ML17214A321
ML17214A321 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 06/24/1983 |
From: | FLORIDA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML17214A320 | List: |
References | |
RTR-NUREG-0588, RTR-NUREG-588 NUDOCS 8307220514 | |
Download: ML17214A321 (18) | |
Text
Revj.sj.on 1-6/24/83pages1,4,5,14,'16)FLORIDAPOViR&LIGHTCOMPANYSTLUCIEUNITNO.1EQUIPMENT QUALIFICATION RADIATION DOSEMAPDEVELOPMENT SOURCETERMSSeveralsetsofsourcetermsweredeveloped foruseincalculations ofdoseratesanddosesfornormaloperating anddesignbasisaccident(DBA)conditions.
Sourcetermsusedincalculations ofthe40yearnormaloperations doseare,forthemostpart,thosepreviously developed forplantshielding andpersonnel protection
- purposes, andarebasedonthetypeofzadj.onuclide inventory infozmation represented bythecurrentrevisions ofSections11.1,11.2and12.2oftheSt.LucieUnitNo.1FSAR,aswellasplantprocessinformation (flowrates,volumes,etc.)presented elsewhere.
Althoughtheintroduction ofSection1.4ofNUREG&588 speaksof"thenormallyexpectedradiation environment",
thesourcetermsactuallyusedaremaximumvalues,ultimately predicated onreactorcoolantwatercontaining aradionuclide inventory corresponding toanassumption of1Xfailedfuel.DBAsourcetermsetsweredeveloped fromtheSt.LucieUnitNo.1coreinventory ofradionuclides, whichwasderivedfromTable4.3-1oftheCombustion Engineering System80"Radiation DesignGuide".*TheSt.LucieUnitNo.1coreinventory, separated forconvenience intonoblegases,halogensandothernuclidesisshowninTable1.Positions 1.4(l)-(5) ofNUREG-0588 provideguidanceforthepreparation ofsourcetermsusedinanequipment doseassessment.
TheSt.LucieUnitNo.1calculations followedtheserecommendations indeveloping mechanistically rationalmodelsforradionuclide transport asafunctionoftimethroughthecontainment andotherpartsoftheplant.Thema)ordivisionofDBAsourcetermsetsareforcontainment atmosphere,
- plateout, andcontainment sumpwater.Thesearediscussed inthe,following sections.
CONTAINlKNT ATMOSPHERE SOURCEXnaccordance withPosition1.4(1)ofNUREGW588 (also,forexample,SectionII.B.2ofNUREG-0737 (10/80),Section2.1.6.bofNUREGW578 (7/79),Table1ofRegulatory Guide1.7QR2,11/78),andPositionC.2ofRegulatory Guide1.89(RO,ll/74)),itwasassumedthatthefollowing percentages ofthecoreinventory ofradionuclides areinstantaneously releasedfromthefueltothecontainment atmosphere atthestartofaLOCA:100Xnoblegases50Xhalogens1XothernuclidesCombustion Engineering, "Radiation DesignGuide",Rev.4,SYS80-PE-PG (7/12/79).830?2205i4 830?15PDRADOCK05000335PPDR jfI'I Thisreleaseisassumedtobeuniformly distributed inthecontainment atmosphere, agoodassumption inaPWRcontainment trhichlacksthemanycompartments foundinaBWRcontainment.
Thisisalsoaconservative assumption forcalculation oftime-dependent doserates,asstatedinSection4ofAppendixDofNUREGW588, andisa"rational assumption",
inaccordance viththe'instructions ofPo'sition 1.4(3)oftheNUREG.TheSt.LucieUnitNo.1containment freevolumewastakenas2.60x10ft(7.3bxlOcm).Specificradionuclide activities corresponding tothismodelappearinTable2.Theabovestatedassumptions forStLucieUnitNo.1arethesameasforStLucieUnitNo.2.1.1.1Containment SrayWashoutModelTheactionofthecontainment spraysystemvillremovecertainradionuclides fromthecontainment atmosphere asafunctionoftime.TheSt.Luciecalculations modelthiseffect,assuggested inPosition1.4(4)ofNUREGW588.
Thenoblegasinventory isnotaffectedbythespray,andwouldonlyberemovedthroughradioactive decay.TheSt.LucieUnitNo.1modelassumesthat90X'oftheairbornehalogens(elemental) areremovedataratecharacterized byaremovalcoefficient of10.0hr,andthattheremaining 10Xarenotremovedatall.Thisisconservative comparedtotheNUREG&588 AppendixDmodelofremovalcoefficients of:27.2hr1appliedtd91Xclem'ental halogens(iodine);
and0hrappliedto4%organichalogens(iodine)(notethattheNUREGW588 apportionment oftheiodinesamongelemental, particulate andorganicformsfollowstheguidanceofRegulatory Guide1.4(R2,6/74)).ItvasfurtherassumedforSt.LucieUnitNo.1thatthesolidfissionproductsvouldberemovedvithacoefficient of0.43hr1.Theremovalcoefficients appliedtodifferent speciesofnuclidesaresummarized inTable3.TheremovalratesfortheStLucieUnitNo.1SprayWashoutModelarethesameasthoseforStLucieUnitNo.2.1.1.2PlateoutModelInadditiontocontainment sprayremoval,thecompeting processofplateoutofradionuclides ontheexposedsurfacesinsidethecontainment alsoremovesradionuclides fromthecontainment atmosphere.
Position1.4(5)ofNUREGW588 suggeststhatamechanistic modelbeusedforplateout, ratherthanthenonmechanistic assumption of50%instantaneous plateoutofthehalogensreleasedfromthecore.TheSt.Lucie'nit No.1modelassumesaplateoutremovalfactorfromthecontainment atmosphere of1.0day1forallradionuclides exceptnoblegases,distributed uniformly onasurfaceareaof2.5x105ft.ThiscomparestoaNUREGW588 AppendixDassumption ofacoefficient of1.23hrforelemental iodineonly,andasurfaceareaof5.0xl05ft2.1.2CONTAINMEHT PLATEOUTSOURCETheplateout'modelforremovalofradionuclides fromthecontainment atmosphere throughdeposition ontheexposedsurfacesinthecontainment isdiscussed inSubsection 1.1.2.Naturally, thedeposition rateonsurfaces, whichdetermines thetime-dependent plateoutsourcetermset,issimplyequaltotheremovalratefromtheatmosphere.
TheStLucieUnitNo.1plateoutremovalfactorof1.0day1incontrasttotheStLucieUnitNo.2plateoutremovalfactorof1.0hrtendstoenhancetheconservatism forsubmersion Yclouddosebyincreasing the'source terms.2 1.3CONTAINMENT SUMPSOURCEAmechanistic modelofthetime-dependence oftheradioactive sourceinthecontainment sumpwaterwouldbeginwithazerosourceatthestartoftheDBA,buildingupwithtimeashalogenswashoutofthecontainment atmosphere duetocontainment sprayremoval.However,asrecognized inAppendixD(Section6)ofNUREGW588, sincemostofthehalogenswouldbetransferred fromthecontainment atmosphere tothesumpinafewminutestime,therewouldbelittledifference incalculation ofdosewhetheramechanistic modelorthe-older(Regulatory Guide1.7,TID-14844) model,whichassumedinstantaneous releaseof50Xofthecore'sinventory ofhalogensandlXoftheothernuclidestothesump,wereused.Additionally theconservative assumption wasmadethat50Xofthenoblegasesweredissolved immediately inthesumpwaterwithoutdetracting fromthe100Xnoblegascoreinventory sourcetermsassumedforair.Thedilutionvolumeforthecontainment sump(recirculated}
waterwascreatedbyusingthecombinedvolumesofthereactorcoolant,theSafetyInjection Tanks,andtheminimumvolumeoftheRefueling MaterTank.Thistotalvolumeisapproximately 427,000gallons.However,amoreconservative (greaternuclideconcentration) valueof400,000gallons(1.52xl0cm)wasactuallyusedinthecalculations.
Theresulting initialsumpnuc3.ideinventory isshowninTable5.Theinventories atlatertimescanbederivedbyapplyingtheappropri'ate radioactive decayfactortoeachnuclide.TheStLucieUnitNo.1sumpsourcesdifferedfromStLucieUnitNo.2sumpsourcesinthatthelatterdidnotassumenoblegassourceterms.'2.DOSECALCULATIONS Dosevaluesweredetermined fornormalandpost-accident situations atmanylocations throughout theplantwheresafety-related equipment arelocated.Sourcetermswerecreatedusingthemodelsdescribed inSection1.Dosesfor40yearsnormaloperation arebasedoncalculations doneinthecourseoftheSt.LucieUnitNo.1designwork,asdescribed inSection12oftheFSAR.Thesedosesarequiteconservative sincethecalculations assumedworstcaseconditions ofoperation, shielding, radionuclide inventories (e.g.,1Xfailedfuelinreactoicoolant),
etc.ThenormaldosevaluesarerecordedontheEquipment Radiation DoseMaps.Formostpiecesofequipment, thedosereceivedduringandfollowing aDBAeventfarexceedsthenormaloperating dose,andis,thus,thegoverning contribution.
Calculations weredonebothinsideandoutsidecontainment, forbothgammaandbetaradiation (asapplicable),
andvaluesforfourdifferent timesfollowing thestartoftheDBAwererecordedonthedosemaps:1day,30days,6months,and1year.Thisdiffersfromthe2hour,30day,and1yeartimesforStt,ucieUnitNo.2.Accidentdosesarediscussed inthefollowing sectionforinsideandoutsidecontainment.
Dosesweregenerally calculated usingthepoint&ernel technique integrated overtime.
R1-6/24/832.1DOSEINSIDECONTAINMENT Threeoverallsourceslocations ofradiation areconsidered insidethecontainment andmodeledseparately:
(1)airborne; (2)plateout; and,(3)sumpwater.Theairbornegammaandbetadosesarebasedonthetime-dependent sourcetermsofSection1.1,,whichtakeintoaccountremovalofactivity.
fromthecontainment atmosphere byradioactive decay,plateout, andcontainment spraywashout.Shieldwallsandfinitecloudsizesarefactoredintothecalculations whichwerecarriedoutatanumberofpointinsidethecontainment.
Therelativecontributions ofthesethreesourcestoaparticular pieceofequipment dependontheexactlocationoftheequipment inrelationtoeachsource,andtointernalshieldwalls.Tnefinalcontainment dosemodeltreatsradiation exposureduetocontainment sump~ater,andwasusedtoproducegammaandbetadosecontributions toequipment locatedinthevicinityofthesump,orimmersedinthesumpwaterfollowing aLOCA.Theprimarysourceofactivityinthesumpwateristheiodinewhichisrapidlywashedoutofthecontainment atmosphere bythecontainment spraysystem.Dosesfromthethreesourcesarecombinedatanumberoflocations inthecontainment, andarelistedseparately forgammaanobetadose.IAsdescribed intheinstructions fortheuseoftheEquipment Radiation DoseHaps,thefree-airbetadosegivenonthemapscanbereducedthroughconsideration oftheattenuation effectsofanycoveringthatmaybepresentbetweenthebetasourceandthesensitive component oftheequipment.
Thesedosereduction factors,showninTable6,weredetermined asafunctionoftimeandcoveringthickness foranelastometric materialofdensity1.0gm/cmandametalofdensity8gm/cm3.Thistreatment ofbetadose,givingbothunshielded abdshieldeddoses,isconsistent withtheguidelines ofPositions 1.4(6)-(10) ofNUREG&588.
Itsguidanceof70milsofelastrometric materialthickness reducingthebetadosebyafactorof25issomewhatmoreconservative than.theBulletin79-01Bguidelines of100reduction factorfora70milthickness.
2.2DOSESOUTSIDECONTAINMENT Dosestoequipment locatedoutsidecontainment arecomprised ofcontributions fromdirectgammaradiation shinethroughthecontainment andshieldbuildingwalls,directgammaexposurefromsystemscontaining recirculated (sump)water,internalgammaandbetaexposureiftheequipment itselfcontainsradioactive fluid,andairbornegammaandbetaclouddoseexposurefromleakageofcontainment atmosphere outofthecontainment building.
Thelastcontribution'conservatively assumes0.5Xleakageperdayfromthecontainment; allgoingtotheReactorAuxiliary Building.
Theactualsourcetermsusedarediscussed inSection1.Calculational methodsfordetermining dosestoequipment locatedoutsidethecontainment areessentially thesameasthoseusedforequipment insidethecontainment; i.e.,point-kernel integration.
Thefactorsconsidered andthemethodsusedareconsistent withtheguidelines
'ofNUREG-0588, inparticular, Position1.4(11).
R1-6/2II/832.3EXAHPLESOFDOSEDETERMINATION OFPARTICULAR POINTSThissectionpresentstvoexamplesvhichdepictthecontributory factorsandcalculational methodsusedingenerating dosesfortwoactualpointsappearing ontheEquipment DoseMaps.Oneexampleisforadosepointlocatedins'idecontainment; theotherisforadosepointoutsidecontainment intheReactorAuxiliary Building.
Inbothcases,bothnormalandaccidentdosesarecomputed.
The.basicassumptions underlying thegeneration oftheEquipment DoseMapsaregivenelsewhere inthisSection.Inparticular, compliance withallNRCguidelines giveninPosition1.4ofNUREG&588, byadoptingeithertheNRCormoreconservative models,isdemonstrated point"by-point.
Inbrief,theEquipment DoseMapvaluesweredetermined onthebasisoftime-dependent, mechanistic modelsofradioactive decay,containment spraywashout,plateout, containment leakage,andfiltration vhereapplicable (e.g.,theShieldBuildingVentilation SystemFilters,andtheControlRoomEmergency Filters).
Sourcetermsaediscussed inSectionl.Fourteencontributing factorstothedosevereidentified andconsidered.
Theseareenumerated anddiscussed belov.Gammadosesweredetermined usingapoint-kernel methodology oftheRockwelltype.Betadosesveredetermined usingthemethodology andformulasofHineandBrownellintheirRadiation Dosimetinconjunction withpoint-kernel techniques.
TheUnitNo.1gammaandbetadosesweredetermined asafunctionoftime,andwhereapplicable, cloudsize,inthesamemannerasUnitNo.2.DoseContributors Normal0erationExternal(8)-Directexternaldoseduetogammaandbetairradiation overa40yearperiod.Thesourcetermsarebasedontheassumption of1Xfailedfuelinthereactorcoolant.Nocreditistakenfortheplantcapacityfactor,however,creditistakenforconservatively assumedequipment capacityfactororusefactor.(2)Normal0erationsInternal(B)-Similarto(1),exceptthatthiscontributor referstoimmersion ofinternalcomponents inradioactive fluids(Saseousorliquid)containing thebetasources.(3)DBADirectRadiation FromSumpWater(Y)-Contribution fromthedirectexternal"shine"ofgammasfromsafetyorshutdownsystemscontaining sumpvaterfolloving anaccident.
- G.Hine,G.Brownell, Radiation Dosimet,AcademicPress(1956).
(4)DBADirectRadiation FromSumMater'8)-Similarto(2),exceptthatthesourcehere,isDBAsumpvaterratherthanvatercontaining aradionuclide inventory resulting from"1Xfailedfuelduringnormaloperation.
DBADirectRadiation FromContainment (Y)-Theconatinment atmosphere istreatedasaspherical cloudsourcefordosecalculations atpointsoutsidecontainment.
DBADirectRadiation FromAmbientSources(Y)-Similarto(3),exceptthatfiltration sources,suchastheShieldBuildingVentilation Systemfilters,areconsidered ratherthansumpvatercontaining sources.DBASubmersion Cloud(')-Directshineduetogammaradiation fromairbornesources.DBADirectRadiation FromSum(7)-Directgammaradiation topointsexternaltothecontainment sumpfromsumpsources.(9)DBASubmersion SumRadiation (Y)-Directgammaradiation toequipment submerged inthecontainment sumpfromsumpsources.IDBASubmersion SumRadiation (8)-Similarto(9),exceptthatbetaratherthangammaradiation istreated.(11)DBAPlateout()-Cartaradiation fromsourcesplated-out onexposedsurfacesinthecontainment.
(12)DBAPlateout(8)-Similarto(11),exceptthatbetaratherthangammaradiation istreated.(13)DBASubmersion Cloud(8)-Similarto(7),.except thatbetaratherthangammaradiation istreated.(14)'BADirectRadiation FromSum(8)-Similarto(8),exceptthatbetarather-thangammaradiation istreated.
TABLE1COREINVENTORY NobleGasesNuclideCiNuclideCiNuclideCiNuclideCiKr-85mKr&5Kr-8.7Kr&82.10+7(a)
Kr-896.65+5Kr&03.85+7Kr-915.49+7Xe-131m6.73+76.65+74.91+75.86+5Xe-133Xe-135mXe-135Xe-1371,68+83.39+73.02+71.48+8Xe-138Xe-140Xe-143Xe-1441.34+86.87+71.64+63.66+5HalogensNuclideCiNuclideCiNuclideCiNuclideCiBr-84Br-85Br-87Br&81.61+72.07+73.33+73.51+7Br-89Br-90I-127I-1292.42+7I-1311.53+7I-1321.32+25()I-1332.09+01-1348.37+71.22+81.68+81.81+8I-135I"137I-138.1.56+87.00+83.51+7OtherNuclidesNuclideCiNuclideCiNuclideCiNuclideCiSe>>84As-85Se-85Se-87Rb-88Sr-89Rb-90Sr-90Y-90Rb-91Sr-91Y-91mY-91'r-95Y-95Zr-951.54+72.67+69.52+6~5.53+75.58+77.75+76.84+75.4CH-65.67+68.81+79.52+75.48+71.01+81.02+81.34+81.4(H.8Nb-95Zr-99Nb-99Mo-99Tc-99mMo-103Tc-103Ru-103Tc-106Ru-106Sn-129Sb-129Te-129mTe-129Sn-131.Sb-1311.41+81.3&-81.45+8l.53+S1.32+81.34+81.36+81.37+85.65+73.87+78.89+6.2.76+7'.17+62.62+72.45+76.75+7Te-131mTe-131Sn-132Sb-132Te-132Sn-133Sb-133Te<<133mTe-133Cs"134Sb-334Te-134Sb"135Te-135Cs"135Cs-1361.26+77.25+71.43+74.01+71.19+84.96+64.50+76.02+79.59+71.58+78.02+61.27+85.03+66.62+72.10+14.42+6Cs-137Ba-137mCs-138Cs-140Ba-140La-140Cs-143Ba-143La-143Ce-143Pr-143Cs-144Ba-144La-144Ce-144Pr-144'.25+66.87+61.43+8l.29+81.46+8l.50+82.79+7l.11+81.25+8l.26+81.24+88.52+68.25+7l.09+89.95+7l.00+8Notes:(a)Readas2.10x10curies(b)I-127isstable.Numbergivenistotalatoms.
TABLE2INITIALCONTAIRFNT ATMOSPHERE SPECIFICACTIVITIES FOLLOWING AL(GA(a)NobleGasesNuclideCi/CmNuclide3Ci/CmNuclide3Ci/CmNuclideCi/Cm3Kr-85mKr-85Kr-87Kr-882.86-4(b)
Kr-899.04-6Kr&05.22-4Kr-917.47-4Ke-131m9.15-49.04-46.67-47.96-6Xe-13'3Xe-135mXe-135Xe"1372.29-34.61-44.10-42.02-3Xe-138Xe-140Xe-143Xe-1441.81-3~9.34-42.15-54.97-6HalogensNuclideBr-84Br-85.Br-87Br-88~3~Ci/cm1.10-41.41-42.26-72.39-4NuclideBr-89Br-90I-1293Ci/cm3..64-41.03-41.42-11Nuc1ideI-131I-132I-133I-1343Ci/cm5.68-48.26-4l.14-31.23-3NuclideI-135I-137I-1383Ci/cm1.06-34.76-42.39-4OtherNuclides3NuclideCi/cmNuclide3Ci/emNuclide3Ci/cmNuclide3Ci/cmSe-84As-85Se-85Se-87Rb-88Sr-89Rb-90Sr-9.0Y-90Rb-91Sr-91Y-91mY-93.Sr-95Y&5Zr-95~2.08-63.64-71.29-62.07-67.58-61.05-59.30-67.34-77.71-71.20-51.29-57.45-6l.37-51.38"51.81-51.91-5Nb-95Zr-99Nb-99Mo&9Tc-99mMo-103Tc-103RU-103Tc-106Ru-106Sn-129Sb-129Te-129mTe-329Sn-131Sb-1311.92-51.88-51.97-52.07-51.78-51.81-51.84-51.86-57.67-65.26-61.21-63.75-69.74-73.56-6'.38-6.9.17-6Te-131mTe-131Sn-132Sb-332Te"132Sn-133Sb"133Te-133mTe-133Cs-334Sb-134Te-134Sb-135Te-135Cs-135Cs-1361.71-69.84-61.94-&5.45-61.62-56.74-76'.12-68.18-61.30-52.15-61.09"61.73-56.83-78.99-62.86-126.01-7Cs-137Ba-137mCs-138Cs-140Ba-140La-140Cs-143Ba-143La-143Ce>>143Pr-143Cs-144Ba-144La-144Ce-144Pr-1449.84-79.34-71.94-51.76-51.98-52.05-53.78-61.50-51.70-51.71-51.68-51.16-61.12-51.48-51.35-51.36-5Notes:(a)100Xcoreinventory noblegases50Xcoreinventory halogens1Xcoreinventory othernuclides(b)readas2.86x10curies/cmDilutedin2.6x106ft(7.36x10cm)
TABLE3CONTAINMENT SPRAYWASHOUTMODELPercentage ofCorePercentage byinventory ReleasedChemicalFormNuclideSpeciestoCont.Atm.SLlNRCSL1NRCRemovalCoefficient hr1NobleGases1000.00.0HalogensElemental Particulate Organic5090911010.00.027.20.430.0OtherNuclides0.43(b)Notes:(a)NUREG&588, AppendixD(RO,12/79)(b)NotstatedinNUREGW588 TAKE4PLATEOUTMODEL(a)NuclideSpeciesPercentage ofCoreInventory ReleasedRemovalCoefficient toCont.Atm.SL1NRCNobleGases1000,00.0HalogensElemental Particulate Organic501.23hr-11.0day-l(c)000.0OtherNuclides1.0day-1Notes:(a)Containment surfaceareaSLl-2.5x10ftNRC-5.Oxl0ft(b)NUREGW588, AppendixD(RO,12/79)(c)Theuseofasmallplateoutremovalfactortendstoincreasethesourcetermsforthesubmersion yclouddose~10 TABLE5INITIALCONTAIRKNT SUMPMATERSPECIFICACTIUITIES FOLLOWING ALOCA(NobleGasesNuclideKr-85mKr-85Kr-87Kr-883Ci/cm6.93-32.20-41.27-21.81-2NuclideKr-89Kr-90Kr-91Xe-131m3Ci/cm2~22-22.20-21.62-21.93-4Nuc1ideXe-133Xe-135mXe-135Xe-1373Ci/cm5.55-2l.12-29.97-34.89"2Nuc1ideXe-138Xe-140Xe-143Xe-1443Ci/cm4.43-22e2725.42-41.21-4Halogens33NuclideCi/cmNuclideCi/cmNuclide3Ci/cm3NuclideCi/cmBr-845.32-3()Br-89Br-856.82-3Br-90Br-871.09-2I-129Br-881.16-27.94-3I-1315.00-3I-1326.87"10I-1331-1342.75-24.00-25.51"25.98-2I-1355.14-2I-1372.30-2I-1381.16-2OtherNuclides3NuclideCi/cm3NuclideCi/cmNuclide3Ci/cm3NuclideCi/cmSe-84As&5Se-85Se&7Rb-88Sr-89Rb-90Sr-90Y-90Rb-91.Sr-91Y-91mY-91Sr&5Y-95Zr-951.01-41.76"56.26"51.00-43.67-45.09-44.50-43.55-53.73-55.79-46.26-43.61-46.63-46.68-48.78-49.25-4Nb-95Zr-99Nb-99Mo"99Tc-99mMo-103Tc-103RU-103Tc-106RQ-106Sn-129Sb-129Te-129m'Te-129Sn-131Sb"1319.30-49.11-49.53-41.00-38.64-48.78-48.92-49.02-43.71-42.55-'45.84-51.82-44.72-51.72-41:62-44.44-4Te-131mTe-131Sn-132Sb-132Te-132Sn-133Sb-133Te133mTe-133Cs-134Sb-134Te-134Sb-135Te-135Cs-135Cs-1368.27-54.76-49.39-52.64-47.85-43.27-52.96-43.96-46.31-41.04-45.28-58.36-43.31-54.35-4l.38-102.91-5Cs-137Ba-137mCs-138Cs-140Ba-140La-140Cs-143Ba-143La-143Ce-143Pr-143Cs-144Ba-144La-144Ce-144Pr-1444.76-54.52-59.39-48.50-49.58-49.90-41.83-47.29-48.22-48.27-48.13-45.61-55.42-47.15-46.54-46.59-4Notes:(a)50Xcoreinventory noblegas50Xcoreinventory halogens1Xcoreinventory othernuclides(b)readas5.32x10curies/cm dilutedin400,000gal(1.52x10cm3}
TABLE6BETADOSEREDUCTION FACTORSMetalThickness mils(P8m/cm3)1234567'891015202530StLucie1BetaDoseReduction Factor.69.48.33.23.16.11.078.054.037.026.004.00067.0001.000017Non-Metal Thickness Elastrometric Coatingmils(@~1m/cm3).1'101520253035'40455060708090100StLucie1BetaDoseReduction Factor.96.80.63.50.40.32.25.20.16.13.10.064.04.026.016.01NR"BetaDoseReduction Factor(a)
.10.OlNotes:(a)FromBulletinIE79-01B12 TABJ.E7GONTRIBVTORS TODOSi;OFPOINTINSIDECONTAINMENT Thecontributions fromthefourteenfactorspreviously listedareshownforaparticular pointinsidecontainment, chosenatElevation 111.00ontheverticalaxisofthecontainment.
Onlysignificant contributions arelisted.Notethatthebetadosesdonotconsiderequipment coverings.DoseFactorDescrition'40year,,DoseatVariousTimesFollowi~n~DA DoteelAfterlde~After300DoseY8YYNormalOpEx-terne1(y,g)1,0+4~NormalOpIn-ternal-(8).3DBADirectRadi-ationfromSumpwater(y)1.0+4-5.0+46.5+4-7.0+4DBADirectRadi-ationfromSumpwater(g)DBADirectRadi-ationfromCon-tainment(Y)DBADirectRadi-ationfromAmbi-entSources(Y)DBASubmersion Cloud(Y)4.2+6-1.7+7l.8+72.0+7DBADirectRadi-ationfromSump(Y)".Readas1.0X10rads TABLr;7(Cont'd)R1-6/24/83DoseFactorDescrition40yearHormal0DoseDoseetVstiousTimesFoiiouieg ggA-"'""X8S08DBASubmersion SumpRadiation (v)1012DBASubmersion SumpRa'diation (8)DBAPlateout(y)DHAPlateout(6)3.5+4-l.1+5-l.7+52.0%51314DBASubmersion Cloud(6)DBADirec.tRadi-ationfromSump(8)6.4+7-1.3+8-1.5+81.6+8RlSUBTOTA!l.N-44.2+66.4+71.7+71.3+81.8+71.5+8.2.0+1.6+8RlTOTAL(Includes 40yearNormalOpDose)4.2'.66,4+71.7+71.3+8l.8+71.5+82.0+71.6+8 TABLE8CONTRIBUTORS TODOSL'FPOINTOUTSIDEG)NTAINHENT Forthepurposeofthisexample,apointlocatedinthevicinityoftheControlRoomEmergency Filters,onElevation 62.00'ftheReactorAuxiliary
- Building, waschosen.DoseFactorDescrition40.yearNormal0Dose~Y8Y8Y88NormalOpEx-ternal(y,g)1.0+3*NormalOpIn-ternal(8)DBADirectRadi-ationfromSumpwater(Y)DBADirectRadi-ationfromSumpwater(8)DBADirectRad1-ationfromCon-tainment(Y)g1.0+2-41.0+2-g1.0+2-/1.0+2DBADirectRadi-ationfromAmbi-entSources(Y)l.4+4-7.0+4-9.1+41.0+5DBASubmersion Cloud(Y)5.2+2-4.0+4-4.4-I44.4+5DBADirectRadi-ationfromSump(Y)*Readas1.0X10rads3 TABLE8(Cont'd)Rl-6/24/83DoseFactorDescrition9DBASubmersion SumpRadiation (v)40yearNormal0DoseDosest.VariousTimesfollowing DDAAfterldayAfter30DayyAfter0monthsAfterlveer0V810121314DBASubmersion SumpRadiation (8)DBAPlateout('f)DBAPlateout(9)DBASubmersion Cloud(5)DBADirectRadi-ationfromSump(0)43.1+3-(2.4+5-(2.6+5(2.6+5IRl-SUBTOTALTOTAL(Includes'40 yearNormalOpDose)1.0+31.5+4(3.1+31.1+5d'2.4+51.4+542.6+51.5+5<2,8-5 1.5+4c3.1+31.1+5(2.4+51.4+5<2.6+51.5+5'.'2.6+5 Rl I1