ML17226A125
Text
TABLE 3.2-1 EQUIPMENT AND STRUCTURE CLASSIFICATION Quality (3) Tornado (4)Scope (6)Safety (1)Seismic (2)Assurance Protection of Design (7)Class Category Category Designation Location (5)Supply Detail Notes Revision 3 1 of 34 August 1990 I. Reactor System1.Reactor vessel 1 I B E D GE CBIN 2.Reactor vessel support skirt 1 I B E D GE CBIN 3.Reactor vessel appurtenances, pressure retaining portions 1 I B E D GE CBIN 4.CRD housing supports 2 I B E D GE GE 5.Reactor internal structures, engineered safety features 2 I B E D GE GE 6.Reactor internal structures, other NNS NA S E D GE GE (34)7.Control rods 2 I B E D GE GE 8.Control rod drives 2 I B E D GE GE 9.Core support structure 2 I B E D GE GE 10.Power range detector hardware 2 I B E D GE GE (12)11.Fuel assemblies 2 I B E D GE GE 12.Reactor vessel insulation NNS NA S E D P S II.Nuclear Boiler System31.Vessels, level instrumentation condensing chambers 1 I B E D GE GE (46)32.Vessels, air accumulators 2 I B E D P S 3.Piping, relief valve discharge 3 I B E C,D P S 4.Piping, main steam within outermost isolation valve 1 I B E A,C,D GE GE 5.Pipe supports, main steam 1 I B E D GE GE 6.Pipe restraints, main steam 1 I S E D GE GE 7.Piping, other within outermost isolation valves 1 I B E D P S (12)8.Piping, instrumentation beyond outermost isolation valves NNS NA S E D P S (12)9.Safety/relief valves 1 I B E D GE V 10.Safety/relief valve position monitors NNS I B E C,D,R P V 11.Valves, main steam isolation valves 1 I B E A,D GE V 12.Valves, other, isolation valves and within 1 I B E A,D P V (12)13.Valves, instrumentation beyond outermost isolation valves NNS NA S E A,C P V (12)
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes 2 of 34 August 1989 14.Mechanical modules, instrumentation, with safety function 2 I B E C GE GE 15.Electrical modules with safety function 2 I B E C GE GE 16.Cable, with safety function 2 NA B E - P S III.Recirculation System1.Piping 1 I B E D GE GE (12)2.Pipe suspension, recirculation line 1 I B E D GE GE 3.Pipe restraints, recirculation line 2 I B E D GE GE 4.Pumps 1 I B E D GE V 5.Valves 1 I B E D GE V 16.Motor, pump NNS I B E D GE V 17.Electrical modules, with safety function 2 I B E C GE GE 8.Cable with safety function 2 NA B E - P S 9.LFMG set NNS NA NA N T GE GE IV.CRD Hydraulic System1.Valves, scram discharge 2 I B E C GE & P V volume lines 2 I B E C P V 2.Valves insert and withdraw lines 2 I B E C P V (9)3.Valves, other NNS NA S E C,F/A,C P/GE V 4.Piping, scram discharge volume lines 2 I B E C P S (20)5.Piping, insert and withdraw lines 2 I B E C,D P S (9)6.Piping, other NNS NA S E C,D,F P S (12)7.Hydraulic control unit 2 I B E C GE GE (17)8.Electrical modules, with safety function 2 I B E C GE GE 9.Cable, with safety function 2 NA B E - P S 10.CRD pumps, filters, and strainers NNS NA S E F GE V TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes 3 of 34 August 1987 V. Standby Liquid Control System1.Standby liquid control tank 2 I B E C GE GE 2.Pump 2 I B E C GE V 3.Pump Motor 2 I B E C GE V 4.Valves, explosive 1 I B E C GE V 5.Valves, isolation and within 1 I B E C P V 6.Valves, beyond isolation valves 2 I B E C P V 7.Piping, within isolation valves 1 I B E C P S (12) 8.Piping, beyond isolation valves 2 I B E C P S (12) 9.Electrical modules, with safety function 2 I B E C GE GE 10.Cable, with safety function 2 NA B E C P S VI.Neutron Monitoring System1.Piping, TIP NNS NA S E D GE GE 2.Drive mechanism, indexing mechanism, multimax connector, purge
air control unit, source range
monitor (SRM), proximity switch, motor modules NNS NA S E C GE GE 3.Cable, IRM, SRM, PRMs 2 NA B E - GE V VII.Reactor Protection System1.Electrical modules 2 I B C,R,T GE GE 2.Cable 2 NA B - P V VIII.Process Radiation Monitors (34)1.Main steam line monitors and related electrical modules 2 I B E A,C GE GE 2.Main plant exhaust (gas extended range), fuel building exhaust, reactor building annulus ventilation, main control room air intakes, containment atmosphere, drywell
atmosphere, RHR heat exchanger
service water, containment
purge isolation, and related
electrical modules 2 I B E A,C,F,M,R,T P V (35)
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes 4 of 34 August 1987 3.All other monitors (fixed and portable) and related electrical modules and cable NNS NA S E A,W,F,T,M P V 4.Cable, monitors with safety function 2 NA B E - P S 5.Electrical modules for process liquid, process ventilation, air ejector off gas, and standby gas
treatment radiation monitoring systems NNS NA S E A,R,T,W,F P S 6.Air ejector off gas monitorsand related electrical modules NNS NA S E T GE GE 7.Portable in-plant I-monitoring equipment NNS NA S E - P V IX.RHR System1.Heat exchangers, shell side 2 I B E A GE GE 2.Heat exchangers, tube side 3 I B A GE GE 3.Piping, within outermost isolation valves 1,2 I B E C,D P S (12,40) 4.Piping, beyond outermost isolation valves 2 I B E A P S (12) 5.Pumps 2 I B E A GE V 6.Pump motors 2 I B E A GE V 7.Valves, isolation, LPCI and shutdown lines 1 I B E D,A P V 8.Valves, isolation, other 2 I B E A P V (12) 9.Valves, beyond isolation valves 2 I B E A P V (12) 10.Electrical modules, with safety function 2 I B E A GE GE 11.Cable, with safety function 2 NA B E - P S 12.Discharge line fill pump 2 I B E A P V 13.Piping through tunnel, drains NNS NA S E A,M P S 14.Flush drain to radwaste 3 I B E A,W P S X. Low Pressure Core Spray1.Piping, within outermost isolation valves 1 I B E C,D P S (12) 2.Piping, beyond outermost isolation valves 2 I B E A P S (12)
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 12 5 of 34 December 1999 3.Pump 2 I B E A GE V 4.Pump motor 2 I B E A GE V 5.Valves, isolation and within 1 I B E C,D P V (12) 6.Valves, beyond outermost isolation valves 2 I B E A P V (12) 7.Electrical modules with safety function 2 I B E R GE GE 8.Cable, with safety function 2 NA B E - P S 9.Water leg pump 2 I B E A P V XI.High Pressure Core Spray1.Day supply diesel tank 3 I B E S P S 2.Piping, within outermost containment isolation valve 1 I B E C,D P S (12)3.Piping, diesel service water 3 I B E S P S 4.Piping, return test line to condensate storage tank beyond second isolation valve; piping
suction line from the condensate storage tank to the piping tunnel NNS NA S E O P S 5.Piping, beyond outermost containment isolation valve 2 I B E A P S (12)6.Pump, HPCS 2 I B E A GE V 7.HPCS pump motor 2 I B E A GE V 8.Valves, outer isolation and within 1 I B E C,D P,GE V (12)9.Valves, beyond isolation valves, motor operated 2 I B E A GE V (12)10.Valves, diesel service water 3 I B E O P V 11.Valves, other 2 I B E A P V (12) 12.Electrical modules, with safety function 2 I B E A GE GE 13.Electrical auxiliary equipment 3 I B E A GE GE 14.Cable with safety function 2 NA B E - P S 15.Water leg pump 2 I B E A P V 1216.Battery, battery rack, shunt 2 I B E R E V 17.Fused Disconnect Switch 2 I B E R E V 12XII.RCIC System1.Piping, within outermost isolation valves 1 I B E C,D P S (12)
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 8 6 of 34 August 1996 2.Piping, beyond outermost isolation valves 2 I B E A,O P S (12)3.Piping, return test line to condensate storage tank beyond second isolation valve NNS NA S E O,A P S (12)4.Pump 2 I B E A GE V 5.Valves, isolation and within 1 I B E C P V (12)86.Valves, return test line to condensate storage beyond second isolation valve NNS NA S E O,A P V (12)87.Valves, other 2 I B E A P V (12)8.Turbine 2 I B E A GE V (13)9.Electrical modules, with safety function 2 I B E A GE GE 10.Cable, with safety function 2 NA B E - P S 11.Water leg pump 2 I B E A P V 12.RCIC gland seal air compressor NNS NA S E A GE V XIII.Fuel Service Equipment61.Fuel preparation machine NNS II B E C,F GE GE 2.General purpose grapple UNC I B E C,F GE GE 6XIV.Reactor Vessel Service Equipment1.Steam line plugs UNC NA S E C GE GE 2.Dryer and separator sling and head strongback 2 I B E C GE GE XV.In-Vessel Service Equipment1.Control rod grapple 3 I B E C GE GE XVI.Refueling Equipment1.Refueling equipment platform assemblies 2 I B E C,F GE GE 2.Refueling bellows NNS NA S E D P S 3.Fuel transfer tube 2 I B E C,F GE GE 4.Isolation valves, fuel transfer tube 2 I B E C,F P V TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 19 7 of 34 5.Penetration sleeve assembly, fuel transfer tube 2 I B E C,F P S XVII.Storage Equipment1.Fuel building spent fuel storage racks 3 I B E F P V 2.Containment fuel storage racks 3 I B E C GE GE 3.Defective fuel storage container 3 I B E F GE GE 4.Fuel building new fuel storage racks 3 I B E F GE GE5.HI-STORM spent fuel dry storage overpa c ks 2 I B P M V V XVIII.Radwaste System1.Tanks, atmospheric NNS NA S N W P S 2.Heat exchangers NNS NA S N W P V 3.Piping, other NNS NA S N W,M P S 4.Pumps NNS NA S N W P V 5.Valves, flow control and filter system NNS NA S N W,M P V (15)6.Valves, other NNS NA S N W P V (12)7.Mechanical modules NNS NA S N W P V (15) 8A88.Low Level Radwaste Storage Facilities NNS NA S N, P O P E, V (48)8 8AXIX.Reactor Water Cleanup System1.Vessels: filter/demineralizer 3 NA B E C GE GE (25)2.Heat exchangers 3 NA B E C GE GE (24,25) 3.Piping within outermost isolation valves 1 I B E C,D P S (12)4.Piping, beyond outermost isolation valves3/NNS I/NA B/S E A,C P S (12,25)5.Pumps 3 I/NA B/S E A,C GE V (25)6.Valves, containment isolation valves 1 I B E D,A P V (12,25)7.Valves, beyond outermost isolation valves3/NNS I/NA B/S E C,A P V (12,25)8.Valves, containment isolation 2 I B E A,C P V 9.Piping, containment isolation 2 I B E A,C P S 10.Sample station NNS NA S E C GE GE (12)
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 8 8 of 34 August 1996 XX.Fuel Pool Cooling and Cleanup System1.Demineralizer vessel NNS NA S E F P V 2.Filters NNS NA S E F P V 3.Heat exchangers 3 I B E F P V 4.Pumps, cooling 3 I B E F P V 5.Pumps, purification NNS NA S E F P V 6.Piping, containment isolation 2 I B E C,F P S (12)7.Valves, containment isolation 2 I B E C,F P V 8.Piping, cooling subsystem 3 I B E C,F P S 9.Valves, cooling subsystem 3 I B E C,F P V 10.Piping, purification subsystem NNS NA S E C,F P S 11.Valves, purification subsystem NNS NA S E C,F P V XXI.Main Control Room Panels1.Electrical modules, with 2 I B E R P S safety function 2 I B E R GE GE 2.Cable, with safety function 2 NA B E - P S 2 NA B E - GE S XXII.Local Panels and Racks1.Electrical modules, with 2 I B E A,C,F,T P S safety function 2 I B E A,C,F,T GE GE 2.Cable, with safety function 2 NA B E - P S XXIII.Off Gas System1.Tanks NNS NA S E T GE GE (16) 2.Heat exchangers NNS NA S E T GE GE (16) 3.Piping NNS NA S E T P S (12,16) 4.Valves, flow control NNS NA S E T GE GE (16) 5.Valves, other NNS NA S E T P V (12,16) 6.Mechanical modules NNS NA S E T GE GE (12,16) 7.Pressure vessels NNS NA S E T GE GE (16) 8.Charcoal adsorber tanks NNS NA S E T GE GE (16,26) XXIV.Standby Service Water System1.Piping 3 I B E A,F,O,P,S,R P S 2.Pumps 3 I B E P P V 3.Pump motors 3 I B E P P V 4.Valves, isolation 3 I B E A,F,S,R P V 5.Valves, other 3 I B E A,F,O,P,S,R P V TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 18 9 of 34 6.Electrical modules, with safety function 3 I B E R,P P S 7.Cable, with safety function 3 NA B E - P S 8.Piping, containment isolation 2 I B E C,A P S 9.Valves, containment isolation 2 I B E C,A P V 6XXV.Normal Service Water System and Service Water Cooling System 61.Pumps NNS NA S N O P V 2.Pump Motors NNS NA S N O P V 3.Valves, isolation from standby service water 3/2 I B E A,R,S ,D P V 4.Piping, isolation from standby service water 3/2 I B E A,R,S ,D P S 5.Piping, other NNS NA S E,N A,O,R,S ,D P S 6.Valves, other NNS NA S E,N A,O,R,S ,D P V 7.Other equipment NNS NA S E,N A,O,R,S ,D P V XXVI.Instrument and Service Air Systems (31)31.Vessels, accumulators, supporting safety-related systems 3 I B E A,C,D,S,R P S (19)32.Piping in lines between accumula-tors and safety-related systems 3 I B E A,C,D,S P S (19)3.Valves in lines between accumula- tors and safety-related systems 3 I B E A,C,D,S P V (19)4.Piping, containment isolation 2 I B E A,C,D P S 5.Valves, containment isolation 2 I B E A,C,D P V 6.Electrical modules with safety function 2 I B E A,C,D,R P S (19)7.Cables with safety function 2 NA B E - P S (19)8.Piping, other NNS NA B E,N M P S 9.Valves, other NNS NA B E,N M P V 10.Other equipment NNS NA B E,N M P V 83 3 8 TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 8 9a of 34 August 1996 811.Compressed air bottles and regulators 3 I B E R P V (47)12.Piping and valves between air bottles and regulators 3 I B E R 13.Air CompressorsNNS NA S N O P V 14.Air Dryers & FiltersNNS NA S N O P V 15.Piping IAS & SASNNS NA S N O P V 16.Valves, IAS & SASNNS NA S N O P V 17.Instruments IAS & SASNNS NA S N O P V 18.Train Coolers & TrapsNNS NA S N O P V 19.Moisture SeparatorsNNS NA S N O P V 20.Air Receiver TankNNS NA S N O P V 21.Diesel Air CompressorNNS NA S N O P V 22.Air Dryer & FiltersNNS NA S N O P V 23.Air Receiver TankNNS NA S N O P V 24.PipingNNS NA S N O P V 25.ValvesNNS NA S N O P V 8 TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 8 10 of 34 August 1996 XXVII.Diesel Generator Systems (44)71.Diesel-generatorsa.HPCS diesel-generator 2 I B P1 S GE V b.Standby diesel-generator 3 I B P1 S P V 2.Electrical modules with safety functions (including the governor, voltage regulator, and exciter systems)
(34)a.HPCS diesel-generator 2 I B P1 R,S GE GE b.Standby diesel-generator 3 I B P1 A,R,S P V 3.Cable, with safety functions 3 NA B P1 - P S 4.Fuel Oil Storage and Transfer Systema.Fuel oil storage tanks 3 I B P1 S P S b.Fuel oil day tanks 3 I B P1 S P S c.Pumps HPCS diesel generator 3 I B P1 S GE GE Standby diesel generator 3 I B P1 S P V d.Pump motors 3 I B P1 S P V e.Piping 3 I B P1 S P S (45)f.Valves 3 I B P1 S P V (45)5.Cooling Water System - HPCS (34) Diesel-Generator (8) a.Water expansion tank 3 I B P1 S GE V b.Heat exchanger 3 I B P1 S GE V c.Oil cooler 3 I B P1 S GE V d.Pumps 3 I B P1 S GE V e.Piping and valves, integral with engine NNS I S P1 S GE V f.Piping, other 3 I B P1 S P S g.Valves, other 3 I B P1 S P V h.Flexible connections 3 I B P1 S GE V 6.Cooling Water System -
(34)Standby Diesel-Generator (8) a.Standpipe 3 I B P1 S P V b.Heat exchanger 3 I B P1 S P V c.Lube oil cooler 3 I B P1 S P V d.Pump 3 I B P1 S P V e.Piping and valves, integral with engine NNS I S P1 S P V f.Piping, other 3 I B P1 S P S g.Valves, other 3 I B P1 S P V 7
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 19 11 of 34 877.Starting System - HPCS (34)Diesel-Generator (8) a.Air receivers 3 I B P1 S GE V b.Air compressorsNNS NA S P1 S P V c.Aftercooler, air to airNNS NA S P1 S P V d.Piping and valves, integral with engineNNS I S P1 S GE V e.Vendor piping between engine and airreceiver isolation check valves 3 I B P1 S GE V f.Valves between engine and air- receivers isolation check valves 3 I B P1 S GE V g.Flexible connections between engine and air receivers 3 I B P1 S GE V h.Piping and valves upstream from isolation check valvesNNS NA S P1 S P V i.Flexible connections upstreamfrom isolation check valvesNNS NA S P1 S P V 8Aj.Air dryer, membraneNNS NA S P1 S P V 8Ak.Piping, other 3 I B P1 S P S l.Valves, other 3 I B P1 S P V 8128.Starting System - Standby (34)Diesel-Generator (8) a.Air receivers 3 I B P1 S P V b.Air compressorsNNSNA S P1 S P V (49) c.Aftercoolers NNS NA S P1 S P V (49) d.Air dryers, membraneNNS NA S P1 S P V 12e.Piping and valves, integral with engineNNS I S P1 S P V f.Piping, between engine and air receivers 3 I B P1 S P S g.Valves, between engine and air receivers 3 I B P1 S P V h.Piping, otherNNS NA S P1 S P S i.Valves, otherNNS NA S P1 S P V j.Flexible connections 3 I B P1 S P V 7
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 12 11a of 34 December 1999 12k.Air compressor motors 3 I B P1 S P V (49) l.Solenoid valves, moistureNNS NA S P1 S P V separator and filter drains m.Filters, air dryerNNS NA S P1 S P V 12 TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7) Class Category Categor y Designation Location (5) Supply Detail Notes Revision 22 12 of 34 7 9.Lubrication System - HPCS (34) Diesel-Generatora.Pumps 3 I B P1 S GE V b.Lube oil cooler 3 I B P1 S GE V c.Sump pan 3 I B P1 S GE V d.Strainer 3 I B P1 S GE V e.Filter 3 I B P1 S GE V f.Piping and valves, integral with engineNNS I S P1 S GE V g.Piping, other 3 I B P1 S P S h.Valves, other 3 I B P1 S P V 10.Lubrication System - Standby (34) Diesel-Generator a.Lube oil pump (engine-driven)NNS I S P1 S P V b.Before and after pump 3 I B P1 S P V c.Lube oil cooler 3 I B P1 S P V d.Sump tankNNS I S P1 S P V e.StrainersNNS I S P1 S P V f.Filters 3 I B P1 S P V g.Piping and valves, integral with engineNNS I S P1 S P V h.Piping, other 3 I B P1 S P S i.Valves, other 3 I B P1 S P V 11.Combustion Air Intake and Exhaust System - HPCS
Diesel-Generator a.Intake and exhaust silencers3 I B P1 S GE V b.Intake air filter 3 I B P1 S GE V c.Expansion joints 3 I B P1 S GE V d.Piping 3 I B P1 S P S 12.Combustion Air Intake and Exhaust System - Standby
Diesel-Generator a.Intake and exhaust silencersNNS I S P1 S P V b.Intake air filterNNS I S P1 S P V c.Expansion joints (intake)
NNS I B P1 SPVd.Piping 3 I B P1 S P S e.Expansion joints (exhaust)NNS I S P1 S P S 7 TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 7 13 of 34 January 1995 XXVIII.Combustible Gas Control System1.Piping 2 I B E C,D P S 2.Valves 2 I B E C,D P V 3. Fans 2 I B E C P V4.Hydrogen recombiners2 I B E C P V 5.Electrical modules with safety functions 2 I B EC,D,RP S6.Cables with safety function2 NA B E - P S XXIX.Standby Gas Treatment System1.Charcoal filter units 2 I B E A P V 2.Exhaust fans 2 I B E A P V 3. Ductwork 2 I B E A P V4.Isolation dampers 2 I B E A P V 5.Electrical modules with a safety function 2 I B E R,A P S6.Cable with a safety function2 NA B E - P S XXX.Containment Ventilation System1.Containment unit coolers/coils2/3 I B E C P V (30)(1HVR*UC1A, UC1B)2.Pressure relief dampers 2 I B E C P V 4.Containment unit cooler ductwork up to pressure relief damper 2 I B E C P S 5.Ductwork, otherNNS NA S E C P S 6.Dampers, otherNNS NA S E C P V 7.Dome recirculation fanNNS NA S E C P V 8.Containment unit cooler (1HVR*UC1C) NNSNA S E C P V XXXI.Auxiliary Building Ventilation System1.Outside air intake ductwork from tornado damper to isolation damper 3 I B E A P S 2.Unit cooler ductwork 3 I B E A P S 3.Unit cooler dampers 3 I B E A PP V 4.Exhaust ductwork to isolation dampers 3 I B E A P S TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes 14 of 34 August 1987 5.Inlet isolation dampers 3 I B E A P V 6.Outlet isolation dampers 2 I B E A P V 7.Air exhaust system ductwork from isolation damper to tornado dampers 2 I B E A P S8.Inlet tornado dampers 3 I B P A P V 9.Outlet tornado dampers 2 I B P A P V 10.Fire dampers 3 I B E A P V 11.Exhaust system balancing dampers 3 I B E A P V12.Exhaust system backdraft dampers 3 I B E A P V13.Inlet and exhaust fansNNS NA S E A P V 14.Intake and exhaust filtersNNS NA S E A P V 15.Dampers, otherNNS NA S E A P V 16.Ductwork, otherNNS NA S E A P S 17.Unit coolers/coils (1HVR*UC2 through UC11A, B)3/3 I B E A P V 18.Unit cooler 1HVR-UC14NNS NA S E A P V XXXII.Power Conversion System1.Main steam line (MSL) from second isolation valve to and including
first field weld outside the jet
impingement wall and all branch
lines out to and including the
first valve in the branch line 1 I B E A P S (10)2.MSL from but not including the first field weld outside the jet
impingement wall to and including
the third isolation valve and all
branch lines out to and including the first valve in the branch line2 I B E A P S (10,42)3.Feedwater line from second isolationvalve to and including outermost2 I B E A P S (10,11, isolation valve
- 43)
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes 15 of 34 August 1987 4.Branch lines off the feedwater line between the second iso-lation valve and the outermost
isolation valve, from the branch
point at the feedwater line
to and including the first valve
in the branch line 2 I B E A P S (10)5.MSL piping downstream of the third isolation valve to the
turbine stop valves and all
branch linesNNS NA S E,N A,T P S (10,21)6.Turbine bypass pipingNNS NA S N T P S (10) 7.Branch lines of the MSL between the MSL shutoff valve and the
turbine main stop valveNNS NA S E,N A,T P V (10)8.Turbine valve, turbine control valve, turbine bypass valves, and
the main steam leads from the
turbine control valve to the (10,21 turbine casingNNSNA S N T P V 22,23)9.Feedwater system components be-yond the outermost feedwaterNNS NA S E,N A,T P S (10,43)isolation valveXXXIII.Condensate Makeup and Drawoff System1.Condensate storage tankNNS NA S N O P V (14) 2.Piping, containment isolation 2 I B E A,C,F P S 3.Valves containment isolation 2 I B E A,C,F P V 4.Other pipingNS NA S E A,C,F,D, P S T,M,W,O5.Other valves and componentsNS NA S E A,C,F,D, P V T,M,W,OXXXIV.Auxiliary AC Power System (Class 1E)1.4160-volt switchgear 2 I B E A,F,R P V 2.480-volt load centers 2 I B E A,R P V 3.480-volt motor control centers 2 I B E A,F,R,M P V 4.4160/480-volt transformers 2 I B E A,R,M P V 5.120-volt instrument (vital) bus2 I B E R P V TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 19 16 of 34 6.Protective relays for Items 1 through 5, above2 I B E A,F,R,M P V 7.Cables (including splices) with safety function2 NA B E - P V 8.Terminal blocks2 I B E - P V 9.ConduitsNNS NA S E - P - 10.Cable trays, tray supports, and conduit supports2 I B E - P V,S (33)11.Containment electrical penetrations and protection2 I B E C P V 12.Emergency lighting battery (33,34)packsNNS NA S E,N - P V 13.Raceway fire stops and sealsNNS NA S E,N - P V XXXV.125-Volt DC Power System (Class 1E)1.125-volt batteries I B E R P V 2.Battery chargers2 I B E R P V 3.Battery racks2 I B E R P V 154.Uninterruptible power supplies (UPS)2 I B E R P, E V 5.125-volt switchgear2 I B E R P V 6.125-volt distribution panels2 I B E R P V 7.Protective relays2 I B E R P V 8.Cables with safety function2 NA B E - P V 9.ConduitsNNS NA S E - - V 10.Cable trays, tray supports, and conduit supports2 I B E - P V,S (33) 11.Raceway fire stops and sealsNNS NA S E,N - P V 12.Inverter Manual Transfer Switch2 I B E R E V 15XXXVI.Miscellaneous Components1.Reactor building polar crane3 I B E C P V 2.Spent fuel cask trolleyNNS I S E F P V (52)23.Fuel building bridge craneNNS II S E F P V (18)24.Radwaste building craneNNS NA S N W P V 85.Low Level Radwaste Storage Facility Overhead Bridge CraneNNS NA S N M P V 8
TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 8 17 of 34 August 1996 XXXVII.Reactor Plant Component Cooling Water1.Pumps and heat exchangers NNS NA S E A P V 2.Piping, containment and drywell isolation 2 I B E A,C,D P S 3.Valves, containment and drywell isolation 2 I B E A,C,D P V 4.Piping, RHR pump and fuel pool coolers cooling water 3 I B E A,F P S 5.Valves, RHR Pump and fuel pool coolers cooling water 3 I B E D,A,F P V 6.Piping, other NNS NA S E A,C,D,F P S 7.Valves, other NNS NA S E A,C,D,F P V XXXVIII.Equipment and Floor Drainage Systems1.Sumps NNS NA S E A,C,D,F, P S T,W,M2.Pumps NNS NA S E A,C,D,F, P V T,W,M3.Piping, containment isolation 2 I B E A,C,D P S 4.Valves, containment isolation 2 I B E A,C,D P V 5.Cable, with a safety function 2 NA B E - P S 6.Piping, other NNS NA S E A,C,D,F, P S W,T,M7.Valves, other NNS NA S E A,C,D,F, P V W,T,M88.ECCS cubicle wall penetration piping and valves 3 I B E A P V 8XXXIX.Fuel Building Ventilation System1.Supply system air conditioning unitNNS NA S E F P V 2.Unit coolersNNS NA S E F P V 3.Exhaust fansNNS NA S E F P V 4.Charcoal filtration system fans 3 I B E F P V 5.Charcoal filtration system filters 3 I B E F P V 6.Charcoal filtration system ductwork 3 I B E F P S TABLE 3.2-1 (Continued)
Quality (3)Tornado (4)Scope (6)Safety (1)Seismic (2) AssuranceProtectionofDesign (7)Class Category CategoryDesignation Location (5) Supply Detail Notes Revision 21 18 of 34 7.Charcoal filtration system balancing dampers 3 I B E F P V 8.Emergency air intake ductwork3 I B E F P S 9.Isolation dampers and associated ductwork 3 I B E F P V10.Tornado dampers 3 I B P F P V11.Fire dampers 3 I B E F P V12.Dampers, otherNNSNA S E F P V13.Ductwork, otherNNSNA S E F P S XL. Area Radiation Monitoring System (34)1.Containment post-accident area monitor and drywell post-accident area monitor 2 I B E C,D P V 2.Cable, monitors with safety functionNNSNA S E C P V 3.All other componentsNNSNA SEA,F,W,T,RP V XLI. Leak Detection System81.Temperature element 2 I B E C,DGEV2.Temperature switch 2 I B E C,D E V 3.Differential flow switch 2 I B E C,DGEV4.Pressure switch 2 I B E C,DGEV 5.Differential pressure switch2 I B E C,DGEV 6.Differential flow summer 2 I B E C,DGEV8 XLII. Main Steam-Positive Leakage Control System (MS-PLCS) and Penetration Valve Leakage Control System(PVLCS) 1.Piping and valves up to first isolation valve of inboard
subsystem (MS-PLCS) 1 I B E C P S 2.Piping and valves, other 2 I B E C,A P S 3. a. Electrical modules (MS-PLCS)2 I B E AGEGE b.Electrical modules (PVLCS)2 I B E A P S 4.Compressor assembly (PVLCS) 2 I B E A P V (29)5.Cable, with safety function 2 I B E C,A P S TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 19 19 of 34 XLIII. Structures1.Primary containment 2 I B E P S 2.Drywell, including biological shielding 2 I B E P S 3.Shield building, including biological shielding 2 I B P P S 4.Auxiliary building, including biological shielding 2 I B P P S 5.Fuel building, including biological shielding 3 I B P P S 6.Control building, including control room, office area, and biological shielding 2 I B P P S 7.Diesel generator building 3 I B P P S 8.Standby service water cooling tower and basin 3 I B P P S (8)9.Standby service water pump house 3 I B P P S 10.Piping and electrical tunnelshousing safety-related systems 3 I B P P S 11.Turbine building UNC (26,28) S N P S 12.Radwaste building UNC (26) S N P S (27)13.Auxiliary control building UNC NA S N P S 14.Services building UNC NA S N P S 15.Condensate demineralizer, regener- UNC(26,28) S N P S ation, and off-gas building16.Spent fuel pool and liner 3 I B E C,F P S 17.Internal missile barriers 2 I B E C P S18.Fuel Building Cask Handling AreaStructure (Exterior to Fuel Bldg.) NSS I S N E E (53)XLIV. Control Building Chilled Water System1.Centrifugal liquid chillers 3 I B E R P V 2.Condenser cooling water pumps 3 I B E R P V 3.Chilled water recirculation pumps 3 I B E R P V 4.Compression tanks 3 I B E R P S 5.Piping 3 I B E R P S 6.Valves 3 I B E R P V TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes 20 of 34 August 1987 XLV. Control Building Ventilation System1.Main control room air-conditioning units and heating coils 3 I B E R P V 2.Standby switchgear room air-conditioning units, return
air fans and battery room
exhaust fans 3 I B E R P V 3.Chiller equipment room air-conditioning units 3 I B E R P V 4.Main control room charcoal filter trains 3 I B E R P V 5.Smoke removal fans NNS NA S E R P V 6.Chiller equipment room supply and exhaust fans NNS NA S E R P V 7.Elevator equipment room, kitchen and toilet exhaust fans NNS NA S E R P V 8.Ductwork for the smoke removal system NNS I S E R P S 9.Ductwork for a portion of the chiller equipment room
ventilation supply and
exhaust ductwork NNS I S E R P S 10.Dampers for the smoke removal system and for a
portion of the chiller
equipment room ventilation supply and exhaust ductwork NNS NA S E R P V 11.Ductwork for the control building ventilation and
air-conditioning systems, including main control room and remote air intake (except pipe) 3 I B E M/R P S 12.Dampers for the control building ventilation and
air-conditioning systems, including main control room
isolation dampers and remote
air intake 3 I B E M/R P V 13.Inlet and outlet tornado dampers 3 I B P M/R P V TABLE 3.2-1 (Continued) Quality (3) Tornado (4) Scope (6) Safety (1) Seismic (2) Assurance Protection of Design (7) Class Category Categor y Designation Location (5) Supply Detail NotesRevision 18 21 of 34 14. Inlet and outlet filters NNS NA S E R P V 15. Fire dampers 3 I B E R P V 16. Remote air intake pipe 3 I B E M/R P S (41)XLVI. Drywell Ventilation System1. Unit coolers NNS NA S E D P V 2. Ductwork NNS NA S E D P S 3. Dampers NNS NA S E D P V XLVII. Annulus Mixing System
- 1. Fans(Disabled)NNSI B E A PV2. Balancing dampers 2 I B E A P V 3. Ductwork 2 I B E A P S XLVIII. Annulus Pressure Control System
- 1. Ductwork from isolation damper to plant exhaust duct 2 I B E A P S 2. Isolation dampers 2 I B E A P V
- 3. Fans NNS NA S E A P V
- 4. Dampers, other NNS NA S E A P V 5. Ductwork, other NNS NA S E A P S XLIX. Containment and Drywell Purge System
- 1. Containment and drywell penetrations and isolation valves 2 I B E A P V 2. Fire dampers 3 I B E A P V
- 3. Filters NNS NA S E A P V
- 4. Fans NNS NA S E A P V
- 5. Ductwork NNS NA S E A P V 6. Dampers, other NNS NA S E A P V L. Diesel Generator Building Ventilation System71. Exhaust fans 3 I B P1 S P V 2. Tornado dampers 3 I B P S P V
- 3. Backdraft and balancing dampers 3 I B P1 S P V
- 4. Ductwork 3 I B P1 S P S 5. DG control room vent fans 3 I B P1 S P V 7
TABLE 3.2-1 (Continued) Quality (3) Tornado (4) Scope (6) Safety (1) Seismic (2) Assurance Protection of Design (7) Class Category Categor y Designation Location (5) Supply Detail Notes 22 of 34 August 1987 6. DG control room ductwork 3 I B E S P S 7. DG control room dampers 3 I B E S P V
- 8. Filters NNS NA S E S P V
- 9. Normal ventilation fans NNS NA S E S P V
- 10. Dampers, other NNS NA S E S P V 11. Ductwork, other NNS NA S E S P S LI. Standby Service Water Pumphouse Ventilation System1. Fans 3 I B E P P V 2. Tornado dampers 3 I B P P P V 3. Ductwork 3 I B E P P S LII. Turbine Building Ventilation System1. Fans NNS NA S N T P V 2. Filters NNS NA S N T P V
- 3. Unit coolers NNS NA S N T P V
- 4. Dampers NNS NA S N T P V 5. Ductwork NNS NA S N T P S LIII. Radwaste Building Ventilation System1. Fans NNS NA S N W P V 2. Unit coolers NNS NA S N W P V
- 3. Dampers NNS NA S N W P V
- 4. Ductwork NNS NA S N W P S 5. Charcoal filter NNS NA S N W P V LIV. Fire Pumphouse Heating and Ventilation System1. Fans NNS NA S N P P V 2. Unit heaters NNS NA S N P P V LV. Normal Switchgear Building HVAC System1. Air-conditioning units NNS NA S N M P V 2. Fans NNS NA S N M P V
- 4. Dampers NNS NA S N M P V 5. Ductwork NNS NA S N M P S TABLE 3.2-1 (Continued)
Quality (3)Tornado (4)Scope (6)Safety (1) Seismic (2) AssuranceProtectionofDesign (7)Class Category CategoryDesignation Location (5) Supply Detail NotesRevision 2123 of 34 LVI. Auxiliary Boiler Building HVAC System1. Air-conditioning unitsNNSNASNMPV2. FansNNSNASNMPV3. DampersNNSNASNMPV4. DuctworkNNSNASNMPS LVII. Makeup Water Intake Structure and Switchgear Ventilation System1. Air-conditioning unitsNNSNASNMPV2. FansNNSNASNMPV3. HeatersNNSNASNMPV4. DuctworkNNSNASNMPV5. DampersNNSNASNMPS LVIII. Electrical and Piping Tunnel Ventilation System
- 1. Fire dampers in theCategory I firewall3ISNMPV2. FansNNSNASNMPV3. Dampers, otherNNSNASNMPV4. DuctworkNNSNASNMPS LIX. Post-Accident Sampling System
- 1. Sample tubing, piping, and valves up to and including
the outermost containment
isolation valve, containment
atmosphere monitoring isolation
valves, and drain line isolation valves2 (54)IBEA,CPS2. Cable with safety function2NABEA,CPS
- 3. Other sample tubing, piping,and valvesNNSNASEAPS4. Sample panel wet sectionNNSNASEA,MGEV (38)5. Sample system control panelNNSNASEA,MGEV (38)LX. Permanent Emergency Support Facilities (34)1. Technical Support Center (TSC)NNSNASNTSCPV2. Emergency Operations Center (EOF) NNSNASNEOFPV3. Operational Support Center (OSC)NNSNASNBRPV TABLE 3.2-1 (Continued)
Quality (3) Tornado (4)Scope (6)Safety (1) Seismic (2) Assurance Protection of Design (7)Class Category Categor y Designation Location (5) Supply Detail Notes Revision 12 24 of 34 December 1999 LXI. Emergency Response Information System (34)1.Interface with Category I Systems 3 I B E C GE V 2.Safety Parameter Display System (SPDS)
A. Control Room NNS NA S E R GE V B. TSC NNS NA S N TSC GE V C. EOF NNS NA S N M GE V 3.Electrical Modules with Display Function other than SPDS
A. Control Room NNS NA S E R GE V B. TSC NNS NA S N TSC GE V C. EOF NNS NA S N M GE V 4.Radiological/Meteorological Display A. Control Room NNS NA S E R P V B. TSC NNS NA S N TSC P V C. EOF NNS NA S N EOF P V 10 LXII. Suppression Pool Cleanup, Cooling and Alternate Decay Heat Removal System 1.Vessels: Filter, Demineralizer, NNS NA S N W E V Backwash Tank, Strainer, Air Accumulator Tank2.Heat ExchangerNNS NA S E M E V (33) 3.PipingNNS NA S E/N A,M,W E V 4.ValvesNNS NA S E/N M,W E V 5.PumpsNNS NA S E M E V 1012 LXIII Hydrogen Water Chemistry System Liquid Hydrogen Vessel NNS NA(50) S N(51) O E E Liquid Hydrogen Piping NNS NA(50) S N O E E Gaseous Hydrogen Vessels NNS NA(50) S P O E E Gaseous Hydrogen Piping NNS NA S N O,T E E Liquid Oxygen Vessel NNS NA S N(51) O E E Liquid Oxygen Piping NNS NA S N O E E Gaseous Oxygen Piping NNS NA S N O,T E E Hydrogen Valves NNS NA S N O,T E E Oxygen Valves NNS NA S N O,T E E HWC PanelsNNSNA S N OGE GE 12 RBS USAR TABLE 3.2-1 (Cont)
Revision 23 25 of 34 NOTES: (1) Safety Classes 1, 2, 3, and NNS are defined in Section 3.2.2. The equipment is constructed in accordance with the codes listed in Table 3.2-4 through 3.2-10 and structures are constructed in accordance with the codes listed in Section 3.8. (unc. = unclassified)
(2) I = The equipment is constructed in accordance with the seismic requirements for the SSE as described in Section 3.7. For civil and structural codes, see
Section 3.8.
NA = The seismic requirements for the SSE are not applicable to the equipment.
(3) B = The equipment meets the quality assurance requirements of 10CFR50, Appendix B, in accordance with the quality
assurance program described in Chapter 17.
S = The equipment meets the quality assurance requirements defined in the purchase specification.
(4) P = Those structures or components designed to withstand a design base tornado. 7 P1 = "E" (for tornado generated missile protection) and "P." 7 E = Those systems or components enclosed within the structure or component designed to withstand a design
base tornado.
N = Those components and structures which are not designed for tornado protection.
(5) A = Auxiliary Building C = Part of, or within, Containment D = Drywell F = Fuel Building M = Any other location O = Outdoors onsite P = Pump House R = Control Building S = Diesel Generator Building T = Turbine Building W = Radwaste Building TSC = Technical Support Center EOF = Emergency Operations Facility BR = Baton Rouge RBS USAR TABLE 3.2-1 (Cont) Revision 14 26 of 34 September 2001 14 (6)GE= General Electric P = Gulf States E = Entergy Operations Incorporated 14 (7)GE= General Electric - Nuclear Energy Business Group (NEBG) is responsible for details of component design S = Stone & Webster is responsible for details of component design. V = Component vendor is responsible for details of component design. CBIN = Chicago Bridge & Iron Nuclear is responsible for details of component design. 8E = Entergy Operations Incorporated 8 (8)Details of internal equipment design by Vendor.
(9)A portion of the CRD insert and withdraw lines from the drive flange are Safety Class 1. The remainder of the piping is Safety Class 2 up to and including the first valve on the
hydraulic control unit.
(10)See Section 3.2.2.1 for explanation. 12 (11)In addition to a swing check valve inside the containment and
a positive acting check valve outside containment, a third
motor operated valve is provided in each line outside the
containment. The spring loaded piston operator of the positive acting check valve is held open by air pressure during normal operation. Fail-open solenoid valves are used to release air pressure to permit the check valve piston
operator to close. The positive acting check valve and the motor operated isolation valve are remote manually operated from the main control room, using signals which indicate loss
of feedwater flow. 12 The classification of the feedwater lines from the reactor vessel to and including the second isolation valve is Safety Class 1; from the second isolation valve to and including the outermost isolation valve is Safety Class 2; beyond the outermost isolation valve is classified NNS, but seismically supported up to and including the anchor at the turbine
building/auxiliary building interface.
(12)1. Lines equivalent to a 3/4-in or smaller liquid line which are part of the RCPB are Safety Class 2.
RBS USAR TABLE 3.2-1 (Cont) 27 of 34 August 1987 2.All instrument lines which are connected to the RCPB and are utilized to actuate safety systems are Safety Class 2 from the outer isolation valve or the process shutoff valve (root valve) to the sensing instrumentation.
3.All instrument lines which are connected to the RCPB and not utilized to actuate safety systems are classified NNS from the outer isolation valve or the process shutoff valve (root valve) to the sensing instrumentation.4.All other instrument lines:
a.through the root valve are of the same classification as the system to which they are attached.b.beyond the root valve, if used to actuate a safety system, are of the same classification as the system to which they are attached.
5.All sample lines from the outer isolation valve or the process root valve through the remainder of the sampling system are classified NNS.
(13)The turbine does not fall within the applicable design codes. To assure the turbine is fabricated to the standards
commensurate with their safety and performance requirements, General Electric has established specific design requirements
for this component which are as follows:
1.All welding shall be qualified in accordance with Section IX, ASME Boiler and Pressure Vessel Code.
2.All pressure-containing castings and fabrications shall be hydrotested at 1.5 times design pressure.
3.All high-pressure castings shall be radiographed according to:ASTM E-94 E-142 Maximum feasible volume E-71, 186 or 280 Severity level 3 RBS USAR TABLE 3.2-1 (Cont) 28 of 34 August 1987 4. As-cast surfaces shall be magnetic particle or liquid penetrant tested according to ASME,Section III, Paragraphs NB-2575, NC-2575, NC-2576, or NB-2576, NC-2576. 5. Wheel and shaft forgings shall be ultrasonically tested according to ASTM A-388. 6. Buff-welds shall be radiographed and magnetic particle or liquid penetrant tested according to ASME Boiler and Pressure Vessel Code. Acceptance standards shall be in accordance with ASME Boiler and Pressure Vessel Code Section III Paragraph NB-5340, NC-5340, NB-5350, and
NC-5350, respectively. 7. Notification to be made on major repairs and records maintained thereof. 8. Record system and traceability according to ASME Section III, NA-4000. 9. Control and identification according to ASME Section III, NA-4000.10. Procedures shall conform to ASME Section III, NB-5100, NC-5100.11. Inspection personnel shall be qualified according to ASME Section III, NB-5500, NC-5500.
(14)The condensate storage tank is designed, fabricated, and
tested to meet the intent of ANSI-B96.1.
(15)ASME Section VIII-1 and ANSI B31.1 apply downstream of
outermost isolation valves.
(16)The gaseous radwaste system piping, pumps, and valves containing gaseous radwaste are constructed in accordance with
the applicable codes of classification NNS.
(17)The hydraulic control unit (HCU) is a GE factory-assembled engineered module of valves, tubing, piping, and stored water which controls a single CRD by the application of precisely timed sequences of pressures and flows to accomplish slow insertion or withdrawal of RBS USAR TABLE 3.2-1 (Cont) Revision 2 29 of 34 August 1989 the control rods for power control and rapid insertion for reactor scram. Although the HCU, as a unit, is field installed and connected to process piping, many of its internal parts differ markedly
from process piping components because of the more complex functions they must provide. Thus, although the codes and
standards invoked for Safety Classes 1, 2, 3, and NNS pressure integrity quality levels clearly apply at all levels to the interfaces between the HCU and the connecting conventional piping components (e.g., pipe nipples, fittings, simple hand
valves), it is considered that they do not apply to the
specialty parts (e.g., solenoid valves, pneumatic components
and instruments). The design and construction specifications for the HCU do invoke such codes and standards as can be reasonably applied
to individual parts in developing required quality levels, but these codes and standards are supplemented with additional requirements for these parts and for the remaining parts and details. For example, 1) all welds are LP inspected, 2) all socket welds are inspected for gap between pipe and socket bottom, 3) all welding is performed by qualified welders, and
- 4) all work is done in accordance with written procedures.
Classification NNS is generally applicable because the codes and standards invoked by that group contain clauses which permit the use of manufacturer's standards and proven design techniques which are not explicitly defined within the codes for Safety Classes 1, 2, or 3. This is supplemented by the QC
techniques previously described. 2 (18)This crane is seismically qualified and is provided with earthquake restraints to prevent the trolley and bridge from coming off the rails. This crane carries only light loads
over spent fuel.
2(19)The safety-related systems and equipment supported by the air systems are the automatic depressurization system, the main
steam isolation valves, and the air-starting system of the
diesel generators.
(20)In addition to a swing check valve inside the drywell and a positive acting check valve outside the drywell, a third valve with high leaktight integrity is provided in RBS USAR TABLE 3.2-1 (Cont) 30 of 34 August 1988 each line. The spring loaded piston operator of the positive acting check valve is held open by air pressure during normal operation. Fail open solenoid valves are used to release air pressure to permit the check valve piston operator to close.
The positive acting check valve and the high leaktight integrity isolation valve are remote manually operated from the main control room, using signals which indicate loss of
CRD system return line flow.
(21)All inspection records are maintained for the life of the plant. These records include data pertaining to qualification
of inspection personnel, examination procedures, and
examination results.
(22)All cast pressure-retaining parts of a size and configuration
for which volumetric methods are effective are examined by radiographic methods by qualified personnel. Ultrasonic examination to equivalent standards is used as an alternate to radiographic methods. Examination procedures and acceptance standards are at least equivalent to those defined in
Paragraph 136.4, Nonboiler External Piping, ANSI B31.1- 1973.
(23)The following qualifications are met with respect to the
certification requirements:1. The manufacturer of the turbine stop valves, turbine control valves, turbine bypass valves, and main steam leads from turbine control valve to turbine casing utilizes quality control procedures equivalent to those defined in GE Publication GEZ-4982A, General Electric
Large Steam Turbine Generator Quality Control Program. 2. A certification obtained from the manufacturer of these valves and steam loads demonstrates that the quality
control program as defined has been accomplished.
(24)The nonregenerative heat exchanger is Safety Class 3 on the
tube side and nonnuclear safety class on the shell side.
(25)The filter/demineralizer, heat exchangers, pumps, tanks, and valves supplied by GE which are Safety Class 3, are RBS USAR TABLE 3.2-1 (Cont) 31 of 34 August 1988 not required to mitigate the consequences of a LOCA, and their failure does not result in release to the environment of radioactive material which would give a single event dose greater than the annual dose from 10CFR20.105(1). Therefore, they are not Seismic Category I. The purchaser-furnished piping and valves which are Safety Class 3 are also Seismic Category I.
(26)The design satisfies the requirements of Regulatory Guide 1.143 as described in Sections 11.2 and 11.3. The seismic design of the charcoal adsorber tanks is discussed in
Section 11.3.2.2.2.1.
(27)The radwaste building is not tornado-protected above grade.
(28)The structure is designed in accordance with the seismic analysis and design approach as described in
Sections 3.7.2.17A and 3.8.4.4.9, respectively.
(29)The PVLCS compressor assembly includes the compressor, filter, moisture separator, aftercooler, and accumulator. All these
components are supplied as a single skid-mounted unit.
(30)The cooling coils for the containment unit coolers are Safety
Class 3. (31)Requirements for instrument and pneumatic tubing and supports
classified as Safety Class 2 and 3 are shown in Table 3.2-8.
(32)The classification of a structure described herein also
applies to all major structural components of that structure.
(33)Systems and components whose failure could adversely affect safety-related systems or components are analyzed to seismic Category I requirements and controlled in accordance with the
pertinent requirements of the operational QA program.
(34)The pertinent provisions of the operational QA program are
applied to the following items:
RBS USAR TABLE 3.2-1 (Cont) 32 of 34 August 1988 a. Radioactivity sampling (air, surfaces, liquids) b. Radioactivity contamination measurement and analysis equipmentc. Personnel monitoring equipment
- d. Instrument storage, calibration, and maintenance programe. Decontamination facilities, personnel, and equipment
- f. Respiratory protection equipment (including testing)
- g. Contamination control
- h. Equipment and other items associated with the emergency support facilities i. Site grading, including maintenance of the West Creek fabriform channel j. Activities affecting reactor internal structures
- k. Diesel generator auxiliaries including the lube system, jacket cooling water system, air start system, governor, voltage regulator, and excitation systems. 1 (35)Effluent monitors meet the environmental qualification and quality assurance requirements of Regulatory Guide 1.97.
(36)Valve actuators for active safety-related valves are subject
to the same quality assurance requirements as the valve.
(37)The safety-related instrumentation and controls described in Sections 7.1 through 7.6 are subject to the requirements of Appendix B, Quality Assurance Program, and Class 1E requirements (IEEE 279). However, post- accident monitoring instrumentation discussed in Section 7.5 has design and qualification criteria as designated in Table 7.5-2 (e.g.,
Category 1, 2, 3 or Regulatory Guide 1.97).
1(38)The sample panel and cooler rack are seismically supported.
The instruments are not.
(39)Supports for components designated as Quality Assurance (QA)
Category B are also classified as QA Category B.
RBS USAR TABLE 3.2-1 (Cont) 33 of 34 August 1987 (40)The piping between RHR valves MOV F042B and MOV F027B, and between MOV F042A and MOV F027A, is safety Class 2 as shown on
Fig. 5.4-12.
(41)A portion of the main control room remote air intake utilizes pipe in lieu of ductwork. Since this pipe is intended to fulfill the function of ductwork, the pipe and its supports are designed, fabricated, and installed in accordance with
ASME III, Class 3 requirements with the following exceptions: a. Visual inspection of the welds is performed.
- b. ASME III Code Data Reports, N-stamping, and ANI acceptance are not required. c. Being part of engineered safety filtration system operating at low pressure (inches W.G.), it is tested in accordance with ANSI N509 as defined in Regulatory
Guide 1.52.
(42)Piping is seismically supported from the outermost isolation valve to and including the main turbine stop and control
valve.(43)Piping is seismically supported from the outermost isolation valve to and including the anchor at the turbine
building/auxiliary building interface.
(44)For the standby diesel generators, 1EGS*EG1A and 1EGS*EG1B, some components supplied meet earlier editions and addenda of the ASME Section III Code than were applicable at the date the purchase orders were awarded to the subsuppliers. See Note 4
of Regulatory Guide 1.26 position in Table 1.8-1.
(45)All fuel storage and transfer system piping and valves are QA
Category B, Seismic Category I, Safety Class 3 except the standby diesel generators fuel oil backpressure regulating valves 1EGF*PCV25Aand B and approximately 15 inches of 1-in pipe on each side of the valves. Valves 1EGF*PCV25A and B are classified as QA Category B, Seismic Category I, Safety Class 3, non-ASME III stamped components. These valves were
procured from the manufacturer recommended by the standby
diesel generator supplier and have been satisfactorily used in
other standby diesel generator RBS USAR TABLE 3.2-1 (Cont) Revision 19 34 of 34 applications using TDI diesels. The 15 inches of 1-in pipe on either side of the valve is classified as QA Category B, Seismic Category I, Safety Class 3, non-ASME III stamped pipe.
The pipe is procured, designed, analyzed, and installed to the
requirements of ASME III. 3 (46)The condensate chamber for the reactor level instrumentation reference leg "A" is classified as piping.
(47)The compressed air bottles and regulators for the Instrument Air System are bought as commercial grade safety related items. The air bottles are manufactured, tested and inspected in accordance with the requirements of D.O.T. Subsection 178.37, Specification 3AA, and are qualified to Seismic
Category I.
38 (48)The design of the low level radwaste structures was a combined effort between Entergy Operations/Gulf States Utilities and outside Vendors. Analyses for the remote storage structures include assessments of the radiological consequences of design basis events (fire, flood, earthquake, and tornado). One of the low level radwaste storage facilities houses a concrete
vault structure designed to withstand tornado wind and missile loads. Analyses for this facility include evaluations of radiological consequences of operational events related to handling radioactive material and radioactive wastes in the
facility and operation of the facility overhead bridge crane. 812 (49) The air compressormotors for the Standby Diesel Generators starting air system are bought as commercial grade safety related Class 1E items in accordance with EOI Specification 244.703 and are qualified to Seismic Category I since they will be connected to the Class 1E electrical distribution system. These components serve no other safety related
function.(50) The liquid hydrogen tank, including all integral tank attached piping, is designed and qualified to Uniform Building Code (UBC) seismic zone 4 requirements. The liquid hydrogen filled piping between the tank, hydrogen pumps and vaporizers is qualified to UBC seismic zone 1 requirements. The design of foundations for the hydrogen storage tank includes tank
seismic loading.
(51) Foundations for permanent liquid hydrogen and oxygen storage tanks are designed to keep the associated vessel in place during a design basis tornado. Liquid vessel failure with the corresponding loss of contents is permitted during the
tornado.12 (52) The original design, procurement, fabrication, installation, testing, inspection and maintenance of the Fuel Building Cask Trolley (FBCHC) was non-safety related. The quality classification of the Fuel Building Cask Trolley is upgraded RBS USAR TABLE 3.2-1 (Cont)Revision 2134a of 34to Quality Assurance Program Applicable (QAPA) with specialrequirements. This change in the classification requires that future design, procurement, fabrication, installation, testing, inspection and maintenance be performed under 10CFR50 Appendix B QA program (as if the system and the
component is safety related).
(53)The original design, procurement, fabrication, installation,testing, inspection and maintenance of the Fuel Building Cask Handling Area (FBCHA) structure installed north of the Fuel Building was non-safety related. The quality classification of the FBCHA structure is upgraded to Quality Assurance Program Applicable (QAPA) with special requirements. This change in the classification requires that future design, procurement, fabrication, installation, testing, inspection and maintenance be performed under 10CFR50 Appendix B QA
program (as if the structure is safety related).
(54)The piping inside containment up to the inboard containmentisolation valves are non-safety, they are optionallyupgraded, requirement of ASME Section XI, Table IWC-2500-1 visual examination does not apply.
RBSUSARTABLE3.2-2CODEGROUPDESIGNATIONS,INDUSTRYCODES,ANDSTANDARDSFORMECHANICALCOMPONENTS (1,4)ASMESectionIIICodeApplicableSectionsASMEPressurePumps,SectionVesselsValvesMetalStorageStorageQualityGroupIIICodeandHeatandContainmentTanksTanksClassificationClasses Exchangers Piping Components 0-15 AtmosphericRevision91of1November1997 A1NA&NBNA&NB (2)------TEMAC (5)B2NA&NCNA&NCNA&NENA&NCNA&NCMCTEMAC C3NA&NDNA&ND (2)--NA&NDNA&NDTEMAC9 D ASME Piping--API-620 API-650Sectionand or AWWA-D100 VIII (6)valvesequivalentANSIB96.1 Div.1 B31.1orequivalentTEMACpumps (3)STMD3299-74 9____________________________
(1)Withoptionsandadditionsnecessaryforserviceconditionsandenvironmentalrequirements.
(2)ForpumpsclassifiedA,B,orC,applicablesubsectionsNB,NC,orND,respectively,inASMESectionIIIBoilerandPressureVesselCodeareusedasaguideincalculatingthe thicknessofpressure-retainingportionsofthepumpandinsizingcoverbolting.
(3)ForverticalturbinetypepumpsclassifiedGroupDandoperatingabove150psior212°F,ASMESectionVIII,Division1,isusedasaguideincalculatingthewallthicknessfor pressure-retainingparts.Forallotherpumps,manufacturers'standardpumpforthe serviceintendedmaybeused.
(4)ComponentsoftheRCPBmeettherequirementsof10CFR50,Section50.55a,Codesand Standards.Allothercomponentssatisfycodesandaddendaineffectatthetimeof componentorder.
(5)TEMACrepresentstheminimumstandardtowhichtubularheatexchangersmaybespecified.9 (6)ASMESectionVIIIprovidesexemptionbasedonserviceconditionsandvesselcharacteristic.
9 RBSUSAR (1)TheequipmentisconstructedinaccordancewiththeindicatedcodegrouplistedinTable3.2-1and definedinTable3.2-2.
(2)B=Theequipmentisconstructedinaccordancewiththequalityassurancerequirementsof10CFR50,AppendixB, andthequalityassuranceprogramdescribedin Chapter17.S=Theequipmentisconstructedinaccordancewiththequalityassurancerequirementsoftheequipmentpurchase
specification.
(3)I=TheequipmentisconstructedinaccordancewiththeseismicrequirementsfortheSSEasdescribedin Sections3.2.1and3.7.NA=TheseismicrequirementsfortheSSEarenotapplicabletoequipmentofthisclassification.1of1 August1987TABLE3.2-3
SUMMARY
OFSAFETYCLASSDESIGNREQUIREMENTSSafetyClassDesignRequirements1 2 3 NNSQualityGroupClassification (1)ABCC/DQualityAssuranceRequirement (2)BBBSSeismicCategory (3)IIINA RBS USAR TABLE 3.2-4 Revision 17 1 of 2 DESIGN REQUIREMENTS FOR SAFETY CLASS 1 SYSTEMS, STRUCTURES, AND COMPONENTS Design Mechanical Condition Reactor Categories (4) Vessel Pumps Valves Piping Supports Normal (1) ASME III ASME III ASME III ASME III ASME III NB3221 (3) NB3440 NB3540 NB3640 NF3230 NB3222 & & & thru NB3460 NB3550 NB3652 NF3252 NB3222 NB3525 NB3653 NF3222 Upset (1) ASME III ASME III ASME III ASME III ASME III NB3221 NB3440 NB3540 NB3640 NF3230 NB3223 & & & thru NB3460 NB3550 NB3652 NF3252 NB3223 NB3525 NB3654 NF3223 Emergency (2) ASME III ASME III ASME III ASME III ASME III NB3221 NB3440 NB3540 NB3640 NF3230 NB3224 & & & thru NB3460 NB3550 NB3652 NF3252 NB3224 NB3526 NB3655 NF3224 Faulted (2) ASME III ASME III ASME III ASME III ASME III NB3221 NB3440 NB3540 NB3640 NF3230 NB3225 & & & thru NB3460 NB3550 NB3652 NF3252 NB3225 NB3527 NB3656 NF3225
______________________________
(1) Equipment is capable of accomplishing safety functions that are necessary for any subsequent design condition event. Radiation
doses resulting from this condition of design are less than the
operational values of 10CFR20 and 10CFR50.
(2) Equipment is capable of accomplishing safety functions as required to accommodate the event, but repairs could be required to ensure equipment capability to accomplish safety functions, as required by a subsequent design condition event. Radiation doses resulting from this condition of design are less than the
guideline values of 10CFR50.67. Amendment 132 revised the design basis accident offsite dose limit requirements from 10CFR100 to 10CFR50.67. Following this design condition category, equipment can be placed in operation as soon as necessary safety audits and equipment repairs are completed.
RBS USAR TABLE 3.2-4 (Cont) 2 of 2 August 1987 (3)Design requirements are specified by three entries. The first is the code which contains the design requirements, the second is
the paragraph which describes the design requirements for the
particular component, and the third specifies the paragraph
containing the specific stress levels for the component for the
given condition of design.
(4)Design conditions are defined in Section 3.2.5.1. The applicable
design transients are discussed in Section 3.9.1.1.
RBS USAR TABLE 3.2-5 DESIGN REQUIREMENTS FOR SAFETY CLASS 2 SYSTEMS, STRUCTURES, AND COMPONENTS
______________________________
NOTE: Components which are loaded due to the direct effects of an emergency or faulted condition need only be designed for no loss of safety function (1). This means that stress and deformation limits similar to those for Safety Class 1 may be used.(1)Equipment is capable of accomplishing safety functions that are necessary for any subsequent design condition event.
Radiation doses resulting from this condition of design are less than the operational values of 10CFR20 and 10CFR50.
(2)Equipment is capable of accomplishing safety functions as required to accommodate the event, but repairs could be required
to ensure the equipment capability to accomplish safety functions as required by a subsequent design condition event.
Radiation doses resulting from this condition of design are less than the guideline values of 10CFR 50.67. Amendment 132 revised the design basis accident offsite dose limit requirements from 10CFR100 to 10CFR50.67.
Following this design category, equipment can be placed in operation as soon as the necessary safety audits and equipment repairs are completed.
(3)Design requirements for these components are contained in Section 4.2.2.
(4)ESF and non-ESF filtration system ductworks are designed to the requirements of Regulatory Guide 1.52 and Regulatory Guide 1.140, respectively.
Revision 17 1 of 1 Mechanical Reactor Assembly Internals_______ Design Ductwork Core Reactor Other Core Condition Pressure Tanks Tanks Heat Component and Fuel Support Internal Protection
Categories Vessel Pumps Valves Piping Atmosph. 0-15 psig Exchanger Supports Valves Assembly Structures Structures Components Normal (1) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4)(3)(3)(3)(3) NC3320 NC3440 NC3521 NC3640 NC3830 NC3930 NC3320 NF3230 thru & NC3522 thru thru NC3921 thru thru NC3360 NC3460 NC3652 NC3860 NC3360 NF3252 NC3321 NC3423 NC3611.2 NC3821.5 NC3321 NF3222 Upset (1) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4)(3)(3)(3)(3) NC3320 NC3440 NC3521 NC3640 NC3830 NC3930 NC3320 NF3230 thru & NC3522 thru thru NC3921 thru thru NC3360 NC3460 NC3652 NC3860 NC3360 NF3252 NC3321 NC3423 NC3611.2 NC3821.5 NC3321 NF3223 Emergency (2) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4)(3)(3)(3)(3) NC3320 NC3440 NC3521 NC3640 NC3830 NC3930 NC3320 NF3230 thru & NC3522 thru thru NC3921 thru thru NC3360 NC3460 NC3652 NC3860 NC3360 NF3252 NC3321 NC3423 NC3611.2 NC3821.5 NC3321 NF3224 Faulted (2) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4)(3)(3)(3)(3) NC3320 NC3440 NC3521 NC3640 NC3830 NC3930 NC3320 NF3230 thru & NC3522 thru thru NC3921 thru thru NC3360 NC3460 NC3652 NC3860 NC3360 NF3252 NC3321 NC3423 NC3611.2 NC3821.5 NC3321 NF3225 RBS USAR TABLE 3.2-6 DESIGN REQUIREMENTS FOR SAFETY CLASS 3 SYSTEMS AND COMPONENTS Mechanical Design Tanks Ductwork Condition Atmos- Tanks Heat (3) Pipe and Ductwork Categories Pressure Pumps Valves Piping pheric 0-15psig Exchangers Supports Valves Supports______________________________
NOTE: Components which are loaded due to the direct effects of an emergency or faulted condition need only be designed for no loss of safety function (1). This means that stress and deformation limits similar to those for Safety Class\1 may be used.
(1) Equipment is capable of accomplishing safety functions that are necessary for an subsequent design condition event. Radiation doses resulting from this condition of design are less than the
operation values of 10CFR20 and 10CFR50.
(2) Equipment is capable of accomplishing safety functions as required to accommodate the event, but repairs could be required to ensure the equipment capability to accomplish safety functions as
required by a subsequent design condition event. Radiation doses resulting from this condition of
design are less than the guideline values of 10CFR 50.67.Amendment 132 revised the design basis accident offsite dose limit requirements from 10CFR100 to 10CFR50.67.
Following this design condition category, equipment can be placed in operation as soon as necessary safety audits and equipment repairs are completed.
(3) The rules of Tubular Exchanger Manufacturers Association, Class C also apply.
(4) ESF and non-ESF filtration system ductworks are designed to the requirements of Regulatory Guide 1.52 and Regulatory Guide 1.140, respectively.
Revision 17 1 of 1 Normal (1) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4) AISC ND3320 ND3440 ND3521 ND3640 ND3830 ND3930 ND3320 NF3230 thru and thru thru thru thru ND3360 ND3460 ND3652 ND3860 ND3360 NF3252 ND3321 ND3423 ND3522 ND3611 ND3821.5 ND3921 ND3321 NF3222 Upset (1) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4) AISC ND3320 ND3440 ND3521 ND3640 ND3830 ND3930 ND3320 NF3230 thru and thru thru thru thru ND3360 ND3460 ND3652 ND3860 ND3360 NF3252 ND3321 ND3423 ND3522 ND3611 ND3821.5 ND3921 ND3321 NF3223 Emergency (2) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4) AISC ND3320 ND3440 ND3521 ND3640 ND3830 ND3930 ND3320 NF3230 thru and thru thru thru thru ND3360 ND3460 ND3652 ND3860 ND3360 NF3252 ND3321 ND3423 ND3522 ND3611 ND3821.5 ND3921 ND3321 NF3224 Faulted (2) ASME III ASME III ASME III ASME III ASME III ASME III ASME III ASME III (4) AISC ND3320 ND3440 ND3521 ND3640 ND3830 ND3930 ND3320 NF3230 thru and thru thru thru thru ND3360 ND3460 ND3652 ND3860 ND3360 NF3252 ND3321 ND3423 ND3522 ND3611 ND3821.5 ND3921 ND3321 NF3225 RBSUSARTABLE3.2-7DESIGNREQUIREMENTSFORSAFETYCLASSES2AND3ELECTRICSYSTEMSANDCOMPONENTS
______________________________
(1)IEEE279appliesonlytothoseSafetyClass2or3systemsandcomponentswhichactuatereactortripor,intheevent ofanaccident,actuateengineeredsafeguards.
(2)Switchgearincludesmediumvoltageswitchgear,lowvoltageswitchgear,motorcontrolcenters,panels,andswitchboards.
(3)Transformersincludeloadcentertransformersanddistribution transformers.
(4)Connectorsincludeterminalblocksandsplices.1of1August1987PROTECTIONSYSTEMComponentsModules Sensors Systems (1)IEEE323IEEE323IEEE323IEEE279IEEE344IEEE344CLASS1EELECTRICSYSTEMConnec-Switch-Trans-Cabletors (4)gear (2)formers (3)Diesel Systems MotorsIEEE383IEEE383IEEE323IEEE323IEEE387IEEE308IEEE323IEEE323IEEE323IEEE420IEEE323IEEE334ValvePenetra-BatteryandUninterruptibleActuatorstionsBatteryChargerPowerSupplyIEEE323IEEE317IEEE323IEEE323IEEE382IEEE323 IEEE344IEEE344 RBSUSARTABLE3.2-8REQUIREMENTSFORSAFETYCLASSES2AND3INSTRUMENTANDPNEUMATICTUBINGANDSUPPORTSRevision121of2December19991.DesignloadsandlimitsarecalculatedinaccordancewithASMEIII.2.ProcurementofmaterialisinaccordancewithASMEIIIexceptthatalternateQACategoryImaterialsmaybeused forsupports.CodeCaseN192-2andRegulatoryGuide1.84 areprocurementrequirementsforflexiblemetalhoses.
SeeFigure3.2-2.3.FabricationandinstallationcontrolutilizesQACategoryImaterialmarkingorexclusivepurchaseof QACategoryImaterialswithcontroltopointofuse.4.AutomaticClass2weldingfollowstherequirementsofASMEIIICodeCaseN-127exceptthatCategoryI documentationisusedinlieuofN-127andANIinvolvement asnotedin5.a.below.5.Fabrication,installation,NDE,andhydrostaticinspectionsareasfollows:a.Pressureboundary1)WeldersandweldingproceduresarequalifiedtoASMESectionIX.92)Maintenanceistoperform100percentvisualinspectionpriortoreleaseto theQCR.3)TheQCRistoperform100percentliquidpenetrate(LP)checksofClass2field welds(automaticandmanual)andvisual inspectionsofallClass3welds.4)Deleted.1245)Maintenanceistoperformhydrostaticpressuretestswith100percent inspectionfollowingtherequirementsof ASMEIIIandwitnessedbytheQCR.Open endedtubingforRMS-RE11A&11Bis exemptedfromhydrostaticpressuretest.
4912 RBSUSARTABLE3.2-8(Cont)Revision92of2 November 199796)Athirdpartyinspectoristobegiventheopportunitytoperformrandom surveillanceinspections(including hydrostaticpressuretest)attheir discretionanddocumentaccordingly.
9b.Supports1)WeldersandweldingproceduresarequalifiedtoCategoryIspecification requirementsinvokingASMESectionIXor AWSstandardsasappropriatetothe supporttype.92)Maintenanceistoperform100percentvisualinspectionsofallfieldwelds priortoreleasetotheQCR.3)TheQCRistoperform100percentvisualinspectionsofallfieldweldsusing ASMEIIISubsectionNFacceptance
criteria.96.Visualexaminationacceptanceforpressure-retainingfield welds.Allweldsurfacesaresufficientlyfreefromcoarseripples,grooves,overlaps,abruptridges,andvalleysto allowexamination.Thefollowingindicationsare
unacceptable:a.Cracks,externalsurface b.FilletwelddimensionnotmeetingFigureNC/ND4427-1orASMEIIICode CaseN174,orbuttweldreinforcement greaterthanspecifiedinSection NC/ND4426.2.c.Lackoffusiononthesurface.97.Unsatisfactoryconditionsnotedbythethirdpartyinspectoraretobeaddressedandresolvedviaexisting EngineeringandQAprocedures.
9 1of2August1987RBSUSARTABLE3.2-9REACTORCOOLANTPRESSUREBOUNDARY-QUALITYGROUPA(ASMEIII,CLASS1)BOPCOMPONENTS CodeBOPSystem/ComponentsCode Edition AddendaHPCSSystemPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaLPCSSystemPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaRHRSystemLoopAASMEIII1974NoAddenda PipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaLoopBPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaLoopCPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaCommonLoopA&BPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaRCICSystemPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaRWCUSystemPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaReactorPlantEquipment DrainsPipingASMEIII1974NoAddendaValvesASMEIII1974NoAddenda RBSUSARTABLE3.2-9(Cont)
CodeBOPSystem/ComponentsCode Edition AddendaRevision62of2August19936FeedwaterSystem(SeeNote)PipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddenda 6TurbinePlantMiscellaneousDrainsASMEIII1974NoAddendaPipingASMEIII1974NoAddendaValvesASMEIII1974NoAddendaMainSteamSystemPiping(VentLine)ASMEIII1974NoAddenda ValvesASMEIII1974NoAddendaStandbyLiquidControlPipingASMEIII1974NoAddenda ValvesASMEIII1974NoAddenda6NOTE:ReplacementSafeendforReactorVesselNozzleN4AmeetsASMEIII,1986Edition,NoAddenda.
6 RBSUSARTABLE3.2-10
______________________________
(1)Pipingwasprocured,designed,andfabricatedinaccordancewithASMEIII,1977Edition,withSummer1977Addendum,andinstalled inaccordancewithASMEIII,1974Edition,withnoaddenda.
(2)Pressure-retainingpartsofmodifiedsealsprocured,designed,andfabricatedinaccordancewithASMEIII,1989Edition,withnoaddendaandreconciledwithoriginalrequirementsandinstalledinaccordancewithASMEXI,1980Edition,includingAddendathroughWinter1981.Revision71of1January1995REACTORCOOLANTPRESSUREBOUNDARY-QUALITYGROUPA(ASMEIII,CLASS1)NSSSCOMPONENTSCodeEffectiveDateBased10CFR50.55aCode onPurchaseEffectiveDateOrderDateBasedonC.P.D ateNSSSSystem/ASMEComponentsCode Edition Addenda Edition AddendaReactorpressureIII1971Summer1971Summervessel19731972MainsteamsystemPipingIII1974No1971Winteraddenda1972IsolationvalvesIII1974No1971Winteraddenda1972 Safety/reliefvalvesIII1974Summer1971Winter19751972Recirculationsystem Piping (1)III1977Summer1971Winter19771972 Pump (2)III1974Summer1971Winter19741972GatevalvesIII1971Winter1971Winter19731972High-pressurecorespraysystemIII1971Winter1971Winter19721972SLCexplosivevalveIII1977Summer1971Winter19771972 RBSUSAR1of1August1987TABLE3.3-1EFFECTIVEVELOCITYPRESSURESANDWINDGUSTFACTORSEffectiveVelocityPressures q p q fPressuresforHeightPressuresPortionsofBuildingsabovegroundforBuildings(Purlins,etc)(ft)(psf)(psf)303338 5038421004449 1504853 2005157WindGustFactors Heightaboveground
____(ft)________GF_____GP___301.291.48501.281.421001.221.35 1501.181.30 2001.161.29 RBS USAR TABLE 3.4-1 STRUCTURES, PENETRATIONS, AND ACCESS OPENINGS DESIGNED FOR FLOOD PROTECTION
________________________NOTES:1.All dimensions are msl elevations in feet and inches.2.The tunnels housing Seismic Category I systems and components are accessible only from the adjoining buildings. Pipe penetrations through the tunnel walls, if any, are provided using watertight seals designed to withstand the flood loads.3.As the electrical ducts penetrate the Seismic Category I structures, they are sealed with waterstops to prevent any adverse effect from flooding.4.Pipe penetration elevations are penetration centerlines.
5.A discussion of the effect on plant buildings of runoff ponding in the Unit 2 excavation is included in Section 2.5.Revision 161 of 1March 2003StandbyDieselReactorService WaterControlAuxiliaryGeneratorFuelDescriptionBuilding Tower Basin Building Building Building Building Groundwater Level -Normal57-057-057-057-057-057-0 Design Basis Flood Level70-070-070-070-070-070-0 (DBFL) (See Note 5)Top of Base Mat70-064-670-070-070-070-0 Average Plant Grade94-694-694-694-694-694-6 DBFL - Maximum Postulated96-096-096-096-096-096-0 Flood LevelExterior access openings Shield Bldg.----Fuel Bldg.located below DBFL - Subject Equip. Hatch Truck Door to flood potential16 Penetrations - Subject to Pipeflood potential---Penet.--
(see Note 4)
@ 86-9 16and 88-4 Electric Duct BankTop of DuctTop of DuctPenetrations - Subject----El 72'-9 1/4"El 71'-6 1/4" &
to flood potential El 91'-9 1/4" (see Note 3)
Revision81of1August1996RBSUSARTABLE3.5-1TURBINEMISSILEINFORMATIONTHISTABLEHASBEENDELETED RBSUSARTABLE3.5-2Revision81of2August1996HYPOTHETICALTURBINEMISSILEINFORMATION(43-INLastStageBucket,1,800rpmLow-PressureTurbine)THISTABLEHASBEENDELETED RBSUSARTABLE3.5-2(Cont)Revision82of2August1996THISTABLEHASBEENDELETED RBSUSARRevision81of1August1996TABLE3.5-3BASICASSUMPTIONSFORPROBABILITYANALYSISOFTURBINEMISSILESTRIKETHISTABLEHASBEENDELETED RBSUSARTABLE3.5-4DAMAGEPROBABILITYDUETOLOW-TRAJECTORYTURBINEMISSILEOFTURBINE1TOUNIT1Revision81of1August1996THISTABLEHASBEENDELETED RBSUSAR1of1August1987TABLE3.5-5THISTABLEHASBEENDELETED.
RBSUSARTABLE3.5-6DAMAGEPROBABILITYDUETOLOW-TRAJECTORYTURBINEMISSILEOFTURBINE1TOUNIT1Revision81of1August1996THISTABLEHASBEENDELETED RBSUSAR1of1August1987TABLE3.5-7THISTABLEHASBEENDELETED.
RBSUSARTABLE3.5-8DAMAGEPROBABILITYDUETOHIGH-TRAJECTORYTURBINEMISSILEOFTURBINE1TOUNIT1Revision81of1August1996THISTABLEHASBEENDELETED RBSUSAR1of1August1987TABLE3.5-9THISTABLEHASBEENDELETED.
RBSUSARTABLE3.5-10DAMAGEPROBABILITYDUETOHIGH-TRAJECTORYTURBINEMISSILEOFTURBINE1TOUNIT1Revision81of1August1996THISTABLEHASBEENDELETED RBSUSAR1of1August1987TABLE3.5-11THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-12THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-13THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-14THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-15THISTABLEHASBEENDELETED RBSUSAR1of1August1987TABLE3.5-16THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-17THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-18THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-19THISTABLEHASBEENDELETED.
RBSUSARTABLE3.5-20THESUMOFDAMAGEPROBABILITYDUETOLOW-ANDHIGH-TRAJECTORYMISSILEFORTURBINE1TOEACHCRITICALPLANEREGION-UNIT1Revision81of1August1996THISTABLEHASBEENDELETED RBSUSARTABLE3.5-21THESUMOFDAMAGEPROBABILITYDUETOLOW-ANDHIGH-TRAJECTORYMISSILEFORTURBINE1TOEACHCRITICALPLANEREGION-UNIT1Revision81of1August1996THISTABLEHASBEENDELETED RBSUSAR1of1August1987TABLE3.5-22THISTABLEHASBEENDELETED.
RBSUSAR1of1August1987TABLE3.5-23THISTABLEHASBEENDELETED.
RBSUSAR (1)Allmissilesareconsideredtobecapableofstrikinginalldirections,withverticalvelocitiesequalto80percentof allthehortizontalimpactvelocities.
(2)Thesemissilesaretobeconsideredatallelevations.
(3)Thesemissilesaretobeconsideredatelevationsupto30ftaboveallgradelevelswithin1/2miofthefacility
structures.1of1August1987TABLE3.5-24SELECTEDEXTERNALMISSILES HorizontalWeightImpactVelocity Missile (1)(lb)(mph)Woodplank,4"x12"x12' (2)200288Steelpipe,3-indiameter,78144Schedule40,10ftlong (2)+Steelrod,1-indiameterx3ft8216 long (2)Steelpipe,6-indiameter,285144 Schedule40,15ftlong (2)Steelpipe,12-indiameter,743144 Schedule40,15ftlong (2)Utilitypole,131/2-in1,490144 diameter,35ftlong (3)Automobile,frontalarea4,00072 20sqft (3)
RBSUSAR1of1August1987TABLE3.5-25MISSILEBARRIERSFORNATURALPHENOMENAANDTURBINE-GENERATEDMISSILESProtectedComponentsMissileBarrierRCPBandotherprotectedExteriorshieldbuildingequipmentinsidecontainmentwallanddome,containmentstructure,drywell,internal
structuresMaincontrolroomandControlbuildingprotectedelectrical, instrumentation,control, andventilationequipment incontrolbuildingEssentialpipingsystems,Exteriorshieldbuildingventilation,electrical,wallanddome,containment instrumentation,control,structure,auxiliary andotherprotectedequip-buildingandinternal mentinauxiliarybuildingstructuresSpentfuelpoolFuelpoolwalls,fuel buildingEmergencydieselgeneratorsDieselgeneratorbuilding DieselfueloilsystemSandfillarounddieselfueloiltanksandthediesel generatorbuildingStandbyservicewaterpumpsSSWpumphouse,coolingandpipingtowers,andbasinPortionoftheRCPBintheAuxiliarybuildingsteamauxiliarybuildingtunnelUHScoolingfansFanmotorsprotectedbyconcreteenclosures.Fans protectedfromhorizontal andverticalmissilesby 2-ftreinforcedconcrete cylindersandenclosure hoods.Debrisprotectors providedonfanoutlets.
1of1August1988RBSUSARTABLE3.5-26ANALYSISOFFANBLADESASPOTENTIALMISSILESFactorofSafety(FS)EquipmentShearBearingTensileCodeTagType RPM Stress Stress StressHVY*FN1AVaneaxial1,750--20.0 HVY*FN1BVaneaxial1,750--20.0 HVY*FN1CVaneaxial1,750--20.0 HVY*FN1DVaneaxial1,750--20.0SWP*TWR1Axivane580--18.5 HVC*FN8ACentrifugal3,50014.016.0NAHVC*FN8BCentrifugal3,50014.016.0NA1HVF*FN7ACentrifugal3,50014.016.0NAHVF*FN7BCentrifugal3,50014.016.0NA 1HVR-FN1AVaneaxial1,170--36.0HVR-FN1BVaneaxial1,170--36.0 HVR-FN1CVaneaxial1,170--36.0 HVR-FN1DVaneaxial1,170--36.0HVR-FN8Vaneaxial3,500--4.0 DRS-UC1AVaneaxial3,500--3.0DRS-UC1BVaneaxial3,500--3.0 DRS-UC1CVaneaxial3,500--3.0 DRS-UC1DVaneaxial3,500--3.0 DRS-UC1EVaneaxial3,500--3.0 DRS-UC1FVaneaxial3,500--3.0 RBSUSARTABLE3.5-27THERMOWELLSTRESSANALYSISFORMISSILECREDIBILITYPipingSystemPipeThicknessThermowellDiameterofFactorofPipeSize(in)
TypeThermowell(in)Safety(FS)1of1August1987MSS-241.218Welded-in1.5083MSS-160.843Welded-in1.5063 MSS-120.687Welded-in1.5053 MSS-100.593Welded-in1.5050 MSS-60.432Socket-welded1.6610 MSS-40.337Socket-welded1.6610 MSS-20.218Socket-welded1.6610FWS-301.875Welded-in1.50107FWS-201.500Welded-in1.5087 FWS-161.218Welded-in1.5073 FWS-121.000Welded-in1.5063 FWS-30.437Socket-welded1.6610 FWS-20.343Socket-welded1.6610RHS-200.500Socket-welded1.6610RHS-180.937Welded-in1.5067 RHS-160.375Socket-welded1.6610 RHS-140.375Socket-welded1.6610 RHS-100.843Welded-in1.5060 RHS-80.593Welded-in1.5047 RHS-60.280Socket-welded1.6613 RHS-40.337Socket-welded1.6610CSH-161.031Welded-in1.5063CSH-140.937Welded-in1.5060 CSH-100.718Welded-in1.5050 CSH-40.437Socket-welded1.6610 CSH-30.300Socket-welded1.6610 CSL-140.437Socket-welded1.6610 CSL-120.406Socket-welded1.6610 CSL-100.593Welded-in1.5050 CSL-40.237Socket-welded1.6613 CSL-30.216Socket-welded1.6613
_____________________________
PS = Pressure-sealed bonnet BB = Bolted bonnet
SC = Swing check
NA = Not applicableRevision 121 of 1 December 1999 RBS USAR TABLE 3.5-28 ANALYSIS OF VALVE BONNETS AND VALVE STEMS AS POTENTIAL MISSILESFactor of Saf ety (FS)Valve Bonnet Valve BonnetThrust Ring Size Critical Valve Body at (in)Type Valve Number Line Number Thickness Shear Bearing Bending Ring Interface Bolts Stem12 1220PS-SC1B21*VF010A 1FWS-020-66-117.0 8.0 8.010.023.0NANA10BB-SC1E12*AOF041BRHS-10"30.0NANANANANANA61G33*MOVF039 1WCS-006-136-212.015.016.010.032.011.0 1G33*MOVF040 1WCS-006-139-210PS-Gate1E22*VF0361CSH-010-45-110.0 6.0 8.0 6.021.0NA 5.0201B21*VF011A 1FWS-020-66-1 1B21*MOVF065A 1FWS-020-62-216.0 8.0 9.010.023.0 4.0 1FWS*MOV7A 1FWS-020-62-261G33*MOVF001 1WCS-006-5-150.09.0 5.0 1G33*MOVF004 1WCS-006-4-181E51*MOVF0631ICS-008-1-154.0NANANANA4.0 4.0BB-Gate1E51*MOVF0641ICS-008-3-1101E12*VF039B1RHS-010-16-143.06.0 4.0 1E21*VF0071CSL-010-43-1181E12*VF0101RHS-018-53-135.08.0 3.01E12*MOVF0091RHS-018-53-16BB-Globe 1G33*MOVF102 1WCS-006-5-152.0NANANANA8.0 5.0 RBSUSARTABLE3.6A-1
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING12Note: Stress values shown are for historical information onlyKey:IP=IntermediatepointTP=TerminalpointCB=Circumferentialbreak LB=Longitudinalbreak (1)Stresseswerecalculatedinaccordancewithequations10,12,and13ofASMESectionIII,paragraphsNB-3653.1(a),NB-3653.6(a),andNB-3653.6(b),respectively.CumulativeusagefactorswerecalculatedinaccordancewithASME SectionIII,subarticleNB-3650.NOTES:SeeFig.3.6A-12forbreaklocations.ThedatapresentedinthistablewereusedinconjunctionwithSection3.6.2Ato determinethebreaklocationsshowninFig.3.6A-12.Revision121of1December1999 12MAINSTEAMSYSTEM-INSIDECONTAINMENT-LOOPALocationMaximumStressRange (1)CumulativePipeBreak Break El Az rEq.10Eq.12Eq.13UsageStressLimitDescriptionofBreakPoint(ft-in)
(deg)(ft-in)
(psi)(psi)(psi)Factor (1)2.4S m (psi)BreakPoints Type101A155-01/27211-101/234,96018,79920,1700.01442,210TPCB1260A129-07/8825-041,9605,51518,4900.04542,210TPCB
1038A130-103/45119-012,4861,10411,1550.00242,210TP(SRV)CB38A-1130-51/25119-050,17811,55031,1040.05242,210TP(SRV)CB 42A130-1034.519-612,35185111,2190.00242,210TP(SRV)CB42A-1130-43/434.519-649,3999,66931,0580.04642,210TP(SRV)CB10 1210CENTEROFRPV r AZIMUTH 0 0 (SOUTH)CALLED NORTH 180 0 90 0 RBSUSARTABLE3.6A-2
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING12Note:StressvaluesshownareforhistoricalinformationonlyKey:IP=IntermediatepointTP=Terminalpoint CB=Circumferentialbreak LB=Longitudinalbreak(1)Stresseswerecalculatedinaccordancewithequations10,12,and13ofASMESectionIII,paragraphsNB-3653.1(a),andNB-3653.6(b),respectively.CumulativeusagefactorswerecalculatedinaccordancewithASMESectionIII,subarticleNB-3650.NOTES:Seefigure3.6A-14forbreaklocations.ThedatapresentedinthistablewereusedinconjunctionwithSection3.6.2AtodeterminethebreaklocationsshowninFig.3.6A-14.ThereferencecoordinatesystemisshowninTable3.6A-1.Revision121of1December1999 12MAINSTEAMSYSTEM-INSIDECONTAINMENT-LOOPBLocationMaximumStressRange (1)CumulativePipeBreakBreakElAzrEq.10Eq.12Eq.13UsageStressLimitDescriptionofBreakPoint(ft-in)(deg)(ft-in)(psi)(psi)(psi)Factor (1)2.4S m (psi)BreakPoints Type101B155-01/225211-101/234,00815,91120,2470.01342,210TPCB12 1270B129-05/833726-101/234,7866,05718,5660.05042,210TPCB 1037B131-11/427223-613,6574,25911,2840.00242,210TP(SRV)CB37B-1130-827223-655,94219,93332,3740.05842,210TP(SRV)CB 38B131-01/427823-912,7772,74811,2290.00242,210TP(SRV)CB 38B-1130-727823-953,13715,33231,9360.04542,210TP(SRV)CB 39B130-113/428424-412,5942,24411,2040.00242,210TP(SRV)CB 39B-1130-61/228424-452,72313,693316,2290.04442,210TP(SRV)CB 47B130-111/829725-612,8173,43311,1660.00242,210TP(SRV)CB 47B-1130-57/829725-651,73115,54931,8550.04242,210TP(SRV)CB 48B130-1130225-512,7593,06811,2790.00242,210TP(SRV)CB 48B-1130-53/430225-551,21513,59531,6390.04842,210TP(SRV)CB RBSUSARTABLE3.6A-3
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING12Note:Stressvaluesshownareforhistoricalinformationonly.
12Key:IP=IntermediatepointTP=TerminalpointCB=Circumferentialbreak LB=Longitudinalbreak (1)Stresseswerecalculatedinaccordancewithequations10,12,and13ofASMESectionIII,paragraphsNB-3653.1(a),NB-3653.6(a),andNB-3653.6(b),respectively.CumulativeusagefactorswerecalculatedinaccordancewithASMESectionIII,subarticleNB-3650.NOTES:SeeFig.3.6A-13forbreaklocations.
ThedatapresentedinthistablewereusedinconjunctionwithSection3.6.2AtodeterminethebreaklocationsshowninFig.3.6A-13.ThereferencecoordinatesystemisshowninTable3.6A-1.Revision121of1December1999MAINSTEAMSYSTEM-INSIDECONTAINMENT-LOOPCLocationMaximumStressRange (1)CumulativePipeBreakBreakElAzrEq.10Eq.12Eq.13UsageStressLimitDescriptionofBreakPoint(ft-in)(deg)(ft-in)(psi)(psi)(psi)Factor (1)2.4S m (psi)BreakPoints Type101C155-01/210811-101/234,00815,91120,2470.01342,210TPCB12 1270C129-05/82326-101/234,7866,05718,5660.05042,210TPCB 1037C131-11/488.123-613,6574,25911,2840.00242,210TP(SRV)CB37C-1130-888.123-655,94219,93332,3740.05842,210TP(SRV)CB 38C131-01/482.123-912,7772,74811,2290.00242,210TP(SRV)CB 38C-1130-782.223-953,13715,33231,9360.04542,210TP(SRV)CB 39C130-113/476.224-412,5942,24411,2040.00242,210TP(SRV)CB 39C-1130-61/27624-452,72313,69331,6290.04442,210TP(SRV)CB 40C130-111/270.625-012,9172,70211,2350.00242,210TP(SRV)CB 40C-1130-61/47125-053,54814,85132,0160.04542,210TP(SRV)CB 47C130-111/86325-612,8173,43311,1660.00242,210TP(SRV)CB 47C-1130-57/86325-651,73115,54931,8550.04242,210TP(SRV)CB 48C130-115825-512,7593,06811,2790.00242,210TP(SRV)CB 48C-1130-53/45825-551,21513,59531,6390.04842,210TP(SRV)CB RBSUSARTABLE3.6A-4
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING12Note:Stressvaluesshownareforhistoricalinformationonly.
12Key:IP=IntermediatepointTP=TerminalpointCB=Circumferentialbreak LB=Longitudinalbreak (1)Stresseswerecalculatedinaccordancewithequations10,12,and13ofASMESectionIII,paragraphsNB-3653.1(a),NB-3653.6(a),andNB-3653.6(b),respectively.CumulativeusagefactorswerecalculatedinaccordancewithASMESectionIII,subarticleNB-3650.NOTES:SeeFig.3.6A-14forbreaklocations.
ThedatapresentedinthistablewereusedinconjunctionwithSection3.6.2AtodeterminethebreaklocationsshowninFig.3.6A-14.ThereferencecoordinatesystemisshowninTable3.6A-1.Revision121of1December1999MAINSTEAMSYSTEM-INSIDECONTAINMENT-LOOPDLocationMaximumStressRange (1)CumulativePipeBreakBreakElAzrEq.10Eq.12Eq.13UsageStressLimitDescriptionofBreakPoint(ft-in)(deg)(ft-in)(psi)(psi)(psi)Factor (1)2.4S m (psi)BreakPoints Type101D155-01/228811-101/234,88318,69720,1270.01442,210TPCB12 1260D126-07/1635225-033,1265,58818,5630.04842,210TPCB 1038D130-103/430919-012,1861,11711,1550.00242,210TP(SRV)CB38D-1130-51/230919-050,23311,58431,6100.05142,210TP(SRV)CB 39D130-101/431620-012,50472911,1080.00242,210TP(SRV)CB 39D-1130-531620-049,7369,95331,2390.05542,210TP(SRV)CB 42D130-10325.519-612,46187911,1080.00242,210TP(SRV)CB 42D-1130-5325.519-648,7069,57430,9380.04942,210TP(SRV)CB1012 1210 RBSUSARTABLE3.6A-4a
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING12Note:Stressvaluesshownareforhistoricalinformationonly.Key:IP=IntermediatepointTP=Terminalpoint CB=Circumferentialbreak LB=Longitudinalbreak (1)Stresseswerecalculatedinaccordancewithequations10,12,and13ofASMESectionIII,paragraphsNB-3653.1(a),NB-3653.6(a),andNB-3653.6(b),respectively.Cumulativeusagefactors werecalculatedinaccordancewithASMESectionIII,subarticleNB-3650.NOTES:SeeFig.3.6A-14aforbreaklocations.ThedatapresentedinthistablewereusedinconjunctionwithSection3.6.2AtodeterminethebreaklocationsshowninFig.3.6A-14a.ThereferencecoordinatesystemisshowninTable
3.6A-1.Revision121of1December1999 12MAINSTEAMVENTLINESYSTEMLocationMaximumStressRange (1)CumulativePipeBreakBreakElevationAzimuthrEq.10Eq.12Eq.13UsageStressLimitDescriptionofBreakPoint(ft-in)(deg)(ft-in)(psi)(psi)(psi)Factor2.4S m (psi)BreakPoints Type31173-05/16901-35/16-----TPCB125A159-119013-358,82875031,7510.135834,282IPCB33148-61/27616-63/4-----TPCB 1247148-6131.512-21/4-----TPCB 3 RBS USARTABLE 3.6A-5
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING12Note: Stress values shown are for historical information only.
Key: IP = Intermediate point
TP = Terminal point
CB = Circumferential break
LB = Longitudinal break (1)Stresses were calculated in accordance with equations 9 and 10 of ASME Section III, paragraph NC-3652.
NOTES: See Fig. 3.6A-15 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-15.
Revision 12 1 of 1 December 1999 12MAIN STEAM SYSTEM - OUTSIDE CONTAINMENT -
LOOP A Total Pipe Break Location____________________
Stress (1)Additive Stress Limit DescriptionBreak El X ZEq. 9Eq. 10Stress0.8(1.2 S h + S A) of BreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi)Break Points Type121A128-3 1/4107-9 1/23-6--- -TP CB12168A114-0147-113-3----TP CB 12 RBS USAR TABLE 3.6A-6
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING12 Note: Stress values shown are for historical information only.
12______________________________KEY IP = Intermediate point TP = Terminal point
CB = Circumferential break
LB = Longitudinal break (1)Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC
-3652.NOTES: See Fig. 3.6A-15 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-15.Revision 121 of 1 December 1999MAIN STEAM SYSTEM - OUTSIDE CONTAINMENT -
LOOP B Total Pipe Break Description Location Stress (1)Additive Stress Limit ofBreak El X ZEq. 9Eq. 10 Stress0.8(1.2 S + S ) Break BreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points Type348B128-3 1/4107-9 1/2-(10-6)---- TP CB12466B114-0147-11-(9-9)---- TP CB 12 RBS USARTABLE 3.6A-7
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING12Note: Stress values shown are for historical information only.
12______________________________KEY: IP = Intermediate pointTP = Terminal point CB = Circumferential break LB = Longitudinal break (1) Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC-3652.NOTES: See Fig. 3.6A-15 for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-15.Revision 12 1 of 1 December 1999MAIN STEAM SYSTEM - OUTSIDE CONTAINMENT - LOOP C Total Pipe Break Description Location Stress(1) Additive Stress Limit ofBreak El X ZEq. 9Eq. 10 Stress0.8(1.2 S h + S A) Break BreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points Type348C128-3 1/4107-9 1/210-6 - - - - TP CB12466C114-0147-119-9 - - - - TP CB 12 RBS USARTABLE 3.6A-8
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING12Note: Stress values shown are for historical information only.
12______________________________KEY: IP = Intermediate point TP = Terminal point
CB = Circumferential break
LB = Longitudinal break (1)Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC
-3652.NOTES: See Fig. 3.6A-15 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-15.Revision 121 of 1 December 1999MAIN STEAM SYSTEM - OUTSIDE CONTAINMENT -
LOOP D Total Pipe Break Description Location Stress (1)Additive Stress Limit ofBreak El X ZEq. 9Eq. 10 Stress 0.8(1.2 S h + S A ) BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points Type121D128-3 1/4107-9 1/2-(3-6)---- TP CB12168D113-11 1/4147-5-(3-3)---- TP CB 12 RBSUSARTABLE3.6A-9a
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING (1)Stresseswerecalculatedinaccordancewithequations12and13ofASMESectionIII,paragraphsNB-3653.6(a),NB-3653.6(b),respectively.Cumulativeusagefactorswerecalculated inaccordancewithASMESectionIII,subarticleNB-3650.Key:IP=IntermediatepointTP=Terminalpoint CB=Circumferentialbreak LB=LongitudinalbreakNOTES:SeeFig.3.6A-17forbreaklocations.ThedatapresentedinthistablewereusedinconjunctionwithSection3.6.2AtodeterminethebreaklocationsshowninFig.3.6A-17.ThereferencecoordinatesystemisshowninTable3.6A-1.Revision141of1September200114Note:Stressvaluesshownareforhistoricalinformationonly.
14FEEDWATERSYSTEM-INSIDECONTAINMENT Location Maximum Stress Range(1) CumulativePipe BreakBreak El Az rEq. 10Eq. 12Eq. 13UsageStress LimitDescription ofBreakPoint (ft-in) (deg) (ft-in)
(psi) (psi) (psi) Factor(1)2.4 S m (psi) Break Points Type12101W142-3 1/213512-0 3/16-----TP CB60AW122-032.0820-4 1/1666,97927,00228,3360.160347,472IP CB & LB 60BW122-027.7519-6 7/1666,97927,00228,3360.160347,472IP CB & LB60CW122-025.4421-0 1/266,97927,00228,3360.160347,472IP CB & LB 70W123-924.5917-9 11/1668,64340,35818,6630.236254,336IP CB & LB100142-3 1/24512-0 3/16-----TP CB 71W122-026.518-371,63137,49020,0350.234547,472IP CB & LB130W122-07.526-4 13/16-----TP CB 1012 RBSUSARTABLE3.6A-9b
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPING(1)Stresseswere calculatedinaccordancewithequations12and13ofASMESectionIII,paragraphs NB-3653.6(a), NB-3653.6(b), respectively. Cumulative usage factors were calculated in accordance with ASME Section III, subarticle NB-3650.Key: IP=IntermediatepointTP = Terminal point CB = Circumferential break LB = Longitudinal breakNOTES: See Fig. 3.6A-17 for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determinethe break locations shown in Fig. 3.6A-17. The reference coordinate system is shown in Table 3.6A-1.Revision 14 1 of 1 September 200114Note:Stressvaluesshownareforhistoricalinformationonly.
14FEEDWATERSYSTEM-INSIDECONTAINMENTLocation MaximumStressRange(1)CumulativePipe BreakBreakElevationAzimuth rEq. 10Eq. 12Eq. 13 UsageStress LimitDescription ofBreakPoint (ft-in) (deg) (ft -in)
(psi) (psi) (psi) Factor(1)2.4 S m (psi) Break Points Type 101E142-3 1/222512-0 3/16 - - - - - TPCB60AE122-0327.9120-4 1/1673,55827,758 32,452 0.44 47,472 IPCB & LB 60BE122-0332.2519-6 7/1673,55827,758 32,452 0.44 47,472 IPCB & LB 60CE122-0334.5621-0 1/273,55827,758 32,452 0.44 47,472 IPCB & LB70E123-9335.4117-9 11/1674,94443,468 23,684 0.50 54,336 IPCB & LB100 142-3 1/231512-0 3/16 - - - - - TPCB 130E122-0352.526-4 13/16 - - - - - TPCB 71E122-0334.418-3 81,81645,51623,890 0.79 47,472 IPCB & LB 10
______________________________
KEY: IP = Intermediate point TP = Terminal point
CB = Circumferential break (1)Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC-3652.
NOTES: See Fig. 3.6A-18 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-18. The reference coordinate system is shown in Table 3.6A-5. Revision 12 1 of 1 December 1999 TABLE 3.6A-10a
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING FEEDWATER SYSTEM - OUTSIDE CONTAINMENT (FWS-020-62-2, FWS-020-32-4) 12 Note: Stress values shown are for historical information only.
12 Total Pipe Break Description Location Stress (1) Additive Stress Limit of Break El X Z Eq. 9 Eq. 10 Stress 0.8(1.2 S h + S A ) Break Break Point (ft-in) (ft-in) (ft-in) (psi) (psi) (psi) (psi) Points Type 1 121-8 1/16 107-9 1/2 3-6 - - - - TP CB 12 127 108-3 43/64 149-5 38-2 - - - - IP CB
______________________________
KEY: IP = Intermediate point TP = Terminal point
CB = Circumferential break LB = Longitudinal Break (1) Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC-3652.
NOTES: See Fig. 3.6A-18 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-18. The reference coordinate system is shown in Table 3.6A-5. Revision 12 1 of 1 December 1999 TABLE 3.6A-10b
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING FEEDWATER SYSTEM - OUTSIDE CONTAINMENT (FWS-20-63-2, FWS-020-31-4) 12 Note: Stress values shown are for historical information only.
12 Total Pipe Break Description Location Stress (1) Additive Stress Limit of Break El X Z Eq. 9 Eq. 10 Stress 0.8(1.2 S H + S A) Break Break Point (ft-in) (ft-in) (ft-in) (psi) (psi) (psi) (psi) Points Type 11 121-8 1/16 107-9 1/2 -(3-6) - - - - TP CB 1216 108-4 149-5 34-0 - - - - TP CB 12 RBS USAR TABLE 3.6A-11a
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 1 PIPING 12 Note: Stress values shown are for historical information only.
Key: IP = Intermediate point TP = Terminal point CB = Circumferential break
LB = Longitudinal break
(1)Stresses were calculated in accordance with equations 10, 12, and 13 of ASME Section III, paragraphs NB-3653.1(a), NB-3653.6(a), and NB-3653.6(b), respectively. Cumulative usage factors
were calculated in accordance with ASME Section III, subarticle NB-3650.
NOTES: See Fig. 3.6A-12 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the
break locations shown in Fig. 3.6A-12. The reference coordinate system is shown in Table 3.6A-1.
Revision 24 1 of 1 12 RCIC SYSTEM - INSIDE CONTAINMENT
Location Maximum Stress Range (1) Cumulative Pipe Break Description Break Elevation Azimuth r Eq. 10 Eq. 12 Eq. 13 Usage Stress Limit of Break Point (ft-in) (deg) (ft-in) (psi) (psi) (psi) Factor (1) 2.4 S m (psi) Break Points Type 1 146-3 3/4 67.5 16-6 3/8 - - - - - TP CB 12 12 12 122-6 3/4 24 26 - - - - TP CB
2 146-1 1/8 70 16-7 1/8 - - - - - IP CB & LB 3 146-1 1/8 70 16-7 1/8 - - - - - IP CB & LB RBS USAR TABLE 3.6A-11b
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 1 PIPING Revision 12 1 of 1 December 1999 THIS TABLE HAS BEEN DELETED RBS USAR TABLE 3.6A-12
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING REACTOR CORE ISOLATION COOLING AND RHR SYSTEMS - OUTSIDE CONTAINMENT12 Note: Stress values shown are for historical information only.Key:IP = Intermediate point TP = Terminal point
CB = Circumferential break
LB = Longitudinal break (1)Stresses were calculated with Equations 9, 10 of ASME Section III, paragraphs NB
-3652NOTES: See Fig. 3.6A-19 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-19. The reference coordinate system is shown in Table 3.6A-5.Revision 121 of 1 December 1999 12 Total Pipe BreakDescription Location Stress (1)AdditiveStress Limit ofBreak El X ZEq. 9Eq. 10 Stress0.8(1.2 S h + S A) Break BreakPoint (ft-in) (ft-in)(ft-in)(psi)(psi) (psi) (psi) Points Types1121-8 1/16107-9 1/210-6----TPCB123973-9 1/489-4 1/212-8----TPCB 57116-1 3/8110-3 1/222-11---32,400TPCB 1260116-5 5/8110-3 1/222-11----TPCB 57A115-11 15/16110-3 1/220-10----TPCB 39A88-0 1/495-2 1/211-7----TPCB RBS USAR TABLE 3.6A-13
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 1 PIPING 12 Note: Stress values shown are for historical information.
12Key: IP = Intermediate point TP = Terminal point CB = Circumferential break LB = Longitudinal break (1)Stresses were calculated in accordance with equations 10, 12, and 13 of ASME Section III, paragraphs NB-3653.1(a), NB-3653.6(a), and NB-3653.6(b), respectively. Cumulative usage factors
were calculated in accordance with ASME Section III, subarticle NB-3650.
NOTES: See Fig. 3.6A-21 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-21. The reference coordinate system
is shown in Table 3.6A-1. Revision 12 1 of 1 December 1999 HIGH PRESSURE CORE SPRAY SYSTEM Location Maximum Stress Range (1) Cumulative Pipe Break Break El Az r Eq. 10 Eq. 12 Eq. 13 Usage Stress Limit Description of Break
Point (ft-in) (deg) (ft-in) (psi) (psi) (psi) Factor (1) 2.4 S m (psi) Break Points Type 1 140-9 270 11-7 15/16 - - - -- TP CB 12 125 140-927020 - - -- TP CB RBS USAR TABLE 3.6A-14
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 1 PIPING 12 Note: Stress values shown are for historical information only.
12Key: IP = Intermediate point TP = Terminal point
CB = Circumferential break
LB = Longitudinal break (1)Stresses were calculated in accordance with equations 10, 12, and 13 of ASME Section III, paragraphs NB-3653.1(a), NB-3653.6(a), and NB-3653.6(b), respectively. Cumulative usage factors
were calculated in accordance with ASME Section III, subarticle NB-3650.
NOTES: See Fig. 3.6A-22 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-22. The reference coordinate system
is shown in Table 3.6A-1. Revision 12 1 of 1 December 1999 LOW-PRESSURE CORE SPRAY SYSTEM Description Location Maximum Stress Range (1) Cumulative Pipe Break of Break El Az r Eq. 10 Eq. 12 Eq. 13 Usage Stress Limit Break Break
Point (ft-in) (deg) (ft-in) (psi) (psi) (psi) Factor 2.4 S m (psi) Points Type 1 140-9 90 11-7 15/16 - - - - - TP CB 125 140-9 90 20-10 - - - - - TP CB 12 RBS USAR TABLE 3.6A-15
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 1 PIPING 12 Note: Stress values shown are for historical information only. Key: IP = Intermediate point TP = Terminal point
CB = Circumferential break
LB = Longitudinal break (1)Stresses were calculated in accordance with equations 10, 12, and 13 of ASME Section III, paragraphs NB-3653.1(a), NB-3653.6(a), and NB-3653.6(b), respectively. Cumulative usage factors
were calculated in accordance with ASME Section III, subarticle NB-3650.
NOTES: See Fig. 3.6A-24 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-24. The reference coordinate system
is shown in Table 3.6A-1. 1 (2)GE Node Number 1Revision 12 1 of 1 December 1999 12RESIDUAL HEAT REMOVAL SYSTEM - SHUTDOWN MODE Location Maximum Stress Range (1) Cumulative Pipe Break Break El Az r Eq. 10 Eq. 12 Eq. 13 Usage Stress Limit Description of Break
Point (ft-in) (deg) (ft-in) (psi) (psi) (psi) Factor (1) 2.4 S m (psi) Break Points Type 1 1-809 (2) 91-6 0 18-2 1/2 42,817 19,176 27,354 0.0 - -TP CB 125-823 101-2 0 20-5 1/2 34,161 6,378 36,434 0.001 - -TP CB 1 12 RBSUSARTABLE3.6A-16
SUMMARY
OFSTRESSESINHIGHENERGYASMECLASS1PIPING 12Note:Stressvaluesshownareforhistoricalinformationonly.Revision121of1December199912RESIDUAL HEAT REMOVAL SYSTEM - LPCI MODE Location Maximum Stress Range(1)Cumulative Pipe BreakBreak El Az rEq. 10Eq. 12Eq. 13 Usage Stress Limit Description of Break Point (ft-in) (deg) (ft-in)(psi) (psi) (psi) Factor(1) 2.4 S m (psi) Break Points Type 1A136-3 1/4 4511-8 7/8 - - ---TPCB124A136-3 1/4 4521-11 1/2 - - ---TPCB1B136-3 1/422511-8 7/8 - - ---TPCB 4B136-3 1/422521-11 1/2 - - ---TPCB 1C136-3 1/413511-8 7/8 - - ---TPCB104C136-3 1/413521-11 1/2 - - ---TPCB 10 12-----------------------------------Key:IP = Intermediate PointTP = Terminal Point CB = Circumferential Break LB = Longitudinal Break(1) Stresses were calculated in accordance with equations 10, 11, 12 and 13 of ASME Section III, paragraphs NB
-3653.1 (a), NB-3653.6 (a),and NB-3653.6 (b), respectively. Cumulative usage factors were calculated in accordance with ASME Section III, subarticle NB-3 650.Notes:See Figure 3.6A-25 for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locationsshown in Fig. 3.6A-25. The reference coordinate is shown in Table 3.6A-1.
SUMMARY
OF STRESSES IN HIGH ENERGY ASME CLASS 2 AND 3 PIPING 12 Note: Stress values shown are for historical information only.
Key: IP = Intermediate Point TP = Terminal Point CB = Circumferential Break LB = Longitudinal Break (1) Stresses were calculated in accordance with equations 9 and 10 of ASME Section III, paragraph NC-3652.
Notes: See Figure 3.6A-25a for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-25a. The reference coordinate is shown in Table 3.6A-5. Revision 12 1 of 1 December 1999 12RHR SYSTEMS - OUTSIDE CONTAINMENT Total Pipe Break Location Stress (1) AdditiveStress Limit Description Break El X Z Eq. 9 Eq. 10 Stress 0.8 (1.2S h +S A) of Break Break Point (ft-in) (ft-in) (ft-in) (psi) (psi) (psi) (psi) Points Type 1123-3 13/16118 (3-6) - - - - TP CB 12 126124-9121-0 5/8 - (8-5 59/64) - - - - TP CB 8123-4 1/8115-83-6 - - - - TP CB 12 1213124-9120-6 3/4 8-4 3/4 - - - - TP CB RBSUSARTABLE3.6A-17a
SUMMARY
OFSTRESSESINHIGH-ENERGYASMECLASS1PIPINGKey: IP = Intermediate pointTP = Terminal point CB = Circumferential break LB = Longitudinal break (1)Stresses were calculated in accordance with Equations 10, 12, and 13 of ASME Section III, paragraphs NB-3653.1(a)NB-3653.6(a), and NB-3653.6(b), respectively. Cumulative usage factors were calculated in accordance with ASME Section III, subarticle NB-3650.NOTES: See Fig. 3.6A-33b for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-33b. The reference coordinate system is shown on Table 3.6A-1. Revision 141 of 1September 200114Note:Stressvaluesshownareforhistoricalinformationonly.
14MAIN STEAM DRAIN SYSTEM - INSIDE CONTAINMENT Description Location Maximum Stress Range(1) CumulativePipe Break of Break El Az rEq. 10Eq. 12Eq. 13UsageStress LimiBreak Break BreakPoint (ft-in) (deg) (ft-in)
(psi) (psi) (psi) Factor(1)2.4 S m (psi) Points Type1127-9 7/16 21.528-8---- - TP CB34 125-2 3/4 8 26-11 74,78016,25337,6210.136043,360 IP CB 5 125-6 3/4 7.5 26-11 74,78016,25337,6210.136043,360 IP CB6 127-9 7/16 7.5 26-11 ----- TP CB 7 125-2 3/4 7 26-11 74,78016,25337,6210.136043,360 IP CB 8 125-1 5/8 353 26-11 75,54424,53538,9210.172243,360 IP CB9 125-5 5/8 352. 26-11 75,54424,53538,9210.172243,360 IP CB 10 127-9 7/16 352.5 26-11 ----- TP CB 11 125-1 5/8 352 26-11 75,54424,53538,9210.172243,360 IP CB 318 127-9 7/16 338.5 28-8 ----- TP CB 26 115-7 1/8 346.5 28-3 ----- TP CB Revision 121 of 2 December 199912 RBS USARNote: Stress values shown are for historical information only 12TABLE 3.6A-17b
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPINGMAIN STEAM DRAIN SYSTEM -
OUTSIDE CONTAINMENT (AUXILIARY BUILDING) Total Pipe Break Description Location Stress (1)AdditiveStress LimitofBreak El X ZEq. 9Eq. 10 Stress 0.8(1.2 S h + S A)BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi)Points Type1115-0 7/16107-9 1/2-(4-3)---- TP CB12 1227114-10 1/4117-0-(13-3 1/2) (2)- TP CB28119-9117-0-(13-3 1/2) (2)- IP CB29120-0117-0-(13-0 1/2) (2) IP CB34114-7 9/16120-538-11 1/2 (2)- TP CB35114-10 5/16117-0
-(13-10 1/2) (2)- TP CB43127-9 1/2118-530-2 1/2 (2)- TP CB44114-10 3/8117-0-(14-5 1/2) (2)- TP CB52127-10 1/2118-5-(30-2 1/2) (2)- TP CB53114-10 7/16117-0-(15-0 1/2) (2)- TP CB60114-7 9/16120-5-(38-11 1/2) (2)- TP CB69114-7 9/16121-0-(38-11 1/2) (2)- IP CB70114-10 9/16121-3-(38-11 1/2) (2)- IP CB71118-1 9/16116-2-(38-11 1/2) (2)- IP CB72118-4 9/16115-11-(38-11 1/2) (2)- IP CB73127-10 1/2117-10-(30-2 1/2) (2)- IP CB74128-1 1/2117-7-(30-2 1/2) (2)- IP CB75133-0117-7-(30-2 1/2) (2)- IP CB76133-3117-7-(29-11 1/2) (2)- IP CB77117-11 1/2117-0-(14-8 1/2) (2)- IP CB78117-9 3/8117-0-(14-6 3/8) (2)- IP CB79127-9 3/4116-330-2 1/2 (2)- IP CB80128-0 3/4116-030-2 1/2 (2)- IP CB TABLE 3.6A-17b (Cont) Total P ipe Break Description Location Stress (1)AdditiveStress LimitofBreak El X ZEq. 9Eq. 10 Stress 0.8(1.2 S h + S A)BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi)Points Type______________________________KEY: IP = Intermediate point TP = Terminal point CB = Circumferential break LB = Longitudinal break (1)Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC
-3652.(2)Pipe stresses are not required since pipe breaks are postulated at every fitting and attachment.
NOTES:See Fig. 3.6A-33c for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-33c. The reference coordinate system is shown in Table 3.6A-5.2 of 2August 198781117-7 9/16118-838-11 1/2 (2)- IP CB82117-7 9/16118-538-8 1/2 (2)- IP CB83118-10 1/8116-514-8 (2)- IP CB84119-1 1/8116-514-5 (2)- IP CB85126-4 7/8116-56-11 (2)- IP CB 86126-7 7/8116-26-11 (2)- IP CB 87126-7 7/8115-3 13/166-11 (2)- IP CB88126-7 7/8115-0 13/166-8 (2)- IP CB89126-6115-0 13/16-(7-0 3/8) (2)- IP CB90126-6115-3 13/16-(7-3 3/8) (2)- IP CB94110-1 15/16152-0-(14-8)---- TP CB97114-10 3/16117-0-(12-6)---- TP CB
______________________________KEY:IP = Intermediate pointTP = Terminal pointCB = Circumferential break LB = Longitudinal breakNOTES: See Fig. 3.6A-33d for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-33d.Revision 141 of 1September 2001RBS USARTABLE 3.6A-17c
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 2 PIPINGMAIN STEAM DRAIN SYSTEM - STEAM TUNNEL AREA
- 14Note: Stress values shown are for historical information only 14 Total Pipe BreakDescription Location Stress (1)¸ Additive Stress LimitofBreak El X ZEq. 9Eq. 10 Stress0.8(1.2 S h + S A)BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) PointsType1125-7107-9 1/2-(14-8) TPCB4125-5122-6-(17-1 3/4) IPCB5125-5122-8 1/4-(17-4) IPCB10111-3 1/16127-6 3/4-(17-4) Stresses are not required for main IPCB11111-3 1/16127-9-(17-1 3/4)steam drain piping system in the steam IPCB12111-3 1/8127-9-(16-9)tunnel area since pipe breaks are pos- TPCB15125-7107-9 1/2-(14-1)tulated at every fitting and attachment. TPCB19125-5123-3 7/816-5 3/64 IPCB20125-2 3/4123-516-7 IPCB23111-3 1/8126-9-(16-7) IPCB46111-3 1/8127-0 1/2-(16-7) IPCB53115-0 3/8135-5-(16-7) TPCB25125-7107-9 1/214-1 TPCB32111-2 13/16128-6-(16-5) TPCB35125-7107-9 1/214-8 TPCB42111-2 13/16129-1-(16-5) TPCB18125-5123-1-(16-0 3/4) IPCB24125-5123-2 1/2-(16-4 1/2) IPCB RBS USARTABLE 3.6A-18a
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPING12 Control Rod Drive Piping System (Inside Containment)Note: Stress values shown are for historical information only 12 Total Pipe BreakDescription Location Stress (1)¸ AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points TypesRevision 121 of 12December 199 9415126-9121.340-0----TPCB416127-085.240-223,15123,11946,27033,912IPCB 417127-175.940-220,276.422,597.642,87433,912IPCB 418127-26640-223,01614,24337,25933,912IPCB 419126-4121.340-0----TPCB12 12421126-694.840-214,796.919,565.434,36233,912IPCB RBS USARTABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress (1)¸ AdditiveStress LimitofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) PointsTypes 2 of 12August 1987301127-4265.240-216,86833,98050,84833,912IPCB302127-5274.840-220,54939,35459,90333,912IPCB 303127-6284.140-219,83431,94151,77533,912IPCB 304127-729440-29,45431,58441,03833,912IPCB 307127-2121.340-0----TPCB 308127-494.840-216,86833,98050,84833,912IPCB 309127-585.240-220,54939,35459,90333,912IPCB 310127-675.940-219,83431,94151,77533,912IPCB 311127-76640-29,45431,58441,03833,912IPCB 400127-2238.740-0----TPCB RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress (1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types Revision 123 of 12December 1999288127-7238.740-0----TPCB313127-9265.240-221,81922,49244,31133,912IPCB 315127-10274.840-224,33824,10848,44633,912IPCB 316127-11284.140-223,13021,86444,99433,912IPCB12 12319127-7121.340-0----TPCB320127-994.840-221,81922,49244,31133,912IPCB 322127-1085.240-224,33824,10848,44633,912IPCB 323127-1175.940-223,13021,86444,99433,912IPCB12 12 RBS USARTABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress (1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types 4 of 12August 1987248125-11238.740-0----TPCB312125-11121.340-0----TPCB 405126-1265.240-216,81929,47946,29833,912IPCB 406126-2274.840-216,40834,76451,17233,912IPCB 407126-3284.140-214,41728,47142,88833,912IPCB 408126-429440-223,13719,37942,51633,912IPCB 422126-194.840-216,81929,47946,29833,912IPCB 423126-285.240-216,40834,76451,17233,912IPCB 424126-375.940-214,41728,47142,88833,912IPCB 425126-46640-223,13719,37942,51633,912IPCB RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress(1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types Revision 125 of 12December 19 99275127-1185.140-2----TPCB12 12 RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress(1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types Revision 126 of 12December 1999216121-3195.154-6----TPCB12 12 RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress(1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types Revision 127 of 12December 1999227121-4190.855-0----TPCB238125-5185.140-2----TPCB12 12 RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress(1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types Revision 128 of 12December 1999148115-4203.3158-1----TPCB12 12160115-4208.3855-2----TPCB175115-4195.4557-011,76032,31744,07733,912IPCB 182115-4203.3256-7----TPCB 194115-4202.256-0----TPCB12 12201114-6210.357-7----TPCB12 12 RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress(1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types Revision 129 of 12December 1999141116-0192.558-8----TPCB12 12 RBS USARTABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress (1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points TypesRevision 1210 of 12December 1999100116-017858-4----TPCB103116-0178.355-66,02531,81137,83633,912IPCB 104116-0179.554-66,40930,41636,82533,912IPCB 107116-0183.654-8----TPCB12 12 RBS USARTABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress(1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types11 of 12August 1987306126-4238.740-0----TPCB318126-8284.240-220,276.422,597.642,87433,912IPCB 404126-7274.840-223,15123,11946,27033,912IPCB 500126-929440-223,01614,24337,25933,912IPCB RBS USAR12Note: Stress values shown are for historical information only 12TABLE 3.6A-18a (Cont) Total Pipe BreakDescription Location Stress (1) AdditiveStress LimitofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A )BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types______________________________KEY: IP = Intermediate pointTP = Terminal point CB = Circumferential break LB = Longitudinal break (1) Stresses were calculated in accordance with equations 10, 12, and 13 of ASME Section III,paragraphs NB-3653.1(a), NB-3653.6(a), and NB-3653.6(b), respectively. Cumulative usage factors were calculated in accordance with ASME Section II, subarticle NB-3650.NOTES: See Fig. 3.6A-24b for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-24b. The reference coordinate system is shown in Table 3.6A-1.Revision 1212 of 12December 1999305126-9238.740-0----TPCB12 12403126-11265.240-014,796.919,565.434,36233,912IPCB RBS USAR12TABLE 3.6a-18bNote: Stress values shown are for historical information only.
12
SUMMARY
OF STRESSES IN HIGH-ENERGY PIPINGCONTROL ROD DRIVE SYSTEM - FUEL BUILDINGRevision121of2December1999LocationStress Break Point Elevation (ft-in)X (ft-in)Z (ft-in)Eq.9 (psi)Eq.10 (psi)Total AdditiveStress(psi)PipeBreakStressLimit0.8(1.2S h+S A)(psi)DescriptionofBreak Points Break Types172-11/2127-680-51/2TPCB272-11/2127-681-7IPCB372-31/2127-681-9IPCB474-4127-681-9IPCB574-6127-881-9IPCB674-6123-281-9IPCB874-8123-481-9IPCB981-1123-481-9StressesarenotrequiredforcontrolIPCB1081-3123-481-7roddrivepipinginthefuelbuildingIPCB1181-3123-666-5sincepipebreaksarepostulatedatIPCB1281-3123-466-7everyfittingandattachment.IPCB 1381-3132-266-5IPCB1581-3129-266-5IPCB1881-3129-265-3IPCB1981-1129-265-1IPCB2076-9129-265-1IPCB2176-7129-265-1IPCB2275-0129-265-1IPCB2374-10129-264-11IPCB2572-11/2127-668-11/2TPCB2672-11/2127-669-3IPCB2772-31/2127-669-5IPCB2874-4127-669-5IPCB2974-6127-869-5IPCB3174-6123-269-5IPCB3374-8123-469-5IPCB3481-3123-469-5IPCB3781-3132-466-7IPCB3881-3132-468-9IPCB3981-3132-268-11IPCB4081-3130-468-11IPCB4181-1130-268-11IPCB4276-8130-268-11IPCB12 125077-0132-664-41/2IPCB5674-10129-262-11IPCB5774-10130-062-9IPCB5977-0129-061-9IPCB1059A82-11129-061-9IPCB 10 RBS USARTABLE 3.6a-18B (Cont) Total Pipe BreakDescription Location Stress (1) AdditiveStress Limit ofBreak El Az rEq. 9Eq. 10 Stress0.8(1.2 S h + S A ) BreakBreakPoint(ft-in) (deg) (ft-in)
(psi)(psi) (psi) (psi) Points Types______________________________KEY: IP = Intermediate pointTP = Terminal point CB = Circumferential break LB = Longitudinal breakNOTES: See Fig. 3.6A-24c for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-24c. The reference coordinate system is shown in Table 3.6A-5.Revision 122 of 2December 199989107-072-52-83/4IPCB90107-072-72-63/4IPCB91107-073-12-63/4IPCB92107-273-32-63/4StressesarenotrequiredforcontrolIPCB94115-073-32-63/4roddrivepipinginthefuelbuildingIPCB95115-1073-32-63/4sincepipebreaksarepostulatedatIPCB 96116-073-12-63/4everyfittingandattachment.IPCB12 12 RBS USARTABLE 3.6A-19
SUMMARY
OF STRESSES IN HIGH ENERGY ASME CLASSES 1 PIPINGREACTOR WATER CLEANUP SYSTEM - INSIDE CONTAINMENT12Note: Stress values shown are for historical information only.
12 Location Maximum Stress Range (1)Cumulative Pipe BreakBreak El X ZEq. 10Eq. 12Eq. 13 UsageStress Limit Description ofPoint (ft-in) (ft-in)(ft-in)(psi)(psi)(psi) Factor (1)2.4 S m (psi) Break Points Break TypeRevision 121 of 1 December 19996183 (18-0 7/16)- (8-10 1/8)-----TPCB3183-518-49-0-----TPCB 51104-031-24-3-----TPCB8189-11 1/27-9-4-963,3771,47234,7420.118642,355 IPCB12 1293102 (0-9)0-6-----TPCB
______________________________KEY: IP = Intermediate point TP = Terminal point
CB = Circumferential break
LB = Longitudinal break NOTES: See Fig. 3.6A
-23 for break locations.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the breaklocations shown in Fig. 3.6A-23. The reference coordinate system is shown in Table 3.6A-5.
-19a
SUMMARY
OF STRESSES IN HIGH ENERGY ASME CLASSES 2 AND 3 PIPING12Note: Stress values shown are for historical information only.
12Reactor Water Cleanup System - Inside Containment Total Pipe Break Description Location Stress (1)AdditiveStress Limit ofBreakElevation X ZEq. 9Eq. 10 Stress 0.8(1.2 S h + S S ) BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points TypesRevision 121 of 4 December 1999124149-044-4 7/16-(5-2 11/16)----TPCB125149-044-4 7/16-(6-1) 6,82020,58527,94332,400IPCB129149-046-0 11/16-(12-8)13,66216,71030,37232,400IPCB140159-8 15/1651-2-(6-9)----TPCB 141149-046-3 7/16-(6-10)----TPCB142149-047-5 7/16-(6-10)----TPCB153157-8 5/849-7 5/16-(8-3)----TPCB12155149-049-5 5/16-(7-0)----TPCB174A154-641-9-(8-9)----TPCB180149-040-6-(8-6)----TPCB186A153-740-6-(15-9)----TPCB 195172-10 3/847-0 5/160-11----TPCB201A148-630-1 5/8-(26-6)----TPCB 202A151-617-5 7/16-(36-4 5/8)----TPCB206A158-0-(1-6)-(40-3)----TPCB220171-0-(7-5)-(45-3)----TPCB232171-6-(8-4)-(41-0)----TPCB245176-8-(8-1)-(27-6)----TPCB246a158-01-6-(40-3)----TPCB 12 RBS USAR TABLE 3.6A
-19a (Cont)12Note: Stress values shown are for historical information only.
12 Total Pipe Break Description Location Stress (1)AdditiveStress Limit ofBreakElevation X ZEq. 9Eq. 10 Stress 0.8(1.2 S h + S S ) BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points TypesRevision 122 of 4 December 199912260171-06-9-(45-3)----TPCB272171-68-5-(41-0)----TPCB285176-68-0-(27-7)----TPCB 294163-11-(5-5)-(41-0)----TPCB 303163-115-6-(41-0)----TPCB306153-10 3/1651-09-3----TPCB323A153-643-8-(15-9)----TPCB 324A149-330-1 5/8-(26-6)----TPCB 327A151-618-3-(35-10 1/4)----TPCB347168-79-6-(34-9)----TPCB358170-5 13/1611-428-3----TPCB
360A170-1 5/166-2 1/4-(37-6)----TPCB362166-06-2 1/4-(37-9)----TPCB366170-5 13/164-0-(37-6)----TPCB379168-7-(9-6)-(34-9)----TPCB390170-5 13/16-(11-4)-(28-3)----TPCB 395170-5 13/16-(4-5)-(37-6)----TPCB 396A170-1 5/16-(5-9 3/4)-(37-6)----TPCB398166-0-(5-9 3/4)-(37-9)----TPCB419164-4-(4-9)-(34-1 1/2)----TPCB426164-44-9
-(34-1 1/2)----TPCB427181-0-(9-6)-(26-3)----TPCB 12 RBS USAR TABLE 3.6A
-19a (Cont)12Note: Stress values shown are for historical information only.
12 Total Pipe Break Description Location Stress (1)AdditiveStress Limit ofBreakElevation X ZEq. 9Eq. 10 Stress0.8(1.2 S h + S S ) BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points TypesRevision 123 of 4 December 199912439176-6-(18-0)-(35-9)
(2)----TPCB440176-9 5/8-(7-5 13/16)-(26-3)----TPCB441176-9 5/8-(6-5 1/4)-(26-3)----IPCB442176-9 5/8-(6-3)-(26-5 1/4)----IPCB443176-7 3/8-(6-3)-(34-6 3/4)----IPCB444176-7 3/8-(6-5 1/4)-(34-9)----IPCB445176-7 3/8-(14-3)-(34-9)----TPCB453167-0-(9-6)-(26-3)----TPCB458A165-9 5/8-(17-2)-(27-3)----TPCB459165-9 7/8-(17-2)-(34-9)----TPCB460181-09-6-(26-3)----TPCB472176-618-0-(35-9)----TPCB 473176-9 5/87-3-(26-3)----TPCB 474176-9 5/86-5 1/4-(26-3)----IPCB475176-9 5/86-3-(26-5 1/4)----IPCB476176-7 3/86-3-(34-6 3/4) (2)----IPCB477176-7 3/86-5 1/4-(34-9)----IPCB478176-1 3/814-3-(34-9)----TPCB486167-09-6-(26-3)----TPCB491A165-10 5/817-2-(27-3)----TPCB492165-9 7/817-2-(34-9)----TPCB500153-10 13/1649-22-4----TPCB 12 RBS USAR TABLE 3.6A
-19a (Cont)12Note: Stress values shown are for historical information only.
12 Total Pipe Break Description Location Stress (1)AdditiveStress Limit ofBreakElevation X ZEq. 9Eq. 10 Stress 0.8(1.2 S h + S S ) BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points TypesRevision 124 of 4 December 199912507157-8 5/850-60-6----TPCB601172-10 3/849-3 5/8-(7-10 7/8)----TPCB610172-10 3/849-3 5/8-(4-4 7/8)----TPCB611157-8 5/850-4 7/8-(6-9 7/8)----TPCB620157-8 5/849-7-(4-8 3/8)----TPCB621159-8 15/1650-8 3/8-(3-6)----TPCB630159-8 15/1650-9 1/20----TPCB631157-8 5/850-4 7/8-(3-3 7/8)----TPCB640157-8 5/849-7 1/4-(1-2 1/4)----TPCB641153-10 3/1650-4 3/40-8 1/4----TPCB652153-10 3/1648-11 1/47-2 7/8----TPCB 12______________________________KEY: IP = Intermediate point TP = Terminal point CB = Circumferential break LB = Longitudinal break Notes: See Figure 3.6A-26 through 3.6A-33a for break locations(1)Stresses were calculated in accordance with equations 9 and 10 of ASME Section III, paragraph NB-3652.(2)Stresses are not required for this portion since breaks are postulated at every fitting and attachment.
The data presented in this table were used in conjunction with Section 3.6.2A to determine the break Revision121of1December1999 RBS USARTABLE 3.6A-20
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASSES 2 AND 3 PIPINGREACTOR WATER CLEANUP SYSTEM - OUTSIDE CONTAINMENT12Note: Stress values shown are for historical information only.
12 Total Pipe BreakDescription Location Stress 1 AdditiveStress Limit ofBreakElevation X ZEq. 9Eq. 10 Stress0.8(1.2 S h +S A) BreakBreakPoint(ft-in)(ft-in)(ft-in)(psi)(psi) (psi) (psi) Points Types121116-0107-9 1/24-311,65915,35427,01332,400TPCB 7A106-995-90-0 - - - -TPCB 3097-977-68-10 - - - -TPCB 4397-977-6 8-10 - - - -TPCB 44117-6107-1010-6 - - - -TPCB3 352A106-992-411-3 - - - -TPCB 7298-1077-119-2 - - - - TP CB8798-1086-19-3 - - - - TP CB90117-9 1/2107-110-0 - - - - TP CB108124-9121-5 3/46-8 5/8 - - - - TP CB 117124-9120-6 1/8-(6-6 7/8) - - - - TP CB3 3 12Key: IP = Intermediate pointTP = Terminal point CB = Circumferential break LB = Longitudinal breakNOTES: See Fig. 3.6A-26 through 28 for break locations.Stresses were calculated in accordance with Equations 9 and 10 of ASME Section III, paragraph NC-3652.The data presented in this table were used in conjunction with Section 3.6.2A to determine thebreak locations shown in Fig. 3.6A-26 through 28. The reference coordinate system is shown in Table 3.6A-5.
Revision141of1September2001RBS USARTABLE 3.6A-20a
SUMMARY
OF STRESSES IN HIGH-ENERGY ASME CLASS 1 PIPINGSTANDBY LIQUID CONTROL SYSTEM14Note: Stress values shown are for historical information only.
14Maximum Location Stress Range CumulativePipe BreakBreak El Az rEq. 10Eq. 12Eq. 13 UsageStress LimitDescription of Point (ft-in) (deg) (ft-in)
(psi) (psi) (psi) Factor 2.4 S (psi) Break Points Break Type1101-42256-9 72,0054,39817,337 0.028534,435 TP CB286-0189.7115-0 1/4101,3474,54839,608 0.182639,840 IP CB 386-0187.4115-0 3/4104,4227,05643,057 0.196739,840 IP CB 486-0182.515-3--- -- TP CB
______________________________Key:IP = Intermediate pointTP = Terminal point CB = Circumferential break LB = Longitudinal breakStresses were calculated in accordance with Equations 10, 12, and 13 of ASME Section III, paragraphs NB-3653.1(a), NB-3653.6(a), and NB-3653.6(b),respectively. Cumulative usage factors were calculated in accordance with ASME Section III, subarticle NB-3650.NOTES: See Fig. 3.6A-24a for break locations.The data presented in this table were used in conjunction with Section 3.6.2A to determine the break locations shown in Fig. 3.6A-24a.
Revision 121 of 1 December 1999 RBS USAR TABLE 3.6A-21 HIGH-ENERGY PIPING INSIDE CONTAINMENT Piping Systems Main steam system Main steam drains
Reactor core isolation cooling (RCIC) system - steam12 12Feedwater system Recirculation system High pressure core spray system (HPCS) (reactor pressure vessel (RPV) to first check valve)
Low pressure core spray system (LPCS) (reactor pressure vessel to first check valve)
Reactor water cleanup (RWCU) system
RPV vent line
Residual heat removal (RHR) system (shutdown suction)
Residual heat removal system - low pressure core injection (LPCI)Control rod drive (CRD) system Standby liquid control systemNOTE:High-energy piping (postulated to break) is defined in Section 3.6.2A. Refer to Fig. 3.6A-12 through 3.6A-32 for further definition of boundaries.
RBSUSARTABLE3.6A-22HIGH-ENERGYPIPINGOUTSIDECONTAINMENTPipingSystemsMainsteamsystem Mainsteamdrains Feedwatersystem Reactorcoreisolationcooling(RCIC)system(steamtoRCIC turbine)Controlroddrive(CRD)system Reactorwatercleanupsystem(includingresidualheatremovalfeedtofeedwater)
NOTE:High-energypiping(postulatedtobreak)isdefinedinSection3.6.2A.RefertoFig.3.6.A-12through 3.6.A-32forfurtherdefinitionofboundaries.1of1August1987 RBSUSARTABLE3.6A-23ESSENTIALSYSTEMS/COMPONENTS/EQUIPMENTEVALUATEDFORPIPEFAILURESINSIDECONTAINMENT (1)1.Reactorcoolantpressureboundary(uptoandincludingtheoutboardisolationvalves)2.Containmentisolationsystemandcontainmentboundary(includinglinerplate)3.Reactorprotectionsystem(SCRAMSIGNALS) 4.Emergencycorecoolingsystems (2)(forLOCAonly)a.HPCS b.LPCS c.LPCI(LoopsA,B,andC) d.ADS5.Corecoolingsystems(otherthanLOCA)a.HPCSorRCIC b.OneLPCIorLPCS c.RHRshutdowncoolingmode(oneloop)6.Controlroddrivesystem(scram/rodinsertionportion only)7.Flowrestrictors(passive) 8.Combustiblegascontrolsystem(forLOCAonly) 9.RHRsuppressionpoolcoolingmode(oneloop) 10.Standbygastreatmentsystem (3)(forLOCAonly)11.Maincontrolroomhabitabilitysystem (3)12.Standbyliquidcontrolsystem 13.Remoteshutdownpanel (3)14.MSpositiveleakagecontrolsystem (3)1of2August1987 RBSUSARTABLE3.6A-23(Cont)15.Penetrationvalveleakagecontrolsystem (3)16.Spentfuelpoolcoolingsystem (3)17.Thefollowingequipment/systems,orportionsthereof,requiredtoassuretheproperoperationofthose essentialitemslistedinitems1through17:a.ClassIEelectricalsystems,acanddc(includingdieselgeneratorsystem (3),emergencybuses (3),motorcontrolcenters (3),switchgear (3), batteries (3),anddistributionsystems)b.Standbyservicewater (3)tothefollowing:(1)Unitcoolers (2)Pumpscoolers(motorsandseals)
(3)Dieselgeneratorjacketcoolers (4)Electricalswitchgearcoolersc.Environmentalsystems (3)(HVAC)d.Instrumentation(includingpost-LOCAmonitoring)
(1)TheessentialitemslistedinthistableareprotectedinaccordancewithSection3.6.lA,consistentwiththe particularpipebreakevaluated.
(2)RefertoSection6.3fordetaileddiscussionofemergencycorecoolingcapabilities.
(3)Locatedoutsidecontainmentbutlistedforcompletenessofessentialshutdownrequirements.2of2August1987 RBSUSARTABLE3.6A-24ESSENTIALSYSTEMS/COMPONENTS/EQUIPMENTEVALUATEDFORPIPEFAILURESOUTSIDECONTAINMENT1.Containmentisolationsystemandcontainmentboundary 2.Reactorprotectionsystem(SCRAMsignals) 3.Emergencycoreandcontainmentcoolingsystemsa.HPCSorRCICb.OneLPCIorLPCS c.RHRshutdowncoolingmode(oneloop) d.RHRsuppressionpoolcoolingmode(oneloop)4.Flowrestrictors 5.Maincontrolroomhabitabilitysystem 6.Spentfuelpoolcoolingsystem 7.Standbygastreatmentsystem 8.Safety-relatedportionofthereactorplantcomponentcoolingwatersystem(RPCCW)9.Thefollowingequipment/systems,orportionsthereof,arerequiredtoassuretheproperoperationofthose essentialitemslistedinitems1through7:a.Class1Eelectricalsystems,acanddc(includingdieselgeneratorsystem,emergencybuses,motor controlcenters,switchgear,batteries,auxiliary shutdowncontrolpanel,anddistributionsystems)b.Standbyservicewatertothefollowing:(1)Unitcoolers(2)Pumpcoolers(motorsandseals)
(3)Dieselgeneratorjacketcoolers (4)Electricalswitchgearcoolers
NOTE:TheessentialitemslistedinthistableareprotectedinaccordancewithSection3.6A.1, consistentwiththeparticularpipebreakevaluated.1of2August1987 RBSUSARTABLE3.6A-24(Cont)c.Environmentalsystem(HVAC)d.Instrumentation(includingpost-accidentmonitoring)
NOTE:TheessentialitemslistedinthistableareprotectedinaccordancewithSection3.6A.1, consistentwiththeparticularpipebreakevaluated.2of2August1987 RBS USAR TABLE 3.6A-25
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line A
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 18 1 of 11 1A 155-0 1/2 72 11-10 1/2 C R No whip H 1)Drywell wall PRR-811 PRR 2)Fl El 141'-0" -812 3)SWP-010-170-4 -813 4)SWP-010-155-4 5)Vent duct 12 1238A 130-10 3/4 51 19-0 C R&H 1)Containment PRR-813 1)PRR penetration -814 1DRB*Z1A 2)Fl El 134'-10" - 2)NRS 3)RHS-010-34-1 - 3)SPI (LPCI-A) 38A-1 130-5 1/2 51 19-0 C R&H 1)Containment PRR-813 1)PRR penetration -814 1DRB*Z1A 2)Fl El 134'-10" 2)NRS 3)RHS-010-34-1 3)SPI (LPCI-A) 42A 130-10 34.5 19-6 C R&H 1)Containment PRR-813 1)PRR penetration -814 1DRB*Z1A 2)Fl El 134'-10" 2)NRS RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line A
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 2 of 11 December 1999 42A-1 130-4 3/4 34.5 19-6 C R&H 1)Containment PRR-813 1)PRR penetration -814 1DRB*Z1A 2)Fl El 134'-10" 2)NRS 60A 129-0 7/8 8 25-0 C R 1)BSW PRR-814 PRR 2)FWS-012-37-1 piping -812
-813 H None No whip 12 12 RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line B
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 18 3 of 11 1B 155-0 1/2 252 11-10 1/2 C R No whip H 1)Drywell PRR-821 PRR 2)Fl El 141'-0" 3)SWP-010-155-4 4)SWP-010-177-4 5)Vent duct 6)1DRS-UC1C 12 1237B 131-1 1/4 272 23-6 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 37B-1 130-8 272 23-6 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line B
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks4 of 11 August 1987 38B 131-0 1/4 278 23-9 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 38B-1 130-7 278 23-9 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 39B 130-11 3/4 284 24-4 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 39B-1 130-6 1/2 284 24-4 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 47B 130-11 1/8 297 25-6 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line B
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks5 of 11 August 1987 47B-1 130-5 7/8 297 25-6 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 48B 130-11 302 25-5 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 48B-1 130-5 3/4 302 25-5 C R&H 1)Containment PRR-823 1)PRR penetration -825 1DRB*Z1B 2)CSH-010-41-1 2)SPI 3)1CC 502 RT4 3)RL ADS conduit 70B 129-0 5/8 337 26-10 1/2 C R 1)BSW PRR-825 PRR 2)MSS-Loop D -824 3)FWS-012-35-1 H No whip RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line C
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 18 6 of 11 1C 155-0 1/2 108 11-10 1/2 C R No whip H 1)Drywell wall PRR-801 PRR 2)Fl El 141'-0" -802 3)SWP-010-155-4 4)SWP-010-170-4 5)MSS-002-1-1 6)Vent duct 7)1DRS-UC1C 12 1237C 131-1 1/4 88.1 23-6 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)SPI 37C-1 130-8 88.1 23-6 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 38C 131-0 1/4 82.1 23-9 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line C
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks7 of 11 August 1987 38C-1 130-7 82.2 23-9 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 39C 130-11 3/4 76.2 24-4 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 39C-1 130-6 1/2 76 24-4 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 40C 130-11 1/2 70.6 25-0 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 40C-1 130-6 1/4 71 25-0 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 47C 130-11 1/8 63 25-6 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 47C-1 130-5 7/8 63 25-6 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line C
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks8 of 11 August 1987 48C 130-11 58 25-5 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 48C-1 130-5 3/4 58 25-5 C R&H 1)Containment PRR-803 1)PRR penetration -805 1DRB*Z1C 2)CSL-010-43-1 2)RSS 70C 129-0 5/8 23 26-10 1/2 C R 1)BSW PRR-805 PRR 2)MSS-Loop A -804 3)FWS-012-37-1 H No whip RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line D
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 18 9 of 11 1D 155-0 1/2 288 11-10 1/2 C R No whip H 1)Drywell wall PRR-831 PRR 2)SWP-010-155-4 -832 3)SWP-010-170-4 -833 4)Vent duct 12 1238D 130-10 3/4 309 19-0 C R&H 1)Containment PRR-833 1)PRR penetration -834 1DRB*Z1D 2)1CC 500 BD5 2)Note C (ADS valve 41F conduit) 3)1CC 502 RT3 3)Note C 1CC 500 BD9 4)(ADS valve 41B 4)Note C conduit) 5)RCS-750-40-2 5)Note D
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line D
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks10 of 11 August 1987 38D-1 130-5 1/2 309 19-0 C R&H 1)Containment PRR-833 1)PRR penetration -834 1DRB*Z1D 2)1CC 500 BD5 2)Note C (ADS valve 41F Conduit) 3)1CC 502 RT3 3)Note C 4)1CC 500 BD9 4)Note C (ADS valve 41B conduit) 5)RCS-750-40-2 5)Note D 6)Fl El 134'-10" 6)NRS 39D 130-10 1/4 316 20-0 C R&H 1)Containment PRR-833 1)PRR penetration -834 1DRB*Z1D 2)1CC 500 BD5 2)Note C (ADS valve 41F conduit) 3)1CC 502 RT3 3)Note C 4)1CC 500 BD9 4)Note C (ADS valve 41B conduit) 5)RCS-750-40-2 5)Note D 6)Fl El 134'-10" 6)NRS 39D-1 130-5 316 20-0 C R&H 1)Containment PRR-833 1)PRR penetration -834 1DRB*Z1D 2)1CC 500 BDS 2)Note C (ADS valve 41F conduit) 3)1CC 502 RT3 3)Note C 4)1CC 500 BD9 4)Note C (ADS valve 41B conduit) 5)RCS-750-40-2 5)Note D 6)Fl El 134'-10" 6)NRS RBS USAR TABLE 3.6A-25 (Cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1-MSS-024-Line D
Consequence of Piping Failure: Pipe Whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 11 of 11 December 1999 42D 130-10 325.5 19-6 C R&H 1)Containment PRR-833 1)PRR penetration -834 1DRB*Z1D 2)Fl El 134'-10" 2)NSR 42D-1 130-5 325.5 19-6 C R&H 1)Containment PRR-833 1)PRR penetration -834 1DRB*Z1D 2)Fl El 134'-10" 2)NSR 60D 126-0 7/16 352 25-0 C R 1)BSW PRR-834 PRR 2)FWS-012-35-1 -832
-833 H No whip 12 12NOTE: Numbered footnotes follow Table 3.6A-51.
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam - Loop A (Outside Containment)
Piping Line Numbers: 1MSS-024-60-1, 1MSS-024-7-2, 1MSS-024-47-4
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X ZTypesSource MeasuresEvaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 1 of 5 December 1999 121A 128-3 1/4 107-9 1/2 3-6 C R No whip H 1)Tunnel wall PRR-913 PRR 2)Structural steel -912 El 123'-9" -915 12 12168A 114-0 147-11 3-3 C R 1)Tunnel wall PRR-916 PRR (concrete plug) H No whip 12 12 RBS USAR TABLE 3.6A-25a (cont)
Piping System: Main Steam - Loop B (Outside Containment)
Piping Line Numbers: 1MSS-024-58-1, 1MSS-024-5-2, 1MSS-024-45-4
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X ZTypesSource MeasuresEvaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 2 of 5 December 1999 348B 128-3 1/4 107-9 1/2 -(10-6) C R None No whip H 1)Tunnel ceiling PRR-922 2)Fl El 123'-9" -923 3)RHS-010-14-2 PRR 4)MSS-Loop D 5)DTM-001-112-2 6)DTM-001-113-2 7)DTM-150-104-2 8)DTM-150-10-2 12 12466B 114-0 147-11 -(9-9) C R 1)Tunnel wall PRR-926 PRR (concrete plug) -925 2)Fl El 114'-0" 12 12 RBS USAR TABLE 3.6A-25a (cont)
Piping System: Main Steam - Loop C (Outside Containment)
Piping Line Numbers: 1MSS-024-61-1, 1MSS-024-8-2, 1MSS-024-48-4
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X ZTypesSource MeasuresEvaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 3 of 5 December 1999 348C 128-3 1/4 107-9 1/2 10-6 C R No whip H 1)Tunnel ceiling PRR-902 2)Fl El 123'-9" -903 PRR 3)MSS-Loop A 4)RHS-010-65-2 5)DTM-001-114-2 6)DTM-001-115-2 7)DTM-150-106-2 8)DTM-150-107-2 12 12466C 114-0 147-11 9-9 C R 1)Tunnel wall PRR-906 PRR (concrete plug) -905 H No whip 12 12 RBS USAR TABLE 3.6A-25a (cont)
Piping System: Main Steam - Loop C (Outside Containment)
Piping Line Numbers: 1MSS-024-61-1, 1MSS-024-7-2, 1MSS-024-47-4
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X ZTypesSource MeasuresEvaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 4 of 5 December 1999 12 12 RBS USAR TABLE 3.6A-25a (cont)
Piping System: Main Steam - Loop D (Outside Containment)
Piping Line Numbers: 1MSS-024-59-1, 1MSS-024-6-2, 1MSS-024-46-4
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X ZTypesSource MeasuresEvaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) RemarksRevision 12 5 of 5 December 1999 121D 128-3 1/4 107-9 1/2 -(3-6) C R No whip H 1)Tunnel wall PRR-933 PRR 2)Structural steel -932 El 123'-9" -935 12 12168D 113-11 1/4 147-5 -(3-3) C R 1)Tunnel wall PRR-936 PRR (concrete plug)
H No whip 12 12NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USARTABLE 3.6A-26
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Main Steam Vent Line (Inside Containment)Piping Line Numbers: 1MSS
-004-3-1, 1MSS-002-72-1, 1MSS-002-2-1, 1MSS-002-1-1Consequence of Piping Failure: Pipe whip Break LocationBreakBlowdownProtectionBreak El Az rTypes Source Measures EvaluationPoint(ft-in)(deg)(ft-in)(1)(2) Targets (3)(4)RemarksRevision 121 of 2 December 19991173-0 5/16901-3 15/16 C No whipMSS.A1)Drywell domePRR-840PRR
-851125A159-119013-3 CR1)Pen 1DRB*Z161 1)DSIMSS.A1)RPVPRR-846 PRR 2)1CX507RC2 2)Note A conduit for CMSRTD43A 3)1CX507RC3 3)Note A conduit for CMSRTD43C
4)1CX507RC4 4)Note A conduit for CMSRTD43E 12 RBS USAR TABLE 3.6A
-26 (Cont)Piping System: Main Steam Vent Line (Inside Containment)Piping Line Numbers: 1MSS
-004-3-1, 1MSS-002-72-1, 1MSS-002-2-1, 1MSS-002-1-1Consequence of Piping Failure: Pipe whip Break LocationBreakBlowdownProtectionBreak El Az rTypes Source Measures EvaluationPoint(ft-in)(deg)(ft-in)(1)(2) Targets (3)(4)RemarksRevision 122 of 2 December 199912 1233148-6 1/27616-6 3/4CR1) 1MSS-Line C1) SPIMSS.ANone12 1247148-6131.512-2 1/4 CR&MSS.A1)1-MSS-Line C snubber1)SPI
___________________________
NOTE: Numbered footnotes follow Table 3.6A-51.
1 of 2 August 1987RBS USARTABLE 3.6A-27a
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Main Steam Isolation Valve Drain Lines System (Inside Containment)Piping Line Numbers: 1-DTM-002-68-1, 69-1, 70-1, 71-1, 1-DTM-003-524-1, 72-1 Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El Az rTypes Source MeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1) (2) Targets (3) (4) Remarks1 127-9 7/1621.5 28-8 CMSS&H 1)1E51*MOVF076 2)1ICS-008-1-1PRR-803 PRR3)1ICS-750-2-14 125-2 3/48 26-11 CMSS&H 1)Struct beam 1)DSI (space frame)PRS-805 2)Valve 1E51*MOVF063FWS-PRS-8112)PRR 3)Platf ladder 3)PRR5 125-6 3/47.5 26-11 CMSS&H 1)1FWS-020-66-1PRS-805 SPI 6 127-9 7/167.5 26-11 CMSS&H 1)1FWS-020-66-1PRS-805 SPI7 125-2 3/47 26-11 CMSS&H 1)Struct brace1)DSI (space frame)PRS-805 2)Valve stemFWS-PRS-8112)PRR 1E51*MOVF0633)Platf ladder3)PRR8 125-1 5/8353 26-11 CMSS&H 1)Struct brace DSI (space frame)FWS-PRS-8119 125-5 5/8352.5 26-11 CMSS&H 1)1FWS-020-67 SPI10 127-9 7/16352.5 26-11 CMSS&H 1)1FWS-020-67 SPI 11 125-1 5/8352 26-11 CMSS&H 1)Struct bracePRS-8131)DSI (space frame) 2)1ICS-006-6-12)SPI18127-9 7/16338.5 28-8 CMSS&H1)Pen 1KJB*Z19 2)Drywell wallPRS-813 PRR3)1ICS-006-6-1 2 of 2 August 1987RBS USARTABLE 3.6A-27a (cont)Piping System: Main Steam Isolation Valve Drain Lines System (Inside Containment)Piping Line Numbers: 1-DTM-002-68-1, 69-1, 70-1, 71-1, 1-DTM-003-524-1, 72-1 Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El Az rTypes Source MeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1) (2) Targets (3) (4) Remarks26115-7 1/8351.5 28-3 CMSS1)Containment penetra-PRR-806 tion 1KJB*Z2 -819 PRR2)Valve 1B21*MOVF016 3)Valve 1B21*VF011 & valve stem HNone Revision 121 of 6December 1999RBS USARTABLE 3.6A-27b
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Main Steam Drain Piping (Auxiliary Building)Piping Line Numbers: 1DTM-003-78-4, 1DTM-003-79-4, 1DTM-002-77-4, 1DTM-002-76-4, 1DTM-002-74-4, 1DTM-002-75-4 Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks1 115-0 7/16107-9 1/2-(4-3) CMainsteamNone12 1227114-10 1/4117-0-(13-3 1/2) C Mainsteam1)1MSS-024-5-21)Note F, SPI2)1MSS-024-8-22)Note F, SPI 3)1FWS-020-62-23)Note F, SPI 4)1FWS-020-63-24)Note F, SPI 5)1MSS*PRR-9025)DSI6)1MSS*PRR-9226)DSI 2 of 6 August 1987RBS USARTABLE 3.6A-27b (cont)Piping System: Main Steam Drain Piping (Auxiliary Building)Piping Line Numbers: 1DTM-003-78-4, 1DTM-003-79-4, 1DTM-002-77-4, 1DTM-002-76-4, 1DTM-002-74-4, 1DTM-002-75-4 Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks28119-9117-0-(13-3 1/2) C Mainsteam1)1MSS-024-5-21)Note F, SPI2)1MSS-024-8-22)Note F, SPI 3)1FWS-020-62-23)Note F, SPI 4)1FWS-020-63-24)Note F, SPI5)1MSS*PRR-9025)DSI6)1MSS*PRR-9226)DSI29120-0117-0-(13-0 1/2) C Mainsteam1)1WCS-V1721)Note F2)1WCS-VF0512)Note F 3)1WCS-1G33*MOVF046,3)Note F V163, MOVF035, SOVF041 4)1WCS-025-110-44)NRS 5)1WCS-004-171-25)Note F, SPI 6)1WCS-004-116-46)Note F, SPI 7)1WCS-004-32-47)Note F, SPI8)1WCS-750-66-48)NRS9)1DTM-002-74-49)NRS, SPI 10)1DTM-002-75-410)NRS, SPI 11)1DTM-002-76-411)NRS, SPI12)1MSS-PRR-90312)DSI 13)1MSS-PRR-92313)DSZ 14)1MSS-024-5-214)Note F, SPI15)1MSS-024-8-215)Note F, SPI16)1FWS-020-62-216)Note F, SPI 17)1FWS-020-63-217)Note F, SPI34114-7 9/16120-538-11 1/2 C Mainsteam1)Wall (AJ AN)1)DSI35114-10 5/16117-0-(13-10 1/2) C Mainsteam1)1MSS-024-5-21)Note F, SPI2)1MSS-024-8-22)Note F, SPI 3)1FWS-020-62-23)Note F, SPI 4)1FWS-020-63-24)Note F, SPI5)1MSS-PRR-9225)DSI43127-9 1/2118-530-2 1/2 C Mainsteam1)Wall (AJ AN)1)DSI 3 of 6 August 1987RBS USARTABLE 3.6A-27b (cont)Piping System: Main Steam Drain Piping (Auxiliary Building)Piping Line Numbers: 1DTM-003-78-4, 1DTM-003-79-4, 1DTM-002-77-4, 1DTM-002-76-4, 1DTM-002-74-4,1DTM-002-75-4Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks44114-10 3/8117-0-(14-5 1/2) C Mainsteam1)Fl El 124'-9"1)DSI2)1DTM-150-104-22)Note F 3)1DTM-150-105-23)Note F 4)1DTM-001-112-44)NRS 5)1DTM-001-113-45)NRS6)1MSS-024-62-26)Note F, SPI52127-10 1/2118-5-(30-2 1/2) C Mainsteam1)Wall (AA AE)1)DSI53114-10 7/16117-0-(15-0 1/2) C Mainsteam1)Fl El 124'-9"1)DSI 2)1DTM-150-104-22)Note F3)1DTM-150-105-23)Note F 4)1DTM-001-112-44)NRS 5)1DTM-001-113-45)NRS 6)1MSS-024-62-26)Note F, SPI60114-7 9/16120-5-(38-11 1/2) C Mainsteam1)Wall (AA AE)1)DSI69114-7 9/16121-0-(38-11 1/2) C MainsteamNone 70114-10 9/16121-3-(38-11 1/2) C Mainsteam1)Platf El 124'-9"1)DSI 71118-1 9/16116-2-(38-11 1/2) C Mainsteam1)Wall (AE, AA)1)DSI 4 of 6 August 1987RBS USARTABLE 3.6A-27b (cont)Piping System: Main Steam Drain Piping (Auxiliary Building)Piping Line Numbers: 1DTM-003-78-4, 1DTM-003-79-4, 1DTM-002-77-4, 1DTM-002-76-4, 1DTM-002-74-4,1DTM-002-75-4Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) 92) Targets (3) (4) Remarks72118-4 9/16115-11-(38-11 1/2) C Mainsteam1)Platf El 124'-9"1)DSI 2)Platf El 111'-6"2)DSI73127-10 1/2117-10-(30-2 1/2) C Mainsteam1)Wall (AE, AA)1)DSI74128-1 1/2117-7-(30-2 1/2) C Mainsteam1)Fl El 141'-0"1)DSI 2)Wall (AE, AA)2)DSI75133-0117-7-(30-2 1/2) C Mainsteam1)Fl El 141'-0"1)DSI 2)Platf El 124'-9"2)DSI3)Wall (AE, AA)3)DSI76133-3117-7-(29-11 1/2) C Mainsteam1)Wall (AA, AG)1)DSI 2)Wall (AE, AA)2)DSI77117-11 1/2117-0 -(14-8 1/2) C Mainsteam1)Wall (AE, AG)1)DSI 2)Wall (AA, AG)2)DSI78117-9 3/8117-0-(14-6 3/8) C Mainsteam1)Wall (AG, AE)1)DSI 2)Fl El 141-02)DSI79127-9 3/4116-330-2 1/2 C Mainsteam1)Wall (AJ, AN)1)DSI80128-0 3/4116-030-2 1/2 C Mainsteam1)Wall (AJ, AN)1)DSI 2)Fl El 141-02)DSI81117-7 9/16118-8 38-11 1/2 C Mainsteam 1)Wall (AJ, AN)1)DSI 82117-7 9/16118-538-8 1/2 C Mainsteam1)DER-004-60-41)Note F, SPI 2)1SFC-006-109-42)Note F, SPI83118-10 1/8116-514-8 CMainsteam1)Platf El 114'-0"1)DSI 2)1WCS-1G33-MOVF0462)Note F3)1WCS-003-121-43)Note F, SPI4)1WCS-750-229-44)NRS5)1WCS-004-116-35)Note F, SPI 5 of 6 August 1987RBS USARTABLE 3.6A-27b (cont)Piping System: Main Steam Drain Piping (Auxiliary Building)Piping Line Numbers: 1DTM-003-78-4, 1DTM-003-79-4, 1DTM-002-77-4, 1DTM-002-76-4, 1DTM-002-74-4,1DTM-002-75-4Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks84119-1 1/8116-514-5 C Mainsteam1)Wall (AG, AJ)1)DSI85126-4 7/8116-56-11 CMainsteam1)Platf El 123'-9"1)DSI 2)1WCS-1G33-MOVF0462)Note F3)1WCS-003-121-43)Note F, SPI4)1WCS-750-229-44)NRS 5)1WCS-004-116-35)Note F, SPI 6)Wall (AG, AJ)6)DSI86126-7 7/8116-26-11 C Mainsteam 1)Wall (AG, AJ)1)DSI87126-7 7/8115-3 13/166-11 C Mainsteam 1)Wall (AG, AJ)1)DSI88126-7 7/8115-0 13/166-8 C Mainsteam 1)Wall (AG, AJ)1)DSI 89126-6115-0 13/16-(7-0 3/8) C Mainsteam 1)Wall (AG, AE)1)DSI90126-6115-3 13/16-(7-3 3/8) C Mainsteam1)Wall (AG, AE)1)DSI94110-1 15/16152-0-(14-8) CMainsteam1)Fl El 104'-6"1)DSI2)Wall2)DSI 3)1DTM-001-148-43)NRS 4)1DTM-001-149-44)NRS5)1DER-004-60-45)Note F, SP 6 of 6 August 1987RBS USARTABLE 3.6A-27b (cont)Piping System: Main Steam Drain Piping (Auxiliary Building)Piping Line Numbers: 1DTM-003-78-4, 1DTM-003-79-4, 1DTM-002-77-4, 1DTM-002-76-4, 1DTM-002-74-4,1DTM-002-75-4Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks97114-10 3/16117-0-(12-6)CMainsteam1)MSS*PRR-9241)DSI 923 1 of 3 August 1987RBS USARTABLE 3.6A-27c
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Main Steam Drain Lines System (Steam Tunnel)Piping Line Numbers: 1DTM-150-104-2, 1DTM-150-105-2, 1DTM-150-106-2, 1DTM-150-107-2, 1DTM-003-108-2Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks1125-7107-9 1/2-(14-8) C R1)Platf El 123'-9"1)DSI2)1DTM-150-105-22)Note F, SPI 3)1DTM-001-112-43)NRS 4)1DTM-001-113-44)NRS5)1MSS-024-5-25)Note F, SPI4125-5122-6-(17-1 3/4) C R1)Valve 1E12*VF050B1)DSI2)1DTM-150-105-22)Note F 3)1MSS-024-60-23)Note F, SPI 4)Platf El 123'-9"4)DSI 5)Platf El 124'-9"5)DSI5125-5122-8 1/4-(17-4) C R1)Platf El 123'-9"1)DSI2)1DTM-150-105-22)Note F, SPI10111-3 1/16127-6 3/4-(17-4) C R1)1MSS-024-5-21)Note F, SPI2)1DTM-001-146-42)NRS 3)1DTM-003-110-43)Note F, SPI11111-3 1/16127-9-(17-1 3/4) C R1)Struct col for platf1)DSI2)1DTM-003-110-42)Note F, SPI12111-3 1/8127-9-(16-9) C R1)Struct col for platf1)DSI2)1DTM-003-110-42)Note F, SPI15125-7107-9 1/2-(14-1) C R1)Platf El 123'-9"1)DSI2)1MSS-024-5-22)Note F, SPI 3)1DTM-001-112-43)NRS 4)1DTM-001-113-44)NRS19125-5123-3 7/816-5 3/64 C R1)Platf El 123'-9"1)DSI and 124'-9" 2)Valve 1E12*VF050B2)DSI 3)1MSS-024-5-23)Note F, SPI 4)1DTM-150-104-24)Note F, SPI 2 of 3 August 1987RBS USARTABLE 3.6A-27c (cont)Piping System: Main Steam Drain Lines System (Steam Tunnel)Piping Line Numbers: 1DTM-150-104-2, 1DTM-150-105-2, 1DTM-150-106-2, 1DTM-150-107-2, 1DTM-003-108-2 Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks20125-2 3/4123-516-7 C R1)1MSS-024-6-21)Note F, SPI2)1DTM-001-112-42)NRS 3)1DTM-001-113-43)NRS 4)1RHS-010-14-24)Note F, SPI5)1DTM-001-147-45)NRS6)1RHS-008-45-36)Note F, SPI 7)1MSS*PRR-9247)DSI23111-3 1/8126-9-(16-7) C R1)1DTM-001-147-41)NRS2)1MSS-024-5-22)Note F, SPI 3)1MSS*PRR-9243)DSI46111-3 1/8127-1/2-(16-7) C R1)1DTM-001-147-41)NRS2)1MSS-024-5-22)Note F, SPI 3)1MSS*PRR-9243)DSI53115-0 3/8135-5-(16-7) C R1)1DTM-001-113-41)NRS2)1MSS-024-5-22)Note F, SPI 3)1DTM-001-147-43)NRS 4)1DTM-001-146-44)NRS5)1DTM-001-112-45)NRS6)1MSS*PRR-9246)DSI25125-7107-9 1/214-1 C R1)Platf El 123'-9"1)DSI2)1MSS-024-7-22)Note F, SPI32111-2 13/16128-6-(16-5) C R1)1DTM-150-107-21)Note F, SPI2)1DTM-001-148-42)NRS3)1DTM-001-149-43)NRS4)1DER-004-60-44)Note F, SPI 5)Equip rem plugs5)DSI El 114'-0"35125-7107-9 1/214-8 C R1)Platf El 123'-9"1)DSI2)1MSS-024-7-22)Note F, SPI 3 of 3 August 1987RBS USARTABLE 3.6A-27c (cont)Piping System: Main Steam Drain Lines System (Steam Tunnel)Piping Line Numbers: 1DTM-150-104-2, 1DTM-150-105-2, 1DTM-150-106-2, 1DTM-150-107-2, 1DTM-003-108-2 Consequence of Piping Failure: Pipe whip Break Location BreakBlowdownProtectionBreak El X ZTypesSource MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) (2) Targets (3) (4) Remarks42111-2 13/16129-1-(16-5) C R1)1DTM-150-107-21)Note F, SPI2)1DTM-001-148-42)NRS 3)1DTM-001-149-43)NRS 4)1DER-004-60-44)Note F, SPI5)Equip rem plugs5)DSI El 114'-0"18125-5123-1-(16-0 3/4) C R1)Fl El 123'-9"1)DSI and 124'-9" 2)Valve 1E12*VF050B2)DSI3)1MSS-024-5-23)Note F, SPI4)1DTM-150-104-24)Note F, SPI24125-5123-2 1/2-(16-4 1/2) C R1)Fl El 123'-9"1)DSI and 124'-9" 2)Valve 1E12*VF050B2)DSI3)1MSS-024-5-23)Note F, SPI4)1DTM-150-104-24)Note F, SPI RBS USAR 1 of 5 August 1987 TABLE 3.6A-28a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Feedwater Piping - East Loop (Inside Containment)
Piping Line Numbers: 1FWS-020-67-1, 1FWS-020-39-1, 1FWS-014-65-1, 1FWS-012-35-1, 1FWS-012-36-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks1E 142-3 1/2 225 12-0 3/16 C R No whip H 1)BSW 2)Fl El 141'-0" (b) PRR 3)Fl El 125'-8 3/4" PRR-821 -822 60AE 122-0 327.91 20-4 1/16 L R&H 1)BSW PRR-826 PRR 2)RHS-010-16-1 -831 3)RHS-010-19-1 4)ICS-006-6-1 C R 1)Drywell wall PRR-826 PRR 2)RHS-010-16-1 -825 3)CRD lines 4)RHS-010-19-1 5)SVV-010-5-3 6)SVV-010-1-3 7)SVV-010-2-3 8)SVV-010-3-3 9)SVV-010-4-3 10)Vent duct H 1)Piping penetration Z3B PRR 2)Check valve PRR-829 1B21*VF010B -831 3)Valve 1B21*VF011B 4)FWS-020-46-1 60BE 122-0 332.25 19-6 7/16 C R 1)BSW PRR-829 PRR H 1)RHS-010-16-1 PRR-826 PRR 2)RHS-010-19-1 -825 -831 RBS USAR 2 of 5 August 1987 TABLE 3.6A-28a (cont)
Piping System: Feedwater Piping - East Loop (Inside Containment)
Piping Line Numbers: 1FWS-020-67-1, 1FWS-020-39-1, 1FWS-014-65-1, 1FWS-012-35-1, 1FWS-012-36-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks60CE 122-0 334.56 21-0 1/2 L R&H 1)BSW 2)Structural steel PRR-826 PRR Fl El 125'-8 3/4" -831 C R 1)Drywell wall PRR 2)RHS-010-19-1 PRR-826 3)CRD lines -829 4)RHS-010-16-1 5)SVV-010-5-3 6)SVV-010-1-3 7)SVV-010-2-3 8)SVV-010-3-3 9)SVV-010-4-3 10)Vent duct H 1)Piping penetration Z3B PRR 2)Check valve 1B21*VF010B PRR-831 3)Valve 1B21*VF011B 4)FWS-010-40-1 70E 123-9 335.41 17-9 11/16 L R&H 1)Structural steel Fl El 141'-0" PRR-829 PRR 2)Fl El 125'-8 3/4" -831 -826 C R 1)Structural steel PRR-827 PRR Fl El 141'-0" 2)Fl El 125'-8 3/4" 3)MSS Loop D 4)MSS isolation valve acc. 1B21-TKA001D H 1)Fl El 118'-0 1/4" PRR-831 PRR -826 RBS USAR 3 of 5 August 1987 TABLE 3.6A-28a (cont)
Piping System: Feedwater Piping - East Loop (Inside Containment)
Piping Line Numbers: 1FWS-020-67-1, 1FWS-020-39-1, 1FWS-014-65-1, 1FWS-012-35-1, 1FWS-012-36-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks71E 122-0 334.4 18-2 5/8 C R 1)BSW PRR-829 PRR H 1)RHS-010-16-1 PRR-826 PRR 2)RHS-010-19-1 PRR-825 L R&H 1)Fl El 141'-0" PRR-829 PRR 2)Fl El 125'-8 3/4" PRR-825 PRR-831 130E 122-0 352.5 26-4 13/16 C R 1)BSW PRR-829 PRR -830 H No whip RBS USAR 4 of 5 August 1987 TABLE 3.6A-28a (cont)
Piping System: Feedwater Piping - East Loop (Inside Containment)
Piping Line Numbers: 1FWS-020-66-1, 1FWS-020-40-1, 1FWS-014-64-1, 1FWS-012-37-1, 1FWS-012-38-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1) (2) Targets (30 (4) Remarks1W 142-3 1/2 135 12-0 3/16 C R No whip H 1)BSW PRR-801 PRR -802 60AW 122-0 32.08 20-4 1/16 L R&H 1)BSW PRR-806 PRR 2)ICS-008-1-1 -811 C H 1)Piping penetration Z3A PRR 2)Check valve 1B21*VF010A PRR-809 3)Valve 1B21*VF011A -811 4)ICS-008-1-1 R 1)Drywell wall PRR-805 PRR 2)CRD lines -806 3)SVV-010-16-3 4)SVV-010-9-3 5)SVV-010-13-3 6)SVV-010-14-3 7)SVV-010-15-3 8)Vent duct 60BW 122-0 27.75 19-6 7/16 C R 1)BSW PRR-809 PRR H 1)ICS-008-1-1 PRR-806 PRR 60CW 122-0 25.44 21-0 1/2 L R&H 1)BSW PRR-806 PRR 2)ICS-008-1-1 -811 C H 1)Isolation valve PRR 1B21*VF010A 2)Piping penetration Z3A 3)Valve 1B21*F011A PRR-811 4)ICS-008-1-1 RBS USAR 5 of 5 August 1987 TABLE 3.6A-28a (cont)
Piping System: Feedwater Piping - East Loop (Inside Containment)
Piping Line Numbers: 1FWS-020-66-1, 1FWS-020-40-1, 1FWS-014-64-1, 1FWS-012-37-1, 1FWS-012-38-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in)(1)(2) Targets (3) (4) Remarks R 1)Drywell wall PRR 2)CRD lines PRR-806 3)SVV-010-16-3 -809 4)SVV-010-9-3 5)SVV-010-13-3 6)SVV-010-14-3 7)SVV-010-15-3 8)Vent duct 70W 123-9 24.59 17-9 11/16 C R 1)BSW PRR-807 PRR 2)MSS-Loop A 3)ICS-008-1-1 H 1)Structural steel PRR-806 PRR Fl El 118'-9" -811 L R&H 1)Fl El 125'-8 3/4" PRR-809 PRR 2)MSS isolation valve -805 -811 71W 122-0 26.5 18-3 C R 1)BSW PRR-809 PRR H 1)ICS-008-1-1 PRR-805 PRR -806 L R&H 1)Fl El 125'-8 3/4" PRR-809 PRR -805 2)MSS isolation valve PRR-811 130W 122-0 7.5 26-4 13/16 C R 1)BSW PRR 2)ICS-008-1-1 PRR-810 H No whip RBS USAR Revision 12 1 of 6 December 1999 TABLE 3.6A-28b
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Feedwater Piping (Outside Containment)
Piping Line Numbers: 1FWS-020-47-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks1 121-8 1/10 107-9 1/2 3-6 C R No whip H 1)Fl El 114'-0" PRR-902 PRR 2)RHS-010-65-2 3)WCS-004-22-2 12 12 RBS USAR Revision 12 2 of 6 December 1999 TABLE 3.6A-28b (cont)
Piping System: Feedwater Piping (Outside Containment)
Piping Line Numbers: 1FWS-020-47-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks12 12 THIS PAGE LEFT INTENTIONALLY BLANK RBS USAR 3 of 6 August 1987 TABLE 3.6A-28b (cont)
Piping System: Feedwater Piping (Outside Containment)
Piping Line Numbers: 1FWS-020-62-2
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks 7 108-3 43/64 149-5 38-2 C R 1)North wall of steam tunnel 2)RHS-012-61-3 PRR-904 PRR 3)SAS-003-671-4 -905 4)CNS-004-329-4 H No whip RBS USAR Revision 12 4 of 6 December 1999 TABLE 3.6A-28b (cont)
Piping System: Feedwater Piping (Outside Containment)
Piping Line Numbers: 1FWS-020-48-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks11 121-8 1/16 107-9 1/2 -(3-6) C R No whip H 1)Structural steel PRR-912 PRR Fl El 114'-0" 2)WCS-004-173-2 3)RHS-010-14-2 12 12 RBS USAR Revision 12 5 of 6 December 1999 TABLE 3.6A-28b (cont)
Piping System: Feedwater Piping (Outside Containment)
Piping Line Numbers: 1FWS-020-48-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks12 12 THIS PAGE LEFT INTENTIONALLY BLANK RBS USAR 6 of 6 August 1987 TABLE 3.6A-28b (cont)
Piping System: Feedwater Piping (Outside Containment)
Piping Line Numbers: 1FWS-020-31-4
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks16 108-4 149-5 34-0 C R 1)North wall of steam tunnel PRR-914 PRR 2)SAS-003-617-4 3)FWS-020-62-2 4)CNS-004-329-4 5)RHS-012-61-3 6)Valve 1B21*MOVF065B H No whip RBS USARTABLE 3.6A-29
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Reactor Core Isolation Cooling Head Spray SystemPiping Line Numbers: 1-ICS-006-6-1 Consequence of Piping Failure: Pipe Whip Break Location BreakBlowdown ProtectionBreak El AzrTypesSource MeasuresEvaluationPoint(ft-in) (deg)(ft-in) (1) (2) Targets
(3) (4) Remarks1172-11 1/4 2701-0 7/16 C R 1) Containment penetration1) DSI 1KJB*Z19
- 2) RPV insulation frame2) DSI1212NOTE: Numbered footnotes follow Table 3.6A-51.Revision 121 of 1December 1999 Revision 12 1 of 1 December 1 999 RBS USAR TABLE 3.6A
-30a
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Reactor Core Isolation Cooling System (Inside Containment)Piping Line Numbers: 1ICS
-008-1-1Consequence of Piping Failure: Pipe whip Break LocationBreak Blowdown ProtectionBreak El Az r TypesSource MeasuresE valuationPoint(ft-in)(deg)(ft-in)(1)(20 Targets (3)(4)Remarks1146-3 3/4 67.516-6 3/8 C MSS A C D1)Unit cooler PRR-801 PRR 1DRS-UC1A PRR-80212122-6 3/4 24 26-10 C MSS A 1)1FWS-020-40-1 PRR-805 PRR 2)1FWS-PRR-810 C DNone--12 12______________________________NOTE: Numbered footnotes follow Table 3.6A
-51.
Revision 25 1 of 2 RBS USAR TABLE 3.6A-30b
SUMMARY
OF PIPING FAILURE ANALYSIS 12 Piping System: Reactor Core Isolation Cooling System (Outside Containment)
Piping Line Numbers: 1-ICS-008-31-1, 1-ICS-008-4-2, 1-ICS-006-101-2
Consequence of Piping Failure: Pipe whip 12 Break Location (6) Break Point El (ft-in) X (ft-in) Z (ft-in)Break Types (1) Blowdown Source (2) Targets Protection Measures (3) Evaluation (4) Remarks 1 121-8 1/16 107-91/2 10-6 C R 1)Penetration 1KJB*Z15 2)1ICS-MOVF064 PRR-807 PRR D None 12 12 12 100 124-9 118-2 4-5 C R 1) 20" FWS Line Mixing Tee
- 2) 4" WCS V232 Expansion
Loop
- 3) 2" WCS Tank Drain Line
- 4) G33MOV35
- 5) 24" MSS Line 1) SPI 2) Note XB
- 3) Note XC
- 4) Note XB
- 5) SPI 12
Revision 25 2 of 2 RBS USAR TABLE 3.6A-30b (cont)
Piping System: Reactor Core Isolation Cooling System (Outside Containment)
Piping Line Numbers: 1-ICS-004-13-2, 1-ICS-004-29-2
Consequence of Piping Failure: Pipe whip
Break Location (6) Break Point El (ft-in) X (ft-in) Z (ft-in)Break Types (1) Blowdown Source (2) Targets Protection Measures (3) Evaluation (4) Remarks 12 12 39 73-9 1/4 89-4 1/2 12-8 C R 1) 1-ICS-006-20 NRS D None 39A 88-0 3/8 95-2 1/2 11-7 C R 1) 1-ICS-002-10-2
- 2) Fl El 95'-9"
- 3) ICS*V33 valve
- 4) DFR*155 drain pipe
- 5) ICS-006-15-2 line
support - 1) NRS 2) DSI
- 3) NRS
- 4) NRS
- 5) NRS
______________________________NOTE: Numbered footnotes follow Table 3.6A
-51.Revision 12 1 of 1 December 1999 RBS USARTABLE 3.6A-31
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: High Pressure Core Spray System (Inside Containment)Piping Line Numbers: 1CSH
-010-45-1Consequence of Piping Failure: Pipe whip Break Location Break Blowdown ProtectionBreak El Az r TypesSource Measures EvaluationPoint(ft-in)(deg)(ft-in)(1)(2) Targets (3)(4)Remarks1140-927011-7 15/16 C R1)Drywell wallPRR-801PRR penetration 1DRB*Z102)Fl El 141'-0" 3)Platform
El 141'-10"12 125140-927020-10 C R1)Drywell wallPRR-801PRR penetration
1DRB*Z102)Fl El 141'-0" 3)Platform
El 141'-10"
______________________________NOTE: Numbered footnotes follow Table 3.6A
-51.Revision 121 of 1 December 1999 RBS USARTABLE 3.6A-32
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Low Pressure Core Spray System (Inside Containment)Piping Line Numbers: 1CSL
-010-43-1, 1CSL
-012-08-1Consequence of Piping Failure: Pipe whip Break Location Break Blowdown ProtectionBreak El Az r TypesSource Measures EvaluationPoint(ft-in)(deg)(ft-in)(1)(2) Targets (3)(4)Remarks1140-99011-7 15/16 C R1) Drywell wallPRR-801PRR penetration 1DRB*Z142) Fl El 141'-0"
- 3) Platform
El 141'
-10"125140-99020-10 C R1) Drywell wallPRR-801PRR penetration
1DRB*Z142) Fl El 141'-0" 3) Platform
El 141'
-10" 12 RBS USAR Revision 12 1 of 2 December 1999 TABLE 3.6A-33
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-16-1, 1RHS-010-19-1, 1RHS-010-34-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks1A 136-3 1/4 45 11-8 7/8 C R 1)Drywell wall PRR-801 PRR 2)Pen. 1DRB*Z14 3)1CSL-010-43-1 12 124A 136-3 1/4 345 21-11 1/2 C R 1)Drywell wall PRR-801 PRR 2)Pen. 1DRB*Z14 3)1CSL-010-43-1 1B 136-3 1/4 225 11-8 7/8 C R 1)Drywell wall PRR-811 PRR RBS USAR Revision 12 2 of 2 December 1999 TABLE 3.6A-33 (Cont.)
Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-16-1, 1RHS-010-19-1, 1RHS-010-34-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation Point (ft-in) (deg) (ft-in)(1) (2) Targets (3) (4) Remarks124B 136-3 1/4 225 21-11 1/2 C R 1)Drywell wall PRR-811 PRR 1C 136-3 1/4 135 11-8 7/8 C R 1)Drywell wall PRR-821 PRR 2)1SAS-003-694-1 4C 136-3 1/4 135 21-11 1/2 C R 1)Drywell wall PRR-821 PRR 2)1SAS-003-694-1 12NOTE: Numbered footnotes follow Table 3.6A-51.
Revision 12 1 of 1 December 1999 RBS USAR TABLE 3.6A
-34a
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Residual Heat Removal System -
Shutdown Mode (Inside Containment)Piping Line Numbers: RHS
-018-53-1Consequence of Piping Failure: Pipe whip Break LocationBreak Blowdown ProtectionBreak El Az rTypes Source MeasuresE valuationPoint(ft-in)(deg)(ft-in)(1)(2) Targets (3)(4)Remarks191-6 018-2 1/2 C R1)Drywell wall PRR-831 PRR2)Fl El 95'-9"12 125101-2 020-5 1/2 C R 1)RCS Loop B piping 1)SPI2)Fl El 95'-9"2)PRS-8312)PRR
3)FWS PRS-8113)DSI 4)SVV piping 4)Note CA NOTE: Numbered footnotes follow Table 3.6a-51.
Revision 12 1 of 2 December 1999 RBS USARTABLE 3.6A-34b
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Residual Heat Removal System (Outside Containment)Piping Line Numbers: 1-RHS-010-14-2Consequence of Piping Failure: Pipe whip Break Location Break Blowdown ProtectionBreak El X Z TypesSource Measures EvaluationPoint(ft-in)(ft-in)(ft-in)(1)(2) Targets (3)(4)Remarks1123-3 13/16118-2-(3-6) CWCS1)1-MSS-024-6-21) SPI12 126124-9121-0 5/8-(8-5 59/64) C FWS & WCS1)1-MSS-024-6-21) SPI Revision 12 2 of 2 December 1999 RBS USARTABLE 3.6A-34b (Cont)Piping System: Residual Heat Removal System (Outside Containment)Piping Line Numbers: 1-RHS-010-65-2Consequence of Piping Failure: Pipe whip Break Location Break Blowdown ProtectionBreak El X Z TypesSource Measures EvaluationPoint(ft-in)(ft-in)(ft-in)(1)(2) Targets (3)(4)Remarks8123-4 1/8115-83-6 CWCS1)1-MSS-024-7-21) SPI12 1213124-9120-6 3/48-4 3/4 C FWS & WCS1)1-MSS-024-7-21) SPI
_________________________Note: Numbered footnotes follow Table 3.6A-51.
RBSUSARTABLE3.6A-35
SUMMARY
OFPIPINGFAILUREANALYSISPipingSystem:StandbyLiquidControlPipingLineNumbers:1-SLS-150-37-1,1-SLS-150-38-1 ConsequenceofPipingFailure:PipeWhipBreakLocationBreakBlowdownProtectionBreakElAzrTypesSourceMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)(2)Targets (3)(4)Remarks__________________________NOTE:NumberedfootnotesfollowTable3.6A-51.1of1August19871101-42256-9CH1)CRDhousing1)SPI286-0189.715-01/4CR,H1)DER-004-451-4Support1)SPI (DER-PSST3004A4)386-0187.415-03/4CR,H1)DER-004-451-4Support1)SPI (DER-PSST3004A4)486-0182.515-3CR,H1)DER-004-451-4Support1)SPI (DER-PSST3004A4)
RBS USAR Revision 12 1 of 1 December 1999 TABLE 3.6A-36a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: -
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El Az r Types Source Measures Evaluation
Point (ft-in) (deg) (ft-in) (1)(2) Essential Targets (3) (4) Remarks288 127-7 238.7 40-0 C Pump 1)Col D1-1 of multi- 1)DSI, SPI functional support 316 127-11 284.1 40-2 C Pump & 1)Col D1-10 of multi- 1)DSI, SPI RPV functional support 12 12319 127-7 121.3 40-0 C Pump & 1)Col A1-12 of multi- 1)DSI, SPI RPV functional support 323 127-11 75.9 40-2 C Pump & 1)Withdraw line 4449 1)DSS RPV 2)Col A-3 of multi- 2)DSI, SPI functional support
_______________________________
NOTES: Other pipe whip targets for all breaks are similar to those identified in jet impingement target Table 3.6A-49a. The ta rgets already evaluated for jet impingement are considered acceptable for pipe whip effects as well.
Numbered footnotes follow Table 3.6A-51.
RBS USAR 1 of 8 August 1987 TABLE 3.6A-36b
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-17-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4) Remarks1 72-1 1/2 -(127-6) 80-5 1/2 C 1) Wall 1) DSI 2 72-1 1/2 -(127-6) 81-7 C 1) Wall 1) DSI 3 72-3 1/2 -(127-6) 81-9 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 4 74-4 -(127-6) 81-9 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 5 74-6 -(127-8) 81-9 C 1) Wall 1) DSI 6 74-6 -(123-2) 81-9 C 1) Wall 1) DSI 8 74-8 -(123-4) 81-9 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 9 81-1 -(123-4) 81-9 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 10 81-3 -(123-4) 81-7 C 1) Wall 1) DSI 11 81-3 -(123-6) 66-5 C 1) Wall 1) DSI 12 81-3 -(123-4) 66-7 C 1) Wall 1) DSI 13 81-3 -(132-2) 66-5 C 1) Wall 1) DSI 15 81-3 -(129-2) 66-5 C 1) Wall 1) DSI 34 81-3 -(123-4) 69-5 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 37 81-3 -(132-4) 66-7 C 1) Wall 1) DSI 38 81-3 -(132-4) 68-9 C 1) Wall 1) DSI RBS USAR 2 of 8 August 1987 TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-17-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4) Remarks39 81-3 -(132-2) 68-11 C 1) Wall 1) DSI 40 81-3 -(130-4) 68-11 C 1) Wall 1) DSI 41 81-1 -(130-2) 68-11 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 42 76-8 -(130-2) 68-11 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI RBS USAR 3 of 8 August 1987 TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-18-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4) Remarks18 81-3 -(129-2) 65-3 C 1) Wall 1) DSI 19 81-1 -(129-2) 65-1 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 20 76-9 -(129-2) 65-1 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI RBS USAR 4 of 8 August 1987 RBS USAR TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-225-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4) Remarks21 76-7 -(129-2) 65-1 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 22 75-0 -(129-2) 65-1 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 23 74-10 -(129-2) 64-11 C None -
RBS USAR 5 of 8 August 1987 TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-11-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3 Evaluation (4) Remarks25 72-1 1/2 -(127-6) 68-1 1/2 C None - 26 72-1 1/2 -(127-6) 69-3 C None - 27 72-3 1/2 -(127-6) 69-5 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 28 74-4 -(127-6) 69-5 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI 29 74-6 -(127-8) 69-5 C 1) Wall 1) DSI 31 74-6 -(123-2) 69-5 C 1) Wall 1) DSI 33 74-8 -(123-4) 69-5 C 1) Floor El 70'-0" 1) DSI 2) Ceiling 2) DSI RBS USAR 6 of 8 August 1987 TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-21-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4)Remarks50 77-0 -(132-6) 64-4 1/2 C 1) Wall 1) DSI RBS USAR 7 of 8 August 1987 TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-19-4
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4) Remarks56 74-10 -(129-2) 62-11 C 1) Wall 1) DSI 57 74-10 -(130-0) 62-9 C 1) Wall 1) DSI 59 77-0 -(129-0) 61-9 C 1) Wall 1) DSI 2) Floor El 70'-0" 2) DSI
- 3) Ceiling 3) DSI 89 107-0 -(72-5) 2-8 3/4 C 1) Wall 1) DSI 90 107-0 -(72-7) 2-6 3/4 C 1) Wall 1) DSI 91 107-0 -(73-1) 2-6 3/4 C 1) Wall 1) DSI 92 107-2 -(73-3) 2-6 3/4 C 1) Floor El 95'-0" 1) DSI 2) Ceiling 2) DSI 94 115-0 -(73-3) 2-6 3/4 C 1) Floor El 95'-0" 1) DSI 2) Ceiling 2) DSI 95 115-10 -(73-3) 2-6 3/4 C 1) Floor El 95'-0" 1) DSI 2) Ceiling 2) DSI 96 116-0 -(73-1) 2-6 3/4 C 1) Wall 1) DSI RBS USAR 8 of 8 August 1987 TABLE 3.6A-36b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-22-2
Consequence of Piping Failure: Pipe Whip Break Location Break- El X Z Break Protection point (ft-in) (ft-in) (ft-in) Types (1) Targets Measures (3) Evaluation (4) Remarks---------------------------------NOTE: Numbered footnotes follow Table 3.6A-51.
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 6 1 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-1-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks1 83-5 -(18-0 1/2) 8-10 1/8 C RCS A None C R & 1)Fl El 81'-1 3/4" 1)DSI RCS B 6 RBS USAR TABLE 3.6A-37a (Cont.)
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 6 2 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1DER-002-4-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Cont.)
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 6 3 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1DER-002-34-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Cont.)
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 6 4 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-006-5-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Con't)
Revision 6 5 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-006-5-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 651 104-0 31-2 4-3 C RCS A 1)Fl El 95'-9" 1)DSI H 1)1SVV-012-26-3 PRR-813 PRR RBS USAR TABLE 3.6A-37a (Con't) 6 of 61 August 1987 THE INFORMATION ON THIS PAGE HAS BEEN DELETED.
RBS USAR TABLE 3.6A-37a (Con't) 7 of 61 August 1987 THE INFORMATION ON THIS PAGE HAS BEEN DELETED.
RBS USAR TABLE 3.6A-37a (Con't) Revision 6 8 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1DER-002-223-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Con't) Revision 6 9 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-3-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Con't) 10 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-3-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks31 83-5 18-4 -(8-10 1/8) C RCS A 1)Fl El 81'-1 4/3" 1)DSI C D None RBS USAR TABLE 3.6A-37a (Con't) Revision 6 11 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-6-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 12 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-6-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12681 89-11t 7-9 4-9 C RPV Pedestal DSI C RCS A&B Pedestal DSI RBS USAR TABLE 3.6A-37a (Con't) Revision 6 13 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-6-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Con't) Revision 6 14 of 61 August 1993 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-150-8-1
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks6 RBS USAR TABLE 3.6A-37a (Con't) 15 of 61 August 1987 THE INFORMATION ON THIS PAGE HAS BEEN DELETED.
RBS USAR TABLE 3.6A-37a (Con't) 16 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1B13-D077 (GE Line)
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks93 102-0 -(0-9) -(0-6) C RCS A 1)CRD housing 1)DSI
& B 2)CRD lines 2)Note HA RBS USAR TABLE 3.6A-37a (Con't) 17 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-006-18-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks124 149-0 44-4 7/16 -(5-2 11/16) C H 1)Drywell wall PRR-904 PRR 2)East wall 3)1WCS-004-26-3 4)1WCS-004-172-3 5)1WCS-004-179-3 6)1WCS-004-25-3 129 149-0 46-0 11/16 -(12-8) C H 1)South wall 1)DSI 2)Fl El 147'-3" 2)DSI 3)1WCS-004-25-3 3)NRS R 1)Drywell wall 1)DSI 2)1WCS-004-24-3 2)NRS 3)1WCS-025-106-4 3)NRS 140 159-8 15/16 51-2 -(6-9) C H None R 1)South wall 1)DSI 2)1WCS-004-24-3 2)NRS RBS USAR TABLE 3.6A-37a (Con't) 18 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-172-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks125 149-0 44-4 7/16 -(6-1) C H 1)Drywell wall PRR-905 PRR 2)1WCS-004-26-3 D None 141 149-0 46-3 7/16 -(6-10) C H 1)Drywell wall PRR-905 PRR 2)1WCS-004-26-3 D None 142 149-0 47-5 7/16 -(6-10) C H 1)South wall 1)DSI 2)1WCS-004-25-3 2)SPI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 19 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-137-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12143 149-0 49-5 5/16 -(9-2 1/8) C H 1)Fl El 147'-3" PRR-907 PRR 2)1WCS-006-139-3 R 1)Fl El 147'-3" 1)DSI 2)1WCS-006-18-3 2)SPI 144 149-0 49-5 5/16 -(10-4 1/8) C H 1)Fl El 147'-3" PRR-907 PRR 2)1WCS-006-139-3 R 1)Fl El 147'-3" 1)DSI 2)1WCS-006-18-3 2)SPI 153 157-8 5/8 49-7 5/16 -(8-3) C H 1)Platf El 158'-0" 1)DSI R None 155 149-0 49-5 5/16 -(7-0) C H None D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 20 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-79-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks169 149-0 45-7 1/16 -(11-10 1/2) C H 1)East wall 1)DSI 2)1WCS-004-25-3 2)SPI R 1)Fl El 147'-3" 1)DSI 2)1WCS-006-139-2 2)SPI 3)1WCS-004-172-2 3)SPI 170 149-0 45-7 1/16 -(10-4) C H 1)East wall 1)DSI 2)1WCS-004-25-3 2)SPI R 1)Fl El 147'-3" 1)DSI 2)1WCS-006-139-2 2)SPI 3)1WCS-004-172-2 3)SPI 174A 154-6 41-9 -(8-9) C H 1)South wall 1)DSI 2)1WCS-004-138-2 2)SPI 3)1WCS-004-25-3 3)SPI R 1)1WCS-004-138-2 1)SPI 2)1WCS-004-172-2 2)SPI L R&H None 12 12 RBS USAR TABLE 3.6A-37a (Con't) 21 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-79-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks180 149-0 40-6 -(8-6) C H 1)Fl El 147'-3" 1)DSI 2)East wall 2)DSI 3)1WCS-004-25-3 3)SPI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 22 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-26-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR TABLE 3.6A-37a (Con't) 23 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-26-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks186A 153-7 40-6 -(15-9) C H 1)Fl El 147'-3" 1)DSI R 1)Fl El 147'-3" 1)DSI 2)East wall 2)DSI 3)1WCS-004-25-3 3)SPI RBS USAR TABLE 3.6A-37a (Con't) Revision 12 24 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-24-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks195 172-10 3/8 47-0 5/16 0-11 C H 1)Heat exch 002B 1)DSI R None 12202A 151-6 17-5 7/16 -(36-4 5/8) C R 1)1WCS-025-106-4 1)NRS H 1)1WCS-004-25-4 1)SPI 201A 148-6 30-1 5/8 -(26-6) C H 1)Pipe chase 1)DSI R 1)Pipe chase 1)DSI 12 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 25 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-24-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12THIS PAGE INTENTINALLY LEFT BLANK RBS USAR TABLE 3.6A-37a (Con't) Revision 12 26 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-34-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks206A 158-0 -(1-6) -(40-3) C H 1)Fl El 162'-3" 1)DSI 2)Fl El 169'-9" 2)DSI R&H 1)Drywell wall 1)DSI 2)Backwash rec tank 2)DSI G36-A003 wall 12 12 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 27 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-58-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12220 171-0 -(7-5) -(45-3) C H 1)East wall 1)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 28 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-34-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks232 171-6 -(8-4) -(41-0) C R&H 1)North wall 1)DSI 2)Fl El 175'-9" 2)DSI 3)Ladder 3)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 29 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-45-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks245 176-8 -(8-1) -(27-6) C H None R&H 1)West wall 1)DSI RBS USAR TABLE 3.6A-37a (Con't) 30 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-35-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks246A 158-0 1-6 -(40-3) C H 1)Fl El 162'-3" 1)DSI 2)Fl El 169'-9" 2)DSI R&H None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 31 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-69-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12260 171-0 6-9 -(45-3) C H 1)East wall 1)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 32 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-71-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks272 171-6 8-5 -(41-0) C R&H 1)Fl El 175'-9" 1)DSI 2)South wall 2)DSI 3)Ladder 3)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 33 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-65-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks285 176-6 8-0 -(27-7) C R None R&H 1)Fl El 172'-3" 1)DSI 2)West wall 2)DSI 3)1WCS-150-77-3 3)NRS RBS USAR TABLE 3.6A-37a (Con't) 34 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-42-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks294 163-11 -(5-5) -(41-0) C R&H D None RBS USAR TABLE 3.6A-37a (Con't) 35 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-157-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks303 163-11 5-6 -(41-0) C H&R 1)East wall 1)DSI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 36 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-25-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks306 153-10 3/16 51-0 9-3 C H None R&H 1)South wall 1)DSI 2)Fl El 147'-3" 2)DSI 3)Ladder 3)DSI 12 12 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 37 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-33-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12323A 153-6 43-8 -(15-9) C H 1)Platf El 147'-3" 1)DSI R&H 1)East wall 1)DSI 2)1WCS-004-24-3 2)SPI RBS USAR TABLE 3.6A-37a (Con't) Revision 12 38 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-25-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks324A 149-3 30-1 5/8 -(26-6) C R 1)Pipe chase 1)DSI H 1)Pipe chase 1)DSI 12 12327A 151-6 18-3 -(35-10 1/4) C R 1)Fl El 162'-3" 1)DSI 2)1WCS-004-24-3 2)SPI 3)1WCS-025-106-4 3)NRS H 1)West wall 1)DSI 2)1WCS-008-75-3 2)SPI RBS USAR TABLE 3.6A-37a (Con't) 39 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-150-146-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks347 168-7 9-6 -(34-9) C R&H 1)West wall 1)DSI 2)Fl El 162'-3" 2)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 40 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-70-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks358 170-5 13/16 11-4 28-3 C R&H 1)West wall 1)DSI H None 366 170-5 13/16 4-0 -(37-6) C R&H None D None RBS USAR TABLE 3.6A-37a (Con't) 41 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-72-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks360A 170-1 5/16 6-2 1/4 -(37-6) C R&H None D None 362 166-0 6-2 1/4 -(37-9) C R&H 1)Fl El 169'-9" 1)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 42 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-150-145-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks379 168-7 -(9-6) -(34-9) C R&H None D None RBS USAR TABLE 3.6A-37a (Con't) 43 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-003-38-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks390 170-5 13/16 -(11-4) -(28-3) C R&H 1)West wall 1)DSI H None 395 170-5 13/16 -(4-5) -(37-6) C R&H 1)North wall 1)DSI 2)West wall 2)DSI 3)Fl El 169'-9" 3)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 44 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-39-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks396A 170-1 5/16 -(5-9 3/4) -(37-6) C R&H None D None 398 166-0 -(5-9 3/4) -(37-9) C R&H 1)West wall 1)DSI 2)Fl El 169'-9" 2)DSI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 45 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-251-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12419 164-4 -(4-9) -(34-1 1/2) C R&H 1)West wall 1)DSI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 46 of 61December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-240-3
Consequence of Piping Failure: Pipe whip Break LocationBreak Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in)(ft-in) (ft-in) (1) (2) Targets (3)
(4) Remarks12 12426 164-4 4-9 -(34-1 1/2) C R&H 1)West wall1)DSI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 47 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-49-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks427 181-0 -(9-6) -(26-3) C H None D None 12 12 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 48 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-49-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12439 176-6 -(18-0) -(35-9) C H 1)East wall 1)DSI 2)Fl El 175'-9" 2)DSI 3)1WCS-150-53-3 3)NRS D None RBS USAR TABLE 3.6A-37a (Con't) 49 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-150-53-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks440 176-9 5/8 -(7-5 13/16) -(26-3) C H None D None 441 176-9 5/8 -(6-5 1/4) -(26-3) C H None D None 442 176-9 5/8 -(6-3) -(26-5 1/4) C H None D None 443 176-7 3/8 -(6-3) -(34-6 3/4) C H 1)West wall 1)DSI D None 444 176-7 3/8 -(6-5 1/4) -(34-9) C H 1)West wall 1)DSI D None 445 176-7 3/8 -(14-3) -(34-9) C H 1)Fl El 175'-9" 1)DSI 2)West wall 2)DSI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 50 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-008-46-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks453 167-0 -(9-6) -(26-3) C H None D None 12 12458A 165-9 5/8 -(17-2) -(27-3) C H 1)West Wall 1)DSI 2)North wall 2)DSI D None 459 165-9 7/8 -(17-2) -(34-9) C H 1)West wall 1)DSI 2)North wall 2)DSI D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 51 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-41-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks460 181-0 9-6 -(26-3) C H None D None 12 12 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 52 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-002-41-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12472 176-6 18-0 -(35-9) C H 1)West wall 1)DSI 2)Fl El 175'-9" 2)DSI D None RBS USAR TABLE 3.6A-37a (Con't) 53 of 61 August 1987 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-150-77-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks473 176-9 5/8 7-3 -(26-3) C H None D None 474 176-9 5/8 6-5 1/4 -(26-3) C H None D None 475 176-9 5/8 6-3 -(26-5 1/4) C H None D None 476 176-7 3/8 6-3 -(34-6 3/4) C H 1)West wall 1)DSI D None 477 176-7 3/8 6-5 1/4 -(34-9) C H 1)West wall 1)DSI D None 478 176-1 3/8 14-3 -(34-9) C H 1)West wall 1)DSI 2)Fl El 175'-9" 2)DSI C D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 54 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-008-75-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks486 167-0 9-6 -(26-3) C H None D None 12 12491A 165-10 5/8 17-2 -(27-3) C H 1)South wall 1)DSI 2)West wall 2)DSI D None 492 165-9 7/8 17-2 -(34-9) C H 1)West wall 2)South wall D None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 55 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-23-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks500 153-10 49-2 2-4 C R 1)Fl El 158'-0" 1)DSI 13/16 H None 12 12 RBS USAR TABLE 3.6A-37a (Con't) Revision 12 56 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-23-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 12507 157-8 5/8 50-6 0-6 C R None H 1)Fl El 158'-0" 1)DSI 2)South wall 2)DSI 3)1CCP-006-94-4 3)SPI 4)1CCP-006-106-4 4)SPI RBS USAR TABLE 3.6A-37a (Con't) Revision 12 57 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-156-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks601 172-10 3/8 49-3 5/8 -(7-10 7/8) C H None R 1)Wall 1)DSI 12 12610 172-10 3/8 49-3 5/8 -(4-4 7/8) C H 1)Wall 1)DSI R None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 58 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-155-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks611 157-8 5/8 50-4 7/8 -(6-9 7/8) C R None H 1)Heat exch 1)DSI EB001B 2)Wall 2)DSI 12 12620 157-8 5/8 49-7 -(4-8 3/8) C R None H None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 59 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-152-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks621 159-8 15/16 50-8 3/8 -(3-6) C H None R 1)Wall 1)DSI 2)Platf 2)DSI 12 12630 159-8 15/16 50-9 1/2 0-0 C H 1)Wall 1)DSI R None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 60 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-154-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks631 157-8 5/8 50-4 7/8 -(3-3 7/8) C R None H 1)Wall 1)DSI 12 12640 157-8 5/8 49-7 1/4 -(1-2 1/4) C R None H None RBS USAR TABLE 3.6A-37a (Con't) Revision 12 61 of 61 December 1999 Piping System: Reactor Water Cleanup System (Inside Containment)
Piping Line Numbers: 1WCS-004-265-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks641 153-10 3/16 50-4 3/4 0-8 1/4 C R None H 1)Wall 12 12652 153-10 3/16 48-11 1/4 7-2 7/8 C R None H None NOTE: Numbered footnotes follow 3.6A-51.
RBS USAR TABLE 3.6A-37b Revision 12 1 of 10 December 1999
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-006-11-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks1 116-0 107-9 1/2 4-3 C R None H 1)Fl El 114'-0" 1)DSI 2)1RHS-008-36-2 2)SPI 12 127A 106-9 95-9 0-0 C R 1)South & east walls 1)DSI 2)1ICS-006-7-1 2)SPI 3)Vent duct 3)NRS H 1)East wall 1)DSI 2)Vent duct 2)NRS RBS USAR TABLE 3.6A-37b (cont) Revision 12 2 of 10 December 1999 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-003-13-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks12 1230 97-9 77-6 8-10 C R 1)Pump room wall 1)DSI H None RBS USAR TABLE 3.6A-37b (cont) Revision 12 3 of 10 December 1999 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-003-12-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks12 1243 97-9 85-6 1/2 8-7 C R 1)Pump room ceiling 1)DSI H None RBS USAR TABLE 3.6A-37b (cont) Revision 12 4 of 10 December 1999 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-004-16-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks44 117-6 107-10 10-6 C R None H 1)1ICS-008-4-2 1)SPI 2)1RHS-008-36-2 2)SPI 3)1ICS-restraint 3)SPI 1252A 106-9 92-4 11-3 C R 1)East wall 1)DSI 2)1ICS-006-7-1 2)SPI H 1)West wall 1)DSI 2)Vent duct 2)NRS 12 RBS USAR TABLE 3.6A-37b (cont) Revision 12 5 of 10 December 1999 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-004-20-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks12 12THIS PAGE LEFT INTENTIONALLY BLANK RBS USAR TABLE 3.6A-37b (cont) 6 of 10 August 1987 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-003-15-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks72 98-10 77-11 9-2 C R&H 1)Pump room wall 1)DSI H None RBS USAR TABLE 3.6A-37b (cont) 7 of 10 August 1987 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-003-14-3
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks87 98-10 86-1 9-3 C R&H 1)Pump room wall 1)DSI H None RBS USAR TABLE 3.6A-37b (cont)
Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-004-171-2
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks90 117-9 1/2 107-11 0-0 C H None D 1)Fl El 114'-0" 1)DSI 2)1RHS-008-36-2 2)SPI 3)1FWS-020-63-2 3)SPI RBS USAR TABLE 3.6A-37b (cont) Revision 12 9 of 10 December 1999 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-004-173-2
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) (2) Targets (3) (4) Remarks12 12108 124-9 121-5 3/4 6-8 5/8 C H 1)Platf El 123'-9" 1)DSI D None RBS USAR TABLE 3.6A-37b (cont) 10 of 10 August 1987 Piping System: Reactor Water Cleanup System (Outside Containment)
Piping Line Numbers: 1WCS-004-173-2
Consequence of Piping Failure: Pipe whip Break Location Break Blowdown Protection Break El X Z Types Source Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) (2) Targets (3) (4) Remarks117 124-9 120-6 1/8 -(6-6 7/8) C H 1)Fl El 123'-9" 1)DSI D None RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 1 of 13 December 1999 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line A
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks8A81A 155-0 1/2 72 11-10 1/2 C 1)RPV 1)DSS 2)MSS Line A 2)RL 3)1CX540rs7 CMS conduit 3)Note A 4)1CX507rc2 CMS conduit 4)Note A 5)1CX507rc3 CMS conduit 5)Note A 6)1CX507rc4 CMS conduit 6)Note A 7)1HCSARC514 cable (H 2 ignitor) 7)Note B 812 128A38A 130-10 3/4 51 19-0 C 1)1RCS*029 RPV press 1)Note H and level trans 2)1RHS*034 line 2)SPI (LPCI-A) 3)1E12*VF039A valve 3)DSS (LPCI-A) 4)1CC502rd1 ADS 4)Note C conduit 5)1CC502re ADS 5)DSS conduit 6)1CX507rc2 CMS 6)Note A conduit 7)1CX540rs7 CMS 7)Note A conduit RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 2 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line A
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks8A-1 130'-10 3/4" 51 19'-0" C 1)1RCS*029 RPV press and level 1)Note H trans 2)1RHS*034 line (LPCI-A) 2)SPI 3)1E12*VF039A (LPCI-A) 3)DSS 4)1CC502rd1 ADS conduit 4)Note C 5)1CC502re ADS conduit 5)DSS 6)1CX507rc2 CMS conduit 6)Note A 7)1CX540rs7 CMS conduit 7)Note A 42A 130-10 34.5 20-0 C 1)RCS*33 line & supports 1)Note D (RPV press & level trans) 2)Note G 2)RCS*029 line 3)Note J 3)RHS*164 line (LPCI-A) 4)RL 4)SVV*010 line 5)RL 5)SVV*FTG-1H tank 42A-1 130-4 3/4 34.5 20-0 C 1)RCS*033 line & supports 1)Note D (RPV Press & level trans) 2)RCS*029 line (RPV press 2)Note G & level trans) 3)RHS*164 (LPCI-A) line 3)Note J 4)SVV*10 line 4)RL 5)SVV*FTG-1H tank 5)RL 60A 129-0 7/16 8 25-0 C 1)1B21*AOVF22A 1)Note H 2)MSS Line A 2)RL RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 3 of 13 December 1999 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line B
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks8A81B 155-0 1/2 252 11-10 1/2 C 1)RPV 1)DSS 2)MSS Line B 2)RL 3)RCS*57 line (RPV 3)Note D press & level trans) 4)1CX501bd CMS conduit 4)Note A 5)1CX501ba1 CMS conduit 5)Note A 6)1CX501ba2 CMS conduit 6)Note A 7)1HCSBBC515 cablem (H 2Igniter) 7)Note B 8 8A12 1237B 131-1 1/4 272 23-6 C 1)CSH*41 line support 1)ACI 2)1E22*AOV005 CSH valve 2)RSS,ACI 3)1CC500bd7 ADS conduit 3)Note C 4)1CC500bd9 ADS conduit 4)Note C 5)1CC502rt4 ADS conduit 5)Note C 6)CSH-750-006 line & support 6)Note J 37B-1 130-8 272 23-6 C 1)CSH*41 line support 1)ACI 2)1E22*AOV005 valve 2)RSS,ACI 3)1CC500bd7 ADS conduit 3)Note C 4)1CC500bd9 ADS conduit 4)Note C 5)1CC502rt4 ADS conduit 5)Note C 6)CSH-750-006 line & support 6)Note J RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 8A 4 of 13 October 1996 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line B
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks38B 131-0 1/4 278 23-9 C 1)CSH*41 line & supports 1)ACI 2)1CC500bd7 ADS conduit 2)Note C 3)1CC500bd9 ADS conduit 3)Note C 4)1CC502rt4 ADS conduit 4)Note C 38B-1 131-7 278 23-9 C 1)CSH*41 line & supports 1)ACI 2)1CC500bd7 ADS conduit 2)Note C 3)1CC500bd9 ADS conduit 3)Note C 4)1CC502rt4 ADS conduit 4)Note C 39B 130-11 3/4 284 24-4 C 1)CSH*41 line & supports 1)ACI 2)1CC500bd7 ADS conduit 2)Note C 3)1CC500bd9 ADS conduit 3)Note C 4)1CC502rt4 ADS conduit 4)Note C 39B-1 130-6 1/2 284 24-4 C 1)CSH*41 line & supports 1)ACI 2)1CC500bd7 ADS conduit 2)Note C 3)1CC500bd9 ADS conduit 3)Note C 4)1CC502rt4 ADS conduit 4)Note C 8A847B 130-11 1/8 297 25-6 C 1)CMS*58 line support 1)Note I 2)1CC500bd9 ADS conduit 2)Note C 3)1HCSBBC515 cable 3)Note BB (H 2 ignitor) 4)1HCSBBC516 cable 4)Note B (H 2 ignitor) 5)1CC502rt3 ADS conduit 5)Note C 6)1CC502rt4 ADS conduit 6)Note C 7)1CX501ba CMS conduit 7)Note A 8)1CX501ba1 CMS conduit 8)Note A 9)1CX501ba2 CMS conduit 9)Note A 10)1CX501ba3 CMS conduit 10)Note A 11)1CX501bd CMS conduit 11)Note A 8 8A RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 8A 5 of 13 October 1996 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line B
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks8A847B-1 130-5 7/8 297 25-6 C 1)CMS*58 line support 1)Note I 2)1CC500bd9 ADS conduit 2)Note C 3)1HCSBBC515 cable 3)Note BB (H 2 ignitor) 4)1HCSBBC516 cable 4)Note B (H 2 ignitor) 5)1CC502rt3 ADS conduit 5)Note C 6)1CC502rt4 ADS conduit 6)Note C 7)1CX501ba CMS conduit 7)Note A 8)1CX501ba1 CMS conduit 8)Note A 9)1CX501ba2 CMS conduit 9)Note A 10)1CX501ba3 CMS conduit 10)Note A 11)1CX501bd CMS conduit 11)Note A 48B 130-11 302 25-5 C 1)CMS*58 line support 1)Note I 2)1CC500bd9 ADS conduit 2)Note C 3)1HCSBBC515 cable 3)Note BB (H 2 ignitor) 4)1HCSBBC516 cable 4)Note B (H 2 ignitor) 5)1CC502rt3 ADS conduit 5)Note C 6)1CC502rt4 ADS conduit 6)Note C 7)1CX501ba CMS conduit 7)Note A 8)1CX501ba1 CMS conduit 8)Note A 9)1CX501ba2 CMS conduit 9)Note A 10)1CX501ba3 CMS conduit 10)Note A 11)1CX501bd CMS conduit 11)Note A 48B-1 130-5 3/4 302 25-5 C 1CMS*58 line support 1)Note I 2)1CC500bd9 ADS conduit 2)Note C 3)1HCSBBC515 cable 3)Note BB (H 2 ignitor) 4)1HCSBBC516 cable 4)Note B (H 2 ignitor) 5)1CC502rt3 ADS conduit 5)Note C 6)1CC502rt4 ADS conduit 6)Note C 7)1CX501ba CMS conduit 7)Note A 8)1CX501ba1 CMS conduit 8)Note A 8 8A RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 6 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line B
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks 9)1CX501ba2 CMS conduit 9)Note A 10)1CX501ba3 CMS conduit 10)Note A 11)1CX501bd CMS conduit 11)Note A 70B 130-5 3/4 337 28-0 C 1)MSS Line B & supports 1)RL 2)1B21*AOVF022B MSS valve 2)Note H RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 7 of 13 December 1999 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line C
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks1C 155-0 1/2 108 11-10 1/2 C 1)RPV 1)DSS 2)MSS-Line C pipe 2)RL and supports 3)1CX540RS7 CMS conduit 3)Note A 4)1CX507RC1 CMS conduit 4)Note A 12 1237C 131-1 1/4 88.1 23-6 C 1)CSL-010-43-1 and 1)RSS,ACI valve AOV006 2)SVV-010-11-3 and 2)RL valve FTG-1C 3)RHS-750-165-2 (LPCS) 3)RSS 4)RHS*165 support (LPCS) 4)RSS 5)1CC502RN4 conduit (H 2 ignitor) 5)Note B 37C-1 130-8 88.1 23-6 C 1)CSL-010-43-1 and 1)RSS,ACI valve AOV006 2)SVV-010-11-3 and valve FTG-1C 3)RHS-750-165-2 (LPCS) 3)RSS 4)RHS*165 support (LPCS) 4)RSS 5)1CC502RN4 conduit (H 2 ignitor) 5)Note B 38C 131-0 1/4 82.1 23-9 C 1)CSL valve AOV*006 1)ACI,RSS 2)RHS-750-165-2 2)RSS (LPCS) 3)RHS*165 support 3)RSS (LPCS) 4)1CC502RN4 conduit (H 2 ignitor) 4)Note B RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 8 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line C
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks38C-1 130-7 82.2 23-9 C 1)CSL valve AOV*006 1)RSS,ACI 2)RHS-750-165-2 2)RSS (LPCS) 3)RHS*165 support 3)RSS (LPCS) 4)1CC5024RN4 conduit (H 2 ignitor) 4)Note B 39C 130-11 3/4 76.2 24-4 C 1)RHS-750-165-2 1)RSS (LPCS) 2)RHS*165 support 2)RSS (LPCS) 3)1CC502RD1 (ADS valve 3)Note C 47A conduit) 4)1CC502RD3 (ADS valve 4)Note C 41A conduit) 5)1CC502RN4 conduit (H 2 ignitor) 5)Note B 6)RCS-075-33-2 RPV pressure and 6)Note D level transmitter 39C-1 130-6 1/2 76 24-4 C 1)RHS-750-165-2 1)RSS (LPCS) 2)RHS*165 support 2)RSS (LPCS) 3)1CC502RD1 ADS valve 3)Note C 47A conduit 4)1CC502RD3 ADS valve 4)Note C 41A conduit 5)1CC502RN4 conduit (H 2 ignitor) 5)Note B 6)RCS-075-33-2 RPV pressure and 6)Note D level transmitter RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 9 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line C
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks40C 130-11 1/2 70.6 25-0 C 1)SVV-010-14-3 and valve 1)RL FTG-1K 2)SVV-150-175-2 2)RL 3)RHS-750-165-2 3)RSS (LPCS) 4)RHS*165 support 4)RSS (LPCS) 5)1CC502RD1 (ADS valve 5)Note C 47A conduit) 6)1CC502RD3 (ADS valve 6)Note C 41A conduit) 7)1CC502RN4 conduit (H 2 ignitor) 7)Note B 8)RCS-075-33-2 RPV pressure and 8)Note D level transmitter 40C-1 130-6 1/4 71 25-0 C 1)SVV-010-14-3 and 1)RL valve FTG-1K 2)SVV-150-175-2 3)RHS-750-165-2 3)RSS (LPCS) 4)RHS*165 support 4)RSS (LPCS) 5)1CC502RD1 (ADS valve 5)Note C 47A conduit) 6)1CC502RD3 (ADS valve 6)Note C 41A conduit) 7)1CC502RN4 conduit (H 2 ignitor) 7)Note B 8)RCS-075-33-2 RPV pressure and 8)Note D level transmitter 47C 130-11 1/8 63 25-6 C 1)RHS-750-165-2 1)RSS (LPCS) 2)RHS*165 supports (LPCS) 2)RSS 3)1CC502RN4 conduit (H 2 ignitor) 3)Note B 4)RCS-075-33-2 support 4)Note D RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 10 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line C
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks47C-1 130-5 7/8 63.0 25-6 C 1)RHS-750-165-2 1)RSS (LPCS) 2)RHS*165 support 2)RSS (LPCS) 3)1CC502RN4 conduit (H 2 ignitor) 3)Note B 4)RCS-075-33-2 support 4)Note D 48C 130-11 58 25-5 C 1)RHS-750-165-2 1)RSS (LPCS) 2)RHS*165 supports (LPCS) 2)RSS 3)SVV-010-16-3 3)RL 4)CMS-750-154-2 4)Note A 5)1CC502RN4 conduit (H 2 ignitor) 5)Note B 6)RCS-075-33-2 support 6)Note D 48C-1 130-5 3/4 58.0 25-5 C 1)RHS-750-165-2 1)RSS (LPCS) 2)RHS*165 supports (LPCS) 2)RSS 3)SVV-010-16-3 3)RL 4)CMS-750-154-2 4)Note A 5)1CC502RN4 conduit 5)Note B 6)RCS-075-33-2 support 6)Note D 70C 129-0 5/8 23.0 28-0 C 1)MSS Line C and 1)RL supports 2)ICS-1E51*MOV-63 2)Note H valve 3)MSS-1B21*AOVF022C 3)ACI 4)RCS-750-35-2 and 4)Note D supports 5)MSS Line A and 5)SPI supports 6)CX540RS6 CMS 6)Note A conduit 7)CC500BK1 (H 2 ignitor 7)Note B conduit)
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 11 of 13 December 1999 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line D
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks1D 155-0 1/2 288 11-10 1/2 C 1)RPV 1)DSS 2)MSS Line D and 2)RL supports 3)1CX501bd CMS 3)Note A conduit 4)1CX501ba1 CMS 4)Note A conduit 5)1CX501ba2 CMS 5)Note A conduit 6)1HCSBBC515 cable (H 2 ignitor 6)Note B 29B) 7)1HCS*IGN30B 7)Note BB 8)1HCSBBC517 cable (H 2 ignitor) 8)Note BB 9)1HCSBBC516 cable (H 2 ignitor) 9)Note BB 10)Drywell ceiling igniters 10)Note BB 11)CMS-750-167-2 CMS line 11)Note I 12)1CX501BA3 CMS conduit 12)Note A 13)1CMS-750-58-2 CMS line 13)Note I 12 12 RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 12 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line D
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks38D 130-10 3/4 309 19-0 C 1)CMS*58 line and 1)Note I support 2)CMS*167 line and 2)Note I support 3)1CC500bd4 (ADS valve 3)RL 41D conduit) 4)1CX501ba1 CMS 4)Note A conduit 5)1CX501ba2 CMS 5)Note A conduit 6)1CX501ba3 CMS 6)Note A conduit 7)RCS*39 line 7)Note H 8)1CC500bk1 conduit (H ignitor) 8)Note B 38D-1 130-5 1/2 309 19-0 C 1)CMS*58 line and 1)Note I support 2)CMS*167 line and 2)Note I support 3)1CC500bd4 (ADS valve 3)RL 41D conduit) 4)1CX501ba1 CMS 4)Note A conduit 5)1CX501ba2 CMS 5)Note A conduit 6)1CX501ba3 CMS 6)Note A conduit 7)RCS*39 line 7)Note H 8)1CC500bk1 conduit (H ignitor) 8)Note B 39D 130-10 1/4 316 20-0 C 1)CMS*58 line and 1)Note I support 2)CMS*167 line and 2)Note I support 3)1CC500bd4 (ADS valve 3)Note CE 41D conduit) 4)1CX501ba1 CMS 4)Note A conduit 5)1CX501ba2 CMS 5)Note A conduit RBS USAR TABLE 3.6A-38a
SUMMARY
OF PIPING FAILURE ANALYSIS 13 of 13 August 1987 Piping System: Main Steam (Inside Containment)
Piping Line Numbers: 1MSS-024-Line D
Consequence of Piping Failure: Jet Impingement Break Break Location Break Protection Point El (ft-in) Az (deg) r (ft-in) Types (1) Essential Targets Measures (3) Evaluation (4)Remarks 6)1CX501ba3 CMS 6)Note A conduit 7)RCS*39 line 7)Note H 8)1CC500bk1 conduit (H ignitor) 8)Note B 39D-1 130-5 316 20-0 C 1)CMS*58 line and support 1)Note I 2)CMS*167 line and 2)Note I support 3)1CC500bd4 (ADS valve 3)Note CE 41D conduit) 4)1CX501ba1 CMS 4)Note A conduit 5)1CX501ba2 CMS 5)Note A conduit 6)1CX501ba3 CMS 6)Note A conduit 7)RCS*39 line 7)Note H 8)1CC500bk1 conduit (H ignitor) 8)Note B 42D 130-10 325.5 19-6 C 1)RCS*39 line and 1)Note H supports 2)CMS*167 line and 2)Note I supports 3)RCS*40 support 3)Note D 42D-1 130-5 325.5 19-6 C 1)RCS*39 line and 1)Note H supports 2)CMS*167 line and 2)Note I supports 3)RCS*40 support 3)Note D 60D 126-0 7/16 352 25-0 C 1)MSS line and support 1)RL 2)1B21*AOVF022D MSS 2)Note H valve 3)ICS*57 supports 3)ACI RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS 1 of 12 August 1987 Piping System: Main Steam Piping - Loop A (Outside Containment)
Piping Line Numbers: 1-MSS-024-60-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks121A 128-3 1/4 107-9 1/2 3-6 C 1)1CC817BG5 (main steam 1)Note F valve 1B21*MOVF098C conduit) 2)1CC817BG4 (main steam 2)Note F valve 1B21*MOVF098A conduit) 3)1CC817BG8 (feedwater 3)Note F valve FWS*MOV7B conduit) 4)1CC817BG7 (feedwater 4)Note F valve FWS*MOV7A conduit)
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 2 of 12 December 1999 Piping System: Main Steam Piping - Loop A (Outside Containment)
Piping Line Numbers: 1-MSS-024-47-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks1212168A 114-0 147-11 3-3 C None 1212 RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS 3 of 12 August 1987 Piping System: Main Steam Piping - Loop B (Outside Containment)
Piping Line Numbers: 1-MSS-024-58-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks348B 128-3 1/4 107-9 1/2 -(10-6) C 1)1CK809BC4 (turbine 1)Note F plant miscellaneous drains valve 1B21*F086 conduit) 2)1CL823BA1 (feedwater 2)Note F valve FWS*MOV7A conduit) 3)1CK809BD1 (main steam 3)Note F valve 1B21*MOVF098A
& C conduits)
SUMMARY
OF PIPING FAILURE ANALYSIS 4 of 12 August 1987 Piping System: Main Steam Piping - Loop B (Outside Containment)
Piping Line Numbers: 1-MSS-024-5-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks502B 114-11 1/8 119-5 -(31-0 1/2) C 1)1CK809BC4 (turbine 1)Note F plant miscellaneous drains valve 1B21*F086 conduit) 2)1CC817BG6 (turbine 2)Note F plant miscellaneous drains valve 1B21*F086 conduit) 3)1CK809BC2 (main steam 3)Note F valve 1B21*MOVF098B conduit)
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 5 of 12 December 1999 Piping System: Main Steam Piping - Loop B (Outside Containment)
Piping Line Numbers: 1-MSS-024-45-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks1212466B 114-0 147-11 -(9-9) C None RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS 6 of 12 August 1987 Piping System: Main Steam Piping - Loop C (Outside Containment)
Piping Line Numbers: 1-MSS-024-61-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks348C 128-3 1/4 107-9 1/2 10-6 C None RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 7 of 12 December 1999 Piping System: Main Steam Piping - Loop C (Outside Containment)
Piping Line Numbers: 1-MSS-024-49-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks12 12 RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS 8 of 12 August 1987 Piping System: Main Steam Piping - Loop C (Outside Containment)
Piping Line Numbers: 1-MSS-024-48-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks466C 114-0 147-11 9-9 C None RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 9 of 12 December 1999 Piping System: Main Steam Piping - Loop C (Outside Containment)
Piping Line Numbers: 1-MSS-024-48-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks12 12 RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS 10 of 12 August 1987 Piping System: Main Steam Piping - Loop D (Outside Containment)
Piping Line Numbers: 1-MSS-024-59-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks121D 128-3 1/4 107-9 1/2 -(3-6) C None RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 11 of 12 December 1999 Piping System: Main Steam Piping - Loop D (Outside Containment)
Piping Line Numbers: 1-MSS-024-46-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks12168D 113-11 1/4 147-15 -(3-3) C 1)1CC817BG8 (feedwater 1)Note F valve FWS*MOV7B conduit) 12 RBS USAR TABLE 3.6A-38b
SUMMARY
OF PIPING FAILURE ANALYSIS Revision 12 12 of 12 December 1999 Piping System: Main Steam Piping - Loop D (Outside Containment)
Piping Line Numbers: 1-MSS-024-46-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks THIS PAGE INTENTIONALLY LEFT BLANK
____________________________
Note: Numbered footnotes follow Table 3.6A-51.
Revision121of5December1999RBSUSARTABLE3.6A-39
SUMMARY
OFPIPINGFAILUREANALYSISPipingSystem:MainSteamVentLine(InsideContainment)PipingLineNumbers:1MSS-004-3-1ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesEssentialMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)Targets (3)(4)Remarks121173-05/16901-315/16CNone1)ACI 121212 2of5August1987RBSUSARTABLE3.6A-39(cont)PipingSystem:MainSteamVentLine(InsideContainment)PipingLineNumbers:1MSS-002-72-1ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesEssentialMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
+(1)Targets (3)(4)Remarks5A159-119013-3CNone Revision123of5December1999RBSUSARTABLE3.6A-39(cont)PipingSystem:MainSteamVentLine(InsideContainment)PipingLineNumbers:1MSS-002-2-1,1MSS-002-1-1ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesEssentialMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)Targets (3)(4)RemarksTHISPAGEINTENTIONALLYLEFTBLANK1212 Revision124of5December1999RBSUSARTABLE3.6A-39(cont)PipingSystem:MainSteamVentLine(InsideContainment)PipingLineNumbers:1MSS-002-2-1,1MSS-002-1-1ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesEssentialMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)Targets (3)(4)Remarks33148-61/27616-63/4CNone 5of5August1987RBSUSARTABLE3.6A-39(cont)PipingSystem:MainSteamVentLine(InsideContainment)PipingLineNumbers:1MSS-002-2-1ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesEssentialMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)Targets (3)(4)Remarks47148-613112-21/4CNone RBS USAR 1 of 8 August 1987 TABLE 3.6A-40a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-002-71-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks1 127-4 7/16 21.5 28-8 C 1)MSS valve 1)ACI 1B21*AOV022B 2)1ICS-750-2-2 2)ACI RBS USAR 2 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-003-524-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks4 125-2 3/4 8 26-11 C 1)1CC500BB1 (RHS- 1)Note E valve 1E12*F009, WCS-valve 1G33*F001 conduit) 2)1CC500BE1 (CCP- 2)Note F valve 1CCP*MOV144 conduit) 3)1CC500BE2 (ICS - 3)ACI valve 1E51*F063 conduit) 4)1CC500BR (RCS - 4)Note F valve 1B33*AOVF019 conduit) 5)1CK500BC1 (CCP - 5)Note F valve 1CCP*MOV144 conduit) 6)1CK500BC2 (ICS - 6)ACI valve 1E51*FO63 conduit) 7)MSS valve 7)ACI 1B21*AOV022A RBS USAR 3 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-003-524-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks7 125-2 3/4 7 26-11 C 1)1CC500BB1 (RHS- 1)Note E valve 1E12*F009, WCS-valve 1G33*F001 conduit) 2)ICC500BE1 (CCP- 2)Note F valve 1CCP*MOV144 conduit) 3)1CC500BE2 (ICS - 3)ACI valve 1E51*F063 conduit) 4)1CC500BR (RCS - 4)Note F valve 1B33*AOVF019 conduit) 5)1CK500BC1 (CCP - 5)Note F valve 1CCP*MOV144 conduit) 6)1CK500BC2 (ICS - 6)ACI valve 1E51*FO63 conduit) 7)MSS valve 7)ACI 1B21*AOV022D 8 125-1 5/8 353 26-11 C 1)1CC500BB1 (RHS- 1)Note E valve 1E12*F009, WCS-valve 1G33*F001 conduit) 2)ICC500BE1 (CCP- 2)Note F valve 1CCP*MOV144 conduit) 3)1CC500BE2 (ICS - 3)ACI valve 1E51*F063 conduit) 4)1CC500BR (RCS - 4)Note F valve 1B33*AOVF019 conduit) 5)1CK500BC1 (CCP - 5)Note F valve 1CCP*MOV144 conduit) 6)1CK500BC2 (ICS - 6)ACI valve 1E51*F063 conduit)
RBS USAR 4 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-003-524-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks11 125-1 5/8 352 26-11 C 1)1CC500BB1 (RHS- 1)Note E valve 1E12*F009, WCS-valve 1G33*F001 conduit) 2)1CC500BE1 (CCP- 2)Note F valve 1CCP*MOV144 conduit) 3)1CC500BE2 (ICS - 3)ACI valve 1E51*F063 conduit) 4)1CC500BR (RCS - 4)Note F valve 1B33*AOVF019 conduit) 5)1CK500BC1 (CCP - 5)Note F valve 1CCP*MOV144 conduit) 6)1CK500BC2 (ICS - 6)ACI valve 1E51*FO63 conduit) 7)MSS valve 7)ACI 1B21*AOV22B RBS USAR 5 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-002-71-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks5 125-6 3/4 7.5 26-11 C 1)ICS valve 1)ACI 1E51*MOV63 6 127-9 7/16 7.5 26-11 C 1)MSS valve 1)ACI 1B21*AOV022D RBS USAR 6 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-002-69-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks9 125-5 5/8 352.5 26-11 C None 10 127-9 7/16 352.5 26-11 C None RBS USAR 7 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-002-68-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks18 127-9 7/16 338.5 28-8 C None RBS USAR 8 of 8 August 1987 TABLE 3.6A-40a (cont)
Piping System: DTM (Inside Containment)
Piping Line Numbers: 1DTM-003-72-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Blowdown Essential Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Sources (2) Targets (3) (4) Remarks26 115-7 1/8 346.5 28-3 C None RBS USAR Revision 12 1 of 8 December 1999 TABLE 3.6A-40b
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-003-78-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks1 115-0 7/16 107-9 1/2 -(4-3) C None 12 1297 114-10 3/16 117-0 -(12-6) C None RBS USAR Revision 12 2 of 8 December 1999 TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-003-79-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR 3 of 8 August 1987 RBS USAR TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-003-110-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) Targets (3) (4) Remarks94 110-1 15/16 152-0 -(14-8) C None -
RBS USAR 4 of 8 August 1987 TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-002-77-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) Targets (3) (4) Remarks27 114-10 1/4 117-0 -(13-3 1/2) C None 28 119-9 117-0 -(13-3 1/2) C None 29 120-0 117-0 -(13-0 1/2) C None 34 114-7 9/16 120-5 38-11 1/2 C None 81 117-7 9/16 118-8 38-11 1/2 C None 82 117-7 9/16 118-5 38-8 1/2 C None 83 118-10 1/8 116-5 14-8 C None 84 119-1 1/8 116-5 14-5 C None 85 126-4 7/8 116-5 6-11 C None 86 126-7 7/8 116-2 6-11 C 1)1CC817BG7 (feedwater 1) Note F system valve 1FWS*MOV7B conduit) 87 126-7 7/8 115-3 13/16 6-11 C 1)1CC817BG7 (feedwater 1) Note F system valve 1FWS*MOV7A conduit) 88 126-7 7/8 115-0 13/16 6-8 C None 89 126-6 115-0 13/16 -(7-0 3/8) C None 90 126-6 115-3 13/16 -(7-3 3/8) C 1)1CC817BG8 (feedwater 1) Note F system valve 1FWS*MOV7B conduit)
RBS USAR 5 of 8 August 1987 TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-002-76-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) Targets (3) (4) Remarks35 114-10 5/16 117-0 -(13-10 1/2) C None 43 127-9 1/2 118-5 30-2 1/2 C None 79 127-9 3/4 116-3 30-2 1/2 C None 80 128-0 3/4 116-0 30-2 1/2 C None RBS USAR 6 of 8 August 1987 TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-002-75-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) Targets (3) (4) Remarks44 114-10 3/8 117-0 -(14-5 1/2) C None 52 127-10 1/2 118-5 -(30-2 1/2) C None 73 127-10 1/2 117-10 -(30-2 1/2) C None 74 128-1 1/2 117-7 -(30-2 1/2) C None 75 133-0 117-7 -(30-2 1/2) C None 76 133-3 117-7 -(29-11 1/2) C 1)1CK809BC6 (main 1) Note F steam line isolation valve seal system valve 1E33*F028 conduit) 2)1CC868BA1 (main 2) Note F steam line isolation valve seal system valve 1E33*F028 conduit) 3)1CC868BA2 (main 3) Note F steam line isolation valve seal system valve 1E33*F027 conduit) 4)1CC817BJ1 (main 4) Note F steam line isolation valve seal system valve 1E33*F027 conduit) 5)1CC817BJ2 (main 5) Note F steam line isolation valve seal system valve 1E33*F028 conduit) 6)1CC939BB2 (main 6) Note F steam line isolation valve seal system valve 1E33*F028 conduit) 77 117-11 1/2 117-0 -(14-8 1/2) C None RBS USAR 7 of 8 August 1987 TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-002-75-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) Targets (3) (4) Remarks78 117-9 3/8 117-0 -(14-6 3/8) C None RBS USAR 8 of 8 August 1987 TABLE 3.6A-40b (cont)
Piping System: Main Steam Drain System (Auxiliary Building)
Piping Line Numbers: 1-DTM-002-74-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in)(1) Targets (3) (4) Remarks53 114-10 7/16 117-0 -(15-0 1/2) C None 60 114-7 9/16 120-5 -(38-11 1/2) C None 69 114-7 9/16 121-0 -(38-11 1/2) C None 70 114-10 9/16 121-3 -(38-11 1/2) C None 71 118-1 9/16 116-2 -(38-11 1/2) C None 72 118-4 9/16 115-11 -(38-11 1/2) C 1)1CC817BJ2 (main steam 1) Note F line isolation valve seal system valve 1E33*FO28 conduit) 2)1CC817BJ1 (main steam 2) Note F isolation valve seal system valve 1E33*FO27 conduit)
RBS USAR 1 of 5 August 1987 TABLE 3.6A-40c
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Main Steam Drain System (Steam Tunnel Area)
Piping Line Numbers: 1DTM-150-104-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks1 125-7 107-9 1/2 -(14-8) C 1)1CX939SA3 (area temperature 1)Note L monitor 1LDS*RTD2A conduit) 2)1CX939TA3 (area temperature 2)Note L monitor 1LDS*RTD2B conduit) 4 125-5 122-6 -(17-1 3/4) C 1)1CK809BC2 (main steam 1)Note F valve 1B2*MOVF098B conduit) 5 125-5 122-8 1/4 -(17-4) C None - 10 111-3 1/16 127-6 3/4 -(17-4) C None -
11 111-3 1/16 127-9 -(17-1 3/4) C 1)1CK809BC2 (main steam valve 1)Note F 1B21*MOVF098B conduit) 12 111-3 1/8 127-9 -(16-9) C 1)1CK809BC2 (main steam valve 1)Note F 1B21*MOVF098B conduit)
RBS USAR 2 of 5 August 1987 TABLE 3.6A-40c (cont)
Piping System: Main Steam Drain System (Steam Tunnel Area)
Piping Line Numbers: 1DTM-150-105-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks15 125-7 107-9 1/2 -(14-1) C 1)1CX939SA3 (area temperature 1)Note L monitor 1LDS*RTD2A conduit) 2)1CX939TA3 (area temperature 2)Note L monitor 1LDS*RTD2B conduit) 18 125-5 123-1 -(16-0 3/4) C 1)1CK809BC2 (main steam 1)Note F valve 1B21*MOVF098B conduit) 19 125-5 123-3 7/8 16-5 3/64 C None - 20 125-2 3/4 123-5 16-7 C 1)1CC817BG6 (main steam valve 1)Note F 1B21*F086 conduit 23 111-3 1/8 126-9 -(160-4 1/2) C None -
24 125-5 123-2 1/2 -(16-4 1/2) C None -
RBS USAR 3 of 5 August 1987 RBS USAR TABLE 3.6A-40c (cont)
Piping System: Main Steam Drain System (Steam Tunnel Area)
Piping Line Numbers: 1DTM-150-106-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks25 125-7 107-9 1/2 14-1 C 1)1CX939UA4 (area temperature 1)Note L monitor 1LDS*RTD2C conduit) 2)1CX939VA4 (area temperature 2)Note L monitor 1LDS*RTD2D conduit) 32 111-2 13/16 128-6 -(6-5) C None -
RBS USAR 4 of 5 August 1987 RBS USAR TABLE 3.6A-40c (cont)
Piping System: Main Steam Drain System (Steam Tunnel Area)
Piping Line Numbers: 1DTM-150-107-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks35 125-7 107-9 1/2 14-8 C 1)1CX939UA4 (area temperature 1)Note L monitor 1LDS*RTD2C conduit) 2)1CX939VA4 (area temperature 2)Note L monitor 1LDS*RTD2D conduit) 42 111-2 13/16 129-1 -(16-5) C None -
RBS USAR 5 of 5 August 1987 RBS USAR TABLE 3.6A-40c (cont)
Piping System: Main Steam Drain System (Steam Tunnel Area)
Piping Line Numbers: 1DTM-003-108-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks53 115-0 3/8 135-5 -(16-7) C 1)1CX939SA3 (area temperature 1)Note L monitor 1LDS*RTD2A conduit) 2)1CX939TA3 (area temperature 2)Note L monitor 1LDS*RTD2B conduit) NOTE: Numbered footnotes follow Table 3.6A-51.
SUMMARY
OF PIPING FAILURE ANALYSISRevision 8 1 of 11 August 1996PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-012-36-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks1E142-31/222512-03/16CNone RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSISRevision 8 2 of 11 August 1996PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-020-39-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks60AE122-0327.9120-41/16L1)1CC500BK6(conduitfor1)NoteB H 2ignitor49B)2)1WCS*5support2)ACIC1)ADSlineSVV*1061)NoteCA2)ADSlineSVU*1092)NoteCA 3)ADSlineSVV*1113)NoteCA 4)RDSline4)DSS 5)LPCI-Clinesupport5)RSS,ACI 6)LPCI-Blinesupport6)RSS 7)ICS-006-57-1supports7)ACI 8)DrainlineDTM-003-072-18)ACI 9)MSSlinesA,C,andD9)SPI10)LineWCS-006-005-110)ACI 11)ICSvalveE51*MOV06311)ACI860CE122-0334.4621-01/2L1)RHS*53support1)SPI2)1RCS-750-39-22)NoteD 3)1RCS-750-40-2and3)NRS supports4)MSS-1B21*AOVF022B4)ACI 5)MSS-LineDandsupports5)SPI 6)1HCSBBC517cable6)NoteB (H 2ignitor28B)7)1CC500BK6(H 2ignitor49B)7)NoteBC1)ADSlineSVV*1061)NoteCA2)ADSlineSVV*1092)NoteCA 3)ADSlineSVV*1113)NoteCA 4)RDSline4)DSS 5)LPCI-Clinesupport5)RSS,ACI 6)LPCI-Blinesupport6)RSS 7)ICS-006-57-1supports7)ACI 8)DrainlineDTM-003-072-18)ACI RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSISRevision 8 3 of 11 August 1996PipingLineNumbers:1FWS-020-39-1ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks9)MSSLinesA,C,andD9)SPI10)LineWCS-006-005-110)ACI 11)ICSvalveE51*MOV06311)ACI RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSISRevision 8 4 of 11 August 1996PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-014-65-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks60BE122-0332.2519-67/16C1)1CC500BR(terminal1)DSScabinetforconduitsfor RCS,DTM,ADS,CMS)2)SVV*6support2)RSS 3)1ICS-006-57-13)ACI 4)1RHS-010-19-14)ACI 5)1CX504RH(conduitfor5)DSSpositionindicatorprobes
B13*D124-001A)6)1CX504RD(conduitfor6)NoteHpositionindicatorprobes
B13*D124-002A)7)1*JB5458(junctionbox7)NoteHcontainingconduitsfor
H 2ignitors51B,50B, 49B)8)LPCI-BlineRHS-010-16-18)RSS 9)LPCI-ClineRHS-010-19-19)RSS,ACI8L1)1RCS-750-39-21)NoteD2)1RCS-750-40-2and2)NRS supports3)RHS*53support3)SPI 4)MSS-1B21*AOVF022B4)ACI 5)MSS-LineDandsupports5)SPI 6)ICS*57support6)ACI 7)1HCSBBC517cable7)NoteB (H 2ignitor28B)8)1CC500BK6(conduitfor8)NoteB H 2ignitor49B)8 RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSIS 5 of 11 August 1987PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-012-35-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks70E123-9335.4117-911/16C1)RHS*53supports1)ACI,SPI2)1RCS-750-40-2and2)NRS supports3)MSS-LoopDsupports3)RSS,ACI 4)ICS-006-57-1support4)ACIL1)RDSbundles1)DSS2)1RHS-010-19-1and2)RSS,ACI supports3)ADStankB21*TKA0033B3)RSS 4)LPCI-Blineand4)RSS supports5)LPCI-Clineand5)ACI,RSS supports6)RHS-750-160-2(LPCI-B)6)RSS 7)SVV-012-18-3support7)RSS71E122-0334.418-25/8C1)1CC500BR(terminalcabinet1)DSSforconduitsforRCS,DTM, ADS,CMS)2)SVV*6support2)RSS 3)1ICS-006-57-13)ACI 4)1RHS-010-19-14)ACI 5)1CX504RH(conduitfor5)DSSpositionindicatorprobes
B13*D124-001A)6)1CX504RD(conduitsfor6)NoteHpositionindicatorprobes
B13*D124-002A)7)1*JB5458(junctionbox7)NoteHcontainingconduitsfor
H 2ignitors51B,50B,49B)8)LPCI-BlineRHS-010-16-18)RSS 9)LPCI-ClineRHS-010-19-19)RSS,ACI RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSIS 6 of 11 August 1987PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-012-35-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)RemarksL1)RDSbundles1)DSS2)1RHS-010-19-1and2)RSS,ACI supports3)ADStankB21*TKA0033B3)RSS 4)LPCI-Blineand4)RSS supports5)LPCI-Clineand5)ACI,RSS supports6)RHS-750-160-26)RSS (LPCI-B)7)SVV-012-18-3support7)RSS 8)SVVlines106,109,1118)NoteCA100E142-31/231512-03/16CNone RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSIS 7 of 11 August 1987PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-020-67-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks130E122-0352.926-413/16C1)1CC500BK6(conduit1)NoteBforH 2ignitor49B)2)1DTM-003-72-12)ACI RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSIS 8 of 11 August 1987PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-012-38-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks1W142-31/213512-03/16C1)RHS-010-19-1support1)RSS,ACI (LPCI-C)
RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSISRevision 8 9 of 11 August 1996PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-020-66-1,1FWS-020-040-1,1FWS-014-64-1,1FWS-012-37-1,1FWS-012-38-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks60AW122-033.0820-41/16C1)MSSvalveB21*AOVF22A1)ACI2)MSSvalveB21*AOVF22D2)ACI 3)RHRsuctionline3)ACIRHS-018-53-1supports4)MSSlinesA,B,D4)SPI 5)DrainlineDTM-003-72-15)ACI 6)ICSsprayICS-006-57-16)ACI 7)RDSbundles7)DSSL1)DrainlineDER-004-057-41)ACI support2)RHRsuctionRHS-018-053-12)ACI support3)1CC502RN6(conduitfor3)NoteB H 2ignitor49A)60BW122-027.7519-67/16C1)1CC500BK6(conduitfor1)NoteB H 2ignitor49B)L1)DrainlineDER-004-057-41)ACI support2)RHRsuctionRHS-018-053-12)ACI support3)1CC502RN6(conduitfor3)NoteB H 2ignitor49A)4)1HCSBBC517cable4)NoteH (H 2ignitor28B)5)1HCSARC514cable5)NoteH (H 2 ignitor)6)MSSlinesupports6)ACI RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSISRevision 8 10 of 11 August 1996PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-020-66-1,1FWS-020-040-1,1FWS-014-64-1,1FWS-012-37-1,1FWS-012-38-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks60CW122-025.4421-01/2C1)MSSvalveB21*AOVF22A1)ACI2)MSSvalveB21*AOVF22D2)ACI 3)RHRsuctionline3)ACIRHS-018-53-1supports4)MSSlinesA,B,D4)SPI 5)DrainlineDTM-003-72-15)ACI 6)ICSsprayICS-006-57-16)ACI 7)RDSbundles7)DSS8L1)DrainlineDER-004-057-41)ACI support2)RHRsuctionRHS-018-053-12)ACI support3)1CC502RN6(conduitfor3)NoteB H 2ignitor49A)4)1HCSBBC517cable4)NoteH (H 2ignitor28B)5)1HCSARC514cable5)NoteH (H 2ignitor28A)6)MSSlinesupports6)ACI870W123-924.5917-911/16C1)1CC502RN6(conduit1)NoteBforH 2ignitor49A)2)1CC502RE(forADS2)NoteCAvalves41B,41D,41F)3)RPVpressandlevelinst3)NoteDlineRCS-750-35-24)RPVpressandlevel4)NoteGinstlineRCS-0295)RPVpressandlevel5)DDSinstlineRCS-028L1)ICS-006-57-1lineand1)ACI support2)RHS-018-053-1supports2)ACI 3)WCS-250-108-2support3)ACI 4)DTM-003-72-14)ACI RBS USAR TABLE 3.6A-41a (cont)
SUMMARY
OF PIPING FAILURE ANALYSIS11 of 11 August 1987PipingSystem:FeedwaterPiping-EastLoop(InsideContainment)PipingLineNumbers:1FWS-020-66-1,1FWS-020-040-1,1FWS-014-64-1,1FWS-012-37-1,1FWS-012-38-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks5)MSSLineB5)RSS,SPI 6)1CC502RN6conduitfor6)NoteB H 2ignitor49A7)1HCS*IGN49AH 2ignitor7)NoteB71W122-026.518-3C1)1CC500BK6(conduitfor1)NoteB H 2ignitor49B)L1)ICS-006-57-1line1)ACIandsupport2)RHS-018-053-1supports2)ACI 3)WCS-250-108-2support3)ACI 4)DTM-003-72-14)ACI 5)MSSlineB5)RSS,SPI 6)1CC500BK6(for6)NoteBignitor49B)130W122-07.526-413/16C1)1CC500BK6(conduit1)NoteBforH 2ignitor49B)100W142-31/24512-03/16C1)1CC502REconduit1)NoteCAforADSvalvesNOTE:NumberedfootnotesfollowTable3.6A-51.
SUMMARY
OF PIPING FAILURE ANALYSISRevision 121 of 5December 1999PipingSystem:FeedwaterPiping(OutsideContainment)PipingLineNumbers:1-FWS-020-47-1,1FWS-020-62-2 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElXZTypesMeasuresEvaluationPoint(ft-in)(ft-in)(ft-in)(1)Targets (3)(4)Remarks1121-81/10107-91/23-6C1)1CC817BG7conduitfor1)NoteFvalve1FWS*MOV7A1212 RBS USAR TABLE 3.6A-41b (cont)2 of 5 August 19 87PipingSystem:FeedwaterPiping(OutsideContainment)PipingLineNumbers:1-FWS-020-32-4 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElXZTypesMeasuresEvaluationPoint(ft-in)(ft-in)(ft-in)(1)Targets (3)(4)Remarks7108-343/64149-538-2CNone RBS USAR TABLE 3.6A-41b (cont)3 of 5 August 19 87PipingSystem:FeedwaterPiping(OutsideContainment)PipingLineNumbers:1-FWS-020-48-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElXZTypesMeasuresEvaluationPoint(ft-in)(ft-in)(ft-in)(1)Targets (3)(4)Remarks11121-81/16107-91/2-(3-6)C1)1CC817BG8conduitfor1)NoteFvalve1FWS*MOV7B RBS USAR TABLE 3.6A-41b (cont)Revision 124 of 5 December 1999PipingSystem:FeedwaterPiping(OutsideContainment)PipingLineNumbers:1-FWS-020-31-4 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElXZTypesMeasuresEvaluationPoint(ft-in)(ft-in)(ft-in)(1)Targets (3)(4)Remarks16108-4149-534-0CNone RBS USAR TABLE 3.6A-41b (cont)Revision 125 of 5 December 1999PipingSystem:FeedwaterPiping(OutsideContainment)PipingLineNumbers:1-FWS-020-63-2 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElXZTypesMeasuresEvaluationPoint(ft-in)(ft-in)(ft-in)(1)Targets (3)(4)Remarks1212______________________Note:NumberedfootnotesfollowTable3.6A-51.
RBS USAR __________________________
NOTE: Numbered footnotes follow Table 3.6A-51.
Revision 12 1 of 1 December 1999 TABLE 3.6A-42
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Reactor Core Isolation Cooling Head Spray (Inside Containment)
Piping Line Numbers: 1-ICS-006-6-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1 172-11 1/4 270 1-0 7/16 C 1)1-ICS-1E51*AOVF066 1)ACI, RL 12 12 RBS USAR 1 of 3 August 1987 TABLE 3.6A-43a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Reactor Core Isolation Cooling System (Inside Containment)
Piping Line Numbers: 1-ICS-008-1-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1 146-3 3/4 67.5 16-6 3/8 C 1)1CC500BB1 (reactor 1)ACI core isolation cooling system valve 1E51*MOVF063 conduit) 2)1CC500BE (reactor 2)ACI core isolation cooling system valve 1E51*MOVFO63 conduit) 3)1CK500BC (reactor 3)ACI core isolation cooling system valve 1E51*MOVFO63 conduit) 4)1CK500BD (reactor 4)ACI core isolation cooling system valve 1E51*MOVFO63 conduit) 5)1CX507RC2 (containment 5)Note A atmosphere monitoring system CMS*RTD43A conduit) 6)1CC500BA (main steam 6)DSS safety & relief valves 1B21*RVF051C, 041A, 051G, 041C, 041L, 047A, 047C conduit) 7)1CC500BA3 (main steam 7)DSS safety & relief valves 1B21*RVF047C, 041C, 051C, 051G, 047A conduit) 8)MSS Line A 8)DSS, SPI RBS USAR Revision 12 2 of 3 December 1999 TABLE 3.6A-43a (cont)
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Reactor Core Isolation Cooling System (Inside Containment)
Piping Line Numbers: 1-ICS-008-1-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 12 RBS USAR 3 of 3 August 1987 TABLE 3.6A-43a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Reactor Core Isolation Cooling System (Inside Containment)
Piping Line Numbers: 1-ICS-008-1-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 122-6 3/4 24 26-10 C None NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USAR Revision 12 1 of 4 December 1999 RBS USAR TABLE 3.6A-43b
SUMMARY
OF PIPING FAILURE ANALYSIS 12 Piping System: Reactor Core Isolation System (Outside Containment)
Piping Line Numbers: 1-ICS-008-4-2, 1-ICS-006-101-2
Consequence of Piping Failure: Jet Impingement 12 Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks1 121-8 1/16 107-9 1/2 10-6 C None 12100 124-9 118-2 4-5 C 1) 20 FW Valve - FWS-78 1) SPI 2) 4 WCS Valve - V233, Supports 2) Note XB 3) Platform/Grating El 124-9 3) Note XE 4) E33-VF30B and Inlet Line 4) Note XD 5) 1LDS*RTD 2A and 2B 5) Note XA 6) Cables, Conduit for FWS7B 6) Note XD 12 RBS USAR Revision 12 2 of 4 December 1999 TABLE 3.6A-43b (cont)
Piping System: Reactor Core Isolation System (Outside Containment)
Piping Line Numbers: 1-ICS-004-13-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR 3 of 4 August 1987 RBS USAR TABLE 3.6A-43b (cont)
Piping System: Reactor Core Isolation System (Outside Containment)
Piping Line Numbers: 1-ICS-004-13-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks39 73-9 1/4 89-4 1/2 12-8 C 1)1CC814RD RCIC turbine 1)RL inlet valve 1E51*F045 conduit 2)1CC838RD4 RCIC turbine 2)RL stm sup 1E51*LSN010 conduit 3)1CC814RD2 RCIC turbine 3)RL 1E51*C002V conduit 4)1CX809RF1 RCIC pump 4)RL suct 1E51*PTN052 conduit 5)1CC838RD7 RCIC turbine 5)RL stm sup 1E51*LSN010 conduit 39A 88-0 1/4 95-2 1/2 11-7 C 1)1E31*T/C N0048 leak 1)DSS detection 2)1CC845NP9 (conduit 2RL for position indicator for valve 1E51*MOV F045 RBS USAR Revision 12 4 of 4 December 1999 RBS USAR TABLE 3.6A-43b (cont)
Piping System: Reactor Core Isolation System (Outside Containment)
Piping Line Numbers: 1-ICS-008-36-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks12 1260 116-5 5/8 110-3 1/2 22-11 C None 57 116-1 3/8 110-3 1/2 22-11 C 1)1TX808B ADS, CMS cable 1)Note H 2)1TC817B HVR unit cooler 2)Note H cable 3)1TK815B HVR unit cooler 3)Note H cable 57A 116-0 110-3 1/2 20-10 C None NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USAR Revision 12 1 of 1 December 1999 TABLE 3.6A-44
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: High Pressure Core Spray System (Inside Containment)
Piping Line Numbers: 1-CSH-010-45-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation
Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1 140-9 270 11-7 15/16 C 1)1E22*AOVF005 valve (HPCS) 1)ACI, RL 2)1CSH-010-41-1 line and 2)ACI, RL supports 3)MSS supports 3)ACI, SPI 12 125 140-9 270 20-10 C 1)1E22*AOVF005 valve (HPCS) 1)ACI, RL 2)1CSH-010-41-1 line and 2)ACI, RL supports 3)MSS supports 3)ACI, SPI RBS USAR Revision 12 1 of 2 December 1999 TABLE 3.6A-45
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Low Pressure Core Spray System (Inside Containment)
Piping Line Numbers: 1-CSL-010-43-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation
Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1 140-9 90 11-7 15/16 C 1)1CC502RD1 (conduit for 1)Note CD ADS valve 1B21*RVF047A) 2)1CC502RD3 (conduit for 2)Note CD ADS valve 1B21*RVF051G) 3)1CC502RD5 (conduit for 3)Note CD ADS valve 1B21*RVF047C) 4)1RCS-750-33-2 (instrument 4)Note D tubing for RPV level and pressure) 5)1RHS-750-165-2 line and 5)Note H supports (LPCI-A) 6)MSS line support 6)ACI 7)1E21*AOV006 valve on 7)ACI, RL CSL*043 8)1E21*VF007 valve on 8)ACI,RL CSL*043 9)1CC502RN4 conduit 9)Note B (H ignitor) 12 12 RBS USAR Revision 12 2 of 2 December 1999 TABLE 3.6A-45
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Low Pressure Core Spray System (Inside Containment)
Piping Line Numbers: 1-CSL-010-43-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation
Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 125 140-9 90 20-10 C 1)1CC502RD1 conduit for ADS 1)Note CD ADS valve 1B21*RVF047A 2)1CC502RD3 conduit for 2)Note CD ADS valve 1B21*RVF051G 3)1CC502RD5 conduit for 3)Note CD ADS valve 1B21*RVF047C 4)1RCS-750-33-2 instrument 4)Note D tubing for RPV level and pressure 5)1RHS-750-165-1 line and 5)Note H supports (LPCI-A) 6)MSS line support 6)ACI 7)1E21*AOV006 valve on 7)ACI CSL*043 8)1CC502RN4 conduit 8)Note B (H ignitor) NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USAR Revision 12 1 of 6 December 1999 TABLE 3.6A-46
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-34-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1A 136-3 1/4 45 11-8 7/8 C 1)1CC500BA1 conduit for 1)Note CD ADS valve 1B21*RVF047A 2)1CC502RD1 conduit for 2)Note CD ADS valve 1B21*RVF047A 3)1CC502RD3 conduit for 3)Note CD ADS valve 1B21*RVF051G 4)1CC502RE conduit for ADS 4)DSS valves 1B21*RVF041B, 041D, and 041F 5)1RHS-750-165-1 and 5)Note J supports (LPCS) 6)1RCS-075-33-2 and 6)Note D supports inst piping for RPV level and pressure 7)CSL-010-43-1 (LPCS) 7)SPI,ACI 8)SVV-150-176-2 piping 8)Note CD for ADS valve 1B21*RVF051G 9)1RHS-750-164-2 and supp 9)RSS,RL (LPCI-A) 10)MSS supports 10)ACI 11)1RHS-010-34-1 and 11)ACI,RL supp 12)1E12*VF039A valve 12)RL (LPCI-A) 13)1E12*AOVF041A valve 13)ACI,RL (LPCI-A) 14)1CC502RD2 conduit for 14)Note F ADS valve 1B21*RVF041A 12 12 RBS USAR Revision 12 2 of 6 December 1999 TABLE 3.6A-46 (cont)
Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-34-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR Revision 12 3 of 6 December 1999 TABLE 3.6A-46 (cont)
Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-34-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 124A 136-3 1/4 45 21-11 1/2 C 1)1CC500BA1 conduit for 1)Note CD ADS valve 1B21*RVF047A 2)1CC502RD1 conduit for 2)Note CD ADS valve 1B21*RVF047A 3)1CC502RD3 conduit for 3)Note CD ADS valve 1B21*RVF051G 4)1CC502RE conduit for ADS 4)DSS valves 1B21*RVF041B, 041D, and 041F 5)1RHS-750-165-1 and 5)Note J supports (LPCS) 6)1RCS-075-33-2 and 6)Note D supports inst piping for RPV level and pressure 7)CSL-010-43-1 (LPCS) 7)SPI,ACI RBS USAR 4 of 6 August 1987 TABLE 3.6A-46 (cont)
Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-34-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks 8)SVV-150-176-2 piping 8)Note CD for ADS valve 1B21*RVF051G 9)1RHS-750-164-2 and supp 9)RSS,RL (LPCI-A) 10)MSS supports 10)ACI 11)1RHS-010-34-1 and 11)ACI,RL supp 12)1E12*VF039A valve 12)RL (LPCI-A) 13)1E12*AOVF041A valve 13)ACI,RL (LPCI-A) 14)1CC502RD2 conduit for 14)Note F ADS valve 1B21*RVF041A RBS USAR Revision 12 5 of 6 December 1999 TABLE 3.6A-46 (cont)
Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-16-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1B 136-3 1/4 225 11-8 7/8 C 1)Inst piping RCS-750-57-2 1)Note D and RCS-750-41-2 2)LPCI-B piping and support 2)RL,ACI and valve E12*AOVF041B 124B 136-3 1/4 225 21-11 1/2 C 1)Inst piping RCS-750-57-2 1)Note D and RCS-750-41-2 2)LPCI-B piping and support 2)RL,ACI and valve E12*AOVF041B 12 RBS USAR Revision 12 6 of 6 December 1999 TABLE 3.6A-46 (cont)
Piping System: Residual Heat Removal System - Low Pressure Coolant Injection Mode (Inside Containment)
Piping Line Numbers: 1RHS-010-19-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks1C 136-3 1/4 135 11-8 7/8 C 1)1CC502RD for ADS valves 1)DSS 41C, 47A, 47C, 51G 2)RHS-750-161-2 2)RL (LPCI-C) 3)LPCI-C piping and 3)RL supports and valve E12*AOVF041C 124C 136-3 1/4 135 21-11 1/2 C 1)1CC502RD for ADS valves 1)DSS 41C, 47A, 47C, 51G 2)RHS-750-161-2 2)RL (LPCI-C) 3)LPCI-C piping and 3)RL supports and valve E12*AOVF041C 12NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USAR Revision 12 1 of 1 December 1999 TABLE 3.6A-47a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Residual Heat Removal System - Shutdown Mode (Inside Containment)
Piping Line Numbers: 1RHS-018-53-1
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks1 91-6 0 18-2 1/2 C None 812 125 101-2 0 20-5 1/2 C 1)1CC502RE conduit for 1)Note CB ADS valve 1B21*RVF041D, 1B21*RVF041B, 1B21*RVF041F 2)1HCSBBC517 cable 2)NOTE B (H 2 ignitor) 1HCS*IGN28B 3)RCS*75-039 RPV press 3)DSS ref leg instru-mentation line 4)ICS-006-57-1 line 4)ACI and supports 5)24" MSS line support 5)ACI,SPI 6)RHS-018-53-1 supports 6)RL,ACI 7)RHS-750-351-2 line 7)ACI 8)1E12*MOVF009 8)RL,ACI (valve on RHS-053 line) 9)RHS line valve V240 9)DSI,ACI 10)1CC502RN6 conduit 10)Note B (H 2 ignitor) 11)1HCS*1GN49A 11)Note B H 2 ignitor 8NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USAR Revision 12 1 of 2 December 1999 TABLE 3.6A-47b
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Residual Heat Removal System (Outside Containment)
Piping Line Numbers: 1RHS-010-14-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks1 123-3 13/16 118-2 -(3-6) C 1)1CC817BG5 (main steam 1)Note F valve 1B21*MOVF098C conduit) 2)1CC817BG4 (main steam 2)Note F valve 1B21*MOVF098A conduit) 3)1CC817BG7 (feedwater 3)Note F valve FWS*MOV7A conduit) 4)1CC817BG8 (feedwater 4)Note F valve FWS*MOV7B conduit) 12 126 124-9 121-0 5/8 -(8-5 59/64) C 1)1CK809BC4 (turbine 1)Note F plant miscellaneous drain valve 1B21*MOVF086 conduit) 2)1CC817BG2 (main steam 2)Note F valve 1B21*MOVF098C conduit) 3)1CC817BG6 (turbine 3)Note F plant miscellaneous drain valve 1B21*MOVF086 conduit)
RBS USAR Revision 12 2 of 2 December 1999 TABLE 3.6A-47b
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Residual Heat Removal System (Outside Containment)
Piping Line Numbers: 1RHS-010-65-2
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El X Z Types Measures Evaluation
Point (ft-in) (ft-in) (ft-in) (1) Essential Targets (3) (4) Remarks8 123-4 1/8 115-8 3-6 C None 12 1213 124-9 120-6 3/4 8-4 3/4 C 1)1CX939UA4 (leak 1)Note L detection 1LDS*RTD2C conduit) 2)1CX939VA4 (leak 2)Note L detection 1LDS*RTD2D conduit) NOTE: Numbered footnotes follow Table 3.6A-51.
RBSUSARTABLE3.6A-48
SUMMARY
OFPIPINGFAILUREANALYSISPipingSystem:StandbyLiquidControlPipingLineNumbers:1-SLS-150-37-1,1-SLS-150-38-1 ConsequenceofPipingFailure:JetImpingementBreakLocationBreakProtectionBreakElAzrTypesMeasuresEvaluationPoint(ft-in)
(deg)(ft-in)
(1)EssentialTargets (3)(4)Remarks______________________________NOTE:NumberedfootnotesfollowTable3.6A-51.1of1August19871101-42256-9CCRDhousingSPI286-0189.715-01/4CNone--
386-0187.415-03/4CNone--
486-0182.515-3CNone--
RBS USAR 1 of 18 August 1987 TABLE 3.6A-49a
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-23-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks100 116-0 178 59-0 3/8 C 1)1CX507BA4 (containment 1)Note AA ambient temperature monitoring system 1CMS*RTD42F conduit) 2)1CX507BA (containment 2)Notes AA,BB ambient & suppression pool temperature monitor- ing system 1CMS*RTD24B, 24D, 40D, &42F conduit) 3)1CX507BA1 (suppression 3)Note AB pool temperature monitoring system 1CMS*RTD24B conduit) 4)1CX507BA2 )suppression 4)Note AB pool temperature monitor- ing system 1CMS*RFD40D conduit) 5)1CX507BA3 (suppression 5)Note AB pool temperature monitor- ing system detector 1CMS*RTD24D conduit) 6)1CPM*MOV2A (hydrogen 6)Note F mixing system valve) 7)1C11-AOVF180 (control 7)Note H rod drive system valve) 8)1C11-AOVF181 (control 8)DSS rod drive system valve) 9)1CC540SD2 (CRD scram 9)Note F discharge volume sole- noid valve 1C11*SOVF182 conduit) 10)1CC540SD1 (CRD scram 10)Note F discharge valve 1C11*SOVF009 conduit) 11)1CC540TF1 (CRD scram 11)Note F discharge valve 1C11*SOVF009 conduit) 12)1CC540TF2 (CRD scram dis- 12)Note F RBS USAR 2 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-23-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks charge volume solenoid valve 1C11*SOVF182 conduit) 13)1C11*VF122 (control rod 13)SPI drive system valve) 103 116-0 178 55-6 3/8 C 1)1CX507BA4 (containment 1)Note AA ambient temperature monitoring system 1CMS*RTD42F conduit) 2)1CX507BA (containment 2)Notes AA,AB ambient & suppression pool temperature monitor- ing systems 1CMS*RTD24B, 24D, 40D, & 42F conduit) 3)1CX507BA1 (suppression 3)Note AB pool temperature monitor- ing system 1CMS*RTD24B conduit) 4)1CX507BA2 )suppression 4)Note AB pool temperature monitor- ing system 1CMS*RTD40D conduit) 5)1CX507BA3 (suppression 5)Note AB pool temperature monitor- ing system 1CMS*RTD24D conduit) 6)1CPM*MOV2A (hydrogen 6)Note F mixing system valve) 7)1C11-AOVF181 (control 7)DSS rod drive system valve) 8)1C540SD2 (CRD scram 8)Note F discharge volume sole- noid valve 1C11*SOVF182 conduit) 9)1CC540SD1 (CRD scram 9)Note F discharge valve 1C11*SOVF009 conduit) 10)1CC540TF1 (CRD scram 10)Note F discharge volume sole- noid valve 1C11*SOVF182 RBS USAR 3 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-23-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks 11)1CC540TF2 (CRD scram dis- 11)Note F charge volume solenoid valve 1C11*SOV182 conduit) 12)1C11*VF122 (control rod 12)Note F drive system valve) 13)1C11-AOVF180 (control rod 13)Note H drive system valve RBS USAR 4 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-25-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks104 116-0 179.2 54-6 C 1)1RCP*T/CR04F (reactor 1)Notes DA,DB pressure vessel level and pressure instrument panel 1H22*PNLP026 termination cabinet RBS USAR Revision 12 5 of 18 December 1999 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-29-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks107 116-0 184 54-7 9/16 C 1)RCP*T/CR04F (reactor 1)Notes DA, DB pressure vessel level and pressure instrument panel 1HZZ*PNLP026 termination cabinet) 12 12 RBS USAR Revision 12 6 of 18 December 1999 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-27-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR 7 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-28-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks141 116-0 192.9 58-3 9/16 C 1)1RCP*T/CR04F (reactor 1)Notes DA,DB pressure vessel level & pressure instrument panel 1H22*PNLP026 termination cabinet) 175 115-4 195.2 57-9 13/16 C 1)1RCP*T/CR04F (reactor 1)Notes DA,DB pressure vessel level & pressure instrument panel 1H22*PNLP026 termination cabinet)
RBS USAR 8 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-43-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks216 121-3 195 55-9 5/8 C 1)1CC540KE (CRD hydraulic 1)Note U control unit 1C11*HC21D0012805 A&B pilot scram solenoid valve conduit) 2)1CC540LE (CRD hydraulic 2)Note U control unit 1C11*HCUD0012005 A&B pilot scram solenoid valve conduit)
RBS USAR 9 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-26-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks227 121-3 191.3 54-8 3/4 C 1)1H22-P027 (reactor pres- 1)Notes DA,DC sure vessel level & pres- sure instrument panel has LPCI A, B, and C RPV level transmitters) 2)1CX540VG (1RCP*T/CR04F 2)Notes DA,DB termination cabinet to 1H22*PNL026 reactor pressure vessel level & pressure instrument panel conduit) 3)1CX540UC (main steam 3)Note F flow instrument panel 1H22*PNLP041 conduit) 4)1CX540UG (CRD level 4)Note DD transmitter 1C11*LTN012C conduit) 5)1CX540UA (mainsteam 5)Note F flow instrument panel 1H22*PNLP041 conduit) 6)1CX5400B (jet pump panel 6)Notes F, 1H22*PNLP009 & RPV level DA, DB
& pressure instrument panel 1H22*PNLP026 conduit) 7)1CX540VF (CRD level 7)Note DD transmitter 1C11*LTN012U conduit) 8)1CX540VC (main steam flow 8)Note F instrument panel 1H22*PNLP041 conduit) 9)1CX540VA (main steam flow 9)Note F instrument panel 1H22*PNLP041 conduit) 10)1CC540LG (neutron 10)Note F monitoring motor modules 1C51*S001 H,M,D conduit RBS USAR Revision 12 10 of 18 December 1999 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-71-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR Revision 12 11 of 18 December 1999 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-71-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 12302 127-5 274.8 40-2 C 1)Withdraw line 1237 1)DSS 307 127-1 7/18 121.28 40-0 C 1)1SLC-002-42-1 1)Notes SPI,F 309 127-5 85.2 40-2 C 1)Withdraw line 5233 1)DSS 12 12 RBS USAR 12 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-72-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks288 127-4 1/2 238.72 40-0 C 1)1TX509B(CRD position 1)Note F multiplexer cabinet 1H22*PNLP072 conduit) 2)1CX540UG (CRD level 2)Note DD transmitter 1C11*LTN012C conduit) 3)1CX540OB (jet pump panel 3)Notes F, 1H22*PNLP009 & RPV level DA, DB
& pressure instrument panel 1H22*DNLP026 conduit) 4)1CX507BP (reactor pressure 4)Notes DA, vessel level & pressure DC instrument panel has LPCI A, B, and C RPV level transmitters 1H22*P027 conduit)
RBS USAR Revision 12 13 of 18 December 1999 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-002-69-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12312 125-10 7/8 121.28 40-0 C 1)1SLC-002-42-1 1)Notes SPI,F 406 126-2 274.8 40-2 C 1)Withdraw line 1237 1)DSS 12423 126-2 85.2 40-2 C 1)Withdraw line 5233 1)DSS RBS USAR 14 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-72-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in)(1) Essential Targets (3) (4) Remarks315 127-10 274.8 40-2 C 1)Withdraw line 1237 1)DSS 319 127-6 7/8 121.28 40-0 C 1)1CX507RH (containment 1)Note AA ambient temperature monitoring system 1CMS* RTD24A & 42G conduit) 2)1CC5400A(1RCP*T/CR0F1 2)Notes DA,DB termination cabinet to 1H22*PNLP005 RPV level & pressure instrument panel conduit) 3)1H22-P005 (RPV level 3)Notes DA,DB
& pressure instrument panel has HPCS RPV level transmitters) 4)1C11*SOVF009 (control 4)Note F rod drive system valve) 5)1C11*SOV182 (control rod 5)Note F drive system valve) 6)1CX507RA1 (CRD level 6)Note DD transmitter 1C11*LTN017A conduit) 7)1CX570UA (termination 7)Note F cabinet 1RCP*TCR01F, power range detector 1C51*JEN011 various conduit) 8)1CX540SL (CRD level 8)Note DD transmitter 1C11*LTN012A conduit) 9)1CC540UB (control rod 9)Note DD drive level switch 1C11* LSN013C conduit) 10)1CC540VB (control rod 10)Note DD drive level switch 1C11*LSN013D conduit) 11)1SLC-002-42-1 11)Note F 322 127-10 85.2 40-2 C 1)Withdraw line 5233 1)DSS RBS USAR Revision 12 15 of 18 December 1999 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-72-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks12 12THIS PAGE INTENTIONALLY LEFT BLANK RBS USAR 16 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-304-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks404 126-7 274.8 40-2 C 1)Withdraw line 1237 1)DSS RBS USAR 17 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-301-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks415 126-9 121.3 40-0 C 1)1SLC-002-42-1 1)Note F 416 127-0 85.2 40-2 C 1)Withdraw line 5233 1)DSS RBS USAR 18 of 18 August 1987 TABLE 3.6A-49a (cont)
Piping System: Control Rod Drive (Inside Containment)
Piping Line Numbers: 1-RDS-150-302-4
Consequence of Piping Failure: Jet Impingement Break Location Break Protection Break El Az r Types Measures Evaluation Point (ft-in) (deg) (ft-in) (1) Essential Targets (3) (4) Remarks419 126-4 121.3 40-0 C 1)1SLC-002-42-1 1)Notes F, SPI NOTE: Numbered footnotes follow Table 3.6A-51.
RBS USAR 1 of 8 August 1987 TABLE 3.6A-49b
SUMMARY
OF PIPING FAILURE ANALYSIS Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-17-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks1 72-1 1/2 -(127-6) 80-5 1/2 C None - 2 72-1 1/2 -(127-6) 81-7 C None -
3 72-3 1/2 -(127-6) 81-9 C None -
4 74-4 -(127-6) 81-9 C None -
5 74-6 -(127-8) 81-9 C None -
6 74-6 -(123-2) 81-9 C None -
8 74-8 -(123-4) 81-9 C None -
9 81-1 -(123-4) 81-9 C None - 10 81-3 -(123-4) 81-7 C None -
11 81-3 -(123-6) 66-5 C None -
12 81-3 -(123-4) 66-7 C None -
13 81-3 -(132-2) 66-5 C None -
15 81-3 -(129-2) 66-5 C None -
34 81-3 -(123-4) 69-5 C None -
37 81-3 -(132-4) 66-7 C None -
38 81-3 -(132-4) 68-9 C None -
39 81-3 -(132-2) 68-11 C None -
40 81-3 -(130-4) 68-11 C None -
RBS USAR 2 of 8 August 1987 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-17-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks41 81-1 -(130-2) 68-11 C None - 42 76-8 -(130-2) 68-11 C None -
RBS USAR 3 of 8 August 1987 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-18-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks18 81-3 -(129-2) 65-3 C None - 19 81-1 -(129-2) 65-1 C None -
20 76-9 -(129-2) 65-1 C None -
RBS USAR 4 of 8 August 1987 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-225-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks21 76-7 -(129-2) 65-1 C None - 22 75-0 -(129-2) 65-1 C None - 23 74-10 -(129-2) 65-11 C None -
RBS USAR 5 of 8 August 1987 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-025-11-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks25 72-1 1/2 -(127-6) 68-1 1/2 C None - 26 72-1 1/2 -(127-6) 69-3 C None -
27 72-3 1/2 -(127-6) 69-5 C None -
28 74-4 -(127-6) 69-5 C None -
29 74-6 -(127-8) 69-5 C None -
31 74-6 -(123-2) 69-5 C None -
33 74-8 -(123-4) 69-5 C None -
RBS USAR 6 of 8 August 1987 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-21-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks50 77-0 -(132-6) 64-4 1/2 C None -
RBS USAR 7 of 8 August 1987 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-19-4
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks56 74-10 -(129-2) 62-11 C None - 57 74-10 -(130-0) 62-9 C None - 59 77-0 -(129-0) 61-9 C None - 89 107-0 -(72-5) 2-8 3/4 C 1)1CL602BA conduit 1) NRS 2)1CC602BA conduit 2) NRS 3)1CC602BB conduit 3) DSS 90 107-0 -(72-7) 2-6 3/4 C 1)1CX601BA (service water 1) Note M flow transmitter 1SWP*FT59B, 60B conduit) 2)1CC918BA (conduit 2) NRS between switchgear and terminal cabinet for RCS system) 91 107-0 -(73-1) 2-6 3/4 C None - 92 107-2 -(73-3) 2-6 3/4 C 1)1TL602B (fuel building 1) Note R ventilation system fan HVF*FN3B, 7B cable tray) 2)1TC602B (various HVF flow 2) Note R switches and air operated damper cable tray) 3)1TX602B (various resistant 3) Note R temperature detector and flow switches HVF cable tray) 94 115-0 -(73-3) 2-6 3/4 C None - 95 115-10 -(73-3) 2-6 3/4 C None - 96 116-0 -(73-1) 2-6 3/4 C None -
RBS USAR Revision 12 8 of 8 December 1999 TABLE 3.6A-49b (cont)
Piping System: Control Rod Drive System (Fuel Building)
Piping Line Numbers: 1RDS-002-22-2
Consequence of Piping Failure: Jet Impingement Break Location Break- El X Z Break Protection Point (ft-in) (ft-in) (ft-in) Types (1)Essential Targets Measures (3) Evaluation (4) Remarks12 12Note: Numbered footnotes follow Table 3.6A-51.
Revision61of53August1993RBS USARTABLE 3.6A-50a
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-004-1-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks183-5-(18-0 7/16)8-10 1/8 CNone6 RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-006-5-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks6 6Revision 6 2 of 53 August 1993 3 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-006-5-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks51 104-031-2 4-3 C1)1SVV-012-26-31)SPI RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-004-3-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks6 6Revision 6 4 of 53 August 1993 Revision 12 5 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-003-6-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks68189-11 1/2 7-94-9 CNone 612 12
- Revision 6 6 of 53 August 1993RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-150-8-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks6
- Revision 6 7 of 53 August 1993RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1DER-002-225-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks6
- Revision 6 8 of 53 August 1993RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1B13-D077 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks6
- Revision 6 9 of 53 August 1993RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1B13-D077 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks93 102-0-(0-9) -(0-6) CNone6
- Revision 6 10 of 53 August 1993RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1DER-002-34-1 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks6 11 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-006-18-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks124149-044-4 7/16-(5-2 11/16) C1)1G33*MOVF0401)ACI (WCS valve) 2)WCS support2)DSI 3)WCS-004-29-23)ACI129149-046-0 11/16-(12-8) C1)WCS support1)DSI,RL140159-8 51-2-(6-9) CNone 15/16 12 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-172-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks125149-044-4 7/16-(6-1) CNone141149-046-3 7/16-(6-10) CNone142149-047-5 7/16-(6-10) CNone Revision 12 13 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-137-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks143149-049-5 5/16-(9-2 1/8) C1)1G33*MOVF0531)Note CG2)WCS support2)ACI144149-049-5 5/16-(10-4 1/8) C1)WCS support1)ACI12 12155149-049-5 5/16-(7-0) C1)WCS supports1)ACI 14 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-137-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks153157-8 5/849-7 5/16-(8-3) CNone Revision 12 15 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-79-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks169149-045-7 1/16-(11-10 1/2) C1)WCS supports1)ACI2)1CK500BE5 (WCS valve2)Note F 1G33*MOVF028 conduit) 3)1CC500BG5 (WCS valve3)Note CF 1G33*MOVF040 conduit)4)1G33*MOVF0404)Note CF (WCS valve) 5)1CC500BG3 (WCS valve5)Note CF 1G33*MOVF040 conduit) 6)1CK500BE2 (WCS valve6)Note CF 1G33*MOVF040 conduit)170149-045-7 1/16-(10-4) C1)WCS supports1)ACI2)1CK500BE5 (WCS valve2)Note F 1G33*MOVF028 conduit) 3)1CC500BG5 (WCS valve3)Note F 1G33*MOVF028 conduit)4)1G33*MOVF0404)Note CF (WCS valve) 5)1CC500BG3 (WCS valve5)Note CF 1G33*MOVF040 conduit) 6)1CK500BE2 (WCS valve6)Note CF 1G33*MOVF040 conduit)7)WCS-250-108-27)ACI174A154-641-9-(8-9) C1)1CK500BE5 (WCS valve1)Note F 1G33*MOVF028 conduit) 2)1CC500BG5 (WCS valve2)Note F 1G33*MOVF028 conduit)12 12 16 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-29-2 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks180149-040-6-(8-6) C1)WCS supports1)ACI,RL Revision 12 17 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-26-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks186A153-740-6-(15-9) CNone12 12 Revision 12 18 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-24-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks195172-10 3/847-0 5/16(0-11) CNone12201A148-630-1 5/8-(26-6) CNone202A151-617-5 7/16-(36-4 5/8) CNone 12 19 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-34-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks206A158-0-(1-6)-(40-3) C1)1E31*T/C No. 55B1)Note K thermocouple for leak detection Revision 12 20 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-58-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12220171-0-(7-5)-(45-3) CNone 21 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-45-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks232171-6-(8-4)-(41-0) C1)1CX501RE9 (leak1)Note P detection 1E31*T/CN044A conduit) 22 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-45-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks245176-8-(8-1)-(27-6) CNone 23 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-35-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks246A158-01-6-(40-3) CNone249164-91-6-(41-6) CNone256172-68-8-(44-3) C1)Leak detection1)Note K 1E31*T/CN043B 2)1CX500BE4 (leak2)Note P detection 1E31*T/CNO45B conduit)
Revision 12 24 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-69-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12260171-06-9-(45-3) CNone 25 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-71-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks272171-68-5-(41-0) C1)1CX500BE2 leak1)Note K detection 1E31*T/CN043B conduit) 2)1CX500BE4 (leak2)Note P detection 1E31*T/CN045B conduit) 26 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-65-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks285176-68-0-(27-7) C1)1CX500BE8 (leak1)Note P detection 1E31*T/CN050B conduit) 27 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-104-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks294163-11-(5-5)-(41-0) CNone 28 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-157-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks303163-115-6-(41-0) CNone Revision 12 29 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-25-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks306153-50-0 9-3 CNone 10 3/16324A149-330-1 5/8-(26-6) CNone327A151-618-3 -(35-10 1/4) CNone12 12 Revision 12 30 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-33-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12323A153-643-8-(15-9) CNone 31 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-150-146-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks347168-7 9-6-(34-9) CNone 32 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-70-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks358 170-11-428-3 C1)1CX500BE8 (leak1)Note P 5 13/16 detection 1E31*T/CN050B conduit) 2)1CX500BE9 (leak2)Note P detection 1E31*T/CN051B conduit366 170-4-0 -(37-6) CNone 5 13/16 33 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-72-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks360A170-1 5/166-2 1/4-(37-6) CNone362166-0 6-2 1/4-(37-9) CNone 34 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-150-145-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks379168-7 -(9-6)-(34-9) CNone 35 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-003-38-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks390170--(11-4)-(28-3) C1)1CX501RF1 (leak1)Note P 5 13/16 detection 1E31*T/CN047A, 46A, 48A conduit) 2)1CX500BD1 (leak2)Note P detection 1E31*T/CN047B, 46B, 48B conduit)395170--(4-5)-(37-6) CNone 5 13/16 36 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-39-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks396A170-1 5/16-(5-9 3/4)-(37-6) CNone 37 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-39-2 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks398166-0-(5-9 3/4)-(37-9) CNone Revision 12 38 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-251-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12419164-4-(4-9)-(34-1 1/2) CNone Revision 12 39 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-240-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12426 164-44-9-(34-1 1/2) CNone Revision 12 40 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-49-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks427181-0-(9-6)-(26-3) CNone12 12 Revision 12 41 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-49-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12439 176-6-(18-0)-(35-9) CNone 42 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-150-53-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks440176-9 5/8-(7-5-(26-3) CNone 13/16)441176-9 5/8-(6-5 1/4)-(26-3) CNone442176-9 5/8-(6-3)-(26-5 1/4) CNone443176-7 3/8-(6-3)-(34-6 3/4) CNone 444176-7 3/8-(6-5 1/4)-(34-9) CNone445176-7 3/8-(14-3)-(34-9) C1)1CX501RE6 (leak1)Note P detection 1E31*T/CN045A conduit)
Revision 12 43 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-008-46-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks453167-0-(9-6)-(26-3) CNone458A165-10 5/8-(17-2)-(27-3) CNone459165-9 7/8-(17-2)-(34-9) CNone12 12 Revision 12 44 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-41-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks460181-09-6-(26-3) CNone12 12 Revision 12 45 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-002-41-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12472 176-618-0-(35-9) CNone 46 of 53 August 1987RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-150-77-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks473176-9 5/87-3-(26-3) C1)1CX500BE8 (leak1)Note P detection 1E31*T/CN050B conduit)474176-9 5/86-5 1/4-(26-3) C1)1CX500BE8 (leak1)Note P detection 1E31*T/CN050B conduit)475176-9 5/86-3-(26-5 1/4) C1)1CX500BE8 (leak1)Note P detection 1E31*T/CN050B conduit)2)1CX500BE9 (leak2)Note P detection 1E31*T/CN051B conduit)476176-7 3/86-3-(34-6 3/4) C1)1CX500BE4 (leak1)Note P detection 1E31*T/CN045B conduit)477176-7 3/86-5 1/4-(34-9) CNone478176-1 3/814-3-(34-9) CNone Revision 12 47 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-008-75-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks486167-09-6-(26-3) CNone12 12491A165-17-2-(27-3) C1)1CX501RE1 (leak1)Note G 10 5/8 detection 1E31*T/CNO43A, 44A, 45A, 46A, 47A, 48A, 49A, 50A, 51A conduit)2)1CX501RE5 (leak2)Note H detection 1E31*T/CNO43A, 44A, 45A, 46A, 47A, 48A, 49A, 50A, 51A conduit) 3)1CX500BE7 (conduit for3)Note H leak detection 1E31*T/CNO49B)492165-9 7/817-2-(34-9) CNone Revision 12 48 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-23-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks500153-49-22-4 C1)1CK500BE5 (WCS1)Note F 10 13/16 valve 1G33*MOVF028 conduit) 2)1CC500BG5 (WCS2)Note F valve 1G33*MOVF028 conduit)12 12507157-8 5/850-60-6 CNone Revision 12 49 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-156-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks601172-10 3/849-3 5/8-(7-10 7/8) CNone12 12610172-10 3/849-3 5/8-(4-4 7/8) CNone Revision 1250 of 53December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-155-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks611157-8 5/850-4 7/8-(6-9 7/8) C1)1CK500BE4 (WCS1)Note F valve 1G33*MOVF178 conduit) 2)1CC500BG5 (WCS2)Note F valve 1G33*MOVF028 conduit)12 12620157-8 5/849-7-(4-8 3/8) C1)1CC500BG5 (WCS1)Note F valve 1G33*MOVF028 conduit) 2)1CK500BE5 (WCS2)Note F valve 1G33*MOVF028 conduit)
Revision 12 51 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-152-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks621159-50-8 3/8-(3-6) CNone 8 15/1612 12630159-50-9 1/20-0 CNone 8 15/16 Revision 12 52 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1WCS-004-154-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4)Remarks12 12640157-8 5/849-7 1/4-(1-2 1/4) C1)1CC500BG5 (WCS1)Note F valve 1G33*MOVF028 conduit) 2)1CK500BE5 (WCS valve2)Note F 1G33*MOVF028 conduit)631157-8 5/850-4 7/8-(3-3 7/8) CNone Revision 12 53 of 53 December 1999RBS USARTABLE 3.6A-50a (Cont)Piping System: Reactor Water Cleanup System (Inside Containment)Piping Line Numbers: 1-WCS-004-265-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks641153-50-4 3/40-8 1/4 CNone 10 3/1612 12652153-48-11 1/47-2 7/8 C1)1CK500BE5 (WCS1)Note F 10 3/16 valve 1G33*MOVF028 conduit) 2)1CC500BG5 (WCS2)Note F valve 1G33*MOVF028 conduit) 3)1G33*MOVF0403)Note CF (WCS valve) 4)1CC500BG3 (WCS valve4)Note CF 1G33*MOVF040 conduit)5)1CK500BE2 (WCS5)Note CF valve 1G33*MOVF040 conduit)Note: Numbered footnotes follow Table 3.6A-51.
Revision 12 1 of 11 December 1999RBS USARTABLE 3.6A-50b
SUMMARY
OF PIPING FAILURE ANALYSISPiping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-006-11-3Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks1116-0107-9 1/24-3 CNone12 127A106-995-90-0 C1)1TC814R (reactor core1)Note F isolation cooling system valve 1E12*F023 cable tray) 2)1CX809RS (leak detection2)Note N 1E31FTN077A conduit)3)1CX809RS1 (leak detection3)Note N 1E31FTN075A conduit) 4)1CX817BF2 (WCS thermo-4)Note Q couple 1E31*T/C No40B conduit)5)1CX817BF3 (WCS thermocouple5)Note Q 1E31*T/C No37B conduit) 6)1CX817BF4 (WCS thermocouples6)Note P 1E31*T/C No39B & 42B conduit) 7)1CC814RA (reactor core iso-7)Note F lation cooling system valves 1E51*F059, 013, 046)8)1CK827RA (RCIC fill8)Note F pump motor 1E51*C003 conduit)
Revision 12 2 of 11 December 1999RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-004-16-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks44117-6107-1010-6 CNone1252A106-992-411-3 C1)1CK820RC1 (reactor core 1)Note F isolation cooling system valve 1E51*F013 conduit) 12 Revision 12 3 of 11 December 1999RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-004-020-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12 4 of 11 August 1987RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-003-14-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks8798-1086-19-3 CNone Revision 12 5 of 11 December 1999RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-003-13-2 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks12 12 6 of 11 August 1987RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-003-13-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks3097-977-68-10 CNone 7 of 11 August 1987RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-003-12-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks3698-1 1/284-03-5 CNone4397-985-6 1/28-7 CNone 8 of 11 August 1987RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-003-15-3 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks7298-1077-119-2 CNone Revision 12 9 of 11 December 1999RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-004-171-2 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks90117-9 1/2107-110-0 C1)1CC817BG5 (main steam valve1)Note F 1B21*MOVFO98C conduit) 2)1CC817BG4 (main steam valve2)Note F 1B21*MOVFO98A conduit)3)1CC817BG7 (feedwater valve3)Note F 1FWS*MOV7A conduit) 4)1CC817BG8 (feedwater valve4)Note F 1FWS*MOV7B conduit)12 12 10 of 11 August 1987RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-004-173-2 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks108124-9121-5 3/46-8 5/8 CNone 11 of 11 August 1987RBS USARTABLE 3.6A-50b (cont)Piping System: Reactor Water Cleanup System (Outside Containment)Piping Line Numbers: 1-WCS-004-22-2 Consequence of Piping Failure: Jet Impingement Break Location BreakProtectionBreak El X ZTypes MeasuresEvaluationPoint(ft-in)(ft-in)(ft-in) (1) Essential Targets (3) (4) Remarks117124-9120-6 1/8-(6-6 7/8) C1)1CL824BB (feedwater valve1)Note F 1FWS*MOV7B conduit) 2)1CC817BG8 (feedwater valve2)Note F 1FWS*MOV7B conduit)
RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 1 of 7 August 1987 (1) C = Circumferential break L = Longitudinal break (2) R = Blowdown from RPV only H = Blowdown from other end (i.e., header or pump side)
D = Blowdown from a dead end such as a normally closed valve (3) Protection measures include: a. Pipe whip restraint b. Protective structures (i.e., impacted structures are designed for pipe rupture loads in accordance with
SRP 3.6.1) c. Redundant safety systems
- d. Separation and isolation by plant arrangement.
(4) ACI = System affected by pipe whip or jet impingement is required for containment isolation. Analysis of the system indicates that the system requirement can be
met. DSS = System impacted by a whipping pipe or by the jet discharging from a ruptured pipe is a system required
for plant safe shutdown, and has been designed or
analyzed to withstand the impact loading. DSI = System impacted by the whipping pipe or by the jet has been designed to maintain structural integrity and to
prevent pipe break initiation if the impacted target
is a piping system. NRS = System affected by pipe whip or jet impingement is not required for safe shutdown. Failure consequence is
acceptable. PRR = Target is protected by pipe rupture restraint(s).
RL = Rupture line impacts its own piping, component, or support. No failure consequence needs to be
considered. RSS = System affected by pipe whip or jet impingement is a system required for safe shutdown. However, the
failure consequence is acceptable since alternative
systems are available to shut RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 (Continued)Revision 8 2 of 7 August 1996 down the plant even if loss-of-site power and single active failure were considered to be coincident with the
rupture event. SPI = Piping, piping component, or pipe support impacted by a whipping pipe or by the jet discharging from a ruptured
pipe is or is associated with a line of smaller or equal size pipe and smaller or equal wall thickness. No
failure consequence of the impacted pipe needs to be
considered.Note A: Of the four resistance temperature detectors (RTDs) associated with post-accident monitoring (1CMS*RTD41A, B, C, and D), the failure of one of them due to jet impingement from a high energy line break (HELB) is acceptable. Since this failure and a worst single active
or passive failure will cause a maximum of three of the
four RTDs to be inoperative, at least one RTD will remain in service. Apart from these four, all other RTDs in the
drywell are not required for safe shutdown.8Note AA: Of the nine RTDs monitoring ambient temperature in the containment, failure of one due to jet impingement from this break is acceptable. Since this failure and a worst
single active or passive failure will cause a maximum of
six of the nine RTDs to be inoperative, at least three
RTDs will remain in service.8Note AB: Of the 14 containment monitoring system RTDs monitoring suppression pool temperature in the containment, the
failure of three due to jet impingement from this break is acceptable. Since this failure and a worst single
active or passive failure will cause a maximum of 10 of
the 14 RTDs to be inoperative, at least four RTDs will
remain in service.Note B: The failure of one hydrogen igniter in the drywell due to jet impingement from a HELB is acceptable since this
failure and a worst single active or passive failure will
not affect the safety function of this system.Note BB: A failure of this/these hydrogen ignitor(s) as a result of this break is acceptable. This failure, RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 (Continued) 3 of 7 August 1987 combined with a loss of Division A power, results in the loss of all el 156 ft 0 in drywell ignitors, leaving six ignitors operational (three at el 135 ft 0 in, three at
el 116 ft 0 in). These are acceptable because: a. Volumes exceeding the 30-ft criteria (35-40 ft) are small with respect to drywell volume. b. Volumes exceeding the 30-ft criteria (35-40 ft) are not susceptible to pocketing. c. Burning in the drywell is expected to be inverted diffusion burning resulting from the
introduction of oxygen into the hydrogen-rich
drywell atmosphere through the hydrogen mixing system (CPM). The inlets of the mixing system
are below el 135 ft 0 in and are not affected by
the loss of el 156 ft 0 in ignitors.Note C: Since the break has the equivalent flow area greater than or equal to approximately twice the flow area of a safety
relief valve, the failure of two safety relief valves if
the HPCS is available or the failure of one safety relief
valve if HPCS is unavailable, is acceptable.Note CA: Both a feedwater system break and an RHR system suction line break require two of the seven ADS valves if HPCS is
available and three valves if HPCS is unavailable.Note CB: For a large break inside the containment, three ADS valves are required since three others are required
to account for a single failure.Note CC: Since the break has the equivalent flow area of approximately one and one-half times the flow area of a safety relief valve, failure due to jet impingement of
two safety relief valves, if HPCS is available, or one
safety relief valve, if HPCS is unavailable, is
acceptable.Note CD: Since the break has the equivalent flow area of approximately two and one-half times the flow area RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 (Continued) 4 of 7 August 1987 of a safety relief valve, failure due to jet impingement of three safety relief valves, if HPCS is available, or
two safety relief valves, if HPCS is unavailable, is
acceptable.Note CE: Since the break has the equivalent flow area of approximately twice the flow area of a safety relief
valve, failure due to jet impingement of three safety
relief valves, if HPCS is available, or two safety relief
valves, if HPCS is unavailable, is acceptable.Note CF: Failure of this valve due to jet impingement from this break is acceptable since the break isolation will be
provided by redundant check valves.Note CG: Failure of this valve is acceptable since break isolation will be provided by either valve 1G33*MOVF004 or valve 1G33*MOVF054. However, if a single active failure occurs
in valve 1G33*MOVF054 and break isolation is provided by
valve 1G33*MOVF004, drywell flooding may occur; this is
acceptable and does not degrade safe shutdown.Note D: It is acceptable to fail this reactor pressure vessel (RPV) level and pressure instrument piping because of jet impingement from a HELB since this instrumentation a) is not associated with ECCS or b) even though associated with the ECCS instrumentation, is not required to
automatically initiate the ECCS, provided this instrument
pressure leg piping fails as a break and not as a crimp.Note DA: Of the four level and pressure instrument panels, failure of one due to jet impingement from this break is acceptable. Since this failure and a worst single active
or passive failure will cause a maximum of three of the
four panels to be inoperative, at least one panel will
remain in service.Note DB: Even though this panel, in addition to RPV pressure and level, has HPCS RPV level transmitters, failure of this
panel is acceptable since ADS with LPCI will be available
after this rupture event.
RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 (Continued) 5 of 7 August 1987 Note DC: Even though this panel, in addition to RPV pressure and level, has LPCI-A, B, and C RPV level transmitters, failure of this panel is acceptable since ADS with LPCS
and HPCS will be unavailable after this rupture event.Note DD: Failure of this scram discharge volume water level indicator instrumentation due to jet impingement from
this break is acceptable since this failure and a worst
single active or passive failure will cause a maximum of
four of five level instruments to be inoperative, leaving
at least one instrument in service.Note E: The failure of this containment penetration isolation valve to close because of jet impingement from a main
steam HELB is acceptable since the piping inside the
containment associated with this penetration will remain
full of water from the RPV and thereby provide a water
seal.Note F: This portion of the essential system is not required for safe shutdown.Note G: Jet impingement restraint is incorporated in the plant design such that the line will accept the jet impingement
load.Note H: A more detailed review of the jet shows that the item is either outside the jet cone or shielded by existing
design.Note HA: A more detailed review shows that the item would not be impacted by a whipping line.Note I: Total failure of this line is acceptable since the drywell sample flow will be maintained.Note J: A failure of the 3/4 in instrument branch line will not degrade the ECCS function.Note K: A shield is incorporated into the design, and/or the item is relocated to mitigate the jet consequence.Note L: These items are not required to isolate the subject break and are nonessential. Their failure RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 (Continued)Revision 12 6 of 7 December 1999 will automatically trip the reactor protection system (fail safe). Note M: Failure of these flow transmitters is acceptable for the associated HELB. These items monitor flow from the Division 2 standby service water pumps and flow into the standby service water system cooling tower. The operator
can verify flow by monitoring the pump discharge pressure
and pump motor run current that is indicated in the main
control room.Note N: These flow transmitters, which detect leakage based upon high flow, are not required once the break has occurred
since the area temperature monitors will detect and
isolate the break.12Note P: The area ambient temperature elements in each volume will provide the automatic breakpoint isolation. The
differential temperature elements in each volume provide
alarm and indication only and are not required for the
HELB event.12Note Q: The temperature element served by this conduit is not in the postulated break location volume.Note R: A failure of these cable trays is acceptable since the fuel building ventilation system (HVC) cables requried to
power the ventilation fans and air-operated dampers (AODs) can be repaired within 4 hr. The spent fuel pool
cooling system pumps that are cooled by these fans may be shut down for approximately 4 hr before an unacceptable
spent fuel pool temperature is reached.Note S: If HPCS is available, three ADS valves are required for safe shutdown; with a single failure of HPCS, six ADS valves will be required. Hence, failure of one of the seven available ADS valves due to HELB jet
impingement is acceptable.Note T: LPCI-A, B, and C systems are acceptable targets for this break.Note U: The valve serviced by this conduit will fail open, its fail safe position, on a loss of power.
RBS USAR NOTES FOR TABLES 3.6A-25 THROUGH 3.6A-51 (Continued)Revision 12 7 of 7 December 1999 Note V: This radiation monitor is not required for this break since it monitors radiation in the drywell during
post-LOCA and this break is not a LOCA. Note W: The effects of pipe whip or pipe rupture on the demineralizer and its supports is acceptable for this break. Since the ruptured line enters the demineralizer
at the bottom, the base support bolts would be loaded in
shear and, even if the bolts fail locally, the tank would
still be held in place by the platform halfway up the
tank, and by the piping connected to the top of the tank. Note X: A failure of the hydrogen ignitor(s) as a result of this break is acceptable since, even with the failure of one
division of power, the distance from any given point in the drywell to an unaffected hydrogen ignitor does not
exceed 30 ft. 12Note XA These are nonessential items whose failure will automatically trip the reactor protection system (fail-safe). They are not required to isolate the subject
break (reference LOOP 1LDS*2). Note XB A failure of these valves, pipe supports, and/or associated piping is acceptable because the affected
system is not essential and not required for safe
shutdown, the combined HELB flow area of this piping, plus the subject RCIC HELB is bounded by the postulated 20 inch feedwater pipe double ended rupture in this volume. These piping failures are automatically isolated
by the G33 motor operated isolation valves which are
unaffected by the subject failures. Note XC A failure of this line is acceptable because it is non-essential and not required for safe shutdown. It is
moderate energy and the flooding/spray are bounded by the
20 inch feedwater pipe double ended rupture. Note XD This portion of the essential system is not required for safe shutdown or to isolate the break. Note XE Failure consequence is acceptable since target is non-essential and its failure will not adversely affect any other essential systems. 12 RBS USAR
- Applies to Restraint RCB 3 only (See Figure 3.6B-2). 1 of 1 August 1987 TABLE 3.6B-1 PDA VERIFICATION RESTRAINT DATA General Restraint Property for 1 Bar of a Restraint F = C 2 ( restraint) n Where restraint = pipe - Total clearance(See Figure 3.6B-1) Pipe Rest Load Size Direction Limit Initial Effective Total (in) (deg C 2 n Restraint Clearance Clearance Clearance12 0 27,733 0.24 6.129 4 1.941 5.941 12 90 l4,795 0.401 9.063 4 12.247 16.247 16 0 109,265 0.24 6.278 4 1.934 5.934 16 90 62,599 0.377 8.978 4 12.187 16.187 24 0 l02,228 0.24 8.222 4 1.984 5.984 24 90 55,531 0.375 11.972 4 13.685 17.685 24 38* 109,888 0.24 5.588 4 5.698 9.698 24 52* lO9,835 0.24 5.473 4 8.462 12.462 RBSUSARTABLE3.6B-2COMPARISONOFPDAANDNSCCODEPercentofDesignNo.RestraintRestraintPipeBreakRestraintofBarsLoad(kips)Deflection(in)
DeflectionDeflection(in)IDNo.(*)IDNo.(*)
PDA NSC PDA NSC PDA NSC PDA NSC PDA NSC1 RC1 JRCR155803.2788.36.577.9379.9396.417.7215.58 RC2 LLRCR155766.4458.414.997.5012562.635.8324.52 RC3 LLRCR266747.0639.72.273.7327.6545.3517.1620.11 RC3 LLRCR266796.6780.310.2210.5485.3788.0841.4843.0 RC4 LLRCR355846.0838.48.168.0599.1997.9818.8716.43 RC4 LLRCR3881319.01073.95.434.2199.2376.8523.3817.25 RC4C VRCR3881260.71275.04.495.5880.3799.8922.5618.73 RC6A VRCR388928.5722.51.221.7722.4631.723.6895.39 RC7 JRCR766953.3801.66.285.7676.470.1216.4621.63 RC8 LLRCR644599.0NA8.28NA69.23NA26.75NARCR766895.0NA8.16NA68.19NA29.32NA RC9C VRCR644575.8520.24.165.545.5467.3813.214.56 RC9 LLRCR866830.2546.811.416.8295.2956.936.6126.24RC11ARCR866818.3493.610.985.9991.7250.0731.40423.71 RC13RCR1044668.4478.05.873.6693.558.3913.3710.44 RC16RCR1144687.4518.46.594.38105.0969.8615.3710.22
RC14C VRCR2088285.0309.62.835.8846.395.9415.4513.96 RC14 LLRCR2088116.3129.90.963.3610.537.122.0423.5666NA832.9NA6.33NA76.94NA15.66 1*Fig.3.6B-21of1August1988 Revision141of1September2001RBSUSARTABLE3.6B-3RECIRCULATIONPIPINGSYSTEMOPERATINGSTRESSESATBREAKLOCATIONS14Note:Thestressrationsshownbelowarehistoricalvalues.Thebreaklocationsarestillvalid 14StressRatioPer:Eq.(10)Eq.(12)Eq.(13)BreakJointSnSc SUsageBreakBreakBasisID(1)No.3Sm 3Sm 3Sm Factor TypePara.Number1RS150.5690.1380.4230.00Circmf.TerminalendPara.2.1.2RS38091.0240.4750.4260.00Circmf.LoopBonlyTerminalendPara.2.1.2RD17830.3940.00650.3530.00Circmf.TerminalendPara.2.1.2RD26830.4540.1120.3400.00Circmf.TerminalendPara.2.1.2RD35830.4340.0520.3420.00Circmf.TerminalendPara.2.1.2RD44830.4840.0930.3480.00Circmf.TerminalendPara.2.1.2RD53830.4780.1320.3610.00Circmf.TerminalendPara.2.1.2RD63700.7570.2090.5560.01Circmf.IntermediatePara.2.1.2.bRD74700.8300.2380.5730.01Circmf.IntermediatePara.2.1.2.bRD86700.6750.0730.5710.01Circmf.IntermediatePara.2.1.2.bRD97700.7400.1450.5760.01Circmf.IntermediatePara.2.1.2.b(1)SeeFigure3.6B-4foridentificationofpostulatedbreaks.
(2)Stressratiosdatafrom23A6047 1
RBSUSARNOTE:SeeSection3.7.2.15Aforalternatedampingforpiping.1of1August1987TABLE3.7A-1DAMPINGVALUESPercentofStructureorCriticalDampingComponentforallModesOBESSEEquipmentandlargediameter pipingsystems(diameter greaterthan12in)23Small-diameterpipingsystems(diameterequaltoorlessthan 12in)12Weldedsteelstructures24 Boltedsteelstructures47 Prestressedconcretestructures25 Reinforcedconcretestructures47 ASMEActivecomponents22 RBSUSARTABLE3.7A-1aTABULATIONOFRATTLESPACEANDWORST-CONDITIONGAPFORSSECONDITION Orbital Relative (2)¸Relative (2)¸DisplacementRattle-DeflectionDeflectionBetweenTotalWorstCon-spaceBuildingABuildingBBld gA&BDisplacementditionGapBuildingABuildingB (in)___(in)_______(in)________(in)________(in)_______(in)
_________________________________NOTE:Unlessotherwisenoted,rattlespacesshownonthetablearebetweenthetwoadjacentstructuresatthehighestleveloftheshorterstructure.
(1)¸DeflectionisassumedtobethesameastheadjoiningCategoryIstructure.
(2)¸Relativedeflectionbetweenthefoundationmatandtheelevationunderconsideration.
(3)¸Aboveelevation146ft0in.
(4)¸Elevation60ft0in(bottomoffoundation)toelevation146ft0in.
(5)¸Abovefloorelevation113ft0inandforeastwallaboveelevation135ft41/2in.
(6)¸Uptofloorelevation113ft0inandforeastwalluptoelevation135ft41/2in.1of1August1987ReactorAuxiliary4 (3)0.7710.6800.4531.5202.480ReactorAuxiliary3 (4)¸0.5560.5230.4531.1701.830ReactorFuel4 (5)¸0.7710.8550.4801.6952.305ReactorFuel3 (6)¸0.4770.6320.4801.2091.791AuxiliaryElecTunnel(C.B.)30.1330.1140.6000.6492.351AuxiliaryTurbine30.2910.0920.9331.0091.991AuxiliaryM.S.Tunnel(T.B.)30.3350.0450.9331.0071.993 AuxiliaryPipeTunnel130.1330.5090.4330.7732.227RadwastePipeTunnel130.2000.5020.3330.7832.217ControlDiesel30.3190.4140.5330.9072.093 ControlNormSwtchgrý¸30.2110.2110.5530.6962.304 DieselTunnelBFElecTunnel30.1060.0090.3470.3652.635FuelBFElecTunnel30.0880.0090.4670.4772.523StbySwtPipeTunnel230.1700.1570.5330.6252.375 RadwasteHeaterBay(T.B.)30.4320.0681.0671.1781.822 RBSUSAR1of1August1987TABLE3.7A-2FIXEDBASENATURALFREQUENCIESNATURALFREQUENCY XY ZReactorbldg.4.2412.84.17(Uncracked)4.5218.54.525.034.96 6.656.64 9.719.67Reactorbldg.3.028.62.97(Cracked)4.5212.84.525.0218.54.95 6.656.64 9.719.67Controlbldg.10.422.58.1124.154.119.2Fuelbldg.9.4624.611.419.254.823.5Auxiliarybldg.6.7219.37.8116.346.618.2Standbydiesel5.2130.39.52generatorbldg.28.268.920.7Standbyservice7.8520.78.08waterpump-16.659.317.9 houseand coolingtower RBSUSAR1of2August1987TABLE3.7A-3RESPONSELOADSREACTORBUILDINGForce(kips)Moment(ft-kips)MemberShearBendingNo.Axial X Z Torsion X Z SSEShieldBuilding24,6996,7766,762157,437829,681829,76534,1686,3736,363138,456701,739701,619 43,6375,8845,878119,042572,867562,999 53,1005,2995,29599,087449,361433,972 62,5594,6104,60978,679332,384321,302 72,0133,8143,81557,914225,289217,991 81,4652,9072,95736,885131,505127,369 Containment367,4569,7519,716254,2531,323,1811,323,10896,4158,5848,561204,6931,066,2651,065,289 101,0891,4191,41726,613144,569143,093 118831,2451,24321,462115,393114,293 127431,1111,11017,74489,84189,151 1358792892713,34255,52455,000 143956686678,27131,40931,427 151923483474,77711,63211,636PedestalPSW161,1011,8671,9292,716133,173128,244179571,7191,7792,38165,48362,790 184829811,0171,88134,19132,542 193056917191,30717,15316,207 20942412516254,1434,028 Drywell218,1819,6919,779150,442968,433982,935227,4119,2119,301140,126615,455634,809 236,5458,4998,591124,976443,441462,409 245,3637,2767,350107,748274,326286,427 253,4805,1065,16668,001182,631192,690 261,3652,3222,36033,98568,56572,165 RBSUSAR2of2August1987TABLE3.7A-3(Cont)Force(kips)Moment(ft-kips)MemberShearBendingNo.Axial X Z Torsion X Z OBEShieldBuilding22,4043,6753,699127,657482,679481,29032,1333,5393,558112,753412,727411,71541,8613,3393,35397,284334,989334,303 51,5853,0653,07581,217260,536260,109 61,3092,7112,71964,649191,082190,834 71,0292,2742,27947,684128,403128,275 87491,7531,75630,42374,30774,247 Containment363,7184,7194,779203,052718,819714,40493,2854,3694,409164,704594,718591,529 1055862463121,02767,61166,291 1145255856317,15554,52753,541 1238150550914,25342,83742,156 1330142843110,75626,90026,423 142033133166,67915,38015,283 15991661673,8645,8325,796PedestalPSW165641,2191,2742,48888,94784,541174901,1391,1942,21743,94741,533 182476857211,80125,02823,517 191564945221,21912,79511,998 20481761875343,1433,009 Drywell213,9694,7574,83198,620467,696466,003223,5834,4894,57391,494294,453296,167 233,1554,1194,20780,823210,765213,437 242,5793,5093,59169,882128,779130,212 251,6702,4572,52743,34485,59987,252 266541,0551,09720,94631,15931,537 RBSUSARNOTE:FormembernumbersrefertoFig.3.7A-29.1of1August1987TABLE3.7A-4RESPONSELOADSAUXILIARYBUILDINGForce(kips)Moment(ft-kips)MemberShearBendingNo.Axial X Z Torsion X Z SSE111,69311,58713,43746,7431,217,097985,77628,3139,26910,43531,707699,818563,257 35,7837,1837,84729,263457,652371,190 42,6693,7833,97723,600183,525141,633 OBE15,8655,8746,81123,771616,882499,69624,1704,6995,29016,144354,566285,419 32,9013,6413,97814,890231,833188,057 41,3391,9172,01511,98992,92471,725 RBSUSARNOTE:Formembernumbers,refertoFig.3.7A-30.1of1August1987TABLE3.7A-5RESPONSELOADSCONTROLBUILDINGForce(kips)Moment(ft-kips)
Member Shear BendingNo.Axial X Z Torsion X Z SSE17,3577,9058,226115,810580,770602,39124,7335,5295,87537,466274,439304,08833,1203,8954,19725,646155,854175,425 41,6382,1762,37417,24863,77773,809 OBE13,6903,9834,18858,910295,634303,42422,3752,7942,99719,108139,865153,461 31,5651,9692,14613,09779,52888,623
48221,1011,2158,79632,55337,287 RBSUSAR*Formembernumbers,refertoFig.3.7A-32.1of1August1987TABLE3.7A-5aRESPONSELOADSFUELBUILDINGForce(kips)Moment(ft-kips)
Member Shear BendingNo.*Axial X Z Torsion X Z SSE18,89910,06610,335299,617791,496755,16925,3236,7436,68285,467402,429392,44332,8744,2474,07523,920237,821234,209 41,3172,1232,0169,92767,79664,194 OBE14,4605,0865,211151,185399,185381,36822,6673,4073,37043,104202,831198,197 31,4402,1462,05512,028119,925118,285
46601,0731,0174,99234,17632,413 RBSUSAR*Formembernumbers,refertoFig.3.7A-28.1of1August1987TABLE3.7A-5bRESPONSELOADSSTANDBYDIESELGENERATORBUILDING Force Moment Member Shear BendingNo.*Axial X Z Torsion X Z SSE14,9408,1028,329139,499448,634456,42122,5364,5524,26178,824151,485169,541 31,8673,5083,29252,46791,896101,871 47771,5391,45514,46625,81329,223 OBE12,4754,1524,24572,838228,587234,77021,2712,3592,17541,11977,30887,755 39351,8181,68127,43446,88952,723 43897987437,57313,16515,117 RBSUSARNOTE:FormembernumbersrefertoFig.3.7A-31.1of1August1987TABLE3.7A-6RESPONSELOADSStandbyServiceWaterPumpHouseandCoolingTower Force (kips)Moment(ft-kips)
Member Shear BendingNo.Axial X Z Torsion X Z SSE110,54624,45324,43939,8891,723,6221,720,12927,96515,44815,43924,512953,115950,402 34,8577,7117,70543,853330,830329,019 42,7064,6044,59723,807165,675164,343 51,3372,3792,37437,20166,53466,781 OBE 15,70314,95114,94524,4521,053,0841,050,615 24,3079,4459,44115,037581,879579,989 32,6274,7124,71026,815201,525200,357 41,4632,8132,80914,553100,85299,961 57231,4531,45022,73540,28240,319 RBSUSAR1of3August1987TABLE3.7A-7ACCELERATIONS(GS)
X (N-S)Y(Vert)Z(E-W)Mass Time Time TimeNo.CSM History CSM History CSM HistoryReactorBuilding-G=18KSI(SSE)10.1390.1800.1480.1890.1430.166ShieldBuilding30.1410.1670.1500.1910.1430.12340.1550.1590.1510.1910.1550.12850.1770.1550.1520.1920.1750.147 60.2030.1700.1530.1920.2000.173 70.2330.1960.1540.1930.2290.207 80.2660.2360.1550.1930.2600.243 90.3220.3170.1550.1950.3150.314 Containment340.1360.1750.1480.1890.1390.144100.1350.1700.1490.1890.1380.132 110.1400.1650.1500.2000.1430.125 120.1690.1570.1510.1910.1510.130 130.1750.1560.1510.1900.1240.151 140.2000.1770.1520.1880.1980.186 150.2340.2070.1520.1920.2320.233 160.2700.2650.1520.1930.2680.283PedestalPSW170.1530.1770.1490.1890.1570.146180.1610.1740.1490.1890.1660.152 190.1920.1880.1500.1900.2000.198 200.2320.2260.1500.1910.2410.240 210.2680.2600.1500.1920.2790.281 Drywell220.1300.1660.1530.1920.1320.129230.1420.1500.1570.1890.1420.139 240.1710.1710.1590.1950.1690.175 250.1920.1830.1620.2050.1890.195 260.2350.2190.1630.2070.2340.232 270.2920.2840.1640.2060.2940.275 RBSUSAR2of3August1987TABLE3.7A-7(Cont)
X (N-S)Y(Vert)Z(E-W)Mass Time Time TimeNo.CSM History CSM History CSM HistoryControlBuilding-G=18KSI(SSE)10.1570.2040.2110.2540.1540.21020.1930.2230.2140.2590.1970.231 30.2250.2380.2200.2630.2320.262 40.2570.2570.2210.2630.2740.306 50.2950.3090.2230.2650.3220.363AuxiliaryBuilding-G=18KSI(SSE)10.1540.1760.1720.2230.1490.19320.1440.1980.1740.2270.1660.228 30.1570.2100.1750.2260.1850.252 40.1960.2310.1770.2310.2210.293 50.2550.2960.1780.2340.2660.345FuelBuilding-G=18KSI(SSE)10.1730.1820.1880.2110.1810.18720.1870.2090.1940.2170.1990.223 30.2160.2530.2000.2190.2220.248 40.2940.3430.1990.2200.2870.303 50.3510.3970.1990.2150.3350.337Standby-DieselGeneratorBuilding-G=18KSI(SSE)10.1740.2260.2070.2360.1910.21220.2430.2590.2100.2390.2710.281 30.3280.3160.2120.2390.3110.322 40.3860.3710.2160.2460.3660.379 50.4290.4090.2180.2500.4100.428StandbyServiceWaterPumphouseandCoolingTower-G=18KSI(SSE) 10.1950.1860.1690.2020.1950.21120.2280.1930.1700.2050.2270.251 30.2870.2240.1720.2070.2870.315 40.3210.2470.1740.2120.3210.347 50.3550.2860.1750.2130.3540.382 60.3860.3240.1730.2120.3860.444 RBSUSAR3of3August1987TABLE3.7A-7(Cont)NOTE:FormasspointsrefertoFigures3.7A-28through 3.7A-32Closelyspacedmodal(CSM)valuesaretheresultsfromtheresponsespectrumanalysis,combiningmodal responsesasdescribedinSection3.7.2.7A.
RBSUSARNOTES:Spantolerance+0inForpipinglocatedoutsidethereactorbuildingandattachedtothereactorbuildingwall,reactorbuilding spansareusedouttothefirstanchor.1of1August1987TABLE3.7A-8SMALL-BORESEISMICPIPINGMAXIMUMSUPPORTSPANSNorminalSpanforAllBuildingPipeExceptReactorReactorBuilding AndTubingBuilding(ft)Span_Size(in)InsulationNoInsulation InsulationNoInsulation Pipe 210.011.06.57.5 11/29.010.06.07.0 17.58.55.06.5 3/47.08.04.05.5 1/25.07.53.55.0 Tubing1/2-5.0-4.03/8-4.5-3.25 RBSUSAR1of1August1987TABLE3.7A-9SMALL-BORESEISMICPIPINGRESTRAINTDESIGNLOADSGuide/RestraintLoads(lb)NominalPipe Axial (1)andTubingRestraintforAllOther (2)Size(in)AdjoiningLeg Restraints Pipe 2 1,315 77511/2 815 410 1 500 210 3/4 275 125 1/2 275 125 Tubing 1/2 150 75 3/8 100 50 RBSUSAR1of1August1987TABLE3.7A-10SMALL-BORESEISMICPIPINGANCHORDESIGNLOADS Nominal Pipe SizeAnchorLoads(lb)(in)Axial Normal 2 2,425 77511/2 1,480 410 1 880 2101/2,3/4 475 125 RBSUSAR*Requirementsforas-builtcontroldrawingsarecontainedinSpecificationNo.228.312,FieldFabricationandErectionof PipeSupports,ASMEIII,codeClasses1,2,3andANSIB31.1, AppendixA.1of1August1987TABLE3.7A-11DESIGNATTRIBUTESTOBEREVIEWEDFORVERIFICATIONOFSAFETY-RELATEDPIPINGSYSTEMSASREQUIREDBYIEBULLETIN79-14DesignAttributeSourceDocumentPiperunconfigurationAs-builtpipingcontroldrawings*
andgeometryPipesupportlocationAs-builtpipingcontroldrawings*
ValvelocationAs-builtpipingcontroldrawings*SupportdesignandAs-builtpipesupportcontrol function drawing*SupportedgedistanceAs-builtpipesupportcontrolonembedmentplate drawing*PipeclearanceatAs-builtpipesupportcontrol supports drawing*PipeclearanceatwallAs-builtpipingcontroldrawing*
penetrationsOtherpipeclearancesConstructionSiteInstruction 8.1.1AttachmentstopipeAs-builtpipingcontroldrawings*AttachmentstosupportsAs-builtpipesupportcontrol drawing*ValveweightsVendordrawings*AmplifiedresponseSpecificationforPiping spectraEngineeringandDesign,SpecificationNo.228.000SupportseismicanchorSpecificationforPiping motionEngineeringandDesign,SpecificationNo.228.000 RBSUSARTABLE3.7B-1CRITICALDAMPINGRATIOSFORDIFFERENTMATERIALSPercentCriticalDamping ItemOBEConditionSSEConditionWeldedstructuralassemblies 2.0 3.0(equipmentandsupports)Vitalpipingsystems 2.0 3.0Diametergreaterthan12in.Diameterlessthan 1.0 2.0orequalto12in.Reactorpressurevessel,support2.0 4.0skirt,shroudhead,separator,andguidetubes Fuel 6.0 6.0______________________________
NOTE:Othervaluesmaybeusediftheyareindicatedtobereliablebyexperimentorstudy.1of1August1987 1of1August1987RBSUSARTABLE3.7B-2THISTABLEHASBEENDELETED.
1of1August1987RBSUSARTABLE3.7B-3THISTABLEHASBEENDELETED.
RBSUSAR 1of1August1987TABLE3.7B-4NUMBEROFDYNAMICRESPONSECYCLESEXPECTEDDURINGASEISMICEVENTFrequencyBandHz 0-10 10-20 20-50Totalnumberofseismiccycles168359643No.ofseismiccycles-0.5%cyclesbetween75%and 100%ofpeakloads0.81.83.2No.ofseismiccycles-4.5%cyclesbetween50%and 75%ofpeakloads7.516.228.9 1of3August1987RBSUSARTABLE3.8-1LOADCOMBINATIONSFORCONTAINMENTVESSELCYLINDRICALPORTIONANDDOME,ANDACCESSOPENINGSTHROUGHCONTAINMENTVESSELANDDRYWELLStressComparisonsDesignCategoryLoadCombinations (1)Applicability(ASMEIIINomenclature)DesignI D+L+P D+OBE+H+/-R m1Totalstructure P mS m@T D P L1.5S m@T DP+P1.5S@TDesignII D+L+P D+SSE+H+R m2Wherestructureis P mlargerof1.2S morS y@T DintegralandcontinuousP Llargerof1.8S mor1.5S y@T D P L+P blargerof1.8S mor1.5S y@T D D+L+P D+SSE+H+R m2Wherestructureisnot P mS m@T DintegralandcontinuousP L1.5S m@T D P l+P b1.5S m@T DDesignIII D+L+P f+OBE+R m1Totalstructure P m1.5S m@T f P Llargerof1.8S mor1.5S y@T f P L+P blargerof1.8S mor1.5S y@T fDesignIV D+L+H+P DE+OBE+R m1Totalstructure P mS m@T E P L1.5S m@T E P L+P b1.5S m@T EDesignV D+L+H+P DE+SSE+R m2Wherestructureisnot P mS m@T EintegralandcontinuousP L1.5S m@T E P L+Pb1.5S m@T EWherestructureis P mlargerof1.2S morS y@T EintegralandcontinuousP Llargerof1.8S mor1.5S y@T E P L+P blargerof1.8S mor1.5S y@T EOperatingI(a)D+L+H+P o+OBE+R m1+SRV 1Totalstructure P mS m@T o P L1.5S m@T o P L+P b1.5S m@T o(b)D+L+H+P o+T o+OBE+R o1+SRV 1Totalstructure P L+P b+P e+Q3S m (2)P L+P b+P e+Q+FS a FatigueOperatingII D+L+H+P o+T o+SSE+R o2+SRV 1Totalstructure P L+P b+P e+Q3S m (2)P L+P b+P e+Q+FS a Fatigue 2of3August1987RBSUSARTABLE3.8-1(Cont)StressComparisonsDesignCategoryLoadCombinations Applicability(ASMEIIINomenclature)OperatingIII(a)D+L+H+P+OBETotalstructure P mS m@Tomax1+R+SRV,+LOCA P L1.5S m@Tomax1 P L+P b1.5S m@Tomax1(b)D+L+H+P+TTotalstructure P L+P b+P e+Q3S m (2)+OBE+RSRV,+LOCA P L+P b+P e+Q+FS a Fatigue Operating IVD+L+H+P+OBETotalstructure P L+P b+P e+Q3S m (2)+R+SRV+LOCA+T P L+P b+P e+Q+FS a Fatigue Operating VD+L+H+P,Wherestructureis P m0.85S f+SSE+J+R+SRV,+LOCAintegralandcontinuous P L1.5(0.85S f)P L+P b1.5(0.85S f)Wherestructureisnot P mlargerof1.2S morS yintegralandcontinuous P Llargerof1.8S mor1.5S y P L+P blargerof1.8S mor1.5S y Test(a)D+L+PHydrostaticTotalstructure P m0.9S y@T t P L1.35S y@T t P L+P b1.35S y@T t PneumaticTotalstructure P m0.85S y@T t P L1.25S y@T t P L+P b1.25S y@T t(b)D+L+P+TTotalstructure P L+P b+P e+Q3S (2)P L+P b+P e+Q+FS a Fatigue(ifmorethan10testsareperformed)Key:D=DeadloadofstructuresandothersustainedloadsL=Liveloadsappliedtostructure(machinery,etc)
P D=Designpressure T D=Designtemperature P o=Normaloperatingpressure T o=Normaloperatingtemperature P t=Testpressure T t=TesttemperatureH=Hydrostaticloadofwater
Pomax1=MaximumoperatingpressureduringSBAorIBA Pomax2=MaximumoperatingpressureduringDBA Tomax1=TemperatureassociatedwithP 3of3August1987RBSUSARTABLE3.8-1(Cont)
Tomax2=TemperatureassociatedwithP P DE=Designexternalpressure T E=TemperatureassociatedwithP R m1=ReactionloadsassociatedwithOBE(piping,accessopenings,etc)
R m2=ReactionloadsassociatedwithSSEand/orDBA R o1=ReactionloadsassociatedwithOBEandT(includingR)R o2=ReactionloadsassociatedwithSSEandT(includingR)Rmo1=ReactionloadsassociatedwithOBEandT(includingR)Rmo2=ReactionloadsassociatedwithOBEandT(includingR)J=Jetimpingementloads SRV 1=Loadsduetosafetyreliefvalvedischarge(1-firstactuation,1-subsequentactuation,2,9or16valves)
SRV 2=Loadsduetosafetyreliefvalvedischarge(1-firstactuation,2or9valves)
SRV 3=Loadsduetosafetyreliefvalvedischarge(1-firstactuation)
SRV 4=Loadsduetosafetyreliefvalvedischarge(7ADSvalves,firstactuation)LOCA=Anyoneofthefollowingloads:1.CondensationoscillationloadsduetoLOCA 2.ChuggingloadsduetoLOCA 3.AsymmetricpressureloadingonsteelcontainmentduetoLOCA 4.VentclearingloadsduetoLOCA 5.Poolswellloads(frothimpingementand/ordragloads)duetoLOCA P m ,P L , P b ,P e , Q,F,S a=AsdefinedinASMECode,SectionIII,Division1,SubsectionNE S f=AllowablestressesinaccordancewithSectionIII,Division1,AppendixF OBE=EffectsofoperatingbasisearthquakeincludelocalandgeneraleffectsSSE=Effectsofsafeshutdownearthquakeincludelocalandgeneraleffects
T f=Temperatureoffloodingwater P f S m=Hydrostaticequivalentstaticloadduringthefloodedconditions
=BasicallowableforstressintensitiesfromASMESectionIII,TableI-10.1 S y=MinimumyieldstressfromASMESectionIII,TablesI-2.1,I-2.2.
NOTES: Foranydesigncategorywherecompressivestressesoccur,therequirementsforbucklingstressvalues(asgiveninASMECode,Division1,SectionIII,SubsectionNEaresatisfied.Fordrywellaccessopenings,P,PandParethedifferentialpressuresacrosstheopening.
(1)Theloadcombinationsandloadspresentedinthetableareintendedtoaccountforeverypossiblecaseforeseen.Allloadslistedmightnotbeapplicableforeveryspecificitem.
(2)If3Sisexceeded,compliancewithNE-3228.2ismandatory.
RBSUSAR1of2August1987TABLE3.8-2LOADCOMBINATIONSFORCONTAINMENTVESSELFLOORLINERPLATEStress/StrainComparisonsDesignCategoryLoadCombinations MembraneMembrane&Bending Test D+L+P t+T tst0.001,sc0.002st0.002,sc0.004 Normal D+L+T o+R o+P v+OBE+SRV 1st0.001,sc0.002st0.002,sc0.004 Extreme D+L+T o+R o+P v+SSE+SRV 1st0.001,sc0.002st0.002,sc0.004 environmental Abnormal D+L+P a+T a+R+SRV 2,4+LOCAst0.003,sc0.005st0.010,sc0.014Abnormal/severeD+L+P+T a+OBE+R a+SRV 2,4st0.003,sc0.005st0.010,sc0.014 environmental
+LOCAAbnormal/extremeD+L+P a+T a+SSE+R a+R rst0.003,sc0.005st0.010,sc0.014 environmental
+SRV 2,4+LOCA Key:D=Deadload L=Liveload P t=Testpressure P a=Accident/incidentmaximumpressureload(includeshydrostaticpressureo T t=Testtemperature T o=Operatingtemperature T a=Accident/incidenttemperatureOBE=OperatingbasisearthquakeSSE=Safeshutdownearthquake
R o=Pipingloadsduringoperatingconditions R a=Pipingloadsduetoincreasedtemperatureresultingfromthedesignaccident(includingR)
R r=LoadsgeneratedbyreactionofarupturedhighenergypipeduringDBA,includingjetimpingementloadsst=Allowabletensilestrain(psi)sc=Allowablecompressivestrain(psi)
P v=Loadduetodifferentialpressure(includeshydrostaticpressureofwaterinsuppressionpool)
SRV 1=Loadsduetosafetyreliefvalvedischarge(1-firstactuation,1-subsequentactuation,2,9or16valves)
SRV 2=Loadsduetosafetyreliefvalvedischarge(1-firstactuation,2or9valves)SRV 3=Loadsduetosafetyreliefvalvedischarge(7ADSvalves,firstactuation)
RBSUSAR2of2August1987TABLE3.8-2(Cont)LOCA=Anyoneofthefollowingloadsduetoalossofcoolantaccident:1.Condensationoscillationloads2.Chuggingloads 3.Ventclearingloads 4.Poolswellloads(frothimpingementand/ordragloads)
RBS USAR TABLE 3.8-3 1 of 1 August 1987 LOAD COMBINATIONS FOR CRANE SUPPORTS, BEAM SEATS, AND WELD PADS Design Category Load Combination Stress Comparison Design I 1.D+L+OBE+R 01 Per AISC specification
+SRV Direct stresses:
Section 1.5
- 2. D+L+OBE+R 01 Combined stresses:
Section 1.6
- 3. D+OBE+R 01 +SRV Design II 1.D+L+SSE+R 02 Allowable stress =
+SRV+LOCA lesser of 1.2yield 2. D+SSE+R 02 +SRV or 0.7 Kultimate+LOCA 3. D+L+SSE+R 02______________________________
Key: D = Dead load of polar crane, machinery floors, piping L = Live load of polar crane with lift or machinery floors SSE = Effects of safe shutdown earthquake
OBE = Effects of operating basis earthquake
R Q1 = Mechanical pipe loads (including OBE) plus thermal pipe loads - applied only to weld pads R Q2 = Mechanical pipe loads (including SSE) plus thermal pipe loads - applied only to weld pads K = Plastic shape factor (M plastic/M elastic)SRV = Max safety relief valve discharge loads LOCA = Any one of the following loads 1.Condensation oscillation loads due to LOCA 2.Chugging loads due to LOCA 3.Asymmetric pressure loading on steel containment due to LOCA4.Vent clearing loads due to LOCA 5.Pool swell loads (froth impingement and/or dragloads) due to LOCA NOTES: Design Categories I(1) and II(1) are not applicable to crane supports.
Weld pads attached to the containment vessel are designed according to ASME Subsection NE.
Design Category Design Operating Normal & Upset Emergency Faulted Test Pipe Break Exclusion Normal & Upset Faulted RBS USAR TABLE 3.8-4 LOAD COMBINATIONS FOR PIPING PENETRATIONS ON CLASS 2 PIPING SYSTEM Load Combinations Po +D (a) Pmax +D+L+OBE+SRV (b) Po +OBEA+Rtp
+D Pmax +D+L+OBE+SRV+LOCA (a) Pmax +D+L+SSE+Rp
+LOCA+SRV (b) Pmax +D+L+SSE+Rp
+AP Pt +D Pmax +D+L+SSE+OBEA+Rtp
+SRV (a) Pmax +D+L+SSE+Rp
+SRV+LOCA (b) Pmax +D+L+SSE+Rp
+AP 1 of 2 Stress limits + 7Si MA l.O sh 4t z n PmaxDo 4tn (MA+MB) + o.7si ---;--1.2 sh PoDo (MA) (Me) -+ 0.7Si -* + i-4tn z z P D (MA+MB) o 1s* -..:::1 as 4t +
- l. z -. h n . pma..'<0 o -+ o. 751 -2.4 sh 4tn
- z P+D 0 MA Tt +
sy n (M ) Me . . PmaxDo + 0.7Si A+Ma + i -
(1.2 Sh+sA) 4tn z z PmaxDo (MA+MB) +
--z sh August 1987 2of2August1987RBSUSARTABLE3.8-4(Cont)
______________________________
Key:AP=Effectofvibrationofreactorpressurevesselandbiologicalshieldwallduetoannulus pressurizationD=DeadweightandothersustainedloadsL=Liveload,includinganyotheroccasionaldynamicloads(fluidtransientincluded)
P D=Pipedesigninternalpressure P max=Peakpressureofprocesspipe P t=TestpressureofprocesspipeOBE=Loadsgeneratedbyoperatingbasisearthquake(inertia)SSE=Loadsgeneratedbysafeshutdownearthquake(inertia)
SRV=Loadsduetosafetyreliefvalvedischarge(includingbothinertiaanddragloads)OBEA=LoadsduetoanchormovementassociatedwithOBE
R tp=Thermalexpansionpipeloadsandthermalanchormovement R p=PiperuptureloadsLOCA=Loadsduetosmallbreakorintermediatebreakaccidentorloadsduetodesignbasisaccident:1.Condensationoscillationloads2.Chuggingloads 3.Asymmetricpressureloadingonsteelcontainment4.Ventclearingloads S=AllowablestressrangeforexpansionstressesasdefinedinASMESectionIII,Division1,ArticleNC-3000 S=Basicmaterialallowablestressatdesigntemperature,asdefinedinASMESectionIII,Division1,ArticleNC-3000 D o ,t n ,i,M A,=AsdefinedinASMECode,SectionIII,Division1,SubarticleNC-3600 Z,M B ,M c T D=Designtemperature 1of2August1987RBSUSARTABLE3.8-5LOADCOMBINATIONSFORPIPINGPENETRATIONSONCLASS1PIPINGSYSTEMDesignCategoryLoadCombinationsStressComparison Design P D+OBE+SRV+D+L P L+P b1.5S m@T D OperatingNormal&upset(a)P o+D+OBE+OBEA+R to+R tp+L+SRV P L+P b+P e+Q3S (1)P L+P b+P+Q+FS a fatigue Emergency(b)Pomax1+D+OBE+SRV+L+LOCA P L+P b<2.25S m Faulted(c)Pomax1,2+D+SSE+SRV+R p+L+LOCA P L+P b3.0S m(d)Pomax1,2+D+SSE+AP+R p+LTestI P t+D P m0.9S yhydrostaticandpneumatic P L+P1.35S yTestII P t+D+R tt P L+P b+P e+Q3S (1)P L+P b+P e+Q+FS afatigue(ifmorethan10testsareperformed)PipeBreakExclusionNormal&UpsetSameas(a)
P L+P bs+P e+Q2.4S mIf3S m>S n>2.4S m,U<0.1 FaultedSameas(c),(d)
P l+P b2.25SKey:OBEA=LoadsduetoanchormovementassociatedwithOBE R to=Thermalloadsduetothermalgradientduringoperatingmode R tp=Thermalpipeloadsandthermalanchormovements P D OBE=Pipedesigninternalpressure=Loadsgeneratedbyoperatingbasisearthquake(inertia)SSE=Loadsgeneratedbysafeshutdownearthquake(inertia)
D=DeadweightandothersustainedloadsL=Liveload(includingfluidtransients)
P o SRV=Normaloperatingpressure=Loadsduetosafetyreliefvalvedischarge 2of2August1987RBSUSARTABLE3.8-5(Cont)
LOCA=Anyoneofthefollowingloads:1.Condensationoscillationloads2.Chuggingloads 3.AsymmetricpressureloadingonsteelcontainmentduetoLOCA 4.Ventclearingloads Pomax1=MaximumoperatingpressureduringSBAorIBA Pomax2=MaximumoperatingpressureduringDBA R p=Piperuptureload P t=Testinternalpressureofprocesspipe R tt=Thermalloadduetothermalgradientduringtestmode S m=DesignstressintensityvalueasdefinedinASMESectionIII,Division1,SubsectionNB P L ,P b , P e ,Q,F, S a ,S y=AsdefinedinASMESectionIII,Division1,SubsectionNB T o=TemperatureassociatedwithP U=Cumulativeusagefactor S n=Primaryplussecondarystressintensityvalue.
(1)If3S misexceeded,compliancewithNB-3228.3ismandatory.
(2)Ifstressevaluationforthepenetrationexceedstheabovelimits,NB-3200willbeapplied.
RBS USAR 1 of 3 August 1987 TABLE 3.8-6 LOAD COMBINATIONS FOR PIPING PENETRATIONS, (INCLUDING CRD REMOVAL TUBE AND FUEL TRANSFER TUBE ENCLOSURES, AND ELECTRICAL SERVICE PENETRATIONS), ALL PRESSURE RETAINING PARTS EXCEPT PROCESS PIPE (ASME III, CLASS MC)
Design Category Load Combination (1) Stress Comparison Design I D+L+P D +OBE+SRV P m S @T P L1.5 S m @T D P L +P b1.5 S m @T D Design II P D +D+SSE+L+SRV P m larger of 1.2 S m or S y @T P L larger of 1.8 S m or 1.5 S y @T P L +P b larger of 1.8 S m or 1.5 S y @T Design III P DE +D+OBE+L P m smaller of S m or 1.0 B P L +P b smaller of 1.5 S m or 1.5 B Design IV P DE +D+SSE+L P m (larger of 1.2 S m or S y and 1.2 B)@T P L + P b (larger of 1.8 S m or 1.5 S y and 1.8 B)@T E Design V D+L+P f +OBE P m1.0 S m @T f P L 1.5 S m @T f P L +P b 1.5S m @T fOperating I P o max +L+OBE+SRV P L +P b +P e +Q 3 S m (2) +OBEA+R to +R tp +LOCA P L +P b +P e +Q+F S a fatigue Operating II (a) P o max +D+L+SSE+SRV+R p +LOCA P m 0.85 S P L +P b1.5 (0.85 S f ) (b) P o max +D+L+SSE+R p +AP Special Stress For design and operating 1 + 2 + 34 S m Limit RBS USAR TABLE 3.8-6 (Cont) 2 of 3 August 1987 Design Category Load Combination (1) Stress Comparison Test I P t +D P m0.9 S y @T t hydrostatic P L +P b1.35 S y @T t P m0.85 S y @T t pneumatic P L +P b1.25 S y @T t Test II P t +D+R tt P L +P b +P e +Q3 S (2) P L +P b +P e +Q+F S a fatigue (if more than 10 tests are performed)
______________________________
Key: P D = Design internal pressure T D = Design temperature T t = Test temperature P DE = External design pressure P o max = Maximum operating internal pressure of process pipe P t = Test internal pressure of process pipe or containment/drywell test pressure SSE = Loads due to safe shutdown earthquake (inertia)
OBE = Loads due to operating basis earthquake (inertia)
SRV = Loads due to safety relief valve discharge R to = Thermal loads due to thermal gradient R tp = Thermal pipe loads R p = Pipe rupture loads (excluding D and SSE) R = Thermal loads due to thermal gradient during test mode OBEA = Loads due to anchor movement associated with OBE LOCA = Any one of the following loads:
- 1. Condensation oscillation loads 2. Chugging loads 3. Asymmetric pressure loading on steel containment 4. Vent clearing loads 5. Pool swell loads (froth impingement and/or drag loads) S f = Allowable stress in accordance with ASME Section III Division 1, Appendix F S m = Basic allowable for stress intensities from ASME Section III, Table I-10.1 S y = Minimum yield stress from ASME Section III, Tables I-2.1, I-2.2 P m ,P l ,P b , P ,Q,F,S a = As defined in ASME Section III, Subsection NE B = Factor from the applicable chart in ASME Section III, Appendix VII P f = Hydrostatic equivalent static load during the flooded conditions T f = Temperature of flooding water D = Dead weight and other sustained loads L = Live loads and occasional loads 123 = Primary principal stresses RBS USAR TABLE 3.8-6 (Cont) 3 of 3 August 1987 NOTES: For any design category where compressive stresses occur, the requirements for buckling stress values (as given in ASME Section III, Division 1, Subsection NE) are satisfied. The exception stated in NE-3131(d), "In considering the provisions of NE-3222.4(d), consideration need not be given to the effects of earthquake loadings," should not be applied to the loadings associated with the vibratory motion of OBE.
(1) The load combinations and loads presented in the table are intended to account for every possible case foreseen.
All loads listed might not be applicable for every specific item.
(2) If 3 S m is exceeded, compliance with NE-3228.s is mandatory.
- Designallowablestaticbearingpressure=12,000psfRevision141of1September2001RBSUSARTABLE3.8-7FOUNDATIONSYSTEMS MaximumApprox.StaticDepthofBurialApproximateFoundingBearingofStructureSeismicFoundationDimensionElevationPressure*BelowFinished Structure Category System(ftxft)(ftmsl)(psf)Grade(ft)14ReactorBuildingIReinf.Conc.Mat150-ftdia608,00034 14AuxiliaryBuildingIReinf.Conc.Mat154x11860&637,00031&34RadwasteBuilding-Reinf.Conc.Mat156x105589,00036FuelBuildingIReinf.Conc.Mat118x10564&616,00030&33ControlBuildingIReinf.Conc.Mat78x14865&636,00029&31DieselGeneratorIReinf.Conc.Mat96x103655,00029 BuildingStandbyServiceIReinf.Conc.Mat165-ftdia59&557,00035&39WaterPumphouseandTowerBasinTurbineBuilding-Reinf.Conc.MatIrregular609,00034andSpread Footings RBSUSARTABLE3.8-8CONTAINMENTPENETRATIONBELLOWSEXPANSIONJOINTCOMBINATIONS(CLASSMC)1of1August1987CaseCombinationsofSimultaneousMovementsDesignNo.ConditionSimultaneousMovements Limits1NormalOP+OBE+SRV+1/2SAMMaxdisplace-operation+RTO+LOCA ment*,**2NormalOP+SSE+OTA+SRVMaxdisplace-operation ment*,**3NormalOP+SSE+OTA+LOCAMaxdisplace-operation ment*,**4DesignDP+SSEMaxdisplace-ment***FatiguecomplianceisrequiredinaccordancewithNE-3365.2.**Designlimitsareinaccordancewithdesignspecifications.
KEY:RTO=MovementsduetopipethermalloadsOBE=MovementsduetoOBE SRV=Movementsduetosafety/reliefvalvedischarge 1/2SAM=Movementsduetoearthquakeanchormovement SSE=MovementsduetoSSE(assumedtobetwicethevaluesforOBE;occurs100cycles)OP=Movementsduetooperatingpressureoncontain-mentlinerDP=Movementsduetodesignpressureoncontainment linerOTA=Movementsduetoonetimeaccident(pipebreak)
LOCA=Movementsduetoloss-of-coolantaccidentNOTES:1.Thebellowsaretoremainleaktightandoperablewhensubjectedtoallthecyclicmovementsas givenbythesimultaneousmovementcombinations above.AftertheoccurrenceofOTA,thebellows mustremainleaktightonly.2.Thebellowsstressesanddisplacementswillbedeterminedbythebellowsmanufacturer.
Revision 12 1 of 1December 1999 RBS USARTABLE 3.8-9ENVIRONMENTAL RESISTANCE PROPERTIES OF MATERIALS Environmental Resistance TemperatureRelativeRadiationUseTypeRange HumidityLevel WaterstopsStyrene-Butadiene-35°F to +200°FNot considered to significantly2 x 10 6 rads beforeSynthetic Rubberaffect the performance ofthreshold damagematerials 1 x 10 7 before25 percent damageJoint Sealants Polysulfide -40°F to +200°FNot considered to significantly1 x 10 6 rads Sealants affect the performance ofmaterialsCompressible Polyethylenes-40°F to +175°FNot considered to significantly5 x 10 6 rads beforeFiller at Shakeaffect the performance ofthreshold damage Spacesmaterials 1 x 10 7 before25 percent damage Door Seals Neoprene GR-SCE-41-50°F to +250°FNot considered to significantly1 x 10 6 rads(Gaskets) affect the performance ofmaterials12Silicone Sealants-76
°F to +350°FNot considered to significantly1 x 10 6 radsaffect the performance ofmaterials 12Gaskets for Doors,Ethylene-Propylene-40°F to +330°FNot considered to significantly1 x 10 7 radsHatches, etc with-Diene-Monomer affect the performance ofin Containment(EPDM)materials 1of2August1987RBSUSARTABLE3.9A-1TRANSIENTSANDTHENUMBEROFASSOCIATEDCYCLESCONSIDEREDINTHEDESIGNANDFATIGUEANALYSESOFTHERCPBTransientsNo.ofCyclesNormal,Upset,andTestingConditions1.Boltup (1)1232.Designhydrostatictesta.Leakchecksat400psigpriortopoweroperation,3cycles/startup40b.Testat1.10xnormalsystemoperatingpressure,i.e.,at1,135psig(ASMECode,SectionXI)30c.Testat1.25xdesignpressure(ASMECode,SectionIII)43.Startup(100F/hrheatuprate)
(2)1204.Dailyreductionof75%power (1)10,0005.Weeklyreductionof50%power (1)2,0006.Controlrodpatternchange (1)4007.Lossoffeedwaterheaters(80cyclestotal)80 8.OBEatratedoperatingconditions50 (3)9.Scram:a.Turbinegeneratortrip,feedwateron,isolationvalvesstayopen40b.Otherscrams140 c.Lossoffeedwaterpumps,isolationvalvesclosed10d.Turbinebypass,singleSRVblowdown8 e.Turbinegeneratortripwithoutbypass110.Reductionto0%power,hotstandbyshutdown(100F/hrcooldownrate)
(2)11111.Unbolt123 12.DynamicloadscausedbySRVdischargeevents (4)(7) 2of2August1987RBSUSARTABLE3.9A-1(cont)TransientsNo.ofCyclesEmergencyConditions13.Scram:a.Reactoroverpressurewithdelayedscram,feedwaterstayson,isolationvalvesstayopen1 (5)b.Automaticblowdown 1 (5)14.Improperstartofcoldrecirculationloop 1 (5)15.Suddenstartofpumpincoldrecirculationloop1 (5)16.Hotstandbywithreactordrainshutofffollowedbypumprestart1 (5)17.DynamicloadscausedbysuppressionpooleventsduringSBA,IBA (6)(7)FaultedConditions18.Piperuptureandblowdown(includingannulus 1 (5)pressurization)19.SSEatratedoperatingconditions 1 (5)20.DynamicloadscausedbysuppressionpooleventsduringDBA (6)(7)________________________
(1)Appliestoreactorpressurevesselonly (2)Bulkaveragevesselcoolanttemperaturechangeinany1-hrperiod (3)Includes10-maximumloadcyclesperevent (4)TheSRVdischargeeventsusedforanalysisaregivenintheloadcombinationtableassociatedwithacomponenttype (5)Theannualencounterprobabilityof1-cycleeventsis
<10-2foremergencyand<10-4forfaultedeventsoverthe40-yrplantlife.(6)Thesuppressionpooleventcontributingtofatigueunderemergencyandfaultedconditionsischugging.
(7)Thenumberofcyclesforsuppressionpooleventsisdiscussedin6A.17.2.4forequipment.Thesameisapplicable forpiping.
RBS USARTABLE 3.9A-2LOAD COMBINATIONS AND STRESS LIMITSFOR PIPE STRESS ANALYSISASME CODE CLASS 1 SYSTEMS (1)DBAASME IIISBAMax of(1974)IBABubbleIBA NB-3600Max ofForm orDBA ASME III Percent CodeFluid SRVChugChugAP Jet Plant Code of Crit.
EquationsOBEIOBEASSEITrans Maxor COor COMaxImp Condi- Allow- Damping(Class 1)P DW (2)(2)(2)(2)(2,3)(2,3)(2,3)(2)(4) ThT 1T 2 T a-T btions ables (7) (5)____________________________NOTE: See key and notes pertaining to this table following Table 3.9A-3.1 of 1August 1987 Eq. 9 X(9)X(9)X X X Normal 1.5 S m 1,2NB-3652 & UpsetXXX X X X X Emergency 2.25 S m 2,3XX X X X X X Faulted 3.0 S m 2,3 (SBA,IBA)XX X X XX Faulted 3.0 S m 2,3 (AP)XX X XXXX Faulted 3.0 S m 2,3 (DBA)Eq. 10X XX XXXXX Normal 3.0 S m 1,2NB-3653.1 & Upset Eq. 12X Normal 3.0 S m 1,2NB-3653.6 & Upset (a)Eq. 13XXX XX X Normal 3.0 S 1,2NB-3653.6 & Upset(b)Eq. 14(6)XXXX XXX XXX NA CUF1 1,2NB-3653.6XX X XXXX NA CUF1 2,3 1of4August1987RBSUSARTABLE3.9A-3LOADCOMBINATIONSANDSTRESSLIMITSFORPIPESTRESSANALYSISASMECODECLASS2AND3SYSTEMS (1)ASMEIII (1974)DBANC-3600SBAMaxof ND-3600IBABubbleIBA CodeMaxofFormorDBAAnchPercent EquationsFluidSRVChugChugAPJetMovePlantASMEIIIofCrit.
(Class2OBEIOBEASSEITransMaxorCOorCOMaxImpNon-Condi-AllowablesDamping and3)P DW (2)(2)(2)(2)(2,3)(2,3)(2,3)(2)(4)Th Cyclic tions (7,8)(5)Eq.8X (10)X (10)Normal1.0S h NC-3652.1 ND-3652.1Eq.9XXXXXUpset1.2S h 1,2 NC-3652.2 ND-3652.2XXXXXXXEmergency1.8S h 2,3XXXXXXXFaulted2.4S h 2,3 (SBA,IBA)XXXXXXFaulted2.4S h 2,3 (AP)XXXXXXXFaulted2.4S h 2,3 (DBA)Eq.10XXNormalS A-NC-3652.3&Upset ND-3652.3Eq.10aXNormal3.0S c-NC-3652.3 Upset ND-3652.3 Emergency (8)FaultedEq.11XXXXNormalS h+S A-NC-3652.3&Upset ND-3652.3 RBSUSARTABLE3.9A-3(Cont)2of4August1987KeytoTables3.9A-2and3.9A-3:P=Longitudinalpressurestress.ForClass1piping,thedesignpressureisusedforEquation9andoperatingpressureforEquations10,11,and13.ForClass2and3piping,designpressureisusedinEquations8and11andpeakpressureisusedinEquation9.DW=Loadduetotheweightofpipe,contents,insulation,andinlinecomponentsOBEI=Inertialoadduetooperatingbasisearthquake(OBE)
OBEA=Operatingbasisearthquakeanchorandsupportdifferentialdisplacementload SSEI=Inertialoadduetosafeshutdownearthquake(SSE)
Fluid=Internalpipingloadsduetofluidtransienteffectssuchaswaterhammer,steamhammer,SRVTransientblowdown,orpumpstartuploadsTh=Thermalexpansion,andthermalanchorandsupportdifferentialdisplacementloadT 1=LocalthermaltransientstressacrosspipewallduetolineartemperaturedistributionT 2=Localthermaltransientstressacrosspipewallduetononlinearcomponentoftemperaturedistribution T a-T b=Localthermaltransientstressduetoaveragetemperaturedifferenceofgeometricand/ormaterialdiscontinuityAnchor=Loadduetoanysinglenonrepeatedanchormovement(suchas,predictedbuildingsettlement)
Movement NoncyclicSRV=MaximumresponsevalueofallSRVinertialoadcases.Thesecasesarethe1-valvefirst,1-valveMaxsubsequentasymmetric(2-valve),symmetric(16-valve),andADS(7-valve).SBA,IBA=Maximuminertialoadofeitherchuggingorcondensationoscillation.Maxof Chugor CODBA=Maximuminertialoadofeitherbubbleformationorchuggingorcondensationoscillation.Maxof Bubble Formor Chugor CO RBS USARTABLE 3.9A-3 (Cont)Revision 143 of 4September 2001IBA=Maximuminertialoadofannuluspressurizationcausedbyafeedwaterlinebreak(APFWB),amainsteambreakDBA(APMSB),orarecirculationlinebreak(APRCB).ThefeedwaterlinebreakisanIBAandcausesnobulkpool APMaxswell.NotesforTables3.9A-2and3.9A-3:
(1)TheSRV,SBA,IBA,andDBAloadcases(thecolumnsbetweenFluidTransandJetImp)occurinthereactorbuildingonly.ExceptforAP,theyaresuppressionpool-relateddynamicevents.Pipinginsideorattachedtothereactorbuildingisaffectedbythereactorbuildingvibrationsuptothefirstanchoroutsidethebuilding.
(2)Dynamicloadsarecombinedbythesquarerootsumofthesquaresmethod(SRSS).WhenOBEIandOBEAarecombined,itisbyabsolutesummation.BothOBEIand(OBEI+OBEA)areconsidered dynamicloads.
(3)(a)Allpiping(includingquenchers,quencherstruts,andallsupports)submergedinthesuppressionpoolexperiences,inadditiontoinertialoads,thefollowingdragorpressureloads:OBEorSSEsloshing,SRVMaxbubble,CO,Chug,DBAbubbleformation,bulkswell.Duringthepoolswellloadcase,theassociateddragloadsareonlycombinedwithSSE,fluidtransient,andbubbleformationinertialoads.Inthefallbackcase,thesameloadcombinationapplies, exceptusefallbackdragload,andreplacebubbleformationinertialoadswithCOinertialoads.14(b)PipinginthesuppressionpoolwhichislocatedinthevicinityoftheRHRreliefvalvedischargelineexperiencesRHRdischargedragloads.TheseareRHRwaterjet,RHRbubble,andRHRCO(boundingRHRChug),
alloccurringconsecutively.InadditiontotheseloadRHRloads,onlythetwoRHRsteamdischargelines experiencelateralloadsduringRHRchugging.RHRMaxdrag,theenvelopeoftheseloads,occurs simultaneouslywithOBEunderemergencyconditions,andwithSSEunderfaultedconditions.
14(c)Aninactivequencherassembly(includingstrutsandsubmergedportionofSRVdischargeline)experiencesallthedirectloadsapplicabletocomponentsinthesuppressionpoolsimultaneouslywithinertialoads.The lateralloadsassociatedwithChugandCOareinsignificant.Drywellventclearingwaterjetloadsnot boundedbypoolswellbubbleloadsduringDBAareexperiencedonlybythequenchersupportstruts.Thisdrag occurssimultaneouslywithSSEandSRVMax.Anactivequencherassemblyexperiencesonlyflowtransientand air/waterclearingloadsassociatedwithitsowndischargesimultaneouslywithinertialoads.Theair/water clearingloadsconsistofawaterexpulsiontransientandhydrodynamicloadsappliedtothequencherarms.
AdetaileddescriptionofquencherloadapplicationisgiveninSectionA.6A.7.(e)Pipingabovethewaterlevelofthesuppressionpoolexperiencespoolswellimpactloadsupwardandfallbackdragloads.Pipingbetweenel108ftandel109ftexperiencestransitionimpactanddragloads, andpipingbetweenel109ftandel120ftexperiencesfrothimpactloadsboundingtheensuingfroth dragloads.Duringthepoolswellcase,thebulkimpact,frothimpact,anddragloadsareonlycombinedwithSSE,fluidtransient,bubbleformationinertialoads,andjetimpingementloads.Inthefallbackcase,thesameload combinationapplies,exceptusefallbackdragloadsandreplacebubbleformationinertialoadswithCOinertialoads.
RBSUSARTABLE3.9A-3(Cont)Revision34of4August1990(f)Pipingabovetheweirwellintheweirannulus,fromel91.25fttoel105.25ft,duringaDBAexperiencesweirswellimpactloadsupward,followedbydragloadsupward.Thesearefollowedbyfallbackdragloadsdownward,basedonfreefallfromel105.25ft.(g)Alldirectdragorpressureloadsexceptthepost-impactsustaineddragloadsareconsidereddynamicloadsandarecombinedbytheSRSSmethod.Sustainedloads,usuallyboundedbyimpactloads,are combinedbyabsolutesum.
(4)Jetimpingementfromwaterorsteamjetsemanatingfrompostulatedbreaksofpipingofothersystemsappliesonlytoareasidentifiedastargetsandonlyiftheimpingedpipeisessentialforbreakisolationorreactorshutdown consideringthispipebreak.Thepeakloadofthetransient,Fj,isappliedasastaticloadof2Fjandcombined bySRSS.Thesteady-stateload,1.1Fj,isappliedasasustainedloadandcombinedbyabsolutesumwithother dynamicloads.3 (5)Twovaluesofcriticaldampingaregivenforeachequation.Thefirstvalueisusedforpipingof12-innominaldiameterandsmaller.Thesecondisforpipinggreaterthan12-innominaldiameter.Thedampingvaluesarebased onRegulatoryGuide1.61,October1973.Alternately,5percentofcriticaldampingupto10Hz,withalinear decreaseto2percentat20Hz,andremainingconstantabovethatfrequency,isusedforOBE,SSE andotherdynamicloadsforwhichtheresponsespectraisgeneratedafterbeingfilteredthroughthebuilding structure.ThealternatedampingisbasedoncodecaseN411-1.(Section3.7.2.15A).
3(6)Duetothenatureofdynamiccyclicloads,theinertiaeffectsofdynamicloadsareconsideredinfatigueevaluationofASMECodeClass1piping.ThecyclesareconsumedinamannerconsistentwiththeexamplegiveninASME SectionIII,SubsectionNB,SubparagraphNB-3653.1.Inthesecondcombinationthechuggingcyclesareconsumed.
(7)AllowablesgivenforTables3.9A-2and3.9A-3arebasedontheASMESectionIII,1974edition.Functionalcapabilityrequirementsarenotincludedinthesetables.
(8)Equation10aisadaptedfromthe1977editionofASMESectionIII,SubsectionsNCandND.Allextremesofrelativedisplacementsthatcanexistfrominstallationofsupportstotheendofplantlifeareconsidered.
(9)Forsystemswhichrequirehydrotesting,repeatEquation(9)withoutoccasionalloads,usingtestpressureanddeadweightforwater-filledpipe.
(10)Forsystemswhichrequirehydrotesting,repeatEquation(8),usingtestpressureanddeadweightforwater-filledpipe.
(1)Pipingorinstrumentationtubingisqualifiedbyplacingthesupportsinaccordancewithagenericprocedureorbyhandcalculationsofstressandsupportloads.1of1August1987RBSUSARTABLE3.9A-4PIPESTRESSANALYSISCLASSIFICATIONSFORASMECO DECLASSES1,2,3 PipingClassAnalysisClassificationClass1NominalpipesizeD>1" D1"TypeofanalysisClass1Class2Class2,3NominalpipesizeD>6" D6"ortubingODTypeofanalysisComputerNoncomputeranalysisanalysis (1)
Revision21of7August1989RBSUSARTABLE3.9A-5BOPSEISMICEQUIPMENTQUALIFICATIONRESULTS Equipment Method ResultsPolarCraneDynamicanalysisisperformedThepolarcranewasaffectedbyseismicandhydrodynamicutilizingresponsespectramodal loads.analysistechnique.ApplicablestandardsandguidelinesareAISCAfiniteelementlumpedmassmathematicalmodelwasCode,NRCRegulatoryGuides1.61developedtosimulatethemassandstiffnesscharacteristicsand1.92.ofthecrane,includingthetrucksandthetrolleys.
Sufficientnumberofnodesareutilizedtodeterminethe highfrequencymodesofvibrationinthehydrodynamic frequencyrange.Dynamicresponseduetoseismicand hydrodynamicloadingsareevaluatedforseveraltrolleyand loadliftheights,asappropriate,inordertodeterminethe maximumstresslevelsinallthecriticalmembersand connections.Theanalysisindicatesthatthestresses arewithintheallowablelimitsofparagraph3.9.2.2.2A.Astresscycleanalysisisalsoperformedtoexaminedesignmarginswhenthecraneissubjectedtofatigue loading.Thecumulativeusagefactorsinallthe criticalmembersarelessthan1.FuelPoolCoolerAstaticanalysisisperformed.Thefuelpoolcoolersareaffectedbyseismicloadsonly.TheapplicablestandardsandTheanalysisindicatesthatthestresslevelforthefuelguidelinesareASMECode,poolcooleriswithintheallowablestresslimitsofSectionIIIandNRCRegulatoryparagraph3.9.2.2.2AandthemarginofsafetyiswelloverGuides1.61and1.92.50percent.SpentFuelCaskTrolleyDynamicanalysisoftheequipmentTheequipmentisaffectedbyseismicloadsonly.Afiniteisperformedusingresponseelementlumpedmassmathematicalmodelwasdevelopedtospectrummodaltechnique.Appli-simulatethemassandstiffnesscharacteristicsofthecablestandardsandguidelinesequipment,includingthecraneandthe15-and125-tonareAISCCode,NRCRegulatorytrollies.StressesinthetrolliesarenegligibleandGuides1.61and1.92.stressesinvariousmembers,connections,andboltsand weldsinthecranearewithintheallowablestresslimits of3.9.2.2.2A.Theminimummarginofsafetyis30percent.2FuelBuildingBridgeCraneSeismicDynamicAnalysisisper-Theequipmentisaffectedbyseismicloadsonly.Afiniteformedutilizingresponsespectraelementlumpedmassmathematicalmodelwasdevelopedtomodalanalysistechnique.Appli-simulatethemassandstiffnesscharacteristicsoftheequip-cablestandardsandguidelinesarement,includingthecraneandthetrolly.StressesintheAISCCode,CMAA70,NRCRegulatorytrollyarenegligibleandstressesinvariousmembers,con-Guides1.61and1.92.nections,andboltsandweldsinthecranearewithintheallowablestresslimitsofCMAA70.
2 1aof7RBSUSARTABLE3.9A-5BOPSEISMICEQUIPMENTQUALIFICATIONRESULTS Equipment Method ResultsAirFlowMonitoringandDynamicanalysisoftheunitsisSomeunitsareaffectedbyseismicloadsonly.OthersareIsokineticSamplingperformedusingresponsespectrumaffectedbybothseismicandhydrodynamicloads.
Stationsmodaltechnique.ApplicableStressesinstructuralmembers,connections,andcriticalstandardsandguidelinesareNRCweldsarefoundtobewithintheallowablestresslevelsRegulatoryGuides1.61and1.92of3.9.2.2.2A.FortheunitsaffectedbythehydrodynamicandAISCCode.loads,thefatigueanalysisisalsoperformedandthestressesareacceptable.
RBSUSARTABLE3.9A-5(Cont)
Equipment Method Results2of7August1987MiscellaneousHVACQualificationisperformedbySomeofthisequipmentissubjecttoseismicloadsonly,CentrifugalandVaneaxialstaticanalysis.Applicableandtheremaindertoseismicplushydrodynamicloads.
Fanscodes,standards,andregulatoryTheresultsoftheanalysisofstructuralandfunctionalUnitCoolersguidesincludeAISC;NRCReg-elementsoftheequipmentindicatesthestresseswereAirConditioningUnitsulatoryGuides1.61and1.92;andwithintheallowablelimitsof3.9.2.2.2A.Theequip-AirBlowersIEEE323-1974,334-1974,andmentwasdeterminedtoberigidanddeflectionofrotating 344-1975.memberswasdeterminedtobewellwithintheclearances.Forthefansaffectedbyseismicandhydrodynamicloads,afatigueanalysiswasalsoperformed.Thecumulativeusagefactorwascalculatedtobelessthanunity.Aminimummarginofsafetyof3.5wasachievedforhold-downboltsandweldstresses.Theresultsoftheanalysis fortheunitcoolersinthecontainment,whicharesubjectto seismicplushydrodynamicloads,showthatthestresses arewithintheallowablestresslimitsofparagraph3.9.2.2.2A andtheminimummarginofsafetyis50percent.Afatigue analysisshowsthattheusagefactorforthecoilsection islessthanunity.Thequalificationofelectricalmotors forthisequipmentcanbefoundinTable3.10A-1.FlexibleMetalHosesFlexiblemetalhosesarequali-Flexiblehosesareaffectedbybothseismicandhydrodynamicfiedbyacombinationofanalysesloads.Designadequacywasverifiedbyanalysisinaccor-andtests.ApplicablestandardsdancewiththeEJMAStandard.ThisanalysistakesintoandguidelinesareEJMA;ASMEaccountdesigntemperature,pressure,dynamicloads,CodeSectionIII;ASMECodeCasedifferentialdisplacements,andthenumberofcyclesofN-192-2;IEEE344-1975;andNRCdisplacement.Inaddition,representativehosesareRegulatoryGuides1.61,1.92,andqualifiedbytwoseparatedynamictestprograms.
1.100.Inthefirstdynamictest,hosesaresubjectedtoa totalof1millioncyclesofvibrationsinthefrequency rangeof5to200Hz,ataccelerationsrangingfrom3gto 51g.Inthesecondtest,thehosesaresubjectedtosix biaxial,random,multifrequencyinputmotionsof30-sec durationseach.Thesixtestsarerepeatedintheother horizontalorientations.TheTRSenveloptheapplicable portionofRRSwithatleasta10-percentmargin.Hoseswerepressurizedatthestartofeachtestseriestoatleastthedesignpressure.Duringandfollowingthe dynamicteststhehosesmaintainedtheirpressure
integrity.NonactiveValvesNonactivevalvesarequalifiedbyValvesaffectedbyseismicloadsonlyarequalifiedMotorOperatedanalysis.Applicablestandardsfor3ghorizontaland3gverticalloadings.ThoseAirOperatedandguidelinesareASMESectionaffectedbyseismicandhydrodynamicloadingshavebeen RBSUSARTABLE3.9A-5(Cont)
Equipment Method Results3of7August1987 SolenoidIII,NRCRegulatoryGuides1.61qualifiedforupto20ghorizontaland20gverticalload-Manualand1.92.ings.Pipingdesignacceptancecriteriaensureactualloadingstobewithinthequalifiedlevelsforeachvalve.Allvalvesaredeterminedtohavenaturalfrequencyabove33Hz.Structuralandpressureintegrityofthevalve assemblieshavebeendemonstratedbystaticanalysisor throughtheirsimilaritytoactivevalves.StressesaremaintainedwithinthelimitsofTable3.9A-9.ForASMEClass1valvesdesignreportsarealsopreparedinaccordancewithASMESectionIII,SubsectionNB-3500.Forvalvesaffectedbyhydrodynamicloads,fatigueanalysesarealsoperformedandthecumulativeusage factorsarelessthanunity.ActivePumpsAllofthepumpsarequalifiedbyThepumpsareaffectedbyseismicloadsonly.TheStandbyServiceWaterPumpsstaticanalysisandoperabilitystructuralintegrityandfunctionalcapabilityoftheStandbyDieselFuelOiltests.Theapplicablestandardspumpsaredemonstratedbystaticanalysis.AllofTransferPumpsandguidelinesareIEEE344-thepumpsaredeterminedtoberigid.StressesareFuelPoolCoolingPumps1975;IEEE334-1974;NRCReg-maintainedwithintheallowablelimitsofTable3.9A-9.MiscellaneousHorizontalulatoryGuides1.48,1.89,1.92,Allofthedeflectionsarewithinthenormalclearances.CentrifugalPumpsand1.100;andASMECodeThelowestmarginofsafetywithrespecttoboththeSectionIII.stressesanddeflectionsisapproximately10percent.In additiontotheseismicanalysis,theoperabilityofthepumpsisassuredthroughtheimplementationoftheprogramdescribedin3.9.3.2.1A.ThequalificationofthemotorsconformstoIEEE334-1975.SeeTable3.10A-1forthequalificationresultsforthe pumpmotors.PermanentStrainersThestrainersarequalifiedbyThestrainersaresubjectedtoseismic,nozzle,pressure, Cartridge-Typestaticanalysis.Theapplicableanddeadweightloads.TheanalysisindicatesthatthestandardsareASMECodeSec-stressintensityforthestrainercomponentsiswithintionIIIandNRCRegulatorytheallowablestresslimitsof3.9.2.2.2A.Guides1.61and1.92.ECCSandRCICSuppressionThestrainersarequalifiedbyThestrainersaresubjectedtobothseismicandhydro-PoolStrainersstaticanalysis.Applicabledynamicloadsandsuppressionpooldragloads.ThestandardsareASMECodeSec-analysisindicatesthatthestressintensityforthetionIIIandNRCRegulatorystrainercomponentsiswithintheallowablestresslimitsGuides1.61and1.92.of3.9.2.2.2A.ActiveValvesActivevalvesarequalifiedbyValvesaffectedbyseismicloadsonlyarequalified RBSUSARTABLE3.9A-5(Cont)EquipmentMethod Results7Revision74of7January1995 Motor-Operatedanalysisandtest.Applicablefor3ghorizontaland3gverticalloadings.Themajority Air-OperatedstandardsandguidelinesareASMEvalvesaffectedbyseismicandhydrodynamicloadsare SolenoidSectionIII;NRCRegulatoryqualifiedforupto9ghorizontaland9gvertical SRVGuides1.48ascommittedinloadings.PipingdesignacceptancecriteriaensureactualProjectPositionTable1.8-1,loadingstobewithinthequalifiedlevelsforeachvalve.1.61,1.89,1.92,and1.100;andIEEEStds323-1974,Allvalvesaredeterminedtohavenaturalfrequencies344-1975,and382-1972.above33Hz.Structuralandpressureintegrityofthe 7valveassembliesaredemonstratedbystaticanalysis.StressesaremaintainedwithinthelimitsofTable3.9A-9.Deflectionofcriticalcomponentsisdetermined tobewellwithintheallowablelimits.Designstress analysesareperformedforASMEClass1valvesin accordancewithASMESectionIII,SubsectionNB-3500.
Forvalvesaffectedbyhydrodynamicloads,fatigueanalyses arealsoperformed.Cumulativeusagefactorsare maintainedbelowunity.Electriccomponentsofthevalvessuchassolenoidvalves,motoroperators,limitswitches,etc,arequalifiedby comprehensiveenvironmentalanddynamictestprograms.
DetailedresultsareprovidedinTable3.10A-1.Operabilityofthevalveassembliesisdemonstratedbybothdynamicandstaticloadtests.Selectedvalves aresubjectedtodynamicteststosimulatetheseismic andhydrodynamicloads.Othervalvesare qualifiedthroughstaticdeflectiontestsofparent valveassemblies.Thetestprogramsconformto paragraph3.9.3.2.2A.Functionaladequacyisverified duringandafterthesetests.MonorailSystemDynamicanalysesofmonorailSomeofthetrambeamsareaffectedbyseismicloadsonly.systems(i.e.,trambeams)areOthersareaffectedbybothseismicandhydrodynamicloads.performedutilizingresponseThesafetyfunctionofthetrambeamistomaintainitsspectrummodaltechnique.Appli-structuralintegrity.Dynamicresponsesofallvital cablestandardsandguidelinescomponents,i.e.,tracks,hangers,wheels,carrier,hoist,areAISCCode,NRCRegulatorytractordrive,andrestraints,arecalculated.Guides1.61and1.92.Stressesinmembers,connections,andweldsofthecritical componentsarefoundtobewithintheallowablesof paragraph3.9.2.2.2A.Theeffectsofpossiblejetimpinge-mentonthemonorailsystemshavealsobeenanalyzedto ensurethatthesystemwouldnotbecomeamissile.FireDamperThedampersarequalifiedSomeofthedampersareaffectedbyseismicloadsonly.
RBSUSARTABLE3.9A-5(Cont)
Equipment Method Results5of7 August 1987byacombinationofOthersareaffectedbybothseismicandhydrodynamicloads.analysisanddynamictesting.Applicablestandardsandguide-AstressanalysisofrepresentativefiredamperslinesareAISCCode:IEEEconcludesthatstressesduetodynamicand344-1975;andRegulatoryGuidesotheroperatingloadsarewithinthelimitsof1.61,1.92,and1.100.paragraph3.9.2.2.2A.Adequacyoftheequipmentisfurtherdemonstratedbyasuccessfuldynamictestofaprototypefiredamperfor thecombinedseismicandhydrodynamicloadings.Thetest isperformedusingrandom,triaxial,multifrequencyinputmotions.Mountingofthedamperinthetestsimulatestheplantinstallation.Atotalof32testsof30-secduration eachisperformed.TheTRSenveloptheRRSinthefrequency rangeofinterestwithatleasta10-percentmargin.The damperperformsitsintendedfunction,i.e.,tocloseatthe specifiedtemperature,attheconclusionofthetests.TerminalCabinetsforDynamicanalysisoftheequipmentSomeofthecabinetsareaffectedbyseismicloadsonly.ElectricalPenetrationsisperformedutilizingresponseOthersareaffectedbybothseismicandhydrodynamicloads.spectrummodaltechnique.Responsespectrummodalanalysisisperformed,includingApplicablestandardsandguide-allthemodeswithfrequenciesupto149Hz.StresseslinesareRegulatoryGuides1.61,instructuralmembers,connections,andthewelds1.92,and1.100andarefoundtobewellwithintheallowablestresslevelsIEEEStd344-1975.ofparagraph3.9.2.2.2A.Stresscycleanalysesofthecabinetswhicharesubjectedtohydrodynamicloadsareperformedtodemonstratethatfatiguefailurewillnotoccur.Aminimummarginofsafetyof20percentwas
achieved.HighDensitySpentRacksarequalifiedbyanon-Theracksareaffectedbyseismicloadsonly.FuelStorageRackslineardynamicanalysis.Appli-cableNRCRegulatoryGuidelinesDynamicanalysisoftherackisperformedbyutilizingare1.61and1.92.nonlineartimehistoryanalysis.Thestructuralresponse oftherackisobtainedforanonlinearfiniteelement model.Themodeliscomposedofthree-dimensionalbeam elementsrepresentingthemassandstiffnessproperties ofthecell,fuel,andrackbase;generalmatrixelements representingthehydrodynamicmass;three-dimensional dynamicelementsrepresentingthefuel/cellgaps; andthree-dimensionaldynamicelementsrepresenting thesupportpads.
RBSUSARTABLE3.9A-5(Cont)
Equipment Method Results6of7 August 1987Analysisshowsthatthefactorofsafetyagainstoverturningisinexcessof25andthelateraldisplacementatthetop oftherackwithinallowable.Thepossibilityofanyrack-to-rackorrack-to-wallimpactislow.Stressesinthe cellassembly,supportpadassembly,cell-to-cellwelds, andcellto-cellrackbaseweldsarefoundtobelower thantheallowablestresslevelsofparagraph3.9.2.2.2A.
Inaddition,therackdesignisanalyzedforaccidentcon-ditionloadssuchastheliftforceduetofuelhandling equipmentjammingandimpactfromafallingobject.The designiswithintheacceptancecriteriaandthestresses arewithintheabovestatedallowablelimits.CentrifugalLiquidSeismicqualificationisbyThisequipmentisaffectedbyseismicloadsonly.TheChillersforControltestandstaticanalysis.analysisofthechillerassemblyandstructuralBuildingApplicablestandardsandreg-componentsisperformedusingadetailedfiniteelementulatoryguidesareASMECodemodel.Theequipmentisdeterminedtoberigid,and SectionIII;NRCRegulatorythereforestaticanalysisisutilized.Resultsofthe Guides1.61,1.92,and1.100;analysisindicatethestressesarewithintheallowable andIEEE323-1974,stressesof3.9.2.2.2A.Deflectionsofcritical 334-1974,and344-1975.componentsaredeterminedtobewithinlimitstomaintainfunctionalcapability.Forthecontrolandpowerpanel qualification,atestprogramconsistingofbiaxial randommultifrequencytestsandresonancesearchtest isused.TheresultsofthetestsshowthattheTRS enveloptheRRSinthefrequencyrangeofinterestwith atleast10percentmargin.Thefunctionaladequacyof essentialdevicesonthepanelsisdemonstratedtobe acceptablebefore,during,andafterthetest.See Table3.10A-1forqualificationofelectricmotorfor thechillers.StandbyGasTreatmentQualificationisbyanalysisandThisequipmentisaffectedbyseismicloadsonly.The Unitstest.ApplicablestandardsareanalysisofthehousingstructureandcomponentswithintheIEEE323-74andIEEE334-74,andfilterunitisperformedusingafiniteelementmodel.
AISCCode.Resultsoftheanalysesindicatethestressesarewithin allowablestressesofparagraph3.9.2.2.2Aanddeflections withinthelimitstomaintainfunctionalcapability.Forthe qualificationofthemisteliminatorandtherechargeable carbonfilter,atestprogramwasconducted.Itconsisted ofresonancesearchtestsandbiaxialrandommultifrequency tests.TheTRSenveloptheRRSinthefrequencyrangeof interestbyamarginofatleast10percent.
RBSUSARTABLE3.9A-5(Cont)
Equipment Method Results7of7 August 1987LeakageControlSystem-TheaccumulatorsarequalifiedThisequipmentisaffectedbyseismicloadsonly.AirAccumulatorsandbystaticanalysis.Appli-AnalysistoSectionNCoftheCode(Class2),combines ReceiverscablecodesaretheB&PVCode,deadweight,internalandexternalpressure,nozzle,andSectionIII1974Editionuptoseismicloads.andincludingthe1976Winter Addenda.Theequipmentfundamentalfrequencyis27Hz.The higheststressedelementintheverticalaccumulatoristhe supportbracewithafactorofsafetyof19.5;forthe horizontalvesselitisthesupportplateflangewitha factorofsafetyof2.4.LeakageControlSystemQualificationisbyacombinationPressureboundarystressanalysisfortheASMEcodecom-AirCompressorsofanalysisandtest.ApplicableponentsisperformedusingNASTCANfiniteelementprogram.
codesaretheASMEB&PVCode,ThecalculatednaturalfrequencyforthecompressorandSectionIII,SubsectionNC,skidmountingshowthattheassemblyisrigid.AllSummer1978,andIEEE-344-1975.pressureboundarystressesarelessthantheallowablesofparagraph3.9.2.2.2A;bearingreactionsarelowerthanload ratingvalues,androtorshaftdeflectionsarelessthan minimumclearances.Dynamictestingisperformedasfollows:thecompletecompressorassemblyismountedtosimulatetheinserviceconditionanda resonancesearchperformedfrom1-50Hzat1octave/minsweep rateandat1.9gamplitude,withthecompressorinboth operationalandnonoperationalmodes.Thetestitemissubjectedtoaseriesof5OBEand1SSE30-secrandommultifrequencytests.TheTRSenvelopestheRRSwithaminimumfactorof40.0intheapplicablefrequencyrange.The compressorwasoperatedduringthetestsandexhibitedno
malfunctions.
1of2August1987RBSUSARTABLE3.9A-6LOADINGCOMBINATIONSFORASMESECTIONIIICLASS1VALVES (1)Classification Combination DesignDesignpressure,Designtemperature (2)Deadweight Pipingreactions
OBENormalNormalconditionpressureNormalconditionmetal temperatureDeadweight PipingreactionsUpsetUpsetconditionpressureUpsetconditionmetal temperatureDeadweight Dynamicload1 (3)PipingreactionsEmergencyEmergencyconditionpressureEmergencyconditionmetal temperatureDeadweight Dynamicload3 (3)PipingreactionsFaultedFaultedconditionpressureFaultedconditionmetal temperatureDeadweight Dynamicload2 (3)Pipingreactions
__________________
(1)TheonlyASMEClass1componentswithintheBOPscopeare values.(2)Temperatureisusedtodetermineallowablestressonly.
2of2August1987RBSUSARTABLE3.9A-6(Cont)
TransientsNo.ofCycles (3)Thedefinitionsoftheseloadsaregivenbelow:DynamicLoad1Location(a)=
[(OBE)2+(SRV ALL)2]1/2Location(b)=OBEDynamicLoad2Location(a)=
[(SSE)2+(SRV ALL)2+(LOCA)2]1/2Location(b)=SSE DynamicLoad3Location(a);theenvelopeof(i)=
[(OBE)2+(SRV all)2+(CO)2]1/2and(ii)=[(OBE)2+(SRV all)2+(CHUG)2]1/2Location(b)=OBE
where:
Location(a)=ValvesinsidethereactorbuildingLocation(b)=Valvesoutsidethereactorbuilding OBE=Operatingbasisearthquake SSE=Safeshutdownearthquake SRV=EnvelopeofallsafetyreliefALLvalveactuationcasesCO=CondensationoscillationphaseofLOCA CHUG=EnvelopeofsymmetricandasymmetricchuggingphasesofLOCALOCA=EnvelopeofCOchuggingandannuluspressurizationduetoLOCA NOTE:FordefinitionsofDynamicLoads1and2,seeTable 3.9A-6.1of1August1987RBSUSARTABLE3.9A-7LOADINGCOMBINATIONSFORASMESECTIONIIICLASS2AND3NON-ASMECOMPONENTSDesignConditionIandIIaredefinedas:DesignConditionI=Specifieddesignloads(temperature,pressure,etc)+DynamicLoad1DesignConditionII=Specifieddesignloads(asabove)+DynamicLoad2+piperuptureloads(ifapplicable)
RBS USAR TABLE 3.9A-8 STRESS LIMITS FOR ASME SECTION III CLASS 1 (NB)
SEISMIC CATEGORY I COMPONENTS (ELASTIC ANALYSIS)
Pressure Vessels, Pumps, and Valve Bodies - Pressure Boundary-Designed by Analysis Expansion Primary plus Reference Stress Secondary Condition Paragraph Primary Stress Limits Limits Stress Limits Peak Stress Limits of Design ASME III P e P L P L +P b P e P L +P b +P e +Q P L +P b +P e +Q+F NOTE: The nomenclature, conditions, and applications of the above allowables are in accordance with ASME Section III.
Stress limits apply to design by elastic analysis. Limit and plastic analysis is allowed in accordance with
ASME Section III criteria. Special stress limits of NB-3227 apply as applicable.
(1)Since design loads are used in the actual analysis, only conditions as shown require evaluation.
(2)Use design loads.
(3)Use above limits for materials of Table I-1.2 (ASME Section III). Use 0.7S u for materials of Table I-1.1 (ASME Section III).
(4)Primary stresses are evaluated and are combined with secondary effects as appropriate. 1 of 1 August 1987 Upset (2) NB-3223 (4) (4) (4) 3 S m 3 S m S a Emergency (2) NB-3224 Greater of Greater of Greater of Not required Not required 1.2S m or 1.8S m or 1.8S m or 1.0S y 1.5S y 1.5S y Faulted (2,3) NB-3225, Lesser of Lesser of Lesser of Not required Not required NB-3221, 2.4S m or 3.6S m or 3.6S m or App. F 0.7S u 1.05S u 1.05S u F 1323.1 RBS USAR 1 of 2 August 1987 TABLE 3.9A-9 STRESS LIMITS FOR ASME SECTION III CLASS 2 AND 3 COMPONENTS (ELASTIC ANALYSIS)
Primary Stress Limits
Membrane Design ASME III Membrane Plus Condition (6) Code Class (P m ) Bending (P m + P b)
Pressure Vessels I 2(NC3300) or 1.1 S 1.65 S II 3(ND3300) 2.0 S 2.40 S I (1) 2(NC3200) 1.1 S M 1.65 S M II (2) 2.0 S M 2.40 S M Pumps (3,4) Nonactive I 2(NC3400) or 1.1 S 1.65 S II 3(ND3400) 2.0 S 2.40 S
Pumps (3,4) Active I 2(NC3400) or 1.0 S 1.50 S II 3(ND3400) 1.2 S 1.80 S
Valves (5,4)Active and Nonactive I 2(NC3500) or 1.1 S 1.65 S II 3(ND3500) 2.0 S 2.40 S
Tanks (4) (Steel) I 2(NC38-3900) or 1.1 S 1.65 S II 3(ND38-3900) 2.0 S 2.40 S
Key: S = Allowable stress values at design temperature from ASME III, Appendix I, as allowed by class S m = Design stress intensity values at design temperature from ASME III, Appendix I, as allowed by class
RBS USAR TABLE 3.9A-9 2 of 2 August 1987 (1)Fatigue analysis may be required with operating conditions; see Paragraph NC-3219 and Appendix XIV of ASME III; Subsection
NC.(2)When a complete analysis is performed in accordance with
NC 3211.1(c), the faulted stress limits of Appendix F apply.
(3)In accordance with NC-3400 and ND-3400, any design method
which has been demonstrated to be satisfactory for the
specified design conditions may be used.
(4)Stress limits of ASME III, Subsection NF, are used for the
design of supports as applicable (Table 3.9A-14).
(5)The standard or alternative design rules of NC-3500 and
ND-3500 may be used in conjunction with the stress limits
specified. Valve nozzle (piping load) stress analysis is not required when both the following conditions are satisfied by
calculation: a. Section modulus and area at the plane normal to the flow passage through the region at the valve body crotch is at least 110 percent of that for the piping connected (or
joined) to the valve body inlet and outlet nozzles; and, b. Code allowable stress, S, for valve body material, is equal to or greater than code allowable stress, S, of connected piping material. If valve body material
allowable stress is less than that of the connected
piping, the valve section modulus and area as calculated
in a is multiplied by the ratio of the allowable stress
for the pipe divided by the allowable stress of the valve. The design by analysis procedure of NB-3545.2 is an acceptable alternative method if these requirements cannot be met. Casting quality factor of 1.0 is used. Design requirements listed in this table are not applicable to valve discs, stems, cast rings, or other parts of valves which are contained within the confines of the body and bonnet.
(6)Refer to Table 3.9A7 for the definitions of Design Conditions
I and II.
RBSUSARTABLE3.9A-10ACTIVEPUMPS(BOP)
ASMEEquipmentEquipmentSectionIIISystemNameNameEquipmentNoSize(Hp)ManufacturerCodeClassActiveFunction1of2August1987 ResidualSubsystem1E12*PC0033GouldsPumps 2Maintainsdischarge Heatlinefillofsystemprimary Remover pumppumps-linesarekeptconstantly
filledLowPressureSubsystem1E21*PC0023GouldsPumps 2MaintainsdischargeCoreSpraylinefillofsystemprimary pumppumps-linesare keptconstantly
filledHighPressureSubsystem1E22*PC0035GouldsPumps 2MaintainsdischargeCoreSpraylinefillofsystemprimary pumppumps-linesare keptconstantly
filledReactorCoreSubsystem1E51*PC0035GouldsPumps 2Maintainsdischarge Isolationlinefillofsystemprimary Cooling pumppumps-linesare keptconstantly
filled ControlChilled1HVK*PIA-D50GouldsPumps 3Usedinmaincontrol Buildingwaterpumpsroom-watertocool Chilledequipment.Helps Watermaintainmaincontrol roominhabitable
cond.FuelPoolFuelpool1SFC*PIA,B100GouldsPumps 3CoolingofspentCoolingAndcoolingfuelpoolandcon-Cleanup pumptainmentfuel Systemstoragepool StandbySSWpumps1SWP*P2A-D450Siemens-Allis3Supplyemergency Servicecoolingwaterto Watercriticalcomponents RBSUSARTABLE3.9A-10ACTIVEPUMPS(BOP)
ASMEEquipmentEquipmentSectionIIISystemNameNameEquipmentNoSize(Hp)ManufacturerCodeClassActiveFunction2of2August1987 StandbyControl1SWP*P3A-D15GouldsPumps3TemperaturecontrolServicebldg.ofcontrolbldg.Waterchillerchillercondenser recirc pumpsDieselStandby1EGF*P1A3CraneDeming3Supplydieselgen-Generatordieselgen-1EGF*P1BPumpDiv.,eratorfueloilto Systemseratorfuel1EGF*P1CCraneCo.daytankfordiesel (FuelOiloiltrans-generatorStorageandferpumps
Transfer)ReactorReactorbldg1DFR*P5A,B,D,E3GouldsPumpsNA (1)ReturnsECCSleak-Buildingfloordrainsagetothesuppress-FloorDrainssumppumpsionpoollostas (Suppressionaresultofapost-PoolPumpbackLOCApassivefailure.
Mode)________________________________
(1)Pumpsaredesignedandbuilttomanufacturersstandardsandoperabilitysdemonstratedbyseismicanalysisonly.
RBS USAR TABLE 3.9A-11 ACTIVE VALVES (BOP)
Revision 15 1 of 9 May 2002 15 Pressure Active System Name Mark Number Type Class Function8Nuclear boiler system 1B21*MOVF016 Gate-MO 1 27 turbine drains (B21) 1B21*MOVF019 Gate-MO 1 27 1B21*MOVF067A,B,C,D Globe-MO 1 27 Main steam-positive leakage control (B21) 1B21*MOVF085 Gate-MO 2 1, 2 810 Nuclear boiler 1B21*MOVF098A,B,C,D Gate-MO 2 1, 2 system feedwater (B21) 10Residual Heat 1E12*MOVF008 Gate-MO 1 27 Removal (RHR) 1E12*MOVF009 Gate-MO 1 27 (E12) (RHS) 1E12*MOVF011A,B Globe-MO 2 27 1E12*MOVF021 Globe-MO 2 2712 127 1E12*MOVF024A,B Butterfly-MO 2 27 74 1E12*MOVF027A,B Gate-MO 2 27 1E12*MOVF037A,B Globe-MO 2 6 1E12*MOVF040 Globe-MO 2 7 1E12*MOVF042A,B,C Gate-MO 1 26 1E12*MOVF049 Gate-MO 2 7 1E12*MOVF053A,B Globe-MO 2 87 1E12*MOVF064A,B,C Gate-MO 2 27 4 71E12*MOVF068A,B Butterfly 3 28 1E12*MOV105 Gate 2 27 1E12*AOVF098 Testable Check 2 29 1E12*SOVF075A,B Ypattern 2 7 1E12*SOVF060A,B Ypattern 2 7 1E12*AOVF041A,B Check 1 31 1E12*AOVF041C Check 1 27 1E12*RVF005 SRV 2 59 1E12*RVF017A SRV 2 59 1E12*RVF017B SRV 2 59 1E12*RVF025A SRV 2 59 1E12*RVF025B SRV 2 59 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 15 2 of 9 May 2002 10 1E12*RVF025C SRV 2 59 1E12*RVF030 SRV 3 59 1E12*RVF100A SRV 3 59 1E12*RVF100B SRV 3 56 1E12*RVF101 SRV 2 59 1RHS*RV67A SRV 2 59 1RHS*RV67B SRV 2 59 10Low pressure 1E21*MOVF001 Gate-MO 2 10 core spray 1E21*MOVF005 Gate-MO 1 11 (E21)1E21*MOVF011 Gate-MO2 12 1E21*MOVF012 Globe-MO 2 13 1E21*AOVF006 Check 1 31 1E21*RVF018 SRV 2 59 1E21*RVF031 SRV 2 59 High pressure 1E22*AOVF005 Check 1 31 core spray 1E22*RVF014 SRV 2 59 (E22)1E22*RVF035 SRV2 59 1E22*RVF039 SRV 2 59Main steam-positive 1E33*MOVF005 Globe-MO 2 1 leakage control 1E33*MOVF006 Globe-MO 2 1 (E33)1E33*MOVF007 Globe-MO 2 1 1E33*MOVF008 Globe-MO 1 1 1E33*MOVF025 Globe-MO 2 1 1E33*MOVF026 Globe-MO 2 1 1E33*MOVF027 Globe-MO 2 1 1E33*MOVF028 Globe-MO 2 1 1E33*SOVF014YPattern 2 32 1E33*SOVF034YPattern 2 32 1E33*PVF002 Globe 2 33 1E33*PVF022 Globe 2 33 1E33*RVF003 SRV 2 59 1E33*RVF023 SRV 2 59 Reactor Core 1E51*MOVF013 Gate-MO 1 20 Isolation Cooling 1E51*MOVF045 Globe-MO 2 21 10 (RCIC)10(E51) (ICS) 1E51*MOVF063 Gate-MO 1 23 1E51*MOVF064 Gate-MO 1 24 1E51*MOVF068 Gate-MO 2 25 1E51*MOVF019 Globe-MO 2 34 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 15 3 of 9 May 2002 1E51*MOVF077 Globe-MO 2 27 1E51*MOVF078 Globe-MO 2 2712 121E51*AOVF004 Globe 2 35 1E51*AOVF005 Globe 2 35 1E51*AOVF025 Globe 2 36 1E51*AOVF026 Globe 2 36 1E51*AOVF054 Globe 2 37 1E51*RVF017 SRV 2 59 1E51*RVF018 SRV 2 59 1E51*RVF090 SRV 2 5910 Fire protection 1FPW*MOV121 Gate-MO 2 27 water (FPW) 10Feedwater (FWS) 1FWS*MOV7A,B Gate-MO 2 27 Reactor water 1G33*MOVF001 Gate-MO 1 27 cleanup 1G33*MOVF004 Gate-MO 1 27 (G33) (WCS) 1G33*MOVF028 Gate-MO 2 27 1G33*MOVF034 Gate-MO 2 27 1G33*MOVF039 Gate-MO 2 27 1G33*MOVF040 Gate-MO 2 277 1G33*MOVF053 Gate-MO 2 27 1G33*MOVF054 Gate-MO 2 27 710 1WCS*RV144 SRV 2 59 1WCS*RV154 SRV 2 59 1WCS*MOV172 Gate-MO 2 27 1WCS*MOV178 Gate-MO 2 27 WCS-RV31A SRV 3 59 WCS-RV31B SRV 3 59 10 Diesel Generator Fuel Oil 1EGF*PCV25A,B Y Pattern 3 33 Storage and X System (EGF)
Reactor plant 1CCP*MOV138 Gate-MO 2 27 component cooling 1CCP*MOV158 Gate-MO 2 27 (CCP)1CCP*MOV159 Gate-MO2 27 1CCP*MOV163 Globe-MO 3 2 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 15 4 of 9 May 2002 1CCP*MOV169 Globe-MO 3 2,3 1CCP*MOV129 Butterfly 3 2,3 1CCP*MOV335 Butterfly 3 2,3 1CCP*MOV336 Butterfly 3 2,3 1CCP*MOV130 Butterfly 3 2,3 1CCP*MOV16A, B Butterfly 3 2, 3 1CCP*MOV143 Butterfly 2 31 1CCP*MOV142 Butterfly 2 31 1CCP*MOV144 Butterfly 2 31 1CCP*RV151 SRV 2 59 1CCP*RV155 SRV 2 59 1CCP*RV57A SRV 3 59 1CCP*RV57B SRV 3 59 1CCP*RV60A SRV 3 59 1CCP*RV60B SRV 3 59Combustible gas control- 1CPP*MOV104 Gate-MO 2 38 containment hyrdogen 1CPP*MOV105 Gate-MO 2 38 purge (CPP) 1CPP*SOV140 Y Pattern 2 39 CRD hydraulic control- 1C11*MOVF083 Globe-MO 2 27 rod drive (C11) 10 Control building 1HVK*MOV10A,B Globe-MO 3 3 chilled water 1HVK*MOV11A,B Globe-MO 3 3 (HVK)1HVK*MOV20A,B,C,D Butterfly 3 40 1HVK*TV16A,B Globe 3 41 1HVK*TV17A,B Globe 3 41 1HVK*RV45A SRV 3 59 1HVK*RV45B SRV 3 59 Ventilation 1HVN*MOV22A,B Gate-MO 3 27 chilled water 1HVN*MOV102 Gate-MO 2 2 (HVN)1HVN*MOV127 Gate-MO 2 27 1HVN*MOV128 Gate-MO 2 27 1HVN*RV196 SRV 2 59 Instrument air 1IAS*MOV106 Gate-MO 2 27 (IAS)1IAS*SOV36A,B Y Pattern 3 2 101IAS*RV38A SRV 3 59 1IAS*RV38B SRV 3 59 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 15 5 of 9 May 2002 Recirculation 1RCS*MOV60A,B Globe-MO 2 31 (RCS)1RCS*MOV61A,B Globe-MO2 31 1RCS*MOV58A,B Gate-MO 2 31 1RCS*MOV59A,B Gate-MO 2 3110 Service air 1SAS*MOV102 Gate-MO 2 27 (SAS)10Spent fuel 1SFC*MOV119 Gate-MO 2 27 pool cooling 1SFC*MOV120 Gate-MO 2 27 and cleanup 1SFC*MOV121 Gate-MO 2 27 (SFC)1SFC*MOV122 Gate-MO2 27 1SFC*MOV139 Gate-MO 2 27 Nuclear boiler 1SVV*MOV1A,B Globe-MO 2 27 main steam 1SWP*MOV4A,B Gate-MO 2 31 safety and relief 1SWP*MOV5A Gate-MO 2 27 valves (SVV) 1SWP*MOV5B Gate-MO 2 27 Standby service 1SWP*MOV81A,B Gate-MO 2 27 water 1SWP*MOV27A,B,C,D Butterfly 3 58 (SWP)1SWP*MOV502A,B Gate-MO3 18 1SWP*MOV503A,B Gate-MO 3 18 1SWP*MOV504A,B Gate-MO 3 19 1SWP*MOV507A,B Gate-MO 2 27 1SWP*MOV510A,B Gate-MO 3 19 1SWP*MOV73A,B Gate-MO 3 44 1SWP*MOV74A,B Gate-MO 3 44 1SWP*MOV81A,B Gate-MO 2 27 1SWP*MOV55A,B Butterfly 3 4312 121SWP*AOV51A,B Globe 3 45 1SWP*MOV511A Butterfly 3 46 SWF-MOV511B Butterfly 3 46 1SWP*MOV501A Butterfly 3 46 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 16 6 of 9 March 2003 1SWP*MOV501B Butterfly 3 46 1SWP*MOV40A,B,C,D Butterfly 3 48 1SWP*MOV77A,B Butterfly 3 4914 1SWP*MOV57A,B Butterfly 3 50 1SWP*MOV96A,B Butterfly 3 50 14 1SWP*MOV506A,B Butterfly 3 4916 SWP-RV1A SRV 3 59 16SWP-RV1B SRV 3 59 1SWP*RV119 SRV 3 59 1SWP*RV133 SRV 3 59 1SWP*RV49A SRV 3 59 1SWP*RV49B SRV 3 59 1SWP*RV79A SRV 3 59 1SWP*RV79B SRV 3 59 1SWP*RV91A SRV 3 59 1SWP*RV91B SRV 3 59 1SWP*RV91C SRV 3 59 1SWP*RV91D SRV 3 59 1SWP*RV140 SRV 2 59 1SWP*SOV522A Globe 2 61 1SWP*SOV522B Globe 2 61 1SWP*SOV522C Globe 2 61 1SWP*SOV522D Globe 2 61 1SWP*SOV523AYPattern 2 61 1SWP*SOV523BYPattern 2 61 1SWP*SOV523CYPattern 2 61 1SWP*SOV523DYPattern 2 61 Control building 1HVC*MOV1A,B Butterfly 3 51 air conditioner (HVC)
Containment and drywell ventilation and 1HVR*AOV128 Butterfly 2 27 purge, annulus mixing 1HVR*AOV123 Butterfly 2 27 and pressure control
and auxiliary building
ventilation (reactor plant ventilation) 1HVR*AOV165 Butterfly 2 27 (HVR)1HVR*AOV166 Butterfly2 27 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 15 7 of 9 May 2002 Containment 1CPM*MOV1A,B Butterfly 2 31 hydrogen mixing 1CPM*MOV2A,B Butterfly 2 31 (CPM)1CPM*MOV3A,B Butterfly2 31 1CPM*MOV4A,B Butterfly 2 31 Containment 1CMS*SOV31A,B,C,D Y Pattern 2 27 atmosphere 1CMS*SOV32A,G Y Pattern 2 53 monitoring 1CMS*SOV33A,AA,B,BB, Y Pattern 2 54 (CMS)C,D,E,F,G,H,J,K,S, T,U,V,W,X,Y,Z 1CMS*SOV34A,B,C,D Y Pattern 2 31, 53 1CMS*SOV35A,B,C,D YPattern 2 27 Reactor building 1DER*AOV126 Globe 2 27 equipment drains 1DER*AOV127 Globe 2 27 (DER)1DER*RV180 SRV2 59 Reactor building 1DFR*AOV101 Globe 2 floor drains 1DFR*AOV102 Globe 2 (DFR)1DFR*RV21 SRV2 591DFR*AOV144,145 Globe 4 6212Penetration valve 1LSV*SOVX26A,B Globe 2 55 leakage control 1LSV*SOVY26A,B Globe 2 55 (PVLCS) (LSV) 1LSV*RV8A SRV 2 59 1LSV*RV8B SRV 2 59 12Reactor plant 1SSR*SOV130 Globe 2 27 sampling 1SSR*SOV131 Globe 2 27 (SSR)1SSR*SOV133 Y Pattern2 56 1SSR*SOV134YPattern 2 56 1SSR*SOV139YPattern 2 2 1SSR*SOV140YPattern 2 2Recirculation (RCS 1B33*AOVF019 Globe 2 57 sample line) (B33) 1B33*AOVF020 Globe 2 57 10Condensate makeup 1CNS*MOV125 Gate 2 27 and drawoff 1CNS*RV140 SRV 2 59 (CNS)10 15 RBS USAR TABLE 3.9A-11 (Cont) 15 Pressure Active System Name Mark Number Type Class Function Revision 15 8 of 9 May 2002 Nuclear Boiler Reactor 1B21*AOVF032A,B Check 1 27 feedwater system (B21) Standby Liquid Control 1C41*RVF029A SRV 2 59 System (C41) 1C41*RVF029B SRV 2 59 15KEY TO ACTIVE FUNCTIONS 1 = To control long-term leakage by pressurizing the main steam system with air 2 = Pipe class change from ASME III to ANSI B31.1
3 = Emergency changeover to standby service water system 4 = Isolation between RHR and RCIC system head spray 4 5 = Deleted 6 = Controls leakage to upper containment pool spargers
7 = Isolation between RHR and sampling system
8 = Isolation between RHR and feedwater system
9 = Deleted 410 = 27 when low pressure core spray (LPCS) is terminated 11 = LPCS system injection valve and containment isolation when LPCS service is terminated
12 = Minimum flow bypass valve to protect LPCS pump from overheating, closed when pump discharge pressure is below setpoint
to ensure maximum flow is injected into vessel
13 = LPCS system test valve to be closed to ensure maximum flow is injected into the vessel. Valve is opened to allow flow to
return to suppression pool during full flow 12 14 = Deleted 15 = Deleted
16 = Deleted
17 = Deleted 1218 = To operate containment unit coolers 19 = Alternate source to CCP system
20 = RCIC pump discharge valve
21 = RCIC turbine steam supply valve 10 1023 = RHR and RCIC steam supply - drywell isolation 24 = RHR and RCIC steam supply - containment isolation
25 = RCIC turbine exhaust - containment isolation
26 = RHR, low pressure coolant injection valve, and containment isolation when injection is terminated
27 = Containment isolation
28 = Supply to RHR HTRY
29 = Isolates RHR/service water system
30 = Drain isolation
31 = Drywell isolation 32 = Pressure control valve bypass RBS USAR TABLE 3.9A-11 (Cont)
Revision 15 9 of 9 May 2002 33 = Pressure control 34 = Minimum flow bypass to protect pump
35 = RCIC turbine drain pot drain isolation
36 = RCIC turbine steamline drain pot drain isolation
37 = RCIC turbine steamline drain pot drain line orifice bypass
38 = Isolation from HVR system
39 = Isolate CPP/service air system
40 = Chilled water circ pump isolation
41 = Temperature control of control building unit coolers 42 = SVV system air supply 43 = Supply to standby cooling tower
44 = Supply standby service water to Division III unit cooler
45 = Supply standby service water to the PVLCS compressors
46 = Supply to RPCCW HTRY
47 = Auxiliary building isolation
48 = SSW pump discharge
50 = Turbine building isolation
51 = Main control room isolation
52 = Safety class change
53 = Drywell sample isolation valves
54 = Containment sample isolation valves
55 = Safety-related air supply to PVLSC compressor skid
56 = ASME III piping to nonsafety class tubing
57 = Sample isolation
58 = Supply standby service water to control building chilled water condensers
59 = Pressure Relief 60 = Pressure ratings for pressure relief valves are recorded inlet/outlet 61 = Provide vacuum release for service water return headers
62 = Isolate from LWS to provide pump back capability following a postulated LOCA event. 15127 7 12 15-----------------------------
Code Boundary, 1974 Edition, ASME Boiler and Pressure Vessel Code, Sec. III.
RBS USAR______________________________*Includessecondarystresses1of4August1987TABLE3.9A-12COMPLIANCEWITHREGULATORYGUIDE1.48________RegulatoryGuide1.48____________________RiverBendStationFSAR
____________
Plant Reg.Code ASME RegulatoryCondi-LoadingGuideLoadingAllowableSect.IIIGuide1.48Componenttion Combination (1)DesignLimit Par.Combination (d)Stresses Reference ComparisonClass1U[NPCorUPC]+OBE NB-3223 (2)1.a[NPCorUPC]+OBE3.0S*NB-3323Agree VesselsEEPC NB-3224 (2)1.bEPC 1.85SNB-3224AgreeFNPC+SSE+DSL NB-3225 (2)1.cNPC+SSE+DSLApp.F-NB-3225AgreeSect.IIIClass1U[NPCorUPC]+OBE NB-3654 (2)1.a[NPCorUPC]+OBE3.0S*NB-3654Agree PipingEEPC NB-3655 (2)1.bEPC 2.25SNB-3655AgreeFNPC+SSE+DSL NB-3656 (2)1.cNPC+SSE+DSL 3.0SNB-3656AgreeClass1U[NPCorUPC]+OBE NB-3223 (1,5)2.a[NPCorUPC]+OBE1.65SNB-3223Agree PumpsEEPC NB-3224 (1)2.bEPC 1.8SNB-3224Agree(inactive)FNPC+SSE+DSLNB-3225 (1)2.cNPC+SSE+DSLApp.F,NB-3225AgreeSect.IIIClass1U[NPCorUPC]+OBE NB-3222 (5,6,7,8)4.a[NPCorUPC]+OBEN/A N/A N/A PumpsEEPC NB-3222 (5,6,7,8)4.aEPC N/A N/A N/A(active)FNPC+SSE+DSL NB-3222 (5,6,7,8)4.aNPC+SSE+DSL N/A N/A N/AClass1U[NPCorUPC]+OBE NB-3223 (4,5)2.a[NPCorUPC]+OBEN/A N/A N/A ValvesEEPC NB-3224 (4)2.bEPC N/A N/A N/A(Inactive)FNPC+SSE+DSL NB-3225 (2,5)2.cNPC+SSE+DSL N/A N/A N/A by analysis RBS USAR______________________________**Designedbyeitherstandardoralternativedesignrules***Exceptforfaultedcondition;NRCismoreconservative2of4August1987TABLE3.9A-12(cont)________RegulatoryGuide1.48____________________RiverBendStationFSAR
____________
Plant Reg.Code ASME RegulatoryCondi-LoadingGuideLoadingAllowableSect.IIIGuide1.48Componenttion Combination (1)DesignLimit Par.Combination (d)Stresses Reference ComparisonClass1U[NPCorUPC]+OBE1.1Pr3.a[NPCorUPC]+OBE1.1PrNB-3525Agree ValvesEEPC1.2Pr3.bEPC1.2PrNB-3526Agree (inac-FNPC+SSE+DSL1.5Pr3.cNPC+SSE+DSL1.5PrNB-3527Agree tive)**Class1U[NPCorUPC]+OBE NB-3222 (5,6,7,8)4.a[NPCorUPC]+OBEN/A N/A N/A ValvesEEPC NB-3222 (5,6,7,8)4.bEPC N/A N/A N/A(active)FNPC+SSE+DSL NB-3222 (5,6,7,8)4.cNPC+SSE+DSL N/A N/A N/A by analysisClass1U[NPCorUPC]+OBE1.0Pr (6)5.a[NPCorUPC]+OBE1.0Pr (a)NB-3525AgreeValvesEEPC1.0Pr (6)5.bEPC1.0Pr (a)NB-3526Agree(active)**FNPC+SSE+DSL1.0Pr (6)5.cNPC+SSE+DSL1.0Pr (a)NB-3527AgreeClass2&3U[NPCorUPC]+OBE1.1S (9)6.a[NPCorUPC]+OBE
=1.1S (b)CodecaseAgree***
Vessels 1607,(Div.1)ofEEPC1.1S (9)6.bEPC=2.0S (b)NC/NBAgree***ASMEFNPC+SSE+DSL1.5S (9)6.cNPC+SSE+DSL 3321.1(b)Agree***SectionVIII Class2U[NPCorUPC]+OBE NB-3223 (9)7.a[NPCorUPC]+OBEN/A N/A N/AVesselsEEPC NB-3224 (9)7.bEPC N/A N/A N/A(Div.2)ofFNPC+SSE+DSL NB-3225 (9)7.cNPC+SSE+DSL N/A N/A N/AASMECode Class2&3U[NPCorUPC]+OBE NC3611.1(b)8.a[NPCorUPC]+OBE1.2SNC/NDReg.Piping (4)(c)(b)(1)
(10)3611.2(2)Guide1.48EEPCNC3611.1(b)8.aEPC1.8SNC/NDrefersto (4)(c)(b)(1)
(10)3611.2(3)obsoleteFNPC+SSE+DSLNC3611.1(b)8.bNPC+SSE+DSL2.4SNC/NDstress (4)(c)(b)(2)
(10)3611.2(4)allowablesClass2&3U[NPCorUPC]+OBE9.a[NPCorUPC]+OBE1.1S (b)CodecaseAgree Pumps 1636 (inactive)EEPC9.aEPCN/AN/AN/A RBS USAR 3 of 4 August 1987 TABLE 3.9A-12 (cont)
________ Regulatory Guide 1.48____________ ________River Bend Station FSAR
____________
Plant Reg. Code ASME Regulatory Condi- Loading Guide Loading Allowable Sect. III Guide 1.48 nt tion Combination (1)Design Limit Par. Combination (d)Stresses Reference Comparison F NPC+SSE+DSL m1.2S(m+b)/1.59.b NPC+SSE+DSL M 2.0S(b) Code case Equally 1636 Conservative
&3 U [NPC or UPC]+OBE m1.2S(m+b)/1.5 (11) 10.a[NPC or UPC]+OBE m= 1.0S (a,b) NC/ND Agree ( )3400) E EPCm1.2S(m+b)/1.5 (11) 10.a EPC N/A N/A N/A F NPC+SSE+DSLm1.2S(m+b)/1.5 (11) 10.a NPC+SSE+DSL m = 1.2S (a,b) NC/ND Equally 3423 Conservative &3 U [NPC or UPC]+OBE 1.1 Pr 11.a[NPC or UPC]+OBE m = 1.1S (a,b) Code caseEqually 1635, Conservative ve) E EPC 1.1 Pr 11.a EPC m= 2.0S (a,b) NC/ND3521 F NPC+SSE+DSL1.2Pr 11.b NPC+SSE+DSL
&3 U [NPC or UPC]+OBE 1.0 Pr (11) 12.a[NPC or UPC]+OBE m= 1.1S (a,c) Code caseEqually 1635, Conservative)E EPC1.0 Pr (11)12.a EPC NC/ND3521 F NPC+SSE+DSL1.0 Pr (11)12.a NPC+SSE+DSL m= 2.0S (a,c)
RBS USAR4of4August1987TABLE3.9A-12(cont)Key:U=UpsetE=EmergencyF=FaultedNPC=Normalplantcondition UPC=Upsetplantcondition EPC=Emergencyplantcondition DSL=Dynamicsystemloadsunderfaultedplant conditionsNOTESONCOMPLIANCEWITHREGULATORYGUIDE1.48:NumericsuperscriptsintheregulatoryguideportionofthetablecorrespondtofootnotesofRegulatoryGuide1.48.
AlphabeticsuperscriptsintheUSARportionofthetable(orcomparativecolumn)correspondtothefollowing: (a)Inadditiontocompliancewiththedesignlimitsspecified,assuranceofoperabilityunderalldesignloadingcombinationsisinaccordancewithSubsection3.9.4B.(b)Thedesignlimitforlocalmembranestressintensityorprimarymembraneplusprimarybendingstressintensityis150percentofthat allowedforgeneralmembranestressintensity(exceptaslimitedto2.4Sforinactivecomponentsunderfaultedcondition).Referto Section3.9.2.2.1B.(c)InactivelimitsmaybeusedsinceoperabilityisdemonstratedinaccordancewithSection3.9.4B.(d)Whenselectingplanteventsforevaluation,thechoiceofeventstobeincludedineachplantconditionisbasedontheprobabilityof occurrenceoftheparticularloadcombination.ThecombinationsofloadsarethoseidentifiedinTables3.9A-2,3.9A-3,3.9A-6,3.9A-7, 3.9A-13,and3.9A-14.(e)IntheRiverBendStationcolumns,EPCreferstothesimultaneousoccurrenceofanemergencyeventandanOBE.
RBSUSARTABLE3.9A-13LOADCONDITIONSFORPIPESUPPORTS1of1August1987LoadConditionNumberPlantCondition Loads DescriptionAllowableStress 1 NormalPrimarysustainedDLASMEIII(1974,includingSummer1974Addenda),
SubsectionNF; andSubsectionNA, App.XVII, ArticleXVII-2000 2 UpsetPrimarysustainedDL+SRSS(OBEI,OCCU) andoccasional associatedwith
upset 3 UpsetAllprimaryandDL+THER+SRSS(OBET,OCCU) secondary 4 EmergencyPrimarysustainedDL+SRSS(OBEI,OCCE)ASMEIII(1974,includingandoccasionalSummer1974Addenda),associatedwithSubsectionNA, emergencyApp.XVII, ArticleXVII-2110 5 FaultedPrimarysustainedDL+SRSS(SSEI,OCCF)ASMEIII(1974,includingandoccasionalSummer1974Addenda),associatedwithApp.F, faultedParagraphF-1370 Key: DL=DeadloadOBEI=OperatingbasisearthquakeinertialoadofpipingOBET=Operatingbasisearthquaketotal,i.e.,theabsolutesumoftheamplitudesofOBEinertialoadandloadduetoOBEanchormovementsOCC(U,E,F)=Primaryoccasionalmechanicaloperatingloadsassociatedwithupset,emergency,andfaultedoperatingconditions,respectively.Occasionalloadsmaybevibratoryor nonvibratoryforloadcombinationpurposes.Theyarecombinedwitheachother andwithotherloadtypesinthesamewayasintheassociatedpiping analysis.(Seenotestoloadcombinationsforpiping,Table3.9A-2.)
Themaximumandtheminimumresponsefromeachtimehistoryisusedwith theassociatedsigninthecombination.SSE=Safeshutdownearthquakeinertialoadofpiping THER=Thermalload;asecondaryloadTHER1=Selectingthethreemomentsfromthatthermalloadwhosethreemomentsrepresentthemaximumsquarerootofthesumofthesquaresofthemoments.Theforces selectedarethemost(+)ofeachforcecomponentalongwithitspropersign (eachforcecomponentchosenmaycomefromadifferentthermalload).THER2=SameasforTHER1,exceptthatthemost(-)ofeachforcecomponentwithsignsis chosen.THER3=Forcesandmomentsarethoseforthenormaloperatingcondition.
1of2August1987RBSUSARTABLE3.9A-14LOADINGCOMBINATIONSFORCOMPONENTSUPPORTSPlantConditionLoadingCombination Normal DL+S+D+R+A+E Upset DL+S+D 1+R+A+E+D EmergencyNotApplicable Faulted DL+S+D 2+E+D Key:ToLoadingCombinationsDL=DeadloadS=Superimposedloads
D 1 ,D 2=DynamicLoads1and2respectively(fordefinitions,seeTable3.9A-7)R=Restrainedthermalexpansion A=Anchorandsupportmovement E=Environmentalloads D=OtherexternaldynamicloadsNOTES:Foreachoperatingconditiontheloadingsasgiveninthetablearetobeconsideredsimultaneously.Symbols usedaredefinedinthekey.Thespecificloadsofeachtypewhichareappliedduringtheapplicableoperatingconditionaredependent ontheparticularsystemconditions.Thefollowing listingidentifiessomeofthesespecificloadswhich areusedasageneralchecklistwhendetermining loadingconditionsasrelatedtoplantoperating
conditions.DeadLoadComponentmaximumoperatingweight(withappurtenances)Hydrostatictestweight Operationaltestweight Componentsupportweight 2of2August1987RBSUSARTABLE3.9A-14(Cont)
Superimposed Pressure Temperature Pipingsystemreactions LOCAbuildingdeflections Dynamic OBE SSE Piperupture Hydro-dynamicloads Jetimpingement Missileimpact
Vibrations Handlingloads(construction,installation, servicing)Thermaltransients Waterhammer Steamhammer ValvetripsAnchorandSupportMovementOBE/SSEeffects Thermalgrowth
LOCA Environmental Radiation Moisture Chemicals Revision 22 1 of 1 TABLE 3.9A-15 PRESSURE ISOLATION VALVES UNDER ASME OM C ODE INSERVICE TESTING PROGRAM High Pressure Core Spray 1E22*AOVF005 1E22*MOVF004 Low Presure Core Spray 1E21*AOVF006 1E21*MOVF005 Reactor Core Isolation Cooling12 12Residual Heat Removal 1E12*AOVF041A 1E12*AOVF041B
1E12*AOVF041C
1E12*MOVF042A
1E12*MOVF042B
1E12*MOVF042C
1E12*MOVF023
1E12*MOVF008
1E12*MOVF009
1RHS*V240 RBSUSARTABLE3.9A-16RHRHEATEXCHANGERRESTRAINT Normal/Upset (2)MaterialActual Allow.Material Stress (1)Stress StressSupportSectionDesignation (ksi)(ksi)(ksi)____________________________
(1)(2)Minimumspecifiedyieldorultimateattemperature.
Acomparisonofloadconditionsshowsthatnormal/upsetisthelimitin (3)Calculatedstressincludestheeffectofconstraintoffreeenddisplacement.AllowablestressisinaccordancewithASMEIIINF-3230.1of1August1987 Restraint beams SA-3630.8038.54 (3)61.60 (3)CrossbeamconnectionSA-516-GR7032.6015.14 21.52WallconnectionboltshorizontalmembersSA-193-GRB7125.000.94<1.0(interactionequation)Wallconnectionbolts diagonalmembersSA-193-GRB7125.008.21 42.50Threadedplateto embedmentplateweld
-57.0 5.75 18.00 RBSUSARTABLE3.9A-17FUELPOOLCOOLINGANDCLEANUPHEATEXCHANGERSUPPORTSANDRESTRAINTS
______________________________
(1)Minimumspecifiedyieldorultimateattemperature.
(2)Acomparisonofloadconditionsshowsthatnormal/upsetisthelimitingcondition.
1of1August1987 Normal/Upset (2)MaterialActualAllow.
Material Stress (1)StressStressSupportSection Designation (ksi)(ksi)(ksi)SupportSupporttubingSA-500-GRB40.150.19<1.0(interactionequation)Supportmountingangle SA-36 34.400.79<1.0(interactionequation)HeatexchangerholddownboltsSA-193-GRB7125.000.85<1.0(interactionequation)SupportmountingboltsSA-193-GRB7125.000.58<1.0(interactionequation)
RestraintRestraintpipeSA-106-GRB33.450.14<1.0(interactionequation)RestraintlugSA-516-GR7036.30 Tension5.6316.34 Shear3.7613.76 Bearing12.2932.67RestraintlugboltSA-193-GRB7125.000.77<1.0(interactionequation)WalllugSA-516-GR7036.30 Tension4.0016.34 Shear3.9413.76 Bearing15.7732.67WalllugboltSA-193-GRB7125.0015.3825.83AnchorboltsSA-193-GRB7125.000.21<1.0(interactionequation)WalllugpadSA-516-GR7036.3016.0423.96Walllugtopadweld
-70.0010.3321.00 RBSUSARTABLE3.9A-18STANDBYDIESELGENERATORFUELOILDAYTANKSUPPORTS
______________________________
(1)Minimumspecifiedyieldorultimateattemperature.
(2)Acomparisonofloadconditionsshowsthatnormal/upsetisthelimitingcondition.1of1August1987 Normal/Upset (2)MaterialActualAllow.MaterialStress (1)StressStressSupportSectionDesignation (ksi)(ksi)(ksi)Supportbeams SA-36 35.4013.2121.24Supportbeamendplate SA-36 35.4016.8423.37Supportbeamendplate
-57.0011.6913.60tobeamweldWallconnectionboltsSA-193-GRB798.640.56<1.0(interactionequation)TanksaddletosupportSA-193-GRB798.640.39<1.0(interactionequation)beambolts RBS USARTABLE 3.9A-19SRV QUENCHER RESTRAINTS AND SUPPORTS
______________________________
(1)Minimum specified yield at temperature.
(2)A comparison of load conditions shows that faulted is the limiting condition.
(3)A comparison of load conditions shows that upset is the limiting condition.1 of 1 A ugust 1987 Faulted (2) _________
MaterialActualAllow.
Material Stress (1)StressStressSupport SectionDesignation (ksi) (ksi)(ksi) Restraint pipeSA-312-TP304 23.75 0.92 < 1.0 (interaction equation)Lug collarSA-479-TP304 23.75 0.78 < 1.0 (interaction equation)Lug collar to pipeweld - 68.50 19.0021.0Lug to restraint bracket weld
- 68.5019.0021.0Clevis pad to pipe weld - 68.50 0.85 < 1.0 (interaction equation) Upset (3)Quencher pedestal supportSA-403-WP-304 28.00 0.942 < 1.0 (interaction equation RBSUSARTABLE3.9A-20STANDBYSERVICEWATERPUMPRESTRAINTS
______________________________
(1)Minimumspecifiedyieldorultimateattemperature.1of1August1987 Normal/Upset Faulted___MaterialActualAllow.ActualAllow.
Material Stress (1)StressStressStressStressSupportSectionDesignation(ksi)____(ksi)(ksi)(ksi)(ksi)Restraintpipe SA-106-GRB 35.00.496.790.86 8.67Restraintbracket SA-36 36.018.2123.7631.8644.67 Lug SA-36 36.0 tension2.4016.20 4.21 30.46 shear2.4814.40 4.34 27.07 bearing8.2432.4014.4232.40 Clevis SA-36 36.0 tension2.6516.20 4.64 30.46 shear1.2914.40 2.26 27.07 bearing4.2832.40 7.49 32.40Clevisbolt SA-193-GRB8-75.04.309.30 7.53 14.90 CL1Restraintbracketbolts SA-193-GRB8-75.00.06<1.0(inter-0.08<1.0(inter-CL1actionequation)actionequation)Clevistopadweld
-58.05.7318.0010.0218.00 1of6August1987RBSUSARTABLE3.9A-21COMPARISONOFRBSVALVESPECIFICATIONREQUIREMENTSWITHANSIN278.1-1975,ASSUPPLEMENTEDBYREGULATORYGUIDE1.148(FORMOTOR-OPERATEDCARBONSTEELVALVES21/2INANDLARGER)ANSIN278.1-1975/RegulatoryGuide1.148(paragraphnumber)RBSValveSpecificationRequirement 2ThedesignspecificationshallidentifytheNotaddressed.relationshiporcorrespondencebetweenthevalvefunctionalcharacteristicsandvalve categoriesA,B,C,andDgiveninIWV-2200 ofSectionXIoftheASMEcode.3.1Thedesignspecificationshallprovidethevalvemanufacturerwithinformationconcerning:1.MethodofoperationThevalvedatasheetidentifiesthevalveasbeingmotoroperated.Specificationtitleandscopesectionalso identifythetypeofoperation.2.FrequencyofvalveuseorfunctionNotaddressed.3.AllowableleakagerateThespecificationrequiresseatleakagetobeinaccor-dancewithMSS-SP-61,1961edition,asmodifiedby E&DCRNo.P-11,908.4.NormalvalvepositionNotaddressed.3.2Thedesignspecificationshallprovidethevalvemanufacturerwiththefollowinginforma-
tion:a.DesignpressureandtemperatureSpecifiedinthevalvedatasheet.b.NormaloperatingpressureandtemperatureNormaloperatingpressureislistedinthevalvedatasheet.However,temperatureisgivenasarange,and normaltemperatureisnotgiven.c.FlowcapacityatstatedpressureNotaddressed.
differentiald.Time-temperaturedataforsignificantNotaddressed.thermaltransients,includinganumber ofcyclese.SeismicaccelerationanddynamicloadingThespecificationaddressestheacceleration.towhichthevalveistobesubjectedf.LoadingsfromstructuralsupportsorNotaddressed.restraintsactingdirectlyonthevalveg.FundamentalfrequencyofthevalveThespecificationrequiresthevalvemanufacturertoassemblyfurnishthevalveassemblyfrequencyanddemonstratethatitisgreaterthan33Hz.Thespecification providesthemethodtobeusedindeterminingmethod.
2of6August1987RBSUSARTABLE3.9A-21(Cont)ANSIN278.1-1975/RegulatoryGuide1.148(paragraphnumber)RBSValveSpecificationRequirementh.Interdependenceandnumberofcyclesoftime,Cyclicloadingduetoplanttransientsisaddressedtemperature,pressure,anddynamicloadingintheClass1valvespecifications.resultingfromplanttransientsi.TimerelationshipbetweenappliedseismicNotaddressed.loadsandotherconcurrentloadingsj.FrequencyresponsespectraforOBEandSSEForvalves,maximumaccelerationsfromallthedy-andotherpotentialforcingfunctionssuchnamiceventsareusedinsteadofresponsespectra.asthosefromattachedpiping,pumps,re-straints,etc,attachedtothevalvek.Maximumstaticanddynamicdifferentialpres-Onlythemaximumdifferentialpressureisaddressedsurethatexistsacrosstheclosuredevice,inthespecification.Dynamicdifferentialandincludingpotentialwaterhammerwaterhammerisnotaddressedinthespecification.
Maximumflowforthevalveisgiveninthedata sheetalongwithvalveclosingtime,butwithout knowledgeofsystemconfiguration,hammercannotbe calculated.Dynamicdifferentialpressurecanbe calculatedfromthedatagivenbytheuseofValveC.3.3ThedesignspecificationshallprovidetheNotaddressed.valvemanufacturerwithanticipatedmodes ofvalveoperation,includingsafety-relatedfunctions(i.e.,open,close,as-is,etc).Theoperatingcondition,power versusoperatingcondition,andenvironmen-talconditionshallbeidentified.3.3.1Thenumberofoperationalcycles,differen-tialpressure(amountanddirection),system fluid,flow(quantityanddirection),
imposedloads,temperatureandpressurecon-ditionforeachofthefollowingoperational categoriesshallbespecified:a.InstallationtestingNotaddressed.b.HydrostatictestingforthepipingNotaddressed.systemassociatedwiththevalvec.PreoperationaltestingNotaddressed.d.StartuptestingNotaddressed.e.Normalandabnormalplantoperation,in-Cyclesduetotemperature,pressure,anddynamiccludingpostulatedaccidentconditionseventsareaddressed.f.InservicetestingandexercisingNotaddressed.
3of6August1987RBSUSARTABLE3.9A-21(Cont)ANSIN278.1-1975/RegulatoryGuide1.148(paragraphnumber)RBSValveSpecificationRequirementg.ThedesignspecificationshallidentifyValvesareidentifiedasactiveorinactiveonthewhetheranactualvalveassemblywillbevalvedatasheets.requiredtofunctionduringorafteraspecificevent.h.ThedesignspecificationshallstatewhetherNotaddressed.thespecificvalveassemblysafetyfunction appliestoeventsdefinedintheplantopera-tionalmodes(condition)orinthetransient andaccidentclassification.3.3.2Thedesignspecificationshallfurnishthevalvemanufacturerwiththefollowingpower supplyconditions:a.NormalvoltageandfrequencyornormalNormalvoltageandfrequencyaregivenintheactuatorfluidpressureundernormalvalvedatasheet.operatingconditionsb.High-voltagelimitandfrequencyorThespecificationonmotoroperatorslistsmaximummaximumactuatorfluidpressureundervoltageas10percentaboveratedvoltage.themostseverefunctionrequirementc.Low-voltagelimitandfrequencyorThespecificationsectiononmotoroperatorslistsminimumactuatorfluidpressureunderminimumvoltageas20percentbelowratedvoltage.themostseverefunctionrequirementd.AcceptableoperatingtimerequirementThespecificationliststhemaximumopeningorandtoleranceforoperatingtimesinclosingtimeforthevalve.Noallowanceismadeeachcaseofa,b,andcaboveforvaryingvoltage.e.Motorpoweranddutyrequirements,PowerrequirementsarefurnishedbytheSelleronincludingstallcurrentthespecificationSection3valvedatasheet.Lockedrotorcurrentisonlyfurnishedinsomecases.3.3.2.1Electricalpowershallbeidentifiedasac(sin-Electricalpowersuppliedisidentifiedinthespeci-gleorthree-phase)ordcwithvoltageandfre-ficationvalvedatasheets.quencyoperatingrangespecified.3.3.2.2Forhydraulicandpneumaticvalves,thedesignspecificationshallprovidethevalvemanufac-turerwiththefollowing:a.Typefluidbybrandname,ifapplicableNotapplicable.b.FluidpressureandtemperaturerangeNotapplicable.c.LimitationofflowrateNotapplicable.d.Typeanddegreeoffiltration,includingNotapplicable.micronsize,particulates,dewpoint,etc,asapplicable 4of6August1987RBSUSARTABLE3.9A-21(Cont)ANSIN278.1-1975/RegulatoryGuide1.148(paragraphnumber)RBSValveSpecificationRequiremente.Actuatorsignal,type,andrangeofNotapplicable.signal,andrequiredvalveresponsewithincreasinganddecreasingsignal.3.3.3Thedesignspecificationshallprovidethevalvemanufacturerwiththefollowing environmentalinformation:a.Thenormalenvironmentalconditionsatthetimesafety-relatedfunctionsarerequired,including:AtmosphericpressureGiveninbasisofdesignsectionofthe
specification.AtmospherictemperatureGiveninbasisofdesignsectionofthe
specification.AtmosphericchemistryNotaddressed.
HumidityGiveninbasisofdesignsectionofthe
specification.RadiationlevelsGiveninbasisofdesignsectionofthe
specification.b.Theabnormalenvironmentalconditionsatthetimesafety-relatedfunctions arerequired,including:AtmosphericpressureGiveninbasisofdesignsectionofthe
specification.AtmospherictemperatureGiveninbasisofdesignsectionofthe
specification.AtmosphericchemistryNotaddressed.
HumidityGiveninbasisofdesignsectionofthe
specification.RadiationlevelsGiveninbasisofdesignsectionofthe
specification.DurationofathrougheaboveNotaddressed.3.4Thedesignspecificationshallidentifyforthevalvemanufacturerthefollowingseat leakagelimits:
5of6August1987RBSUSARTABLE3.9A-21(Cont)ANSIN278.1-1975/RegulatoryGuide1.148(paragraphnumber)RBSValveSpecificationRequirementb.AcceptableleakagelimitsformainclosureAllowableleakageforvalvesisaddressedunderhy-elementsforvalvesidentifiedaslowdrostatictestingsectionofthespecification.Noleakageandnominalleakagedifferentiationismadebetweennominal-orlow-leakagevalves.c.ThedirectionofleakageandpressureThehydrostatictestingsectionaddressesmethoddifferentialasrequiredoftesting,allowableleakagerates,anddirection ofappliedpressure.d.FluididentificationtowhichleakageThespecificationonlyidentifiesthefluidtobelimitsapplyusedforhydrostatictesting,notthesystemfluid.e.FluidtemperatureatwhichleakageThespecificationonlyaddressesthetemperatureoflimitappliesthehydrostatictestfluid,notthesystemfluid.f.FluiddifferentialpressureatwhichDifferentialpressureisidentifiedforhydrostatictheleakagelimitappliestestonly.g.Anyoverallleakagelimits,inadditionNotaddressed.tomainclosures,suchasstemleakage orflangeleakageI.ThedesignspecificationshallidentifyNotaddressed.whetheranactualvalveassemblywillbe requiredtofunctionduringoraftera specificevent.3.6Uniquematerialrequirementsofthevalve,actuator,andactuatorcontrolsshallbe specified,includingthefollowing:a.UnacceptablepartortrimmaterialsThevalvedatasheetsidentifythosematerialswhichareacceptableforvalveconstruction.b.HalogenlimitsforgasketsandGasketandpackingmaterialsarespecifiedbytheEn-packinggineerswithhalogenbeingoneofthebasisforchoice.c.Limitationsonnonferrousmaterials,Notaddressed.internal(wetted)orexternald.SpecialsurfacepreparationsorCoveredundershoppaintingsection.coatingsrequirede.UnusualprocessfluidchemistryNotaddressed.3.7ThevalveorientationshallbeTheseismicsectionofthespecificationunderspecifiedifunusual.Pressurereliefstaticanalysisrequiresqualificationonavalvepipingarrangementsand,whereworst-casebasisincludingorientation.used,detailsofwaterseal arrangementsshallbedescribed.
6of6August1987RBSUSARTABLE3.9A-21(Cont)ANSIN278.1-1975/RegulatoryGuide1.148(paragraphnumber)RBSValveSpecificationRequirement3.8SpecialprovisionsforvalveVendoroperatinginstructionsrequirereviewmaintenanceshallbespecified.andapproval.Anyspecialrequirementsim-posedbytheEngineerswouldbeaddedtothe
manual.
1of1August1987RBSUSARTABLE3.9A-22CODECLASSN-318APPLICATIONSPipeSupportMethodofNumberAttachmentPipingSystem 1RHS*PSST2060A2FilletweldResidualheatremoval 2SWP*PSST1761A3FilletweldServicewater 1WCS*PSSP3186A2FullpenetrationReactorwatercleanup
weld 1SWP*PSA8087A3FilletweldServicewater 1RHS*PSR3059A2FullpenetrationResidualheatremoval
weld 1RHS*PSST3157A2FilletweldResidualheatremoval 1RHS*PSSP2101A2FilletweldResidualheatremoval Revision141of2September2001Normal,Upset,andTestingConditionsNo.ofCycles1.Boltup (1)1232.Designhydrostatictest 40a.Leakchecksat400psigpriortopoweroperation,3cycles/startup3.Startup(100°F/hrheatuprate)
(1)1204.Dailyreductionto75%power (1)10,0005.Weeklyreduction50%power (1)2,0006.Controlrodpatternchange (1)4007.Lossoffeedwaterheaters(80cycles 80 total)8.50%safeshutdownearthquakeeventatratedoperatingconditions 10/50 (4)9.Scram:a.Turbinegeneratortrip,feedwateron,isolationvalvesstayopen 40b.Otherscrams 140c.Lossoffeedwaterpumps,isolation10valvesclosedd.Turbinebypass,singlesafetyorreliefvalveblowdown 810.Reductionto0%power,hotstandby,shutdown(100°F/hrcooldownrate)³2² 11111.Unbolt 12314312.SingleLoopOperation(Recirculation) 25 314 RBSUSAR (1)Appliestoreactorpressurevesselonly.
(2)Bulkaveragevesselcoolanttemperaturechangeinany1-hrperiod.
(3)Theannualencounterprobabilityoftheonecycleemergencyeventis<10
-2and<10-4forfaultedtype events.(4)FiftypeakOBEcyclesforNSSSpiping,10peakOBEcyclesforotherNSSSequipmentandcomponents.Revision32of2August1990TABLE3.9b-1(Cont)PLANTEVENTS313.Scram:a.Reactoroverpressurewithdelayedscram,feedwaterstayson,isola-tionvalvesstayopen 1 (3)b.Automaticblowdown 1 (3)14.Improperstartofcoldrecirculation 1 (3)loop15.Suddenstartofpumpincoldrecir-1 (3)culationloop16.Hotstandbywithreactordrainshutofffollowedbypumprestart 1 (3)FaultedCondition17.Piperuptureandblowdown 1 (3)18.Safeshutdownearthquakeatrated 1 (3)operatingconditions19.Safeshutdownearthquakeduringrefueling 1 (3)3 Revision 14 2 of 2 RBS USAR TABLE 3.9B-2 DESIGN LOADING COMBINATIONS AND ACCEPTANCE CRITERIA FOR NSSS-SUPPLIED ASME CODE CLASS 1, 2, AND 3 PIPING AND COMPONENTS INTRODUCTION
Table 3.9B-2 provides the design loading combinations and acceptance criteria for
all NSSS ASME Code Class equipment reported in Tables 3.9B-2a through 3.9B-2aa.
These tables list the major safety-related mechanical components in the plant on
a component-by-component basis. For each component, the loading conditions, stress criteria, calculated stresses, and the allowable stresses are also
summarized. The format in these tables is not consistent since the analytical
method and depth of detail, necessary to demonstrate the safety aspects of
various components, differ. References throughout Section 3.9B to Table 3.9B-2
should be construed to include Tables 3.9B-2a through 3.9B-2aa unless an
individual table is specified.
Revision 14 2 of 2 September 2001 RBS USAR TABLE 3.9B-2 (Cont)
Load Case N SRV x (1)SRV ADS OBE SSE SBA/IBA (2)DBA ASME Code Service Limits 1 X X B 2 X X X B 3 X X X D (3)4 X X X (SBA only) C (3)5 X X X X D (3)6 X X X X D (3)7 X X X D (3)8 X A 9 X X B____________________________ NOTES: 1. SRV ALL or SRV 1 - whichever is controlling is used. 2.SBA or IBA, whichever is greater, except Case 4.3.All ASME Code Class 1, 2, and 3 piping systems that are required to function for safe shutdown under the postulated events are designed to meet the requirements of the NRC memorandum, Evaluation of
Topical Report-Piping Functional Capability Criteria, dated July 17, 1980.
KEY TO LOAD DEFINITIONS: 14N = Normal load consists of pressure, dead weight, and thermal loads. OBE = Operating basis earthquake loads.
SSE = Loads due to vibratory motion from safe shutdown earthquake loads.
SRV 1= SRV discharge induced loads from one valve's subsequent actuation.
SRV ALL = The loads induced by actuation of all SRVs which activate within milliseconds of each other during the postulated small or intermediate-size pipe rupture.
SRV ADS = The loads induced by the actuation of SRVs associated with the automatic depressurization system which actuate within milliseconds of each other during the postulated small or intermediate-size pipe rupture. DBA = Design basis accident is the sudden break of the main steam or recirculation lines (largest postulated breaks). DBA-related loads include main vent clearing and pool swell, chugging, condensation oscillation, and annulus pressurization. SBA = Small break accident.
IBA = Intermediate break accident.
14 RBS USAR TABLE 3.9B-2a REACTOR PRESSURE VESSEL AND SHROUD SUPPORT ASSEMBLY Vessel Support Skirt ASME B&PV Code Section Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi)
Stress (psi)
Revision 14 1 of 4 September 2001 Material: SA-533, Gr. B, Class 1
A. Normal and Upset Condition:
P m S m Normal and upset Primary membrane 26,700 <18,680 S m = 26,700 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure P L + P b 1.5 S m 3. OBE Primary membrane 40,050 <39,920 S m = 26,700 psi @ 575°F
- 4. SRV plus bending
B. Emergency Condition:
P m S y Normal and upset Primary membrane 42,800 <25,200 S y = 42,800 psi @ 528°F condition loads:
- 1. Normal loads 2. Pressure P L + P b 1.5 S y 3. SRV Primary membrane 64,300 <53,280 S = 42,800 psi @ 528°F
- 4. Chugging plus bending (See Note 1)
C. Faulted Condition:
P m S y (2) Faulted Primary membrane 42,800 (2) <25,200 S y = 42,800 psi @ 528°F condition loads:
- 1. Normal loads
- 2. Pressure 3. Jet reaction Primary membrane 64,300 (2) <53,280 P L + P b 1.5 S y (3) 4. Scram plus bending S y = 42,800 psi @ 528°F
- 5. SSE (See Note 1) 14 D. Maximum Cumulative Usage Factor: 0.999 at RPV Support Skirt - Bottom Head Junction 14 RBS USAR TABLE 3.9B-2a (Cont)
Shroud Support ASME B&PV Code Section Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi) Stress (psi)
Revision 17 2 of 4 Material: SB-168 Inconel
A. Normal and Upset Condition: 14 P m 0.9 S m Normal and upset Primary membrane 20,970 <16,941 S m = 23,300 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure P L + P b (1.5)(0.9)S m 3. OBE Primary membrane 31,450 <18,460 S m = 23,300 psi @ 575°F
- 4. SRV plus bending B. Emergency Condition:
P m 0.9 S m Emergency Primary membrane 20,970 (2) <16,941 S m = 23,300 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure P L + P b (1.5)(0.9)S
- 3. SRV Primary membrane 31,450 (2) <18,362 S m = 23,300 psi @ 575°F
- 4. Chugging plus bending (See Note 1)
C. Faulted Condition:
P m (0.7)(0.9) S y Faulted Primary membrane 46,600 (2) <30,900 S y = 74,000 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure P L + P b (1.5)(0.9) S y 3. Jet reaction Primary membrane 69,900 (2) <64,667 S y = 74,000 psi @ 575°F 4. Vent clearing plus bending (See Note 1)
- 5. SSE 14 D. Maximum Cumulative Usage Factor: 0.406 at top surface of shroud support plate RBS USAR TABLE 3.9B-2a (Cont)
RPV Feedwater Nozzle ASME B&PV Code Section Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi)
Stress (psi)
Revision 14 3 of 4 September 2001 Material: SA508 Cl.1 Safe End
A. Normal and Upset Condition:
P m 17,700 Normal and upset Primary membrane 17,700 16,220 S m = 17,700 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure (upset)
P L + P b 1.5 S m 3. OBE Primary membrane 26,550 22,930 S m = 17,700 psi @ 575°F
- 4. SRV plus bending
B. Emergency Condition:
P m S y Emergency Primary membrane 25,900 21,420 S y = 25,900 psi @ 594°F condition loads:
- 1. Normal loads
- 2. Pressure (upset)
P L + P b 1.5 S y 3. Chugging Primary membrane 38,900 22,400 S y = 25,900 psi @ 594°F
- 4. SRV plus bending (See Note 1)
C. Faulted Condition:
P m 2.4 S m Faulted Primary membrane 42,480 23,210 S m = 17,700 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure (accident)
P L + P b 1.5 S y 3. Chugging Primary membrane 38,900 33,740 S y = 25,900 psi @ 594°F
- 4. SRV plus bending (See Note 1)
- 5. SSE 14 D.Maximum Cumulative Usage Factor: 0.946 at safe end (Nozzles N4B - D) 0.827 at safe end (Nozzle N4A) 14 RBS USAR TABLE 3.9B-2a (Cont)
CRD Penetration ASME B&PV Code Section Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi)
Stress (psi) 4 of 4 August 1987 Material: SB-167 Inconel
A. Normal and Upset Condition:
P m S m Normal and upset Primary membrane 20,000 <8,490 S m = 20,000 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure (upset)
P L + P b 1.5 S m 3. OBE Primary membrane 30,000 <15,200 S m = 20,000 psi @ 575°F
- 4. SRV plus bending
B. Emergency Condition:
P m S y Emergency Primary membrane 24,100 <10,750 S y = 24,100 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure (upset)
P L + P b 1.5 S y 3. Chugging Primary membrane 36,150 <20,100 S y = 24,100 psi @ 575°F
- 4. SRV plus bending (See Note 1)
C. Faulted Condition:
P m 2.4 S m Faulted Primary membrane 48,000 <10,750 S m = 20,000 psi @ 575°F condition loads:
- 1. Normal loads
- 2. Pressure (accident)
P L + P b 3.6 S m 3. Jet reaction Primary membrane 72,000 <20,100 S m = 20,000 psi @ 575°F
- 4. Scram plus bending (See Note 1)
NOTES: (1) Value of S m or S y is shown depending upon the controlling criteria (e.g., 1.8 S m or 1.5 S y for B). (2) Using emergency allowables for conservatism.
RBS USAR TABLE 3.9B-2aa FUEL ASSEMBLY (INCLUDING CHANNEL) PEAK ACCELERATION
______________________________
(1) Evaluation basis accelerations and evaluations are contained in NEDE-21175-3-P-A.
(2) The calculated maximum fuel assembly gap opening for the most limiting load combination is 0.19 (4) in. (3) The fatigue analysis indicates that the fuel assembly has adequate fatigue capability to
withstand loadings resulting from multiple SRV actuations and the OBE+SRV event.
(4) These values are determined using methodology contained in NEDE-21175-3-P-A.
1 of 1 August 1987 Acceptance Criteria Loading Primary Load Type Calculated Peak Acceleration Evaluation Basis Acceleration Acceleration envelope Horizontal direction:
Horizontal
acceleration 2.0 G (1)1.Peak Pressure profile 2.Safe shutdown earthquake 3.Annulus pressurization Vertical direction:
Vertical accelerations 4.9 G (4) (1)1.Peak pressure2.Safe shutdown earthquake 3.Annulus pressurization 4.Scram RBS USAR TABLE 3.9B-2b REACTOR INTERNALS AND ASSOCIATED EQUIPMENT Grid - Highest Stressed Beam
Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi) Stress (psi)
Revision 14 1 of 3 September 2001 Material: 304L
A. Normal & Upset Condition: 14 P m S m Normal & upset Primary membrane 14,300 5,880 S m = 14,300 psi @ 550°F condition loads: 1. Normal loads 2. Upset pressure P L + P b 1.5 S m 3. OBE Primary membrane 21,450 17,219 S m = 14,300 psi @ 550°F
- 4. SRV plus bending 14 B. Emergency Condition:
P m 1.5 S m Emergency Primary membrane 21,450
<5,547 S m = 14,300 psi @ 550°F condition loads: 1. Normal loads 2. Upset pressure P L + P b 2.25 S m 3. Chugging Primary membrane 32,175
<16,244 S m = 14,300 psi @ 550°F
- 4. SRV plus bending (See Note 1)
C. Faulted Condition: 14 P m 2.4 S m Faulted Primary membrane 34,320 17,566 S m = 14,300 psi @ 550°F condition loads: 1. Normal loads
- 2. Accident pressure P + P 3.6 S 3. Chugging Primary membrane 51,480 51,012 S = 14,300 psi @ 550°F
- 4. SSE plus bending (See Note 1)
Core Plate (Ligament In Top Plate)
Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi) Stress (psi)
Revision 17 2 of 3 Material: 304L
A. Normal and Upset Condition: 14 P m S m Normal & upset Primary membrane 14,300 8,187 S m = 14,300 psi @ 550°F condition loads: 1. Normal loads 2. Pressure (upset)
P L + P b 1.5 S m 3. OBE Primary membrane 21,450 16,708 S m = 14,300 psi @ 550°F
- 4. SRV plus bending 14 B. Emergency Condition:
P m 1.5 S m Emergency Primary membrane 21,450
<7,949 S m = 14,300 psi @ 550°F condition loads: 1. Normal loads 2. Pressure (upset)
P L + P b 2.25 S m 3. Chugging Primary membrane 32,175
<16,221 S m = 14,300 psi @ 550°F
- 4. SRV plus bending (See Note 1)
C. Faulted Conditions 14 P m 2.4 S m Faulted Primary membrane 34,320 30,203 S m = 14,300 psi @ 550°F condition loads: 1. Normal loads
- 2. Pressure (accident)
P L + P b 3.6 S m 3. Jet reaction Primary membrane 51,480 41,874 S m = 14,300 psi @ 550°F 4. Vent clearing plus bending (See Note 1)
Vent and Head Spray Nozzle ASME B&PV Code Sec.
Primary Allowable Maximum III Primary Stress Stress Stress Calculated Limit Criteria Loading Type (psi) Stress (psi)
Revision 17 3 of 3 Material: SA-350 LF-2
A. Normal and Upset Condition:
P + Q m 3.0 S m Normal & upset Primary membrane 54,300 52,644 S m = 18,100 psi @ 550°F condition loads: plus bending plus 1. Normal loads secondary membrane 2. Pressure (upset)
P L + P b 1.8 S m Emergency Primary membrane 32,600 28,783 condition loads: plus bending S m = 18,100 psi @ 550°F
- 1. Normal loads (See Note 1)
- 2. Pressure (upset)
- 3. Chugging
- 4. SRV C. Faulted Condition:
P L + P b 1.5 (0.7 S u ) Faulted Primary membrane 73,500 42,400 condition loads: plus bending S u = 70,000 psi @ 550°F
- 1. Normal loads (See Note 1)
- 2. Pressure (accident)
- 3. Annulus pressurization
- 4. SSE 5. Jet reaction
NOTE: 1. Value of S m or S y is shown upon the controlling criteria (e.g., 1.8 S m or 1.5 S y for B).
RBS USAR 1 of 4 August 1987 TABLE 3.9B-2c REACTOR WATER CLEANUP REGENERATIVE HEAT EXCHANGER Minimum Thickness Actual Required Thickness Criteria Loading Component (in) (in)
- 1. Closure Bolting Bolting requirements are Design basis loads Bolting- ---
1.37 calculated in accordance consisting of:
Channel with rules of ASME Codes, to shell Section III a. Design pressure flange N/A N/A b. Design temperature Primary stress limit
- c. Design gasket load for SA-193-B7, s = 25,000 psi
- 2. Wall Thickness Wall thickness requirements a. Design pressure Shell 0.8146 1.00 are calculated in accordance b. Design temperature Shell head 1.082 1.125 with rules of ASME Section III, Channel shell 0.8146 1.00 Class 3 and TEMA Class C.
Channel cover 1.082 1.125 Tube sheet 4.156 5.00 Tubes (BWG) 0.095 13 BWG Primary stress limit for:
Carbon steel S = 17,500 psi Austenitic stainless steel tubing S = 11,900 psi RBS USAR 2 of 4 August 1988 TABLE 3.9B-2c (Cont)
Allowable Actual Nozzle Nozzle Criteria Loading Component Loads Loads 3. Nozzle Loads The maximum forces and a. Design pressure Nozzle N1
- Fo = 1,520 lb moments due to pipe b. Design temperature (tube inlet) Mo = 1,230 ft lb reactions shall not
- c. Dead weight exceed the allowable d. Thermal expansion Nozzle N2 Fo = 1,520 limits. e. Seismic (Class II (tube outlet) Mo = 1,230 basis)
Nozzle N3 Fo = 2,910 (shell inlet) Mo = 3,530
Nozzle N4 Fo = 2,410 (shell outlet) Mo = 3,530
- Maximum allowable piping loads shall not exceed the following relationship for each nozzle:
Fi/Fo + Mi/Mo 1 (See Note) where: Fi (lb) = Maximum of three orthogonal forces (Fx,Fy,Fz).
Mi (ft lb) = Maximum of three orthogonal moments (Mx,My,Mz).
Fo (lb) = The allowable value of Fi when all moments are zero.
Mo (ft lb) = The allowable value of Mi when all forces are zero. 1 NOTE: The interaction equation Fi/Fo + Mi/Mo 1 was exceeded for the N1 & N4 nozzle on 1G33*EB001A and the N2 nozzle on 1G33*EB001C.
The actual loads were evaluated and approved by the NSSS vendor with
a maximum stress level of 92% of the allowable stress.
1 RBS USAR 3 of 4 August 1987 TABLE 3.9B-2c (Cont)
II. NONREGENERATIVE HEAT EXCHANGER Minimum Thickness Actual Required Thickness Criteria Loading Component (in) (in)
- 1. Closure Bolting Bolting requirements are Design basis loads Bolting -
1.37 calculated in accordance consisting of:
channel with rules of ASME Codes, to shell Section III a. Design pressure flange
- b. Design temperature Allowable Stress 25,000 psi
- c. Design gasket load
- 2. Wall Thickness Wall thickness requirements a. Design pressure Shell 0.1121 0.375 are calculated in accordance b. Design temperature Shell head 0.1653 0.375 with rules of ASME Section III, Channel shell 0.908 1.00 Class 3 components and TEMA Channel cover 1.113 1.25 Class C. Tube sheet 4.408 5.625 Tubes (BWG) 0.058 17 BWG Primary stress limit for:
Carbon steel S = 17,500 psi Austenitic stainless steel tubing
S = 11,900 psi
RBS USAR 4 of 4 August 1987 TABLE 3.9B-2c (Cont)
Allowable Actual Nozzle Nozzle Criteria Loading Component Loads Loads
- 3. Nozzle Loads The maximum forces and a. Design pressure Nozzle N1 *Fo = 1,520 lb
moments due to pipe b. Design temperature (tube inlet) Mo = 1,230 ft lb reactions shall not
- c. Dead weight exceed the allowable d. Thermal expansion Nozzle N2 Fo = 1,520 limits. e. Seismic (Class II (tube outlet) Mo = 1,230 basis)
Nozzle N3 Fo = 2,910 (shell inlet) Mo = 4,850
Nozzle N4 Fo = 2,910 (shell outlet) Mo - 4,850
_____________________________
- Maximum allowable piping loads shall not exceed the following relationship for each nozzle:
Fi/Fo + Mi/Mo 1 (See Note) where: Fi (lb) = Maximum of three orthogonal forces (Fx,Fy,Fz). Mi (ft lb) = Maximum of three orthogonal moments (Mx,My,Mz).
Fo (lb) = The allowable value of Fi when all moments are zero.
Mo (ft lb) = The allowable value of Mi when all forces are zero.
Revision 14 1 of 4 September 2001 RBS USAR TABLE 3.9B-2d ASME CODE CLASS 1 MAIN STEAM PIPING AND PIPE-MOUNTED EQUIPMENT - HIGHEST STRESS
SUMMARY
Piping Stress Acceptance Criteria Limiting Stress Type Calculated Stress (1) or Usage Factor Allowable Limits Ratio Actual/ Allowable Loading Identification of Locations of Highest Stress ASME B&PV Code Section III, NB-3600 Design Condition: 10 Eq. 9 < 1.5 S m 10 Primary 11,771 26,550 0.44
- 1. Pressure
- 2. Weight
- 3. OBE
Guide 101 Service Levels A & B (Normal & Upset) Condition: 14 Eq. 12 3.0 S m
Secondary
42,260
53,100
0.80 Main Steam Line A
Elbow (Nozzle) 10 Service Levels A & B (Normal & Upset) Condition:
10 Eq 13 < 3.0 S m Primary plus secondary (except thermal expansion) 32,532 54,600 0.60 Main Steam Line C
SRV Sweepolet (First) 14 Service Levels A & B (Normal & Upset)
Conditions: 10 Cumulative Usage Factor
NA
0.07
1.0
0.07
Flow Element Service Level B (Upset)
Condition: 14 Eq. 9 1.8 S m & 1.5 S m 10 14
Primary
15,512
31,860
0.49
- 1. Pressure
- 2. Weight
- 3. OBE
- 4. SRV Main Steam Line C
Guide G101 Revision 14 2 of 4 September 2001 RBS USAR TABLE 3.9B-2d (Cont)
Acceptance Criteria Limiting Stress Type Calculated Stress (1) or Usage Factor Allowable Limits Ratio Actual/ Allowable Loading Identification of Locations of Highest Stress Service Level C (Emergency)
Condition: 14 Eq. 9 < 2.25 S m & 1.8 S y
Primary
16,008
40,950
0.39
- 1. Pressure
- 2. Weight
- 3. Chugging
SRV Sweepolet (Fourth) Service Level D (Faulted)
Condition: 10 Eq. 9 < 3.0 S m 10 14
Primary
20,414
54,600
0.37 1. Pressure
- 2. Weight
- 3. SSE
- 4. Annulus
pressurization Main Steam Line D
SRV Sweepolet (Third)
Revision 14 3 of 4 September 2001 RBS USAR TABLE 3.9B-2d (Cont)
Equipment Loading Component/
Load Type Highest Calculated Load Allowable Load Ratio Calculated Allowable Loading Identification of Equipment with Highest Loads 14 Service Level A & B 22,386 psi 120,000 psi 0.195 1. Pressure
- 2. Weight
- 3. OBE
- 4. SRV Main Steam Line C
Snubber S106
Service Level C & D 35,182 psi 180,000 psi 0.196 1. Pressure
- 2. Weight
- 3. Annulus
pressurization
- 4. SSE Main Steam Line C
Snubber S106
Bonnet/Moment 573,791 in-lb 1,469,900 in-lb 0.390 1. Pressure
- 2. Weight
- 3. Thermal Expansion
- 4. Annulus
pressurization
- 5. SSE Main Steam Line A
MSIV Flange/Moment 14 450,430 in-lb 1,699,950 in-lb 0.265 1. Pressure
- 2. Weight
- 3. Thermal Expansion
- 4. Annulus
pressurization
- 5. SSE Main Steam Line C
SRV Inlet
4 of 4 August 1987 RBS USAR TABLE 3.9B-2d (Cont)
SRV Acceleration Component/
Load Type Highest Calculated Load Allowable Load Ratio Calculated Allowable Loading Identification of Equipment with Highest Loads Horizontal
Acceleration 4.197 g 9.0 g 0.4664 1. Pressure
- 2. Weight
- 3. SSE
- 4. Chugging Main Steam Line A
SRV Vertical Acceleration 2.351 g 10.0 g 0.2351 1. Pressure
- 2. Weight
- 3. Annulus
pressurization
- 4. SSE Main Steam Line A
(1) Appropriate loading combinations of Table 3.9B-2 were considered, and the calculated stresses are for the governing loading combinations.
Revision 14 1 of 4 September 2001 RBS USAR TABLE 3.9B-2e ASME CODE CLASS 1 RECIRCULATION PIPING AND PIPE-MOUNTED EQUIPMENT - HIGHEST STRESS
SUMMARY
Piping Stress 1 Acceptance Criteria Limiting Stress Type Calculated Stress Usage Factor (1) Allowable Limits Ratio Actual/ Allowable Loading Identification of Locations of Highest Stress ASME B&PV Code Section III, NB-3600 Design Condition:
Eq. 9 < 1.5 Sm mPrimary 12,746 psi 25,013 psi 0.51 1.Pressure2.Weight3.OBE (Suction Line)
Hanger Lugs
Loop B Service Levels A & B (Normal & Upset)
Condition: 14 Eq. 12 < 3.0 Sm mSecondary 25,139 psi 50,025 psi 0.50 (Suction Line)
Elbow Loop B Service Levels A & B (Normal & Upset)
Condition:
Eq. 13 < 3.0 Sm m Primary plus secondary (except thermal expansion) 32,761 50,025 psi 0.66 Pump Inlet Loop B Service Levels A & B (Normal & Upset)
Condition:
Cumulative Usage Factor NA 0.0258 1.0 0.0258 RHR Tee Loop B 14 Service Level B (Upset)
Condition:
Eq. 9 > 1.8 Sm & 1.5 Sy m yPrimary 18,218 psi 28,596 psi 0.64 1.Pressure 2.Weight 3.OBE 4.SRV (Suction Line)
RHR Tee Loop B 1 2 of 4 August 1988 RBS USAR TABLE 3.9B-2e (Cont)
Piping Stress 1 Acceptance Criteria Limiting Stress Type Calculated Stress Usage Factor (1) Allowable Limits Ratio Actual/ Allowable Loading Identification of Locations of Highest Stress Service Level C (Emergency)
Condition:
Eq. 9 < 2.25 Sm m & 1.8 Sy Primary 15,032 psi 34,315 psi 0.44 1.Pressure2.Weight 3.SRV (Suction Line)
Hanger Lugs
Loop B Service Level D (Faulted)
Condition:
Eq. 9 < 3.0 Sm mPrimary 19,725 psi 38,128 psi 0.52 1.Pressure2.Weight 3.SSE 4.Annulus pressurization (Suction Line)
RHR Tee Loop B 1 RBS USAR TABLE 3.9B-2e (Cont)
Equipment Loading 1 Revision 14 3 of 4 September 2001 Component/
Load Type Highest Calculated Load Allowable Load Ratio Calculated Allowable Loading Identification of Equipment with Highest Loads 14 Service Level A & B 12,834 lbs 50,000 lbs 0.257
- 1. Pressure
- 2. Weight
- 3. OBE
- 4. SRV Recirc. Loop B
Snubber - S303 (Suction Line)
Service Level
C & D 15,559 lbs 75,000 lbs 0.207 1. Pressure
- 2. Weight
- 3. Annulus
pressurization
- 4. SSE Recirc. Loop B
Snubber - S359 (Discharge Riser)
Flange Moment 433,040 in-lb 1,385,500 in-lb 0.3126 1. Pressure
- 2. Weight
- 3. Thermal
expansion
- 4. Annulus
pressurization
- 5. SSE Recirc. Loop B
Discharge Gate
Valve 1 RBS USAR TABLE 3.9B-2e (Cont)
Recirculation Pump and Motor Acceleration
(1)Appropriate loading combinations of Table 3.9B-2 were considered and the calculated stresses are for the governing loading combinations.
4 of 4 August 1988 Component/
Load Type Highest Calculated Load Allowable Load Ratio Calculated Allowable Loading Identification of Equipment with Highest Loads Horizontal
Acceleration 1.13 g 4.5 g 0.25 1. Pressure
- 2. Weight
- 3. SSE
- 4. Annulus
pressurization Recirc. Loop B
Recirc. Pump Motor
CG Vertical Acceleration 0.45 g 3.0 g 0.15 1. Pressure
- 2. Weight
- 3. SSE
- 4. Annulus
pressurization Recirc. Loop B
Recirc. Pump Motor
CG 1 RBSUSARTABLE3.9B-2fRECIRCULATIONFLOWCONTROLVALVE20"SIZE(H.D.)CODE:ASMESECTIONIII1974EDITIONWITHS76ADDENDA Par Calculated Ratio No.Component-StressDesignProceduresAllowableLimitOrActualValue Calc/Allowed1of2August19871.0Body,Bonnet,Cartridge,Covers1.1Loads-DesignPressureSystemRequirements1675psiLoads-DesignTemperatureSystemRequirements 575F1.2BodyPressureRatingASMESecIII,NB3545.1-2984psi1.3BodyMin.WallThickness NB3541 t m2.213in.t m=2.375in 1.0731.4Max.PrimaryBodyMembraneStress NB3545.1 P m3S m (575F)P m=8,860psi0.50917,380psi1.5Max.PrimaryPlusSecondaryBodyStressNB3545.2 S n3S m S m=21,340psi0.40952,140psi1.6BonnetMin.WallThickness NB3541 t m=1.025in t m=3.50in 3.411.7Max.BonnetPrimaryStress NB3545.1 P mS m (575F)P m=5,730psi0.32917,380psi1.8Max.PrimaryPlusSecondaryBonnet NB3545.2 S m3S m (575F)S n=16,970psi0.325 Stress52,140psi1.9CyclicRequirements NB3545.3 N a>2000cyc.N a=10cycl.1.10FatigueAnalysisUsageFactor NB3550 I t1.0I t=.00181.11BodytoBonnetFlangeMax.Stress NB3647.1 S m=26,070psi S m=19,260psi0.738(1.5x17,380)1.12BodytoBonnetStuds-Area NB3647.1 A b51.05inA b=71.04in 1.39BodytoBonnetStudsPrimaryStudStress S m=27,000psi S b=19,380psi0.71BodytoBonnetStudsMaximumStudStress 3S m=81,000psi S b=19,590psi0.241.13TopBonnetCover-ThicknessNB3646&SecVIII-UG-34t m4.28int m=4.75in 1.109 RBSUSARTABLE3.9B-2f(Cont)
Par Calculated Ratio No.Component-StressDesignProceduresAllowableLimitOrActualValue Calc/Allowed2of2August19871.14TopBonnetCoverStuds-Area NB3647.1 A b30.97in 2 A m=32.82in 2 1.059TopBonnetPrimaryStudStress S m=27,000psi S m=25,500psi0.944TopBonnetMaximumStudStress 3S m=81,000psi S m=30,270psi0.3731.15BottomCoverThicknessNB3646&SecVIII,UG-34t m2.88int m=4.00in 1.3881.16BottomCoverPrimaryStudStress NB3647.1 S m=27,000psi S m=18,250psi0.675BottomCoverMaximumStudStress 3S m=81,000psi S m=23,600psi0.291BottomCoverStudsArea A b12.08inA b=17.90in 1.481.17ActuatorCartridge-ThicknessNB3646&SecVIIIUG-34t m2.40int m=3.25in 1.3541.18ActuatorCartridgeStuds-Area NB3647.1 A b6.96inA b=17.9in 2.57ActuatorCartridgePrimaryStudStress S m=27,000psi S m=10,502psi0.388ActuatorCartridgeMaximumStudStress 3S m=81,000psi S m=17,460psi0.215 RBS USAR TABLE 3.9B-2g MAIN STEAM SAFETY/RELIEF VALVES SPRING-LOADED DIRECT ACTING TYPE ASME CODE SECTION III, JULY 1974, INCLUDING ADDENDA THROUGH SUMMER 1975 1 of 7 August 1987 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated 1.Body inlet and outlet flange stresses S H = fMo + PB < 1.5 S m 24g L 1 B fMo P b B 2 + 4g o Lg 1 B (4te/3+1)Mo 2
Lt J TMo - ZS R t 2 J Inlet P b (Crosby) =
1.5 S m = 27,060 psi (inlet) &
= 29,100 psi (outlet)
Inlet: S H = 0.99 S m = 0.66 (allowable)
Note, Topics 1 and 2:
Design Pressures:
P d =1375 psig (inlet)
P(codes);
J (Crosby) =
B(codes) S R = 0.17 S m = 0.12 (allowable)
S T = 1.1 S m = 0.74 (allowable)
P b =625 psig (outlet)
S R = (4te/3+1)Mo < 1.5 S m 2 Lt B Outlet: Crosby notation uses P FD in place of P b , Outlet: S H = 0.74 S m = 0.5 (allowable)
These are the max
anticipated pressures
under all operating
conditions. Analyses
include applied moments
of M = 400,000 in lb (inlet) &
M = 300,000 in lb (outlet)
The analyses also
include consideration
of seismic, operational, and flow
reaction forces. Since
these safety/relief
valves are pipe-mounted
equipment, refer to the
piping analysis for
verification that the
moments are not
exceeded.
S T = YMo - ZS R < 1.5 S m t 2 B where S H = Longitudinal "hub" wall stress, psi S R = Radial "flange" (body base, inlet) stress, psi S T = Tangential "flange" stress, psi where P FD (Crosby) =
P(Codes).
Crosby uses
B, per Code
notation; J does
not appear.
S R = 0.77 S m = 0.52 (allowable)
S T = 0.2 S m = 0.14 (allowable)
Body Material: ASME SA 105 Inlet: S m at 585 o F -= 18,040 psi Outlet: S m at 500 o F = 19,400 psi RBS USAR TABLE 3.9B-2g 2 of 7 August 1987 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated 2.Inlet and outlet stud area requirements See topic 1 note above.Total cross-sectional
area shall exceed the
greater of:
Am 1=Wm 1 , or Sb where Am 1 = total required bolt (stud) area for condition
Am 2 = total required bolt (stud) area for
gasket seating Am 1=Wm 1 Sb Am 2=Wm 2 Sa where Am (required
minimum is the
greater of Am
and Am; and Ab (actual bolt
area) must
exceed Am Inlet: Am 1 (>Am 2) = 6.696 in 2 Outlet: Am 1 (>Am 2) = 3.925 in 2 Inlet: Ab(actual area)=2.9
Am (allowable)
Outlet: Ab(actual area)=2.2
Am (allowable)
GR B73.Nozzle wall thickness1 Minimum wall thickness criterion:
t min < t A where t min = minimum calculated thickness requirement,
including corrosion
allowance t A = Actual nozzle wall thickness (NOTE: This t min is t m per notation of the
codes). Thin section near valve seat:
t m(a-a) < t b-b Section at about middle of
nozzle: t m(a-a) < t b-b Nozzle Material: ASME SA 182 GR F316 t m(b-b) = 0.223 in t m(a-a) = 0.553 in Actual thickness
greater than t m at the section under
consideration.
t b-b = 2.6(t m(b-b)) t a-a = 1.22(t m(a-a))
RBS USAR TABLE 3.9B-2g 3 of 7 August 1987 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated (Refer to Section 3.9.1.1.9B for thermal
transients information.) 2.Cyclic Rating:
Thermal: It = Nri Ni Fatigue Na > 2,000 cycles, as based on Sa, where Sa is defined as the larger of Sp 1 = (2/3)Q p + P eb + Q T1 + 1.30 TI 2 Or Sp 2 = 0.4Q p + K (P eb + 2Q T1) 2 where Sp 1 = Fatigue stress intensity at inside
surface of crotch,
psi Sp 2 = Fatigue stress intensity at inside
surface of crotch,
psi It = Nri (i=1, 2, & 3)
Ni Na 2,000 cycles, as based on Sa, where Sa=Sp 1 (>Sp 2) (Uses same notation as codes)
It (max 1.0 [= 0.003xIt (max)]
Na > 2,000 cycles It = 0.0003 Na (based on Sa=Sp
- 1) >10 6 cycles, therefore satisfies criterion RBS USAR TABLE 3.9B-2g Revision 8 4 of 7 August 1996 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated 4.Bonnet Flange Strength S H = fMo + PB < 1.5 S m 2 4g o Lg 1 B S R = (4te/3+1)Mo < 1.5 S m 2 Lt B S T = YMo _ ZS R < 1.5 S m t 2 B where S = Longitudinal "hub"
wall stress, psi
S = Radial "flange"
stress, psi
S = Tangential "flange"
stress, psi fMo + P B B 2 4g 1 Lg 1 B P B (Crosby) =
P(Codes);
4te/3+1)Mo 2
Lt B YMo _ ZS R g 1 (Crosby) =
t 2 B g o , g 1 (Code) Bonnet Material: ASME SA 105
S m at 500 o F = 19,400 psi 1.5 S m (for max S H , S R , and S T) = 29,100 psi S H = 1.43 S m = 0.95 (allowable)
S R = 0.50 S m = 0.34 (allowable)
S T = 0.45 S m = 0.30 (allowable)
RBS USAR TABLE 3.9B-2g Revision 8 5 of 7 August 1996 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated 5.Bonnet stud area (allowable)
Total cross-sectional area shall
exceed the greater of:
Am 1 = Wm 1 , or Sb Am 2 = Wm 2 Sa where Am 1 = Total required bolt (stud)
area for operating
condition
Am 2 = Total required bolt (stud)
area for gasket
seating.
Am 1 = Wm 1 where Am (required Sbminimum) is the greater of Am 1 and Am 2 = Wm 2 Am 2; and Ab (actual Sabolt area) must exceed Am.
Body to Bonnet Stud Material:
ASME SA 193 Gr B7 Am 1 (>Am 2) = 3.381 in 2 Ab (actual area) =
1.9 Am (allowable) 6.Disc Insert 8 6.a Original RBS SRVs Bending stress of disc insert per
Roark's Formulas for Stress and
Strain, 4 th Edition, pg. 222-223; superposition of Case No. 21 and
Case No. 22 for flat plates.
Sr = Sr21 +Sr21 8=3p 4a 4 (m+1)Ln(a/b)-a 4 (m+3)+b 4 (m-1)+4a 2 b 2(Case X-21) 4t 2 a 2 (m+1)+b 2 (m-1) + 3W 2a 2 (m+1)Ln(a/b)+a 2 (m-1)-b 2 (m-1)(Case X-22) 2rt 2 a 2 (m+1)+b 2 (m-1)
RBS USAR TABLE 3.9B-2g Revision 8 6 of 7 August 1996 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated where 8 P = Pressure, psig W = Seat load, lb
a = Disc insert
radius, 2.620 in
b = Hub Radius,
0.592 in
t = Average
Thickness,
0.592 in
S r21 = Stress due to pressure, psi
S r22 = Stress due to seat load, psi
m = Reciprocal of
Poisson ratio,
3.333 Condition1:
Valve at design pressure;
seat load equal to zero.
P = 1375 psi; T = 585 o F W = 0 (Notation as shown above)
Disc Insert Material:
SA-637, GR. 718
Temperature: 585 o F S m (585 o F) = 45,175 psi 1.5 S m = 67,763 psi S r = 1.08 S m = 0.72 (allowable) 8Condition2:
Valve at operating pressure;
seat load equal to valve set
load (assuming "worst case" of
1375 psi setpoint), less the
force due to operating
pressure across the disc
insert face.
P = 1000 psi; T < 858 o F W = 8086 lb
W = 8086 lb Allowable stress, all
conditions:
1.5 S m must exceed S
[1.5 S m = 67,763 psi at 585 F]1.5 S m = 67,763 psi S r = 1.24 S m = 0.83(allowable)
RBS USAR TABLE 3.9B-2g Revision 8 7 of 7 August 1996 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated Condition3:
Valve pressurized only at outlet; seat load equal and
opposite to spring compression
load plus force due to pressure
(1375 psi setpoint).
P = 625 psi; T < 585 o F; W = 29,598 lb S m (100 F) = 50,000 psi
[1.5 S m = 75,000 psi at 100 F] 1.5 S m = 67,763 psi S r = 1.16 S m = 0.78 (allowable) Condition4:
Valve unpressurized, spring
compressed
P = 0; T = 100 o F W = 29,652 lb 1.5 S m = 75,000 psi S r = 1.494 S m = 0.996 (allowable) 8 6.b Modified RBS SRVs An ASME Design Report supported the SRV modification. The new design report initially uses a simplified
analysis on the disc insert, using the equations for stresses in flat plates, in order to compare the stresses
resulting from the four loading conditions analyzed for the original SRV's. The results of this simplistic
analysis in each case exceeds allowable limits. A finite element analysis was performed on the disc insert
for the most severe loading conditions. Conditions 1 and 4 were analyzed using an Algor SUPERSAP model
consisting of 514 two dimensional axisymmetric elements. The results of the finite element analysis shows
that the "Flexi-Disc" stress level is acceptable by ASME Section III Class 1 requirements as follows:
Condition 1 - Maximum Stress = 0.35 S m = 0.24 (allowable)
Condition 4 - Maximum Stress = 0.57 S m = 0.38 (allowable) 87.Spring Washer stress Requirements Spring Washer modeled
per Roark, Case X-21;
refer to formula X-21
of previous topic No.
6, with w = F/A
substituted in place
of p in that formula.
F = 47,833 lb
A = 63.63 in
t = 1.25 in
a = 5.391 in
b = 2.968 in
m = 3.333 (Same notation as Topic No. 6
formula X-21, with S r = S r 22 (only in this case)
Material: ASME SA 105 S m (at 500 F) = 19,400 psi 1.5 S m (=29,100 psi) must exceed S r 1.5 S m = 29,100 psi S r = 0.584 S m = 0.39 (allowable)
RBS USAR TABLE 3.9B-2g Revision 8 7a of 7 August 1996 Topic Method of Analysis Crosby 8-R-10 Analysis Allowable Value Calculated 8.Seismic capability Stress analysis uses F vertical = (mass of valve) x (4.5g), and F horizontal
= (mass of valve) x (6.5g), with 400,000 in lb and 300,000 in lb applied at the inlet and outlet, respectively. Actual capability verifiable by test, with concurrently
applied static moments of 1,000,000 in lb and 750,000 in lb applied at the inlet and
outlet, respectively, and with testing performed at actual acceleration levels of =
5.0g vertical and 9.0g horizontal.
New load stresses are lower than design stresses.
1 of 3 August 1987 RBS USAR TABLE 3.9B-2h MAIN STEAM ISOLATION VALVE DESIGN OF PRESSURE RETAINING PARTS -
ASME CODE SECTION III 1974 EDITION Item Number Component/Load Type/
Stress Type Design Procedure Allowable Value Design/Calculated Value Ratio [Calculated]
[Allowable]
1.0 Body and Bonnet 1.1Loads: Design Pressure GE System Specification 1,375 psi 1,375 psi N/A Design Temperature GE System Specification 586 F 586 F N/A Pipe Reaction Loads 1.2 Pressure Rating Table NB-3542.1-2 P R = 575 psi P R = 575 psi N/A 1.3 Minimum Wall Thickness Paragraph NB-3542 t m 1.875 in t m = 1.643 in N/A 1.4 Primary Membrane Stress Paragraph NB-3545.1 (500 F) P m = 19,400 psi P m = 11,317 psi 0.58 1.5 Secondary Stress Due to Pipe Reaction Paragraph NB-3545.2 (b)(1)
P ed , P eb , and P et P ed = 6,281 psi 0.22 1.55m (500 o F) 1.5 S m = 29,100 P eb = 12,851 psi P et = 12,121 psi 0.44 0.42 1.6 Primary Plus Secondary Stress Due to Internal Pressure Paragraph NB 3545.2 (a)(1)
Q p = 32,238 psi 1.7 Thermal Secondary Paragraph NB-3545.2 (c)
Q T= 1,347 psi 1.8 Range of Primary Plus Secondary Stress at Crotch Region Paragraph NB-3545.2 S m = 58,200 psi S n = 39,213 psi 0.67 1.9 Body Shape Rule -Radius at Crotch -Corner Radius
-Longitudinal Curvature
-No Flat Walls
-Minimum Wall at Weld Ends Paragraph NB-3554
Paragraph NB-3554.1(a)
Paragraph NB-3554.1(b)
Paragraph NB-3544.6
Paragraph NB-3544.7
Paragraph NB-3544.8 r 2 0.563 in r 4 0.937 in>0.061 1/in
>1.587 in r 2= 0.937 in r 4 = 0.875 in
= 0.1251 in
= 1.444 in 2 of 3 August 1987 RBS USAR TABLE 3.9B-2h (Cont)
Item Number Component/Load Type/
Stress Type Design Procedure Allowable Value Design/Calculated Value Ratio [Calculated]
[Allowable] 1.10 Cyclic Requirement for Fatigue Analysis Paragraph NB-3545.3 N a 2,000 Cycles N a = 25,000 Cycles 1.11 Cumulative Usage Factor Requirements for Fatigue Analysis Paragraph NB-3550 I t 1.0 I t = 0.0168 2.0Body Flange/Bonnet2.1Loads: (1) Design Pressure (2) Design Temperature
(3) External Moments due to
Dynamic Loads that include
SSE Accelerations 2.2 Body Flange Stresses Paragraph NB-3647.1 P FD = 1,781 psig Longitudinal Hub Stress S H 1.5 S (17800) = 26,700 psi S H = 21,961 psi 0.82 Radial Flange Stress S R 1.5 S (17800) = 26,700 psi S R = 16,794 psi 0.63 Tangential Flange S T 1.5 S (17800) = 26,700 psi S T = 8,900 psi 0.33 2.3 Bonnet Thickness Paragraph NB-3646
Corrosion Allowance = 0.12 in t m 5.75 in t m = 5.6 in 2.4 Bonnet Reinforcement Paragraph NB-3646(e)
Area 7.842 in 2 Area = 10.72 in 23.0 Bonnet to Body Bolting Loads:
(1) Design Pressure
(2) Design Temperature
(3) External Moments due to loads
which include SSE
Accelerations
(4) Actuator Operational Loads Appendix XI A b 50.69 in 3 A b = 38.69 in 2 0.76 3 of 3 August 1987 RBS USAR TABLE 3.9B-2h (Cont)
Item Number Component/Load Type/
Stress Type Design Procedure Allowable Value Design/Calculated Value Ratio [Calculated]
[Allowable] 4.0Valve Poppet4.1Loads: (1) In-line Pressure Loads 4.2 Maximum Stress Roark's Formulae for Stress and Strain 3 rd Edition, Cases 13, 14, 21 and 22 S t 17,800 psi S s 10,680 psi S t = 14,007 psi S s = 4,340 psi 0.79 0.41 5.0Valve Stem 5.1Loads: (1) Axial Loads 5.2 Under-cut Thread Stress Industry Standards S t 26,280 psi S t = 18,519 psi 0.70 5.3 Thread Shear Stress S s 26,280 psi S s = 7,177 psi 0.27 5.4Buckling Force F 61,659 psi F = 46,963 psi 0.76 RBS USAR TABLE 3.9B-2i RECIRCULATION PUMP CASE
SUMMARY
OF LOAD CLASSIFICATION HIGH STRESS LOCATIONS AND LIMIT CRITERIA New load stresses are lower than design stresses.
1 of 1 August 1987 Loading Condition ASME Sec. III Load Combination Criteria (ASME Sec. III)
NB-3220 Location Highest Calc.
Stress/Usage Fact. Allowable Ratio Act./ All. Pressure Mechanical Loads Design (NB-3112)
Design Pressure
(1650 psig)
Pump Thrust
Deadweight
Nozzle Loads
Gasket Seating Load Fig. NG-3221-1 P m 1.0 S m P L + P b 1.5 S m Suction Transitio 27,250 psi/
0.0008 1.5 S =
28,687 psi
.95 Design (NB-3441.3)
Design Pressure
(1650 psig)
Pump Thrust
Deadweight
Nozzle Loads
Gasket Seating Load
OBE (conservatively
included)
Special Stress Location P L + P b 3.0 S m N/A N/A N/A N/A Normal (NB-3113.1)
and Upset
(NB-3113.2)
Most Severe
Normal/Upset
Pressure (1,313
psig) Deadweight
Nozzle Loads
Thermal -
OBE Upset Only Fig. NB-3222-1 P L + P b + P e +Q 3.0 S m Casing Wall 57,222 psi /
0.0038 3 S =
57,375 psi
.99 P e 3.0 S m Elastic-Plastic Analysis
NB-3228.3(1)
Emergency
(NB-3113.3)
Most Severe
Emergency
Pressure (1,796 psig)
Deadweight
Nozzle Loads
Pump Thrust
Gasket Seating Load Fig. NB-3224-1 P m (1.2 S m or S y)Suction Nozzle 30404/
0.002 1.8 S =
35,425 psi
.88 P L (1.8 S m or 1.5 S y)P m + P b (1.8 S m or 1.5 S y)Faulted (NB-3113.4)
Most Severe
Faulted Pressure
(1,313 psig)
Deadweight
Nozzle Loads Table F-1322.2-1 P m 2.4S m or 0.7 S u +Crotch.46 SSE Pump Thrust
Gasket Seating Load P L 1.5(2.4 S m or 0.7 S u)P L + P b 1.5(2.4 S m or 0.75 S u)34,162 psi/
0.0008 2.4 S =
73,500 psi RBS USAR TABLE 3.9B-2j REACTOR RECIRCULATION SYSTEM GATE VALVE - SUCTION 1 of 8 August 1987 Paragraph No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed 1.0 Body and Bonnet
1.1 Loads
Design Pressure
Design Temperature System Requirement
System Requirement 1,250 psi 575 o F 1,250 psi 575 o F N/A N/A 1.2 Pressure Rating, psi ASME Section III (1), Figure NB-3545.1-2 P r = 734.96 psi P r = 734.96 psi N/A 1.3 Minimum Wall Thickness, in ASME Section III (1), Paragraph NB-3542 t min = 1.566 in t min = 1.566 in N/A 1.4 Primary Membrane Stress, psi ASME Section III (1) Paragraph NB-3545.1 P m S m (500°F) =10,600 psi P m = 10,695 psi 0.54 1.5 Secondary Stress Due to Pipe Reaction ASME Section III (1), Paragraph NB-3545.2 (b)(i) P e = Greatest Value of P ed, P eb and P et< 1.5 S m (500 o F) (1.5) (19,600)
= 29,400 psi P ed = 8,298 psi P eb = 22,059 psi P et = 21,211 psi P e = P eb = 22,059 psi 0.28 0.75 0.72 0.75 1.6 Primary Plus Secondary Stress Due to Internal Pressure ASME Section III (1), Paragraph NB-3545.2 (a)(1) See Paragraph 1.8 Q p = 21,553 psi 0.36 1.7 Thermal Secondary Stress ASME Section III (1), Paragraph NB-3545.2 (c) See Paragraph 1.8 Q t = 3,514 psi 0.059 1.8 Ran g e of Primar y Plus Secondar y Stress at Crotch Region ASME Section III (1), Paragraph NB-3545.2 S n < S m (500 o F) = 3(19,600)
= 58,800 psi S n = Q p + P e + 2Q t 0.541.9 Cycle Requirements for Fatigue Analysis ASME Section III (1), Paragraph NB-3545.3 N a > 2,000 cycles N a = 230,000 cyclesN/A 1.10 Usage Factor Requirements For Fatigue Analysis ASME Section III (1), Paragraph NB-3550 I t < 1.0 I t = 0.0023 N/A RBS USAR TABLE 3.9B-2j (Cont) 2 of 8 August 1988 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed 2.0 Body to Bonnet Bolting 2.1 Loads: Design Pressure and Tem p erature, Gasket Loads, Stem Operational Load, Seismic Load (SSE) 2.2 Bolt Area ASME Section III (1), Paragraph NB-3647.1 A b 23.73 in² S b= 28,675 psi A b = 28.1 in² S b = 28,675 psi N/A N/A 2.3 Body Flange Stresses ASME Section III (1), Paragraph NB-3647.1
---2.3.1Operating Condition S h 1.5 S m (575°F) =28,837 psi Sr < 1.5 S m (575° F) =
28,837 psi S t 1.5 S m (575°F) =
28,837 psi S h= 17,594 psi S r= 19,314 psi S t= 1,106 psi 0.61 0.67 0.04 2.3.2 Gasket Seating Condition ASME Section III (1), Paragraph NB-3647.1 S h 1.5 S m (100°F) =30,000 psi S r < 1.5 S m (100° F) =
30,000 psi S t 1.5 S m (100°F) =
30,000 psi S h= 25,318 psi S r= 29,385 psi S t= 1,707 psi 0.84 0.98 0.05 2.4 Bonnet Flange Stresses ASME Section III (1), Paragraph NB-3647.1
---2.4.1 Operating Condition ASME Section III (1), Paragraph NB-3647.1 S h 1.5 S m (575°F) =28,837 psi S r 1.5 S m (575°F) =28,837 psi
S t 1.5 S m (575°F) =
28,837 psi S h= 17,327 psi S r= 15,185 psi S t= 1,998 psi 0.60 0.53 0.07 RBS USAR TABLE 3.9B-2j (Cont) 3 of 8 August 1988 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed 2.4.2 Gasket Seating Condition ASME Section III (1), Paragraph NB-3647.1 S h 1.5 S m (100°F) =30,000 psi S r 1.5 S m (100°F) =30,000 psi
S t 1.5 S m (100°F) =
30,000 psi S h= 25,804 psi S r= 24,003 psi S t= 3,293 psi 0.86 0.80 0.11 3.0 Stresses in Stem 3.1 Loads: Operator Thrust and Torque --- --- 3.2 Stem Thrust Stress Calculate Stress Due to Operator Thrust in
Critical Cross Section S t S m = 42,275 psi S t = 4,289 psi 0.10 3.3 Stem Torque Stress Calculate Shear Stress
Due to Operator Torque
in Critical Cross
Section S s 0.6 S m = 42,275 psi S s= 3,288 psi 0.07 3.4 Buckling on Stem Calculate Slenderness
Ratio if Greater than
30, Calculate Allowable
Load from Rankine's
Formula using Safety
Factor of 4 Max. Allowable Load =
84,310 lb Slenderness Ratio =
40.96 A ctual Load on Stem
=15,577 lb.
Therefore, no
buckling.
N/A 0.18 4.0Disc Analysis4.1 Loads: Maximum Differential Pressure (2) --- --- 4.2 Maximum Stress in the Disc ASME Section III (1), Paragraph NB-3215 and ASME Section III (1), Paragraph NB-3221.3 S max 1.5 S m (575°F) 0.86 RBS USAR TABLE 3.9B-2j (Cont) 4 of 8 August 1988 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed 5.0 Yoke and Yoke Connections 5.1 Loads: Stem Operational Loads Calculate Stresses in the Yoke and Yoke Connections to
Acceptable Structural
Analysis Methods
---5.2 Tensile Stress in Yoke Leg Bolts --- S max S (100°F) =
32,960 psi S max = 3,692 psi 0.11 5.3 Bending Stress of Yoke Legs
--- S b S (185°F) =
33,165 psi S b = 3,599 psi 0.11 RBS USAR TABLE 3.9B-2j (Cont)
REACTOR RECIRCULATION SYSTEM GATE VALVE - DISCHARGE 5 of 8 August 1988 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed 1.0 Body and Bonnet
1.1 Loads
Design Pressure
Design Temperature
Pipe Reaction
Thermal Effects System Requirement
System Requirement
Not Specified
Not Specified 1,650 psi 575 o F N/A 1,650 psi 575 o F N/A N/A N/A 1.2 Pressure Rating, psi ASME Section III (1), Figure NB-3545.1-2 P r = 969.68 psi P r = 969.68 psi N/A 1.3 Minimum Wall Thickness, in ASME Section III (1), Figure NB-3542 t min 2.077 in t m = 2.077 in N/A 1.4 Primary Membrane Stress, psi ASME Section III (1), Paragraph NB-3545.1 P m S m (500°F) =
19,600 psi P m= 11,870 psi 0.60 1.5 Secondary Stress Due to Pipe Reaction ASME Section III (1), Paragraph NB-3545.2 P e = Greatest Value of P ed, P eb and P et 1.5 S m (500°F)1.5 (19,600)
= 29,400 psi P ed = 6,861 psi P eb = 15,342 psi P et = 15,350 psi P e = P et = 15,350 psi 0.23 0.52 0.52 0.52 1.6 Primary Plus Secondary Stress Due to Internal Pressure ASME Section III (1), Paragraph NB-3545.2 (a)(1) S n 3 S m (500°F)= 3 (19,600)
= 58,800 psi Q p = 22,076 psi 0.37 1.7 Thermal Secondary Stress ASME Section III (1), Paragraph NB-3545.2 (c)
See Paragraph 1.6 0.05 1.8 Sum of Primary Plus Secondary Stress ASME Section III (1), Paragraph NB-3545.2 See Paragraph 1.6 S n = Q p + P e + 2Q t = 29,727 psi 0.50 1.9 Fatigue Requirements ASME Section III (1), Paragraph NB-3545.3 N a 2,000 cycles N a = 10 6 cyclesN/A1.10 Cyclic Rating ASME Section III (1), Paragraph NB-3550 I t 1.0 I t = 0.0012 N/A RBS USAR TABLE 3.9B-2j (Cont) 6 of 8 August 1988 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed 2.0 Body to Bonnet Bolting
2.1 Loads
Design Pressure and Tem p erature, Gasket Loads, Stem Operational Load, Seismic Load (Design Basis Earthquake)
ASME Section III (1), Paragraph NB-3647.1
---2.2 Bolt Area ASME Section III (1), Paragraph NB-3647.1 A b 34.87 in² S b 28,675 psi A b = 40.32 in² S b = 28,675 psi N/A N/A 2.3 Body Flange Stresses ASME Section III (1), Paragraph NB-3647.1
---2.3.1 Operating Conditions ASME Section III (1), Paragraph NB-3647.1 S h 1.5 Sm (575°F) =
28,837 psi S r 1.5 Sm (575°F) =
28,837 psi
S t 1.5 Sm (575°F) =
28,837 psi S h = 15,140 psi S r = 11,453 psi S t = 1,818 psi 0.53 0.40 0.06 2.3.2 Gasket Seating Condition ASME Section III (1), Paragraph NB-3647.1 S h 1.5 Sm (100°F) =
30,000 psi S r 1.5 S m (100 F) =30,000 psi
S t 1.5 Sm (100°F) =
30,000 psi S h = 21,963 psi S r = 17,849 psi S t = 2,809 psi 0.73 0.59 0.09 2.4 Bonnet Flange Stresses 2.4.1 Operating Condition ASME Section III (1), Paragraph NB-3647.1 S h 1.5 Sm (575°F) =
28,837 psi S r 1.5 Sm (575°F) =
28,837 psi
S t 1.5 Sm (575°F) =
28,837 psi S h = 16,776 psi S r = 10,908 psi S t = 2,909 psi 0.58 0.38 0.10 2.4.2 Gasket Seating Condition ASME Section III (1), Paragraph NB-3647.1 S h 1.5 Sm (100°F) =
30,000 psi S h = 20,731 psi 0.69 RBS USAR TABLE 3.9B-2j (Cont) 7 of 8 August 1987 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed S r 1.5 S m (100°F) =
30,000 psi S t 1.5 S m (100°F) =
30,000 psi S r = 13,632 psi S t= 3,957 psi 0.45 0.13 3.0 Stresses in Stem
3.1 Loads
Operator Thrust and Torque --------- ---3.2 Stem Thrust Stress Calculate Stress Due to Operator Thrust in
Critical Cross Section S t < S m = 42,275 psi S t= 8,443 psi 0.20 3.3 Stem Torque Stress Calculate Shear Stress
Due to Operator Torque
in Critical Cross
Section S s 0.6 S m = 25,365 psi S s = 6,471 psi 0.25 3.4 Buckling on Stem Calculate Slenderness
Ratio. If Greater than
30, Calculate Allowable
Load from Rankine's
Formula Using Safety
Factor of 4.
Max Allowable Load =
53,803 lb Slenderness Ratio =
68.9 Actual Load on Stem
= 30,623 lb Therefore, no buckling.
0.57 4.0Disc Analysis
4.1 Loads
Maximum Differential Pressure (2)--------- ---4.2 Maximum Stress in the Disc ASME Section III (1), Paragraph NB-3215, and ASME Section III (1), Paragraph NB-3221.3 S max 1.5 S m (575°F) =
27,487 psi Max Stress =
24,850 psi 0.90 RBS USAR TABLE 3.9B-2j (Cont)8 of 8 August 1988 Para g ra p h No. Component/Load/
Stress Type Design Procedure Allowable Limit Design Calculated Value Ratio Calculated Allowed Yoke and Yoke Connections Loads: Steam Operational Load Calculate Stresses in the Yoke and Yoke Connections to
Acceptable Structural
Analysis Methods.
---Tensile Stress in Yoke Leg
Bolts --- S max S m (100°F) =
32,960 psi S max = 9,643 psi 0.29 Bending Stress of Yoke Legs
--- S b 1.5 S m (185°F) =
33,165 psi S b = 11,705 psi 0.35 (1) ASME Section III, 1971 Edition (2) Valve differential pressure is 50 psig.
RBS USAR TABLE 3.9B-2k CLASS III SAFETY/RELIEF VALVE DISCHARGE PIPING SYSTEM HIGHEST STRESS
SUMMARY
(MAIN STEAM LOOP D - CARBON STEEL PIPING)
__________________________ 14 (1) All equations used are from ASME B&PV Code,Section III - N.
Stress values shown are historical values.
14 Revision 14 1 of 1 September 2001 Acceptance Criteria (1) Highest Calculated Stress Allowable Limits Ratio Actual/Allowed Identification of Location of Highest Stress Points Sustained Loads EQ8 1.0 S 4,760 15,000 0.32 Elbow Design Condition Occasional Loads EQ9 1.2 S 16,765 18,000 0.93 Tee Normal, Upset
Condition Thermal Expansion EQ10 S EQ11 S +S 19,705 23,868 22,500 37,500 0.86 0.64 Tee Tee Primary Loads
EQ9 1.8 S 17,031 27,000 0.63 -- ASME Code Case 1606-1
Faulted Condition 33,196 36,000 0.92 Reducer Test S 0.9 S 6,931 31,500 0.22 Elbow 1 of 3 August 1987 RBS USAR TABLE 3.9B-2l STANDBY LIQUID CONTROL PUMP Criteria Loading Component and Control Line Stress Allowable Stress (PSI) Calculated Stress (PSI) Pressure boundary stress limits of the various components for the SLC Pump Assembly are based on ASME B&PV Code Section III Pressure Boundary Parts:
1)Fluid Cylinder - SA182-F304, S y = 30,000 psi2)Discharge Valve Stop & Cylinder Head Extension - SA 479-304; S y = 30,000 psi3)Discharge Valve Cover, Cylinder Head & Stuffing Box Flange Plate, SA 240-304, S y = 30,000 psi4)Stuffing Box Gland, SA 564-630, S y = 115,000 psi 5)Studs, SA 193B7, S= 105,000 psi For the Normal Plus Upset Condition:
Fluid Cylinder
Discharge Valve Stop Cylinder Head Extension S A (General Membrane) =
17,800 psi Discharge Valve Cover
Cylinder Head S A (Bending) = 1.5 X 17,800
= 26,700 psi Stuffing Box Flange Plate
Stuffing Box Gland S A (General Membrane) = 35,000 psi S A (Bending) = 1.5 x 35,000 = 52,500 psi Studs, Cylinder Head S A = 25,000 psi Studs, Stuffing Box S A = 25,000 psi Normal and Upset Condition Loads:
Design Pressure &
Temperature Operating
Basis Earthquake
Nozzle Loads and
Discharge Emergency Condition Loads: Design Pressure
& Temperature, Deadweight & Thermal
Expansion, Nozzle
Loads, Safety Relief
Valve Discharge and
LOCA Fluid Cylinder - General
Membrane Discharge Valve Stop -
General Membrane
Cylinder Head Extension
-General Membrane
Disch. Valve Cover -
General Membrane
Cylinder Head - General
Membrane Stuffing Box Flg. Plate
-General Membrane
Stuffing Box Gland -
General Membrane Cylinder Head Studs Tensile Stuffing Box Studs
Tensile 17,800 17,800 17,800 17,800 17,800 17,800 35,000 25,000 25,000 Note 3 Note 3 Note 3 Note 3 Note 3 Note 3 Note 3 2 of 3 August 1987 RBS USAR TABLE 3.9B-2l (cont)
Criteria Loading Component and Control Line Stress Allowable Stress (PSI) Calculated Stress (PSI) For the Emergency or Faulted Condition:
Fluid Cylinder
Discharge Valve Stop
Cylinder Head Extension S A (General Membrane) = 1.2 X 17,800 =
21,360 psi Discharge Valve Cover
Cylinder Head S A (Bending) = 1.8 X 17,800 =
32,040 psi Stuffing Box Flange Plate
Stuffing Box Gland S A (General Membrane) = 1.2 X 35,000 =
42,000 psi S A (Bending) = 1.8 x 35,000 = 63,000 psi Studs, Cylinder Head S A = 25,000 psi, S y = 105,000 psi Studs, Stuffing Box S A = 25,000 psi, S y = 105,000 psi Dowel Pins, Alignment, SAE 4140 S A = 23,400 psi Studs, Cylinder Tie, SA 193-B7; S A = 25,000 psi Pump Hold Down Bolts, SAE GR. 8 A = 12,000 psi Q A = 15,000 psi Power Frame, Foot Area, S A = 15,000 psi Motor Hold Down Bolts, SAE Gr. 1 A = 12,000 psi Q A = 15,000 psi Motor Frame Foot Area, Cast Iron S A = (1/4)(30,000) = 7,500 psi Faulted Condition Loads:
Design Pressure and
Temperature
Dead Weight and
Thermal Expansion
Faulted Nozzle Loads, Safety Relief Valve
Discharge, LOCA & Safe
Shutdown Earthquake Fluid Cylinder - General
Membrane Discharge Valve Stop -
General Membrane
Cylinder Head Extension -General Membrane Disch. Valve Cover -
General Membrane
Cylinder Head - General
Membrane Stuffing Box Flg. Plate -General Membrane Stuffing Box Gland -
General Membrane Cylinder Head Studs -
Tensile Stuffing Box Studs -
Tensile Dowel Pins (Shear only -
Note 1)
Studs, Cylinder Tie (Tensile - Note 2)
Pump Hold Down Bolts, Shear Pump Hold Down Bolts, Tensile Power Frame Foot Area, Shear Motor Hold Down Bolts, Shear Motor Hold Down Bolts, Tensile Power Frame Foot Area, Tensile Motor Frame Foot Area, Shear Motor Frame Foot Area, Tensile 21,360 21,360 21,360 21,360 21,360 21,360 42,000 25,000 25,000 23,400 25,000 12,000 15,000 15,000 12,000 15,000 15,000 7,500 7,500 4,450 13,600 13,600 8,150 8,150 10,390 11,420 18,820 24,750 17,550 18,670 7,560 9,950 1,850 3,470 5,660 11,390 2,550 5,100 3 of 3 August 1987 RBS USAR TABLE 3.9B-2l (cont)
Criteria Loading Component and Control Line Stress Allowable Stress (PSI) Calculated Stress (PSI) Nozzle Load Definition Forces are in (lb), moments are in (ft-lb), allowable combination of forces and moments is as follows:
Where: F 1 = The largest absolute value of the three actual external orthogonal forces (F x , F y , F z) that may be imposed by the interface pipe, and M 1 = The largest absolute value of the three actual external orthogonal moments (M x , M y , M z) permitted from the pipe when they are combined simultaneously for a specific condition.
Normal Plus Upset Condition Loads Emergency or Faulted Condition Loads F o = Allowable value of F 1 when all moments are zero M o = Allowable value of M 1 when all forces are zero Suction: F o = 770 M o = 490 Discharge:
F o = 370 M o = 110 Suction:
F o = 920 M o = 590 Discharge:
F o = 440 M = 130 NOTES: 1.Nozzle loads produce shear loads only.
2.Dowel pins take all shear and nozzle loads, produce no tensile loads.
3.Calculate stresses for emergence or faulted condition are less than the allowable for normal plus upset condition.
4.Operability: These sum of he plunger and rod assembly, pounds mass times 1.75, acceleration is much less than the thrust loads encountered during normal operating conditions. Therefore the loads during the faulted conditions have
no significant effect on pump operability.
- NSSS vendor has qualified the specific loads given to be within ASME allowable limits.
1 of 1 August 1988 RBS USAR TABLE 3.9B-2m STANDBY LIQUID CONTROL TANK Criteria Method of Analysis Allowable Stress or Min.
Thickness Reqd or Load Actual Stress or Thickness or Load 1.Shell Thickness Loads: Normal & U p set Desi g n Pressure and Temperature Brownell & Young "Process Equipment Design" 0.016 in 0.25 in PR t = SE - 0.6 P Stress Limit ASME Section III 18,300 psi 1,203 psi 2.Nozzle Loads 1 Loads: Normal & U p set Desi g n Pressure and Temperature The maximum moments due to pipe reaction and maximum
forces shall not exceed the
allowable limits. Fo (lb) Mo (ft-lb) Fi(lb)
Mi(ft-lb)
Overflow Nozzle, N 1 NA N/A 229*382* Discharge Nozzle, N 2 N/A N/A 1,389*177*Loads: Faulted Dead Weight, Thermal Expansion and SSE
Earthquake The maximum moments due to
pipe reaction and maximum
forces shall not exceed the
allowable limits Fo (lb) Mo (ft-lb) Fi(lb)
Mi(ft-lb)
Overflow Nozzle N/A N/A 212*369* Discharge Nozzle N/A N/A 1,388*148*1 3.Anchor Bolts ASME Section III 10,000 psi 4,221 psi 1 of 3 August 1987 RBS USAR TABLE 3.9B-2n ECCS PUMPS Residual Heat Removal Pump Calculated Stress (psi) Allowable Stress (psi) or or Location Faulted Condition CriteriaActual Thickness (in.) Min. Thickness (in.)
Discharge Design Pressure ASME Boiler & Pressure 5,289 17,500 Head Shell Nozzle Loads Vessel Code,Section VIII, Seismic Loads Division 1, Para. UG-27 Discharge Design Pressure ASME Boiler & Pressure 8,274 17,500 Head Cover Vessel Code,Section VIII, Division 1, Para. UG-34, UG-39 & UG-40 Nozzle Shell Design Pressure ASME Boiler & Pressure 25,106 26,250 Inter Section Nozzle Loads Vessel Code,Section VIII, (Suction) Seismic Loads Division 1, Para. UG-37 17,241 26,250 (Discharge)
Discharge Pipe Design Pressure ASME Boiler & Pressure 12,300 15,000 Nozzle Loads Vessel Code,Section VIII, Division 1, Para. UG-27 Discharge Head Bolting Loads & Stresses 33,173 37,500 Bolting per "Rules for Bolted Flange Connections" ASME Section VIII, App. II Motor Bolting Seismic Load Bolting Loads & Stresses 16,210 25,000 per "Rules for Bolted Flange Connections" ASME Section VIII, App. II 2 of 3 August 1987 RBS USAR TABLE 3.9B-2n Low Pressure Core Spray Pump Calculated Stress (psi) Allowable Stress (psi) or or Location Faulted Condition CriteriaActual Thickness (in.) Min. Thickness (in.)
Discharge Head Design Pressure ASME Boiler & Pressure 2,397 psi 17,500 psi Shell Nozzle Loads Vessel Code,Section VIII, Seismic Loads Division 1, Para. UG-27 Discharge Head Design Pressure ASME Boiler & Pressure 7,578 psi 17,500 Cover Vessel Code,Section VIII, Division 1, Para. UG-34, UG-39 & UG-40 Nozzle Shell Design Pressure ASME Boiler & Pressure 19,760 psi 21,000 psi Inter Section Nozzle Loads Vessel Code,Section VIII, (Suction) Seismic Load Division 1, Para. UG-37 15,718 psi 21,000 psi (Discharge)
Discharge Pipe Design Pressure ASME Boiler & Pressure 14,760 psi 15,000 psi Nozzle Loads Vessel Code,Section VIII, Division 1, Para. UG-27 Discharge Head Design Pressure Bolting Loads & Stresses 31,567 psi 37,500 psi Bolting Nozzle Loads per "Rules for Bolted Seismic Loads Flange Connections" ASME Section VIII, App. II Motor Bolting Seismic Load Bolting Loads & Stresses 22,881 psi 37,500 psi per "Rules for Bolted Flange Connections" ASME Section VIII, App. II 3 of 3 August 1987 RBS USAR TABLE 3.9B-2n High Pressure Core Spray Pump Calculated Stress (psi) Allowable Stress (psi) or or Location Faulted Condition CriteriaActual Thickness (in.) Min. Thickness (in.)
Discharge Head Nozzle Loads ASME Boiler & Pressure 2,332 psi 17,500 psi Shell Seismic Loads Vessel Code,Section VIII Division 1, Para. UG-27 Discharge Head Design Pressure ASME Boiler & Pressure 8,103 psi 17,500 psi Cover Vessel Code,Section VIII, Division 1, Para. UG-34, UG-39 & UG-40 Nozzle Shell Design Pressure ASME Boiler & Pressure 14,878 psi 17,500 psi Nozzle Loads Vessel Code,Section III, (Suction) Seismic Loads Division 1, Para. UG-37 15,440 psi 17,500 psi (Discharge)
Discharge Pipe Design Pressure ASME Boiler & Pressure 8,915 psi 17,500 psi Nozzle Loads Vessel Code,Section VIII, Division 1, Para. UG-27 Discharge Head Design Pressure Bolting Loads & Stresses 33,855 psi 37,500 psi Bolting Nozzle Loads per "Rules for Bolted Seismic Load Flange Connections" ASME Section VIII, App. II Motor Bolting Seismic Load Bolting Loads & Stresses 33,030 psi 37,500 psi per "Rules for Bolted Flange Connections" ASME Section VIII, App. II 1 of 4 August 1987 RBS USAR TABLE 3.9B-2o RESIDUAL HEAT REMOVAL HEAT EXCHANGER Loading Criteria Allowable Stress or Min. Thickness Reqd.
Calculated Stress or Thickness 1.Closure Bolting Bolting loads and stresses calculated in accordance with
"Rules for Bolted Flange
Connections" ASME Section III, App XI. Design pressure and temperature Design gasket load Bolting Stress Limit Allowable Working Stress in Accordance with ASME Section III a.Shell to tube sheet boltsb.Channel cover bolts 25,000 psi
25,000 psi 23,526 psi
24,522 psi 2.Wall Thickness Shell Side ASME Section III, Class 2 and TEMA, Class C Design pressure and temperature Tube Side ASME Section III, Class 3 and TEMA, Class C Stress Limit ASME Section III a.Shell b.Shell cover c.Channel d.Tubes e.Channel cover f.Tube sheet 0.838 in 0.827 in 0.860 in 0.0515 in
7.42 in 6.65 in 0.875 in 0.870 in min
0.875 in 0.054 BWG
7.44 in 6.75 in 2 of 4 August 1987 RBS USAR TABLE 3.9B-2o (cont)
Loading Criteria Allowable Stress or Min. Thickness Reqd.
Calculated Stress Or Thickness 3.Nozzle Loads Design pressure and Temperature Dead Weight, Thermal Expansion, Safe Shutdown
Earthquake, SRV, LOCA The maximum moments due to pipe
reaction and the maximum forces
shall not exceed the allowable
limits. Primary Stress Smaller of 0.75 S u or 2.4 m per ASME Section III allowable.
(1)
(2) (3) where: F i = The largest of the three actual external orthogonal forces (F x , F y , and F z) M i = The largest of the three actual external orthogonal moments (M x , M y , and M z) F o = The allowable value of F i when all moments are zero M o = The allowable value of M i when all forces are zero One coordinate axis must be the nozzle centerline. Another coordinate axis must be parallel to the heat exchanger centerline except where, in this case, the
coordinate axis must be orthogonal to the nozzle centerline and 0° - 18° or
90° - 270° azimuths.
3 of 4 August 1987 RBS USAR TABLE 3.9B-2o (cont)
(2) Allowable Limits (Faulted-SSE)
N1 N2 N3 N4 F x = 10,500 lb 10,500 lb 13,000 lb 13,000 lb F y = 10,500 lb 10,500 lb 13,000 lb 13,000 lb F z = 10,500 lb 10,500 lb 13,000 lb 13,000 lb M x = 32,000 ft lb 32,000 ft lb 46,000 ft lb 46,000 ft lb M y = 32,000 ft lb 32,000 ft lb 46,000 ft lb 46,000 ft lb M z = 32,000 ft lb 32,000 ft lb 46,000 ft lb 46,000 ft lb (3) Actual nozzle loads are as follows:
Nozzle Heat Exchanger Condition F i (lb) M i (ft-lb) F i + M iF o M oN 1 A Upset 1,893 3,896 0.37 Faulted 1,983 4,003 0.38 B Upset 2,147 10,501 0.65 Faulted 3,018 11,246 0.64 C Upset 3,195 5,517 0.58 Faulted 4,467 8,393 0.69 D Upset 1,893 3,896 0.37 Faulted 1,983 4,003 0.38 N 2 A Upset 2,904 14,184 0.88 Faulted 4,322 15,185 0.89 B Upset 1,893 3,896 0.37 Faulted 1,983 4,003 0.38 C Upset 1,893 3,896 0.37 Faulted 1,983 4,003 0.38 D Upset 3,069 6,967 0.62 Faulted 4,618 10,353 0.76 4 of 4 August 1987 RBS USAR TABLE 3.9B-2o (cont)
Nozzle Heat Exchanger Condition F i (lb) M i (ft-lb) F i + M iF o M oN 3 A Upset 3,533 10,968 0.61 Faulted 3,669 10,763 0.52 B Upset 5,443 17,871 0.96 Faulted 6,107 20,038 0.90 C Upset 2,004 7,432 0.38 Faulted 2,148 8,125 0.34 D Upset 1,441 4,795 0.26 Faulted 1,485 7,931 0.29 N 4 A Upset 1,635 14,414 0.53 Faulted 1,759 14,894 0.46 B Upset 985 6,715 0.27 Faulted 1,414 7,050 0.26 C Upset 4,309 22,541 0.98 Faulted 4,226 22,045 0.80 D Upset 4,543 28,107 1.153 Faulted 4,567 28,963 0.98 1 of 2 August 1987 RBS USAR TABLE 3.9B-2p REACTOR WATER CLEANUP PUMP Component Loading Condition Stress Criteria Stress Type Allowable Stress (psi)
Calculated Stress (psi)
Suction Nozzle Design Pressure & Design
Temperature S S a General Membrane 14,000 5,100 Discharge
Nozzle Design Pressure & Design
Temperature S S a General Membrane 14,000 4,040 Cover Bolting Design Pressure & Design
Temperature S S a General Membrane 29,300 26,300 Seal Gland
Bolting Design Pressure & Design
Temperature S S a General Membrane 29,300 22,100 Seal Gland Design Pressure & Design Temperature S S a General Membrane 13,800 4,285 Pump Cover Design Pressure & Design Temperature S S a General Membrane 32,400 9,060 Pedestal Bolts (Tensile)
Pressure Loads
Thermal Loads
Nozzle Load
Seismic Load
Dead Weight
Torsional Load S S a General Membrane 51,537 11,754 Pedestal Bolts Pressure Loads
Thermal Loads
Nozzle Loads
Seismic Loads
Torsional Load S S a Shear18,855 6,810 Pedestal Bolts Preload S 0.9S y Shear135,000 68,000 Motor Hold-
Down Bolts (Shear) Pressure Loads
Thermal Loads
Seismic Loads
Dead Weight
Torsional Load S S a General Membrane 30,000 2,955 2 of 2 August 1987 RBS USAR TABLE 3.9B-2p (cont)
Component Loading Condition Stress Criteria Stress Type Allowable Stress (psi)
Calculated Stress (psi)
Motor Hold-Down Bolts (Tensile)
Pressure Loads
Thermal Loads
Seismic Loads
Dead Weight
Torsional Loads S S a General Membrane 37,500 5,036 Foundation
Bolts (Tensile)
Pressure Loads
Thermal Loads
Seismic Loads
Dead Weight
Nozzle Loads
Torsional Loads General Electric
Design Specification General Membrane 10,000 6,315 Foundation
Bolts Pressure Loads
Thermal Loads
Seismic Loads
Dead Weight
Nozzle Loads
Torsional Loads General Electric
Design Specification Shear 10,000 8,801 Shaft Deflection
at Pump Wear Ring Pressure Loads
Thermal Loads
Seismic Loads
Dead Weight
Nozzle Loads
Torsional Loads Industry Standard N/A 10 mm 3.93 mm Shaft Deflection
at Pump Coupling Pressure Loads
Thermal Loads
Seismic Loads
Dead Weight
Nozzle Loads
Torsional Loads Industry Standard N/A 5 mm 3.345 mils
__________________________________
Nomenclature: S a = Allowable general membrane stress per ASME Section III, 1974 Edition S = Calculated Stress RBS USAR TABLE 3.9B-2q RCIC TURBINE 1 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) The highest stressed sections of the various components of the RCIC Turbine
assembly are identified. Allowable
stresses are based on ASME B&PV Code,Section III, for:
Pressure Boundary Castings, SA216-WCB:
S = 17,500 psi Pressure Boundary Boltings, SA193-B7
S - 25,000 psi Alignment Dowel Pins: AISI 4037, Rc28-35 a = 61,000 psi S y = 106,000 psi Normal Condition Loads: Castings: 1) Stop valve General Membrane 17,500 1. Design pressure
- 2) Governor valve General Membrane 17,500 2. Design temperature
- 3) Turbine inlet Local Bending 21,000 3. Inlet nozzle loads
- 4) Turbine case Local Bending 21,000 4. Exhaust nozzle loads Pressure containing bolts:
Tensile 25,000 Structure alignment pins:
Shear 61,000 RBS USAR TABLE 3.9B-2q RCIC TURBINE 2 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) Upset, Emergency, or Faulted Condition: Castings: 1. Stop Valve General Membrane 19,250 13,860 1. Design pressure
- 2. Governor valve General Membrane 19,250 15,300 2. Design temperature
- 3. Turbine inlet Local Bending 25,200 15,300 3. Safe shutdown earthquake or OBE (Horizontal & Vertical, see Fig 3.9B-1 and 3.9B-2)
- 4. Turbine case Pressure Containment Bolts
Structure Alignment Pins Local Bending Tensile Shear 25,200 25,000 61,000 18,000 20,100 54,425 4. SRV 5. LOCA 6. Inlet nozzle loads
- 7. Exhaust nozzle loads Nozzle Load definition:
Turbine vendor has defined allowable
nozzle loads for the turbine assembly.
The above calculated stresses assume
these allowable nozzle loads have been
satisfied.
Normal & Upset Condition Loads:
Inlet: 1. Design pressure
- 2. Design temperature F=(2,620-M) 3 F = 420 M = 1,327
- 3. Weight of structure Exhaust: 4. Thermal expansion F=(6,000-M) 3 F = 624 M = 1,506 F=Resultant
force (lbs)
M=Resultant
moment (ft-
lb)
RBS USAR TABLE 3.9B-2q RCIC TURBINE 3 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) Emergency & Faulted Condition Loads:
- 1. Design pressure INLET: 2. Design temperature
- 3. Weight of structure 4. Thermal expansion F=(7,000-M) 7 F = 416 M = 491 5. Safe shutdown earthquake EXHAUST: F=(8,500 M) 0.34 F = 1,066
M = 2,980 but <7,000 F=resultant
force (lb)
M=resultant
moment (ft-lb)
NOTE: Operability: Analysis indicated that shaft deflection with faulted loads is 0.014; which is fully acceptable; and maximum bearing load with faulted condition is 80% of allowable. Furthermore, as indicated in Section 3.9.2.2.2.9b, the turbine assembly has been seismically qualified via dynamic testing, enveloping the response spectra defined on Fig. 3.9b-1 and 3.9b-2. This operability during seismic loading conditions.
(1)Calculated stresses for the upset, emergency, or faulted condition are lower than the allowable stresses for the normal condition; therefore the normal and upset condition is not evaluated.
(2)100 percent radiograph + M.P.
RBS USAR TABLE 3.9B-2r RCIC PUMP 1 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) Pressure boundary stress limits of the various components for the RCIC pump
assembly are based on the ASME B&PV Code
Section III, for pressure boundary parts
at 140 o F. 1. Forged barrel, SA105 GR. II
S y = 36,000 psi
- 2. End cover plates, SA105 GR. II
S y = 36,000 psi
- 3. Nozzle connections, SA105 GR. II
S y = 36,000 psi
- 4. Aligning pin, SA515 GR. 60 S y = 32,000 psi
- 5. Closure bolting, SA193 B7
S y = 105,000 psi
- 6. Pump holddown bolting, SA325
S y = 77,000 psi
- 7. Taper pins, SA108 GR. B1112
S y = 75,000 psi
- 8. Axial guide key, SA515 GR. 60
S y = 32,000 psi Normal & Upset Condition Loads:
- 1. Design pressure
- 2. Design temperature
- 4. Suction nozzle loads
- 5. Discharge nozzle loads
- 6. Safety relief valve discharge load
- 7. Dead weight
- 8. Thermal expansion
- 1. Forged barrel
- 2. End cover (suction)
- 3. End cover (discharge)
- 4. Nozzle reinforcement
- 5. Alignment pin
- 6. Closure bolting
- 7. Taper pins
- 8. Pump holddown bolts
- 9. Pump anchor bolts
- 10. Pump anchor bolts
- 11. Axial guide key
General membrane
General membrane
General membrane
General membrane
Shear Tensile Shear Tensile Shear Tensile Shear Shear 17,500 17,500 17,500 17,500 15,000 25,000 15,000 40,000 15,000 17,760 17,760 15,000 (1) (1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
RBS USAR TABLE 3.9B-2r RCIC PUMP 2 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) Emergency or Faulted Condition Loads:
- 1. Design pressure
- 2. Design temperature
- 4. Suction nozzle loads
- 5. Discharge nozzle loads
- 6. Safety relief valve discharge load
- 7. Dead weight
- 8. Thermal expansion
- 9. LOCA load
- 1. Forged barrel
- 2. End cover (suction)
- 3. End cover (discharge)
- 4. Nozzle reinforcement at
barrel
- 5. Alignment pin
- 6. Closure bolting
- 7. Taper pins (bearing
housing)
- 8. Pump holddown bolts
- 9. Pump anchor bolt
- 10. Pump anchor bolt
- 11. Axial guide key General membrane
General membrane
General membrane
General membrane
Shear Tensile
Tensile Tensile Shear Shear 21,000 21,000 21,000 21,000 15,000 25,000 15,000 40,000 17,760 17,760 15,000 13,300 10,760 15,900 13,180 9,300 21,000 2,200 6,925 12,500 9,970 9,300 Nozzle Load Definition:
Units: Forces - lb Moments - ft lb
The allowable combinations of forces and
moments are as follows:
RBS USAR TABLE 3.9B-2r RCIC PUMP 1 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) Pressure boundary stress limits of the various components for the RCIC pump
assembly are based on the ASME B&PV Code
Section III, for pressure boundary parts
at 140 o F. 1. Forged barrel, SA105 GR. II
S y = 36,000 psi
- 2. End cover plates, SA105 GR. II
S y = 36,000 psi
- 3. Nozzle connections, SA105 GR. II
S y = 36,000 psi
- 4. Aligning pin, SA515 GR. 60 S y = 32,000 psi
- 5. Closure bolting, SA193 B7
S y = 105,000 psi
- 6. Pump holddown bolting, SA325
S y = 77,000 psi
- 7. Taper pins, SA108 GR. B1112
S y = 75,000 psi
- 8. Axial guide key, SA515 GR. 60
S y = 32,000 psi Normal & Upset Condition Loads:
- 1. Design pressure
- 2. Design temperature
- 4. Suction nozzle loads
- 5. Discharge nozzle loads
- 6. Safety relief valve discharge load
- 7. Dead weight
- 8. Thermal expansion
- 1. Forged barrel
- 2. End cover (suction)
- 3. End cover (discharge)
- 4. Nozzle reinforcement
- 5. Alignment pin
- 6. Closure bolting
- 7. Taper pins
- 8. Pump holddown bolts
- 9. Pump anchor bolts
- 10. Pump anchor bolts
- 11. Axial guide key
General membrane
General membrane
General membrane
General membrane
Shear Tensile Shear Tensile Shear Tensile Shear Shear 17,500 17,500 17,500 17,500 15,000 25,000 15,000 40,000 15,000 17,760 17,760 15,000 (1) (1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
RBS USAR TABLE 3.9B-2r RCIC PUMP 2 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) Emergency or Faulted Condition Loads:
- 1. Design pressure
- 2. Design temperature
- 4. Suction nozzle loads
- 5. Discharge nozzle loads
- 6. Safety relief valve discharge load
- 7. Dead weight
- 8. Thermal expansion
- 9. LOCA load
- 1. Forged barrel
- 2. End cover (suction)
- 3. End cover (discharge)
- 4. Nozzle reinforcement at
barrel
- 5. Alignment pin
- 6. Closure bolting
- 7. Taper pins (bearing
housing)
- 8. Pump holddown bolts
- 9. Pump anchor bolt
- 10. Pump anchor bolt
- 11. Axial guide key General membrane
General membrane
General membrane
General membrane
Shear Tensile
Tensile Tensile Shear Shear 21,000 21,000 21,000 21,000 15,000 25,000 15,000 40,000 17,760 17,760 15,000 13,300 10,760 15,900 13,180 9,300 21,000 2,200 6,925 12,500 9,970 9,300 Nozzle Load Definition:
Units: Forces - lb Moments - ft lb
The allowable combinations of forces and
moments are as follows:
RBS USAR TABLE 3.9B-2r RCIC PUMP 3 of 3 August 1987 Criteria/Loading Component Limiting Stress Type Allowable Stress (psi) Calculated Stress (psi) where:
Fi = Largest absolute value of the three actual external orthogonal forces (F x , F y , F z) that may be imposed by the interface pipe and, Mi = Largest absolute value of the three actual external orthogonal moments (M x , M y , M z) permitted from the interface pipe when they are combined simultaneously for a specific condition Normal & Upset Condition Loads:
- 1. Design pressure
- 2. Design temperature
- 3. Weight of structure
- 4. Thermal expansion
- 5. Operating basis earthquake Fo = Allowable value of Fi when all moments are
zero Mo = Allowable value of Mi when all forces are
zero Suction:
Fo = 1,940
Mo = 2,460
Discharge:
Fo = 3,715
Mo = 4,330
Fi - 1,258
Mi = 1,099
Fi = 2,739
Mi = 1,323 Emergency or Faulted Condition Loads:
- 1. Design pressure
- 2. Design temperature
- 3. Weight of structure
- 4. Thermal expansion
- 5. Safe shutdown earthquake Suction:
Fo = 2,325
Mo = 2,950
Discharge:
Fo = 4,450
Mo = 5,200
Fi - 1,260
Mi = 1,058
Fi = 2,500
Mi = 1,336 NOTE: Operability: Static analysis for emergency or faulted condition shows that the maximum shaft deflection is 0.002 in with 0.006 in allowable, shaft stresses are 3,080 psi with 25,000 psi allowable, and bearing loads of drive end 98 lb with 7,670 lb allowable and thrust end 765 lb with 17,600 lb allowable.
(1) Calculated stresses for emergency or faulted condition are less than the allowable for normal plus upset condition.
Therefore, the normal and upset condition is not evaluated.
1 of 5 August 1987 RBS USAR TABLE 3.9B-2s NEW FUEL STORAGE RACK
Acceptance Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi)
The allowable primary bending
stress is based on ASME Section
For type
F u = _____psi
F y = _____psi
For normal condition:
S limit = _____F y For emergency condition:
S limit = _____F y For faulted condition:
S limit = _____F y
For normal condition:
For emergency condition:
For faulted condition:
2 of 5 August 1987 RBS USAR TABLE 3.9B-2s (cont)
CONTAINMENT FUEL STORAGE RACK
Acceptance Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi)
The allowable axial load stress is
based on
For type
F u = _____psi
F y = _____psi
S m 200 = _____psi
For normal condition:
S limit = _____S m200 = _____psi
For emergency condition:
S limit = _____F y For faulted condition:
S limit = _____F y
For normal condition:
For emergency condition:
For faulted condition:
3of5August1987RBSUSARTABLE3.9B-2s(cont)FUELPREPARATIONMACHINE Primary Stress Allowable CalculatedAcceptanceCriteria Loading TypeStress(psi)Stress(psi)Theallowableaxialplusbending loadsstressesarebasedonFortype F y=_____psi F u=_____psiFornormalcondition:Fornormalcondition:
S limit=_____F yForemergencycondition:Foremergencycondition:
S limit=_____F yForfaultedcondition:Forfaultedcondition:
S limit=_____S u 4of5August1987RBSUSARTABLE3.9B-2s(cont)REFUELINGPLATFORM Primary Stress Allowable CalculatedAcceptanceCriteria Loading TypeStress(psi)Stress(psi)F u=_____psi F y=_____psiFornormalcondition:Fornormalcondition:
S limit=F yForemergencycondition:Foremergencycondition:
S limit=F yForfaultedcondition:Forfaultedcondition:
S limit=F y NOTES:Operabilityassuranceisdemonstratedbyanalysis.Normalandupsetconditionallowableisusedtoevaluatetheemergencycondition.Informationtobeproviededuponcompletionofnewloadsprogram.
Newloadsstressesarelowerthandesignstresses5of5August1987RBSUSARTABLE3.9B-2s(cont)REACTORREFUELINGANDSERVICEEQUIPMENT Primary Stress Allowable CalculatedAcceptanceCriteria Loading TypeStress(psi)Stress(psi)Theallowableaxialplusbending loadsarebasedonASMECode SectionIII,Cl.2-SA182for type304SS.
F u=75,000psi F y=30,000psiFornormalcondition:Fornormalcondition:Axial+27,000 7,7581.Normalloads bending S limit=1.5(0.6)F yForemergencycondition:Foremergencycondition:Axial+40,500 22,0851.Normalloads bending S limit=1.5(0.9)F y 2.OBE 3.SRV 4.LOCAForfaultedcondition:Forfaultedcondition:Axial+54,000 25,7281.Normalloads bending S limit=1.5(1.2)F y 2.SSE 3.SRV 4.LOCA RBS USAR 1 of 3 August 1987 TABLE 3.9B-2t CONTROL ROD DRIVE (MAIN FLANGE)
Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi) Allowable Primary Membrane
Stress plus Bending
Stress is based on ASME Boiler &
Pressure Vessel Code,Section III for Type F304
Stainless Steel at 575°F
S m = 16,700 psi For normal and upset condition:
S allow = 1.5 x S m
For emergency condition:
S allow = 1.8 x S m
For faulted condition:
S allow = 3.6 x S m
For normal & upset condition:
- 3. Scram with no buffer
For emergency condition:
- 1. Normal loads (1) 2. Scram at emergency
vessel pressure condition
- 3. Scram with accumulator
at overpressure
For faulted condition:
- 3. Scram with stuck rod
General Membrane &
Bending
General Membrane &
Bending
General Membrane &
Bending
25,000
30,000
60,000
5,813
4,300
7,294 RBS USAR 2 of 3 August 1987 TABLE 3.9B-2t (cont)
CONTROL ROD DRIVE (RING FLANGE)
Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi) Allowable Primary Membrane Stress plus Bending Stress is based
on ASME Boiler & Pressure Vessel
Code,Section III for Type F304
Stainless Steel at 250°F
S m = 20,000 psi For normal and upset condition:
S allow = 1.5 x S m
For emergency condition:
S allow = 1.8 x S m
For faulted condition:
S allow = 3.6 x S m
For normal & upset condition:
buffer
For emergency condition:
- 1. Normal loads (1) 2. Scram with accumulator
at overpressure
For faulted condition:
- 3. Scram with stuck rod
General Membrane &
Bending
General Membrane &
Bending
General Membrane &
Bending
30,000
36,000
71,925
17,912
1,838
4,041 RBS USAR ________________________
(1) Normal loads include pressure, temperature, weight and mechanical loads.
3 of 3 August 1987 TABLE 3.9B-2t (cont)
CONTROL ROD DRIVE (INDICATOR TUBE)
Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi) Allowable Primary Membrane
Stress plus Bending Stress is based
on ASME Boiler & Pressure Vessel
Code,Section III for Type F316
Stainless Steel
S m = 20,000 psi at 250°F S m = 19,200 psi at 400°F S m = 17,250 psi at 575°F
For normal and upset condition:
S allow = 1.5 x S m at 400 o
For emergency condition:
S allow = 1.8 x S m at 575 o
For faulted condition:
S allow = 3.6 x S m at 250 o F
For normal & upset condition:
For emergency condition:
- 1. Normal loads (1) 2. Failure of pressure
regulating system
- 3. Scram with accumulator
at overpressure
For faulted condition:
- 3. Annulus pressurization
General Membrane &
Bending
General Membrane &
Bending
General Membrane &
Bending
28,800
31,050
72,000
23,700
23,826
28,900 RBS USAR TABLE 3.9B-2u CONTROL ROD DRIVE HOUSING
Operating Condition Loading Combinations
A. Normal and Upset P D + F SR + W + OBE
B. Emergency P P + F SRP + W + SSE
Stress Limits:
The stress limits for the CRD housing are in accordance with ASME Boiler and Pressure Vessel Code and are listed on sheet 2 of this table.
P D: Design pressure P P: Peak pressure F SR: Load due to stuck rod scram at design pressure F SRP: Load due to stuck rod scram at peak pressure W: Static weights
1 of 2 August 1987 RBS USAR TABLE 3.9B-2u (Cont)
Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi) Primary Stress Limit - The allowable primary membrane
stress is based on the ASME
Boiler and Pressure Vessel Code,Section III, for Class I
vessels.
For normal and upset condition:
S limit = 1.0 S m
For faulted conditions:
S limit = 1.2 S m (1)
Normal and upset condition loads:
- 1. Design pressure
- 2. Stuck rod scram loads
- 3. Operational basis earthquake,
with housing lateral support
installed
- 4. SRV
Faulted conditions loads:
- 1. Design pressure
- 2. Stuck rod scram loads
- 3. Safe shutdown earthquake, with
housing lateral support
installed
- 4. Annulus pressurization
- 5. Jet reaction
Maximum membrane stress intensity
occurs at the
tube weld
near the center of the
housing for
normal, upset
and emergency
conditions.
RBS-1 16,660 RBS-2 13,725
RBS-1 20,000 RBS-2 16,470
(304 Stainless) 15,475 (316L Stainless) 13,562
15,476 13,677
_____________________________
(1) Analyzed to emergency conditions limits 2 of 2 August 1987 Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-2v JET PUMPS Criteria Loading Combinations Stress Type Allowable Stress (psi) Calculated Stress (psi) Primary Membrane Plus Bending Stress Based on ASME B&PV Code
Section III, Subsectioning 14 For Service Levels A & B (Normal and Upset) Condition:
For Type 304 SS at 550 o F S m = 16,900 psi S limit = 3.0 S psiF p + W + F c + OBE + V + T
+ SRV ALL Primary Membrane
+ Bending +
Secondary
Membrane 50,700 49,500 For Service Level C (Emergency) Condition:
For Type 304 SS at 550 o F S m = 16,900 psi s limit = 2.25 S psiF p + W + F c + LOCA + SRV ALL Primary Membrane
+ Bending 38,025 8,275 For Service Level D (Faulted) Condition:
For Type 304 SS at 550 o F S m = 16,900 psi S limit = 3.6 S psi F p1 + F p11 + W + F c + S + SSE
+ AP Primary Membrane
+ Bending 60,840 57,970 14 NOMENCLATURE:
F p = Design internal pressure, and hydraulic and pressure reaction loads (all components except riser brace) F p1 = Design external pressure, and hydraulic and pressure reaction loads (riser and mixer)
F p11 = Design internal pressure, and hydraulic and pressure reaction loads (inlet mixer and diffuser)
F c = Inlet-mixer-to-riser clamping force W = Static weight OBE/SSE = Seismic load V = Vibratory forces T = Thermal loads S = Shock wave loads
S m = Stress intensity at design temperature LOCA = Loss of coolant accident SRV = Safety relief valve AP = Annulus pressurization RBS USAR TABLE 3.9B-2w HIGHEST STRESSED REGION ON THE LPCI COUPLING (STRUT TO WELD)
(1) ___________________________ (1) Highest stressed location Revision 14 1 of 1 September 2001 Criteria Loading Combinations Stress (psi)
Stress Type Stress (psi) Calculated Stress (psi) Primary Membrane Plus Bending
Code Section III NG 3000
for 316 L.
14 For Service Levels A & B (Normal & Upset) Condition:
S Limit = 1.5 x 0.7 S m = 1.5 x 0.7 x 14,500 Normal & Upset
Condition Loads:
NL + P u + OBE + SRV ALL Primary Membrane
+ Bending 14,858 3,204 For Service Level C (Emergency) Condition:
S Limit = 1.5 x 1.5 x 0.7 x 14,150 Emergency Condition Loads:
NL + P u + chg + SRV Primary Membrane
+ Bending 22,286 5,930 14 For Service Level D (Faulted) Condition:
S Limit = 2.4 x 1.5 x 0.7 x 14,150 Faulted Condition Loads:
NL + P u + JR + AP/F + SSE Primary Membrane
+ Bending 35,658 14,694 NOMENCLATURE: P u,e,f = Pressure differential for Service Levels B, C and D (upset, emergency, and faulted) conditions, respectively NL = Normal loads (metal + water weight)
OBE = Operating basis earthquake
Chg = Chugging
AP/F = Annulus pressurization/modifying factor
SRV ALL = Safety relief valves, all SRV ADS = SRV, automatic depressurization system JR = Jet reaction
SSE = Safe shutdown earthquake RBS USAR TABLE 3.9B-2x CONTROL ROD GUIDE TUBE 14 14 Revision 14 1 of 1 September 2001 Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi) CONTROL ROD GUIDE TUBE Primary Stress Limit
The allowable primary membrane
stress plus bending stress is
based on the ASME Boiler and
Pressure Vessel Code, Section
III, Class CS for Type 304
stainless steel material.
14 For Service Levels A & B (normal and upset conditions):
1.5 S m = 1.5 x 16,000 = 24,000 psi
Service Levels A & B (Normal and Upset Condition)
Applied Loads
- 1. External Pressure
- 2. Vertical Seismic & Weight
- 3. Horizontal Seismic
- 4. Lateral Flow Impingement
- 5. Vibration
Applying Vertical
Seismic plus dead
weight, the maximum
stress under
Service Levels A &
B (normal and
upset) conditions
occur at the guide
tube base.
24,000
< 16,340 38,400 < 21,763 For Service Level D (faulted) condition:
S limit = 2.4 S m = 2.4 x 16,000
= 38,400 psi Service Level D (Faulted)
Condition Applied Loads
- 1. External Pressure
- 2. Vertical Seismic & Weight
- 3. Horizontal Seismic
- 4. Lateral Flow Impingement
- 5. Vibration Applying Vertical
Seismic plus dead
weight, the maximum
stress under
Service Level D (faulted) loading
conditions occurs
at the guide tube
base. 14 RBS USAR TABLE 3.9B-2y INCORE HOUSING 14 14 Revision 14 1 of 1 September 2001 14 Criteria Loading Primary Stress Type Allowable Stress (psi) Calculated Stress (psi) 14 Primary Stress Limit - The allowable primary membrane stress
is based on ASME Boiler and
Pressure Vessel Code,Section III
for Class I vessels for type
Inconel 600 austenitic high
nickel alloy steel Per Stress Report 22A4343 Rev 2 14 For Service Levels A & B (normal and upset) condition:
S limit = 1.0S m = 23,300 psi at 575 o F Service Levels A & B (Normal and Upset)
Condition Loads
- 1. Design Pressure
- 2. Operating Basis
- 3. Safety Relief Valve Maximum membrane
stress intensity
occurs inside the
reactor pressure
vessel 23,300 21,200 14 Service Level D (Faulted)
Condition
Stress limit is the lesser of
0.7 S u = 0.7 x 80,000 = 56,000
or
2.4 S m= 2.4 x 23,000 = 55,920 Service Level D (Faulted)
Condition Loads
- 1. Design Pressure
- 2. Static Weights
- 5. Loss of Coolant Accident 55,920 23,760 Revision141of2September2001RBSUSARTABLE3.9B-2zREACTORVESSELSUPPORTEQUIPMENT(CRDHOUSINGSUPPORT)
Allowable Calculated Criteria Loading LocationStress(psi)Stress(psi)PrimaryStressLimit14AISCspecificationfortheFaultedconditionloads:Beams(topchord) 33,000 f a=14,200design,fabrication,anderectionofstructuralsteel1.Deadweight 33,000 f b=20,300forbuildings2.ImpactforcefromfailureofaCRDBeams(bottomchord) 33,000 f a=11,900 housing 33,000 f b=21,250Fornormal&upsetcondition:(Deadweightsandearth-Gridstructurequakeloadsarevery f a=0.60f y (tension)smallcomparedto impactforce) f b=0.66f y (bending)f v=0.40f y (shear)Forfaultedconditions:Faultedconditionloads:
f alimit=1.5f(tension)1.Weightofstructure 41,500 f b=41,0002.Impactforcefrom f blimit=1.5f(bending)failureofaCRDhousing 27,500 f v=11,750 f vlimit=1.5f(shear) f y=Materialyieldstrength 14Newloadstressesarelowerthandesignstresses.
2of2August1987RBSUSARTABLE3.9B-2z(cont)RPVSUPPORT(BEARINGPLATE)
Allowable Calculated Criteria Loading LocationStress(psi)Stress(psi)PrimaryStressLimitAISCspecificationforthedesign,fabrication,and erectionofstructural steelforbuildingsFornormal&upsetcondi-NormalandupsetBearingplate F c(bearing)f c=1,894tionsAISCallowable condition:
32,400stresses,butwithouttheusualincreaseforearth-1.Deadloadsquakeloads2.OBE 3.LoadsduetoscramForemergencyandfaultedFaultedcondition:Bearingplate F c(bearing)f c=4,560conditions1.5xAISC 48,600allowablestressesfor1.Deadloadsstructuralsteel2.Designbasisearth-members quake3.Jetreactionloads RBS USAR TABLE 3.9B-3 GE-SUPPLIED SEISMIC ACTIVE PUMPS AND VALVES Revision 15 1 of 1 May 2002 Main steam isolation valves B21F022/F028 Main steam safety/relief valves B21F041/F047/F051 15 Control rod drive globe valves C11F010/F011 15 Standby liquid control pumps C41/C001 Standby liquid control valve C41/F004 RHR pump E12/C002 LPCS pump and motor E21C001 15 HPCS pump and motor E22C001/C003 15 HPCS globe valve:
E22-F010 E22-F011 E22-F023
HPCS gate valve:
E22-F001 E22-F004
E22-F012
E22-F015
RCIC pump E51C001 RCIC turbine E51C002 15 Fuel pool pump (1) SFC-P1A/B 15
SUMMARY
OF ACTIVE PUMPS Revision 8 1 of 1 August 1996 C41-C001 SLC pump/motor Union/GE 21A1921AE Test/Analysis Pump: e, f, g, i Motor: a, b, h, i, j E12-C002 RHR pump/motor Byron Jackson/GE 283K371G012 Test/Analysis Pump: e, f, g, i Motor: a, b, h, i, j E21-C001 LPCS pump/motor Byron Jackson/GE 283X429G001 Test/Analysis Pump: e, f, g, i Motor: a, b, h, i, j E22-C001 HPCS pump/motor Byron Jackson/GE 21A1913AK Test/Analysis Pump: e, f, g, i Motor: a, b, h, i, j E51-C001 RCIC Pump Bingham 21A9443AX Analysis b, e, f, i, j E51-C002 RCIC turbine Terry Turbine 21A9526AJ Test/Analysis b
- The letter notations used in the qualification standards are as follows:
a: IEEE 323-74 b: IEEE 344-75
c: IEEE 382-80
d: NUREG-0588, Cat. 1
e: Reg. Guide 1.48, Rev. 0
f: Reg. Guide 1.60, Rev. 1
g: Reg. Guide 1.61, Rev. 0
h: Reg. Guide 1.89, Rev. 0
i: Reg. Guide 1.92, Rev. 0 j: Reg. Guide 1.100, Rev. 1 RBS USAR TABLE 3.9B-3b (Continued) 1 of 2 August 1987 MPL Equipment Description Manufacturer ID Number Method of Qualification Qualification Standards* B21-F022/F028 MSIV Atwood & Morrill 10504935ARG001 Test/Analysis a, b, c, d, j B21-F041/F047/F051 SRV Crosby 22A6441 Test a, b, c, d, j C11-F009/F182 Solenoid valve Valcor 21A9317 Test a, b, c, d, j C11-F010 Vent valve Fisher 21A1997P001 Test b, j C11-F011 Drain valve Fisher 21A1997P002 Test b, j C11-F180 Vent valve Hammel Dahl 22A6924AA Test b, j C11-F181 Drain valve Hammel Dahl 22A6924AB Test b, j C41-F004 Explosive valve Conax 21A9370AB Test a, b, c, d, j E22-F001 MOV Anchor Darling 105D5007KG014 Test/Analysis a, b, c, d, j E22-F004 MOV Anchor Darling 105D5007KG008 Test/Analysis a, b, c, d, j E22-F010/F011/F023 MOV Anchor Darling 105D5007KG006 Test/Analysis a, b, c, d, j E22-F012 MOV Anchor Darling 105D5007KG002 Test/Analysis a, b, c, d, j
RBS USAR TABLE 3.9B-3b (Continued) 2 of 2 August 1987 MPL Equipment Description Manufacturer ID Number Method of Qualification Qualification Standards* E22-F015 MOV Anchor Darling 105D5007KG016 Test/Analysis a, b, c, d, j
______________________________
- The letter notations used in the qualification standards are as follows:
a: IEEE 323-74
b: IEEE 344-75
c: IEEE 382-80
d: NUREG-0588, Cat. 1
e: Reg. Guide 1.48, Rev. 0
f: Reg. Guide 1.60, Rev. 1
g: Reg. Guide 1.61, Rev. 0
h: Reg. Guide 1.89, Rev. 0
i: Reg. Guide 1.92, Rev. 0
j: Reg. Guide 1.100, Rev. 1 1 of 4 August 1987 RBS USAR TABLE 3.9B-4 NSSS COMPLIANCE WITH REGULATORY GUIDE 1.48 (1) Component Plant Condition 1/
Loading Combination Design Limit Regulatory Guide Paragraph Class 1 Vessels Upset (U)
Emergency (E)
Faulted (F)
[NPC or UPC] + SSE (2) EPC NPC + SSE + DSL NB-3223 NB-3224 2/ NB-3225 1.a 1.b 1.c Class 1 Piping U E
F [NPC + UPC] + 0.5 SSE
EPC NPC + SSE + DSL NB-3654 NB-3655 2/ NB-3656 1.a 1.b 1.c 5/ Class 1 Pumps (Inactive)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL NB-3223 NB-3224 1/ NB-3225 2.a 2.b 2.c Class 1 Pumps (Active) U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL NB-3222 5/ NB-3222 6/ NB-3222 7/, 8/ 8/
4.a 4.a 4.a 5/ Class 1 Valves (Inactive)
by analysis
Class 1 Valves (Active)
Designed by either
std. or alternative
design rules
Class 1 valves (Active) by analysis
Class 1 Valves (Active)
Designed by std. or
alternative design
rules U E F U
E F
U E
F U E
F [NPC or UPC] + 0.5 SSE
EPC
NPC + SSE + DSL
[NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL
[NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL
[NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL NB-3223 NB-3224 2/ 4/ NB-3225 1.1 Pr 1.2 Pr 1.5 Pr
NB-3222 5/ NB-3222 6/ NB-3222 7/, 8/
1.0 Pr 1.0 Pr 6/ 1.0 Pr 2.a 2.b 2.c 3.a 3.b 3.c
4.a 4.b 4.c 5.a 5.b 5.c 2 of 4 August 1987 RBS USAR TABLE 3.9B-4 (Cont)
Component Plant Condition 1/
Loading Combination Code Allowable Stresses ASME Section III Reference Comparison with NRC Regulatory Guide 1.48 Class 1 Vessels
U E F [NPC or UPC] + 0.5 SSE (2)
EPC NPC + SSE + DSL 3.0 S (includes
secondary stresses)
1.8 S or 1.5 S
App. F - Section III NB-3223
NB-3224 NB-3225 Agree Class 1 Piping U E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 3.0 S (includes
secondary stresses)
2.25 S 3.0 S NB-3654
NB-3655 NB-3656 Agree Class 1 Pumps (Inactive)
U E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.65 S (includes
secondary stresses)
1.8 S App. F - Sect. III NB-3223
NB-3224 Agree Class 1 Pumps (Active) U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL Not Applicable Not Applicable Not Applicable Class 1 Valves (Inactive) by
analysis U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL Not Applicable Not Applicable Not Applicable Class 1 Valves (Inactive)
Designed by
either std. or
alternative
design rules U
E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.1 Pr 1.2 Pr 1.5 Pr NB-3525 NB-3526 NB-3527 Agree Class 1 Valves (Active) by
analysis U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL Not Applicable Not Applicable Not Applicable Class 1 Valves (Active)
Designed by std.
or alternative
design rules U
E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.0 Pr 1.0 Pr (3) 1.0 Pr NB-3525 NB-3526 NB-3527 Agree
3 of 4 August 1987 RBS USAR TABLE 3.9B-4 (Cont)
Component Plant Condition 1/ Loading Combination Design Limit Comparison with NRC Regulatory Guide 1.48 Class 2 & 3 Vessels (Division 1) of
Section III of the
ASME Code U
E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.1S 1.1S 9/ 1.5S 6.a 6.b 6.c Class 2 Vessels (Division 2) of
Section VIII of the
ASME Code U
E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL NB-3223 NB-3224 2/ NB-3225 7.a 7.b 7.c Class 2 & 3 piping U E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL NC-3611.1(b) (4) (c) (b) (1)
NC-3611.1(b) (4) 10/ (c) (b) (1)
NC-3611.1(b) (4)
(c) (b) (2) 8.a 8.a 8.b Class 2 & 3 Pumps (Inactive)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL m< 1.1 S > ( m + b) / 1.5 m< 1.1 S > ( m + b) / 1.5 m< 1.2 S > ( m + b) / 1.5 9.a 9.a 9.b Class 2 & 3 Pumps (Active) U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL m< 1.0 S > ( m + b) / 1.5 m< 1.0 S > ( m + b) / 1.5 11/ m< 1.0 S > ( m + b) / 1.5 10.a 10.a 10.a Class 2 & 3 Valves (Inactive)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.1 Pr 1.1 Pr 1.2 Pr 11.a 11.a 11.b Class 2 & 3 Valves (Active) U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.0 Pr 1.0 Pr 11/ 1.0 Pr 12.a 12.a 12.a 4 of 4 August 1987 RBS USAR TABLE 3.9B-4 (Cont)
Component Plant Condition 1/ Loading Combination Code Allowable Stresses ASME Section III Reference Comparison with NRC Regulatory Guide 1.48 Class 2 & 3
Vessels (Division 1)of Section III
of the ASME Code U
E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL m = 1.1 S (4) m = 2.0 S Code case
1607, NC/
ND-3300 Agree except for Faulted Condition, NRC more conservative Class 2 Vessels (Division 2) of
Section VIII of
the ASME Code U
E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL Not Applicable Not Applicable Not Applicable Class 2 & 3
Piping U E F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL 1.2 Sh 1.8 Sh 2.4 Sh NC/ND-3611.3(b)
NC/ 3611.3(c)
Code case 1606 NRC more conservative.
GE reflects industry position Class 2 & 3 Pumps (Inactive)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL Not Applicable Not Applicable Not Applicable Class 2 & 3
Valves (Active)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL m = 1.1 S (3) m = 1.2 S (4) Code case
1636, NC/
ND-3423 Agree (3) Class 2 & 3
Valves (Inactive)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL m = 1.1 S (4) m = 2.0 S Code case
1635, NC/
ND-3521 Equally conservative Class 2 & 3
Valves (Active)
U E
F [NPC or UPC] + 0.5 SSE
EPC NPC + SSE + DSL m = 1.1 S (3) m = 1.2 S (4) (4)______________________________
(1) Numerical indicators (i.e., 1/, 2/, etc) correspond to the footnotes of Regulatory Guide 1.48.
(2) An OBE or 0.5 SSE intensity is classified as an emergency event. However, for design purposes it is treated as an upset condition as shown in Table 3.9-2a.
(3) In addition to compliance with the design limits specified, assurance of operability under all design loading combinations shall be in accordance with Section 3.9.3.2B.
(4) The design limit for local intensity or primary membrane plus primary bending stress intensity is 150 percent of that allowed for general membrane (except as limited to 2.4S for inactive components under faulted condition). Refer to
Section 3.9.3.1B.
RBS USAR Revision 17 1 of 1 TABLE 3.9B-5 PRESSURE DIFFERENTIALS ACROSS REACTOR VESSEL INTERNALS Pressure Differences Maximum Occurring During a Steam Line Break (psi) Reactor Component Case 1 Case 214Core plate and guide tube 27.5 29.5 Shroud support ring and lower shroud 47.0 46.5 Upper shroud 25.0 26.0 Average channel wall (bottom) 13.3 11.7 Top guide 4.5 5.3 Case 1* - Reactor initially at 100.3% rated power, 107% rated core flow Case 2* - Reactor initially at 4 0.3% rated power, 107% rated core flow *(100% rated power = 30 91 MWt; 100% rated core flow = 84.5 Mlb/hr) 14 RBS USAR 1 of 1 August 1987 TABLE 3.9B-6 CORE SUPPORT STRUCTURE DESIGN LOADING CONDITIONS AND COMBINATIONS Service Operating Level Condition Loading Combinations A & B Normal & P u + W + L T + V + R + C + J Upset P u + W + L T + V + R + C + J + OBE
C Emergency P e + W + L T + V + R + C + J
D Faulted P f + W + SSE + V + R + C + J P u + W + SSE + V + R + C + J + L p
Stress Limited
The stress limits for the core support structures are in accordance with ASME
Boiler and Pressure Vessel Code. For each operating condition category, the
loadings to be simultaneously considered are given in the above expressions.
The symbols used in the equations are defined as follows:
Symbol Loading Condition P Differential Pressure W Weight SSE-OBE Seismic R Constraint from pressure vessel C Constraints by internal structures
L t Temperature effects L p Transient pressure differentials - Acoustic load at time of a liquid break LOCA V Vibration loads J Impingement loads The subscripts used with the P symbol are: Service Level B (Upset), Service Level C (Emergency), and Service Level D (Faulted). The events which are listed indicate the temperature conditions which are considered by referring to
the reactor cycle drawing. When time varying dynamic loads occur
simultaneously but their phase is such that the peak load relationships are not
coincident, the square root of the sum of the squares method of probabilistic
combination is used to combine loads.
1 of 1 August 1987 TABLE 3.9B-7 DEFORMATION LIMIT (FOR SAFETY CLASS REACTOR INTERNAL STRUCTURES ONLY)
Either One of (not both)
General Limit a. Permissible Deformation, DP Analyzed Deformation Causing Loss of Function, DL 0.9 SF minb. Permissible Deformation, DP Experiment Deformation
Causing Loss of Function, DE
- 1.0 SF min where: DP = Permissible deformation under stated conditions of Service Levels A, B, C or D (normal, upset, emergency or faulted) DL = Analyzed deformation which could cause a system loss of functions** DE = Experimentally determined deformation which could cause a system loss of function SF min =Minimum safety factor *Equation b is not used unless supporting data is provided to the NRC by General Electric.** "Loss of Function" can only be defined quite generally until attention is focused on the component of interest. In cases of interest, where deformation limits can affect the function of equipment and components, they are specifically delineated. From a practical viewpoint, it is
convenient to interchange some deformation condition at which functionis assured with the loss of function condition if the required safety
margins from the functioning conditions can be achieved. Therefore, it
is often unnecessary to determine the actual loss of function condition because this interchange procedure produces conservative and safe
designs. Examples where deformation limits apply are: control rod
drive alignment and clearances for proper insertion, core support deformation causing fuel disarrangement or excess leakage of any
component.
RBS USAR 1 of 3 August 1987 TABLE 3.9B-8 PRIMARY STRESS LIMIT (FOR SAFETY CLASS REACTOR INTERNAL STRUCTURES ONLY)
Any One Of (No More Than One Required)
General Limit
- a. Elastic evaluated primary stresses, PE Permissible primary stresses
< 2.25 SF min
- b. Permissible load, LP Largest lower bound limit load, CL
< 1.5 SF min
- c. Elastic evaluated primary stress, PE Conventional ultimate strength at temperature, US
< 0.75 SF min
- d. Elastic-plastic evaluated nominal primary stress, EP Conventional ultimate strength at Temperature, US
< 0.9 SF min
- e. Permissible load, LP Plastic instability load, PL
< 0.9 SF min
- f. Permissible load, LP Ultimate load from fracture analysis, UF
< 0.9 SF min *g. Permissible load, LP Ultimate load or loss of function load from test, LP
< 1.0 SF min
_______________________________
- Equations e., f., and g. are not used unless supporting data are provided to the NRC by General Electric.
RBS USAR 2 of 3 August 1987 TABLE 3.9B-8 (Cont) where:
PE = Primary stresses evaluated on an elastic basis. The effective membrane stresses are to be averaged through the load carrying section of interest. The simplest average bending, shear, or torsion stress distribution which supports the external loading is added to the membrane
stresses at the section of interest.
PN = Permissible primary stress levels under Service Levels A or B (normal or upset) conditions under ASME Boiler and
Pressure Vessel Code,Section III.*
LP = Permissible Load Under stated conditions of Service Levels A, B, C or D (normal, upset, emergency or faulted).
CL = Lower bound limit load with yield point equal to 1.5 Sm where Sm is the tabulated value of allowable stress at temperature of the ASME III code or its equivalent. The "lower bound limit load" is here defined as that produced from the analysis of an ideally plastic (nonstrain hardening) material where deformations increase with no further increase in applied load. The lower bound load is
one in which the material everywhere satisfies equilibrium and nowhere exceeds the defined material yield strength using either a shear theory or a strain energy of distortion
theory to relate multiaxial yield to the uniaxial case.
US = Conventional ultimate strength at temperature or loading which would cause a system malfunction, whichever is more
limiting.
SF min = Minimum safety factor
EP = Elastic plastic evaluated nominal primary stress. Strain hardening of the material may be used for the actual monotonic stress strain curve at the temperature of loading
or any approximation to the actual stress strain curve which everywhere has a lower stress for the same strain as the actual monotonic curve may be used. Either the shear or
strain energy of distortion flow rule may be used.
RBS USAR 3 of 3 August 1987 TABLE 3.9B-8 (Cont)
PL = Plastic instability loads. The "Plastic Instability Load" is defined here as the load at which any load bearing section begins to diminish its cross-sectional area at a faster rate than the strain hardening can accommodate the
loss in area. This type analysis requires a true stress-true strain curve or a close approximation based on monotonic
loading at the temperature of loading.
UF = Ultimate load from fracture analyses. For components which involve sharp discontinuities (local theoretical stress concentration <3) the use of a "Fracture Mechanics" analysis where applicable utilizing measurements of plane strain fracture toughness may be applied to compute fracture loads.
Correction for finite plastic zones and thickness effects as well as gross yielding may be necessary. The methods of linear elastic stress analysis may be used in the fracture analysis where its use is clearly conservative or supported by experimental evidence. Examples where "Fracture Mechanics" may be applied are for fillet welds or end of
fatigue life crack propagation.
LE = Ultimate load or loss of function load as determined from experiment. In using this method, account shall be taken of the dimensional tolerances which may exist between the actual part and the tested part or parts as well as differences which may exist in the ultimate tensile strength of the actual part and the tested parts. The guide to be used in each of these areas is that the experimentally determined load is adjusted to account for material property and dimension variations, each of which has no greater
probability than 0.1 of being exceeded in the actual part.
RBSUSAR1of1August1987TABLE3.9B-9BUCKLINGSTABILITYLIMIT(FORSAFETYCLASSREACTORINTERNALSTRUCTURESONLY)AnyOneOf(NoMoreThanOneRequired)GeneralLimita.Permissibleload,LP 2.25[ServiceLevelA(normal)permissibleload,PN]SF minb.Permissibleload,LP 0.9[Stabilityanalysisload,SL
]SF minc.Permissibleload,LP 1.0[Ultimatebucklingcollapseloadfrom test,SE]SF min where:LP=permissibleloadunderstatedconditionsofServiceLevelsA,B,CorD(normal,upset,emergencyorfaulted).PN=applicableServiceLevelA(normal)permissibleload.SL=stabilityanalysisload.Theidealbucklinganalysisisoftensensitivetootherwiseminordeviationsfromidealgeometryandboundaryconditions.Theseeffectsshallbe accountedforintheanalysisofthebucklingstability loads.Examplesofthisareovalityinexternally pressurizedshellsoreccentricityoncolumnmembers.SE=ultimatebucklingcollapseloadasdeterminedfromexperiment.Inusingthismethod,accountshallbetaken ofthedimensionaltoleranceswhichmayexistbetweenthe actualpartandthetestedpart.Theguidetobeusedin eachoftheseareasisthattheexperimentallydetermined loadshallbeadjustedtoaccountformaterialproperty anddimensionvariations,eachofwhichhasnogreater probabilitythan0.1ofbeingexceededintheactual
part.*Equationc.isnotusedunlesssupportingdataareprovidedtotheNRCbyGeneralElectric.
RBSUSAR1of1August1987*TABLE3.9B-10FATIGUELIMIT (1)(FORSAFETYCLASSREACTORINTERNALSTRUCTURESONLY)LimitforServiceLevelsAandB (NormalandUpset)CumulativeDamageinFatigueDesignConditionsDesignfatiguecycleusagefromanalysisusingthemethodofASMECode1.0_______________________
(1)SummationoffatiguedamageusagewithdesignandoperationloadsfollowingMinerhypotheses Source:Miner,M.A.,CumulativeDamageinFatigue,JournalofAppliedMechanics,Vol12,ASME,Vol67,pA159-A164,September1945.
RBS USAR TABLE 3.9B-11 EQUIPMENT QUALIFICATION RESULTS 1 of 3 August 1987 Equipment Description Method of Qualification MPL Manufacturer ID Number Qualification Standards*
B21-N005 Flow element 283X555G001 Analysis a
B33-C001 Recirc pump motor 762E637ADG001 Analysis a, f, g, h
Bingham/GE
B33-F023 Recirc MOV 922B192ABG001 Analysis a, f, g, h Anchor Darling
B33-F060 Recirc FCV 768E574P005 Analysis a, f, g, h Hammel Dahl
B33-F067 Recirc MOV 9220192BBG001 Analysis a, f, g, h Anchor Darling
C11-D001 HCU 767E800G001 Test/Analysis g, h
C41-A001 SLC tank 283X596G001 Analysis a Richland Engineering
E12-B001 RHR heat exchanger 283X548G002 Analysis f
EPCO
E12-N012/N014 RHR flow orifice 21A9505DA/ Analysis d Vickery Sims 21A9505DB
E21-N002 LPCS flow orifice 21A9505DC Analysis d Vickery Sims
E22-N007 HPCS flow orifice 21A9505DD Analysis d Vickery Sims
E33-D001/D021 Flow orifice 22A5369 Analysis d Vickery Sims
E51-N001 RCIC flow orifice 21A9505DE Analysis d Vickery Sims
F11-E001 Fuel prep machine 283X759G001 Analysis f, g, h
GE RBS USAR TABLE 3.9B-11 (cont)
Revision 21 2 of 3 Equipment Description Method of Qualification MPL Manufacturer ID Number Qualification Standards*
F11-E002 New fuel inspection stand 767E248G004 Analysis f, g, h
F11-E011 General purpose grapple 767E55G001 Analysis b
GE 10 F11-E012 Jib crane 105D5950P002 Analysis f, g, h California Pacific 10 F11-E014/E017 Fuel handling platform 767E546G009 Analysis f GE/Pro & Rem
F13-E005 Head holding pedestal 105D5987G001 Analysis f
CBIN
F13-E008 Dryer separator sling 767E707G001 Test/Analysis b
Votaw
F13-E009 Head strongback carousel 767E572G004 Analysis b
Votaw
F14-E002 Control rod grapple 767E593G001 Analysis b Industrial Design
F15-E003/E006 Refueling platform 767E457G007 Analysis f GE/Pro & Rem
F16-E005 Auxiliary platform 767E594P013 Analysis f, g, h
AVEL
F16-E002 Fuel storage rack (Part of F16-E012)
F16-E006 In-vessel rack 767E997G003 Not required until Gould first refueling outage
F16-E009 Defective fuel storage 117C2072G005 Analysis b
container
F16-E011 Equipment storage rack 767E206G001 Analysis f
GE RBS USAR TABLE 3.9B-11 (cont)
- The letter notations used in qualification standards are as follows:
a: ASME b: ASTM c: AISC d: ANSI B16.5
e: ANSI B31.1
f: Reg. Guide 1.92, Rev. 0
g: Reg. Guide 1.00, Rev. 1
h: IEEE 344-1975 3 of 3 August 1987 Equipment DescriptionMethodof Qualification MPL Manufacturer ID Number Qualification Standards*
F16-E012 Fuel storage vault 769E504G001 Analysis a, b, f, g, h GE F42-D001 Incline fuel transfer tube 283X690G001 Analysis a, c, e, f, g, h GE F42-G001 Bellows 10505916P001 Analysis a, f, g, h Associated Piping G33-N011 RWCU flow orifice 21A3544AAP001 Analysis d VickerySims G33-N035 RWCU flow element 21A3548ACP001 Analysis a Premutit G33-N040 RWCU flow orifice 21A3548ACP001 Analysis d VickerySims G33-N043 RWCU flow element 21A3544ABP001 Analysis a Fluidics Revision 14 1 of 2 September 2001 RBS USAR TABLE 3.9B-12 RESIDUAL HEAT REMOVAL PIPING STRESS PROBLEM AX-71B 14 Note: Pipe stress information is for historical purposes only.
14 Node Primary Stress (psi) Allowable (psi) 3 S m 5 23836 53484 400 21250 53484 6 12007 53484 7 13435 53484 12 18462 53484 15 18909 (Branch)53484 16 32088 (Branch)53484 161 32049 53484 17 18909 53484 18 18700 53484 22 12920 60000 23 17342 (Branch)60000 25 11825 60000 26 11492 60000 27 11387 60000 30 11262 60000 31 12287 60000 32 11570 60000 35 10880 60000 37 12054 60000 40 12214 60000 41 12816 60000 42 11806 60000 45 14446 60000 47 13055 60000 50 10103 60000 51 13155 60000 52 13786 60000 55 11909 60000 550 13195 60000 551 13559 60000 552 12981 60000 56 12069 60000 561 11282 60000 57 13631 60000 60 12095 60000 62 13582 60000 63 14486 60000 64 11908 60000 640 10647 60000 641 10165 60000
2 of 2 August 1987 RBS USAR TABLE 3.9B-12 (cont)
Node Primary Stress (psi) Allowable (psi) 3 S m 65 10613 60000 66 9866 60000 660 9578 60000 67 10221 60000 68 10037 60000 700 10016 60000 69 12945 60000 70 11601 60000 72 8789 60000 75 11242 60000 76 12960 60000 77 10381 60000 80 9874 60000 82 12082 60000 83 14266 60000 85 14298 60000
RBS USAR Revision 14 1 of 2 September 2001 TABLE 3.9B-13 RESIDUAL HEAT REMOVAL PIPING - REACTOR BUILDING STRESS PROBLEM AX-71C-REV 2 14 Note: Pipe stress information is for historical purposes only 14 Node Primary Stress (psi) Allowable (psi) 3 S m 5 24770 53484 400 21957 53484 6 12134 53484 7 13970 53484 12 18427 53484 13 32822 (Branch)53484 15 19913 53484 17 20244 53484 22 14600 60000 300 17899 (Branch)60000 23 11336 60000 25 11014 60000 27 11114 60000 28 13155 60000 30 13394 60000 31 12303 60000 32 11534 60000 35 11696 60000 37 12274 60000 40 11958 60000 42 10070 60000 43 12805 60000 44 13204 60000 45 13683 60000 46 15093 60000 462 12794 60000 461 12062 60000 463 11358 60000 47 11687 60000 470 11251 60000 48 11069 60000 49 10748 60000 50 13443 60000 54 12975 60000 55 12790 60000 57 11029 60000 60 10686 60000 62 12657 60000 65 12770 60000
RBS USAR 2 of 2 August 1987 TABLE 3.9B-13 (cont)
Node Primary Stress (psi) Allowable (psi) 3 S m 67 14795 60000 70 12468 60000
Stresses were calculated in accordance with ASME Section III, Subarticles NB-3652 (Equation 9) and NB-3656.
See Figure 3.9B-12 Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-14 RESIDUAL HEAT REMOVAL PIPING STRESS PROBLEM AX-71D 14 Note: Pipe stress information is for historical purposes only 14 Node Primary Stress (psi) Allowable (psi) 3 S 5 18143 53484 6 13076 53484 8 11646 53484 10 14164 53484 15 15506 53484 100 15366 53484 35 31900 53484 36 2399 (Branch) 53484 37 14310 53484 38 14173 53484 40 13993 53484 50 12169 60000 52 22438 60000 55 11626 60000 57 11086 60000 60 12206 60000 62 10417 60000 65 9720 60000 70 12628 60000 75 10899 60000 80 11752 60000 82 8922 60000 84 8624 60000 85 9407 60000 87 12722 60000 90 14237 60000 500 13621 60000 53 7524 (Branch) 60000
Stresses were calculated in accordance with ASME Section III, Subarticles
NB-3652 (Equation 9) and NB-3656.
See Figure 3.9B-15.
Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-15 LOW PRESSURE CORE SPRAY (CSL) SYSTEM STRESS PROBLEM AX-78A 14 Note: Pipe stress information is for historical purposes only 14 Node Primary Stress (psi) Allowable (psi) 3 S 5 12062 54204 7 19664 54204 10 15121 54204 12 12691 54204 15 12217 54204 17 11899 54204 20 12160 54204 35 13503 54204 37 14308 54204 38 14456 54204 39 14488 54204 40 14513 54204 50 13647 60000 51 13345 60000 5152 12994 60000 52 12854 60000 55 12912 60000 60 12080 60000 62 13268 60000 65 12555 60000 70 11469 60000 72 11317 60000 75 11888 60000 78 13628 60000 80 13815 60000 85 12936 60000 90 10092 60000 92 10570 60000 95 10783 60000 100 10501 60000 110 10488 60000
______________________________
Stresses were calculated in accordance with ASME Section III, Subarticles NB-3652 (Equation 9) and NB-3656.
See Figure 3.9B-15.
Revision 14 1 of 1 September 2001 TABLE 3.9B-16 HIGH PRESSURE CORE SPRAY (CSH) SYSTEM STRESS PROBLEM AX-83A 14 Note pipe stress information is for historical purposes only.
14 Node Primary Stress (psi) Allowable (psi) 3 S m 5 13263 54204 10 20930 54204 20 17042 (Branch)54204 22 14307 54204 25 15543 54204 35 15619 54204 40 15943 54204 42 15716 54204 45 15453 54024 55 13956 60000 58 13250 60000 60 11247 60000 65 10862 60000 70 10374 60000 71 10939 60000 72 12353 60000 75 11411 60000 80 11750 60000 82 11478 60000 85 12575 60000 878 12971 60000 90 11373 60000 95 12235 60000 97 11928 60000 100 10258 60000 105 11006 60000 110 9555 60000
____________________________
Stresses were calculated in accordance with ASME Section III, Subarticles NB-3652 (Equation 9) and NB-3656.
See Figure 3.9B-16.
Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-17 RHS LPCI SYSTEM PIPE SUPPORT LOADS FOR STRESS PROBLEM AX-71B 14 Note: Support loads are for historical information purposes only 14 Node Point Support Function Support Mark No. Load Fx(lb) Fy(lb) Fz(lb) 15Spring1RHS*PSSH3070A1 0 0 017Snubber1RHS*PSSP3071A10-9241025Strut 1RHS*PSST3072A1-20235 0 0*310Snubber1RHS*PSSP3073A1-12157 0 0*32Snubber1RHS*PSSP3074A1-10550 0 0*40Spring1RHS*PSSH3075A1 0 0 042Strut 1RHS*PSST3076A1
-9812 0 047Restraint 1RHS*PSR3077A10-11096 050Snubber1RHS*PSSP3078A1-12963 0 0 510Snubber1RHS*PSSP3079A1-12319 0 0*551Snubber1RHS*PSSP3164A1-19734 0 0*57 Strut 1RHS*PSST3080A10-14166 0 630Snubber1RHS*PSSP3158A1-22382 0 0*65Snubber1RHS*PSSP3159A1-13480 0 0*67Restraint 1RHS*PSR3160A10-10515 070Restraint 1RHS*PSR3081A10-8239 -1405082Restraint 1RHS*PSR3082A10-9099 0________________
- Loads are in the local coordinates.
NOTES: 1.Loads are in the global coordinate system.2.Loads shown above are SRSS (annulus pressurization, SSE, fluid transient).
Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-18 RHS LPCI SYSTEM PIPE SUPPORT LOADS FOR STRESS PROBLEM AX-71C 14 Note: Support loads are for historical information purposes only.
14 Node Point Support Function Support Mark No. Load Fx(lb) Fy(lb) Fz(lb) 15 Spring hanger 1RHS*PSSH3088A1 0 0 23 Strut 1RHS*PSST3089A1 -18902 0 0*
30 Snubber 1RHS*PSSP3090A1 -13620 0 0 310 Snubber 1RHS*PSSP3091A1 -7398 0 0*
40 Spring hanger 1RHS*PSSH3092A1 0 0 0 44 Snubber 1RHS*PSSP3161A1 -11824 0 0*
460 Snubber 1RHS*PSSP3162A1 -11481 0 0*
47 Snubber 1RHS*PSSP3094A1 -12034 0 0*
48 Strut 1RHS*PSST3095A1 0 0 -9911 49 Spring hanger 1RHS*PSSH3093A1 0 0 0 54 Restraint 1RHS*PSR3097A1 0 0 -13527 60 Spring hanger 1RHS*PSSH3096A1 0 0 0 67 Restraint 1RHS*PSR3098A1 0 -8032 0
________________
- Loads are in the local coordinates.
NOTES: 1. Loads are in the global coordinate system.
Revision 14 1 of 1 September 2001 Node Point Support Function Support Mark No. Load Fx(lb) Fy(lb) Fz(lb) 37 Snubber 1RHS*PSSP3066A1 -12861 0 0.0* 38 Spring 1RHS*PSSH3067A1 0.0 -14 0.0 55 Spring 1RHS*PSSH3068A1 0.0 -63 0.0 57 Restraint 1RHS*PSR3065A1 -16891 0.0 0.0*
84 Snubber 1RHS*PSSP3139A1 -15168 0.0 0.0*
90 Strut 1RHS*PSST3061A1 -14660 0.0 0.0*
________________
- Loads are in the local coordinates.
NOTES: 1. Loads are in the global coordinate system.
- 2. Loads shown above are SRSS (annulus
pressurization, SSE, fluid transient).
Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-20 CSL SYSTEM PIPE SUPPORT LOADS FOR STRESS PROBLEM AX-78A 14 Note: Support load are for historical information purposes only.
14 Node Point Support Function Support Mark No. Load Fx(lb) Fy(lb) Fz(lb) 17 Snubber 1CSL*PSSP3000A1 0 -2997 0 37 Spring 1CSL*PSSH3001A1 0 -70 0 62 Snubber 1CSL*PSSP3002A1 -146881 0 0 72 Snubber 1CSL*PSSP3003A1 0 -7370 0 78 Spring 1CSL*PSSH3004A1 0 -58 0 90 Snubber 1CSL*PSSP3005A1 -8561 0 0*
________________
- Loads are in the local coordinates.
NOTES: 1. Loads are in the global coordinate system.
- 2. Loads shown above are SRSS (annulus
pressurization, SSE, fluid transient).
Revision 14 1 of 1 September 2001 RBS USAR TABLE 3.9B-21 CSH SYSTEM PIPE SUPPORT LOADS FOR STRESS PROBLEM AX-83A 14 Note: Support loads are for historical information purposes only.
14 Node Point Support Function Support Mark No. Load Fx(lb) Fy(lb) Fz(lb) 22Snubber 1CSH*PSSP3001A10-3371040Spring Hanger 1CSH*PSSH3002A10-52 072Strut 1CSH*PSST3003A1-18910 0 0*82 Snubber 1CSH*PSSP3004A1-76790 0*85Spring Hanger 1CSH*PSSH3005A10-48 088Strut 1CSH*PSSM3006A1 00-13643________________
- Loads are in the local coordinates.
NOTES: 1.Loads are in the global coordinate system.
2.Loads shown above are SRSS (annulus pressurization, SSE, fluid transient).
RBS USAR Revision 8 1 of 1 August 1996 TABLE 3.9B-22 COMPONENT CYCLIC OR TRANSIENT LIMITS
COMPONENT CYCLIC OR TRANSIENT LIMIT DESIGN CYCLE OR TRANSIENT Reactor 120 heatup and cooldown cycles 70 F to 560 F to 70 F 80 step change cycles Loss of feedwater heaters 180 reactor trip cycles 100% TO 0% OF RATED THERMAL POWER 40 hydrostatic pressure or leak tests Pressurized at > 930 psig and < 1250 psig
RBS USAR TABLE 3.10A-1 BOP SEISMIC CATEGORY I ELECTRICAL AND INSTRUMENTATION EQUIPMENT QUALIFICATION RESULTS 1 of 16 August 1987 Equipment Methods Results Standby Motor Control Centers, 480 V ac and 125 V
dc The motor control centers are qualified by
dynamic testing. The applicable standards
and guidelines are IEEE 344-1975, IEEE 323-
1974, and NRC Regulatory Guides 1.89 and
1.100. The motor control centers are affected by seismic loads only.
The dynamic testing is performed as follows: A representative
test specimen is mounted on the vibration test table such that
the inservice condition is simulated. The specimen is
instrumented to record accelerations and to monitor o p erabilit y. A resonance search is performed from 1 to 35 Hz for each of the
three orthogonal axes. The seismic simulation vibration tests
consist of biaxial random multi-frequency tests, 5 OBEs and 1
SSE in each of two tests orientations, 90 deg apart. The test
specimen does not exhibit any malfunction as a result of the
seismic simulation tests. The TRS envelopes the RRS in the
applicable frequency range by a margin of at least 10 percent.
Standby Metalclad
Switchgear, 4.16 Kv
and 125 V dc The standby metalclad switchgear is
qualified by dynamic testing. The
applicable standards and guidelines are IEEE
344-1975, IEEE 323-1974, and NRC Regulatory
Guides 1.89 and 1.100.
The standby metalclad switchgear is affected by seismic loads
only. The dynamic testing is performed as follows: A
representative test specimen is mounted on the vibration test
table such that the inservice condition is simulated. The
specimen is instrumented to record accelerations and to monitor
operability. A resonance search test is performed from 1 to 50
Hz for each of the three orthogonal axes. The seismic
simulation vibration testing consists of biaxial random multi-
frequency tests, 5 OBEs and 1 SSE in each of two test
orientations, 90 deg apart. The test specimen exhibits no
malfunctions as a result of the seismic simulation tests. The
TRS envelops the RRS with at least a 10-percent margin. Several
switchgear test programs are utilized to qualify the particular
group of devices being supplied for the River Bend Station. The
methodology for these programs is identical to that described
above. The dynamic loadings to which the components are
subjected are representative of the inservice seismic loads
based on a comparison of required levels to the test specimen
input levels, and similarity between the test and inservice
mounting locations.
RBS USAR TABLE 3.10A-1 (Cont) 2 of 16 August 1987 Equipment Methods Results Standby 480-V Load-centers Including
1000-kVA and 1500-
kVA Transformers This equipment is qualified by a combination
of dynamic testing and analysis. Applicable
standards and guidelines are IEEE 323-1974, IEEE 344-1975, and NRC Regulatory Guides 1.89
and 1.100.
The equipment is affected by seismic loads only. The equipment
is mounted on the test table in a manner that simulates the
intended service mounting. The testing consists of a resonance
search testing from 1 to 60 Hz in three axes, followed by a
triaxial random multi-frequency testing. The equipment is
electrically powered, monitored for functional operation, and
instrumented to record accelerations during the seismic
testing. Five OBE level tests are performed followed by one
SSE level test. The TRS envelops the RRS by a margin of at
least 10 percent for the frequency range of interest. The
equipment does not exhibit any malfunction as a result of the
seismic simulation testing.
Electrical Air Duct
Heaters Qualification of air duct heaters is by
analysis and test. Applicable guidelines and
standards are NRC Regulatory Guide 1.61, AISC
Code, and IEEE 323-1974 and 344-1975.
The air duct heaters are affected by seismic loads only. The
analysis of the enclosures and devices for the heater and
remote control p anel is p erformed usin g a finite element model.
The natural frequencies are determined. Static analysis is
performed which calculates the stresses and deflections.
The results show that stresses are within the allowables of
paragraph 3.9.2.2.2A and deflections are negligible. For the
qualification of devices, a test program, consisting of
resonance search and random multi-axial and multi-frequency
tests, shows that the TRS envelop the RRS in the frequency
range of interest by a margin of at least 10 percent.
Batteries and Rack Batteries and racks are qualified by a combination of analysis and dynamic testing.
The applicable standards and guidelines are
IEEE 323-1974, 344-1975, and NRC Regulatory
Guides 1.61, 1.89, 1.92, and 1.100.
The storage batteries and racks are affected by seismic loads
only. The rack is qualified by static analysis. The
calculated natural frequency indicates that the rack is rigid
and that the floor motion is not amplified at the battery
locations. Stresses in the rack are well within the allowable
limits of paragraph 3.9.2.2.2A and the margin of safety is well
over 100 percent.
Revision 12 3 of 16 December 1999 Equipment Methods Results The batteries are qualified by dynamic testing performed as follows: the batteries are mounted on rigid racks during the
test, simulating the plant 12 installation. They are instrumented to record accelerations and to monitor operability. The test consists of a resonance
search from 1 to 35 Hz in three axes, followed by a biaxial or
triaxial, random multi-frequency excitation for 5 OBE and 1
SSE. The amplitude is controlled in one-third octave
bandwidths over a frequency range of 1 to 40 Hz or 1 to 200 Hz.
These biaxial tests are repeated in the alternate Horizontal
orientation to include all three axes of loading. The TRS
envelops the RRS within the frequency range of interest, with
at least a 10-percent margin. All the batteries successfully
complete these tests and perform their intended function.
12 Motor Operators Limitorque Model
SMB-000 SMB-00 SMB-0 SMB-1 SMB-2 SMB-3 SMB-4 SB-00 SB-0 SB-1 SB-2 SB-3 SMB-4 The motor operators are qualified by dynamic
testing. The applicable standards and
guidelines are IEEE 323-1974, 344-1975, 382-
1972, and NRC Regulatory Guides 1.73, 1.89, and 1.100.
Some of the motor o p erators are affected b y seismic loads onl
- y. Others are affected by both seismic and hydrodynamic loads.
Test program for the motor operators consists of testing a
selected group of parent actuators, which are then used to
dynamically qualify the entire line of Limitorque motor
operators in the plant using direct comparison and similarity.
For the motor operators affected by seismic loads, the dynamic
testing is performed as follows: A number of representative
test specimens are selected which enveloped the entire family
of motor operators. A resonance search test is performed from
1 to 33 Hz in each of the 3 orthogonal axes. The specimens are
then subjected to a series of single axis, sine dwell tests.
Since no resonant frequencies are identified below 33 Hz, dwell
tests are performed at a frequency of 33 Hz. These tests
consist of 150-sec duration sine dwell at 3 g, and a 30-sec
dwell test at 6 g. For selected operators, biaxial, random
multi-frequency tests are also performed. The operators
performed their safety functions, i.e., stroked within the
required durations, and torqued out at the preset load with no
indication of malfunction and are considered qualified to a
seismic level of 6 g.
RBS USAR TABLE 3.10A-1 (Cont) 4 of 16 August 1987 Equipment Methods Results The generic test program for motor-operators affected by the combined seismic and hydrodynamic loads is as follows: The
actuators are tested on shake tables capable of providing
acceleration levels which encompass the requirements of the
dynamic events. The tests consist of a resonance search up to
100 Hz in each of the three orthogonal axes, followed by
vibration aging using swept sine motion in the frequency range
5-200 Hz to a 0.75 g level. The actuators are then subjected
to a series of sine beat tests in each axis. These sine beat
tests are performed at a minimum of 1/3 octave intervals in
the frequency of 5 to 100 Hz, and account for the forcing
function frequencies. A large number of beats are used at
each test frequency to simulate the fatigue effects of the
hydrodynamic loading. The beat tests are performed at various
magnitudes which correspond to the individual seismic and
hydrodynamic loading events and loading combinations. In
addition, random, multi-frequency, multi-axis tests are
performed when necessary, to address the rigidly mounted
valves. The operators performed their safety function, i.e.,
stroked within the required durations and torqued out at the
preset loads. The operators are qualified for up to 14 g
loadings.
Piping design acceptance criteria ensure actual loadings to be
within the qualified levels for each motor operator.
Diesel Generator
System This system is qualified by a combination of
analysis and dynamic testing programs. The
following is the list of essential components
and systems, and the corresponding methods of
qualification.
Component/System Method Governor Dynamic Testing Overspeed trip Dynamic Testing Engine-driven lube oil
trip Dynamic Testing Engine-driven jacket
water pump Dynamic Testing Engine-driven fuel oil
pump Dynamic Testing Turbocharger Dynamic Testing Intercooler Dynamic Testing Inlet oil strainer Dynamic Testing The diesel generator system is affected only by seismic loads.
The entire diesel generator system including all the skid-
mounted equipment and piping components is analyzed using
lumped mass, finite element computer models. The natural
frequency results indicate that the system is rigid and that
the floor motion is not amplified at the various component
mounting locations. The results of the static analysis
indicate that the stresses in the analyzed components are well
within the allowable limits of paragraph 3.9.2.2.2A and the
margin of safety is well over 50 percent.
RBS USAR TABLE 3.10A-1 (Cont) 5 Revision 7 5 of 16 January 1995 Equipment Methods Results
5 7 7 Solenoid-operated air start valve Dynamic Testing Lube oil keepwarm pump Dynamic Testing Jacket water keepwarm pump Dynamic Testing
Auxiliary fuel oil booster pump Dynamic Testing Auxiliary fuel oil filter Dynamic Testing
Auxiliary fuel oil strainer Dynamic Testing Lube oil filter Dynamic Testing Lube oil keepwarm filter Dynamic Testing Control panels & components Dynamic Testing Starting air compressor Dynamic Testing Starting air aftercooler Dynamic Testing
Jacket water thermostatic valve Dynamic Testing Jacket water heater Dynamic Testing Engine auxiliaries Analysis Starting air receiver Analysis Jacket water cooler Analysis Lube oil cooler Analysis Jacket water standpipe Analysis Lube oil sump tank Analysis Intake air filter Analysis Intake air silencer Analysis Exhaust gas silencer Analysis
Auxiliary subbase piping systems Analysis Fuel oil system Analysis Jacket water system Analysis Lube oil system Analysis Starting air system Analysis Synchronous generator Analysis Ac outlet box Analysis Lube oil pressure req. valve Dynamic Testing The applicable standards and guidelines are
IEEE 323-1974, 344-1975, and NRC Regulatory
Guides 1.61, 1.89, 1.92, and 1.100.
All the active components including the electrical
instrumentation and control panels are qualified by dynamic
testing. The dynamic testing is performed as follows: Each
component is mounted during the test to simulate the plant
installation, and instrumented to record acceleration and to
monitor operability. The test consists of a resonance search
from 1 to 33 Hz MW in three axes, followed by a biaxial, random multi-frequency series of 5 OBE and 1 SSE tests.
These biaxial tests are repeated in the alternate horizontal
axis to consider all three orthogonal axes of loading. The
control panels and their components are qualified by dynamic
testing. The accelerations are recorded throughout the panel
for use of dynamic testing of each component of the panels.
The TRS envelops the RRS within the frequency range of
interest with at least a 10-percent margin. All the test
specimens successfully complete these tests and perform their
intended function.
Battery Chargers The battery chargers are qualified by dynamic test. The applicable standards and guidelines
are IEEE 323-1974, 344-1975, and NRC
Regulatory Guides 1.61, 1.89, 1.92, and 1.100.
The battery chargers are affected by seismic load only. They
are qualified by similarity to a unit which was dynamically
tested. The chargers are mounted during the test to simulate
the plant installation and instrumented to record
accelerations and to monitor operability.
Revision 18 6 of 16 Equipment Methods Results The test consists of a resonance search from 1 to 60 Hz in three axes, followed by a biaxial, random multi-frequency
series of 5 OBE and 1 SSE tests. The amplitude was controlled
in one-third octave bandwidths over a frequency range of 1 to
40 Hz. These tests were repeated in the second orientation to
consider all three axes of loading. The TRS envelops the RRS
within the frequency range of interest with at least a 10-
percent margin. All the battery chargers successfully
completed these tests and performed their intended function.
Flow Switches and
Level Switches Switches are qualified by dynamic testing.
The applicable standards are IEEE 344-1975, 323-1974, and NRC Regulatory Guides 1.89 and
1.100. The switches are affected by both seismic and hydrodynamic
loads.
Dynamic testing of the switches was performed as follows: a
resonance search was conducted by 0.25 g magnitude sine sweeps
from 1-200-1 Hz in each axis.
This was followed by vibration aging in each axis for 90 min, using sine sweeps at 0.75 g from 1-200-1 Hz at one octave per
minute.
RIM tests to simulate hydrodynamic loading are performed by
biaxial sine sweeps from 1-100-1 Hz and with sine beats from
1-100 Hz at one-third octave intervals to verify the relay
switching mode.
This is followed by biaxial random, multi-frequency tests
consisting of 5 OBE and 3 SSE test, the latter being one with
the relays pulled in, one with the relays dropped out, and one
verifying switching.
The lowest resonant frequency is 118 Hz and the TRS enveloped
the RRS with a minimum of 10-percent margin. No anomalies
such as signal discrepancies or spurious switch chatter are
noted in the tests. Equipment function is satisfactory
before, during, and after the test and no structural anomalies
occur.
Revision 18 7 of 16 Equipment Methods Results Electronic Transmitters The electronic transmitters are qualified by a
combination of analysis and dynamic testing.
The applicable standards and guidelines are
IEEE 323-1974, 344-1975, and NRC Regulatory
Guides 1.61, 1.89, 1.92 and 1.100.
The electronic transmitters are affected by seismic and
hydrodynamic loads. The generic test program is performed as
follows: The transmitters are mounted during the test to
simulate the plant installation and instrumented to record
accelerations and to monitor operability. The test consists
of a resonance search in three axes, followed by a biaxial, random multi-frequency series of 5 OBE and 1 SSE tests
repeated in the second orientation to consider all three axes
of loading. The electronic transmitter successfully completed
these tests and performs its intended function.
An analysis identifying the margin and demonstrating the
adequacy of the present test program for the transmitters to
withstand the fatigue effect of the combined seismic and
hydrodynamic loads is performed. It shows that the TRS have a
margin of at least 10 percent in the applicable frequency
range; and the test motions contain more equivalent cycles
than those postulated for the combined seismic and
hydrodynamic loads.
RBS USAR TABLE 3.10A-1 (Cont) 8 of 16 August 1987 Equipment Methods Results Miscellaneous Small Dry Transformers The transformers are qualified by dynamic
testing. The applicable standards and
guidelines are IEEE 323-1974, 344-1975, and
NRC Regulatory Guides 1.61, 1.89, 1.92, and
1.100. The transformers are affected by seismic loads only. The
dynamic test is performed as follows: The transformers are
mounted during the test to simulate plant installation and are
instrumented to record accelerations and to monitor
operability. The test consisted of a resonance search from 1
to 50 Hz in three axes which showed that the transformers are
rigid. Biaxial sine beat tests are performed at the resonant
frequencies determined during the resonance search test. Each
sine beat test consists of 10 oscillations of the test
frequency with a pause of 2 seconds between each five beats.
The transformers successfully complete these tests and perform
their intended function. The margin of safety is at least 100
percent. Hydrogen Recombiner
14
14 The hydrogen recombiner is qualified by a combination of analysis and dynamic testing.
The applicable standards and guidelines are
IEEE 343-1974, 344-1975, and NRC Regulatory
Guides 1.61, 1.89, 1.92, and 1.100.
The recombiner is subjected to combined seismic and
hydrodynamic loads. The power supply panel is affected by
seismic loads only. The dynamic testing used recombiner and
power supply panel mountings during the test which simulate
plant installation. They are instrumented to record
accelerations and to monitor operability. The test includes a
resonance search in three axes. Vibration aging to simulate
the effects of OBE is performed through several random, multi-
frequency multi-axis tests followed by four random multi-axis
tests (phase coherent) of 20-sec durations each at the SSE
level.
The TRS for all these tests exceeds the combined seismic and
hydrodynamic response spectra by a margin of at least 10
percent within the frequency range of interest. In addition, multi-axis sine beat tests in four orientations are performed
at several 1/2 octave intervals and at all resonant frequencies
in the range of 1.25 to 35 Hz. Five beats, each containing 10
oscillations, are used at each frequency. The recombiner and
power supply panel successfully complete these tests and
perform their intended functions.
Revision 14 9 of 16 September 2001 Equipment Methods Results To address hydrodynamic loads, an analysis is performed which utilizes the results of the above tests and additional long
duration tests performed on a similar recombiner. This
analysis shows that the stress cycles in the response of the
recombiner which result from the long duration tests are
higher by at least an order of magnitude more than the
postulated response cycles of the combined seismic and
hydrodynamic loads. Therefore, the recombiner withstands the
fatigue effects of the loads and performs its intended
function and maintains structural integrity during and after
the tests.
Radiation
Monitoring System The radiation monitoring system is qualified
by a combination of analysis and dynamic
testing program. The following is a list of
essential components and the corresponding
methods of qualification.
Component Method Liquid monitor assembly Dynamic Testing Radiation monitor assembly Dynamic Testing
Adjacent-to-line steam monitor Dynamic Testing Area monitor assembly Dynamic Testing Gas monitor assembly Dynamic Testing
Wide range gas monitoring assembly Dynamic Testing
Particulate, iodine and gas monitor assembly Dynamic Testing Control cabinet Dynamic Testing
Communication isolation device Dynamic Testing Moisture control unit Dynamic Testing Velocity probes Static Analysis
Nonclass 1E components are qualified through
their similarity to the Class 1E components, or by static analysis. The applicable
standards and guidelines are IEEE 323-1974, 344-1975, and NRC Regulatory Guides 1.89, 1.92, and 1.100.
Some of the components in the radiation monitoring system are
affected by seismic loads only. Others are affected by both
seismic and hydrodynamic loads. The dynamic testing for
components affected by seismic loads is performed as follows:
A resonance search in three axes is performed from 1 to 33 Hz.
Six random multi-frequency tests of 30-second duration each
using independent biaxial motions, with amplitude controlled
in one-third octave bandwidths over a frequency range of 1 to
33 Hz, are performed and are repeated in the alternate
horizontal orientation to consider all three axes of loading.
The TRS envelopes the RRS by at least a 10-percent margin in
the frequency range of interest. The components are
instrumented to record accelerations and to monitor
operability before, during, and after the vibration tests.
Equipment remains functional and no structural damage is
noted.
For components affected by hydrodynamic loads, testing
includes high frequency and long duration characteristics of
the loading as follows: The resonance search is extended to a
frequency of 100 Hz. The input motions for the random testing
contain frequencies between 1 and 100 Hz.
RBS USAR TABLE 3.10A-1 (Cont) 10 of 16 August 1987 Equipment Methods Results The TRS envelopes the RRS by at least a 10-percent margin in the frequency range of interest. The random testing consists
of several additional tests at various amplitudes in addition
to the six test of 30-sec duration. An analysis to compare
the test equivalent stress cycles with those from the
postulated dynamic loads is also performed. This analysis
shows that the test motions contain equivalent stress cycles
greater than those from the postulated dynamic loads.
Standby Distribution
Panels, 120 V ac
and 125 V dc The standby distribution panels are qualified
by dynamic testing. The applicable standards
and guidelines are IEEE 344-1975 and 323-1974, and NRC Regulatory Guides 1.89 and 1.100.
The standby distribution panels are affected by seismic loads
only. The procedure for the dynamic testing is as follows: A
representative test sample is mounted on the vibration test
table such that the inservice condition is simulated. The
specimen is instrumented to record accelerations and monitor
operability. A resonance search is performed from 1 to 50 Hz
for each of the three orthogonal axes. The seismic simulation
vibration tests consist of triaxial random multi-frequency
tests, 5 OBEs followed by 1 SSE. The TRS envelops the RRS
with at least 10-percent margin in the applicable frequency
range. Uninterruptible
Power Supply
Systems The uninterruptible power supply systems are
qualified by dynamic testing. The applicable
standards and guidelines are IEEE 323-1974, 344-1975, 650-1979, and NRC Regulatory Guides
1.61, 1.89, 1.92, and 1.100.
The uninterruptible power supply systems are affected by
seismic loads only. The dynamic testing is performed as
follows: A representative test specimen is mounted on the
vibration test table such that the inservice condition is
simulated. A resonance search is performed from 1 to 35 Hz
for each of the three orthogonal axes. The resonance search
testing indicates that the equipment is rigid. The seismic
simulation vibration tests consist of biaxial random multi-
frequency tests (5 OBEs and 1 SSE in each of two test
orientations 90 deg apart). The test specimen does not
exhibit any malfunction as a result of the seismic simulation
tests. Hydrogen Analyzer The equipment, which consists of two panels, is qualified by a combination of analysis and
dynamic tests. The applicable standards and
guidelines are the AISC Code, IEEE 323-1974, 344-1975, and Regulatory Guides 1.61, 1.89, 1.92, and 1.100.
This equipment is affected by seismic loads only. Vibration
tests of the two equipment cabinets using portable exciters
conclude that the cabinets are rigid. The cabinet structures
are qualified by static analysis. The stresses are determined
to be well below the allowable limits of 3.9.2.2.2A, with a
factor of safety in excess of 3.
RBS USAR TABLE 3.10A-1 (Cont) 11 of 16 August 1987 Equipment Methods Results The internal subassemblies of the cabinets are qualified separately by dynamic testing using the floor RRS since the
cabinets are rigid. The subassemblies are mounted on a rigid.
The subassemblies are mounted on a rigid fixture to simulate
the normal installation and subjected to random multi-
frequency biaxial input. A total of six 30-sec tests is
performed with input levels far in excess of the required
levels.
The random multi-frequency, biaxial tests are performed in two
orientations to subject the equipment to loading in all three
axes. The TRS enveloped the RRS in the frequency range of
interest with the test ZPA (of 4 Gs) at least 10 times greater
than the required ZPA.
The equipment is tested in the operating condition and
instrumented throughout the test to monitor its performance.
The equipment successfully completes the tests.
Containment
Electrical
Penetration The electrical penetration assemblies are
qualified by a combination of dynamic testing
and static analysis. The applicable
standards, codes, and guidelines are IEEE 317-
1976, 344-1975, ASME B&PV Code Section III
1977 Edition, and NRC Regulatory Guides 1.89, 1.92, and 1.100.
The electrical penetrations are affected by both seismic and
hydrodynamic loads. Dynamic testing is performed on prototype
units in accordance with IEEE 317-1976 for each of the
following assemblies: medium voltage, low voltage power, control and instrumentation penetration assemblies. Six
random multi-frequency tests of 30-sec durations each are
performed using independent biaxial motions. The six tests
are repeated in the other horizontal orientation to consider
all three axes of loading. The natural frequency results
indicate that the penetration assemblies are rigid, i.e.,
natural frequency greater than 100 Hz. The TRS envelops the
RRS in the rigid range with more than 500 percent margin. The
complete system is energized and no electrical discontinuities
occur during the test. The assemblies remain functional
before, during, and after the test.
RBS USAR TABLE 3.10A-1 (Cont) 12 of 16 August 1987 Equipment Methods Results The test input motions are analyzed and found to produce many more equivalent stress cycles than those postulated for the
combined seismic and hydrodynamic loads.
Design adequacy is also demonstrated through a design stress
report in accordance with ASME III paragraph NCA-3550.
Control Panels and
Instrument Racks Control panels, instrument racks, and the
mounted devices are qualified by a combination
of dynamic testing and analysis. Applicable
standards and guidelines are AISC Code, IEEE
323-1974, 344-1975, and NRC Regulatory Guides
1.61, 1.89, 1.92, and 1.100 Control panels and racks are affected by seismic loads only.
The panels and racks are qualified by a finite element
analysis. The natural frequency results indicate that the
panel and racks are rigid and that the floor motion was not
amplified at the various component mounting locations. The
results of the static analysis indicate that the stresses are
well within the allowable limits of 3.9.2.2.2A and the margin
of safety is over 15 percent.
All the active components, including Foxboro racks, are
qualified by dynamic testing. The dynamic test is performed
as follows: The test items are mounted during the test to
simulate the plant installation and are instrumented to record
accelerations and to monitor operability. The test consists
of a resonance search from 1 to 35 Hz in three axes, followed
by a biaxial, random multi-frequency series of 5 OBE and 1 SSE
tests with amplitude controlled in one-third octave bandwidths
over a frequency range of 1 to 40 Hz. These tests are
repeated in the second horizontal orientation to consider all
three axes of loading. The TRS envelops the RRS within the
frequency range of interest, with at least a 10-percent
margin. All the tested items successfully complete these
tests and perform their intended functions.
Limit Switches (NAMCO) The limit switches are qualified by dynamic
testing. The applicable standards and
guidelines are IEEE 323-1974, 382-1972, 344-
1975, and NRC Regulatory Guides 1.89 and
1.100. The limit switches are affected by both seismic and
hydrodynamic loads. The dynamic testing is performed as
follows: Representative limit switches are mounted on a rigid
test fixture attached to the vibration test table with
instrumentation provided to record accelerations and monitor
operability. A resonance search is performed from 1 to 35 Hz
in each of the three orthogonal axes. Sine dwell fragility
tests are performed at one-third octave intervals between 1
and 35 Hz in each of the three orthogonal axes.
RBS USAR TABLE 3.10A-1 (Cont) 13 of 16 August 1987 Equipment Methods Results A 9.5 g qualification level at all test frequencies is established as a result of these tests. These qualification
levels exceed the required levels due to all of the dynamic
loads. For the limit switches affected by hydrodynamic loads, results of the above testing, and additional single frequency
dwell testing in the frequency range of 4-100 Hz, are
utilized. The combined test data show adequacy with respect
to the frequency content of the dynamic load and indicate that
the switches remain operable to a level of 7.2 g. In
addition, the test motions contain equivalent stress cycles
greater than those imposed by the postulated dynamic loads.
Thermocouples and
RTDs Thermocouples and RTDs are qualified by
dynamic testing. Applicable standards and
guidelines are IEEE 323-1974, 344-1975, and
NRC Regulatory Guides 1.89 and 1.100.
Some of these items of equipment are affected by seismic load
only. Others are affected by both seismic and hydrodynamic
loads. The dynamic testing for equipment affected by seismic
load is as follows: The equipment is mounted on the test
table in a manner that simulates the intended service
mounting. The tests consist of resonance frequency search
from 1 to 175 Hz followed by biaxial random multi-frequency
testing for 5 OBEs followed by 1 SSE. Each of these tests
consists of phase coherent input motions in four orientations.
The TRS envelops the RRS by a margin of at least 10 percent.
The equipment does not exhibit any malfunction as a result of
the multi-frequency tests. For the equipment affected by
hydrodynamic load, additional dynamic testing is performed on
the same units which were previously tested with multi-
frequency test motions. The additional tests utilize sine
beat test input motions up to a frequency of 100 Hz.
Equipment remains functional during and after the tests.
Miscellaneous
Electrical Motors Application:
Fans Coolers Chillers Pumps Air blowers
Air conditioners Qualification of electrical motors is by a
combination of test and analysis. Applicable
codes, standards and regulatory guides include
the AISC Code, NRC Regulatory Guides 1.61, 1.92, 1.100, and IEEE 323-1974, 334-1974, and
344-1975.
Electrical motors are subject to seismic and hydrodynamic
loads. Qualification of motors is based on environmental and
vibration tests of motorettes as provided in IEEE 334-1974.
Motorettes are subjected to vibration tests for 1 hr at 1 1/2 g
at a frequency of 60 Hz. Structural and functional
qualification of individual motors is then based on static
analysis. All motors are determined to be rigid. Stresses in
all critical components are within the allowable limit of
3.9.2.2.2A. Deflection of the rotor is within the allowable
clearance and bearing lives corresponding to the loads are in RBS USAR TABLE 3.10A-1 (Cont) 14 of 16 August 1987 Equipment Methods Results Manufacturers:
Westinghouse
Reliance
Seimens-Allis excess of the qualified life of the motor.
Position Monitoring
Instruments Qualification is by a combination of analysis
and test. Applicable standards are Regulatory
Guides 1.61, 1.92, 1.89, 1.100 and IEEE 381-
1977, 323-1974, and 344-1975.
The position sensors and preamplifiers are subject to seismic
and hydrodynamic loads; the indicating instruments to seismic
loads only. The dynamic test program is performed as follows:
The equipment is mounted to simulate the plant installation
and instrumented to record accelerations and monitor
operability. The test consists of a resonance search in those
areas with 0.2 g amplitude sine sweeps followed by a biaxial
random multi-frequency series of 5 OBE and 1 SSE tests of 30-
sec duration. The TRS enveloped the RRS with more than 10
percent margin in the frequency range of interest. An
analysis, identifying the margins for the preamplifiers to
withstand the fatigue effects of combined seismic and
hydrodynamic loads is performed, showing that the number of
load cycles achieved in the tests, while maintaining
functionality, exceeded the required number by over 100
percent. Solenoid Valves -
Target Rock The solenoid valves are qualified by a
combination of dynamic testing and analysis.
The applicable standards and guidelines are
IEEE 344-1975 and 382-1972 and Regulatory
Guides 1.61, 1.89, 1.92, and 1.100.
Some of the valves are affected by seismic loads only, and the
remainder are affected by both seismic and hydrodynamic loads.
The valves which are affected by seismic loads were subjected
to dynamic test. This consisted of 90 min of vibration aging
along each axis, followed by a resonant frequency search up to
a frequency of 100 Hz. The vibration motion for the OBE was
applied using sinusoidal sweeps in the frequency range of 2 to
35 Hz. The SSE vibration motion was applied using single-
frequency sine beat tests at one-third octave intervals in the
frequency range of 2 to 32 Hz and biaxial, random, multi-
frequency test motions. The random test was performed with
phase coherent input motions in four orientations. These
tests compiled with the requirements of IEEE 382-1980, even
though the RBS FSAR commitment is to IEEE 382-1972. The test
valve was pressurized to 2750 psig with water at the inlet and
was cycled during the testing. Piping end loads of 285 ft-lb
were applied. The valve functioned satisfactorily during and
after the test.
RBS USAR TABLE 3.10A-1 (Cont) 15 of 16 August 1987 Equipment Methods Results Valves affected by the combined seismic and hydrodynamic loads are qualified by a combination of random, multi-frequency and
single frequency sine sweep and sine beat test motions. The
sine-beat tests were performed at test frequencies in the
range 1 to 100 Hz at 1/3 octave intervals, at an input level
of 6.0 g; except in the low frequencies where the input levels
were limited to 5.0 inch double displacement. The test valve
was pressurized at 1250 psig. The valve functioned
satisfactorily during and after the test.
Piping design acceptance criteria ensure actual dynamic
loadings to be within the qualified levels for each valve.
Solenoid-Operated
Valves - ASCO The solenoid operators are qualified by
dynamic testing. Applicable standards and
guidelines are IEEE 323-1974, 344-1975, 382-
1972, and 627-1980, and Regulatory Guides 1.89
and 1.100.
Some of the solenoid valves are affected by seismic loads
only. Others are affected by both seismic and hydrodynamic
loads.
For valves affected by seismic loads, the testing consists of
a sinusoidal sweep resonance search in all three axes from 1
to 35 Hz followed by a series of single frequency, single axis
sine beat tests at 38 test frequencies between 1 and 35 Hz.
The required safety function of the valves to shift position
is demonstrated during and after the testing. The tests
establish the valve adequacy to a minimum input level of 7.2
- g. For solenoid valves affected by hydrodynamic loads, the
results of resonance searches performed on various models in
the frequency range 1 - 100 Hz are utilized to demonstrate the
valve's adequacy in the entire range of dynamic loading. In
addition, the durations and stress cycle requirements of the
dynamic loading are met by a larger number of single
frequency, single axis, sine beat tests. The safety function
of the valve is demonstrated during and after the testing, and
valve adequacy is established up to an input level of 7.5 g.
Piping design acceptance criteria ensure actual dynamic
loadings to be within the qualified levels for each valve.
RBS USAR TABLE 3.10A-1 (Cont) 16 of 16 August 1987 Equipment Methods Results Personnel Air Lock Equipment Qualification is by test. Applicable
standards are IEEE 382-1972, 323-1974, 317-
1976, 344-1975, and Regulatory Guides 1.61, 1.92, and 1.100.
The personnel airlock-related equipment covered here consists
of solenoid-operated globe valves (Target Rock) and electrical
penetration assembly. The equipment is affected by seismic
and hydrodynamic loads.
The qualification of the solenoid valves is accomplished by
testing. The details are stated under the equipment Solenoid
Valves - Target Rock in this table.
The electrical penetration is qualified by random multi-
frequency testing. Six tests of 30-sec duration each are
performed using biaxial motions. The six tests are repeated
in the other horizontal orientation to consider all three axes
of loading. The natural frequency result indicates that the
penetration assembly is rigid, i.e., it has a natural
frequency greater than 100 Hz. The TRS envelopes the RRS in
the rigid range with more than a 100-percent margin. The
complete system is energized and no electrical discontinuities
occur during the tests. The assembly remains functional
before, during, and after the test. It is also concluded that
the test motions contain many more equivalent cycles than
those postulated for the combined seismic and hydrodynamic
loads.
1 of 5 August 1988 RBS USAR TABLE 3.10B-1 NSSS SEISMIC CATEGORY I ELECTRICAL AND INSTRUMENTATION EQUIPMENT QUALIFICATION RESULTS Equipment Methods Results Temperature Elements The temperature elements are qualified by
both dynamic testing and analysis. The
applicable standard is IEEE 344-1975.
The temperature elements designated as having an active safety
function have been dynamically tested demonstrating
qualification. Mounted similar to field conditions, they have
been subjected to SRV vibration aging, chugging, seismic, and
hydrodynamic loads. Biaxially testing, over the frequency range
of 1 to 100 Hz, was accomplished in three mutually perpendicular
axes with Test Response Spectra (TRS) enveloping the Required
Response Spectra (RRS). The temperature elements maintained
their functional and structural integrity during testing.
Those elements having a passive safety function were analyzed to
show structural integrity when subjected to process pressures
and loads in excess of the requirement for their location.
Temperature Switch The temperature switch is shown to be qualified by an analysis of its structural
capability.
The safety function of the temperature switch is passive.
Analysis shows that it exceeds its structural requirements when
subjected to required seismic and hydrodynamic loads.
Calculations indicate a high natural frequency making it a rigid
body in the range of interest and its capability far exceeds its
stress requirements.
Pressure Transmitters, Differential, Absolute, and Gauge The transmitters are qualified by dynamic
testing meeting the guidelines of IEEE 344-
1075. The transmitters can be subjected to both seismic and
hydrodynamic loads during their installed life. Testing in an
as-installed condition included random frequency excitation to
meet SRV aging, upset and faulted seismic, and chugging
requirements. Tests were performed in three mutually
perpcendicular axes. During testing the transmitters maintained
structural integrity and met functional requirements.
Level Transmitters Level transmitters are shown to be qualified for their application by both analysis and
testing. Testing was performed to meet the
guidelines of IEEE 344-1975.
The level transmitters have both an active or passive safety
function depending on their application. Those transmitters
with a passive safety function have been shown to meet
structural requirement by analysis. They have natural
frequencies higher than the range of interest and have been
shown to have structural integrity to withstand the required
seismic and dynamic conditions.
2 of 5 August 1987 RBS USAR TABLE 3.10B-1 (cont)
Equipment Methods Results Those transmitters whose safety function is active were tested
in their safety-related operating mode and were continuously
monitored. They maintained their structural integrity and met
accuracy requirements during testing. Five OBE and one SSE
tests were performed in three mutually perpendicular axes.
Excitation was applied by axially over a frequency range of 1 to
100 Hz. Level Switch The switches are shown to be qualified for their installed location by testing
performed to meet the guidelines of IEEE
The level switch has an active safety function and can be
subjected to seismic and hydrodynamic loads during its plant
life. Vibration aging, SRV, OBE, SSE, and sine beat testing was
performed in three mutually perpendicular axes to levels greater
than required for their RBS installed location. During testing
the switches met structural and functional requirements.
Pressure Switch The pressure switch is qualified by dynamic testing to meet the applicable stsandards of
This switch has an active safety function and can be subjected
to seismic loads during its plant life. Five OBE and one SSE
multi-frequency, biaxial seismic tests were performed on the
switch at levels exceeding the RBS requirements. Excitation was
applied in three mutually perpendicular axes. The switch met
its functional and structural requirements.
Stop Valve Switch This switch is qualified based on dynamic testing at levels greater than its RBS
requirement.
This device has an active safety function and has demonstrated
structural and functional integrity when subjected to seismic
conditions in excess of the RBS requirement. It demonstrated no
natural frequencies below the ZPA point. Discrete frequency
dwells were applied, biaxially, to a maximum level of 5.5 g from
1 to 35 Hz in three mutually perpendicular axes.
Pressure Indicators The pressure indicators have been qualified by dynamic testing, meeting the guidelines
of IEEE 344-1975.
Indicators can have an active or passive safety function. The
indicators mounted in an as installed condition were subjected
to biaxial random testin g over a fre q uenc y ran g e of 1 to 250 Hz.
Five OBE and one SSE tests were applied in three mutually
perpendicular axes. TRS that included both seismic and
hydrodynamic loads enveloped the RRS. The indicator maintained
structural integrity throughout testing.
3 of 5 August 1987 RBS USAR TABLE 3.10B-1 (cont)
Equipment Methods Results Insulated Detectors The detectors have been qualified by dynamic testing to meet the guidelines of IEEE 344-1975. Detectors have an active safety function and met structural and
functional requirements when subjected to seismic testing at
amplitudes greater than required. Five OBE and one SSE biaxial
random tests were performed in three mutually perpendicular axes
over a frequency range of 1 to 100 Hz. Functional performance
was demonstrated before, during, and after seismic excitation.
IRM Detector A combination of test and analysis demonstrates qualification of the detectors
for their installed location.
The IRM detector movement during a seismic event is controlled
by the fuel bundle and maximum excitation occurs at the natural
frequency of the bundle. The detector was tested at discrete
frequencies in the horizontal axes and analyzed for vertical
loads. Capabilities, both tested and analyzed, exceed RBS
requirements, demonstrating qualification.
Conductivity
Element The conductivity cell was analyzed to
withstand seismic loads significantly
greater than required.
The safety function of the cell is passive, however, it must
maintain its structural integrity. Analysis indicates no
resonances in any axis below 100 Hz and the ability to withstand
loads more than 15 times greater than required.
Condensing Chamber This equipment is qualified by analysis to meet the RBS seismic requirement applying
the ASME Boiler and Pressure Vessel Code
Section III.
Stress analysis indicates that the condensing chamber meets the
requirements of the ASME Code and that the lowest calculated
allowable moment reaction exceeds the maximum moment of any RBS
condensing chamber installation.
Thermometer The thermometer is shown to be qualified by analysis to meet its structural seismic
requirements.
The thermometer has a passive safety function and can be
subjected to seismic loads during its plant life. Analysis
indicates a lowest natural frequency of 247 Hz, well above the
range of interest. Additionally it is shown to be qualified for
30 g with adequate margin. Requirement for its location is
3.0 g. Local Panels All panel qualification is by test of equivalent panels and devices. The
applicable standard is IEEE 344-1975.
All panels were installed in an equivalent manner to those
tested. Multi-frequency, biaxial testing was performed by
applying five OBE and two SSE level tests in each of three
mutually perpendicular axes. Functional performance and
structural integrity were monitored throughout the test series.
4 of 5 August 1987 RBS USAR TABLE 3.10B-1 (cont)
Equipment Methods Results In the instances where instruments were not tested on the panel the response at the device location was determined by
multiplying the RRS and ZPA by the amplification factor for that
device location on the panel and comparing the result with
individual instrument test data. Qualification of panels is
ensured since the TRS enveloped the RRS, and functional and
structural requirements were met.
Controls Room
Panels The control room panels are qualified by
test to the specified requirements using the
applicable standards of IEEE 344-1975.
Control room panels and essential devices are seismically
qualified to the IEEE 344-1975 criteria by comparing these
panels to similar panels that have been qualified by test. The
control room panels are steel structures that can be compared to
other seismically similar structures, and the instruments can be
considered separately.
A review of the RBS panels shows that the lowest natural
frequency for all but two panels is 12 Hz or higher. This
compares to a cutoff frequency of 8 Hz (conservatively rounded
up to 10 Hz) for the RBS floor response spectra. Therefore, all
but two panels behave as rigid bodies at RBS, and the device RRS
are the same as the floor response spectra. The two panels, with natural frequencies less than 10 Hz, were tested to floor
TRS which envelop the RBS floor response spectra, so they are
qualified as an assembly.
For the devices in the remainder of the panels, all but two were
tested to the multi-frequency, multiaxis requirements of IEEE
344-1975. Comparison of the device TRS to the RBS device RRS (which are the same as the floor response spectra) shows that
all devices are qualified. For the two devices tested to
single-frequency requirements, resonance search data show they
are rigid to 26 Hz with a loading capability far in excess of
5 of 5 August 1987 RBS USAR TABLE 3.10B-1 (cont)
Equipment/Manufacturer Cross-Reference
Equipment Purchased Part Drawing Equipment Code Manufacturer Temperature Element 145C3224 A California Alloy Temperature Element 159C4313 P California Alloy Temperature Element 158B7072 California Alloy Temperature Element 159C4520 P California Alloy Temperature Switch 157C4629 P California Alloy Pressure Transmitter 169C8392 A, P Rosemount Pressure Transmitter 169C8394 P Rosemount Pressure Transmitter 169C8869 P Rosemount Level Transmitter 184C4775 A Gould Level Transmitter 145C3156 P Barton Level Switch 184C4776 A Magnetrol Pressure Switch 184C4770 A Barksdale TSV Switch 163C1303 A Namco Pressure Indicator 163C1104 A, P Robert Shaw Detector 237X731 A GE Detector 112C3144 GE Conductivity Element 163C1544 P Balsbaugh Condensing Chamber 204B7269 P Thermometer 145C3103 P Local Panels A Control Room Panels A
RBS USAR Revision 18 1 of 1 Table 3.11-1 7 SYSTEMS AND SUBSYSTEMS REQUIRED TO MITIGATE ACCIDENTS CSH High pressure Core Spray (HPCS) System CSL Low Pressure Core Spray (LPCS) System RHS Residual Heat Removal (LPCI, SPCM, ASCM) System SVV Nuclear Boiler (Main Steam Safety and relief Valves, Automatic Depressurization (ADS) System ICS Reactor Core Isolation Cooling (RCIC) System RPS Reactor Protection System MSI Main Steam Positive Leakage Control System LSV Penetration Valve Leakage Control System RPC Reactor (Rod Pattern Control) System NMS Neutron Monitoring System SWP Standby Service Water and Normal Service Water Systems SLS Standby liquid Control System GTS Standby Gas Treatment System HVR Containment, Drywell, and Auxiliary Building Ventilation, Annulus Pressure Control, Containment and Drywell Purge (Reactor Plant Ventilation) System CMS Containment Atmosphere Monitoring System CPM Combustible Gas Control (Hydrogen Mixing) System HCS Combustible Gas Control (Hydrogen Recombiner) System SFC Fuel Pool Cooling and Cleanup System EGF Fuel Oil Storage and Transfer (Emergency Generator Fuel)
SystemEGA Diesel Generator (Air Startup-Standby Diesel Generator)
SystemsHVC Control Building Ventilation Air Conditioning System HVK Control Building Chilled Water System HVN Ventilation Chilled Water System HVF Fuel Building Ventilation System HVP Diesel Generator (Diesel Generator Building Ventilation)
SystemsHVY Standby Service Water Pumphouse Ventilation (Yard Structures Ventilation System RMS Process and Area Radiation Monitoring Systems SPS Standby Electrical Power (Diesel Generator System)
CCP Reactor Plant Component Cooling Water System SSR Reactor Plant Sampling System (Post Accident Sampling System)LDS Leak Detection System RSS Remote Shutdown System CPP Combustible Gas Control (Containment Hydrogen Purge)
SystemCES Residual Heat Removal (LPCI, SPCM, SCM) System Auxiliary AC Power Systems (Class 1E), 125-Volt DC Power Systems (Class 1E) 7 RBS USAR TABLE 3.11-2 ACCIDENT/SYSTEM MATRIX Revision 7 1 of 4 January 1995 7 ACCIDENTS SYSTEMS REQUIRED TO MITIGATE ACCIDENT C-1 HPCS C-2 LPCS C-3 LPCI C-4 ADS C-5 RCIC C-6 CIS C-7 RPS C-8 MSI C-9 LSV C-10 RPCS C-11 NMS C-12 SPCM C-13SWP C-14 SLS1. Steam Line Break Outside Containment 2. Feedwater Line Break Outside Containment 3. LOCA 4. High Energy line Break Outside Containment (RWCU/RCIC) 5. Rod Drop 6. Fuel Handling 7. Recirculation Pump Seizure 8. Recirculation Pump Shaft Break 9. Main Condenser Gas Treatment System Failure RBSUSARTABLE3.11-2ACCIDENT/SYSTEMMATRIXRevision142of4September2001147 ACCIDENTSSYSTEMSREQUIREDTOMITIGATEACCIDENT C-15 ASCM C-16 GTS C-17 HVR C-18 CMS C-19 CPM C-20 HCS C-21 SFC C-22 EGF C-23 EGA C-24 SPS C-25 HVK C-26 HVC C-27 HVF C-28 HVP1.SteamLineBreakOutsideContainment
2.FeedwaterLineBreakOutsideContainment
3.LOCA
4.HighEnergylineBreakOutside Containment (RWCU/RCIC)
5.RodDrop
6.FuelHandling
7.RecirculationPump Seizure
8.RecirculationPumpShaftBreak
9.MainCondenserGasTreatmentSystem Failure
14 RBSUSARTABLE3.11-2ACCIDENT/SYSTEMMATRIXRevision143of4September20017ACCIDENTSSYSTEMSREQUIREDTOMITIGATEACCIDENT C-29 HVY C-30 RMS C-31 LDS C-32 PAM C-33 HVN C-34 CCP C-35 SSR C-36 CPP C-37 CES1.SteamLineBreakOutsideContainment
2.FeedwaterLineBreakOutsideContainment
3.LOCA
4.HighEnergylineBreakOutside Containment (RWCU/RCIC)
5.RodDrop
6.FuelHandling
7.RecirculationPump Seizure
8.RecirculationPumpShaftBreak
9.MainCondenserGasTreatmentSystem Failure
14TheHVFSystemisnotcreditedinthemitigationconsequencesoftheevent.ITisrequiredtomaintaintheenvironmentconditionsofsafetyrelatedequipment.14 RBS USAR 7 TABLE 3.11-2 ACCIDENT/SYSTEM MATRIX Revision 7 4 of 4 January 1995 RBS BOP ELECTRICAL EQUIPMENT EMERGENCY CROSS-REFERENCE CODES
Due to a field length limitation in the computerized master equipment list, the following shall be used.
Emergency Condition Equivalent Emergency Condition C-6 and C-34 C-101
C-6 and C-18 C-102
C-3 and C-15 C-103
C-12 and C-15 C-104
C-3, C-6, C-12, and C-15 C-105
C-6 and C-24 C-106
C-3, C-6 and C-15 C-107
C-3, C-12, and C-15 C-108
C-2 and C-6 C-109
C-6 and C-33 C-110
C-6, C-9, and C-33 C-111
C-9 and C-33 C-112
C-6 and C-17 C-113
C-6 and C-9 C-114
C-6 and C-21 C-115
C-4 and C-6 C-116
C-6 and C-13 C-117
C-6 and C-8 C-118
C-6, C-12, and C-15 C-119
C-3 and C-6 C-120 7 Revision 7 1 of 1 August 1987 RBS USAR 7 Table 3.11-3 SWEC/GE SYSTEM CROSS-REFERENCE SWEC GE MSS B21 FWS B21 SVV B21 DTM B21 RDS C11 SLS C41 RHS E12 CSL E21 CSH E22 MSI E33 ICS E51 WCS G33, G36 RCS B33 NMS C51 LDS E31 RBS USAR 7 Table 3.11-4 SYSTEMS ASSOCIATED WITH CONTAINMENT ISOLATION MSS Nuclear Boiler System - Power Conversion (Main Steam) System MSI Main Steam Positive Leakage Control System DTM Nuclear Boiler (Turbine Plant Miscellaneous Drains) System FWS Nuclear Boiler (Feedwater) System RHS Residual Heat Removal System WCS Reactor Water Cleanup System CSH High Pressure Core Spray (HPCS) System CSL Low Pressure Core Spray (LPCS) System ICS Reactor Core Isolation Cooling (RCIC) System SFC Fuel Pool Cooling and Cleanup System RDS CRD Hydraulic (Control Rod Drive) System HVR Containment, Drywell, and Auxiliary Building Ventilation, Annulus Mixing, Annulus Pressure Control, Containment and Drywell Purge (Reactor Plant Ventilation) System CPP Combustible Gas Control (Containment Hydrogen Purge) System DFR Equipment and Floor Drainage (Reactor Plant Floor Drains)
System DER Equipment and Floor Drainage (Reactor Building Equipment Drains) System FPW Fire Protection - Water System SAS Service Air System IAS Instrument Air System CCP Reactor Plant Component Cooling Water System SWP Standby Service and Normal Service Water Systems SVV Nuclear Boiler (Main Steam Safety and Relief Valves, Automatic Depressurization) System CMS Containment Atmosphere Monitoring System LMS Containment Leakage Monitoring System LSV Penetration Valve Leakage Control System HVN Ventilation Chilled Water System CNS Condensate Makeup and Drawoff System
7 Revision 7 1 of 1 January 1995
RBS USAR 1 of 1 January 1995 7 Table 3.11-5 SYSTEMS INCLUDED IN THE STANDBY POWER SYSTEM EGS Emergency Diesel Generator System EJS Standby 480-V Electrical System ENB Standby 125-V DC Control Supply ENS Standby 4.16-kV Electrical System RCP Reactor Containment Electrical Penetrations SCM Station Control Monitoring (Vital) - Indication SCV Station Control Bus (Vital) - AC Supply Including Transformer and Transfer Switch VBS Vital Bus System (incoming supply from inverter) 7 RBSUSAR7 7Revision71of6January1995TABLE3.11-6HARSHENVIRONMENTALZONEDESCRIPTIONS Zone Description Drywell DW-1OutsideRPVShieldWall,OutsideDW-2(El81'-3/4"to162'-3")
DW-2OutsideRPVShieldWall,toaradiusof17'-0"fromRPVcenterline(El110'-0"to122'-0")
DW-3UnderRPV(El73'-1/4"to102'-0")
DW-4DrywellDome(El162'-3"to175'-33/4")
DW-5OutsideRPVSkirt(El100'-8"to108'-6")
DW-6BetweenRPVInsulationandPrimary(Biological)ShieldWall(El108'-6"to
147'-6")Containment CT-1UpperContainmentDome(El235'-0"to256'-3")
CT-2ImmediatelyAboveSuppressionPool(El90'-0"to114'-0")
CT-3HCUFloor(El114'-0"to141'-0")
CT-4SLCSAreas(El141'-0"to162'-3")
CT-5WCSArea-BackwashReceivingTankandPumpCubicles(El141'-0"and162'-3")
CT-5AWalkwayAdjacenttoZoneCT-5 CT-6DrywellPersonnelHatchArea(El130'-7")
CT-7WCSHeatExchangerCubicle(El147'-3"to 181'-10")CT-7AWalkwayAdjacenttoZoneCT-7 CT-8FuelTransferTube,IsolationValveRoom(El128'-13/4")
CT-9InsideMainSteamTunnel(El114'-0")
CT-10SFCPipeandValveRoom(El130'-7"andEl162'-3")
CT-11WCS-FilterCubicles(El162'-3")
CT-SPSuppressionPool(El70'-0"to90'-0")
CT-G*GeneralArea(El114'-0",141'-0",162'-3",and186'-3")
Annulus AN-1AllAreasEl114'-0"andAbove AN-2AllAreasImmediatelyBelowEl114'-0" AN-3VicinityofSFCPiping(El114'-0"to141'-0",AZ-155
°to185° RBSUSAR7 7Revision72of6January1995TABLE3.11-6(Cont)
Zone DescriptionAuxiliaryBuildingElevation:70'-0"AB-070-1CSLAreaAB-070-2RHS-P1APumpRoom AB-070-3*ICSPumpRoom AB-070-4RHS-P1CPumpRoom AB-070-5RHS-P1BPumpRoom AB-070-6HPCSPumpRoom AB-070-7ElevatorArea AB-070-8RPCCWArea AB-070-GGeneralAreaElevation:95'-9" AB-095-1CSLHatchAreaAB-095-2RHSHeatExchangerArea(West)
AB-095-3*WCSAreaAB-095-4HoistArea AB-095-5RHSHeatExchangerArea(East)
AB-095-6HPCSHatchArea AB-095-7ElevatorArea AB-095-8RPCCWArea AB-095-9CRDWorkArea AB-095-10*MainSteamTunnel AB-095-GGeneralAreaElevation:114'-0" AB-114-1MCCArea(West)AB-114-2*MainSteamTunnel(North)
AB-114-3MCCArea(East)
AB-114-4PostAccidentSamplingStation AB-114-5ElevatorRoom AB-114-6RPCCWArea AB-114-7*MainSteamTunnel(Loops)
AB-114-8RHSEquipmentRemovalCubicle AB-114-GGeneralAreaElevation:141'-0" AB-141-1EquipmentArea(West)AB-141-2EquipmentArea(East)
AB-141-3ElevatorArea RBSUSAR7 7Revision103of6April1998TABLE3.11-6(Cont)
Zone DescriptionAB-141-4RPCCWAreaAB-141-5StandbyGasTreatmentFilter(West)
AB-141-6StandbyGasTreatmentArea(East)
AB-141-GGeneralAreaElevation:170'-0" AB-170-1AnnulusMixingSystemFanAreaAB-170-2ContinuousFilterRoom AB-170-3ElevatorMachineRoom10AB-170-GGeneralArea 10FuelBuildingElevation:70'-0"FB-070-1FuelPoolCoolingPumpsandHeatExchangerFB-070-2SFTDrainTankArea FB-070-3BackwashReceivingRoom FB-070-4FuelPoolPurificationElevation:95'-0" FB-095-1FuelPoolDemineralizerFilterandTankRoomsFB-095-2SFCHeatExchangerCubicles FB-095-GGeneralAreaElevation:113'-0" FB-113-1CaskLoadingandShippingAreaFB-113-3PipeChase FB-113-4FuelTransferTubeMid-SupportRoom FB-113-GGeneralAreaElevation:131'-3" FB-131-1PipeChase Elevation:148'-0" FB-148-1CharcoalFilterRooms10 10 RBSUSAR7 7Revision104of6April1998TABLE3.11-6(Cont)
Zone DescriptionRadwasteBuildingElevation:65'-0"RW-065-1TankRoomsRW-065-2ValveandPumpRooms RW-065-GGeneralAreaElevation:90'-0" RW-090-1TankAreaRW-090-2ValveandPumpRoomsElevation:106'-0" RW-106-4CaskFillandStorageAreaRW-106-5ValveandPumpArea RW-106-6WasteSludgeTankArea10 10Elevation:117'-0",120'-0",and128'-6"RW-117-1ValveandPumpAreaRW-117-2FilterandDemineralizerCubicles RW-120-1ValveandPumpRoom RW-128-1CleanCaskStorageElevation:136'-0"RW-136-1BridgeCraneAreaRW-136-2EvaporatorandReboilerAreas10 10RW-136-4FlatBedFilterandPumpAreaElevation:166'-0" RW-166-1HVWFilterRoomRW-166-2EvaporatorAreaTurbineBuildingIncludingOff-GasAreaElevation:67'-6" TB-067-1HeaterBayCubiclesTB-067-3TurbineandCondenserArea RBSUSAR7 7Revision105of6April1998TABLE3.11-6(Cont)
Zone DescriptionElevation:95'-0"TB-095-1HeaterBayCubiclesTB-095-2MoistureSeparatorandReheatArea TB-095-3TurbineandCondenserArea TB-095-4AirEjectorCubicle TB-095-5DecontaminationArea TB-095-6SteamPackingExhausterAreaElevation:123'-6"and180'-0" TB-123-1MoistureSeparatorandReheatAreaTB-123-2TurbineShieldWallWellArea TB-123-3SteamSealEvaporatorCubicle TB-123-4RadwasteReboilerCubicle TB-123-5HVTFilterRoom TB-123-GGeneralArea TB-180-GAreaImmediatelyBelowTurbineBuilding RoofElevation:67'-6"OG-067-1CondensateDemineralizerRegenerationArea Elevation:95'-0" OG-095-1CondensateDemineralizerArea10 10Elevation:123'-6" OG-123-1SampleRoomsOG-123-2Off-GasEquipmentAreas OG-123-3CharcoalAbsorberCubicleElevation:148'-6" OG-148-1CharcoalAbsorbersOG-148-2HoldupPipeRoom OG-148-3FilterArea RBSUSAR7 7Revision106of6April1998TABLE3.11-6(Cont)
Zone DescriptionPipingTunnels10PT-2TunnelBorderedbyAB,RB,andRWBuildingsPT-3ABTunnel PT-7TunnelBorderedbyRWandACBuildings 10____________________________* Containshigh-energypiping;failureispostulated.
RBSUSAR7 7Revision101of6April1998TABLE3.11-7MILDENVIRONMENTALZONEDESCRIPTIONS Zone Description10 10FuelBuildingElevation:70'-0"FB-070-GGeneralArea Elevation:113'-0" FB-113-2FuelHanding-OperatingFloor Elevation:148'-0" FB-148-2EquipmentArea10FB-148-GGeneralArea 10ControlBuildingElevation:70'-0"CB-070-1CableVaultAreaCB-070-2HVACRooms CB-070-GGeneralAreaElevation:98'-0" CB-098-1SwitchgearAreaCB-098-2MechanicalEquipmentRoom CB-098-GGeneralAreaElevation:115'-0" CB-115-1HVACRoomsCB-115-GGeneralAreaElevation:116'-0" CB-116-1BatteryRoomCB-116-2CableVentandSwitchgear,InverterRooms CB-116-GGeneralArea RBSUSAR7 7Revision102of6April1998TABLE3.11-7(Cont)
Zone DescriptionElevation:136'-0"CB-136-1ControlRoomCB-136-GGeneralAreaRadwasteBuildingElevation:90'-0" RW-090-GGeneralArea Elevation:106'-0" RW-106-1SolidWasteTreatmentAreaRW-106-2SolidWasteCompactingandStorageArea RW-106-3SampleRoom10RW-106-GGeneralArea 10Elevation:117'-0"RW-117-GGeneralArea Elevation:136'-0"10RW-136-3LaundryRoom 10RW-136-GGeneralAreaElevation:166'-0" RW-166-GGeneralArea TurbineBuildingIncludingOff-GasAreaElevation:67'-6" TB-067-2SampleRoomTB-067-4ReactorFeedPumpArea TB-067-GGeneralAreaElevation:95'-0" TB-095-GGeneralArea RBSUSAR7 7Revision103of6April1998TABLE3.11-7(Cont)
Zone DescriptionElevation:123'-6"TB-123-6Passageway Elevation:67'-6" OG-067-GGeneralArea10Elevation:95-0 OG-095-GGeneralArea 10Elevation:123'-6"10OG-123-GGeneralArea
10Elevation:148'-6"OG-148-GGeneralArea DieselGeneratorBuildingElevation:70'-0" DG-070-1DieselFuelTankArea Elevation:98'-0" DG-098-1DieselOperatingAreaDG-098-2DieselGeneratorControlRooms DG-098-GGeneralAreaElevation:126'-0"10DG-126-1DieselGeneratorIntakeFilterAreasDG-126-2DieselGeneratorExhaustSilencerAreas 10NormalSwitchgearBuildingElevation:67'-6",98'-0",and123'-6"NS-067-1CableTrayRoomNS-098-1NormalSwitchgearandLoadCenter NS-098-2Passageway-NormalSwitchgear NS-123-1BatteryRooms NS-123-2ComputerRooms NS-123-3MechanicalEquipmentandSwitchgearRooms NS-123-4Passageway-NormalSwitchgear RBSUSAR7 7Revision74of6January1995TABLE3.11-7(Cont)
Zone DescriptionAuxiliaryBoilerBuildingElevation:95'-0"and123'-6"BA-095-1AuxiliaryBoilerArea BA-095-2SwitchgearAreaBA-123-1DeaeratorAreaAuxiliaryControlBuildingElevation:95'-0" AC-095-1HotMachineShopAC-095-2Passageway AC-095-3DecontaminationRoom AC-095-4I&CElectricalHotShopElevation:123'-6" AC-123-1MechanicalEquipmentAC-123-2Passageway AC-123-3AuxiliaryControlRoomStandbyServiceWaterPumphouse SW-1StandbyServiceWaterPumpRooms SW-2TransformerRooms SW-3RemoteAirIntakeRoom SW-4FanDeckAreaAdministrationComplex AD-1OfficeBuilding AD-2 Warehouse AD-3 Cafeteria/Lockers/Offices AD-4Lab/HealthPhysics/DecontaminationAreas AD-5MechanicalRoom AD-6MachineShops AD-7ElectricalLoadCenter AD-8PrimaryAccessPoint AD-9AuxiliaryAccessPoint AD-10TechnicalSupportCenter(TSC)
RBSUSAR7 7Revision75of6January1995TABLE3.11-7(Cont)
Zone DescriptionFirePumphouseBuilding FP-1FirePumphouseMakeupWaterIntakeStructure MK-1BatteryRooms MK-2PumpRoom MK-3SwitchgearRoomCirculatingWaterPumphouse CW-1CirculatingWaterPumphouseMGSetBuilding MG-1MGSetWaterTreatmentBuilsding WT-1WaterTreatmentTransformerYard2A TY-1FireProtectionSprinklerBuildingHypochloriteArea HA-1SwitchgearHouseBlowdownArea BP-1BlowdownPitCoolingTower CL-1SwitchgearHouse(1A)
CL-2SwitchgearHouse(1B)
CL-3SwitchgearHouse(1C)
CL-4SwitchgearHouse(1D)ClarifierArea CA-1SwitchgearHouse CA-2TankRoom RBSUSAR7 7Revision106of6April1998TABLE3.11-7(Cont)
Zone DescriptionDemineralizedWaterBuilding DI-1DemineralizedWaterPumphousePipingTunnels10PT-1StandbyServiceWaterTowerTunnelPT-4TunnelBorderedbyAB,CB,andDGBuildings PT-5TunnelBorderedbyNSandCBBuildings PT-6TunnelBorderedbyTBandNJBuildings PT-8TunnelBorderedbyFBBuildings PT-9TunnelBorderedbyFBandRBBuildings PT-10YardTunnelManholeSouthofTurbineBuildingPlantstack ST-1OutsideperimeterofStackElevation229 Proximity 10 RBSUSAR 7Revision71of1January19957TABLE3.11-8PLANTZONESThefollowingplantzonesaremildenvironmentplantzonesservedbythespecialcontrolroomcharcoalairfilters:CB-136-1ControlRoomCB-136-GGeneralArea Revision81of1August1996RBSUSAR87TABLE3.11-9 DELETED 78 RBS USAR 7 TABLE 3.11-10 ENVIRONMENTAL QUALIFICATION DATA MASTER LIST LEGEND
Number Title Description 1 TAG Indicates identifying number of equipment (the first four characters of which correspond to the unit number and major
system in which the equipment is used).
2 SUFFIX A designator showing additional information related to the tag number.
3 NPRDS/COMP/CODE A code showing the type of component by industry code 4 EQUIPMENT DESCRIPTION Brief description of equipment. 13 5 13 CAB/PANEL/RACK Mark Number of the panel/rack in which instruments are located.
6 MAKE/MANUFACTURER A four-digit code indicating the manufacturer (not necessarily the same as the vendor). Shown in Table 3.11-11.
7 MODEL/CATALOG NO. Manufacturer's Identification Number.
8 REMARKS Indicates where special notes or further data may be entered concerning the device and its qualification.
9 ZONE Indicates environmental condition associated with the device.
10 SUBMR Indicates if equipment is subjected to submergence.
7
Revision 13 1 of 2 September 2000 RBS USAR 7 13 TABLE 3.11-10 (Cont)
Number Title Description 11 OPTIME Indicates period of time following the onset of an accident during which the device must remain capable of performing
its safety function (operability time). 12 OPCD Indicates the operability code category associated with the device with regard to Appendix E, NUREG 0588, Item 2. 13 SRN No. No longer used.
14 EQAR Indicates the summary reference number of the EQAR (Equipment Qualification Assessment Report) applicable to the
device.
7 13
Revision 13 2 of 2 September 2000 Revision 8 1 of 1 August 1996 RBS USAR 87 TABLE 3.11-11 DELETED 7 8 Revision 8 1 of 1 August 1996 RBS USAR 87 TABLE 3.11-12 DELETED 7 8 Revision 8 1 of 1 August 1996 RBS USAR 87 TABLE 3.11-13 DELETED 7 8 Revision 8 1 of 1 August 1996 RBS USAR 87 TABLE 3.11-14 DELETED 7 8