ML17226A137

From kanterella
Jump to navigation Jump to search
Revision 25 to the Updated Safety Analysis Report, Chapter 6, Tables 6.1-1 Through 6.7-1
ML17226A137
Person / Time
Site: River Bend  Entergy icon.png
Issue date: 07/28/2017
From:
Entergy Operations
To:
Office of Nuclear Reactor Regulation, Office of Nuclear Material Safety and Safeguards
Shared Package
ML17226A087 List:
References
RBG-47776, RBF1-17-0089
Download: ML17226A137 (134)


Text

RBSUSARTABLE6.1-1PRINCIPALENGINEEREDSAFETYFEATURESCOMPONENTMATERIALS(NON-NSSSSCOPEOFSUPPLY)1of1August1987 SpecificationComponentForm Material (ASTM/ASME)

ECCSPipingPipeCarbonsteelSA-106,Gr.BPipeStainlesssteelSA-312,Gr.TP304FittingsForgingsCarbonsteelSA-234,Gr.WPBForgingsStainlesssteelSA-403,WP304ValvesCastingsCarbonsteelSA-216,Gr.WCBCastingsStainlesssteelSA-351,Gr.CF8 ContainmentContainmentPlateCarbonsteelSA-264madeshellaroundwithstainlessfromSA-240, suppressioncladType304Land poolSA-516,Gr.70ContainmentPlateCarbonsteelSA-516,Gr.70 shellFloorlinerPlateStainlesssteelSA-240,Type304Lforsuppres-sionpoolBalanceofPlateCarbonsteelSA-516,Gr.60floorlinerPenetrationsForgingsCarbonsteelSA-508,Class1(CodeCase1332-6) carbonlimitedto 0.30%maxForgingsStainlesssteelSA-182,Gr.F304 PipeStainlesssteelSA-312,Gr.TP304 PipeCarbonsteelSA-333,Gr.6StandbyPipeStainlesssteelSA-312,Gr.TP304LliquidorTP316L

control injection line RBS USAR 1 of 2 August 1987 TABLE 6-1.2 PRINCIPAL ENGINEERED SAFETY FEATURES COMPONENT MATERIALS (NSSS SCOPE OF SUPPLY) Specification Component Form Material (ASTM/ASME)

RHR heat exchanger Shell, head and channel Plate Carbon steel SA-516, Gr. 70 Tubesheet Plate Carbon steel SA-516, Gr. 70 Tubesheet-cladding on Cladding Weld deposit 7030 Cu-Ni channel side Nozzles - shell inlet Forgings Carbon steel SA-350, Gr. LF2 and outlet Nozzles-channel inlet Forgings Carbon steel SA-105 and outlet Flanges - shell side Forgings Carbon steel SA-350, Gr. LF2 Flanges - channel side Forgings Carbon steel SA-105 Tubes Tubing 7030 Cu-Ni SB-395, Alloy 715 Bolts Bar Low alloy steel SA-193, Gr. B7 Nuts Forgings Low alloy steel SA-194, Gr. 7 RHR, HPCS, and LPCS pumps Bowl assembly Casting Carbon steel SA-216, Gr. WCB Discharge head shell Plate Carbon steel SA-516, Gr. 70 Discharge head cover Forging Carbon steel SA-105 Suction barrel shell Plate Carbon steel SA-516, Gr. 70 and dished head Flanges Forging Carbon steel SA-105 Pipe (RHR, LPCS pumps) Pipe Carbon steel SA-106, Gr. B Pipe (HPCS pump) Plate Carbon steel SA-516, Gr. 70 Shaft Bar Stainless steel A-276, Type 410, Cond. H Impeller Casting Stainless steel A-351, Gr. CA6NM Studs Bar Low alloy steel SA-193, Gr. B7 Nuts Forgings Low alloy steel SA-194, Gr. 7 Cyclone separator body Bar Stainless steel SA-479, Type 304 and cover HPCS valves Body, bonnet, and disc Casting Carbon steel SA-216, Gr. WCB Stem Bar Stainless steel A-479, Type 410 Studs Bar Alloy steel SA-193, Gr. B7 Nuts Forgings Carbon steel SA-194, Gr. 2H Standby liquid control pumpFluid cylinder Forging Stainless steel SA-182, Gr. F304 RBS USAR TABLE 6.1-2 (Cont) 2 of 2 August 1987 Specification Component Form Material (ASTM/ASME) Cylinder head, valve Plate Stainless steel SA-240, Type 304 cover, and stuffing

box flange plate Cylinder head exten- Bar Stainless steel SA-479, Type 304 sion, valve stop, and stuffing box Stuffing box gland Forging Nickel Alloy SA-564, Type 630, Cond. 1100 Plungers Forgings Nickel Alloy A-564, Type 630, Cond. 1100 Studs Bar Alloy steel SA-193, Gr. B7 Nuts Forging Alloy steel SA-194, Gr. 7 Discharge and Forgings Alloy steel SA-193, Gr. B7 suction flange

head capscrews Standby liquid control storage tank Tank Plate Stainless steel SA-240, Type 304 Fittings Forgings Stainless steel SA-182, Type F304 Pipe Pipe Stainless steel SA-312, Gr. TP 304 Welds Elect- Stainless steel SFA 5.4 & 5.9, rodes Types 308, 308L, 316, 316L Control rod velocity limiter Casting Stainless steel A351, Gr. CF8 RBSUSARTABLE6.1-3COATINGSUSEDWITHINTHEPRIMARYCONTAINMENTRevision71of2January1995A.Qualified Approximate Amount (4)SubstrateTypeofCoating (lb)Carbonsteel

surfacesPrimecoatInorganiczincprimer (1)10,435 (2)SealcoatCatalyzedepoxyenamel (3)1,200FinishcoatCatalyzedepoxyenamel21,921Concrete-Flat surfaces2FinishcoatsCatalyzedepoxyenamel2,545Concrete-formed surfacesRebinderEpoxycuringcompound517 SurfacerCatalyzedepoxysurfacer18,010 FinishcoatCatalyzedepoxyenamel6,053B.UnqualifiedSquareFootageItemTypeofCoating (ft 2)MiscellaneousEpoxyenamel;8,000 equipmentsurfacesother (5)with2milsuchaselectricalDFTmaximumcabinets,etcMiscellaneousEpoxybase1,800embedments,(primeronly)with6mil structuralsteel,DFTmaximum piping,etcPolarcraneInorganicZinc200scissorsliftwith6mil platformDFTmaximum7DrywellCeiling (6)Epoxyprimer,4000LinerPlateandEpoxytopcoatDrywellHeadLowerBarrel 7

RBSUSARTABLETABLE6.1-3(Cont)Revision81aof2August1996 8SquareFootageItemTypeofCoating (ft 2)MiscellaneoussiteEpoxyandother2,000 appliedandvendorpolyurethane suppliedsurfacesprimersand suchasstructuraltopcoats steel,piping, electricalcabinets, andotherequipment (7)8 RBSUSARTABLETABLE6.1-3(Cont)Revision82of2August1996

___________________________

(1)Carbonsteelinsidedrywellandpolarcraneisprimedwithcatalyzedepoxyprimer.

(2)Includesonlyepoxyprimer.

(3)Sealcoatisappliedoninorganiczincprimeronly.

(4)Theseamountsareconservativeestimatessincetheyarebased onmaximumdryfilmthickness(DFT).

(5)SeediscussioninSection6.1.2.2.7 (6)ProtectivecoatingscoveringtheDrywellCeilingLinerPlateandDrywellHeadLowerBarrelareunqualified.

78 (7)Protectivecoatingsunderthisheadingareaddedinsidecontainmentafterconstruction.Anysingleinstallationislimitedto500squarefeet.

8 RBSUSARTABLE6.1-4OTHERORGANICMATERIALSUSEDWITHINTHEPRIMARYCONTAINMENT1of1August1987 ApproximateNo.Item Material Amount1.InsideDrywellMotorelectricalPolyestervarnish158 lb insulationPenetrationsealingSiliconfoam1,431 lb compoundHydraulicoilPetroleumbase80 gal LubricatingoilPetroleumbase60 gal2.OutsideDrywellMotorelectricalPolyestervarnish143 lb insulation3.ElectricalcableinsulationandjacketEPR,Hypalon,37,419 lb material(approximate-cross-linked ly10percentinsidepolyethylene, drywelland90percentneoprene outsidedrywell)

RBSUSARTABLE6.1-5INFORMATIONONORGANICCABLEINSULATIONMATERIALINSIDETHEPRIMARYCONTAINMENT (1)CableSurfaceOrganicRepresentative Material (2)AreaVolumeOrganicCableInsulation/Jacket(ft)(ft)Weight(lb)

Diameter(in)

__________________________

(1)Quantitiesareapproximate.

(2)EPR-EthylenePropyleneRubberHYP-HypalonXLPE-Cross-linkedPolyethyleneNEOP-Neoprene1of1August1987EPR/HYP19,89022722,8100.70XLPE/NEOP17,24013211,8100.40 XLPE/HYP2,830332,8000.55 RBS USAR TABLE 6.2-1 CONTAINMENT DESIGN PARAMETERS

____________________________11 (1)The values used for containment portion volume (versus the drywell portion) of the suppression pool in the containment analyses did not

have an allowance for water displacement due to submerged equipment (e.g., structure, strainers, quenchers, etc.). The minimum/maximum values should be 122,614 ft 3/127,854 ft 3 corresponding to total suppression pool volumes of 135,500 ft 3/141,000 ft 3 which bound the as-built minimum/maximum suppression pool volumes.

11Revision 17 1 of 1 A. Drywell 14 Internal (positive) pressure differential (psid) 25 External (negative) pressure differential (psid) 20 Maximum temperature (°F) 330 Net-free volume, min (cu ft) 236,196 Suppression pool volume including vents, min/max (ft) 12,654/13,066 B. Containment 11 Internal (positive) pressure (psig) 15 External (negative) pressure differential (psig) 0.60 Maximum temperature (°F) 185 Net-free volume, including wetwell air, min (cu ft) 1,191,590 Wetwell air volume, min (cu ft) 128,160 Suppression pool volume, min/max (cu ft) 122,846/127,930 (1) Suppression pool makeup volume (cu ft) 0 Suppression pool surface area (sq ft) 6,408 Suppression pool depth, min/max (ft) 19.5/20.0 Leak rate, L (%/day @ psig) 0.325/7.6 Hydraulic control unit floor flow restriction

(% restricted) 75 11C. Vent System Number of vents (per row/total) 43/129 Vent diameter (ft) 2.2917 Net-free vent area (sq ft) 532 Vent centerline submergence, min/max (ft) Top row 7.28/7.28 Middle row 12.28/12.78 Bottom row 17.28/17.78 Vent loss coefficients (fl/d)

Vent clearing Top row

2.5 Middle

row

2.0 Bottom

row 1.5 Vent flow

3.5 Drywell

wall to weir wall distance (ft) 2.5 Net drywell weir annulus cross-sectional area (sq ft) 522.3 14 RBSUSARTABLE6.2-2ENGINEEREDSAFTYFEATURESSYSTEMSINFORMATIONValueUsedin DesignContainmentAnalysis ValueNormalESF Mi ni m um ESFA.SuppressionPoolCoolingMode (RHR)NumberofRHRpumps 2 2 1Capacityperpump(gpm) 5,050 5,050 5,050Numberofheatexchangers 2 2 1HeatexchangertypeInvertedU-tube,single-passshell,multi-passtube, verticalmountingHeattransfer"K"factorperheatexchanger(Btu/sec-

°F)390 390 3909Standbyservicewaterflowrate(tubeside)perheatexchanger(gpm)*

5,800 5,800 5,800 9Standbyservicewatertemperature(min/max)(°F)40/95 95 95InitiationtimeafterLOCA(sec)

Manual 1,800 1,800B.ContainmentUnit(Fan)CoolersNumberofsafety-relatedcontainmentunitcoolers 2 2 1Air-sideflowratepercontainmentunitcooler(cfm)50,00050,00050,000Standbyservicewaterflowrate(tubeside)percontainmentunitcooler(gpm) 540 540 540Standbyservicewatertemperature(min/max)(°F)40/95 95 95Heattransferarea(insidetube)percontainmentunitcooler(sqft) 1,752 1,752 1,752InitiationtimeafterLOCA(sec)

Automatic 1,800 1,800HeattransfercoefficientBtu/hr-sqft-

°F120120295365400410410Steammolefraction0.00.0250.10.150.20.31.09*TheSSWflowthroughtheRHRHeatExchangerswillbethrottledto3000gpmwhentheSCTwaterleveldropstoanelevationof90ftfollowingaLOP-LOCA 9

RBS USAR ______________________________

  • High Water Level (HWL) and Low Water Level (LWL) 11 ** The values used for containment portion volume (versus the drywell portion) of the suppression pool in the containment analyses did not have an allowance for water displacement due to submerged equipment (e.g., structure, strainers, quenchers, etc.). The minimum/maximum values should be 122,614 ft 3/127,854 ft 3 corresponding to total suppression pool volumes of 135,500 ft 3/141,000 ft 3 which bound the as-built minimum/maximum suppression pool volumes. 14 *** For the Short-term DBA-LOCA analysis with the M3CPT code, the containment initial airspace temperature is assumed to be equal to the initial suppression pool temperature of 100 F. This is since the M3CPT calculation assumes thermal equilibrium conditions in the containment.

11 14Revision 17 1 of 1 TABLE 6.2-3 INITIAL CONDITIONS FOR CONTAINMENT RESPONSE ANALYSES A. Reactor Coolant System 14 Reactor power level, 100.3% rated thermal (MWt) 3,100 Average coolant pressure (psia) 1,072 Average coolant temperature (°F) 553 Total Mass of reactor coolant system liquid (lbm) 441,400 Total Mass of reactor coolant system steam (lbm) 18,360 Total Volume of liquid in reactor coolant system (cu ft) 9,644 Total Volume of steam in reactor coolant system (cu ft) 7,758 Volume of liquid in recirculation loops (cu ft) 580 Volume of steam in steam lines (cu ft) 1,221 B. Drywell Pressure (psig) 0 Air temperature (°F) 145 Relative humidity (%) 50 C. Containment 11 Pressure (psig) 0 Air temperature (°F) 90 *** Relative humidity (%) 50 Suppression pool water temperature (°F) 100 Suppression pool water volume (cu ft)** HWL* for maximum short-term response 127,934 LWL* for maximum long-term response 122,846 Top vent centerline submergence, HWL/LWL (ft) 7.78/7.28 11 14 RBSUSARTABLE6.2-3aACCEPTABLERANGEOFINITIALCONDITIONSFORTECHNICALSPECIFICATIONS1of1August1987 DrywellPressure(psig)0.0to1.5PressureDifferential (1)(psid)-0.3to1.2AverageAirTemperature(°F)100to145RelativeHumidity(%)

8 (2)to100DewPointTemperature(°F)60to145 ContainmentPressure(psig)-0.3to+0.3AverageAirTemperature(°F)70to100RelativeHumidity(%)

27 (2)to100DewPointTemperature(°F)60to100________________________________

(1)Drywel1pressuredifferentialisdefinedasdrywellpressureminuscontainmentpressure (2)Minimumrelativehumiditycorrespondstominimumdewpoint temperatureandmaximumaverageairtemperature RBSUSARTABLE6.2-414BLOWDOWNDATAMAINSTEAMLINEBREAK(SHORT-TERM,0-30SEC,M3CPT)Revision141of1September2001 Reactor CoolantBlowdownMassBlowdownSystemTimeFlowRateEnthalpyPressure(sec)(lbm/sec)(Btu/lbm)(psia)0 8516 1190.0 1072 0.003906 8513 1190.0 1072 0.005 9937 1190.0 1072 0.113 9857 1191.0 1064 0.204 9799 1191.0 1058 0.205 7074 1191.0 1057 0.501 6970 1191.0 1043 0.704 6898 1192.0 1033 0.919 6824 1192.0 1022 0.997 6796 1192.0 1018 1.005 23915 568.6 1017 1.036 23909 568.7 1017 1.249 23838 568.9 1015 1.499 23751 569.2 1012 2.019 23560 569.6 1004 2.597 23341 570.0 996 3.003 23207 570.5 991 4.003 22871 572.7 982 5.065 19920 576.2 980 5.097 19774 576.3 980 6.097 17749 580.7 985 8.347 17303 591.6 995 10.347 16773 601.0 996 12.347 16104 610.4 987 16.347 14355 628.1 937 20.097 12362 642.4 849 25.097 9367 661.0 693 30.097 6518 683.1 525 14 RBSUSARTABLE6.2-4a14BLOWDOWNDATAMAINSTEAMLINEBREAK(0-1800,MINIMUMESF,WITHFEEDWATER,SHEX)Revision141of1September2001ReactorCoolantBlowdownBlowdownSystemTimeMassFlowRateEnthalpyPressure (sec)(lbm/sec)(Btu/lbm)(psia) 0100401190.01072 0.17174441191.01055 0.48370131192.01033 0.95267741193.0 999 1.09 23891 567.1 994 4.46 21777 569.5 950 6.09 17791 573.8 948 8.59 17315 580.3 942 11.1 16681 586.0 926 13.6 15905 590.0 897 20.8 13071 590.4 747 27.0 10438 575.9 581 36.7 7262 514.5 339 40.5 6456 488.9 277 106.0 4803 304.6 79.7 209.0 3120 222.1 30.2 218.0 3087 221.9 30.1 286.0 0 0.0 21.1 599.0 0 0.0 17.8 675.0 2396 201.9 22.1 777.0 2059 200.1 21.4 880.0 1489 197.9 20.5 974.0 0 0.0 19.2 1086.0 0 0.0 19.0 1166.0 1324 196.6 20.1 1242.0 1945 198.3 20.7 1354.0 1934 198.3 20.7 1473.0 2089 199.0 21.0 1593.0 1820 198.1 20.6 1718.0 1375 196.7 20.1 1800.0 1740 197.7 20.5 14 RBSUSARTABLE6.2-4bBLOWDOWNDATAMAINSTEAMLINEBREAK(LONGTERM,MINIMUMESF,WITHFEEDWATER<SHEX)Revision141of1September2001 Reactor CoolantBlowdownMassBlowdownSystemTimeFlowRateEnthalpyPressure(sec)(lbm/sec)(Btu/lbm)(psia) 0 10040 1190.0 1072 10 3803 1202.0 712 103 650 1190.0 120 320 172 1164.0 30.5 401 99 1159.0 23.2 1800 2112 156.0 8.9 2014 791 166.5 11.2 4028 706 191.7 18.4 6101 676 190.1 17.8 8040 662 187.6 17.0 10017 695 186.1 16.5 20462 665 181.1 15.0 40781 677 169.1 11.8 60455 670 159.8 9.7 93699 677 147.7 7.5 200931 675 130.4 5.0 217223 690 129.0 4.9 400733 677 121.9 4.1 600712 670 115.2 3.5 1000000 678 102.3 2.5 RBSUSARTABLE6.2-514BLOWDOWNDATARECIRCULATIONLINEBREAK(SHORT-TERM,0-30SEC,M3CPT)Revision141of1September2001 ReactorBlowdownMassBlowdownCoolantSystemTimeFlowRateEnthalpyPressure(sec)(lbm/sec)(Btu/lbm)(psia)016210 531.4 10720.00195316210 531.4 10720.00244124360 531.4 10720.50224350 531.4 10721.00024290 531.4 10711.00224290 531.4 10711.20324270 531.4 10701.40024250 531.4 10701.59624230 531.4 10692.00217840 553.0 10692.50217830 552.7 10673.00217840 553.0 10694.06417950 555.0 10825.06418060 557.2 10977.06418280 561.6 11279.06418490 565.6 115412.06418730 570.4 118914.37718870 573.1 120717.24412164 733.0 121920.04910682 745.2 111230.0185481 786.1 644 14 RBSUSARTABLE6.2-5a14BLOWDOWNDATARECIRCULATIONLINEBREAK(LONG-TERM,MINIMUMESF,WITHFEEDWATER,SHEX)

Reactor CoolantMassBlowdown SystemTimeFlowRate Enthalpy Pressure(sec)(lbm/sec)(Btu/lbm)(psia)Revision141of1September20010.021870 553.3 107211.217900 555.7 108737.510840 419.4 38340.410410 410.8 353 109.7 6474 323.3 137 596 2122 165.7 11.0 1810 861 150.6 7.9 3568 667 194.8 19.5 6077 686 189.9 17.8 7181 687 188.3 17.2 9938 670 186.1 16.5 10058 667 186.0 16.5 19848 646 181.4 15.1 40396 676 168.9 11.7 98946 685 146.1 7.2 100149 666 145.8 7.2 123462 676 141.2 6.5 124697 683 141.0 6.4 200486 636 130.4 5.0 307304 691 122.3 4.1 308682 677 122.2 4.1 390000 697 117.2 3.7 14 RBS USAR Revision 21 1 of 3 TABLE 6.2-6 PASSIVE HEAT SINKS 14 A. Drywell Heat Sinks Sink No. Sink Description Total Exposed Surface Area(ft 2)Material(s)

Total Thickness Exposure

  • A. Steel beams and miscellaneous equipment 20,867 Paint Carbon Steel Paint 0.016 in.

1.248 in.

0.016 in.

1 1 B. Gratings, handrails, ductworks 25,453 Paint Carbon Steel 0.016 in.

0.0784 in.

1 3 C. Drywell roof 3,022 Paint Carbon Steel Air Gap Concrete 0.016 in.

0.375 in.

0.016 in.

5.0 ft.

1 3 D. Drywell wall 2,322 Paint Carbon Steel Air Gap Concrete 0.016 in.

0.375 in.

0.016 in.

5.0 ft. 1 3 E. Drywell wall 10,809 Paint Carbon Steel Air Gap Concrete Paint 0.016 in.

0.375 in.

0.016 in.

5.0 ft.

0.016 in.

1

2 F. Primary shield wall 3,685 Paint Carbon Steel Air Gap Concrete 0.016 in.

0.375 in.

0.016 in.

2.0 ft.

1 1 G. Reactor pedestal 2,328 Paint Carbon Steel Air Gap Concrete 0.016 in.

0.375 in.

0.016 in.

4.6041 ft 1

1 _____________________

  • Exposure 1 = Drywell atmosphere 2 = Containment atmosphere 3 = Insulated boundary

14 RBS USAR TABLE 6.2-6 (Cont) Revision 21 2 of 3 14 B. Containment Heat Sinks Sink No. Sink Description Total Exposed Surface Area(ft 2) Material(s)

Total Thickness Exposure

  • A. Miscellaneous steel 4,942 Paint Carbon Steel Paint 0.016 in.

1.5 in.

0.016 in.

2 2 B. Miscellaneous steel 247,692 Paint Carbon Steel 0.016 in.

0.221 in. 2 3 C. Steel Containment 63,718 Paint Carbon Steel Paint 0.016 in.

1.5 in.

0.016 in.

2 3 D. Interior wall and floors 4,325 Paint Concrete 0.016 in.

0.5 ft.

2 3 E. Interior walls and floors 1,517 Paint Concrete 0.016 in.

.75 ft.

2 3 F. Interior walls and floors 21,472 Paint Concrete 0.016 in.

1.0 ft.

2 3 G. Interior walls and floors 9,357 Paint Concrete 0.016 in.

1.5 ft 2 3 H. Interior walls and floors 7,232 Paint Concrete 0.016 in.

2.0 ft.

2 3 I. Interior walls and floors 2,994 Paint Concrete 0.016 in.

2.5 ft.

2 3 _____________________

  • Exposure 1 = Drywell atmosphere

2 = Containment atmosphere

3 = Insulated boundary

14 RBS USAR TABLE 6.2-6 (Cont) Revision 14 3 of 3 September 2001 14 C. Thermophysical Properties of Passive Heat Sink Materials Material Density (lbm/ft 3) Specific Heat (BTU/lbm_ F) Thermal Conductivity (BTU/hr-ft_ F) Carbon Steel 490 0.11 26 Concrete 144 0.20 0.54 Paint 208 0.35 0.1667 Air 0.716 0.25 0.0155 14 RBSUSARTABLE6.2-71411RESULTSOFCONTAINMENTRESPONSEANALYSIS

  • 11______________________________NOTE:Theaboveresultsarecombinedresultsoftheshort-termandlong-termminimumESFanalyses.1111*14(1)20.68psidatTechnicalSpecificationallowableinitialconditionsasdescribedinSection6.2.1.1.1.(2)9.3psigatTechnicalSpecificationallowableinitialconditionsasdescribedinSection6.2.1.1.1.(3)21.34psigatTechnicalSpecificationallowableinitialconditionsasdescribedinSection6.2.1.1.1(4)Drywellstructuraltemperaturesaresignificantlylowerthanatmospheretemperatures,andtherefore,arewithinthedesignstructuraldesignlimitof330

°F.Inaddition,whereastheoriginalUSARcalculationsofthecalculatedpeakdrywelltemperaturesmodeledheatsinks,thevaluesshownwithcurrent methodsweredeterminedwiththeGEM3CPTO5Vcomputercodewhich doesnotmodeldrywellstructuralheatsinks.Withheatsinks modeledthepeakdrywellairspacetemperaturewouldalsonotexceedthedesignlimitof330

°F.(5)5.0psidatTechnicalSpecificationallowableinitialconditionsasdescribedinSection6.2.1.1.1.

14Revision141of1September2001 RecirculationLineBreakMainSteamLineBreakPeakDrywellPressure(psig)20.5520.69 (3)PeakDrywellInternalPressure Differential(psid)20.2920.45 (1)TimeofPeakDrywellPressures (sec)1.596 1.25PeakDrywellAtmosphere Temperature(°F)247.2332.8 (4)PeakContainmentPressure(psig) 3.6 3.6 (5)TimeofPeakContainmentPressure (sec)11.7 13.7PeakWetwellPressure(psig) 4.59 7.87 (2)TimeofPeakWetwellPressure (sec)2.50 2.47PeakContainmentAtmosphere Temperature(°F) 123.8 123.8TimeofPeakContainment AtmosphereTemperature(sec) 11.7 11.3PeakSuppressionPoolTemperature

(°F)170.5 170.7TimeofPeakSuppressionPool Temperature(sec) 19772 19922 14 RBS USAR TABLE 6.2-8 Revision 14 1 of 1 September 2001 ENERGY BALANCE FOR MAIN STEAM LINE BREAK 14 SHEX ENERGY DISTRIBUTION (Millions of Btus)

Time 0.0 sec 1.0849 sec 286 sec 1800 sec 20462 sec 100463 sec Heat Sources 1. Reactor Coolant 262.70 252.40 64.77 161.10 137.50 112.50

2. Stored Heat 2A. Core 11.88 11.84 4.54 4.49 4.12 3.33 2B. Vessel Wall (Total) 82.20 82.20 80.64 54.68 32.44 23.53 2C. Internals/Piping (Total) 74.16 74.16 71.04 38.73 39.82 30.07 Heat Sinks 3. Drywell Air 1.36 1.18 0.00 0.00 0.00 0.03 4. Drywell Water Vapor 1.16 9.16 13.02 11.55 8.95 3.87 4A. Drywell Liquid Water Suspended in DW Airspace 0.00 0.13 0.29 1.11 0.47 0.33
5. Drywell Water on Floor 0.00 0.00 132.67 234.98 221.25 343.11
6. Containment Air 7.70 8.11 9.23 9.01 9.03 9.03 7. Containment Water Vapor 2.80 2.94 2.69 2.79 2.97 3.21
8. Suppression Pool Water in

Containment 517.89 547.99 879.97 819.32 944.97 615.41

9. Drywell and Containment Passive Heat Sinks 198.50 198.54 205.11 210.39 215.03 217.94
10. Suppression Pool Water in Drywell-Weir Annulus and vents 42.21 13.89 43.77 59.20 113.92 154.61 Heat Inputs 11. Coast Down Heat (includes Fission Coastdown power, fuel relaxation energy, metal-water reaction, and fission product decay energy) 0.00 2.57 58.37 154.30 762.80 2406.00
12. Feedwater 0.00 1.58 253.60 253.60 253.60 253.60 Heat Outputs 13. Main Steam Line 0.00 4.44 8.60 8.60 8.60 8.60
14. Containment Unit Coolers 0.00 0.00 0.00 0.00 0.29 4.05 15. RHR-SPCM Heat Exchangers 0.00 0.00 0.00 0.00 523.90 2554.00 RBS USAR TABLE 6.2-9 Revision 14 1 of 1 September 2001 ENERGY BALANCE FOR RECIRCULATION LINE BREAK 14 SHEX ENERGY DISTRIBUTION (Million of Btus)

Time 0.0 sec 1.124 sec 302 sec 1809 sec 19848 sec 124692 sec Heat Sources 1. Reactor Coolant 262.70 248.80 66.92 51.84 60.76 47.68 2. Stored Heat 2A. Core 11.88 11.87 4.53 3.42 4.13 3.21 2B. Vessel Wall (Total) 82.20 82.20 77.72 60.17 36.57 22.94 2C. Internals/Piping (Total) 74.16 74.16 72.19 62.06 53.89 36.00 Heat Sinks 3. Drywell Air 1.36 1.27 0.00 0.00 0.00 0.00 4. Drywell Water Vapor 1.16 10.48 12.98 5.28 8.98 3.35 Suspended in DW Airspace 0.00 2.24 1.54 0.45 0.46 0.27 5. Drywell Water on Floor 0.00 0.11 133.26 321.35 221.62 378.70

6. Containment Air 7.70 8.01 9.22 9.00 9.03 9.03 7. Containment Water Vapor 7.70 2.91 2.68 2.76 2.94 3.21 8. Suppression Pool Water in 517.89 547.92 877.47 723.58 997.86 596.58 Containment 9. Drywell and Containment 198.50 198.53 204.97 207.59 214.77 214.77 Passive Heat Sines
10. Suppression Pool Water in Drywell-Weir Annulus and Vents 42.21 14.06 42.21 158.39 119.68 160.75 Heat Inputs 11. Coast Down Heat (Includes) 0.00 2.65 59.63 154.80 746.80 2811.00 Fission Coastdown power, fuel relaxation energy, metal-water reaction, and fission product decay 12. Feedwater 0.00 1.63 253.60 253.60 253.60 253.60 Heat Outputs 13. Main Steam Line 0.00 4.72 9.00 9.00 9.00 9.00 14. Containment Unit Coolers 0.00 0.00 0.00 0.00 0.19 4.33 15. RHR SPCM Heat Exchanger 0.00 0.00 0.00 0.21 503.60 3046.00 RBSUSARTABLE6.2-10TIMESEQUENCEOFEVENTSFORMAINSTEAMLINEBREAK

______________________________NOTE:Theaboveresultsarecombinedresultsoftheshort-termandlong-termminimumESFanalyses.Revision141of1September200114 Time Event (sec)1.Toprowofventsclears 0.922.Blowdownchangestotwo-phase 1.03.Middlerowofventsclears 1.234.Maximumdrywellpeakpressure 1.255.Maximumdrywellinternalpressuredifferential1.256.Suppressionpoolbubblebreakthrough 1.367.Bottomrowofventsclear 1.648.MSIVclosurestartsrestrictingblowdownflowfromthemainsteamheader(Fig.6.2-2) 4.59.MSIVsareclosed 5.510.Containmentpeakpressure 13.311.InitiationofHPCS 2712.InitiationofLPCI 3713.InitiationofLPCS 4014.Feedwaterdepleted 21215.Endofblowdown 28816.Vesselisreflooded 49217.Weirannuluswaterlevelrecoversabovetoprowofvents 67118.LPCSandLPCIareterminated 180019.InitiationofRHR-suppressionpoolcoolingmodeandonecontainmentunitcooler 180020.Suppressionpoolpeaktemperature 1992221.Maximumdrywell-to-containmentnegativepressure differential93000 14 RBSUSARTABLE6.2-11TIMESEQUENCEOFEVENTSFORRECIRCULATIONLINEBREAK Time Event (sec)_____________________________NOTE:Theaboveresultsarecombinedresultsoftheshort-termandlong-termminimumESFanalyses.Revision14 1of1 September 2001141.Toprowofventsclears 1.02.Middlerowofventsclears 1.333.Peakdrywellinternalpressuredifferential1.404.Suppressionpoolbubblebreakthrough 1.435.Drywellpeakpressure 1.5966.Bottomrowofventsclear 1.727.Containmentpeakpressure 11.78.InitiationofHPCS 279.InitiationofLPCI 3710.InitiationofLPCS 40 11.Feedwaterdepleted 212 12.Endofblowdown 30013.Weirannuluswaterlevelrecoversabovetoprowofvents 37714.LPCSandLPCIareterminated 1800 15.InitiationofRHR-Suppressionpoolcoolingmodeandonecontainmentunitcooler 180016.Suppressionpoolpeaktemperature 1977217.Maximumdrywell-to-containmentnegativepressuredifferential125000 14 RBS USAR TABLE 6.2-12 BLOWDOWN DATA 4-IN RWCU PUMP DISCHARGE LINE BREAK CONTAINMENT HIGH ENERGY LINE BREAK ANALYSIS Revision 22 1 of 2 Upstream Side Of Break Time (sec)

Blowdown Mass Flow Rate (lbm/s)

Blowdown Enthalpy (BTU/lbm) 0.0000 0.00 534.94 0.0001 555.75 534.94 0.6982 555.75 534.94 0.6983 248.99 534.94 9.9983 248.99 534.94 11.6137 0.00 534.94 Downstream Side Of Break Time (sec)

Blowdown Mass Flow Rate (lbm/s)

Blowdown Enthalpy (BTU/lbm) 0.0000 0.00 477.19 0.0001 615.35 477.19 0.5934 615.35 477.19 0.5935 615.35 422.97 0.6538 615.35 422.97 0.6539 615.35 370.96 1.3002 615.35 370.96 1.3003 615.35 320.43 1.3683 615.35 320.43 1.3684 615.35 270.95 2.0555 615.35 270.95 2.0556 615.35 222.21 2.1543 615.35 222.21 2.1544 615.35 192.01 3.2603 615.35 192.01 3.2604 615.35 161.97 3.3379 615.35 161.97 3.3380 615.35 132.03 4.4691 615.35 132.03 4.4692 615.35 102.17 5.3928 615.35 102.17 5.3929 615.35 102.17 5.7522 615.35 102.17 5.7523 615.35 102.17 20.2489 615.35 102.17 20.2490 615.35 102.17 21.0381 615.35 102.17 21.0382 615.35 102.17 22.2143 615.35 102.17 22.2144 615.35 152.64 23.6307 615.35 152.64 23.6308 615.35 203.40 23.7158 615.35 203.40 23.7159 615.35 254.63 25.0702 615.35 254.63 25.0703 615.35 306.60 25.1509 615.35 306.60 RBS USAR TABLE 6.2-12 BLOWDOWN DATA 4-IN RWCU PUMP DISCHARGE LINE BREAK CONTAINMENT HIGH ENERGY LINE BREAK ANALYSIS Revision 22 2 of 2 Downstream Side Of Break Time (sec)

Blowdown Mass Flow Rate (lbm/s)

Blowdown Enthalpy (BTU/lbm) 25.1510 615.35 359.62 26.4239 615.35 359.62 26.4240 615.35 414.17 27.0482 615.35 414.17 27.0483 615.35 414.17 28.0213 615.35 414.17 28.0214 615.35 414.17 28.8546 615.35 414.17 28.8547 0.00 414.17 RBS USAR TABLE 6.2-13 CONTAINMENT SUBCOMPARTMENT ANALYSIS

SUMMARY

______________________________

(1) Model of complete (360) annulus (2) Model of half (180) of annulus due to summary (3) The RCIC head spray line has been deleted and the associated high energy line breaks are no longer possible. However this failure and information is being provided as the bounding conditions that were established as part of the original plant design and licensing basis. Revision 21 1 of 1 Subcompartment Model Design Basis Line Break Tables Figures Analysis Program Nodal Description Vent Path Description Blowdown Data Nodalization Diagram Nodal Pressures Nodal Pressure Differentials RPV - Shield Wall Annulus 27 Node (1) Feedwater6.2-146.2-15 6.2-16C 6.2-386.2-396.2-40THREED RPV - Shield Wall Annulus 25 Node (1) Feedwater6.2-176.2-18 6.2-196.2-416.2-426.2-43THREED RPV - Shield Wall Annulus 26 Node (2) Recirculation water outlet 6.2-206.2-21 6.2-226.2-446.2-456.2-46THREEDDrywell Head 2 Node RCIC head spray (3)6.2-236.2-24 6.2-256.2-476.2-486.2-49THREED RWCU Heat Exchanger Room 4 Node RWCU 6.2-26 6.2-27 6.2-28 6.2-50 6.2-51 6.2-52 GOTHIC RWCU Filter/

Demineralizer

Rooms 4 Node RWCU 6.2-29 6.2-30 6.2-31 6.2-53 6.2-54 N/A GOTHIC RBS USAR TABLE 6.2-14 SUBCOMPARTMENT NODAL DESCRIPTION FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 27 NODE MODEL

______________________________

(1)Nodal peak pressure minus pressure in Node 25 (P i-P 25) (2)Assumed value to maximize pressure differential across the primary shield wall.

1 of 1 August 1987 Volume No. Volume (cu ft) Initial Conditions DBA Break Conditions Calculated (1) Peak Pressure Difference (psid) Temp. (o F) Pressure (psia) Humidity (%) % Break in Vol. Break Line Break Area (sq ft) Break Type Feedwater line 0.706 DER 1 131.16 135 15.7 35 0 3.40 2 102.88 135 15.7 35 0 11.88 3 102.88 135 15.7 35 0 11.90 4 131.16 135 15.7 35 0 3.29 5 132.4 135 15.7 35 0 5.51 6 104.56 135 15.7 35 0 16.65 7 102.33 135 15.7 35 0 16.57 8 130.17 135 15.7 35 0 5.27 9 519.93 135 15.7 35 0 4.25 10 519.93 135 15.7 35 0 4.75 11 521.87 135 15.7 35 0 4.54 12 521.87 135 15.7 35 0 4.11 13 155.37 135 15.7 35 0 4.08 14 155.37 135 15.7 35 0 4.14 15 157.32 135 15.7 35 0 3.88 16 156.76 135 15.7 35 0 3.89 17 522.66 135 15.7 35 0 2.56 18 1,043.74 135 15.7 35 0 3.27 19 314.07 135 15.7 35 0 3.81 20 944.50 135 15.7 35 0 4.15 21 533.14 135 15.7 35 0 2.28 22 1,050.07 135 15.7 35 0 3.13 23 310.73 135 15.7 35 0 3.65 24 944.50 135 15.7 35 0 3.9325237,629.0 (2)135 15.7 35 0 0.0 26 57.01 135 15.7 35 50 34.60 27 57.01 135 15.7 35 50 34.60 RBS USAR TABLE 6.2-15 SUBCOMPARTMENT VENT PATH DESCRIPTION FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 27 NODE MODEL 1 of 2 August 1987 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description Of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft) L/A (ft-1) Head Loss Coefficient Total Friction Turning Expansion Contraction 1 1 17 Unchoked 13.21 0.577 0.0302 0.0464 0.317 0.02 0.414 2 1 25 Unchoked 25.39 0.103 0.0206 0 1.0 0 1.026 3 2 1 Unchoked 15.11 0.515 0.0235 0.0379 0 0 0.0614 4 2 25 Unchoked 19.75 0.132 0.0206 0 1.0 0 1.0206 5 3 4 Unchoked 15.11 0.515 0.0235 0.0379 0 0 0.0614 6 3 25 Unchoked 19.75 0.132 0.0206 0 1.0 0 1.0206 7 4 21 Unchoked 13.2 0.577 0.0302 0.0464 0.317 0.02 0.414 8 4 25 Unchoked 25.39 0.103 0.0206 0 1.0 0 1.026 9 5 1 Unchoked 23.48 0.207 0.0209 0 0.00566 0.015 0.0416 10 5 9 Unchoked 17.51 0.512 0.0209 0 0.0963 0.07 0.187 11 5 17 Unchoked 11.81 0.573 0.0386 0.0409 0.371 0.05 0.501 12 6 5 Unchoked 15.11 0.515 0.03 0.0277 0 0 0.0577 13 6 10 Unchoked 14.89 0.542 0.0209 0 0.0493 0 0.0702 14 7 8 Unchoked 11.28 0.515 0.03 0.0277 0.0642 0.06 0.182 15 7 11 Unchoked 13.45 0.542 0.0209 0 0.22 0.2 0.441 16 8 4 Unchoked 23.48 0.207 0.0206 0 0.00566 0.015 0.0413 17 8 12 Unchoked 15.6 0.512 0.0209 0 0.149 0.14 0.310 18 8 21 Unchoked 11.81 0.573 0.0386 0.0409 0.378 0.05 0.508 19 9 13 Unchoked 19.16 0.532 0.082 0 0.0602 0.18 0.322 20 9 18 Unchoked 58.44 0.219 0.0324 0.0557 0 0.01 0.0981 21 10 9 Unchoked 57.06 0.219 0.0324 0.0557 0.00249 0.01 0.101 22 10 14 Unchoked 19.16 0.532 0.082 0 0.0602 0.05 0.192 23 11 12 Unchoked 56.53 0.219 0.0324 0.0557 0.00345 0.01 0.102 24 11 15 Unchoked 20.54 0.532 0.082 0 0.0365 0.04 0.159 25 12 16 Unchoked 19.19 0.532 0.082 0 0.0596 0.05 0.192 26 12 22 Unchoked 58.44 0.219 0.0324 0.0557 0 0.01 0.0981 27 13 19 Unchoked 18.24 0.720 0.0373 0.0346 0 0 0.0719 28 13 20 Unchoked 12.90 0.170 0.0249 0 0.388 0.21 0.623 29 14 13 Unchoked 12.24 0.480 0.0373 0.0346 0.108 0.12 0.3 30 14 20 Unchoked 12.90 0.170 0.0249 0 0.762 0.21 0.9969 31 15 16 Unchoked 15.01 0.480 0.0373 0.0346 0.0314 0.04 0.143 32 15 24 Unchoked 14.28 0.170 0.0249 0 0.739 0.18 0.944 33 16 23 Unchoked 18.24 0.720 0.0373 0.0346 0 0 0.0719 34 16 24 Unchoked 14.28 0.170 0.0249 0 0.739 0.18 0.944 35 17 18 Unchoked 31.21 0.307 0.0416 0 0.147 0.14 0.329 36 17 25 Unchoked 50.78 0.103 0.0416 0 1.0 0 1.042 37 18 19 Unchoked 39.74 0.266 0.082 0 0.0473 0.05 0.179

RBS USAR TABLE 6.2-15 SUBCOMPARTMENT VENT PATH DESCRIPTION FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 27 NODE MODEL 2 of 2 August 1987 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description Of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft) L/A (ft-1) Head Loss Coefficient Total Friction Turning Expansion Contraction 38 19 20 Unchoked 38.27 0.108 0.0249 0 0.388 0.06 0.473 39 21 22 Unchoked 35.04 0.307 0.0416 0 0.0961 0.07 0.208 40 21 25 Unchoked 50.78 0.103 0.0416 0 1.0 0 1.042 41 22 23 Unchoked 38.32 0.266 0.082 0 0.0602 0.06 0.202 42 23 24 Unchoked 38.27 0.108 0.0249 0 0.388 0.06 0.473 43 26 2 Unchoked 15.11 0.291 0.0067 0.0379 0 0 0.0446 44 27 3 Unchoked 15.11 0.291 0.0067 0.0379 0 0 0.0446 45 26 6 Unchoked 15.11 0.291 0.0086 0.0277 0 0 0.0363 46 27 7 Unchoked 15.11 0.291 0.0086 0.0277 0 0 0.0363 47 26 25 Unchoked 5.64 0.462 0.0206 0 1.0 0 1.026 48 27 25 Unchoked 5.64 0.462 0.0206 0 1.0 0 1.026 49 26 10 Unchoked 3.03 2.242 0.0209 0 0.776 0.2 0.997 50 27 11 Unchoked 3.03 2.242 0.0209 0 0.776 0.2 0.997 51 6 2 Unchoked 19.75 0.266 0.0209 0 0 0 0.0209 52 7 3 Unchoked 19.75 0.266 0.0209 0 0 0 0.0209

RBS USAR TABLE 6.2-16 BLOWDOWN DATA FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 27 NODE MODEL

______________________________

  • Due to symmetry in the nodalization, one-half of the tabulated blowdown mass and energy is considered in Nodes 26 and 27, respectively.

1 of 1 August 1987 Time (sec) Blowdown Mass Flow Rate (lbm/sec)

Blowdown Enthalpy (Btu/lbm)

Blowdown Energy Release Rate (Btu/sec)*

0 15,080 398 6.0 x 10 6 0.0138 15,080 398 6.0 x 10 6 0.01381 9,302 422.8 3.932 x 10 6 0.0198 9,302 422.8 3.932 x 10 6 0.0199 16,842 411.7 6.934 x 10 6

RBS USAR TABLE 6.2-17 SUBCOMPARTMENT NODAL DESCRIPTION FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 25 NODE MODEL (1)Nodal peak pressure minus pressure in Node 25 (P i-P 25) (2)Assumed value to maximize pressure differential across the primary shield wall 1 of 1 August 1987 Volume No. Volume (cu ft) Initial Conditions DBA Break Conditions Calculated (1) Peak Pressure Difference (psid) Temp. (o F) Pressure (psia) Humidity (%) % Break in Vol. Line Break Break Area (sq ft) Break Type Feedwater line 0.706 DER 1 131.16 135 15.7 35 0 2.53 2 131.16 135 15.7 35 25 10.94 3 131.16 135 15.7 35 25 10.94 4 131.16 135 15.7 35 0 2.55 5 132.4 135 15.7 35 0 5.68 6 132.4 135 15.7 35 25 19.04 7 130.17 135 15.7 35 25 18.89 8 130.17 135 15.7 35 0 5.47 9 519.93 135 15.7 35 0 4.58 10 519.93 135 15.7 35 0 5.77 11 521.87 135 15.7 35 0 5.50 12 521.87 135 15.7 35 0 4.42 13 155.37 135 15.7 35 0 4.88 14 155.37 135 15.7 35 0 4.91 15 157.32 135 15.7 35 0 4.85 16 156.76 135 15.7 35 0 4.75 17 522.66 135 15.7 35 0 2.64 18 1,043.74 135 15.7 35 0 3.87 19 314.07 135 15.7 35 0 4.95 20 944.50 135 15.7 35 0 5.20 21 533.14 135 15.7 35 0 1.48 22 1,050.07 135 15.7 35 0 3.71 23 310.73 135 15.7 35 0 4.68 24 944.50 135 15.7 35 0 5.02 25 237,629.0 (2) 135 15.7 35 0 0.0 RBS USAR TABLE 6.2-18 SUBCOMPARTMENT VENT PATH DESCRIPTION FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 25 NODE MODEL 1 of 2 August 1987 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description Of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft) L/A (ft-1) Head Loss Coefficient Total Friction Turning Expansion Contraction 1 1 17 Unchoked 13.2 0.577 0.0302 0.0464 0.317 0.02 0.414 2 1 25 Unchoked 25.39 0.103 0.0206 0 1.0 0 1.026 3 2 1 Unchoked 15.11 0.575 0.0302 0.0464 0 0 0.0766 4 2 25 Unchoked 25.39 0.103 0.0206 0 1.0 0 1.026 5 3 4 Unchoked 15.11 0.579 0.0302 0.0464 0 0 0.0766 6 3 25 Unchoked 25.39 0.103 0.0206 0 1.0 0 1.021 7 4 21 Unchoked 13.2 0.577 0.0302 0.0464 0.317 0.02 0.414 8 4 25 Unchoked 25.39 0.103 0.0206 0 1.0 0 1.021 9 5 1 Unchoked 23.48 0.207 0.0209 0 0.00566 0.015 0.0416 10 5 9 Unchoked 17.51 0.512 0.0209 0 0.0963 0.07 0.187 11 5 17 Unchoked 11.81 0.573 0.0386 0.0409 0.371 0.05 0.501 12 6 5 Unchoked 15.34 0.570 0.0386 0.0409 0 0.0 0.0795 13 6 10 Unchoked 17.51 0.512 0.0209 0 0.0963 0.07 0.187 14 7 8 Unchoked 11.51 0.570 0.0386 0.0409 0.0623 0.05 0.192 15 7 11 Unchoked 15.60 0.512 0.0209 0 0.149 0.14 0.310 16 8 4 Unchoked 23.48 0.207 0.0206 0 0.00566 0.015 0.0413 17 8 12 Unchoked 15.6 0.512 0.0209 0 0.149 0.14 0.310 18 8 21 Unchoked 11.81 0.573 0.0386 0.0409 0.378 0.05 0.508 19 9 13 Unchoked 19.16 0.532 0.082 0 0.0602 0.18 0.322 20 9 18 Unchoked 58.44 0.219 0.0324 0.0557 0 0.01 0.0981 21 10 9 Unchoked 57.06 0.219 0.0324 0.0557 0.00249 0.01 0.101 22 10 14 Unchoked 19.16 0.532 0.082 0 0.0602 0.05 0.192 23 11 12 Unchoked 56.53 0.219 0.0324 0.0557 0.00345 0.01 0.102 24 11 15 Unchoked 20.54 0.532 0.082 0 0.0365 0.04 0.159 25 12 16 Unchoked 19.19 0.532 0.082 0 0.0596 0.05 0.192 26 12 22 Unchoked 58.44 0.219 0.0324 0.0557 0 0.01 0.0981 27 13 19 Unchoked 18.24 0.720 0.0373 0.0346 0 0 0.0719 28 13 20 Unchoked 12.90 0.170 0.0249 0 0.388 0.21 0.623 29 14 13 Unchoked 12.24 0.480 0.0373 0.0346 0.108 0.12 0.3 30 14 20 Unchoked 12.90 0.170 0.0249 0 0.762 0.21 0.997 31 15 16 Unchoked 15.01 0.480 0.0373 0.0346 0.0314 0.04 0.143 32 15 24 Unchoked 14.28 0.170 0.0249 0 0.739 0.18 0.944 33 16 23 Unchoked 18.24 0.720 0.0373 0.0346 0 0 0.0719 34 16 24 Unchoked 14.28 0.170 0.0249 0 0.739 0.18 0.944 35 17 18 Unchoked 31.21 0.307 0.0416 0 0.147 0.14 0.329 36 17 25 Unchoked 50.78 0.103 0.0416 0 1.0 0 1.042 37 18 19 Unchoked 39.74 0.266 0.082 0 0.0473 0.05 0.179

RBS USAR TABLE 6.2-18 SUBCOMPARTMENT VENT PATH DESCRIPTION FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 25 NODE MODEL 2 of 2 August 1987 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description Of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft) L/A (ft-1) Head Loss Coefficient Total Friction Turning Expansion Contraction 38 19 20 Unchoked 38.27 0.108 0.0249 0 0.388 0.06 0.473 39 21 22 Unchoked 35.04 0.307 0.0416 0 0.0961 0.07 0.208 40 21 25 Unchoked 50.78 0.103 0.0416 0 1.0 0 1.042 41 22 23 Unchoked 38.32 0.266 0.082 0 0.0602 0.06 0.202 42 23 24 Unchoked 38.27 0.108 0.0249 0 0.388 0.06 0.473

RBS USAR TABLE 6.2-19 BLOWDOWN DATA FEEDWATER LINE BREAK RPV-SHIELD WALL ANNULUS 25 NODE MODEL Blowdown Blowdown Mass Blowdown Energy Time Flow Rate Enthalpy Release Rate (sec) (lbm/sec)* (Btu/lbm) (Btu/sec)*

______________________________

  • Due to symmetry in the nodalization, one-quarter of the tabulated blowdown mass and energy is considered in Nodes 2, 3, 6, and 7, respectively.

1 of 1 August 1987 0 15,080 398 6.0 x 10 60.0138 15,080 398 6.0 x 10 60.01381 9,302 422.8 3.932 x 10 60.0198 9,302 422.8 3.932 x 10 60.0199 16,842 411.7 6.934 x 10 6

RBS USAR TABLE 6.2-20 SUBCOMPARTMENT NODAL DESCRIPTION RECIRCULATION OUTLET LINE BREAK RPV-SHIELD WALL ANNULUS 26 NODE MODEL

______________________________

(1)Nodal peak pressure minus pressure in Node 25 (P i-P 25) (2)Assumed value to maximize pressure differential across the primary shield wall.

1 of 1 August 1987 Volume No. Volume (cu ft) Initial Conditions DBA Break Conditions Calculated (1) Peak Pressure Difference (psid) Temp. (o F) Pressure (psia) Humidity (%) % Break in Vol. Break Line Break Area (sq ft) Break Type Recirc Water outlet line (See Table 6.2-22) DER 1 94.0 150 15.7 20 15 12.39 2 104.62 150 15.7 20 0 4.34 3 104.07 150 15.7 20 0 4.87 4 104.62 150 15.7 20 0 3.58 5 104.62 150 15.7 20 0 5.19 6 93.97 150 15.7 20 0 5.69 7 157.04 150 15.7 20 0 5.69 8 157.04 150 15.7 20 0 5.18 9 157.04 150 15.7 20 0 5.63 10 157.04 150 15.7 20 0 4.1 11 157.04 150 15.7 20 0 4.43 12 157.04 150 15.7 20 0 5.36 13 294.25 150 15.7 20 0 4.41 14 344.45 150 15.7 20 0 3.98 15 347.6 150 15.7 20 0 3.70 16 347.6 150 15.7 20 0 2.79 17 344.45 150 15.7 20 0 3.1 18 345.61 150 15.7 20 0 3.68 19 177.12 150 15.7 20 0 1.13 20 172.84 150 15.7 20 0 1.51 21 175.06 150 15.7 20 0 1.41 22 175.06 150 15.7 20 0 1.57 23 172.84 150 15.7 20 0 2.06 24 177.23 150 15.7 20 0 2.38 25 118,824.0 (2) 150 15.7 20 85 0 26 51.327 150 15.7 20 0 11.11 RBS USAR TABLE 6.2-21 SUBCOMPARTMENT VENT PATH DESCRIPTION RECIRCULATION OUTLET LINE BREAK RPV-SHIELD WALL ANNULUS 26 NODE MODEL 1 of 2 August 1987 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description Of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft) L/A (ft-1) Head Loss Coefficient Total Friction Turning Expansion Contraction 1 1 2 Unchoked 7.804 1.067 0.0201 0.0660 0.32 0.02 0.4261 2 1 13 Unchoked 16.884 0.613 0.0258 0 0 0 0.0258 3 1 14 Unchoked 7.804 1.36 0.0201 0.0660 0.75 0.02 0.8561 4 1 26 Unchoked 16.884 0.282 0.0258 0 0 0 0.0258 5 2 3 Unchoked 16.607 0.351 0.0248 0.0550 0.01 0.01 0.0998 6 2 8 Unchoked 12.172 0.641 0.0249 0 0.05 0.05 0.1249 7 2 14 Unchoked 13.670 0.987 0.0249 0 0.03 0.03 0.0849 8 3 4 Unchoked 15.262 0.382 0.0248 0.0550 0.02 0.02 0.1198 9 3 9 Unchoked 12.172 0.641 0.0249 0 0.05 0.05 0.1249 10 3 15 Unchoked 12.325 1.095 0.0249 0 0.05 0.05 0.1249 11 4 5 Unchoked 16.607 0.351 0.0248 0.0550 0.01 0.01 0.0998 12 4 10 Unchoked 12.172 0.641 0.0249 0 0.05 0.05 0.1249 13 4 16 Unchoked 13.670 0.987 0.0249 0 0.03 0.03 0.0849 14 5 6 Unchoked 16.607 0.351 0.0248 0.0550 0.01 0.01 0.0998 15 5 11 Unchoked 12.172 0.641 0.0249 0 0.05 0.05 0.1249 16 5 17 Unchoked 13.670 0.987 0.0249 0 0.03 0.03 0.0849 17 6 12 Unchoked 12.172 0.641 0.0249 0 0.05 0.05 0.1249 18 6 18 Unchoked 12.288 1.098 0.0249 0 0.05 0.05 0.1249 19 7 8 Unchoked 27.617 0.215 0.0264 0.0474 0 0 0.0738 20 8 9 Unchoked 27.617 0.215 0.0264 0.0474 0 0 0.0738 21 9 10 Unchoked 27.617 0.215 0.0264 0.0474 0 0 0.0738 22 10 11 Unchoked 27.617 0.215 0.0264 0.0474 0 0 0.0738 23 11 12 Unchoked 27.617 0.215 0.0264 0.0474 0 0 0.0738 24 13 14 Unchoked 50.167 0.116 0.0218 0.0716 0.01 0.01 0.1134 25 13 19 Unchoked 11.779 1.186 0.0693 0 0.07 0.07 0.2093 26 14 15 Unchoked 55.151 0.105 0.0215 0.0762 0.01 0.01 0.1177 27 14 20 Unchoked 8.95 1.741 0.0822 0 0.22 0.2 0.5022 28 15 16 Unchoked 58.365 0.099 0.0215 0.0762 0.01 0.01 0.1177 29 15 21 Unchoked 12.172 1.281 0.0822 0 0.05 0.05 0.1822 30 16 17 Unchoked 58.365 0.099 0.0215 0.0762 0.01 0.01 0.1177 31 16 22 Unchoked 12.172 1.281 0.0822 0 0.05 0.05 0.1822 32 17 18 Unchoked 55.151 0.105 0.0215 0.0762 0.01 0.01 0.1177 33 17 23 Unchoked 8.958 1.741 0.0822 0 0.22 0.2 0.5022 34 18 24 Unchoked 11.779 1.324 0.0822 0 0.07 0.07 0.2222 35 19 20 Unchoked 30.012 0.194 0.0229 0.0532 0.01 0.01 0.0961 36 19 25 Unchoked 16.491 0.636 0.0417 0 0.75 0.01 0.8017 37 20 21 Unchoked 26.593 0.219 0.0229 0.0532 0.02 0.02 0.1161

RBS USAR TABLE 6.2-21 SUBCOMPARTMENT VENT PATH DESCRIPTION RECIRCULATION OUTLET LINE BREAK RPV-SHIELD WALL ANNULUS 26 NODE MODEL 2 of 2 August 1987 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description Of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft) L/A (ft-1) Head Loss Coefficient Total Friction Turning Expansion Contraction 38 20 25 Unchoked 13.072 0.803 0.0417 0 0.81 0.04 0.8917 39 21 22 Unchoked 26.593 0.219 0.0229 0.0532 0.02 0.02 0.1161 40 21 25 Unchoked 16.884 0.621 0.0417 0 0.8 0 0.8417 41 22 23 Unchoked 30.405 0.191 0.0229 0.0532 0 0 0.0761 42 22 25 Unchoked 16.884 0.621 0.0417 0 0.8 0 0.8417 43 23 24 Unchoked 26.593 0.219 0.0229 0.0532 0.02 0.02 0.1161 44 23 25 Unchoked 13.072 0.803 0.0417 0 0.81 0.04 0.8917 45 24 25 Unchoked 16.491 0.636 0.0417 0 0.75 0.01 0.8017 46 26 2 Unchoked 8.803 0.662 0.0297 0.1082 0 0 0.1379 47 26 7 Unchoked 12.172 0.507 0.012 0 0.05 0.05 0.1120

RSBUSARTABLE6.2-22BLOWDOWNDATARECIRCULATIONOUTLETLINEBREAKRPV-SHIELDWALLANNULUS26NODEHALFMODEL BlowdownBlowdownTotalMassBlowdownEnergyEffectiveTimeFlowRateEnthalpyReleaseRateBreakArea(sec)(lbm/sec)*(Btu/lbm)(Btu/sec)*(sqft)______________________________*Duetosymmetryinthenodalization,tabulatedblowdownrepresentsone-halfofthetotalblowdown.15%ofthetabulatedblowdownisdirectedtoNode1and85%to Node25bytheflowdiverterdoor.1of1August19870.012,129528.06.404x10 6 2.6751.612,129528.06.404x10 6 2.6751.6110,146528.05.357x10 6 2.2382.010,146528.05.357x10 6 2.238 RBS USAR TABLE 6.2-23 (1) SUBCOMPARTMENT NODAL DESCRIPTION 6-IN RCIC HEAD SPRAY LINE BREAK DRYWELL HEAD SUBCOMPARTMENT

______________________________

  • Nodal peak pressure minus pressure in Node 2 (P i -P 25)

Revision 12 1 of 1 December 1999

(1) The RCIC head spray line has been deleted and the associated high energy line breaks are no longer possible. However this failure and information is being provided as the bounding conditions that were established as part of the original plant design and licensing basis.

RBS USAR TABLE 6.2-24 (1) SUBCOMPARTMENT VENT PATH DESCRIPTION 6-IN RCIC HEAD SPRAY LINE BREAK DRYWELL HEAD SUBCOMPARTMENT Revision 12 1 of 1 December 1999 Vent Path No. From Vol.

Node No. To Vol.

Node No. Description of Vent Path Flow (Choked/Unchoked)

Vent Area (sq ft)L/A (ft-1) Head Loss Coefficient ContractionTotal Friction Turning Expansion 1 1 2 Unchoked 1.07 0.1267 0.001 1.29 0.999 0.492 2.78 2 1 2 Unchoked 2.64 0.1160 0.001 1.27 0.998 0.464 2.74 3 1 2 Unchoked 2.64 0.09 0.001 1.29 0.998 0.476 2.77 4 1 2 Unchoked 2.64 0.0848 0.001 1.29 0.998 0.478 2.77 5 1 2 Unchoked 2.64 0.077 0.001 1.29 0.998 0.482 2.77

(1) The RCIC head spray line has been deleted and the associated high energy line breaks are no longer possible. However this failure and information is being provided as the bounding conditions that were

established as part of the original plant design and licensing basis.

RBS USAR TABLE 6.2-25 (1) (2) BLOWDOWN DATA 6-IN RCIC HEAD SPRAY LINE BREAK DRYWELL HEAD SUBCOMPARTMENT

___________________________

NOTE: (1)For this case, the mass and energy release is assumed constant until after the occurrence of the peak pressure difference between

Nodes 1 and 2.

(2)The RCIC head spray line has been deleted and the associated high energy line breaks are no longer possible. However this failure and

information is being provided as the bounding conditions that were

established as part of the original plant design and licensing

basis.

Revision 12 1 of 1 December 1999 Time (sec) Blowdown Mass Flow Rate (lbm/sec)

Blowdown Enthalpy (Btu/lbm)

Blowdown Energy Release Rate (Btu/sec) 0.0 407.25 1,191.0 4.85 x 10 5 10.0 407.25 1,191.0 4.85 x 10 5 RBS USAR TABLE 6.2-26 SUBCOMPARTMENT NODAL DESCRIPTION 6-IN RWCU LINE BREAK RWCU HEAT EXCHANGER ROOM

Volume No. Volume (cu ft) Initial Conditions DBA Break Conditions Calculated (1) Peak Pressure Difference (psid) Temp. ( F) Pres. (psia) Humidity (%) % Break in Vol. Break Line Break Area (sq ft) Break Type 1 13,250.00 103 14.7 0 100 RWCU (See Table 6.2-28) DER 1.80 2 7,058.48 90 14.7 0 0 0.43 3 5,900.52 90 14.7 0 0 0.36 4 1,165,381.01 90 14.7 0 0 0.00 RBS USAR TABLE 6.2-27 SUBCOMPARTMENT VENT PATH DESCRIPTION 6-IN RWCU LINE BREAK RWCU HEAT EXCHANGER ROOM Revision 21 1 of 1 Flow Path Flow Path Description Control Volume Description of Vent Path Flow (Choked/Unchoked)

Flow Area (ft 2) Inertia Length (ft) Loss Coefficient From To Forward Reverse 1 Horizontal Vent -

East 1 2 Unchoked 28.17 49.30 3.31 3.26 2 Horizontal Vent -

West 1 2 Unchoked 28.17 49.30 5.66 4.64 3 Gate RC147-G1 1 4 Unchoked 23.33 66.72 7.70 7.70 4 CV2 to CV3 2 3 Unchoked 192.26 34.15 0.61 0.42 5 CV2 to CV4 - East 2 4 Unchoked 162.83 44.78 1.68 1.68 6 CV2 to CV4 - East 2 4 Unchoked 162.83 44.78 1.68 1.68 7 CV2 to CV4 - Top 2 4 Unchoked 14.98 43.79 1.55 1.55 8 CV3 to CV4 - East 3 4 Unchoked 166.69 42.00 1.00 0.50 9 CV3 to CV4 - East 3 4 Unchoked 166.69 42.00 1.00 0.50 RBS USAR TABLE 6.2-28 BLOWDOWN DATA 6-IN RWCU LINE BREAK RWCU HEAT EXCHANGER ROOM Revision 22 1 of 2 Upstream Side Of Break Time (sec) Blowdown Mass Flow Rate (lbm/s) Blowdown Enthalpy (BTU/lbm) Blowdown Energy Release Rate (BTU/sec)

Total Effective Break Area (sq. ft.)

0.0000 0.00 414.17 0 0.0000 0.0001 869.92 414.17 360,299 0.1810 0.9005 869.92 414.17 360,299 0.1810 0.9006 383.68 414.17 158,912 0.0798 1.0299 383.68 414.17 158,912 0.0798 1.0300 383.68 414.17 158,912 0.0798 3.2021 383.68 414.17 158,912 0.0798 3.2022 383.68 414.17 158,912 0.0798 3.3385 383.68 414.17 158,912 0.0798 3.3386 383.68 414.17 158,912 0.0798 5.6101 383.68 414.17 158,912 0.0798 5.6102 1111.50 414.17 460,353 0.0798 6.2612 1111.50 414.17 460,353 0.0798 6.2613 1111.50 414.17 460,353 0.0798 6.6982 1111.50 414.17 460,353 0.0798 6.6983 1111.50 414.17 460,353 0.0798 9.2591 1111.50 414.17 460,353 0.0798 9.2592 1111.50 102.17 113,562 0.0798 14.7241 1111.50 102.17 113,562 0.0798 14.7242 1111.50 102.17 113,562 0.0798 14.9231 1111.50 102.17 113,562 0.0798 14.9232 1111.50 102.17 113,562 0.0798 15.4345 1111.50 102.17 113,562 0.0798 15.4346 1111.50 102.17 113,562 0.0798 16.0609 1111.50 102.17 113,562 0.0798 16.0610 1111.50 102.17 113,562 0.0798 16.1039 1111.50 102.17 113,562 0.0798 16.1040 1111.50 102.17 113,562 0.0798 16.7162 1111.50 102.17 113,562 0.0798 16.7163 1111.50 102.17 113,562 0.0798 16.7710 1111.50 102.17 113,562 0.0798 16.7711 1111.50 102.17 113,562 0.0798 17.1514 1111.50 102.17 113,562 0.0798 17.1515 1111.50 102.17 113,562 0.0798 17.1892 1111.50 102.17 113,562 0.0798 17.1893 1111.50 102.17 113,562 0.0798 17.5471 1111.50 102.17 113,562 0.0798 17.5472 1111.50 102.17 113,562 0.0798 17.5806 1111.50 102.17 113,562 0.0798 17.5807 1111.50 102.17 113,562 0.0798 17.9092 1111.50 102.17 113,562 0.0798 17.9093 1111.50 102.17 113,562 0.0798 18.2583 1111.50 102.17 113,562 0.0798 18.2584 248.99 102.17 25,439 0.0207 27.5584 248.99 102.17 25,439 0.0207 29.1738 0.00 102.17 0 0.0000 RBS USAR TABLE 6.2-28 BLOWDOWN DATA 6-IN RWCU LINE BREAK RWCU HEAT EXCHANGER ROOM Revision 22 2 of 2 Downstream Side Of Break Time (sec) Blowdown Mass Flow Rate (lbm/s) Blowdown Enthalpy (BTU/lbm) Blowdown Energy Release Rate (BTU/sec)

Total Effective Break Area (sq. ft.)

0.0000 0.00 414.17 0 0.0000 0.0001 434.96 414.17 180,149 0.1810 0.8831 434.96 414.17 180,149 0.1810 0.8832 434.96 414.17 180,149 0.1810 2.2598 434.96 414.17 180,149 0.1810 2.2599 383.68 414.17 158,912 0.0798 3.5962 383.68 414.17 158,912 0.0798 3.5963 0.00 414.17 0 0.0000 RBS USAR TABLE 6.2-29 SUBCOMPARTMENT NODAL DESCRIPTION 8-IN RWCU LINE BREAK RWCU FILTER/DEMINERALIZER ROOM Initial Conditions DBA Break Conditions Peak Relative

% Break Pressure Volume Volume Temp. Pressure Humidity in Break Area Break Differen tial (1) No. (ft 3) (°F) (psia) (%) Volume Line (ft 2) Type (psid)

(1)Maximum of either n odal peak pressure minus pressure in Node 3 (P i-P 3) or nodal peak pressure minus pressure in Node 4 (P i-P 4).(2) Assumed value to maximize pressure differential across RWCU filter/demineralizer room.

Revision 19 1 of 1 RBS USAR TABLE 6.2-30 SUBCOMPARTMENT VENT PATH DESCRIPTION 8-IN RWCU LINE BREAK RWCU FILTER/DEMINERALIZER ROOM From To Description Vent Volume Volume of Vent Vent Inertia Forward ReversePath Node Node Path Flow (1) Area Length Loss Loss No. No. No. (Choked/Unchoked) (sq ft) (ft) Coefficient Coefficient

______________________________

(1)Indicates that the HEM critical flow model was enabled. Logic within the GOTHIC program determines if flow is to be limited to critical flow

.Revision 19 1 of 1 1 1 3 HEM Model Enabled 0.250013.66 5 1.953 1.927 2 3 2 HEM Model Enabled 0.250013.66 5 1.953 1.953 3 3 4 HEM Model Enabled 0.2500 1 4.12 5 1.500 1.500434 HEM Model Enabled 3 1.5003 1.9 1 7 4.742 3.642512 HEM Model Enabled 0.1 67021.16 7 2.000 1.500612 HEM Model Enabled 0.1 67019.91 7 1.500 1.500723 HEM Model Enabled 0.250043.1252.954 2.954 81 3 HEM Model Enabled 0.088415.1101.800 1.800923 HEM Model Enabled 0.088415.1101.800 1.8001014 HEM Model Enabled 2.920024.71 05.4 80 5.48011 2 4 HEM Model Enabled 2.9200 24.710 5.480 5.480 RBS USAR TABLE 6.2-31 BLOWDOWN DATA 8-IN RWCU LINE BREAK RWCU FILTER/DEMINERALIZER ROOM Upstream Side Of Break Blowdown Blowdown Mass Blowdown Energy Time Flow Rate Enthalpy Release Rate (sec) (lbm/sec) (B TU/lbm) (B TU/sec)Revision 19 1 of 2 0.0 000 0.0 0 102.1706 0.0 00 0.0001 2 20 7.33 102.1706 2.255 x 10 5 0.0007 2207.33 102.1706 2.255 x 10 5 0.00084414.67 102.1706 4.510 x 10 5 1.0 2 014414.67 102.1706 4.510 x 10 5 1.02021045.63 102.1706 1.068 x 10 5 6.13251045.63 102.1706 1.068 x 10 5 6.1326713.76 102.1706 7.293 x 10 4 7.1970713.76 102.1706 7.293 x 10 4 7.1971713.76 145.9710 1.042 x 10 5 8.9932713.76 145.9710 1.042 x 10 5 8.9933713.76 159.4738 1.138 x 10 5 9.8319713.76 159.4738 1.138 x 10 5 9.8320 461.87 222.0390 1.026 x 10 511.7308 461.87 222.0390 1.026 x 10 511.7309 417.23 271.0479 1.131 x 10 513.8693 417.23 271.0479 1.131 x 10 513.9133 371.91 310.5604 1.155 x 10 513.9134 371.91 362.9217 1.350 x 10 516.3242 371.91 362.9217 1.350 x 10 516.3243 371.91 391.0243 1.454 x 10 518.1178 371.91 391.0243 1.454 x 10 518.1179 266.05 333.7631 8.880 x 10 418.6180 266.05 333.7631 8.880 x 10 418.6181 266.05 409.1153 1.088 x 10 523.0400 266.05 409.1153 1.088 x 10 523.0401 266.05 448.2669 1.193 x 10 529.3749 266.05 448.2669 1.193 x 10 529.3750 75.11 534.9414 4.018 x 10 433.6048 75.11 534.9414 4.018 x 10 436.9679 0.00 534.9414 0.000 RBS USAR TABLE 6.2-31 (Cont.) Downstream Side Of Break Blowdown Blowdown Mass Blowdown Energy Time Flow Rate Enthalpy Release Rate (sec) (lbm/sec) (BTU/lbm) (BTU/sec)

Revision 19 2 of 20.0000 0.00 102.17 0.00 0.0001 806.18 102.17 8.237 x 10 40.0098 806.18 102.17 8.237 x 10 40.0099 1612.35 102.17 1.647 x 10 50.1994 1612.35 102.17 1.647 x 10 50.1995 0.00 102.17 0.00 1.0 x 10 6 0.00 102.17 0.00 RBS USAR (1) A pressure up to -14.0" W. G. may result with two SGTS trains operating.

(2) A pressure up to -9.0" W. G. may result with two SGTS trains operating.

(3) A pressure up to -2.0" W.G. may result with two Fuel Building charcoal filter trains operating.

12 13 Revision 14 1 of 3 September 2001 TABLE 6.2-32 SECONDARY CONTAINMENT AND FUEL BUILDING I. Secondary Containment Design 14 13 A. Free Volume (ft)

1. Annulus 357,400 2. Auxiliary Building 1,160,000 12 B. Pressure, inches of water gauge
1. Normal Operation
a. Annulus

-3 to -14 (1) b. Auxiliary Building Atmospheric to -9 (2) 2. Post-Accident

a. Annulus

-1/2 to -14 (1) b. Auxiliary Building

-1/4 to -9 (2) 12 13 C. Leak Rate Normal (cfm)

1. Annulus 2,000 2. Auxiliary Building 0 D. Exhaust Fans SGTS ABVS APCS FBVS FBCFS 1. Number a. Annulus (normal operation) 1 (post-accident) 1* b. Auxiliary Building (normal) 1** (post-accident) 1* 2. Type Centrifugal & Vaneaxial E. Filters
1. Number 1
2. Type Charcoal adsorber (see Sections 6.5.1 & 6.5.3) II. Fuel Building A. Free Volume 742,000 B. Pressure, inches of water gauge
1. Normal Operation

-1/4 to Atmospheric**** 2. Post-Accident

-1/4 to -2 (3) 14 12 RBS USAR TABLE 6.2-32 (CONT) 12 (1) A pressure up to -14.0" W. G. may result with two SGTS trains operating.

(2) A pressure up to -9.0" W. G. may result with two SGTS trains operating.

(3) A pressure up to -2.0" W.G. may result with two Fuel Building charcoal filter trains operating.

12 13 Revision 14 2 of 3 September 2001 14 C. Exhaust Fans SGTS ABVS APCS FBVS FBCFS 1. Number Normal operation 1*** Post-accident 1* 2. Type Centrifugal & Vaneaxial D. Filters

1. Number 1 2. Type Charcoal adsorbers (see Sections 6.5.1

& 6.5.3) III. Transient Analysis Shield 13 Building Auxiliary Fuel A. Initial Conditions Annulus Building Building 1. Pressure (in W.G.)

-3 0 NA 2. Temperature (o F) 120 122 NA 3. Outside air temperature (o F) 25 25 NA 4. Thickness of shield building wall (dome is 2 ft) 2'-6" NA NA 5. Thickness of primary containment wall, nominal 1.50" NA NA B. Thermal Characteristics

1. Primary Containment Wall
a. Coefficient of linear expansion (in/in o F) 8.4x10-6 NA NA b. Modulus of elasticity (psi) 3.0x10 7 NA NA c. Density (lbm/ft
3) 490 NA NA d. Specific heat (Btu/lbm-o F) 0.10 NA NA 2. Heat Transfer Coefficients
a. Primary containment atmosphere to primary containment wall (Btu/hr-ft 2-°F) 307 NA NA b. Primary containment wall to annulus atmosphere (Btu/hr-ft 2-°F) 5.0 NA NA 14 RBS USAR TABLE 6.2-32 (CONT) 12 (1) A pressure up to -14.0" W. G. may result with two SGTS trains operating.

(2) A pressure up to -9.0" W. G. may result with two SGTS trains operating.

(3) A pressure up to -2.0" W.G. may result with two Fuel Building charcoal filter trains operating.

12 13 Revision 14 3 of 3 September 2001 14 Shield Building Auxiliary Fuel 12 Annulus Building Building 3. Net heat addition rate including heat removal 12 from safety-related unit coolers (Btu/hr) a. 0 t 10 seconds 0 1.213x10 5 NA b. 10 < t 12 seconds 0 1.309x10 6 NA c. 12 < t 17 seconds 0 1.833x10 6 NA d. 17 < t 30 seconds 0 2.273x10 6 NA e. 30 < t 34 seconds 0 2.688x10 6 NA f. 34 < t 40 seconds 0 2.750x10 6 NA g. 40 < t 45 seconds 0 2.778x10 6 NA t > 45 seconds 0 0.0 NA

  • On ESF or high radiation signal two trains are available; one is required for system operation.
    • During normal operation two trains are available; one is required for system operation.
      • The Fuel Building analysis assumed an outside temperature of 95 F which clearly demonstrated that the post-LOCA pressure response of the Shield Building Annulus was bounding. However, use of 25 F for the Annulus remains bounding.

14 RBS USAR TABLE 6.2-33 PRIMARY CONTAINMENT OPERATION FOLLOWING A DESIGN BASIS ACCIDENT Revision 17 1 of 1 General Type of Structure Steel vessel Internal Fission Product Removal System SGTS Free Volume of Primary Containment, cu ft 1,191,590 Mode of Hydrogen Purge To annulus (non-ESF backup system)

Time-Dependent Parameters Leak Rate of Primary Containment, L d 0.325%/day before 24 hrs 0.179%/day after 24 hrs Effectiveness of Fission Product Removal Systems See Section 6.2.5 Initiation of Hydrogen Purge See Section 6.2.5 Hydrogen Purge Rate See Section 6.2.5 RBSUSARTABLE6.2-3414SECONDARYCONTAINMENTANDFUELBUILDINGOPERATIONSFOLLOWINGADESIGNBASISACCIDENTRevision141of1September2001 GeneralShieldBldg.Aux.Bldg.FuelBldg.113TypeofstructureReinforcedReinforcedReinforcedConcreteConcreteConcreteFreevolume(cuft)357,4001,160,000742,000Annuluswidth(ft)5 NA NALocationoffissionproductremovalAux.Bldg.Aux.Bldg.FuelBldg.

systemEl141'-0"El141'-0"El148'-0"Time-DependentParametersLeakrate(cfm)2,000at4,500at10,000at (in.W.G.)-3.0-0.25-0.55Totalrecirculationflow(max)50,000 NA NAExhaustflow(cfm)2,500(max)6,300(const.)10,000(max)

Systempressureatexhaustflow(in

W.G.)21.5 21.5 18Effectivenessoffissionproduct removalsystemsRefertoSection6.5RefertoSection9.4.2Exhaustfanatfullflow(sec)48 48 18 131ThefuelbuildingventilationsystemisonlycreditedinthemitigationofaFHAinvolvingrecentlyirradiatedfuel.Thefuel buildingventilationsystemisonlyrequiredtooperateduringa DBAtomaintainenvironmentalconditionsforsafetyrelated equipmentinthebuilding.

14 RBSUSARTABLE6.2-35Revision121of2December1999CRITERION55-INFLUENTLINES,REACTORCOOLANTPRESSUREBOUNDARY (1)InfluentLines Paragraph1.Feedwater 55.12.HPCS 55.23.RHRreturntofeedwater 55.34.LPCSandLPCIa.LPCIAline 55.4b.LPCIBline 55.4c.LPCICline 55.4d.LPCSline 55.45.CRDsystemsupplyline 55.51212(1)RefertoFig.6.2-63andTable6.2-40.1055.1-Thefeedwaterlineispartofthereactorcoolantpressureboundaryasitpenetratesboththeprimarycontainmentandthe drywelltoconnectwiththereactorpressurevessel.Ithas threeisolationvalvesandoneguardpipe.Theisolationvalve insidethedrywellisasimplecheckvalve.Theguardpipe protectstheprimarycontainmentfromoverpressurizationinthe eventofapipefailurebetweenthedrywellandprimary containmentwalls.Outsidetheprimarycontainmentisatestable (air-assistedtoclose)checkvalve.Fartherawayfromthe primarycontainmentisamotor-operatedgatevalve.Shoulda breakoccurinthefeedwaterline,thecheckvalvesprevent significantlossofinventoryandofferimmediateisolation.

DuringthepostulatedLOCA,itisdesirabletomaintainreactor coolantmakeupfromallsourcesofsupply.Forthisreason,the motor-operatedvalvedoesnotautomaticallyisolateuponsignal fromthereactorprotectionsystem.However,thisvalveis capableofbeingremotelyclosedfromthemaincontrolroomto providelong-termleakageprotectionuponoperatorjudgmentthat continuedmakeupfromthefeedwatersourceisunnecessary.31055.2-TheHPCSlinepenetratesboththeprimarycontainmentandthedrywelltoinjectwaterdirectlyintotheRPV.Isolationis providedbyamanuallytestablecheckvalvelocatedinsidethe drywellandamotoroperatedgatevalvewithremotemanual 3

RBSUSARTABLE6.2-35(cont.)Revision122of2December1999actuationwhichislocatedascloseaspossibletotheexteriorwalloftheshieldbuilding.Long-termleakagecontrolis maintainedbythisblockvalve.IfaLOCAoccurred,this motor-operatedblockvalvewouldreceiveanautomaticsignalto open.DuringoperationoftheHPCSsystem,theHPCSliquid temperatureislowenoughthatprimarycontainment overpressurizationcannotexistifthelinebreaksbetweenprimary containmentanddrywell.55.3-TheRHRreturntofeedwaterisjoinedbytheRWCUreturnlineoutsidetheprimarycontainmenttoformacommonlinewith feedwaterwhichpenetratestheprimarycontainmentandthedrywell todischargeintotheRPV.Insidethedrywellisasimplecheck valve.Foralinebreakoutsidetheprimarycontainment, isolationisprovidedbythischeckvalveandanautomatically actuatedmotor-operatedblockvalvelocatedoutsideandasclose totheprimarycontainmentaspossible.Long-termleakagecontrol isensuredbythisblockvalve.Aguardpipebetweentheprimary containmentandthedrywellprotectstheprimarycontainmentfrom

overpressurizing.9355.4-SatisfactionofisolationcriteriafortheLPCImodeoftheRHRsystemandtheLPCSsystemisaccomplishedbyuseofan automaticorremotemanualmotor-operatedblockvalvesand manuallytestablecheckvalveswhereapplicable.Thesevalvesare normallyclosedwiththeblockvalvelocatedoutsidetheprimary containmentreceivinganautomaticsignaltoopenatthe appropriatetimetoensurethatacceptablefueldesignlimitsare notexceededintheeventofaLOCA.LinesLPCIAandBeachhave anormallyclosedmotor-operatedvalvebetweenthedrywelland primarycontainmentgoingtotherefuelingcavitysparger,andtwo normallyclosedmanualvalvesonbranchlines,onegoingtothe fuelpoolcoolingandpurificationsystem,andtheothercoming fromthecondensatemakeupanddrawoffsystem.RHRCandLPCSare equippedwithpressuretransmitters,E12-PTN058CandE21PTN050, whicharelocatedoutsideoftheprimarycontainmentdownstreamof theoutboardisolationvalve.Thepressuretransmitterinstrument ventanddrainvalvesaresealedclosed.

3955.5-Isolationinthecontrolroddrivesupplylineisprovidedbyasimplecheckvalveonthelineinsidetheprimary containmentandaremotemanualblockvalve(motor-operated valve)onthelineoutsidetheprimarycontainment.Thesupply lineisnotapartoftheRCPB.12833812 RBSUSAR1of2August1987TABLE6.2-36CRITERION55-EFFLUENTLINES,REACTORCOOLANTPRESSUREBOUNDARY (1)EffluentLines Paragraph1.Mainsteam 55.72.Reactorwatercleanupsuctionline 55.83.RHRshutdowncoolingsupply 55.74.Turbineplantmiscellaneousdrain 55.75.RHRsteamsupplyandRCICsteamsupply 55.76.Reactorwatercleanupreturnline 55.9_____________________________

(1)RefertoFig.6.2-63andTable6.2-40.55.7-Themainsteamlinetothemainturbineandcondensatesystempenetratesboththeprimarycontainment anddrywellandconnectsdirectlywiththeRPV.Theturbine plantmiscellaneousdrainsconnecttothemainturbineand condensatesystem,penetrateboththeprimarycontainment andthedrywell,andtheninsidethedrywell,connecttothe mainsteamlines.TheRHRsteamsupplylineandRCICsteam supplylinejointogetherjustpriortopenetratingthe primarycontainment.Foralloftheselines,isolationisprovidedbyanautomaticallyactuatedblockvalveinsidethedrywelland onejustoutsidetheprimarycontainment.Forturbineplant miscellaneousdrainsinsidethedrywell,twomotor-operated valves,oneinsideandoneoutsidetheprimarycontainment, provideisolation,thelattercapableofbeingsuppliedwith airfromtheMS-PLCSduringaLOCA.Containment overpressurizationisavoidedbyuseofguardpipesaround theselinesbetweentheprimarycontainmentanddrywell.

Forturbineplantmiscellaneousdrainsoutsidethe containment,amotor-operatedvalveandtheMSIVinside containmentprovideisolation.TheRHRshutdowncooling supplylinealsoutilizestheautomaticallyactuatedblock valvesandguardpipes.55.8-SincetheRWCUislocatedbetweentheprimarycontainmentandthedrywell,thelinetakingsuctionfrom therecirculationsystemnecessarilytraversesthedrywell wall.Anautomaticallyactuatedblockvalveinsidethe drywellandasclosetothedrywellaspossible,andan

automatically RBSUSAR2of2August1987TABLE6.2-36(Cont)actuatedblockvalveinsidethedrywellandasclosetothedrywellaspossible,andanautomaticallyactuatedblock valvelocatedoutsidetheprimarycontainmentsatisfythe isolationcriteria.55.9-Thereactorwatercleanupsystem(RWCU)islocatedbetweentheprimarycontainmentandthedrywell.TheRWCU returnlinejoinstheRHRreturnlinewhichthentogether injectintothefeedwatersystemoutsidetheprimary containment.Consequently,thereactorwatercleanupreturn linepenetratestheprimarycontainmentandisprovidedwith anautomaticallyactuatedmotor-operatedblockvalveinside andoutsidetheprimarycontainment.

RBSUSARRevision41of6August1991TABLE6.2-37CRITERION56PRIMARYCONTAINMENTISOLATIONPIPESTHATPENETRATETHECONTAINMENTANDCONNECTTOTHECONTAINMENTATMOSPHERE (1)ParagraphI.InfluentLinestoSuppressionPool1.RHRLoopAtestline 56.1a.Testreturnlineb.RHRpumpAmin.flowbypass c.RHRheatexchangerAdump d.LPCSpumpmin.flowbypass e.LPCStestreturn2.RHRLoopBtestline 56.1a.Testreturnline b.RHRpumpBmin.flowbypass c.RHRheatexchangerBdump3.RHRLoopCtestline 56.1a.Testreturnline b.RHRpumpCmin.flowbypass4.Reactorcoreisolationcooling 56.2a.Turbineexhaust b.Minimumflowbypassline5.RHRheatexchangerAvent 56.3a.Shutdownsuctionthermalrelief b.RHRAsuctionthermalrelief c.LPCIAdischargerelief4d.RHRrelief(2) e.Ventline f.RHRreliefvalvevacuumbreaker g.LPCSpumpsuction(RV) h.LPCSpumpdischarge i.RHR/RCICcondensatereliefvalve6.RHRheatexchangerBvent 56.3a.RHRBsuctionthermalrelief b.RHRCsuctionthermalrelief c.RHRflushlinethermalrelief d.LPCIBdischargerelief e.LPCICdischargerelief f.RHRrelief(2) 4g.Ventline h.RHRreliefvalvevacuumbreaker i.Post-accidentsamplingliquidreturn RBSUSARTABLE6.2-37(Cont)2of6August1987 Paragraph7.Highpressurecorespray 56.4a.Testreturnlineb.Minimumflowbypassline c.HPCStestreturnthermalrelief d.HPCSpumpsuctionthermalrelief e.HPCSpumpdischargethermalrelief f.SuppressionpoolpumpbacksystemreturnlineII.EffluentLinesfromSuppressionPool1.RHRpumps 56.5a.PumpAsuction b.PumpBsuction c.PumpCsuction2.RCICpump 56.5Pumpsuction3.LPCSpump 56.5Pumpsuction4.HPCSpump 56.5PumpsuctionIII.InfluentLinestoPrimaryContainment1.Reactorplantventilation 56.6a.Containmentanddrywellpurgesupplylineb.Containmenthydrogenpurgesupplyline2.Fuelpoolcoolingandcleanupdischarge 56.73.ContainmentanddrywellH 2 sample 56.10a.ContainmentreturnIV.EffluentLinesfromPrimaryContainment1.Fuelpoolcoolingandcleanup 56.8a.Suctionline b.Fueltransfertube c.Fuelpoolpurificationsuction RBSUSARTABLE6.2-37(Cont)Revision103of6April19982.Equipmentandfloordrains 56.9a.Equipmentdraindischargeb.Floordraindischarge3.Reactorplantventilation 56.6a.Purgereturnline b.Containmenthydrogenpurgeoutletline4.ContainmentanddrywellH 2sampleAandB56.10b.Containmentsupply (1)RefertoFig.6.2-64andTable6.2-40.1056.1-TheLPCSandRHRlineshavetestisolation capabilitiescommensuratewiththeimportancetosafetyof isolatingtheselines.Eachtestreturnlinewiththe exceptionofRHRloopC,hasanormallyclosedmotor-operated valvelocatedoutsidetheprimarycontainment.Onlines havinganormallyclosedvalve,oneisolationvalvein additiontoawatersealisadequatetomeettheisolation requirements.RHRloopCtestreturnlinehasonenormally openmotor-operatedvalveandonenormallyopenair-operated

valve.10Thetestreturnlinesarealsousedforsuppressionpoolreturnflowduringothermodesofoperation.Typically,pump minimumflowbypasslinesjointhetestreturnlines downstreamofthetestreturnisolationvalve.Thebypass linesareisolatedbyremotemanualmotor-operatedvalves.ThewaterdumplinetothesuppressionpoolforthesteamcondensingmodeoftheRHRsystemjoinstheRHRloopsAandB testreturnlines.Thesedumplinesareisolatedbynormally closedautomaticmotor-operatedvalves.TheLPCStestreturnlineandtheminimumflowbypasslinescombinepriortojoiningtheRHRloopAtestreturnline.The LPCStestreturnlineisisolatedbyanormallyclosed automaticmotor-operatedvalve.Thebypasslineisisolated byanormallyopenremotemanualmotor-operatedvalve.56.2-TheRCICturbineexhaustlinewhichpenetratestheprimarycontainmentandconnectstothesuppressionpoolfor outboardisolationisequippedwithanormallyopen, motor-operated,remotemanualgatevalvelocatedascloseto theprimarycontainmentaspossible.Thegatevalveinthe RBSUSARTABLE6.2-37(Cont)3aof6August1987RCICturbineexhaustisdesignedtobenormallyopenandisinterlockedtoprecludeopeningoftheinletsteamvalveto theturbinewhiletheturbineexhaustvalveisnotinafull openposition.Inboardisolationisprovidedbythe RBSUSARTABLE6.2-37(Cont)Revision94of6August1997suppressionpoolwaterseal.TheRCICturbineexhaustvacuumbreakerlineandtheRHRreliefvalvesvacuumbreakerline haveajointcontainmentpenetrationandutilizethesame motor-operatedvalveforoutsidecontainmentisolation.Check valvesareprovidedoutsidecontainmentasvacuumbreakers; nootherdevice,suchasmotor-operatedvalves,canbeused toprovidecontainmentisolationfortheRHRreliefvalves becauseitdefeatsthepurposeofthevacuumbreaker(i.e.,

toensuretheoperationoftheRHRreliefvalves).

Additionaloutsidecontainmentisolationisprovidedforthe RCICturbineexhaustvacuumbreakerlinebyasecond motor-operatedvalve.9TheRCICpumpminimumflowbypasslineisisolatedoutsidecontainmentbyanormallyclosedremotemanualvalve.

Inboardisolationisprovidedbythesuppressionpoolwater seal.Thevalveremainsclosedunlesssignaledopenonlow RCICflowplushighpumpdischargepressure.Thevalvewill recloseonhighRCICflow,closureofRCICturbinesteam supplyvalveorthrottletripvalve,ormanuallyfromtheMCR

panel.956.3-RHRheatexchangerventlinestothesuppressionpoolarealsousedtocollectdischargefromthethermaland pressurereliefvalvesinstalledontheheatexchangersand variousECCSsuctionanddischargelines.Theventlinesare eachisolatedbyanormallyclosed,remotemanual motor-operatedvalve.Connectionstotheselinesfromthe variousrelieflinesareisolatedreliefvalvesthemselves.

Theadditionofblockvalvesforisolationwoulddefeatthe purposeforwhichthereliefvalvesareinstalled.A connectiontotheRHRheatexchangerBventlinefromthe post-accidentsamplingliquidreturnisisolatedoutside containmentbyanormallyclosedsolenoid-operatedvalve.

Inboardisolationisprovidedbythesuppressionpoolwater

seal.56.4-TheHPCStestreturnlineandthesuppressionpoolpumpbacksystemreturnlineareisolatedbyanormallyclosed remotemanualmotor-operatedblockvalve.TheHPCSpump minimumflowbypasslineisisolatedbyanormallyclosed, remotemanualmotor-operatedblockvalve.Connectionstothe testreturnlinefromvariousthermalrelieflinesare isolatedbythethermalreliefvalvesthemselves.The additionofblockvalvesforisolationwoulddefeatthe purposeforwhichthereliefvalvesareinstalled.Inboard isolationisprovidedbythesuppressionpoolwaterseal.

RBSUSARTABLE6.2-37(Cont)Revision105of6August199856.5-Thesevalvesareremotemanual,motor-operatedgatevalveswhichprovideassuranceofisolatingtheselinesin theeventofabreakandalsoprovidelong-termleakage control.Inaddition,thesuctionpipingfromthe suppressionchamberisconsideredanextensionoftheprimary containmentsinceitmustbeavailableforlong-termusage followingadesignbasisLOCA,andisdesignedtothesame standardsastheprimarycontainment.10ThebranchlinefromtheRHRloopCsuctionpipingtotheSPCsystemisequippedwithtwoautomaticallyisolatingair-operatedvalves.Thesevalvesareconsideredcontainment isolationvalvesandaredesignedtoASMEIII,class2

requirements.

1056.6-Thecontainmentanddrywellpurgesupplylineisisolatedbyautomaticair-operatedvalvesinsideandoutside primarycontainment,bothofwhicharenormallyclosed.The purgeexhaustlineshaveasimilarvalvingarrangementwith isolationvalvesinsideandoutsidetheprimarycontainment.Thecontainmenthydrogenpurgesupplylinemeetsoutsidethecontainmentjustdownstreamofthecontainmentanddrywell purgesupplyline.Isolationofthislineoutsidethe containmentisbyasolenoid-operatedvalve.Thecontainmenthydrogenpurgeoutletlinebranchesfromthecontainmentanddrywellpurgeoutletlineintheannulus.

Thislineisisolatedbynormallyclosedmotor-operated

valves.56.7-Thefuelpoolcoolingandcleanupdischargelinepenetratestheprimarycontainmentandinjectsintotheupper containmentpool.Theinfluentlinefromthefuelpool purificationsubsystemalsoinjectsintotheupper containmentpoolbymeetingoutsidetheprimarycontainment withthefuelpoolcoolingandcleanupdischargeline.An automaticmotor-operatedblockvalveoutsideandascloseas practicaltotheprimarycontainmentandasimplecheckvalve insidetheprimarycontainmentensurecontainmentisolation.56.8-Theeffluentlinefromthefuelpoolcoolingandcleanupandfuelpoolpurificationsystemsoriginatefromthe uppercontainmentpoolandpenetratetheprimarycontainment.

RBSUSARTABLE6.2-37(Cont)5aof6August1987Containmentisolationisprovidedbymotor-operatedgatevalvesoneithersideoftheprimarycontainment.Thefuel transfertubepenetratestheprimarycontainmentfromthe fuelpoolleadingtotheuppercontainmentpool.A containmentisolationassemblycontainingablindflangeand abellowswhichconnectsfromthecontainmentpenetrationto theassemblyisprovidedtoisolatecontainment.Amanual gatevalveisprovidedto RBSUSARTABLE6.2-37(Cont)6of6August1987isolatethereactorbuildingpoolwaterfromthetransfertubesotheblindflangecanbeinstalled.Aguardpipeis alsoprovidedaroundthislinefromthecontainmentpool throughtheprimarycontainment.Anormallyclosed hydraulic-operatedvalveisusedforisolationoutsideofthe primarycontainment.56.9-Equipmentandfloordrainsarecollectedinthedrywellinsumpsforboththedrywellandcontainmentdrains.

Theequipmentdraindischargelinestoradwastearejoined downstreamofthedrywellequipmentdrainsumpand containmentequipmentdrainsump.Thedischargelines penetrateboththedrywellandprimarycontainmentandare isolatedinsidetheprimarycontainmentandoutsidethe primarycontainmentwithautomaticair-operatedvalves.The floordraindischargelinesareidenticallyvalvedfor isolationpurposes.56.10-Hydrogensamplelinespenetratetheprimarycontainmentboundary.Thefourcontainmentsamplelinesare isolatedinsideandoutsidetheprimarycontainmentby solenoid-operatedvalves.

RBSUSARTABLE6.2-38CRITERION56-OTHERSYSTEMSNOTDIRECTLYCONNECTEDTOCONTAINMENTATMOSPHEREBUTDESIGNEDTOGDC56 CRITERIA (1)1of3August1987 ParagraphI.Influent1.Chilledwatersupplyline 56.1.12.Instrumentairsupplyline 56.2.13.Serviceairsupplyline 56.3.14.Reactorplantcomponentcoolingwatersupplyline 56.4.15.Condensatemakeupwatersupplyline 56.5.16.Reactorwatercleanuppumpdischarge 56.6.17.Fireprotectionheader 56.7.18.Servicewatersupplyline 56.9.19.Mainsteamsafetyandreliefvalveairsupplyline 56.10.1II.Effluent1.Chilledwaterreturnline 56.1.12.Reactorplantcomponentcoolingwaterreturnline 56.4.13.Reactorwatercleanup 56.8.1a.Dischargetomaincondenserb.Backwashdischarge4.Servicewaterreturnline 56.9.15.Post-accidentsamplesupplylinefromrecircsystem 56.11.1_____________________________

(1)RefertoFig.6.2-65andTable6.2-40 RBSUSARTABLE6.2-38(Cont)Revision102of3April19981056.1.1-Thechilledwatersupplylinetothecontainmentunitcoolershasoneautomaticmotor-operatedblockvalveandacheckvalveinside theprimarycontainment.Thereturnlineisisolatedwithoneautomatic motor-operatedblockvalveinsideandoneautomaticmotor-operatedblock valveoutsidetheprimarycontainment.56.2.1-Theinstrumentairsupplytotheprimarycontainmentisisolatedoutsidetheprimarycontainmentbyonemotor-operatedblock valveandacheckvalveinsidetheprimarycontainment.56.3.1-Theserviceairsupplytothecontainmentisisolatedoutsidetheprimarycontainmentbyonemotor-operatedblockvalveandacheck valveinsidetheprimarycontainment.56.4.1-Thereactorplantcomponentcoolingwatersupplylinepenetratingtheprimarycontainmentisisolatedbyanautomatic motor-operatedvalveandacheckvalveinsidetheprimarycontainment.

Isolationofthereactorplantcomponentcoolingwaterreturnlineis providedbytwoautomaticmotor-operatedvalves,oneinsideandone outsidetheprimarycontainment.56.5.1-Thecondensatemakeupsupplylinehasonemotor-operatedvalvelocatedoutsidetheprimarycontainmentandacheckvalveinsidethe primarycontainment.56.6.1-Thereactorwatercleanuppumpdischargelinetotheprimarycontainmentisisolatedoutsidetheprimarycontainmentbyoneautomatic motor-operatedblockvalveandisolatedinsidebyoneautomatic motor-operatedblockvalve.56.7.1-Thefireprotectionheadertothecontainmentisisolatedbyonemotor-operatedvalvelocatedoutsidetheprimarycontainmentanda checkvalveinsidetheprimarycontainment.56.8.1-TheRWCUdischargelinetothemaincondenserandthebackwashdischargelineareisolatedbyoneautomaticmotor-operatedblockvalve locatedinsidetheprimarycontainmentandonemotor-operatedblock valveoutsidetheprimarycontainment.

10 RBSUSARTABLE6.2-38(Cont)3of3August198756.9.1-Theservicewatersupplylinesareisolatedoutsidetheprimarycontainmentbyremotemanualmotor-operatedvalvesandinsidethe primarycontainmentbycheckvalves.Theservicewaterreturnlinesare isolatedbyremotemanualmotor-operatedvalvesinsideandoutsidethe primarycontainment.56.10.1-Themainsteamsafetyandreliefvalvesairsupplylinestothecontainmenthaveoneremotemanualmotor-operatedvalveforeach lineoutsidecontainmentandacheckvalveinsidetheprimary containmentforeachline.56.11.1-Thepost-accidentsamplesupplylinefromtherecirculationsystemisisolatedbysolenoid-operatedvalvesinsideandoutsidethe primarycontainment.

RBSUSARTABLE6.2-39POSTULATEDPOST-LOCALEAKAGEPATHSTOOUTSIDEATMOSPHERE (1)Locationof BypassInterfacewithNameofLine LeakageOutsideAtmosphere

_____________________________

(1)SeeSection6.2.6fordefinitionofoutsideatmosphere.

(2)ThecombinedleakageratesfortheselinesarecontainedintheTechnicalSpecifications.Revision101of1April199810 Feedwater (2)TurbinebuildingServiceairsupply (2)TurbinebuildingCondensatemakeupwater (2)OutsideFireprotectionheader (2)OutsideInstrumentairsupply (2)TurbinebuildingReactorwatercleanup (2)RadwastebuildingsystembackwashVentilationchilledwater (2)Radwastebuildingor supplyturbinebuildingVentilationchilledwater (2)Radwastebuildingor returnturbinebuilding 10 RBS USAR TABLE 6.2-40 CONTAINMENT ISOLATION PROVISIONS FOR FLUID LINES 13 9 CONT.PEN.NUMBER 9 13 G ENERAL D ESIGN C RITERIA OR R EGULATORY G UIDE S YSTEM N AME F LUID L INE S IZE (INCH)ESF S YSTEM E SSEN./N ON-ESS C LASS.(22) T HROUGH L INE L EAKAGE C LASSIFI-C ATION FSAR A RRG'T.FIGURE I SOLATION V ALVE N UMBER L OC.OF VALVE INSIDE/OUTSIDE CONT.T YPE T EST T YPE C T EST M EDIUM L ENGTH OF PIPE FROM CONT. TO OUTER-MOST ISOLATION VALVE VALVE T YPE O PERATOR(4) ACTUATIONMODE POSITION(5,6)

ISOLATION SIGNAL C LOSURE T IME (SEC)(7) POWER S OURCEPRIMARYSECONDARYNORMALSHUTDOWN POST-ACCIDENTPOWER FAILURE Revision 25 Page 1 of 12 16 12 IKJB*Z1A 55 M AIN STEAM LINE (21) M AIN STEAM POSITIVE LEAKAGE CONTROL SYS

.(21) (21)T URBINE P LANT MISCELLANEOUS DRAINS S TEAM S TEAM CNDS/AIR CNDS 24 24 2 1 1/2 Y ES Y ES Y ES Y ES N N E N MS-PLCS MS-PLCS SGTS MS-PLCS6.2-63 6.2-63 6.2-63 6.2-63 1B21*AOV F022A 1B21*AOV F028A 1E33*MOVF008 1B21*MOV F067A INSIDE OUTSIDE OUTSIDE OUTSIDE NA NA NA16'-7 1/4"NA4'-4 11/18"GLOBE GLOBE GLOBE GLOBE AOV(1) AOV(1) MOV MOV PISTON PISTON ELECT ELECT NA NA MANUAL MANUAL OPEN OPEN CLOSED OPEN CLOSED CLOSED CLOSED OPEN CLOSED CLOSED OPEN CLOSED FC FC FAI FAI AD , FG , H , RM AD , FG , H , RM Y , Z , RM AD , FG , H , RM 5 514.5 19.8 A , B A , B A A1KJB*Z1B 55 M AIN STEAM LINE (21) M AIN STEAM POSITIVE LEAKAGE CONTROL SYS

.(21) (21)T URBINE P LANT MISCELLANEOUS DRAINS STEAM STEAM CNDS/AIR CNDS 24 24 2 1 1/2 Y ES Y ES Y ES Y ES N N E N MS-PLCS MS-PLCS SGTS MS-PLCS6.2-63 6.2-63 6.2-63 6.2-63 1B21*AOV F022B 1B21*AOV F028B 1E33*MOV F008 1B21*MOV F067B INSIDE OUTSIDE OUTSIDE OUTSIDE NA NA NA17'-5 1/8"NA4'-4 11/18"GLOBE GLOBE GLOBE GLOBE AOV(1) AOV(1) MOV MOV PISTON PISTON ELECT ELECT NA NA MANUAL MANUAL OPEN OPEN CLOSED OPEN CLOSED CLOSED CLOSED OPEN CLOSED CLOSED OPEN CLOSED FC FC FAI FAI AD , FG , H , RM AD , FG , H , RM Y , Z , RM AD , FG , H , RM 5 5 519.8 A , B A , B A AIKJB*Z1C 55 M AIN STEAM LINE (21) M AIN STEAM POSITIVE LEAKAGE CONTROL SYS

.(21) T URBINE P LANT MISCELLANEOUS DRAINS(21) STEAM STEAM CNDS/AIR CNDS 24 24 2 1 1/2 Y ES Y ES Y ES Y ES N N E N MS-PLCS MS-PLCS SGTS MS-PLCS6.2-63 6.2-63 6.2-63 6.2-63 1B21*AOV F022C 1B21*AOV F028C 1E33*MOV F008 1B21*MOV F067C INSIDE OUTSIDE OUTSIDE OUTSIDE NA NA NA17'-5 1/8"NA4'-4 11/18"GLOBE GLOBE GLOBE GLOBE AOV(1) AOV(1) MOV MOV PISTON PISTON ELECT ELECT NA NA MANUAL MANUAL OPEN OPEN CLOSED OPEN CLOSED CLOSED CLOSED OPEN CLOSED CLOSED OPEN CLOSED FC FC FAI FAI AD , FG , H , RM AD , FG , H , RM Y , Z , RM AD , FG , H , RM 5 5 NA19.8 A , B A , B A A IKJB*Z1D 14 55 M AIN STEAM LINE (21) M AIN STEAM POSITIVE LEAKAGE CONTROL SYS

.(21) T URBINE P LANT MISCELLANEOUS DRAINS(21) STEAM STEAM CNDS/AIR CNDS 24 24 2 1 1/2 Y ES Y ES Y ES Y ES N N E N MS-PLCS MS-PLCS SGTS MS-PLCS6.2-63 6.2-63 6.2-63 6.2-63 1B21*AOV F022D 1B21*AOV F028D 1E33*MOVF008 1B21*MOV F067D INSIDE OUTSIDE OUTSIDE OUTSIDE NA NA NA16'-7 1/4"NA4'-4 11/18"GLOBE GLOBE GLOBE GLOBE AOV(1) AOV(1) MOV MOV PISTON PISTON ELECT ELECT NA NA MANUAL MANUAL OPEN OPEN CLOSED OPEN CLOSED CLOSED CLOSED OPEN CLOSED CLOSED OPEN CLOSED FC FC FAI FAI AD , FG , H , RM AD , FG , H , RM Y , Z , RM AD , FG , H , RM 5 5 NA19.8 A , B A , B A A 1KJB*Z2 1610 55 T URBINE P LANT M ISCELLANEOUS D RAINS(21) CNDS CNDS 3 3 Y ES Y ES N N MS-PLCS MS-PLCS6.2-63 6.2-63 1B21*MOVF016

1B21*MOVF019 INSIDE OUTSIDE NA NA NA 52 GATE GATE MOV MOV ELECT ELECT MANUAL MANUAL OPEN OPEN OPEN OPEN CLOSED CLOSED FAI FAI AD , FG , H , RM AD , FG , H , RM16.5 17.6 B A 1KJB*Z3A 10 1215 14 1555FEEDWATER L INE(26) R ESIDUAL HEAT REMOVAL RETURN TO FEEDWATER FDW FDW FDWWATERWATER WATER 20 20 20 10 6 4 NO NO NO YES YES YES N N N N E N SCB SCB/SGTS SCB/SGTS SGTS SGTS SGTS6.2-63 6.2-63 6.2-63 6.2-63 6.2-64 6.2-63 1FWS*MOV7A 1B21*AOV F032A 1B21*VF010A 1E12*MOV F053A E51*MOVF013 E12-MOVF023 OUTSIDE OUTSIDE INSIDE OUTSIDE OUTSIDE OUTSIDE C C C C A,C A,C A-N A-N A-N A-N A-N A-N64'-2" NA NA76'-2 5/8"81'-6" 91'-0 5/16"GATE AO CHECK CHECK GLOBE GATE GLOBE MOV PROCESS PROCESS ELECT MOV MANUAL ELECT PROCESS PROCESS ELECT ELECT MANUAL MANUAL NA NA MANUAL MANUAL MANUAL OPEN OPEN OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED OPEN/CLOSED(11) OPEN CLOSED CLOSED CLOSED CLOSED CLOSED OPEN CLOSED FAI FC NA FAI FAI FAI RM NA NA C , L , R , RM RM N/A 152 NA NA 39 27-B NA NA A B N/A

Revision 20 Page 2 of 12

Revision 22 Page 3 of 12

Revision 15 Page 4 of 12 May 2002

Revision 13 Page 5 of 12 September 2000

Revision 20 Page 6 of 12

Revision 15 Page 7 of 12 May 2002

Revision 13 Page 8 of 12 September 2000

Revision 17 Page 9 of 12

Revision 18 Page 10 of 12

Revision 25 Page 11 of 12 NOTES: 1.MAIN STEAM ISOLATION VALVES REQUIRE THAT BOTH SOLENOID PILOTS BE DE

-ENERGIZED TO CLOSE VALVES.ACCUMULATOR AIR PRESSURE PLUS SPRING FORCE ACT TOGETHER TO CLOSE VALVES WHEN BOTH PILOTS ARE DE

-ENERGIZED. VOLTAGE FAILURE AT ONLY ONE PILOT DOES NOT CAUSE CLOSURE

.2.TESTABLE CHECK VALVES ARE DESIGNED FOR REMOTE OPENING WITH ZERO DIFFERENTIAL PRESSURE ACROSS THE VALVE SEAT

, EXCEPT THE VALVES 1 E 12-AOVF 041 A ,1 E 12-AOVF041B,1 E 12-AOVF 041 C ,1 E 22-AOVF005,1 E 21-AOVF006,AND1 E 51-AOVF 065 ARE TO BE TESTED MANUALLY DURING REFUELING AND COLD SHUTDOWN CONDITIONS

. THE VALVES CLOSE ON REVERSE FLOW EVEN THOUGH THE TEST SWITCHES MAY BE POSITIONED FOR OPEN

. THE VALVES OPEN WHEN PUMP PRESSURE EXCEEDS REACTOR PRESSURE EVEN THOUGH TESET SWITCH MAY BE POSITIONED FOR CLOSE

. 9 3.DELETED.9 4.A-C MOTOR-OPERATED VALVES ARE POWERED FROM THE DESIGNATED A

-C STANDBY BUS

. D-C MOTOR-OPERATED ISOLATION VALVES ARE POWERED FROM THE DESIGNATED PLANT BATTERY

.5.ALL MOTOR-OPERATED ISOLATION VALVES REMAIN IN THE LAST POSITION UPON FAILURE OF VALVE POWER

. ALL AIR-OPERATED VALVES CLOSE ON MOTOVE AIR FAILURE

. ALL AIR-OPERATED VALVES

, EXCEPT MAIN STEAM ISOLATION VALVES

, CLOSE ON POWER FAILURE TO THE SOLENOID PILOTS

. 15 6.NORMAL STATUS POSITION OF VALVE "OPEN OR CLOSED

" IS THE POSITION DURING NORMAL POWER OPERATION OF HTE REACTOR (SEE POSITION

- NORMAL COLUMN

). 9 7.SOME CLOSING TIMES ARE NOMINAL VALUES BASED ON ORIGINAL VALVE CLOSURE RATE AND LINE SIZE

. FOR LICENSING BASIS CLOSURE TIMES

, SEE THE TECHNICAL REQUIREMENTS MANUAL IN THE OPERATING LICENSE MANUAL

.914 10 8.CONTAINMENT ISOLATION VALVES FOR HYDROGEN ANALYZERS REMAIN OPEN DURING ALL CONDITIONS

. OPERATOR ACTION IS REQUIRED TO ISOLATE THESE LINES

.10 9.VALVES OPEN ONLY DURING INITIAL STAGES OF RHR SHUTDOWN COOLING (FIRST 12 HOURS) WITH RETURN TO RPV

.10.VALVES OPEN DURING CONTINUATION OF SHUTDOWN COOLING AFTER 20 HOURS WITH RETURN TO UPPER CONTAINMENT POOL

.11.VALVES OPEN ONLY DURING FIRST 24 HOURS OF SHUTDOWN COOLING WITH RETURN TO RPV

.12.ADS AND LOW

-LOW SET VALVES AIR SUPPLY ISOLATED ON LOCA ONLY IF AIR LINE HEADER PRESSURE FALLS BELOW DRYWELL DESIGN PRESUSRE

.13.THE RELIEF VALVE IS TESTED IN THE REVERSE DIRECTION

. THIS IS CONSERVATIVE SINCE IT TENDS TO UNSEAT THE DISC

. 10 14.LEAKAGE FROM THESE SECONDARY CONTAINMENT BYPASS VALVES

/PENETRATIONS ARE NOT INCLUDED IN THE 0.60 LA TYPE B AND C TEST TOTALS

.10 15.THE INBOARD BUTTERFLY VALVE IS TESTED IN THE REVERSE DIRECTION

. LEAKAGE CHARACTERISTICS ARE THE SAME IN BOTH DIRECTIONS

.16.THE INBOARD GATE VALVE MAY BE TESTED IN THE REVERSE DIRECTION

. IT IS A FLEX

-WEDGE GATE VALVE

, THE LOW VALUES OF THE ACCIDENT AND TEST PRESSURES DO NOT DEFLECT THE DISC FROM THE SEAT AND EITHER SEATING SURFACE MAY BE USED AS THE POST

-ACCIDENT SEATING SURFACE

. SINCE IT IS LOCATED INSIDE CONTAINMENT

, THE PACKING IS NOT PART OF THE CONTAINMENT PRESSURE BOUNDARY

.17.THE GLOBE VALVE IS TESTED IN THE REVERSE DIRECTION

. THIS IS A CONSERVATIVE TEST SINCE IT TENDS TO UNSEAT THE DISC

.18.THESE VALVES ARE REQUIRED TO BE OPEN DURING THE CONDUCTING OF THE TYPE A TEST

. 13 19.THESE ARE RELIEF VALVES FOR WHICH DOWNSTREAM PIPING TERMINATES AT A POINT BELOW THE SUPPRESSION POOL MINIMUM WATER LEVEL AND ARE THUS PROVIDED WITH A WATER SEAL.T YPEA,C TESTING I S NOT REQUIRED.A SME SECTION III

, DIVISION I

, SUBSECTION NC-7153 REQUIRES THAT NO OTHER STOP VALVE OR DEVICE MAY BE PLACED RELATIVE TO A PRESSURE RELIEF DEVICE WHICH COULD REDUCE OVERPRESSURE PROTECTION

.15 20. THESE ARE INSTRUMENT ISOLATION VALVES THAT ARE REQUIRED TO REMAIN OPEN DURING A LOCA

, AND WILL NOT BE TYPE C TESTED

.21.VALVES/PENETRATIONS SEALED BY THE MS

-PLCS (INCLUDING MSIVS

) ARE TESTED TO VERIFY THAT LEAKAGE OF SEALING AIR INTO THE CONTAINMENT DOES NOT EXCEED THE LIMITS SPECIFIED IN THE TECHNICAL SP ECIFICATIONS

. THIS IS A CONSERVATIVE TEST SINCE:(1) PRESSURE IS APPLIED IN THE REVERSE DIRECTION FOR THE MSIVS , WHICH TENDS TO UNSEAT THE VALVE DISC.(2) THE TEST PRESSURE SPECIFIED IN THE TECHNICAL SPECIFICATIONS IS GREATER THAN THE TYPE C TEST PRESSURE.(3) FOR GATE VALVES

, THE TEST IS CONSERVATIVE BECAUSE PRESSURE IS APPLIED AND MEASURED ACROSS BOTH SEATS AS WELL TO THE PACKING GLAND VERSUS A CHECK OF EITHER THE UPSTREAM OR DOWNSTREAM SEAT

. THIS LEAKAGE IS NOT INCLUDED IN THE 0.6 LA TYPE B AND C TEST TOTAL

. PIPING DOWNSTREAM OF THE VALVES BEING TESTED ARE DEPRESSURIZED DURING THE TEST IN A FASHION SIMILAR TO A TYPE C TEST

.22.SEE SECTION 6.2.4.3.7 FOR A DESCRIPTION OF THE ESSENTIAL

/NON-ESSENTIAL CLASSIFICATION

.23.VALVE IS OPEN POST

-ACCIDENT IS NECESSARY TO PRESERVE SUPPRESSION POOL LEVEL OR TO PROTECT EQUIPMENT LOCATED IN THE AUXILIARY BUILDING CRESCENT ARE A AT EL.70'-0" FROM FLOODING

.24.D ELETED25.THESE VALVES ARE PROVIDED WITH A WATER SEAL BY THE SUPPRESION POOL.T YPEA,C TESTING IS NOT REQUIRED

.13 26.THE LEAKAGE THROUGH PENETRATIONS KJB

-Z 3 A AND -Z 3 B HAS THE POTENTIAL TO BE EITHER SECONDARY CONTAINMENT BYPASS (SCB) LEAKAGE OR CONTAINMENT LEAKAGE (L A).V ALVES B 21-VF 010 A (B) AND B 21-AOVF 032(B) ARE COMMON ALONG ALL PATHS

. THE LEAKAGE THROUGH FWS

-MOVF 7 A (B) IS PART OF SCB LEAKAGE

, AND THUS , IT IS NOT INCLUDED IN THE0.60 LA TYPE B AND C TEST TOTALS.T HE REMAINING LEAKAGE PATHS ARE CONSIDERED IN THE 0.60 LA TYPE B AND C TOTAL.A S SUCH , THE LEAKAGE IS TREATED BY SGTS

.27.THE FUEL BUILDING IS NO LONGER CREDITED TO MITIGATE THE CONSEQUENCES OF A LOCA PER TECHNICAL SPECIFICATION AMENDMENT 113(S EE USAR SECTION 15.6.5 FOR DETAILS

). THIS PENETRATION IS CLASSIFIED AS SECONDARY CONTAINMENT BYPASS LEAK PATH (SCB) PER ALTERNATE SOURCE TERM (AST).14 15 28.T HIS VALUE ONLY PROVIDES CONTAINMENT ISOLATION DURING MODES 1,2, AND 3 WHILE THE BLIND FLANGE IS REMOVED

.29.W ITH THE BLIND FLANGE REMOVED

, THIS PENETRATION DOES NOT MEET GDC56 REQUIREMENTS

, HOWEVER THIS CONFIGURATION HAS BEEN APPROVED VIA A MENDMENT116. 1530. AN ALTERNATE DIVISION I POWER FEED IS PROVIDED FOR COPING WITH A MAIN CONTROL ROOM FIRE EVENT FOR APPENDIX R COMPLIANCE

.

Revision 16 Page 12 of 12 March 2003 RBSUSARTABLE6.2-41COMBUSTIBLEGASCONTROLSYSTEMCOMPONENTDESCRIPTION1of1August1987HydrogenMixingFans Quantity2-100%capacity unitsFantypeCentrifugal Capacity,cfm(each)600@160F DriveDirect DischargeHorizontal ManufacturerBuffaloForgeCompanyHydrogenRecombiners Type Thermal Quantity2-100%capacity units Capacity,scfm-air(each) 100Processrate,scfm-hydrogen4(approx.)Powerrequired,kW75each Manufacturer WestinghouseContainmentHydrogenPurgeFanFantype CentrifugalCapacity,cfm30 DrivetypeDirect ManufacturerBuffaloForgeCompanyHydrogenIgnitersQuantity,total 104eachdivision9indrywell 43incontainment Voltage120-Vac,60HzMinimumsurfacetemp 1,700°F ManufacturerPowerSystemDivision ofMorrison-KnudsonModelNo.6043 RBSUSARTABLE6.2-42CORROSIONRATESFORALUMINUMANDZINC

______________________________*Wheretemperature(T)isindegreesRankine1of1August1987CorrodibleTemperatureCorrosionRate Surface (°F)(lb-mole/sqft-hr)

Aluminum 4141.19x10-7 Zinc-1.282x10 3 exp-13140.0*T RBS USAR TABLE 6.2-43 SURFACE AREA AND MASS OF CORRODIBLES

  • 1.5 moles of H 2 are produced for each mole of Aluminum reacting.
    • 1 mole of H 2 is produced for each mole of Zinc reacting.

Revision 23 1 of 1 15 Source Source Surface Area in Drywell (sq ft) Total Mass (lbm)

Aluminum* 39,392 30,966

Zinc** 68,825 22,944 15 RBSUSAR_____________________________*Intheanalysis,controlsareinitiatedwhenthehydrogenconcentrationreached3.5volumepercent.Revision141of1September2001TABLE6.2-44GENERALPARAMETERSUSEDINCALCULATINGPOST-DBAHYDROGENCONCENTRATIONS14Extentofmetal-waterreactionAcorewideaveragedepthof0.00023inintooriginal activefuelcladding,or fivetimesthecalculated amount,whicheveramountis greater,in2min 14Fissionproductdistributionmodel:

Halogens50%releasedfromcoreNoblegases100%releasedfromcoreOtherfissionproducts1%ofsolidsreleasedfrom coreandintimatelymixed withthecoolantFractionoffissionproductenergyabsorbedbycoolant:

BetaBetafromfissionproducts

0.0 infuelrodsBetafromfissionproducts

1.0intimatelymixedwith suppressionpoolwater GammaGammafromfissionproducts0.1infuelrodsabsorbedby coolantincoreregionGammafromfissionproducts1.0intimatelymixedwith suppressionpoolwaterHydrogenRadiolyticGeneration0.5molecule/100eV RateOxygenRadiolyticGeneration0.25molecule/100eV RateHydrogenconcentrationlimit*4volumepercent RBSUSARTABLE6.2-45PLANTPARAMETERSUSEDINPOST-DBAHYDROGENCONCENTRATIONANALYSIS

______________________________*Thisvolumeaccountsforthefluidstoredwithintheweirwallonthedrywellfloorinthelongterm.14**Thisvalueboundsthereactingzrweightforoperationatupratedpower.

14Revision141of1September200114Reactorpower3,100MWDrywellfreevolume208,094cuft*Containmentfreevolume1,191,590cuftInitialdrywellpressure14.7psia8Initialdrywelltemperature 145.0°F 8Initialdrywelldewpoint 109.8°FInitialcontainmentpressure14.7psiaInitialcontainmenttemperature 90°FInitialcontainmentdewpoint 68.9°F8WeightofZircaloythatwouldreact(lbm)589lb**(basedon5timesthevaluecalculatedforcore-widehydrogengenerationinECCSanalyses) 8Hydrogenmixingfanflowrate(assuming510cfmfailureofotherfanandtemperatureof 70°F)Fractionsuppressionpoolwaterindrywell0.278Thermalhydrogenrecombinercapacity100scfm(assumingfailureofotherrecombiner) 14 RBSUSARTABLE6.2-46Revision61of1August1993 DELETED RBS USAR TABLE 6.2-47 SINGLE FAILURES AND CONSEQUENCES CONSIDERED IN CONTAINMENT EXTERNAL (NEGATIVE) PRESSURE ANALYSIS

______________________________

(1)The postulated initiating event is the failure of one automatic temperature control valve (TV5A, 5B or 122)

to reduce chilled water flow to one unit cooler under

normal operating, minimum heat load conditions.

(2)The postulated initiating event is a LOCA with standby service water at the minimum temperature of 60 F. (3)See the discussion provided in Section 6.2.1.1.3.3.2.

Revision 23 1 of 1 Event Single Failure Consequences (1) One containment-annulus

diff. pressure transmitter Only 2 of 3 required to develop

isolation signal. Cooldown

terminated at -12 in W.G.

(1) Division I containment-

annulus diff. pressure

signal (relay)

Division II signal isolates

chilled water to all coolers via

MOVs 129, 130, and 102. Cooldown

terminated at -12 in W.G.

(1) Division II containment-

annulus diff. pressure

signal (relay)

Division I signal isolates

chilled water to all coolers via

MOVs 127 and 128. Cooldown

terminated at -12 in W.G.

(1) Operator fails to isolate

chilled water or unit

cooler fan based on -5 in

W.G. alarms Automatic signals isolate chilled

water and stop fans at -12 in

W.G. (2) Division I containment-

annulus diff. pressure

signal (relay)

Safety-related unit coolers UC-1A

and UC-1B continue running until

Division II signal isolates

standby service water flow to UC-

1B and the operator isolates UC-1A.(3)

RBS USAR TABLE 6.2-48 PROJECTED AREAS AND MOMENT ARMS FOR FORCE AND MOMENT CALCULATION FEEDWATER LINE BREAK, 27-NODE MODEL

NOTES: See Figure 6.2-74 for load definition.

(1)A rx = -9.6875 (H i) Sin( i-45)-Sin ( i i) (2)A sx = 12.583 (H i) Sin( i-45)-Sin ( i i) 1 of 1 August 1987 Node No. i Height (ft) H i Azimuth (deg) i Span (deg) i Projected Areas (ft)

Moment Arm (ft) L i A rx (1) A sx (2) 1 5.21 0 45 - 14.788 + 19.208 44.225 2 5.21 35 35 - 26.901 + 34.941 44.225 3 5.21 90 35 - 26.901 + 34.941 44.225 4 5.21 135 45 - 14.788 + 19.208 44.225 5 5.29 0 45 -15.015 + 19.503 38.975 6 5.29 35 35 - 27.314 + 35.478 38.975 7 5.29 90 35 - 27.314 + 35.478 38.975 8 5.29 135 45 - 15.015 + 19.503 38.975 9 20.71 0 45 - 58.784 + 76.354 25.975 10 20.71 45 45 -141.844 +184.240 25.975 11 20.71 90 45 -141.844 +184.240 25.975 12 20.71 135 45 - 58.784 + 76.354 25.975 13 6.29 0 45 - 17.854 + 23.190 12.475 14 6.29 45 45 - 43.080 + 55.956 12.475 15 6.29 90 45 - 43.080 + 55.956 12.475 16 6.29 135 45 - 17.854 + 23.190 12.475 17 10.50 315 90 +101.719 -132.122 41.850 18 20.71 315 90 +200.628 -260.594 25.975 19 6.29 315 90 + 60.934 - 79.146 12.475 20 9.33 45 180 0.0 0.0 4.665 21 10.50 225 90 +101.719 -132.122 41.580 22 20.71 225 90 +200.628 -260.594 25.975 23 6.29 225 90 + 60.934 - 79.146 12.475 24 9.33 225 180 0.0 0.0 4.665 25 0.0 0 0 0.0 0.0 0.0 26 10.50 45 10 - 17.699 + 22.989 41.580 27 10.50 55 10 - 17.699 + 22.989 41.580

RBS USAR TABLE 6.2-49 PROJECTED AREAS AND MOMENT ARMS FOR FORCE AND MOMENT CALCULATION FEEDWATER LINE BREAK, 25-NODE MODEL

NOTES: See Figure 6.2-74 for load definition.

(1)A rx = -9.6875 (H i) Sin ( I -45)-Sin ( i i) (2)A sx = 12.583 (H i) Sin ( I -45)-Sin ( i i) 1 of 1 August 1987 Node No. i Height (ft) H i Azimuth (deg) i Span (deg) i Projected Areas (ft)

Moment Arm (ft) L i A rx (1) A sx (2) 1 5.21 0 45 - 14.788 + 19.208 44.225 2 5.21 45 45 - 35.684 + 46.350 44.225 3 5.21 90 45 - 35.684 + 46.350 44.225 4 5.21 135 45 - 14.788 + 19.208 44.225 5 5.29 0 45 - 15.015 + 19.503 38.975 6 5.29 45 45 - 36.231 + 47.060 38.975 7 5.29 90 45 - 36.231 + 47.060 38.975 8 5.29 135 45 - 15.015 + 19.503 38.975 9 20.71 0 45 - 58.784 + 76.354 25.975 10 20.71 45 45 -141.844 +184.240 25.975 11 20.71 90 45 -141.844 +184.240 25.975 12 20.71 135 45 - 58.784 + 76.354 25.975 13 6.29 0 45 - 17.854 + 23.190 12.475 14 6.29 45 45 -43.080 + 55.956 12.475 15 6.29 90 45 - 43.080 + 55.956 12.475 16 6.29 135 45 - 17.854 + 23.190 12.475 17 10.50 315 90 +101.719 -132.122 41.850 18 20.71 315 90 +200.628 -260.594 25.975 19 6.29 315 90 + 60.934 - 79.146 12.475 20 9.33 45 180 0.0 0.0 4.665 21 10.50 225 90 +101.719 -132.122 41.580 22 20.71 225 90 +200.628 -260.594 25.975 23 6.29 225 90 + 60.934 - 79.146 12.475 24 9.33 225 180 0.0 0.0 4.665 25 0.0 0 0 0.0 0.0 0.0

RBSUSARTABLE6.2-50MAXIMUMFORCESANDMOMENTSRESULTINGFROMANNULUSPRESSURIZATIONFEEDWATERLINEBREAK25AND27NODEMODELS

______________________________NOTE:Thenetforceactinginthez-directioniszeroduetosymmetrywithrespecttothefeedwaterlineaxis(x-directionasshownonFigure6.2-74).1of1August1987 AnnulusNodalMaximumForceMaximumMomentModelFxTimeMzTimeStructure(nodes)(kips)(sec)(ft-kips)(sec)Shieldwall25521.80.015-1.879x10 4 0.01427536.10.014-2.011x10 4 0.014 RPV25-401.70.0151.446x10 4 0.01427-412.80.0141.549x10 4 0.014 RBS USAR TABLE 6.2-51 DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSAR Arrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolation Signal Closure Time (sec) Power Source Inside/

DrywellOutside Drywell PrimarySecondaryNormal Shutdown Post-Accident Power Failure Revision 12 page 1 of 10 December 1999 121DRB*Z22A LPCI A TO REACTOR WATER 10YES SGTS 6.2-63 1E12*AOVF041AX AOCHECK (1)PROCESS PROCESSN/A CLOSED CLOSED OPEN N/AN/A N/A N/A 1DRB*Z22B 12LPCI B TO REACTOR WATER 10 YES SGTS 6.2-63 1E12*AOVF041BX AO CHECK (1)PROCESS PROCESSN/A CLOSED CLOSED OPEN N/A N/A N/A N/A 1DRB*Z30 SPARE - - - - - - - - - - - - - - - - - - - 1DRB*Z32 CONTAINMENT AND DRYWELL PURGE SUPPLY TO DRYWELL AIR AIR 24 42 NO NOCONT CONT 6.2-64 6.2-64 1HVR*AOV125 1HVR*AOV147 X XBUTTERFLY BUTTERFLYAOV AOV PISTON PISTON N/A N/A CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED FC FC B,K,RM B,K,RM 3 3 A B1DRB*Z34 CONTAINMENT AND DRYWELL PURGE OUTLET FROM DRYWELL AIR AIR 24 24YES YES CONT CONT 6.2-64 6.2-64 1HVR*AOV148 1HVR*AOV146 X XBUTTERFLY BUTTERFLYAOV AOV PISTON PISTON N/A N/A CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED FC FC B,K,RM B,K,RM 3 3 B A1DRB*Z37A REACTOR BUILDING FLOOR DRAIN HEADER TO DRYWELL WATER WATER 8 8 NO NOCONT CONT 6.2-64 6.2-64 1DFR*V4 1DFR*V3 XX CHECK CHECK PROCESS PROCESS PROCESS PROCESSN/A N/A CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED N/A N/AN/A N/A N/A N/A N/A N/A 1DRB*Z37B REACTOR BUILDING FLOOR DRAIN HEADER TO DRYWELL WATER WATER 8 8 NO NOCONT CONT 6.2-64 6.2-64 1DFR*V1 1DFR*V2 XX CHECK CHECK PROCESS PROCESS PROCESS PROCESSN/A N/A CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED N/A N/AN/A N/A N/A N/A N/A N/A 1DRB*Z40A REACTOR BUILDING EQUIPMENT DRAIN HEADER TO DRYWELL WATER WATER 8 8 NO NOCONT CONT 6.2-64 6.2-64 1DER*V14 1DER*V15 XX CHECK CHECK PROCESS PROCESS PROCESS PROCESSN/A N/A CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED N/A N/AN/A N/A N/A N/A N/A N/A 1DRB*Z40B REACTOR BUILDING EQUIPMENT DRAIN HEADER TO DRYWELL WATER WATER 8 8 NO NOCONT CONT 6.2-64 6.2-64 1DER*V17 1DER*V16 XX CHECK CHECK PROCESS PROCESS PROCESS PROCESSN/A N/A CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED N/A N/AN/A N/A N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen.Number System Fluid Line Size(inch) ESF SystemThrough Line Leakage Classi-fication FSAR Arrgt Figure Isolation Valve Number Location of ValveValve TypeOperatorActuation Mode Position Isolation SignalClosure Time (sec) Power Source Inside/DrywellOutside Drywell Primary SecondaryNormal Shutdown Post-Accident Power Failure Revision 12 page 2 of 10 December 1999 1DRB*Z45 SERVICE AIR SUPPLY TO DRYWELL AIR AIR 4 4 NO NO CONT CONT6.2-65 6.2-65 1SAS*V489 1SAS*V487 XX GATE CHECK MV PROCESSMANUAL PROCESS N/A N/A LCCLOSED LCCLOSED LCCLOSED N/A N/A N/A N/AN/A N/A N/A N/A1DRB*Z47 INSTRUMENT AIR SUPPLY TO DRYWELL AIR AIR 3 3 NO NO CONT CONT6.2-65 6.2-65 1IAS*V79 1IAS*V78 XX GATE CHECK MV PROCESSMANUAL PROCESS N/A N/AOPEN OPEN OPEN OPEN OPENCLOSED N/A N/A N/A N/AN/A N/A N/A N/A1DRB*Z50 REACTOR PLANT COMPONENT COOLING WATYER SUPPLY TO DRYWELL WATER WATER 6 6 NO NO CONT CONT6.2-65 6.2-65 1CCP*MOV142 1CCO*V119 XX BUTTERFLYCHECK MOV PROCESSELECT PROCESS MANUAL N/AOPEN OPEN OPEN OPENCLOSED CLOSED FAI N/AB,K,RM N/A30 N/A A N/A1DRB*Z51 REACTOR PLANT COMPONENT COOLING WATER RETURN FROM DRYWELL WATER WATER 6 6 NO NO CONT CONT6.2-65 6.2-65 1CCP-MOV144 1CCP*MOV143 X XBUTTERFLY BUTTERFLY MOV MOVELECT ELECT MANUAL MANUALOPEN OPEN OPEN OPENCLOSED CLOSED FAI FAIB,K,RM B,K,RM 30 30 B A1DRB*Z54 SERVICE WATER SUPPLY TO DRYWELL WATER WATER WATER WATER WATER10 10 83/4 10 NO NO NO NO NO SGTS SGTS SGTS SGTS SGTS6.2-65 6.2-65 N/A N/A6.2-65 1SWP*MOV4A 1SWP*MOV4B 1HVN*V542 1SWP*RV119 1SWPV205 X X

X X XGATE GATE GATE RV GLOBE GATE MOV MOV MV PROCESS MVELECT ELECT MANUAL PROCESS MANUAL MANUAL MANUAL N/A N/A N/AOPEN OPEN CLOSED CLOSED LO OPEN OPEN OPENCLOSED LOCLOSED CLOSED CLOSED CLOSED LO FAI FAI N/A N/A N/AB,K,RM B,K,RM N/A N/A N/A52.8 51.7 N/A N/A N/A A B N/A N/A N/A1DRB*Z55 3 3SERVICE WATER RETURN FROM DRYWELL WATER WATER WATER WATER WATER10 10 10 3/4 8 NO NO NO NO NO SGTS SGTS SGTS SGTS SGTS6.2-65 6.2-65 6.2-65 N/A N/A1SWP*V206 1SWP*MOV5A 1SWP*MOV5B 1SWP*RV140 1HVN*V543 X X X X XGATE GATE GATE RV GLOBE GATE MV MOV MOV PROCESS MVMANUAL ELECT ELECT PROCESS MANUAL N/A MANUAL MANUAL N/A N/A LOOPEN OPEN CLOSED CLOSED LO OPEN OPENCLOSED OPEN LOCLOSED CLOSED CLOSED CLOSED N/A FAI FAI N/A N/A N/AB,K,RM B,K,RM N/A N/AN/A 50.6 53.9 N/A N/A N/A A B N/A N/A1DRB*Z56 12 12SLC SYSTEM INJECTION SOLENOID (8)1 1/2 NO CONT 6.2-63 1C41*VEX F004A X GATE EXPLOSIVEELECT N/A CLOSED CLOSED OPEN (ACTUATED) N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSARArrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolatio n SignalClosure Time (sec) Power Source Inside/

DrywellOutside Drywell Primary Secondar yNormal Shutdown Post-Accident Power Failure Revision 7 page 3 of 10 January 1995 Inj Soln (13) 1 1/2 NoCont 6.2-63 1C41*VEX F004B XGate ExplosiveElect N/A Closed Closed Open (Actuated)

N/AN/A N/AN/A Inj Soln (13) 1 1/2 NoCont 6.2-63 1C41*V F006 XCheck Process Process N/A Closed Closed Process N/AN/A N/AN/A Inj Soln (13) 1 1/2 NoCont 6.2-63 1C41*v F007 XCheck Process Process N/A Closed Closed Process N/AN/A N/AN/A 1DRB*Z57A Hydrogen mixing system Air Air 6 6Yes Yes Cont Cont 6.2-64 6.2-64 1CPM*MOV2A 1CPM*MOV4A X XButterfly Butterfly MOV MOV Elect Elect Manual Manual Closed Closed Closed Closed Open Open FAI FAIA, K, RMA, K, RM 33 33 A A1DRB*Z57B Hydrogen mixing system Air Air 6 6Yes Yes Cont Cont 6.2-64 6.2-64 1CPM*MOV2B 1CPM*MOV4B X XButterfly Butterfly MOV MOV Elect Elect Manual Manual Closed Closed Closed Closed Open Open FAI FAIA, K, RMA, K, RM 33 33 B B1DRB*Z58A Hydrogen mixing system Air Air 6 6Yes Yes Cont Cont 6.2-64 6.2-64 1CPM*MOV3A 1CPM*MOV1A X XButterfly Butterfly MOV MOV Elect Elect Manual Manual Closed Closed Closed Closed Open Open FAI FAIA, K, RMA, K, RM 33 33 A A1DRB*Z58B Hydrogen mixing system Air Air 6 6Yes Yes Cont Cont 6.2-64 6.2-64 1CPM*MOV3B 1CPM*MOV1B X XButterfly Butterfly MOV MOV Elect Elect Manual Manual Closed Closed Closed Closed Open Open FAI FAIA, K, RMA, K, RM 33 33 B B71DRB-Z67A 1DRB-Z67B 1DRB-Z67C 1DRB-Z67D 7Tip Drives N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A 1DRB-Z107 A ir Su pp l y for main steam safety and relief valves systems Air Air Air Air 1 1/2 1 1/2 1 1/2 1 1/2 No No No NoSGTS SGTS SGTS SGTS N/A N/A N/A N/A 1SVV*V50 1B21*VF036A 1B21*VF036F 1B21*VF036G X X X XGlobe Check Check Check MV Process Process Process Manual Process Process Process N/A N/A N/A N/A Open Closed Closed Closed Open Closed Closed Closed Open Closed Closed Closed N/A N/A N/A N/AN/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSARArrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolatio n SignalClosure Time (sec) Power Source Inside/

DrywellOutside Drywell Primary Secondar yNormal Shutdown Post-Accident Power Failure page 4 of 10 August 1987 Air 1 1/2 No SGTS N/A 1B21*VF036P X Check ProcessProcessN/A Close dClosed Closed N/A N/A N/A N/A Air supply for main steam safety and relief valve system. Air 1 1/2 No SGTS N/A 1B21*VF039C X Check ProcessProcessN/A Close dClosed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF039H X Check ProcessProcessN/A Close dClosed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF039K X Check ProcessProcessN/A Close dClosed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF039S X Check ProcessProcessN/A Close dClosed Closed N/A N/A N/A N/A 1DRB*Z108 Spare - - - 1DRB*Z109 Spare - - 1DRB*Z110 Spare 1DRB*Z111 Spare - - - - - - - 1DRB*Z112 Air 1 1/2 No SGTS N/A 1SYV*V53 X Globe MV ProcessN/A Open Open Open N/A N/A N/A N/A Air supply for main steam safety and relief valve system Air 1 1/2 No SGTS N/A 1B21*VP036J X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF036L X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF036M X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF036N X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VP036R X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF039B X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A Air 1 1/2 No SGTS N/A 1B21*VF039D X Check ProcessProcessN/A Cloned Closed Closed N/A N/A N/A N/A Air 1 /2 No SGTS N/A 1B21*VF039E X Check ProcessProcessN/A Closed Closed Closed N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSARArrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolatio n SignalClosure Time (sec) Power Source Inside/

DrywellOutside Drywell Primary SecondaryNormal Shutdown Post-Accident Power Failure page 5 of 10 August 1987 1DRB*Z117 SPARE - - - - - - - - 1DRB*Z118 SPARE - - - - - - 1DRB*Z119 SPARE - - - - - - - - 1DRB*Z120 SPARE - - - - - - 1DRB*Z123 SPARE - - - 1DRB*Z124 SPARE - - - - - 1DRB*Z127 SPARE - - - - - - 1DRB*Z128 SPARE - - - - WATER 3/4 NO CONT 6.2-65 1B33*VF017A X CHECK PROCESS PROCESS N/A OPEN CLOSED CLOSED N/A N/A N/A N/A 1DRB*Z133 RECIRCULATION PUMP Pump SEAL SUPPLY WATER 3/4 NO CONT 6.2-65 1B33*VF013A X CHECK PROCESS PROCESS N/A OPEN CLOSED CLOSED N/A N/A N/A N/A WATER 3/4 NO CONT 6.2-65 1B33*VF017B X CHECK PROCESS PROCESS N/A OPEN CLOSED CLOSED N/A N/A N/A N/A 1DRB*Z135 RECIRCULATION PUMP SEAL SUPPLY WATER 3/4 NO CONT 6.265 1B33*VF013B X CHECK PROCESS PROCESS N/A OPEN CLOSED CLOSED N/A N/A N/A N/A 1DRB*Z136 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF047AX RV GLOBE PROCESS PROCESS N/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z137 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041AX RV GLOBE PROCESS PROCESS N/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z130 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF051GX RY GLOBE PROCESS PROCESS N/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSARArrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolatio n SignalClosure Time (sec) Power Source Inside/

DrywellOutside Drywell Primary SecondaryNormal Shutdown Post-Accident Power Failure page 6 of 10 August 1987 1DRB*Z139 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041LX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z140 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF047CX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z141 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041GX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z142 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF051CX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z143 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041CX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/AN/A1SBP*Z144 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF047BX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z145 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041BX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z146 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF051BX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z147 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041FX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z148 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF047FX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z149 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF041DX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z150 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF047DX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A 1DRB*Z151 (S/R PEN.) SRV DISCHARGE STEAM 10 YES CONT N/A 1B21*RVF051DX RV GLOBEPROCESS PROCESSN/A CLOSEDCLOSED CLOSED N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT)

DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen.Number System Fluid Line Size (inch)ESF System Through Line Leakage Classi-fication FSAR Arrgt Figure Isolation Valve Number Location of Valve Valve TypeO peratorActuation Mode Position Isolatio n Signal Closure Time (sec)Power Source Inside/

Drywell Outside Drywell PrimarySecondaryNormalShutdown Post-Accident Power Failure Revision 18 page 7 of 10 1DRB*Z152 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 1 NO CONT N/A 1RCS*MOV58A X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A A1DRB*Z153 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 1 NO CONT N/A 1RCS*MOV59A X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A A1DRB*Z154 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 1/2 NO CONT N/A 1RCS*MOV60A X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A A1DRB*Z155 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 3/4 NO CONT N/A 1RCS*MOV61A X GLOBE NOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A A1DRB*Z156 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 1 NO CONT N/A 1RCS*MOV58B X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A B1DRB*Z157 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 1 NO CONT N/A 1RCS*MOV59B X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A B1DRB*Z158 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 1/2 NO CONT N/A 1RCS*MOV60B X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A B1DRB*Z159 RECIRCULATION FLOW CONTROL HYDRAULICS

(9) (10)HYD 3/4 NO CONT N/A 1RCS*MOV61B X GLOBE MOV ELECT MANUAL OPEN OPEN CLOSED FAI B, K, RM N/A B 1DRB*Z160 (TYPE SEAL SUPPORT)

WIDE RANGE LEVEL

CONTROLWATER 1 NO CONT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z161 (TYPE SEAL SUPPORT) VENT LINE N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSARArrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolatio n SignalClosure Time (sec) Power Source Inside/

DrywellOutside Drywell Primary SecondaryNormal Shutdown Post-Accident Power Failure 1DRB*Z162 (TYPE SEAL SUPPORT) BULKHEAD DRAIN N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z163 (TYPE SEAL SUPPORT) BULKHEAD DRAIN N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z164 (TYPE SEAL SUPPORT) CONTAINMENT ATMOSPHERE MONITORING PROBE N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z165 (TYPE SEAL SUPPORT) CONTAINMENT ATMOSPHERE MONITORING PROBE N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z166 (TYPE SEAL SUPPORT) INSTRUMENT AIR SUPPLY N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z170 (TYPE SEAL SUPPORT) REACTOR BUILDING EQIPMENT DRAINS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z301 THROUGH 1RB*Z332 INSTRUMENTATION PENETRATION THROUGH DRYWELL WALL(6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z333 CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES CONT N/A 1CMS*SOV32A X GLOBE SOV ELECT N/A OPEN OPEN CLOSED FAI RM N/A A 1DRB*Z334 INSTRUMENTATION PENE- TRATIONS THROUGH DRYWELL WALL(6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A RBS USAR TABLE 6.2-51 (CONT) DRYWELL ISOLATION PROVISIONS FOR FLUID LINES Drywell Pen. Number System Fluid Line Size (inch) ESF System Through Line Leakage Classi-fication FSARArrgt Figure Isolation Valve Number Location of Valve Valve Type O perator Actuation Mode Position Isolatio n SignalClosure Time (sec) Power Source Inside/

DrywellOutside Drywell Primary SecondaryNormal Shutdown Post-Accident Power Failure Revision 19page 9 of 101DRB*Z335 CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES CONT N/A 1CMS*SOV32G X GLOBE SOV ELECT N/A OPEN OPEN CLOSED FAI RM N/A A 1DRB*Z336 THROUGH 1DRB*Z426 INSTRUMENTATION PENETRATIONS THROUGH DRYWELL WALL (6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z427 CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES SGTS N/A 1CMS*V41 X CHECK PROCESS PROCESS N/A CLOSED CLOSED OPEN N/A N/A N/A N/A 1DRB*Z428 CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES SGTS N/A 1CMS*SOV34D X GLOBE SOV ELECT N/A CLOSED CLOSED OPEN FAI RM N/A B 1DRB*Z429 INSTRUMENTATION PENETRATIONS THROUGH DRYWELL WALL (6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1DRB*Z430 CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES SGTS N/A 1CMS*SOV34B X GLOBE SOV ELECT N/A CLOSED CLOSED OPEN FAI RM N/A B 1DRB*Z431 THROUGH 1DRB*Z448 INSTRUMENTATION PENETRATIONS THROUGH DRYWELL WALL (6) N/AN/AN/AN/A N/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/A N/AN/AN/AN/A1DRB*Z449 REACTOR PLANT SAMPLINE WATER WATER 3/4 3/4 NO NO CONT CONT N/A N/A1B33*AOVF019 1B33*AOVF020 X XGLOBE GLOBEAOV AOVPISTON PISTON N/A N/A OPEN OPEN OPEN OPEN CLOSED CLOSED FC FC E,B,RM E,B,RM 5 5 B A1DRB*Z450 THROUGH 1DRB*Z498 INSTRUMENTATION PENETRATIONS THROUGH DRYWELL WALL (6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 61DRB*Z504 CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES SGTS N/A 1CMS*SOV34C X GLOBE SOV ELECT N/A CLOSED CLOSED OPEN FAI RM N/A A 1DRB*Z502 6CONTAINMENT ATMOSPHERE MONITORING PROBE AIR 3/4 YES SGTS N/A 1CMS*SOV34A X GLOBE SOV ELECT N/A CLOSED CLOSED OPEN FAI RM N/A A 12 12 61DRB *Z499, 500, 503, 505 THROUGH 1DRB*Z534 6INSTRUMENTATION PENETRATIONS THROUGH DRYWELL WALL (6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Revision81of4August1996TABLE6.2-52

SUMMARY

OFCONTAINMENTPURGEVALVEOPERABILITYDEMONSTRATION ConsiderationRBSAnalysis1.ValveclosurerateValveclosureiswithin3sec.ThisisensuredinReference27.The 3-secclosureensuresworst-case differentialpressureof3psior less(seeItem2).2.FlowdirectionFlowdirectionevaluationReferencethroughvalveand27.1HVR*AOV165and166areinpre-Pacrossthevalveferreddirectionforclosure,and1HVR*AOV123and128areinnonpreferreddirection.Themaximum differentialpressureislessthan3 psibasedonvariousaccidents outlinedonFig.6.2-4through 6.2-7.Isolationoccursbasedon drywellpressure.Seelogic description,Fig.7.3-9,sheet14.3.SinglevalveclosureInperformingtheLOCAanalysis,itvssimultaneouswasassumedthatthevalvesclosevalveclosureindividually.Thisassumptionis consideredmoreconservativebecause ifbothvalvesclosed simultaneously,theresistancein thesystemwouldbegreater,and consequently,theflowandthe aerodynamictorquewouldbeless.4.Containmentback-ThebackpressureeffectonventingpressureeffectonpilotairtothecontainmentisclosingtorquemarginsconservativelyaddressedinRefer-oftheair-operatedence27(i.e.,assumedpsicontain-valveswhichventpilotmentbackpressure).

airinsidecontainment5.AdequacyofaccumulatorAccumulatornotrequired.Valvesclosebyspringforceonreleaseof airfromoperator.6.Adequacyoftorque-Notorque-limitingdevices a relimitingdevices requiredbecauseofthevalves design.

RBSUSARTABLE6.2-52(Cont)

ConsiderationRBSAnalysisRevision82of4August19967.EffectofupstreamandTheeffectofthepipingsystemdown-streampipingsystemwasaddressedinReference27.Onlyonevalve,1HVR*AOV123,requiredthattheeffectsofanelbowbe addressed.Aninvestiga tionby Posi-Sealcouldnotdevelop conclusiveresultsabouttheeffects ofelbowsontheflowstream.For thisreasonPosi-Sealmadeestimates abouteffectsontheflowstream throughthebendandaddedthisto theLOCA-developedtorquesthrougha straightrunofpipe.Posi-Seal's analysis,outlinedinReference27, indicatedthatthevalveactuator woulddevelopenoughtorquetoclose thevalve.Afterreviewingthe effectsofa3psipressure differentialacrossthevalve,the LOCA-developedtorquewasdoubled throughastraightrunofpipein accordancewiththeNRCconcern outlinedinAttachment4tothe letterfromA.Schwencer(NRC)to W.J.Cahill(GSU)datedDecember21, 1982.Doublingofthistorquedid notexceedtheavailableactuator closingtorquethusindicatingthat thevalveswouldclose.8.EffectsofbutterflyvalveTheeffectofthevalves'discanddiscandshaftorientationshaftorientationwasaddressedin onvalveoperationReference27.Theanalysis, assuminga9psipressuredrop acrossthevalves,indicatedthat valve1HVR*AOV123berestrictedat 65degopen.Tobeconservative, allfourvalveswillberestricted to65degopen.Whenrestrictedto thissizeopening,andconsidering thevalvedesign,flowwilltendto closethevalve.

RBSUSARTABLE6.2-52(Cont)

ConsiderationRBSAnalysisRevision123of4December19999.SeismicandstressloadingValves,solenoids,andlimitswitcheswereseismicallyanalyzedandqualifiedforstress

conditions developedbyaLOCA.8610.EffectsofenvironmentalTheRBSenvironmentalqualificationconditionsonvalves(i.e.,programdemonstratesqualification radiationtemperatures,ofvalveappurtenancessuchas containmentsprays,etc)actuators,limitswitches,andsolenoidvalves.Asapplicable,a qualifiedlifebasedonenviron-mentalconditionsisspecifiedfor eachcomponent.1211.SealintegrityafterValveswerepressureleaktestedclosureofvalvesbythevendortoaminimumof75 psigusingthehalogendiode detectoreffectsmethodoutlinedin accordancewithASMESectionV, Article10,ParagraphT-1040.During plantoperation,thevalveswillbe subjecttotheintegratedleakrate testinaccordancewith10CFR50, AppendixJ.Thevalvessealswill betestedtodemonstratetheir integrityinaccordancewithPlant TechnicalSpecifications.

6*81212.DebrisscreensDebrisscreenshavebeeninstalled inaccordancewithNRCrequestsin BranchTechnicalPositionCSB6-4 (seeSection9.4.6.2.5).

RBSUSARTABLE6.2-52(Cont)

ConsiderationRBSAnalysisRevision124of4December199913.ScopeofoperationalandValveshavebeenhydrostaticallyleaktestsperformedontestedbythethesellerforadher-valvesencetorequirementsofParagraph NC-6000,CodeClass2,ASMEIII.The valveshavebeenleaktestedto requirementsoutlinedinItem11of thistable.Thevalveshavebeen cycledbythesellertoindicate thattheyopenagainstamaximum differentialpressureof15psi.Valve1HVR*AOV128hasbeentestedforoperabilitywithasimulated staticloadof3.0gplacedonthe

valve.12Duringplantoperation,thevalves'sealswillbedemonstratedoperable inaccordancewithPlantTechnical

Specifications.12HydrodynamictestingwasperformedbyPosi-Sealonvalvesupto14in.

indiameter.Ananalysiswasalso performedtodemonstratethatthe hydrodynamictestdatacanbe appliedtodevelopaerodynamic torquecoefficientsforthesubject valves.Theapplicabilityis attributedtothelowflowmach numberandaflowcompressibility factorapproachingunity.The resultsofthiscombinationof testingandanalysiswereappliedto RBS'sdesignconditionstoverify thatvalves1HVR*AOV123,128,165, and166willisolatethecontainment duringthepostulatedLOCA.

RBS USAR TABLE 6.2-53 HYDROGEN IGNITERS AND LOCATIONS

(1)All igniter numbers are prefixed with 1HCS*IGN.

(2)Radius in feet from reactor centerline.

(3)Inaccessible areas are defined as areas that have high radiation levels during the entire refueling outage period.

These areas are the heat exchanger, filter demineralizer, backwash, and holding pump rooms of the RWCU system.

5 Revision 5 1 of 4 August 1992 Igniter (1) Division Elevation (ft-in) Radius (2) Azimuth (deg) Area (3) 1A I 255-0 20.0 0.0 Containment 1B II 255-0 20.0 90.0 Containment 2A I 255-0 20.0 180.0 Containment 2B II 255-0 20.0 270.0 Containment 3A I 250-0 38.0 337.5 Containment 3B II 250-0 38.0 22.5 Containment 4A I 250-0 38.0 67.5 Containment 4B II 250-0 38.0 112.5 Containment 5A I 250-0 38.0 157.5 Containment 5B II 250-0 38.0 202.5 Containment 6A I 250-0 38.0 247.5 Containment 6B II 250-0 38.0 292.5 Containment 7A I 239-0 56.0 315.0 Containment 7B II 239-0 56.0 0.0 Containment 8A I 239-0 56.0 45.0 Containment 8B II 239-0 56.0 90.0 Containment 9A I 239-0 56.0 135.0 Containment 9B II 239-0 56.0 180.0 Containment 10A I 239-0 56.0 225.0 Containment 10B II 239-0 56.0 270.0 Containment 11A I 166-6 50.5 20.8 RWCU Heat Exchanger Room 11B II 173-0 48.3 27.0 Containment 12A I 173-6 57.0 64.0 Containment 12B II 176-6 53.0 88.9 Containment 13A I 167-3 29.2 52.1 Contaminated Equipment Store Room 13B II 167-3 32.4 123.6 Contaminated Equipment Store Room 14A I 173-0 60.0 115.0 Containment 14B II 169-9 52.3 153.9 Containment 15A I 183-6 56.6 238.0 Containment 15B II 183-6 56.6 212.0 Containment 16A I 173-0 53.5 249.3 Containment 16B II 172-0 53.0 290.9 Containment RBS USAR TABLE 6.2-53 (Cont)

(1)All igniter numbers are prefixed with 1HCS*IGN.

(2)Radius in feet from reactor centerline.

(3)Inaccessible areas are defined as areas that have high radiation levels during the entire refueling outage period. These areas are the heat exchanger, filter demineralizer, backwash, and holding pump

rooms of the RWCU system.

5 Revision 5 2 of 4 August 1992 Igniter (1) Division Elevation (ft-in) Radius (2) Azimuth (deg) Area (3) 17A I 170-6 40.0 298.4 RWCU Valve Nest and Pump Room 17B II 172-0 38.5 240.5 RWCU Valve Nest and Pump Room 18A I 173-0 31.6 235.3 RWCU Filter Demin "A" Room 18B II 173-0 23.3 260.1 RWCU Filter Demin "A" Room 19A I 175-6 31.3 303.9 RWCU Filter Demin "B" Room 19B II 174-6 23.5 282.3 RWCU Filter Demin "B" Room 20A I 168-0 54.1 293.9 Containment 20B II 170-0 50.8 319.0 Containment 21A I 167-4 48.0 338.1 RWCU Heat Exchanger Room 21B II 167-6 43.4 4.0 RWCU Heat Exchanger Room 22A I 150-0 51.4 21.7 Containment 22B II 154-0 60.0 63.0 Containment 23A I 159-6 60.0 84.0 Containment 23B II 152-0 60.0 115.0 Containment 24A I 154-0 60.0 153.0 Containment 24B II 128-0 51.1 145.0 Containment 25A I 159-6 50.0 210.0 Containment 25B II 151-0 60.0 238.0 Containment

RBS USAR 5 TABLE 6.2-53 (Cont)

(1)All igniter numbers are prefixed with 1HCS*IGN.

(2)Radius in feet from reactor centerline.

(3)Inaccessible areas are defined as areas that have high radiation levels during the entire refueling outage period. These areas are the heat exchanger, filter demineralizer, backwash, and holding pump rooms of the RWCU system.

5 Revision 5 3 of 4 August 1992 Igniter (1) Division Elevation (ft-in) Radius (2) Azimuth (deg) Area (3) 26A I 157-6 49.6 247.5 RWCU Backwash Room 26B II 149-0 48.8 275.9 RWCU Backwash Room 27A I 153-4 46.2 321.1 Containment 27B II 152-7 52.3 294.8 Containment 28A I 156-0 24.8 0.0 Drywell 28B II 156-0 23.0 58.5 Drywell 29A I 156-0 21.5 125.0 Drywell 29B II 156-0 25.0 180.0 Drywell 30A I 156-0 22.0 233.0 Drywell 30B II 156-0 21.0 306.0 Drywell 31A I 126-0 51.5 341.9 Main Steam Tunnel 31B II 126-0 53.5 17.4 Main Steam Tunnel 32A I 130-0 60.0 69.0 Containment 32B II 126-0 60.0 30.0 Containment 33A I 124-0 60.0 115.0 Containment 33B II 126-0 60.0 90.0 Containment 34A I 126-0 47.0 180.0 Containment 34B II 139-4 54.2 209.9 Containment 35A I 136-0 46.6 155.1 Drywell Hatch Area 35B II 136-0 45.0 178.7 Drywell Hatch Area 36A I 136-0 56.4 166.3 SFC Piping and Valve Area 36B II 136-0 57.3 185.6 SFC Piping and Valve Area 37A I 135-0 39.9 202.1 Fuel Transfer Tube Area

RBS USAR 5 TABLE 6.2-53 (Cont)

(1)All igniter numbers are prefixed with 1HCS*IGN.

(2)Radius in feet from reactor centerline.

(3)Inaccessible areas are defined as areas that have high radiation levels during the entire refueling outage period. These areas are the heat exchanger, filter demineralizer, backwash, and holding pump rooms of the RWCU system.

5 Revision 5 4 of 4 August 1992 Igniter (1) Division Elevation (ft-in) Radius (2) Azimuth (deg) Area (3) 37B II 134-0 49.4 201.3 Fuel Transfer Tube Area 38A I 139-4 54.0 240.5 Containment 38B II 126-0 60.0 270.0 Containment 39A I 126-6 60.0 298.5 Containment 39B II 130-0 55.4 328.0 Containment 40A I 138-8 25.0 293.3 Drywell 40B II 133-1 18.8 359.2 Drywell 41A I 139-10 21.6 60.4 Drywell 41B II 133-5 21.8 129.9 Drywell 42A I 138-11 23.0 179.0 Drywell 42B II 135-10 22.0 240.0 Drywell 43A I 108-9 39.5 330.0 Containment 43B II 108-0 39.5 5.0 Containment 44A I 112-5 44.5 39.0 Containment 44B II 109-0 39.5 65.0 Containment 45A I 110-0 39.5 95.0 Containment 45B II 112-5 42.2 117.0 Containment 46A I 112-5 44.5 155.0 Containment 46B II 112-5 41.5 176.0 Containment 47A I 112-5 41.5 204.0 Containment 47B II 112-5 43.0 244.0 Containment 48A I 109-6 39.5 268.0 Containment 48B II 108-6 39.5 297.0 Containment 49A I 116-8 26.0 354.5 Drywell 49B II 116-6 20.9 66.8 Drywell 50A I 116-7 21.2 113.4 Drywell 50B II 116-7 21.0 180.0 Drywell 51A I 115-2 20.8 247.3 Drywell 51B II 116-6 21.2 292.9 Drywell 52A I 179-3 30.3 80.5 Upper Fuel Pool Valve Room 52B II 179-3 33.2 138.8 Upper Fuel Pool Valve Room

RBS USAR TABLE 6.3-1 OPERATIONAL SEQUENCE OF EMERGENCY CORE COOLING SYSTEMS FOR DESIGN BASIS ACCIDENT (1) GNF2 Analyses for Two Loop Operation (2) Revision 24 1 of 1 Event Occurrences GNF2 Time (sec)

(1) LOCA Occurs 0.00 Initiate Scram (on Level 3)

(3) 0.01 Low-Low (Level 2 level) 2.62 Low-Low-Low (Level 1 level) 4.15 Jet Pump Uncovers 4.84 Feedwater Flow Reaches Zero 5.00 TCVs Fully Closed 5.92 Lower Plenum Flashes 8.17 LPCS Valve Pressure Permissive - LPCI Valve Pressure Permissive 30.87 LPCS Injection Occurs - LPCI Injection Occurs 85.91 ADS Valves Open 125.91 PCT Occurs 178.30 (1) DBA is a LPCS-DG failure for GNF2 fuel; therefore, no LPCS injection.

(2) Peak cladding temperature (PCT) for single loop operation (SLO) is bounded by PCT for two loop operation.

(3) The initial water level is conservatively assumed to be at L3.

RBS USAR TABLE 6.3-2 Revision 24 1 of 5 PLANT PARAMETERS USED IN RBS GNF2 LOCA ANALYSES

Plant Parameters Value Core Thermal Power (MWt)

(1) 3100.0 Vessel Steam Output (Mlbm/hr) 13.489 Core Flow (Mlbm/hr)

(2) 84.5 Vessel Steam Dome pressure (psia)

(3) 1093 Maximum Recirculation Line Break Area (ft 2)(4) 2.2241 RBS USAR TABLE 6.3-2 (Cont)

Revision 21 2 of 5 1. Low Pressure Coolant Injection (LPCI) System Variable Units Value a. Maximum vessel pressure at which pumps can inject psid (vessel to drywell) 222.0b. Minimum rated flow from three pumps at vessel pressure gpm 13410 psid (vessel to drywell) 20c. Initiating signals Low water level (L1) or in. above vessel zero (AVZ) 354.98 High drywell pressure psid n/a (6)d. Maximum allowable time delay from initiating signal to pumps at rated speed (including DG start time).

sec 68.75e. Pressure at which LPCI injection valve may open psia 350f. LPCI injection valve (IV) stroke time sec 47g. Maximum allowed runout flow from three pumps gpm 13410 RBS USAR TABLE 6.3-2 (Cont)

Revision 21 3 of 5 2. Low Pressure Core Spray (LPCS) System Variable Units Value a. Maximum vessel pressure at which pump can inject psid (vessel to drywell) 263.0b. Minimum rated flow at vessel pressure gpm psid (vessel to drywell) 4410 113c. Initiating signals Low water level (L1) or in. above vessel zero (AVZ) 354.98 High drywell pressure psid n/a (6)d. Maximum allowable time delay from initiating signal to pumps at rated speed (including DG start time.)

sec 58.75e. Pressure at which LPCS injection valve may open psia 350 f. L PCS injection valve (IV) stroke time sec 37g. Maximum allowed runout flow gpm 4950 RBS USAR TABLE 6.3-2 (Cont)

Revision 21 4 of 5 3. High Pressure Core Spray (HPCS) System Variable Units Value a. Maximum vessel pressure at which pump can inject psid (vessel to drywell) 1177.0b. Minimum rated flow at vessel pressure gpm / psid (vessel to source of suction) 0/1177 1260/1147 4410/ 200c. Initiating signals Low water level (L2) or in. above vessel zero (AVZ) 454.82 High drywell pressure psid n/a (6)d. Maximum allowable time delay from initiating signal to pumps at rated speed (including DG start time.)

sec 57 e. H PCS injection valve (IV) stroke time sec 37f. Maximum allowed runout flow gpm 4900 RBS USAR TABLE 6.3-2 (Cont)

Revision 21 5 of 5 4. Automatic Depressurization System (ADS) System Variable Units Value a. Total number of valves installed

-- 7b. Number of valves used in analysis -- 4 (5) c. Minimum flow capacity of 4 valves at vessel pressure Mlbm/hr psig 3.700 1241d. Initiating signals Low water level (L2) or in. above vessel zero (AVZ) 354.95 High drywell pressure and psid 2.0 High drywell pressure bypass timer timed out in. above vessel zero (AVZ) 354.98e. High drywell pressure bypass timer sec 360 Initiating signal: Low water level (L1) in. above vessel zero (AVZ) 354.48f. Delay time from all initiating signals complete to the time valves are open with confirmation that LPCI or LPCS is running.

sec 120 (1) This value is 0.3% greater than the licensed power level of 3091 MWt as permitted by the Appendix K Uprate as described in Section 1.1. (2) Results bound increased core flow operation at 90.415 Mlbm/hr.

(3) Same for two and single loop operation.

(4) The recirculation line break area includes the vessel nozzle on the suction side of the recirculation pump and the recirculation piping which feeds the jet pump drive lines.

(5) The ECCS-LOCA evaluation justifies the use of four operable valves eliminating the need to evaluate the single failure of an ADS valve (SF-ADS) as a separate failure.

(6) No credit is taken for the initiation signal on high drywell pressure.

RBS USAR TABLE 6.3-3

SUMMARY

OF RESULTS OF LOCA ANALYSIS Revision 24 1 of 1 PCT (o F) Break Size (Appendix K)

(1) Single Failure GNF2 DBA LPCS-DG 1775 0.05 ft 2 HPCS-DG 1764

(1)DBA is defined as the break size type that produces the highest PCT for a given single failure. A detailed listing of the PCT for various

break sizes and types is given in Reference 9 for GNF2, respectively.

The figures for Appendix K conditions from Reference 9 are provided in Figures 6.3-11c to 6.3-18c.

RBSUSARTABLE6.3-4KEYTOFIGURESRevision101of1April1998THISTABLEHASBEENDELETED Revision101of1April1998RBSUSARTABLE6.3-5THISTABLEHASBEENDELETED RBSUSARTABLE6.3-6SINGLEFAILUREEVALUATIONNOTES:OtherpostulatedfailuresarenotspeciallyconsideredbecausetheyallresultinatleastasmuchECCS capacityasoneoftheabovedesignedfailures.

(1)Systemsremaining,asidentifiedinthetable,areapplicable toallnon-ECCSlinebreaks.ForaLOCAfromanECCSline break,thesystemsremainingarethoselisted,lesstheECCS inwhichthebreakisassumed.14 (2)AnalysisperformedwithtwononfunctioningADSvalveinadditiontothesinglefailure.SeeSection6.3.3.3.

14Revision141of1September2001Thefollowingtableshowsthesingle,activefailuresconsideredintheECCSperformanceevaluation.SuctionBreakAssumedFailureSystemsRemaining (1)LPCIEmergencyDieselADS (2),HPCS,LPCS,1LPCIGenerator(D/G)LPCSEmergencyD/GADS (2),HPCS,2LPCIHPCSEmergencyD/GADS (2),LPCS,3LPCI RBSUSAR1of6August1987TABLE6.5-1COMPARISONOFENGINEEREDSAFETYFEATUREFILTERSYSTEMSWITHREGULATORYGUIDE1.52REQUIREMENTSFuelBuildingMainControlRoomReg.GuideCharcoalFil-Air-ConditioningParagraphNo.SGTStrationSystem SubsystemC-1-EnvironmentalDesignCriteria 1.aIncomplianceIncomplianceIncompliance 1.bIncomplianceIncomplianceIncompliance 1.cIncomplianceIncomplianceIncompliance 1.dIncomplianceIncomplianceNotapplicable 1.eIncomplianceIncomplianceNotapplicableC-2-SystemDesignCriteria 2.aIncomplianceIncomplianceIncompliance 2.bIncomplianceIncomplianceIncompliance 2.cIncomplianceIncomplianceIncompliance 2.dIncomplianceIncomplianceIncompliance 2.eIncomplianceIncomplianceIncompliance 2.fIncomplianceIncomplianceIncompliance 2.gSeeNote1SeeNote1SeeNote1 2.hSeeNote2SeeNote2SeeNote2 2.iIncomplianceIncomplianceIncompliance 2.jSeeNote3SeeNote3SeeNote3 2.kIncomplianceIncomplianceIncompliance 2.lSeeNote13SeeNote13SeeNote13C-3-ComponentDesignCriteriaandQualificationTesting 3.aIncomplianceIncomplianceIncompliance 3.bIncomplianceIncomplianceIncompliance 3.cIncomplianceIncomplianceIncompliance 3.dIncomplianceIncomplianceIncompliance 3.eSeeNote5SeeNote5SeeNote5 3.fIncomplianceIncomplianceIncompliance 3.gIncomplianceIncomplianceIncompliance 3.hIncomplianceIncomplianceIncompliance 3.iIncomplianceIncomplianceIncompliance 3.jIncomplianceIncomplianceIncompliance 3.kSeeNote6SeeNote6SeeNote6 3.lSeeNote7SeeNote7SeeNote7 3.mIncomplianceIncomplianceIncompliance 3.nSeeNote8SeeNote8SeeNote8 3.oIncomplianceIncomplianceIncompliance RBSUSARTABLE6.5-1(Cont)2of6August1987FuelBuildingMainControlRoomReg.GuideCharcoalFil-Air-ConditioningParagraphNo.SGTStrationSystem Subsystem 3.pSeeNote9SeeNote9SeeNote9C-4-Maintenance 4.aSeeNote10SeeNote10SeeNote10 4.bIncomplianceIncomplianceIncompliance 4.cIncomplianceIncomplianceIncompliance 4.dSeeNote11SeeNote11SeeNote11 4.eIncomplianceIncomplianceIncomplianceC-5-In-PlaceTestingCriteria 5.aIncomplianceIncomplianceIncompliance 5.bIncomplianceIncomplianceIncompliance 5.cIncomplianceIncomplianceIncompliance 5.dIncomplianceIncomplianceIncomplianceC-6-LaboratoryTestingCriteriaforActivatedCarbon 6.aSeeNote12SeeNote12SeeNote12 6.bSeeNote12SeeNote12SeeNote12

______________________________Note1:Abnormalpressuredropacrossallcriticalcomponents(C-2.g)ofSGTS,fuelbuildingcharcoalfiltrationsystem,andthemaincontrolroomair-conditioningsubsystemtrains activatesanalarminthemaincontrolroom,and flow-throughunitsareindicatedinthemaincontrolroom; however,nofacilitiestorecordthesereadingsare provided.Computerinputisprovidedtorecord high-pressurealarmsacrosscriticalcomponents.Themaincontrolroomairintakewhichisupstreamofthecontrolroom(ESF)filter,theplantexhaustductwhichis downstreamofthestandbygastreatment(ESF)filter,and thefuelbuildingexhaustplenumwhichisdownstreamoffuel building(ESF)filter,areeachprovidedwithsafetygrade radiationmonitorsfortheirrespectiveflowpaths.Except forthemonitorsinthemaincontrolroomintakes,these monitorshavethecapabilitytoindicateflowrate.Ifa low-flowconditionisdetected,theaffectedESFfiltercan beisolatedandtherespectiveredundantfilterplacedin RBSUSARTABLE6.5-1(Cont)3of6August1987servicefromthemaincontrolroom.Inaddition,asafetygradeflowswitchisprovidedonthedischargesideofeach oftheabovefilterfanstoautomaticallystartupthe respectiveredundantESFfiltershouldalow-flowcondition atfilterfandischargeoccur.Note2:Thefollowingexceptionsaremadetotherequirementsthat (C-2.h)allinstrumentationandequipmentcontrolsshouldbedesignedtoIEEE279.1.Allinstrumentsandequipmentcontrolsthatsenseorprocessoneormorevariablesandacttoaccomplishtheprotectivefunctionaredesignedinaccordance withIEEE279.Theseincludesensors,signal conditioners,logic,andactuationdevicecontrol circuitry.(Theprotectivefunctionwithwhichthe subjectguideisconcernedissecondarycontainment atmosphericcleanuptomitigateaccidentdoses.)2.Inaddition,averylimitedclassofanalogindicatorsmaybedesignedinaccordancewithselectedapplicable paragraphsofIEEE279.Thebasisforselectingspecificindicatorstobedesignedistheirsignificancetosafety.AllparagraphsofIEEE279areapplicableexcept4.12,4.13,4.15,4.16,and4.17.Forthislimitedclassofindicators,redundantanalogchannelsareprovided.Onechannelisrecorded.The systemsaredesignedtooperatebeforeandafter,but notnecessarilyduring,anSSE.3.Annunciatorfunctionsareincorporatedintheoverallsystemdesign.Annunciatorsarenotsafetyrelated;therefore,theyarenotdesignedinaccordancewith IEEE279.Note3:Thecharcoalfilterbanksarenotdesignedtoberemovable (C-2.j)fromthebuildingasintactunits.Thesizeofthebanksprecludesremovalinonesection.TheESFfiltersystems aredesignedtoberemovedasaminimumnumberofsegmented sections.Individualfiltercomponentsareremovedpriorto cuttingthehousingintosegmentedsections.Theguidelines

of Regulatory RBSUSARTABLE6.5-1(Cont)4of6August1987Guide8.8havebeenconsideredinthephysicaldesignoftheESFfilters.Thetworedundantfiltertrainsare physicallyseparatedintoshieldedcubiclessothat maintenanceononefiltertrainwillnotinvolve radiationexposurefromtheothertrain.Removable concreteplugsareprovidedtoremovefiltercomponents orhousingsegments.Adequatemaintenancespaceis providedwithinthefiltercubiclesforcomponent changeoutanduseofauxiliaryventilationequipmentto controlairborneradioactivityduringfiltermaintenance.

Adecontaminationsprayisbuiltintothefilterhousing withadequatehousingfloordrainsforwaterand condensationremoval.Airtightaccessdoorsareprovided onthehousingforfiltercomponents.Escapeofairborne contaminationfromthesystemispreventedbyuseofa totallyenclosedfiltertrainallweldedsteelhousing, andverifiedbysurveillancerequirementsforleakage tests.Allcontrolsandinstrumentationnecessaryto operatetheESFfiltersarelocatedoutsidethefilter cubiclesinlowradiationareas.Note5:Filterandadsorbermountingframesareconstructedand (C-3.e)designedinaccordancewiththerecommendationsofSection4.3ofERDA76-21 (2)exceptfortheframetoleranceguidelinesinTable4.2.Thetolerances selectedforHEPAandadsorbermountingsaresufficient tosatisfythebankleaktestcriteriaof ParagraphsC.5.candC.5.dofRegulatoryGuide1.52.Note6:Whenconservativecalculationsshowthatthemaximum (C-3.k)decayheatgenerationfromcollectedradioiodinesisinsufficienttoraisethecarbonbedtemperatureabove 250°Fwithnosystemairflow,smallcapacityESFfilter systemsmaybedesignedwithoutanairbleedcooling

mechanism.Exceptionistakentotherequirementsofanycoolingmechanismsatisfyingsingle-failurecriteriabecausea backupmechanismisprovided.ThedecayheatproducedbytheradioactivematerialintheinactivecharcoaladsorbersoftheESFfilterunits isremovedbya100-cfmcapacitycentrifugalfan(for maincontrolroomfilterdecayfans,seeFig.9.4-1;for fuelbuildingfilterdecayfans,seeFig.9.4-2;andfor SGTSfilterdecayfans,seeFig.6.2-58)which automaticallystartswhenthemainfilterexhaustfan RBSUSARTABLE6.5-1(Cont)5of6August1987stops.Thedecayfantakesairfromtherespectivefilterroomandexhauststotherespectiveexhaustduct.Inthe eventthatthe100-cfmdecayfanfails,therespective mainfilterexhaustfancanbestartedmanuallytoremove decayheat,sinceahightemperatureinthecharcoal adsorberswillbealarmedinthemaincontrolroom.The temperaturewillnotrisetothelevelwherethe adsorptioncapabilityofcharcoalfilterisreduced.Inaddition,awaterspraysystemisprovidedforthecharcoaladsorbersectionofthefilterswhichcanbe manuallyactuatedintheeventoffailureofthedecayand mainfilterexhaustfanstopreventself-ignitionofthe

charcoal.Inaddition,exceptionistakentoprovidinghumiditycontrolforthedecayheatremovalsystemcooling air-flow,whichusesroomairoflessthan70percent relativehumidity.Note7:Systemresistancesaredeterminedinaccordancewith (C-3.l)Section5.7.1ofANSIN509 (5)exceptthatfaninletandoutletlossesarenotcalculatedinaccordancewithAMCA

201 (8).ExceptionistakentoSection5.7.2ofANSIN509.Copies offanratingsortestreportsarenotnecessarywhen certifiedfanperformancecurvesarefurnished.ExceptionistakentothebalancingtechniquedefinedinSection5.7.3ofANSIN509.Displacementcriteria followingnormalindustrypracticeareusedwhenthe maximumvibrationvelocitymethodimposesunrealistic requirementsatcertainoperatingspeeds.DocumentationisnotfurnishedinaccordancewithSection5.7.5whereAMCAcertificationratingsaresubmitted.Note8:ExceptionistakentoSection5.10.3.5ofANSI (C-3.n)N509.Ductworkasastructurehasaresonantfrequencyabove25Hz,butthismaynotbetruefortheunsupported plateorsheetsections.Note9:ExceptionistakentotheprovisionsinSection5.9of (C-3.p)ANSIN509fordesigningdamperstoANSIB31.1andtousingbutterflyvalves.ClassBdampersmaybedesigned RBS USAR TABLE 6.5-1 (Cont) Revision 17 6 of 6 and tested to meet the verification of strength and leaktightness necessary for use in a contaminated air stream. This exception does not pertain to containment

penetrations. In addition, exceptions are taken to the following: 1. Class B leakage rates are determined for one damper of each type instead of every damper. 2. Minimum diameter of the damper shaft length 24 in and under is 1/2 in, and 3/4 in for shafts between

25 and 48 inches in length. Note 10: Exception is taken to full compliance with Section 2.3.8 (C-4.a) of ERDA 76-21 (2). RBS does not use any communication system, decontaminated areas and showers are not nearby, filters are not used at duct inlets, and duct inspection

hatches are not provided. Note 11: ESF filter systems are run a minimum of 10 hr per month.

(C-4.d) However, if field data confirm that it is unnecessary to run the trains 10 hr per month to reduce the amount of moisture present on the filters, this decision will be

reconsidered.Note 12: Exception is taken to the requirement that new activated (C-6.a) carbon meets the physical property specifications given (C-6.b) in Table 5.1 of ANSI N509-1976. The charcoal adsorbent now commercially available does not meet the requirements of ANSI N509-1976, but does meet those requirements of

ANSI N509-1980. 14 Exception is taken to the requirement of conducting laboratory tests of representative samples as indicated

in Table 2 of Regulatory Guide 1.52. Representative samples will be tested in accordance with ASTM D3803-1989 (9).14Note 13: Exception is taken to the amount of allowable air leakage (C-2.l) in HVAC ESF charcoal filtration systems set by ANSI N509-1980 (8). See Table 1.8-1, Regulatory Guide 1.52 position.

RBS USAR Revision 17 1 of 2 TABLE 6.5-2 DESIGN DATA FOR STANDBY GAS TREATMENT SYSTEM Filtration Assembly Mark No. 1GTS*FLT1A&1B Moisture Separator Type Multiple bed Capacity 12,500 cfm Media SS louvers and stainless steel pads Pressure drop, clean 1.0 in W.G. Face velocity 415 fpm Prefilter Type Medium efficiency, dry Quantity 15 Capacity, ea (max.) 2,000 cfm Filter media Fiberglass Efficiency 80% NBS dust spot Pressure drop, clean 0.45 in W.G.

Dust holding capacity 300 g Heater 13 Type Electric, on-off Quantity 1 Capacity 85 kW Stages 3 Power supply 460 V, 3 phase, 60 Hz 13 HEPA Filters Type High efficiency, dry Quantity 15 Capacity, ea (max.) 1,000 cfm Media Fiberglass UL Class I Efficiency, based on 99.97 with 0.3 micron DOP DOP test (MIL-STD-282) aerosol Pressure drop, clean 1 in W.G.

RBS USAR TABLE 6.5-2 (Cont) Revision 17 2 of 2 Charcoal filters Type Deep Bed, rechargeable Quantity 1 Capacity 12,500 cfm Media Impregnated coconut shell charcoal Radioiodine removal 9 0% elemental iodine and 9 0% methyl iodide, test at 70% relative humidity Depth of each bed 4 in Face velocity 40 fpm Pressure drop, clean 1.0 in W.G. Ignition temperature range 340°C Density 30 pcf (average packed)

Exhaust Fans Mark No.

1GTS*FN1A&1B Type Centrifugal Capacity 12,500 cfm Static pressure 21.5 in W.G.

Drive Direct Decay Heat Removal Exhaust Fan Mark No.

1GTS*FN2A&2B Type Centrifugal Capacity 100 cfm Drive Direct Static pressure 2.5 in W.G.

RBS USAR TABLE 6.5-3 PRIMARY CONTAINMENT OPERATION FOLLOWING A DESIGN BASIS ACCIDENT Revision 20 1 of 1 Type of structure Cylindrical steel vessel with torispherical dome Internal fission product None removal system Free volume of primary 1,191,590 cu ft containment Hydrogen purge system

See S ection 6.2.5 operation Containment design leakage rate (L ), volume %/day 0.

325Initiation of hydrogen purge See Section 6.2.5 Hydrogen purge rate See Section 6.2.5 RBS USAR TABLE 6.7-1 1 of 3 August 1987 SINGLE-FAILURE ANALYSIS OF MAIN STEAM POSITIVE LEAKAGE CONTROL SYSTEM

Inasmuch as the MS-PLCS is constructed to withstand seismic

Category I and LOCA accident loadings, no passive (i.e., structural)

failures are considered. Consequences of single active component or

system failures are as follows:

Components Malfunction Consequences 1. Main steam isolation valves, inboard Any one valve fails to close The inboard system is

initiated, the system

will isolate at timer

set point due to

excessive flow or low

differential pressure.

Outboard system

functions to prevent

leakage. 2. Main steam isolation valves, outboard Any one valve fails to close Inboard and outboard

systems remain

functional. One of the

two systems is adequate

to prevent leakage. 3. Main steam-line shutoff valves Any one valve fails to close The outboard system is

initiated, the system

will isolate at timer

set point due to

excessive flow or low

differential pressure.

Inboard system functions

to prevent leakage. 4. Injection valve or check valve a. Fails to open upon system initiation (stuck closed)

Drain valve will close.

Isolation valves open

when the interlocks are

cleared but the valves

will reclose at timer

set point due to low

differential pressure.

The redundant system

functions to prevent

leakage.

RBS USAR TABLE 6.7-1 (Cont) 2 of 3 August 1987 Components Malfunction Consequences b. Fails to close when

tripped Air flow is cut off with the isolation valves

reclosure coincident

with the injection valve

trip signal. 5. Drain valve Fails to close Isolation valves and injection valve remain

closed. The redundant

system functions to

prevent leakage. 6. Bypass valve a. Fails to open upon system initiation.

Failure at or within timer set point:

Same consequences as in

item 4(a). b. Local power loss to the valve (motor control center

trouble)

Solenoid de-energized, valve fails closed by

means of a return

spring. Redundant

system functions to

prevent leakage. c. Valve spring stuck Valve position indication is available for the operator to

initiate system

shutdown. Redundant

system functions to

prevent leakage. 7. PCV Fails to regulate pressure System isolates due to low differential pressure. The redundant

system functions to

prevent leakage.

RBS USAR TABLE 6.7-1 (Cont) 3 of 3 August 1987 Components Malfunction Consequences

8. MS-PLCS isolation

valves a. Fails to open upon system initiation.

System will isolate at timer set point due to

low differential

pressure. The redundant

system functions to

prevent leakage.

b. Fails to close when

tripped One out of two valves satisfies isolation by

virtue of single active

failure criteria. Air

flow is cut off with the

injection valve

reclosure, coinciding

with the isolation

valve's trip signal.

9. Instrumentation Failure to any one component With the imposition of one active failure, the

system is categorized as

single-failure proof.

High flow and/or low

differential pressure

will bottle-up the

system as required. In

addition, surveillance

can be maintained using

system parameter

indicators. The

operator is relied upon

to initiate appropriate

action if necessary.

The redundant system

functions to prevent

leakage.