ML19322B874

From kanterella
Jump to navigation Jump to search
Addl Info to 790824 Response to IE Bulletin 79-05C Nuclear Incident at TMI Including Supplemental Small Break Analysis
ML19322B874
Person / Time
Site: Oconee  Duke Energy icon.png
Issue date: 08/24/1979
From:
DUKE POWER CO.
To:
References
IEB-79-05C, IEB-79-5C, NUDOCS 7912060717
Download: ML19322B874 (40)


Text

,

- 4 m yn oe -se w n g t , ,1 7 'j .j ; C !aClear Ir1Ci M1t dt

.. , , C , w m; moo s e"tal s ma ; '

orcar val / sis 1,:. . . wuva.s -

l

.6. ,dr '- -

NOTICE - l THE ATTACHED FILES ARE OF FICI AL RECORDS OF THE DIVISION OF DOCUMENT CONTROL THE Y H AVE BEEN CHARGED ;O YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS F ACILITY BRANCH 016 PLEASE DO NOT SEND DOCUMENTS CH ARGED OUT THROUGH THE M AIL. REMOVAL OF ANY PAGE(S) F ROM DOCUMELT FOR REPRODUCTION MUST BE RE F ERRED TO FILE PE RSONNE L DE ADLINE RETURN DATE f re' - :b

( <, l g Wi_ -

oily 5cmned ikC' d IEGY fr%XEI fg ,

7 9 1 2 0 6 0 '/ / 7 " " S '^" ""^"'"

=

.~

.s . . AC w. _ _ . . ,.

Supple =en::a1 5:211 Ereak Analysis O

e 4

90 1 1 L

o .

f*

SUPPLEI4E?lTAL S.'1ALL BREAK At!ALYSIS P

l j

1

_ _ _ _ _ . . ___ __ _ _ . . __ ,_ __ . ~ _ _

0 .

1. Intreduction 1

. Eabceck & L'ilcox has evaluated the effect of a delayed reacter c: clan: (RC) pu=p .

trip during :he course of a s=all icss-cf-ceelant accident. The results of this

. evalus:ica are con:sined in See: ion II of the report entitled " Analysis Su==ary in Suppor: of an Early RC pt=p Trip."1 (ie::e R.3. Davis to 35%' 177 Owner's l Grcup, " Responses to IE Bulletin 59-05C Action I:ers," dated August 21, 1979.)

! The abeve letter de cnstrated the follcuing:

a. A delayed RC pu=p ::1p at the ti=e that the rea::cr ecolant syste= is at high i

void fractions vill result in unacceptable consequences when Appendix K evaluation techniques are used. Therefore, the RC ;u=ps =us: be ::ipped be-i fore the RC system evolves to high void fractions.

+

b. A prc=pt reactor coolant pu=p trip upon receipt of the icv pressure ESTAS ,

signal provides acceptable ICCA consequences.

The following sections in this report are p cvided to supplement the infor=ation con'tained in reference 1. Specifically discussed in this report are:

i

a. The analyses to determine the time available for the operator to trip the reactor coolant pu=ps such that, under Appendts K' assumptions, the criteria of 10 C7R-50.46 would not be vio' lated.
b. The RC pu=p trip ti=es for a spectrum of breaks for which the peak cladding tempera
ure, evaluated with Appendix K assus;tions, vill exceed 10 CTR 50.46
limits,
c. A realistic analysis of a typical worst, case to de=enstra:e that the conse-quences of a RC pu=p ::1p at any ti=e vill not exceed the 10 CTR 50.46 li=its.
2. Tine Available for RC Pump Trip Under Ateendi:: K Assuretiens -

j A spec::c= of breaks was analy:ed to determine the tt:e available for RC pu=p I

trip under Appendix K assu=ptiens. The breaks analy:ed ransed f c= 0.025 to 0.3 l f:. . As was de= ens::sted in _vaference 1, the syste: evolves :o high void frac-i tiens early in ti=e for the larger si:ed breaks. Values in excess of 90.7 void ,

fraction were predicted as early as 300 secends for :he 0.2 f: break. For :he

s: aller breaks 1: :akes =uch longer (heurs) before the syste evcives to high void fractien. Therefore, the et:e available te ::1p :he RC pu=p is =inimu for the larger breaks. However, as will be shewn later, for the larger s all breaks s
(>0.3 f
), a very rapid depressu:1:a:1cn is achieved upon':he : rip of RC pt=ps at high sys:e= void fracti:n. -!his resui:s in es:1y C7! and 17! ac:ustien. and 4

- +" .

, . - _ . - , y

4 a subsequent rapid core refill. Thus, enly a s=all ccre uncovery :i=e will ensue. The following paragraphs will discuss the available ti=e to trip the RC pu=ps fer different' break si:es. In perfor=ing this evales:ica, only one H?I syste was assuned available ::ther than the tuo HPI syste=s assu=ed in the ref~

t .

erence 1 analyses,

a. 0.3 ft2 3:eak - Figures 1 and 2 show th yste= void fracticn and available

, liquid volu=a in the vessel versus ti=e for RC pu=p trips at 95, 83, and 63%

void frae:icns for a 0.3 ft2 break at the RC pu=p discharge. Ter the pu=p j trip at 95% void the syste= void fraction slowly decreases and then it d: cps faster f 11cving the CFT and L?I actuations. Fo11 cuing the RCP trip, the i pressure drops rapidly and CFT is actuated at 250 secrnds. The core begins to refill at this ti=e and, with LPI actuation at 302 seconds, the core is flooded fas:er and is filled to a liquid level of 9 fee: (equivalen to

~~

approxi=ately 12 feet swelled mixture) at 370 seconds. The total core un-covery ti=e is 170 seconds. Assu=ing an adiabatic heatup of 6.5'F/sec, as explained in reference 1, the consequences of a RC pe=p trip at 95" void

vill no
exceed the 2207 11=1:.

i As seen in Figure 2 for the RC pu=p trip at 63" cr 1cuer veid frac: ions, the available liquid in the core vill keep the cere covered above the 11 feet 1

elevation for about 350 seconds, and above 12 feet elevation at all other j ti=es. Therefore. ::1pping the RC pu=ps at void fractions : 63% will not result in unacceptable consequences as the core vill never uncover.

A RC pu=p trip at 83" void fraction de=enstrates an uncevery ti=e of 350 seconds. *dowever, previous detailed s=all break analysis (reference 2) have shewn that a 10 f t of =1xture heigh: in :he core vill provide sufficient core ecoling to assure that the criteria of 10 CFR 50.46 is sa:isfied. For this case, the 10 feet of =ixture height is provided by appro:i=ately 1600 ~

f:3 liquid in the vessel. At this level in Figure 2, the core uncovery ti=e is 220 seconds. Again, even vi:h the assu=ptica of adiabatic heatup

, over this period, the consequences are acceptable. It should be pointed cu: that if credit is taken for stes: cooling of the upper portion of the .

fuel pin, the resulting PCT vill be significantly 1cuer then tha: eb:ained frc= the adiabatic heatup asst =ption.

, T:c= Figure 2, it can 'ce concluded that a RC pump trip at 120 seconds will result in li::le core uncovery. Tc: RC pu=ps trip a: syste: void fractions

higher than 95" (at 200 seconds), the system vill be at a icwer pressure cad with the CFT and LTI actuation there vill be lictie or no core uncevery.

Although core uncoveries are predicted for trips at S3% and 95" systes void fractions, as shown earlier, the consequences cre acceptable. Thus, a de-

layed RC pu:p trip at anyti=e for this break vill provide acceptable conse-quences even if Appendix K evaluation techniques are used.

For breaks larger than 0.3 ft 2, a delayed RC pu=p trip at any time during the transient is also acceptable as the faster depresstri:ation for these breaks will result in smaller delays between the pu=p trip and CFT and L?!

actuatien. Therefere, core uncovery times vill ta s: aller than that shown for the 0.3 ft2 break.

b. 0.2 ft2 Break - Figures 3 through 5 shew the syste toid fraction and avail- _

able liquid volu=e in the vessel versus ti=e for RC pu=p trips at 98, 73, 60 and 45" void fraction for a 0.2 f t2 break at the RC pu=p discharge. As seen in Figure 5, the RC pu=p trip at 45 and 60% void fraction does not re-sult in core uncovery. The available liquid volume is sufficient to keep the core covered above the 10 ft elevation at all cines. For the trip at 95" void fraction in Figure 4, the core is refilled very*

rapidly with the actuation of CFT and L?I at app.roximately 420 and 450 seconds, respectively.

The core is refilled to an elevation of 9 feet at 460 seconds. The core un-covery ti=e is in the order of 60 seconds, and the consequences are not sig-nificant. The RC pu=p trip at 73" void fraction as seen in Figure 4, re-suite in a 450 seconds core uncovery cine. Although a 450 seconds uncovery ti=e seems to result in u'. acceptable consequences, if cr, edit is taken for steam cooling and using t he sa=e rationale as that given for the RC pu=p trip at S3" system void in section 1.a. it is believed that the consequences vill not be significant. Should the RC pu=ps be tripped at systes voids ,

less than 70%, there will be little or no core uncovery. However, for void fractic=s betueen 73" and 93", there is a potential for a core uncovery depth and time which might be unacceptable. Thus, a ti=e region can be de-fined in which a RC pu p crip, evaluated under Appendix K assumptions, could retult in peak cladding temperatures enceeding the 10 CFR 50.46 cri-teria. This window is narrow and extends frc= 180 sec:nds (737; void) to

  • 00 seconds (9S* void) after ESFAS. A RC pump trip at any other ti=e vill not result in unacceptable consequences.

C .

.. .ne. a5 e 9

c. 0.1 f:2 Break - Figures 6 and 7 shows systen void frac:icas and available liquid volu e for trips at 90, 60, and 40* system void frae:1cas for a 0.1 .

ft2 break at the RC pump discharge. The sa:e discussions as these presen:cd in sections 2.a and 2.b can be applied here. However, due to slcver depres-surizatien of the system for this break, cceplete core ecoling is no: pro-vided until the actuation of LPI's. As seen in Figure 7, the tir.e to trip the RC pu=ps withcut any core uncovery is apprexima:ely 250 seconds. In Eigure 6, with the RC pu=ps operating :he LPI's are actuated at approxica:ely 2350 seconds. Tripping the RC pumps at any time before 2350 seconds vill actuate the LPIs earlier in cine. Therefore, unaccaptable consequences are predicted for a delayed RC pu=p trip in a ti=e raese of 250 seconds to 2350 sec' ends.

For any other ti=e, all the censequences are acceptable. ~~

d. 0.075, 0.05 and 0.025 ft2 3reaks - Figures 3 and 9 show a ec=parison of systes void fracticns for pumps running and pu=ps tripped 3 cenditiens. As seen in Figure 8, with the RC pu=ps tripped coincident with the reactor trip, in the sher:

cer=, the evolved systen void fraction is grea:er than that with the RC pu=ps operative.

The two curves cross at abou: 300 secends.

4

~ Before this time, a RC pu:p trip will no: result in unnedeptable consequences since the cystas is at a louer void fractica than RC pumps trip case. There-fore, the tice available for RC pu=ps trip with acceptable results is esti-nated at 300' seconds.

As the sys:em depressurizes and LPI's are actuated, the core will'be fleeded, and a RC pu=p trip after this ti=e vill have ac-ceptable censequences. From the analyses perforned, the LPI actuation time is esti=ated at approx 1:stely 3000 secends. Therefore, the regien between 300 and 3000 seconds defit.es the time region in which a RC pu=p trip could result in unacceptable consequences.

Fcr a 0.05 ft2 break, the sa:e argument can be cade using Figure 9.

As seen frem this figure, the time available to trip the RC pu=ps is approxi=a:ely 450 seconds. ,

The L?! actus:1ca time f:r th1s break size is esti=a:ed a: l approxi=a:ely 4350 seconds.

Therefere, the unacceptable times for RC pu=p trip is defined between 450 and 4350 secends. '

As discussed in reference 1, :he sys:e= evolves : high void frac:icns very  !

slowly for 0.005 f:2 or s= aller breaks. The sys:en depressuri:a: ion is very-slow and i:

takes en the crder of hours before the LPI's are ac:ua:ed. A RC pump trip a: 2400 seconds for the 0.025 ft break results in a sys:em

void frac:fon belcw 500 and the cere re=ains ee=ple:ely covered. A study of the 0.025 f 2 break with 2 EPI's available shows with :he RC pu=ps op-era:ive :he sys:e= void fractica never exceeds 61%. The CFT is actuated a: apprexi=ately 4800 seccads and the system void 4:ar:s :: dec case and

, available liquid volu=e in the RV star:s to increase. Thus, the core will re=ain completely covered for any RC pu=p trip ti=e and, :hus, will result in acceptable consequences. With cne E?I available, a slouer depressuri:a-tien is expec:ed but the systa= evolutica to high void frac:fon will still be very slow. Thus, the conclusion that a RC pu=p trip a: any ti=a yields accep:able consequences for the 0.025 ft2 break holds whether one or two HPI's are assu=ed available.

The L?I actuation ti=e for the 0.025 ft2 break can be extrapolated using i

the available data of the other breaks. Figure 10 shows the extrapolated -I L?I actua: ion ti=e at approx 1:ately 8000 seconds. Thus, a conservative unacceptable ti=e region for pu=p trip can be defined between 2500 and 8000 seccnds fer the 0.025 ft2 break under Appendix K assu=ptiens.

3. Criticc1 Ti=e '.* indow for RC ?u=es Tris As discussed in section 2, there is a ti=e region for.each break size in which a

the censequences of the RC pu=p trip .could exceed the 10 CFR 50.46 LOCA li=it.

These critical ti=e windows were defined in section 2. Figure 11 shows a plot of the break si:e versus trip ti=e RC pu=p which results in unacceptable cense-quenc es'. The regien indica:ed by dashed lines represent a beundary in which unacceptable censequences =ay occur if the RC pu=ps are tripped. However, this region is defined using Appendix K assu=ptiens. It should be reccgnized tha:

J t this region, even under Appendix K assunptions, is s= aller than wha: is shcun in Figure 11 as the 0.2 and 0.025 ft2 breaks may not even have an unacceptable regien. The ti=e available to trip the RC pu=ps can be obtained from the icwer ~

bound of this region and is on the order of two to three =inutes after ESFAS.

4. " Realistic" Evaluation of I= pact cf Delayed RC

" - ~-d*

'or a Stall LCCA

a. In:redue:icn As discussed in the previcus sections, there exists a ce=bination of break sizes end RC pu=p trip ti=es which will result in peak cladding ta=peratures

, in excess cf 22007 if the conservative require =ents of Appendix K are u:111:cd in the analysis. The analysis' discussed in this section was perfer=ed util-izing

" realistic assu=ptiens and de= ens::a:as tha: a RC pu=p trip at any ti=e will net result in peak cladding te=peratures in excass of the 10 C72 50.46 cri:cria. '

. :G.

4

b. Me:hed of Anal rsis There are three overridin; censervatis=s in an Appendix K s=all break evalua-tien which =c::i=1:es cladding tc=peratures. These are:

(1) Cecay heat =ust be based en 1.2 ti=es the 1971 AMS decay heat curve fer in-finite operatien.

(2) Only one HPI pu=p and one LpI pe=p are assu=ed operable (single failure cri-terien).

(3) The axial peaking distribution is skewed ccwards the core outlet. The local heating ra:e for this power shape is assu=ed to be a; the LOCA li=it value.

4 In perfor=ing a realistic evaluatien of the eff ec: of a delayed RC pu=p trip following a s=all LOCA, the conservative assu=ptiens described above were =odi-fied. The evalua:ica described in this section utili:cd a decay heat based on 1.0 ti=es the 1971 ANS standard and also assu=ed that both E?I and LPI systa=s were available. The axial peaking distribution was chosen to be represen:ative of nor=al steady'-state power operation.

Figures 12 and 13 shew the axial peaking distributiens utilized in this evalua-tion. These axial distributicas were obtained f:c= a review of available core follow data and the results of =anuvering analyses which have been performed for the operating plants. A radial peaking factor of 1.651, which is the =axi-cu= calculated radial (without uncertainty) pin peak during nor=al operation, was utilized with these axial shapes. As such, the co=bination of radial and worst axial peaking are expected to p cvide the =axi=uc expected ku/ft values for the top half of the core for at least 90% of the core life. Since the worst case effect of a delayed RC pu=p trip is to result in total core uncovery with a subsequent botto= refleeding, maxi =u= pin peaking ecuards the upper half -

of the core will produce the highest peak cladding te=peratures. Thus, this evaluatica is expected to bound all axici peaks encountered during steady-s:ste power vpers:ica for at least 90% of cere life.

The actual casa evaluated in this section is a 0.05 ft2 break in :he pu=p dis- -

charge piping with the RC pu=p ::1p a: the ti=e the RC systen average void frac:fon reaches 900. ,As discussed in reference 1, RC pu=p trips a: 90.1 systa=

v id fraction are expec:cd c result in approxi=ately the highest peak cladding

c=pera:ures. The CRAFT 2 results fo: this case and :he evaluatica techniques utili:cd are discussed in section II.E.5 of reference 1. A realistic peak

_ _- - - _ _ . - . . - _ . - . _ . -. .. ~ - ..... . .- - - . . ._- ._ . -- _- -

1 i

  • 3 .

4 i

, cladding c=pera:ure evalus:ien of this case, which is discussed below, is c::-

- pected f.to yield roughly the highest peak cladding tc=perature fc any b:cak size and EC pump trip' ti=e. As shown in reference 1, uaxi=u= core uncovery ti=es of 1

app:cxinacoly 6C0 seconds cecur over the break sine range of 0.05 f:2 through

} . 0.1 ft2 using 1.2 ti=es the ANS curve. 3:eak sizes s= aller than 0.05 f:2 anJ

} 1arger than 0.1 ft2 will yield s= aller core uncovery ti=es as de=enstrated in i

reference 1 and the preceeding see:icns. Use of 1.0 times the A:*S decay hea:

curve uculd result in a si=11ar redue:1cn la .w.c uncovery ti=e, approx 1=ately i

200 seconds, for breaks in the 0.05 thrcugh 0.1 f t2 range. Thus, the core re-

fill rate, uncevery time, and peak cladding te=peratures for the 0.05 f
2 egse is typical of the wors: case values for the break spec:ru=.

)

c. Results of Analysis Figure 4 shows the liquid volu=e in the reactor vessel for the 0.03 ft2 break

, with a RC pu=p ::1p at the ti=e the syste= average void fraction reaches cog; The core initially uncovers and recevers approxi=ately 375 seconds later. Using the previously d,iscussed realistic assu=ptions the peak cladding te=perature for j

i this case is belowl 900F. Therefore, the criteria of 10 CFR 50.46 is =et.

The temperature respcase given above was developed in a cons *ervative =anner by

]

cc= paring adiabatic heat up rates to =axi=u= possible steady-sta:e cladding te=peratures. First, a temperature plot versus time is =ade up for each loca- ,

tica on the hettes,t fuel asse=bly assuming that the asse=bly heats up adiabati-cally. Second, a series of 70AM' runs are =ade to produce the =axi=== steady-state pin te=peratures at each location as a functica of core liquid volu=e.

FOAM calculates the =1xture level in the ccre and the stea=ing rate fro = the portion of the core which is covered. Both the =ixture height and stea=ing

rate calculatiens are based en average core power. Fluid ce=peratures in the uncovered portion of
he fuel red are obtained by using the calculated average

! core stca=ing rate and by assuming all energy generated in the uncovered portica of the ho: rod is transferred to the fluid. The surface hea: transfer coeffi-cient is calculated, based on the Dit:us-3celter correlation3 , fro = the fluid te=perature and stes=ing ra:e and the steady-state clad temperature is obtainec. '

The FOAM da:a are then ec=bined with the core liquid inventery' history (derived e4 4

frc= Ti;ura l4) to p:0 duce a =axi=u possible cladding ta=perature as a fune:1cn of ti=e. This graph =igh: he ter=ed =axi=u s:endy-sta:c cladding te=perature as a function of ti=e and decreases in value with eine because the core liquid

  • - -e-se e m9eee - o e, es m r,- - -pA, ,--m- .,y -- _- ,-q.-,, w - , - - , , , ,,y --

w mevm

s ,

inventory is in:: casing. 3y cross plo::ing the adia*:stic hea: up curve vi:h the =a: tine = steady-state curve a c:nserva:ive peak cladding te=pers:ure predic-tion is obtained.

I I

! 5. Cenelustees Fro = this analysis, and the results in reference 1, the following conclusions

have been drawn
a. Using Appendix K evaluatica technicues, :here exists a ce=binatica of break size and RC pu=p trip ti=es which result in a viola:1cn of 10 CFR 50.46 li=its.
b. Pro:pt tripping of the RC pe=ps upon receipt of a low pressure ESEAS signal

! vill resul: in cladding ta=peratures which =ee: the criteria of 10 CFR 50.4v.

The =ini=u= ti=e available for the operator to perfor= this functi n is 2 to 3 =inutes.

c. Under realistic assu=ptiens, a delayed RC pu=p trip fellowing a s=all break will resul: in cladding ta=peratures in ce=pliance vi:5 10 CFR 50 46 . .

4 h

  1. e I

u 4

o .

i 1

REFERENCES s

a I " Analysis Su=ary in Suppor: of an Early ?,C Pu p Trip," See:1cn II of le::ar R.3. Davis to 31'J 177 0.mer's Group, Isspenses to II Bulletin 7?-05C Acticn I:e:s, dated August 21, 1979. t 2

Letter J.H. Taylor (3&W) to P.cber: L. Baer, dated April 25, 1978.

3 l Letter J.H. Taylor to S.A. Varga, da:ed July 13, 197S. .

4 3.M. Dunn, C.D. Morgan, and L.R. Cartin, Multinede Analysis of Core Flooding

]

Line 3
eak for 25W's 2563 rit In:ernals Ven: Valve ?l2nts, 3AW-10064, 3abeeck l 6 Wilecx, April 197S.

5

R.H. Stoudt and K.C. Heck, THETA 1 Computer Coda for h'uclear Reactor Core Ther=al Analysis - ?4W Revisions to IN-1445, (Idcho Nuclear, C.J. Hocevar ,

and T.W. Uinainger), BAU-10C94, Rev. 1, 3abeeck & Wilecx, April 1975.

1 l

J h

+

I 1

E s em 4

5 9

I 4

e s

.S4 genman 9Mt^-- heaee,m em ,. ,. ,, a ,em o uem an a e.- +4,pm se ., .

1 Figure 1 : 0.30 FT2 EREAK 5 P.D., SYSTEM VOID FRACTION VS TIME 100 -


~~s I

/ \'

/./ %f UG'~e e-o

?

g 60 -.

/

7- .rN E. 2  %.?1L~~%.  % g a / -

a l a

e c EO - I

[/+/+ - - ." W S RUNNING w ,

j f -. - PLM:S CFF I 95% VOID e I 3 I k'

8 I 40 j -.-o- PLM2S OFF G 83!! VOID I

i 1 -x- Pl34PS CFF s 63!! VOIO 20 -

0 , i i , , , i i , , -

0 200 4CO 600 800 1000 Tue, see I ,

l

Figure 2 : 0.30 FTo EREAK P.D.,AVAILAELE LICUID VOLUME IN RV VS TIME, 1 'PI AVAILAELE C

w o

3000 -

M (n

a

~

/

a s o

> . ;; c. -

n }n pc y

0;:~*1 /,.-;: .

- - r.

e 11 / a..

m x  % /l 2 n'\c.

r*.

I Jf 2 .= j

\ /:(

s 4 4 AT  %

(- . wg'ec4 o 3.

> - \., ..

  • \

c 2000 Nyit-l#

- - - - - ~ - -

0--["4 g  :. LIQ LEVEL AT TCP CF CORE e

r4 i O I

I

- l - - -

$c '/\i- LIQ. LEVEL AT 9CCRE ELEVATICN G s3O m

ed c

> 0 fl -

O

/OI o I 9I E3

> - I . - -- - PLF?S OFF : 95% VOIO 10C0 -

x l' g*

'.e4 .\*I l -o PUMPS OFF 3 83% VOID.

  • I ^

S; -::-x PUMPS OFF : 63% VOID e l

~ l

% I 3 I c.

l .

I v

0 , , , , ,

{

0 400 800 1200 1600 2000 Time, sec

F1gure 3 : 0.20 FT2 EREAK I P.D., SYSTEM VOID FRACTION VS TIME 100 -

i p,-o-o,,~*~c ,

a

  • s I s I '. g I ' \

SO -

a l

\

g k' N ..

I 4 " ~~ , w. t l /. .

80 -

I I

.ys Y .s.U~% ~2 ~~m.~ %., s u Il p /.(./ ' * = . . . . ..:,.:r..*s -m =.:W

. s l' '. N

//*

.i-o il /4

.\.s

~

i /

k

_ 70 - I /- \

g i /.. \

0>, 14j' .

\

- ; ff - \

\

l 1.5 1 qP \

5 60 - A. / ,

_ u k

th \.

0 0 l#

a. If c

si

'4l 50 -fp' ---_c PU'iPS ON r4 .......... PUMPS OFF G 98% VOID tl G

-x x- -xx- PUM?S OFF J 73% VOID 40 -

PUMPS OFF s 60% VOID

-x x- PUMPS OFF 45% VOIO 30 -

20 - - - . -

0 400 800 1200 1600 2000 T2.me, sec

  • -hem _. m m m. pg __

e

Figure 4 : 0.20 FT2 EREAK 3 P.O.,AVAILAELE LIO. VOL.

IN RV VS TIME 1 Ho! AVAILAELE 3000 -

/ :t E E /

9 9 / x/

x m

~

x o

/

/

/

a; as

/ f -

S E ^

c: c: / b,,. A

<%/~~j/

jv m r r- f- -

' 4 / x

@ 5 o

' ' l J B i /

5 2000 '! -

I o h LIO. LEVEL AT TCP OF CCRE

> :i /

5 \3 l n a - '

E

" \x l*

/

/ LIQ. LEVEL AT 9' CCRE ELEVATICN o t l M

~

$- \(I[/ .

- - - FUM?S OFF G 98% VOID 3 I

< g -X-K-PUMPS OFF : 73% VOID 1

1000 -

l 1

~

i l

1 I

I I ,

I l

1 0 J , , , .

O 4CO 800' 1200 1500 2000 Time, sse i

1

Figure .5 : 0.20 FT2 EREAK : ?.0. AVAILAELE LIO. VCL.

IN RV VS TIME 1 F?I AVAILAELE 3200 -

t 3000 -

I

{4\

% 2800 -  ! I - -g- -x- -x Pihi?S CFF

u. I 45% VOIO h m PLMPS CFF e -

- ,1 g '3 60% VOID

> 2500 -

c I c .

g ,1

_a Il o

3a

\ f 2400 -

1 ,

\

2 \ r \

s il Y,/ "a 2200 - I

\ /

\ /

4 J *

\ /'

-. - - w' .- -- - :;t - - - - - - - - - - - - - - - .

2000 -

/

X s /

LIQ. LEVEL s TCP OF CORE -

%s e.,p/

1200 -

t LIQ. LEVEL AT 9' CCRE ELEVATICN ISCO ' ' ' ' '

O 400 ECO 1200 1500 2.0C0 Twe, see

- . . . . . . . . . . - - = _ . _ . . ,

Figure s : 0.1 FT2 SEEAK J P.D., AVAILAELE LICUID VCLL*E

IN F.V VS TIME, 1 FPI AVAILASLE

's 3000 . \

\

\

\ /

o H

o H

\ f o o' o o + g *

> > /

\ o a N o o e

+

. \ o v g

. e i s .f -

c. c. 4 \* \ l m

r u.

H c:

r w

c:

rt

\V.

g a

/

s J.  %  %' 1 \'.. ~

s I o

= 2000 -- 5 5 'N , N o

e a a O

s .s ,

>  %~__g#

a LIQ. LEVEL s 'e\'g

.i.

3 _ _ .

G 9' ELEVATION l J +N9 o l

c -

,H C

b** M -= * # " o2: l "

o o M i e

a .

o a g

> g o

I -

o 1000 -

l O

i - o-o- FU.YPS OFF -

3 [ 2 90% VOIO

-X-X- FUMPS CFF S. o G 60% VOIC

  • , ,/ N e 'sO o / *' ---

PUMPS CFF M

c:

r A

's, o

/ 3 40% VOIO 4 s Cw o<*f c.

O - s s . <

0 400 800 1200 1600 2000 T1.Te, sec 4 O'-

Figure 7 : 0.1 FT2 SREAx ; P.D., SYSTEM

~

VOID FRACTICN VS TIME LPI 100 l

.m =xc. - -- - -

./

f ~_=]- n .

/

n /

k [\\

80 -

/ p. y y c' '

I c"***,,afgo.=o*e o L'#:l~.9  %

/*/* . *,,a ~

j j -

N O / e f

l <*#o#,, \

0 \

U 60 - N.// \

d [ /

o

> Io /o - - pub'?S RUNNING e U o

w o -:: ;:-PLMPS TRIP G 90% VOIO

- m 1 x 40 - o W

/ - -Pt3/P TRIP s 60% VOID I.

/ -o-o PLNP TRIP O 40% VOIO 20 -

0 . . i * '

0 500 1000 1500 2000 2500 Twe, see P

e l

( .__. .. .. . . ... ---

l 1

l

)

Figure 8 : SYSTEM V010 FRACTION VERSUS TIME g .3 g 8-40 -

j ss

/

?:. 9 /

0 /

35 -

%g @ ' 3/

d 9  %/ '

30 - tq)@ % gf 4 *s*/

N

/

4 n 25 -

p O))'

//

3 8/ *

> 20 -

D/

/

/ A = ESFAS ON p

15 10 - < >

5 - ~

0 ' '

O 50 100 150 200 250 300 Time, se: .

s Figure 9 : SYSTE'! '.'010 FRACT10" VE?:'.'S Ti't!

PUMPS RUN'ilNG AND FB:FS inlFFED :E' .

40 -

N A'  %)

  • g-4@ A g- T 3 a. -

t u v

fv 4

30 -

O' %Q n N% @ ..

~

c 82 E

25 M n#

- ~$f O q 5

w .

~

.E 20 -

O 15 -

A = ESFAS Oil 10 5

0 ' -

0 100 200 300 400 500 Tice. see

O LJ

>=

<d C dB -8O COV C:

E

-ew Y0U W L CD

-e--

m .

9 Z

H =

l==

Z ,

O '

O H

& O

< i C) e D

- 0 .

~

h"$

o 4

S w . t td N -

H w

v td 8 O

- O O

H C)

W 3

C1 e4

. w - Q O

N

~ 8 O

M

' t I e

' N

' O

. M. - o o o a 6 4y 'GOT3 MES g

(

a P

I R

T R

O T

C A

E R

S I

E M 0 I

T =

S T V

E E M -E I Z I I . 0 I 0 S T T . 0 0

K  :

1 A E E T i

R O B N P,

I R

_ i T

S

_ i P

L I

L e P _

C R - .

R i O

F H

G I

G 0 E .

0 R 0 1

L' .

A .

C .

I T L .

I A R .

C N C I O

T I
I G .

1 R E 1 C R e

r u x~ '

N i g

i s k e F N >

N- i

\_. \

\-

b\

0

- - - 0 1

3 2 1 0 0 0 0 e1

- .ng x N

e I .

I

)

i

, Figure 12: ," REALISTIC" CORE AXIAL PEAKING OISTRIBUTION-CASE 1 1.6 .

x 1.4 .

m W

G.

,-i 1.2 -

m 1

n 1.0 -

, j JI m

0.8 -

a

2 0.6 -

0.4 -

+

0.2 O i e i i e i i I i 0 20 40 60 00 100 120 140 1G0 Core lit. , in f

l

i I

Figure 13 I

" REALISTIC" CORE AXIAL PEAKING DISTRIBUTION-CASE 2 i

1.6 -

i x

eu 1.4 -

0 G.

g 1.2 -

.c y 1.0 -

t9 d 0.8 -

11 2  !

% 0.G - t 0.4 -

0.2 '

>{ e a e e g l '

O 20 40 60 80 100 120 140 160 Core Elevation (inches)

.

  • I

. I

~

Figure 14 : AVAILABLE LICUIO VCLUME VS TI.VE FCR 0.05 FT2 EREAK ',VITH 1.0 ANS CECAY CURVE.

3000 -

m W

L- 2500 -

i ~

~

O

> c H

j 2000 -

9 s

} LIO.LEVELICOREk

,[

3C 9' ELEVATICN lb 3- 150') -

ts m C.

O C

1000 -

1 500 ' ' ' ' '

1600 1800 2000 2200 24C0 2500

. T.ime, sec

i ATTAC1 DENT 2 I= pact Assessment of a RC Fu=p Trip ,

on Non-LOCA Events k

e 0

vvL.

-- y.,.-.

...sn e. : .e

.. . .. . C : , ,, ,..,.,,,...,,.......C,..._e.

m . u . .: s: .. ..s.... . _ . . . .

A. Intredue:fon Se=e Chap:er 15 even: are ch::a :cri:ed by a pri=ar- syc:c=

respense 01:110 c the ne felle ing I LOCA. The Se:ti:: 15.1 events tha: resul: in an increase in hest re=0 val by :he c:end:ry systc= cause a pri=sry sys:c= cecidown and depressurizati:n, =u:h like : s=all bresh LCCA. Thereforcy an assers.en: cf the conse-quences of cn imposed p.C pu=p : rip, upon ini:ia:ien of the icv RC pressure ISTAS, was =ade for these even:s.

3. General Assessment of pu.e Tri in Nen-LOC.; Events Several concerns have *ceen raised with re;ard :: the effe:: : hat

- an early pu=p trip weuld have en non-LCCA events that enhibi: 10CA chara:: eristics. Plan: recevery would be =cre difficui:, dependence, on natural circula:1cn : de uhile achieving cold shu:dcun we'uld be highlighted, =anual fill cf the stes= generators would be required, and so en. However, all cf these drawbachs can be a :c== dated since none of the: uill on 1:s cwn lead to unacceptable c:nccquences. Also, restcr: ef the pu=ps is rece== ended for plan: c:::rel cnd cecidevn

'once centrolled epera:c: action is assu=ed. Ou: of this search, three =sjer cen:crns h:ve surf aced which have appeared to be sub-stantial enough as to require analysis:

1. A pu=p trip could reduce :he ti=e to syste: fill /repressuri:a-icn
  • or saf ety valve opening fc11oving an eve.recoling transien . If the ti=e available to :he operater for cen::ciling EFI flew and the nargin of subceoling were substantially reduced by the pe=p trip to where ti=ely and effe::ive opera:c: actie= ceuld be questionable, the pu=p trip would bec =e less desirable. -
2. In the event of a large s:es= line bresh (=a::i=== cvercooling), the blevdeu =ny indu:e a s:es= bubble in th.e RCS which eculd i= pair naturcl circula:icn, with severe consequen:es en the cere, es-

~

pecf=11y if any degree of return bi prver is enperienced.

3. A = ore gencr:1 ::::crn cxis:s in a L rge 3 s:cra line break a: ICL condi:iens and whetherocr n : b 'ourn to pcwcr is enperien:cd following the RC pu=p : rip.- If a fcturn := criti :1 is enperien:cd, natural circula:1cn f1:E =:y not'be di'.ient :o rc=ove he:: and to sve!d core de=sse.

nun. . . _ _

s ef :he Ov.crhee:ing even:s' ucre not con idered in :he i=pe::

F.C pu=p trip sin:e they do n:: initic:a :he ice RC pres:ur: !!FAS, and theref erc, there.veuld be no ceinciden: pe=p : rip. In ad i-tion, :hese even:s :ypically do ::: resul: 'n. n c=pty p cssuri c:

' or the feresti:n of a s:ca= bubbic in :he pri=:ry sys:ce. Res::ivi:y transients were also no: censidered fer the sa:2 ressens. In addi-tien, fer overpresse:1:stien, previous analyses have sh:un :ha: for the vers c sc conditi:ns, an RC pu=p ::1p will =i:1 gate :he p;cssure rise. This results frc= :he grerter than 100 psi redue:ica in p cssure at the RC pe=p ext: which ec urs after : ip.

C. Analvcis of Cercerns and Results

1. Svrt c= Recreesericatien In crder to resolve this cen:c n, an analysis was perf er:cd for a 177 FA plant using a MINIT. 3A? =edel based en :ne case set up for TMI42, Figure 2.1 shcus :he neding/ flow pa:h sche =e used and Tabl,el.1 prevides s descrip:fon of the nedes" and flev paths. This case astu=ed tha:, as the result of a

==all ::ea= line break (0.6 f:. spli:) or of s==e ec=hira:1:r cf secondary side valve fcilure, se:endary side hen: d emand a

was increased frc= 100% to 135% a: ti:e zero. This in:rcase .

in secondcry side heat de=and is the c:allest which resul:s

- in a (high flun) rea :cr trip and is very si=ilcr c the vers: ::derate f:cquency overcooling even:, a failure of :he stes= pressure regulator. In :he a:alysis,1: vas ass ==ed that fc11 cuing EPI.actustica en 1:e RC pressure ESFA3, =ain

- a feedue:e is ::= ped denn, MSIV's shut, and the auxilicry feedva:cr initiated with a 40-second delay. This ac:icn was taken to s:cp the cooldoen and the depressuri:sticn of the systc= as seen as pessibic af ter EPI actuation, in c der :o ,

=in1=ize :he :ine of refill and rep cssuri:stic of the syste=. Ecth EFI pu=ps were assu cd :o function.

The calculatien was perfer=ed tvice, ence ass =ning r Of the four RC pu=ps running (ene loop), and ence assu=in; RC pu=p trip right af:cr EP1 initic:icn. The analysis shcus that :he sys:c= behevcs very si=il :1y vi:h and without pu=ps. In both cases, the pressuri:cr ref *" e ' about 14 to 16 =inu:c:

frc= initic: ion of the transients, vi:h the natur:1 circul:-

9-

      • ?
  • e  :.**: . . . .

r

  1. tien casa refillin; abou: cne =inute b:f ere the ces: vith two of f our pu=ps running (see 71;cres 2.2.3.3). In b::h ecces, ef 20 7 :o 120*y 5

the sys:c= is highly subcocled, f e: . : =ini=u:

and increasi=0 m: the end'ef 14 =inutes (:tf er :s Figure 3.1) .

It is concluded tha: : ?.0 pg=p ::1p folleving E?! ::::a:ic:

vill no: ine: case the p;chabill:y of causin; a *00A :hr: ugh the pressuri:cr code s f e:ies, and tha: the cpera::: vill have the ss=e lead :L=c, ac well as a large =ar;in ci sui:ccling, to centrol HPI pric to s:f ety valve opening. ,.lthec;h no case t

with all RC pu=ps was :de, it can be i=f erred f::= the one loop case (with pu=ps runnin;) tha: the sube:cled =argin vill be sligh:1y lar;e fc: the all pu=p's runnin; esse. The pressuri:c: vill take lon;c to fill bu: sh:uld do s by 16

=inutes inte :he :::ncient. Figurc atshows :he coolan: -.

te=peratures (h: Ic;, cold leg,~and core) as a fune: ion of' ti=c fc: the ---

no RC pu=ps case. ,

2. Effee: ef Ster.- Eubb'le en Natu-a: Circulatien C:eli-For this concern, an an: lysis was perfer=ed fc the sa=e

- generic 177 FA plant as outlined in* ?ar: 1, bu: assu:ing tha:

as a result of an un=i:igated large S*_3 (;;.2 f:.2 ;IR), :he excessive ecoldern veuld produce void for=atica in the pri=ary systc=. The intent of :he analysis was to aise shev the extent of the void for= tion and where 1: cccu :ed. As . in the case analyzed in ?::: 1 the break was sy==e:ric to be:h generators such that both veuld b1qu deve equally, =axi= icing the cooldcun (in this case there was a 6.1 f t. break en each loop). There was no MSIV closure during the ::ansien: on either s:cc: genera::: to =axi=12e c:oldev=. Als=., the tur-bine bypass sy::c vas assu=ed to opera:e, upon rup:ure, ,

until isole:ica en ESTAS. ESFAS ves ini:is:ed en lev RC pressure and aise actu::ed EFI (b=-h pu=ps), ::1pped RC-pu=ps (when pplicabic) and 1sels cd the !iFL'IV's. he AI*?

was ini:1sted to both genera:::s en :he lov SO prcssure signal, ui:h =in1=== deley ti=c (bo:h pu=ps opersting) .

f This analysis v:s pc f or=cd twice, enec ssu=ing a*1 KC i pe=ps running, ence with all pu=ps being :ripted on :he E?!

actua:ica (nf:c ESFAS), vi:h a ch::: (s3 cc:end) deley. In both ' esses,' voids we:c f er=ed in .:he he: 1ccc, but the durs-  !

~

1

.;w :_ . . ~ . . . . ~ . . . . . . +

s tics end cine Ucra s::11c: fer :he c:sc with n: 7.0 purp

' trip (ref c: to Figure 3.7).A1:heugh :he T.0 pu:p ep::::ing case had a hi;hc cooldern ra:c, there was less v:1d f erma-tion, resulting f:c: the addi:icnal sys:c :ining. The coolant :c=per::ures in tha p:escurize: leap h:: nd ::ld legs, and :he core, are shewn' f er both cases in Figures 3.5, 3.6. The core cutle: p cssure cnd fG and pressuri:::

levcis versus ci=e ere given for *oe:h cases in Figures 3.S, 3.9. This analysis shows tha: :he sys:e b eh:ves si=ilarly with and wi:heu: pumps, al:heugh =ain:ainia; RC pu=p flew dces cee: to help =1:igate veid fer:a:1:n. The pu=p flow case shews a sher: : ti=e te the star: ef p:cs-surizer :cfill than the nc: ural circula:Len case (Fi;ure 3. 9),

althcugh the :i=e diff erence does not see: :: be very large. _

~

l Since the volume of the hot leg locp a'beve the icwes: poin: in the candy cano portion is abou: 63 cubic feet, these stec= fpr:ati ons have the potential for blocking natural circula: ion in the hot les loops. As a result of these findings and since IRA? had net been p cgra==ed to closely foll:w this specific condi:1cn, an additional n

TRA? case was run. I: is bas?d on :he unmitigated 12.2 f: stea=

line breah with RC pu=p trip, since this ecse represented the bcund-ing even: for stea= for:a:icn. This case included a core detailed noding sche =e and censervative bubble rise velecities (5.0 f c/sec) -

to the upper regions of the hot legs such that the eff ect of sect:

for=atien on natural circulatica in the loops could be cbserved.

The noding and flo$ path sche =e used in this =edel is shown in Figure 3.10. Table 3.2 provides a description of these nodes and flow paths. Figure 3.11 details the hot leg - candy cane - _

upper stes: generacer shroud nodi =g and flev pa:h model superimposed over a scaled figure of those regicns. ~ The flev path pcsitiens and sizes were carefully chesen to allcw f er countercurrent s:eam and-liquid flew at the top cf the candy cane. This =edel is censisten:

with that used for the s=all break LOCA analyses described in Sec-tion 6.2.4.2 of Ref. 5.

The results of this analysis shewed stea forma:1cn cely in the pressurize: loop (refer to Figure 3.12). These ster: volu:es are 4

censerv.:ive since they include ~all of the stes= tha: was calculated as' being ent:sined as bubbles in the liquid. The addi:icnal stea:

volu=cs calcul ted for this leep, compared uith these shcun in Figure 3.7, are due to the additional boiling and s:ca= separation

-lS-er- ..

._~

that occurs in the candy cane as the li uid flow rates are reduced 17 stea: for=stien and aided by =c:al hes:ing. The lack ci stea: fer:1-tion in the non-pressuri:c: loop 'E' is attributed :o a ecrre: tion in the =etal hea transf er and =e::1 heat capa:1:ies calcui :ed fer

. the het legs. The previous analysis errenecusly included half of the s:ea generator tubes, based en :he calculatiens fre= :he ECCS

. CRAFT =cdel. Since the TRA? code already accoun:s fer the tube =e:a1 in its steam generator =edel, this represented an unne:cssary conser-vatis and it was dele:ed frc= the =edel fer this case.

This case showed that the natural circula:ica flew vas tc=poraril:

reduced. This flow reduced in the pressuri:e loep tc 45 to 100 lb/see frc= 250 to 360 secends (refer :e Figure 3.13), wi:h

~~

flow steadily increasing after this ti=a period. The flew in the non-pressurizer loop re=ained rela:ively unchanged at about 100)1b/se:

(refer to Figure 3.14). Core flew was = sin:ained frc= 1000 :o 2000 lb/sce and no void for=stien occurred ( cf er to Figures 3.15 and 3.16). The steam bubble was collapsed, natural circula:icn fully res:ored, and a greater than 50*F sub:ccled =argin achieved in the pressuri:er locp (refer to Figure 3.16). Icths:ea=geners:crsand .

the pressurizer established level and the syste pressure was turned around fre :he EFI flew by 14 =inutes into the transient (refer I to Figures 3.17 and 3.18).

3. Effect of Return to Pcwer 4

There was no return to power exhibited by any of the 20L cases analyzed above. Previcus analysis experience (ref. Midland FSAR,

, See: ion ISD) has shcwn that a RC pt=p trip will =itigate the ,

censequences of. an EOL return to power'cendition by reducing the cooldown of the pri=ary syste=. The reduced ccoldewn substan-tially increases the suberitical =argin xhich, in turn, reduces or eliminates return to power.

D. Conclusiens and Sun =arv A general assess =ent ef-Chap:er 15 non-lCCA events identified three areas that warranted further inves: iga:ica for i= pac: of a FC pt:p trip

on ESFAS 10w RC pressure signal. -
1. It was found -that a pt=p : rip ~ does net significan:1y sher:en :he ti:s to fillin; cf the prescuri:ct and'apprcxi=stely the sa:e ti:e in:erval for opera:or action exists.

.P o  ;.. .

s

- )

2. For the naximum everecoling case analy:ed, the EC pu=p tri; incr:ssed l the encunt cf void fernation in the her les ' candy c:na' of the pressuricer icep; however, natural circula:ic: vas no: cenple:c';-

blocked. The s:can bubble was ecllapsed. cnd full na: ural circu'c:icn was restcred. Cere cccling was nain::ined thrcughce: the transient and no void forna: ion occurred in the cere.

. 3. The suberitical re: urn-to-power conditic is alletiated by :he KC punp trip case due to the reduced overeccling effae:.

Based upcn the abcVe assesr:ent and analysis, it is cencluded thsc the censequences of Chaptar 15 non-LOCA evenes are no: increased due to the additien of a RC penp : rip en ESTAS ler EC pressura signal, for all 177 FA lowered loop plants. Although there ucre no s;ecific analyses perfc ced fer TECO, the conclusions draun fren the analyses for the lowered

~~

loop plan:s are applicable.

e P

9 o

i-1

-19a--

== =:  :=.a .. u.;

v. .....~. ...s.. m.

m c.e, s.. t.. r.; . ._%.. . . r. . ~4.~. .. ..

. . :. 3.. ,. . 7 ,., pgggg;p7 3g 1

Reae:c: Ves:ci, L:. e Flent:

2 Reae:c Yessel, C:re 3

Re c:c: Vessel, Upper Flent:

4,10 Hot Leg Piping cnd U;;e: S. G. Sb: cud

. 5-7,11-13  ?:i=ary, S:e:= G:nc ::cr 2che E2gi:n 6,14 Cold Leg Piping 9

Reactor Vessel D: -. ::e 15 Pressurizer 16,24 Stes: Genera::: Co nc: e 17,25 S:ea= cencra:c: Lewc: Flenu:

13-20,26-2S Secondary, S:ea: Gene: :e: Tube Regien 21,29 S:ca: Risa:s 22,30 Main S:ca: Piping 23 Turbine 31 Con:ain=en:

' MINITRA?2 ?ATH DESCRI?TICN

...,,m,.. D t e u, .sr _ . 1 IG.. .s

o. .u. .:.

Core

  • 1 2 Core Bypass ,

3 Upper Plenu=, Reactor Vessel 4,11 Het Leg Piping 5,12 Hot Leg Piping and Upper S. G. Shroud 6,7,13,14 Pri=ary, S:ea: Genera:or 8,15 RC Pu=ps 9,16 Cold Le; Piping 10 Devncener, Reacter Vessal 17 Pressuri:c Surge Lir.e 13,19,26,27 Steam Generate: Dcwne:=cr 20,21,28,29 Secondary, Stean Generator 22,30 - Aspirator 23,31 Steam Riser, Stea= Generater 24,32 Main S:ec= ?iping 25,33 Turbine Piping 34,35 3:eak (or Leak) Path 3a,31 c.o -

..a 33,39,43,44 AFil Main Feed Pumps 40,41 42 L?I Table 3.1 t

. l 1

. . = .=:: .....;..... '~ ** - ~ *

  • s
  • MINITRa?2 " DOE DISCT.IPTION NODE NUM32n ," DESCRIPTION 1 P.eactor Vessel, Lever Plenu:

2 Re:cter Vessel, Core 3 Reactor Vessel, Upper Plenu:

4,10 Hot Leg Piping (including ' Candy Cane')

32,;3 ' Candy Cane' and Upper S. G. Shrcud 5-7,11-13 Pri ary, Steam Generater Tube Region 8,14 Cold Leg Piping 9 Reacter Vessel Douncener 15 Pressurizer 16,24 Stea= Generater Downcener 17,25 Stes= Genera:c: Lover Plenu:

1S-20,26-28 Secendary, Steam Generater Tube F.cgien 21,29 Steam Ricers 22,30 Main Stec= Piping Turbine 23 31 Centainment MINITRAP2 PATH DESCRI? TION e

PATH NUMBER DESCRIPTION 1 Core 2 Core Bypass 3 Upper Plenus, Reacter Vessel

.4,11 Hot Log Piping 5,12 Upper Stes: Generatof Shroud 45,'46,47,48 Top of Hot Leg ' Candy Cane' 6,7,13,14 Pri=ary Heat Transf er Regien, S. G.

8,15 - - RC Pu=ps ~

9,16 Cold Les Piping Downconer, Reacter Vessel 10 17 Pressurizer Surge Line 18,19,26,27 Steam Generater Jeunce:er and Planc=

. 20,21,26,29 Seccadary Hea: Transfer ReSicn, S. G.

.,22,30 Aspirate 23,31 Steam Riser, Stes: Genera ter 24,32 Main Stes: ?1'p ing 25,33 Turbine Piping 34,35 3:eak (or Leak) Path 36,37 HPI 38,39,43,44 'ATW 40,41 Main, Peed Pumps 42 LPI Table 3.2

-23a-i 1

e sam W -+-y,*r i

+.- i

@ tw j rv (R. g X- X

~

21

. .l

. . . 7.......,*

So

.....--........e.....-- . ,'

3' l e-2 s . . . . . . . .n enov '

b @ ,

f l e.ev :+ r J ""

i

. + <

i m;f :pE 1 -

3

/r C,,'

.ar

.I g j. U" n u r, s y e

O O

@ l gD . - *

{  ; -

O U

O{ ']D

.' S A7 I:. vi f. @

, , M ~ @

11

. .O~.. 3 _ jy

&o

' o.n' on cit -

m ,3 L. .J i

o) y a j .s 26 13 e ^ .

~,

[ 7 a i -

@! s ar g l@ <- ,

4G

, O r-j17

)

i i @ . )

if '

& 2e t-9 e

TO -

i O l -

G Figure 3.1

}!INITTw'22 :'oding end T'e

. Path Schc=c 40 -

  • * ' ' '. , .  : '*!.*i. s.

i r 3 3 i e 1 .s- - i ': -> i

~e i t i -  ::

.. ur . o.-

.. . . y~ r. t.n - -

r..at t. Sw.......

, . .) . -:. . .. - - '

e*;**f

> ( .r :* t r-~ ' -' - ~ ~ '

e r % e * :-

.C C -s2 r q a-~ *e *i> I. :

(1b i.~ tr. t..3 b..r LI i

. . _ .Fiiiu.

... . .) . ( E C Pil. ':' .I H .:. P) l t

S.G. ICT:E REtl0N o o $ o ,g c Le -

rVLL O

m o

V 6

- U o

p=

a G s

c- PfilR. FULL ..

40 - _

.:.: 0 G c F .

a

" g .e .

a D

B Q O D

<f 30 -

9 g a G

5 G O c ,

G e u ao ,

a u

G e oO D C -

M e b be 20 4 o o

O

~

- O 6

= ^

U m

m a G.

L.g Y e_

c G 10 -

G O: PRESSL'RIZER o: STE A'.! GEi:EP AT CP, ' A '

O@

6: STEA::! GENERATOR 'B' i . -.

$> i .i i 6 S 10 12 14 15 D 2 4 T rans ient Ti.e.e ('.;inutes)'

Ficure 3.2 l.1

  • i 1
+9  :; ; y : -.

- r I

)

..L**

. . ~ .. -. .. . .*

~

a L.- .C .C: .

to c: C

    • = Gs O w w

> I .,: .:

c g C: r C-w

- *= J \ 6. era y N ;* 1:

/ ~l == w ig j M Co 3 \ ,V -

1 1." rg L.:: c

= *

<= L .-

6

( u

  • Z **;

.' k. t ez

,' C

>= Ce t. ~ m e <

v Te CO \ s aJ s aJ w M N c. \

c::: p- ti.-

D h \

l \ c MM V8 * \

c w g I \ \ ^

w c-: , N .. .. .. _

>= c::, s,

%  % k. c o <;.

- ~ **

a

% %s  % >.

_s w .

s i

\ w :2 w = N %;: s  :,c

=

> - s \  ;-

w _ , c. s s \ a

' u sg s ,

v c

. s g \

C ==.J i= \ o e e Ba

- >=

=> m c. ys ' h-i r

ci  :.: =  %

W

-N W c.

2 O

\

g \.\

\ w 6

f.3 \ g% (* O C L.3  %

c c: w g s \ .o

.C c: s. . _

, \

ww c: g co w

c3 - y...
=

w w e -

w es

-e

=s w

h\ c: -

= c v. g-\.

.c-.

= u. .a- s s= p w .- v c \ to . 8 -

-- Es D

J e

\ e c us \s\

=

.::;w o 6 o c. \ 2 M c=

\

gg

\C u t to

>= CO m = - g 0s \ - i.m s  %

%g c3 = ^

= = .

N'tas O

-: c.o -- e w 1 s 1 s c: w c= --

s%

w L:s w e.a

- - w t e b _ y ee c. .-

C 6 =C m c= -

O w a v c= G <a -

w rw c: o a .

c. - :s

'~ v '

m <3 0 - m O < O D <0 0 G

z_ o e e o., e,, o_

e s- c e

01) 10.'.01 3!nh!1 Jc:"l:u S m'ai g ';; '::s s::j Figure a. 3

..t i

s g--

_...__............._-,_.-.----....) m s

oo c ^

c-

! oo c ^

c-n.

o W C c"J rc -

C=

1 Omw < e, _a

- 8 oO < =

.c.- g c= .r=

~

c

- =>

z c I cc ~ c=

a.

.s -

w C e=_

c v =

- u 1 OO v cm m c.:- e - -

=

a w eO C e w,

w ,.- <

i

c. -=

- w (

oa c w cm =-

a:

o ec ^ ~ = .a m w -

l 00 Q. w u o <

= u a m

.- ~

o

= #~

m w c t, OC < =

c= z w .. . .. ..

w - C

> a w 0 r-

- v#

g  ;  ::

i r" 4 *

m E .

l 0 C < ~,

i o

w w ca i c= +- o I oC c s,c cm e

=> m :. . *-

  • I OO C 4

<N >= ~

c= s- m w c: .i O C C e u

c o a

w e. a-I oe 4 .,

=

- o l 00 < -

e m n_

b.

>==

= m I OO < r

< I w n oO G o m, l e

e -v e og 4 t

. [ 00 C -

1 O d I

I ta c CE C

. I i e o - ~

I ED 4 .

I C2 <

,/ CO G i .

- -.t

+

i

. e o e2 o en  : cm e>

a co cm o o, o r w sn , . . c m (3 ) PJnicJad = 1 Iticic03 Fittiit .,

.... . = .

-e_,.........................

.:. . i. .i . .. , .....3 .n.. ..

c.,,... t. l

( I n'/ I : , M i:1: I' :; i.:7 LIH i2 2 T1 2 3 nn.., g p e t ** e. s*i e.,. .e T r ' ' ' '. l ' .. ". '. .'. ". '1 ". '. '. ' ~i ! "..'. . '. n. .'.

{ e.er.s .. . .

.:- ... n. ,3sie3 700 ., 1, I

P .e.. e .e ue .ni ei .t::.

E"PTIES i

'\ f IICT LEG I'E31NS TEU-PHASE

\ t r.,L'i k!. s\ s , C ,$ 0.

  • r l r. r.,w.

. .. T. r..i. a y

sN p tb'if

. . c.c0 wo ru ...e.

lio

{

( \ l

<. n c i  ?

HOT LEG Sil5CDCLED a o \

o'- a \ l _

m a s \.

U

\

LAna -

s os u

(

n t SN

=.  % -

a e ss o

\

g w%

r. s E >

4 '~ % N

/.00 - / \ \

o d  % , s u  %. \

\

a \

\

\

KEY \

0; ll0T LEG (PP.ZP. LCOP) .

\'

300 -

G: CCRE e

a: COLD LEG (FRIR LOCF) d o

---: SAiliRATION LINE 8 O -

i ' i * .

2cc 0 2 4 6 S. 10 12 Tr::nsient Tice (J.!inutes)#

F ir,u re 3. 5

=:. :::==  :: .. .. . ..;;.... .:: ..

4-

! s 1 .

t  ;

l r

CC,,a L ... . ....

...e . .,i c..e. a . .... ....... .....:. . . . i . . . . . . . . . : . . . .

iL.-n.n. ^

(107" FP. Bit:l!;'-!,li<!i 0F L IF E ,12. 2 ii' idr'..; L!

s e.e ..,. . ....

. . . , r. . .e. v.,rr.

L i .. .,........e,.,.....,.,r..,..e.o i.. i i... ,....t. .. . . .

FU:.:P 1;;lP)

=

700 .- -

e t

FRESS!'R i tt?

i EMFilES I

4

. H0i LiG J EEGl::S Tiit.P:J;${

l !1

\

l i

\ r CLEE ft.0CD TA!U; C..U V -

's s

  • e.......e i L Uit L* ua..s

's %

^

4 g' g o\,bs s ti.nt rJi s L e. mu -

p'L.l.'.wASS.t LU ea O cs e i

- o e o

s% { -

G

- e.00 -

o O h s$

O O  % s o

R o a bs s o

'- o a g CN o

' a 0,,b ,

'E 6 o o c s't % /

u o

400 -

o o o a o o o O

3 O

o O a

KEY . o .

o: HDT LEG (PRIR LOD?)

,00

_ 3 G: CORE o

6: COLD LEG (PR2R LD0?)

--: SATURAil0N Lif;E

' ' t .t 200 0 2 4 6

B 10 Transient Ti.:e (:. inute:)

Figure 3.G 45 -

o

. s 1

TOTAL STEAL' SUESLE VOLUME VEF. SUS TRA!;SIENT TIME -

(102; FP, 12.2 FT Vin2 llT! GATED DCU5LE El'DED STEA!!LINE SREAX) 300 lO .Q O 's n o' Q

<',._ o s b 200 - ,,' O i

o O i .

e  : i 3 0 \

a o

=- l 0,

,d l'EY 3 h

/

~

j g. 0 < 's' - e: HOT LEG LOOP 'A' a / '

\ i (FRZR)-RC PUUP TRIP

i. n O

' i e '

D b

1 00 -

/ a' \ i O: HOT LEG LOOP 'B' ~

l / g i, (RC PU'a? TRIP) f /bA lP g\

b '

'g i

' a: HOT LEG LOOP 'A' (FRZR) l!0 PU'.!P TRI?

l i

\

[ 1,,/ ,

's g $ G: HDT LEG LOOP 'B' -

s sg s I (!!0 PU;;P TRIP)

I ,

  1. / 9, g

// h'h 0 AA- . 6'N . 'u. - d .

0 2 4 6 8 Transient Tina (cinuts:)

Figure 3.7 -

t L

-- . . . . . . ~ . . ' : ..

I

[.f e C. (e*iti.e. . *. :'*

.. , M. . tit'r t ; ; g l..i.4

  • . p..* *.**4 : : :J j l *.-

e e, e. n e. . . .. . g e ,) e . 2 p .. , e 6 I e.ea L g !e,...

c. , ,

(g0q.

a 4 .. Ii , - . W i o . . . . e .a .e s.L .* I s. . . .:

. =

  • g.. s .g . . .

tf 3 f.ov r . . . : , L. ,.. I *i i t: s, 1 - r:a o :, . , . s.:,.....:,...,s,,.>

      • >e __ ,

<. :, c a ,

j .

2000 -

u n

_r..

i 1,2_ . .

2

=

m 1...n,,o. - ooo O m

u o

c- O

~ KEY ,

o

~

i -

E O: F.C PU'.'?S Til1P o o '

o: 1:0 pit:PS iP.lP S 1000 -

o u oO O

- o O - .

o O a

500 o o o o oo OG -

aO Oo oo0 -

ou o o

oo C - _.'.

' .!_ j e 0 2 4 6 6 10 12 Transient Tics (Minutes) 4 m .

Figurc .i.e

?

A I

I

- f. 7 -

i

. lN . . .. ';, , ',**

B I

,. . _./_ ....---.--.--~~,t.s '

m e

p ry J 6 N ->* d CD c I Ci

'" r. I

Q

t. m -c^
4 O*"">" /

- pJ 6.

W ~

J  %,

p- M C C'=

p Ls e

- to L i CJ &

  • 8. uJ 4* O n e .-

w - + to

- ; .2 O *.3 %~ *4

to ;*
  • 7. O ^^ **

C :> Mv ^ c:- c.

.

  • C:. =* - f. *
  • e C.O LaJ - fr C
  • >== fr D

A CM C. t=

>= >= { . 8

- c 5.l. N C". *.

M i--

D C. :n !C. *{ 4 E ?

f. M => - :: = = '

' C* C4 D r"- C. ( , ~

su C. 8*

=o ec

>- C3 m n e

= wa = c.>

3 LaJ C. CC v  %.* q1 U W

> w c.3 o J J

O LaJ J CO Z L.J w .7 J C3  %, %e l:n. > -

h C3 C3 D

J e.J Lad MJ

,J J (* *

- m w w J- g

. = > w.  :.: c= ~

4 CN LaJ taJ p-C C p.", 6"*

- *-* J s = <l J 6- < ==c 0

C: N C M C M ( 5-w w iJ w U W * *C

. Z ""

N N .N.

. N. 4 L.J ys "c':"

D UJ

". Cf m

fT*

sn gn 3 3 3

C3 C.J si k N G

  • M b M M M et".

(A *"" LsJ uJ 5,.J S.42 W

W "I C: C.*." P== W v l

' C. c m co C. U-I o j m . . . . . . . .

i 5 E__ , O <3 o G I 3 f.?" Z M uJ

.j C.3 = =::: :m:;

. - W - c>

1 < 0 C -

  • C LaJ C

-j WJ G 1  % LaJ

'J w

  • Z O C. -

W J "E . 3 P%

EC w N w aC N) N -

.- O -

to *-= M

  • ()

i .

j- c -; - .

j e D. N

, i '

4 N

7, e ,

l I

e e e-. e a  :

  • v C' 8 W * -

J

< . 1 I l 1 l I (inn!) l>AP) 171 d S ' S I i

Finure 3.0- - g-1 I

l u=- - - . = . . . . .;..

f

' *W l

X ---t l

23 TSl r,

Jo

...._____.__..e.________,' . 28

,l _ _ _ _ _ _ _ _ g _ _ _ _ _ _ _ _ _ _ _ ._ a L . . . . . . . .I m ,

e.e, as &g N] = ,

i C-' e.ov.;+ -T =

.,3 e.w2 i@ -

L -

7 n <- tr 93, _

Q gtu "2

e. Il S h -

r' .

O, _O v

@J gg .- @ " 4 g, g P, a

. . _ - a  !

9 ei -

A7 I. L l,a e M --

9 3

. /s CFT tl '.

-L I@i y -

G @'

-t g) .@ !

'9

_; 1)5 l ,._ 26 15

s. 7 12 e .

@t 25 g .

@ .1 "p g p

eg 1 -

D f I7 e' l I f .; 2. g' g i lD jg 0_1 s

@ C: .

<O I

6 1 5

Figure 3.J 0 i

t

!!INITRA?2 Neding and .

I Flow Path Schc=c i

. ~48a-

  • -  % \*., / ; '., , #. . ,

,- ';::.: ; L-~ .

i :..

w. w g,,.r..

t

/  ;

,s , ...

f

r.
. . ric a : .'r C r., N e z :t c -

3ECTION V 'l

. ,,.*c. .. ,;sw.,.

  • Ae* .

-p, .-="~~~.

< ~s,^. ^t.x::::.

. ,wm ' gI !y ye '.

l :.. ', **~<l

.o g . / -5.?,

y.p.i ,< -c m ;.o . .. -

6/ ,. e,.'\ s, x

-w in. *

./ -

.:- , s.=

Q rw.n :,a z f >\ <* Qi. ) .

,,.. . . .;[-

\,! ,.) \ ',

  • l Uj7: re.r. sie z

..L. --ev... c c, . t- x :a - - - .-- .i ,y.\. w 3 .>c

- I r~te y #- I  ; .!:. d. i p

% g 3  ; V

.- = s c..- r ._u.,.. .==. u.c, %>

f ,

.c - . =. .

ho z. 'i ~~$

r

~~. . . .

W NODE 3? b.,M T2. S t % NODE 9m ism x.: 3 CO <m x '

<? i -- h.k33 4(10) V. I @ro g i 3 < ._

,gw;a.n w.w.v.w % w w w at:e -4 g y ,

' W V:', o 6  % 33. C-; 5

..' A.,. G N;: .s MNi,0 I .a,.....

-i/

  • k - - - -

J

q . ~&l 5 I

ed

. a. .t

.~,.

s.

I i *

? U-M w.e s*

h.

i re .!  : i g$"555.,. .

,t/.P.Y FE E OM Ti A . : L,, )

  • 4 b'.!- M= 3 1 N'.ET f,!Q7.7.LI: 1

. .; c. o 1::m n 6a.:'.*.v;. S'.C'NE , $ {,

~4s. *;i . i.*,T;C.,J j -s

}f

.r.;f '.JMCa 1IO. I C t.*

c:. ; -e ,i 6

5 E e 'd E ', ( Y. 0 4 8,* 07

,. f e 8

l

.ge . e, :. ..,

/@y&).

Il p:. r ~~' -

  • Unif '- -b%m >{-

,I tr. --Q,4 #

_j >J _ l1 g s w/

za;;.. }' n 3

a ) *

. \ "

d 1

3 $;%-- --( /

~

,m Dr h. .

s s

.i \ li. i 0  ; f

. ~.a.~ . xp (. 3 ".e . ; c 5.'*

age r

f_ &.

is '

..m k

-t I.' " ll l l? h.S *

Q~*W C

. . ,s ,.. . . F. ' > n  !

m __

- - - . a s a _..s =sm s.,-a.as. ,

c'. i c.w 2 '

i { [ -

2-d'~ ""shhp.1.r.;i.'; ;T-rg ( -.

s

- , c y. c. n . c,- o / p p.. ,p

~~. l. :1 a . - . . - . 1,+.::rpm e.m n

1 I-F'  ? ;h ..(. .

4 t

\ -I .

i so rcre w Trr,, i l f ctr.v.c.s# e .c\1. . .Mlj\

~; z r,Cc'o r: A '

l  :::,

  • y

/\

~~,,t~'

n

\ ItL- -F(- p l K },. J}

i

.i i !/

,; ) TATS:N $CC hr.F y

i l

g,f..~.%. ..e%,

. . . .Y e

3 1 i i( . *'s*.

Hot Lc; Medi: g i

'Fi'gure 3.11

-t.Sb- .

t f.e.t l .

c..;..e. . , .

s ==.

  • s'*; f*.I  ?

e A

  • % CI e +

. C=

g o . C e f.4 =C -

NL e=C aJ -

a J = 0.

t C3

>== C. O OCJ

== -

ee

>=

W 4

(

N w c:a .

3-w - N p -

>== et Ca

.- -. M Z >" C3 w - 4'

.- :I C3-M  != y

,' D w ,,, O

  • O M -

CC C ^, ==-

(i

>- w CL a -

CD a

d ^

m t/) Z CC C') A U

== w >=. N *=*

e g 3 wW Q.

C J .I ~~

  • =4, c.2 = N,- c - CD a

J n o u. -

C3 O

. a o a o a: o w~

.s >- . m,, c -

es C.1 L&. 'J". ;3 e- _.c =>

w a -

m Ca ~. c= .-

e n. ,

a

~ cm x -

2 -

.c m

W a .

c LaJ

~ <-- -

  • T.C ( -

C3 e u. e < >-

a m e.

4 - ,

<: ~ w-

- C3 cm -

,- v m o c .

c

. . - ~

4 C,

C= e e e e C2 a o y Co m ua n n m - -

(gy ) ':entet, slaans actis Figure 3.12 t

.m 6

e l

1

d '

~1 l

m 't

s J

f _v w l u

l .~

- o w

D== D-= M

<

w <

_ a_ ~

w >- m

_ cm

< n o - -

o c: = a o .-

>= D J t sJ .;

M o ^

w a ^

= w c- w n ~

w cm - c: o U c= m eC o a ~_

w w - O 6

> . =-

w n. -

o -

r2 a :r =

aJ .o D o

Q.

^

w o a 9 U o a w e w c: a -

=m >-

.c:: >-- .

t-=

a u a e o -

< =

>= N w -U o c: = -

m o -

< - =

a w w -m c=

. = . m c: i -

. o. -

- o ,

< w a i- m m c.

-

  • 4% =st 3E C/3 c Ww w w e o .- w -

c - m CC C3 w v w C3 N D

- o _ u c: -

- = a m <

. m w w .-

c: m .

n. v w_ . . . .

e e e en e o o e o o o o o o o o o o o o o o o o

. e. . . o. em. . . a.

o- , w cm o o w w cm m m m e (cas/tal) not3 suc3 Apuca ,y, dool Figure 3.13 D +-

a

. . . - . . -.~.. - l

._,;_,,, j

,,l!llj! ;l< l r

4 1

E J

l i

i 2 T D 1 E

T T i

l A E G I I S T l l l

i A L 0 R i l

1 T U S 0 ) s)

U E P s S 3 l e

R 'i P, t E E T u V - n .

N L E iPI. . 0 i m

O 0 U (

L 0 P F 0 .

e E

0 C R

  • i m

Ai C F K 2T ,

T t

A i G n Y 2 E e l0 l 2 O R i s

_ A 1 n

C E l

a l r P i T

'O F L 4 . , 4 i

% A p 2 E o 0 T o 1 S "

._ L ( .

e 2

>; - - - - 0 l

t -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 0 0

, , 0, ,

0, 0, ,

6 4 2 0 8 G 4 2 0 1 1 1 1 O j 3v s2m En" C5U n I- R3

, 5S " " . ;

h

e I

Y i

I

~-

LtJ C3 O ~

M w C*.

- C3

>== = . .

c w :m:

H # 4 m E L.J LA8 gg Lad J C:

= C3 ^Q *o.,

V5 D -.

"i C3 LLJ e

< C3 = A l .$-

C ~ ~

O =

WW J f.*

O

- =: -

MW ~4 e 23 WD . .:=

Ub N & 13 CC

  • LO = y LM N C. e

> - CD w LM -

D * * . g,3 C C asC _h A 6a C.3 g W == e.

L% 8-=

w N -

C= c3 :s r C = =

%n* ~3 C.J e . .q:=

N e

I t 8 tW . s

m. -

C C CD c c. c c c c c

  • C3 O C3 C3 C3 c c o C3 Q Q Q Q Q Q C3 C C
  • a a = = n a g Q C O C C C c c c C3 N L2 LG v M
  • N -

t 03S/01 'scid 3J03 Figure 3.15 .

9 S

e, t

$ ^

^ C

  • A C
  • O C Q J

-J LJ C Z ce ~ -

N C d C: C.

L v Z

  • v c f C .

O LJ >=

LJ . -J at:

.J C

LJ Q C

  • W. C: a >==

O Q C =C

= O O M w

O -

< l lu: 1

.I e

- , T m o e i -

2 & ha

}

- J w ^ o \ o w = cs i DG

. CD == O #

C C3 C 2: LJ D )

w w c) cm m j O O <3 N -

=.4 >- J p -

- =C u. C CD /

>== CD uJ uJ /

-- M N J /

w w z -

x

- a cu -

3

>-* y o O <

W 3 >= DL C l

- z ew  : i

$" S -- / o O < 1S

-= a n a a: -

j /o M w A J G e

>= C ==  % v en 2: c:  :- o O C

  • U M LJ W hJ /
D 8 C: / 3 M uJ C C / C 5 d E$ o O <3 * - *

'E

a- :s L O / v M Q U w c= w o j U E

c= m m g O G *

=> >- . < e

>-. W M = l

<- est L. w d w a m O O G - C =

KsJ m. :: Q w U

c. m co - I -
z - .s=- >- . a w w w e o a <3 e

r . = m :s a C.

u

- z w I -

>=. J -

z*  ::a e e= l

< u -=

a m w w w

n N Io O .q - - ,e o o .- -

I e - m e c=

O v w => lo O a w <3 m I

- w / -

o c=

. = a- ./o O 4 -

N

/ -

/

f o <

/ D f I f ft . z_

cs e em cs e a es c . cm e

- o in w C o n m (J ) 'sajnleJ Maal 1Ucic03 Figure 3.15 ..

1 1

2.;g _ .

k

< c=

c= .-

C C

>= >=

c= = e=

w w w

~ = =

- w w c:- e w

= n m n c= :z tA < N <

. w w c: ts.;

c i- c_ ~

. c._= w - y,

>= .. e. ..

E eG G 1

w

s C n

.- c o <D

=

o <P oc w w

- < a

.  %?

c= o o G - "

n"

-w oo c ._

w -

z O oc

=

m 's

= o DG c= < O CC o w w - .

> >=- m,

. w 0 6-1

-s es w

> w c= o -

s

".a :c C' o _c w ^ m cs . c. O - en -

- w -

o D J C= es cs co - -m

- =

w Cs Q.

6 -

p.
  • c=

C3 3

= o -

ca e c. -

>- w o -

  • _5 c= <

ec o un

=

C -

o

. e -

m . o .S n z

< =

w

-o *

>= N w i-  : .

A c=

= N 4

  • N c= - m w *

-3 -

~ .

. c, .

c.= w

= 0 m u (4 N w e g

c= - . . . . , c,

c. - - .

a en es o e o u, w n N -

(13) iaAa1 Jo:gjausa c:ssls/Jszijn:ssJd

. Figure 3.17 .

5

. = = = =

CORE 00TLET PilESSURE YERSUS TRAllSIElli T,ltJE , ..-

2 (102% FF, 12.2 FI DOUBLE-EllDED Ull3lTICATED -

'STEACLlHE BREAK, RC PUUP TillP) .

4000 ji 3500 -

3000 - .

m '

O

=

I; 2500 -

g 3

~

Ei

.. a- r

'd 2000 m y o

o 5 1500 h l}

N s 1000 -

500 '- . .

0.000 '

4 G 0 10 12 14 0 2 Transient Time (minutes) ,

f I