ML20056F063

From kanterella
Jump to navigation Jump to search
Quad-Cities Nuclear Power Station,Unit 2 Cycle 12 Startup Test Results
ML20056F063
Person / Time
Site: Quad Cities  Constellation icon.png
Issue date: 08/19/1993
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20056F058 List:
References
NUDOCS 9308260016
Download: ML20056F063 (9)


Text

_.

i i

a  :

t i

i I

b i

i QUAD-CITIES NUCLEAR POWER STATION  !

UNIT 2 CYCLE 12 -

i STARTUP TEST RESULTS '

i i

?

j i

1 l

l l

i l

l STMGR!tCSTRTUP 9308260016 930819 Qj PDR ADDCK 05000254 N:*

P PDR l} . . .

I TABLE OF CONTENTS l

l Test No. Title Page l

l 1 Shutdown Margin 1 2 Core Verification 2 3 Initial Critical 3 4 TIP Reproducibility and Core Power Symmetry 3 l

l STMGRtU2STRTUP I

~_ ~.

- 1. Shutdown Marain Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subcritical with the strongest control rod full out and all other rods fully inserted.

l Criteria l

If a shutdown margin of 0.333% oK (=0.25% + R + 4B C :ettling penalty) cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this l margin. The core reactivity has been calculated to be at a maximum 4000 mwd /ST into the cycle and R is given as 0.033% AK.

The control rod B4 C settling penalty for Unit Two is 0.05% oK.

Results and Discussion On April 11, 1992, control rod H-9 was fully withdrawn to l

demonstrate that the reactor would remain subtritical with the strongest rod out. This rod was calculated by GE to have the highest worth with the core fully loaded at the beginning of the cycle. The strongest rod out maneuver was performed to allow single control rod withdrawals for CRD testing.

Control Rod functional subcritical checks were performed as part of control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.

General Electric provided rod worth information for the two strongest diagonally adjacent rods G-10 and J-10 with rod H-9 l fully withdrawn. This method provided an adequate reactivity  !

insertion to demonstrate the desired shutdown margin. On April j 11, 1992, a diagonally adjacent shutdown margin demonstration was l successfully performed. Using the G.E. supplied rod worth for H-9 (the strongest rod) and diagonally adjacent rod G-10, it was determined that with H-9 at position 48, and G-10 at position 24, a moderator temperature of 137oF, and the reactor subcritical, a shutdown margin of 0.592% AK was demonstrated. The G.E.

calculated shutdown margin with H-9 withdrawn and 680F reactor 1 water temperature was 3.001% AK at the beginning of Cycle 12.  !

At approximately 4000 mwd /ST into Cycle 12 a minimum calculated shutdown margin of 2.968% oK will occur with E-4 fully withdrawn.

G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction. The oK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.1154% AK after 1 correcting for temperature and period. This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 12 was 3.1164% oK and 3.0834% oK at 4000 mwd /ST into cycle 12.

STMGR\U2STRTUP

l 1

l l

2. Core Verification i Purpose  !

The purpose of this test is to verify proper core location and .

orientation for aach core fuel assembly. 1 Criteria Prior to reactor startup, the actual core configuration shall be verified to be identical to the planned core configuration.

Results and Discussion The Unit Two Cycle 12 core was verified on March 17, 1992. Fuel ,

assembly orientation, seating, and ID serial number were verified for each assembly. Two inspection passes were made over each ,

assembly. The first pass was made to verify orientation and seating of rissemblies. The second pass was made to verify bundle ID numbers. A video camera was used during the inspection. All assemblies were found to be properly seated-and orientated in their designated locations.

On March 21, 1992, 24 fuel assemblies were reverified due to the unload and reload of 4 fuel assemblies for control rod J-14 drive replacement. Two passes were again made for orientation, seating ,

and ID verification. All 24 assemblies were found to be properly  ;

seated and orientated in their designated location. Similarly, on 1 March 23, 1992, 22 fuel assemblies were reverified due to the 1 unload and reload of eight fuel assemblies to allow drive I replacement for control rods P-10 and P-ll. Two passes were again 1 made for orientation, seating and ID verification. All 22 fuel assemblies were found to be properly seated and orientated in the ,

designated locations.  :

The bundle ID numbers are shown in Figure 1.

3. Initial Critical Prediction Purpose  ;

i The purpose of this test is to demonstrate General Electric's I ability to calculate control rod worths and shutdown margin by l predicting the insequence critical.

Criteria General Electric's prediction for the critical rod pattern must agree within 1% 6K to actual rod pattern. A discrepancy greater than 1% AK will be cause for an On-Site Review and investigation by Nuclear Fuel Services.

l l

l STMGR!U2STRTUP

l Results and Discussion On May 8, 1992, at 2041 hours0.0236 days <br />0.567 hours <br />0.00337 weeks <br />7.766005e-4 months <br /> the reactor was brought critical with reactor water temperature at the time of criticality of 165cF. The oK difference between the expected critical rod pattern at 68cF and the actual critical rod pattern at 165oF was 0.002894 from rod worth tables supplied by General Electric. The ,

temperature effect was -0.00145 oK from General Electric supplied  ;

corrections. The excess reactivity yielding the 215 second  !

positive period was 0.00029 AK. These reactivities-resulted in a 1 0.001154 AK difference (0.1154% oK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% oK  ;

required in the criteria of this test, and General Electric's ability to predict control rod worth is, therefore, successfully demonstrated.

4. Core Power Distribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of l indicated core power distribution asymmetries using data (TIP traces and OD-1) collected in conjunction with the CMC update.

i Criteria l

l A. The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the  ;

uncertainties for all data sets) must be less than 9%.

~

j l 3 B. The gross check c? TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%.

Results and Discussion Core power symmetry calculations were performed based upon computer program 00-1 data runs on May 20 at 1303 and 2045 hours0.0237 days <br />0.568 hours <br />0.00338 weeks <br />7.781225e-4 months <br />, i both at 99.2.% and 98.9%, power respectively. The average total TIP uncertainty from the two TIP sets was 3.230%. The random ,

noise uncertainty was 1.150%. This yields a geometrical uncertainty of 3.018%. The total TIP uncertainty was well within  :

l the 9% limit. I Table 1 lists the symmetrical TIP pairs and their respective average deviations. Figure 1 shows the core location of the TIP pairs and the average TIP readings. The maximum deviation between symmetrical TIP pairs was 8.51% for pair 5-33. Thus, the second criterion, mentioned above, was also met.

1 STMGR\U2STRTUP

The method used to obtain the uncertainties consisted of calculating the average of the nodal ratio of TIP pairs by:

n 22 1 I I Rij

_R = 18n j=1 i=5 where Rij is the ratio for the ith node of TIP pair j, there being

n such pairs, where n=18. ,

Next the standard deviation of the ratios is calculated by:

n 22 I I (Rij - R)" 1/2 o_= j=1 i=5 R (18n - 1)

~

as is multiplied by 100 to express ok as a percentage of the ideal value of og of 1.0.

% oi = ok x 100 The total TIP uncertainty is calculated by dividing % ok by T/ 2 -

in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.

In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by:

i MT NT  :

1 I I BASE (N, M, K) l BASE (K) = NT x MT M=1 N=1 ,

where NT = number of runs per machine = 5 l MT = number of machines = 5 l BASE (K) = average reading at nodal level K, K = 5 through 22 The random noise is derived from the average of the nodal variances by:

22 MT NT -

-2 1/2 i I I I BASE (N, M K) - BASE (K) '

%s noise = K=5 M=1 N=1 BASE (K) x 100 l 18 (NT x MT -1)

Finally th'e TIP geometric uncertainty can be calculated by:

% a geometric = (% o total - % o noise")'/2

, STMGR\U2STRTUP l

l i

L_

  • I L

Table 1  !

I CORE SYMMETRY l Based on OD-l's From i 05-20-92 at 1303 Hours and 2045 Hours  !

(99.2% and 98.9% Power Respectively) l l

SYMMETRICAL TIP AVERAGE l

% DEVIATION PAIR NUMBERS ABSOLUTE DIFFERENCE a-b T= T - T,  % = 100 X T/((T + T,)/2) ,

1-6 0.48 0.71 2-12 5.06 5.48 .

3-19 3.32 3.33 4-26 2.66 3.07  !

5-33 3.15 8.51 ,

8-13 1.43 1.28  !

, 9-20 1.87 1.86  ;

l 10-27 1.38 1.33 11-34 5.51 6.07 i 15-21 2.18 2.02 16-28 3.54 3.53 l 17-35 2.60 2.52 l 18-39 2.11 3.59 j 23-29 1.14 1.07 .,

24-36 5.57 5.56 ]

25-40 3.65 5.32 '

31-37 6.95 7.06 32-41 0.46 1.13  :

1 22 Average Deviation = 3.52 T,= I T,(K) /18 i=5 l '

I i

1

$TMGR;U2STRTUP

F'IGURE 1

- CYCLE 12 '

- OUAD CmES UNIT 2 REACTOR  !

-61 w tu tu LM LYA LYA LYA LYA LYA I

  • LYA LYA 587I 670 7161665 647 l653 M61743 I 5841591 d ttA LYF (W LYfitW 5

614 - 498(539550 544 tW3W 442 496 549 566 LW3W LW j tW 551 4 76 tu j 590 i

{

q- tu tu J t LYA tw LYT LYU Lyr tW (W tW g

674 1609 618 547 LW 428 450 l LW 4461 261 tW tYA LYA LYA i l Lu LYT LW tW LW 462 463 276 LYUl445497{tW 503 5414 602 6321597  :

t' tW LTU tYU { LW tYU l (TU j e l 717 543 {473 ~ -542 469 289 )233236 23 214 219 tYU 254 l 235 tfJ tfJjtYU LYF l (W LW o

~~

2 71 325 456 520 479 l %81695(W l LYA 4 Lu LW "g LW LYU" tVU YJO LYU LYK YJO LYK YJO YJD 640l540 445 l 309 2 77 ' 219 212 704 tYK YJO tvK LYU YJO tvu L1U tW" LYr LYA 297 1 648 298 799 687 (300 He 1220 2201548 K l Lu i (Yr LW LW j LYU YJO . LYU YJD , 1JD 324I 480 5311652 l 712 l 529 [ 486425 302 213 292 214 295 tYU l YJO LYK LYK YJOjLYU YJOjYJO LYU j c  ; 229 215 762 742 216 225 296 217 291lYJO LYU 218 306 499 LYF LYF Lu 48

; n l LW481l528692 ll  !

tu LYF LW LY4 in LYK J t YJD _ in in '

p 600 514 470 l429 LW710 659 l LYK LYUlYJO 273 291 705 j 764 292 1 778 773lLYK732 tvK YJO LYK tVK YJD tYK LYA ,,t# LYr LW tu

,6 Lu LYY LYU j LYU 7791293 783 l 724 294lLYU 272 685 1 704 495l443 571I594 677 [432 2 78 293 in { LYK LYU j YJO Ln l LYK tvu 635 716 '285 209 763 650 230lYJO LYK } tvK yJo ) tyU tyK j Lyg yJo j Lyu tyK g tyK tyU j tyU t

210 679 671 211 227 689 735 212 314 722 723 343 335 (W l tyA 4$ i tu (W  ; 502 588 '

LYUltYU,, YJO,LM YJO in YJO YJO LYK YJD tvu 5761 553 LYU 288 205 l YJO 274 294 232 LYU676 l tYK tvK LYU (fJ LYU YJO LYU LYr (YA '

206 788 287I786 288l289 751 l 290 I tu tvi YJO(LYU Y.:0 { YJO LYU YJD 789 207 l YJO 692l250 299I243 208 I 301 554I 608 '

42

} 621 513l449 LYK l LYU LW 199 310 283 200 654 186 2P6 284 283 201 LYK l In LYu j YJO YJD LYU YJD j LYU LYu j tvK et-0 672 711 202l313 285 305 244 673 YJ70JO LYTUJO tW l tVY Lu j i tu LW J ,: 203 286 316 204 492 S5 5921 4c LW LYU LYK Ln LYK LYK YJO LW LYK LYK LYU YJD J J  !

6041 505 477 l 224 LYU 199 195 l YJO ,,YJO l tYU702 Ln LYK iW YJO 0 3

714f770 196 790 726 2811 328 LYk LYK YJO LYU LYU tW  ;

y' LYA LW 644 l 696 338 282 785 !662 3461197 737 IE6 LW LY4 {

LW l ifJ YJO 198I240 345 506 I 603 I

~

585l510 431 2D4 LYK}275780 649 M5 LYK j LYK in l YJo 794 276 LYK LYK tYK LYK g LYK m tVK Ln g LYu LYK LYK 4 75 37 - 790 664 _776[YJO 277 657 674 278 743 M7 792 YJOlLYK 683 l 744280 l LYK YJD Lyr tyr h C 279 74 1 7C7 LYU 270 ,500 548 l 071tvA 36 tu (W LW (W uo LW tvu 2 LW tW 3 749 1545 460l205 2671 206 YJOl183 268 269 l287 LW 270 YJD775 l in 200l 524 m YJO LYr 193 '194 522 l252 in IW 750271 2 tW YJO LW 2 LW 2 tw LW Lu g, tu LYr LYu LYU in j YJO LYK j YJo LYK ( u0 3001272 259l273 260I274 LWl465 253 6t0 ; 519 262 ; 181 LWj16 YJO i 11U YJO l LYK YJO j LYK 569 I 689 l 633 187 777 188 774 189 340 265 LW LYU l YJO 521 184 ttYV LYu LYu LYU LfJ 3 'r- 0 231 241 248 M2 2% 347 190 733 191 738 YJO l tYK LYF Lu i

~w LY4 LYr LW LfJ YJO LYK LYK LYK,,

J 192 720 242 l 251%7 l 643 { .

e LYK LYK YJO LW LW LW LYU M LYK LYK,, LYK YJO J , I 3 61 $ 59 435 ] ,34 261 1 761 758 '646 YJO 262 668 l LYK 634160 1851f82 LYK LYK LYK YJO LYU LW LW tYA

,0 tu 1 LW LYF l(YU tYK LYk . LM 44 ]8Q4 2471tB6 677l688 681l263 645 746 249 : 483 611 466 433 218 YJO l 771728 658 258lLYK 257 YJO LYKj(1A YJO LYU LYF LW LYU g YJO LYK 78_O 64 451 1 605 p *[

29-~ 639 636 638,183 l 202 435 508 216 164 678lLYK tYKjYJO LYK LYK ttx i YJD tYu LW LYF j LYA 6a6 680 259 684' 759 747' 260

, w Lu tYr LYU LYU tYr YJO LYK uO ,

b 239 491 447 635

} 1. 6071 576 257I187 637l 177 729 178 LYK 766 179 l u0 LYUlYJO LW LYU tYU LYU YJO UO tYK YJO LYK YJO LYK 331 255 55-5 1 201 199 l238 LYU215lLW 557 256lLYU LYU tVU LW tu LY4 l LW LW q tvu 342 1801730 181i749 182 721 p 729 5 7 461 195 YJD { LYU YJO LTU 'OjtW YJO tW 245 l 2 % 537 1 644 247 198 248 193 249 280 250 l753 LYKLYUl563 190 YJO l YJOLW tW tYK j YJO YJO tfJ j YJO tYU YJO 175 176 572 l 268784 251 LTU 333 l 252210 253 209 254 tYU l LW tYF [

4 tu LYr oY ofJ LYK YJO tw 211 474 559 {702 tu 6381 511 LYK YJO tYk LYK YJO LYK LYK 439

  • 264  % ) 1 241 725 l655 tn 7341742 760 l660 tYK 7578 743 YJO in LYK YK YJO , LYK tvE LYK 7 641l700 2441736 YJO LYK LYU LYr Lif ttA t

t tu I LW tw I Lfu LWjno LYr i LYK 690l(795 2456 731 6821 787 246 1 709 275 '454 546 (6 %

p_- 1 593' 434 422 295 189 671 719 793 YJO}tYU in t tYK u0itm LYK l (YK LYU J uo LYK (fJ t US  ;

f 172 296 6 70 756 2J9 341 642 694 LW YJO j LfJ tVU . LW 3  ! Lu (W 6W l YJO LYU 327 240 LYK l712329 173 LYKl708 754 739 174 258 LW t tvA 336' 487 501 03 j l ' 671 YJD YJO in LW YJO im YJD 112 6 444 j 1651 3tB 235 i in 653)LYU LYK LYK YJO YJO LTU LYU LYK 188 304 I 236 3191 167 YJD YJO LW LW Lu i 710 1 706 168 l312 LYU237 I 372

(,

l l f Lu e LYY I LYu l YJO Yu LYU j in 2461 7t3 169I738 tfJ 323l1YJO 70 490 %0 600 (

i 1 693 573 1 339 161 LYU 263 g (281185 698 YJO l LYK YJO ] in u0 u0 tu YJO in l YJO tYK 162 769, 231 7% 232 l 233, 781 l234 LYU l LTU u0 l tfJ LW tu 796 163 ,691l 237 tYU 334 267 164 337 6 j i tu ;W i tYu tYu tu tn " tW u0 tu on ' tYu no 552 06 675 i en i 298 i 2'9 640l 7e3 320liS7 768ivit 2ist iS8 69 ta ' u0 tYu tw tn ' u0 tTU tn tu tm tW tW tu *

~

LG 1 tn tYr tYK. i fi5 iS91 =3 695l791 360t si1 647 i 652 344 1 32i 4e2l66i I tu Ln (Yu j uO in u0itn t

} 612 55! l 457 427 709 717_ 192 227 656;tn (YK tu j uO in YK u0 Yu tn a 748 697 230 269 651 682 509 l467 (Yr j tu

,,~ 767 228 72 7 in 765l 745 752 229 LYr tW

, t i \ i OAi LW LW tW LfJ' YJO tYU YJO u0 LYU YJO LYK LYK 564 598  ;

-y I I I l706iStBl477 4361 326 151 308 152l 225 1% 4 153 UD LYU YJO YJO LYU u0 '

7721 740 tif tu I i i tu t tYr LW tYu 1544 224 2261155 307l156 LYU 303 455 l LYr 453 1516" LW683

  • I 1 l l 642 538 452l317 297 149 tYu u0 tYuitu m ) tw u0 i u0 197 675 221 643 222 223 tn t u0 tn W u0 i tYu t  :": 693 224 701 228 tYul(W tW t to 150 332 J15 441

' 1 4 '

j LW, 0 0 530 654

~., ' { 'I tu LYY tW tVU LYU l i '

{731 LYU LfJ LYU tfU LYU LYU LYU

~ I 515 1 423 527 l458 tW 2821 217 221e 207 i941 2;6 Lif LW tiY tW Lu 'i tu 266lLYU 222 2% I 33b 4681 534 4881 % 1 699 I 596; 641 tu tu tW tvf j LW (W i tfJ LW i (Yr (YU j tYr l I  !  ! 589) 525- 426 430 424 2 08 464 471 265 489 (W g tYr tty j Lu (YTjTu J'  ! j l i j

4 78 484 52J 6 78 626 60 l { l

! tu tW LW tW tW tW tVY tW tW tW tW m

tuj I

617 507i532 565 i 136 4401 493 533I570 535 l 494

, t ) l i j tuitu Lu tu- tre e tu g4 l t

I tu j tu tu g tu r I i 627 624' 726 , 649 4

1 581 659 650 725 625 634 I l

= = 04 m 2 ,0 ,2 .. ,6 18 20 = 2 I

et Si 03 05 OY 09 11 13 t5 17 19 21 23 25 x 28 = = 34 x 3. 0 2 46 50 u ,. , 58 to

) 30 C1 27 :9 It 33 35 37 39 4: 43 (D) (O (f) 31 -

45 47 49 51 53 55 57 59 (J) (K) (L) (W)

I (N) (P) (R1 1

g A sci E M I w wi0es M w:Puut se 4 wovices - Bus 4-E wipuut %:i uovtcas . mis ir j

I l

l .

I . l i

' FIGURE 2 OUAD CITIES UNIT 2 REACTOR

, si 60 W

" g l IlP/LPRM

} g  ;-

2 T Axis of Symmetrv /,_

3, i l I Y /

57 6S g 70 40 g 41 06 g /

l'.=

22

=

a

+ 3'! ,

'"i- l !  ! j

"[ l i

3 35 45 858 g i

i i s/ '

10189g 97 473 ) 101 91 g 58 6 33;  ; sq_ 35 a

3q_

a 37; j 38; i

"e p l l +g + +

' 2. ,_ ES 39 102 Si 98 52g 106 64 l

g 100 7 l

[+ 94 96 g

40 60 I

g 3,_ ' I 2 p 21 _

l 28{

20 _ 3 31 1 17 - 31l __

O

[

55 p

i l

07 00 i

1 p

i l

10132g i

l T

106 41 i i I

101_50 3/f i

1 I i i l l

g__ 3 106 Si g 103 04 Ji_g I g E6 75 g j iS -

'9l h 2 21l 21 '

_ 21 _

j 24l __ 2 9

  1. 8 1 1 )

2 7--

i  ; , ,

I 1-- l 1 g j (  !

3__

99 86g 110.55 g 108.58 (  ; g 2' 88 34g g 102 05 g 104 49g 59 79,g I

1 I

1E _j_ Q'_ 1/ 141 15l 16' 17 I I i __ 1 181 21 -

a /t i T i i l

i i

  • I ^

l l l 1 I t/ i i

.. f I l l i

{ 66 90 ; i I 102 46,ji 111 T l I ( l 97 g 99 45 g 103 89 i

g i

93 59 i i T 1

  • g _.

~

1 o '/ i i l g

1.

',,__l lll / I + -

/l l

6+7zg37 1

+ +

94 929 ) 101 31 g

88 05 g 38 60 3

g i

5 1 I I 21 1 31 4 1 5 l l l/l l l 8 I I I I I I CI ^

VijiI i I i )

Di-VI I I i l l I i i

l x = o. . . ,, ,, .. ,. .. . u 01 C3 05 07 09 11 13 ,5

2. a x ,u 3. , , .,..,,,s.

( 18) iB) (Cl (C) 17 19 21 23 :S 27 29 31 33 35 17 39 .. ,, m

([) (F) (C) (H)

.1 3 .5 .7 .9 St 13 55 57 (J) (K) (L) 59 (w) (N) (P) (g) i

@ o*u t w o- traw <meim *r -a,.an o n. . o- a- - .. , ~ e,

-_ ~~I

@ pu La oi.oes .,_ :34 ue gg 3.;;)

a via tuoim # # #

  • 3 'mre tw oi.oas Wev 73.1997 e 1M3 havre (99 22 Pomert
  • 23 '982 8 20*S e (98 821 P'**"

i l

l

.