ML20044C063

From kanterella
Jump to navigation Jump to search
Cycle 13 Startup Test Rept Summary. W/930309 Ltr
ML20044C063
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 03/09/1993
From: Schrage J
COMMONWEALTH EDISON CO.
To: Murley T
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM), Office of Nuclear Reactor Regulation
References
NUDOCS 9303170099
Download: ML20044C063 (14)


Text

7 -

' 1 t ,'

_ - Comm nwralth Edison

. J_1 ? 1400 opus Place

, Downers Grove, Illinois 60515 March 9,1993 1

l Dr. Thomas E. Murley, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555 Attn: Document Control Desk

Subject:

Quad Cities Nuclear Power Station Unit 1 Startup Test Report Summary NRC Docket No.' 50-254

Dear Dr. Murley:

Enclosed for your information and use is the Quad Cities Station Unit 1 Cycle 13 Startu) Test Report Summary. This report is submitted in accordance with Technica Specification DPR-29, Section 6.6.A.1.

Quad Cities Unit 1 Cycle 13 began commercial operation on December 16, 1992 following a refueling outage. The Unit 1 Cycle 13 core loading consisted of 152 fresh fuel bundles (8X8 GE-9 fuel), and 572 reload bundles.

All test data was reviewed in accordance with applicable test procedures.

Exceptions from any test criteria were evaluated to verify compliance with Technical Specification limits to ensure the acceptability of subsequent test results.

Attached are the evaluations of the following tests:

- Shutdown Margin Demonstration and Control Rod Functional Checks  :

- Core Verification

- Initial Critical Prediction '

- Core Power Distribution Symmetry Analysis Please contact this office if you have any questions. .

Very truly you [

g '

ohn Schra e '

Nuc sa Licensing Administrator Attachment 17006G cc: A. Bert Davis, Regional Administrator-Rill ,

T.E. Taylor, Senior Resident inspector-QC C. Patel, Project Manager-NRR Office of Nuclear Safety-IDNS j

'I 2539:1 9303170099 930309 '

l-PDR ADOCK 05000254 P PDR _

.t

p:,

[:spj! ,

, ,, s f 4

.a*. ,

a I?

l f

l I-u QUAD-CITIES NUCLEAR POWER STATION  ;

UNIT ONE CYCLE THIRTEEN' .,

STARTUP TEST RESULTS 6

'l ,

?

+

i 1

-i i

i

-t

\

,i

.t6 e

i l'!

6

--__--Nx_ - , >, , ,

a ;. -

P i

i TABLE OF CONTENTS l

.i i

JEST NO. TITLE PAGE .-;

1 SHUTDOWN MARGIN I'  :

2- CORE VERIFICATION 2 '!

3 INITIAL CRITICAL 2 -- 3 4 TIP REPRODUCIBILITY '3 -

AND CORE POWER l

1 i

i I

i l

'f:

t I

l!

t

'I q

TECH 42: :

p

~ '

vl , -n. s

  • ~
1. Shutdown Marain Demonstration and Control Rod Functional Checks Puroose ,

The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subtritical with the strongest control rod full out and all other rods ,

fully inserted-1 Criteria If a shutdown margin of 0.290% AK (-0.25% + R + B 4 C settling penalty) cannot be demonstrated with the strongest control rod fully withdrawn,  ;

the core loading must be altered to achieve this margin. The core ,

reactivity has been calculated to be at a maximum 0 MHD/ST into the l cycle and R is given as 0.0%oK. The control rod B4 C settling penalty for Unit One is 0.04%AK.

Results and Discussion On November 20, 1992, control rod J-7 was fully withdrawn to demonstrate that the reactor would remain subtritical with the strongest rod out. This rod was calculated by Nuclear Fuel Services (NFS) to have the highest worth'with the core fully loaded. The ,

strongest rod out maneuver was performed to allow single control rod '

withdrawals for CRD testing.

Control Rod functional subtritical checks were performed as part of $

control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.

Nuclear Fuel Services provided rod worth information for'the strongest .f diagonally adjacent rod K-6 with rod J-7 full out. This method provided an adequate reactivity insertion to demonstrate the desired l shutdown margin. On December 12, 1992, a diagonally adjacent shutdown margin demonstration was successfully parformed. Using the NFS  ;

supplied rod worth for J-7 (the stronge:;t rod) and diagonally adjacent '

rod K-6, it was determined that with J 1 at position 48, K-6 at >

position 24, a moderator temperature of 200*F, and the reactor  ;

subtritical, a shutdown margin of 0.938'd AK was demonstrated. The NFS-calculated shutdown margin, with J-7 wit:hdrawn, K-6 at position 24 and 68'F reactor water temperature, was 1.158%'AK at the beginning of Cycle l

13. 4 At approximately-0 mwd /ST into Cycle 13 a minimum calculated shutdown i margin of 2.097% AK will occur with J-7 fully withdrawn. ,

NFS' ability to determine rod worth was demonstrated by the accuracy of  !

their in-sequence criticality prediction. The AK difference between  !

the expected critical. rod pattern and the actual critical rod pattern a was corrected.for moderator temperature and period and was determined i to be 0.436% AK. This initial critical demonstrated that the actual '

shutdown margin at the beginning of Cycle 13 was 2.533% 4K.

l

)

TECH 422 -l- ,

l 4

l

~

2. Core Verification '

i Puroose '

To verify proper core location and orientation for each fuel assembly.

Criteria Prior to reactor startup the actual core configuration shall be verified to be identical to the planned core configuration.

Results and Discussion The Unit One Cycle 13 core was verified on November 20, 1992. Fuel assembly orientation, seating, and ID serial number were verified for each assembly.

The first inspection was made to verify orientation and seating of assemblies. A second pass was subsequently made to verify bundle ID -;

numbers. All assemblies were found to be properly seated and oriented in their designated locations. The bundle ID numbers are shown in Figure 1.

3. In111a1 Critical Prediction Purpose The purpose of this test is to demonstrate Nuclear Fuel Services' (NFS) ability to calculate control rod worths and shutdown margin by predicting the in-sequence critical.

Criteria NFS' prediction for the critical rod pattern must agree within 1% AK to the actual rod pattern. A discrepancy greater than 11 AK in the non-conservative direction will be cause for an On-Site Review and investigation by Nuclear Fuel Services.

Results and Discussion On December 14, 1992, at 2109 hours0.0244 days <br />0.586 hours <br />0.00349 weeks <br />8.024745e-4 months <br /> _the reactor was brought critical '

with a reactor water temperature at the time of criticality of 177'F.

The aK difference between the expected critical rod pattern at 68'F and the actual critical rod pattern at 177'F was 0.00646 from rod worth tables supplied by NFS. The temperature effect was -0.0015 AK from NFS supplied corrections. The excess reactivity yielding the 128 second positive period was 0.0006 AK. These reactivities sum to give 0.00436  ;'

AK difference (0.436% AK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% aK required in the criteria of this test, and NFS' ability to predict control rod worths ,

is, therefore, successfully demonstrated.

1

)

now .2 '

.{

l

4. Core Power Distribution Symmetry Analysis Pm pole  ;

The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and OD-1) l collected in conjunction with the CMC update _. +

fr.LteLIA A. The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertainties for all data .

sets) must be less than 9%.

B. The gross check of TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%.

Results and Discussion Core power symmetry calculations were carried out based upon computer program 00-1 data run on December 23, 1992, and twice on January'26, i 1993. The TIP uncertainties from the December run indicated that TIP

  1. 2 was failing and had to be replaced. As can be seen from the Table 1 ';

data, replacing the failing detector reduced uncertainity caused by the

~

TIP system itself, the data from December has been included for completeness. The average total TIP uncertainty from the three '

symmetry calculations was 4.595%. The random noise uncertainty was '

0.926%. This yields a geometrical uncertainty of 4.501%. The total TIP uncertainty was well within the 9% limit.

Table 1 lists the symmetrical TIP pairs and their respective deviations. Figures 2, 3 and 4.show the core location of the TIP pairs and their TIP readings. The maximum deviation between symmetrically  :

located TIP pairs occurred during the December 23, 1992 run and was  ;

16.306% for pair 15-21..

The method used to obtain the uncertainties consisted of calculating'  !

the average of the nodal ratio of TIP pairs by:

n 22 i 1 I I Rij R- 18n j-1 1-5  ;

^

where Rij is the ratio for the ith node of TIP pair j, there being n such pairs, where n - 18.

?

k l

i j

new m I .

i j

f.;; .

)

Next the standard deviation of the ratios is calculated'by:

n 22 I I (Rij E)2 1/2  ;

oj- 1-1 1-5 (18n - 1) i I

oR is multiplied by 100 to express oR as a percentage of the' f ideal value of R of 1.0.

i

% og - og x 100  ;

The total TIP uncertainty is calculated by dividing % oR by /2 in. order to account for data being taken at 3 inch intervals.and analyzed on a 6 inch nodal basis. ,

In order to calculate random noise uncertainty the average reading at  !

each node for nodes 5 through 22 is calculated by:

1 MT NT  !

f I I BASE (N, M, K)

BASE (K) - NT X MT M-1 N-1 i where NT - number of runs per machine - 5 ,

MT - number of machines - 5 BASE (K) - average reading at nodal level K, l K -'S through 22 ,

The random noise is derived from the. average of the nodal variances by: j 22 MT NT 2 1/2 .

I I I BASE (N. M. K) - BASE (K)

% e noise - K-5 M-1 N-1 - BASE (K) __ x 100~

18 (NT x MT -1)

Finally the TIP geometric uncertainty can be calculated by: .j

% o geometric - (% o total 2 - % o noise )2 -1/2 l i

j r

j nes 4n - . - . . - . . -. .- --

u- . Table.1 CORE SYMMETRY Based on 0D-1 from 12-23-92 (1007. power) '

SYMMETRICAL TIP AVERAGE PAIR NUMBERS ABSOLUTE DIFFERENCE 7. DEVIATIOR l a-b T= Ta-Tb- 7. - 100 X T/((Ta + Tb )/2) 1-6 5.849 11.084 2-12 9.932 9.587 3-19 8.610 -8.652 4-26 14.289 16.041 5-33 0.838 2.529  :

8-13 15.010 13.706L 9-20 7.936 8.038 10-27 2.592 2.204 11-34 6.331 6.069 '

15-21 19.010 16.306 16-28 15.253 14.021 17-35 5.674 4.859 18-39 4.701 8.200 ,

23-29 5.663 5.031 i 24-36 4.894 4.679 25-40 0.356- 0.507 31-37 0.313 0.277-32-41 3.629 8.855 t i

22 Average Deviation - 7.326

/18 ..i Tj 1-5I Tj(K) ,

l i

d w

i trew m .. -

Table-1 (Con't)--

' CORE. SYMMETRY Based on OD-1 From 01-26-93 (100% power) 0900 Hours SYMMETRICAL TIP AVERAGE PAIR NUMBEES_ ABSOLUTE DIFFERENCE  % DEVIATIOR a-b T- Ta-Tb  % - 100 X T/((Ta + Tb)/2) 1-6 0.326 0.498 2-12 0.401 0.366 3-19 2.526 2.393 4-26 3.851 4.068 5-33 0.916 2.774 8-13 5.929 5.223' 9-20 2.040 1.971 10-27 2.762 2.352-11-34 6.025 5.817-15-21 5.104 4.116 16-28 15.300 14.150 17-35 5.618 4.840 18-39 5.207 9.144 23-29 6.774 6.043 24-36 4.466 4.301 25-40 1.241 1.775-31-37 0.948 0.839 32-41 4.115 10.098 22 _

Average Deviation - 4.086

/18 Tg 1-5I Tj(K) newm 1-. ,

Table 1 (Con't)- ,

CORE SYMMETRY

~

Based on OD-I From' 01-26-93 (100% power) 1400 Hours t

SYMMETRICAL TIP AVERAGE PAIR NUMBEBS_ ABSOLUTE DIFFERENCE  % DEVIATIOR a-b T= Ta - .Th  % = 100 X T/((Ta + Tb )/2) 1-6 0.269 0.420 2-12 3.822 3.505 3-19 5.200 4.940 4-26 4.950 5.401 -

5-33 0.783 2.423 8-13 6.597 .5.839 9-20 0.422- 0.398 '

10-27 2.250 1.990-11-34 7.199 7.166 .

15-21 9.441 7.685 28 16.522 15.143 r 17-35 3.934 3.418 18-39 4.296 7.813 23-29 8.214 7.240  !

24-36 4.250 3.975 25-40 0.155 0.229 .

31-37 1.530 1.428 '-

32-41 3.059 7.772 ,

22 Average Deviation - 4.605

/18 Tg 1-5I Tj(K) 5 recH 4aa . t

A O CD W W N O en e e N O mew N O s0 mv N Oge ,CD= *= CD eN O to @ v 19

. LD to 40 80 40 80 W W T T T n n tg n gg gg aN ge " " *"

.* m E E = ; 2 2 2 2 g O m 50 E E h 6 E.

- - - - _ .E. E @ E. E - _

40 h

AO E=0 3.E.U 5 6

- - - . . - . _ ;_$. _5. h LO s0

= a _.-= =-

- 2

- -a.a.. ..e _= _= _e . _5. . , . ,. . -= - = s0 g @

IO E E 5 _E.5

- - eE

- ..E.E _- E_. E.. E_.h,E E. _ - _

_3, 6_. _3 . - .. E E to

- ~ - W m .&.S -a- 5 -

e e e - e5 5. _: E -E.E.E.e_

- - - - . _ _  !. _5. $ _.a iO M g v _s 9 _5 5. s i g a g g e =u a e. =a = na e E.s, _3. _5 g

v s  : e s n a g a = = = n e : e a = = e a g = = = = s

_5. E _5 5 E e E_,E E_ _g E. M- E. E. a_ E. _s,E.a E.e E =5 5 a_._5 v T - - .

M m a a = = e

= x x s ~

e e n a g g -* *~ = = a =~ = ~

= = = = g e m

. v - _- .., . . c e ,

_E.g e.

5

.e. e _e. c.

~

m, =

- c E., *,. .e

=

  • A -

_. _- . v

%,,,) . . . ., , ., . .

h h W Q v _6.e S E - -

E E-e

- -n - E D E- -E E E. E -E_, E . - E. E. E. E-

_ . E_. E. _ S. U

_ - U, e

b e N k N g

o

'M

!55EE E E555 5 55 $ $ ! ." E !" 5 E E E E E5  ! E n

- . - . , - . . ~ , . , . . . . _ . - _ . - -

O ""

R g 3 R C M M A 3; C ~ = = C O A g;; E $

~ M ~  ? ;e -0 R T (2 m a = a e -e e e e e a- -a _5 - c a = e e = =

e e e = e_ n 4 e e c - -

- - - - - - - - - - - - e_ - - - - - - - - _

O n m. # s. ~= ~= = = = n = = = = * ~e : -

n ~- =a .

: c. = -s ~1
N p . g g g e ~ ~

e e e - _Se.

~ g g g o n e

- _2 - .e. -e ,- _. - s - - - 5 _e. e. _E - e_.E.

=

_ E_. n. 2

- _e. -e - -

.E. n m n E e -= -e _E. ,- ~_e. e e e

  • 4 _e. E. .e .e. -= 6 n

_e. _E, _e. _E. E _E. E

- - - c_, - _= _

M n I N N R M N N 5 M N N E E N N - N N E ~

g

- 6 g

n E E

5 E

- - e.

e e- e e - - -

5 e -

E e

e =a a e

E s- e- -5 e- e -

e.

e e

E 5

% _i n W D * ** O * * @

O C T p A E 3 2 C A K N O O

  • g ; = g O E & 5 3 3 3

$ E a g- 5 n e .,p c' g a ~ E. p ~ g ~ ~ c C. ~ .

2 n E ~- e e = ,

e

~

e

~ ~' ~

e

~ -' E E = s , e e =~ =~

= ~e c = e n 1

e o ~ ~ ~ ~ - - - - - - - - ~ ~ ~ ~ ~ -

N a O F1 ;

g q

  • m m e ;;; ,2 =

m E O A  :

  • A 2 3 2 g

A T 8 3 R 2  % 2 th p ~

e q-La ~ ~ - a ~ ~ g - ~ ,

N e e c e C e~ - e E p e 5 g

~

e = c 2 e c = 6 N 5_ E g( - - - - - - - - - - - - - - - - - - - - - - - - - - _

M N E 2  % 3 A R n R 2 3 E x- ~- = x  ; * = .= =. a,,, R 8 g s* ~C 4 C  % s X N e 3 - ~5 e n, e 5 c 2 -

e c - _ ~ ,

=- n- -e

E e. N

- 2

- - y - - - - u q- c e E q p q g

4 ~ . - - . - - - e  ; , . _ _- .

g ~ - , _

80 3 2 ~g T e E R , _

J N R

e 4

=

4 R -

h e 2 R - -

9 ,- e_ g -

5 2 R N

  • K LO o - - _= -e E

- - - - E $ E s s - _e _E E -

E h-E E

e e

=-

E e

- _n _= e -

N EN i ! ! ! !

. - - - - - i.

E

- l l i

a

=  ! ! ! ! ! ! ! ! ! !

a W , c, e ~

2 O g -

A R 0 0 2 g -

M g -

c g- e

~ . . - ~ o e

'
c y a E

=

C

=

==

a R

+ n - ~ ~

$ ~C ~ ~ e - ~ ~

R = 2 ~ .A **

- e,

=

a e

- .e ,

m. .e. e. .e n. = e.

. e.

e n 2.

2

- p e,,

e, e n

- - a.,,

e

- .e =., .e, .e., .=.,, _=. O N a

O k

=

E 0

i

- _h. p .

c e

i

. h. =EN= =b b= h h= 5= E=

b b

= = D

@ E

=

=

A

= =.

j v

.4 a

6 S n

~

e c

= y e n 2 E E ~ a- = ~ -

=

O .

g =  ;.  :

=

=

=

n to

- - - - 'L. - * - - - _

a e

E g -5 e E 2-e

=

- - - - _= -

E E E f4 3 U E S h E E 3 5 R E 2 A S 3 E C s=

& 3 C O O A

_e. - a 5 9

e e

e  ;

e E c - E. .

=

= E. :a s - E. e E

- S_. 5 6_. 9_ .

.n

  • = 3 % P Q $ " O M E C G 2 = c T e -

M A A a $ 3  : ,

0, 5 E ~D -= h n- b- E_, N A E N 5 0

_5 5 e h M E w

_ - - - e.

_ 2 a = _ - - -

3 0 $ R E $ E O : O = ~ == -

g - - - - c 0 2

! 5 5 5 5 5 5 5 5 5 E a = = a e a ~= = g a = e , e

! E i l  ! ! ! ! 5 E

=

s x a a

G E n E x

- - e e e e

- ~ - ~

e e

e e 6_,

s

- - - - - - -. _e. _e _ - _e, .e. _. - _= -

~ W N F O M N M N O M M # O M m A M M A . 4 4 R A A 4 C - A E q 40

2 e, 3 2 2 =. = =., .=, = = @ = -

- _. - - . .= 2_, - -

n y - - - ~ ~ _ _ . _

n i

n 5 5 5 5

- - = -5 : : : 9 5 5 5 E $ E O E & O O S E

  • 6 -e -e -a -E *

- E.

E_, E.

. _E.

m O 2c. W**#*=N ** O == CD C vN l

ED to LO 40 80 in v T T T T n n (7 M t.J N N N N N a

FIGURE 2 CYCLE-13 QUAD CITIES UNIT 1 REACTOR UNIT _oAls POWER SYMMETRY AVERAGE BASE READINGS X SOURCE RANGE mot 4 TOR 5 g emexATE RArcE MOr4 TORS- csA

, 5 NTE RAPCE mot 4 TOR 5 - De

.w- - -

61 1 - l.-

5 y Esm.h as '

. cuo. l j' C +w+ + 4 +'Y +' % . ;1 - i

^

un

.+ sa.+

^

ia n + A 10 iou + 1 isa .+ sm 7~1

+4 +' 4 +3 /4

< + % +;s+ - -

-s

. 1 m m m 1 1 m 1 1 m 1 m ,

di 42 I sla3,,T figet,,T ror.17,,I foy,pg,T 97,g agg ,T 37,/7,]

, ir

+ 3- / ,+ +, ,mF +

i, , , ,,

+ +

{

v 2+ + + +, a- 3 8+

%LL ,4

  1. -p _L. L ' .1< _L 1 '

y 9521, _h.

loin . 9- to._L r,ix ,

_L ggyo, _p; to_sju f 7 par,,y l

t 2,

+ + %. f% +' %

g '9 . -!- % '

+' % +'%

  1. 2s 25

+ 9&tL 1

+ to).&L '

+ imd4/' ' d a sa. Lay + tium

.+

1 ti1 3, L + '

52:1L

+  !

i + + ,2F t ,% /,4 s

+,,4 +u,,+ + ,'2;_ + inj_

'a

, i _t_ 1

^

/ _t A _t 2 _u 1

_t _u _u to 5!17,, + ' ICD 1/I Ill&On,I DM I.

IIW l lo_R!Q ,I l _

+ % g',9- +'% +' 4 +' 4 +"up +

lI.'

I,'o 1 t-m l-/

, g +,,1F a n"..+ e's,.+ ions .+ u's, .+ sass 3-t' f.

y + 2p 4, ,a_ 9 ;_ + 2, 4

  1. , / '

+ + + + +-

I l oi f2 o ,o6 f o ,io,,12,3 ,,6,,ie,,2og g g y ,,ao,,a27 7 w jm,,4 j 4,46 ,m y ,,s2,,sa y ,,m,,6o 84 1 TP-LPRM AXIS OF SYMMETRY Based on OD-1's from Date IR/93/9A Power 100%

Date Power reew 22 -  ;

. j

FIGURE 3 CYCLE 13 QUAD CITIES UNIT 1 REACTOR UNIT _oA)F POWER SYMMETRY AVERAGE BASE READINGS X $0RCE RANGE MORCR$

g enERMEDATE RANGE MCNTOR$ - CHA

.,_ .1.-Emo....

.w - -e ..

6I 1 1 1 s.to s r~sw..+ na,.+ wi,n

, , r.

'I r +w+ + ""r + *F + T . .l -

} E

%2 L,4 1%,+ M oh ,+ !!2dL+

1

.so S

3 A2 -,+

1 2 1 6M5 /1  :

+ + + 4 +,,84F + "+ /,"& +

{ + "+  ;

T~ 9213. ,Y 1 r I12,., Y 1 %,Y 1 1

,S 2

^

1 IT!!, 1

,+ 3&b9

..,= , ,,

IetiI, 9138, D

{- + +, ,+ + + +d& +, ,& /,3& + mF + 8&

. + ^ s.g ry !!2L "r _p 1 1

.+- mgL + tear.+

2 1 1 i u 101 1 L+- IQYJr 12134 10116, l

@ + + 4. +'"2+ + 4 g'22g +"237 + "24 + g i

)=n + ion 1 1 r y 2- A. 1 + 1 + 1

.+ ma.+ e s. Ie..r iont im -

e..+ .

=y + + ,,2p +,,i.s, p,9 +,,isp +,,ig +,.,i2p +,,imp

^ u

'jo i _i_ 1 A 2

^

1 se 2. "-.+

61st. illst %L i to2L $

1 It_hgL~5' lokte.Y Y __

y', + 6+ /,'+7 +'4- 4'4 +'4 -k"up +

?> (_ / 1 ._p Ion.p _t- z'.+

o 7 m ,,

_ 2 ex .+

1 suse .

+ sm,

+,,1F + 2p 4, ,aj_ +,. 9 + s

{. j

( ,/

O!

I

+ + + + + -

> i ,

i i lfll

"#2# "o,".'%'%"is'%'%"JbJb'%",,"J'Jb"d t'd'#47#s,5's!'es 5 i

TP-LPRM AXIS OF SYAWETRY Based on OD-l's from i Date 1/2A193 Power inn $ ' \

Date Power nes.u I

FIGURE 4 CYCLE 13 1 QUAD CITIES UNIT 1 REn', TOR UNIT BlJG POWER SYMMETRY AVERAGE BASE READINGS X $CutM ReCE MCNTOR5 g enErusxATE RMCE morCORS - CHA 3 nrawaxATE RMCE MCtCORS - CH3 e LocA: POWER RMCE MCrnCRs 6I sf 1 1f l~ Slab 4 EfL 1

9 se

,,4 //ad9, ""l

, u si r +w+ + ""r + 'F + T -. ;1 -

"i2

,p 3 [25,+ 96Ef.

E4 Ilf9i_L+ _I- L+ AM m /dLO 1 + E g 6 EM l

< + e+ +]+ +4 +' 4 +3+ / h+ +

i c

[~ 8 16,,,,,5

. 1 IILif,,h I@_tLp B

_L 109,3L

_p I 9g13%

_L

,4 . L ,

4i ,, ,, ,, to]R, , 3_hBA '"l

{ + + + + + +if- +, ,sh / ,$+ + mE + s2p "r _g lo15L_p ya 1 _t 10_Ll4 .+ !!ag ML ey 1 12_A IIM5 . + < Io11L + JLEA.+

1 _L .

( + + 4 +^4 +,"2+ g22F

-E"23 7, + 2+ + 24 ,  ;

3e + 1 _p ry n + u 2s

o. m.+ m_t e n_u .

a u_m_ _fu_t.

_p si 1 a.p _

=X + + ,'2p +,u,i+ g,ip +,,,sg +u,,isp +,.,i2p +,, imp 3

'i..o aa.+ ua i _i_

_u "/

1 u .+ e_t. + r -

um .+ e_t. + +

l{' + 6+ gg'+ +"SF +'4 +' 4~ -h"up + j

?,o> > "_p _t 2 _t^..p __

__F s_t" ea .+ .+ 1 _

p w,. _

, g +,,+

e. .

,, m, ,

na.

+ + + V f t f 2, f . y

( / * ,

of

+ + + + + -

l , l i 4 i 4 , I lll l l

",2#o,"#o,'iii3

o i." #ini #######s,%' /' "#,%"si J'd's7' ado 5'

i TP-LPRM AXts OF SYMMETRY Based on OD_1's from ,

Date tim *193 Power IOo %

Date Power nes m

~

_11_ I

.;