ML17226A103

From kanterella
Jump to navigation Jump to search
5 to the Updated Safety Analysis Report, Chapter 11, Section 11.1-1 Tables - Reactor Coolant and Main Steam Radionuclide Concentrations
ML17226A103
Person / Time
Site: River Bend  Entergy icon.png
Issue date: 07/28/2017
From:
Entergy Operations
To:
Office of Nuclear Reactor Regulation, Office of Nuclear Material Safety and Safeguards
Shared Package
ML17226A087 List:
References
RBG-47776, RBF1-17-0089
Download: ML17226A103 (57)


Text

Revision 14 1 of 3 September 2001 RBS USAR TABLE 11.1-1 REACTOR COOLANT AND MAIN STEAM RADIONUCLIDE CONCENTRATIONS Reactor Coolant Main Steam Design Expected Design Expected Isotope

( Ci/g)

( Ci/g)

( Ci/g)

( Ci/g)

Noble Gases (1)

Kr-83m 5.5-3 (2) 9.1-4 Kr-85m 9.7-3 1.6-3 Kr-85 3.0-5 5.0-6 Kr-87 3.3-2 5.5-3 Kr-88 3.3-2 5.5-3 Kr-89 2.1-1 3.4-2 Kr-90 4.6-1 7.5-2 Kr-91 5.5-1 9.1-2 Kr-92 5.5-1 9.1-2 Kr-93 1.5-1 2.4-2 Kr-94 3.6-2 5.9-3 Kr-95 3.3-3 5.5-4 Kr-97 2.2-5 3.6-6 Xe-131m 2.4-5 3.9-6 Xe-133m 4.6-4 7.5-5 Xe-133 1.3-2 2.1-3 Xe-135m 4.3-2 7.0-3 Xe-135 3.6-2 6.0-3 Xe-137 2.4-1 3.9-2 Xe-138 1.4-1 2.3-2 Xe-139 4.6-1 7.5-2 Xe-140 4.9-1 8.0-2 Xe-141 4.0-1 6.5-2 Xe-142 1.2-1 1.9-2 Xe-143 1.9-2 3.2-3 Xe-144 9.1-4 1.5-4 Halogens

  • 14 Br-83 3.5-2 5.8-3 1.4-3 2.3-4 Br-84 3.5-2 5.8-3 1.4-3 2.2-4 Br-85 2.2-2 2.3-3 8.8-4 1.0-4 I-131 2.1-2 3.4-3 9.1-4 1.5-4 I-132 3.1-1 5.1-2 1.3-2 2.1-3 I-133 2.8-1 4.6-2 1.2-2 1.9-3 I-134 4.9-1 8.1-2 2.6-2 4.3-3 I-135 2.7-1 4.5-2 1.1-2 1.9-3 14*

Revision 14 2 of 3 September 2001 RBS USAR TABLE 11.1-1 (Cont)

Reactor Coolant Main Steam Design Expected Design Expected Isotope

( Ci/g)

( Ci/g)

( Ci/g)

( Ci/g)

Cesium and Rubidium Rb-89 2.3-2 3.8-3 2.3-5 3.8-6 Cs-134 1.7-4 2.7-5 1.7-7 2.7-8 Cs-136 1.1-4 1.8-5 1.1-7 1.8-8 Cs-137 4.4-4 7.3-5 4.4-7 7.3-8 Cs-138 2.5-1 7.8-3 2.5-4 7.8-6 Water Activation Products

  • 14 N-13 7.1-2 5.0-2 4.2-2 4.2-2 N-16 6.0+1 6.0+1 3.0+2 3.0+2 N-17 1.3-2 9.0-3 2.1-1 1.2-1 O-19 1.2+0 7.0-1 5.9-1 1.0-1 F-18 4.8-2 4.0-3 4.0-3 4.0-3 14*

Tritium H-3 1.0-2 1.0-2 1.0-2 1.0-2 Other Nuclides Na-24 9.0-3 9.0-3 9.0-6 9.0-6 P-32 1.9-4 1.9-4 1.9-7 1.9-7 Cr-51 5.6-3 5.6-3 5.6-6 5.6-6 Mn-54 6.5-5 6.5-5 6.5-8 6.5-8 Mn-56 5.0-2 4.2-2 5.0-5 4.2-5 Fe-55 9.3-4 9.3-4 9.3-7 9.3-7 Fe-59 8.0-5 2.8-5 8.0-8 2.8-8 Co-58 5.0-3 1.9-4 5.0-6 1.9-7 Co-60 5.0-4 3.7-4 5.0-7 3.7-7 Ni-63 9.3-7 9.3-7 9.3-10 9.3-10 Ni-65 3.0-4 2.5-4 3.0-7 2.5-7 Cu-64 2.7-2 2.7-2 2.7-5 2.7-5 Zn-65 1.9-4 1.9-4 1.9-7 1.9-7 Zn-69m 1.8-3 1.8-3 1.8-6 1.8-6 Sr-89 3.3-3 9.3-5 3.3-6 9.3-8 Sr-90 2.5-4 6.5-6 4.5-7 6.5-9 Sr-91 8.1-2 3.6-3 8.1-5 3.6-6 Sr-92 1.4-1 8.4-3 1.4-4 8.4-6 Y-91 2.2-4 3.7-5 2.2-7 3.7-8 Y-92 3.1-2 5.1-3 3.1-5 5.1-6 Y-93 2.2-2 3.6-3 2.2-5 3.6-6 Zr-95 4.5-5 7.4-6 4.5-8 7.4-9

3 of 3 August 1987 RBS USAR TABLE 11.1-1 (Cont)

Reactor Coolant Main Steam Design Expected Design Expected Isotope

( Ci/g)

( Ci/g)

( Ci/g)

( Ci/g)

Zr-97 3.6-5 5.4-6 3.6-8 5.4-9 Nb-95 4.5-5 7.4-6 4.5-8 7.4-9 Nb-98 1.9-2 3.2-3 1.9-5 3.2-6 Mo-99 2.5-2 1.8-3 2.5-5 1.8-6 Tc-99m 1.1-1 1.8-2 1.1-4 1.8-5 Tc-101 4.3-1 7.0-2 4.3-4 7.0-5 Tc-104 3.8-1 6.2-2 3.8-4 6.2-5 Ru-103 1.2-4 1.9-5 1.2-7 1.9-8 Ru-105 1.0-2 1.7-3 1.0-5 1.7-6 Ru-106 1.7-5 2.8-6 1.7-8 2.8-9 Ag-110m 6.0-5 9.3-7 6.0-8 9.3-10 Te-129m 3.7-4 3.7-5 3.7-7 3.7-8 Te-131m 5.5-4 9.1-5 5.5-7 9.1-8 Te-132 1.5-2 9.2-6 1.5-5 9.2-9 Ba-139 2.0-1 8.2-3 2.0-4 8.2-6 Ba-140 9.5-3 3.7-4 9.5-6 3.7-7 Ba-141 2.4-1 7.8-3 2.4-4 7.8-6 Ba-142 2.3-1 4.6-3 2.3-4 4.6-6 La-142 2.5-2 4.1-3 2.5-5 4.1-6 Ce-141 1.7-4 2.8-5 1.7-7 2.8-8 Ce-143 1.6-4 2.7-5 1.6-7 2.7-8 Ce-144 3.8-5 2.8-6 3.8-8 2.8-9 Pr-143 2.2-4 3.7-5 2.2-7 3.7-8 Nd-147 1.7-5 2.8-6 1.7-8 2.8-9 W-187 3.0-3 2.7-4 3.0-6 2.7-7 Np-239 2.6-1 7.4-3 2.6-4 7.4-6 (1) The design and expected concentration for noble gases in reactor coolant are negligible (2)5.5-3 = 5.5x10

-3

RBS USAR TABLE 11.1-2 Revision 17 1 of 1 PARAMETERS USED TO DETERMINE REACTOR COOLANT AND MAIN STEAM RADIONUCLIDE CONCENTRATIONS*

Variable Unit Maximum core thermal power 3,039 MWt

14 Total steam flow rate 1.32 x 107 lb/hr Weight of reactor coolant in the reactor vessel, including recirculation lines 4.49 x 105 lb Reactor coolant cleanup system flow rate 1.24 x 105 lb/hr Condensate demineralizer flow rate 9.65 x 106 lb/hr 14

Parameters unchanged for TPO (Appendix K) uprate as other conservatisms in the analyses produce results that bound TPO uprate conditions.

RBS USAR TABLE 11.1-3 GENERAL ELECTRIC DATA NOBLE RADIOGAS SOURCE TERMS

  • Estimated from experimental observations 1 of 1 August 1987 Source Term Source Term

@t=0

@t=30 min Isotope Half-Life (Ci/sec)

(Ci/sec)

Kr-83m 1.86 hr 3.4 x 10 3

2.9 x 10 3

Kr-85m 4.4 hr 6.1 x 10 3

5.6 x 10 3

Kr-85 10.74 yr 10 to 20*

10 to 20*

Kr-87 76 min 2.0 x 10 4

1.5 x 10 4

Kr-88 2.79 hr 2.0 x 10 4

1.8 x 10 4

Kr-89 3.18 min 1.3 x 10 5

1.8 x 10 2

Kr-90 32.3 sec 2.8 x 10 5

Kr-91 8.6 sec 3.3 x 10 5

Kr-92 1.84 sec 3.3 x 10 5

Kr-93 1.29 sec 9.9 x 10 4

Kr-94 1.0 sec 2.3 x 10 4

Kr-95 0.5 sec 2.1 x 10 3

Kr-97 1

sec 1.4 x 10 1

Xe-131m 11.96 day 1.5 x 10 1

1.5 x 10 1

Xe-133m 2.26 day 2.9 x 10 2

2.8 x 10 2

Xe-133 5.27 day 8.2 x 10 3

8.2 x 10 3

Xe-135m 15.7 min 2.6 x 10 4

6.9 x 10 3

Xe-135 9.16 hr 2.2 x 10 4

2.2 x 10 4

Xe-137 3.82 min 1.5 x 10 5

6.7 x 10 2

Xe-138 14.2 min 8.9 x 10 4

2.1 x 10 4

Xe-139 40 sec 2.8 x 10 5

Xe-140 13.6 sec 3.0 x 10 5

Xe-141 1.72 sec 2.4 x 10 5

Xe-142 1.22 sec 7.3 x 10 4

Xe-143 0.96 sec 1.2 x 10 4

Xe-144 9

sec 5.6 x 10 2

TOTALS 2.5 x 10 6

1.0 x 10 5

RIVER BEND STATION UPDATED SAFETY ANALYSIS REPORT GENERAL ELECTRIC DATA POWER ISOLATION EVENT -

ANTICIPATED OCCURRENCE TABLE 11.1-4 REVISION 14 SEPTEMBER 2001 THIS TABLE HAS BEEN DELETED

RBS USAR TABLE 11.1-5 GENERAL ELECTRIC DATA REACTOR WATER FISSION PRODUCT RADIOHALOGENS

  • Based on noble gas release rate of 100,000 Ci/sec after 30 min 1 of 1 August 1987 Concentration*

Isotope Half-Life (Ci/g)

Br-83 2.40 hr 1.7 x 10

-2 Br-84 31.8 min 3.5 x 10

-2 Br-85 3.0 min 2.2 x 10

-2 I-131 8.065 day 1.5 x 10

-2 I-132 2.284 hr 1.5 x 10

-1 I-133 20.8 hr 1.0 x 10

-1 I-134 52.3 min 3.0 x 10

-1 I-135 6.7 hr 1.5 x 10

-1

RBS USAR TABLE 11.1-6 GENERAL ELECTRIC DATA OTHER FISSION PRODUCT RADIOISOTOPES IN REACTOR WATER

  • Based on noble gas release rate of 100,000 Ci/sec after 30 min 1 of 1 August 1987 Concentration*

Isotope Half-Life

____(Ci/g)

Sr-89 50.8 day 3.3 x 10

-3 Sr-90 28.9 yr 2.5 x 10

-4 Sr-91 9.67 hr 8.1 x 10

-2 Sr-92 2.69 hr 1.4 x 10

-1 Zr-95 65.5 day 4.3 x 10

-5 Zr-97 16.8 hr 3.6 x 10

-5 Nb-95 35.1 day 4.5 x 10

-5 Mo-99 66.6 hr 2.5 x 10

-2 Tc-99m 6.007 hr 9.4 x 10

-2 Tc-101 14.2 min 2.0 x 10

-1 Ru-103 39.8 day 2.1 x 10

-5 Ru-106 368 day 2.8 x 10

-6 Te-129m 34.1 day 3.7 x 10

-4 Te-132 78 hr 1.5 x 10

-2 Cs-134 2.06 yr 1.7 x 10

-4 Cs-136 13 day 1.1 x 10

-4 Cs-137 30.2 yr 2.6 x 10

-4 Cs-138 32.3 min 2.5 x 10

-1 Ba-139 83.3 min 2.0 x 10

-1 Ba-140 12.8 day 9.5 x 10

-3 Ba-141 18.3 min 2.4 x 10

-1 Ba-142 10.7 min 2.3 x 10

-1 Ce-141 32.53 day 4.3 x 10

-5 Ce-143 33.0 hr 3.9 x 10

-5 Ce-144 284.4 day 3.8 x 10

-5 Pr-143 13.58 day 4.1 x 10

-5 Nd-147 11.06 day 1.5 x 10

-5 Np-239 2.35 day 2.6 x 10

-1

RBS USAR Revision 14 1 of 1 September 2001 TABLE 11.1-7 GENERAL ELECTRIC DATA COOLANT ACTIVATION PRODUCTS IN REACTOR WATER AND STEAM Reactor Steam Water Concentration Concentration Isotope Half-Life

___(Ci/g)

___(Ci/g)

N-13 9.99 min 1.5 x 10

-3 7.1 x 10

-2 N-16 7.13 sec 5.0 x 10 1

3.5 x 10 1

N-17 4.14 sec 3.5 x 10

-2 1.3 x 10

-2 O-19 26.8 sec 5.9 x 10

-1 1.2 x 10 0

F-18 109.8 min 4.4 x 10

-4 4.8 x 10

-2

  • 14 Note:

These are the GE provided values for Normal Water Chemistry.

14*

RBS USAR 1 of 1 August 1987 TABLE 11.1-8 GENERAL ELECTRIC DATA NONCOOLANT ACTIVATION PRODUCTS IN REACTOR WATER Concentration Isotope Half-Life (Ci/g)

Na-24 15 hr 2 x 10

-3 P-32 14.31 day 2 x 10

-5 Cr-51 27.8 day 5 x 10

-4 Mn-54 313 day 4 x 10

-5 Mn-56 2.582 hr 5 x 10

-2 Co-58 71.4 day 5 x 10

-3 Co-60 5.258 yr 5 x 10

-4 Fe-59 45 day 8 x 10

-5 Ni-65 2.55 hr 3 x 10

-4 Zn-65 243.7 day 2 x 10

-6 Zn-69m 13.7 hr 3 x 10

-5 Ag-110m 253 day 6 x 10

-5 W-187 23.9 hr 3 x 10

-3

RBS USAR TABLE 11.2-1 EQUIPMENT DESCRIPTION LIQUID - RADWASTE SYSTEM Revision 10 1 of 4 April 1998 A. TANKS

  • 10 Capacity Design Item No.

Each Temp Press 1LWS-TK Name (gal)

(°F)

(psig)

Material Quantity 1A,B,C,D Waste 22,633 150 (1)

Fiberglass 4

collector 2A,B,C Floor 22,633 150 (1)

Fiberglass 3

drain 3A, B Regenerant 22,633 150 (1)

Fiberglass 2

waste 4A,B,C,D Recovery 17,200 150 (1)

Fiberglass 4

sample 10*

6A, B Phase 5,600 150 (1)

Fiberglass 2

separator 7

Backwash 10,700 150 (1)

Fiberglass 1

22 Polyelec-200 120 (1)

Polyethylene 1

trolyte

RBS USAR TABLE 11.2-1 (Cont) 2 of 4 August 1987 B. PUMPS Design Item No.

Capacity TDH Press 1LWS-P Name (gpm)

(ft)

(psig)

Quantity 1A, 1B Waste 110 500 250 2

collector 2A, 2B Floor drain 110 500 250 2

collector 3A Regenerant 110 235 150 1

waste 4A,4B, Recovery 165 335 250 4

4C,4D sample 6A, 6B Phase 55 240 150 2

separator 7A, 7B Backwash 55 185 150 2

tank pumps 8A, B Media filter 350 80 250 2

backwash 22 A, Polyelec-11(2)

NA(3) 250 3

B,C trolyte

RBS USAR TABLE 11.2-1 (Cont)

Revision 10 3 of 4 April 1998

  • 10 C. DEMINERALIZER (TREATMENT) VESSELS Item No.

Capa-Design 1LWS-city Volume Temp Press DEMN (gpm)

(ft3)

(°F)

(psig)

Type Material Quantity 1A, B 100 60 150 150 Regener-Rubber-2 able lined C.S.

cation 2A, B 100 75 150 150 Regener-Rubber-2 able lined C.S.

stratified anion 3A, B 100 50 150 150 Regener-Rubber-2 able lined C.S.

mixed bed 10*

RBS USAR TABLE 11.2-1 (Cont) 4 of 4 August 1987 D. FILTERS Item No.

Design Capa-Flow 1LWS-Temp Press city Flux FLT Name

(°F)

(psig)

(gpm)

(gpm/ft)

Material Quantity 1A, B Rad-150 350 100 1

C.S./

2 waste 304 S.S.

E. STRAINERS Design Operating Item No.

Capacity Temp Press Temp Press 1LWS-STR (gpm)

(°F)

(psig)

(°F)

(psig)

Material Quantity 4A, B 100 150 250 120 230 316 S.S.

2 6A, B 100 250 150 120 130 316 S.S.

2 (1) Tank design pressure is liquid static head (2) Capacity in gallons per hour (3) Positive displacement pump

RBS USAR TABLE 11.2-2 APPLICABLE CODES AND STANDARDS FOR LIQUID SYSTEMS Earth-quake Safety Code Cri-Tornado QA Description Class Code Class teria Criteria Cat. 1 (1)Polyester atmospheric storage tanks are filament-wound, fiberglass-reinforced plastic plastic tanks designed to meet the National Bureau of Standards PS15-69 and the Society of Plastics Industries tentative standard for filament-wound tanks.

(2)For vertical turbine type pumps of Safety Class NNS and operating above 150 psi or 212°F, ASME Section VIII, Division I, is used as a guide in calculating the wall thickness for pressure-retaining parts.

For all other pumps, manufacturer's standard for intended pump service may be used.

(3)Radwaste filter to ASME VIII.

1 of 1 August 1987 Tanks (steel or alloy)

NNS ASME No No No VIII non-stamped Tanks (poly-NNS (1)

No No No ester)

Filters NNS (3)

No No No Demineral-NNS ASME No No No izers VIII Pumps NNS (2)

No No No

RBS USAR Revision 14 1 of 1 September 2001 TABLE 11.2-3 MATERIAL AND ACTIVITY BALANCE -

LIQUID RADWASTE SYSTEM

  • 14 Average Fraction of 1-Unit Primary Flow Discharge Coolant Input (GPD)

Fraction Activity

  • 10 Floor drains 5,700 0.1 0.001 Equipment drains Drywell 3,400 0.01 1.00 Containment, auxiliary building, and fuel pool 3,700 0.01 0.10 Radwaste bldg 1,100 0.01 0.10 Turbine bldg 3,000 0.01 0.001 Ultrasonic resin cleaner backwash 15,000 0.01 0.05 Resin rinse 2,500 0.01 0.002 Phase separator decant 320 0.01 0.002 Chemical wastes (decon and lab drains) 600 0.1 0.02 Solid waste dewater 4,802 0.1 0.002 10* 14*

RBS USAR 1 of 2 August 1987 TABLE 11.2-4 EXPECTED ANNUAL LIQUID RELEASES Activity Released Isotope (uCi/g)

(Ci)

Na-24 1.2-09*

5.0-03 P-32 3.5-11 1.5-04 Cr-51 1.0-09 4.5-03 Mn-54 1.2-11 5.0-05 Mn-56 1.2-09 5.5-03 Fe-55 1.7-10 7.5-04 Fe-59 5.1-12 2.3-05 Co-58 3.5-11 1.6-04 Co-60 6.8-11 3.0-04 Ni-63 1.7-13 7.5-07 Ni-65 7.2-12 3.2-05 Cu-64 3.3-09 1.5-02 Zn-65 3.5-11 1.6-04 Zn-69m 4.1-12 1.8-05 Sr-89 1.7-11 7.5-05 Sr-90 1.2-12 6.0-06 Sr-91 3.8-10 1.7-03 Sr-92 2.7-10 1.2-03 Y-91 7.5-12 3.3-05 Y-92 6.3-10 2.8-03 Y-93 4.0-10 1.8-03 Zr-95 1.4-12 6.0-06 Zr-97 7.2-13 3.2-06 Nb-95 1.4-12 6.0-06 Nb-98 5.6-12 2.5-05 Mo-99 3.1-10 1.4-03 Tc-99m 1.4-09 6.0-03 Tc-101 3.0-14 1.3-07 Tc-104 2.6-13 1.2-06 Ru-103 3.5-12 1.6-05 Ru-105 1.0-10 4.5-04 Ru-106 5.2-13 2.3-06 Ag-110m 1.7-13 7.5-07 Te-129m 6.8-12 3.0-05 Te-131m 1.4-11 6.0-05 Te-132 1.6-12 7.0-06 Ba-139 6.6-11 2.9-04 Ba-140 6.7-11 3.0-04 Ba-141 3.8-14 1.7-07 Ba-142 6.1-17 2.7-10 La-142 4.9-11 2.2-04

RBS USAR 2 of 2 August 1987 TABLE 11.2-4 (Cont)

Activity Released Isotope (uCi/g)

(Ci)

Ce-141 5.1-12 2.3-05 Ce-143 4.2-12 1.9-05 Ce-144 5.2-13 2.3-06 Pr-143 6.8-12 3.0-05 Nd-147 5.1-13 2.2-06 W-187 4.0-11 1.8-04 Np-239 1.2-09 5.5-03 Br-83 1.5-10 6.5-04 Br-84 1.2-12 5.0-06 I-131 6.1-10 2.7-03 I-132 1.2-09 5.5-03 I-133 6.6-09 2.9-02 I-134 1.6-10 7.0-04 I-135 3.8-09 1.7-02 Rb-89 3.5-14 1.5-07 Cs-134 5.9-11 2.6-04 Cs-136 3.8-11 1.7-04 Cs-137 1.6-10 7.0-04 Cs-138 1.8-11 8.0-05 H-3 1.0-05 4.6+01 Grams released 4.4+12 NOTES:

1 1.2-09 = 1.2x10-9 2

Isotope releases of less than 1.0-10 curies/yr are set to 0.0.

Anticipated operational occurrences 1.00-01 curies/yr added to release.

Dilution (blowdown) release rate is 4.38 x 1012 ml/yr.

Total release (excluding tritium) is 1.1-01 curies/yr or 2.5-08 uCi/g.

RBS USAR Revision 10 1 of 2 April 1998 TABLE 11.2-5 DESIGN ANNUAL LIQUID RELEASES

  • 10 Design Activity Released ECL(3)

Fraction Isotope (uCi/ml)

(Ci/yr)

(uCi/ml) of ECL(4)

Na-24 1.2-9(5) 5.0-3 5.0-5 2.4-7 P-32 3.5-11 1.5-4 9.0-6 3.9-6 Cr-51 1.0-9 4.5-3 5.0-4 2.0-6 Mn-54 1.2-11 5.0-5 3.0-5 4.0-7 Mn-56 1.4-9 7.0-3 7.0-5 2.0-5 Fe-55 1.7-10 8.0-4 1.0-4 1.7-6 Fe-59 1.5-11 7.0-5 1.0-5 1.5-6 Co-58 9.2-10 4.1-3 2.0-5 4.6-5 Co-60 9.2-11 4.1-4 3.0-6 3.1-5 Ni-63 1.7-13 1.8-6 1.0-4 1.7-9 Ni-65 8.6-12 3.8-5 1.0-4 8.6-8 Cu-64 3.3-9 1.5-2 2.0-4 1.6-5 Zn-65 3.5-11 1.6-4 5.0-6 7.0-6 Zn-69m 4.1-12 1.8-5 6.0-5 6.8-8 Sr-89 6.0-10 2.7-3 8.0-6 7.5-5 Sr-90 4.6-11 2.1-2 5.0-7 9.2-5 Sr-91 8.6-9 3.9-2 2.0-5 4.3-4 Sr-92 4.5-9 1.9-2 4.0-5 1.1-4 Y-91 4.5-11 2.0-4 8.0-6 5.6-6 Y-92 3.8-9 1.7-2 4.0-5 9.5-5 Y-93 2.4-9 1.1-2 2.0-5 1.2-4 Zr-95 8.5-12 3.7-5 2.0-5 4.2-7 Zr-97 4.8-12 2.1-5 9.0-6 5.3-7 Nb-95 8.5-12 3.7-5 3.0-5 2.8-7 Mo-99 4.3-9 1.9-2 2.0-5 2.2-4 Tc-99m 8.6-9 3.7-2 1.0-3 8.6-6 Ru-103 2.2-11 1.0-4 3.0-5 7.3-7 Ru-105 5.9-10 2.6-3 7.0-5 8.4-6 Ru-106 3.2-12 1.4-3 3.0-6 1.1-6 Ag-110m 1.1-11 4.9-5 6.0-6 1.8-6 Te-129m 6.8-11 3.0-4 7.0-6 9.7-6 Te-131m 8.5-11 3.7-4 8.0-6 1.1-5 Te-132 2.6-9 1.2-2 9.0-6 2.9-4 Ba-140 1.7-9 7.5-3 8.0-6 2.1-4 Ce-141 3.1-11 1.4-4 3.0-5 1.0-6 Ce-143 2.5-11 1.1-4 2.0-5 1.2-6 Ce-144 7.1-12 3.1-5 3.0-6 2.4-6 Pr-143 4.0-11 1.8-4 2.0-5 2.0-6 10*

RBS USAR Revision 10 2 of 2 April 1998 TABLE 11.2-5 (Cont)

  • 10 Design Activity Released ECL(3)

Fraction Isotope (uCi/ml)

(Ci/yr)

(uCi/ml) of ECL(4)

Nd-147 3.1-12 1.4-5 2.0-5 1.6-7 W-187 4.4-10 2.0-3 3.0-5 1.5-5 Np-239 4.2-8 2.0-1 2.0-5 2.1-3 Br-83 9.1-10 3.9-3 9.0-4 1.0-6 I-131 3.8-9 1.7-2 1.0-6 3.8-3 I-132 7.3-9 3.4-2 1.0-4 7.3-5 I-133 4.0-8 1.8-1 7.0-6 5.7-3 I-134 9.7-10 4.3-3 4.0-4 2.4-6 I-135 2.3-8 1.0-1 3.0-5 7.7-4 Cs-134 3.7-10 1.6-3 9.0-7 4.1-4 Cs-136 2.3-10 1.1-3 6.0-6 3.8-5 Cs-137 9.6-10 4.2-3 1.0-6 9.6-4 H-3(1) 1.0-5 4.6+1 1.0-3 1.0-2 Total(2) 1.7-7 7.5-1 9.2-3 1.6-2 Dilution release rate (blowdown) = 4.38 x 1012 ml/yr.

(1) Tritium release is in accordance with NUREG-0016, Rev 1, 1/79, page 1-8, Section 1.5.1.10.

(2)

All totals are excluding tritium.

(3) ECL values are from 10CFR20, App B, table II, Col. 2.

(4) Fraction of ECL = design activity released (uCi/ml)

ECL (uCi/ml)

(5) 1.2-9 = 1.2 x 10-9

RBS USAR TABLE 11.3-1 EXPECTED RADIOACTIVE GASEOUS EFFLUENT FROM ALL SOURCES (CI/YR/UNIT) 1 of 2 August 1987 Mechan-ical Contain-Aux Turb Radwaste Vacuum Off Gas Isotope ment (1)

Bldg Bldg (2)

Bldg Pump System Kr-83m

<1

<1

<1

<1 neg 4.7(-2)

Kr-85m 1

3 5

<1 neg 210 Kr-85

<1

<1

<1

<1 neg 210 Kr-87

<1 2

12.2

<1 neg 3.8(-4)

Kr-88 1

3 18.2

<1 neg 25 Kr-89

<1 2

116 29 neg neg Xe-131m

<1

<1

<1

<1 neg 21 Xe-133m

<1

<1

<1

<1 neg 6.6(-2)

Xe-133 27 83 30 220 1300 900 Xe-135m 15 45 80 530 neg neg Xe-135 33 94 66 280 500 neg Xe-137 45 135 200 83 neg neg Xe-138 2

6 200 2

neg neg Cr-51 2.0(-6) 9.0(-4) 1.8(-4) 7.0(-6) neg neg Mn-54 4.0(-6) 1.0(-3) 1.2(-4) 4.0(-5) neg neg Fe-59 9.0(-7) 3.0(-4) 2.0(-5) 3.0(-6) neg neg Co-58 1.0(-6) 2.0(-4) 2.0(-4) 2.0(-6) neg neg Co-60 1.0(-5) 4.0(-3) 2.0(-4) 7.0(-5) neg neg Zn-65 1.0(-5) 4.0(-3) 1.2(-3) 3.0(-6) neg neg Sr-89 3.0(-7) 2.0(-5) 1.2(-3) neg neg neg

RBS USAR TABLE 11.3-1 EXPECTED RADIOACTIVE GASEOUS EFFLUENT FROM ALL SOURCES (CI/YR/UNIT)

Revision 14 2 of 2 September 2001 Mechan-ical Contain-Aux Turb Radwaste Vacuum Off Gas Isotope ment (1)

Bldg Bldg (2)

Bldg Pump System Sr-90 3.0(-8) 7.0(-6) 4.0(-6) neg neg neg Zr-95 3.0(-6) 7.0(-4) 8.0(-6) 8.0(-6) neg neg Nb-95 1.0(-5) 9.0(-3) 1.2(-6) 4.0(-8) neg neg Mo-99 6.0(-5) 6.0(-2) 4.0(-4) 3.0(-8) neg neg Ru-103 2.0(-6) 4.0(-3) 1.0(-5) 1.0(-8) neg neg Ag-110m 4.0(-9) 2.0(-6) neg neg neg neg Sb-124 2.0(-7) 3.0(-5) 2.0(-5) 7.0(-7) neg neg Cs-134 7.0(-6) 4.0(-3) 4.0(-5) 2.4(-5) neg neg Cs-136 1.0(-6) 4.0(-4) 2.0(-5) neg neg neg Cs-137 1.0(-5) 5.0(-3) 2.0(-4) 4.0(-5) neg neg Ba-140 2.0(-5) 2.0(-2) 2.0(-3) 4.0(-8) neg neg Ce-141 2.0(-6) 7.0(-4) 2.0(-3) 7.0(-8) neg neg

  • 14 I-131 2.0(-3) 3.9(-2) 1.1(-1) 2.0(-3) 8.1(-3) neg I-133 2.7(-2) 5.3(-1) 1.5 2.8(-2) 1.1(-1) neg H-3 22.8 neg 22.8 neg neg neg Ar-41 15 neg neg neg neg 121.0 C-14

<1 neg neg neg neg 9.5 14*

(1) Fuel building releases are included in the containment releases.

(2) A reduction factor of five is incorporated into the turbine building releases to account for special design features to control system leakage.

RBS USAR Revision 17 1 of 1 TABLE 11.3-2 DATA USED IN CALCULATING ANNUAL RELEASES OF RADIOACTIVE GASEOUS EFFLUENTS*

Parameter Data Maximum core thermal power 3,039 (Mwt)

14 Total steam flow rate 1.32 x 107 (lb/hr)

Off gas system holdup time

~10 min Off gas charcoal bed holdup times (Kr) 46 hr (Xe) 42 days Plant capacity factor 80%

Expected releases source term failed 50,000 Ci/sec fuel basis (after 30 min)

Design releases source term failed 304,000 Ci/sec fuel basis (after 30 min)

Iodine partition factor (carryover)

Normal Water Chemistry 0.015 Hydrogen Water Chemistry 0.04 14

Off gas system charcoal mass/train 24,640 lb Dynamic adsorption coefficients (Kr) 105 (cm3/gm)

(Xe) 2,410 (cm3/gm)

Charcoal delay system normal operating 0F temperature Charcoal delay system dew point

<-40F temperature Ventilation systems See Section 9.4 Decontamination factors 90% (4" Deep Charcoal Element) 99% (HEPA Filter)

Data unchanged for TPO (Appendix K) uprate as other conservatisms in the analyses produce results that bound TPO uprate conditions.

RBS USAR TABLE 11.3-3 OFF GAS SYSTEM MAJOR EQUIPMENT ITEMS 1 of 4 August 1987 Off Gas Preheater Quantity 2

Material Stainless steel tubes, carbon steel shell Shell:

Design pressure, psig 350 Design temperature, °F 40/450 Tube:

Design pressure, psig 1,000 Design temperature, °F 40/575 Catalytic Recombiner Quantity 2

Material Carbon steel cartridge, carbon steel shell.

Catalyst car-tridge containing a precious metal catalyst on metal base of porous nondusting ceramic.

Catalyst cartridge to be re-placeable without removing vessel.

Design pressure, psig 350 Design temperature, °F 900 Off Gas Condenser Quantity 1

Material Low alloy steel shell, stain-less steel tubes Shell:

Design pressure, psig 350 Design temperature, °F 900 Tube:

Design pressure, psig 600 Design temperature, °F 150 Water Separator Quantity 1

Material Carbon steel shell, stainless steel wire mesh Design pressure, psig 350 Design temperature, °F 250

RBS USAR TABLE 11.3-3 (Cont)

Revision 18 2 of 4 Cooler-Condenser Quantity 2

Material Carbon or stainless steel shell, stainless steel tubes Shell: Design pressure, psig 350 Design temperature, °F 32/170(2)

Tube: Design pressure, psig 100 Design temperature, °F 150 Moisture Separator (downstream of cooler-condenser)

Quantity 2

Material Carbon steel shell, stainless steel wire mesh Design pressure, psig 350 Design temperature, °F 32/150 Desiccant Dryer Quantity 4

Material Carbon steel shell packed with Linde Mol Sieve or equivalent Design pressure, psig 350 Design temperature, °F 32/500 Desiccant, Regeneration Skid Quantity 2

Dryer Chiller Quantity 2

Material Carbon steel shell, stainless steel tubes Design pressure, psig 50 Design temperature, °F 32/500 Regenerator Blower(1)

Quantity 2

Material Cast iron housing Design pressure, psig 50 Design temperature, °F 32/150



(1) Material meets sellers standard.

(2) The cooler condenser shell side has been evaluated for operation up to 180°F (Ref. ER 03-0570)

RBS USAR TABLE 11.3-3 (Cont)

Revision 19 3 of 4 Dryer Heater Quantity 2

Material Carbon steel vessel Design pressure, psig 50 Design temperature, °F 32/500 Gas Cooler Quantity 2

Material Carbon or stainless steel Tube: Design pressure, psig 1,050 Design temperature, °F

-50/150 Glycol Cooler Skid Quantity 1

Glycol Storage Tank Quantity 1

Material Carbon steel 3,000 gal Design pressure Water-filled hydrostatic Design temperature, °F 32 API-650 Glycol Solution Refrigerator and Motor Drive (1)

Quantity 3

Material Conventional refrigeration unit Glycol solution exit temperature, °F 35 Glycol Pump and Motor Drive (1)

Quantity 3

Material Cast iron, 3-in connections Design temperature, °F 0

Prefilter and After Filter Quantity 2 each Material Carbon steel shell, high-efficiency, moisture-resistant filter element, flanged shell Design pressure, psig 350 Design temperature, °F

-50/250

RBS USAR TABLE 11.3-3 (Cont) 4 of 4 August 1987 Charcoal Adsorber Quantity 8 beds Material Carbon steel, approximately 4-ft o.d. x 21-ft vessels each containing approximately 3 tons of activated carbon Design pressure, psig 350 Design temperature, °F

-50/250

RIVER BEND STATION UPDATED SAFETY ANALYSIS REPORT Revision 10 April 1998 PROCESS DATA FOR THE OFF GAS (RECHAR.) SYSTEM TABLE 11.3-4 (SHEET 1 OF 2)

THIS TABLE HAS BEEN DELETED

RIVER BEND STATION UPDATED SAFETY ANALYSIS REPORT Revision 10 April 1998 PROCESS DATA FOR THE OFF GAS (RECHAR.) SYSTEM TABLE 11.3-4 (SHEET 2 OF 2)

THIS TABLE HAS BEEN DELETED

RBS USAR TABLE 11.3-5 OFF GAS SYSTEM ALARMED PROCESS PARAMETERS 1 of 2 August 1987

_____Main Control Room Parameters Indicated Recorded Air ejector discharge pressure - high X

Preheater discharge temperature - low X

Recombiner catalyst temperature -

high/low X

X Off gas condenser water level (dual) -

high/low X

Off gas condenser gas discharge temperature - high (LOCAL)

X H2 analysis (off gas condenser discharge) - dual - high X

X Off gas condenser discharge radiation -

high X

X Gas flow - high/low X

X Cooler - condenser discharge temperature - high/low X

X Glycol solution temperature -

high/low X

X Glycol solution level - low (Alarmed Only)

Gas drier discharge humidity -

high (LOCAL)

X Prefilter dP - high X

Charcoal adsorber temperature - high X

X Carbon vault temperature - high/low X

Carbon vault temperature - high/low X

X

RBS USAR TABLE 11.3-5 (Cont) 2 of 2 August 1987

_____Main Control Room Parameters Indicated Recorded Carbon train flow - high/low X

X After filter dP - high X

Off gas (carbon bed discharge) radiation - high X

X Dilution steam flow - low X

RBS USAR TABLE 11.3-6 EQUIPMENT MALFUNCTION ANALYSIS 1 of 5 August 1987 Equipment Design Item Malfunction Consequences Precautions Steam jet Low flow of When the hydrogen and oxygen Alarm provided on air motive high concentration exceed 4 and steam for low steam pressure 5 vol %, respectively, the flow.

Recombiner steam process gas becomes flammable temperature alarm.

Inadequate steam flow Steam flow to be causes overheating and de-held at constant terioration of the catalyst.

maximum flow re-gardless to plant level.

Recombiner temperature alarm.

Wear of Increased steam flow to re-Low temperature supply steam combiner.

This would reduce alarms on preheater nozzle of degree of recombination at exit (recombiner in-ejector low power levels.

let).

Recombiner H2 analyzers.

Preheaters Steam leak Would further dilute process Spare preheater.

off gas.

Steam consumption would increase.

Low pressure Recombiner performance would Low-temperature alarms steam supply fall off at low power level, on preheater exit and hydrogen content of re-(recombiner inlet).

combiner gas discharge may Recombiner outlet increase, eventually to a H analyzers.

combustible mixture.

Recombiners Catalyst Temperature profile changes Temperature probes gradually through catalyst. Eventually in recombiner H deactivates excess H2 would be detected analyzer provided by H2 analyzer or by gas spare recombiner.

flowmeter.

Eventually the stripped gas could become combustible.

RBS USAR TABLE 11.3-6 EQUIPMENT MALFUNCTION ANALYSIS 2 of 5 August 1987 Equipment Design Item Malfunction Consequences Precautions Catalyst H2 conversion falls off and Condensate drains, gets wet at H2 is detected by downstream temperature probes start analyzers.

Eventually the in recombiner.

Air gas could become combustible.

bleed system at startup.

Re-combiner thermal blanket, spare re-combiner and heater, hydrogen analyzer.

Off gas Cooling The coolant (reactor con-None.

condenser water densate) would leak to the leak process gas (shell) side.

This would be detected if drain well liquid level in-creases.

Moderate leakage would be of no concern from a process standpoint (the process condensate drains to the hotwell).

Liquid If both drain valves fail Two independent drain level in-to open, water builds up systems, each pro-struments in the condenser and the vided with high-and fail pressure drop increases.

low-level alarms.

The high delta P, if not detected by instrumentation, could cause pressure build-up in the main condenser and eventually initiate a reactor scram.

If a drain valve fails to close, gas recycles to the main con-denser, increases the load on the SJAE, and increases the operating pressure of the main condenser.

Water Corrosion of Higher quantity of water Stainless steel separator wire mesh collected in holdup line mesh specified.

element and routed to radwaste.

RBS USAR TABLE 11.3-6 EQUIPMENT MALFUNCTION ANALYSIS 3 of 5 August 1987 Equipment Design Item Malfunction Consequences Precautions Holdup Corrosion Leakage to soil of gaseous Outside of pipe line of line and fission products.

dipped and wrapped 1/4-in corrosion allowance.

Cooler-Corrosion Glycol-water solution would Stainless steel condeners of tubes leak into process (shell) tubes specified.

side and be discharged to Low level alarm clean radwaste.

If not de-glycol tank level.

tected at radwaste, the Spare cooler con-glycol solution would denser provided.

discharge to reactor condensate system.

Icing up of Shell side of cooler could Design glycol-H2 tubes plug up with ice, gradually solution temperature building up pressure drop.

well above freez-If this happens, the spare ing point.

Spare unit could be activated.

unit provided.

Complete blockage of both Temperature indi-units would increase delta cation and low P and lead to a reactor alarms on glycol scram.

temperature and pro-cess gas temperature.

Glycol re-Mechanical If both spare units fail Two spare refrig-frigeration to operate, the glycol erators during machines solution temperature rises normal operation are and the dehumidifica-provided.

Glycol sol-tion system performance ution temperature deteriorates.

This re-alarms provided.

Gas quires rapid regeneration moisture detectors cycles for the desiccant provided downstream beds and may raise the gas of gas driers.

dewpoint as it is discharged from the drier.

RBS USAR TABLE 11.3-6 EQUIPMENT MALFUNCTION ANALYSIS 4 of 5 August 1987 Equipment Design Item Malfunction Consequences Precautions Moisture Corrosion Increased moisture would be Stainless steel mesh separa-wire mesh retained in process gas specified.

Spare unit tors element routed to gas driers.

Over provided.

High delta P a long period, the desic-alarm on prefilter.

cant drier cycle period would deteriorate as re-sult of moisture pickup.

Pressure drop across pre-filter may increase if filter media is wetted.

Prefilters Loss of More radioactivity would de-Spare unit provided integrity posit the drier desiccant.

in separate vault.

of filter This would increase radia-Delta P instrumenta-tion level in the drier tion provided.

vault and make maintenance more difficult, but would not affect releases to the environment.

Desiccant Moisture Moisture would freezout in Drier cycles on time.

drier breakthrough gas cooler would result Redundant gas humidity in increased system pres-analyzers and alarms sure drop.

Gas with a high supplied. Redundant dewpoint temperature drier system supplied.

would reach charcoal bed.

Gas drier and first charcoal bed can be bypassed through al-ternate drier to second charcoal bed.

Desiccant Mechanical Inability to regenerate Redundant, shielded regenera-failure desiccant.

desiccant beds and tion drier equipment equipment supplied.

RBS USAR TABLE 11.3-6 EQUIPMENT MALFUNCTION ANALYSIS 5 of 5 August 1987 Equipment Design Item Malfunction Consequences Precautions Charcoal Charcoal Charcoal performance de-Highly instrumented, adsorbers accumulates teriorates gradually as mechanically simple moisture moisture deposits, holdup gas dehumidification times for krypton and xen-system with redundant on would decrease, and equipment.

plant emissions would in-crease.

Provisions made for drying charcoal as required during annual outage.

Vault Mechanical If temperature exceeds ap-Spare refrigeration refriger-failure proximately 0°F, increased unit provided.

Vault ation emission could occur.

and charcoal adsorber units temperature alarms provided.

After Loss of in-Probably of no real conse-Delta P instrumenta-filter tegrity of quence, the charcoal media tion provided.

Spare filter media itself should be a good unit provided.

filter at the low air vel-ocity.

System Internal Release of radioactivity Main process equip-detonation if pressure boundary fails.

ment and piping are designed to con-tain a detonation.

System Earthquake Release of radioactivity.

Dose consequences damage are within 10CFR20 limits.

Analysis is included in Refer-ence 6.

RBS USAR TABLE 11.3-7 RADWASTE EQUIPMENT DESIGN CODES 1 of 1 August 1987 Welder Design and Qualification Inspection Equipment Fabrication Materials and Procedure and Testing Pressure ASME ASME ASME ASME vesselsSection VIII Section II Section IX Section VIII Div 1 Div 1 Atmos-ASME(2)

ASME ASME ASME(2) pheric Section III Section II Section IX Section III or 0-15 Class 3, API Class 3, API psig 620;650,AWWA 620;650,AWWA tanks D-100 D-100 Heat ASME ASME ASME ASME exchang-Section VIII Section II Section IX Section VIII ers Div 1; and Div 1 TEMA Piping ANSI B 31.1 ASTM or ASME ANSI B 31.1 and ASME Section IX valvesSection II Pumps Manufacturer's ASME ASME ASME(1)

Standards(1)

Section II Section IX Section III or Manufac-(as required)

Class 3; and turer's Hydraulic Standard Institute (1) Manufacturers standard for the intended service. Hydrotesting should be 1.5 times the design pressure.

(2) ASME Code Stamp and material traceability not required.

RBS USAR TABLE 11.3-8

  • 14 Revision 14 1 of 1 September 2001 DESIGN ANNUAL RADIOACTIVE GASEOUS RELEASES VS ECL Continuous Release Radwaste Building Intermittent Release (MVP)

Activity at Activity at Activity at Restricted Fraction Restricted Fraction Restricted Fraction Total ECL Values Area Boundary of Area Boundary of Area Boundary of Fraction Used Isotope (Ci/cc)

ECL (Ci/cc)

ECL (Ci/cc)

ECL of ECL

(.Ci/cc)

Kr-83m 1.9-12 3.9-08 3.9-08 5.0-05 Kr-85m 1.4-10 1.4-03 1.4-03 1.0-07 Kr-85 1.4-10 1.9-04 1.9-04 7.0-07 Kr-87 9.7-12 4.8-04 4.8-04 2.0-08 Kr-88 3.0-11 3.3-03 3.3-03 9.0-09 Kr-89 7.6-11 7.6-02 3.7-10 3.7-01 7.6-02 1.0-09 Xe-131m 1.5-11 7.6-06 7.6-06 2.0-06 Xe-133m 2.0-12 3.2-06 3.2-06 6.0-07 Xe-133 8.2-10 1.6-03 2.8-09 5.6-03 8.4-09 1.7-02 2.4-02 5.0-07 Xe-135m 8.9-11 2.2-03 6.7-09 1.7-01 1.7-01 4.0-08 Xe-135 1.9-10 2.7-03 3.5-09 5.1-02 3.4-09 4.8-02 1.0-01 7.0-08 Xe-137 2.4-10 2.4-01 1.1-09 1.1+00 2.4-01 1.0-09 Xe-138 1.3-10 6.6-03 2.5-11 1.3-03 7.9-03 2.0-08 Cr-51 1.2-16 3.8-07 1.5-17 4.8-10 3.8-07 3.0-08 Mn-54 1.2-16 1.2-07 8.3-17 8.3-08 2.0-07 1.0-09 Fe-59 9.6-17 1.9-07 1.8-17 3.6-08 2.3-07 5.0-10 Co-58 1.1-15 1.1-07 1.1-16 1.1-07 2.2-07 1.0-09 Co-60 5.9-16 1.2-05 2.0-16 3.9-06 1.6-05 5.0-11 Zn-65 5.4-16 1.4-06 8.2-18 2.0-08 1.4-06 4.0-10 Sr-89 4.5-15 2.2-05 2.2-05 2.0-10 Sr-90 4.4-17 7.4-06 7.4-06 6.0-12 Zr-95 4.5-16 1.1-06 1.0-16 2.5-07 1.4-06 4.0-10 Nb-95 5.7-15 2.9-06 5.1-19 2.5-10 2.9-06 2.0-09 Mo-99 8.7-14 4.4-05 8.7-19 4.3-10 4.4-05 2.0-09 Ru-103 2.5-15 2.8-06 1.3-19 1.4-10 2.8-06 9.0-10 Ag-110m 1.3-18 1.3-08 1.3-08 1.0-10 Sb-124 3.2-17 1.1-07 8.8-18 2.9-08 1.4-07 3.0-10 Cs-134 2.6-15 1.3-05 3.1-16 1.6-06 1.5-05 2.0-10 Cs-136 2.7-16 3.0-07 3.0-07 9.0-10 Cs-137 3.3-15 1.7-05 5.1-16 2.5-06 1.9-05 2.0-10 Ba-140 5.9-14 3.0-05 2.1-15 1.1-06 3.1-05 2.0-09 Ce-141 1.7-15 2.1-06 8.8-19 1.1-09 2.1-06 8.0-10 I-131 1.5-13 7.5-04 2.5-14 1.3-04 2.1-14 1.1-04 9.8-04 2.0-10 I-133 2.0-12 2.0-03 3.5-13 3.5-04 2.9-13 2.9-04 2.7-03 1.0-09 H-3 4.8-12 4.8-05 4.8-05 1.0-07 Ar-41 1.5-11 1.5-03 1.5-03 1.0-08 C-14 1.2-12 3.8-04

_______ 3.8-04 3.0-09 TOTALS:

3.3-01 2.3-01 6.5-02 6.3-01 14*

RBS USAR TABLE 11.3-9 FREQUENCY AND QUANTITY OF STEAM DISCHARGED TO SUPPRESSION POOL Quantity Frequency of Steam Event Category Lb/Event (1) Events 1 and 2 based on steam flow rate during test mode according to RCIC System Process Diagram, 762E421A, for 60 and 10 min, respectively.

(2) Event 3 assumes tested SRV opened 30 sec maximum at 300-500 psig vessel pressure.

(3) Event 4 assumes tested SRV opened 30-60 sec at 1,000 psig vessel pressure.

(4) Event 5 based on maximum average SRV leakage rate of 20-lb/hr valve.

(5) Event 6 thru 18 based on event description from Chapter 15.

(6) Event 19 based on vessel depressurized to 100 psia with additional SRV's opened 10 min following scram.

(7) Isolation event. Except for events 15 and 16, it is assumed that SRV actuation is terminated 30 min into the event whereupon the reactor is depressurized at 100F/hr via RHR shutdown cooling mode. For events 15 and 16, it is assumed that loss of plant air prevents normal SRV opening, vessel depressurized via ADS SRVs.

Revision 19 1 of 1

1.

RCIC test(1)

Moderate 25,200

2.

Inadvertent RCIC injection(1)

Moderate 4,200

3.

SRV test (each valve)(2)

Moderate 3,900

4. SRV flow capacity test (each valve)(3)

Infrequent 15,300

5. Total SRV leakage (16 valves)(4)

Continuous 320/hr

6. Trip of both recirculation pump motors(5)

Moderate 30,000

7. Turbine trip(5)

Moderate 30,000

8. Generator load rejection(5)

Moderate 30,000

9. Pressure regulator failure, open(5)

Moderate 834,300(7)

10. Recirculation controller failure(5)

Moderate 30,000

11. Loss of all feedwater flow(5)

Moderate 30,000

12. Inadvertent MSIV closure(5)

Moderate 834,300(7)

13. Loss of condenser vacuum(5)

Moderate 834,300(7)

14. Feedwater control failure, maximum demand(5)

Moderate 30,000

15. Loss of auxiliary transformer(5)

Moderate 777,000

16. Loss of all grid connections(5)

Moderate 777,000

17. Turbine trip w/o bypass(5)

Infrequent 834,300(7)

18. Generator load rejection w/o bypass(5)

Infrequent 834,300(7)

19. Stuck open SRV(6)

Moderate 592,000

  • 3 (1)Processed waste volume 3x" (2)Based on 365 days operation per year (3)4.7-02 = 4.7 x 10-2 Revision 10 1 of 1 April 1998 RBS USAR TABLE 11.4-1 ANNUAL QUANTITIES OF SOLIDIFIED AND RADIOACTIVE WASTE MATERIAL (1-Unit Normal)

Volume(2)

Specific Activity Curie Content Solid Waste (ft3/yr)

( Ci / cc)____

(Ci / yr)

Stream Expected Design Expected Design Expected Design Radwaste filter 414(1) 828(1) 6.94-01 8.65-01 8.1 20.3 sludge

  • 10 Fuel pool/RWCU/

486(1) 972(1) 53.9 175 743.6 4801.7 SPC sludge Radwaste, SPC & fuel pool 1,300(1) 2,600(1) 6.18 50.6 221 3,718 demin spent resin 10*

Condensate demin 6,800(1) 13,600(1) 6.77 41.2 1305.6 15,912 spent resin Compactible dry 14,632 19,306 4.8-02 4.7-02 9.76 12.8 solid waste Noncompactible dry 6,942 9,062 7.58 7.62 745 978 solid waste

RBS USAR TABLE 11.4-2 EXPECTED ISOTOPIC COMPOSITION OF SOLIDIFIED AND DRY RADIOACTIVE WASTE MATERIAL (1-Unit Normal)

  • 10
Radwaste, Radwaste SPC and Fuel Condensate Fuel Pool Filter Pool Demin Demin Filter/RWCU Compactible Noncompactible Sludge Spent Resin(2)

Spent Resin SPC Sludge(2)

Dry Waste Dry Waste Isotopes

( Ci/cc)

( Ci/cc)

( Ci/cc)

( Ci/cc)

(Ci/yr)

(Ci/yr) 10*

Revision 10 1 of 2 April 1998 BR83 3.84-02 I131 3.21-01 2.06 5.04-01 I132 2.80-01 3.64-01 2.28-03 I133 1.90 2.22 I134 1.65-02 2.49-01 I135 4.50-01 8.96-01 SR89 9.76-03 1.15-02 6.47-01 SR90 1.13-01 SR91 6.45-02 6.56-03 SR92 1.62-02 Y90 1.13-01 Y91M 2.80-02 Y91 1.68-02 1.03 Y92 1.16-01 Y93 ZR95 6.26-02 NB95 9.51-02 MO99 1.44-01 2.29-02 TC99M 4.34-01 6.59-02 RU103 1.04-01 RU105 RU106 4.31-02 RH103M 9.40-02 RH105M RH106 4.31-02 TE129M 1.68-01 TE129 1.09-01 TE131M TE131 TE132 7.50-04 1.33-04 8.00-06 CS134 4.42-01 6.44-01 4.92+01 CS136 1.39-02 CS137 1.27 1.18 9.01+01 BA137M 1.21 BA139 4.21-03 BA140 3.71-02 2.07-02 2.54-01 LA140 2.92-01

RBS USAR TABLE 11.4-2 EXPECTED ISOTOPIC COMPOSITION OF SOLIDIFIED AND DRY RADIOACTIVE WASTE MATERIAL (1-Unit Normal)

  • 10
Radwaste, Radwaste SPC and Fuel Condensate Fuel Pool Filter Pool Demin Demin Filter/RWCU Compactible Noncompactible Sludge Spent Resin(2)

Spent Resin SPC Sludge(2)

Dry Waste Dry Waste Isotopes

( Ci/cc)

( Ci/cc)

( Ci/cc)

( Ci/cc)

(Ci/yr)

(Ci/yr) 10*

Revision 10 2 of 2 April 1998 LA141 CE141 1.88-01 CE143 CE144 4.15-02 PR143 3.23-02 PR144 4.15-02 ND147 NA24 1.13-01 2.80-01 P32 4.30-03 1.75-01 CR51 1.25-01 5.76-01 5.37-01 1.93+01 3.03-01 2.31+01 MN54 9.82-01 1.85-01 1.42+01 MN56 7.33-02 7.47-02 FE55 2.13-02 9.94-02 1.62-01 1.56+01 FE59 6.38-04 1.75-01 CO58 4.34-03 2.02-02 2.61-02 1.71 1.02-01 7.82 CO60 8.45-03 6.32 1.63 1.24+02 CU64 3.15-01 7.26-01 ZN65 4.34-03 2.73 7.76-01 5.92+01 ZN69M 2.06-02 AG110M 1.39-02 AG110 1.81-04 W187 1.28-02 NP239 5.42-01 5.15-02 3.47-04 F18 3.94-03 Other1 6.30-02 4.84 Notes 5.42-01 = 5.42 x 10-1 (1) For compactible and noncompactible dry solid waste, other means a combination of FE59, ZB95, and NB95.

  • 10 (2) SPC sludge and demin resin isotopic activity comparable to these values.

Refer to calculation G13.18.9.0-005 for detailed isotopic mixtures and concentrations.

10*

  • 3 (1)Refer to applicable CNS topical report for a description of these components.

3*

Revision 3 1 of 1 August 1990 RBS USAR TABLE 11.4-3 SOLID RADWASTE COMPONENT DESCRIPTION Capacity Design Design Component Quantity (ft3)

Pressure Temp (°F)

Materials Waste sludge 1

838 Atmos.

150 Fiberglass tank Discharge Pressure Capacity Type (psig)

(gpm)

Waste sludge 1

Progressing 0-75 0-50 Carpenter 20 pump cavity stainless steel Contractor equipmenty(1)

RBS USAR TABLE 11.4-4 APPLICABLE CODES AND STANDARDS FOR SOLID RADWASTE SYSTEMS Quality Safety Code Earthquake Tornado Assurance Description Class Code Class Criteria Criteria Category I (1)Polyester atmospheric storage tanks are filament-wound fiberglass-reinforced plastic tanks designed to meet National Bureau of Standards Voluntary Product Standard PS 15-69 and American Society for Testing and Materials Specification No. ASTM D3299-74 for filament-wound tanks.

(2)For vertical turbine-type pumps of Safety Class NNS and operating above 150 psi or 212°F, ASME Section VIII, Division I, is used as a guide in calculating the wall thickness for pressure-retaining parts.

For all other pumps, the manufacturer's standard for intended pump service may be used.

(3)For details concerning contractor equipment, refer to applicable CNS topical report.

3*

Revision 3 1 of 1 August 1990 Tanks NNS (1)

No No No (polyester)

Pumps NNS (2)

No No No Contractor-(3)

(3)

(3)

(3)

(3)

(3) furnished equipment

RBS USAR TABLE 11.4-5 Low Level Radwaste Storage Design 1Dewatered resin with 1-25 R/hr radiation field 2Dry active waste compacted and uncompacted with 1-5 mR/hr radiation field 3Dry active waste incinerated and compacted with 10-200 mR/hr radiation field 4Condenser tube bundle (compacted), tube sheets, tube support plates and tube reinforcing steel with 10-25 mR/hr radiation field.

Revision 24 1 of 1 Waste Type Container Type Container Volume Maximum No. of Containers Total Volume Resin 1

HIC 205 cu ft 90 18,450 cu ft DAW 2

Drum-55 gl 7.5 cu ft 989 7,395 cu ft DAW 3

Box-E48 45 cu ft 123 5,535 cu ft Other 4

Box-B25 96 cu ft 52 4,992 cu ft

RBS USAR TABLE 11.4-6 Estimated Activity of Radioactive Waste in the LLRWSF Per Year Revision 24 1 of 1 Container Type Estimated # of Containers Design # of Containers Activity /

Container (mci/cont)

Estimated Activity in Storage (mci)

Design Activity (mci)

Drums 80.00 200.00 1.00 80.00 200.00 Boxes 40.00 150.00 3.00 120.00 450.00 Sealands 40.00 80.00 8.00 320.00 640.00 Liners (HICs) 0.00 32.00 1000.00 0.00 32000.00 Misc.

15.00 50.00 1.00 15.00 50.00 Total 535.00 33340.00

RBS USAR TABLE 11.5-1 PROCESS AND EFFLUENT RADIATION MONITORING SYSTEMS Revision 16 1 of 5 March 2003

16 Nominal Equipment Monitor Monitor Channel Detector Range Number Location Type Type Type (uCi/cc)

Isotope Function A. Systems Required for Safety

  • RE5A Fuel building Gas -

Gas (L)

Beta 10 10

-1 Xe133, Kr85 Monitors effluent ventilation extended scintillator (4) releases. Acti-exhaust range Gas (M)

CdTe 10 10 2

Xe133, Kr85 vates Cat. I Gas (H)

CdTe 10 10 5

Xe133, Kr85 filters. PAM(1).

  • RE5B Fuel building Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors effluent ventilation particulate scintillator releases and exhaust Particulate Beta 10 10

-5 I131 airborne radia-scintillator tion. Activates Cat. I filters.

  • RE13A, Main control Gas Gas Beta 10 10

-1 Xe133, Kr85 Monitors incoming 13B room air scintillator control room air.

  • RE14A, intakes (two Activates Cat. I 14B per intake) filters (13A, 13B).

9

  • RE21A, Containment Area Area Ion chamber 10 1-10 7 mR/hr NA Activates con-21B purge isola-tainment purge tion (two) isolation.

9

8

  • REN003A, Main steam Online Area Ion chamber 10 0-10 6 mr/hr NA Monitors main C

line steam steam lines for (two)(2) fuel damage and carryover to turbine building.

8

B. Systems Required for Plant Operation

  • RE125 Main plant Gas -

Gas (L)

Beta 10 10

-1 Xe133, Kr85 Monitors effluent exhaust extended scintillator (4) releases. PAM (1) duct range Gas (M)

CdTe 10 10 2

Xe133, Kr85 Gas (H)

CdTe 10 10 5

Xe133, Kr85

  • RE111 Containment Gas and Gas Beta 10 10

-1 Xe133,Kr85 Monitors containment atmosphere particulate scintillator for airborne Particulate Beta 10 10

-5 I131 radiation.

scintillator 16

TABLE 11.5-1 (Cont)

16 Nominal Equipment Monitor Monitor Channel Detector Range Number Location Type Type Type (uCi/cc)

Isotope Function Revision 16 2 of 5 March 2003

  • RE112 Drywell Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors drywell atmosphere particulate scintillator for airborne Particulate Beta 10 10

-5 I131 radiation. RCPB scintillator leak detection (3).

-RE6A Radwaste Gas -

Gas (L)

Beta 10 10

-1 Xe133, Kr85 Monitors effluent building extended scintillator (4) releases. PAM (1) ventilation range Gas (M)

CdTe 10 10 2

Xe133, Kr85 exhaust Gas (H)

CdTe 10 10 5

Xe133, Kr85

-RE6B Radwaste Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors effluent building particulate scintillator releases and ventilation Particulate Beta 10 10

-5 I131 airborne radia-exhaust scintillator tion.

-RE126 Main plant Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors effluent exhaust duct particulate scintillator releases.

Particulate Beta 10 10

-5 I131 scintillator

  • RE11A, Reactor build-Gas Gas Beta 10 10

-1 Xe133, Kr85 Monitors airborne 11B ing annulus scintillator levels in the ventilation annulus.

(two)

Activates SGTS.

  • RE15A, RHR heat Liquid Liquid Gamma 10 10

-2 Cs137 Monitors effluent 15B exchanger scintillator from heat ex-service changers for water (two) contamination.

12

-RE19A, Fuel pool Liquid Liquid Gamma 10 10

-2 Cs137 Removed From Service.

19B cooling pumps scintillator Controlled In Accord-discharge (two) ance With ADM-0045. (5) 12

-RE102 Turbine plant Liquid Liquid Gamma 10 10

-2 Cs137 Removed from Service, component scintillator Controlled in cooling water Accordance With ADM-0045 (5) 16

TABLE 11.5-1 (Cont)

16 Nominal Equipment Monitor Monitor Channel Detector Range Number Location Type Type Type (uCi/cc)

Isotope Function Revision 16 3 of 5 March 2003

-RE103 Standby gas Gas Gas Beta 10 10

-1 Xe133, Kr85 Monitors radiation treatment scintillator level in SGTS system effluent.

effluent

-RE107 Liquid Liquid Liquid Gamma 10 10

-2 Cs137 Monitors radwaste radwaste scintillator effluent discharge effluent to environment.

Isolates system at trip level.

12

-RE108 Cooling tower Liquid Liquid Gamma 10 10

-2 Cs137 Monitors cooling blowdown line scintillator tower blowdown.

12

-RE110 Auxiliary Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors airborne building particulate scintillator radiation levels ventilation Particulate Beta 10 10

-5 I131 in auxiliary scintillator building exhaust.

-RE116 Containment Gas Gas Beta 10 10

-1 Xe133, Kr85 Monitors function purge gaseous scintillator of containment exhaust purge filter.

Isolates purge.

-RE117 Mechanical Gas Gas Beta 10 10

-1 Xe133, Kr85 Removed from Service, vacuum pump scintillator Controlled in gaseous dis-Accordance With charge ADM-0045 (5)

-RE118 Turbine Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors airborne building particulate scintillator radiation levels ventilation Particulate Beta 10 10

-5 I131 in turbine building (including scintillator exhaust.

condensate demineralizer area) 16

TABLE 11.5-1 (Cont)

16 Nominal Equipment Monitor Monitor Channel Detector Range Number Location Type Type Type (uCi/cc)

Isotope Function Revision 16 4 of 5 March 2003

12

-RE120 Fuel pool Liquid Liquid Gamma 10 10

-2 Cs137 Removed From Service.

cooling scintillator Controlled In Accord-demineralizer ance With ADM-0045 (5) outlet

-RE121 Reactor plant Liquid Liquid Gamma 10 10

-2 Cs137 Monitors RPCCW component scintillator discharge for cooling water detection of radiation inleakage.

-RE122 Radwaste Online Steam Gamma 10 10

-1 N16 Removed From Service.

reboiler clean steam scintillator Controlled In Accord-steam outlet ance With ADM-0045 (5)

-RE123 Seal steam Online Steam Gamma 10 10

-1 N16 Removed From Service.

evaporator steam scintillator Controlled In Accord-clean steam ance With ADM-0045 (5) outlet

-RE124 Offgas build-Gas and Gas Beta 10 10

-1 Xe133, Kr85 Monitors airborne ing ventila-particulate scintillator radiation levels tion Particulate Beta 10 10

-5 I131 in offgas building scintillator exhaust.

12

15 (2)

Offgas Gas Gas GM tube 10 0-10 6 mr/hr NA Monitors process pretreatment before treatment.

(2)

Offgas post-Gas Gas GM tube 10 0-10 6 cpm NA Monitors process treatment after treatment.

Isolates discharge.

15 16

RBS USAR TABLE 11.5-1 (Cont)

Revision 22 5 of 5 (1)

PAM - Post-accident monitor.

(2)

Monitors are not part of digital radiation monitoring system. They are supplied separately as part of the process system.

(3)

Reactor coolant pressure boundary leak detection, in accordance with Regulatory Guide 1.45.

(4)

The gaseous effluent monitors used on River Bend are manufactured by the General Atomic Company. The detector model nos. used are RD-52 (beta scintillator) and RD-72 (CdTe). The energy dependence of these monitors is in accordance with the design requirements of Regulatory Guide 1.97 overall system accuracy within a factor of two under accident conditions. Purge capability is provided on all monitors to allow background determination and correction. Also, post-accident shielding is provided on applicable monitors to prevent saturation of the detectors from background radiation. Post-accident particulate and iodine sampling to 10 uCi/cc is provided with these monitors. Shielding of these filters is provided to satisfy Regulatory Guide 1.97 criteria for maintaining doses ALARA. Sampling systems are designed in accordance with ANSI 13.1. Each effluent monitor is equipped with a dedicated display panel and recorder in the main control room. Modifications to the system data base and functional control capabilities are available via the control room panels. L, M, and H refer to low-, medium-,

and high-range gas channels.

12 (5)

Procedure ADM-0045, System Management and Utilization of the DRMS 12

RBS USAR TABLE 11.5-2 GRAB SAMPLES FOR RADIOLOGICAL ANALYSIS Grab Sample Grab Sample at the Local Grab at the Sample Point Location Sample Station Sample Radiation Monitor Revision 16 1 of 6 March 2003 Reactor Steam Supply System Reactor Water Recirculation System Pump Discharge X

Main Steam Line X

Reactor Water Cleanup System Filter/Demineralizer Influent X

Filter/Demineralizer Effluent X

Fuel Pool Cooling and Cleanup System

12 Purification Pump Discharge X

Filter Effluent X

Demineralizer Effluent X

12

Reactor Plant Component Cooling Water Cooling Water Sample (Outlet of Each Major Heat Exchanger)

X X

Turbine Plant Component Cooling Water

16 Cooling Water Sample (Outlet of Each Major Heat Exchanger)

X 16

Residual Heat Removal System Heat Exchanger Outlet (Service Water)

X X

Control Rod Drive System CRD Supply Inlet Line X

RBS USAR TABLE 11.5-2 (Cont)

GRAB SAMPLES FOR RADIOLOGICAL ANALYSIS Grab Sample Grab Sample at the Local Grab at the Sample Point Location Sample Station Sample Radiation Monitor 2 of 6 August 1987 Radwaste System Waste Collector Tank Effluent X

Demineralizer Effluent X

Filtrate Pump Effluent X

Demineralizer Effluent X

Demineralizer (Acid Influent)

X Demineralizer (Caustic Influent)

X Recovery Sample Tank Effluent X

Floor Drain Collector Tank Effluent X

Final Discharge X

X Radwaste Filter Effluent X

Regenerant Waste Tank Effluent X

Regenerant Evaporator Bottoms Effluent X

Phase Separator Tank Pump Discharge X

Waste Evaporator Bottoms Effluent X

Waste Evaporator Distillate Cooler Effluent X

Regenerant Evaporator Distillate Cooler Effluent X

Radwaste Demineralizer Waste Header Effluent X

RBS USAR TABLE 11.5-2 (Cont)

GRAB SAMPLES FOR RADIOLOGICAL ANALYSIS Grab Sample Grab Sample at the Local Grab at the Sample Point Location Sample Station Sample Radiation Monitor 3 of 6 August 1987 Water Treating System Cation Exchanger Unit Influent X

Cation Exchanger Unit Effluent X

Anion Exchanger Unit Influent X

Anion Exchanger Unit Effluent X

Mixed-Bed Exchanger Unit Influent X

Mixed-Bed Exchanger Unit Effluent X

Dilute Acid Effluent X

Dilute Caustic Effluent X

Wastewater Effluent X

Condensate Demineralizer System Demineralizer (Train) Influent X

Demineralizer (Train) Effluent X

Resin Hold Tank Effluent X

Demineralizers Effluent X

Ultrasonic Resin Cleaner Effluent X

Resin Mix Tank Effluent X

Cation Regeneration Tank Effluent X

Anion Regeneration Tankffluent X

Recovered Acid Tank Effluent X

RBS USAR TABLE 11.5-2 (Cont)

GRAB SAMPLES FOR RADIOLOGICAL ANALYSIS Grab Sample Grab Sample at the Local Grab at the Sample Point Location Sample Station Sample Radiation Monitor 4 of 6 August 1987 Dilute Acid Effluent X

Recovered Caustic Tank Effluent X

Dilute Caustic Effluent X

Recovered Water Sump Effluent X

Condensate Makeup and Drawoff System_______

Condensate Transfer Line X

Makeup Water System Demineralizer Water Transfer Line X

Wastewater Treatment System Waste Neutralizing Tank Effluent X

Condensate System Condensate Pump Discharge X

Condenser Hotwell Heater Drains (Third Point)

X Reactor Feedwater System Feedwater (After Last Heater)

X Circulating Water System Effluent (Blowdown Line)

X X

Auxiliary Steam System Auxiliary Boiler (Steam Outlet)

X Feedwater (Pump Discharge)

X

RBS USAR TABLE 11.5-2 (Cont)

GRAB SAMPLES FOR RADIOLOGICAL ANALYSIS Grab Sample Grab Sample at the Local Grab at the Sample Point Location Sample Station Sample Radiation Monitor 5 of 6 August 1987 Auxiliary Boiler (Blowdown)

X Sealing Steam System Sealing Steam Evaporator X

Radwaste Steam Supply Radwaste Steam Reboiler (Radwaste Auxiliary Steam)

X Reactor Plant Ventilation System Reactor Bldg. Annulus Ventilation Exhaust X

Main Plant Exhaust Duct X

Containment Atmosphere X

Containment Purge Exhaust X

Drywell Ventilation System Drywell Atmosphere X

Standby Gas Treatment System Standby Gas Treatment System Effluent X

Auxiliary Building Ventilation System Auxiliary Bldg. Ventilation Exhaust X

Fuel Building Ventilation System Fuel Bldg. Ventilation Exhaust X

RBS USAR TABLE 11.5-2 (Cont)

GRAB SAMPLES FOR RADIOLOGICAL ANALYSIS Grab Sample Grab Sample at the Local Grab at the Sample Point Location Sample Station Sample Radiation Monitor Revision 16 6 of 6 March 2003 Control Building Ventilation System Main Control Room Intakes X

Radwaste Building Ventilation System Radwaste Bldg Ventilation Exhaust X

Turbine Building Ventilation System Turbine Bldg. Ventilation Exhaust X

16 Mechanical Vacuum Pump Discharge 16

Condensate Demineralizer and Off Gas Building Ventilation Exhaust X

Off Gas Pre-treatment X

Off Gas Post-treatment X

12 Turbine Gland Seal Discharge 12