ML20056F063
| ML20056F063 | |
| Person / Time | |
|---|---|
| Site: | Quad Cities |
| Issue date: | 08/19/1993 |
| From: | COMMONWEALTH EDISON CO. |
| To: | |
| Shared Package | |
| ML20056F058 | List: |
| References | |
| NUDOCS 9308260016 | |
| Download: ML20056F063 (9) | |
Text
_.
i i
a t
i i
I b
i i
QUAD-CITIES NUCLEAR POWER STATION UNIT 2 CYCLE 12 i
STARTUP TEST RESULTS i
i
?
j 1
l i
l STMGR!tCSTRTUP 9308260016 930819 Qj PDR ADDCK 05000254 N:*
P PDR l}
I TABLE OF CONTENTS l
l Test No.
Title Page l
l 1
2 Core Verification 2
3 Initial Critical 3
4 TIP Reproducibility and Core Power Symmetry 3
l l
STMGRtU2STRTUP I
~_
~.
1.
Shutdown Marain Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subcritical with the strongest control rod full out and all other rods fully inserted.
l Criteria l
If a shutdown margin of 0.333% oK (=0.25% + R + B C :ettling 4
penalty) cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this l
margin.
The core reactivity has been calculated to be at a maximum 4000 mwd /ST into the cycle and R is given as 0.033% AK.
The control rod B C settling penalty for Unit Two is 0.05% oK.
4 Results and Discussion On April 11, 1992, control rod H-9 was fully withdrawn to demonstrate that the reactor would remain subtritical with the l
strongest rod out. This rod was calculated by GE to have the highest worth with the core fully loaded at the beginning of the cycle.
The strongest rod out maneuver was performed to allow single control rod withdrawals for CRD testing.
Control Rod functional subcritical checks were performed as part of control rod friction testing.
No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.
General Electric provided rod worth information for the two strongest diagonally adjacent rods G-10 and J-10 with rod H-9 fully withdrawn. This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin.
On April j
11, 1992, a diagonally adjacent shutdown margin demonstration was l
successfully performed. Using the G.E. supplied rod worth for H-9 (the strongest rod) and diagonally adjacent rod G-10, it was determined that with H-9 at position 48, and G-10 at position 24, a moderator temperature of 137oF, and the reactor subcritical, a shutdown margin of 0.592% AK was demonstrated. The G.E.
calculated shutdown margin with H-9 withdrawn and 680F reactor water temperature was 3.001% AK at the beginning of Cycle 12.
At approximately 4000 mwd /ST into Cycle 12 a minimum calculated shutdown margin of 2.968% oK will occur with E-4 fully withdrawn.
G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction. The oK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.1154% AK after 1
correcting for temperature and period. This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 12 was 3.1164% oK and 3.0834% oK at 4000 mwd /ST into cycle 12.
STMGR\\U2STRTUP
l 2.
Core Verification Purpose The purpose of this test is to verify proper core location and orientation for aach core fuel assembly.
1 Criteria Prior to reactor startup, the actual core configuration shall be verified to be identical to the planned core configuration.
Results and Discussion The Unit Two Cycle 12 core was verified on March 17, 1992.
Fuel assembly orientation, seating, and ID serial number were verified for each assembly. Two inspection passes were made over each assembly. The first pass was made to verify orientation and seating of rissemblies. The second pass was made to verify bundle ID numbers.
A video camera was used during the inspection. All assemblies were found to be properly seated-and orientated in their designated locations.
On March 21, 1992, 24 fuel assemblies were reverified due to the unload and reload of 4 fuel assemblies for control rod J-14 drive replacement. Two passes were again made for orientation, seating and ID verification. All 24 assemblies were found to be properly seated and orientated in their designated location.
Similarly, on 1
March 23, 1992, 22 fuel assemblies were reverified due to the unload and reload of eight fuel assemblies to allow drive replacement for control rods P-10 and P-ll.
Two passes were again 1
made for orientation, seating and ID verification.
All 22 fuel assemblies were found to be properly seated and orientated in the designated locations.
The bundle ID numbers are shown in Figure 1.
3.
Initial Critical Prediction Purpose i
The purpose of this test is to demonstrate General Electric's I
ability to calculate control rod worths and shutdown margin by l
predicting the insequence critical.
Criteria General Electric's prediction for the critical rod pattern must agree within 1% 6K to actual rod pattern. A discrepancy greater than 1% AK will be cause for an On-Site Review and investigation by Nuclear Fuel Services.
l l
l STMGR!U2STRTUP
Results and Discussion On May 8, 1992, at 2041 hours0.0236 days <br />0.567 hours <br />0.00337 weeks <br />7.766005e-4 months <br /> the reactor was brought critical with reactor water temperature at the time of criticality of 165cF. The oK difference between the expected critical rod pattern at 68cF and the actual critical rod pattern at 165oF was 0.002894 from rod worth tables supplied by General Electric.
The temperature effect was -0.00145 oK from General Electric supplied corrections. The excess reactivity yielding the 215 second positive period was 0.00029 AK. These reactivities-resulted in a 1
0.001154 AK difference (0.1154% oK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% oK required in the criteria of this test, and General Electric's ability to predict control rod worth is, therefore, successfully demonstrated.
4.
Core Power Distribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of l
indicated core power distribution asymmetries using data (TIP traces and OD-1) collected in conjunction with the CMC update.
Criteria i
l l
A.
The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the j
uncertainties for all data sets) must be less than 9%.
~
l 3
B.
The gross check c? TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%.
Results and Discussion Core power symmetry calculations were performed based upon computer program 00-1 data runs on May 20 at 1303 and 2045 hours0.0237 days <br />0.568 hours <br />0.00338 weeks <br />7.781225e-4 months <br />, i
both at 99.2.% and 98.9%, power respectively. The average total TIP uncertainty from the two TIP sets was 3.230%. The random noise uncertainty was 1.150%.
This yields a geometrical uncertainty of 3.018%. The total TIP uncertainty was well within l
the 9% limit.
I Table 1 lists the symmetrical TIP pairs and their respective average deviations.
Figure 1 shows the core location of the TIP pairs and the average TIP readings.
The maximum deviation between symmetrical TIP pairs was 8.51% for pair 5-33.
Thus, the second criterion, mentioned above, was also met.
STMGR\\U2STRTUP
The method used to obtain the uncertainties consisted of calculating the average of the nodal ratio of TIP pairs by:
22 n
1 I
I Rij
_R = 18n j=1 i=5 where Rij is the ratio for the ith node of TIP pair j, there being n such pairs, where n=18.
Next the standard deviation of the ratios is calculated by:
n 22 I
I (Rij - R)"
1/2 o_=
j=1 i=5 R
(18n - 1)
~
as is multiplied by 100 to express ok as a percentage of the ideal value of og of 1.0.
% oi = ok x 100 The total TIP uncertainty is calculated by dividing % ok by T/ 2 in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.
In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by:
i MT NT 1
I I
BASE (N, M, K)
BASE (K) = NT x MT M=1 N=1 where NT = number of runs per machine = 5 MT = number of machines = 5 l
BASE (K) = average reading at nodal level K, K = 5 through 22 The random noise is derived from the average of the nodal variances by:
22 MT NT
-2 1/2 i
I I
I BASE (N, M K) - BASE (K)
%s noise =
K=5 M=1 N=1 BASE (K) x 100 18 (NT x MT -1)
Finally th'e TIP geometric uncertainty can be calculated by:
% a geometric = (% o total - % o noise")'/2 STMGR\\U2STRTUP l
l i
L_
I L
Table 1 I
CORE SYMMETRY l
Based on OD-l's From i
05-20-92 at 1303 Hours and 2045 Hours (99.2% and 98.9% Power Respectively) l l
SYMMETRICAL TIP AVERAGE PAIR NUMBERS ABSOLUTE DIFFERENCE
% DEVIATION a-b T=
T - T,
% = 100 X T/((T + T,)/2) 1-6 0.48 0.71 2-12 5.06 5.48 3-19 3.32 3.33 4-26 2.66 3.07 5-33 3.15 8.51 8-13 1.43 1.28 9-20 1.87 1.86 l
10-27 1.38 1.33 11-34 5.51 6.07 i
15-21 2.18 2.02 16-28 3.54 3.53 l
17-35 2.60 2.52 18-39 2.11 3.59 j
23-29 1.14 1.07 24-36 5.57 5.56
]
25-40 3.65 5.32 31-37 6.95 7.06 32-41 0.46 1.13 1
22 Average Deviation = 3.52 T,= I T,(K)
/18 i=5 l
I i
1
$TMGR;U2STRTUP
F'IGURE 1 CYCLE 12 OUAD CmES UNIT 2 REACTOR
-61 w
tu tu LM LYA LYA LYA LYA LYA LYA LYA I
587I 670 7161665 647 l653 M61743 5841591 I
{
LYF (W LYfitW tW3W LW3W LW j tW tu j 498(539 d
ttA 614 -
550 544 442 496 549 566 551 4 76 590 i 5
J i
q-tu tu LYA tw t
LW l LW LYT LYU Lyr tW LYUl445497{tW (W
tW tW tYA LYA LYA 674 1609 618 547 g
428 450 4461 261 462 463 276 503 5414 602 6321597 t'
l Lu LYT LW tW LW
~~
l 717 543 {473-542 469 289 )233 tW LTU tYU { LW tYU l (TU LW j
tYU l 235 tfJ tfJjtYU LYF l (W 479 l %81695(W l LYA 236 23 214 219 e
254 2 71 325 456 520 4
~
Lu LW LW LYU" tVU YJO LYU LYK YJO LYK YJO YJD tYK YJO tvK LYU YJO tvu L1U tW" LYr LYA o
"g 640l540 445 l 309 2 77 ' 219 212 704 297 1 648 298 799 687 (300 He 1220 2201548 324I 480 5311652 l Lu i (Yr LW l 712 l 529 [ 486 LW j LYU YJO.
LYU YJD,
1JD tYU l YJO LYK LYK YJOjLYU YJOjYJO K
j 291lYJO306 l LW481l528692 ll LYU LYU LYF LYF Lu 425 302 213 292 214 295 229 215 762 742 216 225 296 217 c
218 499 n
J
,,t#
LYr LW tu 48 tu LYF LW t
470 l LW710 l LYK LY4 LYUlYJO705 j 764 292 1 778 773lLYK732 7791293 783 l 724 294lLYU in LYK YJD _ in in tvK YJO LYK tVK YJD tYK LYA p
600 514 429 659 273 291 272 685 1 704 495l443 571I594 t
677 [432 LYU j LYU in { LYK LYU j YJO Ln l LYK Lu LYY
,6 tvu 230lYJO LYK } tvK yJo ) tyU tyK j Lyg yJo j Lyu tyK g tyK tyU j tyU (W l tyA i
2 78 293 635 716 '285 209 763 650 210 679 671 211 227 689 735 212 314 722 723 343 335 502 588 '
4$
LYU l YJO LYUltYU,,
tu (W LYU l tYK YJO,LM YJO in YJO YJO LYK YJD 5761 553 tvu tvK LYU (fJ LYU YJO LYU LYr (YA 288 205 274 294 232 676 206 788 287I786 288l289 751 l 290 789 l YJO 207 692l250 299I243 208 I 301 554I 608 I tu tvi 42
} 621 513l LWYJO(LYU Y.:0 { YJO LYK l LYU LYU YJD LYu j YJO LYK l In 202l313 YJD j LYU LYu j tvK YJ70JO LYTUJO tW l tVY Lu j YJD LYU 449 199 310 283 200 654 186 2P6 284 283 201 672 711 et-285 305 244 673 203 286 316 204 492 S5 5921 0
,,YJO l tYU i
J J
J 0
4c tu LW LW LYU 6041 505 477 l 224 LYU l YJOLYK Ln LYK LYK YJO LW LYK LYK LYU YJD Ln LYK iW YJO LYk LYK YJO LYU LYU tW LW LY4 {
199 195 714f770 196 790 702 726 2811 328 644 l 696 338 282 785 !662 3461197 737 IE6 198I240 345 4 75 506 I 603 I 3
y' LYA LW
~
585l510 LW l ifJ LYK}275 LYK j LYK in l YJo LYK LYK YJO tYK
_776[YJO LYK g LYK m
tVK Ln g LYu YJOlLYK 431 2D4 M5 780 649 794 276 790 664 LYK LYK YJD tyr 683 l 744280 l LYK LYU, Lyr 548 l 071tvA 37 -
277 657 674 278 743 M7 792 279 74 1 h
C 7C7 270 500 36 tu (W LW (W uo LW YJOl183269 l LW YJD l in tvu 2
LW tW m YJO 749 1545 460l205 2671 206 LYr 522 l IW in tW YJO LW 2 LW 2 252 750 2 268 287 270 775 200l 524 193 '194 3
LWl465 569 I 689 l tw LW Lu 271 3001272 259l273 260I274 tu LYr LYu LYU in j YJO LYK j YJo LYK ( u0 LYU l YJO LW ttYV LYu LYu LWj16 YJO i 11U YJO l LYK YJO j LYK YJO l tYK 6t0 ; 519 262 ; 181 g
253 633 187 777 188 774 189 340 265 521 184 231 241 248 M2 2% 347 190 733 191 738 192 720 242 l 251%7 l 643 {
3 'r-LYU LfJ LYF Lu i 0
~w LY4 LYr LW LfJ YJO LYK LYK LYK,,
J YJO l LYKLYK LYK YJO LW LW LW LYU M LYK LYK,,
J
, I 3
e 61 $ 59 435 ],34 261 1 761 758 '646 262 668 634160 1851f82 44 ]8Q4 2471tB6 677l688 681l263 645 746 78_O 64 249 : 483 451 1 605 LYK YJO LYK LYK LYK YJO LYU LW LW tYA
,0 tu 1 LW LYF l(YU YJO l 771 258lLYK LYKj(1A tYK LYk. LM YJO p *[
YJO LYU LYF LW LYU g YJO 611 466 433 218 257 728 658 639 636 638,183 l 202 LYK 678lLYK tYKjYJO LYK LYK ttx i YJD tYu LW LYF j LYA 29-~
435 508 216 164 6a6 680 259 684' 759 747' 260 239 491 447 635 b
w Lu tYr LYU LYU tYr YJO LYK uO LYK l u0 LYUlYJOLW LYU
}
1.
6071 576 257I187 637l 177 729 178 tYU LYU YJO UO tYK YJO LYK YJO LYK LYU tVU LW tu 766 179 331 255 55-5 1 201 199 l LYU215lLW 256lLYU 1801730 181i749 182 721 245 l 2 %
537 1 644 LY4 l LW LW q tvu YJD { LYU YJO LTU
'OjtW 238 557 342 p 729 5 7 461 195 247 198 248 193 249 280 LYUl563YJO l YJO YJO 250 l LYK tW LW tW tYK j YJO LTU l 252 572 l 268 YJO tfJ j YJO tYU YJO tYU l LW 559 { tu
[
753 190 175 176 tYF 784 251 333 210 253 209 254 211 474 4
tu LYr oY ofJ LYK YJO 702 tw LYK YJO 6381 511 439
- 264
% ) 1 241 725 l tn tYk LYK YJO LYK LYK YJO in 655 7341742 760 l tYK LYK YK 660 7578 743 641l700 2441736 690l(795 YJO, LYK tvE LYK YJO LYK LYU LYr Lif ttA t
7 t tu I LW tw I Lfu LWjno LYr i LYK YJO}tYU in t tYK u0itm LYK l (YK LYU J uo LYK l712 2456 731 6821 787 246 1 709 275 '454 546 (6 %
1 593' 434 422 295 189 671 719 793 172 296 6 70 756 2J9 341 642 694 327 240 754 329 173 LYK (fJ t US f
p_-
LYKl708 YJO j LfJ tVU. LW LW t tvA LW 739 174 258 336' 487 501 03 j 3
Lu (W
6W l YJO LYU YJD YJO in LW YJO im YJD LYK LYK YJO YJO LTU LYU LYK YJD YJO l
671 112 6 444 j 1651 3tB 235 i in 653)LYU304 I 236 3191 167 710 1 706 168 l LYU 188 f
tfJ l YJO LW LW Lu i l
312 237 I 372 2461 7t3 169I738 l
Lu e LYY I LYu l YJO 323 1 70 490
%0 600 (
(,
i 1
693 573 1 339 161 LYU g (281LYU j in YJO l LYK YJO ] in Yu u0 u0 tu YJO in l YJO 232 l 233, 781 l234 263 185 698 162 769, 231 7%
tYK LYU l LTU u0 l tfJ LW tu 163,691l tYU 796 237 334 267 164 337 552 06 6
j tu ;W i tYu tYu tu tn " tW u0 tu on ' tYu no i
ta ' u0 tYu tw tn ' u0 tTU tn tu tm tW tW tu tYK. i fi5 675 i en i 298 i 2'9 640l 7e3 320liS7 768ivit 2ist iS8 69 iS91 =3 695l791 360t si1 647 i 652 344 1 32i 4e2l66i t
~
I
}
LG 1 tn tYr tu Ln (Yu j uO in u0itn 612 55! l 457 427 709 717_ 192 227 656;tn in l 745 tu j uO in YK u0 Yu tn a (YK 767 228 72 7 LYr tW 765 752 229 748 697 230 269 651 682 509 l467 (Yr j tu
,,~
564 598 t
i
\\
i OAi LW LW tW LfJ' YJO tYU YJO u0 LYU YJO LYK LYK UD LYU YJO YJO LYU u0 I
I I
l706iStBl477 4361 326 151 308 152l 225 1% 4 153 7721 740 1544 224 2261155 307l156 LYU l LYr " LW
-y tif tu I
i i
tu t tYr 303 455 453 1516 683 LW tYu tYu u0 tYuitu m ) tw u0 i u0 tn t u0 tn W u0 i tYu tYul(W tW t to 452l317 I
1 l
l 642 538 297 149 197 675 221 643 222 223 693 224 701 228 150 332 J15 441 530 654 1
t 0
0
{
'I j
{731 tu LYY LW, tW tVU LYU LYU LfJ LYU tfU 4
I 515 1 423 527 l tW i
~.,
LYU LYU LYU Lif LW tiY tW Lu 458 2821 217 221e 207 i941 2;6 266lLYU 2% I 33b 4681 534 4881 % 1 699
'i
~
222 I
l I
596; tu 589) 525-tvf j LW (W i tfJ LW i (Yr (YU j tYr (W g tYr tty j Lu (YTjTu tu tu tW 641 426 430 424 2 08 464 471 265 489 4 78 484 52J 6 78 626 60 J'
j l
l
{
i j
l tu tW LW tW tW tW tVY tW tW tW tW m
I tuj l
617 507i532 565 i 136 4401 493 533I570 535 l 494 g4 t
)
l i
j t
I tuitu Lu tu-tre e tu tu j tu tu g tu 4
I i
1 627 624' 726, 649 581 659 650 725 625 634 r
l I
I
04 m 2
,0
,2
,6 18 20 = 2 x 28 = = 34 x 3.
0 2
46 50 u,., 58 to et 03 05 OY 09 11 13 t5 17 19 21 23 25 27 :9 It 33 35 37 39 4:
43 45 47 49 51 53 55 57 59 Si 30 C1 (D)
(O (f) 31
)
I (J)
(K)
(L)
(W)
(N)
(P)
(R1 1
g A sci E M I w wi0es M w:Puut se 4 wovices - Bus 4-E wipuut %:i uovtcas. mis ir j
I l
l I
l i
FIGURE 2 OUAD CITIES UNIT 2 REACTOR
, si W
60 IlP/LPRM g
l
}
g Axis of Symmetrv /,_
2 T
i l
I Y
3, 57 6S
/
g 70 40g 41 06g
/
l'.=
+
3'!
'"i-l a
j
=
22 s/
i i
"[
l 858 i
i 35 45 3
g 10189g 97 47 )
101 91 58 6 3
g 33; sq_
35 3q_
37; j 38; i
a a
"e l
' 2.,_
p ES 39 l
+ + +
l l [+
I 102 Sig 98 52g 106 64g 100 7 94 96g 40 60 I
2 g
p 21 _
l 3,_
28{
20 3
31l 311 17 -
55 O
3/
i i
i i
i i
[
l i
i l
1 l
l T
I 07 00 g__
101_50 f 1
I i
l p
10132g 106 41 p
3 106 Si 103 04 g
g E6 75g j
Ji_g I
'9l h
21l 21 21 _
j 24l 2
2 9
iS -
- 8 1
1
)
I 2 7--
1--
l 1
(
i g
j 99 86g 110.55
- 3__
108.58
(
g g
88 34g g
102 05g 104 49g 59 79,g 2'
I I
1E
_j_
Q'_
1/
141 15l 16' 1
17 l
181 1
I I
i
/t i
T i
i i
i 21 -
a I
l l
^
t/
l 1
I i
i f
I I
(
l
{ 66 90 ;
102 46,ji l
l i
i I
T l
i i
i i
T 1
111 97g 99 45g 103 89g 93 59 g
'/
~
1 i
i l
o g
- 1. lll
/
+7 37+ +
i 3
6 zg 94 92 )
101 31 9
g 88 05
',, _ _ l I
g 38 60
+
- /l l
g 1
1 I I
21 1
31 4
1 5
l l
l/l l
l 8
I I
I I
I I
5
,_CI VijiI i
I i
)
i l
^
VI I
I i
l l
I i
Di-x =
o.
..,,,,..,.... u 2.
a x
,u 3.
01 C3 05 07 09 11 13
,5 17 19 21 23 :S 27 29 31 33 35 17 39
.1 3
.5
.7
.9 St 13 55 57 59
.,..,,,s.
..,, m
(
18) iB)
(Cl (C)
([)
(F)
(C)
(H)
(J)
(K)
(L)
(w)
(N)
(P)
(g) i
@ o*u t w o-traw <meim *r -a,.an o n.. o-a-
, ~
e,
~~I
@ pu La oi.oes
- 34 ue gg 3.;;)
a via tuoim 3
'mre tw oi.oas Wev 73.1997 e 1M3 havre (99 22 Pomert
- 23 '982 8 20*S e (98 821 P'**"
i l
l
.