ML20080C573

From kanterella
Jump to navigation Jump to search
Min Water Levels in Intake Canal, Engineering Analysis
ML20080C573
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 08/12/1983
From:
FLORIDA POWER CORP.
To:
Shared Package
ML20080C555 List:
References
NUDOCS 8402080141
Download: ML20080C573 (76)


Text

. . - - . -

i MinimcA. /t ;.ErI l'E' ,nzir./1. 6,uc

@ E9EE Flon.da -> e= -

2 F ENGINEERING ANALYSIS for '

Crystal River Unit 3 Nuclear Engineering /l l

l L 6lZ/d.5

=8=8888.

P PDR crg'ry,;e'HL GlL y b!,an u- . ~

,f,,,,_, 9o o.1.

l h D1 912248

\

Gilbert / Commonwealth QUALITY A55URANCE DIVISION PAGE 1 OF 2 FILE CODE NO.

QUALITY ASSURANCE DIVISION DOCUMENT REVIEW CLIENT:

Florida Power Corporation 3

Crystal River UNIT:

PROJECT:

REVIEW ITEM:

Engineering Study of Minimum Water Levels in intake Canal l DOCUMENT No.. TITLE REY.NO.. DATE. CouPANY OR CONTRACTOR. LotATIoNI ABOVE ITEM REVIEWED TO THE FOLLOWING REFERENCE DOCUMENT (S):

, RE Y.NO.  ; O A ATT ACH. SPEC.NO. . R EY.NO.

$ PE C.NO.

FPC Engineering Procedures Manual OTHER PREPARED BY: g A OWLEDGED BY.

jg L. W. WKgner, Quali alist. DAD h w a r_ 0 '

//B/8'i REVIEWED BY: '

g ,j Q c _ .T . c4hann!'d _h ee.4%n/cnnse m tien OA A.W./ es. o" gram'hangh V art.usTURE. TITLE DATED RESOLUTION QUALITY ASSURANCE COMMENTS l GAI/QAD has reviewed the above referenced item against the requirements of the listed reference and has the following j

comments:

l "SW" was added to tne description.

1. " Nuclear Service Cooling Water Systen" 1.

l needs to be replaced with the systems twc letter designator.

1 Page 17 of 39 requires the design 2. The Design Engineer signed and dated l 2. page 17 as required.

I engineers signature and date.

3. The Design Engineer dated page 22
3. Page 22 of 39 requires the design as required.

engineer 1 date.

4 Pages 27 of 39 and 2-4 of 2-4 4. The Design Engineer and Verification requirt i the design engineers and the Engineer signed and dated pages 27 verification engineer's signatures of 39 and 2-4 of 2-4, as required.

and dates.

COMMENT RESOLUTION REVIEWED BY:

81 Ah 4M4A/> AME!M

  • S6 d/

j? M N8'

-- u RESOLUTION APPROVED BY: V'

/ f GIGNATURE. TITLE. DATE)

Gilbeet/Cammeelsh -

REV.1 (80/78)

Gilbert / Commonwealth QUALITY ASSURANCE DIVISION p,gg 2 op 2 QUALITY ASSURANCE DIVISION DOCUMENT REVIEW (SUPPLEMENT)

REVIEW ITEM: Engineering Study of Minimum k'ater Levels in Intake Canal 8

(DOCUMENT NO., TITLE REV.NO., DATE COMPANY OR CONTRACTOR LOCATION)

QUALITY ASSURANCE COMMENTS RESOLUTION

5. Pages 3, 4, 5, 8, 9, 10, 11, 12, 14, 5. The pages that were not signed were 15, and 16 of 39, 1-2 and 1-3 of 1-10 design input and did not require vcri-and 4-4 of 4-5 of 4-8 are all missing fication. The pages which were signed the verification engineer's signature were actual revised FSAR text being and date. If it is required on all sent to FPC for review and approval, pages, please add, if it is not required The wording accuracy was subjected to on all pages then remove the signature review and the Verification Engineer and date from those pages which do not signed to show that he had, in fact, require it for consistancy. verified the changet. There is no inconsistency.

l l

l l

l ciib.n/: a...is FoRW oAD 100-1 (9/77)

e' .

, i

. Florida VERIFICATION REPORT -

  • p. % Crystal River Unit 3

_c -.

g PROJECT: /Y//h*jffpg Qh g ,,t _ _ _

VERIFICATION METHOD: Design Revieww .a m.ie e C Altomate Calculationsi.n naamy w a.a o C QualificationTesting==.- _ as m YEs NO NdA 1.

2.

[C 7 O D Were the inputs correctly selected and incorporated into design?

O Are assumptions necessary to perform the design activity adequately described and reasonable? Whefe necessary, are the assumptions identified fcr Subsequent re-

/ verifications when the detailed design activities are completed?

3. F Q O Are the appropriate gusSty and quality assurance requirements specified?

4 O O Are the appilcable codes, standards and regulatory requirements including issue and .

addenda property identified and are their requirements for design met?

5. MO O Have applicable construction and operating experience been considered?

IHave the design interface requirements been satisfied?

6.

t 7. O[ O O O Was an appropriate design method used?

8. IO O is the output reasonable compared to inouts?

7 Are the specified parts, equipment, and processes suitable for the required application?

9. O O
10. O O V Are the specified msterials compatible with each other and the design environmental

/ conditions to which tne material will be exposed?

11. E O C Have adequate maintenance features and requirements been specified?
12. O O 7 Are accessibility and other design provisions adequate for performance of needed maintenance and repair?
13. O O IHas adequate accessibility been pro 1ed to perform the in-service inspection expected to be required during the plant life?

14 I Has the oesign property consicered radiation exposure to the public and plant personnel?

15. O[ O O O Are the acceptance criteria incorporated in the design documents sufficient to allow j verification that design requirements have been satisf actorily accomplished?
16. FO O Have adecuate pre. operational and subsequent periodic test requirements been appropriately specified?
17. O O I Are adequate handling, storage, cleaning and shipping requirements specified?
18. O O [ Are adequate identification requirements specified?
19. O O Are requirements for record preparation review, approval, retention, etc. adequately

, f specified?

l 20. O O E Has seismic adequacy been considered and evaluated and are the results acceptable?

Iflave performed a verification on the subject MAR design package and find the results 5 acceptable O unacceptable.

I Comments:

I f/sfff(/lfs,// ffhy3

$ O&$ $'* I R '

Florida SAFETY CLASSIFICATION REVIEW D.W9,{ CRYSTAL RIVER UNIT 3 f,.*Wt , COP.npOA.ht

_Nl/_////116 all bci$t lfi S /n .IYZ$lX buk~l.

Generic O Yes YNo s,-gg g/,gg f J, u , c,,, n.e. u..

  • o No wurs no da /,>.ar L.4r Sask

,/

Safety related E Yes O No Does the itemtservice assure the integrity of the reacter coolant system boundary (i.e.,

"PrCasure retaining" as delined in ASME Boiler and#ressure Vessel Code)?

ct part of reactor coolant system.

6 Not pressuto-rstaining per Code.

1

! [No

[Yes l

Does the item / service assure the Capability to thut down the reactor and to maintain it in a Safe shutdown Condition?

(If no, justification is on attachment).

l l

O No h *#

Does the itemtservice assure the capability to I preve'11 of mitigate the Consequences of accidents whlCh Could result in potential offsite exposares Comparable to those referred to in 10CFR100.117 (if no, justification is on attachment)

O No item / Service is Safety-Related item / Service is Non Safety-l Related l

l l

l l

I

-... s,. .

. .,_ s ,-

3. ~_. s, .,

% 6/Uts 8 / b d 4

, 6 k 4/n 6EL5%b i .6 m.. .s s., . ~, ,,,,

w 3 8 ~

(9.8Fkmde: A . br)dSihN DATA SHsET-

~

( f D( Ys ,

4 dCrystal River Unit 3 x ~

g

~

nama = , ,

Da awa arm fn, < g 9 , u Miniihu AE, t.ist/s is, no.Ac O iN ( t'atm ....t @

. , , , - . ~ J SAFETY CRITsRf A: IO gafety Listing Rev.  ? _ Dateq[ Page l

5t Safety Classificaticin Reviewt Fon? (attsch copy)

V d7*

~

~

SAFETY RELATED:' [Yes i O No vas too 'APPLiCABl[6ESIGN INPUT REh61REMENf8[ ,

g

1. 5ff C0 Basic funct!64 of each structure, system and geNne'nt
2. ~( p ,0 Performance requirements such as capecity, radng, system output.
3. Ui O , Codes, startares, and regulatory requirements including the applicable issue and/or addenda.

l 4 C O/ Design corwtioni such as pressure, temperature, fluid chemistry and voltage.

l 5. O,/If Loads such as seismic, wind, thermal and cynamic.

6. 2 O Environmental conditions anticipated dur'ng storage, construction and operation such as pressure,

' temperature, nurnidity, corrosiveness, site elevation, wind direction, nuclear radiation. electromagnetic j radiatio _n ar'd 'durat.'on of exposure.

7. O 2 Interface requirements including definition of the fdnctional and physical Interfaces involving structures.

systems and components.

8. O E, Meterias requirements including huch'llems as compatibility, electrical insulation properties, protective

, coating and corrosion resistance. 4 x

9. O E s Mechanical requirements such as vibratit>n; stress. shock ano' reaction forces.
10. Z$ 6 ~ $tru'ctisrai requirements covering such items as equipment fouridations and pipe supports.
11. E D Elyitraulic requirements such as pump not pcsitive suction heads (NPSH), allowable pressure drops, and j allowa6fe fluid velocities. A' --

i

12. O 3 s Chemistry requirements such as provisions for sampling and limitations en water chemistry.
13. O 2' Electrical requirements suon an' source of power, vo:tege, raceway requirements, electrical insulation and tr'etor r quirements. <

IC

~

, - 14 Laydut med'arrah;emoth requirpme'its. . [-

15. E O - Opedtichal recuirements under vanous cinditions, such as plant startup, normal plant operation, plant shutdown, p;snt emer' gene operation, special or infrequent operation, and system abnormal or 7 emergency operation.
19. O E Ir'98umentation and control requirements including indicating instruments, controls and alarms required for opgr$11on, testing, and maintenance. Othef, requirement.s such as the type of instrument, installed y spares, rang;e of measurement, and location of indication should also be included.

l 17. C Of ' Access ar*rj administrative contro; recuirements for plant security.

l

18. O Gj Redundancy, diversity and separation requirements of structures, systems and components.
19. O 2 Fallure effects requirements of structures, systems and components, including a definition of those

,' events and accidents which they must be designed to withstand.

1

20. O !!'I,. Test requirements including in-plant tests and the conditions under which they will be per*ormed.
21. O 2 AccessibillD, maintenance, repair and inservice inssection requiremente for the plant including the

. / conditions under which these will be performed.

! 22. O 3' PersonneiTeqdrements and 19nitations including the quellfication and number of personnel available for p!snt operation, fnalntenance, testing and inspection and permissible personnel radiation exposures for

,6sp6NTd areas and conditions.

23. 'O 5' Transportability requirements such as size and shipping weight, limitations, l.C.C. regulations.
24. O 2 f Fire protect!st; or resistance requirements.
25. O 2 Handling, storage and shipping requirementa. ' ,- .
26. O j ' Cther requirements to prevent undue risit to the health and safety of the public.
27. O 2 Materials, pruesses, parts aad equiprnerit suitable for application.~
28. O Safety requiremer,ts for preventing persennelInjury including such iter... :s radiation hazards, restricting the use of day prous materials, escape provisions from snclosures, and grounding of electrical systems.

N.

L Wes f AW#. V6/n & _M f 4 neqw/ - *

// mw

\- _. .

~

l l

9 l Florida DESIGN INPUT RECORD M Crystal River Unit 3 sheet / of 3

.... o.

f/2/f3 -

orotect N)mnain /c ATa ln cIs* in .Tsu2,dc &nt,.L

  • 1 We se n as f~ c r' saie & s i./ s t., de se,-c'1, - i&t~<l Ala c Gu R wi c. , cech- , tt <L. ser a E.N YNsn s ) bseukjm N

FSA R $cc.7. Q. 5. 2. / / &caur ddw 'l.% ZEi qis i, FSAP &dM2:

  1. 2 ,
  1. /s , # //

,re ;g / .lfew ,a $ ,qg,,,/ ef,n.4 ,og y g f,a , f ('39;9gog, ,

//lti 1iintan 4tci,.rTx/ b Mcic Ss:C. S t. o p Cla on$tt tc cdGu sa/

kr n it't f: r G

.w mp 6i M : pn L

.i fE/ 7C '-/t Yz " 9/w7'/.! diab,,

a n<rc </ nwna>w,n esnef.k e/ a~f asJ ee r a s .><nik n fid1 R 1 L s!$-ckit (E/. 73,7 ', P/sut sa $m Use ' L/

sin FSAA 6ed 2.42,3

  • ' R 4 4, d & . 1 N/?C O c o la. L u Su a'A'c t. z 7 "V/ % h./kal'SEL de l Alac G $me Alad " rw c,re c on sid ,dn e c' Yl l

/k<u.T sc e-c a_. /&y, ca ( Y . hot [S sig) $l /w$

l sa.ca V 4 u l .a L w w t & STLla &J J tl du

/' e . .c . A k 14 A. caine..i kwiu.

a A . ' sl dei

'HGR 7- 9 7 ). '% N/L.,;~, "sAA anancis(nen,Ns)

> iiin ,a a sTi. 4.d r1 (d .

?[rnT dihunw'cN bsi ft icte e r Es$>.trl -eALL /M. $c Q T cbcj  !

l A ut e m . L t.."er'TL ?MM n:E-A DC) LGi//> itdstc ,inc d 8 z'f Ne. /6 Y i'lsn f f n2 T c b i konins'tlhInCt.ou(de~i It 65i , 01ci.wI 'f/2'i/& 'l .

. . . . _ _ . , _ _~_, ..

% eMn 1

?- n c M s -a a , g/. Si i .

% __L__i&l .-.,

g , ,1 l

L DESIGN INPUT RECORD

@ M' Florida Crystal River Unit 3 sheet 2 of 2

a r... .. .

G4$1 _

eroiect: Miniipi .>, daT. La</s u, Lnk 6.nd fai) 2 C. E& , '.'G.,y(iiu~n( r7<cdSGda s d a sis 7d(

L3 w //eslu.. f'ca - t /%~T ." ('em s Am E s 5 Man,s n de ,n McA 7 'i 7 \ -, /Vern m 40 M6f,

' F5AK %eAn 29.2.3 1se ule s max lm cat f6.7.d l'd h Aid u d el s w d s asse c a&( alCl /'MH's FSAR ar' 32 <6snk s m tzh and aat . fads amedd i d t i s u s 21 u ;. I /u . O a. .a ci.-lsiueds ni ci<{ct. e- /it is,4 a t 7% a (sn T a d' ns md cr tl aesGd' .ad er' 6L N<l.

l'a2 ) 2. c. Enh . "/;'1h j q.uu{ EGie h r^er & 7?e6 Onsa(na%e k Bs-n u dond , frnsii[ Sk Nic6< t-l Ae-ca c $/O . elan cauf . / 4'7 e

Lith Ann 7~ E. //aasuu ? . A4;ebac la Eimu< t 6use /L r, e Tl J. L. Ckes GAZ, 444/72 Pansin2$tr c/Jea & K m sw& ., ia L.&eds AsnL(m $$n e ic, ' 3z

/b0tssi! /w.d ,ur,4 nuel lL cdade[>cs -h 2 C.

ca%

._,4]L- .. _ _ . . . _ , , ..

/ 44b & & C. 6M3 Tad'Mhrl "h'M

-, / .i

1 Flor W DESIGN INPL'T RECORD l M Crystal River Unit 3 sheet 3 of 3

. . . De l

MOject*. //le//>+ d db bl#. J /d [#& b [c [-r", s r.,t. .[

  • /c , T' //

&iu n<, o q ls.yw7<f' Znt L. d% ul, xzR4 sGta ,

.c u <-/ g l .i /E c.i (l , ,.c.i.Z~ / $~ $d en ,te. I e FA', 4:v< 66- 6 'l-o 4 (neI /L 4/+A 7/69) - ZA &

ca ,, .d 'af,w-c' Ph:' 8wi {tw. Tim ) b,i 8'lud e //.<il(, ' /2l7' / 06 t -

, & mL, da BA

' f~N dit% (N. 7tm ) by 6&v/:. t /25(c/, f)(f Phr;-

tM L Zhn,tdn, nic~

(&AI /kw G -7hW-P/0 /241n f $$ LZ {c f 81sc-(.

~

C

& % n f C c ca' ix &

6AE /)zem I - f/2 -f C 9, "La.n7'.Z7%/u /t5[~ddn.4

{ %g&O f) M f 6A-Z 8itm P - 3s +'- / //, / Web %c *' /dse.en /A[( "

Ga (laLL ( ~4~;nd AL "

(Ye~( // WC 6, b. S. , dinl/ L'l-an ~l? Pla. , 6 c,iE f kb m $ l-/~w: S4<. A X ' "/Va l' . k, . VMn';

All A A , 7// 7/rr i

' . eswemer Ergesserme Date Dessen Dese vertheessen Engeneer Dese eli2lez

~s.,

}&- 6/sks -

//tbhu~// ////rb 'J'l'/Af ij

~

m

- POWER AND INDUSTKI AL [,ff- [hg] ,yggy 5YSTEMS DIVISION RE ADING SL.HVJ E CT DESIGN INPUT RECORD

/4/n'""w'INdt /4dr <1 In/d C,,4-(

D E P T./5 E C T C ON

- l'ltl'$/'ataf W/l [S)/]

PAGE 1 OF W REVISION 0 1 2 3 ITEM (S) REVISED ORIGINATOR hbc DATE h/z.,if3 PROJECT ENGINEER REVIEW hMg DATE (p'lg/g b SECTION MANAGER APPROVAL fj /gy DATE 4/ f/fJ FUTURE CONFIRMATION REQUIRED?

MICROFILMED /DATE INSTRUCTIONS: USE "N/A" FOR ITEMS NOT APPLICABLE. IDENTIFY ITEMS REQUIRING FUTURE CONFIRMATION BY CIRCLE OR CLOUD. IDENTIFY REVISED INFORMATION BY VERTICAL LINE IN RIGHT MARGIN AND REVl510N NUMBER. USE ADDITION AL SHEETS AS NECESSARY.

1. SCOPE OF THIS DIR; BASIC FUNCTIONS OF SYSTEM, STRUCTURE, OR COMPONENT:

k tbrec.- $dih - l'Cl<$cf b/1bn Cb Y Ib/x d4na.-( t S S-pp Q su s:,d t. bnn Sc/r'c'Adr.xCc 7$ lb Ocf.d n L a SCne 6+ln k'4 h .93S h t <3 Ascubs/ As anef 'Cd(/V5tk bay S)N6G Cu aaD sgs'$m F$AA &c%' $52./

Ane silud 4 FSA,P- .% 1. c), T Z. Z .

a CoNrlNuEoPAGE.-

2. CLASSIFICATION, DESIGN CODE (S) ANO STANDARD (S):

hes-cAn: A.de ca$ c<d f~ & $ $ Ac cbw 2 w u.

(% My m/24 [S'iCC Cf SCKS V LICC af Scan $ jM iyS)

$ t N .:C Ca n L l *J CL Sdyc - l'.'f f.rt- -fL-* s c v7 l }

CONTINUED P AGE _

l 3. PERFORMANCE REQUIREMENTS AND SOURCE:

m u%wn msfcad 6 sygGd4 wt3 as9seOhtr& M st gh/x Ld it t sacaG.

73. 7-ket, Aran-fosm g&& A 6 L demb (FSAR Sccf. 2 9. 2< 3) CONTINUED P AGE
4. DESIGN MARG!NS OR SAFETY FACTORS:

l l M[4.

l CONTINUED P AGE -

Gilbert / Commonwealth , ,3 3 THIS IS A PERMANENT DESIGN RECORD DO NOT DESTROY

l)ENTtFIER DEstGN INPUT RECORD

' AGE 2 OF 2.

M M'+ )

5. La DESIGN dk CONDITIONS ~OAc- Ca> AND Um/ 3 '8A S'd~k sal SOURCE:![M7 gudeuf~$w(oral st c jn crds&f Ahldca 34a>m at :

- r-se A a. D4/u. a .d<& ~

-7ocEg# (& & - c4)-se m.em#' *r9 eac wdn&n</(4h 6 u c

, w t x ,,,,

7"j* t)ppy 7/w) ,n COM,NVEQ

- rc ,., a w k .;,

P AGE

~

'"~ ## #'

j d

6. OPERATING CONDITIONS AND SOURCE: ~ ~ ) " " #'

saw a a CONTINUED P AGE _

7. AMBIENT CONDITIONS AND SOURCE:

o Ceputu( AMM &arr. lucisip4n't Aden Lif. (sk ms.(Fs2 y y ,3 i)

  • t9axwkm PMW t //s 4r e wii<( s,auds (FSM Sect. 2 4.z. 3 )

<cl.l(.c !n* $4 s%WAut-. ws+vly e!//C mpl.

  • f,G/2c c*as utd ti

.z;f pinnt erJ // &c / d cn d.$u t htl6cL)//+d (FSM Gerd 3 2 w f couT,nuEoPAaE-._

e u i y r o u i m.

h #- ,

~~ t%ic"Q fdm(7,7"c. s nerk E./Metssrwt n kst blS ,4-wLt,th c e Gf.u( 4, FMA. Ac/ 32 Tti J L 6*'3' ,G' tis

[(, MA rrA/AL(C. -)

4 CowTiwuEo P ace _

9. OTHER REQUIREMENTS:

CoNTINuEC P AGE _

10.

REFERENCES:

@M9 -do+1 7W-o/O E*b)

, /4tivY~SA [Nw " dz scf faa 6g swp .,

- fin 7 bi;u . l -- C/2 -CCii' , "QMJMu. In& C/e,wf,f?pf M W 5/u nm

- 6M , /J-- 3C4-j//, "/llM L [Veat be %//ecY $1 ku L f% & A ~ C/ i;

- 8/e7 // f 4', f. set Me*e[ F/4., 841 b N /d'r# M7i:owTiwuEo PAGE -

haD f. chu1 > u +:Ns id/r'*> DISTRIBUTION RECORD 7M7/f 2 D!SCIPLINE ENGINEERS OTHERS R EV.

B5VC CHEM ELEC I/C LO/ MOD MECH PIPING ST RUC RECORDS PM RE{0N.

REVIEW X

0 A

1 2 X m

X 3

Gilbert /Commonwoolth

-__ M&vxnMr FWGIPM RECORD DO NOT DESTROY

P R OJ E C T u IDENTIFIER POTER AND INDUSTRI AL SYSTEMS DIVISION RE ADING

[ yg g [, *f} g.O.,g y7 SV5 JECT CLASSIFICATION CALCULATION jV/itumcm ld'bl lftllJ sn Entl< OSM[

DEPT./SE TION N AME AND NO.

59ce5ced/c,i., / cw/3 *' '*'I REVISION O 1 2 3 ITEM (S) REVISED ORIGINATOR U

h (4s4 DATE cf/z/f3 REVIEWER / VERIFIER ((M.[4 DATE 6(([8 D SECTION MANAGER APPROVAL jipd//

,fly/q)

DATE FUTURE CONFIRMATION REQUIRED?

MICROFILMED /DATE THIS CALCULATION REOUIRES:

REVIEW PER E ! NO. 9 VERIFICATION PER DCP 2.05 O RESULTS ARE NOTED BELOW.

OR D VERIFICATION 15 DOCUMENTED ON DVR NO. ,

E E E E THE REVIEW OF THE $ $ $ $

CALCUL ATION INCLUDED E N EVALUATION AGAINST THE FOLLOWING OUESTIONS: ,

WERE INPUTS, INCLUDING CODES, ST ANDARDS, AND REGULATORY R EQUIREMENTS, CORRECTLY SELECTED AND APPLIED?

l l ARE ASSUMPTIONS REASONABLE AND ADEOUSTELY IDENTIFIED?

HAVE APPLICABLE CONSTRUCTION AND OPERATING EXPERIENCES BEEN CONSIDERED?

WAS AN APPROPRIATE CALCbtATION METHOD USED?

15 THE OUTPUT RE ASON ABLE COMPARED TO INPUT 5? g l Gilbert /Commonwoolth THIS IS A PERMANENT DESIGN RECORD DO NOT DESTROY

~

i l

1

  • I Rorida ANALYSIS / CALCULATION M Crystal River Unit 3 sneet / cf 39

.... e...

Project: Miiieksaisi M/h 4ch *> EA4 %d T&&E Of~ CdA/7ev73

/. O AACh'Gloosv 6

2. O ceJte riutS 2C Sw2CE CF AWiirni7v 4.0 N //Jr M O M % / TE K L h i- f t 3 Y / kir//6 F/.uC7/ Cit / . Clot-C l

4:2 FLttu /Wi 7, cis SLCf[

C G /< ,t.wo/.-i et.im L AsMw:<cs: 5

&.& /. CCisM6//75 At=fEC7E/> d / AMd'G&Cri S SAcASas.,.e 7.c rsne r ruw si.ec ac&isicas

/l/a/es//6/C/E 5

/. 6 ec u sito<g E f oo Y : <lCr In GAc D*n6 L 2.

/k utccu er T E. //actess/w t s '/<//Gf Ca.fctd&m c/ Smut SIep a .Tni%/x % ag

2. l'aicedc$n c >~ MeiiUna m de,e.c /.)4,.c,gsrir s .

bl. $fG tC k' 7 l7 Y L hCtuiJd A6bcbldy Am hy c' a 1

Panay a uL i

l l

,% - 6,4h ~t /A L .-/

/Ja., Cb p 0 d i979 - F2 Tena /4 4 > Ti g&s_

Calcw(A m t l lSu Onc d ,,, .n fl. L5/L .eai:d

& rcu< sc id /7c d 5p c / .n cl'u 4,,.

c:,ch s . 7L on < << t- t ( l'h tyc '

L uned oset/cn k .

tL rcLi w6% g a i n d c v. V y . n~ .

4 ,a. ,,,c, ,/ h y s c 'g Ai/=c 4, C6.rren zcp,,m d."

bII ]ancn .y 2 /, / 9{3 , n . c< c e n / c ,4 { a /

6A r (s' Mh<< =, s 6J 4 w v' t.am > a , -( < i :

(J Va t%,a min ), e </ schwas <g yaa a&,g4-Obf ita rcacbir FS4L % 1 7,y Y 3 "Midu,iwi, ,

/Q(c /bnumu y" (sv.c 7',;,yg) in L ~ r c ci a , e r g .

<< me.d dv.s( c u Ga , 21 /,y a s t L,e Ett fl em,p,.- d'a.<a/ bpcaa 6 s, , , ,,

bd PMM' d6xed en A:C , . MAEs!d' &f0 sp, nam n t h is / f rv f E l. 7 V. 0 '4 " 44 Sf.4^ c ?'~' [/H1a b c Ca ,, d iv. c d S de d ' C '/'"A c c< J s ,. </ r nuA e Csuialdef.f.a->.c& v . a f C/. 73. 6 '

r RL du. Ln a u ,x.ta n t c% i5 c & i s r i n

.;,- -. _ _ _ ~ _ ._ . - _ ..,.

/%% sNr., /[.a'Mac c/6ya Ga_l].I.,. W1 Ef"In

,,, e

Frm "ceLw4 ~Ad M UM 3 /su, DAM /" ap

. vnsk sp$3 ce@

l The applicability o the model tests for the 33.4 surge level is illustrated by Figure 3 and amplified by two letters from'Dr.

R. G. Dean dated April 3, 1972, and April 11, 1973, contained in W

the Attachments in Reference 47. As indicated by Figure 2-29, the median and maximum run-up elevations occurring at a tide level of 121.4 feet are 126.0 and 127.0, respectively, on Profile 5, the profile corresponding to the stepped slope that is constructed at the Crystal River site.

For a slope of unlimited height, the maximum and median run-up corresponding to the indicated stillwater hydrograph were developed using Figure 2-29 and are shown in Figure 2-26. When the height of the wind-generated waves reaching the protective embankment becomes 10 to 15 feet (the range of wave heights found from the model tests to cause the greatest run-up), the results of the model tests become applicable. Until that time, the t '

wind-generated waves would produce less run-up than indicated; the run-up from the test results is therefore shown as a dotted line.

Employing the conservative assumption that the wave height in the model tests was the " maximum" generated wave height (i.e.,

assuming that all of the waves attacking the embankment are l ' maximum" waves), figure 2-26 shows that the model results become applicable at 22.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> after the center of the hurricane crosses ll the continental shelf. This is also the time of maximum stillwater level.

l  % ~

l' 2.4.2.3 Minimum Tide Hurricane Past studies of minimum tide level included: 1) a review of ij extreme low tides that have been observed in the vicinity of the ll site during major hurricanes of record (30, 31); 2) calculations of sustained hurricane wind speeds te produce a resultant setdown slope of about one foot per mile in the discharge canal (32);

l, 3) calculation of maximum wind speeds for offshore winds from hurricanes approaching the site from either the Gulf or the Atlantic coasts; and 4) calculation of the minimum wat2r level g required at the entrance to the intake canal for proper j submergence of the nuclear service cooling water pumps in case of shutdown conditions.

.l The review of extreme low tides that have been associated with severe hurricanes in the area and estimates of minimum tides that could be produced by a PMH established a figure of 4.7 feet (elevation 83.3) as low water at the site (30, 31).

Calculations of sustained hurricane wind speeds at'the site shoreline and at the western end of the eight mile long intake canal were based upon successive approximations to produce a

( **'

1 l I' l!

2-3e (

M gg __

I l

.  %??

resultant setdown slope of about one foot per mile in the canal.

It was estimated that sustained offshore hurricane wind speeds on Os the order of 110 mph at the shore, increasing to 115 mph at the western end of the canal, would be required to produce a resultant setdown slope of about one foot per mile in the canal, and a total setdown elevation of about nine feet below MLW (approximating plant datum 79 feet) (32).

Calculations of offshore wind speeds associated with a PMH approaching the site considered two hurricanes, each having a different mode of approach. One mode (Mode I) considered a Gulf hurricane approaching the site on a northeasterly track, where its offshore winds will produce the maximum setdown condition, as shown on Figure 2-33. The second mode (Mode II, of approach considered a South Atlantic hurricane entering the east coast of Florida, as shown on Figure 2-34, and traversing the peninsula in about eight hours. Maximum wind speeds for each mode were calculated based upon procedures established in HUR 7-97.

For Mode I, the offshore winds will be produced by the left half of the maximum radius storm, and the velocity will be greatest with the storm of lowest forward speed. A minimum forward speed of four knots and attenuation of the storm intensity due to coastal effects produced an offshore wind speed of 97 mph.

The Mode II hurricane of maximum radius was assumed to enter the -

east coast at 29'N at a forward speed of 20 knots. The determination of wind speed at the site was predicated on the O..

assumption that the storm weakened in crossing the State, losing forward speed, resu ting in a weakening of the isovel field and a

reduction in maximum wind speed. Assuming the storm becomes stationary at the site, the maximum offshore wind speed at the

, site is 96.5 mph. If the forward speed is undiminished in j crossing the State, the maximum offshore wind speed is 111 mph.

The calculated kind speed for both Mode I and Mode II hurricanes j is considered to be conservative considering the 110 to 115 mph I velocity considerations previously established (32).

I Nevertheless, additional calculations were performed to establish the minimum permissible water level in the canal required for i

l satisfactory operation of the nuclear service pumps. Minimum pump i submergence requires a water surface elevation of 70 feet 10-1/2 inches in the sump. Considering a maximum flow condition l- L of 34,900 gpm, the low water elevation at the plant end of the intake canal is 73.7 feet. Conservative hydraulic losses in the canal establish a low water elevation eight miles out in the Gulf

, of 79.0 feet. Therefore, it is possible to satisfactorily operate

{- the nuclear service pumps with a low water drawdown of about 9 feet in the Gulf, and maintain the reactor in a safe condition.

i.

i e

t t

  • * ~ * *" ~

L \ ae # _ _ _ . , _ _ _ _ . _ , _ _ _ _ _ _ , _ [_ _._ . __,C___._,

b~q39 Circulating water pumps, located at the intake structure, will begin to cavitate at a sea water level of approximately 61 feet; however, these pumps do not serve any equipment necessary to lf maintain the reactor in a safe condition.

There are no established procedures available for a rigorous analysis for extreme low tides in open bodies of water due to hurricanes, as there are for an analysis of the onshore surge.

The lack of a vertical barrier, the required response of the water to a surface level decrease with time, and the effects of breaking waves, swell, and along-shore flow and winds make the condition unsusceptible to analysis. It is felt, however, that the ability to satisfactorily operate the nuclear service pumps during a maximum 9 feet drawdown is adequately conservative.

2.4.2.4 Facilities Recuired for Flood Protection The following equipment is required to remain functional during the postulated hurricane to assure maintenance of the reactor in a safe condition:

a. On-site diesel power generators, and their support ,

equipment (fuel systems, cooling systems, switchgear).

b. Reactor decay heat removal equipment: -
1. Nuclear Services Closed Cycle Cooling System (NSCCCS)
2. Decay Heat Removal System (DHRS)
3. Decay Heat Closed Cycle Cooling System (DHCCCS)
4. Decay Heat Seawater System (DHSS) l S. Nuclear Services Seawater System (NSSS)

Ability of this equipment to remain functional is assured by the facility design, as discussed in the following.

On-site power generation equipment is located within a structure, which is protected from flooding by water-tight doors. Fuel storage tanks are located underground, and are restrained against damage from their own bouyancy by hold-down straps and concrete anchor slabs. Tank vents are above postulated wave tops to l prevent seawater entering the tanks via the vent lines, piesel l engine cooling is by a self-contained air radiator system within the structure.

2-36 l

m_.... . . . . .

OD (21thsam peo.

Rorida ANALYSIS / CALCULATION Crystal River Unit 3 i,,,

g sheet b of -

Project: /YlS. k/gths, bcpch n. f t.fr. ,lg &ogl ,,

[v; i e V;Sbc Y Cnitts.t1v8, yf bcnii c

~

s,i,nuw ib&kmv/$1 h (a- <{ %ks(dan &4;;Q, sw. G<s' leg ai, air, t:y ceu pa,sp y t. (u c :

cn p. 4, h wig ~ FSA d Ccct 2. M 2. 3. Gaz b.. d a $ l r- ri t<S W i$ t'.Ctert-L Yz Sc-h,z (r 5-.-$V: i .i e , c!c a a c,,, , , / d.T n . n ,,-/ k. .T<c .l j Jtc c $a s<( Y l'-cc[ Spc. $ H 6:

fY FN i o b'* $ -t < N h ~ Ceiet' f 6[ sac-(' $ <

l 2.O cdJ'EC7i V'ES

& & an u cf filc /*5A2 S2'& f 2' * *' 3 ~

c 7; cLG,,n...e a uws(>cE ~cunun e' f2t1r.c $ 72cd f ac i c

< ro s&2.<ne e W 4 fc- d catcr m &. .,,- ~

4.Ac - ng N<< N Mad $y, a<fu$4 ~ g <,de, s c'< 4 ,

pmq ,4 ~ f.ua rect 2,r.2.s.

, ~ - .

7b%l

.. . ~ . . , o.,. ..

~

/w%u =- t/5k! /AOLo- /s 6$/g3 bul el'2 I*'

=

9D Florida ANALYSIS / CALCULATION Crystal River Unit 3 o.,.

sheet 7 of 37 Pto)ect: f llh's. f(/f'f: h .e4l.f ki h p $ k fffM k

.?. C Sci 6k:E fi= AM/fiGo/ 7'/

70 /96 E , A G. En G n , 6 AZ Wit di% t , ti .,' s :s, t .5,.a. .

4!Cllahu-in el.cnwurec aJ' f.la f W /,a,;, p, g,

$L' Of Y f (ni:T sbe av s. /W7H' 4A(' [

f l* E .1 3 ' /+: sx i s6idc./ O FSAR  ? /, k.

d' < .: ( &w- ( ,, st rcpce,.er'4 d cn.x de c.. D's .-

fl./J f ( I[rI Vl (cietfrac1; iLfot: -:- c. - of". . !

Cr i r c . <G. < <t.E' i (; ' [ l{ P M M 15 t < a. <

d 4 /c... r' ( 6.

(

G/d 7- 9 7

/ b: 4 i':WN c7' 6 A Z c' n-l'c s t r' it.<<x. ,,:: n , , e, ; ; 7, __ , _

9 > :a eJ Sp d.'s s+a c< +Cd +/' A <jpdd $2a / ,9Wiy, (sl eJ/$g N&fd 7- 9 7) , En C +t '

uf //tzcmix 2 :

cu,te.LG,,cc. C 4-(C< b $ cf $ d-t'!r Cl 5,,M.: b m

& %,s.f (f Vrald I r.c W 5 ht.e.n $<-

.r.aj 4ed af Wf 3 % E4 7'? 6 '. Ydic

,,,,, f ( FSAR /g 3 2 , "S 'ON * 'SE N

4. 44 e r /u e,d si d f &~D'd '*d itS n T g (;of( ,,,(, A Ac/ atc a 4k'il.c W aft 5-

. 6Az ;4 zK hJ /M:-

td.1.c 7L, s ,. ua' , .cdcc. , dca- /p: ,1h&d den < Ma~ ~ =

W2y/7z 'a4c Jfe.16o .

S,%

C/2,b / 40: W t f//ra G W 41m/ elate 2 1 ~~W '_ _. _. _

c==~

! ~"

. s way O

_.NJ actse '

tatemo e are s.o *

  • assa caos w #ia omess MICH ARD O. EATON. P. E.

CoNsVLTWG ENGWEER M

January 8, 1969 Eu.b__jy,qu Flarida Power Corporation Cryst.nl River Site Minimum Tide Heights ir. E. R. Bottenstein ER.y JAtt Project Manager - ~

ld yggf

'lilbert Associates, Inc~ .

f. O. Box 1498 danding, Pa. 19603 War Bob:

Pursuant to telephone conversation request jfrom Mr. McLemore I

n submitting the enclosed report relating to overland wind speed tich would be necessary to create a water leve( three feet lower

~

than previously predicted. (i.e. Plant Datual

)j The probability of occurrence of this overland sustained wind speed (110 to 115 MPH) is extremely remote. In ny opinion the values derived in the enclosed report are excessively conservative for the ase involved. Our original report contains values regarded as being

,roperly conservative.

  • Sincerely yours, J

Richard O. Eaton l

3E:v c' Encl. Supplemental Report "

4 8

L

9

. 9

+

2a ER'y Jilty, N /36g UPID SPEED ESTr' ATE FOR LU.' TIDE CTIDITIO'I IN PARGE CA!!.2L - CF.YSTAL RItiER, FLS .

NUOLEAR P7:ED. PL*.1"f SITE The following information is submitted in response to a request for an estinate of the overland wind velocity in a severe hurri-tne required to lower tide levels in the plant barge canal to

'stum elevation 79, or,thre: feet lower than the etreme low tide datum of  ;.

Conditions related to such an occurrence would require a severe urricene, travelling on an overland path from the southeast across F1trida, to pass into the gulf of liexico soutb of the plant site io that the peak custained winds in the zone of Mexi:nu winds .rould be criented in a directicn parallel to the canal alinement. The

,arge censi extends some '.4-statute miles w:st+rard frc,, the plant a

3nto the E.:1f. The dimensions of the canal ( from Proposed Dredging cnd F111 ' Sheets 1 and 2 of Permit Application dated 2/15/6!: y t . ,s ) is.,

2 l

150-225 ft. bottom width, average depth 15 feet below 207,and with spoil banks to elevation + 5 ft. }D! parallel to and finnh-ing the canal excavation.

til Previous Extrer.e Lew Tide elevation estinates of - h ft,ICT t ' ?.5 f

and - L.7 ft. 12!.3 were given in reports by the undersicned dated 6/22/67 and 10/13/63, respectively, based on alternative P.M.H.

criteria. A further reduction of 3 feet in can.1 vater level e

4

, . , . , -- -. - , -, -- .~ -

,- /0

. h c 39 e

' t the plant site would require about an 8-foot total setdow.

belov IC' in the canal. Esti-ates of setdo - conditions in the ensi vera therefore nede for various wind velocities with the following assvnptions:

1) An initial tide elevation' of -1.0 ft, MW in the gulf at the westward end of the canal, where canal botto elevations spproximate natural, gulf botton elevations.
2) Some inflow to the canal would occur during the retdown condition fron offshore waves noving into the area and fron the Gulf Intracoastal Waterrey, which dll undoubtedly cross the cenal at some point along its length. This latter flow to the canal would result from the difference in water levels in both channels. This inflov vill modify, te some extent, the setdom effect of offshore winds on unter levels in the canal, t
3) Som "cheltering" effect of the adjacent land = ass, shore-

,line vegetatien, and the plant cenplex itself, vill occur in the last mile or se of canal at shore, effectively reducing vind stress on cans 1 vster levels in that reach.

Several successive cerrori-=+ 4-= uere made with the above cenditions fer various vind intensitics. It is esti nte,' that

, tetsined hunicane vind speeds on the' order of no r:ch at shore

,incree sia.- to H5 r::h at the western end of the canel rould be

..c_ui .ed to produce a r,esultant setde.m sloce of aban_tifoot 1

i  ; rg7 e in the e = n =7 and e'+ 9 1 =atA --' elevatlaa e# ebet 8 feet below ICf ( approximating plant datur 79 feet.). '

%-Dg D'b L Q 1 Subnitted by, tusbt@ MMU l s Theodcre E. Faeussner Eydraulic Engineer Consultant

( Jacksonville, 71crida January h,1909

D //929 s

s

%e Mr. J. L. Caves April 2h,1972 Gilbert Associates, Inc.

P.O. Box 1h98 525 Lancaster Ave.

Reading, Pa. 19603 Ret Crystal River Nuclear Plant Dear Mr. Cavest In response to your letter of April 13, 1972 I an enclosing c tabula-tion of " backup" computations used in deriving the -B.0 ft. MLW eleva-tion presented in my report of January h,1969 " Wind Speed Estimate For Low Tide Condition in Barge Canal - Crystal River, Florida, Nuclear Power Plant Site ". The relations used and assumptions made are docu-mented on that table. If you have any questions, please let me know.

Please excuse the delay in replying as I was sent, quite unexpectedly, to Puerto Rico last week for a 3-day meeting and was unable to respond to your requeet.

. Sincerely yours, h.j w c .2f w--

3/

Theodore E. Haeussner Incl.- Table ifydraulic Engineer, Consultant cc: Mr. R.O. Eaton 1

.. l

S

[

kSS*

f J

g g' Backup Computations Us:d fcr Low Tide Condition in Barr,e Canni - Crystal River, Florida [yf j pisnif ( Date of Estimate January h,1969) ggy (t.T(b ' w ol

.,A/ Canal Reach Yav.(pph) [ Depth (ft.) Setdown Slope ( f t/ mile) E E;"(corr.)1 v

1h.0 1.1 -2.1 -2.0 fGo f.0 4/e. Mile 8.7 to 7.7 115 8 o (-1.0) 13.0 1.3 -3 3 -30 f So Mile 7.7 to 6.7 11h E6o -2.0 5

-h.6 -h.0 gv.c Mile 6.7 to 5.7 113 Esc -3 0 a 11 + 1.h Mile 5.7 to h.7 112 gy.e -h.0 a 10+ 1.5 -5.5 -5.0 27,o

,< Mile h.7 to 3 7 111 H.c -5.0 ^ 9+ 1.7 -6.7 -6.0 g 2.o Mile 3 7 to 2.7 110 g f g, -6.04 8+ 2.0 -8.0 -7.0 F/.o

! s Mile 2.7 to 1.7 110 8 f.0 -7.0 a 7+ 2+ -9.0 -8.0 f0.0 l' L -- 1 0 Ildic I.7 i C 7

w. I-n m a w s& 5, c ' c';w>
  • ElevationsinfeetMeanLowWater.[6X88O')

1 1 Elevation corrected for assumed inflow to canal from offshore wave action entering canal.

Notet Wind tide slopes correspondine to V conditions ==~-ad were taken from observed Lake Okeechobee wind versus set-down raIntions developed by the Jacksonville District ~

Corps of Engineers. ,.

y

)g Jcr

&a

& E1 %<sk e d

(,

g e,s n

" s

! 3 i -

1 Enclosure g yw N s-i ,.

)

l Morida ANALYSIS / CALCULATION

.D Crystal River Unit 3 sneet /3 of 3T Project: hl/b7. h && C S I fM f42+1)

Eah/, a/ L un MJ  % ,A t m e <i We-4L bl. NacLa s c u ; a - ti c c 4&" t .

' %A

/N5-ih) n $ ir e d k +c e6s9.7 ,r,s ,& r.:,ac' ;

< /' t l . L - A - - n & <j 2'd w a.l . 7/ r~c 4,f6to 4 ck,, A ~7 .cu4y (a c 4 4.Y s.c d A a.n a (- u G C / w. sa scia ) a ,/ a ,_ An; .

rn e NS- L H 6tes hb OnN) ? ' 9' 4.c c.e diTb a' de.t. dv2.), Vn.it Y (m d ~.<6. n af, as m , s ,su d.

c a n ( .44 ,, y tj 9, -( 3 ,__g( ,_

E/ 73 7 ' ~7/k /n d s.n d n a J t 4c Y rievid im>,..Let aj' gl ng&

ai ci4 I t s<y,'g' 34,9a y ,2t dt{c %:-(  ;

3 ~cd cc.<a pumi
L 6 1pnu;c&_

\ nA A w <4 d 6d. L L J, acclpML su 6in c, a <; 22 A<.r- u ,,,,,p, As LOLL.t a M a wwrc s'i. %

1%/u -l 8 6 , indag wwNu sun,L a de d ase d 4 A w a w..& d a , et 79 '

atfl. Gs i</ +w d6 ,c -;<,/. zy ,,:

a ni, ct4,, b .fE/ &, ~ E/. 79 ' & td. 6,cc,/

, - . _ _ _ ~ _ . , ....

, M~ _n @/?z jdM d 6)/n Df ' _, /,. * * '

/4 nis copy re: J. L. CAVES f f &

GII.B I* RT A S S O CI A T E S. I N C.

m m = r.

FILES J. L. CAVES CRTSTAL RIVER UNIT UO. 3 - l MINIMUM POSSIBLE GULF LEVEL FOR OPERATING NSS PUMPS April 4, 1972 To determine the subject level, Bill Meek was contacted on March 20, 1972, to obtain the minizazm allevable water level in the ESS sump as governed by the i

minimum submergence on the NSS pumps. After checking, Meek gave the figure 3 of elevation 70'-10\" as the lowest sump water level. The head loss between l

I - the intake forebay (at the extreme eastern end of the intake canal) for the maximum flow condition of 34,900 gym would be 2.8' according to my previous analysis of the NSS. (This was based on a case where flow was 34,900 gym and Gulf level, forabay level, and sump level were 79.0, 79.0, and,76.2, respectively.

In December 1968 as part of a study of water supply alter:wtives for the ESS, d a manual computation of the backwater curve in the intake canal was made.

This computation was based on a flow of 38,000 gym (the design maximum at .N that time) and the assumption that the bottom elevatian of the canal was 73'-0" from the canal entrance to a point near the er.isting coal conveyor .

m for Unit No. I where the extension of the canal begins. To provide a miniarm of 0.7' of depth at the beginning of the canal extension for Unit No. 3 (critical depth at that flow and width is 0.22'), these calculations show that the Gulf level should be 74.7'. As shown on the attached sketch, the conclusion was that to provide the mininum permissible submergence for the d NSS pumps, the water elevation in the intake forebay (for the Unit 3 canal extension) must be at least at elevation 73.7 and the Gulf must be no lower than 74.7. To provide a margin of safety, say minimum Gulf level is 76.0.

A factor that should also be considered now is the minimus Gulf level with both nuclear units, Crystal River #3 & #4. The above has considered only Unit 3. Several approaches are possible: (1) base the minimum Gulf levels stated in the Safety Analysis reports for Units 3 & 4 on consideration of both units so that the specified Gulf level vill supply adequate water to both units. (2) develop the Gulf level for Unit 3 FSAR considering only Unit 3, and then make design changes (e.g., deepen canal) to supply adequate water for the Unit 4 NSS at the same Gulf level. If approach (1) is taken, '

the head drop along the canal will be approximately four times as great (4 x 1.0 = 4.0') due to the double flow. The corresponding Gulf level l

?

/ 6 # 135 l

4, y

,p*

  • e, s

, FILES J. L. CAVES

,,/

CRYSTAL P.IVER U iIT !ZO. 3 -

'{I :I'Ritt POSSIBLE '3ULF LEVEL TOR OPERATII G 1:SS PUMPS /.pril 4, 1972 (assumin:: the droa in water surface from the entrance of the Unit 3 canal extension to the Unit 3 and Unit 4 intakes is negligible, due to the deeptaed canal section) would be about 77.7,or, with a margin, about 79.0' .

m

. L. CAVES JLC:DMD .

f e

e' 9

e i 9

. s, ' . . .

l t

,' . ~ .

. r ';+.' .

ie ej,.ig,4

. .j .

?'i '

.. t"

~*

'p -

  • i

,

  • t, .

N.-

E,(* *

' w.s. t .

  • * * * * '" " ~~ ~* ~
  • . * ~- -

-a * ** -*- *

e W e g - - -

i syp35 . . : <: . i ... : .. . - .

lW

~ . . .

N41 AhnsslM ;dY

, ~

1 dmsids-k 9 M 7E (hdY3 Au A '&

1  ;

I lj Fo I

\, 18 -

}d 1

l' n - as as n. m pa s.e/w us'6w>i.o'~~ja) s' o

74

,xz, kw s z .o's,f / st y A*l a

,! y .,o e 5/1Y A O M W $~34$ 900g)pg gr 5

. - _ = = ~ . .. e w i 77 \ . ,

' N \ go9 I /~ 8,7.# ' g g 7g

\

CnY&idse2' \ og*m\

6( .

N

\ _. _ s NS3 66 \~%

i

.St/MP

\

gy - -

  • E4ratar.s & m.c. s l .
bl 6/!o' 1

.e g . . . .

MM f I' li l . . .

. ' .l .

1

9M mEuuAm No.

Florida ANALYSISICALCULATION Crystal River Unit 3 t.

sneet / ' of N

-.- um u a 1. wax si.d m W 4*u o ' fa% '

E/ 79' sf d a (ai.f.aJ <t 'd b c a / / h a w i.0 L im ( - Ntann Y f,f 4.. t bidt 3 credd an -c6, <r ' &

a;tl a u,, - /- .;aa nat. fae( p/ E7 7 9 '

s t $ l d u V & ./ 6wla d s.~ Mk ... . ,/

c& FtL 4 ,, w. M at il s &.:r s ,-

s.. ~ E /. 79 'j r s n u d t o c ? c. c... 1 v.

ta t I-w W,u.ca d ac Cd Gs. A c ,3 n & . ,, ,

{gy

/ //J *' $'

f l

  • s- t. f f t/L a,,4j. n .p - -i r l a es sa  % 1J.e2.s 41 a-> $ MLfv6. V ic,:.c n w (Aci,e e Y[.,

l / .

r G./J4.gon .

l W_ n_ am Ja/u b edn E_6.__.4 **'

ANALYSIS / CALCULATION 8Rch M Crystal River Unit 3 sheet ' f of N

.o,. .. oeie Project: / M* b b- hs 4 44 b

  1. 6 M/A//MW4 # A 7 Erd LEVct__5 544m s Nacua r.ea 's m rlp <a e W l,.Ze./a draiall 6cS f' I"*5"' * " S"[m $

c.sn s.1 ai E/. E. 0 ' ,rb 4&n c . b-an a1/ daryc k er m ... au, jut & ($a d:ti n nzwk. . act d4 &p!d 4 _

/EI 7O ') & <! $ l' $n u,,..i t & n - T .~.

w<a 4vd y<cf o.> id J K L ,'

cd, p

-t' / rni Gl. 76 C Ei'. G7/.uu M ,1/l . In tYrj Y.

g & E/. 73 4 /< -Y t<<: 7 4 d r. u _ $l e{ l 'o 'l 1 M h t*4<

w

'lf/* f 1 / e tL tb .1 sf 1 u (sa itan u- a 4 '/ p+ as.z w <yw it/z r/rs d br-en &f b/Iowf

%L4 s / a l'a' A. 73's ~ 4 kwa.

Dessen let Date von

  • taan Engineer Deve mucwer segmaenns Date b!& h,)
  • l m -- . .. -. _ , . _ ~ - , . - - . - - - - , -

, , = -

Crystal River FILE s G I L B E R T A S .4 0 C I A T E S. I N C. j

~'

TELEPHONE AND CONFERENCE MEMORANDUM DATE, April 20, 1983 JAMES L. HtRRIS 04-5079-097 BY WORK ORDE R NO.

TELEPHONE CALL 1 CONFERENCE C DIT H : ,,

CoupANY: Florida Power Corporation

SUBJECT:

ae ana arge a equ remen s Joe called in response to questions asked by Joel Caves on 4/19/83 related to minimum depth for intake Canal to permit coal barges to unload at the site.

Also requested was the draft of these barges. Joe said:

1. The highest elevation permissible for barges would be 20 feet below mean low water (Elev. 68). This yields a bottom elevation of 68 feet.
2. He believes the draft to be 18'-5", but is not sure. He said if this should change, he would contact me.

I pointed out that the depth requirement for barges is more stringent than for blow-out during the Pim and years of work have gone into the determination of the bottom elevation for the Pim. It appears that the constraint has always been the barges. 1 asked if this could be true. Joe said he believed it to be true, based on his information.

Mw-JAMES L. HARRIS JLH:dme cc:

R. E. Vaughn T. D. Biss C*~['CP~h iV ~

Proj. Files 1983 CWit Ei:T.i'IZIG DEPi.

gal

'/ -

FILE-C I L B E R T A S S O C I A T E S. I N C. 3i TELEPHONE AND CONFERENCE MEMORANDUM '[

DATE OY: WORK ORDE R NO.

TELEPHONE CALL ONFERENCE C CITH: A O #4 // l COMPANY: l' l )M SU B J E CT_:

V###" # # I#' 'l I NOTES:

' I 'If '$ '!f I 'd * ' ' 'l [  ?

((L (r 'l [f l l C J f. . / I / r '; / / 6 (C {ft a o fj* C j

(, *} l/ , ).[ 0//6 M A- D l f! I l " 0$$ $ l b / l

'/ll .

I- (('ff .L. (f / /l Vo! f j $.Je1 I -L- J

. , ' d. ) .,,,*ft J f f r /t lY b'V f5- $. W /(] l di,./t n i. C ' d' << ,,, ,, c x /L ( a Aa,ae ). Ir$,(

f) l' jff ef t . / V8 ,) l4 li/ r f' $4 [ fi&L '

f ./ >

  • i e A, 7' l(w. , f. ,i

/ ' kf <<t ,4, ( a n .., f-( 73 s E., , (

/r (L ) C/n t+<D< P h ra k tj tj f 6n) C rc i . < f f/J f<f nf

_o w,a G oes o A,J <f $~ dw6 d oG m

?{ f l I WV d ;ptt

  • r f f4P e*

[ f/ M / 6 if f L fit / Q $t & fYAlf (~ h /L, L

+1 7 bc6 /, d' 44. 4. -/,'< n. -tL 9LL/ z'li,,. d' s / $< L } 0* 'l lW f$$f f /f- V/ C N  ! 'fl .1 h}*[ (4 l e

Copies To d

G A l- 20 3 10 ' 64

FILE f C I L B E R T A S S O C I A T E S, I N C. Jc TELEPHONE AND CONFERENCE MEMORANDUM , 7 DATE }

BY: ( (/ I # WORK ORDER NO.

TELEPHONE CALL ONFERENCE U CtTH s b b^ A 50'" WI COMPANY:

$UBJECT:

NOTES:

$16 t x h } {. 4 ( t t . /. M( ( vl G l_f ff f; / t rf, (oL( <d&c s th 4J. 'cla i L . (d'c.,v'Y

[l 74 Lc/< J d' u dni . , a < < 9 < < < c <-f L d' i '

M I<l /,i, it b i

w ~ll ' }$ , ,<,7 Ida ,c s <Eli f6,...,

7% in t~ f M,(,, ;/ K 'e<~,J 4'it,,,, G ~ J

,,,f J; L ,,L ,1 ,x L M s , J (E c 791

< /L f,&l f th ' Ai, . .. < <~ a d&<=,w( c 6n,,

r a n c:,< <-/ ZZ in-ca-t Te cf & c a.a < < , s.

, n u., W ,,,n' K b d,,,,, d & <t -/, I

'hlx ,cll,I d ,i , O C i ,,i! .' ! d s . m , d 1 2 ea3 ;hL n;_&a .

16,,.stntit1 l tl n;<+1 &, </iY z - sr e' L t t/c Atsscu susi,,, o J k m L J M ti. n . L1%,

Ada, u. t/a f <J, , f < < <. c (.

c.....

6,a: ..

  1. !n. %nL 9 E.
aWw Va' < < ,,a,A, ., W i -.K ca.v.1 n. ra. g ,, p G on Cd u s -as en n rz ., p haLurdL(6 M 9"ym -/!em Y) Gus[ g sg,. g,g- ,, , , d
e. -

3 she s tk.

Ik LAppnb. _f , fL tbucbd m L a s . w b l ]a42bs J~fr 4,wl n c tL i M a (a.c,x-6 4 ,

sa64pl . nra Cl re s af- Aa a.a~G$,4fLlC-

&&.eup ap.ak .:A ae a sx<.ed,1L Ly n a ~ y'y y Je .Gn du.a.2m a sywd 2N myy L6 L i /L-~4ardL~ (<9 9 ti myy n sa - adca%oe ).

E, - Ez =sEp -r s E,,

T

\a c.. , ,___ __ ..

r_ ~ -

1 _%2du G4p jd)A-4 68/13 62[_%,$ d'*... ,

+ ,

ANALYSIS / CALCULATION

@ M Florida Crystal River Unit 3 sheet 2 ,, ,,1

..y.. .

.e.

Molect: /hk . kJb M i hGd4 Deoros/ ,

e

%q _

"~

at

~

?[_-

a:

o - *-

Ai g,i I 4 ! r, p, 4Es I i

- ,,,:T i- -

y

> i ,' ,

_ _ _ _i r. . -,

l

(

l 4 4, ev + A L, z e, xx o< //~ Ct., an(-Q) eL El =i $ /), s & ), ]

g 5,= n'o' n (aa,,,,,,;p 2 .)

r i. m s ,,., 9 s e, = u ~ u n M ,ck ,, s % ( L ,

  • Au i n~ = k [$~), KA h .7 s 5 W~ e4,rc

- w & su a L G n n s

,ecuA .h,, rl

=

s Hw/s x

= A W Ws to

_ , , _ .. .._____ . . - - - , ~,.

~1 Qh &

4 ps

}dd~6 G///G

-. J . -

JGAht

  • /'*

~~.

Og ..........

ANALYSIS / CALCULATION Crystal River Unit 3 sneet 2 Yef J,,

-~ o.. .

Prolect: //1441 k/ $ $c u ls r<, E tG l< b a-(

y; WIN 6 AkC77C/V S/ 0/E Zn llGcwig i S //+'/6 7 ca,(eca,,(eL,,,

(, ;2, /c ci,f

/tc sd A & 8 id24 a4p.,

(< . .c . ,  ?,y ) owa /2,~a f .4,,, & &

CId dc- dab . /bwe<+ , n s 4 ,e s Appen dd 2 , bla- c . O, a,j s4p eac~L!w'e m n, ,d un#c74. m -s6 L ,,.

,c.cfdm c c-<C* dem /$hn,c'sfScpe#*y I'eq)pa r *GL( iy c cie e - L % n. w - 9' ad & cv ede s. dtL t~ s,d w & L

/x w<(cnC u L4 & a dna 5n; cdc b /< ssz sla< t % r-,a &;....

1 f,,g.c acL _ u kicm,uGc~cM syp ec << N d/ m Cb M cuix1, s

. m yp4eL M .

Yb' '(-

i n s W's , SUh We Eda i/ t (c. 7ic%(s.elc-p epct & 10, Lud, /* Aun cerMd l t 6 ouins{ /g Ssz snd ./;ica , Am ~d Meu-a (stc Fw' Appde 2 c - /h u .fM d . If a 4 <a a l e n sc<,aa.L nm.r,ibe s (p /o,4&>d Nd

- - - n- ,-.

-6 n

erz)l~udas s/6/n \MY&rl **

4 8M

. . u..

Florida ANALYSIS / CALCULATION Crystal River Unit 3 om sheet #r' of N Project: /)//])

  • lClh W d- $4+2 gfYk c /Zst4c7 TAN - l WI '

ga piga a er~ El 77 ' af and 6,ad W SY' {'

p. e e.d cA,,a s 4am u-ed a#

/,o yenb abe,g e Cd f Mdc A *gTd 40 ObA g;f (Ji, f 3 74 4ek .f& E/ 7 9 '.

yg.. ,,,.;& 4 441 d.hc anwk

. bw l < s t.. cm(cew&L. Aen. N a YA f (~ T ste. 6 sfu A <=8 f "cG $ d A EaMn w

//cmu dwd .nt w C4 d-Ta 4 d M h /~y $cd6 n &, . Aux' JM .

e rt u 4~J eu 14 41.e&u 73 ' ela c4 utaf J+16 a muuda % da 24 act d 4 wead L 4 n dTL d 1 71 a a&d aA n <f s&p a de si .

c rn L Jm ta d14 CJJ.acudCd miy ,n m aum enm J ye ds ca W 2 d dp6. 6 I I

/

912 244

ANALYSIS / CALCULATION D

S.Rorida Crystal River Unit 3 sheet 2 / ,, M Project: ((tM , hay. g, h dj/g b[#!.'L hfd 9' 1 FLet'u retc7 text suAc-

'T/x /s % l,.S.. pafc. cd a % W Nm 4shnSdp g/af n.eA aia.yw( # str64 A~ n nan. suf m pn NG E' *,'-

nw.m 6L caA " $-lA% .As >4,66,f u a o , z u r 4 ,.(, T A Ig < gi a tL)wt,-q c, a 2:d<-un, nc a w A &.u,s d-

-d ic u u- ~ ... A e-Gh sn. , a i 4, (d,,a <1 k 4c.susn auna.ld)cQ Mruc -

au ~ A -4, ~,:dsfun + d & 4,6% .

Meum , r4 ice (A & 4,ct.,a uang Sn'a U (sda d W

< < u er v-c+g 4v & &@ , Ifaa' ess oac nta 74ag M a sc1.cu CLt K y,;c/. w .4,4 a ~fp ad 2%f M 4, A w& M f r z cais fl /a K . 11 s e a y ? << - ,'.4- G ~-t4 &YA, tnt a ~ sw a p;p.a (.- a & w nse 1

ww t/1/n 5D LM,_, J ""..c aos/Mnp

. n., .-

o 35 3 A -6 4= - $= . fr : b : Cr --%: e6 t.;. e.a2 s, e sen o.c s- c .e

.,e.er:

m _-.  ::- .,e a : 2 . _.e -

u .* - '

.Q

__g i % b %i.a. v_.L N.V W.' W ~. g r-V. ,,n ' 1,,.i T . D w.'9.____...-_.- 4 _ _ _ _ .:

. kA

@ t'

..._a_ __ ... _,'...... _ _g _._ _.

1 a.

g >.g  :.._.

}i~r e 'p.s- rc- m. . m- _. _._ . .a _. . . - _ . .x, . . _CC

__. . . .n-e a _. _ yn

i. ..

&,w vp R, :.,s.- . - ie .. .

[  ;~- .

. - _ u ..

i w- N i.

t

~ w. w _ . .,._ __

.g

._. . - J 2)". .-... i_..__ .. __}.._._.._.___.._......y.._.,.

L 4".4 V.g ~<..-f.pp..p s;n y m m g_m ---.. w _...;. ,

___ __.Lr_._-.._.~s.- ^

r s- ..

i 4 i i i ,

't.

l'_ -

a n

. _ . . .. .sg ____.. _ . _ ._ ___,.4,,_. _- ..:

,_ o. -__.g.

l q ._

. . ) -..~g o- y _g . - g p . 9_ 4 3s . _ n_._ g . < _ .

W,%- ._+-_.-..-;-.__.,i__,.3 .

g;.__ s._ y@ .s. . _ g m t. -__ -h m _4m>- 3 4ll> _

y% ,

i2 # I d s 7"71

[ ~

4 ) i 1 ( H_ p (! t t'

ta

_'- uh N

i I

. i.- ml

*-~~' _._~ f_~^*,-"~'._#*

=Y * ~.'~~ .h_YE -W

_;y 4 -_ _"T., _ ._. g~. 4.$1_.. w ..J.._.._.1....__.._---C--

_ . . . . . _ . _ _ _ _ . .__.3._._

3

.g p . .xw e ,.) - ~. _

s

--^- ' ,

a.

x- --g--A.

I r,

r ,

. s

% m y .-%. . g._ ,-_ _..4...-. - +9 - . E M:~%  ;; g =- - -

%%' N 4. . v c.gs . ._ t.,- . _9,.. . ._L_ 3 ,

m--ss.. . r.

.x .,

%,. S

_1__,^s- _._ __. _ _- .

- . . g._ _ ..

... . _ ..g.._-Q_

g N.

_.g ._

, ' ' T*-=.,-m h. b. .,- 2

-  ?,,

i m x 1

' ~ ~ ~ ~ ~ ~

..in. ( -.~ \

.k

.as C-. 2 9. 4 M 1p -w _

o- u_~ cs, . _ .

- I.

s,N%g

' -.,b'i.-

.. 4_- _-:. *-- _ s_ _ 3 -@-.- e% _>, m..*.. -..- % -- @c _. . _ t ? _.

.- _ _h g ---_,

a Q v i-v , - -

iw _

i J. ' ~

x, g

s ,'

y i .% s .t Mt. i +

W __h r' 1

> h.,Ap~ w9 ~-W. '- ~?,,---,cA-_. om .----M


,--e te-_ 4 ~:n:,-tc y-

-A :r-_

.q ,

_%..  : _#g--

y _

_ s )%__,

. s,,

1

--. _ __-- _ ___4....~ .

3 _ . .gx M

a

<. ~ us s % + q D i.wl'%w * - '- '- N t e G,'  ;,&  %

M 7 __ _. ..__.__4.

- ~x e t e _ F 9_i. m.-- , men--m@ST vz. &-~~ %y r dc_@ ._2 7Tm 4,p 4 p-'T-* W T -* D -

],,

x4 m,,;c .

, ~ ,

l 6

6 i i e A lb. - , ,.

% s

. ., . N

. .y 2 1

- - u .a _. . , _ S N _ _N g 3'

.be- A mc -t-t --- .- - w--g - c - - - . - -

_ J ' J,,,

.M sh s

k4 g

,5s. __q: n -t__m -__.s;

.__.,s j,,. q

_ 2- q,.

._ -u... M.s  ; .m w,. ._e, _ _-

,.__ a__ ._. c . _ s

_-__t .._g . . _ . _

...a, g ~.,.

C *~ i k

I !I f I s

-:ss N

, 4

^ ---

l *

" e a s 5 'J w , _

a g- - . _.

,^ - .+-._.g ._ _ .._ ; f S.__-_. -- --

kw % q y

aiu s

%yg.. -$- -tr--te 1 t --w 1- m ... s - ._s

-+ - +~ ;,--a - . -_4 ',,,-

, -- -w---q +- -b - /

- ~L"g..p---r.;-W_%

v- .s ,w, - r s-- v - ..----

h %-

i i .!.

m, i 4 c . m a sa -

s.# i I r  !

N6 '" j Q* *  !

MM b h d'~#-~b4--' TdYS -

'C- -[T-%---i+---R h--" Ed- ~~ T-'

L 1 :. -. 4 4~ - 4ee %

p)

w.

hW R e = > m : s d _- s :: . < . ' , ta D h le --tr -.4 k ',mE-ms L, f

p - y--q v g% t e sa u. e g3.g-g4d-__g,._-- gj

-: - 9 i

' o '4 s--- 3 o s y+S j 3 t ::i 4 v. e-

%.g u {g s s

~4 s

.N , i 1.,

i.%

p' 3 en *r!

W;

'C h

CE k 9 0 9 ':: Y

  • sk.

o 9 C !C m

9'  % m ~ m % s 9

g. { > ,e,,

M g, N, 4 h7h' 25 m n% ^ " s e- " O' h

'T " $ia,j Q wQ sQ:r.Q 4. t5 o

Y !:s s.

q Y -O a ow 9C w ~hg V* %IO 8 e,.

a . _k I'  !"Y

" 'I~N' s4

&y 5 tf ' ' ' ?5 5 h2 h5 $ ~*' I) .

hY$ *&

%, ...x._3._ g _4. .e G .. w>  % _ eC 2@__qj l

- N 6A ex 6e N_-

4 -s a ----... u m-
  • i~ ~

r3 e i i

+

a-==s-- = = 77-

' ' . ..: : : .= = , - = = = = = = ce s : = c-e . . ..: _

m

. - i

,- U & O t, t N E

, H$5,y i Q'l 1 r er1,ey a-ea so > j ziars.m asw ***2 ***/ 7 T'd2 9 w r ;I,

. I ' ' 'I t C

  • A B.

~

$j '!I su .

+ fD i

ci it u I

, 2 e

h l

3

.h.{.{

v . aj .

?__

t( 'd *rc '*

" ;: i i i 4 " yI s .U q

K g f,,ti r

- w%n h f.t n4

. e1 1Q '

Q 'u "I

.c hwje w[.-~  %

t4 y

I k'l n.

b N 'Q

'Ii JlA r

k k

' i I

it \l

$ j!d.!gd i! !" y'I a

t\

A s $ t ,

i M w

Mk o t .,

,\

,- g L

44 4 4 g 5

\ ' q%;t t%

! 't' h i 4 t

'hV w u , \  %

J' ' 4 ' I hN% '*N  !* - \

i h

q < R tc i W,pd \.t i m -

c: g <

@ gIk. o 5 s 4 i g)k  %

s w s a 4; -

J% (

=

$ %c i w  % .'.

N A'

=

N h

3 d  ? .h I 1

4

4 q 4' N 4 (t -

\ w -

5 k

-d 5\

& fj \ {

ys t

x a di - t '

5 4

. q, 4

% ,a . &\ P g E "I s

%  : \ < s s

'!( s

  • i s '

\ 5 i

s '

~

y

%* a R k Q d M y t 4 4 d)t S

'4 U

y c e u.,  % i s, E

~

s iws  ;

s e

f N V dI

[

l -

qE g .,

<4  :

s M I t >

i A

4 4 1= k '. ~l ,

Ti 4 $ s I 'v \ }

' Y c (% \

' 34

&" \ -

i.e i.

s t 2 ) '

g' -

l-g 1

i

[N lI a .

(wp j enar'd J9*{W /1K3bQ #

J "./) W 'Y g y 2 I A

  • L

O -T

/s o 3i

~. _ . citernCsvoaI5Xdid'

.i s u G ha (o.w t g< << 1% <r /s.,1 * =ct=s * ~ ~w wcs

'.C.,',- - -.

L'*y~$IAL lli v i t'. . . _ LUtr7 3 ',7;,.

'{" V~~ ,:;;

~

og ,; ~

{ ,;,;; _ ; - ,,, ,,

- .;; G r " h u 'p l_

J\

PL AN w .. s ,,,.a

(} t'em Q'ea,"& r 1

Urrrf 1 9 1 1,ple Sheetro wfs -

r~e we taa To.t*&* ./ A r ps (Tatef sim6sar ( 1..r,71/ 61s')

r,4.h w h-3

  • )-- n r o r *1, g,., ,a,- w e1,< n' pr se n~ Mi 's*,
s.,- ,

g ,. u.<,r ,,,-

t u u,< u -

/ j Tor,,o,lda:he y s,1, . n,1 , .,a at 6 i:

r baKan l',ystat foere flo et R e f filmer {2r !bil ho,,

ws- O eY $ ErfisAL YraC N nL .

c ANALYSISICALCULATION e 9RotidaM Crystal River Unit 3 sneet 3'of

[hM Project: /j / . ,,,,,/ .M. J [

3~C M/M/ MOM C ANA L b / M E A' /src A /S

& s A r s <n rd- w.eci d2A a -c., sl Ed s{cQn 8c. L i r.fo m k b- .+~ db. cs,w f.

Sen: M Gu c , ,( f W.< E /. ? 6 ' c c n L S d er.c ,2 m d Vea 3 w d s. 2 -.- ,n en 5p a, X m fd ueAsa / /<cu n $.-l $ 7'krfaa L c , .-L: ,

ii.-{.(4c.cc/ Y E Arn $c!' lCoc l- -c Nl -

-{;{ .1.i., .si d4c< .a dp ha ig f ac.ccj

),&'//>. & . /Wcs& W %M 3 efaAc cam C r w c A N v l / J c< .; ,1 s -

YdY b ($,.;, .s cq'_. .

14 T* 4.e c4c d Cl. & 7 Z ' 9-6 Wer.i .<.cdu,z Abt!I ha ! C n.<, a.c f/f

YwfL/ I4Cdsgx Cd tiuc/ sc.e penip cL L 4  ?* $

pijcs foedoy (j,,u. nJ&f 62's a zc af E i' +7.S-')-

&&,g, - h MM So-ZTr>>r J:-lc<d-;

& p c),, pgcgp QJ(c. k b v n w e+ f e, Yrie.i

.r* $ Ca tw.1 a x cn/cdYd 4 Ap&k 3 .cc

,} $ k b v / rec b~>r Sdp-c dO 0 g.l(,( rcinn;< : u y 1 Mh' 46.wayY fon 7

rs:!ecd..-cvd 0 < l5 CrinpA.:<( docJ$~d w;so.

e. 71c a.saMs, d S

(c (?$iW 7~ul fu e .) 2/4. 7. S' k

7 6Wh_4, . m

+4, wn Zw__+_ w 1/143

- ,1 ,_

! l l 0 Florida ANALYSIS / CALCULATION D Crystal River Unit 3 snet ? / of m

. . . . . De,e Pro}ect: hjy, ki y ht/l3 h, [j/;g hy)

4. C ./10cauewrs Mfccru) ay igngisssu_S ypg,y,;y

//ppcha '/ &cu.& a  % cd M'l kr h t =$N///sV i 4lt, . 4 &

- // 1'l W / M' & $E* b$ 5 b h6 hll 44 % - 4 $/ i //rA/s f.ft' C ry.

b d' ( J },h,].{,

CF L-  % (/')

h/ g s* h A "*

f hl/! ld[C./ J4 i Y 0 [-b l** 4

, U'.,

n u sca 9.c u.2 (i n e w s> a . a w ,

C n b la n <s , Sulue C,, -E ; a,,r<-( /Tc a.?.c p

5 / 4 7, c ' & / C ,.i A /A d C a 4 . 7de. Lyuj Eya.6.,a.b>, tSc/ >f (AEC, / 9 76') sk ,antm, e c. m c c i & ,, 4 , / m iv t c a n ~ i r'

& ( OW ($4404 w .f & e 4 '4 h M-f ($ W '

l r l .

l Dee.gn Engmeer Date I venhcaten Engineer Date Eu pot, poucear Engensenag Date Y J)f *

.. g i ,,::-

@D o.wam u..

Rorida ANALYSISICALCULATION Crystal River Unit 3 sneet E of 39 c... ,

Project; fl4 ft. J G t fry % Yt$

7, 0 FSAK

  • TECH. EMC, ACVWCNS

/Sccrsce( Scc.$rs s 'her,-

c f5/K Scci 2.4'.23 e f* SA M facj 9. 5. 2 . /. 2 (.fu.Sxci@i., .d) ilCI Sp C 5/4',7.T o .e 3 can o.- CL , y 6'd /c-44a .

L_ L I A r / * * '

~ 8~ %_~

~

a b hwa W i>

- L' m

m

} :o*:=

a _- s*

1 CRYSTAL RIVER UNIT 3 TSAR REVISED SECTION 2.4.2.3 2.4s2.3 Minimum Tide Hurricane There are no established procedures cvailable for rigorous analysis of extremely low, hurricane-related tides in open water bodies, as there are for analysis of onshore surge. The lack of a vertical barrier, the presence of an essentially infinite water body, and the effects of breaking waves, swell, and along-shore flow and winds make rigorous analysis of the condition intractable. Therefore, it is n,ecessary to use simpler approaches with conservative approximations. ,

Studies of the hurricane blowout condition include: 1) a review of extreme low tides that have been observed in the vicinity of the site during major hurricanes of recor d (30, 31); 2) calculation of maximum of fshore wind speeds for hurricanes approaching the site f rom either the, Gulf or the Atlantic coasts; 3) determination of water surface setdown ,

conditions in the intake canal for various sustained wind speeds (32);

and 4) calculation of the minimum water level required at the plant end of the intake canal for proper submergence of the nuclear service cooling vatar pumps in case of shutdown conditions.

The review of extreme low tides that have been associated with severe hurricanes in the arca and estimates of minimum tides that could be produced by a PMH established a figure of -4.7 feet MLW (elevation 83.3 relative to plant datum) as low water at the site (30,31).

Calculations of offshore wind speeds associated with a PMH approaching the site considered two hurricanes, each having a different mode of approach. One mode (Mode 1) considered a Gulf hurricane approaching the site on a northeasterly track, where its of fshore winds will produce the maximum setdown condition, as shown on Figure 2-33. The second mode (Mode II) of approach considered a South Atlantic hurricane entering the east coast of Florida, as shown on Figure 2-34, and traversing the penin-sula in about eight hours. Maximum winds speeds for each mode were cal-culated based upon procedures established in HUR 7-97.

g/eap

.~

  • . ~ ,
Q y:u.

-For Mode I, the offshore winds will be produced by the left half of the maximum radius storm, and the velocity will be greatest with the storm of lowest forward speed. A minimum forward speed of four knots and attenuation of the storm intensity due to coastal effects produced an of f shore wind speed of 97 mph.

The Mode II hurricane of maximum radius was assumed to enter the east coast at 29 N at a forward speed of 20 knots. The determination of wind speed at the site was predicated on the assumption that the storm weakened in crossing the State, losing forward speed, resulting in a weakening of the isovel field and a reduction in maximum wind speed.

Assuming the storm becomes stationary at the site, the maximum offshore wind speed at the site is 98.5 mph. If the forward speed 15 undiminished in crossing the State, the maximum offshore wind speed is 111 mph.

Tigures A and B show plan views of the intake canal which extends about eight miles f rom the Crystal River generating units into the Gulf. Whe'n originally constructed for Units 1 and 2 in the 1960s, it had a design bottom elevation of 73 feet (relative to plant datu=) from the Gulf to the barge turning basin; from the entrance of the turning basin to the intake structures, the design bottom elevation was 70 feet. in recent years, the canal bottom between the Gulf and the Unit 1 and 2 intake structures has been dredged in order to accommodate larger coal barges for these units. Therefore, the actual bottom elevations in this reach i

are lower than shown on these figures. Reference RA reports that the controlling depth in October 1981 was 21 feet relative to MLW (i.e.,

maximum bottom elevation was 67 feet relative to plant datum).

During construction of Unit 3, the canal was extended eastward approxi-mately 600 feet to provide cooling water to the nuclear plant. At the entrance of the extension, the design bottom elevation is 70 feet; near the midpoint of the extension, the bottom slopes downward to elevation 67 feet.

Although the review of extremely low, hurricane-related, tides indicated that the minimum water level at the plant would be elevation 83.3 feet during a PMH (30, 31), an alternative analysis was made considering the

b- I?

offshore wind speeds associated with a PMH. The bases of this analysis 4

were (32):

s. An initial tide elevation of -1.0 feet MLW (i.e., elevation 87.0 feet) in the Gulf at the westward end of the canal, where canal bottom elevations approximate natural Gulf bottom-elevations.
b. Some inflow to the canal during the setdown condition from off-shore waves moving into the area and from natural channels that intersect the canal at several points. The latter flow to the channel'would result from the difference in water levels in the channels. This inflow will modify, to some extent, the setdown effect of offshore winds on water levels in the caTIal.

.c. Sustained hurricane wind speeds on the order of 110 mph at the plant end increasing to 115 mph at the western end of the canal.

A sheltering effect of the adjacent land mass, shureline vege-tation, and the plant complex itself, vill occur in the last mile or so of the canal near the shore, effectively reducing wind stress on the canal water surfacc in that reach.

As shown on Figure A, the canal water surface profile resulting from this analysis has an elevation of 87 feet at the Gulf end and a downward slope of 1.0 foot per mile toward the plant, giving a water level at elevation 79.0 feet at the Unit 3 intake structure. This water level is believed.to be very conservative because it is:

a. 4.7 feet below the minimum level determined by comparing the intensities and effects of major hurricanes of record with the PMH intensity (31).

l

b. Based on offshore wind speeds that exceed the wind speeds cal-culated for the Mode I and Mode II hurricanes.

L ,

c. Based on canal bottom elevations that are higher then actually exist. In one-dimensional flow, the water surface slope caused by wind stress varies inversely with water depth. With lower actual bottom elevations, the actual setdown slope for the same wind speeds would be less than one foot per mile.

& lt)

O /p p&

gien s a W6' l During the PMH blowout condition, the maximum required flow will be 34,900 gpm for the Unit 3 nuclear service pumps. With the conservatively low water depths shown on Figure A, the canal friction loss associated with this f1'ow will be negligible. However, flow-related losses in the nuclear service piping between the Unit 3 intake structure and the nuclear service pump chamber are a necessary consideration.

To evaluate the acceptability of the available minimum water level at the Unit 3 intake structure (elevation 79.0 feet), the required minimum level was calculated. The minimum pump submergence requires a water surface elevation of 70 feet 10-1/2 inches in the nuclear . service pump chamber. Co tsidering the hydraulic losses associated with.the 34,900 gpm maximum flow, the corresponding required minimum canal lever at the Unit 3 intake is 73.7 feet. Since the available minimum level is 5.3 feet above this, there will be considerable margin for safe operation.

Through the use of the stated procedures and conservative assumptions, .

it is concluded that during the PMH blowout condition, the nuclear ser- .

vice pumps will be able to satisfactorily operate to maintain the reactor in a safe conditien.

ASSOCIATED FSAR SECTION 2 CHANGES:

Add two figures:

A. Hurricane Blowout Conditions in Intake Canal B. Intake Canal Near Power Plant

! Add one reference:

RA. Chart 11408, " United States, Gulf Coast, Florida, Crystal River to Horseshoe Pt.", National Ocean Survey, NOAA, July 17, 1982.

n

% $ dji CRYSTAL RIVER UNIT 3 FSAR REVISED SECTION 9.5.2.1 (SUBSECTION 1.)

9.5.2.1.2 Reliability Considerations (NSCb'S)

1. The intake and discharge canals connecting the intake structure with the Gulf of Mexico are shown on Figure 1-3. The intake canal has a minimum width of 133 feet at the bottom, and a minimum depth of 15 feet at the Gulf mean low tide level of elevation 88 feet relative to plant datum. Under probable maximum hurricane blowout conditions, a very conservative estimate of water surface setdown in the canal in-dicates a minimum water level of elevation 79 f eet at the U, nit 3

~

intake structure. However, as described in Section 2.4.2.3, this system cant .'ely operate with a water level at the intake end of the canal as low ts elevation 73.7 f eet. The nuclear services and decay heat seawater pumps are designed to deliver the required cooling .

water under these blowout conditions. The extremely large intake canal flow area (minimum area exceeds 2250 square feet at mean low tide) precludes the possibility of any vessel or natural phenomena obstructing the canal to the extent that the minimum required cooling water flow (24,000 GPM) for maintaining the reactor in the cold . hut-down condition cannot pass.

.J

,4 (hN 16fQ

r_

m

. CRYSTAL RIVER UNIT 3 TECH. SPEC. I)

REVISED SECTION 3/4.7.5.

PLANT SYSitMS 3/4.7.5 ULTIMATE HEAT SINI*

LIMITING CONDITION FOR OPERATION 3.7.5.1 The ultimate heat sink shall be OPERABLE with:

a. A minimum water level at or above elevation 79 feet Plant Datum l at the Unit 3 end of the intake canal,
b. An inlet water temperature of <105 F, and .
c. The following minimum intake canal dimensions:

T (1) From Gulf end to turning basin: highest thalweg'(thalweg is thc line following the deepest part of the canal) elevation at or below elevation 73 feet Plant Datum and a minimum flow width of 120 feet above elevation 75 feet Plant Datum.

~

(2) From turning basin to canal cross-section located 100 feet from Unit 3 intake structure: highest thalweg (thalweg is the line following the deepest part of the canal) elevation at or below elevation 70 feet Plant Datum and a minimum flow

. width of 70 feet above elevation 72 feet Plant Datum.

(3) From canal cross-section located 100 feet from Unit 3 intake structure to inlet of dual 48" diameter pipes: highest bottom elevation at or below elevation 67.2 feet Plant Datum and, to the face of the intake structure,a minimum flow width of 100 feet.

APPLICAEILITY: !!0 DES 1, 2, 3, and 4.

ACTION:

a. With the water level <79 feet Plant Datum or the inlet water l temperature >105 F, be in at least HOT STANDEY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />,
b. If, in any reach, the controlling intake canal bottom elevation is above the level cited in 3.7.5.1.c (above) and/or the minimum flow width is less than the width cited in 3.7.5.1.c (above),

restore the dimensions of the canal reach to those cited in 3.7.5.1.c within 90 days or be in at least HOT STANDBY within 6

, hours and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

l SURVEILLANCE REQUIREMENTS 4.7.5.1 The ultimate heat sink shall be determined OPERABLE: j CRYSTAL RIVER - UNIT 3 3/4 7-18 p1 J 6

0 /e)k 4

)

x.

i- g

-  :',7439

a. At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> by verifying the intlet water terapera-

. ture and water level to be within their limits, and

b. At lea'st once per 24 months by determining that the intake canal
  • dimensions meet the criteria cited in 3.7.5.1.c.

i T

e

]

(

5 8

u

l

! s 4 $U3 JECT C)t' .5 01500 PAGE

~

Gilbert Associates,Inc. ###' '

er

- mnc ""l ui*ROFILMED N 0 /-/(/

PAGES CALCULATION o ,o,,,yo, ,jt c.

o ATE 4/7/? ?. & /7/E 3 AAAEN6/1 . 1 ___

GercnNnr Etua.%m b Ed4~ denC U $

6ENik/i t EC tA rter/

Fr:e; ruera: Fuw FCk /VEAntf $ Nt E00ML

&y: Us-;.h. a. kd&m r + h k'~v > d' @ se.6nb sch e c. 5 ty (/Yu, p 1/ m, n z ) .

/itf/L[

i d

  • . - k
  • c

._ _ , j' b&m b

i: O m j . _ . . . _ . . . .. ._ . . . . .

T' v

, / / // ' //,,,,///////

1 4

Y~< .

9 m 9 w. . *M me es e e M j w >- a l L< < , a ,:ff b.c n .,  : -

4 2 4 ~ . - .: - ( &

au z-as,n - L aa ' q <ad. w( o, K ,A K- ~~ p y i. b

%Nde PROPRIET ARY INFORu ATION OF CILBE RT ASSOCI ATE 5, INC. - FOR INTERN AL USE ONLY Gas ses tvet

~"

a ,

1 l /

s 2l/-/6

'Ihe differential equations appropriate for tropical or extratropical N j

storm surge problems on the open coast and in enclosed and semienclosed j hasins are as follows: 6 3

BM,, aM BS 8 a 'sr '6x '

' BU

-+ + xy = (V - gD - + gD8x4 + gD8x t + p- - - +p W,P (3-64) '

at 8x By 8x - -

3 E i!

E. o 4 I 5

-c i.- o E

o E hlc

  • g -

1;,'

A EE

~

j E2 $., 3 e '.E. .o.

k._ g

> e g < '~ > y s!

11 l l1  :

at + 'sy -l

~0M BMxy BS a 'by + W P (3-6S) av yy +

-+

ax

= - (U - gD by - + gD tby+ gD by p p 1

'{\ ']

at by 9l j.' { t .

i l'! J I f li

'4. <

>I!

i'!

as BU PV (3-66)  !

-+-+-=P. By br Bx 'i

~ '

'where f S S ,3 : ,

S f [' '

u2dz; M = f 'dz; v M =

f uvdz; ,

M,*

=J ## J

    1. ) ,..

-d -d -d ',

i c

k. .t . 1.; ;g F

}. S S ,'

U=

f udz; V= f vdz . .

y i

-d - . '!

):

-d ,

p.

j... The symbols are defined as: i-'

A.

U, V = x and y components, respectively, of the volume i. '

~.. .

IQ transport per unit width; ,,

"t-Pf."

  • t = time; 3

.W '

,Y,'- ' FL a , M."gs. , Mg = momentum transport quantities;

(.-

I, ,.

,' f = 2w sin c = Coriolis parameter; O l .,'l i' '

p',

??- .

3-ll3 ii lL ,

q., h:.

,~ r e

  • f

' = 0( *f_6Q g ,

r

. l- 3ll. jp w = angular velocity of earth (7.29 x 10- 5 radians /second);

c + geographical latitude; 1, , t,y = x and y components of surface wind stress; T3 ,, Tby = x and y components of bottom stress; p = mass density of water; W,W y= x and y components of wind speed; E = atmospheric pressure deficit in head of water; c = astronomical tide potential in head of water; u, y = x and y components, respectively, of current velocity; P = precipitation rate (depth / time);

g = gravitational acceleration; and 6 = angle of wind measured counterclockwise from the x axis.

Equations 3-64 and 3-65 are approximate expressions for the equations of motion and Equation 3-66 is the continuity relation for a fluid of constant density. These basic equations provide, for all practical pur-

.. poses, a complete description of the water motions associated with nearly horizontal flows such as the stom surge problem. Since these equations satisfactorily describe the phenomenon involved, a nearly exact solution can only be obtained by using these relations in complete fom.

i

! It is possible to obtain useful approximations by ignoring some tems in the basic equations when they are either equivalent to zero or are r.egligible, but accurate solutions can be achieved only by retaining the full two-dimensional characteristics of the surge problem. Various sim-plifications (discussed later) can be made by ignoring some of the physi-cal processes. These simplifications may provide a satisfactory estimate, but they must always be considered as only an approximation.

l In the past, simplified methods were used extensively to evaluate storm surge because it was necessary to make all computations manually.

Manual solutions of the complete basic equations in two dimensions were prohibitively expensive because of the enomous computational effort.

With high speed computers, it is possible to resolve the basic hydro-dynamic relations efficiently and economically. As a result of computers, several workers have recently developed useful mathematical models for computing storm surge. These models have substantially improved accuracy, and provide a means for evaluating the surge in the two horizontal dimen-sions. These more accurate methods are not covered here, but are highly recommended for resolving stom-surge problems where more exactness is l

3 - 114 3

,. " j ,, g ,

s SUBJECT 6<J ~B51D paGE Gilbert Associates. Inc.

    1. "' ~ N' ~~' "O" ~r ,.

g am . _f : .

""#'I MICROFILMED d d d d /~/S PAGE5 CALCULATION o,,,,,,,, jg e OATE W7/P3 6/ //!

. 7 -/ s d d d lct<4cl d.f UrV& dd l , '. W .4 'l 05.

/h / /!LC b/(h,,udb'p,,,,A'$$ewu r s Add , x . .e . .

6eecs' u = G/'s ,

d= ,,,d s~,4dl (u.c .

&= 'k-s/><\ X-cbae$

CE7f.". E V = h j@ ,

(g =

k CEotC. O F V ::s t @-+S r hc wn

  • yc,

/'k E f f.s' $$ /4 2 r & a J / f ; GT "

n .O'( 'le r.c "* .a dd 15.l a., d'r- al.4 c {c n p .3

  • k l e-e<-c. I '

WERE,/jfTEE (/ f V A&E hEftAfD.'.) A'

() = Aa.G << 5. 5 W d.ac $,

,e '. 87

=

U = Sx/A ,

fs

- - ..). . . . . . . . . _ . .

~

CERG U T b UI_ _

& Eec 's V =. _ h V . .

p . . -

4 4

' $ f, lGCW Cf 4W b & &si f

?c-be hn bb (,6b k:

$ 'l$ U of/(

CEN OV ' cf s .,f M d .k

. Sul> ccc s .e EkEAfrER f W/LL lei'tC W SL.6/E ~

ild' ch

))

hb GAtM6t#81 DROPRIET ARY $NFORM ATION OF GILBE RT A550CI ATES. INC. . FOR INTERN AL USE ONLY

suoster ce; cis.c pase Gilbert Associates. Inc. '

o, n-_ _-. "" ** I ulCROFILWED d d d d /-/C PAGEs CALCULATION emioiwatoa v2.C D AT E W7//.7 f/7/f]

(~70}Y///A'G EG:/AitC/U fd/& E//is7XE CA/Mr..

~ - ~

/Jaas A Miric/ nwo o c/ S?ul @=A $a-G - s&4 mcGz%) a

(<..e.f >i<

.e .

/ M. L M a,1,d~f Jc can, x.c c u i le, s

, .- a . -]..

es',0 w i<.,.

. um .a;,;_ a A 2x4 4, Acu s ., wf , t e aa (a. .e .,),6G . aLr ame/ V=0) 0 i.c 94 e S%4 .rh& ae:Ys (<'..c., aZZ ed we% a,/r 7t t c # av.<' 3ca)Z<~ a . y 4 .< z. pu au ue 6,S ykuab>,<h.#

cs a.n ( Z il n st rau ck ~ rc,-,5< 4)+ 6u G n6.m.

a,~t x,. c. it ~

u,cS,t&^ ^~ s u'

e /A ,dfd

,0s-w q ou ,.mc4 M A&6:.g.

. .......,..,e . . . . .. . ..

  • $ {' fW ,

WD f G M,x

. .g s gx ., fu . tv (A)

. ex r (

l Qu,,

o

- . .<3 4., - o a)/~ .

Y(,

.v...,,,..,,.-,,....,c...,.,,.c..,,,.,c.....,.~.,...c, . . . - . ,

t i \ susJacT t/d  ;'58D PAGE Gilbert Associates,Inc.

Km (1, aids Mi 6 .T f4A4. 4%d l~h or b ~~

uienorituto *^Gt5' CALCULATION o,,c,,,,o , jg, c onie A'!7/23 &/?n]

~

c $ Tbnt She STYoJ " dim , hxk

~

(g, =

( R s, .. ~( >Q Ej H )

( _$4 .

eterk #

ffe f /U $

k, =

d's Sp . (4 ic, g . c.ir) aL rp = ff-w /s,c k n /cw:/L.,tL

- & J,,ck , s% _

/2,,* O/Ol f l.)

=

zur e (Msiinand

/ .=

1_[ j - ' ~

3

'W..._$ $. d'!$') ._. ... . . . . . . .

Ce . A n w 6 [p 4 9 z-a)

[/ L -

) ..

k ,

d ,- - -

g~

_ .gf/77 $ hj .[4tf ( 6 t /

y F ri g

f ^

-;  ; n 2 ./; s 4 x q I . - JV .. .. ..

( J V#

bphk PROPRIET ARY lNFORat ATION OF GtLBERT A5500i ATES, INC. . FOR INTERN AL USE ONLY cai646 1det

..D

\

SUBJECT CAJ GistL PAGg

. Gilbert Associates,Inc. ,

g m --

" ' "' I MICmorlLute d d d d /, /4 PAGES CALCULATION e ,,,,,,,, g g, c cAic +/f/f 3 6/* /f3 0 (bitkt. $/w to c.c 5byc [bsii, }b .4l5X k# W~ b'b  ?,. sG4 Cd fS !Y , d U // .

= s-g -

= h+2 da ec -d = Axl{L( k g bL As'fr.

4t

/ b <x -

(4 =

f 8.)hlbtE) - s<x b 1 <z/ '1e z (E')'

c f)wnti$url i f .pa i , fMxx/2z

/./n ,afi rr x ci .u.:= .

. ic Mx,_ _

' c (e V ) o :

' l l ?g 9 't p us.:f a 2 6z' l

l b&}/ '1 ?* / y _

s'

'6 Ma .-

cU

^

1

. = A. U

/ = _

~

, $%./

@, dy '

h

  • G A s M6 . 2,#61 DROPRIET ARY INFORM ATION OF GILBERT ASSOCI ATES, INC. . FOR INTERN AL USE ONLY

suoJccT ce3 cisic pass Gilbert Associates,Inc. ' O' O" / [,'

WwcucuuTios ""l Ld _J '

2J _d g 'jo omicth Atou f[ C onte /'/7//J f/7/r t

< b.CE$. t b,C,b,E1h A h ,/,

j bu =b

&t + f A 5,, - 7 6 5;- 4;;

I 4'! $ $ f.(4-CMWs

  1. h  ?/ "

h

- '/* b -(n ~ -t.,

1 ff .

'6 % t-(C % -t }-l l n'6 % j =

.ipo n-a i[nax t i w 6~n y e,x Ad M i  ?

Sed M fEtbVa  : f 6.6.da.W_,f Ll le /

{ P11 , /LO, &'"w . .' <.o c' A

~ A

~- -p g -u 3 -r (

ex l~ a <

.27 u

_==

/

d (,4 & t( . gg2[4c ca 1

l t + .. . . . .

~

0 - . . - - . . _

~

L6.+.s2 + A f =

s x & - s x. S}. - .

i! l' I

(~Yi f tL/ 4 .$. (C V $f11 t x' t W .el '/ 0 M . T. $l l$ ,

o ca,< b . _.W C/n M,i~

um,;N f p

. U j

{(

PROPRIET ARY INFORA1 AT10N OF GILBERT ASSOCI ATES, INC. . FOR INTERN AL USE ONLY G A 6 446 12/81

P f

b i SUBJECT L' A j Ct&lD PAGE Gilbeet Associates,Inc. #N' b - ' b b* e, gn Acv.I adlC R O FIL M E D uJ A D

  • A i- 10 PAGES CALCULATION e.,3m ,7o, ,jj c o Arc h/1/f ? (c/1/r3 2, 4 g+ 5 , ' b , T lh  : M $w ~4X '

Ur ) -

t ~- us E.1 Ei Cr i E, - E 2. =. 475,t - 4. X Sw (Z j

, ' /2 h ,

' r-v

~

v// -

EL L N. %' - h' w_ l'i  : i -

-U, E A

. ..by S.s. ..

I

'~

V rs , , ,

y. f

" //.fl, - ,,-,

t o, +w yy e, r , ,7 d,7-,

1 l /hfL (b f sy fg.I; 0Dv~4(wdmv l . A + x . d e ca- n .

E W h pl wNf A..: Am Y ~ X SYc&

6 4 st. k 4  % i V5 Lt. . ' t'/ C N'T V NM 4 Ow*t- [ ,

cm-(

tx achu )_ . , . p e> .cg. m :

/

~

2 .

~

b . N

' .- U W. -s b 5{ b$W

~

(( 51 'A'(

  • he gal A46 12/81 DROPRIET ARY INFORAt ATION OF GILBERT A550CI ATTS, #NC. - FOR INTERN AL USE ONLY

l r '

SUBJECT ( R. J  ::5IC PaGE

. Gilbert Associates,Inc. "* ' "

/ ~e!,

w ,-

I w n 23 s i-ic cucuuTios ORIGIN ATOR j l_C D ATE {l 7/[ ?

- /b/Ef6/;it M b5 ~

flA A'AS&RNrX d

/A, sLe M ak,//su d

r. ,

[

, ,,w i. . .

I.

e sca.,e.g L k ua(ceoc s. s e nmz

[. 6 m u

/e, /d d i aso, Cu. c4,. / f4w '

I

/Visc Ni N d a f M.lce Rw yu ,i46s

/ o Y , Wlr $& b < **v vY h M . =l t 's

)

Me 'G, mv &li, %ye. n ,0if 7/

I l

l l

l . . . . .

I

^

\ Y \

h PROPRIET ARY INFORM ATION OF GILBERT ASSOCI ATES, INC. . FOR INTERN AL USE ONLY O A' "O W81

i , 3.. .

l >

\

U 's sueJECT C A; J 085'D GE

///sh, hdo$ WJ *** 5Y $4tS ~

Gilbert Associates,Inc., or g % +.. "".1 MICROrILMEQ LaJ M

_2J W ,g;;r CALCULATION o,ia,,,7 , . jg c

.x oATE +/'/24'3. (-AM3 l APPEA/d /X .2. .~

~

Aucao c4(' 7~c~Mnaumb i/y/G 9 ~ Glece.LL e/ OM. h .

5 &,.c ~ z,,rua. n ia./

0,

.x . .

G c.i o ,. , . , F < + %'

(/5 4%e l' CWA ./E'.vec/ & & [d5#cj r a 'l u ,e ,,C r%ci < r m , 3. e -t i vu Jg /-6 5, ,> . 8 9 (wg4g.c.<,.7ai.abin' L Nn =

lL N % M - .

f4 . . . .

, = 7;fi/ kcl dyk'(;c.( .uny,/an,

~

-~~

a 7 4y . ,,,.. ..

. c a a n.p rd; ...J , , <.. L .

- ( n'r ."' M *I _ .. .

y = meed - praf W= ab t~t eL i .(ycu/(V,,,ra)

^ ~

~~ %:SpitIcId'.~f.5 n,,-p.A (s ->rn)Ta L X ' .

. . k = a m d 52ta a p m m 'iL . .

~

~

z /f, = ~ dy k. nat su acV-e4A .nm a r.c c. L & u-,~/ s %

(ss.; n ua . ., ..

.)

~~ ~~

tp s

, 7 p,,

3 e ui i PROPRIET ARY INFORAt ATION OF GILBERT AS$0CI A TES, INC. . FOR INTERN AL USE QNLY I G A t 446 12/81

o sueJECT CN3 casso Pact M N' MREM 4M # ~2 cist..,inc. c, g@ %- oiiberta. _.

""l MICMO FtLME D LaJ

_J 2.J _J >

f- t PAGES CALCULATION .L,,,,,,,, , jg c DAsE U//Wl'3 M /r3 L as ,s As tLt t4 ~a/~Cd sce t n & % w .a d -

cowycfn/-rLsee tdun d Lala- Clar.cA  ; sea eI

a. scTL rS L M es& L v6deat&_ Artcf ,

of 3fF~f.au."

Us%c h.Ad sy(4n:xif L a%,. s4 ps 4

du.

ccw., ,

e tL rwa y n y, , y if,- = l b' % ' [teb u. W,=tv)

& ui s ~ Opt / Scl d,

~

p =3z.z h>c'

~//w Gr.nk ~2cf5u1~A S ~i L "~iL, ix e esw m

' A _-

~

asJA .. . . - . . . . .

g . -. . -

46 hW 424/

. .. M .

f bl . . . . - . ..

~

~ ~ f = ~# g , i s p; ld/ .. .

1.f

^

~

&j'p G A6 446 12/81 DROPRIET ARY INFORM ATION OF GILBERT ASSOCI ATES, INC. . FOR INTERN AL U5E ONLY

l

<!- 3 A susJtet c 4. . :isio pace o //w M Ws 4 m u 2-3 ,,_

@jiin.rta..i.s...inc.

- "l Ld d .=J >J 2-y PAGe5 MICROFILMcD CALCULATION o,,,,,,,,, .jg oatc 4'/M// 3,6/4// $

hCt YJ kc ls A c1. fceb_ hem

/& 4 4 7 t27 '

~

& = 1/6~ p.y A' =

//fd inc71' ~ ~ kt w x uun

. ,a 7 y oc b, = /%O Lar 4X

= /. I t/N = hf/- o/ f

. . = e.socze u.;

(at.7)'

3 3 xu' /

p.

$.eu $ .$. O 7tG # bc [ TA4' (p89)s&k n u ?.co.WG ,

a % % wtzt s uf n d u. CL

. Gby $.5 ^*!-.W.U. . .

.a 4 an em emee e -wg w e a eaMhMge e a e moeM g um h

w ee.m ,e. e m -

m9 e

,e m .g he e e ae 4D* W- e um es ee. m =.6 esee e4 espiqueguuussehe y-g , e ee i.e e gp e ae em--e w ee > m a m'-

4 w e e

+.em., . m e PROPRIET ARY INFORM ATION OF GILBERT ASSOCI ATES, INC. FOR INTERN AL USE ONLY nr gas 46 IV01

- w . _ - - _.

c

- --...-.,e  : _ :_m:wvr_rre: w _

e e z = =_= a.e.,.c :o= rume =m : : e: -en: _ = - - e . e ,.

  • m a

-. k ,

.y _ _ . , . . ._. .. _. .

.n,. ._ , .:.m...-.~-.c_--- ~

N -

v n.._._.'

~

. . ... . . ? .~: . . . v . . . - . . . _ . .. . p

. .  ;._ . . ._. s .

- >ys _ .

M. . .i _ . _ _. . . o. g meumme am . . .,.s == r + 4 5mmum .-e . s- - -

i

-- M, p w.~ w ,

d

._4,_...

a _ ._ . . . . .

2. . . u .. _ _. . q^ -o v. .. . . .g. _ . ._ . _ _ . - . -

.._.1__.

k _- 4 ..  :

3

.. . .- .%.. ,_.t

, _ _4 . __ . 3 d ,_ & .._.l.___._.._

ss g

_ , . ......_i...__ , . . _ . . . _ _ ..

,, __.'_ u Et i 3__s . ' ' . '

l_

L _ _ ___ _ .  !

4______.__.q

_{

y

_.____.._4,..

.4..__..__..,,

e. . __ ,.._.3 v A= D.

w

_ ,4 . _ q . ... ._ .__ __., _ __ . _.

t_

a.

..._~._-.....1. _ ._ _

, __ _ __ dN.,y._ . . . ._ _ . ' g. ,, ,

_ _ _ - -g_,_4..-_._. _ _ _.________ . , ,

_,._ q_ c 4N ,

1. C ', m _

n.

.! , ' wh :' .

....__.___.i.__. _ _ . _ _ __.-_--..._j-

. _ _ . . _, g_ y __ ,;i_rys6 %. ..._._p._____.,.__.._.___ ____

_ . . ~ .__._ .. ,y_ 2.

c __._ - _w .y. ..t 4_-_

[

~ ,

3_M "

W , v . sa

.___ _ma _ s;. . g_.%;_ _. ;

..... e_____ _____...u,___...r t

_ w_.__- .

_ _ _ . . . .e_ _ . . . . _ . _ _ _ _ -

a.____.__..___ . , . , __t __ _ . .(g %p . . _ _ _ _ -_ _ _ . _ _ _ . . ~~~

i ;i _

- y r^ 4

. s th c

' ' ', 4 mg_... _ _ __ _ . .

' . . . . w __ x _ __s . ; _s._..._g. . a . . . 2. ._ _. yg g. N3

%> * . _ _ . _ a_ ._4._.

e a_  %- n._..a_____.

._ x- . %:,._.x.

s$ % % ~'N..% . . . . ..as', , A 7_.._n <9q_ ~'

% 3% e tw re. u e- y,.nensa won.r - -

  • e.amrs- s- N r.- ..s.=--

a A . '*-, 3 '* . h., _'

4-v

, . 1 _ 1 .

g _. _ _ _ . . . . ..

'._N' -~'"'~~ - ~ ~ ' ~ - ~ " -

E. , L'i.'. %3

  • ~*Ni-

}'P'""~~'.'_*.".*_.__..

- . _; b,"._.%g e%, _c

y. -~. . . m.~.% m... q g '. % +_. . ._ _

a .. .

% . %_f .. ._

g , _

-m

& E m M N g g% , -trsM..-.wy. q - Q" N N w N __* 3'

% J~

" - - " ~ - * - - - ' ;_

c.

.c . N $]~'[tSOC yQ5 2C g l

  • [,' K*~__'*_N_y _. ' ~ - - __; _ _ _ .

g

  • 9 .W W q 9 M .

[ i s e

x I\

J p, w

. ._ a ._ _.x . _ w. .. .m ._ ,, . . . # _ _ .

-% m - y m - _ .. -- ,---- , - J ~ - t---_,

Y h. _ _~~~~

w+- b 3_.s- 3. f-Q -

p. Q_ - q'. 4- . ..

s x s

_w w _- _.

e y t4_

i I i

\% i D [ . ~_ ._ _ _ _ . _ .

~~

O .

,_ _ +

_,._..y____-.9 .g- ..-_y.__.

h. ,[* .._y...__

o ._4...

  1. _., ).. __ _ _ .._ ,_ _ _ _ __. .__ _ .. _ . . . .

l > __1_

3 - a s t' s . s i  ! i c, , 4 . _ .

K_4_--- ,  % _ _.y g n . , ;

1-g ._4.____._~__.__-._,____...~_~'-'

+.4 _ . _ .

9, 4_ _ . m__ w._,w .*_____, % _s w-

,4' '

N s

__ __ _.l_.

i i

i A}

  • n gg

,, t  !

s .__%_A __. .,; _, _ -_sU . . -_un__

x _ _ _ _ _ _ ,. _ _.-_.__-_ _ _3 . _.

_A__.s .

g - ,. T . g . _ _ . .

5 4.' QD -

^ __

t4 __' 4 Q _ m} _[_ ,

'e 43-_....-_ . - _-+.-- -_ -

( $l l I t

&: d v .---. - - .- - -_ -, - % D, '

L - - -- - -

% N N N N gl is g b '

meys esv 5w ,a w<  ; I s '

n.

s. 3 gs

'n ir Ny ,

i i

N '

5\ V t N w ~ s. e, .s '

q  !

N

  • g.

b* i ( t%

t.d.,

  • 55

'l$.'.

n N ,

'I s+ 1

. i D$ j  !

i j i

i M

.. i l I

,I

.as _ . _ _ . . _ _ __ _ _. _ _ . _ . . _ , . _-_.4

'. l .o

==a . **a e e 2 2:2227TERE222C2%REE2*22$2%KKI e . .. ... .e

T

$UBJECT C M. O OISIC pact m /N m b S lf M S.t h Z W 1 6 4  ? or "l -

g Gilbert Associates,Inc.

a=v l d WICROFILMED LaJ _d .=J 33 PAGES CALCULATION o ,o,,,,o, gg DATE [fh/f(),hflfD APAEMik 3 _ . .

Cdcdahn d/ Mahau2 &aj k nsaiu

</ its we a.1 L% 6a a~d sdbd, io AIe t-V 7.7

%1

  1. ' .c m (

3 n A la' /i Lc. .e / $i(4' f.6 /.s $ Lp

, 84 ~

b.

g Q . . . .

    • f^[k'(37 k

~~

~7& 6 5~~slu. 2 A & L ( u .7.uEa2 [f/cc&

~ ~~

M- ~ 8 c .a'c erk wr& g n

~ sethnv ~rA l

l.e Ac0 puy %nf a.x h t

,dc acp &-3

./sn,a L 7en y

~~

p2 j ^..T_ ~~~ _T~~ _

Ald- - j:r.cLt.

89 %nc!M/W td' Af'97 ~~k salai= i.o M Qtm

~

Cr<RW*

tL. k ./ 9m Jn$ 5.'~,% n +p ddAI ~eup se 4 M ~ / A d u < 1 & &r wpm._y M .

q&cu

/labact. .

M . tu. suf. f f *c e l

'uW'it)d.(0 PROPRIET ARY INFORM ATION OF GILBERT A150Cf ATE 5. INC. - FOR INTERNAL USE ONLY ( G Al 6'ihst

l

~

susacci Cjt J cisio ,4ac

' ~

Gilbert Associates,Inc. e, yj -

a"l MICROFILMED Laj _J '

d L*J ~3 P GCs CALCULATION o,,,,,,yo , gg onic f/5//d'$, 6/3-//9

&% N & hidy klE 54 '

.i & $m f/HC = } o 4 /**N' d bi N/ " h. A , S I .f h ~.Y N t

o 'l~de so .h w,a1&gr.cla,4 6

,. p , o ' s s. o r ' )

h. A .

/CG ..

= 17m 1 ) g_L /)tsn m , [j

-/.hf? h/i R /3 v k

/1, p = 6. C S' . - . . . . . . . .

^

gQc 34 fdC 7 m = 77A f big = - E.gg - [g # ..'2'C .

. / f- ) = . $,p s~ .. .L.-

. . - f ~ . /< 0 ..

. . h..+H. .--.=e

~~

.. . . . . - - .h..*62. . -.f$m*.%. sm .

0 ._ . . _ . . . . -

f 4,7- . . . a.. c,ty - - - . . - - - .

. 2_ . . . . . . . . . . . -

. ll -

y . - . - .

= _

-- ~ ~ - ~

r

/, WS Il

$ . .b...'#,A. g/ .-.--..- . . - - . . .

. f M . . . - . ..

Y'$ -

Y' *

.b 2,4 / 7

/

'f 1

f# l n<

PROPRIET ARY INFORM ATION OF GILBERT ASSOCI ATES, INC. - FOR INT ERN AL USE ONLY GAlM61U61

[

f SUBJECT gg3 Cl*ID . PAgg inc. M #M/##M4Gd #~f__ o g@ woiibert a. ei.e ""l LaJ ij =

._J =

J g-3 MICROFILMED P 8.G E S CALCULATION o,,c,,,yo, .jf_c oATE 6"/3///'5, &/2/E'3

/t fY N /'T _.

It)6dff6mj & N.9' 73 : ~.S. Y sg3 bst /2o' l.

~ ~

2); % nG B a i ~ ,~o t/se 7e '

77 [ f.~o ~ ~ 59 9

/te '/m.. Saf 3 ws- . .. .

inM the d _ 7 4cc ehutw r /Al 14 Ju 4 G . - .- .- .

9 . . . - - . . = . e ai . >.e ep g. e Aa.4 6.) : A = T y(n e] 'c 6 4F ff ~ ~ __

? =. 2 -

l 2s - s(ve/iet.:5 o .o s- (776

= s 959'6 ?!%9 " !3h? '__ ~~

_;,,q g ,ere" s4-Sp = i 1

. _ . . _ _ o rn V" . mM *' _ . - .

. . . _ . ... . ?c 2- . ".I's.'..--- . . .

& = n(f*A)? cp6 - 670 s e s 6 7 C " 1-ra .- ---. . _ .

i;6V Sp .

= LTH Y".) .[4: 5/N#' . = .u.c ._.-

4 - ..@ 4 el.e. . w F 6. = = . Wh *g e e

. .g. me m - e . 4.Da .- g.e .- -..es e .e h+.. ee . . . . .a . 4 4 y

. . . . . . . . _ . . . . ..--. . . . . . yr 1

~ . .. T _T: . T .-.T. . T- . . _ . . '& 0 88 " ' 12/81 PROPRIET ARY INFOR&t ATION OF GILBERT ASSOCIATES. INC.. FOR INTERN AL USE ONLY

( l Florida ANALYSIS / CALCULATION M Crystal River Unit 3 sneet #-/ of '/'f auma o.

I Project: [M,h y p [Mg hpfd APPEkstx 4 fenrc/ kr $CIcr- bcusnan7s Akk.c2Vc//cs" Am6ijucu.s na esyeasA

&a., sr' M est /cx,s sL (4. L,,

C en.d O o //r/b<, { . f. o. E a 6 u t M r a s z & ,= ,,,, 1 6 a,.d r2.sc-,a

. I 7 ' (CKhl) , ced W sd Jb

,e w y -

gw:

/C

,, nr1 ca ad ha, ) nwlsu u af p L t cms ( b k.w dGus 2 c 4/9'f 7z , J L. 6hcas t/&.6 s(u n L u ~d 74 g4sur,.yry a s s p ,,,p .s , p

~

ca/.Jw:

6 &c d r<oie rc< s e 6'"d 79' 4Lt,fG .

7lk j Y ty aac u ,w- cl e.nc n d

-' . M a u wIcod a.t tL ptd ca.,J q n /

  • fd ccAv2. A 4/uf, A .cn d ,

m s4rs Lt#6%eWMalassM .

W l!AuA d Yb C<nace atiin W Gnz 6,n by Aswha- 4 11 nrrp ps uadysh s,/af Jkod f El 79 '

M-g,

-r M a M M - /s 6/r/p TJ&f el*3

L

(

Florida ANALYSISICALCULATION M Crystal River Unit 3 sheet ~2 of

" ' "

  • o.

Project: /f[t17 gh[ hg

  1. Yf/ dl72 , banu 9 N41ne rsf -vf S k Ccd /~ S"i Y G

t/u />u m n -

Mwed Jac-(f7LMu~, 79 at a r d dy s;. A / A - u .

n. tad a M rac-at d p&z oJ d w J sl ee W & #AQ

.s b a dOcAa .

c N-l7z, 9/'2y/ /T E. //ac.us swt- m f.-lG2L :.' 6 4.r

() L. dzc m ) N m i 8 g- a- Cep y < [ ./Y/d?

cslwW r.ep<. &d 6. CarAl</e,4 9 6.n.

< s//sp s , A%nkt 39' t 1. 1 . C d 3 /=Mk wo i n c. / , & f A T b . F C n t 5 8 $

1 ,d n .5?cs(, 2.4.2.3. f u e mirbycus fa-uzy/1 /vd affa ; en r* *tl1 fana.y -p Actn l d'11 G+1 .d&EL. a. m / m , / 9'72 cm-

/973 o ,swa o. v.,m an,.a o. -

. . _ . e , nas o...

y 4 fl/9//3 k'W & . Sh/b wf A NN

(

ANALYSIS / CALCULATION M

8 Florida Crystal River Unit 3 sneet #'3 ef @[

Project; /fply) hh 3 [n&h [pd A cud un a , n a did w cc- /972et /97:

v pu bo.c L se . d 4 . are Je , LsM l-

u. 7h /bd1 'i C4 /97 9-rz &f dd ni 4 tA a. L n nn.dl %g $V 22n$b/Acal y%pwyyi

&ad

,, 7 6a. u < ara L.ecf & cJd .lc El V 79 febeew.d r & E dL, can d-(Nl o&& nu- /973 e

uWy i97y ,.A &,

)

nd2-  % AEC

&& , &,evf~ (p,cin a d Jy A

5a(d a y ,r % a b - & A c e s M en 7/29/vv <

E/ F/79') ind'<& N A C- Ad w? 7albi 0 i sg,j 75a %f 2.a 2 3 ("/%ane

&& /kc'wa ") . flo e mZy,aLb (see dn K sec w h(Lunmfn g) p. d 2-ir,is y d. , au

% Mc ks ' & M /979-!z Pl4'el/ {nt l

G) n ,x su ca i k it BG "frens / cue % , qu ? , c,p &

n und 2, GnJ , (FArvaz ) -

/4 .st,~.,1 's zs s , w p. y . 19 7y 1 i ~ .. . _ _ . , , - - ,

re

/ 4 Sk/G k//Adv--A 6/7/O <

Y_*'Nf ff 2l"l*'

h .

e a .

O O +%?

y Y[ A 4 $Wh8 .

gh5 2-15 #

' 1 and has provided assurances that the static and dynamic effcets of g I

g such water levels will not adversely affect safety-related structures.

t i We concur in the applicant's wave runup esticate, and conclude that safety-related structures, systems, and components are adequately pro-Lected e fro::: severe flooding, providing.that the reactor is shut'down in anticipation of severe hurricanes as required by the Technical Specifications.

4 I 2.4.3 Water Supp1v 3 ,

j -

Safety-related water supply is to be taken from the intake channel a

j via pumps located inside buildings on the nuclear island. The pumps are i

)

thus protected from flooding in the same manner as other safety-related i 1 1 facilitit:3. liinimum pump water level requirements are 17.1 feet below I j 11LW in' the nuclear island building sump, and, at a conservative slope t

j. of one foot per mile, 9. feet below }!LW at the entrance to the intake

/

T channel cight miles out in the Gulf. The applicant estimated that the

probable minimum low water level at the entrance of the channel would s

1 - be 4.7 f eet below }!LW. This estimate was based upon tha " 'er level that

! j -

3 would result from a Pl!H oriented to produce maximum sustained offshore l winds blowing away from the facility and channel._ We conclude that f

3 ,, sufficient water level margin exists such that safety-relat;pd. water ii cupply uill be available, even under the most adverse hurricane conditionn.

I l This ceneJusion is based upon the assumption that the intake channel will be periodically surveyed and dredged as necessary to preclude blockage at 8

  • icu water Icvels.

I  :

g- e.

g

, , , .. , mmesunny, w

C . .

O O r_,

I Y 2-16

, 2.4.4 Ground Water .

Ground water in the site area occurs in small shallow pockets of relatively small areal extent, and in the large, extensive, and deeper Floridan artesian limestone aquifer, in some areas the Floridan outcrops in the form of springs. 'Ihe permeability of soils and rock at the site ar very high and are typical of the region; however, the ground water mapping in the site vicinity indicates ground

}- water moves to.<ard the Gulf to the west and southwest, and away from 1 potential users. The water table conditions at the site have been estimated to vary with tide levels in the Gulf and are generally at or l near clevation 2 feet MLW. -

i

'j 2.4.5 conclusions .-

t The staff has concluded that adequate flood protection from severe i .

hurricanes has been provided, that heavy local or regional rainfall.

,$ should not adve.rsely affect the plant, that sufficient water will be j available for safety-related purposes, and that any accidental

' releases of radioactive liquids should not reach any vater supply l

i users /

l y

l f 2.' 5 Geology, Seisnolery, and roundation gnr.ineering

c. ,

f .

We and our consultants reviewed the geology and seismology of l t' I  ! this site with respect to faulting, foundation conditions, and intensity of carthquakes at the construction peruit stage of our review. No i  ;

new infortnation has been obLained since our construction permit revieu

! ~

t

9 ANALYSIS / CALCULATION

@Rorida D Crystal River Unit 3 sneet N of M

-- ~.

Project: M4y/. S 3/ 2 d fran h SEA &c ,o [vr , Nm w cdnf &

Asc as4:J d s M ,, n &c .

3 nw u,s(aee n:uan>

, y___

9' [ r/. F3.3 ' AvUdce //.in . kl. L e pc f a.f g ,/ , g ,4 E/.79 11.1 O'&h/p,,7f.<w

 % . , , l .

' ' c. u. 9 '

i

,, 2 ri k z,. 1 / l %'d l

^

a!q I

l g ,,r auda, g,, ,, Sereicc c/cs' a1 S**Y' Ew4& Mc ncMud K EA H 7' r W rn on . w. l t d 22. UnJf3 M 2 %.c b c. ht w a fsa sed 2.sz.s) a um Azlud n -4:./

g n t d c m m t 4 n tfa n e lec e. k ri w4 hd m .u' w us uAL um w i ab,M r v A' .p & 412L

$., n 6/z/o A66/s +/r /'n VadhWl*I!*

2"-

a Y

ANALYSIS / CALCULATION

@ M Florida Crystal River Unit 3 sheet N of M

. . . o.

Piolect: hl4,E. 4,<  ! 0-(L e /-Miun /97Y. A N p n $ () S c- l ' Y0 a Y Y > b 5A*

.el3n*.fa. Otaal 6<-tw2, Sal , /%p., eL.c od brpW WW 'Y f +f hvel /t - Im ccviu nxcf a n oeic, c A. Nac k y, & W . J Y e; f r- A m

% 4n se.-

Sc/ cn 3/zG/74 a " stWe&hedent I $ YN s

N cestcI fle re c(ca- foc<s 6,p Cop tif S c<. .

66wu~&s' Lw acy-c,4 //de-Asc / 4 z'd sc4id ZAvgy y  % ~ak . "

Tl ryn$ dx& cn do d $<w m YI nA4 C r: n af e Neu 3ie<.c 7.E - 6 7V I f 4 ., i a f (k n ce s o u Y Aum ca. x dlewca7 esd Y x

, u d A c s - , cc v . -<

  • d FrnN

& c. f 2. 4 2 3 .

l

\

Un;1 ? , h < d y b e / J l t la Cua(" w d4.s4 J p " Ez & 3, du p

, ~ . , . _ - . , _ _ _ _ , . . ...

) .

u, ,,...

t l I-t Rorida ANALYSIS / CALCULATION M Crystal River Unit 3 snee 8 of Of Da'a NQ&.

  • o $8 der _ /97r. A W r p uf C fad b m
d. p , /va n > m (c e ) eruce ww ~6vL cw4 d'rcdp A-< r<paa4 de/2 e ir). 7L aduu.s!

rsns& , Scel+M 'fc fie<<n7' 4.c n c miaf luE+ k 5' Y ? w4 M c. -cp4.

VA COc du& S e' % .cp n M!&(

h k/ % d Ss<f32tG{)

f5/ 2 Scc.S 2, s 2, 3 cs YY k i.c. 7's j{ ::-.- .

Jn acidAc~waf s.ca oc/n .OYwm bui,/ &./ FSAat Sc&Y V C 2 I ( M s e c $ -> ,e $ ) t.c.: m j u f ai. Q ' i q:, y d ev , Y m encl 4 / f./.1 N /sfL; ,' el',- .-

l w.c 1+ Critic-l tu th h c F S A (2 5-ccf 2N. z< 3 FSn K Sccf 9 S~ 2< / 3~4s<cZk. 2 -

Cccd Sp.ec. 3/y, 7< S-o 5 9 crde.a.Cn Apcq sht 2. v.3 6 kni /cde dc d i p> d , a s [ c 4 % m , & u <.a st'r w /

. C(cGux 9 o ,,en , com v neasacamer 0== 8ys*=r, 8** " ""8 4 D*

.Cg $lglfj J{/W & b !?/$b f

!3 y __

- . - - -- - -. -. - - - - - r