ML20100G428
ML20100G428 | |
Person / Time | |
---|---|
Site: | Crystal River |
Issue date: | 02/01/1996 |
From: | Cofie N, Deardorff A, Markovits C STRUCTURAL INTEGRITY ASSOCIATES, INC. |
To: | |
Shared Package | |
ML20100G412 | List: |
References | |
SIR-95-135, SIR-95-135-R, SIR-95-135-R00, NUDOCS 9602230167 | |
Download: ML20100G428 (241) | |
Text
{{#Wiki_filter:l U. S. Nuclear Regulatory Commission Attachment 2 - 3F0296-07 Report No.: SIR-95-135 Revision No.: O Project Ne.: FPC-01Q File: FPC-0IQ-402 January 1996 Flaw Acceptance Handbook for Crystal River Unit 3 Reactor Pressure Vessel and Nozzle Weld Inspections 1 Prepared for-Florida Power Corporation ContractNo. N01087AD Prepared by: StructuralIntegrity Associates,Inc. f Prepared by: iN C- Date: l/5!!//le
- ' C.\pC.,Markovits / / l Reviewed by: "
Date: 2[/!fl. N. G. Cofie Approved by: Date: NN r meawa y
,1 StructuralIntegrity Associates. Inc.
9602230t67 96021b PDR ADOCK 05000302 G PDR
Table of Contents l Section P. ass
1.0 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ........ 1-1 2.0 EVALUATION METHODOLOGY . . . . . . . . . . . . . . . . . . . . ............ . 2-1 2.1 Overview of Section XI Evaluation Procedures . . . . . . . . . . . . . . . . . 2-1 2.2 Specific Details of Vessel Shell Evaluation Methodology ...... . . . 2-3 2.3 Vessel Shell Analysis Implementation . . . ........................ 2-10 l 2.4 Nozzle Inner Corner Flaw Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 l 2.5 Section XI Code Edition / Addenda for Flaw Evaluation . . . . . . . . . . . . . 2- 12 3.0 EVALUATION OF VESSEL LOADINGS . . . . . . . . . . . . . . . . . . . . . ....... 3-1 3.1 Grouping of Locations . . . . . . . . . . . . . . . . . ........ . .......... 3-1 ,
3.2 Vessel Geometry and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 3.3 Loadings and Loading Combincions . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 3.4 Vessel Stresses and Stress Evaluation . . . . . . . .. .. .. ... ......... 3-7 3.5 Loading Multipliers . . . . . . . . . . . . . . . . . . . . . . . ........ ........ 3-11 3.6 Vessel Nozzle and Upper Shell Stress Analysis . . ........ .. . . . 3-12 4.0 RES ULT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 1 4.1 IWB-3 500 Evaluation Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.2 iWB-3600 Evaluations . . .......... ... . .... ............ .. 4-1
5.0 CONCLUSION
S AND DISCUSSION ............ .... ..... . . . . . . . 5- 1
6.0 REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ ... 6-1 APPENDIX A Flaw Acceptance Diagrams for Region A Materials . . . . . . . . . . . . . A-0 APPENDIX B Flaw Acceptance Diagrams for Region B Materials ... .. . . . . B-0 APPENDIX C Flaw Acceptance Diagrams for Region C Materials . .. . . . . C-0 APPENDIX D Flaw Acceptance Diagrams for Region D Materials . . . . . . . . . . . D-0 APPENDIX E Flaw Acceptance Diagrams for Region E Materials . . . . . . . E-0 APPENDIX F Flaw Acceptance Diagrams for Region F Materials . .. .. . ... F-0 APPENDIX G Flaw Acceptance Diagrams for Region G Materials . . . . . . . . . G-0 SIR-95-135, Rev. 0 ; StructuralIntegrity Associates, Inc.
i t Table of Contents (concluded) i Section East
. APPENDIX H Flaw Acceptance Diagrams for Region H Materials . . . . . . . . . . . . . H-0 1 l
APPENDIXI Flaw Acceptance Diagrams for Region I Materials ... . . . . . . . . I-0 APPENDIX J Flaw Acceptance Diagrams for Region J Materials . . . . . . . . . . . . . J-0 APPENDIX K Flaw Acceptance Diagrams for Region K Materials .... . . . . . . . . K-0 APPENDIX L Flaw Acceptance Diagrams for Region L Materials ....... .... L-0 (' APPENDIX M Flaw Acceptance Diagrams for Region M Materials . . . . . . . . . . . M-0 APPENDIX N Flaw Acceptance Diagrams for Regions N, O and P Materials . . . . . . . N-0 t i 4 k d ( s e e E d T i SIR-95-135, Rev. O il { StructuralIntegrityAssociates,Inc.
4 t i 4 , i List ofTables i Ishin P_ags ! I L3-1 - Grouping of Vessel L6 cations . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 l 4 3-2 Grouping ofNozzle and Upper Shell Weld Locations . . . . . . . ............... 3-15 : t 3-3 Material !.eroperties of CR-3 Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 F 3 Appnda Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 4 3-5 Stresses for Regions A and B Closure Head / Flange Welds ... .............. 3-18
- I 3 Stresses for Region C Vessel Flange and Adjacent Shells / Welds . . . . . . . . . . . . . . 3-18 l
! 3 Stresses for Regions D and E Lower Nozzle Belt Shells . . . . . . . . . . . . . . . . . . . 3-19 ; o . I i 3-8' Stresses for Regions F and G Beltline Welds and Shells (I,II), . . . . . . . . . . . . . . . . 3-19 l 3-9 Stresses for Regions H and I Transition Regions (I,II) . . . . . . . . . . . . . . . . . .. . . . 3-20 . 3-10 Stresses for Region J Bottom Head Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 l 3-11 Stresses for Region K Inlet Nozzle Weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 , 4
- j. 3-12 Stresses for Region L Outlet Nozzle Weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 ,
l 3-13 Stresses for Region M Core Flood Nozzle Weld . . . . . . . . . . . . . . . .... 3-23 ! 4 1 3-14 Stresses for Region N Inlet Nozzle Inner Corner . . . . . . . . . . ..... .... . 3-24 . 3-15 Stresses for Region O Outlet Nozzle Inner Corner . . . . . . . . . . . . . . . . . . . . . . . 3-25 , ,i .
- 3 Stresses for Region P Core Flood Nozzle Inner Corner . . . . . . . .... . . 3-26 j 1 !
4 I SIR-95-135, Rev. 0 ( . iii f StructuralIntegrityAssociates,Inc. t h
- u. _ ., -
I f l ' List ofFigures ! t 3-1 Plates and Weld Locations of CR-3 Vessel . . . . . . . . . . . . ... . .... . .'3-27 .> s . 3-2 Vessel Geometry at CR Top Head Region . . . . . . . . . . . . . . . . . . . . . . . 3-28 ! e 1 3-3 Vessel Geometry at CR Flange Region ... ... ....... .. ..... .. .. 3-29 . 3-4 Vessel Geometry at CR Beltline and Bottom Head Regions ' . . . . . . . . . . . . . . 3-30 ,. 3-5 CR-3 Vesseliniet Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 -3 1 3-6 CR-3 Vessel Outlet Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32 e 3-7 . CR-3 Core Flood Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 -3 3 ! 3-8 CR-3 Inservice Leak Test Pressure-Temperature Limits . . . . . . . . . . . . . . . . . . 3 -3 4 3-9 Reactor Vessel Axisymmetric Finite Element Model . . . . . . . . . . . . . . . . . . . . . 3 -3 5 J l 3-10 Inlet Nozzle 3-D Finite Element Model . . . . . . . . . . . . . . . . . .. . . . . . 3-3 6 ; 3-11 Outlet Nozzle 3-D Finite Element Model ......... ... ...... ...... . . 3-37 l 3-12 Core Flood Nozzle 3-D Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . 3-38 ' 1 i 4 I t
. (
F f 4 SIR-95-135, Rev. 0 .iv f StructuralIntegrityAssociates,Inc.
. I ?
I, i
1.0 INTRODUCTION
t
- - l In preparation for the in-service inspection (ISI) of the reactor pressure vessel (RPV) at Crystal River Unit 3 (CR-3) during the Spring 1996 outage, Florida Power Corporation (FPC) c.ontracted with l
- Structural Integrity Associates (SI) to develop flaw acceptance diagrams for the reactor pressure ;
. vessel welds, including those at the vessel inlet, outlet, and core flood nozzles. This will allow for rapid evaluation of flaws in case that flaw indications are found during the vessel examinations. , 'Ihis repon contains a definition of acceptable flaw sizes that can be used during the vessel inspection .
- 1 to perform rapid assessment of flaw indications. These flaw acceptance guidelines are provided in 4 graphical format in the appendices of this repon and are based on the methods contained in ASME , ! Code, Section XI. The evaluation methods have been supplemented by more sophisticated evaluation Wa=, where Section XI, Appendix A, may not be completely definitive for the evaluation (e.g., ; fbr cladding stress intensity factors). An evaluation of vessel materials and geometry at welds has . resulted in a conservative grouping of potentially-flawed locations to limit the number of flaw : evaluations to a manageable number. Thus, the graphical acceptance standards included herein are
- . intended to be conservative but need not serve as the only basis for performing Section XI flaw _,
e .
- evaluations.
f i Section 2 of this report describes the methods of analysis and the assumptions that have been made : in conducting the analysis. Reading and understanding the information included therein is important ! to understand the limitations inherent in conducting an evaluation of all possible flaws that might exist j } in the vessel. Section 3 presents an evaluation of the specific materials and welds for the CR-3 ! ! reactor vessel and shows how they were grouped to limit the number of evaluations conducted. The vesselinle( outlet, and core flood nozzle evaluations are also presented. The design input (stresses, 1 l 1- load cases, etc.) that forms the basis for the analysis is included. Section 4 presents and describes the results. - Section 5 summarizes the findings and restates the limitations with respect to the results presented in this report.- i SIR-95-13$, Rev. O I-I { StructuralIntegrityAssociates,Inc.
2.0 EVALUATION METHODOLOGY 2.1 Overview of Section XI Evaluation Procedures
. For purposes of this evaluation, the 1989 edition of Section XI of the ASME Boiler & Pressure l Vessel Code [1] is generally used, modified with additional more conservative criteria, as discussed in Section 2.5. The mies fbr evaluation of flaws in reactor vessels are contained in IWA-3000, IWB-3500 and IWB-3600 of Section XI. Appendix A of Section XI provides specific methodology that may be used for detailed fracture mechanics evaluations. The following provides an overview of the
{ '
- Section XI evaluation approach.
In the first step of vessel flaw evaluation, the indications from vessel inspections must be characterized per the requirements of Section XI Article IWA-3000. This requires that the indications be bounded by a rectangular shape with depth (a for surface flaws and 2a for subsurface flaws) and length (t) that will completely contain the suspected material flaws. Closely adjacent flaws must be linked together based on criteria contained in IWA-3000. Similarly, flaws closely adjacent to the base metal surface must be assumed to be surface flaws, based on criteria presented in the Code. The next step in the vessel flaw evaluation is to compare the flaw with the evaluation standards included in Table IWB-3510-1. This table provides the size of allowable planar flaws that may be accepted without further evaluation. Table IWB-3510-1 defines allowable sizes for surface and subsurface flaws as a function of wall thickness, flaw aspect ratio (a4) and flaw depth ratio (a/t), where tis the hans metal thickness. If the indication is larger than may be accepted by IWB-3510-1, then additional analytical evaluation is allowed per IWA-3600. These evaluations are based on the 10tal wall thickness including cladding. Again, flaws located closely adjacent to the surface must be evaluated as surface flaws based on 5IR-95-135, Rev. 0 2-1' f ShucturalIntegrityAssociates,Inc.
1 criteria in IWB-3000. Flaws located completely within the vessel cladding are acceptable with no further evaluation. Key points of the evaluation include:
- The criteda allow acceptance by specifying a factor of safety on either the size of the critical flaw, or a factor of safety on the stress intensity factor.
- Separate evaluations are required for Normal / Upset and Emergency / Faulted conditions, with different factors of safety for each.
- Additional consideration is given to areas near structural discontinuities (e.g., for welds near a flange) by allowing alternate factors of safety for low-pressure operating conditions, per IWB-3613.
Appendix A of Section XI provides a detailed procedure for vessel flaw evaluation. To perform the analysis, the following factors must be considered:
- The flaw must be characterized and resolved into a shape that can be evaluated. This ihcludes determination of the depth ratio (a/t) and the aspect ratio (a//) of the flaw. For subsurface flaws, the eccentdcity ratio (c/t) must be determined, where e is the distance from the center of the vessel wall (including cladding) to the center of the flaw.
i
- Stress and the temperature distributions at the location of the flaw must be determined for all loading conditions.
- The flaw stress intensity factor and critical crack size must be calculated, either by using the equations, chans, and tables of Appendix A of Section XI or through use of other, more sophisticated, documented analytical techniques.
- The material propenies must be defined at the location of the flaw, including the effects of irradiation.
SIR-95-13S, Rev, 0 2-3 f Struc%UIIntegrity Associates, Inc.
4 l
- The crack growth that can occur during the evaluation interval must be determined (e.g., to l the next inspection or to end-of-life). l l
*' The flaw size at the end-of-evaluation period must be less than that allowed by Section XI. s
- The primary stress limits of the original Code of Design, Section III, (NB-3000) must also 4
be met assuming a local area reduction of the pressure-retaining membrane that is equal to the area of the characterized flaws. )
- For evaluation of flaws in shell-like structures (e.g., the reactor vessel wall), the methodology
- of Appendix A of Section XIis directly applicable. For the evaluation of more complex geometries or complex stress distributions, (e.g. for the inlet, outlet, and core flood nozzle comer flaws, more sophisticated techniques may be used as allowed by A-3300(c)).
2.2 Specific Details of Vessel Shell Evaluation Methodology i 2.2.1 Stress Intensity Factors i Appendix A of Section XI provides a basic methodology for evaluating vessel flaws. However, there is limited guidance for the determination of stress intensity factors for cracks extending through cladding. In addition, the guidelines are very limited for determining the stress intensity at the surface for surface flaws. The following describes how the stress intensity factors were deteradned for the ! CR-31PV evaluation. Anoendix A Methods . For all stresses, except for those due to cladding for an internal surface flaw, the methods of Appendix A are used for the deepest point of surface flaws and for subsurface flaws. l
. l SIR-95-135, Rev. 0 2-3 StructuralIntegrity Associates, Inc.
F
~- - .-- . .-. -. . . - --- .- -
l 4 Surface Stress Intensity Factors (exceot for cladding) For surface stress intensity factors for surface flaws, M, and M 3 as defined in Appendix A of Section XI, have been determined based on the Raju/Newman membrane and bending solutions (2] for the - worst case ofinternal and external cracks for a vessel with thickness-to-radius ratio of 0.1. The so-determined surface stress intensity factor is applied at the cladding-to-base metal interf.:ce for the vesselinside surface. For flaws with an aspect ratio (a/t) of zero, the surface stress intensity factor is assumed to be zero since an infinitely long crack does not have a surface point. Claddina Stress Intensity Factor d I For cladding stresses for a long inside: surface flaw, the stress intensity factor at the deepest point of the flaw is determined by integration of the stress over the crack face for an edge-cracked plate using l , the methods from Tada and Paris [3). 2 * ! m (x) o(x) dr (1) { = M [* where: a (x) = cladding stress distribution in cladding and base metal as a function of [ distance (x) from clad surface a crack depth
= = 3.52(1-a *) 4.35 - 5.2Sa
- m(x) (2)
(1 -t *)' 8 (1 -t ')" t
. 1.3 - 0.3(a *)t.5 + 0.83 - 1.76a * ~ - [l -(1 -a * ): *)
(1 -(a *)2)u 1 where: a* = x/a i i t' = dt t = wall thickness SIR-95-135, Rev. 0 2-4 Structurallatogrity Associates, Inc. I
As shown in a paper by Kuo,
Deardorff,
and Riccardella [4], this type of solution yields a stress intensity factor that shows a reasonable comparison to " exact" solutions, but is unrealistic and increases significantly for deep-wall cracks in a pressure vessel. Thus, it is assumed that the deep-wall stress intensity factor increases by no more than described by the following: , For a s a,,,,, K/ = K (3) For a > as,, Kl = lesser of f or a
-K (4) f* T %. .
where: K, f
= minimum $ predicted in base material .
J a = crack depth size
=
a,,,m a at K ,_ 4 To account for the flaw aspect ratio, the stress intensity factor is corrected using the shape factor of Appendix A of Section XI for the crack. t s o.s g X,=Kl =t (5)
.
where: Q, = shape factor for fla'wwith aspect ratio of(a/t) = 0 - l Q = shape factor for flaw with aspect ratio (a/c) being evaluated SIR-95-135, Rev. 0 2-5 StructuralIntegrity Associates, Inc.
The stress ratio (the other factor affecting Q) is determined based on membrane plus bending stress (0, + 0 ) 3for the flaw, exclusive of the c!3dding stresses at the crack. Since a ratio is being ) determined, this approach is reasonable. { ASME Section XI does not require that the stress intensity factor in the cladding be evaluated. However, the stress intensity factor for the cladding-to-base metal interface location is calculated l based on determination of the sudace stress intensity factor. To calculate the sudace stress intensity factor, the cladding stress intensity factor (obtained by Equat, ions I and 5 above) for a flaw depth equal to the thickness of the cladding (with the same aspect ratio as the deeper flaw being evaluated) is determined. It is then modified based on the ratio between the membrane stress intensity correction factors for the sudace (using the Raju/Newman, M ) and the crack tip (using the Appendix A, M.). t Although not rigorously derived, this formulation is believed to be conservative for this analysis. For flaws with aspect ratio ofzero (a/t = 0), there is no surface crack. Therefore, the stress intensity ; factor due to cladding at the " surface" is evaluated as zero. P 2.2.2 Fracture Toughness l The fracture toughness, Ku or K3, is obtained from Section XI Appendix A. The analyzed vessel i wall local fracture toughness, at the location of the associated crack stress intensity factor, is , determined with consideration oflocal temperature (as a function of wall depth), initial RTvor, local i i ,. fluence, margins and chemistry factors in accordance with the methods of Regulatory Guide 1.99 ; Revision 2 [5]. The approach is as follows: . f t ART- RTw7,1 + RTm7 Shift + Margin (6) i
~
where: j ART = Adjusted Reference Temperature, *F ~ , RTer.i _
=
initial RTm7, 'F 2
. Margin =
required margin = 2/o,2 +O,*F (RTerShift, o,, and a are 3 defined below) l STR-95-135, Rev.' 0 2-6 StructurniIntegrity Associates, Inc. l.
The margin is determined based on the standard deviation of the initial RTvor (0,) and that of the RTNor s hift (o ).3 The standard a is3 28'F for welds and 17'F for base metal [5], except that o 3 need not exceed 0.5 times the computed shift in RTvor-RTxo7 Shift = (CF) (FF) (7) where: CF = chemistry factor, *F . FF = fluence factor, dimensionless - FF = /a2:-anos,,e (8) 2 where: f = local Guence, neutrons /cm x 1019 (E>lMeV) The local fluence,f, at any position in the wall may be calculated from: ] , f = f,,,f e -a2n _ (9) 2 where: fg = fluence at inside surface, neutrons /cm x 1019 (E>lMeV) 4 x = distance from inside surface, inches 1 . The fluence at the surface is a function of the amount ofirradiation exposure time: x EFPY (10) fI = EFPYret 2 where: f,,f = reference surface fluence, neutrons /cm x 1019 (E>lMeV)
=
- EFPY,,f effective full power years associated with f,,f EFPY = effective full power years for evaluation i S1R-95-l35, Rev. 0 2-7 StructuralIntegrity Associates, Inc.
This allows the adjusted reference temperature to be calculated for the beltline region at any depth, at any time, and for each specific weld or plate being evaluated. For regions not in the beltline region, there is no shift in RTvor-2.2.3 Crack Growth Considerations . A consenative estimate of the crack growth for determining allowable subsurface and outside surface flaws is based on the crack-growth cune for air of Section XI Appendix A, using the latest
~
formulations from the 1992 Edition with 1993 Addenda. A conservative estimate of the number of cycles to the end of the evaluation period is made. For inside surface flaws, the water crack-growth curve is used, conservatively based on R 2 0.65, where R is the ratio of the minimum crack tip stress intensity factor to the maximum stress intensity factor (K,nin/K,x). For subsurface flaws, the crack growth curve for air environment based on R=1 was used. The stress intensity factor at the allowable flaw size for each flaw is used in this evaluation. For flaws accepted by the evaluation standards of Table IWB-3500-1, there is no requirement to consider crack growth. 2.2.4 Subsurface Flaw Size Considerations For subsurface flaws, the maximum allowable size that does not have to be considered as a surface q flaw per the requirements ofTable IWB-3510-1 or Figure IWB-3610-1, as applicable, is determined based on flaw eccentricity as follows: 1
'a' _ 0.5 - le/tl r t,_ l.4 i
where: I = thickness of vessel base material (for IWB-3500 evaluation), or total thickness I of vessel wall including cladding (for IWB-3600/ Appendix A evaluation) e = flaw eccentricity, measured from center of vessel wall, (determined with or without cladding as appropriate), negative if toward inner vessel wall ; SIR-95-135, Rev. 0 2-8 StructuralIntegrity Associates, Inc. l
i l 1 2.2.5 Definition of Allowable flaw Size and Shape In evaluating hypothetical flaws, such as evaluated herein, one is faced with the problem of determining the size of the allowable flaw. In some cases, larger flaws may be acceotable as comnared to smaller flaws. This is especially tme when there is a large bending component to the , through-wall stress distribution, the fracture toughness through the wall is not constant due to irradiation embrittlement and/or if cladding stresses are a significant contribution to the stress intensity factor. Also, if the surface stress intensity factor is controlling, a flaw with a smaller aspect ratio (more extent of flaw length) may be acceptable when a similar depth flaw with less flaw length would not be acceptable. There are several choices that can be made in choosing the allowable flaw size at a location:
- Option 1: Accept the largest flaw with the smallest aspect ratio that is acceptable. In this case, a larger flaw (depth and/or length) may be acceptable whereas a smaller flaw would not be acceptable. This is analogous to evaluating an actual flaw by assuming a larger bounding flaw size or length.
- Option 2: The most conservative approach is to determine the minimum flaw size that is acceptable for the flaw aspect ratio being evaluated.
r
- Option 3: In some cases, the surface stress intensity factor may control the allowable flaw depth, especially when cladding stresses are being evaluated or if the surface fracture toughness is low. However, a longer flaw (e.g., alt = 0) inight be acceptable. For this ;
approach, the acceptable flaw size would be based on the smallest acceptable flaw depth (as in Option 2) but, the aspect ratio can be assumed to be smaller (the flaw is assumed to be longer) than for the actual aspect ratio being evaluated. SIR-95-135, Rev 0 7-9
~
Structural Integrity Associates, Inc.
In the evaluations performed in this repon, the first option has been chosen since the stress intensity i factor solutions for surface stresses and cladding are believed to be quite conservative. In most cases, more sophisticated analysis, as allowed by Appendix A, A-3300 (c), could result in lower values of stress intensity factors. The stress intensity factor within the cladding does not have to be evaluated for acceptability. Thus, the allowable inside surface flaw size will always be at least equal to the cladding thickness plus that r.Ilowed by the acceptance standards ofIWB-3500. 2.3 Vessel Shell Analysis Implementation The flaw acceptance analysis for the vessel-shell, shell-to-flange, and shell-to-nozzle weld locations has been prepared using a computer program developed and verified by SI for this specific purpose. APPENDA (standing for Anoendix A Analysis) [6] is a computer program written to perform reactor pressure vessel flaw evaluation in accordance with Appendix A of Section XI and Subanicle IWB-3600 of Section XI of the ASME Boiler and Pressure Vessel Code [1]. It uses the methodology described above, and determines allowable inside surface, outside surface and subsurface flaws. It is intended to provide a rapid assessment of all possible flaws so as to allow construction of flaw acceptance diagrams that may be used to provide guidance in reactor vessel inspections. APPENDA performs an evaluation to determine the acceptable size of surface and subsurface flaws in accordance with the requirements of ASME Code, Section XI, Appendix A and Subarticle IWB-3600 [1]. In addition, the acceptability of relatively smaller flaws is evaluated in accordance with l Section XI, Table IWB-3510-1 [1] for planar flaws. The program output includes the acceptable flaw size for the complete range of flaw aspect ratios and flaw eccentricities (for subsurface flaws). Key features include:
- ability to include an arbitrary stress distribution for pressure, bending, thermal, and residual stresses, including load multiplier factbrs for each SIR-95-135, Rev. 0 2-10 StructuralIntegrity Associates, Inc.
.i ; e evaluation of cladding stresses, with several methods to handle the effects of the cladding i i
stresses at the surface for inside surface flaws j i l e ability to evaluate flaws based either on the maximum acceptable size,
- minimum acceptable j
- size, or the minimum acceptable size assuming a smaller aspect ratio, a/t I .I e consideration ofNormal/ Upset condition, Emergency / Faulted condition or regions near local
- discontinuities (per IWB-3613 (a))
i
.e automatic determination of the wall &acture toughness distribution given initial material properties and accumulated surface fluence at the end of the evaluation period e conservative assessment of flaw growth to the end of the evaluation period
{ A separate utility program MAPPA (standing for Multiple Appendix A analysis) provides an l ! evaluation ofmultiple input cases for a location and determines the controlling loading condition (or combination of conditions) for a number ofindividual evaluations using APPENDA. 2.4 Nozzle Inner Corner Flaw Evaluation . f
- For a postulated flaw at the inlet, ou'tlet, and core flood nozzle inner corner, the methodology of
. Section XI, Appendix A is not directly applicable since it applies to shell-like structures. As allowed j by A-3300(c) for complex geometries, the StructuralIntegrity Associates' computer program pc- ~ CRACK [7] was used,- employing the 3-D corner crack model. With this approach, the stress distributions for pressure, thermal and boltup loadings (as affected by proximity to the vessel flanges) , i are fit by cubic polynomial curves and the stress intensity factors are determined versus depth into ~ the crack comer. For the cladding stresses, the stress intensity factor is assumed to be equal to that for the adjacent plate material. t
^ . SIR-95-13 S, Rev. 0 2-1l Structurallategrity Associates, Inc.
t i
t 4 For the corner crack, the evaluation considers only the deepest point of the crack. In addition, no
- parametric evaluation of flaw aspect ratio is required since corner cracking will almost always result f in a "round" crack front that is simulated by the 3-D corner crack model. The crack depth will be i
reported as the smallest size that is not acceptable, unless larger flaws would be acceptable due to a ; decr. easing cladding stress intensity factor. (For comer cracks, the pressure stresses are almost always dominant due to the large nozzle stress concentration factor at the inside corners.) l F T 2.5 Section XI Code Editien/ Addenda for Flaw Evaluation ! I . I j The current evaluation is generally based on Section XI Code methodology from the 1989 Code. j l This edition is the most recent of the ASME Code that is accepted by 10CFR50. It contains several revised approaches for flaw evaluation that are not contained in the 1983 edition of Section XI (with j Summer 1983 Addenda), the edition applicable at CR-3. In addition, several steps of the evaluation j I contain more recent criteria. The following summarizes the differences. ,
- 1. In the 1983 Code, all flaw sizing for flaws at the clad surface was based on the depth from the cladding-to-base metal interface. In the mid 1980's, a conscious decision was made to l
. revise the methodology such that the depth of the flaw should be based on the total dimension i . from the cladding wetted surface to the deepest point of the flaw. The guidance on flaw i
i sizing provided by IWB-3610 of the current Code was not available in the earlier edition. For this evaluation, it has been conservatively assumed that flaw evaluation is based on the total l flaw depth, including cladding, for inside surface flaws. [ e
- 2. For this evaluation, the 1992 Code with 1993 Addenda was used as the basis for fatigue crack
; growth curves. This provides a slightly more conservative . curve for an air environment (subsurface or outside surface flaws) that is dependent on the R ratio (Kmin/Kmo).
l
- 3. In this evaluation, the methodology of Reg. Guide 1.99, Rev. 2 is used for determining the :
total shift in RTND'r as affected by uncertainties, fluence and material composition. Use of l this approach is consistent with current regulatory requirements for the evaluation of reactor i SIR-95-135, Rev. 0 - 2-12 g
*v gis vr -*'- wr
vessel beltline materials. No guidance on detennination on irradiation shift has been provided in Section XI since the Summer'83 Addenda of the 1983 Code. Prior to this time, there was a figure provided.
- 4. Section XI, A-3000 of the 1989 Code requires that the effects of cladding stresses on the calculated stress intensity factors be considered, whereas there was no mention of cladding in the 1983 version of Section XI. Thus, the 1989 Code approach is more conservative.
As shown above, the Code approach used in this evaluation reflects the currently accepted approach for evaluation of material properties, stresses, and stress intensity factors. It is more conservative than an evaluation based solely upon the 1983 Code with Summer 1983 Addenda that is applicable to CR-3, and more appropriate from a licensing viewpoint. Stmetural Integrity Associates' experience in the area of flaw evaluation has always shown that use oflater Code editions and addenda for evaluation of flaws is acceptable. SIR-95-135, Rev. 0 2-13 StructuralIntegrity Associates, Inc.
.r
i- . P s 3.0 EVALUATION OF VESSEL LOADINGS 3.1. Grouping ofLocations } The mactor vessel plates, forgings, and welds at CR-3 are shown in Figure 3-1. Material properties !
! . for all the RPV plates and welds have been assembled in Reference 8 based on data collected during l r
i l a site visit to CR-3 For the purpose ofreducing the magnitude of the analytical computations, these . > locations icve been combined to form the 10 regions for analysis (Regions A-J). For the ten reactor - vessel shell welds, the region groupmgs have been selected based on similarities in geometry, material -
. data, stresses or thicknesses in the surrounding plate and/or weld material, as shown in Table 3-1. l ' Similady, the grouping of the nozzle locations is shown in Table 3-2. The surrounding material has ' been mminad for the worst case, i.e., irradiation effects, stresses and/or initial RTm and used as l
bounding conditions for the entire region. The limiting component is chosen with respect to material I properties such that the adjusted reference temperature at the vessel wall 1/4T point is maximized. l A description ofeach vessel shell and nozzle region and the reasoning for their grouping is as follows: i Region A ' l Closure Head / Flange This region includes the Closure Head Center Disc (MK #24) and Closure Head Flange materials.
- i. Material rWdes for the Closure Head Center Disc are used to represent all materials in this region.
- Stresses extracted from the Upper Head to Closure Flange Weld were conservatively used for this L ,
region. Region B
,. Upper Head to Closure Flange Weld L
r This region i-Wes the Upper Head to Closure Flange Weld only. (Because its material properties ! differ significantly from surrounding materials, this weld has been grouped separately.) Stresses extracted from the Upper Head to Closure Flange Weld were used for this region. i . . SIR-95-135, Rev. 0 3-1 l StructuralIntegrity Associates, Inc.
l Region C Vessel Flange and Adjacent Shells / Welds This region represents the Upper Shell Flange, Vessel Flange to Nozzle Belt Weld, and Upper Nozzle Shell. The material properties for the Upper Shell Flange (or Upper Nozzle Shell, as they are identical) were selected as representative for this location. Stresses extracted from the Vessel Flange to Nozzle Belt Weld were used for this region. Region D Lower Nozzle Belt Shells This region represents the Lower Nozzle Shells (unirradiated) only. (Because its material properties differ significantly from surrounding materials, this weld has been grouped separately.) Stresses for this grouping were taken from the 3-D stress analyses for the inlet and outlet nozzles due to interaction (bending) effects of the nozzles on the shell located between these nozzles. Region E Nozzle Belt to Nozzle Belt Weld / Nozzle Shells This region represents the Nozzle Belt to Nozzle Belt Weld (unirradiated) and the Upper Nozzle ; Shells. Material properties for the Upper Nozzle Shell were selected as representative for this grouping. Stresses for this grouping were taken from the 3-D stress analyses for the inlet and outlet nozzles due to the interaction (bending) effect of the nozzles on the shell located between these nozzles. Region F Beltline Welds and Shells I The region represents irradiated shell regions: Upper Shells (Al-207-1,-2), Lower Shell (A2-207-2), Nozzle Belt to Upper Shell Welds (WF-169-1 and S A1769) and Lower Nozzle Shells. The material properties for the Upper Shell(Al-207-2) were selected as representative for this grouping. The maximum through-wall stress distribution (i.e., maximum tensile stresses) along the length of the longitudinal welds in the upper and lower vessel shells was conservatively used for this region. SIR-95-135, Rev. 0 3-2
Region G Beltline Welds and Shells II This grouping represents irradiated (beltline) welds: Upper Shell Longitudinal Weld (WF8,18), Upper Shell to Lower Shell Weld (WF70), Lower Shell Longitudinal Weld (S A1580) and Lower Shell (A2-207-1). ' The material properties for Upper Shell Longitudinal Weld (WF8,18) were selected as representative for this grouping. The maximum through-wall stress distribution (i.e., maximum tensile stresses) for all of the welds analyzed in this grouping was conservatively used for this region. Region H Transition Region I This grouping represents the shells located in the vicinity of the transition region between the lower shell and bottom head, Lower Shells (A2-207-1, A2-207-2). It was selected due to the high stresses , associated with the thickness transition. This grouping includes lower portion (thinner than 8.4375 in.) ofthe Lower Shell (material located adjacent to the transition weld). The lower fluence reported l in Reference 8 at the Lower Shell to Head Transition Weld was used for this grouping. The material l properties of the Lower Shell (A2-207-1) shall be selected as representative for this grouping. The stress distribution for the Lower Shell to Head Transitio.n Weld was conservatively used for this region. l Region I , i Transition Region II This grouping represents the shells located in the vicinity of the transition region between the lower .
- shell and bottom head and includes the Head Transition Piece, Lower Shell Longitudinal Weld l
l (SA1580), and Lower Shell to Head Transition Weld (WF154). The material properties of the Head l Transition Piece were selected as representative for this grouping. The stress distribution for the . l Lower Shell to Head Transition Weld (WF154) was conservatively used for this region. This - grouping includes lower portions (with thickness less than 8.4375 in.) of the Lower Shell ; Longitudinal Weld, Lower Shell to Head Transition Weld, and upper portions of Head Transition ! l Piace (and materiallocated adjacent to the Transition Weld). t SIR-95-135, Rev. 0 3-3 i StructuralIntegrity Associates, Inc. t i
Region J Bottom Head Region . This Region includes the Head Transition Piece (unirradiated), Head Transition to Bottom Head Weld, and Bottom Head Shell (MK #6). (Flaw indications found in Head Transition Piece must be evaluated as both Region J and Region H). The material properties for the Head Transition Piece and
~
Bottom Head Shell have been selected as representative for this grouping. The stress distribution for the Head Transition to Bottom Head Weld was conservatively used for this region. Region K Inlet Nozzle to Shell Weld This region includes the inlet nozzles (MK #18), the welds between these nozzles and the adjacent shell materials. The region is further divided into two sub-regions because of variable stresses around , the nozzle due to the hoop versus radial stress field in the inlet nozzle forging and due to interaction between the nozzles and the upper flange region. The material properties chosen as being representative are for inlet nozzle forging (MK #18). Region L Outlet Nozzle to Shell Weld This region includes the outlet nozzles (MK #19), the welds between these nozzles and the adjacent
- shell materials. Two sub-regions are included because of variability of stresses around the nozzle.
The material properties chosen as being representative are for outlet nozzle forging (MK #19). Region M Core Flood Nozzle to Shell Weld This region includes the core flood nozzles (MK #17), the welds between these nozzles and the adjacent shell materials. Two sub-regions are included because of variability of stresses around the nozzle. The material properties chosen as being representative are for core flood nozzle forging (MK
#17).
l SIR-95-135, Rev. 0 34 g,,,,,,,,, y,,,,,,,, ,,,ggy,ggg, ,gg,
Region N , Inlet Nozzle Corner Crack This region includes only the inlet nozzle inner corner forging (MK #18) and is defined for a postulated inner comer crack, since pressure stresses at the region are high. The material properties for inlet nozzle forging are used. Region O Outlet Nozzle Cocner Crack , 'Ihis region is similar to Region N and includes only the outlet nozzle inner corner forging (MK #19).~ The material properties for outlet nozzle forging are used. Region P Core Flood Nozzle Corner Crack This region is similar to Regions N & O and includes only the core flood nozzle inner corner forging (MK #17). The material properties for core flood nozzle forging are used. 3.2 Vessel Geometry and Materials To determine stress distributions in the vessel and nozzles, finite element stress analysis was conducted. The geometric details of the CR-3 vessel are shown in Figures 3-2 through 3-4. The dimensions in these figures are based on information contained in the drawings from References 9 through 16. If minor discrepancies were found in the vessel wall thicknesses in these drawings, the as-fabricated thickness at a given location was used. The geometric details of the nozzles are shown in Figures 3-5 through 3-7. The dimensions were developed from References 17 through 19. The vessel plate material is SA-533, Class 1, Grade B (modified). The vessel flange and nozzle forgings materialis SA-508, Class 2. The vessel stud bolts were fabricated from S A-540, Grade B23 steel (20]. The reactor pressure vessel at CR-3 was constructed in accordance with the 1965 ASME
, Code, Section III, with Summer 1967 Addenda [21]. Material properties for purposes of the updated stress analysis were obtained from the 1989 version of the Code and are presented in Table 3-3 [22].
SIR-95-135, Rev. 0 - 3-5 Structural Integrity Associates, Inc.
i g
?
3.3 - Loadings and Loading Combinations To determine the stresses in the vessel shell and nozzle regions, several load cases were evaluated l based on current operating pressure and temperature (P-T) limits at CR-3 (for in-service leak tests) as defined in Reference 23. Based upon the limit line shown on Figure 3-8, several loading conditions have been identi6ed to be the most limiting from a fracture mechanics standpoint, as shown in Table i 3-4. Each case represents a point on the P-T curve, whereby the lowest temperature, highest pressure, and maximdm heatup or cooldown rate was conservatively used. For each load . , ] f combination, thermal stresses will be computed assuming a " quasi" steady-state temperature ! distribution associated with the heatup rate with the fluid temperature being at the stated temperature on the P-T curve and the existence of bolt-up stresses. Load Combinations (LC) I through 5 represent heatup conditions. Load Combinations 6 through 12 represent cooldown conditions. For the core Hood nozzle to shell weld location, cooldown load cases have been derived from Reference l
- l. 36 as the nozzle is exposed to a different transient than the vessel, (i.e., decay heat removal test). For i this location, cooldown load cases are identified in Table 3-4. Heatup load cases were taken from i
! the reactor vessel locations, LCl-LCS. [ i l Use of the loadings from Figure 3-8 will be especially conservative at end-of-life, since the operating { limits will probably shift to the right (higher temperatures) after EFPY=20, (explained later in the l j report, all evaluations are based on the vessel fluence at EFPY=32). 1 1 To conservatively assess cyclic crack growth (assumed to be due to startup/ shutdown cycles), the ;
- number ofheatups/cooldowns has been determined. Two hundred and forty (240) cycles are allowed ,
for the CR-3 plant. Seventy-seven heatup and cooldown cycles will have occurred at the time of the
- vessel inspections, leaving 167 cycles remaining [24]. This number has been used for purposes of assessing potential future growth of flaw indications.
5 b
, I 4
SIR-95-135, Rev. 0 3-6 f StructuralIntegrityAssociates,Inc. _= ' - _ _ . _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ - -- __ .__ - + c.-, * --1
3.4 Vessel Stresses and Stress Evaluation 3.4.1 . Operating Stresses An axisymmetric finite element model of the reactor pressure vessel (RPV) was developed for the ; purpose of determining the operating stresses, as shown in Figu,re 3-9 [26]. The model was developed using the ANSYS computer software [25]. The model was generated using isoparametric
~
finite elements for the vessel. No cladding material was included in the model consistent with the ) original vessel stress analysis [10,27]. The contact surface between the vessel shell flange and the closure head were not physically connected in the model, but rather they shared common coincident nodal locations. In the thermal analysis, the coincident nodes were coupled such that they had the same temperature. For stress analysis, the upper head is connected to the flange by a number of gap ; elements which started from the inner diameter and ran approximately to the end of the raised seating I face between the flange and the head. The bolt holes in the flange were not modeled but were
=~=W for by modifymg the properties of the material at that location based on area reduction of the holes [26]. The materials properties used for the model are shown in Table 3-3 [22].
The following basic loading conditions were determined from the closure stress report [27]:
- Gasket loads of 400 and 407.6 kips were applied to the mating flange surfaces at the inner and outer gasket grooves.
- A spring load,of 3 x 10 3kips was applied to the closure region (head flange to shell flange) during cooldown. A value of 6 x 10 3kips was applied during heatup.
~
- A total bolt load (for a total of 60 bolts) of 84 x 103 kips was applied for 70*F isotherdial conditions.
Five basic load stress cases were run using this model to determine the stress response. Several other l load cases can be derived from these basic load cases and will be discussed in Section 3.4.4.
~ SIR-95-135, Rev 0 3-7
Bolt-uo at 70*F - Basic Load Case _]. In this load case, the cold bolt-up load was applied to the flange. In addition to the bolt-up load, the spring and gasket loads were applied. The bolt load was applied to the model by the use of a 2-D spar element available in the ANSYS library. By adjustment of the spar length, the requir'ed bolt load was iteratively obtained. ' Bolt-uo at 604*F - Basic Load Case 2 . This case is similar to Basic Load Case I above except the vessel was maintained at 604*F. This case was run to determine the effect of temperature on the bending stress due to bolt-up. j Bolt-uo Plus Pressure at 604*F - Basic Load Case 3 This case simulates the maximum pressure at normal operating conditions. It is similar to Basic Load Cases 1 and 2 except that a pressure of 2240 psig was applied to the inside surface of the vessel. The pressure force was also applied between the top head and the upper shell flange to the first gasket.
~ Heatuo Transient - Basic Load Case 4 The initial temperature of the transient was 70*F with a heatup rate of 50*F per hour to a temperature of 604*F. Stress analysis was performed at the time 604*F was reached. No internal pressure was assumed for this case, however, the bolt, gasket and spring ledge loads used in Basic Load Cases I through 3 were applied. .
Cooldown Transient - Basic Load Case 5 This case is similar to Basic Load Case 4 except that it initiates at the operating (hot) conditions and simulates the cooldown transient. The initial temperature of the transient was 604*F with a cooldown rate of 50*F per hour to a temperature of 70*F. Stress analysis was performed at a temperature of SIR-95-135,~ Rev 0 3-8 h StructurallategrityAssociates,Inc.
280*F to assess the maximum effects of temperature dependency on the modulus of elasticity and coefficient of thennal expansion. 3.4.2 Weld Residual Stresses , l l For purposes of the fracture mechanics analysis, it was also assumed that welel residual stresses could be present at all locations. A cosine-shaped distribution was assumed in the base metal with a ; maximum surface tensile stress of 8 ksi [28] at the inside and outside surface.' The 8 ksi stress was conservatively extended into the cladding for purposes of evaluation. Since residual stresses may be beneficialin reducing the stress intensity factors, evaluations were also conducted without residual stresses so that the contro: ling condition could be determined. 1 3.4.3 Cladding Stresses I l Following PWHT of the vessel, the vessel cools to ambient. Because of the relative coefficients of thermal expansion, the cladding will yield in tension. A cladding stress of 35 ksi in the axial and circumferential directions is assumed at 70*F. This compares to 30 ksi minimum yield strength for most austenitic stainless steels in Reference 22. To calculate the reduction in cladding stress due to temperature, the mean metal temperature is needed. The through-wall temperature distributions for each of heatup/cooldown rates defined in the twelve load cases discussed in Section 3.3, can be found with the following algorithm: To,,,y, R x 17,,,,,,, - T_.,,, ,,,,,,, ) + T,,,,,,,, (12) where: .T,,,osj;,g = computed temperatures at each location, i, through the wall , for modified conditions . R = reactor temperature heatup/cooldown rate multiplier
=
rate (modified)/ rate (+50*F/hr and -50*F/hr) SIR-95-135, Rev. 0 3-9 StructuralIntegrity Associates, Inc.
T,,,,,,,,,,,,,, = reactor temperature used in ANSYS model,604*F or 280*F (for Basic Load Cases 4 and 5) T,, j,,,,,
= through-wall temperature distribution as determined from Basic Load Cases 4 and 5 in ANSYS model T,,,,,,,,,,,, = Load Combinations 1 through 12 reactor temperature.
Using the resulting through-wall temperature distributions for the various heatup/cooldown rates, the mean metal temperature (T,,,,,,,) can be found. Using the mean metal temperature, the reduction of cladding stress is determined with the following equation [29): E u (a u - a,,) (T-70) (1-v) (t + (Eu tu)/(E3 , t3 )) (13) where: v = Poissons Ratio,0.3 E,f,j E 3,,,= modulus of elasticity, ksi atmT . a,f,j a3,,,,= coefficient of thermal expansion,in/in *F,(mean from 70*F to Tm,,n) ocladyi,Id
= assumed cladding stress at 70*F (35 ksi) t,f,j 1,,,3 = thickness ofcladding and base materials For use in computing the flaw shape factor, Q, the reactor vessel material, A533 Class 1 Grade B has a specific minimum yield strength of 50 ksi [22) at ambient conditions. For the twelve load cases, the yield strength was determined based upon the maximum metal temperature existing at the region .
being analyzed. 3.4.4 Determination of Stresses for Various Regions The results of the RPV stress analysis were reviewed to determine the bounding stress distributions in the welds included in each region. To assure conservatism, the stresses for each loading case may not have been taken from exactly the same position. In addition, vessel wall thicknesses vary slightly for different vessel locations. (Vessel wall thicknesses do not include cladding.) The resulting " unit SIR-95-135, Rev. 0 3-10 Structurallategrity Associates, Inc.
load" stress d:nributions for each of the regions of the vessel for pressure (2240 psig), boltup, and thermal (heatup +50*F/hr) and (cooldown -50*F/hr) are given in Tables 3-5 through 3-11. Stress distributions for Regions D and E (Table 3-7) were obtained from finite element stress analysis of the inlet and outlet nozzles as described in Section 3.6. Special treatment of these regions was necessary due to the interaction (bending) effects of the nozzles on the shell located between these nozzles. Tim tables also show the temperature distribution in the vessel wall. Load multipliers were used to ratio these stresses to reflect the specific conditions for each load case in question.
" I 3.5 Loading Multipliers ]
Because the stress analysis was linear, the basic loading conditions described in Section 3.4.1 can be recorr' :ned using factored loads to define the state of stress for other loading conditions shown in Taba. 3-4. The multiplying factors were derived to reflect the actual stress and temperature distributions for all of the other loading cases. ., 3.5.1 Pressure Stress Load Multiplier
'Ihe stated pressure (in ksi) for each load case divided by 2240 psig was used as a load multiplier.
For example, Load Combination 1 is evaluated at 391 psig, therefore; the load multiplier is 0.17; 0.49 for Load Combination 3; and 1.1 for Load Combination 5 and Load Combination 6. 3.5.2 Bending Stress Load Multiplier Although temperature has a minimal effect on the bolt load bending stress, the stresses,decicase by about 10% at normal operating temperature. The resulting decrease in bending stress at the fluid temperature for each of the eight loading cases was then interpolated and used as the load multiplier for the specific load case. SIR-95-135, Rev. 0 3-11 StructuralIntegrity Associates, Inc.
2 ' 3.5.3 Thermal Stress Load Multiplier i i For the thermal stresses, the stated heatup/cooldown rate for each load combination (divided by l
' 50 or -50) was used as the load multiplier. For example, for Load Combination 1, the heatup rate j I
is 30*F per hour. Therefore, the load multiplier for this case was 0.1. For Load Combination 11, the load multi'p lier is 0.2. *
~3.5.4 Weld' Residual Stress Load Multiplier l' The weld residual stress is input as unit load cosine distribution with a load multiplier of 8, cunr.5ponding to the 8 ksi weld residual stress, as discussed in Section 3.4.2. A load multiplier ;
of zero is used to simulate the absence of weld residual stresses. i
- 3.5.5 Cladding Stress Load Multiplier l
The temperature dependant cladding stress can be determined with the use of the equation discussed in Section 3.4.3. The ratio between this value and the cladding stress at 70*F (35 ksi) 'l was used as the cladding stress load multiplier for each load combination. l
- i 3.6 Vessel Nozzle and Upper Shell Stress Analysis l
. An ANSYS 3-D finite element model was developed for determining stresses around the inlet, outlet,
- and core flood nozzles. A model was developed for each of the nozzles as shown in Figures 3-5 r through 3-7, assuming symmetry conditions between the nozzles. (For simplicity, the weld build-up j area at the inside of the outlet nozzle was not included.) This was quite conservative for the outlet ,
nozzle since the model was constmeted with an adjacent outlet nozzle and it was assumed that no build-up area reinforcement existed. No cladding was included for either nozzle. A simplified upper ( flange model was included with loadings applied to simulate boltup, pressure, heatup, and cooldown ! loadings, with tne resulting shell stresses comparing quite well to those from the 2-D model discussed , l in Section 3.4 [30,31,32]. During cooldown, flow to the nozzles (from the reactor coolant pumps) l l SIR-95-135, Rev. 0 3-12 { ShucturalIntegrityAssociates,Inc. , l l
tenninates at 280*F, and decay heat removal starts with flow through the core flood nozzle [36,37]. H Therefore, two distinct cooldown rates exist for the inlet and outlet nozzles. For the core flood ' nozzle, four distinct cooldown rates exist. Material properties and loading conditions were identical to that for the 2-D model [30,31,32). Bounding stress output for each of the nozzle-related regions l is included in Tables 3-11 through 3-16. For purposes of running the various load combinations, the same loading multipliers discussed in Section 3.5 were utilized. For the inlet, outlet and core flood nozzle regions, there was considerable variation of the boltup and , pressure stresses around the nozzle, especially in the hoop direction relative to the nozzle centerline. [ For these regions, the state of stress was determined for two subregions, with the hoop stresses being highest near the top and bottom of the nozzle (aligned with the hoop direction of the vessel). Thus, one set of stresses will represent the top and bottom 90' portions of the nozzles while another will represent the lateral 90' portions of the nozzles. For the clad stresses at the nozzle inner corners, it was assumed that the stress and stress intensity factors in the cladding and in the adjacent base metal would be identical to that for the adjacent 12-inch thick plate. For these locations, no weld residual stresses were applied. i j SIR-95-135, Rev. 0 3-13 f StructuralIntegrityAssociates,Inc.
b Table 3-1 - Grouping of Vessel Locations behat Maran Adjusend RTNDT Fluence Chenusmy oa o, rte,r ('/4t) Tm Descnpten ID m. [3] T N!cm2 (2) Factor T (4) T . 7 Aamson A Closure Head Flamme 6 625 30 NA NA NA o 30 Shou classe Head Center Duc MK824 6.625 30 NA NA NA 0 30 She8 Closue Head Flanes 12 to NA NA NA 0 to Nemson B Unser Head to Closure Plana, weed 6 625 -27 NA NA NA o 27 Wald Upper Head to Closwo Flange 6.625 -27 NA NA NA 0 -27 Rossen C Vesses Flmage et Adjacean Shens/ Weeds 12 to NA NA NA 9 10 i Shot Upper SheG flange 12 10 NA NA NA 0 10 i , Wold Vessel Flange to Nozzle Belt 12 -27 NA NA NA ' 0 27 Shen Upper Nozzle Shed 12 10 NA NA NA 0 to Rameen D Lower Neente Shoe 12 3 NA NA NA 31 65 Shou tower Nozzes Shes (1) 12 3 NA NA NA 38 65 Rassen E Naaste to Neeste Belt Weeds & Adjacens SheEs 12 IS NA NA NA 0 10 Shou Upper Nozans shou 12 10 NA NA NA 0 10 Wald Nozzle Bell to Nozale Belt 12 -27 NA NA NA ' 0 -27 Ramese F Bettinne Weide & SheNs I 8 4375 20 $ 16E+tB 141.8 17 e 169 6 SheG imwer Nozate Shse 8.4375 3 4.54E+18 94 17 31 147 Weld Nozzle Best to Upper SheO WF 1691 8.4375 27 4.54E+18 159 12.5 0 122 Wold Nozzle Bek to Upper SheG SA 1769 8.4375 -27 4.54E+18 173.6 12.5 0 133.4 Shea Upper Shou Al.2071 8.4375 20 5.16E+18 118.7 17 0 150.8 Sher Upper SheG A1207 2 34375 20 5.16E+18 141.8 17 0 169.6 SheB Louver SheD A2-207-2 8.4375 45 4 96E+18 82.6 17 0 145 4 . Rassen G Beethne Weids e SheNs II 8.4375 -27 4 SE+18 152.2 12.5 e i19 Shot immer Shot A2-2071 8.4375 10 4.96E+18 82.6 ' 17 0 90.4 Weld Upper Shot ' . WF 8,18 8.4375 27 4.8E+18 152.2 12.5 0 119 Waid Upper Shos to Louver SheB WF 70 8.4375 -27 4.96E+18 142.2 12.5 0 112.3 Waid toever Sheg t _ S A 1580 8.4375 27 4.21E+18 152.2 12.5 0 113.71 , Rassen H Transetaan Rossen 1 5 45 3 55F+16 82.6 17 e s3.3 She8 imever shou @ Trenneen A2-207-1 5 40 3.55E+16 82.6 17 0 28.3 SheD Lower Sho8 (d Tranmaan A2-207-2 5 45 3.55E+16 ' 82.6 17 0 83.3 Remsen i Transesten Ramses il 5 to 355E+le 67 17 o 47 5 Wekt imwer Shou I - SA 1580 5 -27 3.55E+16 152.2 12.5 0 5.9 Wald Imover SheD to Head Tranmoon WF154 5 27 3.55E+16 196.7 5.1 0 6.6 Shen Head Tranmaan Piece 5 10 3 $$E+16 67 17 0 47 5 Reason J h Head 6 to NA NA NA o 10 Shou
- Head Tranmaan Puse (1) 5 LO NA NA NA 0 10 Wald !! sad Transition to Bottaen Head 27 NA NA 5 NA 0 -27 a
Shau Bonom Head Mk#6 10 NA 5 NA NA 0 10 Notes: 1. Unirradiased portens of shnas and even.
- 2. nuance terms are taken from "Maasna t Eveluanon and Esemanon of Reference Temperanno for Crystal River Unit 3".
SI FDs: FPC.01Q 301, Rev.0 and as imponed at the cladding-to base metal meerface. Far APPENDA analyms, Buence vahams must be ausnuated through the claddag.
- 3. Taken from "RPV Fuute Element Smens Analyus*, St Fue: FPC 01Q-302 Rev0.
I
- 4. c terms are the nununum of either the recanunended values in Reg. Ouule 1.99 for welds and base matenal or 1/2 4.RTNDT. '
Tw nTTT.WA analyses *28'(for evelds) and 17'(for base masenal) a used. 6 SIR-95-135, Rev. 0 3-14 g g l l Table 4-2 ; Grouping ofNozzle and Upper Shell Weld Locations i i F
. b imual Maryn Adjusted t RTNDT Fluence Chenustry e. e, RTwar (1/4t) l Tvpe
- Desenpa on ID in. [2] *F N/cm2 (3) Factor 'F (4l 'F *F Realen K ladet Nes Ae to Nheu WeW 12.125 10 NA NA NA 0 to Shell Upper Noule Shell 12.123 10 NA NA NA 0 10 Forgmg Inlet Nonle MK#15 NA 10 NA NA NA 0 10 Forpng Inlet Nonle MK 818 NA 10 NA NA NA 0 10 Foryng inlet Nonio MK *ts NA 10 NA NA NA 0 10 Forgms Inlet Nonle MK #18 NA 10 NA NA NA 0 10 i Weld Nonle/Shell 12.125 27 NA NA NA 0 27 Restem I, Outist Nasale to 8ine5 Weld 12.125 le 2.75E+16 2M 5.2 0 30.6 Shou Upper Nonle Shell 12.123 10 NA NA NA 0 10 Furpeg Outlet Nonle (l) MK#19 NA 10 2.78E+16 241 5.2 0 30.6 Weld Nonle/Shell 12.125 27 NA NA NA 0 27 Resten M Core Fleed Nessie to SleeG Weld 12 30 NA NA NA 0 30 Shell Upper Nonle Shell , 12.123 10 NA NA NA 0 10 Forging Core Flood Nonle(1) MK#17 NA 30 NA NA NA 0 30 Foryng Core Flood Noule adK#17 NA 30 NA NA NA 0 30 Sold Nozzle /Shell 12.123 27 NA NA NA 0 27 Resteen N Inist Neente Corner Crack NA 10 NA NA NA 0 10 Faryng inlet Nonle Mr sts NA 10 NA NA NA 0 10 Foryng Inlet Noszie MF#18 NA 10 NA NA NA 0 10 Forging Inlet Nonle MK #18 NA 10 NA NA NA 0 10 1 Forens Inlet Nonle MK#1B NA 10 NA NA NA 0 10 Reglen O Outlet Nessie Corner Creek NA 10 2.7BE+16 241 S.2 0 30.6 Forgms Outist Nonie(l) MKs19 NA 10 2.78E+ 16 241 S.2 0 30.6 Realen P Core Fleed Neeste Corner Crack NA 30 NA NA NA 0 30 Forpng Core flood Nonle(1) MK#17 NA 30 NA NA NA 0 30 Forpng Core Flood Nonle MK#17 NA 30 NA NA NA 0 30 Notes: 1. Represents the Norst" material properties found m " Materials Evaluation and Estimation of Reference Temperature 7
for Crystal River Umt 3*. SI File: FPC.01Q 301, Rev.0.
- 2. Fluence terms are taken from above reference (in Note 1) and are reported at the cladding-to. base metal interface.
For APPENDA analysis, fluence values must be attenuated through the cladding.
- 3. Taken from "RPV Finite Element Stress Analysis *, S! File: FPC.01Q 302, Rev.0.
- 4. e aterms are the muumum ofeither the. - ' values in Reg. Guide 1.99 for welds and base material or 1/2 ARTNDT.
For APPENDA analyses,28'(for welds) and 17'(for hane material)is used I SIR-95-135, Rev. 0 3-15 StructuralIntegrity Associates, Inc.
E! . llc Table 3-3 L ? i, j , Material Properties ofCR-3 Vessel l - :c l 0
- 4 O i i Vessel Metodel - A-533-Gr. 8 T. _ _ _ , *F Metodel Property 70 100 150 200 250 300 350 400 450 500 560 800 es, pel (1E66 29.2 29.0 28.8 28.5 28.2 28.0 27.7 27.4 27.2 27.0 26.7 26.4 eips, inren (1E-el 7.06 7.06 7.16 7.25 7.34 7.43 7.50 7.58 7.63 7.70 7.77 7.83 tun, Stadhr-ft' 22.3 22.6 23.1 23.4 23.7 23.8 23.8 23.8 23.7 23.5 23.2 23.0 d, ft2/hr O.429 0.427 0.424 0.420 0.415 0.408 0.399 0.389 0.378 0.366 0.354 0.342
- c. Stadib.*F O.1063 0.1082 0.1114 0.1139 0.1168 0.1193 0.1220 0.1251 0.1282 0.1313 0.1340 0.1375 dans, Edit
- 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 nusy 0333 0 333 0.333 0.333 0 333 0.333 0.333 0.333 0.333 0.333 0.333 0333 Flange Metodel- A-508-64-Cl 2 T _ _ _ _ _ . *F '
Matesial Property 70 100 150 200 2 54; _ 300 360 400 450 500 550 800 Y es, psi (1E61 29.2 29.0 28.8 28.5 28.2 28.0 27.7 27.4 27.2 27.0 26.7 26.4 g alpa, inAn 11E-6) 6.50 6.50 6.57 6.67 6.77 6.87 6.98 7.07 7.15 7.25 . 7.34 7.42 ka m, Stu/hr.ft' 23.60 23.70 23.90 24.00 24.00 23.90 23.70 23.60 23.30 23.10 22.70 22.40 d ft2/hr O.4540 0.4470 0.4370 0.4270 . O.4160 0.4060 0.3960 0.3850 0.3740 0.3620 0.3500 0.3390
- c. Stu/Ib *F O.1063 0.1084 0.1118 0.1149 0.1180 0.1204 0.1224 0.1253 0.1274 0.1305 0.1326 0.1351 dens. Silft* 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 numy 0.333 0 333 0.333 0.333 0.333 0.333 0.333 0.333 0 333 0333 0333 0.333 Type 304 Steisdase Steel ISA240 Platel T - _- _ _ _ _ , *F Meterial Nw1v 70 100 150 200 250 300 350 400 450 500 550 800 es, psi l1E6) .28.3 28.2 27.9 27.7 27.4 27.1 26.9 26.6 26.4 26.1 25.8 25.4 g mIpa, in/in (IE-6) 9.11 9.16 9.25 9.34 9.41 9.47 9.53 9.59 9.65 9.70 9.76 9.82 hus, Stu/hr ft' 8.35 8.40 8.67 8.90 9.12 9.35 9.56- 9.80 10.00 10.23 10.45 10.70 d, ft2/hr O.150 0.150 0.153 0.155 0.157 0.159 0.160 0.163 0.164 0.166 0.168 0.171
- c. Stu/lb *F O.1140 0.1149 0.1163 0.1176 0.1189 0.1203 0.1221 0.1229 0.1248 0.1261 0.1269 l
0.1282 dens. Ib/ft* 489 024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 489.024 0.333 0.333 489.024 nusy 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 , I~ m - Nuts: To smudate the bolt in the fxAe reduction in stiffness the value of 0.517 was rniAtplieds into ex. kmx and c for Bolt Meterial. h 8 ar GT 5 9 . 9 P --w_ ..%-. -, ,% . , - . .% , , .. . . , . . . ~ . .t e. e- - _ - .e . . . . _ _ , . _ . < . , --.e .
t Table 3-4 Appenda Load Cases i ' Reactor Vessel Locations r Load Combination Temperature ("F) Pressure (psig) Heatup/Cooldown ! { LD. Rate ("F/hr) { i LCl [1] 160 391 50 3 LC2 (1] 215 500 50. l l
- LC3 290 1107 50 -
l j LC4 330 1659 50 i LCS 369. 2500 50 l LC6- 369. 2500 -100 i LC7 330 1659 -100 , LC8 280 1015 -100 LC9 215 500 -50 t i- ! , LC10 [1] 150 391 -50 LC11 [1] ,70 391 -10 LCl2 [1] 70 391 0 ; t i
. Core Flood Nozzle to Shell Weld LC6 385 2240 -100 l
LC7 278 993 -50 LC8 [1] 150 391 -50
- LC9 [1] 70 391 -10
. Notes: (1) Represents approximately 20% of Design Pressure Conditions (low temperature, i depressurized conditions). For these cases (in regions near local discontinuities), ;
the "L" option is utilized in the APPENDA program which gives lower safety factors than normal operating conditions ("N" option). - t SIR-95-135, Rev, 0 9
.17 StructuralIntegrity Associates, Inc.
l- [ .
. . _ _~ . _ - ._
f - Table 3-5 Stresses for Regions A and B l Closure Head / Flange Welds i Meetus 60*W Cooscown 60*W 8ettup 9 70*P Soft-utS 604*8 Pressure (2240 med ' Streen Streme Oesterw:e Ansel Moon Amass Moop Anasi Moop Moop a mies Tomo Amie Moco Temp 0.000 15.00 0.80 14 66 6.09 8.728 11.127 0.03 18.21 583.0 a.5 6 17.53 295.5 0.638 11.83 7 83 *11.60 0.91 8.900 11.502 0.86 414.10 545.1 8 63 15.48 300.4 1.278 8.82 8.45 -8.28 P.72 11.048 11.889 4.77 12.05 578.0 4 60 13.45 304.9 1.920 5.20 9.26 .l.08 8.52 12.147 ' 12.23 2.92 10.20 571.5 2.91 11.62 309.0 2.568 1.88 10.08 1.85 8.31 13.223 12.887 1.30 8.54 585.7 1.41 9.97 312.9 3.218 1,42 10.88 1.35 10.10 14.300 12.96 0.13 7.08 560.8 0.08 8.5C 315.4 3.873 5.33 12.08 S.10 11.17 16.399 13.03 1.39 4.01 558.2 0.25 7.02 317.9 4 828 10.13 13.59 9.70 12.82 15.857 12.78 1.00 4.79 552.8 4 45 5.78 319.8 5.287 15.50 15.17 14.88 14.18 17.17 12.78 1.24 3.80 549.7 0.41 4 80 321.1 5.950 21.98 17.07 21.07 15.98 19.24 13.41 1.20 3.06 647.7 0.04 4.08 321.8 8 Sie 31.90 20 05 30.58 1884 23 8 14 84 1.13 2.81 548.8 0 50 3.73 322 1 Table 3-6 Stresses for Region C Vessel Flange and Adjacent Shells / Welds 4 Meetup 50*FW Coasdown 60*Fh 4 Soft.up 9 70*P soft.up $ 804*p Pressure (2240 pan Stress Strese Distence Amies Hoop Amisa Hoop A naes Hoop Azaal Hoop Temp Amiel Hoop Temp 1 0.000 10.50 1.02 .10.30 0.84 9.245 15.4722 16.40 18.43 589.1 16.88 18.77 302.9 i 1.213 -8.50 - 1.60 8.38 - 1.41 8.8787 15.122 11.87 13.72 571.8 12.35 14.16 317.1 1 2.425 6.45 2.17 -6.36 1.98 8.498 14.773 7.73 9.44 557.5 8.18 9.94 329.8 3.638 4.36 2.74 -4.30 2.54 8.097 14.437 -4.12 -5.74 545.3 4.49 6.24 341.0 4.850 2.26 3.31 -2.23 3.10 7.686 14.106 1.01 2.59 534.8 1.25 3.06 350.7 8.063 0.17 3.86 0.16 3.65 7.2777 13.797 1.69 0.05 525.9 1.00 0.38 358.9 7.275 2.59 4.40 2.54 4.19 6.475 13.488 3.54 2.18 518.6 3.86 1.80 365.6 8.488 5.59 4 94 5.48 4.72 5.925 13.20 4.73 3.82 512.7 5.13 -3.50 370.8 9.700 8.98 5.57 8.79 5.29 5.208 12.857 5.81 5.31 508.3 6.02 4.75 374.5 10.913 13.27 8.48 12.99 6.17 4.52 12.292 8.11 6.27 505.4 6.39 5.84 376.7 17.125 20.39 8.41 19 95 8.04 4 64 12.19 6 58 8.67 504 3 -7.42 6.05 3774
. SIR-95-135, Rev. 0 3-18 -
StructuralIntegrityAssociates Inc.
1 Table 3-7 . Stresses for Regions D and E Lower Nozzle Belt Shells Boetup Pressure Hestup Coo 6down 1 Dissence Hoop AmW Hoop Asid Hoop Axial 7emp CooWown 2 Hoop Amid Temp Hoap fini tksd and fasd nad Ausd 7emp (ksd and 'F and nsd 0 1.764 3.984 0,742
'8 ned and 'F 7.716 11.964 14.073 598.5 13.727 1.653 13.756 285.9 10.764 10.757 88.6 1 1.681 0.730 8.558 -8 546 10.684 587.3 10.397 10.544 296.1 8.146 8.119 2 1.542 1.399 10.718 9.399 5.128 7.295 97.3 576.1 7.285 7.412 306.3 5.662 3 1.447 1.120 11.648 10.138 5.627 105.7 3.236 4.730 567.2 4.702 4.770 4 1.358 0.842 12.578 314.6 3.675 3.752 112.5 10.877 1.219 1,946 558.3 2.120 2.615 5 1.317 0 568 13.466 323.0 1.688 2.149 119.4 11.585 0.5 95 0.308 551.5 0.165 1.038 6 1.301 0 315 329.4 0.186 0.913 124.7 14.355 12.293 2.500 2.564 544.7 1.207 7 1.366 0.539 335.9 -0.892 0.324 1300 0.166 15.340 13.089 3.787 4.201 539.9 8
2.183 1.746 340.4 1.850 1.279 8.431 0.016 10.587 13.949 8.164 5.838 133.7 535.1 3.179 -2.952 345.0 2.408 9 1.572 0134 17.849 15.483 8.001 2.234 137.5 8.866 532.3 3.964 3.862 347.8 10 1.714 0.179 19.112 17.017 3.008 2.963 139.7 8637 7.882 528.5 -4.749 -4.773 350.5 11 1.995 0.103 20.697 3.607 -3.993 142.0 18.683 7.179 8.321 528.6 5.523 5.811 12 2.279 0 028 351.4 -4.241 4.511 142.7 22.283 20.308 7.814 8.751 527.6 5.537 6.850 352.3 4 267 5.329 143.4 Table 3-8 Stresses for Regions F and G Beltline Welds and Shells (I,II) I I Heatuo 50*F/hr Cooldown 50*F/hr Pressure (2240 psi) Stress Stress Distance Axial HooO Axial H000 Temo Axial HooO Temo 0.000 10.96 24.06 5.85 -6.06 . 599.9 8.68 6.80 294.3 , 0.844 10.94 23.9 -4.10 4.17 592.9 6.38 4.86 300.5 1.688 10.91 23.6 2.51 2.37 586.7 4.26 3.10 30S.1 2.531 10.88 23.39 1.15 -0.82 581.3 2.38 1.58 311.0 3.375 10.85 23.18 -0.02 0.49 576.7 0.70 0.27 315.2 4.219 10.76 22.97 0.88 1.56 572.8 0.00 0.02 318.7 5.063 11.19 22.77 2.23 2.62 569.6 0.03 0.02 321.6 5.906 11.64 22.58 3.35 3.47 567.1 0.05 0.02 323.9 6.750 12.13 22.5 4.25 4.10 565.4 0.08 0.02 325.4 i 7.594 12.65 22.3 4.94 4.49 564.3 0.11 0.03 326.4 { 8.438 13.22 22.20 5.42 4.66 564.0 0.14 0.03 326.7 l t . SIR-95-135, Rev. 0 3-19 Structuralintegrity Associates, Inc. I
i Table 3-9 Stresses for Regions H and I ~ Transition Regions (I,II) 1 Pressure (2240 pod Stress Stress ! Axial Hoop Axial Hoop Temp Axial Hoop Tomo , Distance 20.36 17.68 13.58 7.98 600.8 13.42 7.81 291.5 0.000 17.78 16.93 9.12 -5.75 597.1 9.00 5.67 294.7 0.640 17.2 16.79 -0.15 -4.20 594.1 6.10 4.23 297.5 1.164 16.91 16.66 3.56 -2.81 591.4 3.55 2.92 299.8 1.687 . 16,81 18.58 1.26 1.58 589.1 1.29 1.77 301.9 2.211 16.82 16.51 0.82 -0.49 587.2 -0.77 0.73 303.6 2.735 16.9 16.47 2.72 0.47 585.7 -2.66 -0.18 305.0 3.259 16.43 4.43 1.30 584.5 -4.37 0.99 306.1 3.782 17.01 16.41 5.98 2.02 583.6 -5.93 -1.68 306.9 4.306 17.13 16.38 7.37 2.62 583.0 -7.34 2.28 307.4 4.830 17.25 16.38 8.73 3.12 582.8 8.74 -2.79 307.6 5.354 17.46 Table 3-10 Stresses for Region J 4
. Bottom Head Region
- Heatup 50*F/hr Cooldown 50*F/hr 4
Temp Stress Temp Pressure (2240 psil Stress Hoop Axial Hoop Distance Axtel Hoop Axial 2.31 -8.39 601.5 1.042 9.08 289.2 0.000 4 .67 15.73 , 1.95 7.66 599.1 0.704 8.31 291.5 0.500 19.5 15.78 1.53 -6.86 596.9 0.413 7.03 293.6 1.000 19.29 15.85 1.06 -6.16 595.0 0.2613 7.24 295.4 1.500 19.08 15.92 0.50 -5.55 593.4 0.2012 6.94 297.0 2.000 18.86 15.99 16.06 -0.06 5.03 592.0 0.2999 6.74 298.3 2.500 18.88 0.04 4.60 590.8 1.355 6.63 299.4 3.001 19.07 16.13 0.08 4.26 590.0 2.474 6.62 300.3 3.501 19.25 16.20 16.28 0.08 -3.99 5B9.3 3.642 6.70 300.9 4.001 19.41 16.35 0.05 3.79 588.9 4.84 6.89 301.3 4.501 19.54
-0.08 -3.68 588.8 5.978 7.12 301.4 .
5.001 19.64 16.40 SIR-95-135, Rev. 0 3-20 { StructuralIntegrity Associates, Inc.
l 1 l Table 3-11 .. Stresses for Region K j Inlet Nozzle Weld 1 I!!!ct Radial ; (0-45',135' 180') (45'-135') i Hamsup Cooldown I
- Cooldown 2 Pressee Bottup Presses Bottup Stress Temp Stress Temp Stress Stress Stress Temp Stress Stress T (ks0 'F (km) T (ks0 (km) (ks0 (km) (km)
Distamos 9.290 85.4
-10.165 599.2 11J74 284 6 .
0 5.577 I.220 0.546 1.818 1 8.178 296.1 6.717 95.3 1.640 1.679 7.348 586.0 1.165 5.471 1.060 99.1 5.049 580.6 6.059 300.6 4.954 5.621 0.946 2.461 1.574 2.038 307.7 2.855 105.1 , 1.524 2.641 572.3 3.469 3 494 5.946 0.792 3.578 ' 564.7 1.585 314.2 1.343 110.6 4.422 1.508 1.011 4.658 5.866 1.107 112.9 561.5 0.879 317.0 0.772 1.155 4.837 1.493 -0.443 5.240 6.085 115.7 0.409 557.6 0.018 3203 0.048 6.413 1.228 5.459 1.470 6.114 0.120 116.6 0.745 5563 -0.199 321.4 6.491 6.523 1.252 5.666 1.463
-0.933 325.4 -0.680 120.0 6.526 1.373 2.034 551.6 7.569 6.851 1.376 122.2 550.0 1.540 328.0 1.154 1.218 7.445 1.169 3.135 8.734 7.512 1.272 122.7 3.413 547.7 -1.692 328.6 7.677 1.179 7.725 1.153 i 9.025 330.3 -1.780 124.2 8.476 0.924 4.225 545.5 -2345 10.481 7,744 0.535 l 2.847 331.3 -2.170 125.0 9.233 0.840 4.749 544.4 11.645 7.645 0.069 125.2 4.946 543.9 -3.081 331.5 -2348 7.231 0.615 9.329 0.807
- 12.227 Inlet Hoop (0-45'.135' 180') (45'-13 5') Hestup Cooldown 1 Cooldown 2 Pressure Bo! tup Pressere Bottup Stress Temp Stress Tamp Stress Stress Temp Strom Stree Stress T (km) T (km) T h) Distamos (km) (km) (ka0 (ksa) 284.6 11.362 85.4 4.009 12.352 599.2 14.146 0 71.503 10.170 18.131 296.1 8.837 95.3 3.827 -9.103 586.0 10.974 1.1645 30.000 9.534 18.248 8.667 300.6 6.974 99.1 3.691 6.559 500.6 2.0379 29.013 9.057 18336 572.3 5.525 307.7 4.499 105.1 8.245 18.235 3.437 3.148 3.4935 27.016 2.636 110.6 0.636 564.7 3.149 314.2 25.374 7.592 18.105 3.229 ! 4.658 1.904 112.9 0.330 561.5 2.222 317.0 5.240 24.572 7.257 17.972 3.109 s 0.831 3203 0.806 115.7 2.930 1.833 557.6 6.!!4 23J70 6.756 17.772 0.440 116.6 f i 6.405 22.969 6.588 17.705 2.870 2.333 5563 0368 321.4 1.285 325.4 0.871 120.0
- 2.591 4.011 551.6 7.569 21.313 5.865 17353 l 550.0 -2.736 328.0 2.027 122.2 5.087 16,917 2.271 5362 ,
8.734 19.606 -2.316 1217 5.700 547.7 3.099 328.6
- 9.025 19.179 4.892 16.807 2.191 4.508 330.3 -3.429 124.2 16.004 1.605 6.767 545.5 10.481 16.785 3.650 5.496 331J -4.204 125.0 1.099 7.497 544.4 11.645 14.818 2.602 15.309 7.618 543.9 5.684 331.5 -4346 125.2 12.227 13.437 1.787 14.805 0.676 r
- Note
- Hoop, radial stresses taken from nozzle centerline. Hoop stresses are applicable to a radially-l oriented flaw; radial stresses are applicable to a circumferential flaw.
SIR-95-135, Rev. 0 3 21 Structural lategrity Associates, Inc. i 1
l ! l l l l l Table 3-12 .l l Stresses for Region L ; 4 Outlet Nozzle Weld Outlet Radial I (0-45*.135' 180*) (45'-13 5') Boltup Pressee Bottup Heatup Cooldown 1 Cooldown 2 Pressure Stress Stress Stress Temp Stress Temp Stress Tamp i Stress Stress l Y Distasos (km) (ks0 (km) (km) (ks0 1 (ks0 4 (ks0 0,018 1.940 -12.907 598.6 15.560 285.2 12.662 87.0 O 6.215 1.056 1.897 -11.119 592.6 13.341 290.4 10.853 91.5 0.611 6.289 1.004 0.771 1.832 -8.410 583.5 10.211 297.9 8.343 97.8 1.529 6.400 0.926 1.900 1.789 6.481 577.4 8.263 302.8 6.734 101.9 2.140 6.474 0.873 2.653 0.802 3.576 1.787 -4347 569.9 5.923 309.1 4.834 107.1 3.057 6.599 4.941 1.837 1.526 558.8 2.508 318.6 2.096 114.9 4.586 6.820 0.690 1.850 -0.582 555.0 1.329 321.9 1.148 117.6 5.198 6.138 1.5% 5.465 6.467 1.862 0.942 548.8 -0.494 327.4 -0.349 122.1 6.420 6.839 1.740 7.481 1.836 2.807 543.0 1.617 332.3 1.208 126.2 7.643 7.552 1.828 1.574 3 893 540.0 -2.175 334.9 1.641 128.4 8.561 8.113 1.767 8.409 9.055 1.543 4.631 538.0 -2.547 336.7 1.930 129.9 9.172 8.487 1.727 1.447 5.489 535.5 3.002 338.9 -2.283 131.7 10.089 8.869 1.532 9.852 1.156 6.006 533.0 -3.420 341.1 2.607 133.6 i 11.618 8.915 0.764 10.541 1.141 6.213 532.0 -3.588 341.9 2.736 134.3 12.229 8.933 0.456 10.911 Outlet Hoop (0-45',135'-l80*) (45*-135') Bottup Hastup Cooldown 1 Cooldown 2 ; Pressee Bottup Pressure Stress Temp Stress Temp Stress Temp , Stress Stress I (ks0 T (ks0 T (km) T C' (ks0 (ks0 12.829 598.6 14.255 285.2 11.281 87.0 o 28.981 10.522 16.228 3.602 3.561 11.036 592.6 12.526 290.4 9.917 91.5 0.611 28.398 10.204 16396 3.499 -8348 583.5 9.931 297.9 7.870 97.8 1.529 27.525 9.728 16.648 6.427 577.4 8.201 302.8 6.505 101.9 l 2.140 26.942 9.411 16.817 3.457 3385 4.113 569.9 6.095 309.1 4.846 107.1 l 3.057 25.991 8949 16.949 3.255 -0.771 558.8 2.923 318.6 2.402 114.9 4.586 24342 8.189 17.071 3.196 0367 555.0 1.807 321.9 1.535 117.6 5.198 23.691 7.883 17.084 17,036 2.281 548.8 -0.105 327.4 0.028 122.1 6.420 22.403 7.265 3.060 2.900 4.186 543.0 -1.873 3323 1.344 126.2 7.643 21.094 6.618 16.950 2.725 5.254 540.0 -2.905 334.9 -2.151 128.4 8.561 20.065 6.066 16.800 5.698 16.699 2.608 5.966 538.0 3.593 336.7 -2.689 1 29.9 9.172 19.379 2.375 6.853 535.5 -4.471 338.9 -3.370 131.7 10.089 18.292 5.077 16.504 1.792 7.733 533.0 5.524 341.1 -4 194 133.6 11.618 16.289 3.814 16.025 15 833 1.559 8.084 532.0 5.928 341.9 -4.507 134] 12.229 15.488 ? 309 Note: Hoop, radial stresses taken from nozzle centerline. Hoop stresses are applicable to a radially-oriented flaw; radial stresses are applicable to a circumferential flaw. l SIR-95-135, Rev. 0 3-22 StructuralIntegrity Associates, Inc. 1 i
__ _ _--__- . _ - .-- - - _ _ . _- .- ... -- -. . . . - . - --- . . . ~ . . . - , - . .~ C/.5. -.- , x Y Table 3-13 Stresses for Region M {
- y. Core Flood Nozzle Weld ~
Y< Core Mood Radial
- to.45*,I 3 i"-180") (45* 135*)
psensure _sukup pressure Ilotmp IW hI Couldsen 2 Ch3 th4 i sarnas ~ Seuss screes Seress Seuss - Tammy Seses Tassy Seems Tessy Sexus Tamur Seems Tessp insamm e dai) the) es) (km) (kni) T (W T the) T thel T insi) T .
~
0 00 6 829 2 906 2.415 6 929 -II.2M SM4 27 6I7 389 6 22.200 2978 15 883 159.7 17.622 72.684 1.58 6 659 2 543 2 678 7.429 -7.164 SEl 20 423 403 8 lim 8 3 49 16714 167.2 10 899 74.392 2.37 6 614 2.377 2.786 7.607 -5.309 549.6 17.088 450.5 50 055 321.7 S MS IM7 6 864 71136 ! 3 42 6 660 2.198 2 870 7 647 -1374 542.5 12.589 418.1 stem 3308 4<774 174 5 3.969 M eel 3 68 6 672 2.154 2.890 7 657 -2.888 548.7 11.399 4200 1532 3331 6.275 1714 3.247 M238 4.28 - 6 695 2 064 2932 7 677 -1.918 537.1 9.159 4238 3.722 337.7 . 1278 177.3 1.805 . M 587 g 5.52 - 6 738 1837 3 047 7.721 4.301 530 9 1305 430.9 0.895 346.2 1315 180.5 0.352 77.328 i 6 57 6 988 2 695 3.151 7.779 0888 SMS 2.592 435 7 -1.04l 352.3 1.8M 182.7 til5 7'.781 7 62 7.029 3 415 3.291 7 911 2 014 523 6 1.343 437.8 -I.583 3El 0998 183 8 4 021 78 984 r 5 55 7 050 3.774 3.340 7.9M 2.704 522.1 0.719 4M9 al.854 357.9 0 578 184.3 -8 089 78.250 l 9.73 7,317 4.714 3 696 8452 4.565 520.2 1.188 4317 -l.992 3598 -0.551 183 8 -0.270 M 287 ! 50 52 7 473 1869 3 878 8.721 1475 589.5 1.329 433 4 -1.994 359 1 -I.le3 183.2 -0358 ' 78 218 88.57 8294 5 865 4.753 10.288 7.426 520.7 R391 423.3 1.060 354 4 , -2.287 179 6 -0.319 77.869 Y o 12.% 8 988 6.392 5432 11.500 SJ89 525.5 9.412 414.5 3.354 350 4 -1918 177.0 1.249 77.585 ta l Core Mood Hoop (0-45*,135*-180") l (45*-135*) ; pressnes IW Pressure Italssy Hasesp chi Coaldema 2 r a.aaneen 3 - Comadouns4 serssa Sarcas sarssa Sacas Suses Tesup Seems Teamp Stress Tasup Serras Tesup Seuss Tener .g t hsemus deel (km) dail em) (ksi) T (tsi) T thni) T em) ' *F ge) 8 Y $ 0 00 21.321 9 3546 14.597 3 4449 -14 077 ,5M4 32.743 389 6 19.057 297.3 17.492 559 7 2 0099 72.3 1.58 20 227 9 390 14.4 % 1235 -8 974 568.0 24.659 392.0 12.223 3005 13.177 168.0 2 035 72.6 2 37 19 7'23 94M 14.383 3.1% 4.586 553.7 20 441 406.2 8.952 316.7 11 098 168.5 1.666 74.4 3 42 19.165 9.571 14.290 3.018 -3.839 547.8 14.275 412.4 4.949 3240 8 52 178 6 1.221 711 I 3 68 19 025 9 604 14 266 2.988 -3.152 548L7 12 M1 4200 3.949- 3331 7.8759 175 4 ' 1 110 Me 4 21 18 746 9.672 14 218 2 929 -l 778 SM 9 9.742 421.9 1.950 335 4 6.588l IM4 0 887 M2 ; 5 52 I5 198 9.784 I 1 730 3.530 0.315 535 9 4.133 4252 -1.093 339 4 4.2426 178 0 0 503 M6 6 57 17 47) 9 897 13.523 4.365 2.780 529.7 -2.523 432.4 -4 547 347.9 I.4068 181.2 0 044 77.3 7 62 16 822 9 897 13 319 5004 4.263 5218 4 684 4E) -6 4% 3512 -4 65773 183 0 4 274 77 8
%- 8 IS 164% 9 897 13 218 5.324 5 005 522 9 -8.M3 4384 -7.350 357.0 -l6617 184.1 -0 425 78 8 9.73 15175 9 546 12.775 6 081 6.953 521.4 -12.085 439.4 -9.219 358.9 -4 0669 184.6 4 Mo 78.3 to 52 14 480 9.3% 12.540 6 440 8 085 520.0 -13.099 434 9 -9.686 359I -5 01I2 183 6 4 881 78 3 Ia 37 12346 8 40) 12 148 6.530 9 196 519.8 -14.569 431.0 -8.839 - 358 0 -5 8086 182.3 -0 981 78 2 Il 7% 7 tot il 864 6 603 to 029 521.0 -15 671 420.3 -8.205 353.0 4 4067 178.7 -l 0% 77 9 k
i 2 66 o o E - I
$ Note: lloop, radial stresses taken from nozzle centerline. Hoop stresses are applicable to a radially-oriented flaw; radial stresses are l h9 applicable to a circumferential flaw. !
_. _ . _ - _ - - _ - - _ - . _ _ . . _ . , _ . _ _ . . . . _ . . ~ .
l l Table 3-14 Stresses for Region N Inlet Nozzle Inner Corner Inlet Comer Crack (0-4 5'.13 5*-t to") (45*.13 5') Pressure BoPuap Pressure Batmap Heansp Conkkmn i Cooldoenn 2 Siress Stress Strues Stress Strues Temp Stress Ternp Struse Temp Dessance (ka p (km) (km) (km) (km) *F (km) "F (km) "F 0.000 46 884 12.285 25.579 3.668 -10.405 598.7 15.377 284.5 12.847 83.6 0.889 43.229 11.226 24.459 3.550 -3.941 594.4 13.548 289.1 11.275 87.6 1.185 42.037 10.881 24.098 3.513 -8.463 592.3 12.957 290.5 10.764 89.0 2.073 38.552 9.874 23.056 3.406 7.063 588.0 11.244 294.5 9.250 93.0 3.258 34.720 8.763 21.881 3.205 -4.930 581.3 8.854 300.0 7.292 98.0 4.147 32.138 s.015 21.083 3.040 -3.232 576.2 7.041 304.2 5.811 101.7 5.035 29.652 7.293 20.321 2.875 1.595 571.2 5.276 308.2 4.363 105.3 6.220 26.793 6.429 19.329 2.593 0.362 565.5 3.099 313.0 2.622 109.4 7.108 24.714 5.804 18.641 2.392 1.873 561.1 1.479 316.6 1.321 112.6 8.293 22.099 4.963 17.653 2.075 3.452 556.4 0.396 320.5 4 179 115.9 ; 9.182 20.236 4.353; 16.922 1.831 4.538 553.2 -1.681 323.2 -1.199 113.2 10.070 18.444 3.762 16.252 1.589 5.547 550.2 -2.954 325.8 -2.211 320.3 11.255 15.90 2.766 15.173 1.080 6.361 547.9 -4.267 327.7 -3.248 122.0 12.143 14.527 2.016 16.054 0.710 7.005 546.1 -5.245 329.2 4.017 123.2 13.032 13.737 0.965 16.733 0.320 1.348 545.8 5.662 329.6 -4.330 123.6 14.217 13.293 -0.507 13.896 0.557 8.531 545.6 5.739 3298 -4.370 123.7 a Note: Hoop, radial stresses taken from nozzle centerline. Hoop stresses are applicable to a radially-oriented flaw; radial stresses are applicable to a circumferential flaw. 4 t SIR-95-135, Rev. 0 3-24 StructuralIntegrity Associates, Inc. t
Table 3-15 Stresses for Region O Outlet Nozzle Inner Corner , t Outlet Corner Crack - (0 45'.135* 180*) (45' 135') . Pressure Bohup Pneswa Bainap lieamp Cooldown 1 Cooldown 2 5 runs Stress Stress Stress Stress Temp Strums Temp Stress Temp Distance h) h) h) (kse h) T (ks0 Y (kso *F 0 48.477 14.126 25.756 4.1 11.358 600.88 13.696 282.03 11.846 79.28 1.0766 44 842 12.989 24.557 3.9619 -10.254 596.32 12.49 286.39 10.666 83.979 2.1532 41.318 11.888 23.403 3.8876 9.0643 591.46 11.21 291 9.447 88.837 3.2298 37.924 10.829 22.301 3.666 7.7754 586.24 9.8478 295.92 8.1833 93.88 . 4 3064 35.136 9.9407 21.443 3.5038 6.0135 580.56 8.0921 301.72 6.7097 99.252 5.0241 33.414 9.3875 20.929 33957 -4.76% 576.21 6.8753 305.49 5.7076 102.79 6.1007 30.899 8.5806 20.18 3.2358 -2.9242 569.62 5.0849 310.85 4.2462 107.7 7.1773 28 $56 7 823 19.464 3.0667 1.1808 563.27 33881 315.99 2.8701 112.18 8.2539 26.439 7.1242 18.789 2.874 0.4409 557.54 1.7952 320.64 1.5967 116.18 9.3305 24.419 6.4532 18.185 2.6817 2.1136 551.98 0.20317 325.17 0.32816 120.08 10.048 23.100 6.0138 17.803 2.5549 3.2197 5483 0.82289 328.08 -0.4921 122.58 11.125 21.213 5.3146 17.149 2.2961 4.4098 544.23 2.0701 331.48 1.4757 125.47 12.201 19369 4 6256 16.551 2.0436 5.6235 540.15 3.3358 334.89 2.4733 12836 13.278 17.537 3.9003 15.945 1.7441 6.6036 536.76 -4.3954 . 337.66 -33054 130.71 14.355 15.639 3.0522 16.438 1.3348 7.187 534.52 -5.2251 339.67 3.9556 132.41 15.072 15.077 2.4993 17.325 1.0768 7.6099 533 5.7618 341.02 -4.3786 133.55 16.149 14.649 1.384 18.416 0.81801 7.8661 531.97 4 0627 341.98 4.6175 134.37 17.226 14.939 0.14301 20.735 1.0568 8.5462 531.36 4 1301 342.59 -4.6679 134.89 Note: Hoop, radial stresses taken from nozzle centerline. Hoop stresses are applicable to a radially-oriented flaw; radial stresses are applicable to a circurnferential flaw. SIR-95-135, Rev. 0 3-25 Structural Integrity Associates, Inc.
f'e Table 3-16
?
C un Stresses for Region P go - Core Flood Nozzle Inner Corner , o Core Flood Colner Crack (0-4 $*,5 3 5*-180*) (4 5*-l 35*) Pressaarc Bolhip Pressure Bolhap Ileaeg Caul &mm I Cooldosen 2 Cec & loma 3 Cml&ma4 Seress seress Seress Serens seress Tesup Skens Teenp Serens Tesup Seress remip Seress 7esup - Ibesnos (Lai) (ksi) M) (kni) M) T M) T (kai) T (kni) T M) T 0 000 45 273 23 598 26.365 6.842 -14.282 565.7 79.631 220.1 47.625 2tl 9 34 142 124 5 4.387 70.8 0799 39.937 20.179 24181 6 080 -11.661 561.2 65.157 252.2 39 465 2298 28 868 131.4 3 682 71.5 8 065 38 268 19 182 23.502 5 844 -10.799 559 6 60 825 262 6 36 957 2358 27.229 133 7 3.461 71.7 1.597 35 087 17.398 22 204 5397 -9 094 556 6 52.886 282.9 31252 247 8 24 128 138 4 3 041 72.2 2.l30 32 869 16 I49 21.225 5 080 -7 649 553.8 45 959 299 2 27.877 258.4 21431 142.4 2.678 . 72.7 3 195 29 260 14 178 19 581 4 561 -4 881 548 0 33 988 3258 19 672 277 6 16547 149 6 2 OI) 73 6 Y 3 461 28 423 13 748 19.195 4 441 -4 173 546.5 38.256 332.0 17.742 282.3 15 191 15l.3 1.853 73.8 g
' 4 26o 26 2 o i2.7:i it iS9 4.3i3 -2.289 54ts 24.8:2 347.8 i2 sie 294.5 i2.263 i35 8 i.4i. 74.3 5058 24 521 II.967 17.327 4 494 -0.712 539.2 19 989 360.7 8.200 304 6 9.506 159 5 I 0 38 75.0 6 123 22 412 11.144 16.301 4.770 1.445 534 6 14 491 377,6 2.550 318 0 5.962 164 4 0 545 75.7 7 188 20 593 10.500 15 403 5 046 2.972 531.4 10.154 387.8 -l.433 326 8 3 096 167.7 0 153 76 2 8 253 18 975 9 998 14 608 5.370 4 470 528.2 4.893 397.7 -4 996 3351 0 409 170 9 0 216 76.7 9 052 17 722 9 562 14 017 5 578 5 407 526.4 0 925 402.4 -7.010 339 6 -l.368 172.7 -0449 77 0 10 117 16 137 9 017 13 294 5 852 6.773 524.5 -3.772 407.4 -8892 344.3 -3 394 174 6 -0698 77.3 11 182 14 438 8.377 12 632 6 089 8 210 523.1 -8.723 410.3 -9 568 347.3 -4 921 175.7 -0 874 77.5 12 583 12 285 7 602 12 211 6 442 9 914 522.2 -14.748 410 6 -8371 348 3 -6 340 175 8 -I046 77.5
! F n E i E 5 E
=
l
- t.
! 9 i s
@ Note: lloop, radial stresses taken from nozzle centerline Hoop stresses are applicable to a radially-oriented flaw; radial stresses are 2- applicable to a circumferential flaw. .a Y
{ N l 9 l ' l
i . I c- I m c:: c : s em c J c J
%_3 I _t 5 % - ~ @ Closure Head ~
Center Disk (Mk #24) j 15 ~~ s Y Upper Head to Closure Flange ) N a
' s Closure Head Flange / Upper Shell Flange 9
s
~h "
7 $ essel V Flange to Nozzle /Belt f - Core Flood Nozzle
\
(Mk #17) Inlet Nozzle ,
@ Up W Sneis I-~-*d ,
- (Mk #18) ,
NF or ---- - - - , Outlet Nozzle N e ( mr Crad) (Mk #1g) k
/
l [ Nczzle gg. l j (Vessel Side) hLower Nozzle Shell !
$' Nozzle Bet to Upper Shell I !
- g 1 $ n i
s U f f Upper Shell 2 Longitudinal Q (pper Shell Mk #A1) 61 " l j I Upper Shell to Lower Shell . B 3 M !
- f Lower Shell L [ ]
4 Longitudinal Q (owerShell Mk #A2) 6'1 , l 5 E " Lower Shell to Head Transrtion j l f @ Head Transition Piece /; 2'9%" Head Transition to Bottom Head / <
,@ Bottom Head (Mk / 2' 3%"
l % ~
* ~ 4 2 a > - g/ ~~
l Figure 3-1. Plates and Weld Locations of CR-3 Vessel l 4 S1R-95-135, Rev. 0 3-27 gg,,ggy,,y g,g,y,yyy pggggggggg, y,c, l
- e. ear e
4 W t me o , as.sstr g 8 73.ssTr R J L. As2-w L Y 100*R _ W Crystal River Unit 3 - Reactor Pressure Vessel, Top Head. 4 l Figure 3-2. Vessel Geometry at CR Top Head Region >
?
SIR-95-135, Rev. 0 ' 3-28 Structurnt integrity Associates, Inc.
i b t
- i. i 100* R ,
0 ! o ., ., n 83.8375* F fr
- h In !
B y , N 82.6875* R _ _
. L u
3.8125' R u t k i 84.1875* R ,, 12.125' , i Crystal River Unit 3 - Reactor Pressure Vessel, Flange, y b r Figure 3-3. Vessel Geometry at CR Flange Region SIR-95-135, Rev.' O 3-29 Structurallategrity Associates, Inc. t i
.. g I'
~
i 1
,, u , , ,,,,,, ,, ,, .
i Ih l l
; -V L i.
i i i l h l N 4 N
- 12.125" min -+ +- I
" t q, . s. '_ 641875' R -
b
, s ,, i N ' ; t h l . ? m i ! I k b i E e R n ,
t,
! s.43r tren -. +-
I L 05 5" R r,, c g i e
,I ,i -
4 l s' s-
-b l + .
i v i r_ _x "
't e
Cystal River Unit 3 - Reactor Pressure Vessel. r Figure 3-4. Vessel Geometry at CR Beltline and Bottom Head Regions SIR-95-135, Rev. 0 3-30 Structural . integrity Associates, Inc.
38.5625" . 12" . i
+-- 0.125" min.
6" R Cladding .
/' pg/ ,j d ,,,,//
n u
/# C 4 ~
o l k b $ I l n d Q, Nozzle -- ----------- ------- -------------------- gag
- Figure 3-5. CR-3 VesselInlet Nozzle Geometry SIR-95-135, Rev. 0 3-31 h Structuralintogrity Associates, Inc.
\
i J 44.875" ,. 12" .
+- - 0.125 min.
l //j/ j .. ll/// / /
'" <d n O
- d sO 'O r o.
8 O "
- O o
d m w w w n Q Nozzle -- -- ----------.--------------------------
- g. ,
Figure 3-6. CR-3 Vessel Outlet Nozzle Geometry SIR-95-135, Rev. 0 3-32 f StructuralIntegrityAssociates,Inc.
1 22.125" . 12" -
- O.
4 4 k 5 5 s Q O
, b I $ = =
n o. i = w n Q Nozzle -- _ _ . _ _ _ _ _ _ _ _ _ " . 95411r0 4 Figure 3-7. CR-3 Core Flood Nozzle Geometry i SIR-95-135, Rev. 0 " f StructuralintegrityAssociates,Inc. l
- .- , =-- . _. . - -
2500 . , , . , . . ..... . .[g,.... .- 5. . Themoonsafmacarm perason o 1 :'-* ~; Q T .*" _ *. . * :: . :.: DATA PO!NTS 2400 - - me bekar and to the nght of theIrtut . . . . . .._ _ . . . . . . . . _ . - Pont Ter c Press ? l . , . . . _ _+,. .+. _ .... ...
.a curve. Mergms are inciudedier the . . . .
A
.._ . . _ . - 60l . 391 :
. t. ;. ; 70 391
.2300 pressure dfferendalbetween poet of . . ,.. .. - -- u.+ ,. ; 4 B .
system pmesuremeasurement and
... . . 6 .. .. .. -. . . . .
2200 -7 the pmesure on the reactorvessel L .;- C 192j 488 ,
.... .. p.2 .9 . . -.e........ _..., .. -.._ - . . -
t ' region controlin0 heImit cLsve. . ~ . . _i D 215) 4RB 2100 " Mergms of 25 peig and10*F are .,
. . . . . ...a J ._
L_
._..- .a . .. .t .
E 217 587 ;
.a.a i .,. . ,.
2000 - included for poseble instnsnent error. .. ua 1 g -- .4.- 2 --" F 235 866 ," _. a > The following applies for cooldown: a~ _ p _- u.a > .
+-
G 260 823 .- ". 1900 - -
.;.._ _ g., H 290 1107 When the Decay Heat Removal - - - . - .- - - - . - - - - - - - - -. .m I 310 1366 .
1000 -"- Systemis opera 0ng with no RC ,-~~
----l . p. . . . _, --i._. . +. -_ ..- J 330 1659 [
pumps operating. theindcated OHR 'T ' I---- -- - - - -+ -' K 360 2042 ~. system stum temperature to the 1 --- j-t-; t-readorvessel shen be used. - - - - - --
.a . - - =
L 369 2500 i 1000 I .. .. ._ _ _ , , . - _ ,_ 5 4_
~
_._. 4 ._ _ 4,..,4..,_ .. Amammum step temperature change ? -- i - 4-
,_ .gga ~; ; . ,
of as ris asammie wienamming ;
; ; H +- . .+. ' .. . t --t-t- --/ ~4 -*- . --r r !
al RC pumps from opemtion with the -- ] l g .,. ; DHR system operaeng. The step
.A changeis deAned se the g f ,_.._ u ._ ~
[ g RC tery, Tc,(prior to stoppng ad RC r : M" - ' - - " - - - m gg.- j %
~
purrys)minus the DHRretum temp, . '-
..i " ---
g Tout (aner stopping as RC purge). , + h _ y ._ ,_,
._.] _;. t _a- - .i ___.. w 5
1 b5 , I h e-/ W-H-y;y
.n i
j1000
^
This curve referredto by l
'- Il. "~ * ,f -- ~~
2 _ Techneel Specification 3.4.3 -
.A. . _ ., , , a A; f~ -_ ; _p .-,
900 ,
;, r _, -jA .4.., . ' '>
ut4 a p.4 -t i .i o-u g ; /v ii -.,; i j .-- 4._
._ q .. .! I.
3 _ , 100 7 p', ._ ; a.
.__I' .._ _. .. '. ___.
a.. ..
. . _ _ 4
- g00 , , p' .
_ . .+ . ___
--- -E . f.. _ __.. . = ..= . a 500 g II,._ . .,; ,, .4_.
- . . ~ .
m .. ._. - ...
.I'----. _ . . .
400 . (, g p 7 300
,, A - .;- ; Appicacle for heat.c rates of s 50'F in any 1 how period and ,]
for cooldown rates of-j .~._ . . . ,_.i' . 4 200 T > 280*F
~ .+ . s 50* Fin any 1/2 ha.r period.
200?F 2 T > 150*F s 25*F in any 1/2 hour penod, --
" ~ - - - ,, j ; . ;,,, 4, - :D ...."..,_,'~_~~.J_. _ . 150'F 2 T s 10*F in arv i how period E 0 i ) i j , , i l ,
- 50 100 150 200 250 300 350 400 450 500 550 600 Indicated RCS Inlet Temperatura (deg F) 015 EFPY Curve Basis
- Peak Surface Fluence = 2.29 x 1039 n/cm2 @ 20 EFPY Figure 3-8. CR-3 Inservice Leak Test Pressure-Temperature Limits [23]
5IR-95 135, Rev. 0 3-34 h StructuralIntegrityAssociates,Inc. '
i i I 4 I J 1 i 4 i d j l 'l Figure 3-9. Reactor Vessel Axisymmetric Finite Element Model SIR-95-135, Rev. 0 '-35 StructuralIntegrity Associates, Inc. J
e i e1 I s N . s sa s
% &a-r u, , \
l
\\\
s s s\s s s
- ,- ) // i /
s (%s s s. s
' s s s N.
N N s N, s. g s s. N s. N N N-s N s.. ' s I N s. i s
- s. . -
Inlet Mcdel ! Figure 3-10. Inlet Nozzle 3-D Finite Element Model SIR-95-135, Rev. O StructuralIntegrily Associates, Inc.
'1 I
Q s + . s \\\\ . s sg , s%
,t -
s - N
- s .
/ / . s -
s s s s s. A s
% \
s s \ s. N N
% s.
N s s.. N ' s.. N K
- s. .
N i h m-Outlet Medel Figure 3-11. Outlet Nozzle 3-D Finite Element Model SIR-95-135, Rev. 0 3-37 StructuralIntegrity Associates, Inc.
1 N 1 ~-~~ '~ N s
-- - s ~~~ s - - -- - - s- - - - ,
s % , - s s - - s % - - s s - - e - s.
.N 8
N , - - N - - N N N x N , xx - - s --- - -- s s - - N ' -
- -g s s :: .
. ' % i ' ~
s - ;
--- ~ ~ _ _'y- g l1 ,A ~ / - - ' / -? - : 's '~ ~ ~~ ' '- s:::
s - , -
.~ - N . s s - -
N
'N Ns N - - ' ~~
s s --
----. x . .~ N N .N-- -
t Figure 3-12. Core Flood Nozzle 3-D Finite Element Model SIR-95-135, Rev. 0 3-38 f StructuralIntegrityAssociates,Inc.
4.0 RESULTS Graphs which define acceptable flaw sizes are included in Appendices A through M of this report for the corresponding vessel material and nozzle regions shown in Tables 3-1 and 3-2 [33,34]. There are also provided on EXCEL spreadsheets on the diskette that accompanies this report. For the nozzle inner comers, the results are rather simple such that a single Appendix N contains the results for corner cracks ofinlet, outlet, and core flood nozzles (35]. 4.1 IWB-3500 Evaluation Standards For completeness, each of the evaluations also considered the IWB-3500 evaluation standards from ! Table IWB-3500-1. For subsurface flaws, the limitations of proximity to the surface of the base metal are shown for rapid evaluation. Flaw acceptance diagrams for subsurface flaws give allowable flaw depth of 2(a) while surface flaws give allowable depth of(a). Linear interpolation may be used for intermediate flaw eccentricities. The evaluation standards ofIWB-3500 are also included for reference as the lower bound in the location-specific flaw acceptance graphs in Appendices A through M. In these sets of curves, the acceptable inside surface flaw is the depth of the cladding plus the acceptance standards. In all graphs, it has been assumed that the cladding thickness is 7/32 inch (13]. 4.2 IWB-3600 Evaluations The graphs of Appendices A through M show the acceptable flaw sizes based on this evaluation. Graphs are shown for all surface and subsurface flaws. Flaw acceptance diagrams for subsurface flaws give allowable flaw depth of two times it depth (2a) while surface flows give allowable depth of(a). The minimum allowable flaw size for all cases evaluated is shown and considers the effects of crack growth to end-of-life (32 EFPY). Each appendix has two evaluations with one being for axially-oriented flaws and the other for circumferentially-oriented ' flaws. The general scheme is to show the allowables for inside surface flaws, outside surface flaws and a range of subsurface flaws SIR-95-135, Rev. 0 4-1 f Structuralin;egrityAssociates,Inc.
for various values of flaw eccentricity. For subsurface flaws with intermediate values of flaw l eccentricity, linear interpolation can be used. For all graphs and tables presented in Appendices A through M, a default maximum flaw size was .j determined such that the nominal stress would increase to approximately 1.5 times the nominal stress l if a long flaw existed at the location. This was done because IWB-3610(d)(1) requires that the f primary stress limits ofNB-3000 (of ASME Section III) be satisfied for the size of the evaluated flaw. ! i For actual flaws found in a reactor pressure vessel, this should never' become limiting because NB- , 3000 allows focal primary membrane stresses to approach 1.5 Sm provided that the extent of the ! region with stress exceeding 1.1 S, does not exceed [di (where R is the mean vessel radius and t { is the thickness). This compares to the requirement for the design equations for pressure sizing where j the stress must be maintained below m S . Based on this ratio, the additional primary stress criterion might become governing for axial flaws with depths approaching one-third of the wall thickness that ; have any significant extent, provided that the pressure stress is near the allowable stress. Since the ! stresses acting on circumferential flaws are about one half of that for axial flaws, greater flaw depths , would be allowed for flaws with a circumferential orientation, assumed in this evaluation to be limited I to 50% of the wall thickness, except at regions near discontinuities where the one-third of wall
- thickness default maximum size is used.
i r ! I . It should be noted that most of the allowable flaw sizes for near-surface subsurface flaws are j l governed by proximity requirements at the surface and not by crack tip stress intensity factor. In [ these cases, the flaws may be acceptable when evaluated as surface flaws [22]. j
- l l
, i l I l l SIR-95-135, Rev. 0 4-2 { StructurallategrityAssociates,Inc.
5.0 CONCLUSION
S AND DISCUSSION A comprehensive evaluation of potential flaws in the CR-3 RPV shell welds, plate material, and nozzles has bee'n completed. To limit the number of evaluations (and pages of this report) to a manageable size, a limiting set ofregions was determined (welds) and flaw acceptance diagrams were developed for these regions. As in all engineering evaluations, a number of assumptions were built into these evaluations, including: '
- The grouping oflocations into a limited number of regions for this evaluation results in very conservative material properties (initial RTm) and stresses for all locations in a particular group (region).
t
- A conservative assessment ofpressure, boltup, heatup/cooldown, weld residual, and cladding stresses was included. The stresses included are bounding in the vicinity of the locations covered by each region.
- The effects of both deepest point and surface stress intensity factors were included for.all ,
4 vessel wall flaws.
- The largest acceptable flaw size was determined. There may be smaller flaw sizes (mainly for surface flaws) that would be unacceptable if evaluated without consideration of larger i acceptable sizes. However, it is believed that more sophisticated evaluation methodology could be used to show acceptability of flaws un to and possibly greater than those presented in this report.
- The assessments were computed for hydrotest, heatup/cooldown and other normal operating 4
conditions consistent with the vessel pressure / temperature limits for the current technical ; specifications (23]. The effects of boltup stresses were considered for all regions but were significant for the upper flange welds and the adjoining reactor vessel nozzle regions. SIR-95-135, Rev. 0 5-I h StructuralIntegrityAssociates,Inc. P
l e A conservative assessment ofcyclic crack growth was included for all plant transients that can affect overall vessel heatup and cooldown to end-of-life. The 167 cycles assumed in this-evaluation exceed the experience to date at the plant. The conservatisms in the analysis and
. the fact that fatigue crack growth is insignificant would allow the use of the flaw acceptance results in this report, even if a reasonable number of additional cycles were experienced.
1 i e" The analyses were conducted both with and without the effects of weld residual stresses. l e For the beltline region, the maximum effects of shift in the reference temperature were ! considered to end-of-life. This is conservative since the P-T limitations of Reference 23 are ! j; for EFPY=20 years. ! - e A separate analysis was included to determine the allowable size for inlet and outlet nozzle inner corner cracks. e The flaw evaluation methodology is based on methods from the 1989 edition of Section XI of the ASME Code, supplemented by more recent fatigue crack growth curves (1992 Code with 1993 Addenda) and by using materials evaluation methodology from Reg. Guide 1.99, Rev. 2 [5]. The evaluations are generally more conservative than would be required by the f 1983 Section XI Code with Summer 1983 Addenda and reflect currently accepted flaw
- methodologies. ,
Based on the above, it is believed that the results of the evaluations are correct and conservative and can' be used to the end-of-life for the CR-3 reactor vessel. However, because of the number of evaluations, every possible flaw location could not be studied in detail to quantify and understand the conservatisms. Thus, these results by themselves should not serve as the sole basis for accepting I flaws that significantly exceed the acceptance standards of IWB-3500 or are near the limits for acceptable flaw size as determined by this repon. The reactor vessel at CR-3 displays numerous ; geometric discontinuities and material propeny variation. Because of this, the flaw acceptance i diagrams are quite conservative in nature with significant margin for most locations. SIR-95 135, Rev. 0 5-2 f StructuralIntegrityAssociates,Inc. i
-5
l If flaws are found during inspections, location-unique flaws can be evaluated on a case-by-case basis,' l 2
- which will result in more realistic results, that could be used to justify the presence oflarger flaws.
In this case, alternate analysis can probably be conducted, removing some of the conservatisms to show acceptability oflarger flaws, by using tools like SI's fracture mechanics computer program pc- ! CRACK [7], or by conducting additional analysis based on flaw-specific stresses, materials, and i . other parameters that have been bounded by the current analysis. In addition, the requirements of l i NB-3000 for primary stress limits must be checked. The information presented in the Appendices of this report sliould allow FPC engineers to perform rapid assessment of any indications reported during RPV in-service examinations. t i 1 v i i e i i 1 I 4 l SIR-95-135, Rev. 0 5-3 { StructurniIntegrityAssociates,Inc.
i 1 l ~ i
6.0 REFERENCES
- l. " Rules for In-service Inspection of Nuclear Power Plant Components," Section XI of the
,' ASME Boiler and Pressure Vessel Code,1989 Edition, Am,erican Society of Mechanical Engineers, New York, July 1,1989. : i
- 2. Raju, I. S., and Newman, J. C., " Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels," Journal of Pressure Vessel Technology, 104/298, November _ :
- 1982. l l
- 3. Tada, Paris and Irwin, " Stress Analysis of Cracks," Del Research Corporation,1973.
- 4. Kuo, A.Y.,
Deardorff,
A.F., and Riccardella, P.C., " Thermal Stress Intensity Factor of an j Axial Crack in a Cladded Cylinder," presented at 1993 ASME Pressure Vessel & Piping Conference. I i j
- 5. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, May 1988. i
- 6. APPENDA and MAPPA, " Computer Programs for Performing Flaw Tolerance Analysis of ;
Reactor Vessel Shells," Structural Integrity Associates (QA-1800), Version 1.1. ;
- 7. "pe-CRACK Fracture Mechanics Software", Version 2.1, Structural Integrity Associates, San Jose, CA 1991.
- 8. SIR-95-137, " Estimation ofReactor Pressure Vessel Fracture Toughness for Crystal River
- Unit 3", Rev. O, December 1995. ;
- 9. Dwg. No.135546E, Rev. 5, " Vessel Assembly and Final $fachining", SI File: FPC-01Q-222.
- 10. Stress Analysis Report #13, " Thermal Mechanical Analysis of RV Shell", Rev.1, January ;
j 1974, SI File: FPC-01Q-209.
}
l 1. Dwg. No.135542E, Rev. 5, " Miscellaneous Upper Shell Details", SI File: FPC-01Q-225. i l l 12.' Dwg. No.135544E, Rev. 6, " Vessel Head and Support Assembly and Detail," SI File: FPC-OlQ-223. j i
- 13. Dwg. No.135538E, Rev. 5, "Shell Assembly and Head Details", SI File: FPC-01Q-225. ,
i t
- 14. Dwg. No.135552E, Rev. 5, " Closure Head Assembly", SI File: FPC-01Q-226. j
- 15. Dwg. No.135547E, Rev.1 " Closure Head Flange," SI File: FPC-01Q-226. .
! 16. Dwg. No.135549E, Rev. 8, " Closure Head Sub-Assembly," SI File: FPC-01Q-226. i
~ SIK-95-135, Rev. 0 6-1 { StructuralIntegrityAssociates,Inc. .- . - -- ________O
. 17. - B&W Drawing 135541E, Rev. 3," Detail and Sub-Assembly Inlet Nonle", SI File FPC-01Q- l 230. !
i ' 18. B&W Drawing 135540E, Rev. 2, " Detail and Sub-Assembly Outlet Nozzle", SI File FPC-0IQ-231. ! i
.19. ' B&W Drawing 135539E, Rev. 7," Core Flood Nozzle", SI File, FPC-01Q-229.
l 20.' Dwg. No.135559E, " Material List Head & Vessel," Rev.10, SI File: FPC-01Q-228. i
- 21. --
ASME Boiler and Pressure Vessel Code, Section III,1965 Edition including Summer 1967
- Addenda.
3
- 22. -AShE Boiler and Pressure Vessel Code,1989 Edition, Section III Appendices. l I
- 23. Excerpts from CR-3 Teclinical Specifications, Section 3/4.4.8.
- 24 Procedure #SP-2%, " Documentation of Allowable Operating Transient Cycles," Rev.11, SI ,
i File: FPC-0IQ-215. l 25. ANSYS PC Version 4.4A, SASI,1991. ; [ 26. ' SI Calculation FPC-01Q-302, "Two-dimensional Reactor Pressure Vessel Stress Analysis," ' [ Rev. O. 1
- 27. Stress Report #3, " Closure Analysis", Customer Order PR3-1000, sabcock & Wilcox ,
j Contract No. 620-0007-51, Feb.1971, SI File: FPC-01Q-210. i l 28. EPRI-TR-100251, " White Paper on Reactor Vessel Integrity Requirements for Level A and l B Conditions," Electric Power Research Institute, January 1993. j
- 29. " Derivation of Clad Stress Equation", Rev. O, SI File FPC-01Q-238.
1 30. SI Calculation FPC-01Q-303," Inlet Nozzle Finite Element Stress Analysis," Rev. O.
- 31. SI Calculation FPC-01Q-304," Outlet Nozzle Finite Element Stress Analysis", Rev. O. !
l 32. SI Calculation FPC-01Q-305," Core Flood Nozzle Finite Element Stress Analysis", Rev. O. 33; SI Calculation FPC-01 Q-308, " Development of Flaw Tolerance Diagrams for ~ Inlet / Outlet / Core Flood Nozzle-to-Shell Weld Locations", Rev. O. ! [c
~
- 34. SI Calculation FPC-01Q-307, " Development of Flaw Tolerance Diagrams for Reactor Pressure Vessel Using APPENDA Program," Rev. O.
i e
' Sin-95 135, Rev. 0 6-2 & StructuralIntegrityAssociates,Inc.
- 35. SI Calculation FPC-01Q-309, " Fracture Mechanics Analysis and Development of Flaw ;
Tolerance for Corner Crack ofInlet/ Outlet Nozzles at CR-3 Using pc-CRACK Program", Rev. O.
- 36. Report #5," Thermal / Mechanical Analysis of the Core Flood Nozzle for RV", B&W Contract No. 620-0007-51, February,1971, SI File: FPL-0IQ-211.
- 37. Report #4, " Thermal / Mechanical Analysis of Primary Inlet & Outlet Nozzles," B&W ,
Contract No. 620-0007-51, Febmary,1971, SI File: FPC-01Q-212. a 9 4 + e t i 4 ; e O A 1 4 9 SIR-95-135, Rev. 0 6-3 h StructurniIntegrityAssociates,Inc.
APPENDICES Flaw Size Acceptance Graphs S 4 6 e e i SIR-95-135, Rev. O StructuralIntegrity Associates, Inc. 1
2 s APPENDIX A Flaw Acceptance Diagrams for Region A Materials t i Region Aincludes:
- Closure Head Center Disc (Mk #24)
- Closure Head Flange 4
Based on Minimum Thickness = 6.625" 4 Default Maximum Allowable Flaw Sizes for All Charts: Axially-Oriented Flaws = 2.2" Circumferentially-Oriented Flaws = 2.2" l
+
1 General Notes:
- 1. t =
vessel wall thickness (including cladding thickness of 3/16").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a = total radial depth of flaw, for surface flaws.
- 4. 2a = - total radial depth of flaw, for subsurface flaws.
S. f. = length of flaw parallel to vessel wall. SIR-95-135, Rev. o A.o { StructuralIntegrityAssociates,Inc.
Inside Surface Circumferential Flaw Closure Head Region 2.5 J l
, f. i r
I
- 1. l .5 '
E . i 1 0.5 - ~ c Wr " - c: :: d 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ' 0.5 h Aspect Rasto (a/I) l -IwB 3500 --ar- twB.3600 l Inside Surface Axial Flaw o, Closure Head Region l ' I 0.5 j C l l , d o.4 j 0.3 ' " ! l i
< i 0.2 i ! l ! l 01 i i 1 i i ' { '
I I I ' I 0 O 0 05 0.1 0.15 0.2 ' 0 25 0.3 0.35 0.4 0 45 05 Flaw Aspect Ratin(ai) {--O-IWB-3500 --*-IWB 3600 l SIR-95-135, Rev. O A-1 Structural Integrity Associates, Inc i
I l l / 4 Outside Surface Circumferential Flaw t Closure Head Region 0.45 l l , 0.4 .
*d i I I / i
([ 02 ,
/
i vI IA I 0
;2 0~ , - i 0.1 f .
l 0.05 = 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rade(a4) l--0--IWB-3500 --*--IWB-3600 l Outside Surface Axial Flaw Closure Head Region 1.2 , s 1 E . I g 0.8
- I
' I 06 < ! ! ! M 04 ,
02
- W l \
0
- l ! I i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 Flaw Aspect Ratio (a/I) l-O-IWB-3500 -*--IWD-3600 SIR-95-135, Rev. O A-2 StructuralIntegrity Associates, Inc.
i
?
1 Circumferential Sub-Surface Flaw e/t = -0.4 Closure Head Region
,3 - _
3
' I ' I 0.9 0.8 I
g 0.7 4 '
. ! 23 0.4 0'3 -
[ ! 0.2 O.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (ad) l-O-IWB-3500 -e-[WS 3600 + Mtv Allowable l l l Axial Sub-Surface Flaw e/t = -0.4 I Closure Head Region , 6 ," ^ 0
^ ^
0 0 0 0 $ 1 - 0.9 e 0.8
-0 .7 >
d I l
' U1 k 06 -
0.5 ' O.4 0.3 t i ( l i I
' I 0.2 ,
l l ! ! i
~
l O. I 0 0' O 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--0--lWB-3500 -e--IWB-3600 - o-Max Allowable - SIR-95-135' Rev. 0 - A-3 StructuralIntegrity Associates, Inc.
1 Circumferential Sub-Surface Flaw e/t = -0.35 I Closure Head Region 1.6 l l I l l l l l l l I 1.2 I i I I
- 1. . '
2 l sg 0.8
~
0. g p_ W O.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Finw Aspect Rado(a/I) l-O -IWB 3500 --e--IWB 3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Closure Head Region - 1.6 1 1 . 1 1 1 1 1 1 I i 1 1.2 1 08 06 04 ("r- ' 02
-l I ! l l l ~
I i
! ! I i ! , t 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a<l) l-O-lWB 3500 --&--lWB 3600 -O-Max Allowable !
SIR-95'-135, Rev. O A-4 Structural Integrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.25 Closure Head Region 2.5 i I 1
! I I I I I 2
1,1.5 3 i= .
}'l 4 !
l 0.5 c:- O I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/0 l-O-IWB 3500 --e-IWB-3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Closure Head Region
)
2 1.5 i A . y I i /, a-
' I 05 (l
I I l' i ' l 1 I 0 O 0 05 0.1
- 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flow Aspect Ratio (31)
!-O-IWB-3500 --*-!WB 3600 -O--Max Allowable ;
SIR-95 135. Rev. 0 - A-5
i i C! 2.5 G O .- 2 2_ a L t.5 - _k s, j< i _ l 05
~-
l 0 _ 0 0.05 2,5 C 0 2 1 1 t i.5 5 3 f
. k , f 05 a w o
O t) t ia SIR-95-135, Rev. O
~ r Circumferential Sub-Surface Flaw e/t = 0.0 Closure Head Region 1 I I -
! l , ~l I i 1 ! ! .2 l' } i.5 ,
i In r , l - l - 0.5 l 1 'Y' ;
- g. # + -
i o l . i 0 0.05 . , 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rasie(a4) l-C--[WB-3500 +IWB.3600 -O-Mas Allowable l , h i t Axial Sub-Surface Flaw e/t = 0.0 l - Closure Head Region ] 2.5 ^ ' " ; I I m f ' 1,, / /[ . 4 4
- 1. !
'l
. l ; I 0.5
, f
(; , I l l l ! ! i ! 0 0 0 05 0.1 0.15 0.2 015 0.3 0.35 0.4 0 45 0.5 Flow Aspect Resto(a4)
}-O--IWB.3500 -IWB 3600 --+--Max Allowable l SIR-95-135, Rev. O A-7 StructuralIntegrity Associates, Inc.
1 Circumferential Sub-Surface Flaw e/t = 0.2 I 2, Closure Head Region i , l l l l 1 l c - 2 I I I I I l l 1 1 I I' l L 1.5 . d I I 1 . w, I 1 0.5
,- 7 l t.,
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a/1) l--0 -IWB 3500 -*-IWB 3600 --O--Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Closure Head Region l l ! l l l ( ) l l 1 ! I 2 g# l.5
. cd f
- i. ,,
' 7 l 8I ,
i i
'l 05 - l g.- -
0 ,, 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45
- 0.5 Flaw Aspect Ratio (a/I) l-O-IWB-3500 --6--LWD-3600 --0--Max Allowable i SIR-95-135, Rev. O A-8 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.35 Closure Head Region 3,f . I l i i l 1 1 . l { 1.2 , , l' 5- g u 0.8 E 1::
~
1
/
0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspect Rado(a4) l-O-IWB-3500 -e--!WB-3600 -K>-Max Allowabis l 9 Axial Sub-Surface Flaw e/t = 0.35 Closure Head Region 1.6 1 1 I I I I I i i J' ' 1 1.4 - l.2 08 06 i 04 ' O.2 ; ml i l t e l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/l) l- C--IWB 3500 --e--IWB.3600 -K>= Max Allowable ' SIR-95-135, Rev. O . A-9
- StructuralIntegrity Associates, Inc. ;
l l
t Circumferential Sub-Surface Flaw e/t = 0.45 Closure Head Region
,, e : : : ^
- : O : $
0.45
! I* ! l I I 1A' O.4 - 0.35 03 1 !
j 0.25 , , 0.2 0.15 i
' I 0.1 0.05 I i 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a4) l-C--!WB 3500 -*-!WB-3600 -O-Max Allowmole l f Axial Sub-Surface Flaw e/t = 0.45 Closure Head Region
,,6 ^ ^ ^ --O O : $
I ! 0.45 2 0.4
- 0.35 3, 0.3 I i j 0.25 0.2
- I l l l I I l 0.15 0.1 0 05 i
f 1 i 0 0 05 01 0.15 02 0.25 0.3 0 35 04 0 45 0.5 Flaw Aspect Ratio (a/1) t--0-IWB 3500 -*-IWB-3600 --C- Max Allowable : r SIR-95-135, Rev. O A-10 { StructuralIntegrityAssociates,Inc.
I l J APPENDIX B , I Flaw Acceptance Diagrams for Region B Materials ; t ~ i Region B includes: i t
- Upper Head to Closure Flange Weld P
S A Based on Minimum Thickness = 6.625" , Default Maximum Allowable Flaw Sizes for All Charts: ; Axially-Oriented Flaws = 2.2" Circumferentially-Oriented Flaws = 2.2" l , GeneralNotes: l
- 1. t = vessel wall thickness (including cladding thickness of 3/16").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thicknes,s of3/16").
. 3. a = total radial depth of flaw, for surface flaws.
- 4. 2a = total radial depth of flaw, for subsurface flaws. .
- 5. f= length of flaw parallel to vessel wall. ,
I J l I I I i
' SIR-95 135, Rev. O B-0 StructurniIntegrity Associates, Inc.
* ?
Inside Surface Circumferential Flaw Upper Head to Closure Flange r
- f. ,. ,-
,- ,- t t : ~
l 11.5'
.x 3 t $i i
l 1 0.5 g i 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 M8* A8Pect Rado (s/I) l l-O -!WB 3500 IWB-3600 l Inside Surface Axial Flaw :
- Upper Head to Closure Flange 0.6 1 "
s = 0, Y O .4 3 30.3; a i i j ' 0.2 l ' l f 0.1 l ! I f i
- 1
{ , l ' O O 0 05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5 Raw Aspect Ratio (a1) l-O-IWB-3500 --e--IWB 3600 i SIR-95-135 Rev. O B-1 Structural Integrity Associates, Inc. r
I l i Outside Surface Circumferential Flaw I l Upper Head to Closure Flange 2 U I I u.1.5 l 1 Ji 0.5 . .
- J,. ?
0 T T T l l l l 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(ed) I l--0-!WB-3500 --*-!WB-3600 l Outside Surface Axial Flaw Upper Head to Closure Flange I .2
,. 1 E
t A 1 l
" l l i l' I t
0.4 d l I y $. l l
! l l >
i
,l 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Rano (*1) , {-O-!WB-3500 -*--IWB.3600 i
SIR-95-135 Rev. 0 B-2 f StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t =-0.4 Upper Head to Closure Flange 3
' I ' I 0.9 ! f j 0.7 ' M1 0.6 0.5 0.4 0.3 O.2 0.1 I I I I ' l -
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspect Ratio (a,1) l--D--IWB-3500 -dr-!WB 3600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 - Upper Head to Closure Flange l e . - . - - . - _ _ 3 T^ 1 0.9 , , , O.8
-0 .1 A E ' { 0.6
[f ! I 41 O.5 04 0.3 ~
- i 0.2
! l I' l l ' '
l 01 l ' 0 O 0.05 01 0.15 0.2 0.25 0.3 0 35 0.4 0.45 0$ F' m Aspect Ratio (m/l) l- 0-IWB-3500 -*--!WD-3600 Max Allowable SIR-95-135, Rev. O B-3 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Upper Head to Closure Flange I 1.6
} _
I i 1 I I l l l { 1.2 k ' i 08
- 06 0.4
(" ' 0.2 l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 f Flaw Aspect Rado(a4) f ! l-O--!WB 3500 -*-!WB-3600 --O-Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Upper Head to Closure Flange
. 1.6 1.4 1.2 1, -
7 1 h 0.8
'-7 ,
i O.6 0/ M M l !
! )----
02 , : , f i i f , 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (all) l-O--!WB 3500 --*-IWB M00 - o--Max Allowable ! SIR-95-135, Rev, 0 B-4 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.25 Upper Head to Closure Flange 2.5 l ! l l l l l l l e l .s
- i i '
l 11.5 d l 3 i 'l i l
< l 0.5 g;_ ,
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 l Flow Aspect Rado (a/I) l--0 -!WB.3500 -e-IWB.3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Upper Head to Closure Flange l ( ) 2 1 1.5
)g u i - .)
w
~
l M I 0.5 (;
' l I I
i ! i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(all) l--0--!WB.3500 --*--!WB-3600 -O-Max Allowable i SIR-95-13 5, Rev. O B-5 Structors! Integrity Associates, Inc.
4 .a . . Circumferential Sub-Su. face Flaw e/t = -0.1
,.3 Upper Head to Closure Flange l l l l l l l
( 1 l i i l i ! 2 l I t l
$ l l $ 1.5 .. - -
5 I
- n g ,3 4 ,
i 0.5 . (: : l I ! 0 0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Fisw Aspect Rado(m/l) l+1WB 3500 --e--IWB-3600 -H>-Max Allowabic l Axial Sub-Surface Flaw e/t = -0,1 Upper Head to Closure Flange 2.5 ( h ---HO . 1 l l l l l l 2 l i I h g$ a ! l j, l M ;
/i i ' i j
i I i I 05 i [., __- i I t 0 0 0 05 01 0.15 0.2 0.25 0.3 0.35 04 0 45 0 .5 Flaw Aspect Rado(a4)
' -lWB-3500 --*--iWB-3600 --O-- Max .Miowable -
SIR-95-135. Rev. O B-6 Structural Integrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.0 Upper Head to Closure Flange 2.5 , I l l f 1 l l l I I I 2 l I l .T i l l 1.5 5a ; l I 'I
< l 0.5 ,,
I 0 l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ) Flow Aspect Rede(ed) l- O-IWB-3500 -e-!WB 3600 Max Allowable l i 1 Axial Sub-Surface Flaw e/t = 0.0 . Upper Head to Closure Flange 2 I I A l
- E.
A
$ 15 1.
d i
- i r}
l ; i i
? \
l
! l ! !
0.5 I i > I; M { WI 'lI ! l' I f 0 O 0 05 01 0.15 0.2 0 25 0.3 0.35 0.4 0 45 05 F1sw Aspect Ratio (ad) l IWD-3500 -dr--!WB 3600 -Max Allowable SIR-95-135, Rev. O B-7 StructuralIntegrity Associates, Inc. v d
Circumferential Sub-Surface Flaw e/t = 0.2 Upper Head to Closure Flange l ! l l l i i i I ! i !#' I a 1 '5
.c . W ,
4 I 'l
" l l 0.5 l
g .- + 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.3 Pisw Aspect Ratio (a4) l-O--IWB 3500 -e--IWB-3600 -C>-Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 - Upper Head to Closure Flange 2.5 i i I
! m !
i t,
/
W d. l t , . d-I 'I
, : I - i i . ' n l '
0.5 (: ! , I i i i l i 0 0 0.05 0.1 0.15 0.2 0.25 03 0 35 04 0 45 05 Fisw Aspect Ratio (all)
-IWB 3,500 -!WB-3600 -O-Max Allowable i SIR-95-135, Rev. O B-8 StructeralIntegrity Associates, Inc.
b
Circumferential Sub-Surface Flaw e/t = 0.35 Upper Head to Closure Flange 3,1 1 1 1 1 1 1 1 1 1 1 1.4 , 1.2 . I
~
t m f , O. 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a/I) l-O- !WB 3500 -e--!WB 3600 --0--Max Allowable l
- Axial Sub-Surface Flaw e/t = 0.35 Upper Head to Closure Flange 1.6 I I I I ! I I 1 1 A v v - - - - - A gj 3 / I e3 0.B :
06 - 04 - I ! i ! l ! l i ' *
, {
- j 0
- o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--0--!WB 3500 --*--IWD-3600 --0-- Max Allowable .
l ! SIR-95-135, Rev. O B-9 f StructuralIntegrityAssociates,Inc. l l
Circumferential Sub-Surface Flaw e/t = 0.45 l Upper Head to Closure Flange
,,, 6 0 0 0 0 ^
O O O O $ 0.45 O.4
- 0.35 0.3 I i j 0.25 ,
b 0.'s I ! l 0.15 l 0.1 1 0.05 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Raelo(a4) l-O--!WB 3500 -er-IWB 3600 --O--Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Upper Head to Closure Flange
*^' t : ~
e s
~
0 45 0.4
- 0.35 >
L 0.3 a j 0.25 A \ l i l l 0.2 , I 0 15 l l 01
' l O.05 -
i i ! I ! g 0 0 03 01 0 15 0.2 0 25 0.3 0 35 94 0.45 0.5 Flaw Aspect Ratio (a4;
!-O-IWB-3500 -*--IWB-3600 --o-M ax Allowable i
i i ! SIR-95-135, Rev. O B-10 { StructuralIntegrityAssociates,Inc.
4 APPENDIX C Flaw Acceptance Diagrans for Region C Materials . Region C includes:
- Upper Shell Flange j ,
- Vessel Flange to Nozzle Belt Weld
- Upper Nozzle Shell * ,
Based on Minimum Thickness = 12" Default Maximum Allowable Flaw Sizes for All Charts: Axially-Oriented Flaws = 4" Circumferentially-Oriented Flaws = 4" 9 j
- Note: For flaw indications found in Upper Nozzle Shell, need to also check Region E.
. l General Notes:
- 1. t = vessel wall thickness (including cladding thickness of 3/16"). I
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a = total radial depth offlaw, for surface flaws.
- 4. 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall.
SIR-95-135, Rev. O C-0 f SimcturalIntegrityAssociates,Inc.
i i Inside Surface Circumferential Flaw Vessel Flange 1 3.5 3
/
1 g 2.5 l/ d r i 2 1
? l.5 /
1 0.5 .. 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a/I) l-O-!WB-3500 -IWB.3600 l Inside Surface Axial Flaw Vessel Flange 0.9 0.8 i -
-I, E i "
07 E 06 0.5 a ." g 04 ".
~
d l ! l 0.3 0.2
.l 01 '
l l i l i l I i 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a,1) l-O-IWB.3500 -*-!WB.3600 ! l 1 l SIR-95-135, Rev. O C-1 StructuralIntegrity Associates, Inc.
-t
Outside Surface Circumferential Flaw Closure Head Region 0 45 l 0.4
/ I l l' / / F 0.25 0.2 0~,, / i i l
0.1 0.05 l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/D l--0-twB 3500 -*--twB-3600 l Outside Surface Axial Flaw Vessel Flange
~
l ' 3 I _ 2.5 I E. l Y l ! a2 i E 1.5 l l 1 . - . 05 2 - 1 h-l' , 7 Y ! , i i 0 O 0 05 0.1 0.15 02 0 25 0.3 0.35 0. 4 0 45 05 Flaw Aspect Ratio (att) l--0--lWB-3500 -dr--IWB-3600 i l SIR-95-135, Rev. O C-2
p Circumferential Sub-Surface Flaw e/t = -0.4 I I Vessel Flange
,,c : : :
1
- = n i
l
' ' I l .6 14 ar---
I Y 1.2 l 0.8 t O.4 i
. l 0.2 ;
O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Finw Aspect Rado(a/I) l-O--!WB 3500 --*-IWB 3600 -O= Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Vessel Flange 1.6 4 1.4 Y 12 1 08 eW 0.6 I - l l l 0.4 i i i
! i i i ! , l [
o 0 0 05 0.1 0 15 0.2 0.25 0.3 0.35 0.4 0 45 05 Flow Aspect Rado(m/I) l- IWB-3500 --&-!WB 3600 -*>-Max Allowable i SIR-95-135, Rev. O C-3 Structuralintegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Vessel Flange l I ( o
^ ~' ~ - -
25 S, /p\ n J l 0.5 g ;-- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw AaPect Raelo (a/0 l -!WB-3500 --dr--IWB-3600 --0--Max Allowable l Axial Sub Surface Flaw e/t = -0.35 4 Vessel Flange 3 i l I I l C , , O O O , y 0 3 Y2 I j l.5 i i ! l 1
- l l ~ , l ; l 0.5 g 1.-
0 O 0.05 01 0.15 02 0.25 03 0.35 04 0.45 0.5 Flaw Aspect Ratio (a<1)
;--O--lWB-3500 -*--lWB 3600 +% tax Allowable i SIR-95-135, Rev, O C-4 Structural Integrity Associates, Inc. j
Circumferential Sub-Surface Flaw e/t = -0.25 Vessel Flange 4.3 l _I _I 1 1 I I l
,c . --_ -1 1, ~XF a, ?. 2.5 2
1.5 j 0.5 (; - 1 I i 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a/I) l-O--!WB 3500 -dr--!WB-3600 --0-Max Allowable l i Axial Sub-Surface Flaw e/t = -0.25 Vessel Flange I
- } l l j l i l ,
i , 3.5
&3 .m f 2 .5 A 2
4 ,., I s< T P 1 WT. IWi - 0.5 [- ' I i t l l l I I l' i 0 O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 FInw Aspect Ratio (all) , ! l-C--IWB-3500 -er-IWB-3600 - O-Max Allowable : SIR-95-135, Rev. O C-5 L
Circumferential Sub-Surface Flaw e/t = -0.1 Vessel Flange l l l l l l l l >
,, - - - .i . ! ! l ' I 3.5 ~
s3 i i I 32.5-
- I l l
' l
, 2 gg 1 l l 1 ~ 0.5 g; -- 0 l l l ; O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rade (all) l--O-!WB 3500 -de--IWB-3600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = -0A Vessel Flange l l l ^ l l ^ l 4'- - 9 ' 3.5 I 3 i ,', #1 I i l '.M i l l l I I i l i l P' 4 ,', ! l i W! 0.5 (- l l } 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rasto(a/1) l--0-!WD-3500 --dr-IWB-3600 --0--Max Allowable l SIR-95-135, Rev. O C-6 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.0 Vessel Flange 4.5 4 ,7 - l f
- l
- l -
l - - l - l l y ~ 3.5 5, 3 l l i l [* d 2.5 , 4' I I i 4 ,. l P' M 0 5 [; i I O 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a/I) l-O--IWD-3500 --*--!WB.3600 --C>-Max Allowable l l Axial Sub-Surface Flaw e/t = 0.0 Vessel Flange 4.5 l l l l l \ 4-3.5 l 13 d Y
- d 2.5 i l l l
- g,3 1 -
I Wl
- 0. 5 [
! l l l ! l ! l 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 i Flaw Aspect Ratio (ai) l-O--lWB-3500 +1WB-3600 --<>-Max Alldable l l .
SIR-95-135, Rev. O C-7 f StructuralIntegrityAssociates,Inc. 1
Circumferential Sub-Surface Flaw e/t = 0.2 Vessel Flange l l [ l l l l l i 4 r- ,, 3.5 53 ' 2 .3 i l X i I l,,,. I -
^i l l P' , W!
0.5 (; O I I I I I I O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 F1sw Aspect Rado(a/I) l-O-IWB 3500 -dr-!WB 3600 + Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Vessel Flange 45 l 1 1 I .I .I . I .I 4r< ,, 3,3 2L 13 , a l i w I - i 22.s 2 - 4 ,., i I ! l .I i i P'
, l ! l l
i Vi ' O.5 [:
! ! ! j 0
0 0 05 0.1 0. l $ 0.2 0.25 0.3 0.35 04 0 45 0.$ Flaw Aspect Rado(arl) l
- l {-O-!WB 3500 -er-!WB-3600 -O-Max Allowable l -
L SIR-95-135, Rev. O C-8 { StructuralIntegrityAssociates,Inc.
I Circumferential Sub-Surface Flaw e/t = 0.35 Vessel Flange 3 l l l l ! L .
. . . . . . . J 2.5 k2 ,
1 l l 5 j 15 , b
, a i 0.5 ; ,
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a/I) l-O-IWB 3500 --*-IWB 3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 , Vessel Flange 3
. . T , .
2.5 d2 1 - l l I a I
$a I3 i, i
h
, i s# 4 I !. i l I l ' l 0.5 (- + - ! I i
O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a/I) [-O-lWB-3500 --*-!WD 3600 + Max Allowable ' SIR-95-135, Rev. O C-9 h ructuralIntegrityAssociates,Inc. l
Circumferential Sub-Surface Flaw e/t = 0.45 Vessel Flange
,^, c : : : : : -- : : : : n
, 08 O.7 k O6 0.5 r , j 'f , 0.3 0.2 O.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/0 l-O--IWB-3500 -e-IWB-3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Vessel Flange 0.9 g _ _ _ _ _ _ _ _ _ ,
- o. , I M. IP 0.7 d 06 0.5 IF j4 i l
< l 0.3 O.2 l l I i j ' ! i i o
i l . l j 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
)
Flaw Aspect Ratio (a/t) l i--0-IWB-3500 -*-IWB-3600 -O-Max Allowable : l SIR-95-135, Rev. O C-10 . f StructuralIntegrityAssociates,Inc.
l i APPENDIX D Flaw Acceptance Diagrams for Region D Materials I s- Region D includes: ; e Lower Nozzle Shell * . Based on Minimum Thickness = 12" Default Maximum Allowable Flaw Sizes for All Charts: Axially-Oriented Flaws = 4"
. Circumferentially-Oriented Flaws = 6"
- .
- Note: Includes all unirradiated portions of Lower Nozzle Shell. For irradiated portions, see Region F.
General Notes:
- 1. t =
vessel wall thickness (including cladding thickness of 3/16").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of3/16").
3.' a = total radial depth of flaw, for surface flaws.
- 4. 2a,=' total radial depth of flaw, for subsurface flaws.
- 5. t =
length of flaw parallel to vessel wall. SIR-95-135, Rev. O D.0 { StructuralIntegrityAssociates,Inc.
- . - _ .- - -a
f s Inside Surface Circumferential Flaw Lower Nozzle Belt - 4., L 3.5 ' 3
,/
fI { 2.$ d I l ! (2t ( i.$ l - 1 _, W. a i
^ '
OS - 0 l l l 0 0.05 0.1 0.15 0.2 0.23 0.3 0.35 0.4 0.45 0.3 Fisw Aspect Rado (all) l-O-IWB-3500 -*-IWB-3600 l Inside Surface Axial Flaw . Lower Nozzle Belt 3 L 2.3 k2 1 - 5 31.5 I ) k , 1 I l 0.5 I i ! i
.' I l l' !
l l O O 0 05 0.1 0.15 02 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (as1)
!-O-IWB 3.500 --dr-IWB-3600 l SIR-95-135, Rev. O D-1 StructuralIntegrity Associates, Inc.
b
Outside Surface Circumferential Flaw Lower Nozzle Belt l l ! - 2 I i i i t.5 , a t I l 4 ;
- Ji z .. 1 i l
O, yi s = . 0 l l l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) [-0-IwB.3500 -*-IwB.3'A0 l Outside Surface Axial Flaw Lowei Nozzle Belt 2 1.8 1.6
-1 .4 l- l l [ !E, 1.2 l l \ /l j= , i l i /
- /
0.8 l l ^ l 0.6 El 04 0.2 '
~
v m' l 0 l 0 0 05 01 0 15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) IWB-3500 -IWB-3600 i SIR-95-135, Rev. O D-2 { StructuralIntegrItyAssociates,Inc. 9
1 Circumferential Sub-Surface Flaw e/t = -0.4 Lower Nonle Belt 3,b : : : : : : : ; : b I I I .6 l .4 Y
$ 1'2 i ,
n" 1 1 M
- U3 0.3 0.6 i
( 0.4 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
. Flow Aspect Rado(a/I) l-O--IWB-3500 -*-IWB-3600 -C--Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Lower Nonic Belt * ~' 6 e : g g ; -
6, 1.6
' ~
1,4 Y 1.2
- - U3 ja 08 06 I
( ' f I I ' 04 I ! l l i j i t
. 0.2 l '
t . l l 0 O 0.05 0.1 0 15 0.2 0.25 0.3 0.35 0.4 0 45 05 Flaw Aspect Ratio (m/1) l-O--lWB-3500 -*-IWB-3600 --0 .\ lax Allowable ! SIR-95-135, Rev. O D-3 Structural Integrity Associates, Inc,
Circumferential Sub-Surface Flaw e/t = -0.35 Lower Nozzle Belt 3
^ ; ; ;. ; ; ; a ,_, c }
Y f2 [ ' i.5 ' a # I 4 1 0.5ga 0
- 0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rade(a4) l-O-!WB 3500 -e--IWB-3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Lower Nozzle Belt 3
4
' ' ^
C ? ; I O y ; g O_ I2 " g ,3 a J l
-1 I t
l- . 1 0.5(p - l l 3 0 ( 0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5 FIsar Aspect Raso(a4) l--0--IWB-3500 -*-IWB-3600 --0--Max Allowable ;
?
SIR-95-135, Rev. O D-4 l f ShucturalIntegrityAssociates,Inc. l
Circumferential Sub-Surface Flaw e/t = -0.25 4e - - - Lowgr Nozzle Belt _ _ _ _ m 33 a
; 2.5 #^
s 1'5
, E 0.5 (;
0 0 0.05 6.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a4) l--0-lWB-3500 --e--IWB-3600 --0-Max Allowable l l i Axial Sub-Surface Flaw e/t = -0.25 Lower Nozzle Belt 6 0 ^ 0 0 0 ^
? ? ^
6
, I I I s 3.5 U I3 U 2 .5 i
E , -d l I g ,3 i l l C l I W' g . i I ; 0.5 [; ! i l ' l l ! l I O O 0 05 0.1 0.15 0.2 0 25 0.3 0 35 0.4 0.45 0.5 Raw Aspect Rado(a4) {--0-!WB 3500 --*--lWB 3600 -o--Max Allowable i SIR-95-135, Rev. O D-5 i StructuralIntegrity Associates, Inc. i
-___---__-----___---_---_--_--_--_-d
Circumferential Sub-Surface Flaw e/t = -0.1 4 r. _-
- - Lower Nozzle Belt ,
3
- 3.5 3
I 2.5 12 1.5 0.5 g ; C- + 0 0 0.05 0.1 ' O.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Bow Asp Ratio (a/I) l-O--IWB 3500 -dr -IWB 3600 Max Allowable l Axial Sub-Surface Flaw e/t = -0.1 Lower Nozzle Belt 6C ^ - a 3 5 A W l
- g. ar-5.
33
$ l < I 2
1 l 3 l l [
! . l l' l l ! i l ! ,
0 O 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (al) IWB.3500 -*-IWB-3600 Max Allowable 1 SIR-95-13 5, Rev. O D-6 h StructuralIntegrityAssociates,Inc.
. __ _ _ . _ _ _ _ . _ _ . .J
i Circumferential Sub-Surface Flaw e/t = 0.0 Lower Nozzle Belt 4C .1 1 35 3
- I l
S ! l g 2.5 ,
& l j 2 < 15- , m :
0.5 (; - 0 $ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a4) l -O--!WB.3500 --e -IWB-3600 --o--Max Allowable l .
~
Axial Sub-Surface Flaw e/t = 0.0 Lower Nozzle Belt , , , , , 5 M i4 s a.
$3 i
I' i h t 2 l 1 i l i I 1 i l-I 3 I i l 3
'_ ' ' f O 'r. ! I . !
O 0 05 01 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Fisw Aspect Ratio (all) l--O -LWD-3500 --* -IWB 3600 --0--Max Allowable i SIR-95-135, Rev. O D-7 h StructuralIntegrityAssociates,Inc.
f i
?
Circumferential Sub-Surface Flaw e/t = 0.2 4 e, _ _ _ Lower Noni_e Belt , , , , 3 , 3.5 ; I i 3 2.$ .
, 2 _
{ ,, i l i M' l - 0.5 g ;_ i 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0$ flew Aspect Ratio (a4) l--0--IWB 3500 --e--IWB 3600 -<>-Max Allowable l 1 Axial Sub-Surface Flaw e/t = 0.2 : Lower Nonle Belt 0 - 7 ; 4 : ; , ; a 3 k4 i a , j3 J ! 1 - 2 l l I 1 i I 'I
! I i .
l i J. i M l l O I. T l l I i 0 0.05 0.1 0 15 02 0.25 03 035 0.4 0.45 0.5 Flaw Aspect Ratio (a4) j-O-!WB-3500 -lWB-3600 --0-Max Allowable ' SIR-95-135, Rev. O D-8 l f StructuralIntegrityAssociates,Inc. l
.. -. _ __---__--_______________-__-_________________A
i i Circumferential Sub-Surface Flaw e/t = 0.35 3 Lower Nonle Belt r i
' ^ ' = '
I 2.5 I i k2 1 1 I i I ( 3 i 1.5 l
< I 'W 0.5 l V 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 mw Aspect Rado(a/I) l-O--!WB 3500 -*--!WB-3600 + Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Lower Nonle Belt 3
,,c = ; ; : : : : : o 2
Y I E j 1.5 I f" I i
' i 1
l , i l 0.5 ; , I ' l l' t l . O O O 05 01 0.15 0.2 0.25 03 0.35 04 0 45 0$ Sw Aspect Rado(n.1) I--O-lWB 3500 -*--IWB-3600 -O-Max Allowable i . SIR-95-13 5, Rev. O D-9 f StructuralIntegrityAssociates,Inc. a
Circumferential Sub-Surface Flaw e/t = 0.45 Lower Nozzle Belt j
,, g - . . . . . _ _ , 3 1 08 0.7 -
06
- 0.3 IP ,
$ ! l l i" l 0.3 0.2 0.1 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (sT) l-O--IWB 3500 -e--IWB-3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 , Lower Nozzle Belt 6 - -
- : : 6 g, I l l l MI 0.7 zu Y I l e, ,e X I
s I i j "'
< l l, i
i 0.3
! l l l l E2 i , ,
0.1 l 0 O 0.05 0.1 0 13 0.2 0.25 0.3 0.33 04 0 45 0.5 Flaw Aspect Ratio ta,1) l-O--lWB-3500 -e--IWB 3600 --O--Max Allowable i SIR-95-135, Rev. O D-10 f StructuralIntegrity Associates. Inc.
APPENDIX E Flaw Acceptance Diagrams for Region E Materials Region E includes: >
- Upper Nozzle Shell *
- Nozzle Belt to Nozzle Belt Weld Based on Minimum Thickness = 12" Default Maximum Allowable Flaw Sizes for All Charts:
Axially-Oriented Flaws = 4" Circumferentially-Oriented Flaws = 6"
- Note: For flaw indications found in Upper Nozzle Shell, need to also check Region C.
General Notes:
- 1. t = vessel wall thickness (including cladding thickness of 3/i6").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a = total radial depth of flaw, for surface flaws.
- 4. 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall. -
SIR-95-135, Rev. 0 E-0 f StructuralIntegrityAssociates,Inc.
Inside Surface Circumferential Flaw Nozzle to Nonle Belt Weld - 4 L e 3.5 3 1 Y( _I 2.5 / 1'
< !.5 /
8
/ ;
i M - 3 _ mmMV
'~
0 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Fisw Aspect Rasse(a4) l-O-IWB 3500 -e--!WB.3600 l Inside Surface Axial Flaw Nozzle to Nozzle Belt Weld 3 L 2.5
$2 a
t j 1.5 1 I W 1 i _m 0., : ; - 4 I i 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Fisw Aspect Ratio (a/I) l-O-lWB-3500 -*-!WB-3600 l SIR-95-135, Rev. 0 E-1 { StructurniIntegrityAssociates,Inc.
Outside Surface Circumferential Flaw Nonle to Nonle Belt Weld 3.5
, /
2 R .5
/
- l 2 l i.5
# '~ /r j
0.5 1 1 d; I I - Al l 0 I. T T I i l l 0 0.05 0.1 0.13 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l-O-IWB-3500 --* -!WB.3600 l Outside Surface Axial Flaw Nonle to Nonle Belt Weld 2 1.8 1.6
- 1.4 L 1.2 j , I /./ )
j o, sd 1 I I
#I i ! !
06 W M T W
. 1 : I ! l 0.2 ,
l I l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a,1) l--O-IWB 3500 -*--IWB-3600 t SIR-95-135, Rev. 0 . E-2 { StructuralIntegrityAssociates,Inc. 9
=
Circumferential Sub-Surface Flaw e/t = -0.4 1.8 Nozzle to Nozzle Belt Weld 1.6 1.4 I 1.2 "" - A3 4
^
0.8 06 I 0.4 0.2 0 1 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Flaw Aspect Radio (ad) l--0-IWB.3500 -IWB 3600 -K>-Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Nozzle to Nozzle Belt Weld
6 - - - ^
g ; ; ; 6 1.6
' ~
l'4
$ 1.2 A - 3 l'
O.8 06
~
( 0.4 0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Haw Aspect Ratio (a4) l-O-IWB-3500 --dr-!WB.3600 Max Allowable i SIR-95-135, Rev. O E-3 { StructuralIntegrItyAssociates,Inc.
i
)
Circumferential Sub-Surface Flaw e/t = -0.35 Nonle to Nonle Belt Weld 3 C = 2.5 9 1
- k2 '
1 l.5. s1 x' . 1 M 0.5 g p-0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Anect Rado(a4) l-O-IWB-3500 --e--IWB 3600 Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Nonle to Nonle Belt Weld 3 C = ' = 9 2.5 t k2 "
^ ! ,', /,f I / .i .
l r. l ! i l 1 0.5gy , I i i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a,1) (-O-!WB 3500 -* -IWil 3600 -O-Max Allowable SIR-95-135, Rev. 0 E-4 h StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = -0.25
,, , , Mozzle to Nozzle, Belt Wf id , , ,
3.3
/ 7 I
I 2$ A L
$s&
j 2 E
< l.3 W'
0.3 (; U 0 0.05 0,1 0.1$ 0.2 0.25 0.3 0.35 0.4 0.45 0.5 . Flaw Aspect Rado(a/I) l-O-IWB 3500 -*-IWB-3600 -Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Nozzle to Nozzle Belt Weld 4.5 , , , , , , , 4 3.5 U Y3 U 2 .$ 4 i E, M I i ., l M'
, I I WI 0.5 g ;
0 0 0.05 0.1 0.1$ 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l-C)-IWB-3500 -!WB 3600 -O-Max Allowable l SIR-95-135, Rev. 0 E-5 f StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = -0.1 Closure Head Region l f 1 2 l.5 s I 'l pr - 0 l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a/l) l-O-IWB.3500 --*-IWB.3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = -0.1 Closure Head Region 2.5 ( l 2
/ f-13 8,
5
/
a g
< , 7 I /3 05
(; I 0 f ' ' O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l-O-!WB-3500 -lWB-3600 --<>-Max Allowable l SIR-95-135, Rev. 0 E-6 4 f StructuralIntegrityAssociates,Inc. l
Circumferential Sub-Surface Flaw e/t = 0.0 Non.le to Nozzle Belt Weld 4C O O 7. O O O O O O .3 3.5 a 3 g 2,5 , j 2 . 15 1 a& - 0.5 g ; -- 0 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O--IWB 3500 -*-IWB-3600 --O--Max Allowable l A xial Sub-Surface Flaw e/t = 0.0 Nozzle to Nozzle, Belt Weld , , , , , 5
'e d4 1 -
33 6 - 2
. i i j l I
g 3,_ 0 1 I l > . . . 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (m/I) l-O-IWB-3500 +1WB 3600 -4>--Max Allowable ; SIR-95-135, Rev. 0 E-7 { StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.2 N,onle to Nonle_ Belt Weld , , , 3.5 # 3 r" 7 E. g 2.5 a
- I 2 1~S 0.5 t ;
2 , 0 0 0.05 0.1 0.15 0.2 0.23 03 035 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l-O-IWB 3500 --*-IWB.3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Non.le to Nozzle Belt Weld 6 t . 3 34 a I i # 3 j< ~7~
,' i l l ^
1 3 l I g d -h- ' l 0 T. T i l r 0 0 03 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a/I) l-O-IWB-3500 --*--IWB.3600 Max A!!owable i SIR-95-135 Rev. 0 E-8
g Circumferential Sub-Surface Flaw e/t = 0.35 3 Nozzle to Nozzle Belt Weld 0 . , . . . .) i E2 g,3 # j g l 0.5 [;-- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 F1sw Aspect Rado(ad) l--0--IWB 3500 -*- IWB-3600 -Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Nozzle to Nozzle Belt Weld 3 L 2.5 Ut 2
~
l 4 g,3
,r- ;
h '"_
*. I l l , I i 0.5 g ;-- -
O 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 flaw Aspect Rado(aa) l--O--lWB 3500 --*-IWB-3600 --0--Max Allowable j ,, SIR-95-135, Rev. 0 E-9 f StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.45 Nozzle to Nozzle Belt Weld 0.9 3 . . . . . . . . . 4 a,- - I I I i i I M 0.7
.sW" 10.0 .
05 tr
$ 0.4 03 0.2 0.1 0
0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Fisw Aspect Rado(a4) l-o-lWB 3500 -*-IWB 3600 -H>-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Nozzle to Nozzle Belt Weld 0.9 3 . . . . . . . .
; 3 I T ~
T
~ I 1 .. a - I 0.8 " " !
O.7 0.6
" 0.5( F 0.4 *t
- 0) .
O.2 0.1 l l t l l 1 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0$ Fisw Aspect Rado(a4) l+!WB-3500 !WB-3600 -H>--Max Allowable l i SIR-95-135, Rev. 0 E-10
APPENDIX F Flaw Acceptance Diagrams for Region F Materials Region F includes: .
- Lower Nozzle Shell *
. . Nozzle Belt to Upper Shell Welds (WF169-1, SA1769) i . Upper Shells (Al-207-1,2)
- Lower Shell(A2-207-1)"
1 i Based on Minimum Thickness = 8.4375" 1 Default Maximum Allowable Flaw Sizes for All Charts: Axially-Oriented Flaws = 2.8" Circumferentially-Oriented Flaws = 4.2" Notes:
- Includes all irradiated portions of Lower Nozzle Shell. For unirradiated portions, see Region D.
" For flaw indications found in Lower Shell, need to also check Region H.
ll ) GeneralNotes:
- 1. t = vessel wall thickness (including cladding thickness of 3/16"). ,
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of3/16"). {
- 3. a = total radial depth of flaw, for surface flaws. .
- 4. 2a = total radial depth of flaw, for subsurface flaws. I
- 5. t = length of flaw parallel to vessel wall.
L SIR-95 135, Rev. O F-0 f StructuralIntegrityAssociates,Inc.
Inside Surface Circumferential Flaw Beltline (I) l 0.6 n 0.5 e i - g 0.4
- l .. -
0.3 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O-twn.3500 -*-IwB-3600 l . Inside Surface Axial Flaw Beltline (I) l 0.6 2 n 0.5 E i -- l A 0.4
#~
i l , j o.3 l 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 flaw Aspect Ratio (a/l) l+1WB-3500 -de-IWB-3600 l I SIR-95-135, Rev. O F-1 . f StructuralIntegrityAssociates,Inc.
Outside Surface Circumferential Flaw Beltline (I) 1 ! l a r - - 3.5
/
A 3 2.s
/ ,
l 5 f l
!' l.s - / , / l / = "
lv s E $ i r M i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspect Radio (m/I) l-o--IWB-3500 -*-!WB 3600 l 3 Outside Surface Axial Flaw Beltline (I) 2
- 1. 1.5 5
/
f 1
.e i 0.5 , , , , , ; i ,, . /- .,T i ! ; i l .
0 0 0$ 0.1 0.13 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Fisw Aspect Ratio (a/I) l--O-!WB-3500 --dr--IWB 3600 l SIR-95-135, Rev. 0 F-2 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.4 i.4 Beltline (I) l 1.2 C "
; ; e c :3 i
I 08 A i 1 :' ' '- g j o6 M U 4 ;. i',- 0.2 0 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.3 h Aspect Rasso(a@ l-O-IWB-3500 -e--IWB 3600 -Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 3,4 Beltline (I)
^ '
l C ' ' ; ; :3 1.2 i m 1 E 38 0 _ A) i - _. g 0.6 M<I 0.4 l 'r-- [ l 0.2 I I l 0 0 0.05 0.1 0 15 0.2 0.25 03 0.35 04 0.45 0.5 flaw Aspect Ratio (ul) l-O--IW 3500 --4--fWB-3600 +1(ax Allowable j SIR-95-13 5, Rev. O p.3 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Beltline (I) 2 i I I
- i,J 1 I 1 1 1 1
_ A l.6 y 1.4 f,1.2 d j Mi 08
; -w ;6, c p_ e T W 0.2 0
0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Finw Aspect Ratio (a/I) I [--0 -IWB-3500 -!WB 3600 --o--Max A!!owable l
. Axial Sub-Surface Flaw e/t = -0.35 Beltline (I) 2 1 1 1 1 1 1 1 1 1 4 1.8 1 * * * " ~ " ~ " " '
l.6
- 8. 1.4 11.2 j 1 08 06 04 0.2 T l i' O
O 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O-lWB-3500 --e--IWB-3600 --0--Max Allowable l SIR-95-135, Rev. 0 . F-4 h StructuralIntegrityAssociates,Inc.
I Circumferential Sub-Surface Flaw e/t = -0.25 3,3 Beltline (I) i I
,c _ . , 2.5 ,
d j [ t l i j t.5 ~ _ o', - & c; HC 0 l 0 ' O.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 hw Aspect Rado M) l-O--IWB.3500 - e--IWB-3600 -<>-Max Allowable l 4 Axial Sub-Surface Flaw e/t = -0.25 Beltline (I)
, 'f 1 1 1 1 1 1 J 1 1 J, 2.5 $2 1
5 /
~ l -
i E," - sl# l l 3 0.5 l (; 0 O 0,05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 05 Flaw Aspect Rat 6o(a/l) l-O-IWB-3500 --*--IWD-3600 --O- Max Allowable ! SIR-95-135, Rev. O F-5 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.1 4.5 Beltline (I) 5 ^ 4 : _ l
. j . 1 I 3,3 , ?3 I l & 2.5 ,
5 I 32 1.5 0.5 l c . . l l ! 0l 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/t) l--o-!WB 3500 - e--IWB 3600 -O-= Max Allowable l Axial Sub-Surface Flaw e/t = -0.1 3 Beltline (I) 1 1 j A 1 i A A p r a k2- . E j 1.5 i l l ,
~
I 05
' l '
I; 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0,4 0 45 0.5 Flaw Aspect Ratio (a/I)
~
l--0-IWB 3500 --e--!WB-3600 -<>-Max Allowable i SIR-95-135, Rev. O F-6 { StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.0 Beltline (I) 4.5
,l 1 1 1 1 I i i 1 1 '4 4
3.5 d'3 i d 2.5
$ 2 j -
1.5 0.5 -- g i-0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Mew Aspect Rado(a/0 l-O-!WB-3500 -!WB 3600 -C--Max A!!awable l
. Axial Sub-Surface Flaw e/t = 0.0 ~
3 Beltline (I) 1 1 1 1 _ _1 _1 _1 _1 _1 _1 .
; 2 i i E,
f I.5 i _ 0.5 l I l 0 O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Raw Aspect Ratio (m/l) l-O--IWB.3500 --dr--IWB-3600 --0--Max Allowable l SIR-95-135, Rev. O F-7 4
l Circumferential Sub-Surface Flaw e/t = 0.2 4 Beltline (I) I A 1 1 l l l b ^ ~ ,- . 3.5 , 3 A Wl& a 2.5 ,
- 3. 2 1 J< i.5 1
*'g. - - :
O O'I 0 I0 02 0.25 0.3 g_33 b Aspect Rado(a/I) l+IWS3500 +IWB %00 +Mu he l Axial Sub-Surface Flaw e/t = 0.2 3 . Beltline (I) b A 1 1 i L ^ t
^
t 9 U 5, 2 j i ,,_ 1 - E 31.5 1
=t 0.5 c: ' h
- I 0
.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5 h Aspect Ratio (a/I)
IWS3500 --*-IWB-MOO --0--Max A!!owable l l SIR-95-135, Rev. O F-8 I StructuralIntegrity Associates, Inc. I
.__- . ~ _ - . _ _ . .__ . _ _ . . .
l i Circumferential Sub-Surface Flaw e/t = 0.35 Beltline (I)
,A 1- 1 I 1 1 I I I 1
4 1.8 1'6
*,4
_ I/ ' I ,~,
/ si ' / / ' /
l 0. ..-
- cp m r-0.2 J- .0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(ad) :
4 l-C-IWB-3500 -e-IWB-3600 -O-Max Allowable l
, Axial Sub-Surface Flaw e/t = 0.35 Beltline (I) 1 1 1 1 1 I I i ,., A _1 _ , . . _ A l.6 - 1.4 ? 1.2 - AfiX O.
l 04 0.2
'7 I I I I f 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Fisw Aspect Redo (a4 l--0-IWB-3500 -*-IWB 3600 Max Allowable i SIR-95-135, Rey, 0 F-9 h Structurallategrity Associates, Inc.
't ---a,. - - -. . _ _ > - - . - - - , - - . . -
i i Circumferential Sub-Surface Flaw e/t = 0.45
,, Beltline (I) 0.6 C
i l l l l 2 l
, 0.5 I l k
J 0.3 tf l i 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Nw Aspect Rado(a/I) l--O- IWB.3500 --sh- !WB 3600 --O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 -
,, Beltline (I) l l -
l _ ,
,,, 3 I l l
0'5 l j a [" l , i . ; L i I - , e> l : 0.2
' l i' l 0.1 , ,
4 l 1 l ' 0 0 0.05 01 0.15 02 0.25 0.3 0.35 04 0.45 0.5 ; Flaw Aspect Rado(a/t) Max Allowable ; l-O--IWD-3500 -er--IWD-3600 - ? l SIR-95-135, Rev, O F-10 i StructurniIntegrity Assxiates, Inc.
l I I l APPENDIX G Flaw Acceptance Diagrams for Region G Materials
. Region G includes:
- Lower Shell(A2-207-1) *
- Upper Shell Longitudinal Welds (WF8,18)
- Upper Shell to Lower Shell Weld (WF 70)
- Lower Shell Longitudinal Weld (SA1580)"
Based on Minimum Thickness = 8.4375" Default Maximum Allowable Flaw Sizes for All Charts: Axially-Oriented Flaws = 2.8" Circumferentially-Oriented Flaws = 4.2" Notes:
- For flaw indications found in Lower Shell, need to also check Region F.
j " Includes all portions ofLower Shell and Lower Shell Longitudinal Weld with thickness I equal to 8.4375. For thickness <8.4375, need to check Region H (Lower Shell) and I Region I (Lower Shell Longitudinal Weld). i l l General Notes:
- 1. t = vessel wall thickness (including cladding thickness of 3/16").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness ;
l of 3/16").
- 3. a = total radial depth of flaw, for surface flaws. J
- 4. 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall.
StructuraI Integrity Associates, Inc. SIR-95-135, Rev. O G-0 i
r J Inside Surface Circumferential Flaw Beltline (II) l l
. 0.6 , 0.5 1
2 0.4 5 :. wr : l jOa , 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 03 035- 0.4 0.45 0.5 Fisw Aspect Rado(a/I) l-O-!WB.3500 -*-!WB 3600 l Inside Surface Axial Flaw Beltline (II) 0.7 1 ' 2 0.6 i
~
_ 0.5 E l i t" 5 1 {
- ! 7 J02 4 I l I 0.2 ,
l I
! l 0.1 i 0
0 0 05 0.1 0.15 02 0.25 03 035 0.4 0 45 0.5 Flaw Aspect Rado (a/l) j-O-!WB 3500 -*-!WB 3600 l SIR-95-135, Rev. O G-1 StructuralIntegrity Associates, Inc.
Outside Surface Circumferential Flaw
,, Beltline (II) 1 1 ! ,1 - - -
3.5
/
E1 l / - t 32.5 l l I h, 1.5 f i
*S - / , ,. _ 2- -c >
0 y 6 ~ 9 ? T I I l l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
. Fisw Aspect Rado(a/I) l--D-!WB-3500 -*-IWB-3600 l Outside Surface Axial Flaw Beltline (II) 2.5 $2 1
E. A i 1.5 l-J" 4 l 05 t 0 O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Haw Aspect Rado(ai) l--O--IWB-3500 --*-IWB 3600 ! SIR-95-135, Rev. O G-2 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.4
,, Beltline (H)
I l- I 1.2 ' g
/
I I U ' M3 58 0 f ' i l '. 0.4 1 ( 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/0 l-O -!WB-3500 --e--IWB 3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Beltline (U) l 1.2 I . I E OI M3 rw l 06 , , 3 at 04' ( l l l 02 0 l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 j Flaw Aspect Rado(a/I) l--O- IWD 3500 -dr--IWB-3600 --O-Max Allowable i SIR-95-135, Rev. O G-3 l l
Circumferential Sub-Surface Flaw e/t = -0.35 Beltline (II) 2 I I I i i i i 1 1 A
,A i
1.6
~ 1.4 3.1 '2 a g g' '
08
~ .r l
0.4 Mr g-0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--0--!WB.3500 -IWB.3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 - Beltline (II) I i 1 1 1
*A l.8 1
1 1
~
1
~ ~ " ~ ~ ~ A 1.6 g I.4 12 08 06 0'4 (p. "E i j i 0.2
, l I ! i i I ! l l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (all) l-O--IWB-3500 --*--IWB-3600 --0--Max Allowable l SIR-95-135, Rev. O G-4 l .
i
- l l
I i 1 l Circumferential Sub-Surface Flaw e/t = -0.25 3.3 Beltline (II) I I l I I > 3
, 2.3 .
I 3 2
,s i A W l$
4 3 as
.- A I #'
0 a yll 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--0--!WB 3500 !WB 3600 -O--Max Allowable l
. Axial Sub-Surface Flaw e/t = -0.25 3
Beltline (II) 2.5 2
^
1.5 - . 1 1 I l 0$ ( ;- j ! 0 l O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a,1) ! l-O--lWB-3500 IWB-3600 --0-Max Allowable i l SIR-95-135, Rev. O G-5 StructuralIntegrity Associates, Inc. i I
Circumferential Sub-Surface Flaw e/t = -0.1 Beltline (II) 45 4 - 1 _; -
.i 33 k3 .s i
2.5 3 l2 l
$ I 1.5 05 n_ y- 0 I l- l "T
I 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 l I Flow Aspect Rado (all) l -O--IWB.3500 --e--!WB 3600 --O--Max Allowable l Axial Sub-Surface Flaw e/t.= -0.1 Beltline (II) 1 I 1 1 1 3[ 1 1 1 __ k I 2.5 a
$2 .t I a i j 1.5 g
0.5 I [ ! l l ! 0 l 0 0.0 $ 0.1 0.1 $ 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Fisw Aspect Rado(ad) lWB-3.500 --e--lWB.3600 --o--Max Allowable l SIR-95-135, Rev. O G-6 Structurst Integrity Associates, Inc.
\
Circumferential Sub-Surface Flaw e/t = 0.0 l Beltline (II) 4.5
- F 4
l l l 3.5 .
~
d3 I l l - d 2.5 5" l 2 I l
*. l.5 g
0,
. g _. v-M i i
l l l 0l 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 fisw Aspect Ratio (a4) l--0--!WS3500 --*-IWB-3600 --o--Max Allowable l l Axial Sub-Surface Flaw e/t = 0.0 . Beltline (II) 3 i i 1 1 1 1 I I I ( l l 2.5
?2 1 -
i ja l.5 ' l l
' g i
l ' 05 LV l l ! : I O O 0 05 0.1 0 15 0.2 0.25 03 0 35 0.4 0.45 0.5 Flaw Aspect Ratto(a4) { +1WB-3500 --*-IW43600 --0--Max Allowable - SIR-95-135, Rev. O G-7 StructurslIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.2 Beltline (H)
,j 1 1
T T I T 1 1 T-I I i
-{
3.3
' a d I
_ 1 m { 2.5 l 3 j 2 l 1
< l.5 1
05 2-- 0 I mll l 0.25 0.3 035 0.4 0.45 0.5 0 0 05 0.1 0.15 0.2 Flaw Aspect Ratio (a4) l-O-IWB 3500 -e-IWB-3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Beltline (H) 3 ' ' f i I ' 1 1 4 l l l 2.5 I
; 2 i
5 ' j 1.5 , g l i
! I j ! !
05 I' M l l 1 i. i
, s l t 0 0.05 0.1 0.15 0.2 0.25 0.3 0 35 04 0.45 0.5 Sw Aspect Ratio (a4) l-O-!WB-3500 -*-!WB-3600 -O-Max Allowable l SIR-95 135, Rev. O G-8 StructuralIntegrity Associates, Inc.
Q Circumferential Sub-Surface Flaw e/t = 0.35 2 Beltline (H) l l l l t t l l 1 J 1'6 _,4 / I l 1'2 l j , - M If . ; OB - A 06 0.4 (M 0.2 0 0 0 05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Fisw Aspect Rasie WI) l--0--IWB-3500 +IWB.3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 , Beltline (H) l~ \
,J, _
l l 1_ 1_ 1 l l _ _ f_ _ l.6
- 1,4 i ,,
El I > j , X I !# - 0.8 06 04 ' 0.2
'N I I ! ! I !' f ' '
0 O 0.05 0.1 0.15 0.2 025 0.3 0.35 04 0 45 0.5 Fisw Aspect Ratio (a/I) l--O--LWD-3500 --4--IWD-3600 --o--Max Allowable i
' SIR-95-135, Rev. O G-9 Structural Integrity Associates, Inc.
e
l Circumferential Sub-Surface Flaw e/t = 0.45 0.7 Beltline (II)
' ^
0.6 ' , l l i 0.5 8., ' l 1 0 .4 I i d , 0.3
< 1 1
0.2 6 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 t Fisw Aspect Rade(a/0 l--O--IWB 3500 -IWB-3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Beltline (II)
. 0.7 0.6 (, _ _ - - ; w 0 .5 I -
I I ! 3. [ j 0.3 , 0.2 l t i i 0.1 j , I t I 0 0 0 05 01 0.15 0.2 0 25 0.3 0.35 0.4 0,45 0.5 Flow Asput Rado(a/I) l+1WB-3500 --e--!WB.3600 --0--Max Allowable 6 S1R-95-135, Rev. O G-10 gg,,,g,,,, y,,,,,,,,pgggg,gggg, ,gg.
I APPENDIX H Flaw Acceptance Diagrams for Region H Materials Region H includes: f
- Lower Shells (A2-207-1, -2) * ,
i Based on Minimum Thickness = 5" Default Maximum Allowable Flaw Sizes for All Charts: Axially-Oriented Flaws = 1.67" Circumferentially-Oriented Flaws = 1.67" i Note:
- Includes all ponions of Lower Shell with thicknesses <8.4375. For portions oflower shell with thicknesses eqbal to 8.4375, see Regions F, G.
i i General Notes:
- 1. t - vessel wall thickness (including cladding thickness of 3/16").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a = total radial depth of flaw, for surface flaws.
_ 4. 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall.
SIR-95-135, Rev. O H-0 f StructuralIntegrityAssociates,Inc.
Inside Surface Circumferential Flaw Transition Region (I) 1.8 1 ~6 1.4 l 1 7 : J, 1.2 1 I / t
- I '
I/ 2 I/ 0.8
,6 I/ - 1 : :1 0.4 -
l 0.2 1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l) l-O-Iws.3500 -*-IwB 3600 l Inside Surface Axial Flaw Transition Region (I) 1.8
- I .!
1.6 l # 1.4
/l n
3 1.2 i , I / I 08 06 A 04 -# 1 1 #_J p --- --G- I l
; l l l 0.2 l l l I*
i l' l . i : 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a/l) l-C)-!WB-3500 -*-IWB 3600 l SIR-95-135, Rev. O H-1 - f StructuralIntegrityAssociates,Inc.
l l l Outside Surface Circumferential Flaw l Transition Region (I) l I i f l .4 1 i .2 , / I 0 48 /0, l 1 0.4 s
=
0.2 0 Y ? F M I o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l--0--lWB 3500 --*--IWB-3600 l Outside Surface Axial Flaw Transition Region (I) l .6 1.4 1 / ! i ,',, a f I I
- 0.8 06 .
I I I I l i
- l l 04 .
I I i l i l 3 0.2 0 O 0.05 0.1 0.15 0.: 0.25 0.3 0.35 04 0.45 0.3 Flaw Aspect Rado(a4) j--D--IWB-3500 --*--IWB-3600 { SIR-95-135, Rev. O H-2
^ h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.4 Transition Region (I) O s ,, ' " I I T i , , 0.7 - 06 i { 0.5 I I h 0.4 0.3 l 0.2 I 0.1 0 0 0 05 0.1 0,15 0.2 0_g3 g_3 n33 0.4 0.45 0.5 n- As m a.e.<.a) l+1WB 3500 --6--IWB 3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 . Transition Region (I) O s ,, r x . s T I I T T f 0.6 i { 0,5 I A 0.4 0.3
- l l
0.2 I 0.1 I f l l l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 o3 Haw Aspect Ratio (al) l--0--!WD-3500 - !WB 3600 --O--Max Allowable l SIR-95-135, Rev. O H-3 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 j Transition Region (I) T T 4
, i _
M f f
"#s #j .I 0.8 s l }< 06 0.4 _
0.2 ' -- 0 0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0.45 0.5 i Flaw Aspect Rado(a/1) l-O- IWB-3500 --dr--IWB 3600 -C--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Transition Region (I) T T I : : : : I- T ~ I I a f
$ 0.8 i
0.6 i 4 I l 0.4 .
~ } l 0.2 f I i i . ' i ' I !
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Rado(a<1) l-O-lWB-3500 --e--IWB 3600 -o--Max Allowable : , SIR-95-13 5, Rev. O H-4 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.25 ; Transition Region (I) l.6 1,4 U 6 . l Y 1'2 - a d 1 31 0.8
?
06 04 p c' - 0.2 ! '-- l 0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Flaw Aspect Ratio (ed) l-O-IWB 3500 -*-IWB 3600 --0 -Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Transition Region (I) 18 G -
.a r 1.6 1.4 , /" !
k 1.2 I ! f d I i l' 0.8 O6 04 l 0.2 l '--- 1 I I I ! ! '. o. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 flaw Aspect Ratio (a/I) l-O-IWB-3500 --dr-IWB.3600 --0--Max Allowable l l SIR-95-135, Rev. 0 H-5 { StructuralIntegrity Associates, Inc.
]
Circumferential Sub-Surface Flew e/t = -0.1 Transition Region (I) . 3,,g, _ , _ _ _ 1.6 l 1.4 , & l.2 , . k l
- 8. I ,
- l 0.8
O6 0.4
' P-O.2 0
I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado (a,1) l--0--IWB 3500 --*-1WB 3600 --0--Max Allowable l I Axial Sub-Surface Flaw e/t = -0.1 Transition Region (I) 18 c. _ _ _ c. _ .. _ _ _ ci 1.6 1.4
& l.2 ,
1 i l 08 06 04 02C- i i
! l l l 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
.- Row Aspect Ratio (wl) j-O--IWB 3500 +IWB-3600 -*'>-Max Allowable j t
SIR-95-135, Rev. O H-6 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.0
- Transition Region (I) 18n . . . . _ _ _ ci I l l I -l l
1.4 j
$ !.2 i
d 1 3' 08 O6 0.4 O.2 !:-- _e" 0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Flow Aspect Rado(sa) l-O--IWB-3500 -*-!WB-3600 --O- Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Transition Region (I) 1.6 1.4
$ 1.2 i
31
- I 3 0.8 06 04 0.2 G-1C
~M 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 0 0 05 0.1 Fisw Aspect Rado(a4) l--O--!WD 3500 -*-IWB-3600 -<l>-Max Allowable l SIR-95-135, Rev. O H-7 StructurniIntegrity Associates, Inc.
i 1 l 1 l 1 Circumferential Sub-Surface Flaw e/t = 0.2 Transition Region (I)
,,,i. .. . . . _ _ _ ,,
I l.6 I 1.4 ' l
- i & l.2 $ l 3 1 0.8 0.6 0.4 - >Y 0.2 E-l 0
0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado,(a/I) l-O-!WB-3500 -dr-IWB 3600 --0--Max A!!owable l Axial Sub-Surface Flaw e/t = 0.2 . Transition Region (I) g, _ _ _ _ 1.6 l 1.4 -
~
d 1.2 i d I i i ,, j #8 0.6 a4 . 7 0, * ' i i O l I I I I i l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Rado(a/I) l--0-!WB-3500 -*--IWB-3600 --o--Max Allowable l SIR-95-135, Rev O H8 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.35 I Transition Region (I) i.2 ; - - P, I I I : - 1 11
$ 0.8 Y
j 06 0.4 L 0.2 fb 0 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 l Finw Aspect Ratto (a/I) [-O-IWB.3500 --*-IWB-3600 -Max Allowable l
- Axial Sub-Surface Flaw e/t = 0.35 Transition Region (I) 1.2 m _ _ _ _ a i
11
$ 0.8 k
a j 0.6
)< I 1
0.4 _
)
l . 0.2 fb 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0 05 Flaw Aspect Ratio (a/I) l-O-IWB.3500 -*-!WB-3600 -O-Max Allowable t SIR-95-135, Rev. 0 H-9 h StructuralIntegrity Associates, Inc.
f Circumferential Sub-Surface Flaw e/t = 0.45 - Transition Region (I) 0.4 y , ., , _ 0.35 I 03 a 0 25 t ' j 0.2 i
.c 0.15 0.1 0 05 0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 Fhnr Aspect Rado(a/l) [-O--IWB 3500 -*-IWB 3600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Transition Region (I) I O.35 0.3 0 25 t j 0.2
- I I
} 0.15 t ,
0.1 0 05 , h' t 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Rado(a<1) (*-O--LWD 3500 --*-IWB-3600 --0-Max Allowable i SIR-95-135 Rev. O H-10 h StructurniIntegrity Associates,Inc.
I
! APPENDIXI Flaw Acceptance Diagrams for Region I Materials ]
i 4 Region Iincludes: 4
- Lower Shell Longitudinal Weld (SA1580)
- l l
. Lower Shell to Head Transition (WF154)
- Head Transition Piece "
Based on Minimum Thickness = 5"
, Default Maximum Allowable Flaw Sizes for All Charts:
Axially-Oriented Flaws = 1.67" Circumferentially-Oriented Flaws = 1.67" 1 ( + i Notes:
- Includes all portions ofLower Shell Longitudinal Weld with thicknesses <8.4375. For portions equal to 0.4375, see Region G.
2,
" Includes all irradiated portions ofHead Transition Piece. For unirradiated portions, see Region J.
i l l General Notes: .
- 1. t = vessel wall thickness (including cladding thickness of 3/16"). j
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness i
of 3/16").
- 3. a = total radial depth of flaw, for surface flaws. I
- 4. 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall. ,
1 l l
/ ' SIR-95-135, Rev. 0 1-0 h StructuralIntegrityAssociates,Inc.
Y Inside Surface Circumferential Flaw Transition Region (II) 1.6 l.4
- I
( 1.2 i k I i j o.s
/ ;
06 m : :1 0.4 _ 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O-lWB 3500 --*--IWB-3600 l Inside Surface Axial Flaw ~ Transition Region (II) 1.8 . i 1
~
1.6 1.4 r I . 3 1.2 t 0.8 06 l '
/ -\ - \ :
- 0. 4 #
_# Mr-- 1 8
! I 0.2 O
0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a/l) l-C)--lWB-3500 --e-lWB-3600 I SIR-95-135, Rev. O I-l f StructuralIntegrityAssociates,Inc.
l Outside Surface Circumferential Flaw Transition Region (II) 1.6 1.4
/
- l I
1.2 I' i , / i 6' 1 0.4 0'2
.. .. -c W -
Y. T T I 'l I O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado (a4) l-O-JWB-3500 -*-IWB 3600 l Outside Surface Axial Flaw Transition Region (II) 1.8 . I
,, f l.4 ^
s 1.2 1 sr 0.8 0.6 l 0.4 l 1 l 0 0 y = = 3----7-~~~T I ! l 0 0 05 0.1 0 15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Rado(a/l) , l+1WB-3500 -*-lWB-3600 i SIR-95-135, Rey, O I-2 h StructuralIntegrityAssociates,Inc.
I 9 I Circumferential Sub-Surface Flaw e/t = -0.4 Transition Region (II)
,,s, _
g I 7 . i - 0 35 -- 0.3 Y { 0.25 k
. 0.2 < 0.15 , , ,
(: 0 -- 5 f 0 05 0 . 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/t) l -O-IWB-3500 --*-IWB 3600 --0-Max Allowable l Ax,ial Sub-Surface Flaw e/t = -0.4 Transition Region (II) 7 7 l l 0.35 1 0.3 g 0.25 a j 02 I'
.c 0.15 ,
f ,
~
3 0.1 I _' 7 l I i l 1 1 1 0 05 l ! l ! 0 . 0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0 45 0.5 Flaw Aspect Rado(a/I) l -O-IWB 3500 --e--IWD-3600 --0-Max Allowable SIR-95-135, Rev. O I-3 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Transition Region (H) 1.2 , , , . . . . ,, i * ^ 1 g
/ l l /
k OB i a 0.6 e ] l J< 04 0.2 fb 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a/I) i l-O-IWB-3500 -*-IWB-3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Transition Region (H)
' ~ ~ ' ' '
T L T 1 s r ~ l 1
$ 0.8 1
0.6 i 4 I i 04 _ I k- ' 02 l l I i 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a,1) {--O-LWD-3500 -*-IWB-3600 -Cr-Mu Allowable i SIR-95-135, Rev20 I-4 Structural Integrity Associates, Inc. 4
i Circumferential Sub-Surface Flaw e/t = -0.25 ! Transi_ tion Region (II) u - a F l 1.4 O l.2 W" E n 1. 3 I I f 31
" 0.8 06 0.4 a_
0.2 !" :- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 11sw Aspect Rado(a/I) (-O--!WB 3500 -*--!WB 3600 -Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Transition Region (H) _ 3, l.6 1.4
$ 1.2 '
I I I d I i 08 l l 31 0.6
- 0. 4 0.2 ! -- -
0 1 I I I I .
! l 0 0.05 0.1 0.15 0.) 0.25 03 0.35 04 0 45 0.5 Flaw Aspect Rado(ati) l--0-IWB 3500 --itr-lWB 3600 --0-Max Allowable i SIR-95-135, Rev. O I-5 h StructuralIntegrity Associates,Inc. .
f 1 Circumferential Sub-Surface Flaw e/t = -0.1 Transition Region (II) i.: c, _ _ _ _ _ l .6 1.4 . _ l l 1.2 , hi g_g I - 11 06 04 0.2 ! = 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
^
Plmw Aspect Rado(all) l-O-!WB-3500 +1WB 3500 -O--Max Allowable l Axial Sub-Surface Flaw.e/t = -0.1 , Transition Region (II) 1.s , _ _ _ _ _ ,, _ _ _ 3 1.6 1.4 i k 1.2 i i l I
$ 1 $ 08 ! ' I* I l 31 06 M ! I i I !
0.2 L.- ' I i !
' I 1 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flow Aspect Ratio (a/I) l-O-IWB-3500 --de-IWB-3600 -O-Max Allowable ! SIR-95-135, Rev. O I-6 h StructuralIntegrityAssociates,Inc. 4
l-i l Circumferential Sub-Surface Flaw e/t = 0.0 Transition Region (II) I8 6. - .i l l I 1.6 l.4
^
3., 1.2 t I l l d 1 l' 0.8 O.6 0.4 0.2 ! b i s-- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a,1) l -O-IWB 3500 --dr -!WB 3600 --O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Transition Region (II) . 1.6 1.4 d 1.2 i l l 2 1 l l l l 1 08 0.6 04 0.2Ik
! i I ! l !
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a,1) l--0-lWB-3500 --*- !WB-3600 - 4>-- Max Allowable l I I SIR-95-13 5, Rev. O I-7
Circumferential Sub-Surface Flaw e/t = 0.2 Transition Region (II) 1.8 c. _ . . . _ _ . _ c. 1.6 1.4
$ 1.2 .t 08 ll #
O.2 ! --- 0 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 F1sw Aspect Rado(a/I) l-O- IWB-3500 -*-IWB-3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Transition Region (II) - 1.s c . - - - - - - .a 1.6 1.4 k !.2 ' 1 ! ai
$ 1' 0.8 4
06 04
~
0.2 ! --- 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 * . i Flaw Aspect Ratio (a/I) l l--0-LWD 3500 --ib--lWB 3600 --o--Max Allowable i ); i SIR-95-135, Rev. O I-8 h StructuralIntegrity Associates, Inc.
I Circumferential Sub-Surface Saw e/t = 0.35 Transition Region (II) 1.2 m
.. I I ~ ': ; _ _ _
i i d os
- I a
. 3. 2 g l j 0.6 1 If 0.4 fL ' 0.2 0 0 0 05 0.1 0.l3 0.2 0.25 0.3 g_33 ' n_4 9.43 0, Flow Aspect Redo (a,1) l-O-!WB-3500 -dr--!WB-3600 -H>-Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Transition Region (II) 1.2 , _ ,, 1
$ 0.B i 1
a l j 0.6 h
< i 04
{ j 0.2 f t I 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a/1) l--0--IWD-3500 -*-iWB-3600 -K> . tax
\ Allowable i
^ SIR-95-135, Rev. O g.9 h Structurallategrity Associates, Inc.
i i i j
~
Circumferential Sub-Surface Flaw e/t = 0.45 Transition Region (II) ; 04 ,s, , l l l l
- l
' 1 0.35 0.3 0 25 t
j 0.2 m a
< 0.15 0.1 0.05 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspect M WI) , l-O-!WB-3500 --dr-IWD 3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Transition Region (II) O.35 l I I MI ' 0.3 0.25 I j 0.2
$ I < 0.15 01 I ! l !
0.05 1 0 O 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspert Ratio (atn l+1WD-3500 -*- lWB-3600 -O--Max Allowable l SIR-95-135, Rev. O I-10 f StructuralIntegrity Associates, Inc.
APPENDIX J Flaw Acceptance Diagrams for Region J Materials Region J includes: l l
- Head Transition Piece *
- Head Transition to Bottom Head Weld
. Bottom Head Based on Minimum Thickness = 5" Default Maximum Allowable Flaw Sizes for All Charts:
Axially-Oriented Flaws = 1.67" Circumferentially-Oriented Flaws = 1.67" Note:
- IvWa all unirradiated portions of Head Transition Piece. For irradiated portions, see Region I. .
General Notes:
- 1. t = vessel wall thickness (including cladding thickness of 3/16"). *
- 2. e = distance ft:m center of flaw to center of vessel wall (including cladding thickness of3/16").
- 3. a = total radial depth of flaw, for surface flaws.
4, 2a = total radial depth of flaw, for subsurface flaws. *
- 5. t = length of flaw parallel to vessel wall.
SIR-95-135, Rev. 0 3-0 h Structurallntegrity Associates, Inc.
Inside Surface Circumferential Flaw Bottom Head 1.2 1 1 1 1 1 l l l l l Y O.B i a 1 j o.6 b W 0'4 _l - 0.2 0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Plow Aspect Rado (a/T) l-O--!WB 3500 ih-!WB-3600 l Inside Surface Axial Flaw Bottom Head - 0.45 _ 0.4 0.35 O.3 ^ I : . s. 3 0.25 5 l l l l 0.2 0.15 . 0.1 , i as i i
, i P f l f l 0 01 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 0.05 Flaw Aspect Rado (av1) l-O- IWB-3500 --dr--IWB 3600 i SIR-95-135, Rev. O J-l f StructuralIntegrity Associates, Inc.
Outside Surface Circumferential Flaw Bottom H,ead . . . . 0.8 j 0.7
! i i l
l ' Y 06 03 a l 0.4 el I 1 i i Y f ' 0.3 O.2 l I l 0.1 (, ., 0 l l 0 0.05 0.1 ').15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 l Fisw Aspect Rado(a/I) , l--0-!WB-3500 --*--IWB.3600 l l
. Outside Surface Axial Flaw Bottom Head 1.8 l l l l f
16 g4 1.2 I .. A 08 06 04
#; 1 '
I I l l 02 k o 0.05 0.1 0.15 0.2 0 25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratto(a/1) l--0-IWB.3500 -*--IWB-3600 l SIR-95-135, Rev. 0 . J-2 h StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = -0.4 Bottom Head 0.
' ' ' 1 1 h b b A A J
1 ^ " I I 2 - - - 0.7 - - l l 0.6 I I
} 0.5 !
a l _ .M3 g 04 0.3 0.2 (; I 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a/I) l-O--IWB 3500 -*-IWB-3600 Max A!!owable l Axial Sub-Surface Flaw e/t = -0.4 l Bottom Head 08 ; 1 1 1 i i i i 1 1 1 1 I I I I I I 1 I 0.7 . - 0.6 a 0.5 k 0.4 _ M3
< 0.3 #2( '
f' l 0.1 l 1 i l
' I 0
O 0 05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 05 Flaw Aspect Ratio (st) i l-C)-!WD-3500 -*-IWB-3600 -Max Allowable SIR-95-135, Rev. O' J-3 h StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Bottom Head 1.2 i l l 1 l l l I I { i i i l l I I 50s , , i l 2 g 0.6
^
l M1 E 0.4 i 0.2 c: 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a/I) l-O--[WB-3500 -dr-IWB-3600 -Ma Allowable l Axial Sub-Surface Flaw e/t = -0.35 Bottom Head i 12
- i i I a l i' 'i s s ! I t i 2 f h= 06 l } l I ". 04 i I
02 c: ' i !, ! 0 0 0.05 01 0.15 0.2 0.25 03 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a4)
}-O-lWB 3500 -dr--!WB-3600 Max Allowable l SIR-95-135, Rev. O J-4 h StructuralIntegrityAssociates,Inc.
I J Circumferential Sub-Surface Flaw e/t = -0.25 Bottom Head i i
,,, J~ l I i 1 1 1 1 '( '
1.6 1.4 l t i ,
' l 1 i.2 l i
1 l . l a1 ! Os w . M
,;6 4 0.2 t : -1. 7 :
1 I I 4
- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5 Flow Aspect Ratio (a/I) l--0-!WB-3500 IWB.3600 --CH-Max Allowable]
1 Axial Sub-Surface Flaw e/t = -0.25 - , Bottom Head l
!.8 i .
14
) Y 1 .2 dr 1 -
l A 1 ,
- I
- 0. 8 0.6 04 I JM 0 2 (:
i l i l I i l i ! 0 0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0 43 0.5 Finw Aspect Ratio (ast) ; l--CH-IWB-3500 --*--IWD 3600 -C--Max Allowable l SIR-95-135, Rev. 0 J-5 Structut al Integrity Associates, Inc. > t
Circumferential Sub-Surface Flaw e/t = -0.1 Bottom Head 1.8 l l l l l i I l
, 1 '
1.6 l .4
^
{ l.2 i d 3 5 08 4 06 04 0.2 [: O I I O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l -O--IWB 3500 --de--IWB 3600 --0-Max Allowable l
. Axial Sub-Surface Flaw e/t = -0.1 Bottom Head .
I8 1.4 k 1.2 I I l I' d 1 l g 0.8 06 0, I IM l 0.2 [,, 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Rado(a<1) l-O--IWB.3500 --dr--IWB-3600 --o- Niax Allowable i SIR-95-135, Rev. O J-6 f StructurallatogrityAssociates,Inc.
i Circumferential Sub-Surface Flaw e/t = 0.0 Bottom Head 1.8 I I l 1 i l i l l
!' l I 1.4 I
d 1.2 1 ! l l
. d 1 -
l
^
0.8 0.6 04 0.2 (; 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Asimet Ratio (a4) l--0--IWB-3500 --de- IWB-3600 -<> -Mu Allowable l Axial Sub-Surface Flaw e/t = 0.0 , , Bottom Head 1.8 i i 1
- 1 - _1 _1 _1 _1 _1 _1 _ _
I' 1.4
.E., 1.2 i !
aI . 3 ! 08
' l 06 04 02 !:
I I I ! ! ! i 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0. 4 0.45 0.5 Flaw Aspect Ratio (a/l)
;-O-lWB-3500 --dr--IWB 3600 --0--Max Allowable j SIR-95-135, Rev. O J-7 f StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.2 Bottom Head
,,[ l i I 1 1 1 1 I i '4 1.6 l.4 1.2 t l l l $ 1 0.8 06 04 0.2 t .
0-0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/l) (*-O--IWB 3500 --*-IWB 3600 -Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 . Bottom Head :
,,, J l -
I I I I I _1 _ I i
.4 J
1.4 k 1.2 ' i d 1
- I l 0.8 l i 0.6 04 0.2 (;
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (atl) {-O--lWB 3500 -*-IWB-3600 htax Allowable i SIR-95-135, Rev. O J.8 h Structurniintegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.35 Bottom Head l i i l I l i 1 1
! l -
l l l i 1 . { k 08 ' i l Jr 0.6 j s. 0.4 1 0.2 (; - 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado (a/1) l--0 -!WB-3500 --*-IWB 3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Bottom Head 1.2 t i I I I - i .
$ 0.8 '
i l b,
-{ 0 6 g* l 0.4 '
t 0.2 C I l o 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (al) l--0-IWB 3500 --*--IWB 3600 --0--Max Allowable ! SIR-95-135. Rev. 0 J-9 h StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.45 j Bottom Head 04 l l l l I l 1 1 1 0.35 03 a 0 25 0.2 : 1
< 0.15 0.1 0 05 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(al!) i l-O-IWB-3500 -A-IWB 3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Bottom Head 04 035 03 0 25 0.2 : J
< 0.15 ,
i i i !' I i l l a o5 ; l i i i 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (arl) l-O--IWB-3500 -e-IWBJ600 Niax Allowable i SIR-95-135 Rev. 0 J-10 Structural Integrity Associates, Inc.
APPENDIX K ; Flaw Acceptance Diagrams for Region K Materials : Diagrams on pages K-1 through K-10 are for 0*-45' and 135*-180* locations. Diagrams on pages Kl-1 through K1-10 are for 45*-135' locations. .
' Region K includes: . Upper Nozzle Shell .
s
. InletNozzles(MK#18) 4 . Inlet Nozzle to Shell Weld l
Based on Minimum Thickness = 12.125" Default Maximum Allowable Flaw Sizes for All Chans: Axially (parallel to weld)-Oriented Flaws = 4.08" Transverse Oriented Flaws = 4.08" ! Note: For all flaw acceptance diagrams in Appendix K, " axial" refers to flaws oriented axial to weld i (as affected by hoop stresses) and "circumferential" refers to flaws oriented transverse to weld (as affected by radial stresses). i l l 4 l General Notes:
- 1. t = vessel wall thickness (including cladding thickness of 3/16").
i 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a = total radial depth of flaw, for surface flaws.
4.~ 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall.
SIR-95-13$, Rev. O K-0 StructuralIntegrity Associates, Inc.
Inside Sur face Circumferential Flaw Inlet Nozzle to Shell Weld (0-45 ,135-180o) I I I I M
~
3., f . 1, / i d 2.5 I /I l 12 / 4 1.5 1 / I 1 i 0.s . m W, - ! I I I I I O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(all) l- 0--IWB 3500 --*- lWB-3600 l Inside Suiface Axial Flaw Inlet Nozzle to Shell Weld (0-45*,135-180*) j - E 0.8 O.7 1 06 -- 0.3
~
m 04" " I 0.3 0.2 I ! ! I l l
' i l l l l l I s l l
- i O
O 0 05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 05 Flaw Aspect Ratio (ad) i-O--lWB-3500 +1WB.3600 ! SIR-95-13 5, Rev. 0 K-1 StructuralIntegrity Associates, Inc.
Outside Surface Circumferential Flaw Inlet Nonle to Shell Weld (0-45 ,135-180 )
,3 /
~ 3.5 l
&3 /
i 32.5
)'! !
i l . 5'
!.5 l
i 0.5 0 4 ? f l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect katio(a/I) l-o-!WB-3500 --e-!WB-3600 l Outside Surface Axial Flaw Inlet Nonle to Shell Weld (0-45*,135-180 )
'.' i i .
14 i2 e 1 i 0.8
$ os I r i "
i 1 04 02 C ' ' I I
, . f l i 0 '
O 0.05 0.1 0.15 0.2 0.25 0.3 0 35 0.4 0 45 0.5 F1sw Aspect Ratio (al) l- O-IWB-3500 -*-IWB-3600 l SIR-95-135, Rev. 0 K-2 1
Circumferential Sub-Surface Flaw e/t = -0.4 Inlet Nozzle to Shell Weld (0-45 ,135-180 )
' C 3 'i ;
{ j j I j i . l .6 ' I I.4 Y 1.2 I 0
. 5 ,.8 ,
I f~ ! f 0.4 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a4) l-O-!WB 3500 --dr-IWB-3600 -o--Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Inlet Nozzle to Shell Weld (0-45 ,135-180 ). 1.8 g g g + 1.6 1.4 I I i t.2 d 1 08 06 0.4 l
< ! I I 02 l
0 0 0 05 0.1 0.15 02 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (ad) j-0-IWB-3500 --*-IWD-3600 Max Allowable l I l SIR-95-135, Rev 0 K-3 l. StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Inlet Nozzle to Shell Weld (0-45 ,135-180 ) l l l 9 ( ---C ~ 2.5 l I2' ' l.5 J 4 . 1 0.5 t ;- , 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/0 l-C--IWB-3500 --*-IWB 3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Inlet Nozzle to Shell Weld (0-45 ,135-180 ) 3 l , 2.5 d k2 I l 1.5 1
< i I .
0.5 ; , l I l l
' ! j l = ! l l ,
0 0 0.05 0.1 0.15 0.2 0 25 03 0.35 0.4 0.45 0.5 Fisw Aspect Rado(art) l--0--IWB 3500 --dr-!WD-3600 -K>-Max Allowable I r SIR-95-135, Rev. O K-4 StructuralIntegrity Associates, Inc. i
Circumferential Sub-Surface Flaw e/t = -0.25 Inlet Nonle to Shell Weld (0-45 ,135-180 )
.3 4 C -- 21 f
k3 i d 2.5 3 l.3 0.5 t ; _ O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flew Aspect Rado(a/l) l IWB 3500 --*- !WB.3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Inlet Nonle to Shell Weld (0-45*,135-180 ) 4.5
,J 4 L _
3.5
$3 1
32.5 5 l 2 I# Ml l l OJi , , l l l l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (a/1) l-O--IWB 3500 --*--IWB 3600 --0--Max Allowable l SIR-95-13 5, Rev. 0 K-5 h StructuralintegrityAssociates,Inc.
I Circumferential Sub-Surface Flaw e/t = -0.1 Inlet Nozzle to Shell Weld (0-45 ,135-180o) I I I I i I 1 1 1 ) 4i l l l 3.5 , d3
. t l l d 2.5 2 ,'3 0.5 [; s-0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a/I) l- IWB 3500 -e--!WB 3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.1 Inlet Nozzle to Shell Weld (0-45 ,135-180 )
4.5 1 1 I I I 4 (, 1 . _ J 3.5
$3 I l k 2.5 2
i ,', MIF
, Mi M I 0.5 i i ! ! ! I i O
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 j Flaw Aspect Ratio (a/l) l -O-=IWB-3500 --*-IWB-3600 -O-Max Allowable i i i
- SIR-95-135, Rev. 0 - K-6 h StructuralIntegrityAssociates,Inc.
l
1 J j 1 1 Circumferential Sub-Surface Flaw e/t = 0.0 Inlet Nozzle to Shell Weld (0-45 ,135-180 ) 1 1 1 I I I ! l
, 1 ,
3.5 k3 I l l 82.5 5
~$', < I p' W ,~
0.5 (;- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/0 l--0-!WB 3500 -e--IWB 3600 -O-= Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Inlet Nozzle to Shell Weld (0-45 ,135-180 ) 1 1 1 1 I I I I 1 4 3.5 1 23 /
- < T' 2.5 * ; i ! ,.5 - # l l P' l "
l I M- l 0., , ; .- Ml I i l l I , ! ! 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 j Flaw Aspect Rado(a/D l--0--IWB-3500 -*-IWB-3600 --+--Max Allowable l l SIR-95-135, Rev. 0 K-7 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.2 Inlet Nonle to Shell Weld (0-45*,135-180') l l l l l l p .. 1 1 3 3.5 l
&3 t l I !. 2.5 i
2
- g3 1
0.5 (; - 0 1 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Fisw Aspect Rado (a/t) l-O-IWB 3500 --dr--IWB-3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Inlet Nonle to Shell Weld (0-45',135-180o)
,3 1 1 I I I 1 1 1 .1 4 c-3.5 I3 '
2.5 2.? 1.j
, I l l- l Mi 0.3 g; O
O 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/l) ( -O- IWB-3500 -IWB 3600 -Max Allowable l e . SIR-95-135, Rev. O K-8 f StructuralIntegrityAssociates,Inc. 1
1 Circumferential Sub-Surface Flaw e/t = 0.35 Inlet Nozzle to Shell Weld (0-45 ,135-180o) I 2.5 k2-
- i l a '
W.
!' F ,
0.5 [;- l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Finw Aapset Rasie(a/0 l-O--IWB 3500 --de--IWB-3600 -o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 . Inlet Nozzle to Shell Weld (0-45*,135-180 ) l
. ,, /
! f x i a 51.5
> &lp .
I $ I i j i l f 0.5 g ;-- - I I ' l 1 i : 0-0 0 05 0.1 0.15 0.2 0 25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) ] l l--0--IWB-3500 -*--IWB-3600 -Max Allowable l SIR-95-135, Rev. O K-9 l
Circumferential Sub-Surface Flaw e/t = 0.45 Inlet Nozzle to Shell Weld (0-45',135-180 ) 07 I 0.6 1 0.5 , c ! i l j .a 4 , 0.3 ) 0.2 0.1 h 0 l l 0 0 05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.$ Flaw Aspect Ratio (ed) l--0-IWB-3500 -*-IWB-3600 -Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Inlet Nozzle to Shell Weld (0-45 ,135-180*)
"" 9 i i i i E _ _ ._ j 0.8 0.7 10,6 0.5 . ,
I '
" 0.4 l
0.3 k ! 0.2 O.1
! I l i l
1 0 0 0$ 0.1 0.15 0.2 0.25 03 0.35 0.4 0 45 0.5 l Flaw Aspect Ratio (a4) I-O--lWB-3500 -*-IWB-3600 --0-- Alax Allowable l a SIR-95-135, Rev. 0 K-10 StructuralIntegrity Associates; inc. l -
1 Inside Surface Circumferential Flaw Inlet Nozzle to Shell Weld (45-135 ) 4.5 , 4 I I 3.5
.} - .I 3 l l
, i A 2.5 I/
/
2
,., / ; , A "
7, 1 .. 1._ _._< o., c . - -- 4 0 l l l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rade(a4) l--0-IWB.3500 +!WB 3600 l
+
F Inside Surface Axial Flaw , , Inlet Nozzle to Shell Weld (45-135o) 0.9 1 1 , 0, 0.7 I 0 .6 0.5 i 1-
' l - } 0.4 " ' !
0.3 l l l l' l i-0.2 01 ' l l 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 f1sw Aspect Rado(a4) l--0--IWB 3500 --de--IWB.3600 l SIR-95-13 5, Rev. 0 K1-1 StructuralIntegrity Associates, Inc. 4
Outside Surface Circumferential Flaw Inlet Nonle to Shell Weld (45-135 ) __ _ i .. 4 3.5
/
1, / i / I 22.5 4 1 l 3 2 1.5 ,,2 g i I l 0.5 0 y y ? -- f l l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) l--0-!WB-3500 --*-IWB-3600 l Outside Surface Axial Flaw - Inlet Nonle to Shell Weld (45-135o) j' 2.5
/
d2 - I d " j 1'5 1
= , A /[ . , # 'i 0.5 Q. V >
- t. ,
i t I 0 0 , 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a4) l--0-!WB-3500 -*-lWB4600 ! l l SIR-95-135 Rev. 0 - Kl-2 StructuralIntegrity Associates, Inc.
I Circumferential Sub-Surface Flaw e/t = -0.4 1I c Inlet Nozzle to Shell Weld (45-135 ) q ; ; ; = . l.4 1 k .2
.A C [ ~
l 0.4 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5 Daw Aspect Ratio (a/I) l-O-IWB-3500 IWB-3600 -C-Max Allowable l
. Axial Sub-Surface Flaw e/t = -0.4 Inlet Nozzle to Shell Weld (45-135')
1.3 g _ _ _ _ _ _ g 1.6 g4 1 l '2 _ M i,, V o
. I l I 06 0.4 i W" ~ l i I l
02 l 0 0 0.05 0.1 0.15 0,2 0.25 0.3 0.35 04 0.45 0.5 i Haw Aspect Rado(a/l) l-O-!WB 3500 -*-!WB-3600 -<>--Max Allowable i 1 i. SIR-95-135, Rev. 0 Kl-3 l l f StructuralIntegrityAssociates,Inc.
4 Circumferential Sub-Surface Flaw e/t = -0.35 Inlet Nonle to Shell Weld (45-135o) l l l l
; : : : a ,, n : : : _ - $2 i
1.5 c. . 1 0.5 g ; O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a4) l-O--IWB 3500 --e-!WB 3600 --O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Inlet Nonle to Shell Weld (45-135 ) 3 l ( ) 2.5
$2 l
t.3 l 4 ! t l 1 l f,
.. ,- i I ' '
0.5 (; i !~ 0
- 0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
' Flaw Aspect Raelo(a/I) l-O-IWB 3500 --e-IWB 3600 --0--Max Allowable i SIk - 135, Rev. 0 K i-4 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.25 (5 Inlet Nonle to Shell Weld (45-135o) i l l l l l ! I i 1 1 d 3.5
&3 .
i l l f 82.5
. i '
2 1f 0.5 [; + 1 I i 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Ratio (a/I) l--0-!WB 3500 --Ar-!WB-3600 -H)--Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Inlet Nonle to Shell Weld (45-135 ) 4.5 I I I I 1 I 1 > 4(. 3.5 a, , 1 I s W 1 M! 0'5 t 7 e i 1
' l l }
l ! ! ! I i i 0 0 0 05 0.1 0 15 0.2 0.25 0.3 0.35, 0.4 0 45 0.5 Flaw Aspect Ratio (a/1) j-O-IWB 3500 --dr--IWB-3600 -O--Max Allowable l SIR-95-13 5, Rev. 0 K1-5 Structural Integrity Associates, Inc. j
1 i Circumferential Sub-Surface Flaw e/t = -0.1 ' , (,
' Inlet Nozzle to Shell Weld (45-135 )
1 1 I l- l 1 I I 1 . l l
,., l x, ! .
I I 2.5 f 2 1
- l 0.S t; 0
I I I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 New Aspect Rado(a/I) l--0-IWB-3500 --*-IWB 3600 --0--Max Allowable l i j Axial Sub-Surface Flaw e/t = -0.1 ; Inlet Nozzle to Shell Weld (45-135o) 4.5 I I 1 I I 4 e . 1_ . I_ _1 _ _ _i 3,3 i 1 /i I j,~,, r s# l I 4 - /g l, 5 ,', 'i 2 l i #' ! I V I IW :
^ ! -l 0.5 t:
l l ! l 0 f 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 l n.wup.c Rae (e) I-o-rws.3500 -*--tws.3600 -o-wax Aziow. hie i i !? SIR-95-135, Rev. 0 K1-6 l h StructurallategrityAssociates,Inc. o , i
I Circumferential Sub-3urface Flaw e/t = 0.0 Inlet Nonle to Shell Weld (45-135 ) ) 4.5 ' l 4
- l. } l l l l l 3.5
$3 i !, 2.5 5 l .I ,, < P' ,M 0.5 ( .,-
0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Plaw Aspect Rade(a/I) l-o-Iws 3500 --*-!WB-3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Inlet Non'.e to Shell Weld (45-135') 4.5 1 I I I 1 1 !
- 3. 7 i
j3 a 5, 2.5 : 1
- l l l M' l W 0.5(.,- _dr i
! f l l , f ,
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Rado (a/I) l-O-lWB-3500 --*--!WB.3600 Max Allowable - SIR-95-135, Rev 0 K1-7 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.2 Inlet Nozzle to Shell Weld (45-135 ) 4 I. I 1 I I I I I I 1 3.5 I
^ .I 3 '
j I l i
- z. '
d 2.5 5 l
*2 g~g ^
- 0. C -'
0 7 1 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 Flaw Aspect Ratio (n4) l--0-IWB-3500 --*--!WB 3600 --o-Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Inlet Nozzle to Shell Weld (45-135o) 4.5 l l l l ^ l
^ '1 4<
3.5 Y3 ' i s # 32.5 3
< ! lV --
0 5 [- I I l : ! 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 05 0 Flaw Aspect Ratio (a/l) l-O-IWB 3500 --*-IWB-3600 -<>-Max A!!owable ! SIR-95-135, Rev. O K1-8 { StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.35 Inlet Nozzle to Shell Weld (45-135o) 3 l l 1 l 2.5
$2 -
I 2 l 1 l 3 . j 1.5 l b< !
' r 0.5 [1-0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 0 0.05 Flaw Aspect Ratio (a4) l-C--!WD-3500 -e- !WB 3600 -O-Max AUowable l Axial Sub-Surface Flaw e/t = 0.35 Inlet Nozzle to Shell Weld (45-135o) 3 l l .
g,3
- f s -
E 2 f '~
# # \ % e I 1.
5 1.5 1 3 ! M l l t f l 0.5 ( F I f l 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (ari) l-O-!WD-3500 -dr-!WB-3600 --O-Max Allowable l SIR-95 135, Rev. O Kl-9 h StructuralIntegrity Associates, Inc.
i Circumferential Sub-Surface Flaw e/t = 0.45 Inlet Nozzle to Shell Weld (45-135o) 0.7 06 0.5 , , ,
$ l 0.4 0.3 0.2 0.1 -v-0 0.05 0.1 0.15 0.2 0.25 ' O.3 0.35 0.4 0.45 0.3 0
Fisw Aspect Ratio (a4) l--0--!WB-3500 --de-IWB-3600 -O--Max Allowable l l 1
- Axial Sub-Surface Flaw e/t = 0.45 Inlet Nozzle to Shell Weld (45-135 )
0.9 g 0.8 0.7 06
~ 0.O Lr g 5 l' !"0.30 4 j l- l 0.2 .
O. I l' 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0 35 0.4 0 45 05 Flaw Aspect Ratio (a4) l-L3-lWB 3500 --*-!WD-3600 --O-Max A!!owable i SIR-95-135, Rev. 0 Kl-10 StructuralIntegrity Associates, Inc.
l APPENDIX L Flaw Acceptance Diagrams for Region L Materials f l Diagrams on pages L-1 through L-10 are for 0*-45' and 135'-180* locations. Diagrams on pages L1-1 through L1-10 are for 45*-135' locations. 1 Region L includes:
- Upper Nozzle Shell
- Outlet Nozzle (MK #19)
- Outlet Nozzle to Shell Weld Based on Minimum Thickness = 12.125" Default Maximum Allowable Flaw Sizes for All Charts:
Axially (parallel to weld)-Oriented Flaws = 4.08" Transverse-Oriented Flaws = 4.08" . Note: For all flaw =~*ptance diagrams in Appendix L, " axial" refers to flaws oriented axial to weld (as affected by hoop stresses) and "circumferential" refers to flaws oriented transverse to weld (as affected by radial stresses). General Notes: .
- 1. t = vessel wall thickness (including cladding thickness of 3/16").
- 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a= total radial depth of flaw, for surface flaws.
, 4. 2a = total radial depth of flaw, for subsurface flaws.
- 5. t = length of flaw parallel to vessel wall. i SIR-95-135, Rev. O L-0 h StructuralIntegrityAssociates,Inc.
1 Inside Surface Circumferential Flaw Outlet Nozzle to Shell Weld (0-45,135-180 ) 4 3.5 3
/
Q 2.5 2 l'
~
4 1.5
/
I J
/
i gg _
-A 0
1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspect Rade(=1) l-O-IWB-3500 -*-!WB 3600 l Inside Surface Axial Flaw Outlet Nozzle to Shell Weld (0-45,135-180 ) 08 0.7 06
. 0,3 -
ia 0.4 1-
~ I i i I 03 l I l l 0.2 ai . . . , ,
i l t ! 0 0 0 05 0.1 0.15 0.2 0.25 03 0.35 04 0.45 05 Flaw Aspect Raue (wn l-O-IWB 3500 -er-IWD-3600 l 8 SIR-95-135, Rev. O L-1 h StructuralIntegrity Associates, Inc.
Outside Surface Circumferential Flaw Outlet Nonle to Shell Weld (0-45,135-180 ) 4 I - -- - -- 3.5
/= I 43 /
i t A 2.5
}
1.5 I
, m = :
0 [ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Plaw Aspect Rado (a/I) l- 0-twB.3500 --*-!WB.3600 l Outside Surface Axial Flaw Outlet Nonle to Shell Weld (0-45,135-180 ) 1.8 1.6 1 -- 2 1.4 Y 1 .2 i , I / 18 0 0.6 U e ' i b i II I I I . l l n.g G T i 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Rado (=1) l -o-tws.3500 -*-iwa.3600 i SIR-95-135, Rev. O L-2 . f StructurallategrityAssociates,Inc. 9
Circumferential Sub-Surface Flaw e/t = -0.4 Outlet Nozzle to Shell Weld (0-45,135-180o)
'*c - - - ; ; ; ; 7 ; a 1.6 14 12 ii, # #I V
4 X I ! 0.4 0.2 0 0 0.05 0.1 0.15 02 0.25 0.3 035 0.4 0.45 0.5 Fisw Aspect Ratio (a/I) l-O-IWB-3500 -*-IWB-3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Outlet Nozzle to Shell Wdd (0-45,135-180') 1.6 1.4 I 11'2 j I WI I 4, 0 I W I 5 06
' #~
I' 04-l ! l' i l 02 O
! l i ' I !' ! !
O 0 05 0.1 0.15 02 0.25 0.3 035 04 0.45 0.5 Flaw Aspect Ratio (all) l-O--lWB-3500 -*-IWB-3600 -o--Max Allowable } SIR-95-135, Rev. 0 L-3 h StructuralIntegrityAssociates,Inc.
Circumierential Sub-Surface Flaw e/t = -0.35 Outlet Nozzle to Shell Weld (0-45,135-180 ) l l l l l l l ( ) 2.5 3
;2 f-1 # /c .
h- l.3 a M I 5
< i l
0.5 (;-- 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rasio(a@ l-C--!WB-3500 - *-!WB 3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Outlet Nozzle to Shell Weld (0-45,135-18bo) 3 c : ; ; ; :> 2.5 52 I l f l.3 i i e , l
- I i
0.5 ; , , I h l l 0 0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0 45 05 flaw Aspect Ratio (all) l-C--lWB-3500 -*- !WB 3600 --0--Max Allowable i SIR-95-135, Rev. O L-4 f StructuralIntegrity Associates, Inc.
- - 1
Circumferential Sub-Surface Flaw e/t = -0.25 Outlet Nozzle to Shell Weld (0-45,135-180o) i I 1 1 I I I C
^ 1 ^ 1 - 3 4
3.5 1, i A 2.5 l 5 ,, I P' I 0.5 [ ,
- M 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/t) l--0-IWB 3500 -*-IWB-3600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 - Outlet Nozzle to Shell Weld (0-45,135-180 ) 4.5 4 (, l f I
)
l ' 3.5 ' l 33 1 1 I l
' J 3, 2.5 ,
j 2
- l l P '
l 2 ~
# l' .
f' 0.5 ( l 1 0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0 45 05 l Flaw Aspect Ratio (a<1) j--O-IWB.3500 --e--IWB 3600 --0-Max Allowable i ! l l SIR-95-135, Rev. 0 L-5 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.1 Outlet Nonle to Shell Weld (0-45,135-180 ) 45 I I I 1 1 1 I I 3.5
$3 i
32.5 ,
- I g~
a
/
0.5 (; O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a4) l--0 -!WB-3500 -*- !WB-3600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = -0.1 Outlet Nonle to Shell Weld (0-45,135-180 ) 4.5 l 1 1 1 I l' 1 1 3 4' - - 3.5 k3 1 " 22.5 2 1~5 1 -d I W
,L 0.51 i 1MI ,
o
! ! ! l- I !
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 112w Aspect Ratio (ad) j--0--IWB 3500 --er--IWB-3600 --0-Max Allowable l SIR-95-135, Rev. O L-6 f StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.0 Outlet Nozzle to Shell Weld (0-45,135-180 ) 4.5 l 1 I I i 1 45 3.5
- I &3 I l l l 8, 2.5 I l 5 ,~l l P' , M 0.5 (; _ # I O
O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspect Rado (a/I) l--0-IWB 3500 -e-IWB-3600 -O -Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Outlet Nozzle to Shell Weld (0-45,135-180 ) 4.5 I . I 1 I I I I 4' - - 3.5 Y3
- Y & 2.5 4, /^ '
l
,,. c f !
0.5 g - i i i 0-I I I i I i 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Rade (m1) l-O-lWB 3500 --*--!WB-3600 --0-Max Allowable i i SIR-95-135, Rev. O L-7 f StructuralIntegrityAssociates,Inc.
~ Circumferential Sub-Surface Flaw e/t = 0.2 Outlet Nonle to Shell Weld (0-45,135-180 ) 4.5 l l l l l I 1 4( 3.5
- I j,3 I I l !
8, 2.5 1 l
' M 0.5 (; P-I l 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Finw Aspect Ratio (a/l) . l IWB-3500 --dr--!WB-3600 --o-Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Outlet Nonic to Shell Weld (0-45,135-180 ) 4.5 l I I 1 J 4 (, , - - - 33 Y. y3 s i #
/ !
I i ,,,
! ,;W . y' -
I I l# 0.5 [' i l : I l e l i 0 0 05 0.1 0.15 0.2 0 25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a/I) l--O--lWB 3500 --dr--IWD-3600 --0--Max Allowable l SIR-95-135, Rev. O L-8 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.35 Outlet Nozzle to Shell Weld (0-45,135-180*) 3 l l
'- - 1 )2 3 1
f 8.5 1 1 0.5 (;- # 0 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Flaw Aspect Ratio (a/0 l--0-IWB 3500 --*-twB 3600 -o-Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Outlet Nozzle to Shell Weld (0-45,135-180 ) C :
, O C g ; O 3 2.5 12 i # '
1 k 1'5 s r 1
'g-l l
l 0.5 [; , I i' 0 O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flow Aspect Ratio (a/I) {-O-IWB-3500 --*-IWB 3600 %1ax Allowable I SIR-95-135, Rev. O L-9 Structurst integrity Associates, Inc. t
Circumferential Sub-Surface Flaw e/t = 0.45 Outlet Nozzle to Shell Weld (0-45,135-180 ) ; 0.9 0.8 O.7 I 0.6 0.5 , c l 0.4 0.3 l 0.2 l 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado (a/I) l-O- IWB-3500 -e--!WB 3600 -O-Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Outlet Nozzle to Shell Weld (0-45,135-180 ) 0.9 g ; ; y 7 ; ; 3 z , l 0.8 0.1 06 0.5 Lr
- I 0.4
< l 0.3 ,
i 0.2 i i , 0 O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O--!WB 3500 -*-!WB-3600 -O-Max Allowable j SIR-95-135, Rev. O L-10 h StructuralIntegrity Associates, Inc.
f Inside Surface Circumferential Flaw Outlet Nozzle to Shell Weld (45-135 ) 3.5 , 3 R g 2.5
/ -
a ^ j2 I< 1.5 -/ d
/ .I l A i I
0.5 . _ M. . 0 0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Fisw Aspect Rado (a/I) l--0-IwB-3500 --*-!WB 3600 l t Inside Surface Axial Flaw Outlet Nozzle.to Shell Weld (45-135 ) 08 0.7 Y 0.6 - 0.5 b 03 02 l l I I 0.1
- l f
0 O 0 05 0.1 0.15 0.2 0.25 0.3 035 0.4 0 45 .0.5 Flaw Aspect Redo (st) i j-o-twB-3500 -*-twB-3600 l SIR-95-135, Rev. O Ll-1 f StructuralIntegrityAssociates,Inc.
2 Outside Surface Circumferential Flaw Outlet Nozzle to Shell Weld (45-135*) l l 4 l 3.5
'/ I I -
- I J 3 i /
52.5 t, '
/
4 ,., g/ i l C I U 0.5 "
. . __- a- ---L --
Y. T T T I I 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flow Aspat Rado(a/0 l-D--IWB-3500 IWB-3600 l Outside Surface Axial Flaw 4 Outlet Nozzle to Shell Weld (45-135 ) L 2.5 E 2 1.5 i
, m 0.5
- t. i i i I i 0
O O 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0. 5 Flaw Aspect Rado(a/I) l-O-iWB-3500 -dr-IWB-3600 } l SIR-95-135, Rev. O Ll-2 l f StructuralIntegrityAssociates,Inc. l _ _. __ __ _ _ _ _ _ _ = _ _ _ _ _ - _ _ - _ _ - - - _ - _ - - _ _ - - - _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ _ _ _ _ _ _
Circumferential Sub-Surface Flaw e/t = -0.4 Outlet Nozzle to Shell Weld (45-135*) = a
, ~, ; g g u 7 ; y 1.6 1.4 11.2 I
0.8 06 I 0.4 0.2 0 01 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5 0 0.05 Fisw Aspect Ratio (a/D l--0-IWB-3500 -*-IWB.3600 Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Outlet Nozzle to Shell Weld (45-135 ) 1.8 g _ _ _
; ; g 1.6 1.4 U
11.2 i ,
. MI 0.8 06 <' I 0.4 I I I i
2 ; , i , I $ i l N l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 035 04 0.45 05 Flaw Aspect Ratio (a,1) l-O-IWB-3500 --*-lWB-3600 -H>-Max A!!owable i SIR-95-135, Rev. O Ll-3 h StructuralIntegrity Associates,Inc. -
4 Circumferential Sub-Surface Flaw e/t = -0.35 Outlet Nozzle to Shell Weld (45-135 ) 3 l ,
' l' -
25 Y2
- a # 3 51.5 0.S [ F .
0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Fisw Aspect Rado (a@ l--0-IWB 3500 - dr--IWB-3600 -O--Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Outlet Nozzle to Shell Weld (45-135 ) 3 c . :
- , : 2- a 2.5 2 L E
1.5 1
"g ! -W i i ^l !
m- I T
' l 0.5 (;--
l l l l
' l 1 l
i 0 0 0 05 0.1 0 15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (all) l-O-IWB 3500 -*--IWB .1600 + Max Allowable l SIR-95-135, Rev. O L 1-4 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.25
,, Outlet Nozzle to Shell Weld (45-135o) i I i i I i C
1 1 0 1
- W 1 4
35
- j3
(># - 2.5
- I 1'
4 ,', , P'
, V 0.5 [; -*
O I I O 0.05 0.1 0.15 0.2 O.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/I) , l-CF-!WB-3500 -e--lWB 3600 --O-Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Outlet Nozzle to Shell Weld (45-135 ) 4.5 I I 1 1 I I , c 1 _ 1 , I 3.5
,3 2.5 l sdl 4l 4 ,~ l M I P' ,. - 4 M I IW 0'5 [- '
l ! I I ( l !
! ! ! ! l 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 flaw Aspect Ratio (a/1) l--Cl-!WB-3500 +1WD-3600 -M>--Max Allowable i 4
SIR-95-135, Rev. O L1-5
Circumferential Sub-Surface Flaw e/t = -0.1 Outlet Nozzle to Shell Weld (45-135 ) l l l l l ! l [ , I 3.5 I ' E" 3 2.5 t 1 1 0.5 (; I O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado(a4) l--0-IWB-3500 -*-!WB 3600 -Max Allowable l Axial Sub-Surface Flaw e/t = -0.1 Outlet Nozzle to Shell Weld (45-135') 4.5 l l l ' 4( 3 J Y3 3.5 r
/ I I f2.5 1, #~ l 4,, I l 'l l #'
g 0.5 (- I
+
i a MI ,
- i l' l l l I ! l 1
'O l l
0 0 05 0.1 0 15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
)
J Flaw Aspect Rado (a4) 0--IWD-3500 --Ar-IWB 3600 -O--Max Allowable i I I SIR-95-135, Rev. 0 - Ll-6 i
- f StructuralIntegrityAssociates,Inc. l
, l
Circumferential Sub-Surface Flaw e/t = 0.0 Outlet Nozzle to Shell Weld (45-135 ) 4 e. 1 I I ! I I
.I 3.5 d3 i
k 2.5 2 1.5 1 0.3 ( .,- g 0 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O--!WB 3500 -e--!WB-3600 Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Outlet Nozzle to Shell Weld (45-135') 4.5 1 1 I . I I 1 I 3.5 I # {3
!. 2.5 s
5 l I' I I IP 3 0,5 (; ---
! I i I ! l !
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 05 Flaw Aspect Ratio (wl) l i y 3-= IWB-3500 --e--IWB 3600 --<>-Max Allowable i SIR-95-135, Rev. O L1-7 StructuralIntegrity Associates, Inc. j
e Circumferential Sub-Surface Flaw e/t = 0.2 Outlet Nozzle to Shell Weld (45-135o) 4.5 4 c. I 1 I I I I I I i i l ' 3.5 . J 3 f , 2.5 l l g - l 2 t.5 L# 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a@ l- o-IWB-3500 -*-!WB 3600 - o-Max Allowable l Axi,al Sub-Surface Flaw e/t = 0.2 Outlet Nozzle to Shell Weld (45-135o)
. 4.5 L - , - 2 0 :1 4
3.3 13 J 7 -
$. 2.5 .
- 1 i i2 1.5
, M! :
0.5 t - I I i
! l l 0
0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a/I) l-O-IWD-3500 - *-IWB-3600 --0-Max Allowable { l SIR-95-135, Rev, O L1-8 , StructuralIntegrity Associates, Inc. j l
I l Circumferential Sub-Surface Flaw e/t = 0.35 3 Outlet Nozzle to Shell Weld (45-135 ) l . . . _ l . , 2.5 32 3 1 5 51.5 0.5 [; 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l-O--IWB-3500 --e--IWB 3600 -O--Max Allowable l I Axial Sub-Surface Flaw e/t = 0.35 , l Outlet Nozzle to Shell Weld (45-1350) i 3 l C
'; ;; O c ^
n W-
- ~
2,3 d2 ' l h_ af ' j 1.5 I
- I l i
l 0.5 (;- 4 I I i
! l 0 I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 flaw Aspect Ratio (a/I)
I j l-O--IWB-3500 -e--IWB 3600 --0-Max A!!owable i l SIR-95-135, Rev. O Ll-9 h StructuralIntegrity Associates, Inc. 1 _-1+ <m___
Circumferential Sub-Surface Flaw e/t = 0.45 Outlet Nozzle to Shell Weld (45-135 )
. 0.9 o _ _
I I M..
~
I
- ~
I O., 0.7 i6 0
~ 0.5 tr a 0.4 0.3 0.2 0.1 0
0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Maw Aspect Ratio (a/I) l-O-IWB 3500 --e--IWB 3600 --C>-Max Allowable l
. Axial Sub-Surface Flaw e/t = 0.45 Outlet Nozzle to Shell Weld (45-135 )
0.9 c - -- -- - 08 0.7 k 0.6 0.5 tr l 0.4 k 0.3 0.2 O. I
; i l 0 0 0,05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Raw Aspect Ratio (a/t) l l-O--IWB-3500 -*--IWB 3600 Max Allowatle i SIR-95-135, Rev. O Ll-10 l
i
~ e . APPENDIX M I 1 ! I i Flaw Acceptance Diagrams for Region M Materials l
?
9 Diagrams on pages M-1 through M-10 are for 0*-45' and 135'-180' locations. ; Diagrams on pages M1-1 through M1-10 are for 45'-135' locations. ,
- ' Region A includes
- >
t : ' i
- Upper Nozzle Shell
- e Core Flood Nozzle (MK #17) ,
e Core Flood Nozzle to Shell Weld T 1 l Based on Minimum Thickness = 12.125" Default Maximum Allowable Flaw Sizes for All Charts: e Axially (parallel to weld)-Oriented Flaws = 4.08" Transverse-Oriented Flaws = 4.08" , i L Note: For all flaw maph s diagrams in Appendix M, " axial" refers to flaws oriented axial to weld (u affected by hoop stresses) and "circumferential" refers to flaws oriented transverse to weld l
- (as affected by radial stresses).
- s t
r e i GeneralNotes:
- 1. t = vessel wall thickness (including cladding thickness of 3/16").
! 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of 3/16").
- 3. a = total radial depth of flaw,' for surface flaws. '
l 4. 2a = total radial depth of flaw, for subsurface flaws. i j 5. t = length of flaw parallel to vessel wall. L : SIR-95-135, Rev. O M-0 StmeturalIntegrity Associates, Inc. __4 m_ ___. __ __ - _ _ - - _ _ _ _ - . - _ _ _ _ _ _ _ __ -_ _ _ _ _ _ _ _ . _ _ _ _ -_-_____.___--__m_.__ -- _ _ -_ _-______ __-__m_-.
l o l Inside Surface Circumferential Flaw Core Flood Nozzle to Shell Weld (0-45,135-180 ) 3.3 3 4 2.5
/
- l 2 1.c i.5 /.
1
- 3. 4 -
s 0.5 . - I I ' O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspect Rado (all) l--0-IWB-3500 --*-rWB-3600 l Inside Surface Axial Flaw , Core Flood Nozzle to Shell Weld (0-45,135-180 ) 0.9 08 07 06 A
; 05 i e "
0.4 ' 0.3 l ! 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Ilaw Aspect Rado(avl) l-O--!WB-3500 --*-!WB-3600 l SIR-95-135, Rev. O M-1 { StructuralIntegrityAssociates,Inc.
Outside Surface Circumferential Flaw Core Flood Nonle to Shell Weld (0-45,135-180 ) f ! 4 3.5 53 ' i l I d 2.5 02 1.5
/ \
I o.3 w l&l _ u i l
- :)
oV T sMl-i i l "l l i l 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
' Finw Aspect Ratio (ed) l-CF-IWB-3500 - *-!WB 3600 l Outside Surface Axial Flaw Core Flood Nonle to Shell Weld (0-45,135-180o) 1.4 l.2 m 1 08 06 / # C \
04' 0** l l 0 0 0.05 0.1 0.15 0.2 0 25 0.3 0.35 04 0 45 0.5 Flaw Aspect Ratio (a<1)
!-D-!WB-3500 +1WB-3600 l SIR-95-135, Rev. O M-2 h StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = -0.4 Core Flood Nozzle to Shell Weld (0,-45.135-180o)
- 1.8 i, , , . . ; 3 1.6 l.4
( t Y 1.2 i ,
# 7! ! 0.8 # 1 1
( 0.4 0.2 0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1
- Flaw Aspect Rado(a/I)
(-O--IWB 3500 -dr-IWB-3600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = -0.4
, Core Flood Nozzle to Shell Weld (0-45,135-180 ) _ _
1,6 1.4 12 g 0.8 06
' #l I I l l l I
I l l 0.2 . l' ! f' !' f' O 0.15 0.2 0.25 0.3 0.35 0.4 0.4? 0.5 O 0.05 0.1 Flaw Aspect Ratio (a,1) l-O--lWB.3500 --er- IWD-3600 --C--Max Allowable i SIR-95-135, Rev. O M-3
- f StructuralIntegrityAssociates,Inc.
i l
Circumferential Sub-Surface Flaw e/t = -0.35 Core Flood Nonle to Shell Weld (0-45,135-180 ) 3 I
, ! l l ^ --C >
C T ! T - - 2J 12 . 4 [ 1.5
/c - #l '
l
)
d i i 0.5 (;-- 0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Flaw Aspect Rado(a/t) l--0--!WD 3500 -*--!WB-3600 -K>-Max Allowable l Axial Sub-Surface Flaw e/t = -0.35 Core Flood Nonle to Shell Weld (0-45,135-180 ) 3 l )
' ' I 2.5 $2 31.5 m
{ b I
- I ~
I < F l
; j 0.5 ; . - . I i 0 0.05 01 0.15 02 0.25 0.3 0.35 0.4 0.45 05 Flaw Aspect Ratio (a/l)
{-O-IWB-3500 -*--IWB.3600 --0--Max Allowable l SIR-95-135, Rev. O M-4 StructuralIntegrity Associates, Inc.
l Circumferential Sub-Surface Flaw eit = -0.25 Core Flood Nozzle to Shell Weld (0-45,135-180o) X 3.3 1, 1 l l ii ,., , X l l l l
, # I i l'
l.3 M ! l 0.3 (; ' l f 0 0 0.05 0.'l 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--0-IWB-3500 --e==IWB.3600 + Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Core Flood Nozzle to Shell Weld (0-45,135-180 ) 4 f 3.5 , , n 3 3 32,5 i 5 l' " I i ! # I i l M ; O S t,r 1 WI I
! I I .
l 0 0 0 05 0.1 0.1$ 0.2 0 25 0.3 0 35 04 0.45 0.5 Flaw Aspect Ratio (a,1) l-O-lWB-3500 +1WB-3600 + M:x Allowable SIR-95-135, Rev. O M-5 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.1 Core Flood Nonle to Shell Weld (0-45,135-180 )
, , J.
4 1 1 1 1 1 I I I 1 .l 3.5 l d3 , t l l d, 2.5 3 l l mi 1-0.5 (;
,- d' -l <
0 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 Flsw Aspect Ratio (ast) l -IWB 3500 --dr--IWB 3600 --O--Max Allowable l
~
Arial Sub-Surface Flaw e/t = -0.1 , Core Flood Nonle to Shell Wel<l (0-45,135-180o) 4.5 l l l f } l l l l l 3.5
~
d3
' l 25 s
W I l'" I !g'
- -M i Imi 0.5 (, _
l O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 O Flaw Aspect Ratio (all) l--CF-IWB 3500 -dr--lWB 3600 -O--Niax Allowable l SIR-95-135, Rev. O M-6 f StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.0 Core Flood Nozzle to Shell Weld (0-45,135-180') 4.5 I I I I ' 1 I
, A 1 1 1 3.5 $3 -
t l ,
- f. 2.5 ,
i l l l 1' 1'5 M !
~
0.5 ( ., e 0 0.1 0,15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 O 0.05 Fisw Aspect R Ao(a/I) l-O--IWB-3500 -*-IWB 3600 - o--Max Allowable l Axial Sub-Surface Fisw e/t = 0.0 Core Flood Nozzle to Shell Weld (6-45,135-180 ) 4.5 I I i 1 1 1 1 1 4, 3.5 I3 2.5 i ,
# I gg f l IE ;
x 0.5 t , I l l l , l l } i I ! i i I ! i . g 0 0 05 0.1 0.15 02 0.25 0.3 0.35 0.4 0 45 of Fisw Aspect Ratio (s1) l-O--!WB.3500 -*-lWB-3600 --@--Max Allowable i SIR-95-135, Rev. O M-7 h StructorstlategrityAssociates,Inc.
4 5 t b Circumferential Sub-Surface Flaw e/t = 0.2 , Core Flood Nozzle to Shell Weld (0-45,135-180o) 45
, A i 1 1 1 1 I i ' 1 A
i
! l '
3.5
- ! l 53 , ~ I 22.5 ,
5 I i
!, I lM' , , A 1 0.5 I:
I I I O O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fliw Aspect Rado(all) l-O--IWB 3500 -e--IWB-3600 -O-Max Allowable l Axial Sub-S,urface Flaw e/t = 0.2 Core Flood Nozzle to Shell Weld (0-45,135-180o)
,,, A 1_ _
I I I I I I I I A 3.5 13 ; i ,., # 1 i 2 A I 1.5 g O.5 t , l l l l l i i i l ' O O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (=1) l--0-IWB-3500 --dr-IWB 3600 +ifax Allowable l SIR-95-135, Rev. 0 . M-8 h StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = 0.35 Core Flood Nozzle to Shell Weld (0-45,135-180o) 3 I I I I I I I I L ,, 1
, ; o ^ ^ ^ ^
I I ' ' ' ' ' 2.5 d
, 2 ,
i l a + j 1.5 3
< i .
1 0.5 (; ' 0 I 0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (all) l--0-!WB-3500 -*-!WB 3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Core Flood Nozzle to Shell Weld (0-45,135-180 ) 3
< t ' ' I 2.5 l Y2 i
h !$ [ ! l
- i l l. ! j 0.5 (;
l t 0 i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 , flaw Aspect Ratio (si) l l-O-!WB 3500 -*--IWB-3600 --0-Max Allowablej SIR-95-135, Rev. O M-9 f StructurallatogrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.45 Core Flood Nozzle to Shell Weld (0-45,135-180o) 09c
, ; 1 __ . 3 0.8 ,, MI .6 0.5 g; i
I i 0.4 03 O.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Plow Aspect Rasso(a/I) l-O-IWB-3500 -e--!WB-3600 -<>--Max Allowable l Axial Sub-Surface Flaw e/t = 0.45
, Core Flood Nozzle to Shell _We'id (0-45,135,-180 )
I' I I I I I f p, 0.7 1 06 3 0.5 ( p ,
- 1 I I 0.4 ,
< l l l l 0.3 0.2 l {
01 , , , l 0
! I i I ! l 0 0 05 0.1 0 15 02 0 25 0.3 0.35 t) 4 0 45 05 Flaw Aspect Ratio (w1) l- 0-IWB-3500 - *-IWB-3600 -C>-Max Allowable j t
SIR-95-135, Rev. O M-10 f StructuralIntegrityAssociates,Inc.
~
[
?
Inside Surface Circumferential Flaw Core Flood Nozzle to Shell Weld (45-135') 2.5 Y' 2 1 - d 31.5 1 1 #F i . 05: . 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Fisw Aspct Ratio (a/I) l-O-IWB 3500 -*-!WB-3600 l
~
Inside Surface Axial Flaw - Core Flood Nozzle to Shell Weld (45-135o) 08 0.1 E O6 05 W~ i ' I I l 0.4 ' . 0.3 f'
^
0.2 ! I
' l l l l l 0.1 0
O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 flaw Aspect Ratio (a/1) l !WB-3500 -*-(WB-3600 l SIR-95-135, Rev. O Ml-1 h StructuralIntegrl,$ Associates,Inc.
Outside Surface Circumferential Flaw Core Flood Nozzle to Shell Weld (45-135 ) l l l 4
' l ~
3.5 l .
/l l I I l .5 'i / l 3
i I / I i l A 2.5 f l l l l 4 ,^l l / f
/ l ,~3 .-- c T I _ u :
O v i t T---- T-~~~T T l O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Rado(a/0 l-O--IWB.3500 -IWB 3600 l
. Outside Surface Axial Flaw Core Flood Nozzle to Shell Weld (45-135 )
3.5 3 2.5
/
1 _I 2 5 1.5 1 H ,j 0~5 - 0
': I' W .T
{ O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (a/1) t ! .--0--IWB-3500 --*-IWB 3600 l l SIR-95-135 Rev. O M1-2 h StructuralIntegrity Associates, Inc. l !
i Circumferential Sub-Surface Flaw e/t = -0.4
~ Core Flood Nozzle to Shell
- Weld; (45-135 < ) _ _ _
l.S c ; , , a
& ' ~ '
l.6 I , i 1.4
^
a 1" -r MI
'k ' l / -
d e ( 0.4 0.2 0 ' 0.3 0.35 0.4 0.45 0.5 O 0.05 0.1 0.15 0.2 0.25 Fisw Aspect Rado(a,1) l-O- IWB-3500 +1WB-3600 --0--Max Allowable l Axial Sub-Surface Flaw e/t = -0.4 Core Flood Nozzle to Shell Weld (45-135 ) _ _ 1.6
/
_ 1 d 1.2 g _ -c , I / l
!" 06 fM I W I l
l I l l l l
' O.4 I l'
- i t 02 [
! I 0
0 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Fisw Aspect Ratio (wl) l- !WB-3500 -*--IWB-3600 --O--Max Allowable l SIR-95-135, Rev. 0 M1-3 StructuralIntegrity Associates, Inc.
Circumferential Sub-Surface Flaw e/t = -0.35 Core Flood Nozzle to Shell Weld (45-135 ) l l l l l l l l l
<' ~ '>
2., T T
~
T T 2 I - 2 i b'
,., A[ #' < i 0.5 I; O
4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/0 l- 0--IWB 3500 IWB 3600 --O-Max Allowable j Axial Sub-Surface Flaw e/t = -0.35 Core Flood Nozzle to Shell Weld (45-135')
} l l l l } l
(' " ' ) T i i 2.5
$2 2 . ,51.5 I
l . 1 l
'l !
l 0 5 l! ' I t l i ' O O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 Flaw Aspect Ratio (a,1) l--0--!WB 3500 -*--IWB-3600 -H>-Max Allowable l SIR-95-13 5, Rev. O M1-4 f StructuralIntegrityAssociates,Inc.
4 Circumferential Sub-Surface Flaw e/t = -0.25 4.5 Core Flood Nozzle to Shell Weld (45-135 ) 3.5 Y3 l 2 .5 i # ' I d'
, P' O.5 (:
O I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--0--IWB 3500 -*-lWB 3600 -C--Max Allowable l Axial Sub-Surface Flaw e/t = -0.25 Core Flood Nozzle to Shell Weld (45-i35 ) 4.5 , 4 J - l I i 1 - I I 1 I i J, 3.5 d3 1. 8, 2.5 i 2 4 ,~, -
.-I i P' ,. 1 -MIW I 0.5 (:
l l l l l l l l O I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a/I) l--0--IWB 3500 -*--IWB-3600 --O-= Max Allowable { SIR-95-135, Rev. O M1-5 { StructuralIntegrityAssociates,Inc. l
g6 Circumferential Sub-Surface Flaw e/t = -0.1 4.5 Core Flood Nozzle to Shell Weld (45-135 ) I I I I I
,A 1 1 1 1 A 3.5 G l d3 '
i I d 2.5 5,.l - IP' M 0.5 t ; _r I l ' 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (ad) l IWB-3500 - ih-IWB 3600 0--Max Allowable l
' Axial Sub-Surface Flaw e/t = -0.1 Core Flood Nozzle to Shell Weld (45-135 )
45 1 1 1 1 1 1 . I I I I
-{
35 I3 . i d 2.5 g#i
- J
! ,~l l #' , M i 0.5 (; -
I I I i ! 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/I) l--C)-!WB 3500 --e-IWB-3600 Max Allowable i SIR-95-135, Rev. O Ml-6 { StructuralIntegrityAssociates,Inc.
Circumferential Sub-Surface Flaw e/t = 0.0 Core Flood Nozzle to Shell Weld (45-135 ) 4.5 I I 4 J" 1 1 I I 1 1 1 { 3.5
- I d3 i
d 2.5
- I I "2
g3 1 0.5 t ;--- O I O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a/0 l- IWB 3500 +1WB 3600 ==O--Max Allowable l Axial Sub-Surface Flaw e/t = 0.0 Core Flood Nozzle to Shell Weld (45-135 ) 4.5 1 I I I I 1 1 1 1 1 _ 1 3.3 j 3a ! I L d 2.5 3*
. 2 g3 1
0.5 t; l i ( ; I l l l l ' 0' O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45 0.5 Flaw Aspect Ratio (a,1) l--0--IWB 3500 +IWB.3600 --<>--Max Allowable l l t SIR-95-135, Rev. 0 M1-7
Circumferential Sub-Surface Flaw e/t = 0.2 Core Flood Nozzle to Shell Weld (45-135 )
,, A 1 1 I I I I I 1 A .
l 3.5
& 3-2.5 a l i 1.5 1
0.5 (; C l l 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (a@ l--C)--IWB 3500 -e--!WB4600 --0-Max Allowable l Axial Sub-Surface Flaw e/t = 0.2 Core Flood Nozzle to Shell Weld (45-135o)
,, J 1 1 1 1 1 1
I I i
.4 X~
3~5
,, l 11, < i ! l 4' I I I ly' I
i ,, I
, imi 0.5 t. ,
I I i f l f' 0 O 0 05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Flaw Aspect Ratio (al) l--0--IWB 3500 -*--IWB 3600 --<>- .\ lax Allowable l l l l l SIR-95-135 Rev. O M1-8 l
Circumferential Sub-Surface Flaw e/t = 0.35 3 _ Core Flood Nozzle to Shell Weld (45-135') l l l l l l c - .. } 4 25 I ' ' s a2 , i a , j 1.5 b I r 0.5 [; 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 Finw Aspect Ratio (a,1) l--O--IWB 3500 --dr--IWB 3600 + Max Allowable l Axial Sub-Surface Flaw e/t = 0.35 Core Flood Nozzle to Shell Weld (45-135o) 3 1 1 - 1 1 I I c - l 7 2.5 , f l {2 [ ] 8 j 15 m--
- I 1<
i 1 0.5 (;
~
l O 0 0 03 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 j Flaw Aspect Ratio (a,1) l-O--IWB 3500 --er--IWB 3600 --C>-Slax Allowable i SIR-95-13 5, Rev. O M1-9
l
~
l Circumferential Sub-Surface Flaw e/t = 0.45 Core Flood Nozzle to Shell Weld (45-135 ) 0.9 r'., - - - - - 0.7 0.6 0.5 g ;
. I i j' l i 0.3 l
l l 0.2 , I l 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 How Aspect Ratio (m1) l--0--lWB-3500 -*-IWB 3600 --o--Max Allowable l Axial Sub-Surface Flaw e/t = 0.45 Core Flood Nozzle to Shell Weld (45-13_5 ) _ _ 0.8 0.1 80.6 0.5 g i-a : #
" 0.4 0.3
- l 0.2 O. I I
l ! l
' f 0
O 0.05 0.1 0.15 0.2 0 25 0.3 0.35 0.4 0 45 0.5 Raw Aspect Ratio (a<1) l-O--IWB 3500 -*--lWB 3600 -Max Allowable l SIR-95-135, Rev. O Ml-10 h StructuralIntegrity Associates, Inc.
1 APPENDIX N . Flaw Acceptance Diagrams for Region N Materials Region N includes:
- Inlet Nozzle Forgings (MK#18)
Region O includes:
- Outlet Nozzle Forgings (MK#19)
Region P includes:
- Core Flood Nozzle Forgings (MK#17) 1 -
l 1 GeneralNotes: 1
- 1. t = vessel wall thickness (including cladding thickness of 3/16").
l 2. e = distance from center of flaw to center of vessel wall (including cladding thickness of3/16").
. 3. a = total radial depth of flaw, for surface flaws.
- 4. 2a = total radial depth of flaw, for subsurface flaws. ,
S. t = length of flaw parallel to vessel wall. SIR-95-135, Rev. O N-0 StructuralIntegrity Associates, Inc.
l I Table N-1 Location (l) Flaw Size (in.) i ' 0* - 45*, 135' - 180* 0.36 Inlet Nozzle (Region N) ' 45' - 135' l.29 0* - 45*,135' - 180* 0.350) Outlet Nozzle (Region O) ' ' 45'- 135' l.29 0* - 45*, 135' - 180* 0.30(2) l Core Flood Nozzle (Region P) 45' . 135' O.30(2) , Note: (1) Location measured from top dead center of nozzle. (2) Per Table IWB-3512-1 of ASME Section XI, a surface flaw depth of 2.5% of thickness is +x3 hie. 2 This corresponds to a flaw depth of 0.30 inches for the core flood nozzle and 0.35 inches for the outlet nozzle. i i / l-
/ . 55krx..._
1 ( )
\ / l l
4 Figure N-1 , Note: Allowable Flaw Sizes for Regions N, O and P measured fr6m inside corner ofinlet, outlet,
, and core flood nozzles.
l i SIR-95 135, Rey, 0 N-1 StructuralIntegrity Associates, Inc. l
,}}