ML20195K454

From kanterella
Jump to navigation Jump to search
Response to NRC Bulletin 88-005 for Plant Vogtle. Response Consists of Records Review,Testing Results,Analyses & Conclusions from Program for Determining Whether Ref safety- Related Fittings & Flanges Consistent W/Asme Code Criteria
ML20195K454
Person / Time
Site: Vogtle Southern Nuclear icon.png
Issue date: 11/30/1988
From:
GEORGIA POWER CO.
To:
Shared Package
ML20195K155 List:
References
IEB-88-005, IEB-88-5, ZAR-881130, NUDOCS 8812050222
Download: ML20195K454 (146)


Text

, . .. , ._ .,- . . . . . - _ . _ . - .

4 O %. ENCLOSURE 1 ,

m i O'  !

GEORGIA POWER COMPANY  !

g RESPONSE TO NRC BULLETIN 88-05 f

f FOR PLANT VOGTTR UNIT 2 i e

i O t i

l i

i O i l ,

i O  !

l t

I O  !

i i .

1  !

O  ;

O November 1988 O

O set 20so222 estrao

{DR ADOCK 05000423 ]

PDC ,

m y q

3 l TABLE OF CONTENTS 3

P.Et EXECUTIVE S UM MARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B ACKG R O U ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 D N RC B ulle tin 88-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 AS M E Cod e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 INITIAL VOGTLE ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 N U MAR C P R OG RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 O P u r pose . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 NUMARC Initial Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

NUMARC Laboratory Testing of SA.105 Carbon Steel . . . . . . . . . . . . . . . . . . . . 5 NUMARC Laboratory Testing of Stainless Stee! . . . . . . . . . . . . . . . . . . . . . . . . . 6 l

l N u m a rc Tes t Res u l ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 l Analpis of NUMARC Test Results for SA 105 Carbon Steel . . . . . . . . . . . . . . . . 6 l Correlation of Equotip Hardness to Tensile Strength . . . . . . . . . . . . . . . . . . . . . . 9 O Utility Field Hardness Tests ......................................11 l Utility Laboratory Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 l

l Analysis of NUMARC Testing of SA.182 Stainless Steel . . . . . . . . . . . . . . . . . . . 11 l V OGTLE UNIT 2 P ROG RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Programmatic Activities .........................................12 S A.105 Ca rbon Steel Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Hardness Tests of Non.WJM/ PSI. Supplied Material . . . . . . . . . . . . . . . . . . . . . . 13 Chemical Analysis of Carbon Steci . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 13 O

SA.182 Stainless Steel Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SUMMARY

.................................................. .... 15 ASM E CO D E CO M P LI ANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 i

,0 CO N C L U S I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 TABLES.......................................................... 17

! FI G U R ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A P P E N D I C ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4

0 4

i .l.

lO J

s

J NRC BUI.IEITN 8%5 REPORT FOR PIANT VOGTT.E. UNIT 2 EXECUTIVE SUhihiARY In hiay 1988, the NRC issued Bulletin 88-05 regarding alleged falsification of material documentation by two supplie-s of piping materials, West Jersey hianufacturing (WJhi) and Piping Supplies Incorporated (PSI). De b& tin noted that some of these materials bad been furnis 4cd O

to Plant Vogtle. A review of Georgia Powcc documentation verified that materials from these supplicts were installed at Plant Vogtle.

O In Bulletin 88-05, the NRC alleged that some of the material from WJhi/ PSI may not have been in accordance with Code requirements ana required investigation by utilities. In addition to the efforts required of individual udlitics, NUhfARC formed a program to help resolve the issue.

Georgia Power tested all safety related WJhi/ PSI materialinstalled in Vogtle Unit 2 and used the U

results of the NUh! ARC and Vogtle programs to demonstrate that the material meets Code requirements.

O This report outlines the Georgia Power program and describes the test methods used for both the carbon steel and stainless steel materials and the results of these tests. De NUhfARC program established a direct hardness to tensile strength correlation which Georgia Power used to determine the tensi'c strength of the SA 105 material at Plant Vogtle. Georgia Power compared the test O results of the NUhfARC and Vogtle pro;rnns to an AISI report of results of product testing. De comparizon showed that the test results for the WJht/ PSI material at Vogtle are typical for product tests of SA 105 material. The analysis of th: stainless steel material in the NUhfARC and Vogtle programs also demonstrates typical results for product tests of SA 182 Types 304 and 316. His r: port ptovid:s the necessary evidence to show that the WJht, PSI materialinstalled at Plant Vogtle is m compliance with Code requirements.

O DACKGROITND NRC Bulletin RMS On hfay 6,1988, the NRC published and distributed Bulletin 88 05 (see Appendix 1) regarding alleged falsification of documentation for material supplied by WJhl and PSI. De Bulletin C explained that these two suppliers may have falsified the data on Certified hfaterial Test Reports 1

g

)  !

(CMTRs). It stated that some material in nuclear plants may not be as represented on the l associated CMTRs. De Bulletin required each utility to identify materials supplied by WJM and  !

) PSI. It also required each utility to determine that these materials comply with Code requirements or demonstrate suitability for service, or to replace questionable material.

De NRC issued Bulletin 88-05 Supplement 1 on June 15,1988 (see Appendix 2). Supplement

)

i 1 required testing of installed WJM/ PSI materials and reduced the scope of the material concerns l I

j to flanges and fittings. It also required an analysis to justify continued operation of plants for "any l

l deviation from the specification" . Supplement 1 identined that Carolina Power and Light (CP&L) j found substrength (about 45 ksi) 'SA 105' material received from WJM. i On August 3,1988, the NRC issued Bulletin 88 05 Supplement 2 (see Appendix 3). Supplement  !

2 stopped the investigations and testing for operating plants and required plants under construction j to continue their investigations. Supplement 2 resulted from the test data and analyses furnished j to the NRC in the NUMARC Interim Report attached to Supplement 2. Supplement 2 also j added Chews Landing Metal Manufacturers (CLM) as a possible supplier of suspect material. [

L

) ASME Code j l

Vogtle Unit 2 was designed and constructed in acccrdance with the ASME Code,Section III,1974 Edition, Sumrner 1975 Addenda. The Code certincation and stamping has not yet been completed for some piping systems.  ;

i j nc WJM/ PSI material at Vogtle Unit 2 was supplied to N type Certificate Holder:, including Pul! man Power Products and Bechtcl. Pullman and Bechtel purchased the materialin accordance with tiw requircments of NCA 3800. Bechtel had an N. Certificate from ASME, and Pullman had both NA and NPT CertiGeates. NCA 3800 of Section III recuires that Material Suppliers either [

{ be accredited by ASME or qualiGed by the Certincate liolder purchasing and installing the material. For material supplied to Plant Vogtle, the appropriate Certificate liolder qualiGed PSI ,

as a Material Supplict. ASME accredited WJM as a Quality System Certificate lloldct (Material  ;

Manufacturer) after a survey by an ASME Survey Team, ne only Code materials purchased from  !

WJM and PSI for Unit 2 were SA 105 carbon steel and SA 182 Types 304 and 316 stainless steel  :

)

1 2

l O' l fittings, flanges, and plugs. No CLht material was provided to Plant Vogtle, and no lugs were I purchased from WJM or PSI.

0 l For Plant Vogt!c, Unit 2,Bulletin 88-05 and Supplemess 1 and 2 raise a question whether or not l

WJM/ PSI. supplied material installed in safety.rclated piping systems meets ASME Code i tequirements. Before issuance of the NRC Bulletin, there was no indication that any of the material supplied by WJM/ PSI might not comply with Code requirements. For Vogtle Unit 2, if -

it were established that some installed material does not meet Code, it would have to be replaced i before Code stamping and certification. If, after appropriate insestigation, no non conforming [

O material is found and the Authorized Nuclear Inspector (ANI) and the Certificate Holders are satisfied, the N Code Symbol Stamp can be applied and the appropriate Code certifications can be  !

completed. [

O Because the material was already installed, an evaluation program that would provide practical f

evidence whether or not the WJM/ PSI material mets Code requirements was needed. To identify substrength material, a screening test to evaluate the tensile strength of the installed material was L required. A n ndestructive test method, using portable equipment, was required to accomplish this O

task. Mcchanical properties are important because the allowabic stresses used in Code ' ign are i based or, tensile and yield strength. Material chemistry is also important, but its primar, tunctions !

are to provide for weldability and acceptable mechanical properties. If a large sample of suspect

O material is checked for ch
mistry and found to be acceptab!c, the primary screening tool sho%t j i be one thet e"ow. estimation of the material tensile strength.

1 j r

! INITTAL VOGTLi! ACTIVITES r

O Georgia Power conducted a documentat i on review for the materialinstalled at Plant Vogtle. De i

! decurnentation review for Vogtle Unit 2 included a review of material records for both diwt and j indirect supply of WJM/ PSI /CLM material in safety related systems. Direct supplied l

jg WJM/ PSI /CLM material included all WJM/PS!/CLM items procured by Georgia Power (or l l installation at Vogtle Unit 2. All of these items were procured under a Georgia Power Purchase Order. De document review by Georgia Power for direct supplied items includes a review of all l

{

procurement orders and related receiving inspection reports and associated CMTR's to identify the f l

jO direct supplied WJM/ PSI /CLM material. Indirect supplied WJM/ PSI /CLM material included all l l

I i a  :

! 3  !

!O ,

O WJhf/ PSI /CLhi material incorporated into prefabricated items such as; piping subassemblics, valves, m pumps, tanks, penetrations and skid mounted items. The document review by Georgia Power for U

indirect supplied items included document revicws by cach supplier of prefabricated items and review by Georgia Power of all document packages received from these suppliers to identify the indirect supplied WJM/ PSI /CLM material.

O Georgia Power determined that Unit 2 had 636 items of installed safety related SA 105 material and 127 items of installed safety.rclated SA 182 stain! css steel material from WJh! or PSI. Georgia Power found no items supplied by CLM.

O In addition to the above activities, Georgia Power joined the NUMARC program addressing Bulletin 88-05. Sh pieces of warehouse material were sent to NUMARC for testing and evaluation.

NUMARC PROGRAM Punne O The nuclear industry response to Bulletin 88-05 was to request NUMARC to begin a generic progcam that included laboraterf testing. The purpose of the NUMARC laboratory test program was as follows:

O 1. Test a representative sample of items to determine whether or not the WJM/ PSI supplied carbon steel materia' has the proper chemistry and rncehanical properties. The utilitics furnished a represenhtive sample of WJM/ PSI material (279 items) for this testing.

2. Test de sarnple of carbon steel items to c@n mat the chenkry b wWn the normal

.g range for product t:sts of SA 105 material If the test resolu for the representative sampic are within the normal rance for SA 105 product tests, the NUMARC program could climinate the need for chemical analysis of materials. Chemistry tests of installed material O are more difficult to obtain because chips or filings from the material are required to determine carbon content.

3. Demonstrate that the use of a portab!c hardness tester (Equotip) is an effective uxal for estimating the strength of carbon steel. This required NUMARC to perform testing to O

'4' O

O establish the proper correlation between the hardness test values and measured tensile strength values from SA 105 product test coopon3.

4. Perform terisite and chemistry tests on representative stainicss steelitems to determine that the materials have the proper chemistry and mechanical properties for Types 304 and 316 materials. The laboratory analyses were to determine whether or not the stain! css steel test 3 results were consistent with the requirements for Types 3(M and 316 stainless stect.
5. Establish a test to distinguish between ferritic or martensitic and austenitic stainless st.ci products.
6. Perform tests to determine whether or not the stainless steel items are sensit:2cd.

D NUhf ARC initial Activitics NUhtARC's Grst activity was to se!cet a portab!c hardness tester. NUhfARC selected the Equotip hardness tester because it can produce reliabic and repeatable results and is small, portable, and casy to use in the Sc!d. NUh! ARC then established a training program for personnel involved in the use of the Equotip tester at each plant. De training included instructions in the use of established procedures. It addressed surface preparation, corrections for instrument orientation, 3 proper support of items during testing, and reporting hardness values. NUhfARC later provided instructions for temperature corrections.

NUhfARC a!so established a cembincJ data base for the NUhfARC laboratory test results.

O separate che<nistry and tensde tc..t results from soma utilitics, and the utility Geld haviness test results.

NUNtAgaNgtory Testinc of SA-105 Carbon Skt;]

J NUhtARC received 276 carbon steel Ganges and Ottings reported by WJhf/ psi to be SA.105 material. These prode:ts were sent to NUh! ARC from warehouse supplies of severai plants, including Vogtle Unit 2. The testing conducted by the NUh! ARC laboratory included chemistry, 9 mechanical properties, including hardness tests, and metallographic analysis. (Only 277 mechanical property tests were performed because two of the 279 items were too small for tensile testing.)

O 9

a i

O  !

NUMARC laboratory Testine of Stainicss Stect .

t He sample obtained by NUMARC included twenty-four SA 182 stainless steel flanges and one j

.0 piece of SA 240 Type 304 stainless steel plate. Nineteen of these items were Type 304 and six f

were Type 316. NUMARC tested the stainless steel items to verify chemistry, mechanical  :

properties, and absence of sensitization. f

,0 l Numarc Test Results j The results of the NUMARC laboratory testing were presented to the NRC in the NUMARC final  !

report on Bulletin 88 05. For simplicity, those results will not be presented again in this report. [

O The following section, however, provides an analpis of the NUMA- test results, some of which i j repeata information in the NUMARC final report.  ;

l i 1 f j Analysis of NUMARC Test Results for SA 105 Carbon Steel "O

Manufacturers and users of steel have known for many years that the certified results of the tests performed at steelmills vary from the results of subsequent product tests performed on various  !

j items produced from the same heat of material. Remons for variations between mill tests and f g product tests are well understood. Rese variances are due to non homogeneity of the steel, I differences in cooling rates, size and shape of the product, test specimen location and orientation, j degree of product forming, and tne usual variations resulting from different organizations J performing the test:.. f (O  ;

he American Iron and Steel Institute (AISI) reported the variations between product test and mill f test results for carbon steel materials at an American Society of Civil Engineers (ASCE) Specialty j

Conference on November 2,1972, in Pittsburgh, Pennsylvania. This study was documented two  !

'O years later in an AISI repert,'The Variation of Product Analysis and Tensile Properties Carten l Steel Plates and Wide Flange Shapes, September 1974." A!SI evaluated test results from a large

{

l samp!c of cart:on steel structural plates and shapes and documented differc.nces between product  ;

1 J

g test results a.td mill test results. The study included both chemical analpis and mechanical j property te,t results. The reported data included test results from carbon steel materials with  !

similar chemistry, tensile strength, and product working to SA.105. 3 r

t i I l

! 6

!O  !

) -

i 1  !

D ne AISI report shows product test variances from the official mill test mechanical properties for i both pbtes and shapes. He results showed that some product test results are lower than the l

O official mill test results. The differences between product tensile test results and mill tensile test j results were as much as 15% for plates and 20% for structural shapes, ne NUMARC results are  !

compared in Table 1 to the results from the AISI tests on structural shapes because the forming I work in SA 105 fianges and fittings is closer to the forming work in structural shapes than to the g ,

rolling work in plates.

Figure 33 of the AISI Report shows tensile strength variances between the mill tests and product l 0 tests in the fiange area of structural shapes. (Figure 33 of the AISI Report is included as Figure 1 for convenience.) Figure 37 shows similar variances for the web area. (Figure 37 of the AISI  !

i Report is included as Figure 2 for convenience.) Dese two figures show that even in the same j l structural shape there are variances between the tensile tests in the web and those in the flange, j O This confirms that tensile test results can vary at different locations within a product. Figures 34 f through 36 and Figures 38 through 40 (not included) show similar variances for yield strength and l clongation. De AISI product tests were conducted on structural shapes with varying tensile y strengths. For evaluation purposes, the cmves to use for tensile strength comparison with SA 105  ;

O

! are in Figures 33 and 37 and are those identified as 'C." The 'C' curves are based on materials (

l with a mill test tensile strength of 70 ksi and higher. This ' the u same as the specified tensile j strength of SA 105. For the set of AISI data with mill test results of over 70 ksi, many of the  :

!O product test results were below 70 ksi, as shown in Table 1. Curves 'A' and "If are based on i materials with a mill test result of less than 70 ksi. Because SA.105 required mill test results of 70 ksi or more, curve 'C' is the proper curve for comparison with SA 105 product test results.

l To provide a useful comparison of the NUMARC hboratory test results with the AISI results in Table 1, a method of norm Jizing the data is needed. Although AISI documented variations from the mill test data, Figure 3 was developed using the average Ir.boratory test tensile strength instead g of relying on the accuracy of the mill test data for the WJM/ PSI material. De average tensile strength of the NUMARC tests for the WJM/ PSI SA 105 materialis 77 ksi. His average strength is used as the normalizing factor to compare the distribution of the NUMARC tensile test results to the AISI product test data, ne tensile strength distribution of the NUMARC laboratory tests O is comparable to the AISI test results for material of similar che nistry and tensile strength to that

,7 O

i O

l of SA.105. This correlation provides strong evidence that the WJhi/ PSI material tested by h NUhfARC meets the requirements of SA 105.

N [

The use of the AISI data raises an issue of whether or not this comparison is appropriate for

f pressure retaining material and whether or not it has ever been used for comparison of product

] (

!g tests and mill tests for material similar to SA.105. Such a comparison has been made for the NRC f

l using the AISI data and is shovm in Appendix A of NUREG/CR.2137, ' Realistic Scismic Design j htargins of Pumps, Valves, and Piping," prepared by E.C. Rodabaugh and K.D. Desaiin June 1981 i

4

(

j (see Appendix 4). De NUREG acknowledges that product test tensile strength results will have 40 a bell shaped distribution, and that some of the results from acceptable material may be less than l

(

the specified minimum tensile strength of the applicable material specification, j i i The Equotip test results from the NUhiARC laboratory tests, shown in Figuie 4, have a typical bell shape, ranging from 347 I, to 469 Lo. De corresponding NUMARC tensile test results,

-! shown in Figure 3, range from 61 ksi to 101 ksi, and have the same typical bell shape, with 12re [

s l of the product test results below 70 ksi. Dere was no substrength (about 45 ksi) material in the sample tested by NUhfARC. nc NUhfARC sample of 277 items included blind Danges.

LO s L j ne chemical elements most suited to verifymg strength and weldability of SA.105 are carbon (C) l

and manganese (htn). The ma.timum carbon content for SA.105 is 035%. Of the 279 product

{O tests taken, one showed a carbon centent of 036te. All others met the 035% limit. %c current  !

i

! SA.105 specification limit for manganese is from 0.60% to 1.03rc. However, the speciGcation i t l l allows the maximum mangancsc content to be increased to 1.33re as the maximum carbon content j j is correspondingly reduced to 0.30re (+0.06te h!n for each 0.01% C reduction). All items met the l

O i i 1.35G limit for manganese. T.xcept the above mentioned item with 036fe carbon (which is within  ;

I the normal accuracy of testing) there were no test results between 1.0$re hin and 1J5% hin for l f 1 which the carbon content cxceeded the adjusted maimum value. Although SA 105 allows a I

1 O P' d'C5'""'I "C" I U 04f' f r manganese, there are seven items (3re) that tested lower than l 0.56%, 'Ihsc seven items had manganese test results of 030re and higher, which meets the SA.105 requirements before the Summer 1973 Addenda. (Some of the utilities furnishing material l l to NUhfARC have plants constructed to Editions and Addenda of the .'M Code earlier than l

O l l

l t

4

.s. '

10 l i

1

O  ;

i l

t% date.) Five of the tested items had slight variances in silicon and sulfur which may be  !

l attributed to product non homogencity.  !

,0 i The AISI Report indicates ' hat the NUMARC laboratory tensile test and chemical analpis results f I are typical of product tests for SA 105 Code material. His provides evidence that the material l

tested meets Code requirements. Because the laboratory sample was representative of the overall j

] population of the WJM/ PSI material, there is very strong evidence that the installed msterials that  ;

j pass the hardness screening test also meet Code requirements for chemistry. f

1 4 r i

O Correlation of Enuotin Hardncas to Tensile Stieneth  !

1 t

j The use of hardness testing to show compliance of installed material with Code requirements depends on having an appropriate correlation of hardness to tensile strength. NUMARC was able l

{ to provide this correlation based on the laboratory testing of the 277 items supplied by the utilities.  !

lO When NUMARC first advised the utilities to use the Equotip tester for evaluating installed f l material, they suggested using the Equotip manufacturer's conversion of Equotip hardness (L3 ) to Brinell hardness. The utilities used this Equotip to Brincl! correlation for reporting test results to j NUMARC and the NRC. NUMARC also suggested that the converted Brinell readings be f0 converted to tensile strengths using A370, because tio documented direct conversion from Equotip l 1

l hardness to tensile strength could be found. It later became obvious that this double conversion j l Introduces deviations that produce inaccurate and ex:ra. conservative results. The NUMARC ,

IO testing ihowed that the use of the doubic convera!an would have resulted in the rejection of many lt 1

j pieces of material with tensi!c te*t results as high as 92 ksi based on tt e NUMARC laboratory '

j tensile test results. Therefore, NUMARC cencluded that the double conversion using A370 was

{

, inaccura:e and inappropriate for this situation. Also, the direct conversien is appropriarc because l the data used for developing the correlation eme from the same material specif;catiom grade, and l produe; form as the material being evaluated. l I

J 1 The decision to develop a direct correlation was based on the Equotip manual, paragraph 9.2, lO which states,  !

I "ne conversion deviation is the variance resulting from the comparison of O measuring values observed with different hardness testing methods, it includes 2

l J l i i 9 j lO  ;

J i <

I L

O components. The major share is caused by the fact that there is no clear phpical relationship between the various methods. The second component results from the

O circumstance that the comparison of hardness values (e.g. L-value and Brinell) also includes the measuring deviation of the method being compared to.

hefore, a conwnion betwren hardness values contains inaccumcies fan the

'O cutset. This applies not only to conversion of the L value into static indentation hardness values, but also for ecnverting from one static hardness measuring method to another."

O ne Equotip manual states that the correlations between Equotip hardness and other hardnesses were developed using the least squares method of non linear regres:fon. N1' MARC, however developed the direct conversion correlation using a least squares linear regression. The equation for the linear regression is: tensile strength (psi) = 265 Lo 29.S00. The equation for a second order regression is: tensile strength (psi) = 12,S00 + 53.5 Lo + 0.260 Lo. In the range of 8

interest, the difference between these two equations is insignificant, and at the lower end of the

'O rang the linear correlation selected by NUMARC is more conservative (see Figure 5).

To assess the validity of the direct correlation, comparisons are rnade to the data in the Equotip manual (see Appendix 5) and the ASM Metals Handbcok,8th Edition, Volume 11,' Nondestructive O Inspection nd Quality Control' (see Appendix 6). The Equotip manual states. "The conversion i deviaticus ( llB 1HV, etc.) indicated in the 'conversien tabics' represent ' standard deviathns',

i.e.,6SG of ail materials tested to date fell within the specified variance range." For the haroness !

range of interest,340 Lu ta 480 L the Equotip manual indicates that the standard deviation is 3

i O

15 Le, Ansipis of the NUMARC laboratory data shows that about 73% of the data are within

a tolerance band of 215 Lo, consistent with the variations documented in the Equo'io manual.

. De ASM Manual states, 'E.stimates of tensile strength from hardncu can be made within about 1

jg 25000 psi, although errors as great as 12,000 psi may be encountered.' The two bands of 25000 i psi and 212,000 psi are also shown in Figure 6. 'the results show that sicc of the data are within the 25000 psi variance and 99fe are within the 212,000 psi variance. This confirms that the Jirect

{

1 Equotip hardness to. tensile strength conversion is appropriate for this material.

O i

t . 10 -

iO l

4

1 i

'O t

.Q(ility Field Hardness Tests  !

! ne utilities participating in the NUhtARC program performed field hardness tests on installed  !

.O WJhi/ PSI material and sent the results to NUbiARC for the industry data base. ne field

hardness readings were almost all taken with the Equotip tester. Figure 7 shows the distribution i of this data. De tensile strengths shown are ecoverted from hardness readings, ne average j

,o tensile strength of this data (converted from Equotip) is 80 ksi. Comparison of this data with the l NUMARC laboratory data shown in Figure 3 shows the material is comparable except for some substrength blind Danges with converted tensile strengths less than 60 ksi, j i

O The substrength items identified by the utilities were all blind flanges. No hollow forgings or  ;

{ fittings, tested either in the field or in the NUMARC laboratory, were substrength. All of the ,

I substrength blind Danges had tensile strength and chemistry similar to the CP&L blind Danges.

Metallurgical tests showed that plate material was substituted for forgings in the substrength blind 1 Danges. {

l i t l Although chemistry tests were made on low hardnest er low strength b!ind flanges, the Equotip 1

tester was capable of identifying substrength material, nis information provided the NUMARC  :

iO program with three very important conclusions:

i

1. The substrength material is apparer.tly limited to blind Danges.

O 2. All WJM&SI supplied hollow forgings (Danges, littings. and couplings) and plugs appear to be SA 105 material.  !

3. Equotip hardness testing is capabic of identifying substrength material.

O j Utility Laboratory Testinn

j. In addition to field hardness testing some utilities sent samples to independent laboratories for l chemical analysis and/or tensile testing. As shown in the NUMARC report, the results of these  !'

i lO tests were consistent w'th the results of the NUMARC laboratory tests.

Anahsis of.NUMARC Testine of SA-1R2 Stain 1 css Stect All tensile strength results for the items tested by NUMARC met the requirement., of SA 18?,

The chemistry results are within the tolerances of SA 182 for Types 304 and 316. neept one f i i o

11 - j i

l iO j

I l

stainless steel i:em with a slight chemistry variation believed to be caused by non homogeneity.

l He results of the NUMARC laboratory testing showed that none of the 25 stainless steel items j O tested wu sensitized.

l Y_QQ1LE_UNITIEROGRAM l O * "*ti' ^' *i" l Upon receipt of the NRC Bulletin, Georgia Power began reviewing the Vogtle records to identify  !

material received from WJM or PSI. Having identified material from WJM and PSI, Georgia f Power proceeded to determine the acceptability of these items. Georgia Power taed data, results, i O and recommendations from the NUMARC program, and published industry data, for their  !

t evaluation. Georgia Power also tested each piece of safety related WJM/ PSI material installed in l Unit 2 and evaluated the results, nis section describes the testing and evaluation phases of the O

Vogtle Unit 2 program. [

Georgia Power developed a program to investigate the WJM&SI maten .d evaluate the results.

I De purpose of the program was to identify any renterial that might be questionable regarding [

O C de compliance. De investigation was to assure that there is no unacceptable material installed jL in sny safety related piping system. De Vogtle Unit 2 program required testing of each piece of l ins:alled safety related WJM/ PSI material. De program was not to upgrade or recertify any l material in accordance with NCA 3800. It was only to screen out any material not meeting the f O ASME Code requirements.  !

i Georgis Power sent persont.cl to the NUMARC Equotip training course. Site personnel invohrd (

i in hardness testing were trained in the use of the Equotip tester. The Georgia Power '.esting O

pregram included separate tests for carbon steel and stainless steel. De testing of WJM/ PSI carbon steel consisted of hardness testing and some chemica' analyses. ne stainless steel was tested with magnets, along with some metallographic and spectrographic analyses. ,

O ,

Carton Stect Testina j The 636 pieces of installed safety related WJM/ PSI SA.105 material were tested with the Equotip (

hardness tester. De estimated tensile strength of each piece was calculated using the NUMARC i O direct correlation. He results of these tests show an average tensile strength of about 77 ksi.

I l

l

' I2

  • O  !

. ~ . . _ _ . , _ . _ . . _ . _ _ _ _

l lO l

consistent with the average tensile strength of 77 ksi for the NUMARC laboratory specimens. His similarity of the Vogt!c material and se NUhiARC laboratory material is not surprising because

,O both sets of data represent WJM/ PSI supplied material. Table 1 shows that 5.5% of the WJM/ PSI material would have a product tensile test result of 69 ksi or less, similar to the NUMARC lab test results and consistent with the results of the AISI study.

O nis comparison of the NUMARC and Vogtle test data with the AISI results shows that the installed Vogtle tnaterial has the same physical characteristics, based on hardness test results ccaverted to tensile strength, as the NUMARC laboratory tested material, which has physical O properties and chemistry consistent with the normal results for product tests of SA 105. De Vogtle analysis includes comparisons with the AISI test results from both the flange and web areas I

of structural shapes (see Table 1). Figure 8 shows the typical bell shaped distribution of the converted tensile strength data. These results are directly comparable to Figure 3, which illustrates O the NUMARC laboratory test results.

Ilardnese. Tats of Non-WJM/ PSI-Sunnlied Material O Ge rgia Power tested 70 heats of non WJM/ PSI supplied SA 105 material with an Equotip tester,  !

The material consisted of flanges and fittings similar to the WJM/ PSI material, but manufactured by Taylor Forge, Capito!, Tube Turns, WF1, Coffer, and I.enape Forge, and supplied by organizations other than WJM/ PSI. De heats and items were chosen by randomly selec'ing O CMTRs from the Vogtle files. Substitutions of heats were made when the selected heats of l material were inaccessible in the field. Figure 9 shows the distribution of this data for the non-WJM/ PSI items. De tensile strengths shown are converted from hardnen readings. His histogram is similar in shape to the tensile test histogram for the WJMz?SI material, n e test  ;

O results of the WJM/ PSI material are similar to SA 105 material which is not questioned by the l NRC with regard to Code compliance. )

l O Chemi#"I ^""'"i" "I C"'h"" 8'ect ne NUMARC laboratory test results provide evidence that materials that pass the hardness i screening test meet Code req 2irements. De ficid tests perforn-d by other utiiities demonstrate that hardness testing with the Equotip tester can screen out substrength material. The NUMARC O pro;. ram has not found any material that passed the hardness test but failed a chemical analysis.

13 -

O

'O j Georgia Power performed chemical analyses on 68 of 90 heats of WJht/ PSI materials installed in O safety related piping systems in Vogtle Unit 2. The chemical analyses included random samples, tests of all blind flanges, and tests of each heat of matenal with any hardness test results below 398 Lo. (According to an early verdon of the Equotip manual,398 4 corresponds to BHN 137.

g Equotip currently equates 398 Lo to BHN 140.) Whenever a chemical analpis was performed on j more than one samp!c from any heat, the multiple results from that heat were averaged to obtain a single value for each heat. De results were averaged to avoid weighting the distribution toward the most frequently tested heats. Table 2 shows the Vogtle Unit 2 chernistry results by heat, j lO Figures 10 and 11 show the distribution of carbon and manganese in the Vogtle Unit 2 samples.

All of the analpes fell within the chemistry limits of SA.105, except for a few low manganese results. De Vogtle chemistry results are consistent with the NUhtARC laboratory test results.

jO SA.m2 stainless sicel Testine A very small percentage of the WJht/ PSI material furnished to Vogtle was stainless steel, ne testing of stainless steel material cc Azd of testing each piece with a simple magnetic test to venfy that the material was austenitic stainless steel. Georgia Power subjected one item from O

j almost every heat of material at Vogtle Unit 2 to the following two tests:

j 1. Surface replication was performed to assure that the material was in the solution annealed ,

condition and not sensitized.

lO

2. The Texas Nuclear Alloy Analyzer wa. used to assure that the material was Type 304 or

]

356, as applicable.

Chemical analpis and sensitization tests were performed on each piece of WJht/ PSI supplied stainless steel material installed in Class 1 piping sptems and on all heats of WJht/ PSI. supplied s

Class 2 and 3 stainless steel, with the following two exceptions. After the Alloy Analyzer was l removed from the Vogtle site, Georgia Power discovered seven Class 1 gamma plugs and thirteen

]O 1 Class 3 flanges that had not been subjected to the chemistry and sensitization tests. He seven

) Class 1 gammr. plugs are no larger than NPS 3/4. He thirteen Class 3 items were 14 ini:h and 18 l inch flanges, all from one heat. nese twenty items were subjected to only the magnetic test.

!O  :

i 1

1 14

{O

O The results of these tests showed that all stainless steel materials are within the limits of the material specifications. Georgit Power performed enough chemistry, replication, and magnetic tests 3 to verify that all WJhi/ PSI staitless steel material at Vogtle Unit 2 meets Code requirements.

l l

SUMAfARY

, Based on an evaluation of the AI3I study, product tensile test results of more than 10-20% lower m) '

than the specified minimum tensik strength could be obtained for a few items. The AISI results show that material with a certified tensile strength of 77 ksi will have some product test results (0.5% for flanges,0.S% for webs) at or below 63 ksi. The Equatip hardness value corresponding D to a tensile strength of 63 ksi is 350 Lo.

All of the product test results of WJhiNSI material at Vogtle 2 exceed a ennverted tensile strength of about 63 ksi, and the distribution is similar to the AISI data. Therefore, the esidence indicates O that none of the WJM/ PSI SA 105 carbor' steel material at Vogtle is discrepant The hardness test results from non WJM/ PSI material are si.nitar to the results of the WJMiPSI material, prosiding further esidence that the WJMsPSI materi:.1 is SA 105.

O ASME CODE COMPI..TANCE Georgia Power kept the Authorized Nuclear Inspectors (ANIS) fully informed of the status of the Georgia Power and NUhtARC programs. ney also informed the Authonzed Inspection Agency, O Ilartford Steam Boiler Inspection and Insurance Company, of the results of the Vogtle Program.

Georgia Power met with Mr. Iloward F. Dobel, Vice President. Mr. William liigginbotham, and Mr. Barry Bobo of liartford, and Mr. Earl Escrett, Chief Safety Engineer for the State of Georgia on August 18,1988.

O After the presentation, Mr. Dobel stated that he had consulted with the ANIS at the plant, who were convinced that Code requirements have been met at Vogtle Unit 2. Appendix 7 is the g llattford !etter confirming this conc!mion. Mr. Everett also agreed that Code requirements had been met. Ile too sent a le ter to Georgia Power to this effect (see Appendix S). On the basis of the liartford letter, and ne fact that the AN s are satistled that Code rcquirements have been met with regard to the WJM PSI material, the piping sptems at Vogtle Unit 2 will be Code-O stamped and certified.

O

O On September 9,19S8, Georgia Power explained the Vogtle Unit 2 status of Code stamping and the results of the meeting with Hartford and the State of Georgia to the National Board of Boiler and Pressure Vessel Inspectors. The National Board agreed that this action settled the issue of Code compliance for Plant Vogtle.

O CONCLUSION Georgia Power has completed the Vogtle testing program, and has shown the material e" compliance with Code requirements. Dere are no substrength blind Danges installen 1 ,; fey, O related systems at Vogtle Unit 2. nere is no need for additional engineering evaluatior i n . 4e all Code requirements are satisGed for WJM/ PSI material installed in Vogtle Unit 2. Bs -

tir:

WJM/ PSI material complies with the ASME Code requirements, the issue raised by Bullett  %$

is resolved.

0 O

O

'O

.O O

16

O

O i

TABLES i

1. Comparison of Tensile Strength Results from AISI, NUMARC Laboratory WJM/ PSI, and Vogtle Unit 2 WJM/ PSI SA 105
2. Vogtle Unit 2 Product Test Chemical Analpis Results by Heat for WJM/ PSI SA 105 O

F10URES

1. AISI Report Figure 33
2. AISI Report Figure 37  !

O 3. NUMARC Laboratory Tensile Strength for WJM/ PSI SA 105 ,

4. NUMARC Laboratory Equotip }{ardness for WJM&SI SA 105
5. Equotip Hardness to Tensile Stret.gth Correlations (Linear and 2nd Order Polynomial Least Squares Regression) from NUMARC Laborat ay Test Results for i WJM&SI SA 105
6. Equotip liardness to Tensile Strength Correlations for WJM/ PSI SA 105 with i Equctip and ASM Tolerance Bands  !

Utility Field Test Tensile Strength (Converted from Equotip) for WJM&SI SA 105 I g 7.

8. Vogtic Unit 2 Tensile Strength (Converted from Equotip) for WJM/ PSI SA 105 ,
9. Vogtle Unit 2 Tensile Strength (Converted from Equotip) for Non WJM/ PSI SA 105
10. Vogtle Unit 2 Carbon Content for WJM/ PSI SA 105 i O 11. Vogtle Unit 2 Manganese Content for WJM&SI SA 105 l V

O i

0 i t

} i tO  !

I 4 17 -

!O

'O 5

APPENDICES

1. NRC Bulletin 88-05, No1 conforming Materials Supplied by PSI and WJM
2. NRC Bulletin 88-05, Supplement 1 l
3. NRC Bulletin 88-05, Supplement 2
4. NUREG/CR 2137,"Realistic Seismic Design Margins of Pumps, Valves, and Piping,"

O E.C. Rodabaugh and K.D. Desai, June 1981

5. Equotip Manual, Section 9, Conversion Between L Values and Other Hardness l Numbers, and 1 4 HRB Conversion Table i

i LO 6. ASM Metals Handbook, 8th Edition, Vol.11, ' Nondestructive Inspection and i Quality Control," pp. 409-413 I 7. Letter from Hartford Steam Boiler Inspection and insurance Company i 8. Letter from Georgia Department of Labor, Safety Ent'"ering Section

O l 8  ;

,"O '

l

o j i
i
O i i  !

f

! i

)

~O  !

! i I I I

!O

) .

! I

) t i

4 18 - I

'O t I

t i

- - ~ _ ~ _ - , - . , - _ - _ _ - _ _ _ - . - . _ . - - . . _

3 COMPARISON OF TENSILE TEST RESULU AISI, NUMARC LABORATORY WJM/ PSI, AND VOOTLE UNIT 2 WJM/ PSI SA.105 CARBON STEEL ,

3 PERCENTAGE OF PRODUCT TEST RESULD AT OR BELOW A GIVEN TENSILE STRENGTH AISI REPORT' S 'hH NUMARC VOGTLE (KSI) FLANGE 8 WEB' LABORATORY' UNIT 2 5 g

l 69 25 8 11.6 5.5 l 68 17 7 9.0 3.6 l 67 9 4.5 6.1 3.0 l 66 5 3.5 4.3 1.7 O 65 3 2.5 2.9 0.9 64 1.2 1.5 2.2 0.3 i

l 63 0.5 0.8 1.1 0.2 i 62 0.2 0.5 1.1 0 61 -- 0.3 0.4 0 6* ~ *' * *

'O O NOTES:

' Mill test tensile strength assumed to be 77 ksi 2

Results obtained from Figure 33 of the AISI Report O ' Results obtained from Figure 37 of the AISI Report Average prod act test tensile strength was 77 8

Average product test tensi!e strength (converted from Equotip hardness) was 77 ksi l0 1

1 TABLE 1 O

19 -

O

n c).

t VOGTLE UNIT 2

..O PRODUCT TEST RESULTS BY HEAT WJM/ PSI SA 105 l

Carbon Manganese Phosphorus Sulfur Silicon I Heat

.O Number content content content content content l 03022 0.326 0.608 0.021 0.024 0.309 03378 0.197 0.693 0.027 0.015 0.261 j 03543 0.303 0.639 0.016 0.023 0.290 I

038045 0.229 0.829 0.015 0.017 0.344

() 04224 0.270 0.765 0.027 0.036 0.338 l 1296 0.214 0.959 0.023 0.029 0.289 '-

1442 0.280 0.752 0.021 0.019 0.336 d

15318 0.214 0.611 0.017 0.023 0.255  ;

1591 0.301 0.958 0.020 0.021 0.283 l

1761 .214 0.787 0.019 0.022 0.050  ;
O 18A3T 0.271 0.947 0.020 0.017 0.249 '

2022 0.309 0.580 0.022 0.024 0.311 -

205 0.225 0.75'3 0.017 t.024 0.342 i 22676 0.256 0.728 0.022 0.017 0.195  !

2578 0.199 0.606 0.019 0.025 0.213

]

26055 0.238 1.066 0.019 0.019 0.272 j() 2825 0.229 0.746 0.024 0.026 0.191 .

2D9590 0.254 0.701 0.021 0.011 0.302 [

30195 0.264 0.829 0.018 0.022 0.222

'. 3453 0.211 0.527 0.020 0.026 0.297 j 34L 0.216 0.656 0.021 0.017 0.208 37862 0.219 0.735 0.018 0.018 0.301 f i() 3991 0.225 0.766 0.021 0.019 0.344 i 41687 0.284 0.738 0.020 0.027 0.263  !

)j 41706 0.329 0.456 0.023 0.024 0.312 l J 42S 0.342 0.625 0.019 0.024 0.247 l

) 44266 0.284 0.691 0.028 0.010 0.309 i 0.325  !

. 4504 0.318 0.867 0.018 0.025 j() 4612 0.230 0.829 0.023 0.022 0.319 j 4692 0.229 0.789 0.019 0.026 0.291 1 4732 0.229 0.935 0.024 0.027 0.232 ,

598K7426 0.302 0.803 0.022 0.028 0.103  ;

jl 6011375 0.226 0.926 0.020 0.023 0.294 I 662T282 0.291 0.799 0.019 0.034 0.266 [

l()

l TABLE 2 r i

i

} l 43 r j  !

i t 00 -

) l

C) i i

PRODUCT TEST RESUL'IS BY HEAT O WJM/ PSI SA 105  !

(cont)

Heat Carbon Manganese Phosphorus Sulfur Silicon Number Content Content Content Content Content O

69356 0.242 0.833 0.018 0.015 0.243 71 0.239 0.737 0.023 0.019 0.303 i 83779 0.226 0.446 0.024 0.022 0.348 91262 0.276 0.502 0.019 0.024 0.338  !

A39 0.288 0.551 0.016 0.021 0.153  !

() A66 0.223 0.794 0.019 0.033 0.312 l A79 0.324 0.766 0.022 0.025 0.236 A94 0.298 0.739 0.019 0.024 0.343 f A97 0.246 0.423 0.019 0.015 0.050 B134 0.235 0.604 0.021 0.016 0.081 B27 0.123 0.744 0.020 0.014 0.086 O BLN 0.207 0.769 0.016 0.022 0.278 C04 0.343 0.793 0.023 0.018 0.243 '

C6126 0.282 0.743 0.023 0.019 0.322 '

CTV 0.272 1.004 0.023 0.014 0.298 <

CMP 0.342 0.822 0.020 0.020 0.263 [

CND 0.216 1.115 0.019 0.019 0.320 0 Cop 0.287 0.973 0.019 0.016 0.304 ,

COX 0.325 0.666 0.022 0.027 0.297 l CPC 0.282 0.757 0.018 0.027 0.253 i 0.022 0.022 0.272 f CW2 0.299 0.657 I

EJTM 0.205 1.120 0.023 0.020 0.123 L4517 0.253 0.837 0.025 0.028 0.286 i f)

L8 4 'a 9 3 M976001 0.319 0.281 0.848 0.420 0.018 0.022 0.016 0.019 0.310 0.298 l

j i

R6842 0.289 0.744 0.019 0.020 0.312

S8542 0.223 0.659 0.022 0.029 0.098 l S8558 0.183 0.848 0.022 0.024 0.320 i T1830 0.767 0.016 0.018 0.331 I) T25866 0.256 0.342 0.647 0.019 0.020 0.201 l

i T27K 0.313 0.732 0.019 0.022 0.284 [

VR 0.308 0.804 0.026 0.017 0.292  !

X45786 0.214 0.439 0.019 0.015 0.261 l X53321 0.313 0.478 0.024 0.018 0.305 O

TABLE 2 i  !

I i 33  !

I i

}

! l i

) 21 -

lll' l' {

\.

g g

g 6 1

C 9

1

/

/I I

S

,/ l s

y r

/ I

~/,

?

Tt 7 1_

2 .

L '. k A

I / - ,

C I i F T l

/ t s

e 0 v r

e o F G O N T 00O 0 0,d 1 E 1 Ft 0

1 l

a 0,0 n 57a E

ti 1 - i T 0 i c 6 -

00 M E.

O I R I B r

r O

r00 e 0,0, R U

l F S N

/ , j m ku i6750 o 3 3

S E E T C

/

8 F

o r === G N - A

/, / ABC I

E t

l U

G I

I' R T E S F t F 7 /

/ ,f

// e c

n r

e F

F I D E G / ] 6

- r r

e o

T I

s N

A.

I F

/ i D

n i

V4 1 1  ; -

0 4 1 - _

C ~

Y T

~

/ _

I L

~

/ 2 O l A

i l

~ -

l '

o I

t l'

~

/ _

~

/ 0 9 . 3 . 5 O O 0 9 ,. ,' " . 8 S S 7 "

O 9 , , -

Y5 Sli ?u E .. !l O

O

}I lll

D D

\.

m A

O Y

a m,

, x< ,

N e .* ,

3 i e O t aC t m

b e-.

eEn A h ,

C

,a*

C (? i N ;W N.

e .

I 8 w 6 n V p: s: k 4 C >

~) -

E E

p la: 930

  • c a 5.o*e=

5 <

c t-M i

c OM C w _

h A A 4 ~

G V b 6 O M P L kCO A W l ' C 9 *

  • F =AO E O 48 M la -

, U. .b

, N N N C' a-

~~ C. =C % O h, - k

7. "

e as =

h b

  • L w

b

~

g 6 h

  • T s

n g N- -

a .

l

>=

.e s x. .e

=

\ l

? 'N

,' 4

'w/ \ -

(4 l b l l i y N< c

@a

  • n* e e c O O O O O c) m' g p e S e e e N W d o e e 4;abab);i a b 'C a & f j ;f 5 .... , ,,,

o h

e 1

08T -

CO  :

e b _

- 91 T  ;

CO  :

N  :

g  : 01T M  : 90T  !

A m

=

(Q :00T p a y. _

en -

hCow t s s 3 96

- 1a C l

L':-

CCI:

00 W l D ,,_ x (D S co  !

M$

y t ' ': : Zgw  ;

wyCce3  ;

,o x

_ 00 O- .. x x x m x x x - x x x x x x x sa Ha r. X x x T x x ^ x x x ' x

  • a x< x x x , . . - x m x x x x , _ _

<s4 x . .

,x m

. x x <

x .

08 wam 1

_J c Z= - < ~,

s l

. . . . x x x .

x s- x s

.-x -

s x x s

x x x -

s s x .

x

_ co g Og ,

.x

. x . x x x _

x x

.x x

c g4 7 ,e  :

o i w ._m s.=

x - x x . s HCe

. x -._

< cs s m< - .x

- oz  :

2 t. t A .

c , x - --

c== - go -

O Q. ' ' ' -

w _

C -

- E 00 l A

l o -

- cc Z  :

- 09 i

i o , ~ = c o = o n o  :

n u - - -

SIG1I 30 hIZA EbI .

O

O O O O O O U O u e' T' NUMARC LABORATORY HARDNESS TESTS WJM/ PSI SA-105 80 60 T/

cn /

2

~ I.

/

t g 40

// - -

i Fd#de 20 -

/- - -

0 iPT TT .

, , , , , ,,,,,,,,,e EQUOTIP HARDNESS, LD (Hardness values rounded +5, -4)

FIGURE 4

n N

O EQUOTIP-TO-TENSILE STRENGTH CORRELATION 110M0 ~ 1 2nd Order O ec1ync=tal ,,

/~

1000M -

+ <././

s

,f'/'

/

O T I t- /.-

7 / Lin'$r t 900M +44 , $#'

" $ +; NF #

Y M+g 4u. Thh' Y T

++A. w rg O , ex0 +m,n* -

m App

" = r_zwg

, i-E + +A 4 q +r N

l

++ 7 A m T 4+

p bafr

+ Y

n re: r + + m itT4 v

+ + j #' mr 44. % +

.g+ + ,T '

. 6, -

t

.-0t + + i 600M i f/

f I t rn .s -

'd ,

./-

Y aY

(

9 9

t _. , , , ,

0)  !!O 400 4!0 g,0 I M f!P 48 %!il

'O l'

.O i

FIGURE 5

,0 l O

o O *

@ g' a s A \

\$ \\ U s o C

bN + $

\\

\

I wi e. Ao

[3$

\ ~h '\

x o e -

o x dC

% Mr, hah

\ t 8f

., CD ZN \y me D 2 Oo \0 0 , y s o

yzm$ $e o HS 49 ea <a a u o azw

~~

TH T

\

MJ a S \ O 423

O Oy \CD . k- h n_Eg.g g ,

Iy9 Mh o b u 3 O i (W

j

'E Y

CD E 5~

O C h LO O DE go O

\O =hO f?h,e "i l 83

< o \ 4 l

o E ro

\ \o m l DR \ \s \ ,E E \\a )

o W \ o

\\

ia o l 8"

lo S S S S S E $ S S IS)I 'H10N3hIlS TIISN31 i O l

l l11 111l1 I l l !l llll 1,

.l 1\ lll I, lllll L

n

  • or- o H

C I '

cr- .

O

' i L '

N L'o-3 L' .

Q H 1 06 co s

s a

I ,

6 i

p; u .

S oo y e .

l S

O T

I ' cio i g!sd eg I 9 ,

'nI Hbs .

S 0 1

1 3 ;a .

N-v ' oe 0 w ae1-O ' - ,

'( - i -'

Nou3.

3;;08 3s s - ' - - , ,

- , , r; ' ,.

1 "' -

/ , ', , ;, ' -

- ' ca i>

8p1 ap0 I ,,- ' - , ; '

1pa9.

s - ,, -

a

> - / g ;, ,

[. , '

Sap 1

o a- o o O Id _ - -'.

-(

3u nn ud.

S W/ -

r

.;'N, s

I I

Sap o;

Hr - , -

,o l - -,

l

' c, N;ue -

In -

l '

' i2 Bs e -

O ( _,

' 1a l o1 - s T

I c ,

l u

a --

S I 6 c.c ) , -

O 2 d 6 6-oo 1

6 O 1 -'

cc F

' ii I '

I '

oc .

l f 0 0 0 0 0 0 o 0 o O i

9 0 9 0 9 0 g 0 g

_O l P P C C 3 3 g I .

m g jrt R. % o % tjro

. Cmw c j- _

O

U U U U U 0

V0GTLE 2 TENSILE STRENGTH

  • WJM/ PSI SA-105 N=636 90 _

/

/

80 '

/

/

70

/

rn /

~

m Go '

N 7

/

8 -

/ ./ /

~ 50 / / /

A / / /

Q / / '

/ _

agQ ' ' '

M / / / /

/ / n Q '?

/ / / / _

/ /~/

D m

30 / / / / //

O / -, /

/ /

/ / /

/ 77

/ / / /

D - / / /

-/. / /

/ / /

/

/~/

k 20 / /7/' /

/ / / / /

/

/ / / / / / /

/"/ '/

/ /

r

/ 7 l / / / / / / / / / 7-

/ / / / / /

/ / / /

l jg n

? /

/ / -/ / /

/

/

/

/

/ '/"/' /

/../../

/ / /

/ /

m/

// / / /

/

/ / / / / / / / / / / / / / /

7 /

/ / / / / /

/ / / / / / / /

/ /

p] / / / / [7] /

/ / / g,7mmm u??,m*

  • u a , ,

0 , , , y mG

'u 1

/ / / /

- 1 , ,- # ' *I s ,g '/ ' /'iu : i

(

/

'ia a u o e o e o e o e o .o e e r- r- e e cn m o o H H TENSILE STRENGTH, KSI Tensiles are converted from Equotip hardness and rounded to nearest ksi FIGURE 8- - - _ - _ _ - _ . -

'O.

g - 601/90T ,

l

  • l Z - l'01/00T l0 H m U

O Zg k\\N - 60/90 j f

a N 11 5 g -170/06 me me

~0I 0 - t'0/00 I

=~

x

~6*I94

o z . ,

- f'4/04 O p l

- 60/99 O F l

-I'0/00 f 1 -

o o o o 8 e l SN31I 30 838ItRN j l l

O O O O O O O O O O O VOGTLE 2 CHEMISTRY BY HEATS WJM/ PSI SA-105 N=60 30 25 h20 m

ko 15 M

10 0

Z 0

l 0 I##A i i i i i

i

< 0.11 .11 .15 .16 .20 .21 .25 .26 .30 .31 .35 > 0.35 CARBON %

FIGURE 10

a

- 81

  • T <

3 '

M H .

< - 01*T-or t  !

o PQ  ;

Z T k'

- co'T-oo'r o

CQ s

&c gw k'\ 06-te e l

H N h\\ \\ - 69*-09' Eo C u.

0 - 04'-04' X< $ '

C m

k\ 00* l m '

N 9. '- 09'-09' A1 '

0 Mg

~ 6 t' - O f

o > l

- 01'* 0 > i O *

  • f 8 8 SN31I d0 hI28NGN l i

L o

l

r O

O APPENDIX 1 O

NRC Bulletin 88-05, Nonconforming Materials Supplied by PSI and WJM O

O O

O O

O O

O

- i E f OMB No.: 3150-00n  !

NRCR 88-05 }

?

UNITED STATES I

) NUCLEAR REGULATORY COMMISSION 0FFICE OF NUCLEAR REACTOR REGULATION l

WASHINGTON, D.C. 20555 Pay 6, 19P8 f

) NRC EULLETIN NO. SE-05: NONCONFORMING MATERIALS SUPPLIED BY P! PING 1

I SUPPLIES, INC. AT FOL5OM, NEW JERSEY AND PEST JERSEY MANUFACTURING COMPANY AT WILLIAFSTOWN, i NEW JERSEY '

) Addressees: I All holders of operating licenses or construction pervits for nuclear power reactors. i

Purpose:

f l The purpose of this bulletin is to require that licensees submit infomation  !

'tgarding raterials supplied by Piping Supplies, incorporated IPSI) at Folsom,  !

l New Jersey and West Jersey Panufacturin l Jersey and to request that licensees 1)g Company (VJM) take actions at Williamstown, to assure that raterials New l

comply with ASFE Code and design specification recuirements or are suitable j h for their intended service, or 2) replace such materials.

Oeseription of Cireurstances:

I l The NRC has obtained copies of certified material test reports (CMTRs) for I material supplied b FS  !

b supplied to the nuefear! industry.

and WJM that contain A number false inforeation of CMTRs were apparently abcutused naterial to f

certify that commercial-grade, foreign steel meets the recuirerents of ASME i Code Section !!!, Subarticle NCA-3800, by using a derestic forging coepany's

[

letterhead. There was no evidence that PSI or VJM rerfonted or had a subcon- t l tractor perfom the testing required by Section !!! to upgrade the cerrercially (

produced steel for these falsified CMTRs. The informatier available to date  !

indicates that WJM started supplying ASPE Code cerperents to the nuclear t incustry in 1976, both directly as well as through interrediari/s, and that  !

PS! ', tarted supplying ASME Code comconents to the nuclear industry directly and through interred 14 ries in 1995. In addition WJM held an ASME Cuality Systen Certificate (CSC-355) as a caterial rarufacturer frem Neverter 30, 1979 to hovemter 30,192!.

l The FPC has concluced that there are potential generic safety implications at facilities that either have received direct shipment of raterials furnished by F51 or WJM (i.e., pipe fittings and flances) or received ciping subassemblies >

ar.d other ccepenents frem holders of A!PE Certificates of Authoritatien or  !

3 other subcontractors which incorporated raterials supplied by PS! or VJM. l l

em - rp.  !

9 Enciesure

O

, NRCB 88-05 May 6, 1988

', # Page 2 of 4 O Actions Reeuested:

1. Review purchasing records for your facility and detemine whether any WJM-or PSI-supplied ASME Code or ASTM materials have been furnished to your facility. The lists of purchasing and receiving conpanies given in 0, Attachments 1 and 2 have been developed through the NRC's partial review of PSI and WJM documents. It is emphasized that the NRC has not reviewed all documents; therefore, the review of records should not be limited to the companies on these lists. The records review for PS!-supplied material should cover the period since January 1,1985. The WJM review should cover the period since January 1,1976.

O 2. For ASME Code and ASTM materials furnished by PSI or WJM that are either not yet installed in safety-related systems at your facility or are in-stalled in safety-related systers of plants under construction, the followin (perform action a and either action b or c) g actions are requested:

O a. Provide a list of WJM- and PS!-supplied materials that are found not to be in conformance with the applicable cede requirements or procure-ment specifications and identify the applications in which these materials are used or will be used. Include the material specifi-cation, the nature of the component (e.g., pipe flange), size and O **"" "'* "9I * " ***' * **" E" ' '

b. Take actions that provide assurance that all received eaterials comply with ASME Code Section !!!, ASTM, and acplicable precurement specifica-tion requirements, or that deronstrate that such raterials are suitable for the intended service. For example, this program should include specific verificatien that austenitic stainless steels have been O received in a non sensitized cendition, er,
c. Replace all cuestionable fittines and flanges with raterials that have been manufactured in full compliance with ASME Code Secticn I!!, ASTM, ard the applicable procure?ent specification recuirerents.

O 3. For ASME Code are ASTM materials furnisFed by v]M or r!! already frstalleo in safety-related systens in eperating plants, the follow'#g actions are requested:

a. Provide a list of the WJ and FSI-turelied raterials that are found m not to be in conferrance with the applicable code recuirerents or pro-U curement specifications ar.o identi'y the applications in which the eaterials are used. Include the raterial specification, the rature of the cceponent (c.c., pipe flange), size, ard cressure rating; alte indicate the chain of purchase.
b. Take actiers requested in 2b or Ic abeve. He ever, an evaluation O should be undertaken order to replacing cuestierable raterial in accordance with 2 above th3t consicers the cccurational radiation O

1 3..

NRCB 88 05 May 6, 1988 1 .

Page 3 of 4 1

) exposure that would be received during the replacerent process. This evaluation should be censidered in developing the method and timing of material replacements.

c. Document and rnaintain for inspection a basis for continued plant operation if the procram requested in item 3b has not beer cercleted

) within 120 days of the date of receipt of this bulletin. 1' l 4 For any PS!- or WJN-supplied Paterials h4ving suspect CMTRs and used in

  • systems that are rot safety-related, take actions comensurate with the function to be performed.

)

5. Maintain for inspection the docurrentation of the specific actiens taken for the identified materials. ,

1

! 6. For operating plants, all scheduled actions should be completed before a restart from the next major outage starting after 160 days from the date of receipt of this bulletin. For plants under construction all scheduled

)

actions and the reporting reoutred by 2 below should be completed prior t l ' to the planned fuel load da%. If any addressee cannot meet this schedule, i they should justify to the NRC their proposed alternative schedule.

Reperting Recuirerents:

(

D 1. Provide a written report within 170 days of the date of .,.elpt of this r bulletin that either: ,

4. States that no WJM- or PS!-supplied raterials have been furnished for '

your facility for use in safety related systers, if such is the case.

Cr D l

b. Provides the inforration requested in items 24 and 3a abeve that  ;

indicates wnich raterials have been fcund not to te in confermance i l

with the applicable ccde requirerents or precure ent s;ecificatters, l ccnfims ccepletion of other acticns recuested in iterts 2b or c. 3b i ard 4, and provides a schedu19 for ccepleting any rePaining actions. l D

i 2. Confireation of completion of all scheduled actions shall be submitted l

to the fiRC within 60 days of completien for operating plants and prior i l to the fuel load date for plants under constructier. '

l  :

1 The written reports, recuired ateve, shall be addressed to the U.S. Nuclear  !

D Regulatory Comission, ATTN: Docurent Centrol Cest. Washincten, D.C. 2CEEE. i i under oath or affirration under the provisicns of Sectien 13?a. Ate-ic Energy l l

act of 1954, as acended. In addition, a ecoy stall be setmittec to the appro-priate Regional Acministrator. l t

This requirement for inferration was approvcc by the Off'ce ef Management and l D Eudget under clearance number 3150-C011. l l

f 1

O l

_J

i O' i NRCs 88 05 May 6, 1988 Page 4 of 4 i O If you have any questions regarding this matter, please contact one of the technical contacts Itsted below or the Regional Administrator of the appro- f priate NRC Regional Office, i

?

O -

[

harles E. Rossi. Director b t

Division of Operational Events Assesseent Office of Nuclear Reactor Regulation  !

Technical Contacts: Ray Cilieberg. NRR  !

(301) 492-3220  !

O i Ed Baker. NRR (101) 492-3221 Attachtrents :

1. Table 1 - Known and intended Pecip'ents of Carbon Steel Materials O furnished by PSI or WJM '
2. Table 2 Ynown an:t intended Recipients of Stainless Steel Materials  :

furnished by PS! or WJM  !

3. List of Recently Issued NRC Bulletics i

O  !

I o i

{

o j

- t O  ;

6 I

O l t

(

O i I

) Attachn nt 1 NRCB 88-05 May 6, 1988 Page 1 of 2

)

TASLE 1 - KNOWN AND INTENDED RECIP!ENTS OF CARBON STEEL FATERIALS FURNISHED BY PS! AND %1M Durchaser Leceiving Cef=pany Nuclear Plant (if inewn)

) Radnor Alloys, Inc. Bechtel Power Corp, Pilgrim Capitol Pipe & Steel Rechtel Pcwer Corp. Midland Pullman Power Products Pullman Power Products Palo Verde Pullman Power Products Daniel Wolf Creek Pullman Power Products Clevelar.d Electric Perry

) Pullman Power Preducts Pullran Power Products Bechtel Power Ccrp.

Pullman Power South Texas San Onofre Pullman Power Products Pullman Power Vegtle Tyler Davison Pechtel Power Corp. Grand Gulf Osborne Brothers Velding Supply General Electric Perry

) HUB Incorporated HUB Incorporated Duke Power Ocenee Bechtel Power Cero. Arkansas HUB Inccrpcrated Bechtt1 Power Corp. WNP-2 Chicago Tube & Iren Omaha Public Power Fort Calhoun i District Chicago Tube S Iron Comonwealth FCson traidwcod

) Chicago Tube & Iron Chicago Tube & Iron Cherne Const % 'on Co. Parble Hill Northern Stain <cwer .... ....

Chicago Tute & Iron Consurer Power Palisades Cravo Corp. Dravo Corp. Seabrook i'oliet Valves, Inc. Joliet Yalves, Inc. --- .---

PcJunkin Bechtel Power Core. San Onefre '

] Guven Alloys Babcock & Wilcor .........

I'T Grinnell ITT Grinnell .........

% yon Alloys, Inc. Bechtel Pewer Corp. Limerick Guyen Alloys, Inc. Northeast Nuclear Energy P!11 stere Cercany Guyen Alloys, Inc. Bechtel c/o PPil Suscuehanna Fuyen Alloys, Inc. Cube Pcwer Catewba )

Cuyon Alloys, Inc. Bechtel Fewer Corr. We:e Creek ,,

Cuyen Alloys, Inc. W'ir.:

Guyon Alloys, Inc. Carolina Power A Light 'rurswick Guyen Alloys, Inc. Ealdwin Associates C1!nton Guycn Alloys, Irc. South Carolina Electric V.C. Su rer and Gas nu )cn Alloys, Inc. Carolina Power '> Li9 t Shearen Larris Cu>cn Alloys. Inc. Gulf States Diver eerd Fellows ......-..

A*ericar Standaro American Stardaro .........

Louis P. Canuto Fechtel/Public fervice ue:e Creek D

1 1

\ 1 D l

\

j

Attachment 1 NRCB 88-05 May 6, 1988 Page 2 of 2

)

TABLE 1 - KNOWN AND INTENDED RECIPIENTS OF CARBON STEEL MATERIALS FURNISHED BY PSI AND WJM (continued)

Purchaser Receivino Company Nuclear Plant (if known)

Capitol Pipe et Steel Bechtel Hope Creek Gulfalloy Bechtel Power Corp. Palo Verde 1 Public Service Electric '

] and Gas PSF &G Salem  !

Conax Conax ---------

l Consolidated Power

  • Rechtel Power South Texas Consolidated Power
  • Duke Power McGuire i Consolidated Power
  • Boston Edison Pilgrim l Consolidated Power
  • Niagara Mohawk Nine Mile Point Consolidated Power
  • Philadelphia Electric Limerick Louis P. Canuso Bechtel Corp. Hope Creek ,

Dubose Toledo Edison Davis-Besse 1 Dubose Florida Power Crystal River  !

Dubose TVA Sequoyah Dubose TVA Watts Bar 9 Dubose Dubose PP&L SMUD Susquehanna Rancho Seco Dubose Rochester Gas & Electric Ginna Dubose Cuke Power Oconee l Dubose Power Authority State Fit: Patrick l of N.Y.

9 Dubose South Carolina Electric ---------

and Gas l

O l

  • Consolidated Power is also known as Censolidated Pipi'1 and Supolv located in B!rningham, Alabama, Furlong, Pa., and Charlotte, N.C.

P o

)'I Attachment 2 NRCB 88-05 May 6, 1988 Page 1 of 1

)

TABLE 2 - KNOWN AND INTENDED RECIPIENTS OF STAINLESS STEEL MATERIALS FURNISHED BY PSI AND WJM Purchaser Receivino Comoany Nuclear Plant (if known)

) HUB Incorporated Bechtel Power Corp. Limerick Radnor Alloys Radnor Alloys ---------

Pullman Power Products P"11 man Power ---------

Dravo Corp. f.o r p . Seabrook Louis P. Canuso, Inc. .%ia Electric Peach Bottom

)

L. P. Canuso, Inc. dec.M- ower Corp. ---------

)

I 1

3 i l

l 1

?

o I

l 0

l

)'

Attachment 3 flRCB 88-05 May 6, 1988 t

LIST OF RECENTLY ISSUED

) NRC BULLETIlls i

1 l

Bulletin Date of No. Sub.iect issuance issued to

) 88-04 Potential Safety-Related 5/5/88 Pump Loss All holders of Ols or cps for nuclear power reactors.

85-03, Motor-Operated Valve Common 4/?7/88 Supplement 1 All holders of Ols Mode Failures During Plant or cps for BWRs.

)' Transients Due to Improper Switch Settings 87-02, Fastener Testing to 4/22/88 Supplement 1 All holders of OLs Determine Conformance or cps for nuclear with Applicable Material power reactors.

y Specifications

~

88.03 Inadequate Latch Engagerrent 3/10/88 All holders of OLs in HFA Type Latching Relays or cps for nuclear Manufactured by General power reactors.

Electric (GE) Company 88-02 Rapidly Propagating Fatigue 2/5/88 All holders of Ols Cracks in Steam Generator or cps for W-designed Tubes nuclear po d e reactors l

with steam generators having carbon steel

) support plates.

88-01 Defects in Westinghouse 2/5/88 All holders of OLs

Circuit Breakers or cps for nuclear power reactors.

j 87-02 Fastener Testing to 11/6/87 All holders of OLs Detemine Conformance or Crs for nuclear with Applicable Material podr reactors.

Specifications i

L 87-01 Thinning of Pipe Walls in / 0/87 All licensees for Nuclear Power Plants nuclear power plants holdino an OL or CP.

OL = Orerating License CP = Construction Permit J

r-t o

O APPENDDC 2 o NRC Bulletin 88-05, Supplement 1 O

O O

l O

l

.O I

O O

l

OMB No.: 3150-0011 NRCB 88-05, Supplement 1 UNITED STATES ,

NUCLEAR REGULATORY COMMISSION Q, U 3 0FFICE OF NUCLEAR REACTOR REGULATION ,

WASHINGTON, D.C. 20555 j4. . .;6'yQqP~

June 15, 1988 "W 3 NPC BULLETIN NO. 88-05, SUPPLEMENT 1: NONCONFORMING MATERIALS SUPPLIED BY PIPING SUPPLIES, INC. AT FOLSOM, NEW JERSEY AND WEST JER EY MANUFACTURING COMPANY AT WILLIAMSTt'WN, NEW 1ERSEY 3 Addressees:

All holders of operating licenses or construction permits for nuclear power -

reactors. ,

Purpose:

The purpose of this supplement is to 1) provide additional information con-cerning material supplied by Piping Sup Jersey Manufacturing Company (WJM), reduce2)the plies, scopeIncorporated (PSI) and West of the requested materials review to only flanges and fittings, 3) delineate actions licensees are requested to take to identify these materials and to determine whether O the materials comply with ASME and ASTM design and material specifications, and 4) clarify what actions licensees are requested to take once they identify material that does not comply with the above material specifications.

Description of Circumstances:

O On June 10. 1988 the NRC staff was informed by Carolina Power & Light (CP&L) that the Shearon Harris Nuclear Plant had tested two flanges from their ware-house that had been supplied by WJM. The two flanges were identified as betonging to Heat No. 7218, SA-105 material. The CP&L test results did not match those reported on NJM's Certified Material Test Reports (CMTRs) and did not meet the tensile ed yield strength requirements for SA-105 caterial.

.O Required minimum tensile stren]th is 70 KSI whereas the measured tensile strengths were 45 KS! and 46 X:1 The tensiie strength reported on the CMTR was 77 KSI. Required mininum yie'd strength is 36 KSI whereas the measured yield strengtL were 27 KSI and 31 C . The yield strength reported on the CMTR was 50 KSI. Measured chemistry composition was also out of specification.

n tably percent carbon was very low at 0.045 and manganese was measured at 0.32 O (required range 0.6 to 1.05).

Bulletin 88-05 requires that all PSI and WJM supplied material be identified and that a determination be made as to its suitability for the intended or

'O Ni C 3y.  :

0

0 NRCB 88-05, Supplement 1 June 15, 1938 Page 2 of 3

" actual application. This supplernnt narrows the scope of rnview from ASME and ASTM "materials" to ASME and ASTP fittings and flanges. In view of the recent verification that flanges which do not comply with ASME and ASTM speci-fications have been supplied to the nuclear industry, the time frames for certain actions are also modified by this supplerert.

g tctions Requested:

The actions requested in Rulletin 88-05 remain in effect with the followirg additions:

1. Review of purchasing records may be reduced in scope from ASMF and g' ASTM "naterials" to ASME and ASTM "fittings and fijnges" and the review should be initiated and ccrpleted promptly.
2. The scope of paracraph 2 of Bulletin 88-05 is reduced frcn ASME and ASTM "materials" to ASME and ASTM "flanges and fittings." All other provisions of paragraph 2 of Bulletin 88-05 remain in effect.

q

3. The scope of paragraph 3 of Bulletin 88-05 is reduced from ASME and ASTM "materials" to ASME and ASTM "flanges and fittings." For ASME and ASTM flanges and fittings furnished by PSI or WJM already installed in safety-related systens in operating plants, the following actions are requested:

O a. Ccr.mence appropriate testing of accessible flanges and fittings promptly to identify conformance of materials to ASME and ASTM materid specifications. Test results for flanges and fittings reported to be from the same heat should be ccmpared for consist-ency and for conformance to the ASME/ ASTM specifications and to values listed on material CMTPs. Any deviation fram the specifi-O cation requires an appropriate analysis justifying continued ope ra tion,

b. If any inaccessible flanges or fittings are identi'ied, an analysis rust be perfor ed justifying continued operation.

O c. All other provisions of paragraph 3 of Bulletin P8-05 remain in effect.

4 r or flanges and fittiros already identified as having been supolied by PSI or WJM, the actions requested in 3a and 3b above are to be completed within 30 days of receipt of this supplement. For flanges and fittings identified after receipt of this supplement, the actions requested in 3a O ard 30 above are to be completed within 30 days of identifying the flanges or fittings as being supplied by PSI and WJM.

If Based on the discovery by CPAL of nonconforming flanges and on NRC review 0 of records of WJM's production of numerous flanges purportedly from Heat No. 7218, licensees should scecifically be alert to identify records for flarges frcm Heat No. 7210.

O

)

NRCB 88-05, Supplement 1 June 15, 19P,8 Page 3 of 3

) 5. Addressees are requested to retain nonconforming materials until advised further by the NRC. Nonconforming naterials should be segregated to ensure that they are not inadvertently used.

6. Addressees are encouraged to report the results of tests of PSI and WJM supplici flanges and fittings to the INP0 Nuclear Network for dissemi-

) nation to the industry.

Reporting Reauirements:

The reporting requirements of Bulletin 08-05 remain in effect with the following additions:

) 1. The NRC Operations Center should be notified by telephene, 202-951-0550, of the need for analysis to justify continued operation as required in para-graphs 3a and 3b. Where the need for analysis to justify ccntinued operation results in a requirement for c report under 10 CFR 50.7?, the notification to the Operations Center should be in accordance with the reporting times re-

)

qui red t'y 10 CFR 50. 72. If the need for analysis to justify continued operation would not result ia a requirement for a report under 10 CFR 50.7?,

the notification to the Operations Center should be made within 43 hours4.976852e-4 days <br />0.0119 hours <br />7.109788e-5 weeks <br />1.63615e-5 months <br />.

2. Include the results of all tests of PSI or WJM materials in the written response to Bulletin 88-05.

) The written reports required above shall be addressed to the U.S. Nuclear Regulatory Comission, ATTN: Docunant Control Desk, Washington, D.C. 20555, under oath or affirmation under the provisions of Section 182a, Atomic Energy Act of 1954, as amended. In addition, a copy shall be submitted to the appro-priate Regional Administrator.

) This requirement f r information was approved by the Office of Management and Budget under blanket clearance number 3150-C011. Comments on burden and dupli-ications should be directed to the Office of Managerent and Rudget, Reports Panagement, Room 3208, New Executive Office Building, Washington, D.C. 20503.

] If you have any questions about this matter, please contact ore of the technical contacts listed below or the Regional Administrator of the approoriate NRC regional office, D (t.v harles .

h [orW2 Rossi, Director Division of Operaticnal Events Assessment Office of Nuclear Reactor Regulation bchnical Contacts: Ray Cilimberg, NRR D (301) 492-3220 Ed Baker, NRR (301) 492-3221

Attachment:

List of Recently Issued M C Bulletins l

)

J .

h APPENDIX 3 NRC Bulletin 88-05, 3

Supplement 2 0

D a

l O

O O

O

0 SWT 75 Y" )

OMB No: 3150 0011 hECB 88 CE Supplerrent 2 UtilliD STATES tbCLEAR RECULATORY COPE 15510h 0FFICE OF NUCLEAR REACTOR REGULATIch WASHING 10h. C.C. 20555

, August 3, 1988 NRC BUU FTlli h0. 88 05. SUPPLEltENT c: h0hC0hf 0PMlNG l'ATEkl8L5 5UPP.!ED BY PlPlhG SUPPtIES, thC. AT FOL5CM. NEW JERSEY ANC 'r'EST JLhSit MAhtf ACTURlhG COMPAN) A! WlLLIAMSTChh, NEh vtRSE)

C Addressees:

All holders of operating licenses or construction permits for nuclear power reactors.

O M pose:

The purposc of this supplement is to (]) modify the scheculo for actinre addressees were requested tn pteforr in bulletir 88 05 and Supplement ' .

and (2) provide additional infcrmation concerning materialc supplicc by g Piping Supplies. Incorporated (PSI), West Jersey Manufacturing (WJM),

and a recently identified affiliated ccrpany. Chews Landing Metal Manu-facturers incorporated (CLM).

Description of Circumstances:

o On July 22. 1906, the NRC staf f met with representatives of the Nuclear Manage-V ment and Resources Counc11 (NUPlaRC) to discuss the status of licensees' actions l

in response to Bulletin 86 05 and Supplement 1. During this meetirs. huMARC

! presented informaticn on licensee and NUMAEC/ Electric Pcwer Research Institute l

(EPRI) testing and evaluation methodology of PSl/WJM flanges. This inferrration i

was surrearized in a letter to the NRC from NUF14AC dateo July 25, 1988 and a detailed report and proposal was subsequently sutrritted on July 29, 1988 lO

(Attachment 1).

Based cn the reportec n.easurerrent and analytical results to date, the NRC has concluded that for full power licensets it is apprcpriate to suspend, terrc-rarily, the field treasurements , testing, records revio, and the preparation of ,)ustifications for continued operatiens (JCOs) that were requested b/ Bul-O ietin 88 05 and Supplement 1 until further notice. Addressees that have not received a full pcwer license are requested to contirue the in situ testing and the records review. The time frames of interest remain as specified in the original Bulletin, January 1. 1976 to present. Curing the temporary suspensicn of the reQuMito activities, the NRC wili review the reasurercht ano test data and resuits of aralysis perferred ar.o uettrr ine the er. tent to O

-ts6%L'h D.

'O

O

( tJ O 60 05, Supplement 0 August 3, IN'8 Page 2 of 3 I which further actions are apprcpriate to assure the continued safe operation of nuclear power ,)larits. However, addressees should continue to analy*e the test results cerf orced to date.

On July EE.1960. the NRC staf f ccn.pleted its review cf f 51/WJM/CLM purchase orcer end invoice recc'ds, based c,n Chis review, the stoff has determined thi.t PSI /L.M/; .1 provideo product 'orms in edcitton to flanges and fittings. The additicnal proGutt forms are icentifiec ii. Attachment 2 and a list of nuclear pcher piants that were identitled es possible recipicnts of PS!/L'M/CLM materials is provideo in Attachmart 3.  % SRC staf f also identified Certified Material Test Reports (CMlRs) for ASME Settiun 111 mtterials 'rca CLM, whica also should

, be ccnsidered as suspect. CLt'. was owned by parties invoiced in PSI ind WJh and U the persons signing the CMTRs for CLM also si peo the TNTR$ f or PSI anej 'nJM.

Attachrent 4 provices a listing of additicral intermediary suppliers / fabricators of PSI /WJM/CLM products. Eullatin 6C-05 identifica 1976 ss the beginning oatt for suspect n'aterials provided by PS!/WJM; honever, intorr.utien available to the NRC ncs. Incicates that WJM riay have provided ASME materic1 as early as 1962. The NRC is prcviding the abcVe intcrr'ation to a!sist the incustry in O their unoerstancing of thc P5;/WJM/CLM issue.

Actions Ecnuested:

The actions reciuested in Sulletin 88 05 and Supplement 1 are temporarily sus-pended with the fellcwing exceptions:

c,

1. Addressees that have nct received a full scaer cperating license are requcsted to cor.tinue the records revien anc the in situ testir; of instcIled flanges anc tittir.gs.
2. Addressees are requested to rcintain for inspection the documentation of tne specific acticns taten tcr the identified materials.

7g

3. Addressees are requested to retain ncnc:nformir; materials until ad,ised further by tre NRC.

4 Addresscet, are encouraged to report the results of tests of F51 and WJM supplied flanges er a fittirgs to the 16 huclear ha% crn for 01sserination U, to the 1noustry.

M rting Requirements:

The reporting requirements of Bulletin 88 C5 and Supple;ent ; are ter;cririly susperded with the fnlicwing en ntions; U  ; ticIcers Cf f ull pCwe" 0;jrc ting 11t9 eses 3re rm1f eo to rGnet tne results of ti.eir rPCCrds review, testing. Snd araljsts perts rned as of the date of this ;g;ieren* ir .tc0rdat.;r_ v1*n *re ;;: :3j rep r* 'rc requircrEnt speci-tied in paragraph 1 of i:uiletin 28 CS.

i. . Holders cf construct 1cn perniti are rPQuicec to repor*, the result! ct the O recorcs review, testirg, an0 3f.;ijtis pri0r t r. tr- planrCd fuel lo3d date, o

V

hktl CP 05. Surplen.ent :

August 3, 19C0 fase 3 cf 3 if you have any quest.icns about this matter, please contact one of the technical contacts listec below cr the Regional Acrinistrator of the appropriate NRC regicnal ottice.

) ,

IS' ,'l Vy Charles L. Rossi, Cirector Division or upcrational Ever.ts Assesscent Office et huclear heactor Regulcticr.

iechnical Contacts: Ray Cilimberg, hRR

("Cl) 492 3220 Lu Laker, NRR (301; 452 3221 A t t a c hn.c r t s : '

' . . L tr to hRC fr.. hbhARC, oto July 29,19EE

c. Product Ferr s Scio b, '.iN/P5l/ Chews '_ending
3. huclear Plants Receiving Suspect Materici 4 Purchasers Receiving Suspect M6terial J 5. List of Recently issuec hkC Bulletir.s y

,.)

V' ~.

O

()

O

^

p n =*

' ~

'C .- q

- & J -

t Attachment No. 1 NRCB 88-05 Supplement 2 NUCLEAR MANAGEMINT AND RESOUDCis COUNCIL August 3, 1988

)

)

July 29, 1988 Mr. Thomas T. Martin

) Associate Director for Inspection and Technical Assessment  !

Office of Nuclear Reactor Regulation i U. S. Nuclear Regulatory Commission i Washington, O. C. 20555

)

Dear Mr. Martin:

In a meeting held July 22 with NRC, NUMARC requested that utility activities relative to NRC Bulletin 88 05 and Supplement 1 be suspended.

This suspension request was based on a generic analysis provided to NRC by NUMARC's letter of July 22. In the subject NRC meeting, NUMARC also presented an analysis of utility and laboratory test data obtained to date. NUMARC's letter of July 25 to Dr. Thomas Murley formalized the request for suspension.

In that letter, NUMARC committed to provide a written report to NRC reflecting i

the test data and conclusions presented in the July 22 meeting, and providing quantitative statistical evaluations relative to the conclusions presented at this meeting. That report is hereby provided as an attachment.

)

l As noted previously, the NUMARC laboratory testing program will be carried l to completion even if utility test efforts are suspended. An update of the l attached report will be provided addressing conclusion of the NUMARC laboratory I

testing program as well as inclusion of field test data not yet reflected.

We would like to reiterate the importance of timely action in your consideration of NUMARC's request for suspension. Utility resource expenditures of major proportions are presently continuing without abatement.

Continuation of testing is not resource effective and, as documented in the attachment, would not be expected to result in additional insights. Moreover, in conjunction with the generic analysis previously provided, the attachment substantiates that no significant public health and safety concern is

. represented by this issue.

f

-ggCEORGO.L & 2*?'

D

E i ,

i f

r I

l Mr. Thomas T. Martin  ;

July 29, 1988 Page 2

)

NUMARC is studying all available information to determine what industry ,

i action should be taken to come to final resolution of this issue. We will l discuss our intentions with you and your staff in the near future. [

) t i If you or your staff have any questions, please do not hesitate to contact i us at any time. l l Sincerely,  !

,k :n. -

William H. Rasin Director, Technical Division l WHR/ reb Attachment l

) ,

. cc: Lawrence C. Shao Director Division of Engineering and System Technology '

D. J. Mcdonald i Executive Director

)

National Board of Boiler and Pressure Vessel Inspectors l l

J i

)

l

? l i

8  !

4 O

n v

O NLHARC CENERIC TESTING PROGFAM RE SPONSE TO NRC Bl'LLETIN 88-05

.O INTERIM RE PORT July 29,1988 O

Prepared By O secseel Natienal, Inc .

San Francisco, California 9410$

0 Prepared For Electric Fever 341: Hillview Avenue Palo Alto, California 94203 O

O

'O

o

_7 O 'x .

-~

w

D

] ABSTPACI The NRC Bulletin 88-05 addressed the alleged f alsification of Certified Materials Test Reports (CMTRs) by two suppliers, VJM and PS1, of piping O flanges and fittings. WMARC, through the technical e.anagement o f E PR1, developed a multifaceted program to assist utilitie in addressing this bulletin. Laboratory testing of suspect material, the coepilation of utility test data and analysis of that data are reported. Dese data show in general that, except for blind flanges, the suspect material meets tensile strength requirements and is satisf actory for ASMT Code applica tions. W e hardness g testing result s for the same esterials cxhibit a broad scatter band which would justify application of a testing tolerance band in comparison to the AS3 A370 conversion free hardnes a to tensile strength, ne field and laboratory testing results both exhibit the saee broad scatter band. A laboratory generated best fit curve is used te relate raessured field hardnes s to tensile strength.

O 3 e fiel, s.,ane,, ,,,, 4, , f,, 133; it,,., ,3,, ,s, ,,,, ,,,,te, 3,n, ,,

found in laboratory tests, and follows the same general bell shape hardnes e distribution as laboratory hardness tests. B e sinitarity in shapes and the lack of bumps at either the low ends or the high ends of these laboratory and field histograms indicates that there is not a concern for low strenguh material or high strength material. Applying a best fit approach frots U, laboratory hardness and tensile data to field hardness data results in an e s tied t e o f strength. Be best fit approach to the field data indicates that the vast majority are acceptable. Based on the laboratory testing and extensive field testing, it is concluded there is no esterials problem, except possibly for so=e blind flanges.

'O slind flanges and other components were addressed analytically in the wxARC generic analysis report, and it was shown that in the e.ajority of cases there would not be a stress contern even if strength in the order of 40 KSI were to be assumed.

B is interim report concludes that ths material has acceptable strength and O except fer se== blind flantes is satisf actory for ASME Code application'- Th '

continued use of these flanges and fittings does not present a safety probles.

Recomendations are made for follow up activities.

O O

.i.

lO 1185=

l NUMARC CENERIC TESTING PROGRAM RE SPONSE TO NRC BULLETIN 88-05 INTERIM RE PORT TABLE OF CONTENTS

) Pare ABSir.ACT ................................................................ i TABLE OF CONTENTS ....................................................... ii

) L I S T O F I L L U S T RA T I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INTRODUCTION ....................................................... 1 BACKCROUND .................................................... 1 N UMA RC M U LT I F A C E TE D P R OG RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CENERIC STRISS ANALYSIS (Refer to previous let ter of t ransmittal to NRC) ........................................ 1 NUMA R C TE S T I N G PR OG kA M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 KITHODS ....................................................... 1 D AT A CC H71 LAT IO N AN D RE S U LT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 a

ANALYSIS ........................................................... 2 LA B O RA T O R Y TE S T I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 E Q"0T I P-TEN SI LE CORRE LAT ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 UTILITY TESTING ............................................... 3

[) FIELD HARDNESS TO TENSILE ..................................... 3 B L I N D F LA N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 DATA QUANTITY AND STATIST ICAL SIGNIFIC ANCE . . . . . . . . . . . . . . . . . . . . 4 TESTING

SUMMARY

............................................... 4 T O L E RA N C E S LOWE R A N D U P P E R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 STAINLESS ..................................................... 5 a

CONCLUSIONS ........................................................ 5 RE C 0 KME N D A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SUSPEND RECOPOS REV!EV ........................................ 5 m, C O MP L E T E LA B F R O G RA M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 COMPILE EXISTING FIELD TEST DATA .............................. 5 V P. I T E F O L L O W- O H R E PO R T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

,.q

\

  • $i*

U

O LIST OF ILLUSTRATIONS 3

TABLES rs Table 1 Sume.ary of High Hardnes s Limit s J

Table 2 Summary of Stainless Steel Tests

[) r! CUKE S Figure 1 Histogram of Laboratory Tensile Results Figure 2 Equotip as BHN Compared to UTS and ASTM A370 0 Figure 3 Best Fit Equotip Compared to UTS Tigure 4 Histogram of Laboratory Rardness Figure $ Histogram of Field Hardness Figure 6 Best Fit Data Applied to Tield Hardness O

O l

1

!C)

I 1

i iC) j i

i l

8

-iii-() 118 $m 1

1

F i

l 1

I NTRODUCTION BACXCROUND D e NRC issued Bulletin 88-05 regarding alleged falsificat ion of Certified Materials Test Reports (CMTRs) by West Jersey Manuf acturing Co. (WJM) and Piping Systems. Inc. (PSI). Specific actions were required of utilities. Some y of these could ef ficiently be addressed by a generic program. NtHARC initiated

/ such a program. h e NRC issued Supplement 1 to 88-05 subsequent to reports of l

two blind flanges having low tensile strength. The supplement required l utilities to perform field tests on identified installed WJM/ PSI items. he supplement also focused ef fort on pipirg flanges and fittings. he NtHARC j program was modified to coordinate and standardige field testing methods and to I

compile utility generated data. Concurrently, the generic NLHARC laboratory

) testing program has been in progress.

i I NtHARC HUl,TIPACETED PROGRAM Because several actions were required by 88-05 which could be ef ficiently I addressed in a generic manner, NtHARC undertook the activities described herein

) as well as the testing and test data analysis which are the subject of this report.

A. Review of records to pernit scope limitation.

B. Review of records to identify internediate and secondary supply routes.

) C. Interf ace with Authorized Inspection Agencies and the National Board of

(

Boiler and Pressure Yessel inspectors. (

l D. Generic stress analysis of fittings and flanges.

Testing, data compilation and evaluation.

) E.  !

CENERIC STRESS ANALYSIS Be generic stress analysis has been completed, reviewed with and provided to the NRC. The analysis indicates that there is little concern for the stress I integrity of the fittings or flanges even if the materials were of

) substantially lower strength when compared to the strength requirements of his report was formally transmitted to the NRC by NWARC on July 22, f

S A-10 5.

1988.

fp l

The testing program is described in the following sections of this report.

NUMARC TISTING FR0 CRAW METHODS [

This program contains two main elements: first, comprehensive laboratory [

testing of suspect itemi centributed by utilities; and second, utility  !

generated data of destructive laboratory tests and in situ tests of installed f suspect itees.

I J n s 5- -t-

O NL? ARC laboratory test methods follow ASTM standards for tensile testing to produce values for UTS, YS tEl and IRA. Tensile strength correlations were developed based upon Equotip testing. Chemical analysis utilizes O spectrographic analysis and portable x-ray fluorescence analysis methods. All laboratory testing equipment is calibrated to appropriate standaros.

Utility test data of installed items or warehouse items has principally been portable hardness testing by means of the Equotip device. Other hardness test devices may also have been used in a few instances. The basis for selaction of O hardness test methods and the NLPARC training / coordination have been describec previously.

Ter austenitic stairless steel items, the principle tests method has been a si ple magnetic check. Some alley analysis and replication metallography have been perfor ed.

O Te the extent that utilities have contributed laboratory test data, these data ha s been accepted. These data are being reviewed for consistency and 'rrers.

OATA CC9 LAT10N A C RESULTS

* !' '7 **** d**' " **** d'"'**"*d ' ' *2' *** ** d'**

O cont ribut e d by utilities.

To date. the utilities have provided data regarding 1334 field hardness test items and 103 tensile results. ~he results are discussed in the follewing analvsis. The actual amount of data used in this report is indicated on the pl:t s :r charts. No all data is in the computer data base.

NNARC nas provided the NRC with computer discs and printouts as of 7/19/33.

Some additional copie s were provided during the July 20, 1998 eeeting.

ANALYS!S O LA3CFATORY TESTIN0 All tensile test results exceed 70 XSI or are within the anticipated tolerance band. Figure 1 shews a histogra:n of laboratory tensile results. In general, field tests were perfor ed with EQ"0!!P testers and the data converted to SHN.

Fo r rea s of,s dis cu s sed below, EQUCTIP values are used in this report.

O Figure 2 shows a plot of laboratory tensile results and EQUOT!P hardness ex;tessed as BHN data. Almost all the hardness data points f all at or below the A37H A3 70 SHN tensile conversion line, indicating that this is a conservative approach, and that a test tolerance f actor is required to avoid inappropriate rejection of acceptable material by field hardness test methods.

!! is apparent that the 3HN tensile conversion approach is no longer g

.s;prorriste f:r this application.

E OUOTIP-TIN SILE CCWER SION Anetner mere accurate a;proach to assess the field hardness data is to develop 5est fit line for the lateratory hardnes s using the original E?UOT!P (also O nferred to as te,b val 2eo snd tensile data. Th a t tine, sh m in rigure 3,

.as devels:ed by c:m; uter program. *he appiteation of the teleran:e or the 11 a 3- -:-

iO

O r

e best fit approach are dis:ussed belev subsequent to a brief aralysis of the

"() utility field data. The histetre- of lab ratery hardnes a data ex;ressed in IQUOTIP values is shewn in Ftg.re c.

UTILITY TISTING The utilit y-p revided las:rstery data it consistent with the genetic program ,

tes t data. The utili:ies have previded che set o f da:a on a blind flange ,

-()

Hea: 7 218, whi:h is c:nsisten: vit t. the two tests cited in 68-05 Supplement 1.

This data peint is not yet in the co p.ter printcut. Other than this, no substrength ca:erial has been reportec based on tensile tests. These utilities have re;;rted tensile strength fer 108 iters. Eight ite-o slightly belew 70 KS! have been reper:ev. "he re aining 101 value e exceed 70 X51. In ene case the utility engineer indicated there was a subsiae specimen removed fron

{3 installed flange and was transverse : the pri;ary variing direction rather than parallel. These slightly lov valuee are readily explained by the test directien, and by published data which c:nfires that tensile test results from product testing cay be as each as 10 percent below the Tinieur specified attength. N:ne of :hese utili:ies reported strength values are a concern.

C) The utility generated hardnesa data is sheve in the histogram of Figure 5.

This histegram has the sa-e general bell shape as the histogram of laberstory hardnesa data. In si ple terrs, the bell shapea in b:th laboratory and field histogree.s and the la:k cf bu ps a: the lew hardness ends of the histogra-s l

indicates that there is net a concern for low strength PJterial. This me an s that the vast eajority of field iters would exceed 70 KSI if tested and that 13 the re=sinder would be within the expe:ted t:1eran:e band. The con:lusien is

! that installed ite-s are acceptable and de not present a material concern, i excep: for ::me blind flar.ges.

FIELO RA7.DS'I35 TT TIN 5 LI (Cl It is 4;;tepriate to co pare ne bes: fi: :urves cf labcratory hardness and [

tensile result s and apply the resu'.ta of that plot te the utility generated l hardness data. When this is done, refer te Figure 6, all ite-s are cheve to be acceptable. I: eus: be realized that a best fit curve of field hardnes a should never be used to reject installed ite-s, be:ause se-e items which fall belcw [

j the line can be within the at:eptable tolerarce band. This is shown by tb l I

fa:t tha: the original data had sene a::eptable t:ers below the best fi:

'! () curve. *he bee: fit curve eay be applied :: warehouse itees prior to l l

installation, and sheuld not be the s:le jus:ification for receval of installed ite=s. This curve in:reasee the confiden:e that tre installed itees are as initially intended t: be.

t I

BLIND TLANCES

)() .

I Th e b e s t fit curve a;;1ied to field data, er a field hardness test tolerance j doss not elie.inate the fact :kat there are data in the histegrass (but not yet 3 in the ccepater data base) which indi;ates that blind flanges may be a ec9:ere l t f or strength reas:ns. McVeve r, t* e s t re e e analyt t:61 C a t a preytded t o the NRC  ;

i

{ndicatee that trese substreegth t'.inds are n:t a strese problem for service l

)C) l conditions. t i, t 1

1 l I

i 1C) *)-

I 1185, I

t

O W e 1 vest hardness test res' ult in either laboratory er field, aside from the suape:: blind !!snges, is 350 Lp. Bis is the lowest of a c:ntinuous O 'P"**'"~' ' "'l" *

  • 13 '"': bli"' '!'"8 ' " ' ' "'**i"lY 330 'S and appear to be a unique group separate from the general populatien of a:eeptsble material.

r 3ATA GaNTITY AZ STATISTICAL SIGNIFICANCE Anslysis indicate s that there are suffi:ient field data upon which te draw

,O co,c u, ton,. n e re (a ne n,,d f or additiona t gi,ld h,,an,,, e, ., 7se,e (,

slao substan:ial tensile test da:a which ;emite interin conclusions.

No-p arae.e:ric tole ranc e limit sta:ia:i:al calculations were used. De Inorstery tensile results of 123 itens provide 9$ per:ent :enfiden:e tha: mere i

than *

  • per:ent of the p:pulati:n exceeds 60.600 psi f. ensile strength.

O ne utili:f provided los tensile test results previde 95 percent eenf teente

hat n:re chan 97 per:en ef the pepalation exceeds 66,400 psi tensile strength.

. A.auning :he materials co .e f rom the sane populatice, centining both sets of

v sile d.ta provides 95 percent confidence that more than 93 percen
of the 1  ;::,d atien ex:ved 60,600 psi ulti=ste tensile strength. S i r t '. a r l y , there is

'O  ;\per:ent conf tdence that more than 95 percent of the popJlstion is less than 13,2 0 : i ultimate : ensile s:rength.

I TISTISO 3MMY

'ha '.ab:ra:ory tensile data indicates there is no technical cen:ern for the

" l05 "':i'!* ** 'i ili:i" 5':* :h' 1*b*:/ h*'dn di':'ib" i*"

!O hi staged . and tne field hardness histograr. indi:stes cc.s: there should be no i

ene tre f:r installed iters given tha: :he laboratory tensile tes:s indi:ste n:

cen:*rn for :his material. Th e b e s : fit curve of nardness :o tansile

nverst:ns sp; lied to fie'.d hardnes s test s also indicate s that there is no
r:ern f:r SA 10$ -4:e rial.

3 0 7x u eg3 .a.,,u m t. ppg 3 75 e d e :4 inJt:ste : hat there is no real cen:een for SA 105 material. B e blind flangst O! Auspe : .:aterial which have low tensile value s have hardness 4*

< >;r:w:a :ely 3 30 L;.

O xegarding ntgh hardnes,, 7a31e 1 sh:,8 the ,receden: :s install e,:, rial, ,ver j

137 3HN te 2*: sHN which are corr:en in nuclear plant piping. This table shews tha: 237 AHN is a value c:monly a;;1ied to f abricated ite:s, velas, base l

tetsis sni KA , where M;$ stress cerrosion cracking (300) is a concern in the

' >et-o:he.i:al indastry. Such $CC is not a con trn in light water featter n:in2 and inus a specifi: upper lirit should not be impesed. The Strutturel lO i 'auing Cede applies a :ss nHN limit on subserged are weldi and xA: to assure tdec.a e a:rength, ductility and toughness. Wen ree:gnised s sedard s 4; ply J

values au:5 as 237 and 165 IMN to f abri:4:ed, velded and installed iten.s. a sses t fi: verer hardness ltrit is not justified. This paragraph is discussed in thN t e r .s b e: s y n e t h e C: d e u s e s SH N t e r-t s .

Be ;rtnci;1e high hardness concern is veldsbility. If the ins t alled (te': has

!Q

atie;
:;le veld ins;t:ti:ns, has suststred bolt-up losis, hydrostatic tasts. 7 I prN! tes t ing , fun::ienal test and whatever PSI /1!! that is a; licatie. Ete"
1 i i I

1*

lO i

1

o

,, there are objective reasons to use as is. The benefits of replacing installed iJ high hardness items with acceptatle velds and RAZ are minimal. In contrast, the risks in any replacement are greater. The ALARA considerations also indicate that high hardness items not be replaced unless there is a plant unique overriding concern.

STAINLESS STEEL O

There is a relatively small amount of stainless steel installed, and very little in warehouses. To date, all tests performed on stainless steel have been acceptable. Approximately four dozen items have been tested. All tensile results are acceptable, all chemical analyses are acceptable and all sensitization tests are acceptable. Approximately 10 dozen magnetic checks

() were also acceptable. Only one of all these test results is slightly low; that is, one yield strcngth value was 23.5 X51 vs. 30.0 KSI, and this difference is insignificant. These tests are su:aarized in Table 2.

While the absolute number of test results is not as great as for carbon steel, the results indicate there is no concern.

n CONCLUSIONS The strength of SA 105 material and stainless steel items which were suspect is i not a concern.

R E CO MMINDATIONS

1. D3e test results to date indicate there is no concern for materials and thus field testing may be suspended as there is suf ficient data for evaluation.

The generic stress analysis also indicates there is no concern for

() plausible low strength materials because it has been shown that even if substrength materials were installed, the vast majority of these cases i vould be acceptable. Th u s , i t is appropriate to suspend document reviews and field testing.  !

i

2. The laboratory program should be completed subje:t to constraints of

() available material.

3. The existing utility generated data shou'd be compiled and analyzed in the l NtHA RC p ro g ram .

I 4 A sunnary report should be generated.

O i

O 1

O lie s, . _ _ _ _ - _ _ _ _

O O

o O

o LABORATORY TENSILE RESULTS 45 "

40< ,

i; 35- -

l 1 0 30 ,

r, 9:j , "

NUMBER OF 25 - SF4h Tfdd CASES SM fM!

20-is ~

QXq Yf wa

'O "

Ef' qdS I;lS5 L'tIkI.~

O P '.-

c-\ s. f,>f.y wf; (v.se M

1

'N '$ ' s _- l N 0

>60 >/4 >70 >75 >80 385 >90 TENSILE STRENGTH (KSI)  ;

lO  :

Data as of 7/22/88 O

FIG. 1 MST03PM OF LG R ATCRY TENS!LE RESULTS

'O i

10

O O O O O O O O O O O 1

j l

LABORATORY HARDNESS VS.

na as d TENSILE STRENGTH $3<

22 July 1988 E o. iE 200

.g7 e QU e 190- o.E g i

180-I70-A AA

^

hG I EQUOTIP AS 160 -

i #f ^

O]3 BHN 150- 4A d  %

aA A ^ Aa

.i HARDNESS no .., , ,A,g fifi6 ,

] A S 130- jA g ta 120< AA A AA A

.l 110- A A j 100  : - . . .  :

i 60000 65000 70000 75000 80000 85000 90000 95000

} TENSILE STRENGTH i

l i

l I

i I

i t

\

q .-  ;

a ,

l

. l

'Equotlp Kardness vs. Ultimate Tensl4 Strength  !

g LJboratory Test Resufts

=-e, e 97-mw.unca eso .

) i . .

l 1 I O i  !

< i i

5, a  :

l t

l 3/

/

I I / r g I I !3

-/

', e Ei!

E l E <3 i I /'!

.J,g  % %,  %,

O ,

a

. J i a . 3 / jU Q3" E] i i ' j O i / i i , i a 7 :5 l  ! > m 5 ' 3 *3 ' l ' l i I 2 ,/ , I ! l am n ' i i 2 '. I O  ;  : t 2 /2 l . i 1 l W / , thw UT S a m *Tf M + e - I/E { m.ms s..v m .O 3 , ' % - ,.oru 1 3 { f r*: e roea os www e C 143 i m a r.ax m a a a m 'O w **t m ev o '+*) Data as of  ! 7/;;/81 l F10. 3 BEST FIT 5 7DT P 'i 5 lE'.'51;E STEE G H ,O J D D D t l 22 July 1988 SA 105 LAB EQUOTIP , 1 3 45-  ; 40-1 t O:- g 35- .,f 30- pj NUMBER OF 2 5 - M CASES 20-l 15-  % y, 10- 'S Md . 1 W A 5 .f?M Sa 6) 6 $@dL. fM . g 1 0 _ <348 348 364 381 394 410- 424 437 450 463 475 2486 ' 363 380 395 409 423 436 449 462 474 486 HARONESS CATEGORIES i 'O casa as of 7/22/88 i , FIC. 4 HISTOCRN4 0F LASOPATORY EQUCTIP KG DNESS , O  ; i i

O ,

l [ i 1 1 . Data as of SA105 FIELD HARDNESS DATA 20 July 1988 2e 350-300 h, sa v l 250 gya 1 ,33 HUMBER OF 209 , f 'd o j I j CASES ,$o * ' Md l ' EE 100y 50' ^"- - 0  : ": , :  : .  : - - 1 <348 348- 364- 381- 396- 410- 424- 437- 450- 463- 475- >486 ' 363 380 395 409 423 436 449 462 474 486 HARDNESS CATEGORIES 4 i ) i o _ _ _e _ _ _ _ _e _ _ _ _ _e__ _ ___ _ o____ __ e _e e _ e__ _ _ _ , e e e 31YH1153 R10N3'd15 SS3NCWW C13!d 01 C311ddY Y1YG 113 1535 9 '0!d e ss/6t/: g Je se nec O ti g . . 4,t H a O I)!' t f: . I 1 i e a _ m w n m.i -- n==w i 1 - m EMMM E G N E RE?4I . i- 22Ee@i : _j. l C2 Al el e

g

- i m , , -=, W g e t e i euol):Mesqo i 0 0 TABLE 1 O SthNARY OF HIGH HARDNESS Lli-!!TS I a 0 1 MAX. HARDNESS LIMITS O' r BHN SA 350 197 I

O SA 105 PRE 1972 N/A i SA 105 POST 1972 187 ONLY IF QUENCHED j SA 234 WP,B-SUPPLEMENTARY 197 l SA 181 N/A O
  • i SA 182 F1 192
F2 192

! F 11 207 O F 22 207 AWS Dl.1 WELD & MAZ, HV280 265 O NACE MR-01 75, Rc2 2 237 BASE METAL, WELDS , HAZ O O O TABLE 2 StMtARY OF STAINLESS STEEL TESTS O O STAINLESS RESULTS 7/19/88 O TENSILE 9 i i HARDNES S 8 l 0 CHEMISTRY 44 SENSITIZATION 33 iO MAGNETIC 120 lO O O 6 0 ) Attachment 0 hFC8 88 05. Supplement 2 ) August 3, 1988 Product forms Sold By WJM/ PS..'f hews Landinq 1 ) Flanges Palf Couplings Full Couplings Plate kings Fenetration Plates SAS16 GR70 . Seal fictes SAS16, GR7g (Ferry)' Socket held No::les (CLM) long Orain Ecss A16EF11 t. F22 Radiograph Plugs (CLM) Square bar 1018 Spacers Sarple Probes Class 1 SA312. T304 (Ferry) (CLM) Guide Lugs SA240, 1304 3 Socket Welced Half Couplings Class 1 - SA182. F3C4L (Vogtle) Special he::les Pipe Caps SA234 Lugs - SA240. T304 (Palo Veroe) Lugs - SAS16 GF.70 (Palo Verde) Socket Weld Couplings O Plate SA36 (Perry) Special 8055 - A234 A105 A739 Bolts -- SA193 GR87 (Confrentes/ Spain) instrument Penetration End Plate - SA516 GR70 (Ferry) Hanger Lugs - SAS16. GR70 (Oravo/ Site unkr.own) Sccket Welo bcss -- Class 1 - SA18',cF316 (Seabrook) (CLM) g' Transition Fiece SA105 (Vogtlel Thermowells - A182 (Cravo/ Hunter / Site unkncwn) lCtM) Ear Stock A105 (Oravc/ Yellow Creekj (CLM) O l l I ( I This is a cceplete list of all procutt forms identified dueing the NRC D staff's review of available recoros. 2 Specific r.uclear pcwer plants or customers are noted in cases where, the precuct form appeared tc be a unique or special order and not wide spread. O

  • Indic8 t*5 that 58teri81 **5 5cic by Ch'*5 '8cdins Met *I Fanu'8cturer5 Inc-O

o A+.tachtrent 3 NRC9 08 05 Supplement 2 August 3. 1988

O hur. lear Plants Receivir.y Sust>ect Material I i

Beaver V611ey r Jellefonte O erowns rcrry Callt.way Calvert Cliffs , Cock Diablo Car. yon Cuane Arnold n 'd fermi Hatch Monticello North Anna Prairie Islano Quad Cities Shoreham O Turkey Point Waterford Yellcw Creek Zimer O 'O .O I lO l These nuclear pcwer plants are in addition to those lireviously icentified as rt.ceiving suspect material. ,O O O Attactrent 4 f4ECE EL u5, Supplement 2 August 3, ;9P8 Eurcha urt FEceiving Suspect Material Barr SaurCErs. IPC. M.W. Kellogg (became Civisicn of Pullman) Lake Erie Iren & Metal (c.. Inc. Liberty Equipment, Co. F.etal belicws (listed es Eellows in Eulletirj Fewer Piping Cc. Standercs Hpe & Supply Co. , Inc. g 11cge Pir,e Supply Co., Inc. Tyler Cawson (lit:Ec in errcr as Tyler Cavison in bulletin) ] n J o .)

~)

ite se pur:Ba s t. t s a re in tacition it it.ese previcut ly icer ti fica anc are brown to rave receivEc raterial fcr r.uclear 5;plicaticos. O ) Attachment 5 NRC8 88 05. Supplement 2 August 3, 1988 ) LIST OF RECENTLY ISSUE 0 hkC BULLETINS Bulletin Cate of No. Subject , Issuance issued to ) ' 88 08. Thern.a1 Stresses in Piping E/4/88 All holders of OLs Supplement 2 Connected to Reactor Coolant or cps for light. Systers wcter cooled r.uclear pcwer reactors. ] 85 09 Thinble Tube Thinning in 7/2(/E8 AI) holders of OLs Westinghet te Reactors or cps for W designed nuclear pcher reactors that utilize bottom mounted instrumentation. 86 08 Thermal Strestes in F1pir.g 6/24/88 All holders of CLs 3 Supclenent 1 Ccnnected to Reactor Cociant or cps for light-Sy s t. ems water CColed ruclear power reactors. 68 08 Therral Stresses in Piping 0/C2/E8 All holders of GLs (cnnected to Reactor Coolant or cps for light- ) Systems water cooled nuclear power reactors. 88 05. Nonconforming raterials 6/15/58 All t.olders of OLs Supplement 1 Supplied tiy F1 ping Sucplies, or cps for nuclear Inc. at Folsem, New Jersey power reactors. 3 and West Jersey Mr.r.utacturing Company at Williamstown, New Jer:ey 68 07 Power Oscilletions in 0/15/88 All heleers of OLs Eoiling Liter Reacters (BWR51 cr cps for BWRs. O LE 06 Actions to be Taker. fcr 6/14/ES All hkt licer. sees the Trensportaticr. of authorized to liedel t.o. Spec ? T raanu f ac'.ure , Rac)cgraphic Exposure distrit,ute, or Cevice operate radiographic , exposure devices or scurce thangers. l OL = 0perating License CP = Construction Fern.it p 1 l Q L ) J ) APPENDIX 4 3 NUREG/CR 2137, "Realistic Seismic Design Margins of Pumps, Valves, and Piping," E.C. Rodabaugh and K.D. Desai, June 1981 1 1 ) l t l 0 1 1 f iO i 1 O O J' NUREG/CR 2137 ORNL/Sub 2913/1 D _ _ . . _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ i Rea istic Seismic Design Vargins 3 o " Pum3s, Va ves, anc 3ioing . a Manuscript Completed: May 1981 g Date Publisaed: June 1931 Prepared by E. C. Rodsbaugh, Battelle Columbus Laboratories K. O. Desai. U. S. Nuclear Regulatory Commission , Battelle Columbus Laboratories J 505 King Asenue Columbus, OH 43201 Under Subcontract to Oak Ridge National Laboratory l Oak Ridge. TN 37830 i) l Prepared for l Division of Engineering Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 'O NRC FIN B0727 l l O I g . t ) goeSG J Sf P' Ul.. dE . %f? 9% i,k 'j O f/- APPEtiO!X A

y.

f. STATISTICAL DATA Ott ULTIPATi AtiD ,C- YIELD TENSILE PROPERTIES W HOT F Iti!SHED CARB0tl STEEL PATERIALS Seismic f43rgin, based on stresses, is defined herein as S A/Cc, where Ig fj SA = allowable stress, and oc = calculated stress. Al'lowable Stress S A f- is established as a fraction of Sy or Su (See Table 1), where Sy and Su are minimum or minimum expected yield strengths and ultimate tensile strengths, respectively. We have defined and tt.bulated f(ominal tiargins in 3 . terms of the minimums of Sy and Su, However, it is inform 3tive to examine the distribution of tensile properties so as to estimate the average and probability of obtaining lower-than-average or lower-than-minimum tensile p rope rt i es. D Statistical data on the type of steels ordinarily used for pumps, valves and piping and their supports are quite sparse. Data in available published documents (References [ 1] and [ 2]) were not sufficient for our purpose. We , requested and obtained data from J. R. F arr of Babcock and Wilcox Co. ll and we wish to express our appreciation for that data. l Data Base and Evaluation 3 Directly relevant data are those on materials purchased to either an SA-Specification or an A-Specification. The SA indicates an ASME Code mate-rial specification. The A indicates an ASTM material specification; these are , usually identical to corresponding SA-Specifications. F or our purpose, the a specification must include specified minimum strengths so that comparisons of average strengths with mininum specified strengths can be made and' estimates of the probability of having material with strengths less than the minimum , specified can be made. U

  • Private cc munication with author, July 30, 1930.

U A-1 Ri- n - , r - ,- g'c"W d f L ,A.. , i O 9 l . a t 4 q l Table Al summarizes the available data. The column headed "No. of Samples" j'  ; f lists the number of tests, with each representing a different "heat" of the d ~ lO mate rial . Reference C 1] data are presented in the American Society for h l I Metals handbook in the form of bar graphs. They are in both the 1961 Edition N  ! and the 1978 Edition. The 1978 Edition uses the present day designations for $ [M O these materials, but the data were obtained prior to 1961. Farr's data were obtaped f' rom mill test reports accumulated over the past two years (1979and198~0). f: .!N I i i

  • f; i

i The data were evaluated by an elementary statistical analysis, the standard di i deviation, o, was calculated by the equation:  !)] lO .? 'i i i - - Q. f o. S 2 . Sa , (A1) ff

  • D; I P; average stress, and n is the Vi g

where f = frequency, S = sample stress Sa a l l l number of samples. , j l j - A ' o We note that the materials covered by Table Al have minimum specified ff j j strengths and, for A516-70 and A299, maximum specified ultimate tensile strengths. The question arises: How do these'11mits influence the distri- { bution of strengths? Figure Al shows a bar graph for a het finished carbon [ l steel material which does not have strength limits. The normal distribution f 30 {' 't.+, (arbitrarily at a frequency of 95 at the average strength) is also shown. It can be seen that the distribution is reasonably close to normal. This is f, l j representative of several groups of data given in References ( 1] and ( 2] for f! , materials without strength limits. The distributions are all approximately l lC j. i "normal", where normal is defined by the equation: - r (A2) f = C

  • e' b(33
  • 3)/I'7' }) - 1 1 .

O where f = frequency l l j r l l 53 i average strength f S = strength 'f f M f

  1. ' ***"d'"d d'*i'*1 "

T I .O ' l ) l - y I I A-2 - iO , r ? 4, < R 4 9l ks J' .. TABLE A1. SLHMARY OF STATISTICAL DATA f

Ss, S a, Sa e,
. Ref. Materfal Strength ksi Mo. of ksi 37 ksi s'

i. (a)' (b) fe) Samples (c) (c) ( 1) A2 85- A Y.S. 24.0 21 32.62 1.36 1.463 , A285-B 27.0 70 36.14 1.34 1.959 A285-C 30.0 220 37.44 1.25 1.538 A201- A 30.0 26 37.31 1.24 1.435 I A201-B 35.0 34 44.18 1.26 2.176 (*) A106-B 35.0 102 45.68 1.31 4.248 (.1) A212-B 38,0 33 45.42 1.19 1.891 (*) A516-70 38.0 52 48.62 1.28 3.525 (*) A299 lf 41.0 98 51.45 1.25 2.821 (*) A106-B U.T.S. 60.0 102 71.92 1.20 4.178 C) I A516-70 1 70.0 52 77.04 1.10 3.474 { A299 I 75.0 98 81.38 1.09 3.130 (a) These are plate esterials, except for A106-B, which is a seamless 3 pipe caterial. The present designations of A201-A, A212-A and A212-B are A516-55, A516-65 and A516-70, respectively. (b) Y.S. = yield strength, U.T.S. = ultimate tensile strength.

(c) S, = specified minimum strength D , S, = average strength a = standard deviation For A516-70 and A299, caximum U.T.S. of 90 ksi and 95 ksi, respectively are specified. ,

~)

9 l

0 A-3
5) . .

, 7. . : <>.3 sm e 'I =d=wm ) -m .: i O .t / , i O I I I I I '; .O Somples: 9Q6 ,- 100 - Ave,roge Sy : 86.15 g , cr : 3.879 , j _ O f "Normal" 80 - - / Distribution - I;'j d - 1-70 - . 1-o 4 60 - ? T,1 -A g -

  • 4 o 50 -
s :r er -

O E -

u. 40 -

30 - O _ 20 - l0 - - \ O o g/ - I t i I \ 70 75 80 85 90 95 Ultimate Tensite Strength, ksi FIGURE A1. DISTRIBUTION OF ULTIMATE STRE!;GTil 0F A HOT TINISHED g CAREON STEEL MATERIAL WITH !;0 STRENGTil LIMITS (DATA ON 1035 BARS FROM TEF. ( la)J , O  ; O A.4 u e O1(: .. For comparison tsith bar graphs, C is selected to fit the data at about I S = Sa. (If the graphs were normalized to unit area under the curve, then C would be 1/(eEx).) O  :

Figure A2 shows the distribution of strengths for A106 8 material. Figure A3 h shows the distribution of ultimate tensile strength of A299 material, as an example of the ef fect of both minimum and maximum limits. These distributions
are quite erratic as compared to that shown in Figure A1; this is presumably due to the relatively small number of samples available for F igures A2 and A3 (s100) as contrasted to the approximately 900 samples for F igure A1. F urther, there is some evidence of the effect of the limits; particularly for the minimum Su for A299 material. Nevertheless, the distribution is reasonably O ,

close to "normal", and we assume that distribution in our evaluations. 6: note that if "heat" strength properties are less than specified minimums, the material (by definition) is not the specified material. Such material is O culled out by the manufacturer and used for some other purpose; e.g., material that does not meet A106-8 may be sold as A106-A. However, even assuming this culling process is 100 percent ef fective, there still remains some possibility that a particular piece of material purchased to an SA- or A-Specification O will have strengths less than specified minimums. The reason, of course, is that the "heat" sample represents a sample from what usually is a large amount of material in the form of plates, bars, forgings or pipe. The question arises: Given the "heat strengths, what can be expected if one new cuts O samples from various portions of the products? Reference [ ?] addresses that question. Reference [ 2] gives data on: 'O (1) "Of ficial Tests", the equivalent of "heat" tests, and , l (2) Dif ferences between the "Of ficial Tests" and tests on' l coupons cut from the product with that particular "Of ficial O Test". I - j A-5 0 _. 1 K v " , ... - l i s 'wp

f J ,.i

,J l i I l 1 i o ':.;; a So mples: 102 a Average Sy : 71.92 M. , es 4.17 8 /. ,, 10 - \ - ) U - ., ,

  • / /

8 - ( - Normol" Distribution 8 - er o O 5 - t if. x- / o / . N  % % l I 1 i .- 60 65 70 75 80 85 D Ultimate Tensile Strength, ksi 3 O ~ I I I I I Samples:lO2 is Average: 45.68 s ~ cr = 4. 24 8 i - 's O' lo - - - - { ~ . >- e u - - , S "Normal" Distribution > 0 . _ _, r 5 - -- - - / \ - O A  ; 7 - s .e 0 I 1  ! $'$a 35 40 45 50 55 60 g .' Yield Strength, ksi t O j ;' FIG"RE 82. DISTRIEUIIC i 0F ULTIP. ATE A:D YIELD STRE :CTH FCR ii A106-3 P.ATERIAL * *

  • 0sta fren Farr. h O A-6 1

e ilC. A $k ?, r.- s[* 's 3 fi l l 1 1 I I f Samples: 98 ql7 l Average Sg a 81.38 13 cr = 3.1303 D5G ' .E N 20 - - ~ J N 15 l "Normal" Distributlen D D a c 8 - , er 8 L. 10 g r D 3 - __ _ a O _ l 1 1 1  ! O ' 70 75 eo 85 90 95 Ultimate Tenstte Strength, ks) D . ! FIGURE A3. DISTRIEUTION OF

  • ULTIt' ATE TESSILE STRESOTH FOR A 99 R\TERIAL l

t 1 0 - "Casa frc.m Farr. i l A-7 'O > . $ ' 1.%'I a . O These tests were all run on materials which had no specified strength minimums or maximums. Accordingly, they are not directly applicable to materials to O SA< or A-Specifications. However, they give the best available indication of the "below-specified-strength" aspect. The data, pertinent to our evaluation are summarized in Table A2. O Three groups of tes,ts were run: / (1)50/18: Carbon Steel Plates (2)5U/20: Variation With1'n As. Rolled Plates (3) Carbon Steel and HSLA Wide Flange Sections o , , Reference [ 23 reports on trends such as variation with strength level, plate thickness, exact location t'n wide flange sections, and 'so forth. However, we are using this data as representative of the types of SA- and A-Specification } O steels listed in Table A1. Accordingly, we have shewn results for the entire groups and have used the averages of the standard deviations to estimate probabilities of strengths at or below minimum specified. O Reference [ 23 implies that the differer.ces were not "normally" distributed. However, by using the "normal" distribution assump?. ions, we obtain quite close agreement with their final results. Accordingly, the distribution must be . fairly close t "normal" and we have assumed that distribution. The proba- - O bility of strengths at or below a constant, k, times the minimum specified strength, 5 5, was obtained by: ~ ~ O 1 -(($3- S)/(.'T2))2 . Fr(S < kS,) = f ye d5 x Pr(S h *S) p (A3) J S,- where Ss = minimum specified strength and Pr(S h p*S ) is the probability O that the heat strength is less than the product strength. This value is given by: , O O A.s I o* ,i ir - TABLE A2.

+ ABSTRACT OT TEST RISULTS TROM RET. ( 2),

O .' DITTERENCES BETWEEN OTTICIAL (HEAT) TESTS AND SAMPLES TROM PRODUCT Test .. Official Q , Group ' No. of Sa-eles Strength (e) official Average, Differeneen(,) Product kai Avg., % cp ks%. SU/18 U.T.S. 481 2,305 68.30 +0.026 2.542 Y.S. 480 2,302 39.94 -1.768 3.137 $U/20 U.T.S. 357 g Y.S. 357 QA25 2,125 65.46 +0.237 1.890 40.27 -0.291 2.219 SU/19 U.T.S. 361 1,433 67.84 -0.961 3.600 Y.S. 361 1,433 .43.95 Average (b) -2.835 4.003 U.T.S. --- ----- ----- Y.S. --- ----- -0.139 2.564 0 -1.493 3.016 () Value of product test minus value of official test. (b) Weighted by number of product samples. O < (c) U.T.S. Uitte. ate tensile strength Y.S. = Yield Strength O O / 7' O O A-9 w- v. g s.

  • i 3 ' Qhf!?.i. '

D D 3 -((Se - S)/(/Tep)) 1 Pr(S h # 8}" JMe dS p (A4) P 3 where op is the averag6 standard deviation shown in Table A3, with 2.564 kst f o r U .T.S . a n.d -3'016 k s t f o r Y.S . Yalues of Pr(S<kSs) for k = 1.00, 0.95, and 0.90 are shewn in Table A3. J e u d /, .4 l} x N l 11 ,0 l'. i. w O O A-10 t } t 'I TABLE A3. SDOMRY OF ESTIMATED PROBABILITIES THAT S R'NGTHS WILL BE EELOW MINIMUlf SPECIPIED STRENGTHS al 3 ' Pr(SckS,)(*) Meterial Strenoth k = 1.00 k = 0.95 k = 0.96 A285-A Y.S. 5.1E-3 1.7E-3 5.1E-4 A285-B 5.5E-3 1.SE-3 5.0E-4 c) A2S5-C 1.4E-2 4.1E-3 1.0E-3 A201-A 1.4E-2 4.2E-3 1.0E-3 A201-B 6.8E-3 1.6E-3 3.3E-4 A106-B 1.6E-2 5.6E-3 2.0E-3 A212-B 1. 9 E-2 4.4E-3 8.1E-4 A516-70 1.0E-2 3.0E-3 6.SI-4 rs J A299 5.6E-3 1.2E-3 2.0E-4 A106-3 U.T.S. 6.1E-3 6.1E-4 2.6E-5 A516-70 3.7E-2 3.4E-3 5.6E-5 A299 4.4E-2 2.3E-3 4.SE-5 ra w/ (a) S, = minimum specified strength, see Table Al for values. (b) Y.S. = yield strength; U.T.S. = ultimate tensile strength. (c) Pr(S<ks ) is the probability that the strength of a randocly C3i selecte3 sample of the catarial vill be less than kSs' O l e / -) l (') w- 1 l l l l A-11 i W ~,.<--- . ,c a u. . . a ,-- ., .m . LGJh 0 4 00 a M, ,,u.,t 3 REFEREtiCES ) (1) Metals Handbook, Vol 1. Properties and Selection: Iron and Steels, (a) Eighth Edition 1961, (b) flinth Edition,1978. Published by American Society for Metals, Metals Park, OH 44073. (2) $ teel Plates and Wide Flange Shapes.""The Variation September 1974. Publishedof by Product Analysis and ) American Iron and ' Steel Institute, 1000 16th St., ti.W., Washington. 0.C. 20036. - o ) D 1 a ) i i 'l ' l A-12 V .. r'. h , ) l 1 l i ) APPENDIX 5 1 l ) Equotip Manual, Section 9, Conversion Between L-Values and Other Hardness Numbers, and Lo-HRB Conversion Table l i r t ? )  ! f I h ) l l 3 i e i D  : t l  ! l l i i r ] I . ,g. _. -- , ... -.. 3. ..m. .~.7.s.s m.,t.,'-. . ... . . . . c ., ,m . . w

2. ~ ~

,; . ; ... a ,. ~ .. . . a . . . m, . - s. .~ ,, ..s. e ( l 4 ,s . s. l .. [j'77 # ./ .g *' .,3., .[ ** b 3 ~~'" i . ' , *- #

m. .t, .

c: . b)%.y.4 s :. .Q 3 p.%  %'$ "' h .%) QM, f. ;ig'#.f, . f.'Miy'v: G.%.gl& ,n.p6r(tl,,.ct ) r[$o w .'. S, .W M.. 4 49 .;@v.: m. w?4$...- y%4R% 5 ..:.:.y. p..:.wur.'.4%1.%g:{g~Q@g+ .+r , e%. .%.. p g .. - $%.:yx .e .. Qg ' .:.g 5,f.h  : i j fj y i. W Q. . < e- # w .. % $.g w ,. s.,g :r a$.l W . r y. . ,e .A, , , o, p kf.e wlQ p

r ' . y 'pfq M, W ; gig y,y;, g, yhQ

':., 63~.W @Y ..:.;.;'s .r. D. :W/ , ,. w .c

p,'gpW.4:y% w:*f..,* %* -Q'.! 9;;M%{l'Q* N Q,

) a . J . .,w. ,h _. %;~.....y.94 P.. h.. q d M,d h,, .% .....>.f. >n.. ,. . . ' . M. m- mv.g%m.4 .a%y . . . . . e gy . ..n. ., w , .--e.* @ . % .r4.qg .] g,. , , ,.e., . , ,,6 j . g* . g. Jfi .' *: N C. $ **lW, f g s r*,.L

f. w.a u.'.' f,.# :3 w@g ; d.$bg iv. q..

7 ih QY w, wk..e$';.Kng. ! jJ.nHard N Q M O (g. h.:n.z, m q . % . k d . $-y c..~Q $ .w ) estTest4WEy' . w. .%. . .g . wp ~ u: Q , M .p. w s hu ar .>> . % P, hOIWS r4. 9 y- , .n,,... E.s.  ;. W. Ey O.op.rm 4 . p o ph. k . ', r ' p .I . . ,, w ). &.p .y. ,t @gr- ,p.c yx

v. M.q ' *.p..v. %.g,@

r.- 4,p; NtrvW W h

i. . M.4

.m.: p ,.:u A s y . < J. ,,, .,r.. %.x A. w. .

y. . m -of < s. . . .

j h I a..s. 4'. ! $f I . e . .9 < l.?. M. < . Q. 9.. u &..,8 : : n. n Ay M.,? ? ,im  % Wy, q 1 . M, C $.v.m. ~ .

m,,

i.,Ap, . ht .g a, s. .y~,.4.irf,%  ; Q e.,:..:%. u,c.m a .a . .,mn:y.m.r.y>:,%wn . s %:w.r: .W km . :py %<y . g.59y . . ,y.)..- n;g ., .- i@/..f.h t'S> .. m c . */. u c~.-{u.m.... ff *"w? C w,. Qr s ,;j.Y.~)y{ D*;t. c., 4 Yid M *ld i.;4M; my v.f.',.p W y,k; m ..p:& M.~!.w;*f.%.,7,.,; y - a.A. h.hs , M,. L'{.).97 N/Y M: 1 M d $.. m ..TM,.c M.u, i hV U:; " e, ' [. NQ'ryk, {..".g $ 3 '. D; pD N e, M..i ym y ff$w ' N l /^c /". Ac .. . . 'eOM. W..[#bt O r t r a,,.)m.' ya,. . N.9

a. . ~ . fn*. , ,, , r# . . . , s ,~ p,;,.. *s.

h./hiN .~.%<g%,f.*,y i . , . .a . . . ,f. \ . y*. . . m,.a. . ' ,l ,s .- .. . l . , .*l l* ., . . * ? \ ' , qe ' . st 5. w* * ' & " .s= g i . . . re ., R * . .* g . t','- f*{

  • = ; -

)

  • 1 m

. w 'a a w, .. .m . - .m p yw n . %.. n+p y,. d< a . ... w:.'.

i. .

.[ . .d: ..gb.13,%.; g..'. . &. . .s 3 . . . . . i M~ [g..Y.l,'!,;, ['; IN,h.h. , . n.. , v , [ M 7..57q @ MdY . ; . . :. .J.. em s. . . o g(n.Yn.v . .).* a . . m.?,..,~.e.,.- .. ./.~s. u ,L a . &...'...  ;.;;

  • *-
  • i n
: ' . , . &. s , @59? M' {) N O,; Q. .

C .'  : n-:.E;>>9 .?Q q . set v . g :t &1,Q3xgQ. f...'% ) . . ~' 9 n g. " 3 n'lus.Nqlyztq 4:t, \ I- h. . +a  ? b:'~T1;.k$. h :y. x ,m  %.: >> Y:;%*N h (

R.

.g^:.m . ?,,b, h . ,y p..u .:g.w&:m%.*. g* vm. m ,..% - f* ~*. ,' .e s ? .. .' aJf .. ., *c. :t.,e:.:+&.m ,. . ,*g.,',. m. g.*a. y .d lf f '. J,'*p a 'e; s . .- - ...? ye ~ - J ' 'r. ' * *g* . . , *. i.. p. " y , p ;' (,,I .' . tt,3==iil j *{ 4. 3 4- .,.s.ai g 'n ,,. l,,g e_g;d}1;.si . *ge ngQ . n . , J. .A ,y f. s' '7 p , .e p ". v c. - ' i.* p . t$=. '4 ..:,.., '. tr

  • C#' 0;, t g

] . . .{, ': . , , e s. p $W p , .'t. ; . ..,y ~M,. ,. o, . ' ^. l J. .,"* * *.P. y-[*... ,: ;JyR' , fi l gi'i,p A.  ;"* *

  • 4
  • m .p i s. . ' s : . .

ja i 1.+, . .* .. ^

  • - < J' Q'*6Q .4 l ,

>, .i , .y .. ('.-'.f. c ay t, . 9 .-., &, . , . . ,- w d . Q. [< .g.. %y.I 4~n o p.. > 'y v 9t.:.1,.aa. .g,. m. .,.[A,\;.' l \ a ., , f .:. . , , n .;  : .. -: y. W'cr*.;:a . ,  ;; Q.;. .: p.ep &~.v . q.sM ; \ *,9. s. A s e ;*3... ) l ' ' ' t' k g;',[I,M, l,

  • E., M .,,;
0) .,N.

.~ f. $

. '.[; U .g. "; .~ g^ w'

.n.h. 5.;.', . 9g.' g, ,.,p. # *'._~m ;. Y<. A  % ..'. k*. -.: N_ a- M*. h. " M , Copyright c 1977 by PROCEO SA Zurich, Switzerland 8003 291 E 3rd editi^n O O g n) 't O Phone 01/47 7800 3 PROCEO SA Riesbachstrasse 57 Cable procequip zurich CH 8034 Zurich / Switzerland Telex 53357 proce ch O ,-~'~, . , , . . .7 '$ g, , cv a :u M e c.:.:.,suh s 4 . .w~ m% .. ..y haareww20EG5Eh? . . .a_ ? i 3003 291 E Table of Contents D ) ,

1. EQUOTIP, Designation of Individual Parts 4
2. EQUOTIP Hardness Tester 6
3. Fields of Application 7
4. Operating the Instrument 8
5. Performance of Hardness Tests 10

) 6. Performance Check and Maintenance of the Instrument 12

7. Treatment of Samples 13
8. Special Characteristics of the EQUOTIP Measuring Method 17 3
9. Conversion between L Values and other Hardness Numbers 20
10. Fault Diagnosis 22 D
11. Notation of Hardness Values 24 1 12. Standard Test Blocks 24 D 13. System Accessories 25
14. EQUOprinter 10 30 l
15. EQUOlimit 32 l

@>Ch ch 3 2 . ..-,- ., m - . . 1 a lO 1. EQUOTIP Dosignation of tho individuci Parts ' i j Fig.1 i 1 , t l O M'E ~ -TPEEiiiI l l - .oooTws l l 7 k.- I)( ~ ~~ ' ~~ % { 3 - l lO 4 [ 5 l I l l 3 O i  ! I j  ! 6 1 2  ! i jO 1.1 Electronic Indicator Device I 1 Digital display of hardness 5 Connecting socket for , value L EQUOprinter 10 or  ! i 2 Battery checking instrument EQUOlimit l 3 ON/OFF switen 6 Cover for battery holder

0 Connecting socket for 1 4 7 Suspension eyelets i impact oevice l

t 30 l . l Bcsic Unit D Unit G I l Contents of carrying case Contents of carrying case ( ! O 1 Electronic indicator device 1 Electronic indicator device l 1 Impact device D with large 1 impact device G with large support ring support nng  ; 1 Small support ring 1 Small support ring  ! 1 Standard test block D 3 Batteries i O 1 Can of coupling paste 1 Cleaning brush j  ! j 3 Batteries separately packed: } t Cleaning brush 1 Standard test block G 4 fO l .. <... ...., _ -. , - 'w

o j

1 . . . . . . . , _ . - .J e em n- we m

t. .. . ,c .. . .

'O 1.2 Impact Devices and Impact Bodles o . Fig.2 4 'O ' - o E .I 1 13 o3 ~' O 4 &8 4 ) 1 a l I l 2 j 1 , 1 ,0 ,  ! 1 } J b -- 2 kj 4 / -- 5 j / ' (2 5 2 i . ] , / J / O 4 # < t J 3 3 4 j ' J 3 3 1 1 t 6 6b *6 6 O l 1 g e. C en C es i U . i O i ,l ..i .:. i ii 7 T 7 1 7 U' I 4 4  ! G D +15 D DC O , 1 Loading tube 6 Large support ring 2 Guide tube 63 Small support ring 3 Coil holder 6b Support ring 0+15

4 Release button 7 Impact body mth O spherical test tip of 5 Connecting cable leading to ind!cator device tungsten carbide 5

O 6 I )

2. EQUOTIP Hardness Ttstar i The EQUOTIP hardness tester is designed for testing metallic materials thO hardness of which rangas from very low to very high values, Hardness

) testing can be performod directly on site and in any position, Typical applications for the EQUOTIP instrument are large, heavy workpieces a which are difficult to access. It is espticially suitable for applications in which static hardness testing is either not feasible or not donomical. l 2.1 Typical Fields of Application ' - Hardness testing of mass produced parts during manufacturing opera-tion - Hardness tests on installed machines or steel structures - Rapid testing of multiple measuring areas for examining hardness var. 3 lations over larger regions t - Control measurement for the rapid determination of a specific thermal ' treatment result, e.g. annealed or quenched and tempered - Workpieces for which the indentation made by the hardness test must be as small as possible and may not leave sharp edges, e.g on rolls or O ground surfaces of machine parts. 2.2 EQUOTIP Measuring Method ' The hardness measurements carried out with the EQUOTIP hardness tes-D ter is a dynamic method predicated upon the principle of energy meas-urement. (EQUO - Energy OUOtient) During a hardness test, an impact body, equipped with a spherically shaped tungsten carbide test tip, impacts under spring force against the O test surface from which it rebounds. Impact and rebound velocities are measured in a contactless manner at the precise moment, when the spherically shap3d tungsten carbide test tip is located approx. t mm from the test surf ace. This is accomplished by a permanent magnet built into the impact body which,during the test impact, travels through a coil. Dur-ing the forward and rebound movement, electrical voltages are induced I which are proportional to the velocities. The measurement values derived , from the impact and rebound velocities are processed into the hardness value or number L by the indicator device. O . 6 e 7. ^ ? ' f Y ' 7. ', ' O b.~h.,.9*$bfE:.0?!$.'A i I E .T - ( .. . i:..x s . O

3. 81 elds of Application O

scuoTIP Measurine Mannee: The impact device 0 is the basic impact unit in " EGUOTIP measuring system for testing metallic materials, Compare ' , e other impact de-O vices, the most universal applicabihty and the lat. - ~.mberof tablesfor j converting to hardness values of other measuring systems is available for i this type, t With impact device 0 and DC: O Fct steet and cast steel (E Modulus approx. 210000 Nimm') Range of the L value Equivalent static indenta, tion hardness 300-700 80-455 Bnnell(F = 300') 300-890 80-940 Vickers 510-890 20- 68 Rockwell C O For steel and cast steel (E Modulus approx. 210 000 N/mm#) Range of the L value Equivalent Shore nardness 500-900 32.5-99.5 Shore For cast aluminium alloys (E Modulus approx. 65 000-85 000 N/mm') O Range of the L value Equivalent static inder.qtion hardness 200-560 30-160 Bnnell(F = 10 0') s Fields of application for other groups of materials are being continuously expi red. Appr priate conversion values will be worked out and pub-O lished from case to case. The user may also compile individual conversion tables for the materials he tests. The co responding guidelines are con-tained in Sect. 9.4. Materials possasing a hardness greater than 940 HV or 68 HRC, such as tungsten carbide should not be icsted (destruction of sphericaltest tip). Q With impact device 0+15: F r steel and cast steel (EWodulus approx. 210000 N/mmb O Range of the L value equivalent static indenta, tion hardness 300-700 59-450 Brinell (F = 30 0') 300-890 59-940 Vickers 515 890 20- 68 Roc.well C O Matenals possessing a hardness greater than 940 HV or 68 HRC,sucu ra tungsten carbide, should not be tested (destruction of spherical test tic). 7 O With impact device G: . Only f;r measuring within tre Brinell range (90-455 HB) 2 Fcr steel and cast steel (E modulus approx. 210000 N/mm ) Range of L Value equivalent static hardness # 300-650 90-455 Brinell (F = 30 D ) M teriala possessing a hardness greater than 455 Brinell should not be + tested with this impact device (loosening of spherical test tip). i

4. Cporating the Instrument 4.1 Indicator Device

- Connectimpact device and turn on instrument.Three zeros willappear C.t the digital display and the battery power indicator moves into the green field, if the batteries arn discharged, no digital display appears and the indi-cator will be in the red field, in the event of insufficient battery power, the digital display automatically extinguishes. Thus, erroneous meas-urements due to insufficiently charged batteries are precluded. - After turning on the instrument, wait approx 5 seconds before carrying out the first test. No waiting time is required for subsequent tests. - The minimum ambient temperature is +5'C. When storing the instru-mont at temperatures below +5*C it should be allowed to warm up sufficiently before it is placed into operation. I ) 8 f l f --=== m a ,-,.,7.-- -g

  • * ~-

.,m.- -- ., {d ,- . .'.. g ,, ,, ., + . +.p .n . . :. a s .x.:. . .,:. r}efy.-*.[.:~ j.. .-. . 3 L, ,',.w;,:h m.;,,, 4.2 Impact Devices type D, D+15, and G Apply impact device Fig.3 Place impact device on test sur-J face. The hand holding the device rests on the workpiece. ^ , Carrying out the charging movement Fig.4 Depress charging tube with your other hand until contactis felt, then 4 allow it to slowly return to the start- ) ing position. The device is now ready for carrying out the hardness O test 4 i k .O l Triggering the test impact Fig.5 ! gg Trigger the impact by exerting light - g ' pressure on the release button. f The device must be pressed exactly perpendicular to the test h() - .- surface by means of the coilholder, k i.e. the support ring must be flush against the surface of the work-piece. g -- Reading off the hardness O value L Fig. 6 )_g L- , g)" 3)*' rne device is now immediateiy I ready for the next test. The indi- - cated L value autornatically extin-guishes with the following test im-O pact. 9 . . .. _..... s.. 'a O 4.3 Impact device DC O Carrying out the charging movement Fig.7 Place loading stick adjacent to test area. Plunge face of impact device O .

(coil side) over stick and press down unti!it reaches the stop posi-i, tion. The device is now ready for operation and the subsequent pro- ,

da cedures are identical to those for o impact device type D.

5. Performance of Hardness Tests 5.1 Preparations O a) Prepare surface of the workpiece accord lng to the procedures out-lined it Sect,7:1.

b) Obserse the recommendations in Sect. 7.2 concerning supporting of the samples. O c) Carry out the performance check discussed in Sect. 6.1. 5.2 Hardness Test a) Operate the instrument according to Sect. 4. O b) Number of impacts per measuring area Each measuring area should be tested by at least 3 to S impacts. Form an average from the individualmeasuring values of the hardnessvalue L. Do not impact the same test point more than once. 15 L units. If the variance within the same measuring area exceeds 'O check whether the surface of the sample has been adequately ground or whether the sample yields or flexes during the test impact. c) Minimum spacing of the impact points Impact device G impact devices D. DC and D+15 4 4 4 4 mm l0 3 3 3 3-.mm .- ._ _ . .. l V V V V - V V V V .O - l Fig. 8 Fig.9 / 0 .G A g ., . i ' ) k . .$. .i, . .. 1 ) 5.3 Evaluation l a) Irr ict Direction The impact device is calibrated for vertical impact direction ' impact 1 from top to bottom). For other impact directions, the measured hard-ness values L must be corrected in accordance with the followirg D table. The correction values must be subtracted from the L-value. Correction values fer other impact directions ] Meas- Impact devices o and oC imcau device o'Is :mpact device G

t. v alue \ -

\~[ *~ 0 7 14 23 33 8 15 28 41 12 0 19 6 13 22 31 7 14 26 39 11 18 ] 6 12 20 29 7 14 25 37 11 17 400 450 5 10 17 24 6 12 21 31 9 14 00 5 10 16 22 6 12 20 29 9 13 g50 4 9 15 20 5 11 19 28 8 12 D 4 3 14 19 5 10 18 26 8 1' , 4 8 13 18 5 to 17 25 3 7 12 17 4 9 16 23 3 6 11 16 4 9 15 22 ~ 3 6 10 15 4 8 14 21 2 5 9 14 3 7 13 20 D b) Hardness value L as direct hardness measurement With regard to a certain group of materials, the hardness value L cori-O stitutes a direct hardness measure and can be used as such (see Sect. 8.1; This allows opt; mum utilization of the high accuracy of the EQUOTIP method. l

7) c) Conversion to hardness values of other methods With a certain loss of accuracy, the hardness value L can be 3onverted into equivalent hardness values of other measuring systemt such as Brinell, Vickers, Rockwell C. Shore, etc. See instructions iri Sect. 9 and corresponding "Converslori Tables" for the type of impact device 9 used.

J 11 3 6.Pcrformance Check and Maintenance of the Instrument D 6,1 Pcrformance Check The Performance Check controls the mechanical and electronic func-tions of the impact device and the indicator unit. It is accomplished by measuring the hardness value L of the standard test block applicable to 3 the particular type of impact device (see Sect.12). , Carrying out the Performance Check: - Clean an impact device according to Sect. 6.2 - Perform an impact test cn standard test block. As a rule,1 or 2 test im-

  • pacts are sufficient. The distance between impact location and outer 3 edge of the standard test block should measure at least Smm.

- Read off hardness value L and compare with reference L value. The in-strument operates properly if each measured L value falls within the reference range. if the deviation from the reference L value exceedsi12 Lunits,the instru-g ment should nolonger ce used and must be returned to the manufacturer for servicing.With smaller deviations, the L value can be corrected, until the next service, according to the following formula: -L Ls O Lactual Lk - correrted L-value L = read off L value during testing a sample Lrot = reference 'value from standard test block Lactuai = actual value when carrying out measurement operation at O the test block Frequency of Conducting Operational Tests a) Test instrument is used continuously: - at least once per day m - the latest after 1000 impacts b) Test instrument is used periodically: - before and after conducting a test series 6.2 Malntenance of the Impact Device The device does not require any particular care other than periodic clean-g ing of the impact body and the guide tube after performing approximately 1000-2000 tests. During cleaning, the following procedures need to be observed: I - Unscrew support ring and remove inipact body from guide tube - Clean off any dirt and metallic dust from the impact body and the , 9 spherical tip - Clean guide tube with the special brush provided - Do not apply oil to any parts of the impact device 12

o a l t ,

,t I . . O A O 7. Treatment of Samples 7.1 Preparation of the Surface The samples must feature a metallic smooth, ground surface,in order to eliminate erroneous measurements brought about by coarse grinding or O lathe scoring. The roughness of the finished surface should not exceed the following values: Impact device types l D, DC, and D+15 G l g" . l' Roughness depth Ri 10 m 30 m l Ra= CLA = AA 2 m (=N7) 7 m (=N9) , Rt - Roughness depth (DIN 4762) Ra - Average roughness value (Germany) O CLA = Centre line average value (Great Britain) AA = Arithmetical average (USA) N7, N9 - Roughness classification according to ISO /R 1302 When preparing the surface, please observe that the condition of the ma-O terial may be affected (e.g. due to heating or cold working). As a con-sequence, the hardness is also influenced. lf the surface is inadequately prepared, the measuring results can be affected as follows: - Excessive surface. roughness results in lower L values (the true hard-ness is greater than indicated), and broad variations of individual O measurements. - Cold worked surfaces produce excessively large L values (the actual hardness is less than measured). O 7.2 Supporting the Samples during Testing For samples weighing more than S kg (more than 20kg in the case of type G) and of compact shape, no particular precautions are necessary. , For samples weighing less than 5 kg (less than 20 kg in the case of type G). the following must to be observed: ' O Despite the low mass of the impact body and low impact energy, a rela- , tively large impact force of short duration is generated when the impact body hits the measuring surface (max. approx.900 N for device D, DC, and D+15, or max. approx. 2500 N for type G). Smaller and lighter samples or workpieces yield or flex under this force, producing L values which are C

  • too small and of excessively large variation. Even with big or heavy work-pieces it is possible for thin wall regions or thinner protruding parts to yield upon impact. Depending on the frequency of the resilient yielding O 13

\ .. . .. a A h D action, the measured L-value may be too small or too large. In many situa-O tions, potential problems can be checked in the following manner: c) Samples having a unit weight of 2-S kg (5-15 kg for device G) and also for heavier samples with protruding parts or thin walls should be placed on a solid support in such a manner that they do not move or flex during the test impact, o b) Samples having a unit weight ofless than 2 kg (less than 5 kg for device . G) should be rigidly "coupled" with a non yielding support such as a heavy base plate Clamping in a vice is of no value, since the samples become exposed to stress and because complete rigidity is never at- , tained. As a rule, the measured L values would be too smalland show excessive variations. For coupling purposes, a thin layer of coupling paste is to be applied to the contact surface of the sample. Subsequently, the sample should be firmly pressed against the surface of the base plate by moving it g with a circular motion (mutual rubbing of the mating surfaces). The coupling process has been carried out properly,if there is still no me-tallic contact between the parts. During testing, the impact occurs so quickly that the thin layer does not have time to yield. The sample and the support behave as if they were absolutely rigidly interconnected. 9 For the coupling operation. the following prerequisites must be ful-l filled: l - The contact surface of the sample and the surface of the base plate must be flat, plane parallel and ground. ! - The direction of the test impact must be perpendicular to the lC coupled surface. l - The samples should have a shape as compact as possible and must , ( weigh at least 100 grams (500 g for device G) and have a thickness of at least S mm (10 mm for device G). O + \ lO . j Prcper Coupling: J Proper coupling requires a little experience insufficiently coupled sam-plss produce large variations of individual measurements. L values whicn

  • n aro too low and the operation is characterized by a rattling noise upon im-pact of the test tip.

Evan with well coupled samples, endividualmeasuring values tend to vary 14

O

, .a 4 y . . .

e. } ..

( . more and the deviation is larger when converting to static indentation O hardness values than would be the case with heavier workpieces. The following illustrations show the coup ling and testing of a probe with a base plate. O Application of the coupling paste . (as thin as possible) Fig.10 ,.. O r ~O . l O '. M Mutual rubbing of both parts while firmly pressing the sample against - the base plate Fig.11 O 8 , ' t: . i 3 ! d, !O fl 5 t .O . Testing Fig.12 i ,0 'h s l \ A particular advantage of coupling l r < is the possibility of obtaining a very uniform. rigid connection between the sample and the support, totally j O - . n eliminating stresses at the sample  ; K surface. The resulting variation in g I ^ measured values is very low. 15 O D 7.3 Samples with Curved Surf aces Impact testers only work properly,if the impact body has a certain posi- ) ti:n in the guide tube at the moment of impacting the test surface. In the normal position, automatically present when testing flat and con-vex cylindrical samples (such as round samples), the spherical test tip is located exactly at the end of the guide tube. D However, when testing spherically or cylindrically shaped concave sur- # fac';s, the impact body remains further within the guide tube or protrudes further therefrom. Thus, with such types of curved surfaces,it is to be ob-served that the radii of curvature do not drop below the values indicated in , Fig.13. D Strongly curved surfaces should always be tested with the small support ring. D R Fig.13 3 - - - _ O-%  ;' 3 . .,t . -.}- - ~ % O Concave surface Spherical surface R l Impact device types D, D+15, and DC R > 30 mm D Impact device type G R 3 50 mm I i D . For impact devises D, DC, and D+15. special support rings are available to accommodate smaller radii on convex or concave surf aces (see page 26). 9 16 D ' ~ l D 0; 0 ) .. ~ .. . 5

8. Special Characteristics of the EQUOTIP 3 Measuring Method 8.1 Hardness Value L The measure of hardness used in the EQUOTIP method is the hardness value L. This value is the quotient obtained by dividing the 'ebound velo-3 city Va by the impact velocity VA. multiplied by a factor of 1000. The term L-

{ value is named after the inventor of this measuring princ ple, Dipl. Ing. Dietmar Leeb. i L = 1000 b VA Since the impact velocity remains constant for a given impact direction, O this value is proportional to the rebound velocity. The rebound velocity increases with the material hardness. In principle, the hardness value L rises with increasing hardness of the material tested. - The measuring value is influenced not only by the hardness or strength, but also by the modulus of elasticity as well as the elastic limit respec-O tively yield point. The hardness value L, therefore, constitutes a characteristic value of both plastic and elastic behavior of the material, since both factors are automatically measured conjointly. % Regarding the elastic properties, the influence of the E modulusis of par-g ticular importance. With materials of the same static hardness but diffe ent magritude of the E modulus, those having a smaller E modulus will characteristically produce a larger L value. For instance, a steel sam-pie (E modulus about 210000 N/mm') with a Brinell hardness of 150, pos-sesses an L value of 416 (impact device D)while an aluminium sample (E-g modulus about 70 000 N/mm 2) also with a Brinell hardness of 150, has an L value of 542 (impact device D). Since the elastic properties

  • differ from one matenal to anotner, the hardness value L only represents direct measure of hardness,ifit is relat-ed to a cartain group of materials.

O Generally speaking, the hardness value L can only be compared to a limit-ed exter't with conventional static indentation hardness values. In con-trast to the EQUOTIP method, only the predominantly plastic properties are measured by static hardness testing systems. By grcuping the different types of metals in terms of their E modulus, 'O alloying and treatment. it is possible to develop highly usable conversion curves for converting the hardness values or numbers for use in practical wtsi k. lQ l O 8.2 Sch:mstic D: sign of tho Imp;ct Devicts D, DC',0+15 and G. Stntus at the moment of triggering the impact (impact spring stressed) 3 %c, .T H - ,IO

  • The model DCis not equipped with aload- 1 Y
  • ing tube, since it is loaded with a separate .

loading stick. j.  ! {

. i  :

o  : l . Fig.14 j , { 10 r- - , l  :'  ! '  ; < x . O 1 Loading tube .  ; i l ? '  : 2 Guide tube . l  ; 3 Coil holder with coil 4 Release button 5 Connecting cable leading to the h'x { h j O indicator device 1 6 6 Large support ring I ? J' 6a Small support ring  : 7 Impact body 9 ~~ 8 Spherical test tip i . n 9 Impact spring . j 10 Loading spring g jf-H s 11 Catch chuck ...Q.] 12 Material to be tested j' 'i \ ' O 4*~ 7- - The device should not be disassembled. 2 - ( f\ 5 otherwise misadjustments in the spring sys- g L;i ' O tem and the transmitter will occur. # L'& 3 4

4 Use of support rings '

i Large ring: for all standard situations a 'O Smallrinr: for more exact placement of the g 3 " individualimpacts and for test 6/6a ' - 12 ing strongly curved surfaces , , ,- -, WVM; ,.CWf. (see Sect. 7 3). 'O 18 7, O ) .9.. .. . . } . . g

1. .- ..

J 8.3 Technical Specifications for EQUOTIP Hardness Testers Measuring Accuracy (see also Section 9.2) a) When using the hardness value L as the direct hard.1ess number - average measurement deviation of the L value with repetitive indi-J vidual measurements at the same test location: max. 4 L units throughout the entire measuring range ( 0,5% rela-tive to L - 800) b) When converting the hardness value L into static indentation hard-ness numbers (HB, HV, or HRC) J - mean conversion deviation depending on measuring range and static method: 3% to 15% c) When converting hardness value L into Shore hardness - mean conversion deviation depending on measuring range: 1.5% g to 4.5% O EQUOTIP Indicator Device Battery set 3 single 1.5 V batteries Operating time of battery set at 20 C approx. 50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> Operating temperature +5*C to +50*C O Printer connection Dimensions 245 x 112 mm Weight approx. 900 g incl. batteries O impact Devices 0, 0 C 0 +15 G . Mass of impact body g 5.5 7.8 20.0 Impact energy Nmm 11 0 11.0 90.0 0 Diameter of spherical test tio mm 3.0 3.0 5.0 Diameter of impact device mm 20 20 30 Length of impact device mm 150/185 165 250 Material of spherical test tip tungsten carbide, O hardness approx.1600 HV O 19 J

9. Convarslan b twcon L-Vclu s and cther Hardness Numbers 9,1 Conversion Tables

, Fcr comparison between hardness value L and hardness numbers of cth:r systems such as E3rinell, Vickers, Rockwell C, etc., conversion curves and tables have been compiled.In order to develop these compar-ative values, a large number of standard test blocks (according to DIN 51303-1975 and JIS 7731-1976) were tested with the EQUOTIP method, g followed by tests with other hardness measuring methods. The measur-ing data obtained were processed into conversion tables using the method of least squares (non linear regression). 9,2 Conversion Deviations o " The conversion deviation is the variance resulting from the comparison of m;;suring values observed with different hardness testing methods. It includes 2 components.The major share is caused by the fact that there is no clear physical relationship between the various methods. The second g component results from the circumstance that the comparison of hard-ness values (e.g. L value and Brinell) also includes the measuring devia-tion of the method being compared to. Th;refore, a conversion between hardness values contains inaccuracies from the outset. This applies not only to conversion of the L value into O static indentation hardness values, but also for converting from one static hardness measuring method to another. The conversion deviations (=HB, HV, etc.) indicated in the "conversion tables" represent "standard deviations",i.e. 68% of all materials tested to date fellwithin the specified variance range. O 9,3 Deviation from Conversion Values Ocviations from the values i.7 the conversion table can occur with the following steel qualities: O High-Alloyed Steels - All austenite steels - In high speed tool steels, hotwork steels, and ledeburite chromium steels (group of high carbon cold work steels), the hard materials em-bodded in the matrix (ledeburite tungsten carbido e.g. type M7C3 and O M6C) cause a local increase of the E modulus, resulting in L values which are actually too low. A typical representative of this group is the tool steel for cold work X210Cr12 (Material No.1.2080) containing 2.1% C and 12% Cr. O 20 . .. 1 O '. , -__--_____________o____________~____-_ I - - n Cold Work Hardoned Steels - Drawn and in part also rolled steels frequently lead to exessively high L-values due to the pronounced cold worked regions near the surface which simulate higher than actual hardness. Such steels should always n be tested over their entire cross section, u) Magnetic Steels - When testing magnetic materials, the velocity transmitterin the impact body is briefly influenced by their magnetic field. Therefore, slight de-viations of the measured L values may occur. Surface Hardened Steels - Surface hardened steels and especia3y case hardened steels pro- i duce L values which are too low because of their soft core. Layer thicknesses measuring exceeding 0.0 mm do notinfluence the L value. O By establishing plant internal conversion curves according to Sect. 9.4, the testing of surface hardened steels may nevertheless be possible. 9,4 Setup of Plant Internal Conversion Curves For the special situations mentioned in Sect. 9.3, or when testing mate-rials for which no generally applicable conversion tables are available, the user can develop individual conversion tables. When developing conversion curves, the following points must be ob-served: - The sample surface must be prepared very carefully. - If p ssible, samples should be of a size which makes coupling to a sup-O port base unnecessary. - The correct readout of the EOUOTiP hardness testeris to be checked against the standard test block for each test series. - The function of the static hardness testing machines and the co"ect O optical evaluation of the indentations is to be checked for each test series,with the aid of standard test blocks of corresponding measuring range. - Only such hardness values should be correlated which are directly de-rived from immediate proximity to the relevant measuring area. To ob-O tain a pair of comparative values, always form a mean value from at least 10 to 15 L values and 3 static indentation hardness values. O O 21

  • ~

Example: ,O, )' 33measurements Brinell x 5 measurements EQUOTIP

  • O * > - 1 correlation pair
  • o* Fig.15

) 10. Fault Diagnosis Indi:stion Cause Possible Remedy No digital readout - dead batteries ) - batteries improperly poled > correct defect - no contact at negative battery pole - no battery in holder ) - indicator device too cold (temp. <+5'C) warm up device l Digital display does - poor cable contact plug in cable com-not move or cable broken pletely, or even pos-sibly replace cable - the tested material . is extremely homogenous No impact occurs -impact body is not j 0' *P' P8'lY wred defed ! located in the l impact device -impact body does service the catch not release or chuck or release ] mechanism cannot be loaded Marked deviation of - measuring area prepare sample individual L values or inadequately according to ! L values constantly prepared Section 7.1 ) too low - the tested material is extremely inhomo-genous or porous - sample is insuffi- support sample ciently supported according to Section 7.2 22 J .- . . : i:.ny:r.m!:c. mwwf&1 ..f. - ) - sample exhibits ) - targe local hard-ness differences e.g. at the transition from the welding y; seam to the base a material - impact direction Please see has been changed corrections for between the other impact ) . individual impacts directions clean impact device I L values at the -impact device standard test block contaminated according to , constantly too low Section 6.2 - spherical test tip replace impact ) cracked (e.g. due body to impact against tungsten carbide) - support ring does replace support not have rubber ring pad l L values at the - spherical test tip replace impact l standard test block flattened (impact body constantly too higt). against tungsten carbide, wear) 9 , - standard test block replace standard damaged or full of test block I indentations O 1 !O O 23 lO _s ) .

11. Notation of Hardness Values

) Ta avoid confusion between: - L-values measured with different impact devices (different conversion tables are applicable for each impact device type) - Hardness values of other measuring methods converted from the L- ) value and those measured directly by the respective system, the fol-lowing form of notation is recommended: a) for L Values ) The letter identifying the impact device used in establishing the meas-urements is used as a suffix to the L value Lo, Lo+15, LG Example: Lo - 760 (= L value measured with impact device type D) b) L values converted into values of other measuring methods } The converted hardness value is suffixed 'with an L, together with the letter identifying the impact device used in the original measurement HBLo HVLo HRCLo HSLo - H Blo+15 HVLo+15 HRCLo+15 HBLG D Examples: (Lo+1s - 402) 4 HBlo+15= 125 or 125 H B Lo-15 (Lo - 770) 4 HSLo - 74.2 or 74.2 HSlo b 1 b i 12. Standard Test Blocks Standard Test Block D (weight 2.7 kg) 3 The L value, together with the suffix D is inscribed on this block as follows: ( D 9.80 Lo - 840:6 ! l HV100 - 782:15 l e Internal Reference Vickers manufacturing L value comparative measurement number D

    • ^ mM .-. . ;c
. . ym-(- ,

g . . O This block is destined for use with impact devices D, DC, and D+15. lf the measurements fall within the reference value, the impact device and indi-cator unit operate properly throughout the entire measuring range. - The block must be removed from the carrying case and placed on a solid, firra base prior to testing. ,U - The impact device tvpe G (only applicable within the Brihell range up to 455 HB) must not be tested on this block because it is far too hard (approx. 800 HV). This would result in damage to the spherical test tip. 'g' Standard Test Block G (weight 6.5 kg) Two different L values together with the suffix G and D are inscribed on this block as shown in the following example: G 2.80 La - 575:6 HB 5/750 = 345 8

O (Lo - 615 6) internal Reference Brine!!

manufacturing L value comparative measurement number O This block is primarily destined for use with impact device G, for which the upper value is applicable. The value in parentheses applies to impact devices D and DC, provided they are only used within the Brinell range. For checking these devices 0 throughout their entire measuring range (up to L = 900 or 940 HV), the test l block D must be used. Densely impacted test blocks cannot be restored by grinding. Reason: through grinding, the original hardness is altered in an uneven and uncon-trollable manner. Therefore, the test block can neither be calibrated for a O new mean value nor for an acceptable : tolerance. 'O

13. System Accessories For special test applications, the following system accessories have been

! developed: ,0 EQUOprinter 10 immediately prints individual measurement values and forms a mean value. Correction factors (impact device type, impact direction) are auto-matically processt;d when applicable. d

O 25 f

J EQUOlimit Upper and lower limit values L are preselected with two coding switches. For each measurement. a checkis made to determine whether the actual O value falls below, within, or above the established limits. The result is signalled optically and acoustically. EOUOlimit can also perform external control functions, impact Devices in addition to the basic impact device D. the following specialimpact de-O v:ces are available as accessories: Impact Device D+15 Typical applications: Measuring of races in large ball bearings Chocking of gear teeth O Hardness measurement in grooves Special feature; one of the key advantages of the impact device is its ex-trcmely slender shape and the recessed measuritig coil. For this reason, the impact body is somewhat longer, resulting in different conversion tables. O Impact Device Type G Typical applications: Hardness measuring of large, forged steel parts within the Brinell range (90-455 HB). Lar0er diameter of spherical test tip (diam. - S mm). Lower preparatory O requirements for measuring surfaces than with impact device D. Impact Device DC Typical applications: For measuring under very restricted space cor.ditions e g. inside bores. O in+.erior of machines, etc. In other respects, the application range is identi-cal to device D and the same conversion tables apply. Special feature: the impact device DC is loaded with a specialloading stick. The impact body is identical to the one used in type D. O Support Rings for impact Devices D/DC/D+15/G Part designation and suitable for the following dimensions: test surfaces: lg D6 019.5 x 5.5 mm plane l cylindrical hollow cylindrical Rd 60 mm l spherical , holiow spherical l -- - - lO l l 26 l l - ! l c 9 . . 3 .

.7 .. .. , e ..  ;

1 . , , ..J s b ' ' oi' L ..:.2 } . . y . ) Part designation and suitable for the following dimensions: test surfaces: D6a 013.5 x 5.5 mm plane ) g c 19.5 x 5.5 mm RD 30 mm cylindrical hollow cylindrical spherical hollow spherical cylindrical Z 10-15 0 20 x 20x 7.5 mm R 10 mm - 15 mm ) Z 14.5-30 0 20 x 20 x 6.5 mm R 14.5-30 mm R< 10 mm not possible RD 30 mm D6/06a hollow cylindrical ) HZ 11-13 c 20x 18x 5 mm R 11 mm - 13 mm HZ 12.5-17 C 20 x 20x 5 mm R 12.5 mm - 17 mm HZ 16.5-30 0 20x 20x 5 mm R 16.5 inm - 30 mm

' wj R< 11 mm not possible

) */ RD 30 mm D6a spherical K 10-15 0 20 x 7.7 mm R 10 mm - 15 mm x K 14.5-30 0 20 x 6.7 mm R 14.5 - 30 mm ) '8 ' R< 10 mm not possible D RD 30 mm D6/06a j hollow spherical l HK 11-13 c 17 x 5 mm R 11 mm - 13 mm l [ HK 12.5-17 HK 16.5-30 018 x 5 mm 0 20x 5 mm R 12.5 - 17 mm R 16.5 - 30 mm j l R< 11 mm not possible i RD 30 mm D6a UN 52 x 20 x 16 mm A q m & 't ,$ ._g ~w~

v.  %' g~y k Y N m a 5 - e

,N g ,' h.-w., i LYV 'w q 27 ) O Part designation and suitable for the following dimensions: test surfaces: O, D6b/D+15 13.5 x 10.8 x 5.5 mm plane Pi cylindrical U hollow cylindrical RD 30 mm spherical O hollow spherical G6 C 29.5 x 7 mm plane cylindrical O @ R D 100 mm hollow cylindrical spherical hollow spherical C6a c 19.5 x 7 mm plane pg cylindrical O h R> 50 mm holl w cylindrical spherical hollow spherical <: less than .. '*: equal to or greater than. O O O O O 28 O . . + y _  : . L C l . .. . .?.A ~ . y' ,, I * ( , ) 1 u . .- 13.1 System Combinations ) Combination 1 Impact Device + Indicator Device - Basic Unit D D - ) DC ~ [3 = = D+15  :  : G Combination 2 ) Impact Device + Indicator Device + EQUOprinter 10 r ) D ~ O ~ DC ... D+15 ,,  : Qg l G > aa a 3 aa Combination 3 Impact Device + Indicator Device + EOUOlimit l D 1 _ _ ~ ~ DC ,,, go additional - i D+15 _ - og O - output G Combination 4 Impact Device + Indicator Device + EQUOprinter 10 + EQUOlimit r am D - -- C ~ " DC . ... y ao O ~ , D+15 _  : QQ OS G j aa a aa 29 J O i l 14. EQUOprinter 10 0 O ' i  %. . 1 4 p . f 3 .. i , J -=- \% \ l 2 ll W A = , = P, I g __;_;p 1;g. y , 7 8 I am 1.g"' gij n e o 9 is ~ ~~ ~ -' X '- o <\ o 5 O l 14.1 Operating Instructions l - Connect cable to EQUOTIP indicator device and to the AC mains -if . available (check technical data of power supply). 'O - Depress key 1 "POWER ON" Power controllamo lights up. ' - Set appropriate impact device type with program selector 2. j - Preselect impact direction with selector 3. - Turn selector 4 to the desired number ofindividual measurements from i iO which the mean value is to be automatically formed. I ] In the "MAN" position, any number of measurements can be taken and

the mean value is formed by depressing the "END" key 6. j "START" key S initiates printout of the basic text. The preselected set-l tings are confirmed on the recording strip.

lO - The EQUOTIP unit is now ready for operation. i ! 30 1

O , ,..

._., 4 l .c,..- 1

g. . .

r; } . . )  ; . D 14.2 Explanation of Remaining Function Keys Key 7: CLEAR key for obviously erroneous measurements. The value erased will not be included in calculating the mean value Key 8: Permits performance check on the standard test block during a test series. (Test series = any number of mean values, each of 3 which is based on severalindividual measurements.) Preselected programs (switches 2,3,4) are disabled. Terminate performance test by depressing END key 6. During test block checks, control lamp 9 lights up. O Technical Specifications Power supply: Mains: 220 V AC 10%,50/60 Hz Rechargeable battery pack, operating time approx. 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> O Recharging time approx. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> Voltage drop indicated by blinking of "POWER ON" f amp c l Fuse (in socket): T 0.2 A Ambier". temperatures: O'C to +50*C l .O Paper: Electro sensitive metal paper ! width: 60 mm I length of roll approx. ?O m , i i l 'O l l !O  ; I O O O 31 D

15. EQUOlimit

. . . ~ _' kJ.47;tt $ f' I* ' ' '~' D b *'r, L~ gl l N , D Tho EQUOlimit is designed fc . a) direct connection to the EQUOTIP indicator device. Each individual measurement is evaluated. b) connection to the EQUOprinter. Depending on the setting of selector 4 ) at the EQUOprinter, evaluation is performed either for each individual measurement (position "MAN") or the mean value (positions 3,4,5, ' etc ). When depressing key 8 (TEST BLOCK CHECK) on the EQUO-printer, subsequenLcontrol measurements are n'ot evaluated by the .) EQUOlimit. 1 Lights up when the measurement falls below of the lower limit  ! value Lm,n. Simultaneously, an acoustical signalis released. 2 Lights up when the measurement falls within the range given by Ln 1n and Lman. 3 3 Lights up when the measurement exceeds the upper limit value f Lm... Simultaneously, an acoustical signalis released. S l e 32 3 .. .u , - - . . cu . I e- . y  : . . O Technical Specifica:lons Output: Switching relay: too high - normal too low (potential free contact) One shot function with 100ms impulse duration g a7 9 8 7 O AC switching power: max. 250 V,4 A,100 VA transformer transformer 23 1 4 23 1 DC switching power: max. 50 V,4 A,60 W ,g u Acoustic signal can be muted Power supply: 110/220 V AC,50/60 Hz 110 V 220 V O O O O O i O I f O O 33 p 0 , "g f A r- , i > -d F, 4 .gl

d

> b s r ) . -m EQUOTIP Hurtemessgerat Durom6tre EQUOTIP ) :QUOTIP Hardness Tester ) Umwertungstabellen ) _ Tableaux de conversion Conversion Tables ) Schlaggerat i d Instrument de frappe 9 l .I impact Device a L ._ ) . 0 U y g ~~ g y ~ --- - _ _ . .__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ V U a chs d., = --  : __Stahl und Stahik_ s_ _ _ _ __ ' * * * * * ' ' * * * * " - - ^' =scha ^*** *** Acier et Ltc d' acier - t wedea. ** sans .eencomme ees. nae opp.a ses=**ssa .esaasa Steel and casi deec. - L^ - Ltandeservestehe e.e sesset mergesessensm4 ord.asnag enen g desdesentsnachdesen s==eeissa vestehsen es==emeen .esdese. .e4 bagende s(swee. ese : ;" - - to a w.e he schs.ee.as ryp. 6s21. usu. s.es - ; . 2:es t. 34inot. -- uvt. . vo.. _ ; =. t. wes. ss4 nvt. unca. n.ch ac_ . - - t. west aseunct.

    • =**********"'***** Acier b outsis pour travail b froid poes, e.ser one comhssse saare

- des seasers I moesassees e ec dosesesess types d anseressememes de happo Cold wofk Iool steel - ees weAmess de dnapose treeseres ps.cded sensemeses par com.ersase de da .aJees, & es ceWes meesessdes doetsemeent *a8= as ps. cede senpochiasess seca-- *= "s la nosessem ca apads ie e.nors a peest raesere.neens de happe sgye . 682L. usa. ...se-a. esisee.d. eses,s a 34: net. uu. . a.co v.h.. as4un. es.ee.d.es as e nact. Korrosionsbestandiger und hochwarmfester Stahl unca...u a.< s.ee.d.es4aoca. enc Acier inonydable et acier resistant aux hautes temperatures an.e.en eeses ve.e. Stainless pteel and high-temperature resistant stee! se ee.g.s hses h - t .ss h easse s pece de. ace. - Hasenes. eedese. .e othes aute.sesssseg seneth= Mis com stens aos. tab. t .aans. ased tatose sueessessed d ., e, she s.sp.cis ..sse on i.es. .se .nea.as .s s- -- ":2

t. t hs. se p.c de. ace er p. a 6i2to pet. t...hs.ca wen h.s nmiss e 34 i nat.

uvt. t. hs.c wd seu si.sd as vo.. as4 uvt. Gusseisen (Grauguss und Sphuroguss) unck. te e.hs e esud es.ee hass.eu nesshun c ase uncto Fonte grise et fonte nodulaire l Cast iron with lamellar and nodular graphite re m e== h e*

  • ae.-. ih= i = m h.a
f. 5.adertaa. tema m .es. Am.eades hse de<. eks me. Puumese=h ==t edu.a. v.sgaesc9ist =h-h-a Alumimum-Gussiegserungen e,3; s ots. as benson Alhages d'alumenium pour fonderie

- n.ch a., d s oint e na es essa r v . ,p. .s sess.,s a Haste.esgt.sch36stattaa esse est-NthWemp - Stechange f enheesess des .s.s s-bmm Hastege.haascar o sanet HsB8. l ess.ctnenden Hartebeseech esbespeesso. - sesg8.steg. -E 1- " ; sles Puestsomebestactne - E o dartese .ess sesia'an. Harle.este oestaneses :- ; _: ' wesden, des an d.s go.edegese Protsamme -_,_.3 n _3 ,,,g A6s Gsusnesage has .am Wortopeas n.B saets ese ladlee.est mes to tm. Os t. Werte.a esad 3 staleach.se t

  • ' * ' - -^ . * ' * = Kupfer-Zink-Legeerungen (Messisig) n--- d. e sn d.co .h  ?; p.s.e .anrepassee Alliages cuivre-zinc (laiton)

De=s tese.ses cas sas omsrepsraes pees. ems esa;de apears peepres sabfe.es.de ces.eassom N iaast adoescom Copper-zinc alloys (brass) andeses des passess (# .pses , -s a.e.h.a ce nu d a ovo ne ese a ca.e,as. a r s,se e stac e #*sese ce. s u p . - 8 e 8.aC cesse<f e8e As samt home de meesase de dwseed seassgese est e comer 4 Ass ses sonoye.da a ps es * < p so. ms d. eses cene p e s a.. p. sees de -es e , esp.as.es l _ - Os .e d.ss ceudennes gese des .aaesars de desesd eesemises per desthoc sd epnew.e - _ ^ -- " coseegpass se .memes emnasess ese maesesre thee pese de maaeurs duas sempesas se fosedes sesr essee .adeess ,- se-- e so a es .aw.s a se

  • 2..w.s ss. seq es a. Kupfer-AluminiumIKupfer-Zinn-Legierungen (Bronze)

Alliages cuivre-aluminium /Alliages cuivre-6tain (bronzes) see ee pi e-h.e ac ses Tans f-aluminium alloys / copper-lin alloys (bronze) e.s*s.s.4 h ani..s ca.d e e uc s.s. nassae. s h. wuo..eg pos.es s s Sh h.ebe.r d - it. cesse:S seedeest o' She a OUOIF emandness testes es les he checked agaensa th. standasd test tarsch, f yese . - imm. tuncs.ooessei. .a.a= haedness tesesag smac8tesnes as te bechecked .eth INsauf.scesssipasesom Iest ha.o. .a c=: _ r "; si.ai e s.aos - os h h.ses.es. hs esuhs is. <msseams.d .hsm .e eseecov ss. 8 hea --* " ss'*=- Kupfer-Koetlegierungen, niedrig legiert a, = am,. s.s se -  ; e ie.ssna.. pas as m; -  : .shs.s. an ass e a s==** hs. h i se io e. is t s a es 3 samhc "- -- hase su . shoe. Alliages de curvre dc corroyag'~ lanblement alli6s Mought copper alloys, low alloyed 3 3 stahl und Stahlguss Stahl und Stahlguss Acier et fonte dacier Ac,er et fonta d acier S;cet and cast steel (E-Modut 210000Ntrnrn') (E-Modul 210000 Ninwni sacet and cast steel l_o-Wckers Lo-Rockwell C

s. :1. .i ;i. ;i

.I *I. c ..i: e . i - l. ~ .: 1. a' ' H':. .n. ' n', l *: l- *: :..l -~: ~ ---D "" "" """ ""' D,'.'.:' '. , ""c "S  : i I- 1; } .. -~ - - -- - - - - -< -

1

..in.,m. . . ,i... n. :. . -. ..a ,. . jsi l t .,- , .. , ., us e .e .o2 su e.s r. {-  ; -*** - j e + m 2 2 .ue3s 4o s sea x w ss i .. .... . .' ].1j' , . l ... . m .n. - 3 a s.3 .m au .r s.u .s F.r r as ,s ))l 3*.f l }.,,.lI .. . ./: . <.",.1 l/ r- .:!. - I l nc as .s e2 s . 4.e eso sr i. . -.,ed .!#ll .p .., . .4- . ,. C .:l*: 0,d-l .I.

  • . 1 I !

.4 -, g .4 I .* . . 3: ii2 7 p. 44.2 4 .s2 .s sse es3 s. eso

i. s oo

. . ,: m u t u n u.  !' }. -------. Q1'.,  : si n= = .a a 4.5.s

a. ~

4s sss ass o.s l 11113: 'a ** '* l . - - - - - - - - - - - - - - 3g " g *3 , :n 'O . ;g a n . . .. u ... n 32 .3 no . 2 s.3 . u. .2 32 .4 5 ss.3 2 s e.s er .3 ' 330 .s .2. Lo-Brinell Lo-Shore 3u u .2 .Jo s ,e.o .2 .3. 5 3, ,, .e.r .n,2 ,. ,su u .a, 1 I d lII,. ., f ,.,,r x .. - am u. S .. M } -D a \- g .'  !. l. .' .

33. soo soo ss.s M sFs sF3 to.

W ss .8 /)/ 1 - ' ,e... .o2 no ~ . l - 1 1 IT.1 i 1 u.s su u. . u2 .r.s . l- ,g f . + t . ;. ' . ; u. u in = .s u

u. eu .r. a u. .<

I / j, , ! t. .

u. = w u i.r.

. a u.2 u in .rs u.F

l. .; I m

,- t , ., /' 4 .- 4 .o . in m I > ,

  • f t
  • 3s o. .sou ..s

.i 31.r m ,e lj , 3s2 s .o u . . as< m j- - { - i 3 = o.. . . n. 4w .s.u. j' < t j;- m .:  : ./,/ n. . .2 2

  • J .a iu = ..

f  ; ;1' . me .3 ... u. .u. y .. , us m .2 ..s .o. s m ,

  • .2 1 1 - .u s 3

.i - {;+;- .. .. = .su = .eu. A _c , . . V .I + 3 =. m .r ii.r .s .2

s. .a.

= .. r .o. . . il  :::2 2- ::: ..1 / _iiiiL,;,- --1!  : n. == u soo in u4 i -. - . - ur ou .in, 2 u.

r. 2..

~_

u. ,, m

.s - - - ~ - - - - - - - -- . . 2.

n. e,, n. us s, s.s
u. ., u.

. mas, ,o .e. ,.

2. .o . u 2 u 3 327 32 2. Jo s 289 22 3s E1 92 go.s 38 83 92 2 2g3 2ene 3 .

3 78.F 4 20s 20. 83s 2 3"4 . 533 saa 332 r2 F2 .3 . 2s s 3 34

48. 29 2e.r 2o .43 g33 3.ma 2 33 .wo 22e 25e .s2 3** m 33 F.3 F 1s 92 22 283 s

. e so N su - 4 .es - . y s 222 s .s c . u.e, m., ~ . .. a s . f - -[-  ::: >= ~ '~ ,r.oF r> . ~ n 2e n.s n. egen tasses - '*2 84 2= ~s coesett.un fue ottees song.att desecteuse - . . _ F. 3 500 23e 22. F -6 -12 -20 ~' g, -6 -82 -89 -S -98 -I8 4 49 44 g -5 -90 -8F y .50 [ [ -20 ., _, ... ... e need..s.edgaussag .a. aus esal.gsesten - esad anedragseg esteso Stahl esad Stahlew.e e.us warssegowa enSG -30 _-,,,,,4,s., HM3 rw _ ] -, s sons wasa6Jes ., .. .,, - .F a o a- e. poest 8es at.ers et les funees ef'ac.ea sua aab.s et fesbasessoas mahes,80rg.s ces 8tIO -tS a.e .,,e.- [ -84 .auf 8er assoalloy.d a.ed som a oy steeland case stees se hot so ed as losgod and sho g y y < , m Stahl und Stahlguss Stahl und Stahlgus.o Acser et fonte # acier (E-Modul 210000 N/mm ) 2 Acier er tono racier (E-Modul 210000 N/mmf Ste:I and cast steel Steel and cet steel Se av na 6*e8 nesc g---__ wS to m og ,,, S u,6c uS to w we naS wac wS te av ws se- spea . se. mes,.2 i eves SSac 85 i 1 , #-ase* ep- se8,

  • _ _ _ . . __ - _ _ . ~_. . _ _ _ - . . . __ __ ___
  • wins 2 30 220 tot F WS 6u0 3 3e US 4F 0 ino 44S 232 34 2 480 4F4 SJ S SuG eIS Sul 122 SF O 32 8 602 342 328 102 SS S F9 5
  • 04 2 34 224 Je S 47 3 483 465 41.7 S18 802 883 SO S F9 9 SF4 33 4 end 344 333 34 8 4FS Fue 487 479
  • J4 2 38 228 SF F 33 3 4F9 433 SO4 SSS SS 2 80 2 SesS 34 7 .33 3g 3 aF9 FHS 45G 474 Sus 2 38 22F DS O 334 48 2 63.S Sue SS) SS S SO S SOS 349 338 3S 3 es 2 FOS 4@3 4FS esl e Slt SOS 488 S9 F St O 900 249 229 DS S 20 0 33 8 ese 3S2 3 38 25 4 FtS eS S etF 488 48 5 S4. 9 Gee 103 SE2 242 233 98 6 20 4 34 2 882 354 348 35 9 48 8 792 Soo 484 S99 83 3 584 Joe 233 95 3 20 F 34 S St4 3*, F 34 3 48 9 64 4 882 FOS SO E St F 36 2 as 4 794 S03 eSF 49 e u8 384 Fe3 StS 246 235 pe r 28 0 34 F Ss4 350 348 3S S es e FIS SO 3 S29 SSS SOF est 49 e 65.8 Sto F88 246 23F DS S Jt e 3S S Ste 382 348 34 7 45 F FSS $80 494 SO S 82 4 es e SS4 898 F23 SO F E2 8 SJO 2SG 2 3e 20 F M3 620 364 Mt 3FO SO O F20 See eSF es t SS F S2O F28 u2 2S2 241 22 9 3S S SJ2 3SF 353 3F 3 SO S 432 SO 3 F22 S9f sot 50 0 88 5 822 73)

S2e 2S4 243 22 e 31 3 S24 3e6 3M JF G So e F24 S29 St.S S3s 528 2% SO4 SG 3 SS 4 824 F3G 604 245 22 F 36 2 626 3F2 3SS F26 839 S2S 235 24F 238 36 4 37 9 SO S S2S sus S3 S 66 7 326 Fee SIS S43 628 3FS 369 38 8 55.2 F20 S28 Sfl SO S 47.9 82e Fee see 84.7 S ah 2eu 2ee 234 3S F S 30 3FF Me 3S e S t.S T30 S32 See S* O Sfe SDS S B2 283 2St 23F 3F G S32 350 366 38 F FSS 62 8 SS t SM 58 9 F32 53% See St 2 SF F S32 700 285 213 24 0 3F 3 S 34 383 3SS 38 3 52 2 734 S3B S28 62.2 SS S S3G 267 JSS 24 4 3F S SE S 69 3 SM FSS 42 4 23 9 S BS 355 3F2 39 2 S2 S F3G S43 S2S SI F Se e 338 S BS 2SS 2SF 24 7 27 3 4 36 358 3Fe FFE 62 8 SS 2 39 S S28 F3G Ser us St 9 SS F S38 FFF s2 S S40 2Fe 2SS 38 2 SS S 2S ee 64U 338 3sJ 3S S S39 Foo SSO SM S2.2 65 9 S42 JF3 2Se 25 4 34 5 642 Bo D 340 840 782 a30 SF.O S44 2FS 283 40 0 534 742 554 US S24 Se 3 842 FSG 2S F 34 F See 396 342 40 3 S3 F F44 SSS S3B S32 SF4 See 2FF 265 26 0 38 9 44S 399 S2 S 89 F See 194 63e SFS 38% 438 S4 e Fee SS2 543 $48 2810 2SF 24 3 39 3 um e 52 9 70 t See 199 43 8 SS 2 402 388 46 3 54.3 748 SSS See $30 F0 4 l 848 SOS S3G SS S SS. n2 n9 n. w. o. =t FSo SFO SS. Su Su ne so F SS. SS4 28. 286 2F9 274 n. 40 2 .SS. u 0F m3 .e .t .t u.S. S in SF4 Su HS Fo SS: Set etF .u.2 . .89 2/ 3 SS4 ese 386 4ta SS 2 FS4 STF SSF HS Fl 4 SS . SSS 2ne 2FS 2FS 40 S GSG e83 359 SSe S23 se e SS S SSS 290 2FS de a SS S FSS SSt A "t Se S F I .S SSS S29 2F S 40 0 S*A die 402 42 5 SS S FSS g 84 4 Se 2 8 SSS SSS S42 72.9 SSO 2eB 280 28 2 e 9. 0 SSS SM a4 3 4M 6 44d 459 405 42e SS 2 FSO Se3 SSS SS2 29S 292 28 5 484 M2 428 40F S44 F2 4 880 Set SS O SBO See 29F 42 F '45 FS2 SS4 572 54 F F2 S SS7 Ger 294 23 8 49 F 684 474 450 42 9 SS S FS4 SS 3 es4 SAS 2ms 2SF SDS SFS 54 9 F 3. 9 Feee 854 29 5 42 0 666 42F 453 43 2 SF.9 FSS S02 SS S St B %S 302 285 29 4 580 S5. 8 F*S SSS SSG 4_2 SSS 4 3G ele 434 SF4 e T&S SOS $83 SS. T 92 2 SS

  • F3 8 SSS SSS 4S 9 1F0 Me 231 29 F 42S SFO 433 ese 92 6 43F SF.F FFS See SSF SS $ 74 2 572 308 2st 33 9 42 8 872 4 36 422 SFO ST3 eS e 939 Sie 345 ett Sa 0 FF2 SSS Set SS S F4 S SF2

' 295 30 4 430 SFe 4 39 42S 44 3 SS 4 F74 SF9 SS 3 93 5 ' SFS El9 298 3G F 434 SFS 489  % SS O F4 9 SF4 648 ' 442 4FS 44 4 SS F FFS S23 See es 5 933 SFS 383 3edl 31 8 437 SFS 445 439 54 2 FS 2 SFS 892 SS F 94 3 44 F 50 0 FFS 6% S03 Se e FS S SFS Ses %G 39% 302 31 3 44 0 6a0 448 4 34 46 9 94. F SS2 398 4SO $5 3 FSO 632 SOF SS F FS 9 380 305 39 6 44 ' t,52 451 43F 4S2 905 SF 6 952

  • ,84 320 inF 35 9 44 4 SO S 754 836 439 Se t FS 3 882 SE2 654 4S4 440 4SS Se t 184 Set 495 SF S SF.3 DS s
  • Ate 322 DMs 32 9 44 5 684 eSS 443. FS 6 SS4 stb 47.4 eg g
  • AIS 325 4% F en 3 786 64S 688 SF.3 FF 0 312 32 4 452 SSS 449 448 SSS 328 SFg 34 4 46 0 to S FSS 6 S 49 23 SF S FF 3 u, SSS SM SF.S
S.e u, OS S 39.

Su See m its no .S .S .S 6,. .SF eu .6., . . S.e, 42. F FS2 - SS 59 .n 38 SF , SS O F.FE F

99. . 68 . . F.3 3 32 313 333 es e toe 4FS 4SS eS F Su GF.,

$96 3 D4 329 336 GSS FD4 See SM *A 2 FS 4 894 44 4 See 473 est 93 2 See 33F 323 46 9 Seg F94 669 S l@ SS e FS S 994 33 e 44 F 6wS 4FF 482 47 2 82 2 F93 98 4 6F3 643 SS S Fe a 398 ease 3 tas 12e 34 2 4F0 Fuq og 4 45u 445 47 4 SJ S 800 Sie 64F SS S F9 5 909 . . _ _ tes S Oe. we l. Send gun *e 'we uneaeg len und.m.dnviagemeen stahl un 8 stardgoss un mermgewetsten ode, osschawed***a ur1 =**metachaadete*a Iwstead Dee Weste swed guitig has es8degeerten und needreglegaerten stahl und stahlguss un marmgee allfTe cdSe Q**daa**d***a und =***ebehaadesten zustand lOS Voicents sont Valables gnment ks 4O09% et les lunetes d ocnot non 3 Sees e"t laeb0cneenet SNeds. toeges one Janeands e thaud et ayerst seatW eMe tamafensent thepsessgere 0es voieents SOnt walabJes g>oent les aLsess et les Contes 6sCnes non aJieds of Faebknevnt eSeess $0rgis laspereds & Chmefd et Stant seAD8 afn stasteppent thefsnegese IIse values see wafel hse eer:aSuyed ased lose many steel and (est steet we hot euSed or fuegod and 3hermany 6; 3 almet tooed*Ieuse I he valeses are valed for anneScyed and km aSoy sleet and cast stateen hot poised of fo#ged and Elemenea l'ealed tored4cn 4 7 e Werkicugstahl fur Kaitart>est __ . to w ac to w m c Acier A outols pour travasl A trood (E Modul 210000 Nimm') saic e. se e.v c Cold work tool steel _ _ _ __ _ l ,, .o ,o es 4 e, u. u2 ,So ,,0, SS , J,u2 452 raw 602 3 39 FS2 802 SS 4

o. n .S ..e aos 3e 34 .S u m ao u.

30s 32 ese Eso 806 344 35.9 FS4 483 SS S Lu%ckers Lo-Hockwell C " " '" * * "' "* * '** l ,e . .< - no m se ."e. .in u. m 25.7 Feo an se S 111,1)1:11,j ,;' . g. es + t' t g 8 -;  ; ;i 8 '

  • er 352 3S e a2 no wr

' m es 4.2 ..SF m m w2 eu m- n, D t -- ' ** ~ ar Fo no l_ 1 , j i,,} T. I;l'i .< !! W i !' m ~ ~ = ~ = 2a = = 2" = == == = Fe- ~ ~ "2 .  : i .e m m Ilt- 2. u. . e- < i t' +4 o- +' t " * . 4 e + in so 4 F2 204 x2 no .S. ue !: s22 aos 37 4 FF2 eSF se s ! ; M (e .;,lt . / !/ l. .: 8  : , t 3 an es are 2< s an x7 3F.F FF4 us est se e / f i e e2 4Fe .co a2s 3ro 3F s FFs ese se e '!?,M ~ g ge 328 b3 473 2to MJ 373 .ff f*f l* i Y$ + 34 2 FFS eF4 se e - i / " - ! . . l; .f, 31o e4 eso 2s2 m 3FS '. 'g,' , L4 . 1.J ' <.- . ' , ' [ . 4 [. ' i 11I , I 3 32 334 e5 42 2n u2 ns 3e S 3e e Foo Fe2 too ese se 2 se e .<r ' **** " 96 ase 2tS M4 ' ' g ( 336 3et 39 e F ee3 Se F . 9F ese .e4 ' '. }- 634> 3s4 38 4 7.e4 l}k' IIIIIIIIIII,4 , 4 - _ A 33e se 40S 2i.F 28 m Joe 3e s Fee 6 Sus to 9 _icv1J I _. I_< ,I L' fos 60 2 340 18 9

  • e9. 228 640

.v% . 342 ses 3s 38 9 Foo F82 00 3 462 223 642 3s2 40 2 792 FS4 m .42 .4 nS - 3S F. 40 0 o m .. - m m me .. c. o, ... 2sc m. . ~ 'a ~ == ~ o .S = Fn. n o .e.- -- ' i 4 s. m 3S2 u.S 96F

s. n. la .= =

u* n2 = = m aa e.. so2 232 GSJ 407 el e 302 FSs e2 5 4.s ree ests .ung i.hi.5 Aso.st 3 8 08 85 4 OW88IS E80td 8'.e.d a Sr.fd s' .Cs.FS ##L A.S .e C.(Deff. 354 808 See 234 654 410 41 4 See Fse c ,v. .s , , ,6.., .- ,* o a-. s. s )Fuesgs. ...c..,a*, d. 3s4 236 413 42 2 sos 62 4 m 30.. . . So.$ so n SS.G .S . n4 - Fe$ m $2 e a.s . . . . . o.im. . o. 2s o - 3eo 982 See 240 20 4 a.0 ese . sed Ih.een.ey t. t.d oceedet.oen La.e gsa.s .e. th. Susomang 8.b6 m .o m m -F -> m

42. F e4 . ale Feo 43 2 364 244 21 o 464 42S 2 Fu ue m 4.%S 433 63 F

.. Si.e S m u. m em u Ss.e .. .F94 o2 388 the 248 29 F .x 2o Sie 60s 431 439 ele 808 n es es usa 370 see SJO 2se 22 0 670 43S 44 8 820 m no m m n3 .n m o 68F 44 3

u. 374 s72 S24 n2 .a o

. , , , , , , . , e s, , ~,, , m in u 2S n.4 22.F no 674 m 448 44 o .F S2 m4 S32 M.lessef h Syn.tsed m .n m ne n3 m o.S o .52 4 4.S , 0 44See G 4404 UNS AISI 'ies 32s . 4 u .3 Sl0 2eo 23 6 Geo ess 45 $ ajo 354 e5 4; 332 g2e 532 262 333 ag ,2o.,o ~4 4S3 e32 e 2io c,12 8o 3 s*oi 130 4m o3 . 3n, m u u .ag2 .4 4,.S a sS, 65 9 2o ,., ,2so c, 2 m a u .3 e. . 3 .u. u -s .u . 120tse 122b1 M290 C, 92 M 16s CaV t2 awo sie S= S40 ne 270

u. se m em eF. . .

382 252 eso ame 4a s eso oes 67.t 123F8 a35 S42 272 25 S M220 crV Mo t2 2 3e4 su 692 473 47.2 923F9 M 855 cav Me 82 3 snD s e See 2FS 25 0 m 4Fe 4t4 80 2 I 30 402 o2 3me ese See 2FF 2e e see 82436 5xD 2 '" # "* des 4tr ,,,, M290 ,,, csw s2,,, m .2w. n i ss c,v c, ,,u 2 . 402 ,o - SS2

n. =. = 4. 3 e4 ,3 4 de S

.2 o x los c, c. M. 2 doe ,4 m ,783 ,1,F.4t ,702 .au 2s0c.co .,2 i 3o .os os 4. m u, 5 ,o4 4.43 S .d.e .,

u. , oe ee m . = m no = m

-~ -~ ~ ~ 4.. .S. m n, u) F.. soF .. ^^-[ '_ et2 ess 54.* 2e4 2s s Ps2 Ses se e nues sur t s .nd.e.e. Sc m.*t. sag.a 1. . . 4:4 su Ss4 2me 2s o Fe4 SsS c.,, ., ... . < .. q l y iS j see Joe F,es 50 2 einw asuses - - - cess.olson fu. othee es.,*.09 du.Cl8088 42aA ese SFO 302 29 . F20 S2e -6 -12 -20 ' 5 s.0 -29 gag -6 -82 -19 -21 , g 42s $43 SF6 30e . .,g -5 -ss -es -2S 42s 30 F F24 See S t.S ',00 -5 -10 -17 -24 seS SFe un 3i .a, Fra Ses S2. s 43s e.F See as4 no W -5 -80 -g -16 -22 432 t% S42 3:e 3 s .3 se e n2 $50 SS4 S2.4 600 _4 .,5 -20 4 34 SFO See 52 s ,g ,y _gg e ns 8F2 388 $ 3_. no Ss4 S2 e 650 See 370 32 2 FM Se3 100 ,, ,, ,,3 ,,, i m na w m m N See S3.2 US 750 -3 - 7 -12 -8T *" "5 **'

  • 32 * #**
  • g

-3 -6 -Il -16 442 eFF Se'2 32F 33 9 742 300 444 SPD 594 330 SFS "3#. S4 g.,0 -3 -6 -80 -15 444 333 Fee se2 S43 ese Ses in n fee 900 -2 -5 -9 -14 4,4e seF S4 e i er2 sese 3n 2 3 .a Fee Sea S4 e Sw [ s _ _e4. _suo . 3sF 3 Fso SeF e . _42 _ _ _ _ . _SS. _ , g *

  • _ ______i-++-wme '"*--N 7
  • _ _ _ . -

i) , n. a. e. a. n. a. e. c. :. I g ....,........,........-......................... 4

a n.n assas' amass ansas sesas ann nzas ssans a. . man :

l q ge3ese;ee-7.l, '.:.::. s. n. .n. . 3. : n..s. .:.: . . .. . .e. n. .e.e.n. u. . s..a s. s. .u. .s:..a a~ A A A A.n..e. ,e,.n. ~,:, .a, uu-gg...~. ) n .: . n. 2. n. . s a u. s. s. a .s a. c. c. e. n. . n. . u. . i s a. n. a a. .n g g g g g .e.e.: 3 8 I I I I t a l i I . .n. .e n. .u. . .n. .: a I .....,,,nn l I e g g g g g g,,22, ,, *

  • 2,2, n,2 2:, , ,,2,2,R, ,,,,, * * :: 2, n,,R, , g yg g g 2,2,:", ,, , a gg gg s,,,,j 3: } [y '''''

r I . l ,gss,a,gsgg~8sg 1 , . ~ g i I i I ) , l ' L: i I  ; 11 1  : ,  : i ............,.....,............,.,................ 4

I  ::::: non nan ssan nas: nur n n enn. nen unn a ..

l}e! . l t i.d: l , , ;I s e s s m a n n s a t z : a s.. u. . s. g a. s...s e .n....  : e r n. . .a n. . n. . u. .. .n a. n. n. . . ...e.n. : - :4 3; , )y i j scans asan as:s: asus sass: caer: enn: utaa un :nr 3a 1 il I 1 2 i } f l lIIII !!!!! HEi!! HEi!! !!!!! RE!!! lill! !!!!! IR AIX lill! I f !d 3 l

I l N a

I t ) , i i - 8c ( t.] 1 t  ; y-s L 4 j { } i. 5 i uv oc d = 4~ ll i

4. :,

~sI T _s ";p

i. .\  :

3 nae ,ee l3 .R, ~S ~ S .W, e (,.) -: 4,l.- . . ,i - <r &1.313.3 (t 1 =* Tx- = '~ ' S e -ll. = ]:l-il sil;ja{. - Ia > . lJ - ' 3 3 t g ., , L f' d N ~~ s i. !b ! g s h  ! hhhkkR$ k g- 1 p e ci d .. e.-o= \ al' I. t 2 Ia h *-- l* =_ \~_ I N, \ . a i , ,a . , t re e b~'ll i f$,, l 2,R,E,R,{Rn *I N s_ g l ,i } .$s li u l-si kli X: j 1! 1*  ! sssssis  ! . , g .a . . . . . . . . . . ~. . i 1l[3 , , . h. , y g;; g . - --= e. - - e. - - e. ^ [ y ,. [ ' .g e .., g 11 To b $ L,  !$  ! 5 EE! [ 3pu i, . o ' s ri p h_. _._ s = - ai s a .. ' k, il ]I I a!", [ ~T'm N ! wo5U $ .- ~ ' v .c=s g e . m m E'. -a , x s

j

..I Et. 1 m .,=3; ss n f,5li -ug! .j I peg2' 2 - t ix h:Ii %.s X 'l

  • I, g coco 3

cc58: (].3 = 1 a ,- L]t agne,j 3 ~ of t- -x .xe - ga 5 i. 4 -l'3 i .,,ssa 3! (l o : 3a! s .%ea"g e 3-g. r y= 1;_i e-o c i i ch ,s x C= ai- a x G U },.1 !. ] 2i ,. l 9, t M' g M "g ' a C' T*~ g . ji (-V i e ..!li:s j[3: ' (b eS3 0 ' -1' ~ l- i t a g -) l setc..::: T,3 *'3 j j $ 0:nl L}::$= .I i 3: . , l. ) s vs:s3e i. i i -e. i- i .i . i i - ' i . . .i. i~e ~-.- i t e 2&:32)i 8 lif:: ----------- 2 0 Korrosionsbestandiger und hochwarmlester Stahl trimew=nesa swa wateve der um.wiene.mn.en Hv - est.: tw dr.a.e.- , e Acier soonyddble et acier 16ststant aus hdutes temperdtures ***'*"******** Stdinless stcet an high-temperature resistant steci 8"8Wpred.hn & faGum W. cowbn & mwmios NW Sa) ob8mun mc fladam.emi e 3 9 pe D pour troo. tsN9erent. gproupe. eracier. 2 (E Modul 210000f#mm ) a spia-ue se ih. Co.v-*. -e Hv - ntas ser thr aumeni .e a ereu .hh i a ew.c. o p .. .. w ,,u . c i s, .e , . e e.ee u. ,~ .e., c ..-.~. , , - . . . . . . . . , -. e- , ,,,, , _] /g g,e,, Sm n.a

21. De n;
u. s 13 . 400 Mr 14 . ra mh st. ed% 49 . P

..j> /. W Rorvo.conab.$t.ndeger und l su2 23 22. et W ease 350 33.s 33 3e 3 102 s2s ads 45 3 g I e .rJ / ltOthw.imlester stahl ss >S 9m 23 240 22m 218 esp 99 .h 20 2 we 3s2 Hs 3s 2 ris re s2s 4r2 e g '* ' [ f' 'Mf' O Auer ed fonge d acaea - u2 244 2n => Ju n.s ede w. 3s n.s 343 u M n .s roe s19 su 3.m. 4.d.. so , 7 'lt ' . ,1 %- - e faabi .. w ,,,,taJhage ,,,,,,,,,,,,s,, y se. st 25, l'e* 2 2s so %s Sts ,s, .2o u. m m, ., . ,M e, as. ,flo u.al m so e, I- .,_ g g g,,gd ,. , t

u. m .oo u.

. .. 3 m , ,.2 , s. s ,) so . < - 8 a> * **= ' - m, m m i..o.., u. m n, u. su, , se ,u u. n2 .. m - u) ,... su, ss u, u so. s, s s 2 } e- 1 , e .. -~~ ~ a.- s .e,*a-o s no ne aos nos i 22 s .20 n. sn 3rs 32 s=2 j** g ***' ~ si r su m m u. n ,r2o n so m u - g 6) stees .nd Casa stees. s24 2 *A 24d, 24 m.5 3 m., % 3 t.

u. 724 sri see s23 8* '
s. " ,,w ,.o, sn 2m n 2 n 3 .e .n ne u ma ru sr u g , g sn m

m m n3 m nr .n m u. -r n. ,,.s, m, ss u. . w,.- ,_ - ,,,1 ~ sue-e- ~e a h

u. m ur m '-*-'---*-'"~

su m nr . x, u m m => ru s.. ss, s.2 u n  : d- ,e,l,- - . . u_11 u,,d,,e.u u_ su n. u.3 m e, ,,

u. m. n ,e,

- u. n. 2.. ,3. m, u u m , . n .m,2 s sr u. __e,,,,_._.,,e s 5. 273 23 2s 2 .M 4 2 3 2 r3. .ur srs s42 ,.o u, m oo -, ,.. m ss ., .o .., m ur m n ., o .a.s .o u .s ,o m ... .m n. on u, t ream t,es Dans u ,,r.ans m, eu.e os a t,ee ie.or eu,d, . . e up sae 280 2ro n.1 2 44 et2 3er ee t 744 .23 suo ss o e M ts settd ($se At.wetheregen dureles p.esqu'4 S00 to. tes de- to 500 4 se the downstsons of Ihe !:* ni i n ':: ll:  : ll: ':: 10 *,:  !", , t- a- a- a- aa- sia ~'~ ~~~>,~_~ 'a , *'~ w ~ + a a-- sse , m no .s, e, o, e . ., , ..o m. s g -e,mg d m ,s ,e-.,en,,s me m. u.g .I ss2 2ft. 21s t 2r. 2nu 2 r .3 s2 42s 42b 468 e53 42 2 752 .4s .s p. sso. , ,,,e , 42s 7s4 S

  • /.A. m ss,e m

s. m ,2. .s. 2.r , o, 2. s.4 .u

s. . es

~o o ., e ,s ,s .e .,.s.e . o. 3 j o~m. , .em,,e s m .-2wHmo G,p -o- . s sm 4. . u, ,,vio G. p,.,G,_,G,_,. .

  • o2 2w.

DMA Jei 2rM6 2. 2 ts M2 0 e se 442 e2 47.s esa 43r r.eo F 2 ee rs 1w . 54 si e sr 4 E samp6es 500to - 234 Hvte GaupperGavupe/Geouptu m I w 3. 2 a.!  :" eu

?

.4 s ou so s. 2 l: *' --

  • -~<h

"-'t--* d- t- w-1 -- a 'a o a = " -- -'-- da ^c~a-o'r o-= u -- < we- *p-a w== = 'h- t- ~i-i = ~ sto .aus in 20 s .ro est eeu es . 770 .ae oss 5. w-hst*>Nat>iuawg "* d-* u *d'*ndu ' * - - 558aa0s st2 att bss na se,n sa3 es s ro. sie sta 3s.a n aos s,=n ao s si o .erz r4 r es ase ear esa es e es r 112 ir.e 17 riz Fs. se.r s sw 2 anss b repome sis 3es ja 3 r 4 r2 ase 4s e n. ris se s im utassen Harleteoreech han Dans da gamme superseure des 8n the uppes hasdans sange on seu ut no 3e . .so ers e gegen zeegt wch des t a Wert a6s dureses pas consee.14 wadee.s to the other hand. the ta value es

e. 2 7+i tu ss2 J24 n3 3o ca2 aie 4.st s 12 s n. .se oo r me,6stoftet,hanyge Messgros apparad comeae grandesar de sewealed as. measused wassatese s.a 32 ns na coa u.

. 5 F. res se me sure dependanw des enasessam depend ng on the matesamt ',n. se. nw Me

v. ns

.me am.i a 1 es.4

a. ern re rs2

.o 3

        • I*'""*

sio 32 . c e.s a tt er 3 v. rse o o .s two b4 ut 33 4 .wC 4 tis ers 47 Feu *N"** "' " "

  • M2 nr rt>. 13 N' "N 22s 33 e ea: 403 are er. rw2 773 e3

( semples 150 1o - S'Jf HVt u Gauppe/GroupetGeoup st sw nw ra 33 r s0 an 44 2 rso su4 M2 .u.4 74  :. I samples ISO 4u - 64d 68Vt o Gruppe/Groupe/Gsoup us a su 34 c  ;, so.4 aer 4a r us. 77 i.

s. M4 215 34 3 E. 612 *WI 4. s7 19. Fles s.J e l Dee unegewesteten Hartewerte l es derfesem ea eselse des valeurs The Conwetted fusdreou vaeues ed?J 34i Ms 34 . Too st. 41P, ! ed O ena0 Dd2 28 zeegers wesentisch gaOssere de durese convert.es wnf nesse- desplay futuch tsegger d-flosen unewah.mse mens p#us nnportane,s ces ties Hastemessungen are stahsen sun weathe mich house (kneentungskurven bestehen. Emeses der i e Wort vor e.orn am otsesen Hartet,eeesch d e Moglechheet, den neu gepsutten Wes kstoff eines des de os desgeste8iten Umwortungshearwen zuzuordnen D.e Waels seesd gui4te fur korsonaonst.*estandege us5d hodmass* leste s:ahee en earnegewalitent. Nur des mesures de dureld effe(fuee s suf des assef s pouf 3e sQuels d n'esssae pas en(ote ds tourthe s de gesL8eensedetene eased m.rsnet.eStestdettem Zustand C6MWs#Un. ja valeuf ID. sufload ss elle esi sduee dans Ia ganupe superesure des duresds, permet afastse les wancents sehrli eelahJes poenc les sLeer? enosystablGs et les as octs 16srMans sere 9easeges geneperatures, buer de enasessau noeswe.e8 stead eproesee a fasne des stors courbes de conweasson furgds ou Aun.sids A chaud of a).nf sutas east tra4 dement thesmague The erstues ase waiad lus staero6ess atsei and hagh tempesature senastant steel en teos se,80ed us forgod and When memog hedneu on sleel los arteach sen Coseves saon Lesewas e mest. especaa y sen the uppes h. sed nr.eem. sty tisas.J on,ms.tause ness s ange the is, weave oftess the possatashty of a.ocatang the newly tested masenal to one of the t#esee co,ewess.oen (urses paceted 92

Gusseisen mit Lamellengraphat (Grcuguss GG) Grauguss GG und Spharoguss GGG font 3 a graptute lamellare (lonte grise GG) Fonte grise GG et fonte nodulaire GGG Ccst iron with laraellar graphits (grey cast iron GG) Cast iron with lamellar graphits GG Cast ston with nodular graphits GGG LD-Brinell .- -- .- . . IIiIiIii i I~4 jj;- wmstion u, ,wn 5 n+* t a i.  % "f ,,,  % 'Q' '" {,""L."*-. G" GG GGG

- r_:.- D; 4 , y a t

t p f ~e ~ ~ *~ ustes no Pe.s t"~ Sy mtaue ("" -- ~~~ ~ - - ~ ~ - - - - - a-.m i i4 i ' ' 400 883 838 500 t. { 202 .00 20 3o. I i4 44 i

  • O tsolS gg g5 .02 ns g32 s02 9 . 204 02 23 3sg

- 4 * * ~ ~ 3 m ~ ? , l *i , ' i own GG 2a == "m su. 2o ns, 1, ni ,u,,.s e 3 a. , j*/ i , lt

i 1  ;,

i o w25 oww GG 25 =* GG35 .0 n n. o, so, so s,. ,. 3 ,.,o,. ,a ,3,, j j {} l O w35 u2 e2e e3 U2 2a m m l* GG40 s) s 32 l ' 1 ,- Oho.o , ese = s22 m m See 200 m 2.s 2 s, s. .e 2.s, 325 n m , t! m m m. j ;i , , , ., . _j i u s m 2.. 2 .

  • '* I *-* #

420 een I , ,,, ,,, . 12. s20 20s 229 20 30s 333 l -====<=====% 422 02F 944 s22 223 22 33 no m s2. 20.F 2o 22s 2. 3,03 os m m.

  • 2 no 20 22i m u, 42d 931 m.

14 su. s2 22 229 .a.2 390 343 (p Werte nrws gutteg fue nudeeg*._len u-id ne.=doglegiedee G*auguss tohn. Warmet.chenellung) a kt s33 se. s30 2s4 230 312 34 m ,.m.ss een um o..w t ot,eassee d. i.<>=a. l l'd  ;,85 sg 2l; 2n e.30 n m 34 , e s . e s .,,,, .., -s , .a m .. a de,, s .e s -- s ,,m ,,.o. . m e. +e-n. -wm a e- s (*u ** '  :" ;d' 'M ": n; ',", n;  ;; ,.*, , s. . .0 ,,. ,,, , ,,, ,,,

ges

, 442 est s42 243 42 32 v ..u s . .w.a u ,,, <ne ,,n -a.uo, d ,~s k.- uo,-1> ..n=~nhame h*=ia** ac uw'8 m ua is su 22s, 22 2s u 32s, n a3 m m m m n 2 a. g o oin um I .an. tans s,. o a .o saia. m m m se. 230 se.1 u. u u0 3n 3ro 450 e sso 232 2sl 50 334 37 es2 t e.r 84 824 ss2 234 2s3 s2 3 r.3 .s >>a > ssa 2w 2ss s m aw es2 s.ss i sw 2si w. Gusscesen mit Kugelgraphit (Spharoguss GGG) as. m m ss. 2.m 20 a0 .s. s we Fonte A graphite spheroidal (lor >te nodulaire GGG) " y y lsy lrg y 23; ty .m ur Cast iron with spheroidal and nodular graphite (GGG)

  • m s .u is. .r3 su 2.s 2

. as we er sa 2 m ' 2 '" " * * ".a u. 2.4, (E-Modul 170000-180000N/mm ) 370 410 93 871 ,10 21. 239 2F3 3r2 erz m er sn m 2rs Lo-Utmell ~ m . .., ss*,'. ', ,ss, 2 m'r s 1 i .  ! .c.s s...,, u. h., m.<, * ~ ~ = == =>

;=._=i -

r--D . ~~+ ~ n-om s r-++ " ""

'; =

n,.; g: .. i taa  ;"', :n

.,, , u.,- uu s,- r->. m. .. .. ,,.

, , s , . . . . . m - ,. s ms ,, , o yo.o . GGG .., m .u .o n , s 2 m I  ; . i  ! < , o roso GGu so -. . . ,,, .. s , ,0 ,,,, , , e i o yog,o GGG ea) = He es2 m s 52 2r2 23 - +',- I I E 07070 GGGr0 N =

  • tse e.4 s.2 e.s 1 s.4 274 30s l- or=> Gm oo = m m s- m m i j , ;  :

4 m n2 m = w. s 2,. m y f j :::.__ y', == "3 soo = m == no y! {, , .

  • i 3a.

Duanessue t e madeeen St.hiayw t.twau*a La , ' ~ Corren*uns poent des etuncs en d ausues t h. Wo.s. swwt uun.g 8ur Gessasen m.s kusc+pasdat (S t d.*"'tlussi ""'*W""' "'d "**d"G*9 d' C e t en for oths, omsset t du.< twen 35 g ss IRA st.503 t$suww.4. ==ha o4>*aslehead* I*1a*#8 40o -6 -t2 -g9 -27 493 -5 -81 -18 -2S 8 es .eneurs sone .a'ataes sw>en nes toners a yas>Me whon=dal4 noom ene,**s en tant >sement alMes s d at** s .,no -S -10 -97 -24 f HN f693 4.emgeses .oss retsacan t a den-* SM) -S -80 -86 -22 g,oo -4 -9 -8S -20 lb. .alu.s .ee .aluj fue tatt wo** #8 h8 sid.e*O*ddU'dl.h.t. (unamoyent asuf kier aMuyed; amwdang h3 ,,.j) -4 -g -g4 _g9 Det4 tus) I ases.gdes se. thei alas.e Idde -" - - --~ -- - se 's ~ y., m_,-.e% ..Mr J' "I - Alumansum Gusslegierungen Aluminium Gusslegierungen l Alhages d'alummium pour landene (E-Modul 65000-85000 Nimm') Alliages d'a!uminium pour Ionderie (E-Modul 65000-85000Nimm;) Cast alum.nsum alloys Cast aluminium alloys - LD-Unnell -- + fh  ? i be h 9 i i + 1 4p HGB .e---, to .e ete -a, to a-Hal to 648 4e.. LD HER .e-- i o  ;; ==r--Dt.j I i 4 e i 2un 2F JnM  % aus ts0 SUD 13e e e l le i U l 4 e i 2o2 2e m oc2 t So2 an }- e e /. Ie , we 2e m.2 S.F S 406 e4 e.2 93 So S00 $n t 3e , i ,

206 29 34 SS I 30s Se 408 33 Sue 135

{ 20e 30 j f, , j i , 2 te 30 330 60 450 412 94 95 Sto $82 13S 938 }i i 212 38 392 to l . o , } 1 , jj I jl 754 38 334 es es 404 4s se se Sed Sie 831 ese g als 32 36 [ SSS 8 38 /' l l fgl 288 32 JIS 62 418 SF f L! no u u. 63 .2. S2o .. -""1ii 222 33 322 63 422 99 S22 045 l

  • .'I Ij* '.jfjj'ff

' 324 64 424 500 S24 142 e { 224 34 S28 143 " . 228 34 126 65 426 fant S2. .u g ~.-===.%-. n. 35 a. .S .2 toi , S3G 33G 66 43G 102 t4S 23u 35 845 232 34 3 12 SF 432 903 S32 i 234 36 334 SF 4 34 30 3 S34 Set 1 3 36 68 4 36 104 53e 941 236 37 233 31 3 34 6fe 4 34 IOS 538 848 69 440 tus SSO I44 240 38 340 242 40 342 'o 442 507 542 See ISO SSI j' 244 40 344 FE 444 IDF toe $4a 852 P 246 es 344 Fe 446 48 348 F2 449 100 S48 353 ,$ 248 F3 450 e80 SSG BS4 250 42 3SO 252 42 3S2 73 4S2 559 SS2 ISS A 2S4 43 354 F4 4Se 352 SS4 ISS ' 2% 44 3S6 FS 4% es2 SSG ISF 8 44 3Se FS 458 953 SSe ese 2SS eS 360 76 4emo tse S60 ISte 260 262 48 362 FF 462 SBS . FF 464 196 0 264 46 364 266 4F 3sie 18 466 liS 268 47 168 79 468 9SF 270 es 370 FW 410 $BS 2F2 48 372 80 472 139 IF4 20 274 49 374 88 474 120 tre 2 274 40 376 e2 ere 828 SFe 22 278 So 31s e2 are t22 too 22 280 Se Jeu s1 4eo 322 e se2 23 282 Se 382 se es2 123 ese 23 2e4 SJ 3s4 e4 484 824 see 24 2e6 $2 3ns eS 464 12$ ese 24 2ea $3 3aa e6 ese 82e IIso 2S 21sd 54 Juo SF 4 tog 827  ; tm2 2S 2s2 S4 192 af es2 e28 see 2e 294 SS 3we as ese e2e t ie6 26 2st SS 326 se 4e6 829 ties 27 Joe 56 3wa 90 eies 330 . ?_ _ . ___ __ C1. eveolue too endeeen % l.ingen titusigen Curset toins pour des i tun s en d'ausses to \. I lg deres esons Coneetamen f.ee os4.ce weat.at t dwe(tu.een 2, [ _y _g4 _y3 _33 g,, y,,,,, ,,,,, g,,,,g ,,, m - - Gussaegeoeungen na(.h OtN I12S en wwgutetoast und uneesguteleen yjo - en -13 -22 -31 Zustand 3w -6 -12 -20 -29 -b -S2 -19 ie s va eur s sons eninF>6e s puun les noseage s d^atuneeenmeen pour condene d ape 6 s OsN t12s en essi amekone ew -2I s et no, amdreund aw -S -81 .5 -25 wo -S -10 -87 -24 -5 -80 - I t> -22 the values mee wahd But tast asumensuen assoyS actuedeng to OtN 1125 en a soon heat treated mood a Sw quesettned and lentpoe643 cond seon e6 s a g 3 j

$,......o_.oa.na..a..a..~..,i 3DDD3 33333 33355 s0UUU UC333
,

3 ' '1 E

1 ,i,, .i .: : s. s. a. 2 2_ : s_ : s. s. s. :. :. s. s : : : : e. :. :. :.

i, .. 3 i na e 1 o M 4 a 3 EaI s..... a m e .a.n.:x.n . ax.x5 e- a s.2. a22222 . 4* g ' ~ T I C, -aa......,.a....-,....a..--...,..--..a..~..--..-1 3 i o 1_ s2 ass iseer :::::::::e emer:::ree eessa saaas assas suas : i  : - e i e n e 5 - __= , i,

  • y s_ e a_ s s. s e. e. : ~. :. : :. c. e e e a. a ::: n_ _ x_ x. . e_ n_ n_ . :. :.'y=?
. u., . x.2,g :. : :. :. :. :. : :

1 L e i 2 s s w q ; s e, e, e. , . ...  : e e n. . :. :. :. u. . s .a. n. :. :. :. v. e, a. u. . s. s .i....  : : : :..e. a : e. e. a. u. s. s.. i. a n. . n. s. ; a g s a i. t g .-.,a.. .,......... .... ...,...-a..... .--a--a-~~. 8 ,  ?  ; 4 n a l  :::nn azas: aa::: ::::: :ssaa assu ssa:s nss; sasss isss: s: 1 i. 3 r .e e ,a :s.ea _ i, see::::::: ee:re esssa asan :: :: sass: sass: 23:ss sn..s.s s.- 22 f] 4 4Ijiai1. ofo ses a.a - .ma a g g --- g e a- r ,e e --,e ,a ~ n: n,-un gxxxx a - - p-us, - gaxx gg e,e:ee - -- gaxx gg ga ma g3 m.: 3. ~ co , TI g% L. 3 o ~e o .? .? is @ .c > 3 ! es - .....aa------aa.....; J ,g ?-

  • aa I  ::eeseun:::n u u aa:l is ... .. 3.,

l.jlil'2 3 uO et 4.88 ec e.' i. :::: :::::::::: ness ann sun aans ssssa ::ns s:23: s! 23 .i 3 t*

  • 4C
  • k w.

3 Cn o, (( L t ~~~ gase Ak f ares aaaaa a ~nus, n ** :::: Russ sus e::ee 20:23 i; I a $' I}e :- .

c. 3 c. aaaanaaaaa~~~~~aaR ik 2.] eI I

g a=o xmu - ~~aaaaaan~~~aaaaaaa . d-s. o . ,y Y r .! J- } } .t E ~~~------+--- ---- I  : ' -- - - - - - - - - * - - 5 oooo U. . R;;g ;;;; = E , 4 _,l ....nnnun r.. .---- ---. 1 -. > .P $ .P .9 9 9 9 9 9,, g , j 3 m n , , , ,, , , ,. =: u ky~ . . . .-. . _- .g_ +4ll i , 4. S. R. A. A. $. 4. y_ nn~ ^-

j]333333333 i

8i 3u .v... -_. 3-- I l o smo g ---- - . . _ _ T~ ggyn.eo I . . .., @ A Q. . _.. . _.__. _ z ' o a I 5 j

  • y. ... . -_____ ,

4e f- , ,s uccqsse f 799n## - - - .  ; p sassa

. unnunnnnn ssa - - -

a f 8 4 4 4 33 l U' 4 DE a 2 = = = = + - - . _ . K nh'n '3 G * 'd , 3 33Qq. ~ I,1 423 $ 6 s j E a ' g . . -__ _ . _ __ _ , f . .\ .- - . m - ,c,,k, en ,, \ o-- p, 5_p . ..s .-.-..y__. , 3 ., i u .u.n. u .$,, .t ,6 3 5 @ ,g _. _ ... T.'. . 1u~. j, i,pt aa333aa33a p. i. o *, . 3 .y* 9 C l"., 4 3 U- e - ~*~'.--.+.,_.--l.'~.l.i 8 'stI 4 -) .1.- _. 4 x -j w Ay , yCg 3 Q ~ . g; g a avo 3 - - . - - - . . - . . . . _ . _ . . _ g g3 a 3 3, 4 y= x M - l 1 3 g w c '3Q - r -+- gj, i e e* g @ o..oe n a

  • g l

-'+---+~.~+-1 2s.,. 3, ,j-.__-__.__- =,,=,,,==, 1 ,: -l e nannnnnnnn 1 $ D -V 7

  • [;{
    • . - - - - - + - - - - _. }jg s, e ==o , 4
  • i i,,

S23 5V$d 3.. MTC .....=.'% 5 = - - _ _ - _ _ _ _ _ _ _ _ __ _ - _ - - - 9 7 9 V W W p W_ 7 - -- ;W _- xy-W , -- - ~W  ;; ~ -W _- Kupfer-Aluriunium-/Kupfer-Zsnn-Legierungen (Bronzen) Kopfer-Alummium-/Kupfer-ZarwLegierungen (Bronzen) I Alliages cuivre-aluminsum/Alhages cuivre-etam (bronzes) Alliages cusvre-aluminsum/Alhages cufvre-etain (bronzes) l Copper-alummaum alloys / Copper-tm alloys (bronzes) Copper-alummium alloys / Copper-tm a!!oys (bronzes) l (E-Modul 94 000 - 130 000 tJsmm2) (E-Modul 94 000-130000tJ/mm 2) 1 i o Ormell ao , - . . . . l-----  ; ' '  ! a. ao e a. a. e_ .I

I;>;.==r-D , ,
t i ,,-
  • ,e * * ** * * **t 3tM) did) euiJ B.0L *inah 940 es)G 222 g I t # l
  • i 8 302 SS 402 80F haJ 962 eG2 223 4 8

! e

  • fi* e e , we eJ 404 ene 504 e63 604 225

, t a e > - 1 I l e

  • 3os 52 44 u6 309 Ma6 $6e eOS 22e e l6  :

!  ! 8 i + 6 3tas 63 4ene ele Suse see 808 22F I* *l ' * ** **i* 310 44 480 199 5e0 e47 480 228 I {' * ' I 4 ' ' ' 392 SS 492 19* 582 165 992 230 l I # ff'! ' ' '1 f, 334 314 en SF 404 484 8,3 see 594 St6 ?hw t<0 Sie 896 230 232 t l ,' , , jj 'f' 3iS e7 4:S e:S Sie sF2 e:S 234 ~*~ '~ 320 se esa sie S2o tr3 s2e 2 35 322 og 420 g8F S22 5F4 422 238 324 FO 428 est S24 tFS 824 2 38 32s Fs 42s 920 526 SFS S28 23G 328 F2 48 529 S28 IFS 628 248 3M F3 e se 022 $30 SFS 630 242 312 F3 4 52 923 532 ISO 632 243 3 3e F4 4 4 424 S 34 ISS 4 34 244 334 FS 4A 92S SM 982 5 38 244 3 30 FS 4 38 026 $3e see 4 34 24F 340 FF e40 927 540 ISS see 244 342 70 442 02S S42 ISS 642 250 344 FS 444 s28 See ISF 444 2St Wafthloff f48 Rustlesolee Wo.6s8osi tes plusJten hees 343 to 443 t)G See gSe gag 2S2 N+s afu snesdraeu DetJ Syseet.soJe D&N Pgo du ee.,edo,e r>ird S ysy:(, ode [ sere 340 Se ese 132 See tipo 648 2S4 Mate **di Foo S ysnesol Mage,i,s peu S y s,it3ng 3.,o gy e gg, a33 g.,o 195 650 25% 3S2 42 452 9 34 SS2 SS2 052 2S4 7 o t tee, C=M S 2102b Ce5n b 354 S3 4Se s3S S$4 983 sSe 2S4 2 (Pd l8 C=M S A s 21030 Cu$se 8 35* ** * * "* "" # 3Se SS 4SS E37 S'A IS4 SSS 240 2 8WO CM S 2 09t43 C=M 9 Mn *U * * ' 2 9 U"s0 G CuSn 10 3 SF 442 SM SE2 IDS 482 283 2 09 % C=M 10 te 2euS2 G CuSn 12 3.67 4 es 44 see h4 1SS see 14 2 05818 CeA8 8 8 94a 2 8 0t>) G C=Sa t 2 Ne 36e SS 464 642 ha 208 Se6 284 2 SO63 G C=5n $2 6% 3sa 80 444 843 Me 202 ess 26F 2 in840 G CeAl 10 f e 2 108t*> G Cu$n IO ln 370 me 4F0 ese SFO 203 479 268 2 0970 G cum If Pee 2 $tPJO G C= Set T frdb 3F2 32 472 845 572 204 SF2 2FO 20U15 G Cm M 10 fee 2 809'3 374 93 4F4 tot S74 206 SF4 279 G CuSn (> Infos 3FS 476 047 20F 2F3 S4 76 SFS 2 => G Cusa S rods m SS F 08 Sr8 2ce SFS 214 l .o S. .S. .48 Sao 2o. e.o 27. 382 SF 482 959 582 299 agt 2FF 384 Se 484 SSJ See 212 334 2Fe 384 De 4HG 953 See 233 ges 200 383 800 488 054 SBS 294 488 299 3MJ 10e 480 SSS Suu 2se ego 233 332 502 492 fM S42 28F 882 284 3epe 803 ese l'A So4 298 ese 284 me toe ese eSe Same 2st swa 2SF 3we s0S 468 **G sos 22e sus 288 auu 906 S00 een bdA3 222 Fue 299 I stoseatsus e,ee .n.s een *xt.ser.or.tungesi to C .. s - e s - s .n s.,.s o.e _,e n., ,,s ,,,, , ,< e. m - - t e .u,es. . . - - - _ .s.,es.,n _ ,,o ,,,,_ S,o '#"** s*=*ns ^ gj t F14 esad plus. fee Isan leg *eensagen (lann tisunseap nach DsN ITt 62/04N 1TOS Beenp.eae me he netsen Cossee.teon toe otteme sn pact due(seus' -12 33 -4 -20 -29 stehende T4beto gg3 -6 -12 -19 -27 4.,0 -S -10 -18 -25 l es waJeurs sunt eadabJes poess ass asea; pes tasewee eauneensisan (bronses saaunaansunej d spees D8N f 7M . ,g g) -S -10 -11 -24 DsN fII4 et les a*desgos casewee esaan itseunies) d apees OfN 8/662/ DIN 8IOS 1 senep8es voar satsaseis(8 'i g $.f -S -10 - 1 ds -22 conste 'L 4u0 -4 -9 -15 -20 6'd) -4 - 8 -84 -89 Ihe waaums are smaal 808 uS4ses -- eSuir., 4 - tasonsett acCoed ng to dan tl%SiOsN 7 TOO -4 -8 -13 -t8 t T 84 and coppee ten alloyn (1st tatuniest ette**$w.g to den IIe,t>2/DsN lTOS L sasapaes see theluBo*'atl set,6e O O O O - - , - - Kupfer-Knellegierungen, niedrig legiert Alliages d*> cuivre de corroyage last>lement allses Kupfer-Knetlegierungen, needrig legeert Alliages de curvra de cortcyage, tantdement aMi6s j Wrought copper alloys. low alloyed Wrought Copper alloys, low alloyed IE-Modul 110000 - 135000 N/mm2) (E-Modul 110000-135000 N/mm') i LD-Bnnell ..dil..I. ,. ,~.. ... 1 '> .-. ll f;}; 1  ;  !  : e' 4

; .__ -D -

i. e~. .e e - -. l .. .e i.l e -,,,s, l- .,h+,.b,., p :. , i -- ,  ; 2 m -,.- _ ,... u.._

ll)' 1l
I n2 ,, m .. m 1 ,
t. .

+<>. m. a ~ = , ~ .= = ~ .- n, ..f+. 4 e -}4, , ,. m ,., j

n. .a s. .", n.,

6 - ,. ... o 4- 20. ., 3D. ,, .sa. .22 SG . n 1 ,. .o. 23. l  ; m ., m 3 pl t, t, i + { .. ,. 2 ,.n .., m m dj i , u .m.. m.. n, .o, .. , y. . > .. 3 . , m.. m ) a g4 m.. .. 3

3. - ..... .n,
/ 2 .. . .. .s. 2 S.. . .... m.

25 t tt l -=_aS n. 2n s s n. m u

2. .n u. . .2.

i . II.  ! .! .!!!!!!!!! . .n .n m us . .n m. n 2n. n u. s 2n n m = m 2n --~~ ~ p no u 3n m n .n sn ..a n s n .n u. .a .u. n 2 i 23. S2 338 3. 03. 13. . 232 .3. 2., , 63 332 , 3 35 532 9S S ., .3 2 < 23. 53 33 32 53. 43,2 m . n . i. 3n, in . . ,2,,., ' 23. S 33 . .3. 93. &3. 20. 3n. 2,3 2 S 3 . 3 S 2.. m 2, m sS m m we..s. . ..,,s. -2 .  :,.5 .s . ,,<e.,

5 2

.d, om s, o =d ...e., o s, on. ,.. n: ,  ::  :::  ::: $~ , ~,, ~ u... . s, . s, ,,. ,, ,s. .,. .., ,,, , .,. ,., 2 1245 C. site 1.7 79265 CwCd 0.5

s. 352 52 . SS2 20.

2 324F Cut.e 2 2s.2 35 .s, ., SS 2 .52 2 'I 23285 21266 CuCda 2s. 2s .s 3s s. s 55 2s .s. 2 2, CwCone 2 82,0 CwCdSa 2s. 3s. . m .se m s. 2 8294 CwCs 2 .2 s. 2 2 1322 20853 2 On*,*, Cum 1.5Se CePoi 2 Se 29323 2 e363 Cunag 0.4 C=Mg 0 F Coun 2~ 2 22 2 .2 3 3. 32. s.o .. 2 eS2 .5 s m 2., 2.

2. .

2 2 2 22 2 0857 Cwm 3 Se 2 .3 3 ss.3 S. 29366 CeMa 5 s: . s s . 2 2. .3 3 3 . sSS S. ,. 22e 2.s, C***** 2 1. 2,... C....., I ' .*.Y

2. . ' C.S 2,,e,

, .. ,e 3, 2,e .e3 .,,., ..ss., s,,., 222 ,. 2 i 2 2 120,0 ,,o C Ag O 03 2, ,52 1522 C.sSa 2 Ma 2,. .5 3,2 tes .,. si n 22S , 3 C .g , ,,5.5. , $. 3 M., m .S .J,.2 3 2 C. I m , ,,. .., , .. ,u, m. n ,.. n, ns

o. ,a

. m.2 2 u. . 3,., . 2 ,a. .. . 2n. n 2 n, 4 ) 2 n n ,.. 3 3 ,2. ,m n . 3 m 3 . . . n,

. 33

,, 3 I . ,. , 2 . 2,, 3., 1 22. ,, . ,. ,., ,m , m ,a 3 . .2 . ,,,. 2.n., 2, I ,e . . - e. Cearea.nms p.e.ar des a hora es d'ausses S. a .<, _.e .. y y y .l. m j m s. 2 2 { dwce es.ms ~~ Cmeettus Sus e,hme .nPa< t dwe<..*m ygg i yg -F -e4 -23 -33 300 -6 -13 -22 -38 3*no -6 -92 -20 -29 , - e. -t2 -19 -21 D.e ese send gu.pg sw at.sp.e. .ts.e- 1, _ , a, neca. Diet 3,64n6 Seessa.eae se,ane -S -tg . *iG -t3 -25 no.nes.s.ehende fatan.e l ggg -S -t0 -t7 -2. y 3.iG -S -t0 -96 -22 des vase.srs smet easebaes pc.n ses a agesde c.n j de ca.reyspe, s-t - ._a esgegwesDefdi7666 ^ g -4 -9 -85 -20 i ses.iples rest de .*t'acam .e s.ons.e $ -4 -8 ~I4 ^II 6*s0 -4 -9 -93 -98 the va.ues are s.8m8 8m **e=9h .L*ppee as.wys. See a.pyed, accesdu.g .e D.f6 8,4 es6 E'sas p.es see.he 1 l ._ to per.ng 1 1888 1 n 23 - - ..- - _ . - - - - . - - . - - - -- - - . . - - - . ~ - - - - ~ C: D Usees9eaceC . _ _ t ae veneenweg een meneeemen watero aeneet si,e e<e usamenw a t oes Le weaet a ef et.eene aren'et gewaeostpen 8 met une emerne tea tene9et D.es gist a+ent w as a e eeene a etasera eve 9 two e e usamenvas stat scaer momeeeae w tero*eneer 0e ev+geNnn a vmeen age strevv gealame. sav veeisteaen e$isaeace.aesessa agone w v ser ' Daneeseene see - . Le seaverseen se ve:evre veLoavrete e+ere ones est e9 ucea es etoe sova se ceaversrea ee eewere en ve evre se eve ere sfeteeves sasenae'ee easecate s,s euss,revees eov a#e eeavers ea r Cecs e ses ese sovie'aeat avrere ene.weves stoneeres enve enes Lee esens evo e te ceasere>ea me ovees tsm0. snvete e<, treeresenteat erg e at e s ees.se es ev e se

  • - . eevietenas a

a ceavore4a eetween e areaese vwues coate<ae v e eneCat kwa t*e owtoet %e seseos met este to coavre.ea et tDe LDweswe este statas sagentetsen teremese selves. owt e ew '9f coeve*trag treat one efetse partness mesev nag mothee to emether the convere44 sovietsene (smS. s 4V ete ) m.ficated, roeregent 'stoneerg sev1ticas* (**VOT* GemtLL YtCatt$ LS amt a0CMELL Sucet sud suas { smoc 2 33 , ] v l 200 i r l W 8 10 ' eco 10 3 300 '3 13 600 '8 '8 I  % ,oo to tI to . goe 30 30 - Doo 60 . g W * )

  • D

&teeesheagoe een ese vero6esesseertoe e er sen tes e<n ee eenea com meneeemt v vae womeeemen eaeoree ve**enrea a e4 s e aun teaen vireere Rece. v t#-veasarea woe v caen ee,m eas*eren meneerwheaenten setenteNmet 0.e se seeenaeaea Wesseeme ow e r seaun an ee.geneen s=<t av*e ee, a egi sionisensa 4peruna seanea e o.vag ta.cneesere mogreto+an aav tea vanea vateisee.e4 we ierterere+<tet . oovagen een sea ymeenw ssteseces ev'petoa mesa 43 one Stanie past Lee.orva sseatee voee gg userveaestigie vae ergesen avsienie neae0.e ia Coe4H*eameae sterose eartveaestigtea sere 4me f avocaea e'as av *s's meMe vee L *erto r . Weseeissae seaage Aoweev Sten <ea senaen gea evRreteaeenmeanea aesene.no stee stener wa Semisgaereer swreaset g see an wesen. se sees fearee ese venews se soeveresse

  • evr esmove re ee ee ee eweene s svet oes erece es ewrere n everen eroceeen te e eve snees.

eeenee t v. seers e ere wa r s ae nemoro s opoveeces esseaeasata vagre.ee eenai se =sier ous e oit oev=.s e see mesur es ee eve ere seew sewe* ear se ea se erersee tovores ne a avs tea ee one ere areas 8er=eu ea reaweeve se esavve+es se*ea se vuese e esenere Lee ee ece no eurere e,ner es. - a e r e se se sewwre se esmeenestrea trepre s e+e nea.aaee res J tes toievrs ee svrere revvem e.nerr ee se'ses ee.n v eemea es eens #ee raaneessr ee eeavers9a sev es seaes e se'ee . ee. e c. e .a ve ..... e.m. ee-,e es, e s.eg e .ee eveta., e i s As e a e se+*eet oa e we4 Les tones sweerhe eNes e#ws tonevent sea #4 den vsa eem vae sroe gre*ee evrete et . ereewreeateeseeeveLt=eee.ortee Les eenare *eenetre.e e eevveat es l esa ekv's *ramase se se ve,ew L mesuress enc er tneve* eat re trearmenevr ee tnesse es teren ee eeeee et eeveer sease . l s Devestenne kom ceavereena voavee e / * ! e sen r esmeansea ce esteeen mareaeos ee've L ene more*eseva *ece et e. nee evete*e even se greed v.ence aus. q se eeetoe,esorsemowe in v ies ee ve.g to.ie.o.a.t.o c ee .c.eaeos. tesi ee*eass.eeeeme.nas.te e neg.a.eerag s.ee. nae.e gre.s et m ete.s e.ere iestec e 4a ta e g 0Vo tie *eiase. saco.au . me,,erno4ai. . ee t e soie este ee eve rnesee.. vate esa ne.v i I tae poseeres L-,esee een e.ae* *em taese es tae ceavore.ea toenes esta tmoes ees.ag eteed eve +es . sogn eae,ee eine e e+a en eaee*g seastoveat sert greatee tasa g% [ Ceae were peacease etee o toe se*e evees reg +as mee* t*e evasco saeviate m1*e' *areases one less le m ga . Lwegaet4 s e'.e s 0tes e cea wa * .ree L es wee veat e fa c ee4cty komemetio# *a tte passet ooev e ns lose le engat ee s.st.eas etta e me s e. l l V e i PAOCEO SA Telefon: 01/477800 Cceyngmt C 1985 by R,eseacestras6e $7 Telen : 817118 prc cm CH4034 2wnch PACCEO SA Zunch FeuNo: 01/479914 S etuMand te gt:4 343 0 e.g Q \ D 6 e# 1

  • O -

e J e l ) i ) 1 APPENDIX 6 1 l ASM Metals Handbook, 8th Edition, Vol.11, "Nondestructive 7 Inspection and Quality Control," pp. 409-413 J i L D D o lO i 1 l i !O L _ --- . - . _. l o O METALS HANDBOOK o 8th Edition v VOL.11 Nondestructive Inspection and Quality Can' trol O prepared under the direction of the ASM HANDBOOK COMMITTEE O ,,,,,,,,,,,,,,,,,,,, Winism J. Carmes Vaaa ging E e.ter- Cety ame Proewstia m Tec mmic al E eitert al StaM: ' M w g m S au er, D avie Be mia mia. E aw are A. Owrame. Pmist a D. Marvey am e P awi V. s mte rwe te er C o py E ditsm s a me Pree wst'am Sta": , iam A. Ameersem Cmie' Cory Ed ter

q Heiem V. Bwee vis a (d ec e a n ee). Leis L. E mgimtw me n. I

'V C arei J. George Cr aig W. M.rm o strit m. i Katmioom M no ame meien Lawtem Waleerf in stration StaM: J a c k W. M other s. V a a a g e r stie a a re J. C a ento ry t m e, , C m a ris m e M. C m riat e.p a e r, s ame,a t. reim e,s. ..ie r r. . . m . o r . . ame winia- C. Se.-e m .,O ,,,,,,,, y ,,,,,,, ,, ,,,,. ..,,,, . l l k AMERICAN SOCIETY FOR METALS .O Metals Parm, Ohio 440?3 l 1 I !O 1 4 m--_ 7- 0 409 a Quality-Control Applications of Nondestructive Inspection By Je.tns C. Hran* QUALITY CONTROL of manuf.'c. has been misapplication, which usually de6cient in one or more specined ch se. tured goods is accomplished by measur. rneant that the wrong information was teristics It should not be automa r ally ing dimension.s. properties or other supplied; thus, nondestructis e inspection assumed that a nonconforming pa .t is 'g characteristics, comparing the measure. sometimes has had only limited useful. un6t for t.se In many instances. aon. ments with predetermined standards, neo as a production or technical tc>ol. conforming part is entirely capable of and varying the manufacturing process Also, as discuned in the next article in Mrforming its intended function. esen as necessary to control those character. this solume, which begins on pace 414, in its nonconformine condition. In other ntics Otten, direct measurement of only when the capability ef a nondestrue. instances, a noncenforming part can be characteristics can be aemmpli$hed only tise process is known in quantitative reworked to make it conform to sreci6ca. by destroying the parts Obviously, a terms can the inspection results be con. tions. Of couru. Sometimes a ncncen. product that has ten destroyed cannot sidered a measureof true smductquality. forming part can neither be used not re. O_ be sold The commercial impact of this Successful applicatinn cf nondestrue. worked, and must be scra pped. fact is twcfold - cests were incurred to tive methods to the inspetion of manu. Human Facters. Education of alllesels make the product, yet no pro 6t can be factured goods requires that ia) the test of personnel engaged in nondestructive made from its sale. Howeser,if the same system and procedure te suited to toth insrection. including formal training and information can be obtained without de. inspection objectives and typs of daws cert!6 cation in accordance with gosern. stroying the part, esen if only as an in. tc, be detected, i b i the operator hase suf. ment, technicalwirty or industry stan. direct measurement, then the part can be 6cient training and exter:ence. and < c, dards is prebably the greate<t single ,O sold for a prc6t after it has been tested the standard for acceptance appropri. fac ter alTecting the quality of nondestrue. The commert:al inantise to test nonde- ately de6ne undesirstle character:stics tise inspection All methods of conde. structa ely :s large w hen small quantities of a nonconforming pstt. If any of these structis e inspc tion are highly dependent and large pro 61 margins are insched, prerequisites 4 not met. there is a poten. on operators for cotaining and interprct. , and is crucial with one-of.a. kind tial fur error in meeting quality objee. ing data. Inadequate educatien of per. products. tises. For instance, with inapptcpriate sonnel jeopardizes the reliability of in. Various methcds hne been deseloped equipment or with a pocr!y trained oper. spection. This applies es en to automated for accurately and reliably measur:ng ator, gross errors are possile in detect. insrectien, w hich is centrolled by the ac-0 (haracteristics of parts without arTecting ing and charactertaing Saws. This is of cept. reject criteria programed into the their ecmmercial value. Many of these particular concern if it means chronic proces.s. Automatie data.analysia tech. are indirect me thods, but they base failure to detect daws that seriously im. mques must be estatlahed. prosen and gained acceptance as tools that can aid pair service perforrnance With inade, menitored by competent nondotructise. both management and production pr- quate standards. Raws hasing 'ittle or no insPetion pertonnel In general, inspee. sonnel in reducing ecsts and improsing bearing on product Nrfermance may te t:en should be rerformed by personrel product quality Also, use of nondestruc- deerred sermus. or signi6 cant daws may who are trained to the equisalency cf g the inspctmn has Neome neerssery as be deemed unirnportant. ASNT TC 1 A. Icel I Supersisory pet. a means of meeting ctrtain legal and it is necessary that the ty pe of . laws sennel should hase skill equivalent to contrsctual requirements ar!ecting the that can be induced bv each manufactur. ASNT TC 1 A. I_ew! !!. rroduct:on and sale of a wide vanety of int creration t# undehtoed Oniv then is The erTects cf human factors on the manufactured products it practical to de6ne the rendeltructhe nc ndest ruc t h eo rg ectic n process also Facters that centr.bute to the reliable inspction that should S used For in, ar p heat en of seu r31 of the ma yor stance, if a forging a :nspected for in. must te censidered It hu ten found thmugh indepndent statistical studies procons of nordcstructhe ins &cticn ternst forging crac ks by radicgrainy. it that dirTerent poorle hase widely dir'er. O 2 c c n' 3"#d

  • th" 2't"I' ^ d d*^ t >$ mportant to determin+ *e dire't:cn mktratwn on e- h of the insFction of grain 6aw and hence tre wt prem in3 2t dit to nnd 2'l th' n'*' in ' r*'t-es e n when the sar e nonda truc t n e proceses asune i here .s prevnted :n able directicr. of erackm: P au eany proce" and spei6c :nsuction procedure artic;es m tha wlume that deal spec 36- cncks that 3re not aligned mth the ra.

are used Th:s varta%ty usuallv is more cally wab each picms Also. seural imtion team usually w di ret t+ detrcted pmnouno4 with small daws There is procenes net dncuuM in this artale are Esen when the dire'ctwn 'f : rain t'ow a 21so 2 p rnneurced s ar at.cn in the edcet co erci escu here in this s olume k nvw n. it may tv duh ult ta or:ent the of factors uch as heat lighting. sentda. df radiation beam t'roprly h t it a uiua;h tie n. tatigue and attitude on the prform. Quality of Inspection euy m,i ertrein e to in g e:t me part 2 rte of prwrly trame f and quah6ed u lt r.w om c a d y b w it h f.l pro.i n tic n ptrw,e n. s. m.in y Pra to rs Ai i rMit of thne s! dies. A + -ad .n ne rc4 t rue'. , * 'e t;n; And mn6dt nce turu . %e %n atach3hed 1&ts ern< denttons must % aprhM to qua;ity . ontr^1 tre term i w ' m m

  • a r/4mg tr e pr:r abibh of detecticn tne i ont r 'l < f nc% s t ruc tn e.mst(c' en h tet tat io lat k mf ent:r tv nr 1 & w erm iiw u. ' for t sh ef the m)Mr pree4 .o < m are that tre mformatmn tutge r.,Prfed;on :n i bns wa! or s ne t- sine r*tm t; n t rwm For l

mne m.n mi fmm thm a accunte. im+1 v ,11 ;rmurc 0 e of tr.c grea'nt mny m.d utnbute of a : " T5e'ut W u cral sie e r ne the rot artte ' nit T part contain, one ' mero 'L A s . ti tha o .ume lIwman fa tms <heu'1 r +em 4 e n+ - t r;.e t n e it.n -w e n . 'le m t m %irdy np & 2 t 're pa r t m n s % +nni ^d r v t u M :n i r g:. a norumfo rmm s 9 ac.mt,c n ir a reer wben ettme mm:rm m al!cwable i

  • t a pu, m % t x: w, s m
  • gisl! w a

.ntit fe r use Amdariy. & :e m w n. ".a* m es,and % u Nity rvrars when i tenfermmg

  • mvans m!y nat t p1rt A wit.r g Accept C h t c!.!erta I

.o 'O .; m quai;q. control Applications of Nondestructive Inspection , Acceptanco Umits. The setting of ac. Olniouwly, there should be some type of Hafdness Testing i ecpt. reject criteria is important to the Anal inspection after all nunulseturing quality of nondestructive inspection, operations hme been completed. How- Various trethods of measuring harJ. Limits that are too strict unnecessarily eser final in<pection of ten h far from ne's are discuwel in the article begin. increase both manufacturing and inspee. optimal as regards either quality of in. ning on page 1 in this volume. Hardness .O tion cosis. ana orien require speciai spection or over.aii r.conomy of manurac. measurement,are uaca mainiy as a rania. manufacturing techniques to meet the ture. In many irtitances. it is easier, more reliable and economical method of esti. j strict acceptability limits. Acceptance relinMe and more cennomical to perfonn mating material properties, cepecially limits arc usually indicated on the design limited inspection at each of sescral tensile stren:th. For certain types of drawing or specification: often, however, points in the manufactunng sequence torts, such as ball or roller bearin:5 and thue limits have been selected arhi. rather than performing all inspection at automothe engine valves, indentation . trarily. It is a function of quality enei. the end of the sequence. hr.rdness testing is considered a destrue. 'Q necting to review aueptance criteria, in general, the principles listed below tive test.but on many other types of parts ascertain that they are appropriate and should be followed when choosing the the small impression productd during can be met in production, and then ap. point of impectic.m testing is not objectionable. pros,e them. It is of ten necessary, after i Impcet raw matenal for fians that mat So indentation hardness method mes. proc _ tion experience and reports of ser' ha$e Men missel by the sunnher's in. vice usage base been obtained, to reslew surn the hardness of undeformed metal. spection and that can interfere with Exact correlation among various hard. acceptance limits to see if chances are rnanufactunna crnations nr wdi re, ness numbers is impossible because the needed. An acceptance limit that is too due performance of the finnhed part amount of strain hardening that occurs -O strict increases cost, but one that is tw  : rerform intemediaie inspeenen feb beneath the vnd,nter sari,s from i,si to lax can contribute to failure to rneet I"* int each ar+rauen er unes of or*r- tcat and from metal to metal.The comer. sersice requirementa. "'ns that base a signi6 cant prehabd. sien of cne measure of hardness to an. I ' Fracture mechanics can be used to 3 I$r rNier$c$tNn eetbn w hen other, such as Brinell to Rockwell C. can cat.abliah acceptance limits for entical pari shape ancrds easiest auess to the be aceemplithed with a n expected error of ! parts. because it describes product per' regmn in b esamined not more than 10". for most steels. How. j formance in tens of the site of any daws 4 Limit the extent cf nondestructhe in. eser, the . uncertainty becomes greater "Q that might be present. rand can aid in spectwn to deteenen el daws hanns a for stuli heat trcated to tensile strengths 1 c$tabhshing whether in.serSice inspee. use.13 pe and location that u dl sigm6- abme FA.000 psi. and for most other i tion is neecssary. Fracture rr.echanics cantly a:Tect susequent manufacturing metals. Hardness conversion tables for studies usually are undettsken only for alwranons or ,ernce performance carmn and low allov steels are presented { critical parts. because sneh studies are 3 U$c doTerent inspeenon r-eth4ds to de. on pages 405 to 42i in this volcme. j exacting and expensive. Insnetmn cri. teet different twee of flaat parneu. i Resistance to indentation is directly teria should include prehability con 6 related to cemrres.she strength Fo'r dence hmits for the inspection procedure- frt mal anIe t t[c cuts and unutmts en the sanou. most earoon and low. alloy steels, there ]O

because it is not the smallest Aaw that tspe,nr saw ,that mas 8, pre.,et is a fairly close rela tion between compres.

l must be detected, but the largest Maw a perferm 6nal nondestrucine in pecnon the stren:th and tensile strength; hence, that might te miued. that ultimatelv onh to detect tho+e Maan that could indentation. hardness s alues for such determines the reliability of the part. hase bee n tr.t rnd uced af ter the lait steels can be used to est; mate tensile inspection standards should he estab- Dre'. eus inte rme<h s** in.ivet rn ne in strength with reasonable accuracy. Eati, lished so that decisions to accept, rework '"" 3 ' d C h" k ' ' '" h ' ' "I *!"'"4 8 mates of tensile strength from harinm or scrap parts are based on the probabic mstectwn can be made within about =VOS pai. O ctct th*' * 'i'en naw wiii h se on cha ra c teris tically. no nd es t ruet h e test s although errors as great as =150 psi nervice hfe or prrduct safety. Once such are easiest to perform and meat etTeetise may be encountered Estimates of tennle standards are established. nordestrue. when applied to incoming stock or at stren gth also are included in the ha rdness tise inipection can characterize Saws in intermediate points in the manufactur. consersion tab es on pages 425 to 45. terrr.s of a real effect rather than en an ing process rather than at 6nal inspee. In contrist to carbon and low. alloy attittary basis that may impone useless tion. From the standpoint of manufactur. steels. w hic h strain harden a pr rou* or radundant quality requirements ing economy. it is fooli<h to emnd time m ately the sarr e amount when cold Mat nondestructhe mspection treth. and erTort procening part that already worked. and which therefore show a O oas rely on a reference standard to d 6re m niain ea,e th2i ,s cee d silowsel, fairh do(e relation an eng hardness tests acceptance limits or to estimate daw limits Comutuently. it a desirable to and 6t t w n n ha rd neAs and tennie sues Howeser, there often is no reco - 6nd noncenformm parta and remose stren:th, the nonferrvs alloys di'Te r nirei unisersal standard that can be used them from the normal proem dew a, tc nuderabh m strsin.hwirning charac. en dherte prcducts or to satisfy sarying ,mn as rmaible af ter the nonconform. te n 6 t na % consistent relition between irapection requirements of indhidual ance is introduced Of coune, each at of hardnm and stuneth can te worked out wer<. < For instance. ultrasonic testing t' crerations will be d irie rent from all for the-e miteriak as a class, with the O "Liely used t nspect adhesnehndt< others, and each ituation should bc JusMe exccption of the high nickel al. structures yet the sariety of deign *, studini to determine w here in the manu. Ins s. which apparently work haricn matenals and adhnkn that are med da facturin: equence nonconformance an much hie steel rw Frmit a standard referente nanel te detectcd with greatest encetn e nc44 M.cn.hardrm testine is a itw:al ts pe inat is unhersally acceptatye to be prm and least w*t Pointa of greatot t tTec- of ir+nt ation ha r d nen tes t i n: that u tiu m ! Under normal circumstanw- tnene< mas not mmcidr with paint.' of m u-ful for mo uunn: case deptbs pred,xt r ard coraumer agree m aih ana least m t. E trade mis to m hm or t. mal R-t of t he t Ac , a e4 are n aluMed M a< to the ik sign of tbc refs rmee cmdard Man (e m.n base to !s m..oe In ec 'etm m. t.1lv O ma to the redure ror u me it m tan m , ., hi,s h .cn <th e n-n.h ,tra, nc t i- <asrms vhw -rm ia prcparea mrBS.*ind en u e Etteet of Manufacturing Operations. It !n e tc< t method e m not % c. nnomicalh ed out roh m!n1 9 mea urements Ib e d Acult ta ddne the t c<t p.or na putied. U3ualk; i les m tly me: hoi A- n ais iting c#e ha rd ne .4 and ca>e sequence of manufat tunne opershem at can N sun tituted bet with an aitom. di nth en car"urin d. nitr!Jcd or surface-which irtspestmn WhouId k }#rturmed pans ing fedut tion in -/nsithity M ht,m d plt 14. MFrOhardneis Med O' O ) Quality. Control Applications of Nondestructive Inspection 411 i l ments esn prm ide information for jecting them to the penetrant. Because part, the standard rules of 600 to F0 , proass control when carburi7ation or pmtrant proccMes depend on a carrier amp per inch of thickten or diameter, l dcearburiration heat treatment rnust im avoided during enntaining the dye entering a crack. it is or a salue of ampere. turns equal to 45,M0 l The quality of hardnw te< tin: is af. of utmo t importance that the crack be D L, where D is part diameter and L is clean and armed. Some formina opera. part length, may le used for detctmining } fected by equipment calibration: scale tions that use lubriennts could so con. a trial eatimate of amperage to be used. selection: distance from an indentation to taminate cracks that it would be impes. When udne these procedures, test. piece another indentation or to an edge; and sible for the penetrant to enter. With sof t shape must be carefully evaluated. If the contour, surface finish and thickness of metals such as aluminum, it is reo test piece is determined to be a critical the int piece. All there factors must be sible to smear metal our the crack dur. part of a structure or assembly, the rules controlled to ensure valid measurements. ing machining or forming. Consequently, for determining amprage requirements many speci6 cations require that ma. on noneritical parts should not be used Liquid Penetr3nt inspection ) chined blasted er burnished parts be as the sole source of information in estab. etched to remose dowed surface metal lithing technique. I.iquid penetrant inspection is an before ynetrant is applied. Etching re. Af ter establishing a suitable technique aided visual irapection used primarily quires sub<equent cleaning or neutralir. for inspection of a particular part. the fur detection of cracks or cracklike dis'. in: to present corrosion and to ensure proce<s must thtn be maintained by ade. continuite that are open to the surface that the et,nant was remosed frem any quate centrols. These centrols include of a part. The proecss is relatisely simple, cracks. Etchant remaining in a crack periodic calibration of equipment, main. can be used on both ferrous and non. e uld react with the penetrant: such a taining an adequate concentration of ) ferrous metals, and can be adapted for reaction could cau.se a daw to be miued ma gnetic partic!es in the carrier solution, inspection of either single parts or mau. An the inspection operation. uniformity of preinspection part prep. production quantities, as discussed in Onec established the penetrant proce<.: aration, careful attentien to pestinspee. detail in the article beginning on page N for a part must be rigorously followed to tien requirements such as removal of in this mlume. The process of applying ensm sat:stactory inspection. Too short rendual ma gne tism, and, mest important pnettsnt, remosin g exceu penetrant and a dwell time in the penetrantappheation of all, peric@e evaluation of persennel to applying deseloper can be automated, step will not permit the penetrant to seep maintain a suitaNe lesel cf pro 6ciency. 3 but siewing of promsed parts and inter. into tight cracks Teo long or too severe > preting indictier.s are almest exclusis elv washing or remosal of excess penetrant may prematmly b!ced renetrant Eddy Current inspection human functiers. From the liquid penetrants of varying *ome of the cracks. With either ade* m, frcm Eddy. current instrutrents omfate by penetrating ability and $ensitiuty read, quate dwv!! time or prolenged wasning, m,3,uring impedance changes in a test ily asailable on the market, one should dau would te miued, thus predue:nr an co:1. When an eddy eurtent instrument LE selected that has properties suitable uns.a tis factory ins pectiert has he electrical circuit. the test prote for the application. If a ;wnetrant that is cell, and the part ta be inspcted in a bab ] too sensitive is elected excessive time M39nellC*P3rtlCl0 Inspection anced conditten, any change in the test may be spent in esaluating the inspection part 4 such as electrical eenductisity, results If a penetrant of too low sensi. Magnetie particle inspecticn is used tragnetic permeability, er dimension) tisity is selected, rejectable daws can be on ferremagnetic material and is mest wdl affect the irnpedan<.e cemHned ef. mis &d during production inspection erfectise on alloys that hase hi:5 m.m feet of resistance and reactarwe- and can The re are three main systems of liquid. netic Prmeabiltty When magnetic-par- he menitorea on a freter or a cathode ray

vnetrant inspection. designated by the ticle insMetion
s used, care should Le tun Inspectien results are mmnly used

) type of penetrant used: water washable, taken in <e:ecting the point of in3ree- to make "gi ro go ' decisions pot emu!sif.at ie. and sols ent.remos able, tien relatne to manufacturing steps }!aws in metal can cause a change in Water.washaMe prettants are 6enerally Magnetie particle ins pec tio n numa!!y the hw pattern of the eddy c'trrsnts. te<s exynsne, in both initial ecsts and should he done after all processmg has which. :n turn, changes the output read. prn< ets cosu They are auilaNe in many ten eempleted. escept that magnet;e- mg A:though under idul eenditiers senutiuty lesels and therefore are suit'. particle msuct:on she.uld be dcne: aMe fer the great majority of parts that certain $ws can readdy he detected , y t neFre ud af ter ebrea n risue otber trethods, eddy. current inspect:en re<;uire p netra nt insPctten Proces s 2 Beic re ricetrien arl s ss e rien 6 .u:d we conLJered when: ] sped. ene cf 1pplication, and economy 3 Uter s**Qt are tre chief factors that invite use of 4 Al'er each hot treatme verso n i 1.mW ane.i '3 e insuN ra rt w ute r 4 ahat e p netrants. Post emu!si.  ! P*s >re raintre ,,,, ,,g g, , f ra h t r a a n f.ab!c Pnetrants are capab.e of delineat- 'M"'b'"' Urre rart un r a. new a m :f magnet:c -arte armem mg f nallow iSCOntlnultitS i su;h as pits. The reascns for the exceptiera lated i i mf ascrd'e "r.emtat a of 'N srn f scntches, le lires and tool marks , that abe are that -a. certain dnahtr: interest mar presert 9e ce i f mag. rnay net N .* eses led by water washable prSceStes can OhCure d.s eon tin u it.e5 : Y # IM* I*' N#d hN ) [wnt traml Of course, it is not alw as: de. and d steel is susceptee to ermime uraUe or ads sntarceus to delineate shal- dur:nc heat treat rent. we. ding e r Wea N dbcont.r uita furticularly when trob t.e prr<e w s and Aud he 4'"8' i"#"*' 7" * "' in. Det.th af dis arrent penetratien .s they ha e na f rose n c?cs t on f.erform. *rected :mmed.atch af ter ihne ; se m btermiN-d me dy % f rm e no the trte NLisent reTM aNP perMtrants 1re l 'i g 4'eP D*'ai 6d inf ?rTat On n ~^ o the f rWLenCs Ibe d W 74T IIf' rtn* W f r.w ntN and inan the two otNr nugnette ;-artice im mixn :s Irmerted trhn. tr e nicY tr e f reque ncy. the ts je s. f ul (Ie id s ent-N nWah le n Etem .n the Art,C!c "cg;nn1P g 'n N Je 44 m C 't

s
  • h l . ' 'w the > EvtrJIi r Me n*it h -

.t rv .a r fJ) for J[ va il Irfdle3 tie r t lN 'r' r U \ ri J t s Onf de9 N Tuf f N sitan-

  • N wever de.' etS w;Inin #.r e !e

-uc h a , n a ms rn t en Med for 5 technme +at a ta 'e w : h *ith a wenn4 ri frNuencs 1 he qual h f N rx trar e merect.cn a n the r acm ';c piru f.e ne'n En;My dea nl et on n t mmpaans e sarie n art.& Au erun, e cr.ter.a ue <q % mt 2:M 'actsrs.i k t.r< h tet with the m g w uon prm 4 dure and on 1 n at h b M h cur ~t meth* l m u ils ntaria N d by e narrer:n .ta:a m h uwd in he .irie Wnnirg nn cart !Ul Man:ri cf the p1'tb he'f0N WN  !! the !ist ne g e dtM *' tM a nC nt r t:c il >3ce ~ > n t h is i r ib T t' D l l 412 Quality. Control Applications of Nondestructive Inspection Eddv. current tests can be u*ed during Objects that can be examined by ra. be athiesel by mechani cal measure. proctsning to detect flaws such as cracka. dingraphy rance in size from microminia. menti or to acess material properties lors. folds or large subsurface voids. ture electronic parts to mammnth missile 'such as the mmurement of graphite. Castings forcings, weldments or ma. or power. plant i.tructures. Radiographic f ake size in cast iron. which is dirtetly i rhined parts can be inspected. In sersica. inspection is uaed on materials ranging related to strength . Ultrasonie inspec. ' eddy current tests are used mainly to from licht elements such as aluminum, tion can te performed on either dat or ' invit for cracks, such as those pro. beryllium and magnesium to stkl. nickel cursed surfaces, and can be performed [ duced by fatigue. stress corrosion and other heavy elements of the periedic when only one surface of a part is acces. , crackine. hydrogen embrittlement. or table. Manufactured farms inspected by sible esen when the area to be irupectc<i , ! overload. As with other nondestructive. radiography include a wide variety of is remote from the accessible surface i inspection methods, when a possiale daw cartings. weldments, composites and Ultrasonie iespection is basically a i is detected by eddv. current techniques. assemblies comparatise test rmuirmg a suitable ref. h verification should he made by use of an Processing of materials into various erence standard. Reference standards i applicable second technique, such as forms may include one or more manu. will sary with each applienion or tech.  ! l hquid penetrant, ultrasonie. magnetic. facturing steps such as casting, weldine, nique. Standard reference blocks made  ! particle or magnetic rubber inspection forging, machining. bondine. heat treat, of the ume alley as that being inspected. l Eddy. current. type instrument.s also in4 and fastening. Processine may induce and containing dat bottom holes of vari. l can be used to detect thickness varisticm imperfections that can be detected radio- ous nzes dnlled to various depths, have . l in plated coatings. surface hardness var. graphically Radiography can also be been widely usco Alternatively, natural I lalions on both bare and plated metals. used to auess service induced daws: or simulated daws in ref trenct parts hase , , and local diderences in composition. tnese often necur in relatively inacces. hee n uwd: these alternatise standards  ! esPeisily the existence of carburized or sible locations that hinder the tue of are as saried as the applications them. - decarburized layers at the surfsees of other techniques, such as sisual pene. sehes Regardlesa of the type of stan. I best treated steel parts. Also, ferromag. trant, ultrasonie or eddy current inspee. dard, camparisons are accurate only l l netic parts can be sorted according to tion. In addition. savines in both money when acoustical properties of the stan. l hardness, chemical composition, metal. and time of ten result from the use of ra. dard are identical to thcoe of the teot l l lurgical structure or residual stress; these diography to cireurnsent diunernHy for pieecs ] applications are discussed in the artie!c ins rection. Ultrasen!c mspretion must be con , that begins on pace 93 in this volume. The technique of racliography is tro!!ed ta maintain the cen6dence level ot i Controls for eddy current insg+ction highly dependent on correct sisual inter procedures that have been established l are mainly concerned with proper desten. pretation of images Usually, a ecmpkte Docurnentatien of procedt"es and speci. } l construe..on and use of the reference analysis of the problem must t'e made in Scatiora must be carefully maintained. ' standa rds a rainst w hich the properties of order to correctly esaluate radiographic and a periodie audit of adherence to , production parts are compared Equip- resultt This analysis would ine:ude, but documented practice should be carried i ment setup and operation are also of not necessarily be limited to: out Equipment calibration snd fune-b great importance, because sery small t pahncation hators and ser ice hatnt, tienal testa should be conducted fre-sartstions in electrical characteristies of a part er sutem quently, to ensure proper operation of  ; usually are teing monitored. speede radregraphic tecnnme umi ultramnicaysterrs. Selection of the trans- i 3 Usual ratograrbic appearance r f flaws ducer will a$ect test results. Operating i Radiogfaphic Inspection s Ty r.s and iirei of f.awi that are Meh characteristics of an ultrasome trans.  ! ta cint in the part deer should te esaluated thoroughly, f Industrial rad.ography is used mainly 5 Relanon af f a,i to part functon both before the innsducer is usul for in-g for nondestructive examinat:en of the interior of opaque parts and suemthes These items often require a large spection and penedically throughout its amount of data from destructive testing useful life. Con 6dence in personnel can With radiography, usual examination ta to properly esaluate results and to pre. be maintained thiough a centinuing pro, extended from detecting surface l'aws to sent unnecessarily detailed insrection gram of tra:ning and certincatier.. In-detecting thcae below the surf.sce Both and excessise re}ection of netstahl, specters sheWd be thoroughly farniliar x ray tuhs and gamma ray sources emit parts. The aberce of #13w indication, with an inspectsn procedure before high. energy ele ctroma gnetic radiation ori a radiograrh is not 2Nau a 'u#icient udng it en the prcduction line, capable of penetrating relatise!y thk' criterion far part acceptance. character. O sections s p <ial 61ms. scintdatirig istics of the radietrarbie technsue that Electrical Conductivi'y Testing gr&nt or radiation senutne rneters are Wd cent ibute to tha abence must be med to detect and record diderences in censidered Me *urement cf der.trical cenducto-the mtensity of radiation emerging frc m ny, wn; eddv. current ar other dectro-the side of a test pine opposne the radia. tan tource. Flaws within materials ire Ultf880nic inspectiCn marretic. tenting equipment that is de-usually recorded as images on a $1m er a sigmd for th.s task. is A Tapid, re*iabe green. and the images are interpreted Ultrasenie irs;wetien can be used to nondestructP e estnod of ensuring that snuauy For detaded mforqaten on 4 detect both large ard small dacentinui. the sit'eiried aHe3 nnd temper of a rnetal rad.ograrty, we paces lid to 1 * ' tid. leested either at the surfue or dern were used This testirs; rncthed is i, ften

Many facters induence detestabbty within a part. at di, cussed in the article err;inpd 5eseral um(s en the 3ame test that Ngins en page 161 in Ca!* wlume j ef Lws kmc cf the<e factors are p.ne, at uricu 4tus .n the production TW t om N M d a Mm M Pm Th > WQ Mme of the
1 Au ment a+ i ,h tnNwn nonferrous rev tal or a a re nmt t H Test, ed cf the 4st ani a eaw of interpre-

., r o t p.., e t h a re=s a nd

  • h a"'

j i t.oto r e ow e and nen atm a ,f ine un le dc ne tv n am.al , earning or i it an The pro f us t t. ale or form hD can be fuMv autar5te d .uth oth. r si Lai  !.tf e mN rte on the re:iatu!ity of 'he ]O P9 n a .t s . - n. r o a d J te h n interrretat +n or n-rmar<n t r, c-, i.ne - dst > + t !. t e na i inf-rmaten on e1~ g , , .p ,h dy tet m g i- r rder ted in w n it s , f ir e rea re r s woies can be u~d to meamt ' h n, L nc3- tb irm;e that rqm- en reise M mm a maw,#,meen mo rermr% msudmy meg an u ! 6 Lew ir e emhi.m. .Mten with creater accuracy than can umi :n n ea ure pren rites only of metals 1

O n

..-_.~-_-.-.v-_-----__ - - - . , i l O Quality. control Applicacions of Nondesirunive inspection 4:3 , whose eletrical resistivity demnds on composition or metallurgical condition: Tahle t. .Wantnei and I.imitauans of Nondeuructhe and Dorructhe Tnting it cannot be u. sed reliably, for in. stance, NONDESTRL'CT1YE TESTING on carbon or low alloy steels. DESTRtJCTIVE TESTING Wautes Want2su ,O Conductiyity t(sting separates parts 1 Can be dnne directly on proiluctwn items into two ciwes: core ,rming and non. *ith >ut retard to nart cost or ,vantiiv  ! Can often dirntly and reliably mesmre conforming. Conforming parts obsicutly resnaaa io arvice conditions avadaNe and no scran ksin are in. O hrements are quantitame, and usu. , hase been seri6ed as to acceptability of curred except for had parts alb uduWe fordesign erstattarc' nation, i the material i the prime objecthe of the 2 Can be done on 100", of prxluction er 3 Interpretation of results by a skdled tech, on representatne samplet niaan usually not required, testi: also, they imply good heat treating 3 Can W used when variabihty is wide and ! and machining techniques. Nonconform. unritedictable. 4 Correlatwn betw een tests and sen-ice

  • usually direct. seaving mtle margin fer Ing part.: should be further esaluated b,Y ""I '"" #8 "
  • P Ph'd * * * '8 "' "* ' *** " " " "
  • 8'cf test resu g

j the quality <ontrol department, so that item simultaneously or sequentially. 5 The same test can be repeated on the d"an'ing me a"nd signi6"c'ance i the source of deustion can he located same item.  %% '] and corrective action taken. 4 May be rerformed on parts in seruce. 1 Can he aranlied only to a sample, and sen. ' Listed below are several steps in the  ? Cumulatise effect of unsee usage can b, arate reccf that tFe sample represents the ' prcduction of typical metal parts where measured directiv. p< pulation is required elec trical.conduc tivity measurements can  % \tav rneal fadute methanism. 2 Teited parts cannet be placed in seruce 91.ittle or no specirnen preparation is re. J Rerestel tests of name item are often be used to determine if the step was I luired irnm.edle, and dnTerent t> pes cf tests properly carried out. With each step is 10 bu'pmmt is often portable for use in mav require duTerent samp!es. . -O an eximple tisine sluminum at:a parti. nek 4 Ezlerene testing usuauy cannct Fe justb i Raw. Material identification, Upon re. it % , e sts a,e usu ny io m ,,reisi3 s,d sceau.e ef is,,e sera, iess,s J I,, repetiene testing of similar parts 5 Niav N prohibited on rarts with high rna. ceipt of raw material 100% testintof the material for electrical eonduethity is ad. u,,% i,,, terial ne fabriestion costs er on parts rf Vlaable. This would strify that the ma. t Results often mut % interpreted hv a 6 aiee t I senice usage cannct skiUed. etperienced inbrucian I terial was supplied in the speci6ed condi. 2 in aMenee of prosen correlation. JuTer. be nuasured directiv. but only inferred tien of heat treatment nd that it was from tests en parts und fer duTerent I ent abseners may disarree on murung tenchs of time. i O preretly identi6.ed by the vendor as to alloy and conditmn. ar.d sirnaf.cance of test resu:tt 3 Properte are measurea ineirectiv. ana  ? Dafwult m apply to rarts in seruce. and msuauv t,,minaies the,c u,efui afe ehen ordy qWatae er marame i Entennae mhng er dur prerats. !! an aluminem aky 7075 plate was musmmuts can mas tim of teit stveimer.s .s c tren requirM ide n ti6ed as condition T*3 i required 4 %* n ndemne ents ma bege 9 Canal mmtmut and mm ems i enge cf electrical conductmty. 40 to 40% ' " '" " 1 ! ACM. but >ielded a conductisity of .11% 1 l IACS. further inststagation would prob-1 aHv show the material to be 7075.T6 that The electrical eenductmtv c.f ccrrecth- inspection with the anmption that re. C pruessed aluminum anov MOTH 1 had Nen misident:6ed as to conditon plate is 17 5 to 42 5'". l ACS in nomma. rults derived from such tota are typical I Heat Treating. After heat treating. chined areas. but overheating dunne ma. of the population ficm which th'e test e!cctrical.conductisity testing help to # # "" ' samples were taken. This acumption is 4 a.tsure that the heat treating eenditions **)[s'to ,r n en {CS "0I .sNays vahd, which introdusey a I a re in ce ntrol and that the furnace. ther,. Material mirucs can occur through loss considerable degrre of uncertainty into i many inspecticn prsgrams hued on j fore, is satisfactorily her.t treating the of identi6 cation of material or through destructne tests ' parta. A!so. omission of a required rer. carcim reintroduction of Scrapped parta In an irayction pregum basM on t:en of the heat treating schedule stough into the procesa .dow Either situatien can nendestructise tests, it is of ten neces. ]O faulty planning or pre. duction centrol result in Snished parts of improper allcy sary to use destructhe tests at the beg:n. will mean a 6rashed part of the right ma. or heat treated condition. ! terial. but in th( w reng eonditien. ning of the pregram to serify that the I If aluminum allev Oc 4.Tsst is in. se'ected nondestructae test is setually j Tre mrrect f armace setting to age alu. tendei Q? 5 to 40!% I ACs ramen. Nt prformmt as re<tuired. Under cert. sin ' ?MS.T4 ts $dstituted 131" ! AC5 h pt. circu.mstane.es destructhe tota en pro-l $rk r. r ce . e al n Et{ nh endmiun entma wodd letect duc tien iterrs are nuperior to nondestrue. a r 5 to 4: 57 IAC M a I N C <3?S D If **""n

O te, temr., aim wn acwnv u C ,o tiu tens
however. It is imm : ant that l

rinai intrection. pr:ce to sica.n, of sarnp:es st.tmitted for destructne testm: F). t r e e nd e tmt v

  • Nd r e-hanh 5. finbhed p. arts, a IN% recheck of e'ec. ,

l truly, re p rew nt tre po pula tie n. Wet. i , ma tisf acu I ACS F If therib highf reatine aOng t sch asnt4was 5 ". trical conducti.it'y is werth ihile This chirrical or mectrnectic analysis, ten. I j gg3) oppgynggy gg dg.ect discrepecies 8 Ie Ie'I ng Ind IMEOCI IeiITE 3If eb < rnitted cemrhtch it wcmd mean that in 2Hovs and heat trotrrsnt is Cia ase, the emnatic n

  • ai i nt irstead if Tet -

amples of Je tructhe tests that are fre. andjhe 3md etgt > euld P. a rpresi. y in measuring the reliatility of in. luently used in tre meta's inhetry. '

  • s etion Mrsonnel who perfor n in, and fM which there a no iut.st:tute nen. I j Q Machining. Af tv .* machining opra. prosess electricalonductbity testing dotractae tot that can provide the ,

) f:crs electrical cerductaity testing can urre mfc rmatien ' l identify two undestable situations: .a Comparison of Nondestructive The ob antun and lime.atwrs of

.it usn + mat hinjag and h ' ma te r
31 mN.' and Destructive Testin; n ndntractne and Jetrutthe totine

{ up Abushe munmme techn. wet such are listd :n T*le 1 Tha tatte can % 4 The chief oke of ncndestructne tes t. wd u i su:de for e Muarm; *h<ther i a neeone mbnt. mayp,cds andmews nerheat fwls and subently lack of in: .s that it aMews tre marufacturer m m ndt tr etac , r wrm!ne testing is O .ngnt a nut that actuaih aiH te w d 4 5 r w!rd 'o a ; art.mr tvet io n to <aoe a d ~reue in strencts Ths 5 A u s ~ ic m er san = r e tne e e '

u w Ar r *
  • e naa + n m M e be-

< ,.uMi> tar.s betwn indicated hemlybymaenerd cendactare35n ey s arm part before .t .5 ued By .ts s ery rat re ten uda rueuw mi destru n he M h ets. dr ructne tntmg maws a part aru me mtmL ee mthed d int.ru on te cho. 'n th Or dan ges ' .ind hght y and therclore of no sC m*retcial s abe C6 MN on the Md cI .ts Whty t0 "Traiute machnd er nenmachined areas. Structne ! cats hase Wn a d for Nutme &c:de cnatacteratu 4 a p .rt i  ! 'O  : c ) l ) l APPENDIX 7 ) Letter from Hartford Steam Boiler Inspection and Insurance Company J J D D 0 1 P l o D At1mta ctfce Ill* Pentneter Center West. $wne E)ol The Hardord Aumta. Georca 30338 $tearn Soder Inspemon Hoa) 3MMO md !Asuruce Co. D August 29. 1988 i t-g Mr. W.C. Ramsey Manager Project Engineering y i Vogtle Electric Generating Plant  ! Ceorgia Power Ccapacy ,. Route 2 [ P.O. Box 299 A . g Waynesboro. CA 30830

Dear Mr. Ramsey:

We appreciate the opportunity for the meeting on August 18. 1988 in which a number of your s t af f and as well as Representatives frca Bechtet.

O Pullaan Pcwer. Southern Company Services. Reedy Associates and Hartf ord Steaa Boiler were present.

We did address the Nuclear Regulatory Ccamis sions Sulletin Number 88-05 Supplements Nos. 1 and 2.

O It is the opinion of The Hartford Steam Boiler Inspection and Insurance Ccapany, after review of the documentation provided to us (copy attached) l that you are in ccepliance with the American S oc ie ty of Mechanical i Engineers Boiler and Pressure Vessel Code Section III Division 1 and that  !

as far as this situation is concerned there will be no hold up on signing j Data Reports f or Unit 2 at Plant Vogtle.  !

O We ap pr ec ia t e the hospitality of Georgia P cw e r , if we can be of any ,

assistance in ,he future please do not besitate to contact us.  !

i Tours very truly. i d.

Regional Manager l Engineering Services Southecst Region

O WTs/=k/9 4 /=kos2:10 l

l cc: H.T. Dobel  !

Second Vice President i Ingineering Clais Department ,

3 cue offLee  !

O  ;

i 1

i o 1 i

O i APPENDIX 8

, Letter from Georgia Department of Labor, i Safety Engineering Section 1

i l

l

)

)

)

)

)

1

O _

z GEORGIA DEPARTMENT OF 8 NJOR i

Jet D. TAN.NLR C"'""" ,

0' -

Safety Engineering Section 223 Courtland Street, N.E.

e Su;'a 301 ,

Atlanta, Georgia 30303

)

7 Octcher 25, 1988 i

W.C. Ramsey U, Project Engineering Manager Vegtle Electric cenerating racility -

Post Office Box 292 Waynesboro, Georgia 30830 i U M 8'"Y' O <

I would like to take this opportunity to thank you for the 1

invitation and to be able to participate in the presentation of NRC Bulletin 99-05.

The coorgia cepartment of Labor, safety Engineering Section as a ,

'O representative of the State of Georgia for Boilers and Pressure  :

Vessels in the state is in full agreement with the results of the [

test program. This firmly proves the owners, Georgia Power Company,

, 4 j

l and the certificate holders Dechtel Power Corporation and Fullman  !

l Power Corporation are in full compliance with ASME Code requiremente l

C) for the supply of materials and installation of piping systems at l 1 Vogtle Electric Generating Station, I

\

If there are any questiens or if we may be of any assistance, please .

do not hesitate to contact us at (404) 656-2966.

() Sincerely,

/

^

Earl Everett, l i

,C) chief Safety Engineer t j

EEthlj

'j NRCDULLihj f

()

1 bD u w e: w w . t : cs c