ML20101F608

From kanterella
Jump to navigation Jump to search
Iga & Wear Voltage Correlations & Uncertainty Analysis
ML20101F608
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 02/29/1996
From: Brown S, Woodman B
APTECH ENGINEERING SERVICES
To:
Shared Package
ML20101F584 List:
References
AES-95112589-1, AES-95112589-1-2, NUDOCS 9603260082
Download: ML20101F608 (80)


Text

.. . _ . .- - - . _ . . -. - - _ . . . ..

1 me g e U

e

's'e m m e ISAPPLIEDTECHNOLOGY j

i AES 95112589-1-2 i l 4

3 CRYSTAL RIVER UNIT 3 IGA AND WEAR VOLTAGE CORRELTIONS  :

AND UNCERTAINTY ANALYSIS l l

i Prepared by B.W. Woodman S.D. Brown 1

Aptech Engineering Services, Inc.

Prepared for Florida Power Corporation Crystal River Energy Complex 15760 West Power Line Street Crystal River, FL 34428-6708 Attention: Mr. Blair Wunderly 9603260082 96032i February,1996 PDR ADOCK 05000302 P PDR APTECH ENGINEERING SERVICES,INC.

200 FLEET STREET a SUITE 4040 a PITTSBURGH a PA 15220 C (412) 920-6633 o FAX (412) 920-6644 HEADOUARTERS o SUNNYVALE, CA o (408) 745-7000 OFFICES o UPPER MARLBORO. MD o (301) 599-2301 o CUMMING, GA C (770) 7813756 o BETHLEHEM, PA a (610) 866 7347 HOUSTON. TX 0 (713) 558-3200 o CHATTANOOGA, TN C (615) 499-3777 o GASTONIA, NC a (704) 865-6318

l l TABLE OF CONTENTS 1

l  !

1.0 INTRODUCTION

........................................................................1 1

1 5 2.0 EVALU ATIO N O F C RY STAL RIV ER D ATA. . ... . ... ... . .. . .. .. . .. . . . . .. . . . . .. . . . 1 3.0 C O M PARISO N S WITH OTH E R D ATA. . . ... . . . . . . . . . . . . . . . . . . . . . .. . . . .. . ... . . . . . 2 4.0 DEVELOPMENT OF INDEPENDENT STANDARD DEVIATION FOR USE WITH THE CRYSTAL RIVER CORRELATION..................... 3 i

i 5.0 DEVELOPMENT OF PREDICTION LIMITS FOR CRYSTAL RIVERUNIT3.........................................................................4 6.0 EFFECTS OF POOLING WEAR DATA ON IGA DEPTH-VOLUME C O R R E LA T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 l

7.0 COMPARATIVE ANALYSIS USING CRYSTAL RIVER 3 WEAR D A T A .............................................. .......... ........ ....... ....... ... 5 8.0

SUMMARY

..............................................................................6

9.0 REFERENCES

..........................................................................6 e,

1.0 INTRODUCTION

The purpose of this document is to refine the correlation for the depth of small volume indications at Crystal River Unit 3. In addition, an upper 95%

prediction interval for the correlation is developed to provide for a conservative implementation. The correlation is in terms of defect depth versus bobbin voltage and provides a basis for disposition of defects on a voltage basis. The correlation is intended for use with volumetric (circular wear / pit-like IGA) indications in the Crystal River Unit 3 steam generators.

2.0 EVALUATION OF CRYSTAL RIVER DATA The Crystal River IGA data set consists of two parts. The first provides the relationship between bobbin voltage and defect volume, the second provides the relationship between defect volume and defect depth. The correlation developed for this data set is, by necessity, in two parts reflecting the nature of the data set.

The correlation involving defect volume verses bobbin voltage is developed using linear regression of the base 10 logarithms of the respective variablesu. The results of the regression analysis are shown in Figure 1 which includes 95% prediction intervals. The resulting function is given by:

logio VOL = -4.203 + 0.815 logio VOLTS [Eq.11 where: VOL = DEFECT VOLUME (in )

VOLTS = BOBBIN VOLTAGE The standard error of estimate for this correlation is 0.139 (logio VOL).

The second correlation involves defect depth and volume and is also developed using linear regression of the base 10 logarithms of the respective variables. The result of this regression analysis is shown in Figure 2 and results in a second function given by:

logia D = 3.265 + 0.347 logio VOL [Eq. 2]

where: D = DEFECT DEPTH (% THRUWALL)

VOL = DEFECT VOLUME (in )

The standard error of estimate for this correlation is 0.183 (logia DEPTH).

1

The upper 95% prediction bounds found in tenns of defect depth versus voltage for the combined correlation is shown in Figure 3 for three cases:

  • Combined correlation uncertainties from both correlations e Correlation uncertainties from the volume / voltage correlation
  • Correlation uncertainties from the depth / volume correlation Figure 3 also includes the best estimate line for the combined correlations.

The upper 95% prediction bounds were developed from the correlations using Monte-Carlo simulations . Distributions of depth for individual voltage values ranging from 0.1 volts to 1 volt were constructed from 1000 Monte-Carlo trials within which the two correlations were executed sequentially with appropriate random error components as shown in Figure 4. One sided tolerance limits were computed using a non-parametric technique, it can be seen from this work (Figure 3) that the combined effect of the two-part correlation uncertainties results in an upper 95% prediction boundary of more than double the best estimate value for any given voltage.

Furthermore, the dominant component of variance appears from Figure 3 to be the uncertainly component in the depth / volume correlation.

The unrealistic nature of the combined correlation uncertainties is best seen in Figure 5 which is the predicted depth distribution function for 0.9 volts.

Almost 20% of the predicted depths are more than 100% thruwall. This prediction is inconsistant with the observed lack of primary / secondary leakage during the operating cycle prior to Refuel-9.

3.0 COMPARISONS WITH OTHER DATA The effect of a two part correlation on propagation of uncertainties appears unrealistic with regard to IGA. Two other data sets are available for comparison in which defect depth can be directly related to bobbin voltage without defect volume as an intermediate variable. The comparisons made with these data sets are both in terms of best estimate correlation behavior and correlation uncertainly.

The first data set consists of the Crystal River Unit 3 pulled tubes examined by Krzywosz (EPRI)4 in which patches of IGA were identified. The data used in this work is given in Table 1. The correlation developed by Krzywosz was verified by linear regression and a standard error of estimate of approximately 2

6.5 %thruwall for this correlation was established. This, of course, results in a much less severe difference between the best estimate and upper 95 prediction bound (Figure 6) than that shown by the two-part Crystal River correlation based on field data. It should be noted, however, that the method of establishing voltage in this data differs from that used in the two-part data base.

The second set of available IGA data for which defect depth can be directly related to bobbin voltage is that developed by the B&W Owners Groups from IGA laboratory samples. In this case the NDE probe and voltage calling protocol were identical to that used in the field at Crystal River Unit 3. The data used in this evaluation are given in Table 2. Linear regression of the data set results in the best-estimate and upper 95% prediction bound shown in Figure 7. The standard error of estimate for this correlation is 5.6

%thruwall. A comparison of this value with that obtained from the Krzywosz field data shows little difference suggesting that a standard error of 6% is realistic for depth / voltage correlations derived from data sets containing depth / voltage pairs. Normal application of the F teste confirms the statistical equality of these standard errors.

Figure 8 compares the best estimate values for the two-part Crystal River correlation with those derived from the Krzywosz data and the B&W Owners Group data. The comparison between the field data best estimate lines reveals only moderate differences. The laboratory data best estimate line is seen to be less adverse than both the Krzywosz and Crystal River correlations.

A comparison of the upper 95% prediction bounds for the three data sets is shown in Figure 9. As can be seen from the figure, the two-part Crystal River correlation has an upper 95% prediction bound which appears unreasonable by comparison with the single correlation results for IGA degradation. As discussed in Section 2, the primary contributor to this excess uncertainty is the depth / volume part of the correlation.

4.0 DEVELOPMENT OF INDEPENDENT STANDARD DEVIATION FOR USE WITH THE CRYSTAL RIVER CORRELATION The data sets discussed in Section 3 are used to develop a standard deviation appropriate for use with the best estimate Crystal River two-part correlation. This is based on the following observations:

  • On a best-estimate basis the two-part correlation agrees well with the other (Krzywosz/EPRI) CR-3 pulled tube observations.

3

l .,

l e Both for EPRI and laboratory data, the standard error of estimate for IGA voltage / depth correlations appears to be on the order of 6 %thruwall.

1 The first method for computing the standard deviation involved a simple pooling of the standard errors of estimates from the EPRI and BWOG ,

correlations. This resulted in a standard deviation of 6.2 %thruwall to be applied in conjunction with the Crystal River two-part correlation.

The second method applied the respective data sets directly to the Crystal River correlation. The output of this process consisted of two components.

The first of these was a bias term which reflected the systematic error l component with regard to the ability of the correlation to predict the data.

l The second term was the standard deviation of the residuals (predicted-measured) which reflected the random error component. The pooled estimate of the standard deviation of the residuals was 6.3% thruwall for this process. The results of both methods are summarized in Table 3. The poolability of the various estimates was confirmed using the F statistic, in addition, modified versions of the EPRI and BWOG data sets were evaluated in an identical manner. The EPRI data set was reduced by five points which were considered suspect because of possible mixing of indications. These data points are delineated in Table-1. The BWOG data set was augmented by five higher voltage points which were initially discarded because of this characteristic. These points are listed in Table 2. The resulting standard deviation computed for use in the Crystal River analysis was 6.15 %thruwall, a slightly less limiting value than that obtained for the original data sets.

5.0 DEVELOPMENT OF PREDICTION LIMITS FOR CRYSTAL RIVER UNIT 3 The prediction limits on defect depth versus voltage were developed using the best estimate part of the Crystal River correlation in conjunction with the standard. deviation developed in Section 4. The 95% prediction bounds were obtained by Monte-Carlo simulation for several voltages on the interval 0.1 volts to 1 volt. Both best-estimate and upper 95% estimates of the standard deviation were used in this process. The prediction bounds are shown in Figure 10. From the figure it can be seen that at 0.9 volts, the prediction bound is less than 80% thruwall which assures leakage integrity. An 87%

thruwall value would not be exceeded untill a value of approximately 1.4 volts.

l 4

6.0 EFFECTS OF POOLING WEAR DATA ON IGA DEPTH-VOLUME CORRELATION The original CR-3 pulled tube data depth-volume correlation presented in (2) pooled data from two damage mechanism, e.g., circular wear and pit-like IGA. Pooling effects are investigated by comparing correlation's constructed using the current CR-3 pulled tube IGA data base (used to construct Figure

2) and wear data points listed in Table 4.

The pooled data correlation for defect depth and volume is developed using linear regression of the base 10 logarithms of the respective variables. The result of this regression analysis is shown in Figure 11 and iesults in the equation given by:

logioD = 3.136 + 0.326 logio VOL [Eq. 3]

where: D = DEFECT DEPTH (% THRUWALL)

VOL = DEFECT VOLUME (in )

The standard error of estimate for this correlation is 0.194 (logia DEPTH)

The pooled data intercept and slope values from Eq. 3 may be compared with similar values for Eq. 2. Comparing Figures 2 and 11, it is seen that the pooled data regression and prediction intervals are rotated slightly clockwise with no significant difference between un-pooled and pooled results.

For wear, the correlation for defect depth and volume is developed using linear regression of the base 10 logarithms of the respective variables. The result of this regression analysis is shown in Figure 12 and results in the equation given by:

logioD = 4.353 + 0.683 logio VOL [Eq. 4) where: D = DEFECT DEPTH (% THRUWALL)

VOL = DEFECT VOLUME (in )

.The standard error of estimate for this correlation is 0.072 (logio DEPTH) 7.0 COMPARITIVE ANALYSIS USING CRYSTAL RIVER 3 WEAR DATA The Crystal River 3 wear data (Table 4) provides a single data set from which both two part and single correlations can be developed and compared.

5

The two part correlation on which volume is first related to voltage and defect depth is then related to volume, is shown in Figures 12 and 13. The single part correlation is shown in Figure 14.

The upper 95% prediction limits for the two methods are shown together with the best estimate values in Figure 15. As can be seen, the two part correlation results in a much more adverse prediction limit. This result is consistent with that developed in Sections 3-5 of this report.

8.0

SUMMARY

1 i

A demonstrably conservative best-estimate correlation is used to establish the basic relationship between defect depth and bobbin voltage for IGA defects in Crystal River Unit 3. Upper 95% prediction bounds are established using uncertainties derived from data sets which did not require l an intermediate variable, eliminating an unrealistic propagation of uncertainties.

Further support for using a more realistic approach to evaluation of prediction bounds is found in the comparative analysis using the Crystal River 3 wear data for which both the two part and single correlation approach could be directly applied.

9.0 REFERENCES

1. Mandel, The Statistical Analvsis of Experimental Data, Dover, New York, l 1984.
2. Statgraphics, Statistical Analysis Software, Version 6, Manugistics, 1992.

i

3. J.M. Hammersley and D.C. Hanscomb, Monte Carlo Methods, John Wiley and Sons, Inc., New York,1964.

l

4. Letter Report from Kenji Krzywosz (EPRI) to J. Brown (BWNT), "P.O. 83-786323: Eddy Current voltage to Volume Wall Loss Evaluation",12/93.

1

{

l 6 l

5. BWNT Doc. 47-1228838-00, " Report on Intergranular Attack (IGA)

Detection and Sizing Capabilities of Various ECT and UT NDE Examination Methods in OTSG Tubing",11/93. ,

6. Crow, Davis & Maxfield, Statistics Manual, Dover, New York,1960.
7. " Alternate Disposition Strategy for Low Volume OTSG Eddy Current indications," forwarded as Attachment-1 to a Florida Power Corp. Letter dated 31 May,1995. (3F0595-05) t I

l I

7

I

! l' TABLE 1 i

EPRI IGA DATA 1

! TUBE I.D. DEPTH %TW VOLTS 5 2-51 F 53.0* 0.37 5 2-51 G 34.0* 0.12 4 52-51-2-S 33.0 0.13 90-28-2-Q 45.0 0.29 l 97-91 W 54.0 0.91 l 97-91 P 46.0* 0.77 97-91-2-0 54.0* 1.19 l 97-91 K 29.0 0.30 i 106-32-2-AK 40.0* 0.19 i 106-32-2-AY 36.0 0.21 i

i

  • Potentially Mixed Data I

TABLE 2 BWOG IGA DATA l

TUBE l.D. DEPTH % TW VOLTS 23A 55 2.7 23B 72 7.5

  • 23D 67 6.1
  • 23E 55 2.9 24A 56 3.4 248 79 9.8
  • 24D 80 6.9
  • 24E 71 7.7
  • 25A 22 0.6 25B 42 2.3 25E 41 1.1
  • High Voltage Data 8

TABLE 3

SUMMARY

OF DATA VARIABILITY EVALUATION PARENT CRYSTAL RIVER CRYSTAL RIVER CORRELATION TWO-PART TWO-PART STD ERROR BIAS STANDARD

(%THRUWALL) (%THRUWALL) DEVIATION OF RESIDUALS

(%THRUWALL)

EPRI (CR-3 Pulled Tube 6.5 -5.8 7.0 Data)

BWOG (Lab Data) 5.6 -31.4 4.8 POOLED ESTIMATE 6.2 6.3 TABLE 4 CIRCULAR WEAR DATA CR 3 PULLED TUBES TUBE VOLUME, DEPTH, VOLTS SAMPLE E-05, in %TW 136-26-15 6.8 35 1.10 72-49-13 3.5 16 0.42 109-71-14 1.7 14 0.25 109-71-14 6.6 33 0.91 68-46-14 6.8 32 0.87 i

I 9

i

. - . . . - . . . - . . _ - ._ - - ~ - _ . . - - . . .-- -. - - - - . - .-

I l

i l

1 l FIGURE 1 l

l REGRESSION OF VOLUME ON BOBBlN VOLTS 1

I l

' 6 i 4 i s

l l 3

j 6 6 s i a l 4 - ...-.. , .... __

l

~

ls/

7

/

s{ / -

,'  ;/

i , /: .

i /

r r

/

l

- o' Q

/

l

,# 0 g

/

, O i

-4.2 i ,'

y ,

g-a f

$ l 0

  • J

/

e: p

,e .

LLI

  • 3 ,

J ,

O -

> -4.4 -- -,^- ,' &

a v- ,-

,'a ,-

o

'0 s E

s e

l o

  • /  ! .,

/

/

r s'

/

0 o Ol

/ r s'

-4.6 - - - ^

-r- ,

/ i

= ./ > '

'/ s fi; . !

  • ! /f .

/ s

/ \ ,'

p 2 O / e

-4.8 -: -

I , , , I , , , I , , , , , ,

-0.6 -0.4 -0.2 0 0.2 LOG 10 VOLTS 10

_ _ _ - .~

I i

I i

1 l

1

)

FIGURE 2 l REGRESSION OF DEPTH ON VOLUME

., ...p...,,,. ,,,, ,,

2 - - -

- i- - -

i > -- --

/ t' '

i/ /! j

< / O i /

(

~ / 's U ,'

Q ' :'

0a / s l

. i a I '

IU 'O @ 00 j 1.6 --

- +- +-  ! r,o n-- a o- ^-  : --

I

} / O ./ '

/ g , ,'-

,- s'a i,c ,'

/ i '

, o a, -

7 j,g _...

. . . . .. .f. . . ...; .f,' . . . _

> i /A a  !

h ~

C !a 0 0 f a * ,

b O /

/ / j e /  :

i / a '

Q * '

i/ ,' O  :

/

Q / s C I' O.8 --

,'-~ , ' - :7!- o - - d -

i i i: i l

/ as . / aai -

i

/ / / /

/ j

.,/ / Ctf -

is A i l b / l ,

j

~ ' ~

s , $0 i /i ^

-... ...y... ..l... ..,.- '..-

. i /; /

.;/ / /

i / /  !

! /

~

/  !

/ / ~

/ '/

- g

/ / -

!/ /

Q - .. g .. .. / .

i,,,, , , , , l ,,,il .,e iI,e i i l i i , , l 9 -8 -7 -6 -5 -4 -3 LOG 10 VOLUME 11

l 1

FIGURE 3 PREDICTION BOUNDS FOR CR3 DATA 1

l l

i , , , , . ,.

, i l 150 -- -- -

F- 4 L-l BEST EST ,i.

1 ALL COMP.

r.i' -

i 120 -'"

~VOL/ DEPTH"

^

,-X + --

VOLTSNOL -

' ct

~ / l g s '

j I ,'

y 90 -+

/

p D /

[ <

z H

~ .,...

.O

~~ '

W 60 --

w . ..-

O 1

i l

30 - - -

l 0 --. .

I , , , I , , , I , , , l , , , I , ,, I O 0.2 0.4 0.6 0.8 1 l

VOLTS TWO PART CORRELATION 12

FIGURE - 4 SCHEMATIC OF MONTE CARLO I SIMULATION  ;

i SELECT VOLTAGE SAMPLE FROM T-DISTRIBUTION l l

l COMPUTE LOG 10[VOL i ] = A+B* LOG 10[ VOLTS] I L10[VOL i ] +T(8,i)*F(N, VOLTS,VOL) I k l 1

l 1

SAMPLE FROM i g- T-DISTRIBUTION x

w Z

COMPUTE LOG 10[ DEPTH] i = A+B* LOG 10[VOL]

L10[ DEPTH]i +T(115,i)*F(N,VOL, DEPTH) i l

~~

CONSTRUCT . p. . . .y! ..  !

COMPUTE AND SAVE S G }fpt .

I p .

i COMPUTE 95/95 ~ ~"T i (I C UPPER LIMIT [3iIiii!I[flE~...

13

FIGURE 5 PREDICTED CRACK DEPTH PDF @ 0.9 VOLTS 0.12 --- a _

+ f +-

g 6

) l 0.1 --'

I t \

~

l '.

j I 0.08 -

-> r *- -

~

+-

r i n

>= . > t . -

O '

', i Z -

i w .

D 0.06 --

- :r 6 e 0 e i '.

W x

w .

u i

-f \

8

\

,' \ -

0.04 - - - -

c --

r * + -

.\

. I s -

l i-

- I '

e O.02 --

-T ,

- - -- - I ~-

p 's -

's  ;

0 l -

-,..n

--  ;  ; , , c'-

l , , ,  ! , , , I , , , f , , , t ,,,I i i

i 0 40 80 120 160 200 DEPTH - %THRUWALL 1

1 i

I 14 j i

i i

4 1

4 FIGURE 6

, EPRI PULLED TUBE CORRELATION i

l

i. .!>,.  ;....,....; .. 3,,,,,,,,,,,,,, ,,,,I,,,,!

a 150 -- +  !

i

~

i 120 -- -

..t.....  :

..,... ....i... . . . _ ..

5 i  ; -- EPRIBE

-j i  ; ,

90 -.+- .

! -+- EPRI 95.,: . . . . . ._

T .

e. -

i

-+'

g e0 -.

__.. ; . ..,..+ .

- 4, _ _ 4 i

w . ,

-t'_,

i O .

+_ -+__ .j.

i i I

30 -- .._...

e i

0 -- . . . .

i,,,ri ...i...,i,,,,i,,,,i,,,,i,,,,j,,,,j,,,,j,,,,j 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 i

VOLTS 15

I 1

i FIGURE 7 BWOG LABORATORY CORRELATION i,.. i... ,,,,,i. ..,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

150 -- -L- + 4 a- -.L i

i i l 120 -- -  ! e- d E

BWOG BE

.J s l: t i

+- BWOG 9. 5 3; 90 -- -

+- e .-

3 T -

I .

F-I F-

a. 60 -~

w I

Q

-I c

l

_ _p__-4

-t

-+ --. ___p_--+- + +

t i

= = - . . . . . . . . . . ,...,

0 -- L-- - -

l - -  : l .  ;

I f f I t t I f I t t t I t l l t I t f f g g t t t [ g g g ] g g g g g g g g g 1

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 l 4

i VOLTS l l

l l

16

I 1

l 1

i l

FIGURE 8 BEST ESTIMATE COMPARISON 1

i ,,;,,,,,,,,,,,;,,,i j 100 --- ~ - x- + -+- -

90 - .- CR3 TWO PART :

+- --

~

EPRl! -

i-80 -' =-- +- - -

f~ .

\

_ BWO.G - l

. 1 70 4~

i g - -

j

_.i -

3(: 60 --

+- J- +- .

0  : i i I .

X .

=*.4

& 50 -*'- '-

. i .  ;

fQ -.. ...... ,. ?.: ..

w - l a  : 7.-  :

i 30

~

~~t -

. . 2. .

,..,meo-20 -=-

e 1

10 .

=

e w

nn 0 -. .  ; .

c-t , , ,I , , , t , , , I , , , I , , , 1 0 0.2 0.4 0.6 0.8 1 VOLTS 17

a i

1 d

j  !

i FIGURE 9 UPPER 95% PREDICTION BOUND COMPARISON t ,

1

) i i , ,

150 .--

4 '

140 F" ~i

-t -

~ CR3MO PART .

J . .

1 130 L- " --  ;- +

^

EPR.I 120 1- -i i  : BWdG  :

110

i
a 100 h- - + e 2 s a -

1  :

90

] 3; -- -'- ' ---

3  :  :

[ -

.i z 80 --- .--

+

H -

i

' g  :  :

i

, 70 -~ --

-+- i I  : .,

.i g 1  :

.i .

! n. 60 _

w .

j o  : ,

50 --

' -+- t- r. .......-.....,.

__ .. 4...

  • l""' 1

. r-  : i 4

40 - - ' ' -

4 .

30 F-- 2

! c

, 1 .

.. . . _ . . . . . ....... --4-.. .

10 F-

0 - .

=

I , , , I , , , I , , , , , , I , , ,

3 0 0.2 0.4 0.6 0.8 1 I

L 4 VOLTS i

i i

4 18

FIGURE 10 PREDICTION UMITS FOR CRYSTA'. RIVER 3

...ii...i....!, ,,,..j.... ....i....i....i...,;

n 100 _ - * - +- - r- -

4-1 .

i -

90

-- e. - ! BEST ESTIMATE' i -

.- --- l BST EST STD DEV

=

80 -

-::+-

-- ; U95 STD D'EV i

~

]Q

...q...

i s

........,c:.'",-

. , , .j

. , , a. . : ... . L

... e , ,,

.=

a'# ,o* .

a ,

<g" -

j' , ",

y 60 _-

+ ? r ;,-

+

+- -+

j .

o '

,./ ; ' ,

.J. -

0" . . ,

p 50  ?, /;/ =- L L f

g -

f -

$ 40 1 .--

g .

O  :  :

t .

30 ---

W 20 -

  • 1 i .

4 10 . - -. .

.! r .

0 -. , ,  ; i

1,,,,i,,,,1,,,,l.,,,',,,,l .

,,,l.i ,l ,,,l.,,,- ,,,,1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 i

i VOLTS i

19

, . , _ . _ ~.. . . ~ . . . . . . . . . - . . . - .

t

'l i.

4

+ FIGURE 11 i

REGRESSION OF DEPTH ON VOLUME g6 4 6 1 g6 i6 a g i6 . i ga a s i giiia g i 6 e i g

3 g_ - - ,

. .j. . ...j .. 4... .. .r * *' h-

  • y - j a
/ / /

f l/ 'f '

f .

ji '

s ,

/

1 * ~

e , e. / I/

5

~ g . %e Y ' /b' -

/

j /. ,g ie j. . f.P 6 j j'g _ . .

..s..... ./ . , , . . . ..../

/ * *y ,

i si >

, ; e >.=/ e 8

  • ,. Y is,* . - -

i s

,. / ' J

.. *,/ /,

i = i i =

,  ?

. /g / %. /

i

/  !*/ e'. . .; * /

y },Q _ . . . . . /

, Y ../...  ?. ... * . . l ...,.{ ... .

p z.

s .

,' .',/i . . ,' -

o .

4 O

e i. , '  : 1 ,'

. e ,i - ' . ,./

.i e

,, , i i

/ p ./* *

' /

J QQ _.. ..+.. ........+... ...p......

.. 7 - .,

/ / /

/  !

/

u

./

/

.> ,e .,

1

/ /

- /

- /.. >

l/ ri O.4 -. -

A

/

?: .

o /

}

~

- / /

l

/ /  ?

/ / .

p . /  ! ' 1

/  :#

,/

3 i

O --;- --

-l- - ,  ;  ;--

j i , . . , , I, ,,,t ,,,,I,,,, t,,,,  ! , , , , I 1

i

-9 -8 -7 -6 -5 -4 -3 .

1 4

l LOG 10 VOLUME I

POOLED IGA / WEAR DATA 20 1

l 1

FIGURE 12 REGRESSION OF DEPTH ON VOL UME l

..,.. ,,., , ,i,! . . . ,

i 2 --

d

--+ t -F i - - -- -l -

.I

' eI

. A: 1

/:i o!

l l!

i , :' ,i -

-+ t , ' e,j 1.6 i

- '+ r-- '

^ ;- -

_  ! ,' l ,'i i e r  : ' /

~

?i

/ l

,5/ ~

, p il s e

=

q /

i-

/ i;:

.f -

},Q _ 7... ...y. !.. , . 4. .. .. d....y . . . . _

<,' . , i  !

w ,' s o / -

0 .

fs 0I O *

,,f I ,*

o 4 $ S

/' / ,,

0.8 --

.A'  :'~ -

i s to o

" ij g

, ji l s' il

- s' j.I

,s 1!

. ,- o;t .

, , d. ' . l,' !

0.4 -- ,C t --

la -

~ $ lI is$

~

i if

--1 Ir

'I ru 2 i O n . , .

I, , , ,f, ,,,I ,,,,! ,,,,i,,,,I,,

, , I

-9 -8 -7 6 -5 -4 -3 LOG 10 VOLUME WEAR DATA 21

1 FIGURE 13 REGRESSION OF VOLUME ON VOLTS [ WEAR DAT]

i , .

l , ,

4

,....}......,

!  !/

/ '/ . \

1

' /

/3

, /

~

/ / -

l .s /

i/ / ,

A

/ s ~

si , e e *

$ /

-4.2 -+

/

l- ' -> ,'-

, / '

~

/ /

a s s / p o

/ $ ' '

/ ) ' /

. / J ' '

ul ,'

2 ,' ,' '

e -

D ~

s J ' '

i ,

Q ,' ,' /

> -4.4 - - -

- r-t

~ r i

O ,' i w

~

f a  ;- ,

i

.- o /

, / /

  • / /

. ,' / / -

/ /

/

/ '

,4 g ..

p. ......t. = l i/ ,

'l /

~

/! /

/ ' /

. / / -

/ '

/

/

j -

fe

/

'I

/

.......-../... )

4,g - . .

1 1 , , , I , , , I , , , I , , , I i

-0.61 -0.41 -0.21 -0.01 0.19

)

LOG 10 VOLTS i i

I t

1 i

22 j

I s

\

FIGURE 14 REGRESSION OF DEPTH ON VOLTS (WEAR DATA]

l i , , , , ,

) 100 "

+- r --+

~

.- l

~

90 -

80 _+-

, +

{.

70 -+

f -

g 60 -+

--a D -

[ -

50 -+

+ +  ?

e 1

. ,,-i.

E 40 ,*'; ,-

W -

, ;* 4 Q  : ,4',,

l QQ -

,. p , ..- .. ....y . . in .* * ...,n.. * ...

i ,. l ,* ,e *

. . =

,.- ,,y* ,. .

.. ~ .. -

i 20 T*... ,4'

, r-

\

- p , ,~,., , * * ; . :: -

i ,.. .- -

i

j. , ,p" i. -

.- . i. - . - - -

]

.( ,a *{' '

\

\

10 .-- ;. i

->*2--

J.- .-

- , ;o .

, ,# 5 0 l . ,

=

i

, ,, i,,,1 , , ,! , , , i , , , I , , , j 0 0.2 0.4 0.6 0.8 1 1.2 l.

l VOLTS l

1 1

l l

t 23 I r

i

i FIGURE 15

, COMPARISON OF WEAR CORRELATIONS 80 -- 4 F- i

~

~

TWO PART [BE] i i

60 -+-

. E +

e' '

TWO-PART [U95] -

/

d

. SINGLE [Ud5] ,- .

/

/

o . ,- .

T . i 40 -+- ,

,,. s -

r -

' '..4- -

N ,' .. l w -

O ,- ...

/

/

  • s 20 -
'. y -'F

i 0 . .

t , , , I , , , , , , t , , , i , , ,

0 0.2 0.4 0.6 0.8 1 I

VOLTS ,

24 l, 1

J

1 ATTACHMENT 9 ,

l

  • ANALYST AND ACQUISITION VARIABILITY DATA FROM THE SUPPLEMENTAL 10R EC I

TESTING l

l 1

1 I

I

ANALYST AND ACQUISITION VARIABILITY DATA FROM THE SUPPLEMENTAL 10R EC TESTING In order to better address the issues of acquisition (i.e., probe wear) and analyst variability for the 10R eddy current inspection, FPC decided to re- i perform bobbin coil eddy current on the first span of all tubes containing pit-like IGA indications from the 10R inspection. The results of this inspection are attached. This additional inspection was performed with a new probe in order to ensure probe wear had not adversely affected the 10R results. From this inspection, several conclusions about ECT variability, including the contribution of probe wear, were observed. These are summarized below and form the basis for the error accounted for within the proposed technical specification.

Aralvst Variability:

Unlike bobbin coil voltage measurements for ODSCC at support plates (a more l common application of a voltage-based criteria) where the indication of interest is typically a component of a larger signal including both support plate residual and flaw response, analyst variability associated with assigning a voltage measurement for the CR-3 first-span IGA indications is not an issue. The attached plot from the supplemental ECT clearly shows this to be the case. This is attributed to the fact these indications are free-forming and are not influenced by support plates or tubesheet interfaces. The measurement method (Vpp) used for these indications applies the same method of selecting the signal peaks for voltage amplitude determination. The actual signal formation is a complete differential lissajous similar to the figure 8 in which the extreme ends turn back and return to the center. This provides distinct maximum signal offsets for the measurement " ball" placement.

For purposes of the test, a new bobbin coil probe was used to acquire eddy current data for the first span of the 114 tubes identified with first-span IGA indications during 10R. Use of the new probe was intended to eliminate probe wear as an error component in the data The data was analyzed independently by both a primary and secon6ary dats analyst. The difference between the two analysts assigned voltage calls was then plotted. The data showe, th?t except for very small amplitude indications (where differences are Gill very small) there is almost no variance in the assigned voltage values given to tne indications.

Acauisition Variability In order to assess the effect of probe wear on voltage amplitude, a comparison was also performed between the re-run data and data obtained during the 10R inspection. The database was reviewed to determine at what point in probe lifetime individual tubes were acquired. A plot of the difference between

" worn" and "new" probe voltage versus time shows that probe wear, as an individual error source, is not a factor in OTSG tubing. The plot does show that there is a certain amount of voltage variation inherent to the acquisition hardware, but that this component is not time-dependent.

Error Components:

In order to determine analyst and acquisition errors for adjusting the proposed voltage-based disposition criteria, the data mentioned above (and attached) was used to develop this value. Using the entire database of 326 indications results in a combined percentage error which is quite high (30%).

The reason for this large error is the preponderance of the dataset towards small amplitude indications (.3 .4 Volts). To obtain a more meaningful error for adjusting the limit, errors were re-calculated for a range of bobbin coil voltages (Indications greater than 0.7 Volts or 50% of the proposed limit).

These indications are representative of indications at the disposition limit and eliminate the impact of minor voltage variances on percent error )

calculations biased towards very small amplitude indications. The one-sided 95% confidence interval on combined acquisition and analysis error is calculated to be 14.3%. The 1.5 volt limit is reduced by this amount fo.-

l added conservatism.

l l

1 l

1 i

1

t Comparison of Analyst Variability for 10R BVT Re-run Sample 1.60 i

'9x 1AO i

4; 1.20 1.00

. . .i e i.

s 9 d':] i

.N E#8 / '

e ..:

y.< <

g 0.60
y e OAO

. g '(

0 20 4'

..x.. +: '

eMe .

O.00 RM 0 60 0.80 1.00 1.20 1.e g Primary Analyst Voltage l+ Series 1 l 8

i First Span IGA Indication Voltage Distribution for 10R '

70 '

i t

60-  !

50-

40-i j 30- l 5  !

= i 20-

.1 .2 .21.3 .31.4 .41 .5 .51.6 Bobbin Coil Voltage

.61.7 h ~

.71.8 .81.9 .91-1.0 1.0-1.1 i

--. . ., _ . _. . - . _ _ . _ . _ . _ - _ _ . _ _ - _ . . _ _ _ _ ._ . . _ _ _ _ _ . . _ _ ~

f

+

l t

Variation in Bobbin Coil Signal with Time in Probe Lifetime i

0.30

.c i

  • ~  ; ,:  !* ! . l
  • / j , :::

020 g Ilp;  :::.::- -.;

.1 .* 4 .;..

I 0.10 ' -

fe  : :-  : .l:I .

~-

!:y:([e 4

ei j :7p- 1f -(*g::@egy' A:g);.+i:7 ...

g.:

c 0 00 '

J -- ^ ' -( - ..

'^

^

-

  • tl { :

% ^

9*1 -

4 g: .

.w r.... t...

h ..

9 . .-L 4.g -

~:;4 :

..-4..  : - =--..-..

jjg i

j 5 -0.10 l .} -l  :: 4 g -j e. , !

h .;i . . . . . . ii g :; j 5

e c -:. +. 4.:

. '*+*-

_x:. .

-; ee j

4 .. r..
a) :

i

-0.30 Time in Probe Ufe (Tubes run from Tame 0) l4 Series 1 l

An lyst-BVTCOMP 4 NM IND BOB RPC PROBE COORDIN_ ATE LTS + OLD NEW 1 NEW 2 RPC MEAS. _ DELTA DELTA DELTA

  1. IND IND RUN # ROW TUBE INCHES VOLTS VOLTS VOLTS LEN WID O-N1 O-N2 N1-N2 1 BVT NDF 1128 6 35 8.58 0.16 0.13 0.09 0.03 0.07 0.04 2 BVT NDF 1295 26 71 2.91 0.63 0.50 0.50 _

0.13 0.13 0.00 3 BVT NDf- 119 31 37 24.17 0.41 0.46 0.44 -0.05 -0.03 0.02 4 BVT VOL_ 119 31 37 22.53 0.49 0.51 0.51 0.16 0.11 -0.02 -0.02 0.00 5 BVT N_DF 118 36 39 15.30 0.22 0.21 0.26 0.01 -0.04 -0.05 6 BVT NDF 118 36 39 9.50 0.29 0.31 0.30 -0.02 -0.01 0.01 7 BVT VOL 118 36 39 6.36 0.43 0.46 0.49 0.12 0.10 -0.03 -0.06 -0.03 8 BVT NDF 19 36 40 30.38 0.37 0.33 0.32 0.04 0.05 0.01 9 BVT VOL 19 36 40 29.98 0.25 0.21 0.21 0.17 0.13 0.04 0.04 0.00 10 BVT VOL 19 36 40 28.46 0.61 0.56 0.56 0.15 0.12 0.05 0.05 0.00 11 BVT NDF 19 36 40 26.65 0.66 0.58 0.58 0.08 0.08 0.00 12 BVT VOL 19 36 40 26.17 0.51 0.55 0.55 0.15 0.14 -0.04 -0.04 0.00 13 BVT VOL 19 36 40 25.13 0.42 0.33 0.11 0.10 n no 0.09 0_00 14 NQ1 VOL 19 36 40 23.18 0.90 (q 0.91 0.10 0.10 Q-0.01 -0.01 r 0.00 3 15 NOl VOL 19 36 40 21.35 0.74 O.61 0.11 0.10 _ U T3 0.13 0.00 16 BVT VOL 19 36 40 10.46 0.53 0.44 0.56 0.11 0.10 0.09 -0.03 -0.12__

17 BVT NDF 19 36 40 9.84 0.34 0.31 0.36 0.03 -0.02 -0.05 18 BVT NDF 19 36 40 8.66 0.33 0.37 0.32 -0.04 0.01 0.05 19 BVT NDF 19 36 40 8.19 0.44 0.34 0.39 0.10 0.05 -0.05 20 NOl VOL 19 36 40 6.91 0.71 0.53 0.53 0.14 0.11 0.18 0.18 0.00 21 BVT VOL 135 36 44 7.84 0.54 0.56 0.56 0.10 0.07 -0.02 -0.02 0.00 22 BVT NDF 18 37 41 29.30 0.31 0.40 0.40 -0.09 -0.09 0.00 23 BVT NDF 18 37 41 22.54 0.50 0.42 0.42 0.08 0.08 0.00 24 BVT NDF 18 37 41 11.79 0.51 0.41 0.33 0.10 0.18 0.08 25 BVT NDF 18 37 41 10.17 0.33 0.33 0.27 0.00 0.06 (106 26 NOl VOL 18 37 41 7.09 0.75 .

0.88 0.15 0.14 -0.13 -0.13 ( 0.00 7 27 BVT VOL 746 37 93 6.36 0.68 0.69 0.43 0.24 -

-0.01 0.00 28 BVT NDF 157 41 45 13.28 0.46 0.51 0.54 -0.05 -0.08 -0.03 29 BVT NDF 157 41 45 9.15 0.30 0.33 0.33 -0.03 -0.03 0.00 30 BVT VOL 157 41 45 6.00 0.39 0.46 0.46 0.13 0.11 -0.07 -0.07 0.00 31 BVT VOL 17 41 47 14.18 0.57 0.52 0.09 0.09 0.05 0.05 0._00 32 NOI VOL 17 41 47 9.44 0.87 0 81 - 0.81 0.17 0.17 0.06 0.06 ( 0.00 3 33 BVT VOL 17 41 _ 47 9.13 0.31 0.30 0.30 0.14 0.11 _ 0.01 0.00 34 BVT NDF 815 41 72 9.37 0.13 0.11 0.02 0.

35 NQl VOLI 115 46 37 11.06 0.74 j .9 0.97 ~0.12 0.12~ -0.23 l -0.23 _

.00g Page 1 Nh Ib

a i

BVTCOMP 36 NQI VOL 115 46 37 10.70 1.0S T 0 95 ] 0.90 0.15 0.14 011 3 0.16 37 BVT VOL 115 46 37 8.74 0.55 l 0.68 0.68 0.16 0.14 -0.13 _ _.

46 8.04 0.84 0.18 0.14 0.04 0.00 38 NOI VOL 115 37 j O.80 39 NQl VOL 115 46 37 6.52 0.89 J. 0.92 0.15 0.15 . -0.03 q 40 BVT NDF 115 46 37 5.36 0.40 0.4ti 0.46 -o.uta -0.06 0.00 41 BVT NDF 182 46 41 8.57 0.48 0.35 0.32 0.13 0.16 0.03 42 BVT NDF 15 46 44 24.17 0.67 0.62 0.62 0.05 0.05 0.00 43 BVT NDF 15 46 44 15.55 0.27 0. 0.23 0.04 0.04 0.00 i 44 45 NOl BVT VOL NDF 15 15 46 46 44 44 14.39 13.09 0.72 0.53 f!

0.55 0.80 0.55 0.14 0.10 g-0.0

-D 02

-0.08

-0.02 1

@[ 0.00 46 BVT NDF 15 46 44 11.93 0.23 0.20 0.23 0.03 0.00 -0.03 47 BVT NDF 15 46 44 11.31 0.40 0.47 0.47 -0.07 -0.07 48 NQ1 VOL 15 46 44 10.12 1.06 C__0.89 3 0.89 0.13 0.11 f0.1/J 0.17 _.

49 NQ1 NDF 15 46 44 8.45 0.81 U.5 / 0.57 u.za 0.24  !

50 BVT NDF 15 46 44 7.29 0.55 0.54 0.52 0.01 0.03 0.02 51 NOl VOL 15 46 44 6.50 0.84 0 62 0.62 0.14 0.13 0.22 0.22 0.00 52 53 NOI BVT VOL VOL 15 14 46 46 44 46 5.82 15.73 0.79 0.55 0.76 0.70 0.54 0.19 0.15 0.13 0.10

@ 0 U1 0.09 0.01 g

0.00 s 54 BVT VOL 14 46 46 13.03 0.56 0.59 0.59 0.15 0.09 -0.03 -0.03 0.00 55 BVT NDF 14 46 46 12.02 0.29 0.20 0.22 0.09 0.07 -0.02 56 BVT NDF 14 46 46 11.30 0.29 0.23 0.23 0.06 0.06 0.00 l t

57 BVT VOL 14 46 46 8.45 0.56 0.67 0.67 0.15 0.14 -0.11 -0.11 0.00 58 BVT NDF 202 46 49 14.26 0.27 0.33 0.25 -0.06 0.02 0.08 59 BVT NDF 706 46 75 10.79 0.11 0.09 0.09 0.02 0.02 0.00 60 BVT NDF 706 46 75 10.54 0.17 0.11 0.10 0.06 0.07 0.01 61 BVT NDF 706 46 75 7.76 0.16 0.12 0.12 0.04 0.04 0.00

, 62 BVT NDF 208 47 34 9.98 0.36 0.31 0.28 0.05 0.08 0.03 l 63 BVT NDF 13 50 35 16.70 0.58 0.62 0.56 -0.04 0.02 0.06 64 BVT NDF 13 50 35 13.65 0.19 0.28 0.28 -0.09 -0.09 0.00 65 BVT VOL 13 50 35 12.66 0.35 0.34 0.34 0.12 0.10 0.01 0.01 0.00 66 BVT NDF 13 50 35 12.15 0.38 0.44 0.44 -0.06 -0.06 0.00 67 BVT NDF 13 50 35 10.99 0.57 0.45 0.45 0.12 0.12 0.00 68 BVT NDF 13 50 35 10.51 0.29 0.27 0.28 0.02 0.01 -0.01 69 BVT VOL 13 50 35 9.55 0.32 0 30 0.30 0.14 0.10 0.02 0.02 70 NQ1 VOL 13 50 35 9.15 1.33 ( 1.06 ll 1.07 0.18 0.18 0.27 0.26 1 -0.01 2 71 BVT NDF 244 51 34 8.03 0.30 0.32 0.33 -

-0.03 -0.01 72 BVT VOL 244 51 34 5.49 0.54 0.56 0.56 0.14 0.10 -0.02 -0.02 0.00 Page 2

a BVTCOMP 73 BVT NDF 245 51 35 8.24 0.33 0.32 0.32 0.01 0.01 0.00 74 BVT NDF 252 51 42 16.38 0.27 0.20 0.16 0.07 0.11 0.04 75 BVT NDF 252 51 42 7.93 0.47 0.54 0.54 -0.07 -0.07 0.00 76 BVT NDF 257 51 47 9.48 0.16 0.21 0.21 -0.05 -0.05 0.00 77 BVT NDF 10 51 48 12.07 0.41 0.45 0.45 -0.04 -0.04 0.00 78 BVT NDF 10 51 48 10.98 0.59 0.47 0.47 0.12 0.12 0.00 79 NOI NDF 10 51 48 9.22 0.75 0.61 0.61 0.14 0.14 0.00 80 BVT NDF 10 51 48 7.98 0.43 0.40 0.40 0.03 0.03 0.00 81 BVT NDF 10 51 48 7.26 0.29 0 33 0.33 .04 -0.04 0.00 82 NQI VOL 10 51 48 6.72 0.86 QO.86 0.86 0.13 0.11 0.00 CO.00Q 83 BVT NDF 10 51 48 6.25 0.31 U 24 0.24 0.07 0 07 0.00 84 BVT VOL 11 51 49 16.41 0.29 0.26 0.26 0.10 0.09 0.03 0.03 0.00 85 BVT VOL 11 51 49 14.45 0.61 0.57 0.57 0.16 0.11 0.04 0.04 0.00 86 BVT NDF 11 51 49 12.29 0.36 0.31 0.28 0.05 0.08 0.03 87 BVT NDF 11 51 49 11.65 0.46 0.45 0.45 0.01 0.01 0.00 88 BVT VOL 11 51 49 11.12 0.43 0.44 0.43 0.12 0.11 -0.01 0.00 0.01 89 BVT NDF 11 51 49 7.64 0.58 0.47 0.42 0.11 0.16 0.05 90 91 NOl BVT VOL NDF 11 264 51 51 49 55 7.36 7.67 0.85 0.33 M.753 0.37 0.75 0.37 0.16 0.15 Q.10

-0 U4 0.10

-0.04 U.00 V UD 92 BVT NDF 969 51 65 8.07 0.25 0.21 0.21 0.04 0.04 0.00 93 BVT NDF 959 51 79 13.65 0.44 0.43 0.43 0.01 0.01 0.00 94 BVT NDF 959 51 79 9.93 0.23 0.38 0.38 -0.15 -0.15 0.00 95 BVT VOL 654 51 80 8.68 0.29 0.23 0.23 0.12 0.11 0.06 0.06 0.00 96 BVT NDF 299 56 28 7.26 0.17 0.22 0.22 -0.05 -0.05 0.00 97 BVT NDF 198 56 31 7.72 0.20 0.21 0.21 -0.01 -0.01 0.00 98 BVT VOL 297 56 32 12.06 0.35 0.45 0.45 0.15 0.13 -0.10 -0.10 0.00 99 BVT VOL 297 56 32 8.56 0.59 0.56 0.56 0.15 0.13 0.03 0.03 0.00 100 BVT NDF 297 56 32 7.76 0.28 0.33 0.36 -0.05 -0.08 -0.03 101 BVT NDF 196 56 35 8.40 0.46 0.41 0.41 0.05 0.05 0.00 102 BVT NDF 295 56 42 11.19 0.59 0.61 0.61 -0.02 -0.02 0.00 103 BVT NDF 9 56 44 12.38 0.63 0.59 0.56 4 0.07 0.03 104 BVT NDF 9 56 44 11.20 0.69 .7 0.71 -0.09 -0.02 105 BVT NDF 9 56 44 9.77 0.69 f 1 0.71 C -0 023 -0.02 _

106 BVT NDF 9 56 44 8.95 0.44 0 54 0.54 -0.10 -0.10 107 NQI VOL 9 56 44 8.42 0.93 ( 0.85 3 0.85 0.17 0.16 [ 0.08 R00) 108 BVT NDF 9 56 44 7.55 0.64 0.45 0.48 0.16 0.16 0.00 109 NOl VOL 9 56 44 6.62- 0.86 0.68 0.68 0.15 0.14 0.18 0.18 0.00 Page 3

BVTCOMP 110 111 NQI BVT VOL NDF 9

287 56 56 44 49 6.03 9.41 0.78 0.37

( 0.873 0.39 0.72 0.39 0.20 0.13 I-000 3

-0.02 0.06

-0.02 h 0.00 112 BVT NDF 8 56 50 15.10 0.43 0.49 0.48 -0.06 -0.05 0.01 113 BVT NDF 8 56 50 13.93 0.39 0.23 0.23 0.16 0.16 0.00 114 BVT NDF 8 56 50 13.39 0.30 0.29 0.28 0.01 0.02 0 01 115 NQI VOL 8 56 50 12.14 0.83 M 0.71 0.14 0.13 U.1 0.12 g.0_

116 BVT VOL 8 56 50 10.57 0.50 0.65 0.65 0.12 0.12 -

-0.15 0 00 117 BVT VOL 8 56 50 9.70 0.33 0.46 0.46 0.14 0.11 -0.13 -0.13 0.00 118 BVT VOL 8 56 50 9.48 0.26 0.31 0.32 0.19 0.14 -0.05 -0.06 -0.01 119 NOl VOL 8 56 50 7.89 0.72 0.60 0.60 0.17 0.15 0.12 0.12 0.00 120 BVT VOL 8 56 50 6.18 0.45 0.56 0.56 0.20 0.17 -0.11 -0.11 0.00 121 BVT VOL 285 56 51 13.79 0.28 0.33 0.33 0.16 0.12 -0.05 -0.05 0.00 122 BVT NDF 285 56 51 12.64 0.57 0.60 0.60 -0.03 -0.03 0.00 123 BVT VOL 285 56 51 10.45 0.46 0.48 0.48 0.17 0.13 -0.02 -0.02 0.00 124 BVT VOL 285 56 51 8.55 0.21 022 0.21 0.18 0.17 -0.01 0.00 0.01 125 NOI VOL 285 56 51 8.14 0.74 S.753 0.75 0.20 0.16 f-0.013 -0.01 Q0.0 126 BVT NDF 285 56 51 7.61 0.36 0.51 0.51 -0.15 -0.15 0 00 _

127 BVT NDF 285 56 51 5.54 0.25 0.31 0.30 -0.06 -0.05 0.01 128 BVT VOL 283 56 53 11.18 0.42 0.44 0.40 0.12 0.11 -0.02 0.02 0.04 129 BVT NDF 283 56 53 5.27 0.46 0.39 0.39 0.07 0.07 0.00 130 BVT VOL 939 56 82 13.94 0.26 0.29 0.31 0.10 0.10 -0.03 -0.05 -0.02 131 BVT VOL 939 56 82 7.07 0.48 0.63 0.63 0.13 0.12 -0.15 -0.15 0.00 132 BVT NDF 422 57 52 8.50 0.37 0.33 0.34 0.04 0.03 133 NQI VOL 422 57 52 7.27 0.73 CD.773 0.77 0.15 0.11 -0. -0.04 134 BVT NDF 422 57 52 6.67 0.15 0.36 0.36 -

1 -0.21 135 BVT NDF 422 57 52 5.15 0.41 0.33 0.33 0.08 0.08 0.00 136 BVT NDF 7 58 38 16.52 0.34 0.31 0.31 0.03 0.03 0.00 137' NQI VOL 7 58 38 14.78 0.70 0.58 0.58 0.11 0.11 0.12 0.12 0.00 138 .3BVT NDF 7 58 38 13.38 0.53 0.46 0.46 0.07 0.07 0 00 139 NOI VOL 7 58 38 12.35 1.21 C.08 7 1.08 0.18 0.14 MF 0.13 rn nna 140 BVT NDF 7 58 38 11.17 0.60 v.ou 0.60 u.uu 0.00 0.00 141 NQI VOL 7 58 38 10.02 0.85 0.72 0.15 0.13 0.13 0.13 0.00 142 NQI VOL 7 58 38 9.49 1.35 12 > '

1.23 0.17 0.15 Fn 193 0.12 8%

143 ODI VOL 7 58 38 7.42 1.67 C 1.56 j 1.56 0.17 0.15 E O 11 J 0.11 0C: _

144 BVT NDF 7 58 38 5.68 0.64 u.sv 0.59 0.05 0.05 145 BVT NDF 421 59 39 15.80 0.29 0.34 0.42 -0.05 -0.13 -0.08 146 BVT VOL 421 59 39 12.76 0.48 0.68 0.68 0.11 0.10 __

-0.20 -0.20 0.00 Page 4

__. __ _____ . ______________ -_______ __ __ ____ __. _ ~

- i BVTCOMP 147 BVT VOL 421 59 39 11.29 0.50 0.54 0.54 0.14 0.10 -0.04 -0.04 0.00 148 BVT NDF 327 61 25 6.85 0.34 0.39 0.39 -0.05 -0.05 0.00 149 BVT NDF 226 61 26 15.32 0.55 0.48 0.48 0.07 0.07 0.00 150 BVT NDF 226 61 26 12.73 0.44 0.49 0.49 -0.05 -0.05 0.00 151 BVT NDF 226 61 26 8.89 0.20 0.20 0.20 0.00 0.00 0.00 152 BVT NDF 226 61 26 7.17 0.28 0.28 0.21 0.00 0.07 0.07 153 BVT NDF 329 61 29 14.30 0.22 0.23 0.23 -0.01 -0.01 0.00 154 BVT NDF 329 61 29 12.09 0.23 0.24 0.24 -0.01 -0.01 0.00 155 BVT VOL 329 61 29 10.52 0.38 0.56 0.56 0.13 0.12 -0.18 -0.18 0.00 156 BVT NDF 329 61 29 7.49 0.28 0.31 0.31 -0.03 -0.03 0.00 157 BVT NDF 232 61 38 9.38 0.44 0.52 0.54 -0.08 -0.10 -0.02 158 BVT VOL 340 61 48 10.80 0.58 0.51 0.51 0.13 0.12 0.07 0.07 0.00 159 BVT VOL 340 61 48 9.14 0.57 0.64 0.61 0.13 0.11 -0.07 -0.04 0.03 160 BVT VOL 340 61 48 6.44 0.75 0.61 0.61 0.12 0.11 0.14 0.14 0.00 161 BVT NDF 585 61 82 8.34 0.38 0.36 0.36 0.02 0.02 0.00 162 BVT NDF 420 65 27 11.72 0.34 0.31 0.31 0.03 0.03 0.00 163 BVT NDF 420 65 27 10.34 0.32 0.36 0.36 -0.04 -0.04 0.00 164 BVT NDF 109 65 28 14.26 0.34 0.43 0.43 -0.09 -0.09 0.00 165 BVT NDF 109 65 28 12.48 0.35 0.32 0.32 0.03 0.03 0.00 166 BVT NDF 109 65 28 11.54 0.44 0.51 0.51 -0. 7 -0.07 0.00 167 NOl VOL 109 65 28 10.33 0.74 6 53 0.83 0.12 0.11 -0.11 -0.09 @0.*

168 BVT VOL 109 65 28 9.41 0.32 0.35 0.33 0.17 0.16 -0.03 -0.01 0 02 _

169 BVT VOL 109 65 28 8.64 0.56 0.67 0.67 0.15 0.15 -0.11 -0.11 0.00 170 BVT NDF 109 65 28 8.15 0.24 0.32 0.32 -0.08 -0.08 0.00 171 BVT VOL 109 65 28 6.86 0.27 0.23 0.23 0.15 0.14 0_.04 0.04 0.00 172 173 BVT BVT NDF NDF 109 109 65 66 28 28 6.46 15.20 0.55 0.47

@.7 0.51 0.71 0.51 D.16_]

-0.04

-0.16

-0.04 D.00A D.00 174 BVT NDF 109 66 28 12.39 0.26 0.29 0.29 -0.03 -0.03 0.00 175 176 NQI BVT VOL NDF 109 109 66 66 28 28 8.73 7.59 0.79 0.48

@ 0.37 0.82 0.37 0.15 0.05 ~C-0.033 0.11

-0.03 0.11 D.00 3 0.00 177 BVT NDF 109 66 28 6.33 0.24 0.21 0.21 0.03 0.03 0.00 178 BVT NDF 318 66 36 10.29 0.33 0.38 0.38 -0.05 -0.05 0.00 179 BVT NDF 259 66 52 14.30 0.28 0.31 0.31 -0.03 -0.03 0.00 180 BVT NDF 285 73 39 14.28 0.39 0.43 0.47 -0.04 -0.08 -0.04 181 BVT NDF 758 81 94 17.52 0.33 0 50 0.50 -0.17 -0.17 182 BVT VOL 457 81 96 12.26 0.65 @0.42 0.72 0.12 0.10 N -0.07 /) on {

183 BVT VOL 466 81 98 11.74 0.41 0.44 0.13 0.12 -0.01 -0.03 -0.02 Page 5

BVTCOMP 184 BVT NDF 463 81 104 8.41 0.18 0.19 0.19 -0.01 -0.01 0.00 185 BVT VOL 448 82 94 12.02 0.22 0.44 0.44 0.11 0.09 -0.22 -0.22 0.00 186 BVT NDF 448 82 94 7.36 0.37 0.24 0.24 0.13 0.13 0.00 187 BVT NDF 737 82 95 13.59 0.29 0.29 0.29 0.00 0.00 0.00 188 BVT NDF 737 82 95 11.05 0.20 0.20 0.20 0.00 0.00 0.00 189 BVT NDF 737 82 95 10.16 0.15 0.17 0.17 -

-0.02 0.00 190 BVT VOL 737 82 95 7.28 0.59 CO.70 J 0.70 0.12 0.10 0.11 -0.11 .00 ~

191 BVT NDF 458 '35 98 9.65 0.30 0.40 0.40 -

-0.10 192 BVT NDF 732 85 99 13.13 0.19 0.26 -0.07 -0.07 193 BVT VOL 732 85 99 10.86 0.46 0.71 0.71 0.13 0.11 M -0.25 0.

194 BVT NDF 732 85 99 9.83 0.34 0.34 0.34 0.00 0.00 0.00 _

195 BVT VOL 732 85 99 7.01 0.33 0.43 0.43 0.11 0.09 ~ -0.10 -0.10 0.00 196 BVT VOL 378 86 24 12.77 0.42 0.37 0.37 0.14 0.12 0.05 0.05 0.00 197 BVT NDF 375 86 30 7.48 0.37 0.45 0.45 -0.08 -0.08 0.00 198 BVT NDF 373 86 32 10.96 0.45 0.36 0.36 0.09 0.09 0.00 199 BVT VOL 373 86 32 10.24 0.51 0.59 0.59 0.16 0.13 -0.08 -0.08 0.00 200 BVT NDF 25 86 35 13.81 0.22 0.32 0.32 -0.10 -0.10 0.00 201 BVT NDF 25 86 35 13.43 0.53 0.56 0.56 -0.03 -0.03 0.00 202 BVT NDF 25 86 35 12.15 0.42 0.42 0.42 0.00 0.00 0.00 203 BVT NDF 436 86 9A 16.90 0.26 0.22 0.22 0.04 0.04 0.00 204 BVT NDF 436 86 94 14.96 0.47 0.49 0.49 -0.02 -0.02 0.00 205 BVT NDF 436 86 94 14.60 0.28 0.21 0.25 0.07 0.03 -0.04 206 BVT NDF 43S 86 94 12.12 0.28 0.49 0.49 -0.21 -0.21 0.00 207 BVT NDF 436 86 94 8.83 0.56 0.35 0.35 0.21 0.21 0.00 208 BVT VOL 436 86 94 7.84 0.64 0.69 0.68 0.12 0.11 -0.05 -0.04 0.01 209 BVT VOL 732 86 99 9.27 0.28 0.45 0.45 0.11 0.11 -0.17 -0.17 0.00 210 BVT NDF 57 91 23 28.17 0.39 0.37 0.37 0.02 0.02 0.00 211 BVT NDF 57 91 23 27.59 0.39 0.52 0.52 -0.13 -0.13 0.00 212 BVT NDF 57 91 23 14.98 0.36 i 0.33 0.33 0.03 0.03 0.00 213 BVT NDF 57 91 23 12.14 0.21 l 0.23 0.23 -0.02 -0.02 0.00 214 BVT VOL 57 91 23 10.82 0.39 0.39 0.39 0.13 0.09 0.00 0.00 0.00 215 BVT VOL 57 91 23 9.56 0.45 0.47 0.49 0.13 0.12 -0.02 -0.04 -0.02 216 BVT NDF 66 91 37 12.11 0.30 0.26 0.26 0.04 0.04 0.00 217 BVT VOL 66 91 37 10.53 0.52 0.60 0.59 0.18 0.11 -0.08 -0.07 0.01 218 BVT VOL 415 91 43 5.83 0.28 0.36 0.36 0.12 0.11 -0.08 -0.08 0.00 _

219 BVT NDF 404 91 93 9.36 0.23 0.26 0.21 -0.03 0.02 0.05 220 BVT NDF 260 91 97 13.27 0.20 0.27 0.27 -0.07 -0.07 0.00 Page 6

_______-_____-__n_______________- _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ .

BVTCOMP 221 BVT VOL 260 91 97 9.95 0.40 0.42 0.42 0.08 0.07 -0.02 -0.02 0.00 222 BVT VOL 101 96 28 7.66 0.47 0.47 0.47 0.12 0.10 0.00 0.00 0.00 223 NOl VOL 135 96 29 26.57 0.77 0.68 0.68 0.10 0.08 0.09 0.09 0.00 224 BVT NDF 135 96 29 13.32 0.21 0.27 0.27 -0.06 -0.06 0.00 225 BVT NDF 135 96 29 11.36 0.35 0.38 0.34 -0.03 0.01 0.04 226 BVT NDF 135 96 29 9.93 0.28 0.26 0.26 0.02 0.02 0.00 227 BVT NDF 135 96 29 7.55 0.30 0.36 0.36 -0.06 -0.06 0.00 228 BVT NDF 135 96 29 6.84 0.29 0.32 0.32 -0.03 -0.03 0.00 229 BVT VOL 5 96 30 11.97 0.36 0.43 0.43 0.12 0.08 -0.07 -0.07 0.00 230 BVT VOL 5 96 30 8.12 0.53 0.53 0.53 0.10 0.08 0.00 0.00 0.00 231 BVT VOL 5 96 30 7.66 0.23 0.31 0.31 0.13 0.11 -0.08 -0.08 0.00 232 BVT VOL 141 96 39 16.25 0.26 0.27 0.27 0.14 0.10 -0.01 -0.01 0.00 233 BVT VOL 141 96 39 14.83 0.41 0.39 0.39 0.13 0.11 0.02 0.02 0.00 234 BVT VOL 141 96 39 7.67 0.29 0.24 0.24 0.11 0.09 0.05 0.05 0.00 235 BVT NDF 11 96 40 13.18 0.23 0.20 0.20 0.03 0.03 0.00 236 BVT NDF 11 96 40 10.22 0.25 0.40 0.40 -0.15 -0.15 0.00 237 BVT NDF 142 96 41 11.94 0.52 0.47 0.48 0.05 0.04 -0.01 238 BVT NDF 143 96 43 13.09 0.31 0.33 0.31 -0.02 0.00 0.02

'E39 BVT NDF 13 96 44 8.85 0.23 0.21 0.21 0.02 0.02 0.00 240 BVT NDF 13 96 44 6.52 0.27 0.22 0.22 0.05 0.05 0.00 241 BVT NDF 14 96 45 12.10 0.37 0.25 0.25 _

0.12 0.12 0.00 242 BVT VOL 144 96 47 14.35 0.31 0.28 0.28 0.12 0.12 0.03 0.03 0.00 243 BVT NDF 79 101 31 30.15 0.32 0.38 0.37 -0.06 -0.05 0.01 244 BVT NDF 79 101 31 28.19 0.51 0.51 0.51 0.00 0.00 0.00 245 BVT VOL 79 101 31 26.04 0.46 0.51 0.51 0.13 0.11 -0.05 -0.05 0.00 246 BVT NDF 79 101 31 14.81 0.44 0.33 0.40 0.11 0.04 -0.07 247 BVT NDF 79 101 31 13.58 0.45 0.44 0.44 0.01 0.01 0.00 N

~

248 NQI VOL 79 101 31 12.46 0.78 (D 82) 0.82 0.13 -0.11 -

-0.04 249 NOl VOL 79 101 31 11.98 0.75 CO.803 0.80 0.13 0.11 -0.0 -0.05 C 0 00) 250 BVT VOL 79 101 31 11.37 0.54 0.59 0.69 0.14 0.12 -0.15 -0.15 0.00 251 BVT VOL 79 101 31 9.74 0.44 0.56 0.56 0.12 0.11 -0.12 -0.12 0.00 252 BVT VOL 79 101 31 8.09 0.56 0.66 0.66 0.12 0.12 -0.10 -0.10 0.00 253 BVT NDF 323 101 32 13.70 0.50 0.49 0.49 0.01 0.01 0.00 254 BVT VOL 479 101 37 18.25 0.36 0.45 0.45 0.11 0.09_ -0.09 -0.09 0.00 255 NOl VOL 479 101 37 17.59 0.79 0.56 0.56 0.11 _ 0.10 0.23 0.23 0.00 256 BVT VOL 479 101 37 11.47 0.54 0.59 0.55 0.11 0.09 -0.05 -0.01 0.04 257 BVT VOL 84 101 41 16.27' l 0.43 0.41 0.41 0.19 0.18 0.02 0.02 0.00 Page 7

BVTCOMP m A n 258 NOI VOL 84 101 41 15.10 0.88 1.06 .

1.06 0.13 0.11 _ .

-0.18 -0.18 0.00 259 BVT NDF 84 101 41 11.96 0.48 0.52 -

-0.04 260 BVT NDF 328 101 42 17.37 0.21 0.16 0.16 _

0.05 0.05 0.00 261 BVT VOL 323 101 42 6.73 0.37 0.24 0.24 0.10 0.09 0.13 0.13 0.00 262 BVT NDF 85 101 43 9.31 0.38 0.27 0.28 0.11 0.10 -0.01 263 BVT VOL 331 101 48 11.42 0.26 0.25 0.25 0.10 0.09 0.01 0.01 0.00 264 BVT NDF 619 101 91 27.03 0.20 0.23 0.23 -0.03 -0.03 0.00 265 BVT NDF 619 101 91 10.16 0.46 0.27 0.22 0.19 0.24 0.05 266 NOl VOL 619 101 91 8.96 0.89 g 0.93 0.07 0.10 -

-0.04 D.003 267 BVT NDF 619 101 91 6.23 0.35 0.33 0.33 0.02 u.uu 268 BVT NDF 621 101 93 13.93 0.34 0.30 0.30 0.04 0.04 0.00 269 BVT NDF 621 101 93 12.49 0.30 0.27 0.29 0.03 0.01 -0.02 270 BVT NDF 621 101 93 11.18 0.36 0.35 0.35 0.01 0.01 0.00 271 BVT NDF 621 101 93 8.46 0.36 0.29 0.28 0.07 0.08 0.01 272 BVT NDF 621 101 93 8.06 0.35 0.28 0.28 0.07 0.07 0.00 273 NOl VOL 621 101 93 7.49 0.80 0.8 0.83 0.13 0.10 6 0.033 -0.03 fDIO 274 BVT NDF 621 101 93 6.67 0.67 0 0.70 0 -0.03 3 -0.03 L 0.00.3 275 NOI VOL 621 101 93 5.31 0.72 1  : u.id 0.72 0.14 0.08 Q0.0 0.00 [ 0.00 ]

276 BVT NDF 622 101 98 13.21 0.26 u.z4 0.23 0 02 0.03 0.01 277 BVT NDF 289 106 33 12.72 0.47 0.54 0.53 -0.07 -0.06 0.01 278 BVT VOL 288 106 35 11.35 0.27 0.31 0.31 0.11 0.11 -0.04 -0.04 0.00 279 BVT VOL 288 106 35 10.79 0.34 0.37 0.37 0.11 0.10 -0.03 -0.03 0.00 280 BVT VOL 288 106 35 8.81 0.40 0.35 0.35 0.13 0.10 _ 0.05 0.05 0.00 281 BVT VOL 288 106 35 8.58 0.32 0.40 0.36 0.09 0.08 -0.08 -0.04 0.04 282 BVT VOL 288 106 35 6.44 0.41 0.38 0.38 0.13 0.10 0.03 0.03 0.00 283 BVT VOL 39 106 42 16.50 0.47 0.52 0.52 0.12 0.11 -0.05 -0.05 0.00 284 BVT NDF 39 106 42 14.93 0.18 0.20 0.20 -0.02 -0.02 0.00 285 BVT NDF 281 106 47 14.96 0.30 0.28 0.28 0.02 0.02 0.00 286 BVT NDF 281 106 47 14.31 0.48 0.45 0.45 0.03 0.03 0.00 287 BVT VOL 281 106 47 9.64 0.54 0.56 0.56 0.18 0.16 -0.02 -0.02 0.00 288 BVT NDF 34 106 50 13.67 0.34 0.35 0.35 -0.01 -0.01 0.00 289 BVT NDF 563 106 74 9.25 0.24 0.22 0.22 0.02 0.02 0.00 290 BVT NDF 316 106 87 16.22 0.22 0.23 0.23 -0.01 -0.01 0.00 291 BVT VOL 316 106 87 6.11 0.39 0.53 0.53 0.13 0 11 -0.14 -0.14 0.00 292 BVT VOL 257 111 33 9.24 0.38 0.49 0.52 0.13 _ 0.11 -0.11 -0.14 -0.03 BVT NDF 262 111 41 14.93 0.21 0.24 0.23 -0.03 -0.02 0.01

_293 294 BVT VOL 262 111 41 13.98 0.30 0.32 0.32 0.13 0.11 -0.02 -0.02 0.00 Page 8

o BVTCOMP 295 BVT NDF 262 111 41 12.40 0.22 0.18 0.18 0.04 0.04 0.00 296 BVT VOL 262 111 41 10.57 0.48 0.44 0.43 0.12 0.10 0.04 0.05 0.01 297 BVT VOL 262 111 41 10.34 0.31 0.36 0.36 0.11 0.09 -0.05 -0.05 0.00 298 BVT VOL 262 111 41 8.92 0.68 0.68 0.74 0.16 0.15 0.00 -0.06 -0.06 299 BVT VOL 262 111 41 8.28 0.43 0.41 0.41 0.09 0.08' O.02 0.02 0.00 300 BVT NDF 262 111 41 7.32 0.17 0.22 0.22 -0.05 -0.05 0.00 301 BVT NDF 262 111 41 6.68 0.32 0.30 0.30 0.02 0.02 0.00 302 BVT NDF 263 111 43 26.38 0.41 0.22 0.22 0.19 0.19 0.00 303 BVT NDF 263 111 43 25.08 0.21 0.19 0.19 0.02 0.02 0.00

, 304 BVT NDF 264 111 45 16.42 0.32 0.28 0.28 0.04 0.04 0.00 305 BVT NDF 265 111 47 8.98 0.29 0.34 0.34 -0.05 -0.05 0.00 306 BVT NDF 226 113 48 24.71 0.31 0.29 0.25 0.02 0.06 0.04

-307 BVT NDF 226 113 48 16.66 0.53 0.47 0.47 0.06 0.06 0.00  !

308 BVT VOL 226 113 48 15.31 0.39 0.36 0.36 0.11 0.11 0.03 0.03 0.00 309 BVT NDF 226- 113 48 15.07 0.57 0.63 0.63 -0.06 -0.06 0.00 310 BVT VOL 226 113 48 14.32 0.36 0.35 0.35 0.10 0.08 0.01 0.01 0.00 311 BVT VOL 226 113 48 13.71 0.57 0.60 0.59 0.12 0.12 -0.03 -0.02 0.01 312 BVT NDF 226 113 48 11.53 0.25 0.31 0.31 -0.06 -0.06 0.00 313 BVT NDF 226 113 48 10.50 0.32 0.38 0.38 -0.06 -0.06 0.00 314 BVT NDF 226 113 48 9.46 0.34 0.21 0.21 0.13 0.13 0.00 315 BVT NDF 226 113 48 7.92 0.21 0.32 0.32 -0.11 -0.11 0.00

, 316 BVT NDF 209 116 41 8.75 0.27 0.26 0.26 0.01 0.01 0.00 l 317 BVT VOL 210 116 42 23.21 0.65 0.56 0.56 0.11 0.10 0.09 0.09 0.00 318 BVT NDF 210 116 42 12.30 0.26 0.22 0.22 0.04 0.04 0.00 319 BVT NDF 210 116 42 7.70 0.27 0.28 0.28 -0.01 -0.01 0.00 320 BVT NDF 210 116 42 5.13 0.21 0.22 0.22 -0.01 -0.01 0.00 321 BVT NDF 211 116 43 9.11 0.25 0.18 0.18 0.07 0.07 0.00 322 BVT NDF 211 116 43 6.28 0.32 0.28 0.28 0.04 0.04 0.00

, 323 BVT NDF 211 116 43 5.82 0.16 0.17 0.17 -0.01 -0.01 0.00 ,

324 BVT NDF 212 116 44 16.18 0.41 0.37 0.38 0.04 0.03 -0.01 325 BVT NDF 212 116 44 12.31 0.51 0.44 0.44 0.07 0.07 0.00 i 326 BVT NDF 101 129 41 21.25 0.30 0.27 0.27 0.03 0.03 0.00 AVERAGE 0.441 0.443 0.441 0.14 0.12 -0.002 0.000 0.002  !

STD DEV 0.178 0.176 0.181 0.02 0.02 0.083 0.084 0.020  ;

I F INDICATIONS 326 r

r Page 9  ;

I

ERRORSG.XLS -

l l l l I Dataset Used in Determination of Bobbin Coil Voltage Error Analysis __

d Bobbin Coil Voltage Voltage Difference Voltage Difference New Pri Analyst l Exam Volt vs. New Volt l lPri vs. Sec Analyst l TRUTH ACQUISITION ANALYSIS j 0.7 0.11 0 0.7 0.03 0 0.71 0.02 0 0.71 0.12 0 O.71 0.16 0 0.71 0.25 0 0.72 0.13 0 0.72 0.07 0 0.72 0 0 0.75 0.1 -0 0.75 0.01 0 0.76 0.03 0.06 0.77 0.04 0 0.78 0.09 0.07 0.8 0.04 0 j 0.8 0.08 0 l 0.8 0.05 0 0.81 0.06 0 0.82 0.03 0 l 0.82 0.04 0 0.83 0.03 0 0.85 0.08 0 0.85 0.11 0.02 0.86 0 0 0.87 0.09 0.15 0.88 0.13 0 O.89 0.17 0 0.91 0.01 0 0.92 0.03 0 0.93 0.04 0 0.95 0.11 0.05 0.97 0.23 0 1.00 0.27 0.01 1.06 0.18 0 1.08 0.13 0 1.23 0.12 0 1.56 0.11 0 J

Page 1

i

. l ERRORSG.XLS MEAN OF BOBBIN VOLTAGE: l 0.858378 STANDARD DEVIATION OF ACQUISITION: 0.068774 l STANDARD DEVIATION OF ANALYSIS: 0.029106 I l l PERCENT ERROR DUE TO ACQUISITION: 8.012099 ,

PERCENT ERROR DUE TO ANALYSIS: 3.390788 l l l l ROOT MEAN SUM OF SQUARES OF ERRORS: 8.7 I I l ONE SIDED 95% CONFIDENCE LEVEL: 14.3115 l l l l ADJUSTED PROPOSED BOBBIN COIL VOLTAGE LIMIT: 1.285328 l l LIMIT FOR ITS:1.25 VOLTS l

l l

l I

l l

Page 2

ATTACHMENT 10

  • 10R GROWTH RATE INFORMATION i

l l

l I

ATTACHMENT 10 10R GROWTH RATE DATA The attached plots compare bobbin coil signal amplitude for a number of different situations. Figure 1 is a plot of 1994 voltage versus 1996 voltage for first-span indications inspected this outage. The plot shows the population of first span indications to be clustered around the line of zero growth, with a very slight positive bias. This bias'can be attributed to the change in inspection techniques between the two outages. The 1994 data was

, acquired with a MIZ-18A Remote Data Acquisition Unit (RDAU) at a pull speed of 24 inches per second. The 1996 data was acquired with a MIZ-30 set-up and a pull speed of 40 inches per second. Prior to this inservice inspection, FPC performed a qualification test to demonstrate the comparability of previous results with those obtained via the new technique. The test included 102 indications, with the MIZ-30 set to the MIZ-18 equivalent settings per Zetec, Inc. Three separate inspections were performed on the control set. These included a MIZ-18 setup run at 24 inches per second. Subsequently, the MIZ-30 setup was used to acquire from the same dataset, at both 24 inches per second, I and finally, at 40 inches per second. All tube runs were performed with the )

same probe, which was new at the start of the comparison. The results of the  !

comparison are provided in the attached. No significant changes in voltage, phase angle, or noise component of the signal were noted. The same positive i

)

voltage bias present in the general population is noted in the comparison of i the MIZ-30 (40 ips) to the MIZ-18 (24 ips) for the study group. This is felt  !

to be due to differences in the two techniques, based upon a comparison of the l 1996 MIZ-18 data for the 102 indications with last outages data. Thus, FPC {

concludes there was no growth of first span, pit-like IGA indications during  :

Cycle 10. l l

l l

i 1

I l

I

~

GROWTH OF INDICATIONS - FIRST SPAN  :

CRYSTAL RIVER-3 B-OTSG 03/96 RFO10 >

I 3 ----

i i

2.5 - -- -----:----------:----------..--------------------

. e

--.j--.-----.----------..---.----..3 2 --- .----- -; - -- - - -;.-- .---,

CO  : l  :

l-- l

_J .

O  :  :  :

> 1.5 - -- -- --- --

co .

cn l .

cn  :  :

  • l

- l -- --- -- ~ . - - - - - - - - . - - - - -

1 ----

%  : sf I r'  :  :

E g r- - .-. . ... . .

0.5 -- ** - ,--- i- - - - - - - .i - ------ --- i ------- ---- ;--- -- - ---

=  :  :  :

0-/- - - - - - i - - , - ---

i- -- - -i - - - - -

-i --

O 0.5 1 1.5 2 2.5 - 3 1994 VOLTS .

s

i. .

t m

i

, - . ~ .

Z l i .

O

i ,
i i (/)

j

- I .

j............ ............ ..

... ... ..j..... 1 0 r- l .

^

!.  ! ii. j v>

CL N ,

\ l*

, ~ 1 t " ~ 7 " "-

j O *c) r""."~~. ~  : \

~1 .

e T

1 g l  :

- \  ;  :  :

N_.

v- .

3 g

i  : . . -

_or.

en e .

> i i - -

l b/

<( o l  !  !  !  !  !! ....,l"3 8

F co i  :  !

i J N I  !  !

\. i! $

Og i

i 6 i

..j....... _ , 3 u

: e i y

.a

',"\L .l.

a>

C) j .

O LL i

.: I, g .

.......!. ... .i. .. ", . . ..o . _r i

@g l I... ...  :

, o O O)  : 3

: 8
  • I O

i O r)- i a a= .

j . '

p  : __ _ i  :  ; ,a I

o b o o d

m o r- e ci Q (Sdl OP l0E-Zivg) slioA ueds lsJ!d 966 L i

j

,.  ; ; i I !;t ,;;-+' )t : i ll ' i : ,;i Ill Iiii I

. , ' , c .. , .. - - ' '

l l.

I 3

N -

O S

F 5 I  :- : : ,  ;..

R 2 A 8

- - - )

S P 1 P

I M-Z _-

4

.:+.i2 28 OlM 1

C 4 Z-

- l M

E9 9

- (

- /= -

- - s G1 5t.l

- 1 o

-i

_ ,..:.n:

V A s.

- n

. a Tv -

- S p

L8 -

t-

.. -- t s

O1 i

r

+.b i

- 1F

: f5 .

VZ

- 4 l - . - . . 9 n h. .

9 NM

. - 1 g,

I 6 -

B9 -

ls 5

B9 1  :. l c.

0 O -

B 3- -

li lL_ l

'I -

- ,0 R 3 5 2 5 1 5 0

0 C

1 2 , .

3

, a-

,ot

. r,4.oeQ e .a 2,,.m g ;> ema~ ~gu. e$

ATTACHMENT 11 l

  • EPRI NDE CENTER REPORT This report contains the data utilized in the APTECH Statistical Analysis

!

  • VOLUME AND DEPTH DATA FOR INDIVIDUAL CR-3 PULLED IUBE IGA DEFECTS l

l l

l

' EPRI NDE CENTER Electnc Power Research Instdute Nondestructsve Evaluatnon Center Leadershipin Technology Transfer December 6,1993 Mr. Jeffery C. Brown B&W Nuclear Service Company Special Products & Integrated Services 155 Mill Ridpr= Road Lynchburg, VA 24502

SUBJECT:

P.O. 83-786323: Eddy Current Voltage-to-Volume Wall Loss Evaluation (13-19)

Dear Jeff:

Evaluation results of the subject work are summarized in this letter report. The main objective was to investigate the relation between eddy current signal amplitude and intergranular attack (IGA) volume wall loss. Our evaluation results were encouraging; a high degree of correlation between the eddy current signal amplitude and IGA wallloss was attained. Due to limited resources and time available, only the analyses of narrow groove (510 M/ULC/HF/NG) and conventional (510 M/ULC/HF) bobbin coil data were performed. No rotating pancake coil data was analyzed.

As indicated in my March 24,1993 letter correspondence to P. Sherburne, no correlation between the eddy current phase angle and percent wallloss was noted for the identified IGA patches. This activity, therefore, involved evaluating the signal amplitude of IGA signal to known IGA wall losses. Specifically, the vertical amplitude, VMax, of IGA signal was measured and compared with metallurgically derived percent wall losses at frequencies of 600, 400, and 200 kHz. Initial attempts to correlate the ASME based VMax amplitude to IGA wall loss was unsuccessful due mainly to larger flat-bottom hole signals of the ASME standard being compared to smaller amplitude IGA signals.

To overcome this problem, actual IGA data was used to establish the relevant VMax amplitude-to-percent wallloss curves at three different frequencies. This was accomplished by referring to the tabulated destructive analysis results of IGAs from four pulled tubes, e.g., tubes 52-51, 90-28, 97-91, and 106-32.

Corresponding VMax amplitude information was obtained from both laboratory (narrow-groove bobbin coils) and field (conventional bobbin coils) eddy current data. Care was taken to select only those isolated, and not clustered, IGAs which were detectable by eddy current. Ten isolated signals were then used to 1300 Harns Bouievard

  • Charlotte, Nortn Carolma 28262 -

Telephone: (704) 547 6100 (P.O. Box 217097, Charlotte, North Carolina 28221)

  • FAX:(704) 547 6168 t

. j l

i Mr. Jeffery C. Brown Page Two December 6,1993 establish the calibration curves using both first order and second order curve fits. Examples of established calibration curves from 600,400, and 200 kHz narrow-groove bobbin-coil data are included as Figures A1-A3 in Attachment A.

In the final analysis, more linear first order fit was selected over the second order fit to extend the calibration curve up to the 100% wall loss point. Figures ,i A4 A6 show examples of calibration curves based just on the first order curve <

l fit using the conventional bobbin coil data. For more accurate sizing, those i

calibration curves exhibiting lower, not higher, slopes are desirable. In general, the slope of the curve decreases with the higher operating frequency. This was especially true for the narrow-groove bobbin coils. With conventional bobbin t

coils, however, there were slight differences in the slope between the 600 and i 400 kHz calibration curves (see Figures A4 and A5). l The next step was to estimate the IGA depths by using the established l calibration curves. Derived estimates were then compared with the destructive l analysis results. Attachment B shows the comparative analysis results of both the narrow-groove and conventional bobbin coils. Table B1 shows 10 specific IGA points used to establish the VMax calibration curves plus 24 additional test points based on the laboratory data (narrow-groove bobbin coils). Figures 81-B3 show comparison of destructive analysis results versus eddy current estimates for 600,400, and 200 kHz. It should be noted that the 34 test points used in the linear regression analysis included the original 10 points used to establish the calibration curve. Best analysis results were obtained using the 600 kHz differential VMax amplitude curve. The following statistically derived values were obtained: correlation coefficient of 74%; RMS error of 8%; and slope of 0.83. The overall accuracy of sizing increases with higher correlation coefficient and slope values accompanied by the smaller RMS error value.

These values represent significant improvements over the phase angle analysis results, which yielded correlation coefficient of 25%, RMS error of 27%, and slope of 0.65.

To determine if comparable analysis results can be obtained from the field data, similar comparisons were made using the same data set as shown in Table B2.

Comparative results of 600,400, and 200 kHz data are graphically illustrated as Figures B4 B6, respectively. Although the analysis results of field data were slightly degraded, especially the slope value, they still represented  ;

improvements over the phase angle analysis results. Of the three frequency  :

analysis results, the 600 kHz results showed slightly better performance over -

others as shown below.

l l

l Mr. Jeffery C. Brown '

2- Page Three December 6,1993 l

1

Correlation RMS Coefficient Error Slooe 600 kHz VMax 73 % 7% 0.69 400 kHz VMax 74 % 7% 0.56 200 kHz VMax 70 % 7% 0.56 It should be noted that no IGA patches of less than 30% penetration depths will i

be reliably detected nor sized based on the currently established calibration i curves from either laboratory or field data (see calibration curves A1-A6). This basically defines the current limitation of the bobbin coil technology.

Although useful, the established calibration curves can not be used in their original forms by either DDA 4 or Eddynet analysis software. Consequently, an attempt was made to transpose the IGA curve using the readily available ASME standard readings. This attempt was made using the 400 kHz differential field data. Initially, two ASME standard readings,100% and 40% VMax readings, were used to establish a linear calibration curve. This line was then rotated and translated to mimic the originalIGA curve. These two ASME points, however, corresponded only to higher percent wall losses in the IGA curve, e.g., 99%

and 72%. Thus, to complete the lower end of the calibration curve, O voit reading was also used, which for the 400 kHz data corresponded to 32%. The above steps are tabulated and graphically shown as Table C1 and Figure C1 in Attachment C. Figure C2 shows an example of transposed IGA curve based on the derived percent wall loss points corresponding to various ASME VMax readings.

n Since calibration runs produce slightly different voltage readings, depending on the probe and ASME flaw orientations, any changes in the percent wall losses due to different VMax readings were investigated. From the four field calibration runs, the following highest and lowest VMax readings and the corresponding percent wall losses were compared with the original IGA wall

.. losses.

L ASME Min VMax Volts / Max VMax Volts / ActualIGA %

Hole Forced Percent Forced Percent Min / Max 100 3.22/99 3.38/99

' 96/99 40 2.00/74 2.11/73 72/74 20 2.44/83 2.77/87 81/87 0 0/32 0/30 32/32 i

.I e

,' I 1

Mr. Jeffery C. Brown Page Four l l

December 6,1993 1 Deviations in percent wall losses were minor as shown in Figures 03 and C4.

Consequently, any VMax readings in the smallest to largest voltage range should provide comparable analysis results as in the original IGA calibration curves. This amplitude curve can be saved as one of mixed channels. It should be noted that these readings are good for the specific probe type and the extension cable length used to acquire the field data. Any probe or extension cab!e changes may necessitate recalculation of the forced percentage points.

in summary, by using the actual IGA data points, it was possible to correlate l the VMax amplitude signals to IGA depths. In addition, the transposed IGA curves, established from the ASME readings, can easily be established as one of the analysis curves for evaluating IGA patches.

If you have any questions or require additional information, please feel free to contact us.

Sincerely,

, ,M 7

s J

Kenji Krzywosz b Manager, Heat Exchanger & Electromagnetic NDE EPRI NDE Center KK: mph Attachments cc: S. Overstreet, B&W R.-Thompson, Crystal River J. Lance, EPRI R. Stone F. Ammirato S. Hastings D. Spake G. Henry

- .a, -a- ..guu.m,e -siMos .s-m.a,, a,e-om--ana m r- --4 L "4A 3 -bs 6 A - - -=amAa-.4--.A." -+ - - ~

n a__ m._ s ,

t 9

l

{

ATTACHMENT A i

1 j i l

l l

l 1

i

'4 i

e t

I k

6

FIGURE A1 CR-3 IGA AMPLITUDE VS. VOLUME SIZING REVIEW GROUND TRUTH % VS. AMPLITUDE (VOLTS) 100 90 -

Y=26.690+32.193X

~

2 Y=24.241+44.074X-11.093X c-70 -

6 60 -

y

." 50 -

$ +

A 40 -

$ 30 ++ ,

20 -

- t 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 600kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted data points.

FIGURE A2 CR-3 IGA AMPLITUDE VS. VOLUME SIZING REVIEW GROUND TRUTH % VS. AMPLITUDE (VOLTS 1 10 0 90 -

Y=23.468+41.978X i

t 80 -

i m i 8 70 -

Er l

< 2 s:2 60 -

Y=18.003+69.318X-28.164X E

x 5C -

$ +

c 40 -

E g +

e 30 -

20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 t 400kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted dato points.

FIGURE A3 CR-3 IGA AMPLITUDE VS. VOLUME SIZING REVIEW ,

GROUND TRUTH % VS,. AMPLITUDE (VOLTS) 100 ',

90 -

Y=22.251+73.004X ,

80 -

_! 70 -

u_ .

$ 60 -

O x 50 -

2 g + Y=18.273+104.531X-53.191X ,

  1. 40 -

3 30 -

20 ,

10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 200kHz Diff. Amplitude (Vmax) ,

Curve based on 10 seleted data points.

- = - - - - - .

FIGURE A4 CR-3 IGA AMPLITUDE ANALYSIS / FIELD DATA GROUND TRUTH % VS. AMPLITUDE (VOLTS) 10 0 90 -

80 -

$7 u.

I 60 -

)g _

+ ++ , Y=33.903+18.968X sA +

+  !

40 -+ .

E  %

y 30 +  :

. f 20 -

10 O

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 600kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted dato points.

FIGURE A5 CR-3 IGA AMPLITUDE ANALYS S/ FIELD DATA '

GROUND TRUTi! % VS. AMPLITUDE : VOLTS) 10 0 90 -

80 -

=

E 70 -

6 60 -

+ + Y=31.678+20.042X 50 -

1 + + ,

- +

20 -

10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 400kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted data points.

t FIGURE A6 i CR-3 IGA AMPLITUDE ANALYSIS /F ELD DATA GROUND TRUTH % VS. AMPLITUDE : VOLTS) 100 ,

i 90 -

i 1

80 -

70 -

Y=29.925+38.864X 6 60 -

  • +

" 50 -

$ +  !

(

E 40 -

i j 30 + l 20 -

10 -

0 O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 200kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted dato points.

a., - , w a a _ _

J 4

4 4

4 a ATTACHMENT B i

i I

4 4

t 1

f 1,

i i

1 I

tr-J

)

4 h.

1

. ____ - - - - ~. - ._ - . __. - _ _ _ _ _ _ . . _ _ _ _ . _

CR-3 IGA ANAL YSIS REVIEW ist Order Curve Fit (includes 10 selecteddatapointsfrom laboratory data with a voltage of> zero.)

k 1 I l l

I TABLE B1 .

I l

l l l t 1AM*ATICW l GROUND l 600kEs DIFF l 400kEs DIFF 200kas DIFF TURE l FLANts) l LTSF

  • l TRUIT4 i VNAE i SST. % i VMAX l EST. % VNAE l EST. %

$2-51-2 0 +6.50: 34 0.41 40 0.44 42 0.22 38 l l F** +8.90 53 0.73 50 0.71 53 0.45 55 l l G** +9.16 34 0.16 32 0.22 33 0.12 31 l

[ 12/11 +10.00 42 0.63 47 0.63 50 0.40 51 i l E2/K1 +11.00 45 0.28 36 0.29 36 0.18 35 I N2/N1 +12.40 30 0.26 35 0.22 33 0.12 31 I P +13.10 33 0.18 32 0.15 30 0.09 29 -

$** +14.70 33 0.40 40 0.34 38 0.20 31 90-28-2 AD1/AD2 +16.10 37 0.22 34 0.28 35 0.16 34 AB +15.50 i 30 0.16 32 0.18 31 0.13 32 I2/X1 +14.60 43 0.61 46 0.59 48 0.33 46 V2/V1 +14.00 48 0.90 56 0.82 58 0.52 60 Q** +12.30 45 0.38 39 0.38 39 0.22 38 0/N/M +11.50 43 0.65 48 0.54 46 0.30 44 l 1/N/G +10.20 49 0.94 58 0.81 57 0.42 53 2 +7.80 50 1.40 72 1.27 77 0.66 70 C/8 +4.10 41 0.98 58 0.90 61 0.50 59 97-91 2 W** +14.10 54 0.94 57 0.79 57 0.46 56 U/7/S +11.50 46 0.62 47 0.63 50 0.45 55 P** +8.55 46l 0.63 47 0.53 46 0.32 46 0** +8.30 144 0.78 52 0.66 51 0.38 50 i K8' +6.60- 291 0.20 33 0.18 31 0.15 33 106-32-2 I2/Y/X1 +6.40 284 0.44 42 0.53 46 0.36 49 3/AA +7.00 34l C.20 33 0.22 33 0.13 32 AC1/AS +7.40 141 0.11 30 0.25 34 0.22 38 AE/AD/AC2 +7.70 24i 0.25 35 0.18 31' D .15 33

!.G2/AH +8.80 356 03 36 0.33 37 0.20 37 AJ +9.40 384 0.24 -

34 0.22 33 0.17 35 AK** +9.90' 404 0.40. 40 0.41 41 0.25 41 AP/A0 +11.20 276 0.48 42 0.46 43 0.29 43 AQ2/AC1 +11.70 351 0.301 361 0.34 38 0.22 38 AT/AU/AV +13.20 344 0.386 391 0.38 39 0.22 38 AX l +14.306 321 0.171 321 0.21 32 0.16 34 AY** l +14.60i 361 0.261 351 0.29 36 0.22 38 109 30 2 * +13.4 5 No Met Work I 0.26l 351 0.32 37 0.22 30

  • +11.03 Sol 0.651 481 0.71 53 0.45 55
  • +9.81 40l 0.20) 366 0.25 34 0.16 34
  • +9.21 No Met Work 0.29i 361 0.33 37 0.24 43
  • +8. 36 No Met Work C.20- 331 0.18 31 0.15 33
    • 6.41 No Met Work 0.22 341 0.20 32 0.15 33 41-44 2 *+21.00 No Met Work 0.77 511 0.69 52 0.44 54
  • +18.86 No Met Work 0.46 411 0.41 41 0.32 46
  • +17.39 No Met Work 0.73 50 0.67 52 0.44 54
  • +16.33 No Met Work 0.25 35 0.20 32 0.09 29
  • +14.64 No Met Work 0.26 35 0.29 36 0.18 35
  • +12.77 No Met Work 0.59 46 -

0.54 46 0.37 49

  • +11.44 No Met Work 0.40 40 0.41 41 0.29 43
  • +10.93 No Met Work 0.28 36 0.32 37 0.16 34
  • +10.50 No Met Work 0.44 41' O.40 40 0.25 41

,

  • indicates that the location is measured from the inspection eV of the lab pull.

" indicates flaws used as calibration points. Page1

FIGURE B1 CR-3 IGA AMPLITUDE ANA_YSIS/ NARROW GROOVE LAB DATA 600kHz Differential Amplitude (Vmax) 10 O <=n24s+as28x 90 r ue= = 4teex S'd " *84*

1 80=

g .

+ Std Dror = 6.7%

se b 60 ~

  1. +4+ """
    • 50 = 4 o

-@ 40= * ' *"'d " 34 p --

5 +

d) 30= +

20=

1D =

0 .....................

0 . . .10. . . .20

. . . .30

. . . .40

. . n . . . . 60

. . . . ..SO

. . . 80. . . . 70 90 10 0 Ground Truth in % Thru-Wall Includes all dato points t

9 _

FIGURE B2

~

CR-3 IGA AMPLITUDE ANALYSIS / NARROW GROOVE LAB DATA

~

400kHz Differential Amplitude (Vmax) 10 0 (=9. @ RB65X 90= r m = 42m  !

Std Du = R89%

80= ,

I Std &ror = 7.8%

b Corr Coef = 70.9%

2

~

60 .

+4 " " 8" x 50= + + ,

R $ --

E 40= ' "' " *d " 5' 5 + +

di 30 = + '

204 10 =

ou oo 0 0uouunooiou'Oo 10 2 uou'O 3 ooo ooooio 40 5u'Ou 6uou'Oiuio 70u 8 oio u'Oo 9 uo 10u,'O 0

Ground Truth in % Thru-Wall includes all dato points

~

FIGURE B3 CR-3 IGA AMPLITUDE ANALYSIS / NARROW GROOVE LAB DATA 200kHz Differential Amplitude (Vmax) 10 0 <=12.570+0.778x r ueon = 42.37x 90 3

  • *'r = n22x 802  :

Std Error = 7.7%

g  ;

!= .

f b 60 =

+5 +

"" " "8" x +# + m = an o

502 +

+

5 40 = + __

' b"'d " 34 g --

3 30= +

20=

10 0~ uno,oiou oo 20 3 oou.uioouiu'O 0uo uoiiououionniu'O 10 40 5 io.uioio.u60 n 70.u 8 u o90o'O10 0 Ground Truth in % Thru-Wall includes all dato points

r i

1 CR-3 IGA ANALYSIS REVIEW ist Order Curve Fit (includes 10 selecteddata pointsfrom originalfield data with a voltage of > :ero.)

TABLE B2 l 14cATrow I caouwo 6 600kus c1rr t 400kx c2rr i 200kzs arrr TURE FLAuts) i LTSr + l TRU n% l VMAX l EST. %I YMAr i EST. % i VIEAX l SST. 4 52*51 2 D +6.50 34 0.31 40 0.386 39 0.22 38 r** +0.90 53 0.37 41 0.50$ 42 0.35 44 Ge* +9.16 34 0.12 36 0.19 '

35 0.11 34 l 12/11 +10.00 42 0.30 40 0.41 41 0.31 42 l K2 /K1 +11.00 45 0.31 40 1 0.31 38 0.18 37 l K2/W1 +12.40 30 0.16 37 0.21f 36 0.10 34 F +13.10 33 0.12 36 0.13 34 0.07 33

$** +14.10 33 0.13 36 0.19 35 0.15 34 90 28 2 AD1/AD2 +16.10 37 0.20 30 0.25l 37 0.18 31 Aa +15.50 30 0.04 35 0.15l 35 0.15 36 x2/K1 +14.60 43 0.40 41 0.57 43 0.32 42 V2/V1 +14.00 48 0.14 44 0.91 50 0.52 50 Q*+ *12.30 45 0.29 39 0.41 40 0.24 39 O/N/M *11.50 43 0.44 42 0.47 41 0.23 39 1/H/G +10.20 49 0.66 46 0.79 48 0.42 46 E +7.40 50 1.09 55! 1.31 58 0.70 57 C/8 +6.30 41 0.75 486 0.87i 49 0.53 51 97-91-2 We* +14.10 54 0.91 51 1.04 $3 0.61 54 U/T/S *11.50 46 0.70 49 0.91: 50 0.66 '

56 Pe* +8.551 46 0.77 49l 0.82) 48 0.44 47 0** +8.306 54 1.19 56 1.291 58 0.72 58 Ku +6.40 29 0.30 40 0.244 37 0.16 36 106-32 2 X2/Y/X1 +6.40 28 0.45 42 0.561 43 0.36 44 3/AA +7.00 34 0.00 35 0.236 36 0.12 35 A01/A8 +7.401 14 0.14 374 0.301 34 0.26 40 A2/AD/AC2 +7.70I 24 0.13 34? 0.174 ~15 0'.12[ 35 A32/Ad +4.801 35 0.23 38 0.261 37 0.17 37 AJ +9.601 38 0.11 36 0.216 36 0.15 36 AK** +9.90! 40 0.19 38 0.348 30 0.23 39 AP/AO +11.20i 27 0.21 38 0.366 39 0.24 39 AQ2/AQ1 +11.701 35 0.10 -

371 0.34f 38 0.24 39 AT/AD/AV +13.201 34 0.17 371 0.191 35 0.11 34 lAZ +14.30i 32 0.26 396 0.261 37 '

O.17 . 37 IAT** *14.601 36 0.21 346 0.296 371 0.201 38 109*30-2 1 +6.17 6Mo Met Work 0.24 381 0.331 341 0.24 39

+8.50 50 0.51 441 0.68) 45 0.41 46

+9.72 .

40 0.20 386 0.298 37 0.17 37

+10.321No Met Work O.20 391 0.36) 39 0.24 39

+11.17 tNo Met Work 0.13 361 0.161 35 0.11 34

+13.061No Met Work 0.15 37  !

0.21 36 0.15 36 41-44-2 +15. 991No Met Work 0.42 42 0.50 42 0.30 42

+13. 011No Met Work O.25 39 0.30 38 0.22 38

+ 12.14 f No Me t Work 0.40 41 0.48 41 0.29 41

+ 11. 01INo Met Work 0.04 35 0.08 33 i 0.00 33

+ 9.6 3 tNo Met Work 0.10 37 0.19 35 0.13 35

+7.35lNo Met Work 0.49 *3 0.51 43 0.33 43

+6.111No Met Work 0.23 30 0.31 38 0.23 39

+ 5.6 31No Het Work 0.10 36 0.16 35 0.10 34

+5.23lNo Met Work 0.14 J7- 0.23 36 0.18 37

" indicates flaws used as calibration points. PageI

h l

FIGURE B4 ~

CR-3 IGA AMPLITUDE ANALYSIS / FIELD DATA 600kHz Differential Amplitude ,:Vmax: l l

10 0 <-a.384msesx  !

90- ("*"=45 "d " = 5" 80-

"d "" " 3" 5 70=

sa:

b " ""*

.c 60=

t--- -}-

    • 50=

m - as2x

= +++

-5 49: - + r %="cd = 3+

.E + +j+_7 +

5 30=

204 10 =

0 . ....ini ..i>>> niiiiiii ni. .iniiiiiii 0 10 20 30 40 $0>> .60

. niiiiiiii1i 0 80 iiiiiii ni. 90.. in. 10 0. . .

Ground Truth in % Thru-Wall includes all data points

FIGl.LRE B5 CR-3 IGA AMPLITUDE ANALYSIS /F ELD DATA 400kHz Differential Amplitude (Vmax:

10 0 <=n835+os55x 90 = f *aa = 4" 80= 3'd "" " 8 7'*

Std Error = 4.62%

se b " " " 73*

g 60 = ++

x " "857*

50= +:

o 5 40 = +

+ ' 68"d " 34

+

.!E 3 30=

20=

10 =

0

.ooug.o,oigoio.g ooog ouig uoug,ooog ooui o.o igiou Ground Truth in % Thru-Wall includes all data points

FIGURE B6

~

CR-3 lGA AMPLITUDE ANALYSIS / FIELD DATA 200kHz Differential Amplitude (Vmax) 10 0 y <=a742+0.5eox f M'aa = 416%

90=

sta oest = 7.ex 80=

g j Std Error = 5.22%

E '

" " " " **8*

60=

f: +t+

    • 50 = + " = 8"

+

+ g' 4 [ ' * " d " 5'

~

40=

3 30=

20=

10 =

0 d '" "i'd "'"'$'U " " " $ " " " E ""S U " " "S U'" "' M '" "'S 0 U " " "$'U'" "I' 0 Ground Truth in % Thru-Woll includes all data points

e S

ATTACHMENT C

CAUBRATION TRANS/ROTATIONMATRIX TABLE C1 .

~

400KhzDIFFERENTIAL VERTMAX ROTATION MATRIX , 100% ASME JOLTAGE READING / %Thru-Nall DATA ROTATED DATA 0.99*,621723 0.027502920 0.999621723 kN M 100 V

6.119017 99.869487

-0.027502920 ROTATION MATRIX ,

40% ASME VOLTAG READING / %Thru-Nall DATA ROTATED DATA

'" 2;.'0 31 V 3.129349 0.999621723 0.027502920

-0.027502920 0.999621723 40  % 39.929038

- ==

TRANSLATION OF VOLTAGE READINGS TRANSLATION MATRIX ,

TRANSLATED DATA j

. 3.37 Volta %THRU WALL 2.714150 0 2.03, 3.404867107 100%

,, 0.415198898 40%

LINEAR INTERPOLATION CF ROTATED AND TRANSLATED DATA CT %THRU_ WALL ASME ACTUAL IGA CURVE ASME FLAW VOLTS Forced %THRU_ WALL FROM PULLED TUBES  % DIFFERENCE 100 3.37 99.3002 % 99.2128 0.044050500 40 2.03 72.4076 % 72.3592 0.033454203 20 '60 83.3470 % 83.7820 0.038792024

fe 0 , 0 0; 31.6673 % 31.6780 0.016851801 NOTE
FORCE THE ASME FLAWS IN BLACK TO THE CORRESPONDING

%THRU-WALL IN BLACK TO GENERATE THE IGA CALIBRATION CURVE BASED ON PULLED TUBE DATA

FIGURE C1 -

Progression of Rotatibn/ Translation Matrix for 400 kHz Diff Vert Max 100.00 g i

93.40 i Rotated and Translated Data 86.80 Conned IGA Curve 80.20 J

! Raw ASME Data 15 73.60 -

? i 2 67.00 i F i M 60~40 2i Rotated ASME Data 53.80 i i

47.20 i i

40.60 l 34~00 0.1 = I'"' '.7E " Y.Sf "" Y.h'f "E.SE '"'S.'if "5.7E ' 'S.SE "' 'S.0E " "S.

Voltage :V:

t FIGURE C2 rer a$1dd 4M. '4 ,M S"!'j -Ze"te"c-E'ckipet: ~ - ~ - - - - - - ~ ~ - - - -

' -- --- -~~

lf"4ik!!'i3 nirinP.!$'1Yvm$4.n*v'"

. ~ ---------- "a~19An sis (C")-1989,90 [ Spake as secondarg1 et e'd632 ---~~~"d"idF R!  !! WiiiF T Tt"iith.JP'!&"J;W~d" M lIId3' Analysis System Graphics .

Tube Coment: '.

Exi t _- Ch; 3 Volts-%

100% .

- t 4 . .
t

.r. . . . . . . .. . .. .. .  ;

i.

. . ... . . c. . . ... . .

s e

. .e - -

.c. , . . .c.

3 . .

3 t

. . . . 47. 9,. yg. 7 3g7 . . , .~ .

7

3: ,2.1 v; 73% .

i 2: 2.6vi 84% -

1: 3.4v; 99%

0% Volts 4.0

FIGURE C3 -

2' Plot of Canned IGA to TRANS/ ROTATED ASME Field Data for Smallest Voltage's 100 90 2 //

I'"e0 //

5 50 7

//

/

30

/ i . . . . .

0 0.5 1 1.5 2 2.5 3 3.5 Voltage

- Derived from Matrix - Canned IGA i

1 ATTACHMENT 11 CR 3 VolumelDepth Revised Data for First Span IGA Indications Tube 10 Defect 10 Calculated Volume (cubicinches) Depth 52512 8 3.00E-0'd 38 0 1.79E 05 34 F 2.37E 05 53 G 9.23E 06 34 11 1.15E 05 28 12 1.92E 05 52 i K1 1.12E 05  !

45 K2 1.11E 06 19 L 6.23E 07 13 N1 2.05E 06 40 N2 ~ 1.95E 06 19 P 7.90E 06 33 R 2.70E 06 18 S 1.79E45 33 U 4.20E-06 26 X 2.64E46 32 90282 B 3.17E-06 12 C 6.09E46 56 E 2.88E45 50 G 3.47E 03 53

, , . . , . , . _ . , , m-. . ._ _

H 9.99E 06 37 1 1.38E 05 46 K 2.11E 06 18 M 1.39E-05 27 N 1.60E 05 60 j 0 3.57E 06 45  !

0 8.50E 06 45 S1 9.80E 07 23 S2 1.94E 06 23 T1 1.34E47 46 T2 1.81E 05 53 V1 1.14E-05 49 V2 8.09E 06 46 XI 2.36E 06 62 X2 1.86E-06 24 Z 1.52E 06 30 AB 1.38E 05 30 A02 4.50E 06 24 AF 3.01E 06 51 97912 B 2.50E 07 6 0 2.96E 07 8 El 1.70E 07 5 E2 1.46E 08 5 Page1

ATTACHMENT 11 CR 3 V0lumelDepth Revised Data f0r First Span IGA Indications Tube 10 Defect 10 Calculated Volume (cubic inches) Depth G 4.69E 08 5 1 1.00E4/ 4 K  ! 5.70E 06 29 M _

1.10E 06 16 0 5.34E-05 54 P 5.23E-05 46 R1 3.00E 07 4 S 1.14E 09 1 T 3.73E 05 44 U 2.55E-05 48 W 3.21E 05 54 106-32 2 C 2.00E 07 7 E 1.50E-06 23 F 1.03E 06 9 G1 2.21E 07 4 I H 1.13E 07 3 1 2.37E 06 31 J 2.82E-07 5 K 3.20E 06 17 L 3.66E 06 14 i

.......g. ... . . . .

  • 2.16E48 3 l N 1.00E 07 15 l 0 2.76E 08 3 0 4.00E 07 7 V2 1.20E 06 14 X1 3.44E 06 27 X2 3.90E-05 49 Y 1.90E 07 8 Z 2.62E 05 51 AA 6.26E 06 17 AB 3.97E-06 18 AC1 7.31E 06 18 AC2 1.41E 05 22 AD 6.38E-06 25 AE 1.80E-05 24 A02 1.86E 05 40 AH 9.44E 06 29 AJ 2.11E-05 38 AK 3.49E-05 40 ALI 4.49E 07 10 AL2 3.62E 06 16 AMla 1.22E 06 16 AM1b 3.26E 07 12 AM2 1.09E 06 22 Page 2

ATTACHMENT 11 CR 3 V0lumelDepth Revised Data for First Span IGA Indications Tube 10 Defeet10 Calculated Volume (cubicinches) Depth AM3 2.39E 06 25 AN 1.04E45 36 A0 1.99E 06 12 AP 2.42E-05 42 AQ1 3.46E-06 24 AQ2 2.46E 05 46 AR 1.12E 05 19 AT 1.95E-05 31 AU 2.11E 05 39 AV 1.13t 05 29 AX 1.26E 05 32 I

AY 3.29E 05 36 AZ 3.72E46 22 BA 6.27E46 20 j BB 3.06E 06 17 BC 6.14E 06 30 80 6.53E 06 31 BF 2.71E-06 17 BG 1.03E-06 11 41442 82 7.00E46 44 B4A 5.00E-06 29 - - --

B4B 1.00E 06 29 B4C 4.00E 06 21 B40 1.00E 06 59 B6A 3.00E 06 32 B6B 6.00E 06 38 B60 2.20E 05 59 B10 6.00E-06 32 6846-3 A 1.38E-04 74 7249-2 BZ 2.20E 06 21 l

)

i i

Page 3 l l

e . .sn.... ~ . . .- -- . .- - ..~.- --- .wn. .a.a, .ns .< u -

ATTACHMENT 12 l

  • IN-SITU PRESSURE TESTING INFORMATION l

1

i U. S. Nuclear Regulatory Commission 3F0396-19 Attachment 12 Page 1 of 2 CR-3 Tube Structural and Leak Testing Pressure Required to Meet RG 1.121 For CR-3 OTSG Tube: 4050 osi

1. Burst Test on CR-3 Tubes Removed durina 1992 and 1994 CamDaiQns Tube No. No. of IGA Burst Pressure Defect Depth at Indications (psi) Burst (%TW) 41-44-E 33 9,800 54%

97-91-2 17 10,300 54%

106-32-2 65 10,900 40%

68-46-3 4 7,000* 75%

72-49-2 8 10,650 19%

41-44 0 10,100 Defect free area 72-49-19B 0 10,550 Defect free area 97-91 0 10,450 Defect free area 106-32 0 11,250 Defect free area

2. Hydraulic Swell Test on CR-3 Tubes Removed in 1992 and 1994 with IGA indications Tube Section Swell Pressure, psi 52-51-2 8,400 90-28-2 8,050**

90-28-5 8,400 68-46-3A* 6,900**

Eddy current of tube prior to pull and post pull indicates that damage of indication may have occurred during tube removal process.

    • These tubes were the only tubes to exhibit leakage during swell . A pinhole leak sprung at 8,050 psi at an indication that was approximately 53% through wall on 90-28-2. The leakage at tube 68-46-3 was observed at an IGA indication later determined to be 75% through wall.

Attachment 12 PROPOSED INSITU PRESSURE TEST TUBE SAMPLE I I I I m>we "All tubes are located in the 'B' OTSG. Data on indications of interest is provided below. g gy-

    • Tubes to be tested include all 1994 and 1996 indications exceeding 1.0V l
  • l!; g P
  • *' indications will be pressurized usin0 local pressure test rio (i.e., length of tube subjected "$Tz to test pressure is approximately 9 inches) l l l l  %$GE
  • Axial tube loads are not an issue for the degradation present and test pressure planned
  • *All candidate indications have received pre-test eddy-current (Bobbin and MRPC) m[m [-s

'All indications will receive a post-pressure test bobbin coil exam. y

' Proposed test pressure is 3125 psig. This value provides l '@

a 10% additional margin above the temperature-adjusted pressure to account for 7 variations in tubino material properties. l E

  • Acceptance Criteria is zero leakacs in excess of baseline Q

" Total tubes in sample is 13. Indications of interest is 19. In reality, due to the close p proximity of first-span IGA and the length of tube tested, a higher number of indications will g be tested. 7

'l COUNT ROW TUBE 94 LOC 94 VOLTS 96 VOLTS LENGTH WIDTH NOTES S (LTSF + ) (Inches) (Inches) 1 90 43 6.32 1 1.01 0.11 0.11 2 105 32 8.22 1 0.9 0.16 0.15 3 closely spaced 3 49 50 10.71 1.02 0.81 0.11 0.15  ;

4 48 47 7.53 1.04 U.83 0.16 0.15 5 103 90 8.14 1.05 0.87 0.16 0.15 6 46 37 10.54 1.07 1.06 0.15 0.14 7 58 38 12.34 1.09 1.21 0.11 0.11 9.59 1.24 1.35 0.17 0.15 7.51 1.56 1.67 0.17 0.15 8 89 34 5.78 1.13 0.96 0.12 0.15 15.15 1.29 1.12 0.11 0.11 9 57 38 12.17 1.14 f.11 0.14 0.24 2 nearly connected 10 93 27 7.76 1.26 j .24 0.18 0.14 11 39 41 9.62 1.27 1.21 0.13 0.16 _

12 46 44 10.12 0.83 3 06 0.13 0.11 13 50 35 9.15 0.86 1.33 0.18 0.18

_ . . . _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ - . _ _ _ _ _ _ - _ _ _ _ _ _ _