ML19345B429
ML19345B429 | |
Person / Time | |
---|---|
Site: | Surry |
Issue date: | 11/30/1980 |
From: | Leberstein J, Ross T VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | |
Shared Package | |
ML18139A859 | List: |
References | |
VEP-FRD-38, NUDOCS 8012010295 | |
Download: ML19345B429 (49) | |
Text
{{#Wiki_filter:! O VEP-FRD-38 l i , ! SURRY UNIT 1, CYCLE 5
- CORE PERFORMANCE REPORT '
j l BY i 'l J. H. LEBERSTIEN lB T. K. ROSS l 1 a 4 5 i l l j .I I t i _ APPROVED: i i / M
~ * /. Nuclear Fuel Operation Group
- f. J'. Lozit @,1 rector Fuel Resources Department Mlear FueV0peration Group
. Virginia Electric & Power Company i Richmond, Virginia a
November, 1980 i I l 8012010276
CLASSIFICATION />ISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Pcuer Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company, therefore, makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company ')e liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, I of this report or the data,. techniques, information, or conclusions in it. I . I i
I ACKNOWLEDGEMEh"IS I I The authors would like to acknowledge the cooperation of the Surry Power Station personnel in supplying the basic data for th'.s report. Special l thanks are due Messrs. L. J. Curfman and P. L. Davis. Special thanks is also ll due to Ms. C. E. Bullock for her patience and accurate typing of this report. !I il j I i i !I !I I j !I . l f II i I 4 1 4 i
i I TABLE OF CONTENTS Section Page No. Classification / Disclaimer . . . . . . . . . . . . . . . . 1 I Acknowledgements . . . . . . . . . . . . . . . . . . . . 11 List of Tables . . . . . . . . . . . . . .. . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . v 4
.I 1 Introduction and Summary . . . . . . . . . . . . . . . . 1 2 Burnup Follow . . . . . . . . . . . . . . . . . . . . . . 7 ; 3 Reactivity Depletion Follow . . . . .. . . . . . . . . . 12 4 . 4 Power Distribution Follow . . . . . . . . . . . . . . . . 14 ! 5 Primary Coolant Activity Follcw . . . . . . . . . . . . . 37 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 41 , ee,er.nces e .j . . . . . . . . . . . . . . . . . . . . . . .
4 i i 1 II t
~
,l I ~ I i l lI 4
lI j LIST OF TABLES i i.
! Table Title Page No.
4 4 l 4.1 Summary Table of Incore Flux Maps for Routine Operation . . . 18 i - a j 4.2 Sumary Table of LOCA Enthalpy Rise Hot Channel Factors . . . 19 i 1 I J II 4 1 i !I l 4 i l
}
4
~ !,I t
,iI - l 4
'I
- I t
3 ( l iv
LIST OF FIGURES Figure Title Page No. 4 1.1 Core Loading . . .... . . . . ............ 1.2 Movable Detector and Thermocouple Locations . . . . . . 5 Control Rod Locations 6 1.3 . . . . . ............ 2.1 Cote Burnup History . . . . . . ............ 8 2.2 Monthly Average Load Factors . ............. 9 2.3 Assemblywise Accumulated Burnup: Comparison of Measured with Predicted . . . . ............ 10 2.4 Batch Burnup Sharing . . . . . ............. 11 3.1 Critical Boron Concentration versus Burnup - HFP-ARO . . 13 4.1 Assemblywise Power Distribution - SI-5-10 . . . . . . . 20 4 4.2 Assemblyvise Power Distribution - Sl-5-20 . . . . .. . 21
. 4.3 Assemblywise Power Distribution - Sl-5-35 . . . . . . . 22 ~
4.4 Hot Channel Factor Normalized Operating Envelope . . .. 23 4.5 Heat Flux Hot Channel Factor, F (Z) - S1-5-10 . . . . . 24 4.6 25 HeatFluxHotChannelFactor,Fj(Z)-SI-5-20 . . . . . T 26 4.7 Heat Flux Hot Channel Factor, F (Z) - Sl-5-35 q . . . . . 4.8 Maximum Heat Flux Hot Channel Factor versus Burnup . . . 27 4.9 Interim Thimble Cell Rod Bow Penalty on H 4.10 Enthalpy Rise Hot Channel Factor versus Burnup . . . . . 29 4.11 LOCA Enthalpy Rise Hot Channel Factor - Assy versus Burnup . .... ... . .. . ............. 30
~
4.12 LOCA Enthalpy Rise Hot Channel Factor - Rod versus Burnup . ....... . . . . ............. 31 4.13 Target Delta Flux versus Burnup ............ 32 4.14 Core Average Axial Power Distribution - S1-5-10 . .. . 33 4.15 Core Average Axial Power Distribution - Sl-5-20 . . . . 34 I _ v
!I I
)
I LIST OF FIGURES CONT'D l
- l j Figure Title Page No. i
, 4.16 Core Average Axial Power Distribution - SI-5-35 . . . . . 35 ~
l 4.17 Core Average Axial Peaking Factor versus Burnup . . . . . 36 5.1 Dose Equivalent I-131 Concentration versus Time . . . . . 39 i 5.2 I-131/I-133 Ratio versus Time . . . . . . . . . . . . . . 40 lI I lI ,!i t I . I o il I Vi
Srction 1 I INTRODUCTION AND
SUMMARY
I On September 14, 1980, Surry Unit 1 completed Cycle 5. Since the initial criticality of Cycle 5 on July 6, 1978, the reactor core produced approximately 85 x 106MBTU (14,390 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 7.8 x 10' 9 Surry 1, Cycle 5 kwhr gross (7.4 x 10 kwhr net) of electrical energy. reached the end of full power reactivity at a core burnup of approximately 13,350 MWD /MTU at which point power operation was continued through a power coastdown. The unit was operated in the power coastdown mode achieving an additional 1,040 MWD /MTU burnup prior to shutting down for refueling. The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 5. The physics tests that were performed during the startup of this cycle were covered in the Surry 1, Cycle 5 Startup Physics Test Report and, therefore, will not be included here. The fifth cycle core consisted of seven batches of fuel. One once-burned batch was brought from Cycle 3 (Batch sal). Three once-burned batches were carried over from Cycle 4 (Batches 6A, 6B, and 6C). One once-burned batch was brought from Cycle 2 of Unit 2 (Batch S2/4A3). Two fresh batches (Batches 7A and 7B) were added to the Cycle 5 core. The Surry 1, Cycle 5 I core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations and source assembly locations is shown - in Figure 1.1. Movable detector locations and thermocouple locations are identified in Figure 1.2. Control rod locations are shown in Figure 1.3. Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power distri- , I bution, and primary coolant activity. The core burnup distributilon is followed l I I '
I to verify both burnup symmetry and proper batch burnup sharing, thereby, ensur-ing that the fuel held over for the next cycle will be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as , designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 1 Operating License, and to assess the integrity of the fuel. Each of the four performance indicators is discussed in detail for the Surry 1, Cycle 5 core in the body of this report. The results are summarized below:
- 1. Burnup Follow - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than 10.5% with the burnup accumulation in each batch deviating from design prediction by less than 2%.
- 2. Reactivity Depletion Follow - The critical boron concentration, I used to monitor reactivity depletion, was consistently within 10.4% AK/K of I the design prediction which is well within the 11% AK/K margin allowed by Section 4.10 of the Technical Specifications.
- 3. Power Distribution Follow - Incore flux maps taken each month ,
indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of less than 2%. All hot channel I factors met their respective Technical Specifications limits.
I 4. Primary Coolant Activity Follow - The dose equivalent iodine-lil activity level in the primary coolant at the end of Cycle 5 was approximately 2.6 x 10-2 pC1/gm. This corresponds to less than 3% of the operating limit for the concentration of radioi6 dine in the primary coolant (Conditions of the , License dated July 28, 1980).3
, In addition, the effects of fuel densification were monitored through-out the cycle. No densification effects were observed.
!,I !I i !I I
- I
!I !I . \I J
- I lI lI l I 3
O f~D rr - 9 f- Figure 1.1 D u- ,Jk a St'RRY UNIT 1 - CYCLE 5 CORE LOADING E P N M L K J tt G P E D C B A K02 2A3 K04 l l l l l l H2O 3A6 3A9 J24 5A1 5A3 H02 12P 12P . H03 2A2 OA3 138 H14 J33 OA8 6Al H10 3 8P 16F SS 16P 8P g H19 J15 2A8 J34 4A6 H08 4A7 J20 4A3 JO9 H23 , 16F 20P 20P 16P H04 4A4 3A5 J29 GIS J14 J31 J30 G06 J12 3A8 2A1 h15 5 8P 16P 16P 8P SAD 1A0 J23 G13 J21 1A6 J49 1A7 J47 G03 J01 OA2 3A4 6 16P 16P 16P 16P l K05 3AO J37 5A8 J46 2A0 J02 OA4 J32 JA3 J44 5A6 J45 4A9 K06 7 12P 20P 16P 16P 16P 20P 12P 6AA J52 H12 Ell J18 J35 1Na S16 1A1 J41 J50 809 H07 J27 4A8 3 16P 16P K07 4A5 J51 5A5 J36 1A2 J22 OA7 J28 OA9 J43 2A9 JOS 6AO K01 I 12P 2A7 CA1 16P 20P J16 Gli 16P J11 1A5 16P J48 OA6 16P 1GP J06 G10 20P JOS OA5 16P 12P 3A7 gg l16P I !!01 SA4 8P 4A2 16F J04 GOS J10 J26 J40 C07 J25 5A7 16P 5A9 8P H0i g B05 J42 6A3 J17 2A4 H16 6A2 J13 2A5 J03 317 1; 16P 20P 20P 16P H24 3A2 119 J39 E18 J19 1A8 2A6 E13 13 SP 16F SS 16P 8P H22 3A3 4A1 J07 4A0 3Al R21 y;
~
12P 12P I K08 5A2 K03 13 ,
. -Assembly Identification - -one or more of the following
- e. SS - Secondary Source Assembly FtTEL ASSDGLY DESIGN PARAMETERS
~
- b. xxP - Burnable Poison Assembly -
(xx-number of rods)
?ATCM 5Al 6A 6B 6C 7A 73 S2/4A3 Initial Enrichment (w/o U235) 2.11 2.62 2.60 2.90 2.90 3.39 2.61 Assembly type 15I15 15X15 15n5 15n5 15IL5 15115 15I15 Number of Assemblies 8 24 8 52 20 44 1 Puel Rods per Assembly 204 204 204 204 204 204 204 Assembly Identification G03,G05 E01-H24 K01-ES J01-J52 OAl-CA9 2Al-2A9 $16 G06,G07 1AO-1A9 3AC-3A9 G10,G11 2A0 4AO-4A9 G13,G15 5AO-5A9 6AO-6A4 I 4
. E d # Tigure 1.2 4 SURRT LWIT 1 - CTCLE 5 MOVABLE DETECTOR AND ' THER 5)CCt!PLE MTIONS , i
>I a < a a m . . , = a e ; .
I l 2
- O .
g 2
- O O .
i 3
@ O * @ O @
O * *
- O ;
g 2
. . O + 0 0 = @ @ 5 6
0 @
- O
- l
-* 7 O O * *
- O *
- O @ @ O O O
- O @
- O 8 Il i
~
O
- _O * @
- 9 lo jl @ @ O * @
u i O
- O @ @
- O e @ u
;
- O @
>l @ @ .. @
- O j lE
- O O
- .l
. - NYable Detector location l O - = = c m ia laaet=
5 1
I l pgg$$$$l SUPRY UNIT 1 - CTCLE 5 CONTROL RCD LO(.ATIONS a e' W tt L r, J u c y a e 3 a Q O b, -= A A > il - O O O O Q _ V - - V > I Q O G Q O O O * ~,I A W VI " A ' Q O O lG O O Q ' A . IV y - A , O O Q Q O O Q =
$P SF g
O Q o O O = A A i
= -
l', Funct Number of Clusters ,
=:=: : :
cdo Ba 55 8 g 5 SP ($ para Rod 14 cations) 8 6 i l
S:ction 2 BURNUP FOLLOW The burnup history for the Surry Unit 1, Cycle 5 core is graphically depicted in Figure 2.1. The seven month outage, which began in March,1979, . was to perform a required reanalysis of plant systems for seismic eventsi The Surry 1, Cycle 5 core achieved a burnup of 14,390 MWD /MTU. As shown in Figure 2.2, the average load factor for Cycle 5 was 53% when referenced to rated thermal power (2441 MW(t)). Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWIOTES computer code is used to calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 5 opera-tion is given. For comparison purposes, the design values are also given. As can be seen from this figure, the accumulated assembly burnups were generally within 12.5% of the predicted values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt factors, was less that
- 10. 5%.
The burnup sharing on a tatch basis is monitored to verify that the - core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies. Batch definitions - are given in Figure 1.1. As seen in Figure 2.4, the batch burnup sharing for Surry Unit 1 Cycle 5 followed design predictions very closely with each batch - deviating less than 2% from design; this is considered excellent agreement. Therefore, symmetric burnup in conjunction with good agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 5 core did deplete as designed. i 7 , 1
y y b k I ' r MrdL h o I :j. q p .p _ _ - -. 2..s; {: : r. -7 { .. g N. + F_.!- Q_ a M . -- c. = 7 p.n 3 ; ; _ ! . .:_ -i t - =2 rtu g E ==.p na. N .__n24=_y. _ - _ ._i- :;.= ._:n {_: n cp:_u..=' . .g .2'._ __.__ g 8 - F -}-l. -
.I il l: ::}1;_j_u._ _ . .i. g$ n. _ Y 4 ya; .:j 3 .:2 4 gj.= j=j ;-42 ; ._.. _K ._ _L._ _._; q_ _:
- M N p+- h-fp_ ; 3 I = l- n:;j = l,1 14 i =.
am ;i , . =i =.= 4N i Mrj=[g 4 p2h i ;_ : g y a yg mm mg_m u: g= _ =_.i=- a,k =1 . 294 -
. _ ; 2. ;p- .. _; :q.-. 4_;jL___1__ _ . . = .__.-
4u :_ ; _.p;_ e ._n; g;._ ;;= *
+- :7 g ,e=:.w--# - =i--+ i.= = = = =" r := :i=== , . - {.ed :r y=o. r=.an =: =. E } c.+' _+4=7,a N 3 et.-k- =
I &
=4: .di : :a;.= =4 -4c := - = := _. ;c .l= _. i.k; . _:l= =k: puu -i t-h- - + _ - -4j ^^= r _if
_ .5. ;- i- r-i :_ ; __ p- i--
.aQl+h==_ sy _ 5& ._ . . . _ . 2:.-- -
- = cmi= [._
-i _ p 2 imb: =i'-c.1 -- = _ 'd
_ .l= f. E; - , --+ _ _[- i_h= y=p=
- n. _ y- r--t= _ . --- r .- --
g a m X. -j .c I M
- - y :F.
- -.[=
=_= .i =nu -:L .4 .Juq=-f + -j f= . m, pa -- Fi=j =;.d A =yi =.
2.2-..=r_ - - - -1L J-1[ 2
=-
H- .-e 4= i=L;- mhz ;- :---t '= =2 u:- p: = fgc- r_1 : -Q = =: si" z._li .u.cw s W=.--j= -~ y=_ :51.=
~+q } .ti--K+--. -i.y irp=- yi= = i - j 1:= =E:- ===;=-- -i r H ".- 2+ i-2 d
3:Q Qj : : =q;- - y
-- d -) r _._.-_ .
_. ji~.: _ _1 _ _. __ f _.i... _ _.i =+ n- ._ 1_ ...l-- "t
~ ~-j=. =i,12I=id- 21- W=U-j:IN = fi rNir "- - Mild -br 'E= - 3- ;i H= ' ' = U r:2 ;=Mi".. 2L =
i-[2-li3=jiEj= :i=2hK=i=Ejtir4 "=f.='j2 V=' = W_fif r f=ry .' ri $ r:ji ;- i- - --i(= I:-- =_i_ W 4zh1Ei-M-7[=.421 r'r-'- p-d=24':j 4 " == =j;; y I ' 2%
i _ - [TT= -
- - 12, ~ kaEE i=> t":=4"-Ni= i=li ="=i=~=t' r TEt"=it=Ei==7-E=
i=>-ES-[=~+'- - Lif -= f=i -i=t=~tdi -i [%-i"--i2 == '.-i=~2 1'-E iE
= L-E. $ = E='E':Ei=I:==L -Vii=-'-s=EiE==h 5 .31&{=1:=j.' Q~~' =3=55=fh-i = = .i== ' ~
_ Y= j i-F=_ *r:Lih ^ =i:1 S
--- 7 _ t= i:_t _ ^7_._g _.: q=_ ; =t-sp-: =:: _ 7_- +-- :-Qb+---i=?:7..-i=7=_jdj.5+-z:.14 y e =E=d-MC55-~;M4:~M -'-EERJ hi-~-- $r-i n.iu i
- =N~ -Irr!J7 E "N i-E 22- $
W g c =--{u 1 .._=.'E in-i ri= t= + = 2 i. :-i. +r=Fr-+ . _ i 1_ = ;iQ=E:rk m=-ir : "- ,
.h =]=h=.=iFry =k=I- : i =hL :: .=i=- k-'.ih i-I-Lk. ._h= = v _ =h:=: Y=_:_- ~ -
rs =n + = i-- ---l-- -- - zh- p T .yi=-.:n hy.;sii=. I
- ~
8
='-i =iihr ;:=t'~ ' .; ' yh:i:-j=' - T b-. =- c. = =i ;; ?-h ;- - jz== :V-i =_12.aE= ~- = a. : t=F2 8;===h. . == =r- ='=f= f' - - u-- & - = 4' =h 7.~ = .. =-:l= . -
g h # =tri-- T- 'i :=-~' i-5 ---iG-- ,4~-i=~E E;!E-i = --iW=i:-4=-M=Tri C' 14= ""; $ ' W ~S g g _~i-l~mi95.; i..=i =-Tg=-t':i;=iX i.Ei f-- 253 2t? p=2i .'E I;; F='ai-t-';E-u?~ " T - '; 5
- '~~.5 F
- iri fi'i$i
> w = =19- NI- '- ' ' ' ' .bf__2 = - i =f+ =i=h= -%1= k=.7- i_:=+ Ei=! =4=:=
I
- ;;34. e_;tu _ ny7= :._ ===5 pv -;=*= .: 4 . .ra. -: 2 .g_;_pr :=3 =_3 2 . c: . g a _.g : t_ u :2_4:_2a u= u=u=_g_;.g. .ggg.
_M---i-h-Q-- '~
; {__- -M =-rM- . g =i=j.E'tE .4_y _._- _ _ . 15itt-Ei=E=-' bif 4F="F- ' i- _._-iiipb=_ ";1Esf-EE4;= hie:=" 2:-- %
E5 =fi~- ==t~ =
?=E *Mf'."r--- f= --. - n4.d= ={ =trid t:D E-42-3=- e*= :=i=
I ui=i-i==?;Ft}=hEi-p=i---f-i . ._
.__ _1 :_+-j 5Mii._i_. 5: 22 ':2 =j=-iEI __ . -~E ..y._ == =-K-T=i=T=i-E "4E-c===*EmE= W ==!= M = == =is=?= _ e=- AeMi:==19 == i ;+:=-E- E-rW=+ = =n c; ;_==-X= =t = (+- " "" 3 .
E r=~- <-
=== . _=j =:p prish.g;2=ae g aige-is-r =.=wg;= ==4-1 &- __._ ^--i =sE-=-'~ =-- =_++=~k=~ - L_. ; ' .:2' . _ - ^ = v- =5 :=Q .
_,_ ==i =.;:LL-hi ., - 2 -'i:-~ '~ i rt=;I= -t "~ =8 "-I=P r*[;fM=M_ --M-i ---j- l i =T-t=T=i=-~~-#=i* u
.= i i=.cidEy=_iG-Ei' Ex: "' - pi Q-i-spq-1=h t- := '-%- j Q =_i .2 -- -1 == [ =yi Eli $
N.h.~=~i E !== r~ . MN~r"i FJII i=i4 - r--ik i j- ' 5 ~=F riQ I
=, 2 +-i:"E-f E +=i=-"-i as.M_A i? di 'F' -
J 'r =1=~i- W + =fic"trMh-i-i @3 _:.ih:'="t--== h=-E=ip _;-; _- W =:, = 3=i= fi=p ={_= ;:: ==_-.;i} L-% y---- };3--if_ y =3 _
=15 =iE~4E=11 M3?'-" ~ i'=f=Eii"4; -li==P= i":T=F==1=:i-F :'ici- -i #i ciE W i=: 'i"ilt --- a z E=;2-ils-i i%= l *:i4L== :f- n a =- _.3 EMi~=Nh :=51=lblL2 g$
i '_=-if1*=5[ -h'
- . =
- 4jiij5 't=E:3 5- - )'=E: 7=i-i-r==T='!
~ =- -- - - -=j==fiE-E=E-~ _Q-y_. __ p - ~'__ y* =$i= =T=$=~i=Y=h 5 ~-~
MN--~W=.r------ : - - - ^ ^ ' ~ ~W~* f ^~'.h==#-'I 'i==i=%--}~=#= n 4_ pEyo-izi == ====-si 1: m , e=tes._;_. ; =--
- _;A e = g
- =N i- - =5M3SiiL =i =f E2 iJ M~=i"I"=--I-@i=il.
I
=== = :1.= __t----
_- hEh . g> ili=Ei- h = =~i-: T T 5i& = i:=.4 =:i- i ==-*-iT.--T=E11E===+='i= t n => $ EE=
~
Nc;
= =-i~- +fgEt=iE':= ==i"i4=-P = r- = i= Jim E==-fM= ;&r= _.=. J =E L= 5= +2 3 i=pE =t= + :: p%: _-: : ,iE- _ . ^ mEEL=-
- a. a. a. a. a.
a.
- a. a.
$ A E 3 # "
(LA/qtH) JnNMht 3303 8 I
l I *A XCD MlML - i . > l ' MfH7 i E H ::; !
//./././/./. .
i a*;:D I yi iG ! r WU////7UM
/// H/ f f/ ///M. $ // H / p/ / //NM I////bllllN//1- k =
en h
- ' ! 1 .,:. 1 i Z ~~~ ~
[* lffff. . h
, : e , , .-
i _t i I
~
i
.; - 9 i
_ _ t. i .i.._ s f } Y
} -i- ! - V i I 1/]///fN/ '2 h
l a ;i - ..s ~ b= a f //// /// , e
" ^' ~l /////////,
f
///////Y/. b 1 l -l:.Nl l QQ.'t'/f} f f l - .; _-, -._r, >- ..w - //// ////,. , = . . _ --. /. /////////- ^ ~
1 w l
.= . =.
I , j; _ .. ; . _ : _ _ L,
~ .s .p_ , 2 SE g r =
g u.. &.. i._ g I 3 }
~ ~,=l f Q , 3 . = L.: = :. - : .= = q _ ;- - e _.i:- g .
p g e
, , t r;; _ q = - ..+ - + - _ _ . 5. . q, p i .: i m i - . _ t, ; r -F --
a E 3, j ; 7. .4 :__ + - .- :_.=_ - =-. y , _y = r. u
}l em 4 _ _ L == -y _= ;. --. - - i - - .1- -- . .,
i i 5 p# n .=p u__.=.- g r;.i_=g}=:-: r-E " fO
$ E < e L_i- L-- _t cc 1+;,.! - -i, -- U -- }
l = - j =+E =--- =- i= ._, _ n .,.__ j$ I --+i c.++-- w- --.1 i +4 _: .=---!=-;=- a ;
-@ : r =m _ , . ; =- I 2 I 3
v+= =+= y:= =-1
. i=- =b= . g --g t==
y,,,,, ffffff,
}
l
~='!=+== =^' > --,,,,1 .,,,1 . . s.
2 2 M M#/#/#/4 e !; www e , 2 gb
.p;t=i = i .. i== -. ,, , =;= . = = .. _=w 6 $
l- --54 =1:q SS35_ j-= --i = v.== y=d_'- iE e E %.= : f = et=.: - - -- '- - wmt i , H //f M H H ///) t 1 lki.=.=a '? . /HJ / H/J'//H / . *
- S=~ ~A= %== H f / // // //-/ J i/, k~'
w ;?~hh 'HV//1/ff//Hi Y -l n= =t=v = " , , , , . , . , .
;=x$N.- - --MI,-T((MM --
R,
//ft////// ' / cb ~ ~
4 k=:i=h w ' F; =- st= i = ///////// .
=w a- =&+= =a= = +=n /z///// '
i ,,, , k, Wj $ w>mm: c= :- a=i aam a=i ge= pa g = --- 3 2 3 S ?.- l 1 .l
- m som am unni ruman l 9
I Figure 2.3 SUPPT l'tstT 1 - cTCIE 5 ASSEM5I.YVISE ACCITUI.ATED BUR.WP CCtdPARISCN OF MEASURED WITM PPEDICTED I (10 MWD /MrU) l E F W M L K J u 0 F E D C B A I !20.08 20.25 10.49 10.74 20.14 20.25 l l l l g - n.g _+1. _n t l 22.17 13.49 15.19 22.27 15.22 13.49 22.17 , 15.44 13.58 21.98 I. 22.04 21.98 13.58 15.44
+0.9 -0.7 -1.6 15.29 16.31 24.65 22.49 -1.0 29.66 -1.4 24.80 -0.6 16.54 +0.9 15.48 l
22.28 30.00 24.77 16.44 15.10 22.03 3 22.03 15.10 16.44 24.77 0.0 +1.3 -0.8 -0.5 -1.1 +0.1 +0.6 +2.5 +1.1 8 21.85 22.03 21.40 21.11 17.43 25.78 17.38 17.58 25.85 17.49 29.78 30.01 17.35 17.49 26.14 i 25.85 17.75 17.58 21.35 21.11 22.17 22.03 g 4
-0.8 +1.4 -0.9 -0.3 -0.6 -0.s -0.9 +1.1 +1.c +? 1 +o.A I 17.61 29.15 24.54 27.99 29.31 23.30 24.58 29.27 17.31 15.40 22.42 21.82 15.12 29.05 17.58 15.10 21.98 5 21.98 15.10 17.58 29.05 24.62 27.97 29.60 27.97 24.62 -0.7 *C.1 +0.2 +0.3 -0.3 +0.1 -0.1 +1.2 -0.2 +0.8 -1.5 +2.0 +?.$
13.49 16.50 26.01 26.72 26.44 11. 4 29.73 11.49 26.30 24.43 25.83 16.61 13.83 24.62 16.44 13.58 6 13.58 L6.44 25.85 24.62 26.33 17.47 29.79 17.47 26.33 25.85
-0.7 60.4 +0.6 +0.4 +0.4 -0.4 -0.2 +0.1 -0.1 -0.8 -0.1 +1.0 +1,g 20.19 15.33 24.73 17.54 28.J6 17.70 29.86 17.89 30.23 17.45 27.98 17.31 24.94 15.23 20.33 7
20.25 15.44 24.77 17.49 27.?7 17.47 30.01 17.74 30.01 17.47 27.97 17.49 24.77 15.44 20.25
-0.3 -0.7 0.2 +0.3 +1.4 +1.3 -0.5 +0.g +0.7 -0.1 0.0 -1.0 +0.7 -1.4 +0.4 I 10.59 10.74 -1.4 22.51 29.67 29.78 22.49 30.00 30.01 +0.1 _t t .-0.9 29.14 29.69 29.29 29.79 -0.5 -0.3 17.92 17.74 +t.0 27.73 27.60 +0.s 17.57 17.79 29.87 17.74 29.79 +0.3 +0.3 ,30.01 17.36 29.15 29.96 29.29 30.01 -0.5 27.69 -0.2 29.81 30.00 -0.6 24.90 22.62 22.49 +0.6 15.63 10.84 10.74 +0.9 20.61 8
20.45 15.38 24.93 17.49 28.14 17.40 30.12 7.48l24.77 15.44 20.25 20 15.44 24.77 17.49 27.97 17.47 30.01 17.47 '30.01 17.47 27.97 7.49 1 9 M9 +t_* +1.9 5 +1 3'S -0.4 +0.6 0.0 13.67 16.72 26.01
+o_A _n e 60.4 24.48 26.33 17.22 24.62 26.33 L7.47 -1.0 29.82 29.79 1 0.0 -0.6 17.38 26.47 17.47 26.33 -1.0 0.1 24.46 25.94 24.62 25.85 16.54 16.44 13.63 13.58 10 13.58 16.44 25.85 +0.7 +1.7 +0.6 -0.6 0.0 1.4 +0.1 -0.5 t*0.5 -0.6 m.3 +0.6 +0.4 22.01 15.56 *17.87 29.23 24.45 27.65 29.46 27.61 24.57 29.07 17.78 15.41 22.16 11 i 21.98 15.10 17.58 +0.1 +3.0 *1.6 29.05 24.62 27.97 +0.6 -0. 7 -1.1 29.60 '27.97 24.62 -0.s -1.1 -0.2 29.05 17.58 +0.1 +1.1 15.10 +? 1 21.98 +o_q 22.10 21.65 17.60 25.93 17.25 29.54{17.39 25.98 17.71 21.53 22.06 12 I 22.03 21.11 +0.3 +2.6 22.11 22.03 17.58 23. 85 17.49 +0.1 +0.3 -1.4 15.73 16.69'24.76 15.10 16.44 24.77 30.01 l17.49 -1.6 29.46 30.00 i-0.6 24.76 24.77 25.85 17.58 21.11 +n.s +0.7 +2.0 16.67 C. C '12."1 16.44 15.10 a4.03 22.03 +0.1 g3 . +0.4 +4.2 +1.5 0.0 -1.8 0.0 +1.4 +1.3 0.0 I 22.13 14.26 15.77 21.98 13.58 15.44 N. 7 +5.0 +2.1 22.76 22.49 +1.2 15.16 15.44 -1.8 13.50 21.95 13.58 21.98 -0.6 -0.1 t', ~
20.78 10.97 20.45 13 20.25 10.74 20.25 I +2.6 +2.1 +1.0 BURNUP suARING 3 (10 2SID/?tTU) SATCH CTCI.E 1 CTCLE 2 CTCLE 3 CTC11 4 CTCLE 5 T(yfAL I 5A1 6A 65 6C 10.34 15.40 14.10 10.56 14.19 9.23 6.28 16.07 24.53 24.63 20.38 26.63 stntNUP TILT 7A - 17.16 I 17.16 NW - 0.9971 78 - - - - 15.43 15.43 ~ 52/4A3 - 11.10 - - 16.63 27.73 - SE - 0.9997 CORE AYERAGE 14,39 j 10
l l I I 3 01 2 E M i U i SURRY UNIT 1 - CYCLE 5 BATCH BURNUP SHARING it' . I - -. , ---.
...__.,_... _._ r- . _. _..._.. -- -
_ _ = __.- 7. , =.---- . . .. .--
~
T ~l i k~~~l~i _.__:
~ ~ ~~ ~ ~ ~ ~ ~ ~ - ~ --
5 DESIGN * ~~ -
=E I 28000 9 7 O x 0 0 O a MEAsuRzD hr:_M -~-- - ~ ~~nVi._ q BATCH S2/4A3 --- +
_ f=, BATCH 6C Z_ Mg= II l l1 u.._.
~~ ~ ^
A bM'r-. .. BATCH 5Al 24000 - - - - - - -- - ---- dUM B ATG 6 A
== ; ~gg+yp --
i ::: . _._ .-_._
,EM- Mk ._ _- = -- t. _ E,f_~_g_ - - * - - -
i G h ~-i d - cu- - ,~- ^- - -
+ 'Z M- - 't--- ~~~~--'~-~=-
BATG 6B fMff"-~~ " . G E - 2 Y " #
~ - ~ - ~ -~~
M 0000
; s LTT== X $ EMZZf.Z~~~~T.- _~. - IM-_,_MMi~X[.i _.. ' 11_. _.
j O -r _ i - --* _. . ._H - - B ATCH 7A b 16000 - ' ~Z BATCH 73 j C C ~-_ ~ ff"~"~ "
~-
_ f=-g
! " =^ ..: =i = / / / ~'
NY_:_~ 5 ___;__ M i 7 _!. / ~~~ -~- h 12000 WM=- . _- -NN -E (f=; === yy - - C . ____. L . ,shM ._.._.;___ y; --- i 8000 --- ##-- - i
,gs -
_ [#
- - ~ ~ - - ~
jy_: -. =--- I 4000 9"
#8 -
.g __i_fL;;= -- Y. . ll 0 2000 4000 6000 8000 10000 12000 14000 CYCLE 5 BURNUP (MWD /MTU) I 11
s ction 3 \ 8 REACTIVITY DEPLETION FOLLOW l The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 6 computer code was used to normalize " actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 1 Cycle 5 core is shown in Figure 3.1. It can be seen that the measured data compare to within 35 ppm of the design prediction. This corresponds to less t.han +0.4% AK/K, which is well within the 11% AK/K criteria for reactivity anomalies set forth in Section 4.10 of the Technical Specifica-tions. In conclusion, the trend indicated by the critical baron concentration r.r1f1.s th.t tm. cyc1e 5 core e.p1.t.e as .xp.ct.e .1tho.t any r.. t1v1ty g anomalies. I I I : i . l . I . ~I E I 12 ) l
M & M M W W M M & W 'M
. M 8: W M M M M M SUkRY UNIT _1 - CYCI.E 5 Figure 3,1 CRITICAL BORoll CONCENTRATION vs. BURNUP IIFP-ARG 1200 .
- p. 4 q
1000 -
+.-
h 800 l llg' , D g Nil y i hg ..J
.-. gd U 'hdg 600 S i g
E 8 Yl%n,
$ G q $ kl 400 '-
i ' u Q.__ o kij g 00 a MEASURED ll kgs,, 0
- l. A$s 0 2000 4000 6000 8000 10,000 12,000 14,000 CYCLE BURNUP (MWD /MTU)
.. r ts
Section 4 POWER DISTRIBUTION FOLLOW l Analysis of core power distribution data on a routine basis is neces-sary to verify that the hot channel factors are within the Technical Specifica-
~
tions limits and to ensure that the reactor is operating without any abnormal conditions which could cause an " uneven" burnup distribution. Three-dimensional core power distributions are determined from movable detector flux map measure-ments using the INCORE 7 computer program. A summary of all monthly flux maps taken since the completion of startup physics testing for Surry 1, Cycle 5 is given in Table 4.1. Power distribution maps were generally taken at monthly intervals with additional maps taken as needed. Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup. Figure 4.3 shows a map that was taken late in Cycle 5 life. Most of the radial power distributions were taken under equilibrium operating conditions with the unit at approximately l full power. In each case, the measured relative aseembly powers were generally within 4% of the prelicted values with an average percent difference of
~
approximately 1.3% which is considered good agreement. In addition, as indi-cated by the INCORE tilt factors, the power distributions were essentially w symmetric for all cases. . An important aspect of core power distribution follow is the monitor-ing of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity. The initial Cycle 5 Technical Specifiertions limit on the axially dependent heat flux hot channel factor, 14
I $ F (Z), was 1.94 x K(Z), where K(Z) is the hot channel factor nomalized operat-ing envelope. On May 9, 1979, the Technical Specifications limit for F (Z) was changed to 2.05 x K(Z) through a reanalysic of the large break LOCA using a revised ECCS model.8 Figure 4.4 is a plot of the K(Z) curve associated with the . 2.05 F (Z) limit. This curve is representative of the K(Z) curves used through-q out cycle 5 since K(Z) changes only slightly with changes in the Fq(Z) limit. The axially dependent heat flux hot channel factors, F (Z), for a representative set of flux maps are given in Figures 4.5 through 4.7. Throughout Cycle 5, the measured values of F (Z) were within the Technical Specifications limit. A summary of the maximum values of all heat flux hot channel factors measured during Cycle 5 is given in Figure 4.8. As can be seen from this figure, there was approximately 5% margin to the limit at the beginning of the .ycle, with the cargin increasing substantially throughout cycle operation. The value of the enthalpy rise hot channel factor, g, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Speci- . fications limit for this parameter is set such that the critical heat flux (DNB) N limit will not be violated. Additionally, the F g limit ensures that the value l of this parameter used in the LOCA-ECCS analysis is not exceeded during normal . operation. The initial cycle 5 limit on the enthalpy rise hot channel factor was set at 1.55 x (1+0.2(1-P)) x T(BU), where P is the fractional power level and T(BU) is the interim thimble cell rod bow penalty. The T(BU) value specified in the Technical Specifications (Amendment Nos. 29 and 30 davad March 22, 1977)9 _ is given in Figure 4.9. On July 27, 1979, the interim thimble cell rod bow penalty was eliminated and the Technical Specification limit was set at H 1.55 x (1 + 0.2(1-P)).10 The values of the enthalpy rise hot channel factor parameters H AH RD were a so routine y follo M .2 /I "" H F H RD represent the enthalpy rise hot channel factor ( AH) evaluated for l E 15 l 1
I E the peak assembly and peak rod in the core respectively, between the 1.5 ft. adF N !LOCA
- sm N LOCA and 10.5 ft. levels of the core. The full power limits for F H ASSY AHl ROD were set at 1.38 and 1.45 respectively. Tabic 4.2 su;;;.ari;ie thc F NlLOCA AHlASSY B ^ values measured during Cycle 5 operation. Figures 4.10 through 4.12 .
H D N LOCA N LOCA show that all measured values for F'NH, FAH ASSY * ""#* " *
, AH ROD respective Technical Specifications limits during Cycle 5.
The Technical Specifications require that target delta flux
- values be determined periodically. The target delta flux is the delta flux whicl-would occur at conditions of full power, all rods out, and equilibrium xenon.
Therefore, the delta flux is measured with the core at or near these conditions
- I and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the l target delta flux versus burnup, given ir. Figure 4.13, shows the value of this parameter to have been approximately -2: at the beginning of Cycle 5. By the middle of the cycle, the value of delta flux had shifted to approximately -4%,
and then returned to approximately -1% by the end of Cycle 5. This power shift - can alao be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.14 through 4.16. In , Map S1-5-10 (Figure 4.14) taken at approximately 150 MWD /MTU, the axial power distribution had a flattened cosine shape with a peaking factor of 1.22. In - Map S1-5-20 (Figure 4.15) taken at approximately 6,333 MWD /MTU, the axial power distribution had flattened somewhat with an axial peaking factor of 1.17, Finally, in Map S1-5-35 (Figure 4.16) taken at approximately 12,905 MWD /MTU, I
- Delta Flux = Pt-Pb x 100 2441 where Pt = power in top of core (Mw(t))
Pb = power in bottom of core (Mw(t)) l l l 16
7r I I the axial power distribution was even flatter with an axial peaking factor of of 1.16. The history of Ez during the cycle can be seen more clearly in a plot of Ygversus burnup given in Figure 4.17. In conclusion, the Surry 1, Cycle 5 core performed very satiafactorily . with power distribution analyses verifying that design predictions were accurate and that the values of the hot channel factors were within the limits of the Technical Specifications. I I I l I I I - 8 -
- I
- I 17
SUkkY tsNIT I - CYC1.E 5 Table 4.1 SIMtARY TABLE OF INQ)RE Fl.UX HAPS EWt kotTTINE OPERATION F HOT UlANNEL FACTOR I HOT OIANNEL FALTOR , TILT AXIAL NO.OF ! DATE OFFSET BURNUP PtlNITORED Z ASSI. PIN. Af pT (!) ,ASSY. FIN HAX. A. (%) (MWD /HTU) NUMBER POWER (STEPS) TillHB LES SI-5-10 7/13/78 99.5 221 1.218 K14 KL 34 1.838 K14 KL 1.416 1.0065 SW -1.47 s!50 '42-S1-5-11 8/18/78, 100 220 1.199 K14 KL 35 1.821 K14 KL 1.422 1.0042 SW -1.215 s!300 42 St-5-12 SI-5-14 g[ 9/11/78 100
,10/17/78 100 218 1.193 L13 NH 35 1.773 K14 KL 1.400 1.0053 SW -1.610 s2123, '42 SI'-5-15 , 222 1.174 IJ3 NN 34 1.761 LI) NH 1.396 1.0082 SW -2.040 %32461 42 WC N'
11/8/78 90 215' l.183 L13 NH 34 1.753 L13 NH 1.410 1.0082 SW +2.306 s3980 41 S1-5-16 11/8/78 90 207 1.214 L13 ICI 43 1.827 L13 NH 1.411 1.0066 SW - 6.236 s3989 42 "q SI-5-17' 11/10/78' 100' 223' 1.16) Lf3' NH 34 1 725 L13 NH 1.383 1.0050 SW .-l.6 39 Is4072 43 hs; S1-5-18 !!5/79 100 224 1.171 Lif NH 44 1.765 L13 NH 1.407 1.0075 SE -4.533 s5177 7.1
,43 c- --
S!-5-19 , 1/8/79 100 22.4 1.162 L13 NN 44 *1.734 L13 NH 1.395 1.0041 SW ' 2.474
- s5270 c-SI-5-20 . ; 2/8/79 100 226 1.166 L13 NH 44 1.732 J8 lit. 1. 39 8 1.0057 SW ~3.207 4 333 '4 3- C . _;
S1-5-21g)l '2/12/79 100 211 1.194 L13 NH 44 '!.784 38 IH 1.403 1.0057 SW --5.877 s6468 :43 S1-5-23 3/12/79, 100. ' 224 1.157 'Ll3 NH 45 1.743 J8 . IH 1.408 1.0060 SW -3.240 s7411- j43 S1-5-25(5)l 11/15/79 100- 227 1.169 L13 NH 45 1.739 J8 IH 1.404 1.0067 SW -4.220 s8175' 43 1 SI-5-26 12/7/79 100 226 1.149 L13 NH 45 1.712 J8 IH 1.409 1.0064 SW ,-2.880 s8973 42 St-5-27 12/10/79 100 213 1.196 Ll3 NH 46 1.777 J8 'IH 1.410 1.0077 SW -6.830 s9047 '41 St-5-30 1/30/80 100 226 1.156 L13a NH 46 1.722 H11 GL 1.403 1.0079 SW -3.726 's10125 43 St-5-31 J/19/80 100 226 1.156. L13 WM 45 1.730 L13 NH '1.408 1.0049 'SW -4.0 70 $10758 '43 St-5-32 6/6/80 100 216 1.144 M11 CL 46. 1.695 Hll, CL 1.411 1.0070 SW -3.512 ;s!J580 42 SI-5-33 6/9/80 100 - 202 1.210 H11 CI, 47 1.782 M11 GL 1.421 1.0055 SW 4 .569- h11678 '42 5 S t-5 -35 II 4 7/15/80' 100 216 1.160 H11 CL 53 1.70 7 HIl .ct 1.413 1.0045 SW -3.849 s12kO5 ;41 SI-5-36 8/19/80 88 .202/203 1.119 Hll CL 12 1.646 M11 CL 1.422 1.0030 SE. -0.980 is13675 42 S1-5-37 9/10/80 77 212 1.195 Hl! CL 12 1.757 Mil ct 1.419 1.0053 , SW +4.000 .h.14290 42 NOTES: llot spot locations are specified by giving asseshly locations (e. g. H-8 is the center-of core asseAly), followed by the pin' location (denoted by the "y" coordinate with the fif teen rows of fuel rods let tered A through R and the "a" coordinata designated in a stallar manner). In the "z" direction the cora is divided into 61 axial pointa starting from the top of the core. (1) F includes a total uncertainty factor of 1.08 (2) E g includes a measurement uncertainty of 1.04. (3) SI-5-13 was not analyzed; map data was taken during a power, distribution transient. (4) S1-5-22 was a partial map taken for 1/E calibration. (5) SI-5-24 did not have the required minimum nuuher of thiables. e (6) SI-5-28 was a partial map taken for 1/E calibration. SI-5-29 was n'aorted. (7) SI-5-34 was a partial map taken for I/E calibration. e i e f 4
SURRY UNIT 1 - CYCLE 5 Table 4.2
SUMMARY
TABLE OF LOCA ENTilALPY RISE Il0T CilANNEL FACTORS HAP BURNUP LOCA ' p 1.0 CATION ASSEMBLY PIN NUMBER (FUD/NTU) NAll GASSY f All l ROD SI-5-10 s150 1.291 P-12 1.426 K-14 KL SI-5-11 S1300 1.292 D-12 1.435 K-14 KL SI-5-12 s2123 1.278 F-12 1.411 K-14 KL SI-5-14 43246 1.268 F-12 1.412 L-13 NH ~ SI-5-15 's3980 1.272 .F-12 1.425 L- 13 NH SI-5-16 %3989 1.271 F-12 1.424 .L-13 NM
'I-5-17 S 4 072 1.284 J-8 1.400 L-13 NM SI-5-18 s5177 1.315 11-7 1.428 L-13 NM . SI-5-19 4,5270 1.302 J-8 1.409 L-13 NM SI-5-20 s6333 1.329 J-8 1.408 L-13 NM G SI-5-21 46468 1.332 J-8 1.415 L-13 NM SI-5-23 47411 1.342 J-8 1.426 L-13 NH SI-5-25 s8175 1.347 J-8 1.415 L-13 NH SI-5-26 s8973 1.356 J-8 1.412 L-13 NM SI-5-27 s9047 1.359 J-8 1.414 L-13 NM SI-5-30 410125 1.345 11 - 7 1.414 L-13 NM SI-5-31 $10758 1.344 11 - 7 1.420 L-13 NM SI-5-32 N11580- 1.340 11 - 7 1.418 M-11 CL SI-5-33 411678 1.344 M-11 1.422 H-11 ct SI-5-35 412905' 1.345 M-11 1.422 H-11 cL SI-5-36 sl3675 1.347 M-11 1.421 M-11 CL SI-5-37 *14290 1.349 M-11 1.424 H-11 GL * ^ are measured between 1.5 feet and 10.5 feet of the core F"
d ll and F gglR elevation and include an uncertainty of 1.04.
3 vMV gm[ -
- - c atsnu 91 snusA aN11 1 - aAan s l Yssawslritisa donas alsnIEm. ION sI-s-10 i
E / II N N # Y
- ds3ef311C * ' e***
- e*ee
- e*** -
- dale 2313C -
- - e.s w aic - ert e te ert - - mseac - :
*=t *2* 4
- d31 e2ddlE3ie:t-4
'm etid3 din 3t- * . t* t
- ................ ...................'e........ .................. e*,.... . ...... ......
- 8 91 e*st 1 te 1 12
- t*ts
- e*si 2-0 91 e sd
- t'oe
- t te 2 i
t s * =e 9 -t*s -t*t
- 3 g .t ed
- e 6s
.3 t -
- e*,7 g9-
- l ........................................................ .......
'
- e * *( - t*ee 1*es ' t*it
- 1*es t*!E
- 1 oG t*es ' e*9E *
- e ,v 1 ot 1 ed t zt t os 121 1 os 1 ot e ,s - t
- iP
- t*s -e*( ' -6 T T * -e d * -1*t
- TC **e
.................................'l -. . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . ' . . . . . . . ' . . . . . . .
e*et t*e9
- t t,9 T tE t*t4 e*si " oe**( -
c st
- t*f9
- T*st z*t*
- 1*e9 T*t 1*tE 1 19
- e*st
' 0 99
- 6 62 1 11
- t'21
- t 89 ,9
- 9 t*f
- te" e C -e's * -o C
- e*t
- s'e *e s
- e*s
- t*e
- 2*e *
.i
- et t oc
- t*t9 T*ts
- 1*et
- 1 ss t*te
- 1*ts
- T*et
- t*ts
- 1 19
- t eo
- o
- i "
- s.'.3 t oo t t4 i t, t ot t te t te t ts t ot t te t te t et c .t - -e 8 * -0 8
- e**
- or
- e
- o * -o s
- b t ' -e
- f - e*e
- eC -e v ' 1*e * ,p=
1- : s
- e*st 1*eW 1 tt
- t*et
- 121
- t it
- t f 9 1*f f
- 121
- t*e t
- 1*ti 1*ee
- 0 61 *
' - e ot
- t ot t if
- t*eS t*st T* ti t*t9 t*t( - t*ts t*et 1 2E
- t te t*ec
- 9
- -6 s =e e1 s*t
- e t -e e*o *6*e
- 1l* ss
...................'s ew *..........'..................'s*=e*4=e**'..0***. ................. .............................'...'.......
ew 1 os t* te 121 1-
- tr9 tre
- tra1 ts 1r
- 1*t,E tirt T( t*st 1 11
- 1 11
- t ts
- t*t9 ' 1 21
- t t e ew
- l
-,tt r -e r - tr - tr - ev er .er i-ovts .ev ire 1 ts tre tte irt trt ew - - 1v - er - te - er -
i
. .oc ..... . 1 1
,i era . . . . . 1rs irt . . . . . .t. . es ....1 . . . te. . . . tro
.....t . . .w . . .tro. . . . . tre . . . . . tro . . . . . .tre. . . . .- . . .w. . tes . . . . . .1ts . . . , . . erc-ese 1es t e- . -e s . .ts s tss 1 s- e -e.s . o.s .111 . .1o,s .s. .1tE o.s . .oee .t 1ee 1se -e.f - e.s . .ote t
1- as- .,os.c - e. .ao,,.11,.e,e,t-o- 2
.'. .ew. . . .tre . . . .i . . .xE . . . tre . . . . . t. . .ts . . . t. . .ts . . . t. . ts. . . . t. . se. . . . trt . . . . .trt. . . . .tra....t . . .t. . . . i . . ts . . . .tre . . . .ew . . .-. . , . . . . . . . . . . . . . . . . . . . . . . .
t ew sre 1rt tre tre 1rt 1ts tro tr< 1vs trs tro irt trt ew - s b
-e s - ev - e v e v -o c -e s -o c - .1s- 1e- te - er -tr uv- Te ts- - esi 1os tts 1ot 1rf 1,sE tte 111 121 1ot 111 1ce ost-
- - 1 ts 1 ot 1 zc - tt 1 tE t ts 1 ts t ot 122 1 es e si - te e1s-ss 1 o,s t- - o 1 .1 e -t e -s s -1 s - oe o s -e s -t t -t 1 - et-
. .evt - . . . . . tre . . . . . .tre . . . . .t . . .ts. . . .trt. . . . . 1rs. . . . . .tre. . . . .1ts?trt . . . . . . . . . . .1rs . . . . . 1t. . . . . . tro . . . . owt t - set 1 et trt 1 ts 1rt trs sri tro t er tvs 1 t< 1 oc owt - ti - tt- tt- o e -t t - e:- e o -1 s - .1 s -e e -e s -e s - et- ts-r . . . . . . . . . . . ,c . . . 8. . .s! . . .t. . t. . . . , t . . .ts . . .t. . .te. . .s. . .o. . . . .tt . , . . . . . . . , . . . t1 . . . . . . . . . . . , . . e stt-e ,...........
r ew ocs srs trs t te tes trs tt,s - tr, ees ee,s - ti tt- 1 s te- tr,
- -t t - ez- tt -e e- os -e s - t- -
- . . . . . . . e. . .t, .1. . ee . . . .1. . os. . . .1. . sE. . . .1. . os. . . .1. . rf
. . . .1. . se. . . .t. . se . . . .o. . t. . - ........,........... ' ew 1 ot tre t 1oc 1rt tos tes ert- te - tt- tt- te- .ezt t e o - -- ...........,...............1 ..o s ..o e ..e 1e ,........e e t e si t te e st 1rt tra trt tre ew ew .
1 12 1 ...... xe e si ..... . t- ... t, tt ts t e -e s -s s -e t - 1t-i snana - ew erc ew - - manut - m1co - ees ert ew - 1s
' - m.erts - - te -tv x a e.nisusn3t- - 1s - -
4 HVd N0* SI-5-10 GY.I3 : 4/1C/48 dom 33 s 66*s% g DONIEOI' EVN2 d0SIIION i 7E = 1*919, VI 2I9-2I' IE3083 IIII EVN2 G VI ZZI SIAdS 3 = I* BC8, Y1 219-hI'
- Nit - I* 000 k = I*ZIB N2 - I*001
[ V* C* = -I* 944 Sit - I* 004 s l snENnd % IS O H tQ / RI.n S3 - 0*66Z !
- Iuolttpes nuoat.segtpes '
l
! ZO i
t
Figure 4.2 SURRY UNIT 1 - CYCLE 5 I
. ASSEMBLYWISE POWER DISTRIBUTION S1-5-20 l
I e P M M L K J M G F t 3 G S A
. P21310713 . 0.43 . 0.73 . 4.43 . P213*:Tt3 I FRA5J E3 . O*.43 . 4.73 . 4.43 . Puw't3 .P 7 DIFFERENCE. . 4.9 . -0.9 . -0.6 , .7 .P CI'Ffttt*:t. . C.% . 0.94 . 1.06 . 1.31 . 1.46 . 3.% . 0. 4 . . 4.45 . 0.95 . 1.44 1.c0 . 1.06 . 0.94 , 0.43 ,
l
. 2.6 . S.4 . 0.2 . -0.2 -0.4 -0.1 1.0 s.47 . 1.46 . 1.15 . 1.14 . 0.97 . 1.16 . 1.15 1.C6 . 0.47 3.44 . 1.06 . 1.15 . 1.15 . 0.97 . 1.14 . 1.15 . 1.C7 . 0.44 . '
0.1 . 0.0 3.1
. 2.1 . 0.3 . -4.3 . 0.7 . s.2 1.4 .
i '
. 8.4 7 . 0. 9 3 . 1. 2 3 . 1.18 . 1.22 . 1.C1 . 1.:2 1.14 , 1.23 . 0.93 . 0.47 - . 3.47 . 0.93 .1.21.1.17 .1.22 .1.Ca .1.:2 .1.14 1.23 . 0.94 . 0.44 . <
- . -3. 3 . -0.1 . -1. 3 . -0.5 . -0.1 . -0. 3 . -0.1 . 3.2 3.4 . 0.4 1. 7 .
. 8.% . 1.C6 . 1.23 . 1.89 0.94 . 1.12 . 1.11 . 1.12 . 0.93 . 1.49 , 1.23 . 1.34 . 4.44 . 4.43 . 1.83 . 1.22 . 1.10 . 0.94 . 1.12 . 1.11 . 1.12 . 4.99 , 1.18 . 1.20 . 1.47 . 0.46 . S i . -2.2 . =2.2 . -4.5 . 9.5.=0.0.=0.6.-4.5.=0.3. 4.1 . 0.8 . -1. 0 . 1.0 . e.6 . 8.94 . 1.15 . 1.14 . 0.94 . 1.16 . 1.24 . 1.16 . 1.24 . 1.16 . 4.93 . 1.14 . 1.15 . 0.94 .
I . 0.93 . 1.14 . 1.14 . 1.30 . 1.17 . 1.13 . 1.16 . 1.23 . 1.15 . 0.94 . 1.17 . 1.15 . 0.95 . u
; . 1.1 . -1.1 . 0. 3 . 1.7 . 8.4 . -0.5 . -0. 3 . -e .1 , -0. 3 . -0.6 . -1.1 . -0.2 , 1.3 .
j ................................................................................... . ... ............
. 8.43 . 1.36 . 1.14 1.01 . 1.12 . 1.24 1.19 . 1.27 . 1.19 . 1.24 - 1.12 . 1. : 1.14 1.36 . 0.63 . - 3.4 3 . 1. C6 . 1.14 . 1. 2 3 . 1.14 . 1.26 . 1.14 . 1. 2 7 . 1.19 . 1.2 3 . 1.11 . 1. J 1.13 1.:+ . 4.42 , ' -1. 8 . -0. 3 . -0.1 . 3.5 , 1.4 . 1.4 . -0.* . 0.1 . 3. 3 . -0.5 . -1. 3 . -0. 9 . -1.,. -1.9. -1.e .
j
.'I , 3.73 . 1.31 . 0.97 . 1.81 . 1.11 . 1.14 . 1.27 . 1.17 . 1.27 . 1.16 . 1.11 . 1.01 . 0.97 . 0. 73 . 1. 30 . 0. 97 . 1. 01 . 1.11 . 1.16 . 1. 2 4 . 1.14 . 1. 2 7 . 1.15 . 1.13 . 1. C 3 . 8. 96 1.41 . 3.73 .
1.C3 . 0.*4 J j -1. 0 , -0. 4 . -4. 3 , -0.1 . -4. 4 . -0. 4 . 0.7 . 0. 7 . -0. 5 . -1. 2 , -1.1 . -4. 9 . -1. 2 0.4 . 1.4 . j
. 0.43 . 1.e4 . 1.14 1.22 . 1.12 . 1.24 1.19 . 1.27 . 1.19 . 1.04 - 1.12 . 1.:: 1.14 1. 0 6 . 8.*3 . . 8.43 1.8 , . 1.c6 . 1.15 . 1.22 . 1.12 . 1.23 . 1.14 . 1.15 . 1.17 . 1.*3 . 1.11 . 1. : 1.14 . 1.03 . 3.*3 . 1 ! 0.3 . 3.5 . 3.1 . -0.4 -0.4 -4. 4 . 2. 0 . -1. 3 . -0. 3 . -0.a . -0.4 =0.1 . ;.9, 4.7 .
1 1
. 0. 94 . 1. L5 . 1.14 . 3. 94 . 1.16 . 1.24 . 1.16 . 1. 4 . 1.16 . 0.94 . 1.13 . 1.13 . 8.94 .
1
. 8.95 . 1.16 . 1.14 . 4.95 . 1.15 . 1.21 . 1.14 . 1.:: 1.15 . 0.93 . 1.17 . 1.15 . 0.95 . . la ; . 1.1 . 1.1 . 3.4 . -e.2 . -0.2 . 2.4 -2.4 . -i.4 . =0.5 . -4.4 . .e.4 . 4.0 , 1.3 .
t
. 0.44 1.C6 . 1.23 . 1.09 . 0.98 . 1.12 . 1.11 . 1.12 . 0.*3 . 1.C9 1.23 . 1.36 . 4.44 . . 8.45 . 1.04 . 1.24 1. 0 9 . 0. 9 4 . 1.11 . 1. 0 9 . 1.13 . a. 93 . 1. c s . 1.24 1.37 . s.45 . 11 j 2.1 . 1.1 - 1.2 . -0.0 . -0.4 . -1.5 . -1.9. -t.8 . -0.1 . -4. 0 , 0.7 . 1.4 . 1.4 . ; . 3.47 . 4.93 . 1.23 . 1.14 . 1.22 . 1.01 . 1.22 . 1.18 . 1.23 . 0.93 . 4.47 . . 4.44 . 3.95 . 1.03 . 1.17 . 1.28 . 8.99 . 1.21 . 1.18 1. 3 . 0.94 0. 4 . 1: . 3.2 , 1.9 . -4.0 . -0.6 . -1.: . -1.7 . -1.1 . 3.4 . 4.4 1.0 2.9 . 4.47 .1.06 . 1 15 . 1.14 . 0.97 . 1. ' 4 .1.15 . 1.C4 . 4.47 .
3
. 4.49 . 1.18 . 1.17 . 1.12 . 0.95 . 1.63 . 1.16 . 1.46 . 0.44 . 13 4 . 3.6 . 4.1 . 1.5 . -1.5 . -1.9 . -0.9 . 6.5 . 0.7 1.7 . ~
4
- . 0.4 . 0.94 . 1.C6 . 1.01 . 1.26 . O.% . 6.*4 . '
. 8.46 . 0.64 . 1.09 . 1.03 . 1.45 . 4.93 . 0.64J. 16 . 4.1 . 4.4 2.1 . -0.2 . -1.3 . -4.4 . 6.7 .
5 . STANDARO . . 3.43 . $.73 . 0.43 . . &Yt9dCI . t . . . 4 45 . 0.75 . 4.42 . 15
. Ct.VIA7124
- 0. 12 . . . . 2.3 . -1.5 . .PC7 O.IFF13tNC2.
. 1.3 .
MAP No: S1-5-20 DA'IE : 2/8/79 POWER % 100%
] -
M CONTROL BANK POSITION rt.R = 1.398* AT J8-IH INCORE TILT BANK D AT 226 STEPS F = 1.732* AT L13-NM NW - 1.002 1
-F Z = 1.166 NE - 0.994 A. O. = -3.20 7 SW - 1.006 , BUENUP % 6,333 WD/MTU SE - 0.998
!I
- Includes uncertainties
! 11 l
N
i l L I D**O '%~ }[ iigure 4.3 I c o .f Juh $ d "d["oSURRY UNIT 1 - CYCLE 5 ASSEMBLYWISE POWER DISTRIBITfION Sl-5-35
- 0 P es to 4 A 4 se 6 7 2 0 C S 4 . .NESICTED . . 4.44 . 0.72 . 0.44 . . PftDICTIO . . Pft 45t9tO . . 0.44 . 0.72 . 9.44 . . P'f ASURED . 1
-.I .PC7 01FFttrNC2.
. 1.2 . -1.2 . -0.3 . . 4.47 . 9.93 . 1.97 . 0.97 . 1.97 . 0.93 . 9.47 .FC7 01FFrpt1C2.
8.49 . 9.*1 . 1.05 . 8.94 . 1.06 . 8.94 9.44 . 3
- 4. 4 .
- 2.0 . -1.6 . -1. 7 . -0. 7 . 9.6 . 2.1 .
iI
. 0.54 . 1.09 . 1.19 . 1.12 . 0.94 . 1.12 . 1.19 , 1.09 . 6.59 . 9.52 . 1.18 . 1.16 . 1.99 9.94 . 1.11 . 1.28 . 1.12 . 8.52 4.0 . 1.6 . 2.7 . 2.6 . -2.0 . -1.8 . 0.6 . 2. 9 . 4. 4 .
1
; . 0.58 . 0.95 . 1.26 . 1.16 . 1.26 . 1.09 . 1.26 . 1.16 . 1.26 . 9.95 . 0.54 4 ; . 0.52 . 0.96 . 1.24 1.13 . 1.24 e.9e . 1.23 . 1.1F . 1.2 7 . 9. 96 . 0. 31 .
i 4.6 . 1.8 . -2.8 . 1.9 1.2 -1.5 . -4.0 . 0.8 . 8.8 . 0.7 . 2.4 i ............................................................................................
; . 8.4 F . 1.09 . 1.26 . 1. 0 7 . 0.96 . 1.09 . 1. 0 7 . 1.89 . 9.96 . 1.0 F . 1.26 . 1.8 9 . 4.4 7 .
e . e.4 7 . 1.10 . 1.26 . 1.97 . e.96 . 1.e4 . 1.06 . 1.07 . 0.96 . 1.0 7 . 1.23 . 1.11 . e.49 . 5
. 4.3 . 0. 3 . -0. 3 . -0. 3 . =0. 5 . .e . 4 . 1.1 .
- 1. 3 . -0.1 . 9.2 . -2.4 , 1.4 . 5.8 4
. e.93 . 1.19 . 1.16 . 0.96 , 1.10 . 1.24 . 1.12 . 1.24 . 1.10 . 8:96 . 1.16 . 1.19 . 4.93 . . 0.93 . 1.19 . 1.17 . 9.94 . 1.11 . 1.22 . 3.11 . 1.23 . 1.99 8.13 . 1.13 . 1.19 . 8.*5 . 4 . 9. 3 . t.3 . 1.3 . 2.4 . 0.9 . -1.1 . 1.3 . -4.9 . -1.1 . -1.2 . -2.0 . -e.2 . 2.5 .
l ......................................................................................................... I S.44 . 1.07 . 1.12 . 1.26 . 1.09 1.24 1.16 . 1.29 . 1.16 . 1.24 . 1.09 . 1.26 . 1.12 . 1.07 . 0.44 ' l 8.44 . 1.97 . 1.12 . 1.26 . 1.09 1.24 . 1.14 . 1.2% . 1.15 . 1.2P . 1.26 . 1.23 . 1.11 . 1.96 . 0.44 . ] 9.1 . 0.2 . 0.3 . 8. 3 . 0.4 . 9.4 . 1. 5 . -0. 7 . 4.4 . -1.1 . -2.1 -2.5 -0.6 , -4.5 . 4.2 . 4.72 . 0.97 . 0.96 . 1.00 . 1.97 . 1.12 . 1.29 1.13 . 1.29 . 1.12 . 1.0F . 1.00 . s.96 . 0.97 . 0.72 . 3.72 . 0.97 . 0.96 . 0.99 . 1.06 . 1.11 1 47 . 1.15 . 1.27 . 1.10 . 1.94 0.99 . 8.*6 . 9.99 . 0.75 . e i 8.8 . 0. 0 .. 9.1 . -4.4 . *1.2 . -1.1 . *1.2 . 9.8 . -1.4 . =2.8 . -2.4 1.8 . 9.4 , 4.9 . 2.4 . j ......................................................................................................... 0.44 . 1.07 . 1.12 . 1.26 . 1.89 . 1.24 1.16 . 1.29 . 1.16 . 1.24 1.39 1.26 . 1.12 . 1.87 . 9.64 . 0.44 1. 9 7 . 1.12 . 1.25 . 1. 0 8 . 1.2 3 , 1.15 . 1.2 7 . 1.13 . 1.21 . 1. 0 7 . 1.16 . 1.12 . 1. 0 9 . 9.4 F . 9 9.1 . 9.2 . 0.3 . 4.4 , -4.4 . -1.8 . 4.4 . 1.4 . -2.3 . -2.4 . - 1. 7 . 9.2 0.5 . 2.5 . 6.2 . l ................................................................................. .......................
; 9.93 . 1.19 . 1.16 . 0. % . 1.19 . 1.24 . 1.12 . 1.24 . 1.10 . 0.96 . 1.16 . 1.19 . 0.93 . ; 9. ** . 1.4 9 . 1.16 . 9. 96 . 1.10 . 1.22 . 1.11 . 1.23 . 1.09 . 8.*6 . 1.15 . 1.19 . 0.94 . 10 ; t.3 . 9.5 . 9. 2 . -4. 0 . 9.8 . 1.4 . -1.4 -1.8 . =e.S . -4.2 . -0.1 . 0.0 1.0 .
i . 8.47 . 1.99 . 1.26 . 1.87 . 0.96 . 1.89 . 1.07 . 1.89 . 0.94 . 1.87 . 1.26 . 1.89 . 8.47 .
. 9.44 . 1.12 . 1.29 . 1.04 . 9.91 . 1.26 . 1.05 . 1.49 . 0.97 . 1.07 . 1.28 . 1.12 . 9.44 . 13 ; . 2.7 . 2.7 . 1.4 . 0.6 . -1.1 . 2.6 . -1.6 . -4.2 . 0.9 9.5 . 1.4 2.2 . 2.2 , ; 0.54 . 0.99 . 1.26 . 1.16 . 1.26 . 1.08 . 1.26 . 1.16 . 1.26 . 0.9S . s.Se . * . B.52 . 0.98 . 1.47 . 1.13 . 1.22 . e.98 . 1.ES . 1.16 . 1.27 . 0.97 . 8.52 . 12
< . 4. 9 . 3.2 . 4.4 . -2.0 . 3.4 . -2.4 -0.5 . 0.6 . 0.9 2.0 . 4.4 .
. 0.98 . 1.69 . 1.19 . 1.12 . 8.96 . 1.12 . 1.19 . 1.39 . 0.50 . . . e.32 . 1.18 . 1.15 . 1 98 . 9. 94* . 1.11 . 1.19 . 1.18 . 0.51 . 43 i . 4.9 . 0.6 . -5.8 . -2.9 . *2.2 . *1.0 0.2 . 0.8 . 3.4 . . 0.4F . 8.93 . 1.07 . 0.97 . 1.07 . 0.95 . 4.4F . . 0.50 . 1.89 . 1.10 . 0.94 . 1.05 . 0.93 . 8.47 . 14 . 7.1 . 7.1 . 3.4 0.4 *1.2 . =0.4 . 4.4 . . STANDass . 4.44 . 8.72 . 4.44 . AvtRACE .
- i. . . 0.47 . 0.75 . 4.44 .FC7 52FFttt?C2. 13 1 . 02.v1A71tM
- 1. ore . . 6.9 . 3.F . -1.2 . . 1.5 . ,
J 2
;I MAP NO: Sl-5-35 DATE: 7/15/80 POWER % 100%
i 3 _ CCNTROL BANK POSITION INCORE TILT Fh=1.413*ATMll-GL BANK D AT 216 STEPS F = 1.707* AT Mll-GL NW - 0.997
- Q 1
- _Fg = 1.160 NE - 0.998 ,
1 i A. O. = -3.849 SW - 1.005 l ! l
- BURNUP % 12,905 MWD /MTU SE - 1.000 \
- Includes uncertainties 22 j
j i
I Figure 4.4 }q 4 HOT CHAN!TEL FACTOR NOR h . p OPERATING ENVELOPE I . . _ _ . _ . _ . .
-..____.._.__.._,......-r- " - - - * - - - - - ' - - -- - r w.- .m
- . 1.0 . .__ _ . ...m_ .
._. L. t-#~ .. _ E~l (6. 00 ,1. 000 )
__.__.~..m _ .
. '~ -l (11. 06,0.93 7) ____.
s1 0.8 [ . i 1. k--
.N
.I b *
- t-0 N
0.6 * - a h C = 7 : (12.00,0.48'8) - g 0.4 m I 0.2 [ 9 0 I i -
- I.
0 2 4 6 8 10 12 BOTTOM CORE HEIGHT (FT.) Top I . I I I .
- - - -- , _ - - - - - - -- m - - m E Figure 4.5 SURRY UNIT 1 - CYCLE 5 HEAT FLUX HOT CHANNEL FACTOR, F (Z) n 'N SI-5-10 E I I 2> E, E E :
= 2.0 1 E 5 ee a
D , w xxx, "
", ,*"*xx, a , .- -
x x
- i ~
x x xx g 1.5 4 ,,
- X M M E- M w "
w E M M i
- g - x I
M
= 1.0 4 ,
I p 4:
- =
N **,
- I I
0.5 ; -
~
1 I
- O 3 i I I '
g 1 g 1 60 50 40 3u 20 10 1 - BOTTOM AXIAL POSITIm (NODES) TCP I I 24 5
Figure 4.6 I SURRY tNIT 1 - CYCII 5 HEAT. FLUX HOT CHANNEL FACIOR, F (Z) s1-s-20 g I 2.5 I a n 2.0 j N I .a. x" x"**xx x
- xxx** x I
g i Q . x
* "x x xxxx xxxx, ,x,,
g 3 ,x x x Q x x 4 1*S 4 , x , x b x x x J k
!aJ .
x i x 3 4 c i x x x I g o
. 1.0 1
4
*= x x
a .x x s a 4: : d 4
~
j I 0.5 4
~;
I i: - E f 1 P f 1 1 1 60 50 40 30 20 10 1 .. il , !I I 25 l
)
i
1 I I SURRY UNIT 1 - CYCLE 5 Figure 4.7 HEAT FLUX HOT CHANNEL FACIOR, T F (g) I S1-s-3s I . I I - 2.5 , I i 4 I $N f* Cr 2.0 j
~
e i ... . ... ..
< : . =.- " .
x""""xw I y p 1.5 j - x
= ,, wwxu,, =
xxxxx,
=,
g . E e '.. - . 5 Id " I d 4 1.0
]-
i 0.5 3 3
^ . } ,
4 4 I 0 a., t i i i i Q 60 50 40 30 20 10 1 BOTIOM AXIAL POSITION (NODES) TCP I I 26 I
l O S M M Y M M M M M M M M M M M M M M Figure 4.8 SURRY UNIT 1 - CYCLE 5 HAXIMUM llEAT FLUX 110T CilANNEL FALTOR VS. BURNUP d
"r @
m4
~
v 2.40 ....n..nn...... m ,.. , . As er l os O Technical Speci fications 2.20 Amendments #48 and #49 a '
$'j 5/15/79 un mrna m R@2 '] jL @
i g 2.00 1.80 1 9 ' g i ca g - u 4 ':' ' o e .
..c l b e g 3 s 1.60 1.40 '
O HEASURED 1 1.20
- 8* N II
- ]
a 1.00 0 2000 4000 6000 8000 10000 12000 14000 CORE BURNUP (HWD/HTU)
- : !t .
I Figure 4.9 i SURRY UNIT 1 - CYCLE 5 INTERIM THIMBLE CELL ROD BOW PENALTY ON H , I a w=. : a=, == =,_ ~ I
+
_=_\.===.-.__.m,___+,___. 2 2
.__._+ . m -- =\_ .
_ + _ - - _ .- _ _s-_. _n
---"--- ~ --- " ----
99 g.__ _ ,_ _ I - w ._ _ _ _ _ . _.__ g ___._____ I
.98 : _.-- 7 __
Y -- - As Per I Technical Specifications =~ 5 5 Amendments #29 and #30 ~~~
.97 -
3/22/77 - .m__ I
-.t---^ - - '-~
l l3 , I
$ .96 e
I . + . - n --
. .W__ _w -_
,I .95 j ' ' ' - ~
+ - ~ .94 ~
g __ 3 .
.93 - -up l*I -+ _._
l h_- 0 5 10 15 20 25 30 35 l REGION AVERAGE BURNUP (1000 MWD /MrU) j u 1 E 1 28 .
l I m I ,
~
o 7gw e ud u/m n I 4 b a ' c I
+
e . s
~
1 I _
=
I m 8 2 I - 8 l E $ e e : I g u C E 5
, c; 8
g
!E A
5 c. e 3 Ii s p us 3 S *!"* c: 8 ii :o E I ~ a N 5 3 5 8 l $ : I - e I 'g 8 ut -
= $a 8 I O -
I C I - ( g) HOIDYd 13NNf1D 10H 3SIE AdTYHIN3 I "
l . M M M M M M M M M M M M M M M M M M M i SURRY UNIT 1 - CYCLE 5 Figure 4.11 LOCA ENTilALPY RISE Il0T CilANNEL FALTOR - ASSY. VS. BURNUP lY
^ U d "' 1.50- -~~
C
$h ~ ! Mi gj I *N da Per Technical Specifications ~i C E ;7 Amendments #34 and #35 !
1.40 12/2/77 l h (5f"i I!ll ! IIl[ll III llll llI- llll I' l g m g 1,: .C p g , IJ l u 4 1.30 . ..._ o . o , o D i: o B m - sa 1.20 "? .i. .f.._.._ y O HEASURED
>* T. S. LIMIT '
- l' d 1.10 l -
L'o I e d 0 2000 4000 6000 8000 10000 12000 14000 3 CORE BURNUP DMD/HTU)
SURRY UNIT 1 - CYCLE 'a Figure 4.12 LOCA ENTilALPY RISE 110T CllANNEL FACTOR - ROD VS. BURNUP 6 m. 1.60
..l Q A
As Per g_ ~~ Technical Specifications uM
$ / -' Ameniments #34 and #35 1.50 12/2/77 @
g- tg Q ca
, il Eq3 d O u - ', . , < c, c F:s d 1.40 ~
o~ b M I e O 1.30 1 N d 1.20 -
- -O HEASURED d T. S. LIMIT S
1.10 0 2000 4000 6000 8000 10000 12000 14000 CORE BURNUn' (llJD/HfU)
. .' <t .
SURRY UNIT 1 - CYCLE 5 Figure 4.13 TARGET DELTA FLUX VS. BURNUP Y 10 1 0 0 C_3 8 -- M 1 L_D 6 -
+
cg j m 4 h- - g W a 2 , w s 6 24 I M .d. A s a d a
-2 o
40 () g 4 " g -4 y +
-6 -8 t
I ' I
-10 l O 2000 4000 6000 8000 10000 12000 14000 CORE BURNUP (HWD/MTU) t t1 '.
I Figure 4.14 SURRY WIT 1 - CYCLE 5 CORE AVERACE AXIAL POWER DISTRIB1TrION S1-5-10 I. . Fg - 1.218 ao - -1.470 I t,$ 3 i I 1.2
"" ww"""w=, "xx ; === == = - ""==,
I
=
u
, . =
m*x,
=
u
$ M NN ,
I
- i:1 0.9
=
4 w a = a I u m . O ; = b 5 I 9 *s N Q 0.6 3
=
Ca.N 7 = I b k
- MMM 0.3 i I 1
= _,
I l
- s.
a t I , t t g 60 50 40 30 20 10 1
.i soTIOM AKIAL POSITIW (NODt.. TOP I .-
!I l t i I 33 I
- Figure 4.15 l
! SURRY UNIT 1 - CYCIE 5 CORE AVEPACE AXIAL POWER DISTRIBUTION 1 ! SI-5-20 l l
. \
F = 1.166 Z ! 1.5 1 l 4 at = -3.207 5 l 1 i - i i l i 1.2 ! 1 : x ==="xx = xx x=x,x ! x xxx xx ' x x x x x I x x x M ~ x xx E~ x x "x
"
- x
- x x x i 1 4 * '
) x x , n .- o 0.9 4
=
1 W
. x a .
fa .
, xx C x i
2: v j : -
^
w 0.6 ; x = , v : a.N : x
- =x I 0.3 J
4 4 x I 5 a
~
I 4 O ; , , i i t i 1 I BOTTOM 60 50 40 AXIAL POSITIm (NODES) 30 20 10 TOP 1 I . I I I 34 1
4 4 2 !I { Figure 4.16 !I i SURRY UNIT 1 - CYCLE 5 4 CORE AVERACE AXIAL POWER DISTRIBITTION i SI-5-35 , i - !,I j -Fg = 1. W 1 j 4% = -3.849 .! 1.5 e - !.l i l :. j 1.2 j 4
- - ... -x I
l 1 x x """""xx x = xxxxx"" x xx""x
- m . x =
a e x
== x b f ] -
i a 0.9 .:: = = = i = 8 Z e
=
m J*
= ^ 1 N x l V b
N J - x 1 0.6 .: k #
- =
i 4"x 4 iI m J ., 0.3 : - 1 e ' e 4 i n I k 0 j , , , , , l _3. ! 60 50 40 30 20 10 1 BOTTOM AXIAL POSITICH (NODES) TOP .l 1 .- , 1 I e 1 I s t i 35 lI
i M
- 1) )
3_ s 0 M
- Cahm i gW '4D
'>o 8
0 M
),
0
- 0 4
1 D M C 0 0 0 M I 2 1 M Q a 0 g 0 G 0 0 R 1 M O T C A 5 F .
)
E G U M L C N I a 0 T M Y K 0 / C 0 D E 8 W P
.PU i - f
( M 1 L SN A VR 9 P T I U U I X B N N A R U U E 0 B M Y R R G A R 0 0 E R 6 U E O S V ,' C A ' M E R O C 0 0 f 0 M 4 36 M 0
'l ' .g 0 0
2 M ,- e M m 0
'* 3 2 1 0
- l 1 1 1 M
,"% Ud"l_ n N8 M
M '
I Scction 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indica-tors of defective fuel. Additionally, they are also important with resp..:t to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding. As indicatpd in the Conditions of the License dated July 28, 1980,
- " the dose equivalent I-131 concentration in the primary coolant was limited to 1.0 pC1/gm for normal steady state operation during Cycle 5. Figure 5.1 shows the dose equivalent I-131 activity level history for the surry 1, Cycle 5 core (the letdown flow rate averaged N105 gpm during power operation). The data demonstrates considerable scatter, however, the trend shows that during Cycle 5, the core operated substantially below the 1.0 uCi/gm limit during steady state operation (the spike data is associated with power transients IW and unit shutdowns). Spacifically, the average dose equivalent I-131 concen-tration of 1.7 x 10
-2 C1/gm is less than 2:: of the Technical Specifications limit.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the reactor
- core. Use of the ratio for this determination is feasible because I-133 has a 7 short half-life (approximately 21 hours) compared to that of I-131 (approximately eight days) so that for pinhole defects where the diffusion time through the -.
defect is on the order of days, the I-133 decays out leaving I-131 dominant in I activity, thereby causing the ratio to be 0.5 or more. In the case of large
~-
leaks, uranium particles in the coolant, and/or " tramp" uranium *, where the diffusion mech =n4== is negligible, the I-131/I-133 rdtio will generally be less I *" Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process. I 37 l l
l t I I than 0.1. Figure 5.2 shows the I-131/I-133 ratio data for the Surg 1, Cycle 5 core. These data are inconclusive in terms of indicating the type of defects
- I i present in the fuel used during Cycle 5.
!I 1 f lI 4 J !I 4 !I ; !I } 1 !I 1 il . !I 1 i f i 1 lI i ,I
- '8 4
e I Q 0 b ' ., i t m M a fd . L . . . . . _ _ . . . . . - .~. - .. - .. - c 3 l!
-6 !.,t t , -)
s
, i > . i. -
e-}.I I6a .,I .i - a ' \ j i
. I i l I ,
i e
. ,i .4 + .
i. i a 4 l
. e i. e I , . . i ,j i .t .l.-.. ~.
a , $. v y . .n- ... - . + . ~ . . ..., .., i.i 4.,....,..' , .
- r. m . L -y! .~
3 . 4 .>. I *
- .- v- +
- ' ', It :
- I! !i
. ,h. .
l' . .) ? .i ) '.I'
. .{.. a*** :l l h..s .+.!I i. . .. i i l 3 4 .,3 ,
g
<v. ...,
- e. .4 p . . .g. a
}. e .p. .a .. .. ... ..
n g , ,.m ..,.b i 8
. 64 }i . .-. 4 ..+.-++ , a . . [; ... 7Ij .i .. >
i
- r. E ,: . . -
. .', t . +. . ,*-
s
,- - 11, . _ [' . . 4.
t, _. .. , . .. . - ,
- i . :I .:i: '
. ~.
t.
.1 4 ;1 .... .. .. ~, -
l .. 4 ,. . 4 .; . . 4 .. .. ,. ~. 1, r
, . l. . . .... 4.. . . . .. .. . . i. .
a 4 . t-
.4 ..g....
g 4
.. . _. - - 6.. .
j pyp . ..-V
-. . - - -.--.i .. .*++ .
g .
. -t p- g- . , - ..- t.. .b
- 1. . - :.l:
; :{t l.
i 1 e
..::p. . %._ _ g .: l' l.t w{t 4 - .. , .6 .
i
- I
{ 2
. , . . 6
- .p:.
l . l 4 : t. 1:
...t., . + ..t. . . +. .-,
4
+
0
. s ~. . .r t .. . ~. .- . _,. . ,...
i...
.-.p _ . , 4 , l . . :1::: l .r _:' ; ; :. !" : '.. - j- "
g
*:t0
, , 4 . 9 .. i .i: . :
?j n
- L
- r: ,
". l l 1, t
{'l ' l .
. .__ c. 7:.
- . -L _. .- . . 3
.' 2L
_. . 3::
-[ . -
- 6
.. }. ... . . , .... .. e. . 4, . .[. . .. -. .- ..-w.. .... l. .J_
l . i.;: '1' '
' f..: g ' 4 * . :.l 2 . ' # ' 8 .' .. .I . ...I., ,,4.. . .,6..,. . . .
3 . 3.-.. 4
.{.. .p.. ...[.. . . + .. . . ,. .. ..L... .-5~- ~..t.- .
I u a a .
.:. ..,_. ra i ;
a
. . . 4 .. . . . . . ..
p 6.-
. .. 4 4.- . . 6, . . m S, . t,. a . . , . . ., ) . ,t .y . ;SW ,. ..... . , .g, 3 .6 .., , ..[ . I -
4 ,. 3
.( .! .i... , ,. y .
g, ,
.. l. .
1., y .. ., , -
. r.
i .
.... .., , . ..-4l . 4_. .
4,,. .
.v. [ : . - i _ . ..... } m.6 ........ 4 6 . }6 -. . . . .
i .i - e !
,-.l....
6 . .
...t. ...l,.. .t )- .4..... .. .. p g.. . a. .. . ...o. .. . f*
1'. +.
..... + ...,.4.... ._ .... . ,6 . .. .. ... t .[. . t, .. M .n.
i
, , . .p .
6 . g , ...,. .
.. . . +. ,. . , . , 4. .... ,. i, e. q. .. . ... i . . . . ,o . . [ ,. .. .,
g 4
..i.....g, , . . . - ,. .
4 u. a +
. .! . .g; .g ._ g . .; . g 1 -.- .- 4 ; q e. ,i.. ,. . , ,. . .c. :. .6 ... l . , . . . . .. . C .u$ l...
a) l. ..4.... ..,9.. 6. e,
,* 9 g v. . ,i . . .g. .. -J.. .. f , &l '4 ...b. -*..- r *" ~ * - '
1 .,,,. . p , ~
-,. . 4,...
e Q + { . g .. f.. , . 4. . . . . . . . . .,,,. .- v k
, , . ,,,. . .,,T..--.. t.1.., . .... 4. ... .s .
G
~.. - .. .p.,. ... .._. ,q. .... .. . , . . ..e.n.- ....u. ,... ,., a. 1, .... , v ,. .. .. ,+ .. , , . 1. .. . .a..
l.i.. . u-- t- . . , . . , .- , .
. .t . , ~
4 .
..l .
1 t's i . .i..g.,.,.,.--- ., .,.. .,,.., , . . . . . .... , - ..~..g. . l;; g *.
,. _. ..a.. . .
l !. ! . ~. .., ..
. .. . ... ..,.. .. . .L, . . ; a ,i j !.
(,. i.
.i . . . . .
a a r,i , , . 5-a. . . . . _ . . _ .
.h..I . 6 . . . . . _, . . . . .... .f,...,.. .a(., < , 6 ] =
- 5. . .g .}6
+..]...,. . . . > .l... - .t.
r . ,,
- p . . . . 4 . 9. .. , . . .,, .- . .- ( .6 1 ..,6.- .1..
- 6. ~~"
2 L.
, i. . , ,. .. . .
4: -_ .
.( .- l ..1 . . l . J .,. . 4.. . . .a.. ! .. .. =
i a I . . .L. ... . .. .
..i6....
r I, s ... . ..L. . .
-~~ .=.
g
. , ...9 . .o., .,. .-.-_4 ,t . .. . . . . , . 4,4.. t .,i . ., .. ,.. 4 .e .9 . . .,e.... . ,
lgh.64 , g .. . a,.
- . e .l. .t.. .. ...
..l . . . . . , . .. ....e.. ...m ...-..@
e 8# 6 .4. . 4.,46 4 e
.4.. 4 . . . . 4 6 s . .} . e _.. .e.~.. m' " - . -..-.4... 4.... . ^
h g O. D.6 a - i e r i
- 4. 6 .
e 4 ... p2 . .
.,.G,,.g. ~ , . .... . . . ...,... ..l,,. ) .. g i .6 g , .. . . ., ., .g 4 g .
4...... . .
. . . . . .... le c as . .
g d
-. {4 . ....$ . . ..9.. . . . . . . . ..5..... 4
- p. a.
..+. .
p ... . $. ..}.
+.., .. . . . ...g .,. ..
6.... 4.., ,+ ol . ...&,. .
. f...,. . , ) . 4. .
9
.., . .g t
f.. a. e
.. 4. ...6... .. . 46 . .. .(.. .
e , } e A .- .,. .
.De . , . . . . .
- e. i<i.
}.6 [. . j .e. ..
s. 64 6 . 6
.6 O ..G , 4, ,4 ..F. - ..f. . . . . Q r> - t.&. *% g T .f. -t- -
d
.~ ., .m %
1 4 . . . . .
.e tp . .,
6,..
. L ..
j , .b
.[g ...l...... . . . . ..., .e ,4 . .6 . .p-4.
- g. . .
.. ^' j .a rU.a w3
- . .9.. . .. .
. . . e, 9. . . ,6 . , . __ .l ...
4 . 3 . ..9. q p. % .... i l l 4 4.. ~ .f.g . x
.+ .t . % . w.. . . . 18.. .
m 9 p .n ..A. 1 . 4.. 6 ,. . ..w.. .. . 4.....4..
.{ .. .. 3 , ....-.o.... $ 9... ..i4... g 4-,...
3 . .
,. p .-,4.. ..+.. . . - ...
O
, -, - .b .$ . - ..6-.. W' , .i . 4 -. O,A ., . - - . .* ' ; .. N' * ; . p. e... ... .. . }... . a.. . . . . ....,...
4 . ...
- g. .. ...,4..4. ...
. . . . . S. , .- .{ . .. . . .....
4 4 .
} , ... l . . .p.4 . . f. . .... ..
i . 4l. .. 4.
... .. I p.
w .) ,m
.wS.
6 .- . +. .. 6.,
.e., .. . . .6.. . .. a, r -
- q. p4 _. .. . . .
...k. 4
- a. .. .. . ....f..o i . . , . . . - . . ., #
. . , j J..J . .I.,....,.
i , -. . .. 4. . . . ... u.. . T, - .... p g . . &. . . .
.l.. .ee,,,
e... ,L #4 .. .. . . . . . .g. e
.. g .... 9 - ,.,.....4.. 6..~9...... ..5 .A ,J.,.. g4 6. .6. .. i..+-. . . . . .. 8 .4 I -.. _..
y. I .. . . ,. . .
,eO_- l 9 ,
I- .- ., . y m 5
. [ . 4.. c. . . , - .. ., . g g-.. ..$. 8. p 8, ., , , **-, 9, e i.F..... , . 4 4 ..I. .......
- t. ~
..i), i. .... ..,. t .. . 8...- ..-..
w 5 y
...,.y.g...... , . l. .... .g g 4.y%. . . . . .......
y
. _ 4 . . . . .. . . _. . . ...l .- g g 4 . , q .-..4.4...,. ..., j -... .4. - +...
4 !. 4 ,
- .4. . --
_.4,. .. . . . ... 4.., 6- , . ..A &- k 1 4.
,.. L. ,.&i,. l.4 .. ,wi., ..,-*6 O-' * *I -..&.4 , i &,.. 4.. .. .
4 I .I.. .6..
,. a . .e ..l. .. .. , i . ; . , .. . , .. .. ,4 . 4 - a a
i
~ o. T i* ~
E 8
~ f !l f
4 39
. _ . . _ . .. . ._ _ . _ __ .. q 5
3 5 3
.i I
l' i
m , -. .- . .. .. . - . . .. . . . . _ . . . .. hh9 @f}n{r FD r { ' p"f f(f._,
} j j j Y , SUkaY UNIT ! - CYCIE $
L. Figiste 5.2 i 8-Ill/I-11) NAT10 ww, 11Mg 10 I
- __-- .,--- i-- - .. .---- -} ' --- --. --... ---
{
- - - - - --~_,-
I B 3 g I 10
-E. , -
q, .q . - _ - j ,. q _ .-.-. .._._
.j -FIN t60LE LEAKS p . - p.
ll
. p - _.
q,- u - ju qp-t gp q , -.., , i
~ *-' j_ ' ,..-. a.. ' .s. , i, ._e . . ' .- - _ - __. ..
jy ~1 g(q
.a .
q,' '
. f . J L .
ll .-- - __ 8' y - g gf g B ,p q, 9 . p n .., M W E B
' ' U '
10 d '-
<' LARGE LEAKS AND/OR ; 1'J - - -- --
1kAMP UKANIUM
. . - - -- - - --- --_ m- -- .". ep ,- - .-.- , ~ +-. g -g,_.. -- -- s. .+ -.D' * -. - . .-i -% -> -.>- .-. ,,,,,,,,, - .- >-i - .,.,_, - ~ .' - - .-.m. --. - m ni,,,,,,, , , , ,y, -- ei...-..
l . .s !' l g g l 1 , l . t . , . , P M h ]- n;
*g 'f li l l ! !-. i t ! ! ! ! ; t 4 t { i ! ! i' U l p . ,
l h f l y I M' a !h
.) m[1 4 1 19' !1 5 "i- W t .! !.... !! i .! t I I I ! i i I i l d ! i n :
l; : dl'!i 3! 3 :li! @
..II [ l l '
I ! : ' N l; 1 I ! ! i j i l
!j i l i l K : 1 !i J I i i i , : i i
1 !
<l! ll1 11 L'
i i i il h, ! F ii i :l! ! li !l!lf l i : : l L t I N :l i 1
;i t i n! ! i i[i !1 , ! iini' F it Di! %'i " d -
DEC JAN FES MAR APR MAY JUNE' JULY AUG SEPT OCT NOV DEC JAN FEB HAR .APR MAY J UNE JULY AUC SFFT JULT .' AUG SEPT OCT NOW ' 1979 1980 3973
, e
- e e
Section 6 CONCLUSIONS II The Surry 1 core has completed Cycle 5 operation. Throughout this
~
cycle, all core performance indicators compared favorably with the design pre-dictions and all core related Technical Specifications limits were met with significant margin. No abnormalities a reactivity, power distribution, or i burnup accumulation were detected. In addition, the excellent mechanical integrity of the fuel has not changed significantly throughout Cycle 5 as indicated by the radioiodine analysis. l l I . l il I 'I 41
I Section 7 I REFERENCES
- 1) Mr. T. J. Kunsitis and Mr. J. H. Leberstien, "Surry Unit 1, Cycle 5 Startup Physics Test Report," VEP-FRD-30, September, 1978.
- 2) Surry Power Station Unit 1 and 2 Technical Specifications.
- 3) Letter from Mr. S. A. Varga (NRC) to Mr. J. H. Ferguson (Vepco) dated July 28, 1980 (Docket No. 50-280).
- 4) Letter from Mr. H. R. Denton (NRC) to Mr. W. L. Proffitt (Vepco) dated March 13, 1979 (Docket Nos. 50-280 and 50-281).
- 5) Mr. T. K. Ross, "NEWTOTE Code',' NFO-CCR-6, Vepco, August, 1978.
- 6) Mr. R. D. Klatt, Mr. W. D. Leggett, III, and Mr. L. D. Eisenhart, " FOLLOW Code," WCAP-7482, February, 1970.
- 7) Mr. W. D. Leggett, III and Mr. L. D. Eisenhart, "INCORE Ade," WCAP-7'149, December, 1967.
- 8) Letter from Mr. A. Schwencer (NRC) to Mr. W. L. Proffitt (Vepco), dated May 9, 1979 (Docket Nos. 50-280 and 50-281).
- 9) Letter from Mr. R. W. Reid (NRC) to Mr. W. L. Proffitt (Vepco), dated
; March 22, 1977 (Docket Nos. 50-280 and 50-281).
- 10) Letter from Mr. A. Schwencer (NRC) to Mr. W. L. Proffitt (Vepco), dated July 27, 1979 (Docket Nos. 50-280 and 50-281).
lI : il . i e 42}}