent Fuel Storage Racks", l June 1987 l "8

J.S. Anderson, Irradiation Study of Boraflex Neutron Shielding Materials, NS-1-ffl, Bisco Products, Inc.,

August 1981

'58  !

Private communication, R.R. Burn, University of Michigan '

to 8. E. Turner, November 1983 J l

l l

l 1

I 11

. tis

_ _ _ _ . _ . . . . . , , _ . , _ , _ . , _ _ _ . . . _ _ _ _ . . . . ~ _ . - _ _ _ ,

l l

100-. -

.... .- s 1oo

, ,_ r  :

/

--- / ."

95~

/ i

/ -

80 t

6  ;

i _

p <

90  !

h

, 60 g i

/ {  ? h M  : o

' o .

85'i- /

d '

E

/ -

40

/ /

/ ,

f' 8 m

i i

/

80- -

,20 75 -

10' 10* 10

  • 10 ' 10

0 ACCUMULATED DOSE, RAD Figure 1 RADIATION INDUCED RARDNESS OF IKRSFI,tX 11

- , . . , ---.-y,-.y.,.- . , _- , --w_,_.m,_,,._.r_--,_-.,-.,,_~-__% ... _.- -, ,_.-_ _ _ _ , - . - . . - -

WEIGHT

LENGTH s<

s4 2- <

1 l E

1-l3 1' l o, . I I I z I a  :

l o, ,

= .

-i. -

-> .. 1

-p 1O ' id '

id ' lo ' I68 avuutmo mst. mo (6 acetu.unn oose, no

'?

THICKNESS 3- *] WIDTH 1

ci : m z I 2,1, --

I .,,5, I

3

% I o- "

-2

-1, -

-- -3

-s

-+

10

,,,,,o* -:'

10 ,,,,,,,,*

10 10 ' 10 couutmo cost, MD 10 Accouut m o cost, me Figure 2 DDENSIONAL CHAEES IN BORAFLDC FRCH CO-60 GMtR RADIATION 0

.__,,,---,,,.,,,--..,,,,_,n--,,,-..,.,.,._,,,,-n,m-.~.,,,_.,.,, ,_ye,

l i

, . 1 l

  • 1 WEIGHT LENGTH 3< - --

3' j x

3.

.. i l2- i.

7 i<

l a a I

=

~

~

I I

-y .

.. -v I

i -t es ,

10 '

...,',..,*..,'...,"..., ,.,.m" ' i 'm i

,'. m m "i 5 10 10 10 10 1G  :" 10 10 ' 10' 10 1Q'- 10

-v m ". .

10 10 "

a w uu m cosc, no eceuwuuno mse, no THICKNESS *'

WIDTH

3. ,, 1<

o< , . ..

1 l2< 3 a

-i.. .

I a ,, -- -  ::

-3

_ II

_, y _.

-y

.. -+ ..

i .

.. -> . :- i 1

-+ .

'.....,*....,'.....,"...,".....," -f . .. , ,

10* 10 10 10 10 10 10 10' 10'. ....10, *.....10, ' ....10, ". ..,10, ". ....10, * ! '

AccuuuuTro coSE, MD ACCUMUuTED DOSE, RAD Figuro 3 DIMENSIONAL OW)3ES IN BORAFLEX ETCH REACTr* 1RRADI\TICN 13 4

, , , - . - - - . - - - - . - - . - , , . - - . , , - - . . . -,-,,,.---,,.-n,..,e-n,-.,,,,,----.---- ,,,,,a,-,n_-n-,.me,

1 I

i i -

l i

i l

1 Table 1 Co-60 Irradiation - WEIGHT CNANCES

]

4 RADS . SAMPLE WEIGHTS, gm

? ,S.9E+st 67.95 66.25 66.85 67.18 67.98 66.65 66.e5 66.85 66.95 67.25 -

1 1.9E+0? 67.e5 66.25 66.99 67.98 66.95 66.68 66.es 66.00 66.98 67.28 l

5.98+eh 67.98 66.30 66.05 67.18 67.10 66.7s 66.28 67.00 67.18 67.50 -

1.52+s8 67.95 66.3s 66.18 67.28 67.28 66.7s 66.25 67.88 67.18 67.50 2.5E+08 60.18 66.48 66.18 67.38 67.28 66.00 66.25 67.18 67.28 67.65 5.or+sh 5s.2s 66.5s 66.3s 67.4e 67.3s 67.se 66.4e 67.3e 67.4s 67.7s  :

1.rE+ed 6s.1s 66.4s 66.1s 67.3e 67.3e 66.9s 66.3s 67.2s 67.2s 67.5s -

i, i

i RADS PERCENT CNANCE FROM INITIA1. WEIGHT AVE. 1-SIOMA i

i 1.EE+37 -0.07 8.98 -5.e5 -8.15 -0.37 -0.88 -0.80 -S.07 -S.87 8.se -S.07 p.04 1

j 5.er+97 0.08 5.88 -S.08 8.08 S.15 s.08 8.23 8.22 S.22 8.45 S.13 0.15

1. 6... .... ...e .... . 1, ..>. .... . 2, . 22 . 22 . 4, . 1. 8.1, l 2.SE*80 8.29 S.23 S.38 S.23 0.00 9.30 0.23 0.37 8.37 8.68 0.38 8.34

)

5.SE+es . s.44 e.3s e.3s e.4s s.45 e.53 s.53 e.67 e.67 0.74 e.52 s.13

! 1.9E+09 8.29 S.23 S.98 8.38 e.45 8.38 S.38 S.52 8.37 9.45 S.34 9.13 1

i.

1 i '

1

]

i i

4 r

1

4

~

o i

1 4 .. Table 1 Continued co-60 Irradiation - LENGTH cMancEs i

RAD 3 SAMPLE LENGTMS, Inches S.85+99 12.912 12.904 12.841 12.846 12.915 12.017 12.817 12.810 12.829 12.825

] 1.SE*07 ,12.012 12.993 12.042 12.941 12.007 12.019 12.013 12.012 12.829 12.826 i 5.88+87 12.881 11.986 12.024 12.823 11.991 11.999 11.991 11.996 12.814 12.814

, 1.SEc'* 11.987 11.973 12.913 12.s13 11.981 11.989 11.984 11.906 12.888 12.885

2.55*80 11.965 1. 954 11.198 11.995 11.956 11.965 11.962 11.964 11.982 11.902 i

5.88+08 11.925 11.915 11.955 11.952 11.917 11.927 11.924 11.922 11.946 11.941

  • 1.St+89 lL1.835 11.827 11.866 11.067 11.828 11.838 11.832 11.827 11.849 11.845

?

RADS PERCENT CNADOR FROM INITIAL LENG71 AVE. 1-SIONA 1.85+87 S.008 -0.908 S.884 -S.042 -S.967 5.017 -S.833 -0.058 S.000 0.008 -0.817 s.s29 5.SE*07 -8.992 -S.158 -0.141 -0.191 -0.288 -0.158 -0.216 -0.183 -0.125 -S.891 -0.154 0.044 1.8E*88 -0.258 -0.250 -0.233 -S.274 -0.283 -0.233 -0.275 -0.266 -0.175 -8.166 -0.237 8.842 4 2.5E+88 -0.391 -S.417 -0.424 -0.465 -S.491 -5.433 -0.458 -S.449 -e.391 -8.358 -S.428 s.848 i

5.8E+es -0.724 -S.741 -S.714 -0.788 -S.816 -S.749 -0.774 -8.799 -0.698 -0.699 -S.749 8.e43 j 1.88+9* -1.474 -1.475 -1.453 -1.486 -1.556 -1.498 -1.539 -1.509 -1.496 -1.497 -1.50s s.943 I

4 I

i i

Table 1 Continued Co-60 Irradia c m - WIDTH CNANCES s

RADS SAMPLE WIDTMS, inches e.0E+88 2.513 2.583 2.487 2.585 2.516 2.515 2.517 2.511 2.506 2.534 0.0E+se 2.534 2.507 2.492 2.5e7 2.49s 2.509 2.498 2 . ',14 2.497 2.512 0.0E+ee 2.551 2.51s 2.491 2.492 2.474 2.5e6 2.492 2..J1 2.49s 2.5s7 1.eE+07 2.512 2.502 2.48s 2.50* 2.513 2.515 2.514 2.589 2.585 2.529 '

1.eE+s7 2.534 2.5e6 2.493 2.56, 2.49s 2.512 2.496 2.514 2.499 2.511 1.05+$1 2.562 2.519 2.49s 2.491 2.472 2.509 2.492 2.49e 2.497 2.507 5.eE*07 2.511 2.582 2.48s 2.584 2.513 2.515 2.514 2.58s 2.5e6 2.529 .

5.eE+a7 2.533 2.585 2.493 2.500 2.498 2.513 2.497 2.511 2.500 2.513 5.eE+s7 2.562 2.569 2.49e 2.491 2.472 2.509 2.493 2.491 2.497 2.5s7 1.0E*se 2.511 2.583 2.409 2.502 2.513 2.513 2.514 2.5e6 2.583 2.529 1.85+98 2.535 2.505 2.49s 2.51s 2.5s1 2.511 2.498 2.515 2.5s6 2.515 1.eE*00 2.563 2.500 2.582 2.485 2.468 2.587 2.494 2.491 2.49s 2.584 2.5E*00 2.500 2.5e1 2.409 2.583 2.513 2.513 2.514 2.585 2.584 2.53e 2.5E*0s 2.534 2.585 2.496 2.513 2.502 2.518 2.497 2.513 2.5s4 2.512 2.5E+se 2.563 2.589 2.5e4 2.488 2.469 2.510 2.493 2.491 '2.495 2.5e3 5.9E+08 2.582 2.496 2.483 2.496 2.500 2.50s 2.5ee 2.499 2.498 2.525 5.es+e8 2.526 2.49s 2.498 2.586 2.495 2.511 2.492 2.585 2.497 2.584 5.eE+re 2.562 2.584 2.499 2.483 2.47s 2.505 2.400 2.485 2.49e 2.496 1.eE+89 2.404 2.401 2.467 2.488 2.493 2.493 2.491 2.483 2.481 2.599 .

1.eE+99 2.$46 2.477 2.468 2.482 2.475 2.491 2.47s 2.484 2.475 2.40s 1.eE+99 2.543 2.406 2.40s 2.464 2.456 2.400 2.471 2.468 2.472 2.477 EADe PERCEST CNADOE IN AVERAGE WIDTHe AVE. 1-egggA 1.05+e? 8.e52 -0.027 0.128 -e.s13 -0.867 s.See -0.e66 -e.ses e.000 -e.879 -e.see 0.894 5.eE+07 s.825 -0.053 e.12e -0.013 -0.867 0.993 -e.048 -e.See 0.s27 -e.053 -0.0e4 s.103 1.eE*00 0.s65 -0.953 0.254 -e.094 -0.001 0.093 -0.013 -0.053 e.ses -0.066 s.813 S.177 2.SE*00 e.s12 -e.s57 8.254 -0.000 -0.054 s.146 -e.ses -0.893 8.827 -e.186 8.988 8.183 5.et*00 -0.186 -e.293 s.e27 -0.253 -0.208 -e.See -0.253 -0.359 -0.213 -0.311 -0.218 8.19s 1.0E*09 -8.935 -1.911 -e.736 -1.ses -0.881 -0.778 -0.999 -1.e71 -0.973 -1.152 -0.957 8.191

.- . - _ _ _ - - _ - - - - _. .- - _ - . -- _. .~

l l l

l l - . ,

I i f l

Table 1 Continued co-60 Irradiation - THICRMESS CHANGES

} RADS SAMPLE THICKNESS, Incht9 l

8.eE*Se 8.877 S.875 S.T15 s.076 8.876 S.076 s.075 * +77 8.815 S.876

} S.8t+88 S.876 8.875 8.e75 S.876 8.917 s.875 s.876 0.076 S.e76 j 8.st+89 8.e77 S.889 0.e76 8.876 8.077 S. e 75, 0.876 S.e76 S.s77 1 I t 1.8E+07 S.077 f.875 S.875 0.376 8.876 8.075 s.075 7 9.875 0.t75 I

1.SE*e7 8.876 0.975 S.875 S.876 S.077 0.075 S.875 0.076 0.876 8.e76  !

4 1.SE+47 0.077 8.875 S.876 S.975 s.577 0.075 S.e76 e.e76 S.876 s.876 1 S.sm*S7 S.077 S.875 S.875 S.876 8.876 0.075 8.075 8.077 8.075 S.075 I S.eE*S7 S.076 9.875 s.875 S.076 S.877 8.875 S.875 S.876 8.876 S.07J I S.SE*e7 f.976 e.075 - S.876 0.015 0.076 S.575 S.076 8.016 0.076 s.876 l

1 1.etee8 8.877 8.875 0.975 S.076 S.875 S.875 8.074 8.876 0.075 0.075 j 1.SE+et S.976 s.875 S.876 S.876 e.876 8.875 S.075 S.877 S.076 S.076 1.eE+s8 0.076 s.075 0.876 8.875 8.816 S.875 S.076 s.876 8.876 0.076 t 2.St+05 8.977 S.875 S.076 0.077 S.076 S.076 S.074 0.877 s.876 e.076  ;

2.5E+es 8.977 0.075 S.876 s.977 0.077 S.875 S.576 S.e77 0.017 s.077 2.5E+98 S.877 8.376 0.077 8.976 S.877 S.875 0.877 8.e16 8.077 8.877 S.85+0e e.977 S.076 8.87S S.017 S.876 S.076 S.875 8.877 5.875 S.876 4

0.877 S..SE*e8

.es.es 0.076, e.g 0.075, e.g S.076, S.e 8.87,6 8.e 6 8.07,7 S.8 , S.075, 0.976, e.57,6 S.877, 5.87 j 8.87 8.57 . 076 8.8 7

! 1.eE+09 S.876- f.875 9.876 0.076 S.876 8.875 S.075 0.877 8.876 9.875 .

1.Stee9 S.875 8.874 S.e75 S.876 S.876 8.875 s.075 0.e76 S.876 S.876 t 1.eE*S9 S.076 8.e7S 8.976 8.876 S.876 0.074 S.876 S.076 8.976 S.077 1 Sapp PERCEar? CNANCE IN AVERAGE THICENESS AVE. 1-510MA l

4 1.8E+07 S.898 -2.003 8.088 -0.439 8.80s -0.439 -S.419 8.888 8.888 -0.871 -0.427 1.206 S.SE+07 -0.433 -2.883 S.See -0.439 -0.433 -0.439 -0.439 S.See 5.008 -E.871 -e.514 1.220 1.eE*SS -0.433 -2.883 S.444 -S.439 -1.384 -S.439 -8.es3 0.086 S.ses -0.671 -0.600 1.321 e 2.5E+0S 8.439 -1.222 1.327 s.877 S.See 0.888 -S.006 8.439 1.322 9.439 8.361 1.253 i S.SE*SS 9.000 -1.639 S.083 S.439 8.888 S.See 0.439 5.439 8.883 S.439 e.108 1.361 i '

; 1.eE+S9 -1.3e4 -2.52s S.444 8.seS -e.s56 -0.sei -e.439 8. sos e.444 -0.439 -S.SS7 1.328 g i

1 I

}

i 1

1 i

l 4

4 i

l Toble J Reacter Irrediation - VEIOMT CHANGES 4 .

1 SAMPLE WEIGHTS, gm INITIAL 5.1448 5.1397 4.9961 S.8670 S.1427 5.120S 4.0302 4.8069 4.86es -

4 1E*6 RADS 5.1192 5.1228 4.9726 5.0457 5.1295 5.1105 4.8869 4.7835 4.8368 AVE. 1-SIGMA

CMAEGE, % -0.402 -0.320 -0.478 -0.437 -8.431 -S.358 -8.401 -5.468 -S.Sle -S.448 8.062 INITIAL 4.8201 4.9972 4.9030 4.8339 4.9729 4.9247 4.9837 4.8834 4.9241 1

1E+7 NADS 4.8812 4.9717 4.9641 4.8875 4.9447 4.8964 4.0760 4.86e6 4.9000 AVE. 1-SICMA i CNAs0E, % -0.557 -0.510 -e.499 -0.547 -0.566 -0.575 -5.565 -0.467 -0.326 -0.512 0.079 l

j INITIAL 4.8003 4.9321 4.8459 5.0773 4.9628 4.9129 5.819e S.sesi 4.9142

] 1E+4 R&DS 4.0628 4.9142 4.8291 5.962S 4.9476 4.e967 5.8100 5.0299 4.9875 AVE. 1.SIONA CNANCE, % -S.358 -0.363 -0.346 -0.291 -0.298 -e.729 -0.163 -W.202 -0.136 -0.275 S.887 INITIAL 4.9500 4.9063 4.8947 5.0583 5.8365 4.9761 5.1597 5.2299 S.1469 1E+9 RADS 4.900s 4.9194 4.9103 S.0752 5.8523 4.9919 5.1719 S.2359 5.1718 AVE. 1-SIGNA J

CNAp0E, % 0.588 S.267 8.319 8.335 8.313 8.317 8.237 0.115 s.485 s.331 s.137 i

l INITIAL 5.8807 5.1958 5.0387 5.9160 S.eS89 S.8254 5.8333 5.9740 S.Se67

{ SE+9 RADS 5.0889 S.0638 5.8975 5.9752 5.98S3 5.8715 5.4767 6.0149 5.9959 AVE. 1-SIGNA i CNAMOE, % 3.263 1.187 1.006 S.987 c.792 S.792 8.737 8.605 1.518 1.218 e.81e 1

I INITIAL 5.9625 6.8318 5.9316 5.9694 5.8847 5.8238 S.6844 S.8811 S.0186 I 1E+10 SADS 6.1293 6.1868 6.0073 6.1265 6.e405 5.9056 S.8397 S.9563 5.9931 AVE. 1-SIONA j CNAp35, % 2.790 2.557 2.625 2.631 2.765 2.779 2.732 2.569 2.998 2.719 e.14e t

I INITIAL S.7242 5.7752 5.8943 5.8494 5.0657 5.9207 6.8184 5.9515 5.9966 2.5E*10 R 5.9077 5.9257 6.e439 6.2812 6.9006 6.1339 6.2752 6.1fe6 6.2844 AVE. 1-SICMA j CMANGE, % 3.206 2.605 4.127 6.178 3.664 3.688 4.486 3.177 3.46S 3.825 1.e2e i

INITIAL 5.9599 5.9508 5.8618 5.0132 5.7816 5.6522 5.6854 5.6226 5.5349 i SE+10 SADS 5.8337 6.8343 5.9669 6.0005 5.9228 5.7594 5.7392 5.8822 5.5333 AVE. 1-SIGMA 2

CNApGE, 4 -2.110 1.483 1.794 3.221 2.322 1.896 2.306 3.193 -e.529 1.S63 1.693 1

( INITIAL 5.6122 5.7549 5.9068 5.7319 5.7113 S.6978 S.7303 5.88s2 5.7461

7.58*10 R 5.2463 5.6428 5.7274 5.6422 5.$958 5.630s 5.6269 5.6915 5.2572 AVE. 1-stoMA q

CNAm05, % -6.519 -1.948 -3.836 -1.565 -2.e21 -1.836 -1.819 -2.889 -0.584 -3.162 2.575 I INITIAL 5.0238 5.7574 5.0004 5.8579 5.7925 5.8192 S.7434 5.'/16e 5.7435 j 15411 R&Ds 5.3263 5.5596 5.6057 S.5049 5.7022 5.7453 5.6418 S.6354 5.5643 AVE. 1-SIGNA CEANGE, % -0.543 -3.435 -1.977 -4.319 -1.S50 -1.269 -1.783 -1.424 -3.121 -3.s48 2.311 s

4 INITIAL 5.7465 5.6965 5.6505 5.7096 S.8599 5.7943 5.7802 5.8751 5.9462 1.04E+11 R 5.3861 5.4596 S.S195 S.S918 S.1132 5. Esse 5.6836 5.5328 5.1287 AVE. 1-StonA CNADOE, % -6.272 -2.771 -2.328 -1.923 -2.583 -3.215 -3.195 -S.843 -13.883 -4.659 3.783

) IEITIAL 5.S717 5.8472 S.9485 5.8718 5.0399 5.7782 S.7354 5.8826 5.6440

! 1.12E+11 R 4.9841 5.5452 5.5296 5.5360 S.6343 5.5676 5.5469 5.6505 5.2199 AVE. 1-SIGNA j CNANGE, % -16.539 -5.165 -7.042 -4.016 -3.521 -3.S12 -3.286 -2.493 -7.S15 -5.899 4.344 i

I u__ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ . . . . - - _ _ , _ _ _ _ _ _ _ _ ___ _ _ . . _ . _ _ _ _ _ . _ _ . _ _ _ _ _ . _ _ _ _ _ . _ _

.. _ - , - - _ . -~ . _ - .

l 1

l i

1 l

j Table 2 Continu a peector Irredietton - THICMNESS CMANGES SAMPLE THICKNESS, cm ,

3 INITIAL S.876 S.076 S.876 8.075 S.874 8.875 s.874 8.875 s.975 1E*6 R ads 0.875 0.075 e.875 S.075 0.075 S.875 8.s74 8.574 s.875 AVE. 1-sicMA I CNANGE, % -1.32 -1.32 -1.32 8.00 1.35 S.se 8.00 -1.33 S.00 -9.437 8.941 S.874 S.875 8.875 S.015 S.076 '

INITIAL S.975 8.875 e.075 8.875 1E*7 RADS 8.875 8.874 s.e75 5.874 S 974 s.874 s.875 8.875 S.975 AVE. 1-SIGNA CRANGE, % 0.00 -1.33 8.98 -1.33 8.88 -1.33 8.80 5.08 -1.32 -0.591 0.708 a INITIAL S.075 S.875 s.075 s.e75 8.874 8.874 S.876 s.876 S.876 8.875 S.815 S.876 IE*8 RADS 9.076 0.075 S.976 S.876 8.876 0.876 AVE. 1-310MA CMapOE, % 1.33 0.08 1.33 1.33 2.70 1.35 S.Se -1.32 S 00 0.749 1.101 i INITIAL 9.075 8.e71 S.876 S.575 8.815 8.875 s.876 S.076 S.076 1E*9 RADS e.875 S.874 8.s76 S.876 S.077 S.076 0.076 9.077 8.877 AVE. 1-stonA l 1.33 CNANGE, % 1.33 4.23 0.09 1.33 2.67 S.80 1.32 1.32 1.583 1.296 4

INITIAL S.975 S.875 0.076 S.873 0.073 0.074 s.075 S.075 s.075 i 5E+9 RADS s.875 S.P73 8.974 8.872 S.873 e.873 e.472 S.874 s.875 AVE. 1-sIcnA l CNANCE, % S.e5 -2.67 -2.63 -1.37 8.se -1.35 -4.es -1,33 e.SS -1.404 1.481

~

l IsITIAL S.s75 s.075 0.075 S.s75 S.075 s.s74 e.s74 S.074 8.s74 I

PE*10 RAD 4 S.074 8.875 S.974 8.873 8.973 8.874 S.J73 s.874 S.073 Avr. 1-sICMA CNAscs, % -1.33 S.es -1.33 -2.67 -2.67 8.8e -1.35 a.98 -1.35 -1.139 1.e43

I.ITIAL 8. 73 8.873 S.073 S.873 S.874 S.874 . 875 s. 74 s.015 2.5E*10 R e.570 e.s74 f.872 8.072 S.873 0.074 s.874 0.074 9.874 AVE. 1-s!CMA CMANGE, % 6.85 1.37 -1.37 -1.37 -1.35 p.se -1.33 s.se -1.33 0.162 2.635

, INITIAL 5.074 e.875 S.073 0.075 8.875 S.s74 s.873 0.073 8.072 j SE*10 FhDS 8.075 8.s75 c.873 s.075 5.817 8.814 8.875 S.874 s.e73 Avt. 1-SIGNA t

Cuapet, % 1.35 s.Se 8.08 s.es 2.67 s.e8 2.74 1.37 1.39 1.057 1.128

}

j ssITIAL S.s72 S.s73 8.875 S.074 S.874 8.s73 s.s74 f.s75 a.s75 i 7.58*10 a s.814 8.873 8.875 S.874 S.074 S.874 8.074 S.874 S.076 AVE. 1-stonA j CMhpOE, % 2.70 0.00 8.00 e.98 e.88 1.37 8.se -1.33 1.33 e.461 1.105 i INIt;AL e.ei6 S.s76 8. s.s77 S.si7 v.e75 e.075 8.s75 S.e74 1 1E.11 mans S.e76 e.Sie ..875 25 S. 76 S.876 .. 75 8. 25 S.075 8.s24 Avt. 1-stanA CNANCE, 4 e.98 -2.63 e.88 -1.30 -1.38 8.SS 8.58 e.SS e.se -0.501 e.953 i

i INITIAL S.874 0.e73 S.878 S.274 S.875 8.074 0.975 S.876 S.576 j 1.e6C+11 R d.075 S.873 T 174 9.074 s.974 9.874 8.875 8.e76 s.873 AVE. 1-s!CMA

! CNApot, % 1.35 S.59 f.98 S.09 -1.33 C.08 0.e8 S.00 -3.95 -0.437 1.47s 1

I INITIAL p.977 S.577 8.976 S.877 S.075 8.875 8.s75 8.874 s.875

! 1.328*11 R S.870 0.576 8.875 8.875 S.875 S.876 S.874 8.e74 8.s75 AVE. 1-sIcnA CMANGE, % 1.30 -1.30 -1.32 -2.68 S.08 1.33 -1.33 S.se s.es -S.435 1.389 4

1 I

1 . .

j .

I -

l 4

i Table 3 Continood Reactor Irradiation - LENSTN CHANOEe l .

4

., SAMPLE LEAG7M, cm I

I 2NITIAL ' 5828 1.5000 1.5878 1.5168 1.579s 1.511s 1.4928 1

IE*6 RADS 1.4968 1.4768 1.4918 1.4968 1.4958 1.585s 1.5000 1.4978 1.4828 1.46es 1.4778

-S.399 AVE. 1-stoMA

)

4 CNAp05, ,%

-S.267 -0.796 -0.726 8.063 -S.927 -0.678 -0.542 -e.939 -e.573 0.330 .',

! I'NITIAL* 1.4998 1.4028 1.4005 1.5888 1.524s 1.5e78 1E*7 RADe 1.4869 1.470s 1.4960 1.5158 1.5000 1 1.4038 1.4928 1.515s 1.5958 1.4058 1.5128 1.4928 7 CRANGE, % -e.067 -5.278 -s.336 -e.533 -e.591 -e.133 -s.735 Avr. 1-stonA

-e.198 -e.533 -5.466 s.249 INITIAL' 1.5000 1.490s 1.5815 1.534s 1.529s 1.531s 1.Sete 1E+t RADS 1.5285 1.5918 1

' 1.496s 1.490s 1.5518 1.5368 1.5250 1.5265 1.5ses 1.519s 1.303s CNADOE, % -0.267 s.See e.Ses -5.261 -0.262 -0.327 -S.867 AVE. 1-stoMA

-8.e66 -0.265 -0.168 s.132 INITIAL 1.510s 1.518s 1.5228 1.528s 1.521e 1.5228 1.5418 IE*3 mads 2.4968 1.5528 1.5778 1.585s 1.5139 1.518s 1.510s 1.510s 1.52ee 1.5488 1.5600 .

CNA30E, % -0.927 -0.856 -e.591 -e.454 AVE. 1-SIGMA 1 t -S.723 -s.70s -s.e44 -e.773 -1.870 -S.e84 i

0.146 INITIALk 1.642e 1.6428 1.641e 1.64?e 1.64es 1.6458 I

SE+9 RADS 1.6888 1.6000 1.6848 1.6460 1.6500 1.6298 1.618e 1.6858 1.6ete 1.619s 1.6178 1.590s j CNANGE, % -2.871 -2.554 -2.255 -1.462 -2.134 Avt. 1-stonA

-2.249 -2.187 -2.ses -1.983 -2.891 8.30s f INITIAL 1.64ss 1.6420 1.6200 1.6428 1.6435 1.6330

18410 RADe 1.6998 1.6199 1.6468 1.6548

. 1.686s 1.5948 1.603s 1.6s3e 1.5968 1.5068 1.611s CNADOE, % -2.439 -2.192 -2.eSe -2.375 1.618e Avt. 1-stcMA

-2.435 -2.266 -2.838 -2.126 -2.177 j

-2.237 S.158 1stTIAL 1.646s 1.640s 1.644s 1.649s 1.6578 1.6628 1 2.5E*10 a 1.6006 1.6000 1.619s 1.6228 1.6648 1.5200 1.6555 CNAp0E, % 1.627s 1.6489 1.648e 1.505s 1.630s

} -2.795 -2.913 -1.521 -1.637 -1.81s -1.324 Avt. 1-SIGMA

-1.442 -2.168 -1.827 -1.e48 s.651 INITIAL 1.652s 1.65s8 1.6310 1.6188 1.618s 1.5798

! SE*10 LADS 1.620s 1.5755 1.5798 1.580s 1.62ss 1.Se6s 1.5978 1.518s 1.5658 1.579e 1.59se j CNANGE, % -1.937 -1.018 -2.759 -1.29s 1.5648 AVE. 1-SIGMA

-1.908 -1.283 S.254 8.697 -1.513 i

i

-1.229 1.183 INITIAL 1.590s 2.6898 1.6175 1.610s

-7.5E+10 R , 1.5425 1.6169 1.6e39 1.6838 1.5998 1.628s 1.5858 1.5930 1.5848 1.6spe 1.6858 CNApOE, t -3.584 -1.492 -1.678 -2.151 1.592s 1.5900 1.5768 AVE. 1-stonA

-e 998 8.125 -e.606 -0.563 -2.716 -1.511 1.136 INITIAL .

1.6199 1.6198 1.6100 1.6065 1.61's 2 1.625e

{ 1E*11 RADS 1.585s 1.6118 1.613e 1.6385 CNAscs, %

1.542s 1.6045 1.5728 1.5955 1.590s 1.584s 1.5998 1.6888

-2.188 -2.981 -0.240 -2.117 - -1.k55 AVE. 1-SIGMA

-2.154 -1.676 -S.ese -1.832 l -1.67s e.e22 t IKITIAL 1.620s 1.6818 1.6158 1.520s 1.62ss 1.614e

! 1. 66 E+ 11 'n 1.594s 1.5ses 1.575e 1.6898 1.6235 1.621s l CNApot, % -1.685 1.5s7e 1.5ese 1.5648 1.555s 1.566s 1.559s

-1.312 -2.477 -2.518 -1.975 -3.898 Avt. 1-stona I -3.356 -3.512 -3.e25 -2.631 e.sel t

INITIAL 1.6268 1.5958 1.6268 1.681s 1.612e 1.12E+11 h 1.570s 1.684e 1.6885 1.6248 1.6001 1.555s 2.561s 1.57e8 1.569s 2.55es CmApot, % -3.444 -2.5ss -3.99e -1.437 1.5ste 1.5ses 2.450s ave. 1-stonA

-2.667 -3.367 -1.493 -2.7s3 -9.334 1

-3.44s 2.36s I

i

=__m _..___m _

=

e l

t Table 2 Continued Reactor Irradiation - ATTENUA73DN 7 SAMPLE ABSORPTION AVE. 1-SIGMA l INITIAL 8.9028 8.9801 0.9228 f.9881 S.9328 9.9033 S.9025 S.9812 S.9812 s.982 s.est 1E*6 RAD 5 S.9817 8.9812 0.9784 0.9858 8.9782 8.9844 8.9814 8.9829 8.5791 s.981 s.Ss2

! 1.iTIAL ..,7,3 ..,84. ..,7,6 ... 31 ..,811 .. 43 ..,7 2 .. 22 .... , ..,82 ....,

q 1E+7 EADS 0.9819 S.9787 8.9761 8.9814 S.9007 8.9852 8.9815 0.9862 8.9846 5.982 S.003

!  !.iTIAL . 9825 . 9199 . 9026 . 9296 . 9797 . 9795 . 98.,

IE*6 RADS

. 981. . 98.. S.981 ... 1

, 8.9776 S.9705 0.9811 0.9000 S.9811 s.9021 S.98"9 4 0.9791 5.9848 8.981 S.002

) INITIAL e.9794 S.9712 8.9844 0.9807 5.9887 8.9828 S.93e 8.003

1E+1 RAD. 8.. 15 .S.9741

.,815 5.9836 .S.9799

. 12 ..,826 .984 . 9822 ..,81s 8.9.793

.. 3s ..,.2 S.8 1 INIT1?% S.9007 s.9784 S.9785 5.9757 8.9766 S.9788 8.9775 8.9787 8.97s3 8.978 i s. set SE*9 Ra's S.9816 5.9814 S.9823 S.9708 8.9018 8.9884 8.9817 8.9838 8.9821 S.981 s.982 l

INITIAL S.9775 S.9799 S.9777 s.9798 s.9766 8.9788 8.9782 8.9755 8.9775 S.918 IE+10 RALa e.sel

{ s.9813 8.9842 s.9839 s.9824 8.9815 s.Se2s e.9813 s.Seet e.90s6 s.982 e.sel 1

1 INITIAL S.9750 0.9765 5.9768 S.97?S a.9776 S.9764 8.9788 8.9785 8.9775 S.977 2.SE+10 R 8.9775 e.s91

}

1

'.9811 0.9812 S.9807 8.9815 S.9858 8.9829 8.9884 S.9821 8.981 8.802

] INITIAL S.9785 0.9769 f.9752 8.9797 8.9788 8.9767 S.9768 8.9765 8.9768 s.977 SE+10 BADS 8.9788 S.9812 s set

S.9999 f.9001 8.9789 9.9815 8.9778 8.9806 8.9767 s.988 8.082 I

l INITIAL 0.9742 S.9775 0.9795 f.9777 8:9778 S.9776 4.9795 8.9795 S.9194 E.978 7.5E+10 m s.9762 8.9810 8.882 e.9813 5.9781 s.9781 0.9792 s. Sees s.9782 8.9776 s.979 s.es2 l INITIAL 8.9899 S.9017 8.9842 8.90s7 8.9012 9.9895 9.9812 S.9005 S.9811 5.981 1E*11 RADS 6.9817 s.sel l s.9812 s.9061 5.9839 8.9842 8.9834 S.9854 8.5988 s.9844 8.983 8.882 s

b INITIAL S.9801 8.9789 S.9787 8.9771 s.9749 s.9783 8.9197 s.9798 s.1884 s.979 i 1.96E+11 R 8.9823 s.9015 s.9012 8.9038 S.9784 S.9834 S.9823 s.9793 s.9864

e. set s.Se2 s.882

! INITIAL -

S.9791 0.9887 8.9818 8.9813 8.9788 8.9788 8.9794 0.9191 8.9797

} 1.12E*11 R 5.9828 S.9834 S.9819 s.988 s.sel ,

8.9832 8.9829 8.9844 S.9825 9.9057 8.9814 S.983 s.sel 4

l 4

ceAmD AvtaAot PRE-IRRADIATIow assomeTIon - e.979 s.es2 GRAND AVERACE POST-IRRADI ATION ASSORPTION = 0.931 S.SS2 1

l 1

I i

b ._ ... -- . _ _ _ _ _ . - _ _ _